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Preface

Numbers imitate space, which is of such a different nature
—Blaise Pascal

It is fair to date the study of the foundation of mathematics back to the
ancient Greeks. The urge to understand and systematize the mathematics of
the time led Euclid to postulate axioms in an early attempt to put geometry
on a firm footing. With roots in the Elements, the distinctive methodology
of mathematics has become proof. Inevitably two questions arise: What are
proofs? and What assumptions are proofs based on?

The first question, traditionally an internal question of the field of logic,
was also wrestled with in antiquity. Aristotle gave his famous syllogistic sys-
tems, and the Stoics had a nascent propositional logic. This study continued
with fits and starts, through Boethius, the Arabs and the medieval logicians
in Paris and London. The early germs of logic emerged in the context of
philosophy and theology.

The development of analytic geometry, as exemplified by Descartes, illus-
trated one of the difficulties inherent in founding mathematics. It is classically
phrased as the question of how one reconciles the arithmetic with the geomet-
ric. Are numbers one type of thing and geometric objects another? What are
the relationships between these two types of objects? How can they interact?
Discovery of new types of mathematical objects, such as imaginary numbers
and, much later, formal objects such as free groups and formal power series
make the problem of finding a common playing field for all of mathematics
importunate.

Several pressures made foundational issues urgent in the 19th century.
The development of alternative geometries created doubts about the view
that mathematical truth is part of an absolute all-encompassing logic and
caused it to evolve towards one in which mathematical propositions follow
logically from assumptions that may vary with context.

Mathematical advances involving the understanding of the relationship
between the completeness of the real line and the existence of solutions to
equations led inevitably to anxieties about the role of infinity in mathematics.

These too had antecedents in ancient history. The Greeks were well aware
of the scientific importance of the problems of the infinite which were put
forth, not only in the paradoxes of Zeno, but in the work of Eudoxus,
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Archimedes and others. Venerable concerns about resolving infinitely divisi-
ble lines into individual points and what is now called “Archimedes’ Axiom”
were recapitulated in 19th century mathematics.

In response, various “constructions” of the real numbers were given, such
as those using Cauchy sequences and Dedekind cuts, as a way of under-
standing the relationship between discrete entities, such as the integers or
the rationals and the continuum. Even simple operations, such as addition
of arbitrary real numbers began to be understood as infinitary operations,
defined by some kind of limiting process. The notion of function was liberal-
ized beyond those that can be written in closed form. Sequences and series
became routine tools for solving equations.

The situation was made acute when Cantor, working on natural problems
involving trigonometric series, discovered the existence of different magni-
tudes of infinity. The widespread use of inherently infinitary techniques,
such as the use of the Baire Category Theorem to prove the existence of im-
portant objects, became deeply embedded in standard mathematics, making
it impossible to simply reject infinity as part of mathematics.

In parallel 19th century developments, through the work of Boole and oth-
ers, logic became once again a mathematical study. Boole’s algebraization of
logic made it grist for mathematical analysis and led to a clear understanding
of propositional logic. Dually, logicians such as Frege viewed mathematics as
a special case of logic. Indeed a very loose interpretation of the work of Frege
is that it is an attempt to base mathematics on a broad notion of logic that
subsumed all mathematical objects.

With Russell’s paradox and the failure of Frege’s program, a distinction
began to be made between logic and mathematics. Logic began to be viewed
as a formal epistemological mechanism for exploring mathematical truth,
barren of mathematical content and in need of assumptions or axioms to
make it a useful tool.

Progress in the 19th and 20th centuries led to the understanding of logics
involving quantifiers as opposed to propositional logic and to distinctions such
as those between first and second-order logic. With the semantics developed
by Tarski and the compactness and completeness theorems of Gödel, first-
order logic has become widely accepted as a well-understood, unproblematic
answer to the question What is a proof?

The desirable properties of first-order logic include:

• Proofs and propositions are easily and uncontroversially recognizable.

• There is an appealing semantics that gives a clear understanding of the
relationship between a mathematical structure and the formal proposi-
tions that hold in it.

• It gives a satisfactory model of what mathematicians actually do: the
“rigorous” proofs given by humans seem to correspond exactly to the
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“formal” proofs of first-order logic. Indeed formal proofs seem to pro-
vide a normative ideal towards which controversial mathematical claims
are driven as part of their verification process.

While there are pockets of resistance to first-order logic, such as con-
structivism and intuitionism on the one hand and other alternatives such as
second-order logic on the other, these seem to have been swept aside, if simply
for no other reason than their comparative lack of mathematical fruitfulness.

To summarize, a well-accepted conventional view of foundations of math-
ematics has evolved that can be caricatured as follows:

Mathematical Investigation = First-Order Logic + Assumptions

This formulation has the advantage that it segregates the difficulties with the
foundations of mathematics into discussions about the underlying assump-
tions rather than into issues about the nature of reasoning.

So what are the appropriate assumptions for mathematics? It would be
very desirable to find assumptions that:

1. involve a simple primitive notion that is easy to understand and can be
used to “build” or develop all standard mathematical objects,

2. are evident,

3. are complete in that they settle all mathematical questions,

4. can be easily recognized as part of a recursive schema.

Unfortunately Gödel’s incompleteness theorems make item 3 impossible. Any
recursive consistent collection A of mathematical assumptions that are strong
enough to encompass the simple arithmetic of the natural numbers will be
incomplete; in other words there will be mathematical propositions P that
cannot be settled on the basis of A. This inherent limitation is what has
made the foundations of mathematics a lively and controversial subject.

Item 2 is also difficult to satisfy. To the extent that we understand math-
ematics, it is a difficult and complex business. The Euclidean example of
a collection of axioms that are easily stated and whose content is simple to
appreciate is likely to be misleading. Instead of simple, distinctly conceived
and obvious axioms, the project seems more analogous to specifying a com-
plicated operating system in machine language. The underlying primitive
notions used to develop standard mathematical objects are combined in very
complicated ways. The axioms describe the operations necessary for doing
this and the test of the axioms becomes how well they code higher level ob-
jects as manipulated in ordinary mathematical language so that the results
agree with educated mathematicians’ sense of correctness.

Having been forced to give up 3 and perhaps 2, one is apparently left with
the alternatives:
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2′. Find assumptions that are in accord with the intuitions of mathemati-
cians well versed in the appropriate subject matter.

3′. Find assumptions that describe mathematics to as large an extent as is
possible.

With regard to item 1, there are several choices that could work for the
primitive notion for developing mathematics, such as categories or functions.
With no a priori reason for choosing one over another, the standard choice
of sets (or set membership) as the basic notion is largely pragmatic. Taking
sets as the primitive, one can easily do the traditional constructions that
“build” or “code” the usual mathematical entities: the empty set, the natural
numbers, the integers, the rationals, the reals, C, R

n, manifolds, function
spaces—all of the common objects of mathematical study.

In the first half of the 20th century a standard set of assumptions evolved,
the axiom system called the Zermelo-Fraenkel axioms with the Axiom of
Choice (ZFC). It is pragmatic in spirit; it posits sufficient mathematical
strength to allow the development of standard mathematics, while explic-
itly rejecting the type of objects held responsible for the various paradoxes,
such as Russell’s.

While ZFC is adequate for most of mathematics, there are many math-
ematical questions that it does not settle. Most prominent among them is
the first problem on Hilbert’s celebrated list of problems given at the 1900
International Congress of Mathematicians, the Continuum Hypothesis.

In the jargon of logic, a question that cannot be settled in a theory T is
said to be independent of T . Thus, to give a mundane example, the property
of being Abelian is independent of the axioms for group theory. It is routine
for normal axiomatizations that serve to synopsize an abstract concept in-
ternal to mathematics to have independent statements, but more troubling
for axiom systems intended to give a definitive description of mathematics
itself. However, independence phenomena are now known to arise from many
directions; in essentially every area of mathematics with significant infinitary
content there are natural examples of statements independent of ZFC.

This conundrum is at the center of most of the chapters in this Handbook.
Its investigation has left the province of abstract philosophy or logic and has
become a primarily mathematical project. The intent of the Handbook is
to provide graduate students and researchers access to much of the recent
progress on this project. The chapters range from expositions of relatively
well-known material in its mature form to the first complete published proofs
of important results. The introduction to the Handbook gives a thorough
historical background to set theory and summaries of each chapter, so the
comments here will be brief and general.

The chapters can be very roughly sorted into four types. The first type
consists of chapters with theorems demonstrating the independence of mathe-
matical statements. Understanding and proving theorems of this type require
a thorough understanding of the mathematics surrounding the source of the
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problem in question, reducing the ambient mathematical constructions to
combinatorial statements about sets, and finally using some method (pri-
marily forcing) to show that the combinatorial statements are independent.

A second type of chapter involves delineating the edges of the independence
phenomenon, giving proofs in ZFC of statements that on first sight would
be suspected of being independent. Proofs of this kind are often extremely
subtle and surprising; very similar statements are independent and it is hard
to detect the underlying difference.

The last two types of chapters are motivated by the desire to settle these
independent statements by adding assumptions to ZFC, such as large cardinal
axioms. Proposers of augmentations to ZFC carry the burden of marshaling
sufficient evidence to convince informed practitioners of the reasonableness,
and perhaps truth, of the new assumptions as descriptions of the mathemat-
ical universe. (Proposals for axiom systems intended to replace ZFC carry
additional heavier burdens and appear in other venues than the Handbook.)

One natural way that this burden is discharged is by determining what
the supplementary axioms say ; in other words by investigating the conse-
quences of new axioms. This is a strictly mathematical venture. The theory
is assumed and theorems are proved in the ordinary mathematical manner.
Having an extensive development of the consequences of a proposed axiom
allows researchers to see the overall picture it paints of the set-theoretic uni-
verse, to explore analogies and disanalogies with conventional axioms, and
judge its relative coherence with our understanding of that universe. Exam-
ples of this include chapters that posit the assumption that the Axiom of
Determinacy holds in a model of Zermelo-Fraenkel set theory that contains
all of the real numbers and proceed to prove deep and difficult results about
the structure of definable sets of reals.

Were there an obvious and compelling unique path of axioms that supple-
ment ZFC and settle important independent problems, it is likely that the
last type of chapter would be superfluous. However, historically this is not the
case. Competing axioms systems have been posited, sometimes with obvious
connections, sometimes appearing to have nothing to do with each other.

Thus it becomes important to compare and contrast the competing pro-
posals. The Handbook includes expositions of some stunningly surprising
results showing that one axiom system actually implies an apparently unre-
lated axiom system. By far the most famous example of this are the proofs
of determinacy axioms from large cardinal assumptions.

Many axioms or independent propositions are not related by implication,
but rather by relative consistency results, a crucial idea for the bulk of the
Handbook. A remarkable meta-phenomenon has emerged. There appears
to be a central spine of axioms to which all independent propositions are
comparable in consistency strength. This spine is delineated by large cardinal
axioms. There are no known counterexamples to this behavior.

Thus a project initiated to understand the relationships between disparate
axiom systems seems to have resulted in an understanding of most known
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natural axioms as somehow variations on a common theme—at least as far
as consistency strength is concerned. This type of unifying deep structure is
taken as strong evidence that the axioms proposed reflect some underlying
reality and is often cited as a primary reason for accepting the existence of
large cardinals.

The methodology for settling the independent statements, such as the
Continuum Hypothesis, by looking for evidence is far from the usual deduc-
tive paradigm for mathematics and goes against the rational grain of much
philosophical discussion of mathematics. This has directed the attention of
some members of the philosophical community towards set theory and has
been grist for many discussions and message boards. However interpreted,
the investigation itself is entirely mathematical and many of the most skilled
practitioners work entirely as mathematicians, unconcerned about any philo-
sophical anxieties their work produces.

Thus set theory finds itself at the confluence of the foundations of mathe-
matics, internal mathematical motivations and philosophical speculation. Its
explosive growth in scope and mathematical sophistication is testimony to
its intellectual health and vitality.

The Handbook project has some serious defects, and does not claim to be
a remotely complete survey of set theory; the work of Shelah is not covered to
the appropriate extent given its importance and influence and the enormous
development of classical descriptive set theory in the last fifteen years is
nearly neglected. While the editors regret this, we are consoled that those
two topics, at least, are well documented elsewhere. Other parts of set theory
are not so lucky and we apologize.

We the editors would like to thank all of the authors for their labors. They
have taken months or years out of their lives to contribute to this project.
We would especially like to thank the referees, who are the unsung heroes
of the story, having silently devoted untold hours to carefully reading the
manuscripts simply for the benefit of the subject.

Matthew Foreman
Irvine

Let me express a special gratitude to the Lichtenberg-Kolleg at Göttingen.
Awarded an inaugural 2009–2010 fellowship, I was provided with a particu-
larly supportive environment at the Gauss Sternwarte, in the city in which
David Hilbert, Ernst Zermelo, and Paul Bernays did their formative work on
the foundations of mathematics. Thus favored, I was able to work in peace
and with inspiration to complete the final editing and proof-reading of this
Handbook.

Akihiro Kanamori
Boston and Göttingen
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2 Kanamori / Introduction

Set theory has entered its prime as an advanced and autonomous research
field of mathematics with broad foundational significance, and this Handbook
with its expanse and variety amply attests to the fecundity and sophistication
of the subject. Indeed, in set theory’s further reaches one sees tremendous
progress both in its continuing development of its historical heritage, the
investigation of the transfinite numbers and of definable sets of reals, as well
as its analysis of strong propositions and consistency strength in terms of
large cardinal hypotheses and inner models.

This introduction provides a historical and organizational frame for both
modern set theory and this Handbook, the chapter summaries at the end be-
ing a final elaboration. To the purpose of drawing in the serious, mathemati-
cally experienced reader and providing context for the prospective researcher,
we initially recapitulate the consequential historical developments leading to
modern set theory as a field of mathematics. In the process we affirm ba-
sic concepts and terminology, chart out the motivating issues and driving
initiatives, and describe the salient features of the field’s internal practices.
As the narrative proceeds, there will be a natural inversion: Less and less
will be said about more and more as one progresses from basic concepts to
elaborate structures, from seminal proofs to complex argumentation, from
individual moves to collective enterprise. We try to put matters in a succinct
yet illuminating manner, but be that as it may, according to one’s experience
or interest one can skim the all too familiar or too obscure. To the histo-
rian this account would not properly be history—it is, rather, a deliberate
arrangement, in significant part to lay the ground for the coming chapters.
To the seasoned set theorist there may be issues of under-emphasis or over-
emphasis, of omissions or commissions. In any case, we take refuge in a wise
aphorism: If it’s worth doing, it’s worth doing badly.

1. Beginnings

1.1. Cantor

Set theory was born on that day in December 1873 when Georg Cantor
(1845–1918) established that the continuum is not countable—there is no
one-to-one correspondence between the real numbers and the natural num-
bers 0, 1, 2, . . . . Given a (countable) sequence of reals, Cantor defined nested
intervals so that any real in their intersection will not be in the sequence.
In the course of his earlier investigations of trigonometric series Cantor had
developed a definition of the reals and had begun to entertain infinite total-
ities of reals for their own sake. Now with his uncountability result Cantor
embarked on a full-fledged investigation that would initiate an expansion of
the very concept of number. Articulating cardinality as based on bijection
(one-to-one correspondence) Cantor soon established positive results about
the existence of bijections between sets of reals, subsets of the plane, and the
like. By 1878 his investigations had led him to assert that there are only two
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infinite cardinalities embedded in the continuum: Every infinite set of reals
is either countable or in bijective correspondence with all the reals. This was
the Continuum Hypothesis (CH) in its nascent context, and the continuum
problem, to resolve this hypothesis, would become a major motivation for
Cantor’s large-scale investigations of infinite numbers and sets.

In his magisterial Grundlagen of 1883 Cantor developed the transfinite
numbers and the key concept of well-ordering, in large part to take a new,
structured approach to infinite cardinality. The transfinite numbers follow
the natural numbers 0, 1, 2, . . . and have come to be depicted in his later
notation in terms of natural extensions of arithmetical operations:

ω, ω + 1, ω + 2, . . . ω + ω(= ω·2),
. . . ω·3, . . . ω·ω(= ω2), . . . ω3, . . . ωω, . . . ωωω

, . . . .

A well-ordering on a set is a linear ordering of it according to which every
non-empty subset has a least element. Well-orderings were to carry the sense
of sequential counting, and the transfinite numbers served as standards for
gauging well-orderings. Cantor developed cardinality by grouping his transfi-
nite numbers into successive number classes, two numbers being in the same
class if there is a bijection between them. Cantor then propounded a basic
principle: “It is always possible to bring any well-defined set into the form of
a well-ordered set.” Sets are to be well-ordered, and they and their cardinali-
ties are to be gauged via the transfinite numbers of his structured conception
of the infinite.

The transfinite numbers provided the framework for Cantor’s two ap-
proaches to the continuum problem, one through cardinality and the other
through definable sets of reals, these each to initiate vast research programs.
As for the first, Cantor in the Grundlagen established results that reduced
the continuum problem to showing that the continuum and the countable
transfinite numbers have a bijection between them. However, despite sev-
eral announcements Cantor could never develop a workable correlation, an
emerging problem being that he could not define a well-ordering of the reals.

As for the approach through definable sets of reals, Cantor formulated
the key concept of a perfect set of reals (non-empty, closed, and containing
no isolated points), observed that perfect sets of reals are in bijective cor-
respondence with the continuum, and showed that every closed set of reals
is either countable or else have a perfect subset. Thus, Cantor showed that
“CH holds for closed sets”. The perfect set property, being either countable
or else having a perfect subset, would become a focal property as more and
more definable sets of reals came under purview.

Almost two decades after his initial 1873 result, Cantor in 1891 subsumed
it through his celebrated diagonal argument. In logical terms this argument
turns on the use of the validity ¬∃y∀x(Pxx←→ ¬Pyx) for binary predicates
P parametrizing unary predicates and became, of course, fundamental to the
development of mathematical logic. Cantor stated his new, general result in
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terms of functions, ushering in totalities of arbitrary functions into mathemat-
ics, but his result is cast today in terms of the power set P (x) = {y | y ⊆ x}
of a set x: For any set x, P (x) has a larger cardinality than x. Cantor had
been extending his notion of set to a level of abstraction beyond sets of reals
and the like; this new result showed for the first time that there is a set of a
larger cardinality than that of the continuum.

Cantor’s Beiträge of 1895 and 1897 presented his mature theory of the
transfinite, incorporating his concepts of ordinal number and cardinal num-
ber. The former are the transfinite numbers now reconstrued as the “order-
types” of well-orderings. As for the latter, Cantor defined the addition, mul-
tiplication, and exponentiation of cardinal numbers primordially in terms of
set-theoretic operations and functions. Salient was the incorporation of “all”
possibilities in the definition of exponentiation: If a is the cardinal number
of A and b is the cardinal number of B then ab is the cardinal number of the
totality, nowadays denoted BA, of all functions from B into A. As befits the
introduction of new numbers Cantor introduced a new notation, one using
the Hebrew letter aleph, ℵ. ℵ0 is to be the cardinal number of the natural
numbers and the successive alephs

ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . .

indexed by the ordinal numbers are now to be the cardinal numbers of the
successive number classes from the Grundlagen and thus to exhaust all the
infinite cardinal numbers. Cantor pointed out that the exponentiated 2ℵ0

is the cardinal number of the continuum, so that CH could now have been
stated as

2ℵ0 = ℵ1.

However, with CH unresolved Cantor did not even mention the hypothesis
in the Grundlagen, only in correspondence. Every well-ordered set has an
aleph as its cardinal number, but where is 2ℵ0 in the aleph sequence?

Cantor’s great achievement, accomplished through almost three decades
of prodigious effort, was to have brought into being the new subject of set
theory as bolstered by the mathematical objectification of the actual infinite
and moreover to have articulated a fundamental problem, the continuum
problem. Hilbert made this the very first of his famous problems for the 20th
Century, and he drew out Cantor’s difficulty by suggesting the desirability of
“actually giving” a well-ordering of the real numbers.

1.2. Zermelo

Ernst Zermelo (1871–1953), already estimable as an applied mathematician,
turned to set theory at Göttingen under the influence of Hilbert. Zermelo
analyzed Cantor’s well-ordering principle by reducing it to the Axiom of
Choice (AC), the abstract existence assertion that every set x has a choice
function, i.e. a function f with domain x such that for every non-empty y ∈ x,
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f(y) ∈ y. Zermelo’s 1904 proof of the Well-Ordering Theorem, that with AC
every set can be well-ordered, would anticipate the argument two decades
later for transfinite recursion:

With x a set to be well-ordered, let f be a choice function on the power
set P (x). Call y ⊆ x an f -set if there is a well-ordering R of y such that for
any a ∈ y, a = f({b ∈ x | b does not R-precede a}). The well-orderings of
f -sets are thus determined by f , and f -sets cohere. It follows that the union
of f -sets is again an f -set and must in fact be x itself.

Zermelo’s argument provoked open controversy because of its appeal to
AC, and the subsequent tilting toward the acceptance of AC amounted to
a conceptual shift in mathematics toward arbitrary functions and abstract
existence principles. Responding to his critics Zermelo in 1908 published
a second proof of the Well-Ordering Theorem and then the first full-fledged
axiomatization of set theory, one similar in approach to Hilbert’s axiomatiza-
tion of geometry and incorporating set-theoretic ideas of Richard Dedekind.
This axiomatization duly avoided the emerging “paradoxes” like Russell’s
Paradox, which Zermelo had come to independently, and served to buttress
the Well-Ordering Theorem by making explicit its underlying set-existence
assumptions. Zermelo’s axioms, now formalized, constitute the familiar the-
ory Z, Zermelo set theory:

Extensionality (sets are equal if they contain the same members), Empty
Set (there is a set having no members), Pairs (for any sets x and y there is
a set {x, y} consisting exactly of x and y), Union (for any set x there is a
set

⋃
x consisting exactly of those sets that are members of some member

of x), Power Set (for any set x there is a set P (x) consisting exactly of the
subsets of x), Choice (for any set x consisting of non-empty, pairwise disjoint
sets, there is a set c such that every member of x has exactly one member
in c), Infinity (there is a certain, specified infinite set); and Separation (for
any set x and “definite” property P , there is a set consisting exactly of those
members of x having the property P ).

Extensionality, Empty Set, and Pairs lay the basis for sets. Infinity and
Power Set ensure sufficiently rich settings for set-theoretic constructions.
Power Set legitimizes “all” for subsets of a given set, and Separation legit-
imizes “all” for elements of a given set satisfying a property. Finally, Union
and Choice (formulated reductively in terms of the existence of a “transver-
sal” set meeting each of a family of sets in one member) complete the encasing
of the Well-Ordering Theorem.

Zermelo’s axiomatization sought to clarify vague subject matter, and like
strangers in a strange land, stalwarts developed a familiarity with sets guided
hand-in-hand by the axiomatic framework. Zermelo’s own papers, with work
of Dedekind as an antecedent, pioneered the reduction of mathematical con-
cepts and arguments to set-theoretic concepts and arguments from axioms.
Zermelo’s analysis moreover served to draw out what would come to be gen-
erally regarded as set-theoretic and combinatorial out of the presumptively
logical, with Infinity and Power Set salient and the process being strate-
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gically advanced by the segregation of the notion of property to Separa-
tion.

Taken together, Zermelo’s work in the first decade of the 20th Century
initiated a major transmutation of the notion of set after Cantor. With AC
Zermelo shifted the notion away from Cantor’s inherently well-ordered sets,
and with his axiomatization Zermelo ushered in a new abstract, prescriptive
view of sets as structured solely by membership and governed and generated
by axioms. Through his set-theoretic reductionism Zermelo made evident
how his set theory is adequate as a basis for mathematics.

1.3. First Developments

During this period Cantor’s two main legacies, the extension of number into
the transfinite and the investigation of definable sets of reals, became fully
incorporated into mathematics in direct initiatives. The axiomatic tradition
would be complemented by another, one that would draw its life more directly
from the mathematics.

The French analysts Emile Borel, René Baire, and Henri Lebesgue took
on the investigation of definable sets of reals in what would be a typically
“constructive” approach. Cantor had established the perfect set property for
closed sets and formulated the concept of content for a set of reals, but he
did not pursue these matters. With these as antecedents the French work
would lay the basis for measure theory as well as descriptive set theory, the
definability theory of the continuum.

Borel, already in 1898, developed a theory of measure for sets of reals; the
formulation was axiomatic, and at this early stage, bold and imaginative.
The sets measurable according to his measure are the now well-known Borel
sets. Starting with the open intervals (a, b) of reals assigned measure b−a, the
Borel sets result when closing off under complements and countable unions,
measures assigned in a corresponding manner.

Baire in his 1899 thesis classified those real functions obtainable by start-
ing with the continuous functions and closing off under pointwise limits—the
Baire functions—into classes indexed by the countable ordinal numbers, pro-
viding the first transfinite hierarchy after Cantor. Baire’s thesis also intro-
duced the now basic concept of category. A set of reals is nowhere dense iff
its closure under limits includes no open set, and a set of reals is meager (or
of first category) iff it is a countable union of nowhere dense sets—otherwise,
it is of second category. Generalizing Cantor’s 1873 argument, Baire estab-
lished the Baire Category Theorem: Every non-empty open set of reals is of
second category. His work also suggested a basic property: A set of reals A
has the Baire property iff there is an open set O such that the symmetric
difference (A−O)∪ (O−A) is meager. Straightforward arguments show that
every Borel set has the Baire property.

Lebesgue’s 1902 thesis is fundamental for modern integration theory as the
source of his concept of measurability. Lebesgue’s concept of measurable set
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subsumed the Borel sets, and his analytic definition of measurable function
subsumed the Baire functions. In simple terms, any arbitrary subset of a
Borel measure zero set is a Lebesgue measure zero, or null, set, and a set is
Lebesgue measurable if it is the union of a Borel set and a null set, in which
case the measure assigned is that of the Borel set. It is this “completion”
of Borel measure through the introduction of arbitrary subsets which gives
Lebesgue measure its complexity and applicability and draws in wider issues
of constructivity. Lebesgue’s subsequent 1905 paper was the seminal paper of
descriptive set theory: He correlated the Borel sets with the Baire functions,
thereby providing a transfinite hierarchy for the Borel sets, and then applied
Cantor’s diagonalization argument to show both that this hierarchy is proper
(new sets appear at each level) and that there is a Lebesgue measurable set
which is not Borel.

As descriptive set theory was to develop, a major concern became the
extent of the regularity properties, those indicative of well-behaved sets of
reals, of which prominent examples were Lebesgue measurability, having the
Baire property, and having the perfect set property. Significantly, the context
was delimited by early explicit uses of AC in the role of providing a well-
ordering of the reals: In 1905 Giuseppe Vitali established that there is a non-
Lebesgue measurable set, and in 1908 Felix Bernstein established that there
is a set without the perfect set property. Thus, Cantor’s early contention
that the reals are well-orderable precluded the universality of his own perfect
set property, and it would be that his new, enumerative approach to the
continuum would steadily provide focal examples and counterexamples.

The other, more primal Cantorian legacy, the extension of number into
the transfinite, was considerably advanced by Felix Hausdorff, whose work
was first to suggest the rich possibilities for a mathematical investigation
of the uncountable. A mathematician par excellence, he took that sort of
mathematical approach to set theory and extensional, set-theoretic approach
to mathematics that would come to dominate in the years to come. In a
1908 paper, Hausdorff provided an elegant analysis of scattered linear orders
(those having no dense sub-ordering) in a transfinite hierarchy. He first stated
the Generalized Continuum Hypothesis (GCH)

2ℵα = ℵα+1 for every α.

He emphasized cofinality (the cofinality cf(κ) of a cardinal number κ is the
least cardinal number λ such that a set of cardinality κ is a union of λ sets each
of cardinality less than κ) and the distinction between singular (cf(κ) < κ)
and regular (cf(κ) = κ) cardinals. And for the first time he broached a
“large cardinal” concept, a regular limit cardinal > ℵ0. Hausdorff’s work
around this time on sets of real functions ordered under eventual domination
and having no uncountable “gaps” led to the first plausible mathematical
proposition that entailed the denial of CH.

Hausdorff’s 1914 text, Grundzüge der Mengenlehre, broke the ground for
a generation of mathematicians in both set theory and topology. Early on,
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he defined an ordered pair of sets in terms of (unordered) pairs, formulated
functions in terms of ordered pairs, and ordering relations as collections of
ordered pairs. He in effect capped efforts of logicians by making these moves
in mathematics, completing the set-theoretic reduction of relations and func-
tions. He then presented Cantor’s and Zermelo’s work systematically, and
of particular interest, he used a well-ordering of the reals to provide what
is now known as Hausdorff’s Paradox. The source of the later and better
known Banach-Tarski Paradox, Hausdorff’s Paradox provided an implausi-
ble decomposition of the sphere and was the first, and a dramatic, synthesis
of classical mathematics and the new Zermelian abstract view.

A decade after Lebesgue’s seminal 1905 paper, descriptive set theory came
into being as a distinct discipline through the efforts of the Russian math-
ematician Nikolai Luzin. He had become acquainted with the work of the
French analysts while in Paris as a student, and in Moscow he began a for-
mative seminar, a major topic of which was the “descriptive theory of func-
tions”. The young Pole Wac�law Sierpiński was an early participant while he
was interned in Moscow in 1915, and undoubtedly this not only kindled the
decade-long collaboration between Luzin and Sierpiński but also encouraged
the latter’s involvement in the development of a Polish school of mathematics
and its interest in descriptive set theory. In an early success, Luzin’s student
Pavel Aleksandrov (and independently, Hausdorff) established the ground-
breaking result that the Borel sets have the perfect set property, so that “CH
holds for the Borel sets”.

In the work that really began descriptive set theory, another student of
Luzin’s, Mikhail Suslin, investigated the analytic sets after finding a mistake
in Lebesgue’s paper. In a brief 1917 note Suslin formulated these sets in terms
of an explicit operationA drawn from Aleksandrov’s work and announced two
fundamental results: a set B of reals is Borel iff both B and its complement
R−B are analytic; and there is an analytic set which is not Borel. This was to
be his sole publication, for he succumbed to typhus in a Moscow epidemic in
1919 at the age of 25. In an accompanying note Luzin announced that every
analytic set is Lebesgue measurable and has the perfect set property, the latter
result attributed to Suslin. Luzin and Sierpiński in joint papers soon provided
proofs, in work that shifted the emphasis to the co-analytic sets, complements
of analytic sets, and provided for them a basic tree representation based on
well-foundedness (having no infinite branches) from which the main results
of the period flowed.

After this first wave in descriptive set theory had crested, Luzin and
Sierpiński in 1925 extended the domain of study to the projective sets. For
Y ⊆ R

k+1, the projection of Y is pY = {〈x1, . . . , xk〉 | ∃y(〈x1, . . . , xk, y〉 ∈
Y )}. Suslin had essentially noted that a set of reals is analytic iff it is the
projection of a Borel subset of R

2. Luzin and Sierpiński took the geometric
operation of projection to be basic and defined the projective sets as those
sets obtainable from the Borel sets by the iterated applications of projection
and complementation. The corresponding hierarchy of projective subsets of
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R
k is defined, in modern notation, as follows: For A ⊆ R

k,

A is Σ1
1 iff A = pY for some Borel set Y ⊆ R

k+1,

A is analytic as for k = 1, and for n > 0,

A is Π1
n iff R

k −A is Σ1
n,

A is Σ1
n+1 iff A = pY for some Π1

n set Y ⊆ R
k+1, and

A is Δ1
n iff A is both Σ1

n and Π1
n.

(Σ1
n is also written Σ∼

1
n; Π1

n is also written Π∼
1
n; and Δ1

n is also written Δ∼
1
n.

One can formulate these concepts with continuous images instead of projec-
tions, e.g. A is Σ1

n+1 iff A is the continuous image of some Π1
n set Y ⊆ R. If

the basics of continuous functions are in hand, this obviates the need to have
different spaces.)

Luzin and Sierpiński recast Lebesgue’s use of the Cantor diagonal argu-
ment to show that the projective hierarchy is proper, and soon its basic
properties were established. However, this investigation encountered obsta-
cles from the beginning. Whether the Π1

1 subsets of R, the co-analytic sets
at the bottom of the hierarchy, have the perfect set property and whether the
Σ1

2 sets are Lebesgue measurable remained unknown. Besides the regularity
properties, the properties of separation, reduction, and especially uniformiza-
tion relating sets to others were studied, but there were accomplishments only
at the first projective level. The one eventual success and a culminating re-
sult of the early period was the Japanese mathematician Motokiti Kondô’s
1937 result, the Π1

1 Uniformization Theorem: Every Π1
1 relation can be uni-

formized by a Π1
1 function. This impasse with respect to the regularity prop-

erties would be clarified, surprisingly, by penetrating work of Gödel involving
metamathematical methods.

In modern set theory, what has come to be taken for the “reals” is actually
Baire space, the set of functions from the natural numbers into the natural
numbers (with the product topology). Baire space, the “fundamental do-
main” of a 1930 Luzin monograph, is homeomorphic to the irrational reals
and so equivalent for all purposes having to do measure, category, and per-
fect sets. Already by then it had become evident that a set-theoretic study of
the continuum is best cast in terms of Baire space, with geometric intuitions
being augmented by combinatorial ones.

During this period AC and CH were explored by the new Polish school,
most notably by Sierpiński, Alfred Tarski, and Kazimierz Kuratowski, no
longer as underlying axiom and primordial hypothesis but as part of ongoing
mathematics. Sierpiński’s own earliest publications, culminating in a 1918
survey, not only dealt with specific constructions but also showed how deeply
embedded AC was in the informal development of cardinality, measure, and
the Borel hierarchy. Even more than AC, Sierpiński investigated CH, and
summed up his researches in a 1934 monograph. It became evident how
having not only a well-ordering of the reals but one as given by CH whose
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initial segments are countable led to striking, often initially counter-intuitive,
examples in analysis and topology.

1.4. Replacement and Foundation

In the 1920s, fresh initiatives in axiomatics structured the loose Zermelian
framework with new features and corresponding axioms, the most consequen-
tial moves made by John von Neumann (1903–1957) in his doctoral work,
with anticipations by Dmitry Mirimanoff in an informal setting. Von Neu-
mann effected a Counter-Reformation of sorts that led to the incorporation
of a new axiom, the Axiom of Replacement: For any set x and property
P (v, w) functional on x (i.e. for any a ∈ x there is exactly one b such that
P (a, b)), {b | P (a, b) for some a ∈ x} is a set. The transfinite numbers had
been central for Cantor but peripheral to Zermelo; von Neumann reconstrued
them as bona fide sets, the ordinals, and established their efficacy by formal-
izing transfinite recursion, the method for defining sets in terms of previously
defined sets applied with transfinite indexing.

Ordinals manifest the basic idea of taking precedence in a well-ordering
simply to be membership. A set x is transitive iff

⋃
x ⊆ x, so that x is

“closed” under membership, and x is an ordinal iff x is transitive and well-
ordered by ∈. Von Neumann, as had Mirimanoff before him, established the
key instrumental property of Cantor’s ordinal numbers for ordinals: Every
well-ordered set is order-isomorphic to exactly one ordinal with membership.
Von Neumann took the further step of ascribing to the ordinals the role of
Cantor’s ordinal numbers. To establish the basic ordinal arithmetic results
that affirm this role, von Neumann saw the need to establish the Transfi-
nite Recursion Theorem, the theorem that validates definitions by transfinite
recursion. The proof was anticipated by the Zermelo 1904 proof, but Re-
placement was necessary even for the very formulation, let alone the proof,
of the theorem. Abraham Fraenkel and Thoralf Skolem had independently
proposed Replacement to ensure that a specific collection resulting from a
simple recursion be a set, but it was von Neumann’s formal incorporation
of transfinite recursion as method which brought Replacement into set the-
ory. With the ordinals in place von Neumann completed the restoration
of the Cantorian transfinite by defining the cardinals as the initial ordinals,
i.e. those ordinals not in bijective correspondence with any of its predecessors.
The infinite initial ordinals are now denoted

ω = ω0, ω1, ω2, . . . , ωα, . . . ,

so that ω is to be the set of natural numbers in the ordinal construal. It
would henceforth be that we take

ωα = ℵα

conflating extension with intension, with the left being a von Neumann or-
dinal and the right being the Cantorian cardinal concept. Every infinite
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set x, with AC, is well-orderable and hence in bijective correspondence with
a unique initial ordinal ωα, and the cardinality of x is |x| = ℵα. It has be-
come customary to use the lower case Greek letters to denote ordinals; α < β
to denote α ∈ β construed as ordering; On to denote the ordinals; and the
middle letters κ, λ, μ, . . . to denote the initial ordinals in their role as the
infinite cardinals, with κ+ denoting the cardinal successor of κ.

Von Neumann provided a new axiomatization of set theory, one that first
incorporated what we now call proper classes. A class is the totality of all
sets that satisfy a specified property, so that membership in the class amounts
to satisfying the property, and von Neumann axiomatized the ways to have
these properties. Only sets can be members, and so the recourse to possi-
bly proper classes, classes not represented by sets, avoids the contradictions
arising from formalizing the known paradoxes. Actually, von Neumann took
functions to be primitive in an involved framework, and Paul Bernays in
1930 re-constituted the von Neumann axiomatization with sets and classes
as primitive. Classes would not remain a formalized component of modern
set theory, but the informal use of classes as objectifications of properties
would become increasingly liberal, particularly to convey large-scale issues in
set theory.

Von Neumann (and before him Mirimanoff, Fraenkel, and Skolem) also
considered the salutary effects of restricting the universe of sets to the well-
founded sets. The well-founded sets are the sets in the class

⋃
α Vα, where

the “ranks” Vα are defined by transfinite recursion:

V0 = ∅; Vα+1 = P (Vα); and Vδ =
⋃

α<δVα for limit ordinals δ.

Von Neumann entertained the Axiom of Foundation: Every nonempty set x
has an ∈-minimal element, i.e. a y ∈ x such that x ∩ y is empty. (With AC
this is equivalent to having no infinite ∈-descending sequences.) This axiom
amounts to the assertion that the cumulative hierarchy exhausts the universe
V of sets:

V =
⋃

αVα.

In modern terms, the ascribed well-foundedness of ∈ leads to a ranking func-
tion ρ : V → On defined recursively by ρ(x) =

⋃
{ρ(y) + 1 | y ∈ x}, so that

Vα = {x | ρ(x) < α}, and one can establish results for all sets by induction
on rank.

Zermelo in a 1930 paper offered his final axiomatization of set theory as
well as a striking, synthetic view of a procession of models that would have
a modern resonance. Proceeding in what we would now call a second-order
context, Zermelo amended his 1908 axiomatization Z by adjoining both Re-
placement and Foundation while leaving out Infinity and AC, the latter being
regarded as part of the underlying logic. The now standard axiomatization
of set theory

ZFC, Zermelo-Fraenkel with Choice,
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is recognizable if we inject Infinity and AC, the main difference being that
ZFC is a first-order theory (as discussed below). “Fraenkel” acknowledges
the early suggestion by Fraenkel to adjoin Replacement; and the Axiom of
Choice is explicitly mentioned.

ZF, Zermelo-Fraenkel,

is ZFC without AC and is a base theory for the investigation of weak Choice-
type propositions as well as propositions that contradict AC.

Zermelo herewith completed his transmutation of the notion of set, his
abstract view stabilized by further axioms that structured the universe of
sets. Replacement and Foundation focused the notion of set, with the first
providing the means for transfinite recursion and induction and the second
making possible the application of those means to get results about all sets,
they appearing in the cumulative hierarchy. Foundation is the one axiom
unnecessary for the recasting of mathematics in set-theoretic terms, but the
axiom is also the salient feature that distinguishes investigations specific to set
theory as a field of mathematics. With Replacement and Foundation in place
Zermelo was able to provide natural models of his axioms, each a Vκ where κ is
an inaccessible cardinal (regular and strong limit: if λ < κ, then 2λ < κ), and
to establish algebraic isomorphism, initial segment, and embedding results for
his models. Finally, Zermelo posited an endless procession of such models,
each a set in the next, as natural extensions of their cumulative hierarchies.

Inaccessible cardinals are at the modest beginnings of the theory of large
cardinals, now a mainstream of modern set theory devoted to the investi-
gation of strong hypotheses and consistency strength. The journal volume
containing Zermelo’s paper also contained Stanis�law Ulam’s seminal paper
on measurable cardinals, which would become focal among large cardinals.
In modern terminology, a filter over a set Z is a family of subsets of Z closed
under the taking of supersets and of intersections. (Usually excluded from
consideration as trivial are {X ⊆ Z | A ⊆ X} for some set A ⊆ Z, the
principal filters.) An ultrafilter U over Z is a maximal filter over Z, i.e. for
any X ⊆ Z, either X ∈ U or else Z − X ∈ U . For a cardinal λ, a filter
is λ-complete if it is closed under the taking of intersections of fewer than
λ members. Finally, an uncountable cardinal κ is measurable iff there is a
κ-complete ultrafilter over κ. In a previous, 1929 note Ulam had constructed,
using a well-ordering of the reals, an ultrafilter over ω. Measurability thus
generalizes a property of ω, and Ulam showed moreover that measurable cardi-
nals are inaccessible. In this work, Ulam was motivated by measure-theoretic
considerations, and he viewed his work as about {0, 1}-valued measures, the
measure 1 sets being the sets in the ultrafilter. To this day, ultrafilters of all
sorts in large cardinal theory are also called measures.

A decade later Tarski provided a systematic development of these concepts
in terms of ideals. An ideal over a set Z is a family of subsets of Z closed
under the taking of subsets and of unions. This is the “dual” notion to filters;
if I is an ideal (resp. filter) over Z, then Ĭ = {Z − X | X ∈ I} is its dual



2. New Groundwork 13

filter (resp. ideal). An ideal is λ-complete if its dual filter is. A more familiar
conceptualization in mathematics, Tarski investigated a general notion of
ideal on a Boolean algebra in place of the power set algebra P (Z). Although
filters and ideals in large cardinal theory are most often said to be on a
cardinal κ, they are more properly on the Boolean algebra P (κ). Moreover,
the measure-theoretic terminology has persisted: For an ideal I ⊆ P (Z), the
I-measure zero (negligible) sets are the members of I, the I-positive measure
(non-negligible) sets are the members of P (Z) − I, and the I-measure one
(all but negligible) sets are the members of the dual filter {Z −X | X ∈ I}.

Returning to the axiomatic tradition, Zermelo’s 1930 paper was in part a
response to Skolem’s advocacy of the idea of framing Zermelo’s 1908 axioms
in first-order logic, the logic of formal languages based on the quantifiers ∀
and ∃ interpreted as ranging over the elements of a domain of discourse.
First-order logic had emerged in 1917 lectures of Hilbert as a delimited sys-
tem of logic amenable to mathematical investigation. Entering from a differ-
ent, algebraic tradition, Skolem in 1920 had established a seminal result for
semantic methods with the Löwenheim-Skolem Theorem, that a countable
collection of first-order sentences, if satisfiable, is satisfiable in a countable
domain. For this he introduced what we now call Skolem functions, func-
tions added formally for witnessing ∃x assertions. For set theory Skolem in
1923 proposed formalizing Zermelo’s axioms in the first-order language with
∈ and = as binary predicate symbols. Zermelo’s “definite” properties were
to be those expressible in this first-order language in terms of given sets, and
the Axiom of Separation was to become a schema of axioms, one for each
first-order formula. As an argument against taking set theory as a foundation
for mathematics, Skolem pointed out what has come to be called Skolem’s
Paradox: Zermelo’s 1908 axioms cast in first-order logic is a countable col-
lection of sentences, and so if they are satisfiable at all, they are satisfiable
in a countable domain. Thus, we have the paradoxical existence of countable
models for Zermelo’s axioms although they entail the existence of uncount-
able sets. Zermelo found this antithetical and repugnant. However, strong
currents were at work leading to a further, subtler transmutation of the no-
tion of set as based on first-order logic and incorporating its relativism of
set-theoretic concepts.

2. New Groundwork

2.1. Gödel

Kurt Gödel (1906–1978) substantially advanced the mathematization of logic
by submerging metamathematical methods into mathematics. The main ve-
hicle was the direct coding, “the arithmetization of syntax”, in his celebrated
1931 Incompleteness Theorem, which worked dialectically against a program
of Hilbert’s for establishing the consistency of classical mathematics. But
starting an undercurrent, the earlier 1930 Completeness Theorem for first-
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order logic clarified the distinction between the formal syntax and semantics
of first-order logic and secured its key instrumental property with the Com-
pactness Theorem.

Tarski in the early 1930s provided his systematic “definition of truth”, ex-
ercising philosophers to a surprising extent ever since. Tarski simply schema-
tized truth as a correspondence between formulas of a formal language and
set-theoretic assertions about an intended structure interpreting the language
and provided a recursive definition of the satisfaction relation, when a formula
holds in the structure, in set-theoretic terms. The eventual effect of Tarski’s
mathematical formulation of semantics would be not only to make mathe-
matics out of the informal notion of satisfiability, but also to enrich ongoing
mathematics with a systematic method for forming mathematical analogues
of several intuitive semantic notions. Tarski would only be explicit much later
about satisfaction-in-a-structure for arbitrary structures, this leading to his
notion of logical consequence. For coming purposes, the following affirms
notation and concepts in connection with Tarski’s definition.

For a first-order language, a structure N interpreting that language (i.e.
a specification of a domain of discourse as well as interpretations of the func-
tion and predicate symbols), a formula ϕ(v1, v2, . . . , vn) of the language with
the (free) variables as displayed, and a1, a2, . . . , an in the domain of N ,

N |= ϕ[a1, a2, . . . , an]

asserts that the formula ϕ is satisfied in N according to Tarski’s recursive
definition when vi is interpreted as ai. A subset y of the domain of N is first-
order definable over N iff there is a ψ(v1, v2, . . . , vn+1) and a1, a2, . . . , an in
the domain of N such that

y = {z ∈ N | N |= ψ[a1, a2, . . . , an, z]}.

(The first-order definability of k-ary relations is analogously formulated with
vn+1 replaced by k variables.)

Through Tarski’s recursive definition and an “arithmetization of syntax”
whereby formulas are systematically coded by natural numbers, the satis-
faction relation N |= ϕ[a1, a2, . . . , an] for sets N is definable in set theory.
On the other hand, by Tarski’s result on the “undefinability of truth”, the
satisfaction relation for V itself is not first-order definable over V .

Set theory was launched as a distinctive field of mathematics by Gödel’s
construction of the class L leading to the relative consistency of the Axiom of
Choice and the Generalized Continuum Hypothesis. In a brief 1939 account
Gödel informally presented L essentially as is done today: For any set x
let def(x) denote the collection of subsets of x first-order definable over the
structure 〈x,∈〉 with domain x and the membership relation restricted to it.

Then define:

L0 = ∅; Lα+1 = def(Lα), Lδ =
⋃
{Lα | α < δ} for limit ordinals δ;
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and the constructible universe

L =
⋃

αLα.

Gödel pointed out that L “can be defined and its theory developed in the
formal systems of set theory themselves”. This is actually the central feature
of the construction of L. L is definable in ZF via transfinite recursion based
on the formalizability of def(x), which was reaffirmed by Tarski’s definition
of satisfaction. With this, one can formalize the Axiom of Constructibility
V = L, i.e. ∀x(x ∈ L). To set a larger context, we affirm the following for
a class X: for a set-theoretic formula ϕ, ϕX denotes ϕ with its quantifiers
restricted to X and this extends to set-theoretic terms t (like

⋃
x, P (x), and

so forth) through their definitions to yield tX . X is an inner model iff X is a
transitive class containing all the ordinals such that ϕX is a theorem of ZF for
every axiom ϕ of ZF. What Gödel did was to show in ZF that L is an inner
model which satisfies AC and GCH. He thus established a relative consistency
which can be formalized as an assertion: Con(ZF) implies Con(ZFC + GCH).

In the approach via def(x) it is necessary to show that def(x) remains
unaltered when applied in L with quantifiers restricted to L. Gödel himself
would never establish this absoluteness of first-order definability explicitly.
In a 1940 monograph, Gödel worked in Bernays’ class-set theory and used
eight binary operations producing new classes from old to generate L set by
set via transfinite recursion. This veritable “Gödel numbering” with ordinals
eschewed def(x) and made evident certain aspects of L. Since there is a
direct, definable well-ordering of L, choice functions abound in L, and AC
holds there. Of the other axioms the crux is where first-order logic impinges,
in Separation and Replacement. For this, “algebraic” closure under Gödel’s
eight operations ensured “logical” Separation for bounded formulas, formulas
having only quantifiers expressible in terms of ∀v ∈ w, and then the full
exercise of Replacement (in V ) secured all of the ZF axioms in L.

Gödel’s proof that L satisfies GCH consisted of two separate parts. He
established the implication V = L→ GCH, and, in order to apply this impli-
cation within L, that (V = L)L. This latter follows from the aforementioned
absoluteness of def(x), and in his monograph Gödel gave an alternate proof
based on the absoluteness of his eight binary operations.

Gödel’s argument for V = L→ GCH rests, as he himself wrote in his 1939
note, on “a generalization of Skolem’s method for constructing enumerable
models”. This was the first significant use of Skolem functions since Skolem’s
own to establish the Löwenheim-Skolem theorem, and with it, Skolem’s Para-
dox. Ironically, though Skolem sought through his paradox to discredit set
theory based on first-order logic as a foundation for mathematics, Gödel
turned paradox into method, one promoting first-order logic. Gödel specifi-
cally established his “Fundamental Theorem”:

For infinite γ, every constructible subset of Lγ

belongs to some Lβ for a β of the same cardinality as γ.
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For infinite α, Lα has the same cardinality as that of α. It follows from
the Fundamental Theorem that in the sense of L, the power set of Lωα is
included in Lωα+1 , and so GCH follows in L.

The work with L led, further, to the resolution of difficulties in descriptive
set theory. Gödel announced, in modern terms: If V = L, then (a) there
is a Δ1

2 set of reals that is not Lebesgue measurable, and (b) there is a Π1
1

set of reals without the perfect set property. Thus, the early descriptive set
theorists were confronting an obstacle insurmountable in ZFC! When even-
tually confirmed and refined, the results were seen to turn on a “good” Σ1

2

well-ordering of the reals in L defined via reals coding well-founded struc-
tures and thus connected to the well-founded tree representation of Π1

1 sets.
Gödel’s results (a) and (b) constitute the first real synthesis of abstract and
descriptive set theory, in that the axiomatic framework is incorporated into
the investigation of definable sets of reals.

Gödel brought into set theory a method of construction and of argument
which affirmed several features of its axiomatic presentation. Most promi-
nently, he showed how first-order definability can be formalized and used to
achieve strikingly new mathematical results. This significantly contributed
to a lasting ascendancy for first-order logic which, in addition to its suffi-
ciency as a logical framework for mathematics, was seen to have considerable
operational efficacy. Moreover, Gödel’s work buttressed the incorporation
of Replacement and Foundation into set theory, the first immanent in the
transfinite recursion and arbitrary extent of the ordinals, and the second as
underlying the basic cumulative hierarchy picture that anchors L.

In later years Gödel speculated about the possibility of deciding propo-
sitions like CH with large cardinal hypotheses based on the heuristics of
reflection, and later, generalization. In a 1946 address he suggested the con-
sideration of “stronger and stronger axioms of infinity” and reflection down
from V : “Any proof of a set-theoretic theorem in the next higher system
above set theory (i.e. any proof involving the concept of truth, etc.) is re-
placeable by a proof from such an axiom of infinity”. In a 1947 expository
article on the continuum problem Gödel presumed that CH would be shown
independent from ZF and speculated more concretely about possibilities with
large cardinals. He argued that the axioms of set theory do not “form a sys-
tem closed in itself” and so the “very concept of set on which they are based
suggests their extension by new axioms that assert the existence of still fur-
ther iterations of the operation of ‘set of’ ”. In an unpublished footnote
toward a 1966 revision of the article, Gödel acknowledged “extremely strong
axioms of infinity of an entirely new kind”, generalizations of properties of
ω “supported by strong arguments from analogy”. These heuristics would
surface anew in the 1960s, when the theory of large cardinals developed a
self-fueling momentum of its own, stimulated by the emergence of forcing
and inner models.
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2.2. Infinite Combinatorics

For decades Gödel’s construction of L stood as an isolated monument in
the axiomatic tradition, and his methodological advances would only become
fully assimilated after the infusion of model-theoretic techniques in the 1950s.
In the mean time, the direct investigation of the transfinite as extension of
number was advanced, gingerly at first, by the emergence of infinite combi-
natorics.

The 1934 Sierpiński monograph on CH (discussed earlier) having consid-
erably elaborated its consequences, a new angle in the combinatorial inves-
tigation of the continuum was soon broached. Hausdorff in 1936 reactivated
his early work on gaps in the orderings of functions to show that the reals can
be partitioned into ℵ1 Borel sets, answering an early question of Sierpiński.
Hausdorff had newly cast his work in terms of functions from ω to ω, the
members of Baire space or the “reals”, under the ordering of eventual dom-
inance: f ≤∗ g if f(n) ≤ g(n) for all but finitely many n ∈ ω. Work on
this structure and definable sets of reals in the 1930s, and particularly of
Fritz Rothberger through the 1940s, isolated what is now called the domi-
nating number d, the least cardinality of a subset of Baire space cofinal in
≤∗. ℵ1 ≤ d ≤ 2ℵ0 , but absent CH d assumed an independent significance
as a pivotal cardinal. Rothberger established incisive results which we now
cast as about the relationships to other pivotal cardinals, results which pro-
vided new understandings about the structure of the continuum but would
become vacuous with the blanket assumption of CH. The investigation of d

and other “cardinal characteristics (or invariants) of the continuum” would
blossom with the advent of forcing.

Taking up another thread, Frank Ramsey in 1930, addressing a problem of
formal logic, established a generalization of the pigeonhole principle for finite
sets, and in a move transcending purpose and context he also established an
infinite version implicitly applying the now familiar Kőnig’s Lemma for trees.
In modern terms, for ordinals α, β, and δ and n ∈ ω the partition relation

β −→ (α)n
δ

asserts that for any partition f : [β]n → δ of the n-element subsets of β into
δ cells, there is an H ⊆ β of order type α homogeneous for the partition,
i.e. all the n-element subsets of H lie in the same cell. Ramsey’s theorem
for finite sets is: For any n, k, i ∈ ω there is an r ∈ ω such that r −→ (k)n

i .
The “Ramsey numbers”, the least possible r’s for various n, k, i, are unknown
except in a few basic cases. The (infinite) Ramsey’s Theorem is: ω −→ (ω)n

i

for every n, i ∈ ω.
A tree is a partially ordered set T such that the predecessors of any ele-

ment are well-ordered. The αth level of T consists of those elements whose
predecessors have order-type α, and the height of T is the least α such that
the αth level of T is empty. A chain of T is a linearly ordered subset, and
an antichain is a subset consisting of pairwise incompatible elements. A co-
final branch of T is a chain with elements at every non-empty level of T .
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Finally, for a cardinal κ, a κ-tree is a tree of height κ each of whose levels
has cardinality less than κ, and κ has the tree property iff every κ-tree has a
cofinal branch. Kőnig’s Lemma, of 1927, is the assertion that ω has the tree
property.

The first systematic study of transfinite trees was carried out in Djuro
Kurepa’s 1935 thesis, and several properties emerging from his investigations,
particularly for ω1-trees as the first broaching context, would later become
focal in the combinatorial study of the transfinite. An Aronszajn tree is an
ω1-tree without a cofinal branch, i.e. a counterexample to the tree property
for ω1. Kurepa acknowledged and gave Nachman Aronszajn’s proof that
there is an Aronszajn tree. A Suslin tree is an ω1-tree with no uncountable
chains or antichains. Kurepa reduced a hypothesis growing out of a 1920
question of Suslin about the characterizability of the ordering of the reals to
a combinatorial property of ω1, Suslin’s Hypothesis (SH): There are no Suslin
trees. Finally, a Kurepa tree is an ω1-tree with at least ω2 cofinal branches,
and Kurepa’s Hypothesis deriving from a later 1942 paper of Kurepa’s is
the assertion that such trees exist. Much of this would be rediscovered, and
both Suslin’s Hypothesis and Kurepa’s Hypothesis would be resolved decades
later with the advent of forcing, several of the resolutions in terms of large
cardinal hypotheses. Kurepa’s work also anticipated another development
from a different quarter.

Paul Erdős, although an itinerant mathematician for most of his life, was
the prominent figure of a strong Hungarian tradition in combinatorics, and
through some seminal results he introduced major initiatives into the de-
tailed combinatorial study of the transfinite. Erdős and his collaborators
simply viewed the transfinite numbers as a combinatorially rich source of
intrinsically interesting problems, the concrete questions about graphs and
mappings having a natural appeal through their immediacy. One of the
earliest advances was an 1943 paper of Erdős and Tarski which concluded
enticingly with an intriguing list of six combinatorial problems, the positive
solution to any, as it was to turn out, amounting to the existence of a large
cardinal. In a footnote various implications were noted, one of them being
essentially that for inaccessible κ, the tree property for κ implies κ −→ (κ)22,
a generalization of Ramsey’s ω −→ (ω)22 drawing out the Kőnig Lemma prop-
erty needed.

The detailed investigation of partition relations began in earnest in the
1950s, with a 1956 paper of Erdős and Richard Rado’s being representative.
For a cardinal κ, set �0(κ) = κ and �n+1(κ) = 2�n(κ). What became known
as the Erdős-Rado Theorem asserts: For any infinite cardinal κ and n ∈ ω,

�n(κ)+ −→ (κ+)n+1
κ .

This was established using the basic tree argument underlying Ramsey’s re-
sults, whereby a homogeneous set is not constructed recursively, but a tree is
constructed such that its branches provide homogeneous sets, and a counting
argument ensures that there must be a homogeneous set of sufficient car-
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dinality. The Erdős-Rado Theorem is the transfinite analogue of Ramsey’s
theorem for finite sets, with both having the form: given α, δ and n there is
a β such that β −→ (α)n

δ . However, while what the Ramsey numbers are is
largely unknown, the �n(κ)+ are known to be optimal. Kurepa in effect had
actually established the case n = 1 and shown that �1(κ)+ is the least pos-
sible, and the �n(κ)+ was also shown to be the least possible in the general
case by a “negative stepping-up” lemma.

Still among the Hungarians, Géza Fodor in 1956 established a now basic
fact about the uncountable that has become woven into its sense, so opera-
tionally useful and ubiquitous it has become in infinite combinatorics. For
a cardinal λ and a set C ⊆ λ, C is closed unbounded (or “club”) in λ iff
C contains its limit (or “accumulation”) points, i.e. those 0 < α < λ such
that sup(C ∩ α) = α, and is cofinal, i.e.

⋃
C = λ. The use of “closed” and

“unbounded” are as for 〈λ,<〉 with the order topology. A set S ⊆ λ is sta-
tionary in λ iff for any C closed unbounded in λ, S ∩ C is not empty. For
regular λ > ω, the intersection of fewer than λ sets closed unbounded in λ
is again closed unbounded in λ, and so the closed unbounded subsets of λ
generate a λ-complete filter, the closed unbounded filter, denoted Cλ. The
nonstationary subsets of λ constitute the dual nonstationary ideal, denoted
NSλ. Now Fodor’s (or Regressive Function or “Pressing Down”) Lemma: For
regular λ > ω, if a function f is regressive on a set S ⊆ λ stationary in λ,
i.e. f(α) < α for every α ∈ S, then there is a T ⊆ S stationary in λ on which
f is constant.

Fodor’s Lemma is a basic fact and its proof a simple exercise now, but then
it was the culmination of a progression of results beginning with a seminal
1929 observation of Aleksandrov that a regressive function on ω1 must be
constant on an uncountable set. The subsets of a regular λ > ω naturally
separate out into the nonstationary sets, the stationary sets, and among
them the closed unbounded sets as the negligible, non-negligible, and all but
negligible sets according to NSλ. Fodor’s Lemma is intrinsic to stationarity,
and can be cast as a substantive characterization of the concept. It would be
that far-reaching generalizations of stationarity, e.g. stationary towers, would
become important in modern set theory.

2.3. Definability

Descriptive set theory was to become transmuted by the turn to definability
following Gödel’s work. After his fundamental work on recursive function
theory in the 1930s, Stephen Kleene expanded his investigations of effective-
ness and developed a general theory of definability for relations on ω. In
the early 1940s Kleene investigated the arithmetical relations on reals, those
relations obtainable from the recursive relations by applications of number
quantifiers. Developing canonical representations, he classified these rela-
tions into a hierarchy according to quantifier complexity and showed that
the hierarchy is proper. In the mid-1950s Kleene investigated the analytical
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relations, those relations obtainable from the arithmetical relations by appli-
cations of function (“real”) quantifiers. Again he worked out representation
and hierarchy results, and moreover he established an elegant theorem that
turned out to be an effective version of Suslin’s characterization of the Borel
sets.

Kleene was developing what amounted to the effective content of classical
descriptive set theory, unaware that his work had direct antecedents in the
papers of Lebesgue, Luzin, Sierpiński, and Tarski. Kleene’s student John
Addison then established that there is an exact correlation between the hier-
archies of classical and effective descriptive set theory (as described below).
The development of effective descriptive set theory considerably clarified the
classical context, injected recursion-theoretic techniques into the subject, and
placed definability considerations squarely at its forefront. Not only were new
approaches to classical problems provided, but results and questions could
now be formulated in a refined setting.

Second-order arithmetic is the two-sorted structure

A2 = 〈ω, ωω, ap,+,×, <, 0, 1〉,

where ω and ωω (Baire space or the “reals”) are two separate domains con-
nected by the binary operation ap : ωω × ω → ω of application given by
ap(x,m) = x(m), and +,×, <, 0, 1 impose the usual arithmetical structure
on ω. The underlying language has two sorts of variables, those ranging over
ω and those ranging over ωω, and corresponding number quantifiers ∀0, ∃0

and function quantifiers ∀1, ∃1.
For relations A ⊆ (ωω)k,

A is arithmetical iff A is definable over A2 by a formula
without function quantifiers,

A is analytical iff A is definable over A2.

Through the manipulation of quantifiers the analytical sets can be classified
in the analytical hierarchy , the levels of which are the (lightface) Σ1

n, Π1
n, and

Δ1
n classes defined as follows: For relations A ⊆ (ωω)k and n > 0,

A ∈ Σ1
n iff ∀w(A(w) ↔ ∃1x1∀1x2 . . . QxnR(w, x1, . . . , xn)), and

A ∈ Π1
n iff ∀w(A(w) ↔ ∀1x1∃1x2 . . . QxnR(w, x1, . . . , xn))

for some arithmetical R ⊆ (ωω)k+n, where Q is ∃1 if n is odd and ∀1 if n is
even in the first and vice versa in the second. Finally,

A ∈ Δ1
n iff A ∈ Σ1

n ∩Π1
n.

The correlation of the effective (“lightface”) and classical (“boldface”) hi-
erarchies was established by Addison in 1958 through the simple expedient
of relativization to real parameters. For a ∈ ωω, second-order arithmetic in
a is the expanded structure

A2(a) = 〈ω, ωω, ap,+,×, <, 0, 1, a〉
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where a is regarded as a binary relation on ω. Replacing A2 by A2(a) in the
preceding, we get the corresponding relativized notions: arithmetical in a,
analytical in a, Σ1

n(a), Π1
n(a), and Δ1

n(a). The correlation of the hierarchies
is then as follows: Suppose that A ⊆ (ωω)k and n > 0. Then A ∈ Σ1

n iff
A ∈ Σ1

n(a) for some a ∈ ωω, and similarly for Π1
n. Loosely speaking, a

projective set can be analyzed with a real parameter coding the construction
of the underlying Borel set, ∃1 corresponding to projection, and ∀1 through
¬∃1¬ corresponding to complementation.

Joseph Shoenfield in 1961 advanced the study of projective sets into the
new definability context by providing a tree representation for Σ1

2 sets based
on well-foundedness as charted out to ω1. The classical Luzin-Sierpiński tree
representation of Π1

1 sets turned, in the new terms, on the f of the function
quantifier ∀f imputing infinite branches through a tree arithmetical in a
for some a ∈ ωω that must be cut off. This well-foundedness can be cast
as having an order-preserving ranking function into ω1, which Shoenfield
pointed out can be recast as having an infinite branch through a tree built
on the countable ordinals.

T is a tree on ω × κ iff (a) T consists of pairs 〈s, t〉 where s is a finite
sequence drawn from ω and t is a finite sequence drawn from κ of the same
length, and (b) if 〈s, t〉 ∈ T , s′ is an initial segment of s and t′ is a initial
segment of t of the same length, then also 〈s′, t′〉 ∈ T . For such T , [T ] consists
of pairs 〈f, g〉 corresponding to infinite branches, i.e. f and g are ω-sequences
such that for any finite initial segment s of f and finite initial segment t of g
of the same length, 〈s, t〉 ∈ T . In modern terms, A ⊆ ωω is κ-Suslin iff there
is a tree on ω× κ such that A = p[T ] = {f | ∃g(〈f, g〉 ∈ [T ])}. [T ] is a closed
set in the space of 〈f, g〉’s where f : ω → ω and g : ω → κ, and so otherwise
complicated sets of reals, if shown to be κ-Suslin, are newly comprehended
as projections of closed sets. The analytic (Σ1

1) sets are exactly the ω-Suslin
sets.

Shoenfield established that every Σ1
2 set is ω1-Suslin, and his proof, em-

phasizing constructibility, showed that if A ⊆ ωω is Σ1
2, then A = p[T ] for a

tree T on ω×ω1 such that T ∈ L. Shoenfield applied well-foundedness in the
∀ sense (no infinite descending sequences) and the ∃ sense (there is a ranking
function) to establish that Σ1

2 relations are absolute (or “correct”) for L: For
any w ∈ L, A2 |= ∃1x∀1yϕ[x, y,w] iff (A2 |= ∃1x∀1yϕ[x, y,w])L when ϕ has
no function quantifiers.

Many substantive propositions of classical analysis as well as of meta-
mathematical investigation are Σ1

2 or Π1
2, and if they can be established from

V = L (or just CH), then they can be established in ZF alone. It would be
that in the years to come more and more projective sets of reals would be
comprehended through κ-Suslin representations for larger and larger cardi-
nals κ.

András Hajnal and Azriel Levy, in their theses of the mid-1950s, developed
generalizations of L that were to become basic in a richer setting. For a set
A, Hajnal formulated the constructible closure L(A) of A, i.e. the smallest
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inner model M such that A ∈ M , and Levy formulated the class L[A] of
sets constructible relative to A, i.e. the smallest inner model M such that
for every x ∈ M , A ∩ x ∈ M . To formulate L(A), define: L0(A) = the
smallest transitive set ⊇ {A} (to ensure that the resulting class is transi-
tive); Lα+1(A) = def(Lα(A)); Lδ(A) =

⋃
α<δ Lα(A) for limit δ > 0; and

finally L(A) =
⋃

α Lα(A). To formulate L[A], first let defA(x) denote the
collection of subsets of x first-order definable over 〈x,∈, A ∩ x〉, i.e. A ∩ x
is now allowed as a predicate in the definitions. Then define: L0[A] = ∅;
Lα+1[A] = defA(Lα[A]); Lδ[A] =

⋃
α<δ Lα[A] for limit δ > 0; and finally

L[A] =
⋃

α Lα[A]. With the “trace” A = A ∩ L[A] one has Lα[A] = Lα[A]
for every α and so L[A] = L[A].

L(A) realizes the algebraic idea of building up a model starting from a set
of generators, and L[A] the idea of building up a model using A construed as
a predicate. L(A) may not satisfy AC since it may not have a well-ordering
of A, yet L[A] always satisfies that axiom. This distinction was only to
surface later, as both Hajnal and Levy took A to be a set of ordinals, when
L(A) = L[A], and used these models to establish conditional independence
results of the sort: if the failure of CH is consistent, then so is that failure
together with 2λ = λ+ for sufficiently large cardinals λ. In the coming
expansion of the 1960s, both Hajnal and Levy would be otherwise engaged,
with Hajnal becoming a major combinatorial set theorist and collaborator
with Erdős, and Levy, a pioneer in the investigation of independence results.

2.4. Model-Theoretic Techniques

Model theory began in earnest with the appearance in 1949 of the method of
diagrams in Abraham Robinson’s thesis and the related method of constants
in Leon Henkin’s thesis, which gave a new proof of the Gödel Completeness
Theorem. Tarski had set the stage with the formulation of formal languages
and semantics in set-theoretic terms, and with him established at the Uni-
versity of California at Berkeley, a large part of the development in the 1950s
and 1960s would take place there. Tarski and his students carefully laid
out satisfaction-in-a-structure; theories (deductively closed collections of sen-
tences) and their models; algebratization with Skolem functions and hulls;
and elementary substructures and embeddings. j : A → B is an elementary
embedding if for any a1, . . . , an from the domain of A, 〈a1, . . . , an〉 satisfies in
A the same formulas that 〈j(a1), . . . , j(an)〉 does in B; and when j is the iden-
tity A is an elementary substructure of B, denoted A ≺ B. The construction
of models freely used transfinite methods and soon led to new questions in
set theory, but also set theory was to be decisively advanced by the infusion
of model-theoretic methods.

A precursory result was a 1949 generalization by Andrzej Mostowski of
the Mirimanoff-von Neumann result that every well-ordered set is order-
isomorphic to exactly one ordinal with membership. A binary relation R on
a set X is extensional if distinct members of X have distinct R-predecessors,
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and well-founded if every non-empty Y ⊆ X has an R-minimal element (or,
assuming AC, there is no infinite R-descending sequence). If R is an ex-
tensional, well-founded relation on a set X, then there is a unique transitive
set T and an isomorphism of 〈X,R〉 onto 〈T,∈〉, i.e. a bijection π : X → T
such that for any x, y ∈ X, xR y iff π(x) ∈ π(y). 〈T,∈〉 is the transitive
collapse of X, and π the collapsing isomorphism. Thus, the linearity of
well-orderings has been relaxed to analogues of Extensionality and Founda-
tion, and transitive sets become canonical representatives as ordinals are for
well-orderings. Well-founded relations other than membership had surfaced
much earlier, most notably in the Luzin-Sierpiński tree representation of Π1

1

sets. The general transitive collapse result would come to epitomize how
well-foundedness made possible a coherent theory of models of set theory.

After Richard Montague applied reflection phenomena to establish that ZF
is not finitely axiomatizable, Levy also formulated reflection principles and
established their broader significance. The 1960 Montague-Levy Reflection
Principle for ZF asserts: For any (first-order) formula ϕ(v1, . . . , vn) and any
ordinal β, there is a limit ordinal α > β such that for any x1, . . . , xn ∈ Vα,

ϕ[x1, . . . , xn] iff Vα |= ϕ[x1, . . . , xn].

Levy showed that this schema is equivalent to the conjunction of the Re-
placement schema together with Infinity in the presence of the other axioms
of ZF. Moreover, he formulated reflection principles in local form that char-
acterized the Mahlo cardinals, conceptually the least large cardinals after the
inaccessible cardinals. Also William Hanf and Dana Scott posited analogous
reflection principles for higher-order formulas, leading to what are now called
the indescribable cardinals. The model-theoretic reflection idea thus provided
a coherent scheme for viewing the bottom of an emerging hierarchy of large
cardinals as a generalization of Replacement and Infinity.

In those 1946 remarks by Gödel where he broached the heuristic of reflec-
tion, Gödel also entertained the concept of ordinal definable set. A set x is
ordinal definable iff there are ordinals α1, . . . , αn and a formula ϕ(v0, . . . , vn)
such that ∀y(y ∈ x ↔ ϕ[y, α1, . . . , αn]). This ostensible dependence on the
satisfaction relation for V can be formally recast through a version of the
Reflection Principle for ZF, so that one can define the class OD of ordinal
definable sets. With tc(y) denoting the smallest transitive superset of y, let
HOD = {x | tc({x}) ⊆ OD}, the class of hereditarily ordinal definable sets .

As noted by Gödel, HOD is an inner model in which AC, though not
necessarily CH, holds. The basic results about this inner model were to be
rediscovered several times. In these several ways reflection phenomena both
as heuristic and as principle became incorporated into set theory, bringing
to the forefront what was to become a basic feature of the study of well-
foundedness.

The set-theoretic generalization of first-order logic allowing transfinitely
indexed logical operations was to clarify the size of measurable cardinals.
Extending familiarity by abstracting to a new domain, Tarski in 1962 for-
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mulated the strongly compact and weakly compact cardinals by ascribing nat-
ural generalizations of the key compactness property of first-order logic to
the corresponding infinitary languages. These cardinals had figured in that
1943 Erdős-Tarski paper in equivalent combinatorial formulations that were
later seen to imply that a strongly compact cardinal is measurable, and a
measurable cardinal is weakly compact. Tarski’s student Hanf then estab-
lished, using the satisfaction relation for infinitary languages, that there are
many inaccessible cardinals (and Mahlo cardinals) below a weakly compact
cardinal. A fortiori, the least inaccessible cardinal is not measurable. This
breakthrough was the first result about the size of measurable cardinals since
Ulam’s original 1930 paper and was greeted as a spectacular success for meta-
mathematical methods. Hanf’s work radically altered size intuitions about
problems coming to be understood in terms of large cardinals and ushered in
model-theoretic methods into the study of large cardinals beyond the Mahlo
cardinals.

Weak compactness was soon seen to have a variety of characterizations,
most notably κ is weakly compact iff κ→ (κ)22 iff κ→ (κ)n

λ for every n ∈ ω
and λ < κ iff κ is inaccessible and has the tree property, and this was an
early, significant articulation of the large cardinal extension of context for
effecting known proof ideas and methods.

The concurrent emergence of the ultraproduct construction in model theory
set the stage for the development of the modern theory of large cardinals.
The ultraproduct construction was brought to the forefront by Tarski and
his students after Jerzy �Loś’s 1955 adumbration of its fundamental theorem.
The new method of constructing concrete models brought set theory and
model theory even closer together in a surge of results and a lasting interest
in ultrafilters.

The ultraproduct construction was driven by the algebraic idea of making
a structure out of a direct product of structures as modulated (or “reduced”)
by a filter. The particular case when all the structures are the same, the
ultrapower, was itself seen to be substantive. To briefly describe a focal case
for set theory, let N be a set, construed as a structure with ∈, and U an
ultrafilter over a set Z. On ZN , the set of functions from Z to N , define

f =U g iff {i ∈ Z | f(i) = g(i)} ∈ U.

The filter properties of U imply that =U is an equivalence relation on ZN ,
so with (f)U denoting the corresponding equivalence class of f , set ZN/U =
{(f)U | f ∈ ZN}. Next, the filter properties of U show that a binary relation
EU on ZN/U can be unambiguously defined by

(f)UEU (g)U iff {i ∈ Z | f(i) ∈ g(i)} ∈ U.

=U is thus a congruence relation, one that preserves the underlying struc-
ture; this sort of preservation is crucial in ultraproduct and classical, an-
tecedent constructions with filters. (For example, in the space L∞ in which
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two bounded measurable functions are equated when they agree on a set
in the filter of full measure sets, the algebraic structure of + and × have
many of the properties that + and × for the real numbers have. If the fil-
ter is extended to an ultrafilter, we get an ultrapower.) The ultrapower of
N by U is then defined to be the structure 〈ZN/U,EU 〉. The crux of the
construction is the fundamental �Loś’s Theorem: For a formula ϕ(v1, . . . , vn)
and f1, . . . , fn ∈ ZN ,

〈ZN/U,EU 〉 |= ϕ[(f1)U , . . . , (fn)U ] iff
{i ∈ Z | N |= ϕ[f1(i), . . . , fn(i)]} ∈ U.

Satisfaction in the ultrapower is thus reduced to satisfaction on a large set
of coordinates, large in the sense of U . The proof is by induction on the
complexity of ϕ using the filter properties of U , the ultrafilter property for
the negation step, and AC for the existential quantifier step.

EU is an extensional relation, and crucially, well-founded when U is ℵ1-
complete. In that case by Mostowski’s theorem there is a collapsing isomor-
phism π of the ultrapower onto its transitive collapse 〈M,∈〉. Moreover, if for
x ∈ N , cx is the constant function: N → {x} and jU : N →M is defined by
jU (x) = π((cx)U ), then jU is an elementary embedding, i.e. for any formula
ϕ(v1, . . . , vn) and a1, . . . , an ∈ N ,

〈N,∈〉 |= ϕ[a1, . . . , an] iff 〈M,∈〉 |= ϕ[jU (a1), . . . , jU (an)]

by �Loś’s Theorem. When we have well-foundedness, the ultrapower is iden-
tified with its transitive collapse and denoted Ult(N,U).

All of the foregoing is applicable, and will be applied, with proper classes
N , as long as we replace the equivalence class (f)U by sets

(f)0U = {g ∈ (f)U | g has minimal rank}

(“Scott’s trick”), and take �Loś’s Theorem as a schema for formulas.
The model theorist H. Jerome Keisler established penetrating connections

between combinatorial properties of ultrafilters and of their ultraproducts,
and in particular took the ultrapower of a measurable cardinal κ by a κ-
complete ultrafilter over κ to provide a new proof of Hanf’s result that there
are many large cardinals below a measurable cardinal. With Ulam’s con-
cept shown in a new light as providing well-founded ultrapowers, Dana Scott
then struck on the idea of taking the ultrapower of the entire universe V by
a κ-complete ultrafilter over a measurable κ, exploiting the resulting well-
foundedness to get an elementary embedding j : V → Ult(V, U). Impor-
tantly, κ is the critical point, i.e. j(α) = α for every α < κ yet κ < j(κ):
Taking e.g. the identity function id : κ → κ, {ξ < κ | α < ξ < κ} ∈ U for
every α < κ, so that κ ≤ π((id)U ) < j(κ) by �Loś’s Theorem. If V = L, then
Ult(V, U) = L by the definability properties of L, but this confronts κ < j(κ),
e.g. if κ were the least measurable cardinal. (One could also appeal to the
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general fact that U /∈ Ult(V, U); that one “loses” the ultrafilter when tak-
ing the ultrapower would become an important theme in later work.) With
this Scott established that if there is a measurable cardinal, then V �= L.
Large cardinal assumptions thus assumed a new significance as a means for
“maximizing” possibilities away from Gödel’s delimitative construction.

The ultrapower construction provided one direction of a new characteriza-
tion that established a central structural role for measurable cardinals: There
is an elementary embedding j : V →M for some M with critical point δ iff δ
is a measurable cardinal. Keisler provided the converse direction: With j as
hypothesized, Uj ⊆ P (δ) defined “canonically” by X ∈ Uj iff δ ∈ j(X) is a
δ-complete ultrafilter over δ. Generating ultrafilters thus via “ideal” elements
would become integral to the theory of ultrafilters and large cardinals.

This characterization, when viewed with the focus on elementary embed-
dings, raises a point that will be even more germane, and thus will be em-
phasized later, in connection with strong hypotheses. That a j : V → M is
elementary is not formalizable in set theory because of the appeal to the satis-
faction relation for V , let alone the assertion that there is such a class j. Thus
the “characterization” is really one of giving a formalization, one that pro-
vides operative sense through the ultrapower construction. Ulam’s original
concept was thus made intrinsic to set theory with the categorical imperative
of elementary embeddings. In any event ZFC is never actually transcended
in consistency results; one can always work in a sufficiently large Vα through
the Reflection Principle for ZF.

In Scott’s j : V → M = Ult(V, U) the concreteness of the ultrapower
construction delivered κM ⊆ M , i.e. M is closed under the taking of arbi-
trary (in V ) κ-sequences, so that in particular Vκ+1 ∩M = Vκ+1. Through
this agreement strong reflection conclusions can be drawn. U is normal iff
π((id)U ) = κ, the identity function is a “least non-constant” function, a prop-
erty that can be easily arranged. For such U , since κ is inaccessible, it is so in
M and hence by �Loś’s Theorem {ξ < κ | ξ is inaccessible} ∈ U—the inacces-
sible cardinals below κ have measure one. An analogous argument applies to
any Vκ+1 property of κ like weak compactness, and so, as would typify large
cardinal hypotheses, measurability articulates its own sense of transcendence
over “smaller” large cardinals.

Normality went on to become staple to the investigation of ideals and
large cardinals. Formulated for an ideal I over a cardinal λ, I is normal iff
whenever a function f is regressive on an S ∈ P (λ)−I, there is a T ∈ P (S)−I
on which f is constant. Fodor’s Lemma is then just the assertion that the
nonstationary ideal NSλ is normal for regular λ > ω, and a multitude of
“smallness” properties other than nonstationarity has been seen to lead to
normal ideals.

Through model-theoretic methods set theory was brought to the point of
entertaining elementary embeddings into well-founded models. It was soon
to be transfigured by a new means for getting well-founded extensions of
well-founded models.



3. The Advent of Forcing 27

3. The Advent of Forcing

3.1. Cohen

Paul Cohen (1934–2007) in April 1963 established the independence of AC
from ZF and the independence of CH from ZFC. That is, Cohen estab-
lished that Con(ZF) implies Con(ZF + ¬AC) and that Con(ZFC) implies
Con(ZFC + ¬CH). Already prominent as an analyst, Cohen had ventured
into set theory with fresh eyes and an open-mindedness about possibilities.
These results solved two central problems of set theory. But beyond that, Co-
hen’s proofs were the inaugural examples of a new technique, forcing , which
was to become a remarkably general and flexible method for extending mod-
els of set theory. Forcing has strong intuitive underpinnings and reinforces
the notion of set as given by the first-order ZF axioms with prominent uses of
Replacement and Foundation. If Gödel’s construction of L had launched set
theory as a distinctive field of mathematics, then Cohen’s method of forcing
began its transformation into a modern, sophisticated one.

Cohen’s approach was to start with a model M of ZF and adjoin a set
G that witnesses some desired new property. This would have to be done
in a minimal fashion in order that the resulting extension also model ZF,
and so Cohen devised special conditions on both M and G. To be concrete,
Cohen started with a countable transitive model 〈M,∈〉 of ZF. The ordinals
of M would then coincide with the predecessors of some ordinal ρ, and M
would be the cumulative hierarchy M =

⋃
α<ρ Vα ∩M . Cohen recursively

defined in M a system of terms (or “names”) to denote members of the new
model, working with a ramified language. In a streamlined rendition, for
each x ∈ M let x̌ be a corresponding constant; let Ġ be a new constant;
and for each α < ρ introduce quantifiers ∀α and ∃α. Then define: Ṁ0 =
{Ġ}, and for limit ordinals δ < ρ, Ṁδ =

⋃
α<δ Ṁα. At the successor stage,

let Ṁα+1 be the collection of constants x̌ for x ∈ Vα ∩M and class terms
corresponding to formulas allowing parameters from Ṁα and quantifiers ∀α

and ∃α—a syntactical analogue of the operator def(x) for Gödel’s L. Once a
set G is provided from the outside, a model M [G] =

⋃
α<ρ Mα[G] would be

determined by the terms.
But what properties can be imposed on G to ensure that M [G] be a model

of ZF? Cohen’s key idea was to tie G closely to M through a partially ordered
system of sets in M called conditions that would approximate G. While G
may not be a member of M , G is to be a subset of some Y ∈M (with Y = ω
a basic case), and these conditions would “force” some assertions about the
eventual M [G] e.g. by deciding some of the membership questions, whether
x ∈ G or not, for x ∈ Y . The assertions are to be just those expressible in
the ramified language, and Cohen developed a corresponding forcing relation
p � ϕ, “p forces ϕ”, between conditions p and formulas ϕ, a relation with
properties reflecting his approximation idea. For example, if p � ϕ and
p � ψ, then p � ϕ ∧ ψ. The conditions are ordered according to the
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constraints they impose on the eventual G, so that if p � ϕ, and q is a
stronger condition, then q � ϕ. It was crucial to Cohen’s approach that the
forcing relation, like the ramified language, be definable in M .

The final ingredient which gives this whole scaffolding life is the incorpo-
ration of a certain kind of set G. Stepping out of M and making the only use
of its countability, Cohen enumerated the formulas of the ramified language
in a countable sequence and required that G be completely determined by a
sequence of stronger and stronger conditions p0, p1, p2, . . . such that for every
formula ϕ of the ramified language exactly one of ϕ or ¬ϕ is forced by some
pn. Such a G is called a generic set. The language is congenial; with the
forcing conditions naturally topologized, a generic set meets every open dense
set in M and is thus generic in a classical topological sense.

Cohen was able to show that the resulting M [G] does indeed satisfy the
axioms of ZF: Every assertion about M [G] is already forced by some condi-
tion; the forcing relation is definable in M ; and so the ZF axioms holding in
M , most crucially Replacement and Foundation, can be applied to the rami-
fied terms and language to derive corresponding forcing assertions about the
ZF axioms holding in M [G].

Cohen first described the case when G ⊆ ω and the conditions p are
functions from some finite subset of ω into {0, 1} and p � ṅ ∈ Ġ if p(n) = 1
and p � ṅ /∈ Ġ if p(n) = 0. Today, a G so adjoined to M is called a
Cohen real over M . If subsets of ω are identified with reals as traditionally
construed, that G is generic can be extrinsically characterized by saying that
G meets every open dense set of reals lying in M . Generally, a G ⊆ κ
analogously adjoined with conditions of cardinality less than κ is called a
Cohen subset of κ. Cohen established the independence of CH by adjoining
a set which in effect is a sequence of many Cohen reals. It was crucial
that the cardinals in the ground model and generic extension coincide, and
with two forcing conditions said to be incompatible if they have no common,
stronger condition, Cohen to this end drew out and relied on the important
countable chain condition (c.c.c.): Any antichain, i.e. collection of mutually
incompatible conditions, is countable.

Cohen established the independence of AC by a version of the above
scheme, where in addition to Ġ there are also new constants Ġi for i ∈ ω,
and Ġ is interpreted by a set X of Cohen reals, each an interpretation of
some Ġi. The point is that X is not well-orderable in the extension, since
there are permutations of the forcing conditions that induce a permutation
of the Gi’s yet leave X fixed.

Several features of Cohen’s arguments would quickly be reformulated, reor-
ganized, and generalized, but the thrust of his approach through definability
and genericity would remain. Cohen’s great achievement lies in devising a
concrete procedure for extending well-founded models of set theory in a min-
imal fashion to well-founded models of set theory with new properties but
without altering the ordinals.

The extent and breadth of the expansion of set theory described hence-
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forth dwarfs all that has been described before, both in terms of the numbers
of people involved and the results established, and we are left to paint with
even broader strokes. With clear intimations of a new and concrete way of
building models, set theorists rushed in and, with forcing becoming method,
were soon establishing a cornucopia of relative consistency results, truths in a
wider sense, with some illuminating classical problems of mathematics. Just
in the first weeks after Cohen’s discovery, Solomon Feferman, who had been
extensively consulted by Cohen as he was coming up with forcing, estab-
lished further independences elaborating ¬AC and about definability; Levy
soon joined in this work and pursued both directions, formulating the “Levy
collapse” of an inaccessible cardinal; and Stanley Tennenbaum established the
failure of Suslin’s Hypothesis by generically adjoining a Suslin tree. Soon,
ZFC became quite unlike Euclidean geometry and much like group theory,
with a wide range of models being investigated for their own sake.

3.2. Method of Forcing

Robert Solovay above all epitomized this period of sudden expansion in set
theory with his mathematical sophistication and central results about and
with forcing, and in the areas of large cardinals and descriptive set theory.
Following initial graduate study in differential topology, Solovay turned to set
theory after hearing a May 1963 lecture by Cohen. Just weeks after, Solovay
elaborated the independence of CH by characterizing the possibilities for the
size of 2κ for regular κ and made the first exploration of a range of cardinals.
Building on this William Easton in late 1963 established the definitive result
for powers of regular cardinals: Suppose that GCH holds and F is a class
function from the class of regular cardinals to cardinals such that for regular
κ ≤ λ, F (κ) ≤ F (λ) and the cofinality cf(F (κ)) > κ. Then there is a
(class) forcing extension preserving cofinalities in which 2κ = F (κ) for every
regular κ. Thus, as Solovay had seen locally, the only restriction beyond
monotonicity on the power function for regular cardinals is that given by a
well-known constraint, the classical Zermelo-Kőnig inequality that cf(2κ) > κ
for any cardinal κ. Easton’s result enriched the theory of forcing with the
introduction of proper classes of forcing conditions, the basic idea of a product
analysis, and the now familiar concept of Easton support. The result focused
interest on the possibilities for powers of singular cardinals and the Singular
Cardinals Hypothesis (SCH), which asserts that 2κ for singular κ is the least
possible with respect to the powers 2μ for μ < κ as given by monotonicity and
the Zermelo-Kőnig inequality. This requires in particular that for singular
strong limit cardinals κ, 2κ = κ+. With Easton’s models satisfying SCH,
the singular cardinals problem, to determine the range of possibilities for
powers of singular cardinals, would become a major stimulus for the further
development of set theory much as the continuum problem had been for its
early development.

In the Spring of 1964 Solovay established a result remarkable for its math-
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ematical depth and revelatory of what standard of argument was possible
with forcing: If there is an inaccessible cardinal, then in a ZF inner model
of a forcing extension the Principle of Dependent Choices (DC) holds and
every set of reals is Lebesgue measurable, has the Baire property, and has
the perfect set property. Solovay’s inner model is precluded from having a
well-ordering of the reals, but DC is a choice principle implying the regu-
larity of ω1 and sufficient for the formalization of the traditional theory of
measure and category on the real numbers. Thus, Solovay’s work vindicated
the early descriptive set theorists in the sense that the regularity properties
can consistently hold for all sets of reals in a bona fide model for the classical
mathematical analysis of the reals. To prove his result Solovay applied the
Levy collapse of an inaccessible cardinal to make it ω1. For the Lebesgue
measurability he introduced a new kind of forcing beyond Cohen’s direct
ways of adjoining new sets of ordinals or collapsing cardinals, that of adding
a random real given by forcing with the Borel sets of positive measure as
conditions and p stronger than q when p − q is null. In contrast to Cohen
reals, a random real meets every measure one subset of the unit interval
lying in the ground model. Solovay’s work not only opened the door to a
wealth of different forcing arguments, but to this day his original definability
arguments remain vital to descriptive set theory.

The perfect set property, central to Cantor’s direct approach to the con-
tinuum problem through definability, led to the first acknowledged instance
of a new phenomenon in set theory: the derivation of equi-consistency results
between large cardinal hypotheses and combinatorial propositions about low
levels of the cumulative hierarchy. Forcing showed just how relative the Can-
torian concept of cardinality is, since bijective functions could be adjoined
to models of set theory and powers like 2ℵ0 can be made arbitrarily large
with relatively little disturbance. For instance, large cardinals were found
to satisfy substantial propositions even after they were “collapsed” to ω1

or ω2, i.e. a bijective function was adjoined to render the cardinal the first
or second uncountable cardinals respectively. Conversely, such propositions
were found to entail large cardinal propositions in an L-like inner model,
mostly pointedly the very same initial large cardinal hypothesis. Thus, for
some large cardinal property ϕ(κ) and proposition ψ, there is a direction
Con(∃κϕ(κ)) → Con(ψ) established by a collapsing forcing argument, and a
converse direction Con(ψ) → Con(∃κϕ(κ)) established by witnessing ϕ(κ) in
an inner model.

Solovay’s result provided the forcing direction from an inaccessible cardi-
nal to the proposition that every set of reals has the perfect set property and
ω1 is regular. But Ernst Specker in 1957 had in effect established that if this
obtains, then ω1 (of V ) is inaccessible in L. Thus, Solovay’s use of an inac-
cessible cardinal was actually necessary, and its collapse to ω1 complemented
Specker’s observation. The emergence of such equi-consistency results is a
subtle realization of earlier hopes of Gödel for deciding propositions via large
cardinals. Forcing, however, quickly led to the conclusion that there could
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be no direct implication for CH itself: Levy and Solovay, also in 1964, es-
tablished that measurable cardinals neither imply nor refute CH, with an
argument generalizable to other inaccessible large cardinals. Rather, CH and
many other propositions would be reckoned with in terms of consistency, the
methods of forcing and inner models being the operative modes of argument.

Building on his Lebesgue measurability result Solovay in 1965 reactivated
the classical descriptive set theory program of investigating the extent of the
regularity properties (in the presence of AC) by providing characterizations
in terms of forcing and definability concepts for the Σ1

2 sets, the level at which
Gödel established from V = L the failure of the properties. This led to the
consistency relative to ZFC of the Lebesgue measurability of all Σ1

2 sets.
Also, the characterizations showed that the regularity properties for Σ1

2 sets
follow from existence of a measurable cardinal. Thus, although measurable
cardinals do not decide CH, they do establish the perfect set property for Σ1

2

sets so that “CH holds for the Σ1
2 sets”. A coda after many years: Although

Solovay’s use of an inaccessible cardinal for universal Lebesgue measurability
seemed ad hoc at the time, in 1979 Saharon Shelah established in a tour de
force that if ZF + DC and all Σ1

3 sets of reals are Lebesgue measurable, then
ω1 is inaccessible in L.

In a separate initiative, Solovay in 1966 established the equi-consistency
of the existence of a measurable cardinal and the “real-valued” measurability
of 2ℵ0 , i.e. that there is a (countably additive) measure extending Lebesgue
measure to all sets of reals. For the forcing direction, Solovay starting with a
measurable cardinal adjoined random reals and applied the Radon-Nikodym
Theorem of analysis, and for the converse direction, he starting with a real-
valued measure enlisted the inner model constructed relative to the ideal of
measure zero sets. This consistency result provided context for an extended
investigation of the possibilities for the continuum as structured by such a
measure. Through this work the concept of saturated ideal, first studied by
Tarski, was brought to prominence as a generalization of having a measurable
cardinal applicable to the low levels of the cumulative hierarchy. For an ideal
over a cardinal κ, I is λ-saturated iff for any {Xα | α < λ} ⊆ P (κ)− I there
are β < γ < λ such that Xβ ∩Xγ ∈ P (κ)− I (i.e. the corresponding Boolean
algebra has no antichains of cardinality λ). The ideal of measure zero sets
is ℵ1-saturated, and Solovay showed that if I is any κ-complete λ-saturated
ideal over κ for some λ < κ, then L[I] |= “κ is measurable”.

Solovay’s work also brought to the foreground the concept of generic ultra-
power and generic elementary embedding. For an ideal I over κ, forcing with
the members of P (κ)− I as conditions and p stronger than q when p− q ∈ I
engenders an ultrafilter on the ground model P (κ). With this one can con-
struct an ultrapower of the ground model in the generic extension and a
corresponding elementary embedding. It turns out that the κ+-saturation of
the ideal ensures that this generic ultrapower is well-founded. Thus, a synthe-
sis of forcing and ultrapowers is effected, and this raised enticing possibilities
for having such large cardinal-type structure low in the cumulative hierarchy.
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The development of the theory of forcing went hand in hand with this
procession of central results. Solovay had first generalized forcing to arbi-
trary partial orders of conditions, proceeding in terms of incompatible mem-
bers and dense sets and Levy’s concept of generic filter. In his work on the
Baire property for his 1964 model, Solovay came to the idea of assigning
values to formulas from a complete Boolean algebra. Loosely speaking, the
value would be the supremum of all the conditions forcing it. Working inde-
pendently, Solovay and Scott developed the idea of recasting forcing entirely
in terms of Boolean-valued models. This approach showed how to replace Co-
hen’s ramified languages by a more direct induction on rank and how to avoid
his dependence on a countable model. Boolean-valued functions play the role
of sets, and formulas involving these functions are assigned Boolean-values
by recursion respecting logical connectives and quantifiers. By establishing
in ZFC that e.g. there is a complete Boolean algebra assigning the formula
expressing ¬CH Boolean value one, a semantic construction was replaced by
a syntactic one that directly secured relative consistency.

Still, the view of forcing as a way of actually extending models held the
reservoir of sense and the promise of discovery, and after Shoenfield pop-
ularized an approach to the forcing relation that captured the gist of the
Boolean-valued approach, forcing has been generally cast as a matter of par-
tial orders and generic filters. Boolean algebras would nonetheless underscore
and enhance the setting: partial orders are to have a maximum element 1; one
is attuned to the separativity of partial orders, the property that ensures that
they are densely embedded in their canonical Boolean completions; Boolean-
values are used when illuminating; and embedding results for forcing partial
orders are cast, as most algebraically informative, in terms of Boolean alge-
bras.

By the 1970s there would be a further assimilation of both the syntactic
and semantic approaches in that generic extensions would be “taken” of V .
In this the current approach then, a partial order 〈P,<〉 of conditions is
specified to a purpose, with p < q for p being stronger than q. A class V P

of P -names defined recursively is used in forcing assertions, with a canonical
name x̌ corresponding to x ∈ V . A D ⊆ P is dense if for any p ∈ P there is a
d ∈ D with d ≤ p. An F ⊆ P is a filter if (i) if p ∈ F and p ≤ q, then q ∈ F ,
and (ii) if p1, p2 ∈ F then there is an r ∈ F with r ≤ p1 and r ≤ p2. Finally,
G ⊆ P is a V -generic filter if G is a filter such that for every dense D ⊆ P ,
G ∩ D �= ∅. One posits such a G and takes a generic extension V [G], its
properties argued for on the basis of combinatorial properties of P . For inner
or transitive set models M , one proceeds analogously to define M -generic
filters meeting every dense set belonging to M and takes generic extensions
M [G].

In this one goes against the sense of V as the universe of all sets and
Tarski’s “undefinability of truth”, but actually V has become schematic for
a ground model. Generic extensions of inner models M are taken with M -
generic G, and moreover, successive iterated extensions are taken, exacerbat-
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ing any preoccupation with a single universe of sets. As the techniques of
forcing were advanced, the methodology was itself soon to be woven into set
theory as part of its postulations.

Solovay and Tennenbaum earlier in 1965 had established the consistency
of Suslin’s Hypothesis, that there are no Suslin trees, illuminating a clas-
sical question from 1920 with a ground-breaking use of iterated forcing to
keep “killing Suslin trees” in intermediate extensions. D. Anthony Martin
pointed out that the Solovay-Tennenbaum argument actually established the
consistency of a closure of forcing extensions of a certain kind, an instru-
mental “axiom” now known as Martin’s Axiom (MA): For any c.c.c. partial
order P and collection D of fewer than 2ℵ0 dense subsets of P , there is a
filter G ⊆ P meeting every member of D. Thus method became axiom,
and many consistency results could now be simply stated as direct conse-
quences of a single umbrella proposition. CH technically implies MA, but
the Solovay-Tennenbaum argument established the consistency of MA with
the continuum being arbitrarily large.

While classical results with CH had worked on an ℵ0 /ℵ1 dichotomy, MA
established a <2ℵ0/ 2ℵ0 dichotomy. For example, Martin and Solovay estab-
lished that MA implies that the union of fewer than 2ℵ0 Lebesgue measure
zero sets is again Lebesgue measure zero. Sierpiński in 1925 had established
that every Σ1

2 set of reals is the union of ℵ1 Borel sets. Hence, MA and
2ℵ0 > ℵ1 implies that every Σ1

2 set of reals is Lebesgue measurable. Many
further results plied the <2ℵ0/ 2ℵ0 dichotomy to show that under MA in-
ductive arguments can be carried out in 2ℵ0 steps that previously succeeded
under CH in ℵ1 steps. The continuum problem was newly illuminated as a
matter of method, by showing that CH as a construction principle could be
generalized to 2ℵ0 being arbitrarily large.

Glancing across the wider landscape, forcing provided new and diverse
ways of adjoin generic reals and other sets, and these led to new elucidations,
for example about cardinal characteristics, or invariants, of the continuum
and combinatorial structures and objects, like ultrafilters over ω. The work
on Suslin’s Hypothesis in hand and with the possibilities afforded by Martin’s
Axiom, the investigation of general topological notions gathered steam. With
Mary Ellen Rudin and her students at Wisconsin breaking the ground, new
questions were raised for general topological spaces about separation prop-
erties, compactness-type covering properties, separability and metrizability,
and corresponding cardinal characteristics.

3.3. 0#, L[U ], and L[U ]

The infusion of forcing into set theory induced a broad context extending
beyond its applications and sustained by model-theoretic methods, a context
which included central developments about large cardinals having their source
in Scott’s 1961 result that measurable cardinals contradict V = L. Haim
Gaifman invented iterated ultrapowers and established seminal results about



34 Kanamori / Introduction

and with the technique, results which most immediately stimulated definitive
work in the formative theses of Silver and Kunen.

Jack Silver in his 1966 Berkeley thesis provided a structured sense of tran-
scendence over L in terms of the existence of a special set of natural numbers
0# (“zero sharp”) which refined an earlier formulation of Gaifman and was
quickly investigated by Solovay in terms of definability. Mostowski and An-
drzej Ehrenfeucht in 1956 had developed theories whose models have indis-
cernibles, implicitly ordered members of the domain all of whose n-tuples sat-
isfy the same formulas. They had applied Ramsey’s Theorem in compactness
arguments to get models generated by indiscernibles, models consequently
having many automorphisms. Silver applied partition properties satisfied by
measurable cardinals to produce indiscernibles within given structures, par-
ticularly in the initial segment 〈Lω1 ,∈〉 of the constructible universe. With
definability and Skolem hull arguments, Silver was able to isolate a canonical
collection of sentences to be satisfied by indiscernibles, a theory whose mod-
els cohere to get L itself as generated by canonical ordinal indiscernibles—
a dramatic accentuation of the original Gödel generation of L. 0# is that the-
ory coded as a real, and as Solovay emphasized, 0# is the only possible real
to satisfy a certain Π1

2 relation, one whose complexity arises from its assert-
ing that to every countable well-ordering there corresponds a well-founded
model of the coded theory. The canonical class, closed and unbounded, of
ordinal indiscernibles is often called the Silver indiscernibles. Having these
indiscernibles substantiates V �= L in drastic ways: Each indiscernible ι has
various large cardinal properties and satisfies Lι ≺ L, so that by a straight-
forward argument the satisfaction relation for L is definable from 0#. The
theory of 0# was seen to relativize, and for reals a ∈ ωω the analogous a#

for the inner model L[a] would play focal roles in descriptive set theory as
based on definability.

Kunen’s main large cardinal results emanating from his 1968 Stanford the-
sis would be the definitive structure results for inner models of measurability.
For U a normal κ-complete ultrafilter over a measurable cardinal κ, the inner
model L[U ] of sets constructible relative to U is easily seen with U = U∩L[U ]
to satisfy L[U ] |= “U is a normal κ-complete ultrafilter”. With no presump-
tion that κ is measurable (in V ) and taking U ∈ L[U ] from the beginning, call
〈L[U ],∈, U〉 a κ-model iff 〈L[U ],∈, U〉 |= “U is a normal κ-complete ultrafil-
ter over κ”. Solovay observed that in a κ-model, the GCH holds above κ by a
version of Gödel’s argument for L and that κ is the only measurable cardinal
by a version of Scott’s argument. Silver then established that the full GCH
holds, thereby establishing the relative consistency of GCH and measurabil-
ity; Silver’s proof turned on a local structure Lα[U ] being acceptable in the
later parlance of inner model theory.

Kunen made Gaifman’s technique of iterated ultrapowers integral to the
subject of inner models of measurability. For a κ-model 〈L[U ],∈, U〉, the
ultrapower of L[U ] by U with corresponding elementary embedding j provides
a j(κ)-model 〈L[j(U)],∈, j(U)〉, and this process can be repeated. At limit
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stages, one can take the direct limit of models, which when well-founded
can be identified with the transitive collapse. Indeed, by Gaifman’s work
these iterated ultrapowers are always well-founded, i.e. κ-models are iterable.
Kunen showed that the λth iterate of a κ-model for any regular λ > κ+ is
of form 〈L[Cλ],∈, Cλ ∩ L[Cλ]〉, where Cλ again is the closed unbounded filter
over λ, so that remarkably, constructing relative to a filter definable in set
theory leads to an inner model of measurability. With this, there can be
comparison of κ-models and κ′-models by iterating them up to a sufficiently
large λ. This comparison possibility let to the structure results: (1) for any
κ-model and κ′-model with κ < κ′, the latter is an iterated ultrapower of the
former, and (2) for any κ, there is at most one κ-model. It then followed that
if κ is measurable and U1 and U2 are any κ-complete ultrafilters over κ, then
L[U1] = L[U2]. These various results argued forcefully for the coherence and
consistency of the concept of measurability. And it would be that iterability
and comparison would remain as basic features in inner model theory in its
subsequent development.

Kunen’s contribution to the theory of iterated ultrapowers was that it-
erated ultrapowers can be taken of an inner model M with respect to an
ultrafilter U even if U /∈ M , as long U is an M -ultrafilter, i.e. U in addition
to having M related ultrafilter properties also satisfies an “amenability” con-
dition for M . A crucial dividend was a characterization of the existence of
0# that secured its central importance in inner model theory. With 0#, any
increasing shift of the Silver indiscernibles provides an elementary embedding
j : L → L. Kunen established conversely that such an embedding generates
indiscernibles, so that 0# exists iff there is a (non-identity) elementary em-
bedding j : L → L. Starting with such an embedding Kunen defined the
corresponding ultrafilter U over the critical point and showed that U is an
L-ultrafilter with which the iterated ultrapowers of L are well-founded. The
successive images of the critical point were seen to be indiscernibles for L,
giving 0#. As inner model theory was to develop, this sharp analysis would
become schematic: the “sharp” of an inner model M would encapsulate tran-
scendence over M , and the non-rigidity of M , that there is a (non-identity)
elementary embedding j : M → M , would provide equivalent structural
sense.

William Mitchell in 1972, just after completing a pioneering Berkeley thesis
on Aronszajn trees, provided the first substantive extension of Kunen’s inner
model results and brought to prominence a new large cardinal hypothesis.
For normal κ-complete ultrafilters U and U ′ over κ, define the Mitchell order
U ′ � U iff U ′ ∈ Ult(V, U), i.e. there is an f : κ → V representing U ′ in
the ultrapower, so that {α < κ | f(α) is a normal α-complete ultrafilter over
α} ∈ U and κ is already a limit or measurable cardinals. U � U always fails,
and generally, � is a well-founded relation by a version of Scott’s argument
that measurable cardinals contradict V = L. Consequently, to each U can
be recursively assigned a rank o(U) = sup{o(U ′) + 1 | U ′ � U}, and to a
cardinal κ, the supremum o(κ) = sup{o(U) + 1 | U is a normal κ-complete
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ultrafilter over κ}. By a cardinality argument, if 2κ = κ+ then o(κ) ≤ κ++.
The hypothesis o(κ) = δ provided an “order” of measurability calibrated

by δ, with larger δ corresponding to stronger assumptions on κ. For the inves-
tigation of these orders, Mitchell devised the concept of a coherent sequence of
ultrafilters (“measures”) and was able to establish canonicity results for inner
models L[U ] |= “U is a coherent sequence of ultrafilters”. A coherent sequence
U is a doubly indexed system of normal α-complete ultrafilters U(α, β) over α
such that U(κ, β) � U(κ, β′) for β < β′ at the κth level, and the earlier levels
contain just enough ultrafilters necessary to represent these � relationships
in the respective ultrapowers. (Technically, if j : V → Ult(V,U(κ, β′)), then
j(U)�{(α, β) | α ≤ κ} = U�{(α, β) | α < κ ∨ (α = κ ∧ β < β′)}, i.e. j(U)
through κ is exactly U “below” (κ, β′).)

Mitchell first affirmed that these L[U ]’s are iterable in that arbitrary it-
erated ultrapowers via ultrafilters in U and its successive images are always
well-founded. He then effected a comparison: Any L[U1] and L[U2] have
respective iterated ultrapowers L[W1] and L[W2] such that W1 is an initial
segment of W2 or vice versa. This he achieved through a process of coitera-
tion of least differences: At each stage, one finds the lexicographically least
coordinate at which the current iterated ultrapowers of L[U1] and L[U2] differ
and takes the respective ultrapowers by the differing ultrafilters; the differ-
ence is eliminated as ultrafilters never occur in their ultrapowers. Note that
this iteration process is external to L[U1] and L[U2], further drawing out the
advantages of working externally to models as Kunen had first done with his
M -ultrafilters. With this coiteration, Mitchell established that in L[U ] the
only normal α-complete ultrafilters over α for any α are those that occur in
U and other propositions like GCH that showed these models to be L-like.
Coiteration would henceforth be embedded in inner model theory, and with
his models L[U ] modeling o(κ) = δ for δ < κ++L[U ], ∃κ(o(κ) = κ++) would
become the delimitative proposition of his analysis.

3.4. Constructibility

These various results were set against a backdrop of an increasing articulation
of Gödel’s original notion of constructibility. Levy in 1965 had put forward
the appropriate hierarchy for the first-order formulas of set theory: A formula
is Σ0 and Π0 if it is bounded, i.e. having only quantifiers expressible in terms
of ∀v ∈ w and ∃v ∈ w, and recursively, a formula is Σn+1 if it is of the
form ∃v1 . . . ∃vkϕ where ϕ is Πn and is Πn+1 if it is of the form ∀v1 . . . ∀vkϕ
where ϕ is Σn. Two basic points about discounting bounded quantifiers are
that Σ0 formulas are absolute for transitive structures, i.e. they hold in such
structures just in case they hold in V , and that if ϕ is Σn (resp. Πn) then
∃v ∈ wϕ and ∀v ∈ xϕ are equivalent in ZFC to Σn (resp. Πn) formulas by
uses of Replacement. Levy wove in Shoenfield’s Σ1

2 absoluteness result to
establish the Shoenfield-Levy Absoluteness Lemma: For any Σ1 sentence σ,
ZF + DC � σ ←→ σL. Levy actually showed that L here can be replaced
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by a countable Lγ fixed for all σ, and as such the lemma can be seen as a
refinement of the Reflection Principle for ZF, one that was to find wide use
in the burgeoning field of admissible set theory.

Gödel’s original GCH result with L was newly seen in light of the struc-
tured context for definability. For N and M construed as structures with
∈, j : N → M is a Σn-elementary embedding iff for any Σn ϕ(v1, . . . , vk)
and x1, . . . , xk ∈ N , N |= ϕ[x1, . . . , xk] iff M |= ϕ[j(x1), . . . , j(xk)]. N is a
Σn-elementary substructure of M , denoted N ≺n M , iff the identity map is
Σn-elementary. Analysis of the satisfaction relation established that being
an Lα is a Σ1 property, and this led to the Condensation Lemma:

If α is a limit ordinal and N ≺1 Lα,

then the transitive collapse of N is Lβ for some β ≤ α.

Operatively, one applies this lemma with Skolem’s algebraic approach to
logic by taking N to be a Σ1 Skolem hull in Lα: For any Σ0 formula
ϕ(v1, . . . , vn, vn+1) and x1, . . . , xn ∈ Lα, if 〈Lα,∈〉 |= ϕ[x1, . . . xn, y] for
y ∈ Lα, let fϕ(x1, . . . , xn) be such a y. Then let N be the algebraic clo-
sure of some subset of Lα under these Skolem functions. The road from the
Condensation Lemma to Gödel’s Fundamental Theorem for the consistency
of GCH is short. Generally, the lemma articulates a crucial hierarchical co-
hesion, and its various emanations would become fundamental to all inner
model theory.

The consummate master of constructibility was to be Ronald Jensen,
whose first systematic analysis transformed the subject with the introduc-
tion of the fine structure theory for L. Jensen’s work is distinguished by
the persistent pursuit of internal logical structure, the sophistication of the
local apparatus developed, and a series of remarkable successes with rever-
berations throughout the whole expanse of set theory. After his 1964 Bonn
dissertation on models of arithmetic, Jensen moved with strength into inves-
tigations with forcing and of definability, two directions that would steadily
complement each other in his work. He, like Solovay, saw the great poten-
tial of forcing, and he soon derived the Easton results independently. In the
direction of definability he in 1965 worked out with Carol Karp a theory of
primitive recursive set functions, and with these he began his investigation
of L. In his 1967 Habilitationsschrift he had definite anticipations of fine
structure, although notably he had no particular application for it in mind
at that time.

In 1968 Jensen made a major breakthrough by showing that V = L implies
the failure of Suslin’s Hypothesis, i.e. (there is a Suslin tree)L, applying L for
the first time after Gödel to establish a relative consistency result about a
classical proposition. The initial breakthrough had been when Tennenbaum
had adjoined a Suslin tree with forcing and Thomas Jech had provided an-
other forcing argument; Jensen at first pitched his construction in the guise
of a forcing argument, one in fact like Jech’s. This is the paradigmatic case



38 Kanamori / Introduction

of what would become a recurring phenomenon: A combinatorial existence
assertion is first shown to be relatively consistent with ZFC using forcing,
and then the assertion is shown to hold in L, the minimal inner model.

The lack of cofinal branches in Suslin trees is complemented by their abun-
dance in Kurepa trees. Inspired by Jensen’s construction the ubiquitous Solo-
vay established: (there is a Kurepa tree)L. Here too the relative consistency
of the proposition had been established first through forcing.

Jensen isolated the combinatorial features of L that enabled these con-
structions and together with Kunen in 1969 worked out a larger theory. The
focus was mainly on two combinatorial principles of Jensen’s for a regular car-
dinal κ, ♦κ (“diamond”) and a strengthening, ♦+

κ (“diamond plus”). Stating
the first,

♦κ There is a sequence 〈Sα | α < κ〉 with Sα ⊆ α such that
for any X ⊆ κ, {α < κ | X ∩ α = Sα} is stationary in κ.

Just ♦ is implicitly ♦ω1 . ♦κ implies
⋃

α<κ κ|α| = κ (so that ♦ implies CH) as
every bounded subset of κ occurs in a ♦κ sequence. Indeed, a ♦κ sequence is
an enumeration of the bounded subsets of κ that can accommodate every X ⊆
κ in anticipatory constructions where X ∩ α appearing in the enumeration
for many α’s suffices. Within a few years ♦ would be on par with CH as
a construction principle with wide applications in topology, algebra, and
analysis. (Another coda of Shelah’s after many years: In 2007 he established
that for successors λ+ > ω1, 2λ = λ+ actually implies ♦λ+ , so that the two
are equivalent.)

Jensen abstracted his Suslin tree result to: (1) if V = L, then ♦κ holds
from every regular κ > ω, and (2) if ♦ω1 holds, then there is a Suslin tree.
Solovay’s result was abstracted to higher, κ-Kurepa trees, κ-trees with at least
κ+ cofinal branches, in terms of a new cardinal concept, ineffability, arrived
at independently by Jensen and Kunen: If V = L and κ > ω is regular,
then ♦+

κ holds iff κ is not ineffable. Ineffable cardinals, stronger than weakly
compact cardinals, would soon be seen to have a range of involvements and
an elegant theory. As for “higher” Suslin trees, they would involve the use of
a new combinatorial principle, one that first figured in a sophisticated forcing
argument.

The crowning achievement of the investigation of Suslin’s Hypothesis was
its joint consistency with CH, Con(ZFC) → Con(ZFC + CH + SH), es-
tablished by Jensen. In the Solovay-Tennenbaum consistency proof for SH,
cofinal branches had been adjoined iteratively to Suslin trees as they arose
and direct limits were taken at limit stages, a limiting process that conspired
to adjoin new reals so that CH fails. Jensen, with considerable virtuosity for
the time, devised a way to kill Suslin trees less directly and effected the itera-
tion according to a curtailed tree-like indexing—so that no new reals are ever
adjoined. That indexing is captured by the κ = ω1 case of the combinatorial
principle �κ (“square”):
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�κ There is a sequence 〈Cα | α a limit ordinal < κ+〉 such that
for α < κ+:

(a) Cα ⊆ α is closed unbounded in α,

(b) for β a limit point of Cα, Cα ∩ β = Cβ , and

(c) for ω ≤ cf(α) < κ, the order-type of Cα is less than κ.

�ω is immediate, as witnessed by any ladder system, i.e. a sequence
〈Cα | α a limit ordinal < ω1〉 such that Cα is of order-type ω and cofi-
nal in α. �κ for κ > ω brings out the tension between the desired (b) and
the needed (c). As such, �κ came to guide many a construction of length κ+

based on components of cardinality < κ.
�κ can be adjoined by straightforward forcing with initial approximations;

Jensen established: If V = L, then �κ holds for every κ. As for higher Suslin
trees, a κ-Suslin tree is expectedly a κ-tree with no chains or antichains of
cardinality κ. It was actually Jensen’s work on these trees that motivated
his formulation of �κ, and he established, generalizing his result for κ = ω1:
(1) for any κ, ♦κ+ and �κ imply that there is a κ+-Suslin tree, and, for limit
cardinals κ, the characterization (2) there is a κ-Suslin tree iff κ is not weakly
compact. It is a notable happenstance that Suslin’s early, 1920 speculation
would have such extended ramifications in modern set theory.

Jensen’s results that �κ holds in L and (2) above were the initial appli-
cations of his fine structure theory. Unlike Gödel who had focused with L
on relative consistency, Jensen regarded the investigation of how the con-
structible hierarchy grows by examining its behavior at arbitrary levels as of
basic and intrinsic interest. And with his fine structure theory Jensen devel-
oped a considerable and intricate machinery for this investigation. A pivotal
question became: when does an ordinal α first get “singularized”, i.e. what
is the least β such that there is in Lβ+1 an unbounded subset of α of smaller
order-type, and what definitional complexity does this set have? One is
struck by the contrast between Jensen’s attention to such local questions as
this one, at the heart of his proof of �κ, and how his analysis could lead to
major large-scale results of manifest significance.

For a uniform development of his fine structure theory, Jensen switched
from the hierarchy of Lα’s to a hierarchy of Jα’s, the Jensen hierarchy, where
Jα+1 is the closure of Jα ∪ {Jα} under the “rudimentary” functions (the
primitive recursive set functions without the recursion scheme). For L[A],
there is an analogous hierarchy of JA

α where one also closes off under the
function x �−→ A ∩ x. For a set N , construed as a structure with ∈ and
possibly with some A ∩ N as a predicate, a relation is Σn(N) iff it is first-
order definable over N by a Σn formula. For every α, both 〈Jξ | ξ < α〉 and
a well-ordering <L of L restricted to Jα are Σ1 definable over Jα uniformly,
in that the same formula works for all the Jα’s.

In these terms, fine structure addresses the classical issue of Skolem func-
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tions through definability. For (k + 1)-ary relations R and S,

R is uniformized by S iff
S ⊆ R and ∀w(∃yR(w, y) ←→ ∃!yS(w, y)),

where ∃! is “there exists exactly one”. This amounts to the assertion that
S refines R to a function on the same w’s and is thus a form of AC. In
systematic applications of the Condensation Lemma one deduces, toward the
construction of Σ1 Skolem hulls, that Σ0(Jα), and hence Σ1(Jα), relations are
uniformizable by Σ1(Jα) relations that choose <L-least witnesses. Weaving
together all such relations into one universal one, one gets a Skolem function
h Σ1 definable over Jα uniformly, with the property that for any X ⊆ Jα an
application of h to X yields an elementary substructure of Jα.

What about Σ2(Jα) relations? Choosing <L-least witnesses as before leads
only to a Σ3(Jα) uniformizing relation, since asserting that no predecessor
in the Σ1 definable well-ordering satisfies the Σ2 formula adds to the quan-
tifier complexity. Jensen saw that a palatable analysis of definability stable
through various transformations would require a Σ2(Jα) uniformizing rela-
tion. He achieved this by applying the basic elements of fine structure: As
a measure of the lack of closure under definability, let the (first) projectum
ρα ≤ α be the least γ for which there is a Σ1(Jα) subset of γ which is not
a member of Jα. There is then a Σ1(Jα) map of a subset of Jρα onto Jα,
essentially a Skolem function as in the previous paragraph. The Σ1(Jα) defi-
nitions involved here can be construed as depending on one parameter in Jα,
and one can fix the <L-least possibility—the standard parameter. With this
one can consider the projectum structure 〈Jρα , Aα〉 where Aα the standard
code—the <L-least among certain master codes—a predicate that codes Σ1

satisfaction for Jα so that the part of any Σ2(Jα) relation in Jρα can be taken
to be a Σ1(〈Jρα , Aα〉) relation. The relation can then be uniformized by a
Σ1(〈Jρα , Aα〉) function, one that can subsequently be projected up to be a
Σ2(Jα) uniformizing function with the available Σ1(Jα) mapping of a subset
of Jρα onto Jα.

The foregoing sets out the salient features of fine structure theory, and
Jensen carried out this analysis in general to establish for every n ≥ 1 the
Σn Uniformization Theorem: For every α, every Σn(Jα) relation can be uni-
formized by a Σn(Jα) relation. In truth, as often with the thrust of method,
fine structure would become autonomous in that it would be the actual fine
structure workings of this lemma, rather than just its statement, which would
be used. Jensen also gave expression to canonicity with what is now known
as the Downward Extension of Embeddings Lemma, which for the foregoing
situation asserts that if e : N → 〈Jρα , Aα〉 is Σ0-elementary, then N itself is
the projectum structure of a unique Jβ and e can be extended uniquely to
a Σ1-elementary e : Jβ → Jα. Jensen moved forward with this fine struc-
ture theory to uncover and articulate the combinatorial structure of the con-
structible universe.
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4. Strong Hypotheses

4.1. Large Large Cardinals

With elementary embedding having emerged as a systemic concept in set
theory, Solovay and William Reinhardt at Berkeley in the late 1960s for-
mulated inter-related large cardinal hypotheses stronger than measurability.
Reinhardt conceived extendibility, and he and Solovay independently, su-
percompactness. A cardinal κ is γ-supercompact iff there is an elementary
embedding j : V → M for some inner model M , with critical point κ and
γ < j(κ) such that γM ⊆M , i.e. M is closed under the taking of arbitrary γ-
sequences. κ is supercompact iff κ is γ-supercompact for every γ. Evidently,
the heuristics of generalization and reflection were at work here, as κ is mea-
surable iff κ is κ-supercompact, and stronger closure properties imposed on
the target model M ensure stronger reflection properties. For example, if κ
is 2κ-supercompact with witnessing j : V → M , then M |= “κ is measur-
able”, since 2κ

M ⊆ M implies that every ultrafilter over κ is in M , and so
if Uj ⊆ P (κ) is defined canonically from j by X ∈ Uj iff κ ∈ j(X), then
{ξ < κ | ξ is measurable} ∈ Uj by �Loś’s Theorem. Supercompactness was
initially viewed as an ostensible strengthening of Tarski’s strong compactness
in that, with the focus on elementary embedding, reflection properties were
directly incorporated. Whether strong compactness is actually equivalent to
supercompactness became a new “identity crisis” issue.

Reinhardt entertained a prima facie extension of these ideas, that there
is a (non-identity) elementary embedding j : V → V . With suspicions soon
raised, Kunen dramatically established in 1970 that this is inconsistent with
ZFC by applying an Erdős-Hajnal partition relation result, a combinatorial
contingency making prominent use of the Axiom of Choice. This contingency
pointed out a specific lack of closure of the target model: For any elementary
embedding j : V → M with critical point κ, let λ be the supremum of κ <
j(κ) < j2(κ) < · · · . Then, Vλ+1 �⊆ M . This lack of closure has essentially
stood as the weakest known to this day.

A net of hypotheses consistency-wise stronger than supercompactness was
soon cast across the conceptual space delimited by Kunen’s inconsistency.
For n ∈ ω, κ is n-huge iff there is an elementary embedding j : V →M , for
some inner model M , with critical point κ such that jn(κ)M ⊆M . κ is huge
iff κ is 1-huge. If κ is huge, then Vκ |= “there are many supercompact cardi-
nals”. Thematically close to Kunen’s inconsistency were several hypotheses
articulated for further investigation, e.g. there is a (non-identity) elementary
embedding j : Vλ → Vλ for some λ.

The appearance of proper classes in these various formulations raises issues
about legitimacy. By Tarski’s “undefinability of truth”, the satisfaction rela-
tion for V is not definable in ZFC, and the elementary embedding character-
ization of measurability already suffers from this shortcoming. However, the
γ-supercompactness of κ can be analogously formulated in terms of the exis-
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tence of a “normal” ultrafilter over the set Pκγ = [γ]<κ = {x ⊆ γ | |x| < κ}.
Similarly, n-hugeness can also be recast. As for Kunen’s inconsistency, his
argument can be regarded as establishing: There is no (non-identity) ele-
mentary embedding j : Vλ+2 → Vλ+2 for any λ.

The details on γ-supercompactness drew out new, generalizing concepts
for filters (and so, for ideals). Suppose that Z is a set and F a filter over P (Z)
(so F ⊆ P (P (Z))). Then F is fine iff for any a ∈ Z, {x ∈ P (Z) | a ∈ x} ∈ F .
F is normal iff whenever f is a function satisfying {x ∈ P (Z) | f(x) ∈ x} ∈
F , i.e. f is a choice function on a set in F , there is an a ∈ Z such that
{x ∈ P (Z) | f(x) = a} ∈ F , i.e. f is constant on a set in F . When Z is
a cardinal κ and κ = {x ∈ P (κ) | x ∈ κ} ∈ F , then this new normality
reduces to the previous concept. With an analogous reduction to filters over
Pκγ = [γ]<κ = {x ∈ P (γ) | |x| < κ}, we have the formulation: κ is γ-
supercompact iff there is a κ-complete, fine, normal ultrafilter over Pκγ.
This inspired a substantial combinatorial investigation of filters over sets
Pκγ, and a general, structural approach to filters over sets P (Z).

Whether it is in these large cardinal hypotheses or the transition from
V to V [G] in forcing, the appeal to the satisfaction relation for V is liberal
and unabashed in modern set-theoretic practice. Yet ZFC remains parsimo-
niously the official theory and this carries with it the necessary burden of
formalization. On the other hand, it is the formalization that henceforth
carries the operative sense; for example, the ultrafilter characterization of
γ-supercompactness delivers through the concreteness of the ultrapower con-
struction critical properties that become part of the concept in its use. It
has become commonplace in modern set theory that informal assertions and
schematic procedures often convey an incipient intentional sense, but formal-
ization refines that sense with workable structural articulations.

Although large large cardinals were developed particularly to investigate
the possibilities for elementary embeddings and were quickly seen to have
a simple but elegant basic theory, what really intimated their potentialities
were new forcing results in the 1970s and 1980s, especially from supercom-
pactness, that established new relative consistencies, even of assertions low
in the cumulative hierarchy. The earliest, orienting result along these lines
addressed the singular cardinals problem. The “Prikry-Silver” result pro-
vided the first instance of a failure of the Singular Cardinal Hypothesis by
drawing together two results of independent significance, themselves crucial
as methodological advances.

Karel Prikry in his 1968 Berkeley thesis had set out a simple but elegant
notion of forcing that changed the cofinality of a measurable cardinal while
not collapsing any cardinals. With U a normal κ-complete ultrafilter over κ,
(basic) Prikry forcing for U has as conditions 〈p,A〉 where p is a finite subset
of κ and A ∈ U . For conditions 〈p,A〉 and 〈q,B〉, the first is stronger than
the second if p ⊇ q and α ∈ p− q implies α > max(q), and A ∪ (p− q) ⊆ B.
A condition thus specifies a finite initial part of a new ω-cofinalizing subset
of κ, and further members are to be added on top from a set large in the sense
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of being in U . Applying a partition property available for normal ultrafilters,
Prikry established that for any condition 〈p,A〉 and forcing statement, there
is a B ⊆ A such that B ∈ U and 〈p,B〉 decides the statement, i.e. extending
p is unnecessary. Hence, e.g. the κ-completeness of U implies that Vκ remains
unchanged in the forcing extension yet the cofinality of κ now becomes ω.

Prikry forcing may at first have seemed a curious possibility for singular-
ization. However, that a Prikry generic sequence also generates the corre-
sponding U in simple fashion and also results from indiscernibles made them
a central feature of measurability. Prikry forcing would be generalized in
various directions and for a variety of purposes. With the capabilities made
available for changing cofinalities, equi-consistency connections would eventu-
ally be established between large cardinals on the one hand and formulations
in connection with the singular cardinals problem on the other.

Silver in 1971 first established the relative consistency of having a mea-
surable cardinal κ satisfying 2κ > κ+, a proposition that Kunen had shown
to be substantially stronger than measurability. Forcing over the model con-
structed by Silver with Prikry forcing yielded the first counterexample to the
Singular Cardinals Hypothesis by providing a singular strong limit cardinal
κ satisfying 2κ > κ+.

To establish his result, Silver provided a technique for extending elemen-
tary embeddings into generic extensions and thereby preserving large cardinal
properties. To get at what is at issue, suppose that j : V →M is an elemen-
tary embedding, P is a notion of forcing, and G is V -generic for P . To extend
(or “lift”) j to an elementary embedding for V [G], the natural scheme would
be to get a M -generic G′ for j(P ) and extend j to an elementary embedding
from V [G] into M [G′]. But for this to work with the forcing terms, it would
be necessary to enforce

(∗) ∀p ∈ G (j(p) ∈ G′).

For getting a measurable cardinal κ satisfying 2κ = κ++, Silver started
with an elementary embedding as above with critical point κ and devised a P
for adjoining κ++ Cohen subsets of κ. In order to establish a close connection
between P and j(P ) toward securing (∗), he took P to be a uniform iteration
of forcings to adjoin λ++ Cohen subsets of λ for every inaccessible cardinal λ
up to and including κ itself. Then with the shift from κ to j(κ), j(P ) can be
considered a two-stage iteration of P followed by a further iteration Q. Now
with G V -generic for P , G is also M -generic for P , and in M [G] one should
devise an H M [G]-generic for Q such that the combined generic G′ = G ∗H
satisfies (∗).

But how is this to be arranged? Silver was able to control the j(p)’s for
p ∈ G by a single, (strong) master condition q ∈ Q, and build in V [G] an
H M [G]-generic over Q with q ∈ H to satisfy (∗). For getting both q and
H, he needed that M be closed under arbitrary κ++-sequences. Thus he
established: If κ is κ++-supercompact, then there is a forcing extension in
which κ is measurable and 2κ = κ++. (To mention an elegant coda, work
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of Woodin and Gitik in the 1980s showed that having a measurable cardinal
satisfying 2κ > κ+ is equi-consistent with having a κ with o(κ) = κ++ in the
Mitchell order.) Silver’s preparatory “reversed Easton” forcing with Easton
support and master condition constructions of generic filters would become
staple ingredients for the generic extension of elementary embeddings.

What about the use of very strong hypotheses in consistency results?
A signal, 1972 result of Kunen brought into play the strongest hypothesis to
that date for establish a consistency result about the low levels of the cumula-
tive hierarchy. Earlier, Kunen had established that having a κ-complete κ+-
saturated ideal over a successor cardinal κ had consistency strength stronger
than having a measurable cardinal. Kunen now showed: If κ is huge, then
there is forcing extension in which κ = ω1 and there is an ℵ1-complete ℵ2-
saturated ideal over ω1. With a j : V → M with critical point κ, λ = j(κ),
and λM ⊆ M as given by the hugeness of κ, Kunen collapsed κ to ω1 and
followed it was a collapse of λ to ω2 in such a way so as to be able to define
a saturated ideal. Crucially, the first collapse was a “universal” collapse P
iteratively constructed so that the second collapse can be absorbed into j(P )
in a way consistent with j applied to P , and this required λM ⊆M . Hence, a
sufficient algebraic argument was contingent on a closure property for an ele-
mentary embedding, one plucked from the emerging large cardinal hierarchy.
In the years to come, Kunen’s argument would be elaborated and emended
to become the main technique for getting various sorts of saturated ideals
over accessible cardinals. As for the proposition that there is an ℵ1-complete
ℵ2-saturated ideal over ω1 itself, Kunen’s result set an initial, high bar for the
stalking of its consistency strength, but definitive work of the 1980s would
show that far less than hugeness suffices.

4.2. Determinacy

The investigation of the determinacy of infinite games is the most distinc-
tive and intriguing development of modern set theory, and the correlations
eventually achieved with large cardinals the most remarkable and synthetic.
Notably, the mathematics of games first came to the attention of pioneers
of set theory as an application of the emerging subject. Zermelo in a 1913
note discussed chess and worked with the concepts of winning strategy and
determined game, and Kőnig in the paper that introduced his well-known tree
lemma extended Zermelo’s work to games with infinitely many positions. Von
Neumann, lauding set-theoretic formulation, established the crucial minimax
theorem, the result that really began the mathematical theory of games, and
by the mid-1940s he and Oskar Morgenstern had codified the theory and its
analysis of economic behavior, stimulating research for decades to come.

The investigation of infinitely long games that can be cast in a simple,
abstract way would draw game-theoretic initiatives back into set theory. For
a set X and A ⊆ ωX, let GX(A) denote the following “infinite two-person
game with perfect information”: There are two players, I and II . I initially
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chooses an x(0) ∈ X; then II chooses an x(1) ∈ X; then I chooses an
x(2) ∈ X; then II chooses an x(3) ∈ X; and so forth:

I: x(0) x(2) . . .
II : x(1) x(3) . . .

Each player before making each of his moves is privy to the sequence of
previous moves (“perfect information”); and the players together specify an
x ∈ ωX. I wins GX(A) if x ∈ A, and otherwise II wins. A strategy is a
function that tells a player what move to make given the sequence of previous
moves. A winning strategy is a strategy such that if a player plays according
to it he always wins no matter what his opponent plays. A is determined if
either I or II has a winning strategy in GX(A).

David Gale and James Stewart in 1953 initiated the study of these games
and observed that if A ⊆ ωX is open (in the product topology) then A is
determined. The simple argument turned on how membership is secured at a
finite stage, and a basic stratagem in the further investigations of determinacy
would be the reduction to such “open games”. Focusing on the basic case
X = ω and noting that a strategy then can itself be construed as a real, Gale
and Stewart showed by diagonalizing through all strategies that assuming
AC there is an undetermined A ⊆ ωω. Determinacy itself would come to
be regarded as a regularity property, but there were basic difficulties from
the beginning. Gale and Stewart asked whether all Borel sets of reals are
determined, and in the decade that followed only sets very low in the Borel
hierarchy were shown to be determined.

Infinitely long games involving reals had been considered as early as in the
1920s by mathematicians of the Polish school. With renewed interest in the
subject in the 1950s, and with determinacy increasingly seen to be potent
in its consequences, Jan Mycielski and Hugo Steinhaus in 1962 proposed the
following axiom, now known as the Axiom of Determinacy (AD):

Every A ⊆ ωω is determined.

With AD contradicting AC they proposed from the beginning that in the ZFC
context the axiom should hold in some inner model. Solovay pointed out that
the natural candidate L(R), the constructible closure of the reals R = ωω,
observing that if AD holds then ADL(R), i.e. AD holds in L(R). Further
restricted hypotheses would soon be applied to the tasks at hand: Projective
Determinacy (PD) asserts that every projective A ⊆ ωω is determined; Σ1

n-
determinacy, that every Σ1

n set A is determined; and so forth.
By 1964, games to specific purposes had been devised to show that for

A ⊆ ωω there is a closely related B ⊆ ωω (a continuous preimage) so that if
B is determined, then A is Lebesgue measurable, and similarly for the Baire
property and the perfect set property. Moreover, AD does imply a limited
choice principle, every countable set consisting of sets of reals has a choice
function. Thus, the groundwork was laid for the reign of AD in L(R) to
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enforce the regularity properties for all sets of reals there as well as a local
choice principle, with unfettered uses of AC relegated to the universe at large.

In 1967 two results drew determinacy to the foreground of set theory, one
about the transfinite and the other about definable sets of reals. Solovay
established that AD implies that ω1 is measurable, injecting emerging large
cardinal techniques into a novel setting without AC. David Blackwell pro-
vided a new proof via the determinacy of open games of a classical result of
Kuratowski that the Π1

1 sets have the reduction property. These results stim-
ulated interest because of their immediacy and new approach to proof, that
of devising a game and appealing to the existence of winning strategies to
deduce a dichotomy. Martin in particular saw the potentialities at hand and
soon made incisive contributions to investigations with and of determinacy.
He initially made a simple but crucial observation based on the construal of
strategies as reals that would have myriad applications; he showed that under
AD the filter over the Turing degrees generated by the cones is an ultrafilter.

After seeing Blackwell’s argument, Martin and Addison quickly and inde-
pendently came to the idea of assuming determinacy hypotheses and pointed
out that Δ1

2-determinacy implies that Σ1
3 sets have the reduction property.

Then Martin and Yiannis Moschovakis independently in 1968 extended the
reduction property through the projective hierarchy by playing games and
assuming PD, realizing a methodological goal of the classical descriptive set
theorists by carrying out an inductive propagation. This was Martin’s initial
application of his ultrafilter on Turing cones, and the idea of ranking ordinal-
valued functions via ultrafilters, so crucial in later arguments, first occurred
here.

Already in 1964 Moschovakis had abstracted a property stronger and
more intrinsic than reduction, the prewellordering property, from the classical
analysis of Π1

1 sets. A relation � is a prewellordering if it is a well-ordering
except possibly that there could be distinct x and y such that x � y and
y � x. While a well-ordering of a set A corresponds to a bijection of A into
an ordinal, a prewellordering corresponds to a surjection onto an ordinal—
a stratification of A into well-ordered layers. A class Γ of sets of reals has the
prewellordering property if for any A ∈ Γ there is a prewellordering of A such
that both it and its complement are in Γ in a strong sense. This property
supplanted the reduction property in the Martin-Moschovakis First Period-
icity Theorem, which implied that under PD the prewellordering property
holds periodically for the projective classes: Π1

1, Σ1
2, Π1

3, Σ1
4, . . . .

As for Solovay’s result, he in fact established that under AD the closed
unbounded filter Cω1 is an ultrafilter by using a game played with countable
ordinals and simulating it with reals. Martin provided an alternate proof
using his ultrafilter on Turing cones, and then Solovay in 1968 used Martin’s
approach to establish that under AD ω2 is measurable. With an apparent
trend set, quite unexpected was the next advance. Martin in 1970 established
that under AD the ωn’s for 3 ≤ n < ω are all singular with cofinality ω2!
This was a by-product of Martin’s incisive analysis of Σ1

3 sets under AD.
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Martin and Solovay had by 1969 established results about the Σ1
3 sets

assuming a# exists for every a ∈ ωω, and Martin went on to make explicit
a “Martin-Solovay” tree representation for Σ1

3 sets. Just as Shoenfield had
dualized the classical tree representation of Π1

1 sets by reconstruing well-
foundedness as having order-preserving ranking functions, so too Martin was
able to dualize the Shoenfield tree. For this he used the existence of sharps to
order ordinal-valued functions and secure important homogeneity properties
to establish that if a# exists for every a ∈ ωω, then every Σ1

3 set is ω2-Suslin.
This careful analysis with indiscernibles led to the aforementioned singularity
of the ωn’s for 3 ≤ n < ω under AD.

Martin also reactivated the earlier project of securing more and more de-
terminacy by establishing that if there is a measurable cardinal, then Π1

1-
determinacy holds, or in refined terms, if a# exists, then Π1

1(a)-determinacy
holds. The proof featured a remarkably simple reduction to an open game,
based on indiscernibles and homogeneity properties, of form GX(A) for a set
X of ordinals. This ground-breaking proof served both to make plausible
the possibility of getting PD from large cardinals as well as getting Δ1

1-
determinacy, Borel Determinacy, in ZFC—both directions to be met with
complete success in later years.

The next advance would be by way of what would become the central
structural concept in the investigation of the projective sets under determi-
nacy. The classical issue of uniformization had been left unaddressed by the
prewellordering property, and so Moschovakis in 1971 isolated a strength-
ening abstracted from the proof of the classical, Kondô Π1

1 Uniformization
Theorem. A scale on a set A ⊆ ωω is an ω-sequence of ordinal-valued func-
tions on A satisfying certain convergence and continuity properties, and a
class Γ of sets of reals has the scale property if for any A ∈ Γ there is a scale
on A whose corresponding graph relations are in Γ in a strong sense. Hav-
ing a scale on A corresponds to having A = p[T ] for a tree T in such a way
that, importantly, from A is definable a member of A through a minimization
process (“choosing the honest leftmost branch”).

Instead of carrying out a tree dualizing procedure directly à la Shoenfield
and Martin-Solovay, Moschovakis used a game argument to establish the
Second Periodicity Theorem, which implied that under PD the scale property,
and therefore uniformization, holds for the same projective classes as for
prewellordering: Π1

1, Σ1
2, Π1

3, Σ1
4, . . . .

In the early 1970s Moschovakis, Martin, and Alexander Kechris proceeded
with scales to provide a detailed analysis of the projective sets under PD in
terms of Borel sets and as projections of trees, based on the projective ordinals
δ1

n(= δ∼
1
n) = the supremum of the lengths of the Δ1

n prewellorderings. For ex-
ample, the Σ1

2n+2 sets are exactly the δ1
2n+1-Suslin sets. The further analysis

would be based on Moschovakis’s Coding Lemma, which with determinacy
provides for an arbitrary set meeting the layers of a prewellordering an appro-
priately definable subset meeting those same layers, and his Third Periodicity
Theorem, which with determinacy asserts that when winning strategies ex-
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ist there are appropriately definable such strategies. The projective ordinals
themselves were subjected to considerable scrutiny, with penetrating work of
Kunen particularly advancing the theory, and were found to be measurable
and to satisfy strong partition properties. However, where exactly the δ1

n

for n ≥ 5 are in the aleph hierarchy would remain a mystery until the lat-
ter 1980s, when Steve Jackson in a tour de force settled the question with
a deep analysis of the ultrafilters and partition properties involved. As an
otherwise complete structure theory for projective sets was being worked out
into the 1970s, Martin in 1974 returned to a bedrock issue for the regularity
properties and established in ZFC that Δ1

1-determinacy, Borel Determinacy,
holds.

4.3. Silver’s Theorem and Covering

In mid-1974 Silver established that if κ is a singular cardinal with cf(κ) > ω
and 2λ = λ+ for λ < κ, then 2κ = κ+. This was a dramatic event and
would stimulate dramatic developments. There had been precious little in
the way of results provable in ZFC about cardinal arithmetic, and in the early
ruminations about the singular cardinals problem it was quite unforeseen
that the power of a singular cardinal can be so constrained. An analogous
preservation result had been observed by Scott for measurable cardinals,
and telling was that Silver used large-cardinal ideas connected with generic
ultrapowers.

Silver’s result spurred broad-ranging investigations both into the combi-
natorics and avenue of proof and into larger, structural implications. The
basis of his argument was a ranking of ordinal-valued functions on cf(κ). Let
〈γα | α < cf(κ)〉 be a sequence of ordinals unbounded in κ and for α < cf(κ)
let τα : P (γα) → 2γα be a bijection. For X ⊆ κ let fX on cf(κ) be de-
fined by: fX(α) = τα(X ∩ γα), noting that X1 �= X2 implies fX1 and fX2

differ for sufficiently large α. Then 2κ is mirrored through these eventually
different functions, which one can work to order according to an ideal over
the uncountable cf(κ). The combinatorial possibilities of such rankings led
to a series of limitative results on the powers of singular cardinals of un-
countable cofinality, starting with the results of Fred Galvin and Hajnal, of
which the paradigmatic example is that if ℵω1 is a strong limit cardinal, then
2ℵω1 < ℵ(2ℵ1 )+ .

In the wake of Silver’s proof, Jech and Prikry defined a κ-complete ideal
over κ to be precipitous iff the corresponding generic ultrapower à la Solovay
is well-founded. They thus put the focus on a structural property of satu-
rated ideals that Silver had simulated to such good effect. Jech and Prikry
pointed out that a proof of Kunen’s for saturated ideals using iterated ultra-
powers can be tailored to show: If there is a precipitous ideal over κ, then
κ is measurable in an inner model. Then Mitchell showed: If a measurable
cardinal is Levy collapsed to ω1, then there is a precipitous ideal over ω1.
Hence, a first equi-consistency result was achieved for measurability and ω1.
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With combinatorial characterizations of precipitousness soon in place, well-
foundedness as thus modulated by forcing became a basic ingredient in a
large-scale investigation of strong properties tailored to ideals and generic
elementary embeddings.

The most dramatic and penetrating development from Silver’s Theorem
was Jensen’s work on covering for L and its first extensions, the most promi-
nent advances of the 1970s in set theory. Jensen had found Silver’s result a
“shocking discovery”, and was stimulated to intense activity. By the end of
1974 he had made prodigious progress, solving the singular cardinals problem
in the absence of 0# in three manuscripts, “Marginalia to a Theorem of Sil-
ver” and its two sequels. The culminating result featured an elegant and focal
formulation of intuitive immediacy, the Covering Theorem (or “Lemma”) for
L: If 0# does not exist, then for any uncountable set X of ordinals there is a
Y ∈ L with |Y | = |X| such that Y ⊇ X. (Without the “uncountable” there
would be a counterexample using “Namba forcing”.) This covering property
expresses a global affinity between V and L, and its contrapositive provides a
surprisingly simple condition sufficient for the existence of 0# and the ensu-
ing indiscernible generation of L. As such, Jensen’s theorem would find wide
applications for implicating 0# and would provide a new initiative in inner
model theory for encompassing stronger hypotheses.

The Covering Theorem gave the essence of Jensen’s argument that in the
absence of 0# the Singular Cardinals Hypotheses holds: Suppose that κ
is singular and for reckoning with the powers of smaller cardinals consider
λ = sup{2μ | μ < κ}. If there is a ν < κ such that λ = 2ν , then the functions
fX defined as above adapted to the present situation satisfy fX : cf(κ) → 2ν ,
and so λ ≤ 2κ ≤ (2ν)cf(κ) ≤ λ. If on the other hand λ is the strict supremum
of increasing 2μ’s, then cf(λ) = cf(κ) and so the Zermelo-Kőnig inequality
would dictate the least possibility for 2κ to be λ+. However, if for any X ⊆ κ
the range of fX is covered by a Y ⊆ λ with Y ∈ L of cardinality cf(κ) · ℵ1,
then: there are 2cf(κ)·ℵ1 subsets of each such Y and by the GCH in L, at
most |λ+L| such Y . Hence, we would have 2κ ≤ 2cf(κ)·ℵ1 · |λ+L| ≤ λ+.

The Covering Theorem also provided another dividend that would grow in
separate significance as having weak covering property: Assume that 0# does
not exist. If κ is singular, then κ+L = κ+. If to the contrary κ+L < κ+, then
cf(κ+L) < κ. Let X ⊆ κ+L be unbounded so that |X| < κ and let Y ∈ L
cover X with |Y | = |X| · ℵ1. But then, the order-type of Y would be less
than κ, contradicting the regularity of κ+L in L.

A crucial consequence of weak covering is that in the absence of 0#, �κ

holds for singular κ, since a �κ sequence in the sense of L is then a �κ se-
quence in V . The weak covering property would itself become pivotal in the
study of inner models corresponding to stronger and stronger hypotheses,
and the failure of �κ for singular κ would become a delimitative proposi-
tion. Solovay had already established an upper bound on consistency by
showing in the early 1970s that if κ is λ+-supercompact and λ ≥ κ, then �λ

fails.
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Jensen’s ingenious proof of the Covering Theorem for L proceeded by tak-
ing a counterexample X to covering with τ = sup(X) and |X| minimal;
getting a certain Σ1-elementary j : Jγ → Jτ which contains X in its range
through a Skolem hull construction so that |γ| = |X| and, as X cannot be
covered, γ is a cardinal in L; and extending j to an elementary embedding
from L into L, so that 0# exists. The procedure for extending j up to some
large Jδ was to consider a directed system of embeddings of structures gen-
erated by ξ ∪ p for some ξ < γ and p a finite subset of Jδ, the transitized
components of the system all being members of Jγ as γ is a cardinal in L,
and to consider the corresponding directed system consisting of the j images.
The choice of γ insured that the new directed system is also well-founded,
and so isomorphic to some Jζ . For effecting embedding extendibility, Jensen
established the fine structural Upward Extension of Embeddings Lemma, ac-
cording to which if N is the projectum structure for Jα and a Σ1-elementary
e : N →M is strong in that it preserves the well-foundedness of Σ1 relations,
then M itself is the projectum structure of some unique Jβ and e can be
extended uniquely to a Σ1-elementary e : Jα → Jβ .

How can the proof of the Covering Theorem be adapted to establish a
stronger result? The only possibility was to consider a larger inner model
M and to establish that M has the covering property : for any uncountable
set X of ordinals there is a Y ∈ M with |Y | = |X| such that Y ⊇ X. In
groundbreaking work for inner model theory, Solovay in the early 1970s had
developed a fine structure theory for inner models of measurability. Whilst
a research student at Oxford University Anthony Dodd worked through this
theory, and in early 1976 he and Jensen laid out the main ideas for extending
the Covering Theorem to a new inner model, now known as the Dodd-Jensen
core model, denoted KDJ.

If 〈L[U ],∈, U〉 is an inner model of measurability, say the κ-model, then
there is a generic extension in which covering fails: If G is Prikry generic for
U over L[U ], then G cannot be covered by any set in L[U ] of cardinality less
than κ. Drawing back, there remains the possibility of “iterating out” the
measurable cardinal: If 〈L[U ],∈, U〉 is the κ-model, then 〈L[W ],∈,W 〉 is the
λ-model for some λ > κ exactly when it is an iterate of 〈L[U ],∈, U〉, in which
case L[W ] ⊆ L[U ], Vκ ∩ L[U ] = Vκ ∩ L[W ], and U /∈ L[W ]. Thus, if 〈L[Uα] |
α ∈ On〉 enumerates the inner models of measurability, then starting with
any one of them, the process of iterating it through the ordinals converges to
a proper class

⋂
α L[Uα] which has no inner models of measurability, with the

stabilizing feature that for any γ, Vγ ∩
⋂

α L[Uα] = Vγ ∩L[Uβ ] for sufficiently
large β. Assuming that there are inner models of measurability, KDJ is in fact
characterizable as this residue class. Aspiring to this, but without making
any such assumption, Dodd and Jensen provided a formulation of KDJ in
ZFC.

KDJ was the first inner model of ZFC since Gödel’s L developed using
distinctly new generating principles. Dodd and Jensen’s approach was to
take KDJ as the union of L together with “mice”. Loosely speaking, a mouse
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is a set Lα[U | such that

〈Lα[U ],∈, U〉 |= U is a normal ultrafilter over κ

satisfying: (i) there is a subset of κ in Lα+1[U ] − Lα[U ], so that U is on
the verge of not being an ultrafilter; (ii) 〈Lα[U ],∈, U〉 is iterable in that all
the iterated ultrapowers are well-founded; and (iii) fine structure conditions
about a projectum below κ leading to (i). Mice can be compared by taking
iterated ultrapowers, so that there is a natural prewellordering of mice, and
moreover, crucial elements about L can be lifted to the new situation because
there is a generalization of condensation: Σ1-elementary substructures of
mice, when transitized, are again mice. This led to KDJ |= GCH, and that
KDJ in the sense of KDJ is again KDJ.

Mice generate indiscernibles through iteration, and so if 0# does not exist,
then KDJ = L; if 0# exists but 0## does not, then KDJ = L[0#]; and
this continues through the transfinite by coding sequences of sharps. On
the other hand, KDJ has no simple constructive analysis from below and is
rather like a maximal inner model on the brink of measurability: Its own
“sharp”, that there is an elementary embedding j : K → K, is equivalent
to the existence of an inner model of measurability. Indeed, this was Dodd
and Jensen’s primary motivation for the formulation of KDJ. They used
it in place of the elementary embedding characterization of the existence of
0#, together with the L-like properties of KDJ, to establish the Covering
Theorem for KDJ: If there is no inner model of measurability, then KDJ has
the covering property. This has the attendant consequences for the singular
cardinals problem. Moreover, Dodd and Jensen were able to establish a
covering result for inner models of measurability that accommodates Prikry
forcing. Solovay had devised a set of integers 0† (“zero dagger”), analogous
to 0#, such that 0† exists exactly when for some κ-model L[U ] there is an
elementary embedding j : L[U ] → L[U ] with critical point above κ. Dodd
and Jensen established: If 0† does not exist yet there is an inner model of
measurability, then for the κ-model L[U ] with κ least, either (a) L[U ] has
the covering property, or (b) there is a Prikry generic G for U over L[U ]
such that L[U ][G] has the covering property. Prikry forcing provides the only
counterexample to covering! Hence, the inner models thus far considered
were also “core models”, models on the brink so that the lack of covering
leads to the next large cardinal hypothesis.

In the light of the Dodd-Jensen work, Mitchell in the later 1970s devel-
oped the core model K[U ] for coherent sequences U of ultrafilters, which
corresponds to his L[U ] as KDJ does to L[U ]. The mice are now sets of form
Jα[W ] with iterability and fine structure properties, where W is an ultrafil-
ter sequence with U as an initial segment. Under the assumption that there
is no inner model satisfying ∃κ(o(κ) = κ++), Mitchell established the weak
covering property for K[U ], i.e. that (κ+)K[U ] = κ+ for singular κ. With this
he showed that several propositions have at least the consistency strength
of ∃κ(o(κ) = κ++). One such proposition was that there is an ℵ1-complete
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ℵ2-saturated ideal over ω1, establishing a new lower bound in consistency
strength for Kunen’s consistency result from a huge cardinal. Mitchell even-
tually established, generalizing the Dodd-Jensen result with Prikry generic
sets, a full covering theorem for K[U ] cast in terms of coherent systems of
indiscernibles and drew further conclusions about singular cardinals.

4.4. Forcing Consistency Results

Through the 1970s a wide range of forcing consistency results were estab-
lished at a new level of sophistication that clarified relationships among
combinatorial propositions and principles and often drew in large cardinal
hypotheses and stimulated the development of method, especially in iterated
forcing. A conspicuous series of results resolved questions of larger mathe-
matics (Whitehead’s Problem, Borel’s Conjecture, Kaplansky’s Conjecture,
the Normal Moore Space Problem) in terms of relative consistency and set-
theoretic principles, newly affirming the efficacy and adjudicatory character
of set theory. In what follows, as we have begun to already, we pursue the
larger longitudinal themes and results, necessarily saying less and less about
matters of increasing complexity.

Much of the early formative work on strong large cardinal hypotheses and
their integration into modern set theory through consistency results was car-
ried out by Menachem Magidor, whose subsequent, broad-ranging initiatives
have considerably advanced the entire subject. After completing his Hebrew
University thesis in 1972 on supercompact cardinals, Magidor in the 1970s
established a series of penetrating forcing consistency results involving strong
hypotheses. In 1972–1973 he illuminated the “identity crisis” issue of whether
supercompactness and strong compactness are distinct concepts by establish-
ing: (1) It is consistent that the least supercompact cardinal is also the least
strong compact cardinal, and (2) It is consistent that the least strong compact
cardinal is the least measurable cardinal (and so much smaller than the least
supercompact cardinal). The proofs showed how changing many cofinalities
with Prikry forcing to destroy measurable cardinals can be integrated into
arguments about extending elementary embeddings.

In 1974 Magidor made a basic contribution to the theory of changing cofi-
nalities, the first after Prikry. Magidor established: If a measurable cardinal
κ is of Mitchell order o(κ) ≥ λ for a regular λ < κ, then there is a forc-
ing extension preserving cardinals in which cf(κ) = λ. Generalizing Prikry
forcing, Magidor’s conditions consisted of a finite sequence of ordinals and
a sequence of sets drawn from normal ultrafilters in the Mitchell order, the
sets providing for the possible ways of filling out the sequence. Like Prikry’s
forcing, Magidor’s may at first have seemed a curious possibility for a new
singularization. However, one of the subsequent discernments of Mitchell’s
core model for coherent sequences of measures is that, remarkably: If a regu-
lar cardinal κ in V satisfies ω < cf(κ) < κ in a generic extension, then V has
an inner model in which o(κ) is at least that cofinality. Thus, the capability
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of changing cofinalities was exactly gauged; “Prikry-Magidor” generic sets
as sequences of indiscernibles would become a basic component of Mitchell’s
covering work.

The most salient results of Magidor’s of this period were two of 1976 that
provided counterweight to Jensen’s covering results on the singular cardinal
problem. Magidor showed: (1) If κ is supercompact, there is a forcing ex-
tension in which κ is ℵω as a strong limit cardinal yet 2ℵω > ℵω+1, and
(2) If κ is a huge cardinal, then there is a forcing extension in which κ = ℵω,
2ℵn = ℵn+1 for n ∈ ω, yet 2ℵω > ℵω+1. Thus, forcing arguments showed that
the least singular cardinal can be a counterexample to the Singular Cardi-
nals Hypothesis; the strong elementary embedding hypotheses allowed for an
elaborated Prikry forcing interspersed with Levy collapses. The Prikry-Silver
and the Magidor results showed through initial incursions of Prikry forcing
how to arrange high powers for singular strong limit cardinals; it would be
one of the great elaborations of method that equi-consistency results would
eventually be achieved with weaker hypotheses.

With respect to the Jech-Prikry-Mitchell equi-consistency of measurability
and precipitousness, Magidor showed that absorptive properties of the Levy
collapse of a measurable cardinal to ω1 can be exploited by subsequently
“shooting” closed unbounded subsets of ω1 through stationary sets to get: If
there is a measurable cardinal κ, then there is a forcing extension in which κ =
ω1 and NSω1 is precipitous. Thus a basic, definable ideal can be precipitous,
and this naturally became a principal point of departure for the investigation
of ideals.

The move of Saharon Shelah into set theory in the early 1970s brought
in a new and exciting sense of personal initiative that swelled into an en-
hanced purposiveness across the subject, both through his solutions of major
outstanding problems as well as through his development of new structural
frameworks. A phenomenal mathematician, Shelah from his 1969 Hebrew
University thesis on has worked in model theory and eventually infused it
with a transformative, abstract classification theory for models. In both
model theory and set theory he has remained eminent and has produced re-
sults at a furious pace, with nearly 1000 items currently in his bibliography
(his papers are currently archived at http://shelah.logic.at/).

In set theory Shelah was initially stimulated by specific problems. He typ-
ically makes a direct, frontal attack, bringing to bear extraordinary powers of
concentration, a remarkable ability for sustained effort, an enormous arsenal
of accumulated techniques, and a fine, quick memory. When he is successful
on the larger problems, it is often as if a resilient, broad-based edifice has
been erected, the traditional serial constraints loosened in favor of a wide,
fluid flow of ideas, and the final result almost incidental to the larger struc-
ture. What has been achieved is more than a just succinctly stated theorem
but rather the erection of a whole network of robust arguments.

Shelah’s written accounts have acquired a certain notoriety that in large
part has to do with his insistence that his edifices be regarded as autonomous

http://shelah.logic.at/


54 Kanamori / Introduction

conceptual constructions. Their life is to be captured in the most general
forms, and this entails the introduction of many parameters. Often, the
network of arguments is articulated by complicated combinatorial principles
and transient hypotheses, and the forward directions of the flow are rendered
as elaborate transfinite inductions carrying along many side conditions. The
ostensible goal of the construction, that succinctly stated result that is to
encapsulate it, is often lost in a swirl of conclusions.

Shelah’s first and very conspicuous advance in set theory was his 1973,
definitive results on Whitehead’s Problem in abelian group theory: Is every
Whitehead group, an abelian group G satisfying Ext1(G,Z) = 0, free? Shelah
established that V = L implies that this is so, and that Martin’s Axiom
implies that there is a counterexample. Shelah thus established for the first
time that a strong purely algebraic statement is undecidable in ZFC. With
his L result specifically based on diamond-type principles, Shelah brought
them into prominence with his further work on them, which were his first
incursions into iterated forcing. As if to continue to get his combinatorial
bearings, Shelah successfully attacked several problems on an Erdős-Hajnal
list for partition relations, developing in particular a “canonization” theory
for singular cardinals. By the late 1970s his increasing understanding of and
work in iterated forcing would put a firm spine on much of the variegated
forcing arguments about the continuum.

With an innovative argument pivotal for iterated forcing, Richard Laver
in 1976 established the consistency of Borel’s conjecture: Every set of reals
of strong measure zero is countable. CH had provided a counterexample,
and Laver established the consistency with 2ℵ0 = ℵ2. His argument fea-
tured the adjunction of what are now called Laver reals in the first clearly
set out countable support iteration, i.e. an iteration with non-trivial local
conditions allowed only at countably many coordinates. The earlier Solovay-
Tennenbaum argument for the consistency of MA had relied on finite support,
and a Mitchell argument about Aronszajn trees, on an involved countable
support with a “termspace” forcing, which would also find use. Laver’s work
showed that countable support iteration is both manageable and efficacious
for preserving certain framing properties of the continuum to establish the
consistency of propositions with 2ℵ0 = ℵ2. Interestingly, a trade-off would
develop however: while finite support iterations put all cardinals ≥ ℵ2 on
an equal footing with respect to the continuum, countable support iterations
restricted the continuum to be at most ℵ2. With a range of new generic reals
coming into play with the widening investigation of the continuum, James
Baumgartner formulated a property common to the corresponding partial or-
ders, Axiom A, which in particular ensured the preservation of ω1. He showed
that the countable support iteration of Axiom A forcings is Axiom A, thereby
uniformizing the iterative adjunction of the known generic reals.

All this would retrospectively have a precursory air, as Shelah soon es-
tablished a general, subsuming framework. Analyzing Jensen’s consistency
argument for SH + CH and coming to grips with forcing names in iterated
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forcing, Shelah came to the concept of proper forcing as a general prop-
erty that preserves ω1 and is preserved in countable support iterations. The
instrumental formulation of properness is given in an appropriately broad
setting:

First, for a regular cardinal λ, let H(λ) = {x | |tc({x})| < λ}, the sets
hereditarily of cardinality less than λ. The H(λ)’s provide another cumula-
tive hierarchy for V , one stratified into layers that each satisfy Replacement;
whereas the Vα’s for limit α satisfy every ZFC axiom except possibly Re-
placement, the H(λ)’s satisfy every ZFC axiom except possibly Power Set.
A partial order 〈P,<〉 is proper if for any regular λ > 2|P | and countable
M ≺ H(λ) with P ∈M , every p ∈ P ∩M has a q ≤ p such that q � Ġ∩M is
M -generic. (Here, Ġ a canonical name for a generic filter with respect to P ,
and q forcing this genericity assertion has various combinatorial equivalents.)

A general articulation of how all countable approximations are to have
generic filters has been achieved, and its countable support iteration exhibited
the efficacy of this remarkable move to a new plateau. Shelah soon devised
variants and augmentations, and in a timely 1982 monograph Proper Forcing
revamped forcing for combinatorics and the continuum with systemic proofs
of new and old results. Proper forcing, presented in Chap. 5 of this Handbook,
has become a staple part of the methods of modern set theory, with its
applications wide-ranging and the development of its extended theory a fount
of research.

In light of Shelah’s work and Martin’s Axiom, Baumgartner in the early
1980s established the consistency of a new encompassing forcing axiom, the
Proper Forcing Axiom (PFA): For any proper partial order P and collection
D of ℵ1 dense subsets of P , there is a filter G ⊆ P meeting every member
of D. Unlike MA, the consistency of PFA required large cardinal strength
and moreover could not be achieved by iteratively taking care of the par-
tial orders at issue, as new proper partial orders occur arbitrarily high in
the cumulative hierarchy. Baumgartner established: If there is a supercom-
pact cardinal κ, then there is a forcing extension in which κ = ω2 and PFA
holds. In an early appeal to the full global reflection properties available at
a supercompact cardinal Baumgartner iteratively took care of the emerging
proper partial orders along a special diamond-like sequence that anticipates
all possibilities. Laver first formulated this sequence, the “Laver diamond”,
toward establishing what has become a useful result for forcing theory; in a
forcing extension he made a supercompact cardinal “indestructible” by any
further forcing from a substantial, useful class of forcings. PFA became a
widely applied forcing axiom, showcasing Shelah’s concept, but beyond that,
it would itself become a pivotal hypothesis in the large cardinal context.

Two points of mathematical practice should be mentioned in connection
with Shelah’s move into set theory. First, through his work with proper forc-
ing it has become routine to appeal in proofs to structures 〈H(λ),∈, <∗, . . .〉
for regular λ sufficiently large, with <∗ some well-ordering of H(λ) and . . .
including all the sets concerned. One then develops systems of elementary
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substructures generated uniformly by Skolem functions defined via <∗. This
technique, in providing some of the structure available in L-like inner models,
has proved highly efficacious over a wide range from combinatorics to large
cardinals.

Second, several of a developing Israeli school in set theory have followed
Shelah in writing “p > q” for p being a stronger condition than q instead of
“p < q”. The former is argued for as more natural, whereas the latter had
been motivated structurally by Boolean algebras. This revisionism has no
doubt led to confusion, until one realizes that it is a particular stamp of the
Israeli school.

5. New Expansion

5.1. Into the 1980s

The 1980s featured a new and elaborating expansion in set theory signif-
icantly beyond the successes, already remarkable, of the previous decade.
There were new methods and results of course, but more than that there
were successful maximizations in several directions—definitive and evidently
optimal results—and successful articulations at the interstices—new concepts
and refinements that filled out the earlier explorations. A new wave of young
researchers entered the fray, including the majority of the authors contribut-
ing to this Handbook, soon to become the prominent experts in their re-
spective, newly variegated subfields. Our narrative now becomes even more
episodic in increasingly inverse relation to the broad-ranging and penetrat-
ing developments, leaving accounts of details and some whole subjects to the
chapter summaries at the end.

In 1977 Lon Radin toward his Berkeley thesis developed an ultimate gen-
eralization of the Prikry and Magidor forcings for changing cofinalities, a
generalization that could in fact adjoin a closed unbounded subset, consist-
ing of formerly regular cardinals, to a large cardinal κ while maintaining its
regularity and further substantive properties. As graduate students at Berke-
ley, Hugh Woodin and Matthew Foreman saw the possibilities abounding in
Radin forcing. While an undergraduate at Caltech Woodin did penetrating
work on the consistency of Kaplansky’s Conjecture (Is every homomorphism
on the Banach algebra of continuous functions on the unit interval contin-
uous?) and now with Radin forcing in hand would produce his first series
of remarkable results. By 1979 Foreman and Woodin had the essentials for
establishing: If there is a supercompact cardinal κ, then there is forcing ex-
tension in which Vκ as a model of ZFC in which GCH fails everywhere,
i.e. 2λ > λ for every λ. This conspicuously subsumed the Magidor result
getting ℵω a strong limit yet 2ℵω > ℵω+1 and put Radin forcing on the map
for establishing global consistency results.

Shelah soon established two re-orienting results about powers of singular
cardinals. Having come somewhat late into the game after Silver’s Theorem,
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Shelah had nonetheless extended some of the limitative results about such
powers, even to singular κ such that ℵκ = κ. Shelah subsequently established:
If there is a supercompact cardinal κ and α is a countable ordinal, then
there is a forcing extension in which κ is ℵω as a strong limit cardinal yet
2ℵω = ℵα+1. He thus extended Magidor’s result by showing that the power
of ℵω can be made arbitrarily large below ℵω1 . In 1980 Shelah established
the general result that for any limit ordinal δ, ℵcf(δ)

δ < ℵ(|δ|cf(δ))+ , so that in
particular if ℵω is a strong limit cardinal, then 2ℵω < ℵ(2ℵ0 )+ . Not only was
he able to get an absolute upper bound in ZFC, but he had brought countable
cofinality, the one cofinality unattended to by Silver’s Theorem, into the
scheme of things. Shelah’s argument, based on the possible cofinalities of
“reduced products” of a cofinal subset of ℵδ, would evolve into a generally
applicable method by the late 1980’s, the remarkable pcf theory.

In 1978, Mitchell made a new breakthrough for the inner model theory
of large large cardinals by developing such a model for “hypermeasurable
cardinals”, e.g. a measurable cardinal κ such that for some normal ultra-
filter U over κ, P (P (κ)) ⊆ Ult(V, U), so that every ultrafilter over κ is in
the ultrapower. This at least captured a substantial consequence of the 2κ-
supercompactness of κ, and so engendered the hope of getting L-like inner
models for such strong hypotheses. Supercompactness, while increasingly re-
lied on in relative consistency results owing to its reflection properties, was
out of reach, but the Mitchell result suggested an appropriate weakening:
A cardinal κ is α-strong iff there is an elementary embedding j : V →M for
some inner model M , with critical point κ and α < j(κ) such that Vα ⊆M .
(One can alternately require that the αth iterated power set Pα(κ) be a sub-
set of M , which varies the definition for small α like α = 2 but makes the
definition more germane for them.) κ is strong iff it is α-strong for every α.

Dodd and Jensen soon simplified Mitchell’s presentation in what turned
out to be a basic methodological advance for the development of inner model
theory. While introducing certain redundancies, they formulated a general
way of analyzing an elementary embedding in terms of extenders. The idea,
anticipated in Jensen’s proof of the Covering Theorem, is that elementary
embeddings between inner models can be approximated arbitrarily closely
as direct limits of ultrapowers with concrete features reminiscent of iterated
ultrapowers.

Suppose that N and M are inner models of ZFC, j : N →M is elementary
with a critical point κ, and β > κ. Let ζ ≥ κ be the least ordinal satisfying
β ≤ j(ζ); the simple (“short”) case is ζ = κ, and the general case is for the
study of stronger hypotheses. For each finite subset a of β, define Ea by:

X ∈ Ea iff X ∈ P ([ζ]|a|) ∩N ∧ a ∈ j(X).

This is another version of generating ultrafilters from embeddings. Ea may
not be in N , but 〈N,∈, Ea〉 |= “Ea is a κ-complete ultrafilter over [ζ]|a|”.
The (κ, β)-extender derived from j is E = 〈Ea | a is a finite subset of β〉.
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For each finite subset a of β, Ult(N,Ea) is seen to be elementarily em-
beddable into M , so that in particular Ult(N,Ea) is well-founded and hence
identified with its transitive collapse, say Ma. Next, for a ⊆ b both finite
subsets of β, corresponding to how members of a sit in b there is a natural
elementary embedding iab : Ma →Mb. Finally,

〈〈Ma | a is a finite subset of β〉, 〈iab | a ⊆ b〉〉

is seen to be a directed system of structures with commutative embeddings,
so stipulate that 〈ME ,∈E〉 is the direct limit, and let jE : N → ME be the
corresponding elementary embedding. We thus have the extender ultrapower
of N by E as a direct limit of ultrapowers. The crucial point is that the direct
limit construction ensures that jE and ME approximate j and M “up to β”,
e.g. if |Vα|M ≤ β, then |Vα|M = |Vα|ME , i.e. the cumulative hierarchies of M
and ME agree up to α. Having formulated extenders derived from an embed-
ding, a (κ, β)-extender is a sequence E = 〈Ea | a is a finite subset of β〉 that
satisfies various abstracted properties that enable the above construction.

In a manuscript circulated in 1980, Dodd and Jensen worked out inner
models for strong cardinals. Building on the previous work of Mitchell, Dodd
and Jensen formulated coherent sequences of extenders, built inner models
relative to such, and established GCH in these models. The arguments were
based on extending the established techniques of securing iterability and com-
parison through coiteration. The GCH result was significant as precursory
for the further developments in inner model theory based on “iteration trees”.
Thus, with extenders the inner model theory was carried forward to encom-
pass strong cardinals, newly arguing for the coherence and consistency of the
concept. There would however be little further progress until 1985, for the
aspiration to encompass stronger hypotheses had to overcome the problem
of “overlapping extenders”, having to carry out comparison through coiter-
ation for local structures built on (κ1, β1)-extenders and (κ2, β2)-extenders
with κ1 ≤ κ2 < β1. The difficulty here is one of “moving generators”: if
an extender ultrapower is taken with a (κ1, β1)-extender and then with a
(κ2, β2)-extender, then κ2 < β1 implies that the generating features of the
first extender ultrapower has been shifted by the second ultrapower and so
one can no longer keep track of that ultrapower in the coiteration process. In
any event, a crucial inheritance from this earlier work was the Dodd-Jensen
Lemma about the minimality of iterations copied across embeddings, which
would become crucial for all further work in inner model theory.

In the direction of combinatorics and the study of continuum, there was
considerable elaboration in the 1970s and into the 1980s, particularly as these
played into the burgeoning field of set-theoretic topology. Not only were there
new elucidations and new transfinite topological examples, but large cardinals
and even the Proper Forcing Axiom began to play substantial roles in new
relative consistency results. The 1984 Handbook of Set-Theoretic Topology
summed up the progress, and its many articles set the tone for further work.

In particular, Eric van Douwen’s article provided an important service by
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standardizing notation for the cardinal characteristics, or invariants, of the
continuum in terms of the lower case Fraktur letters. We have discussed the
dominating number d, the least cardinality of a subset of Baire space cofinal
under eventual dominance <∗. There is the bounding number b, the least
cardinality of a subset of Baire space unbounded under eventual dominance
<∗; there is the almost disjoint number a, the least cardinality of a subset of
P (ω) consisting of infinite sets pairwise having finite intersection; there is a
splitting number s, the least cardinality of a subset S ⊆ P (ω) such that any
infinite subset of ω has infinite intersection with both a member of S and its
complement; and, now, many more. The investigation of the possibilities for
the cardinality characteristics and their ordering relations with each other
would itself have sustained interest in the next decades, becoming a large
theory to which both Chaps. 6 and 7 of this Handbook are devoted.

Conspicuous in combinatorics and topology would be the work of Stevo
Todorcevic. Starting with his doctoral work with Kurepa in 1979 he car-
ried out an incisive analysis of uncountable trees—Suslin, Aronszajn, Kurepa
trees and variants—and their linearizations and isomorphism types. In 1983
he dramatically re-oriented the sense of strength for the Proper Forcing Ax-
iom by showing that PFA implies that �κ fails for every κ > ω. PFA had
previously been shown consistent relative to the existence of a supercompact
cardinal. With the failure of �κ for singular κ having been seen as having
quite substantial consistency strength, PFA was itself seen for the first time
as a very strong proposition. Todorcevic would go from strength to strength,
making substantial contributions to the theory of partition relations, even-
tually establishing definitive results about ω1 as the archetypal uncountable
order-structure. His chapter in this Handbook presents that single-handedly
developed combinatorial theory of sequences and walks.

Starting in 1980 Foreman made penetrating inroads into the possibilities
for very strong propositions holding low in the cumulative hierarchy based
on the workings of generic elementary embeddings. Extending Kunen’s work
and deploying Silver’s master condition idea, Foreman initially used 2-huge
cardinals to get model-theoretic transfer principles to hold and saturated
ideals to exist among the range of ℵn’s. He would soon focus on generic
elementary embeddings and corresponding ideals themselves, even making
them postulational for set theory. This general area of research has become
fruitful, multi-faceted, and enormous, as detailed in Foreman’s chapter on
this subject in this Handbook.

In a major 1984 collaboration in Jerusalem, Foreman, Magidor, and Shelah
established penetrating results that led to a new understanding of strong
propositions and the possibilities with forcing. The focus was on a new,
maximal forcing axiom: A partial order P preserves stationary subsets of
ω1 iff stationary subsets of ω1 remain stationary in any forcing extension
by P , and with this we have Martin’s Maximum (MM): For any P preserving
stationary subsets of ω1 and collection D of ℵ1 dense subsets of P , there is
a filter G ⊆ P meeting every member of D. This subsumes PFA and is a
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maximally strong forcing axiom in that there is a P which does not preserve
stationary subsets of ω1 for which the conclusion fails. Foreman, Magidor,
and Shelah established: If there is a supercompact cardinal κ, then there is a
forcing extension in which κ = ω2 and MM holds.

Shelah had considered a weakening of properness called semiproperness, a
notion for forcing that could well render uncountable cofinalities countable.
To iterate such forcings, it had to be faced that the countable cofinality of
limit stages cannot be ascertained in advance, and so he developed revised
countable support iteration (RCS) based on names for the limit stage index-
ing. Foreman, Magidor, and Shelah actually carried out Baumgartner’s PFA
consistency proof for semiproper forcings with RCS iteration to establish the
consistency of the analogous Semiproper Forcing Axiom (SPFA). Their main
advance was that, although a partial order that preserves stationary subsets
of ω1 is not necessarily semiproper, it is in this supercompact collapsing con-
text. (Eventually, Shelah did establish that MM and SPFA are equivalent.)

Foreman, Magidor, and Shelah then established the relative consistency
of several propositions by deriving them directly from MM. One such propo-
sition was that NSω1 is ℵ2-saturated. Hence, not only was the upper bound
for the consistency strength of having an ℵ1-complete ℵ2-saturated ideal over
ω1 considerably reduced from Kunen’s huge cardinal, but for the first time
the consistency of NSω1 itself being ℵ2-saturated was established relative to
large cardinals. Another formative result was simply that MM implies that
2ℵ0 = ℵ2, starting a train of thought about forcing axioms actually deter-
mining the continuum. It would be by different and elegant means that
Todorcevic would show in 1990 that PFA already implies that 2ℵ0 = ℵ2.

With their work Foreman, Magidor, and Shelah had overturned a long-
held view about the scaling down of large cardinal properties. In the first
flush of new hypotheses and propositions, Kunen had naturally enough col-
lapsed a large cardinal to ω1 in order to transmute strong properties of the
cardinal into an ℵ1-complete ℵ2-saturated ideal over ω1, and this sort of di-
rect connection had become the rule. The new discovery was that a collapse
of a large cardinal to ω2 instead can provide enough structure to secure such
an ideal. In fact, Foreman, Magidor, and Shelah showed that even the usual
Levy collapse of a supercompact cardinal to ω2 engenders an ℵ1-complete
ℵ2-saturated ideal over ω1. In terms of method, the central point is that the
existence of sufficiently large cardinals implies the existence of substantial
generic elementary embeddings with small critical points like ω1. Woodin’s
later strengthenings and elaborations of these results would have far-reaching
consequences.

5.2. Consistency of Determinacy

The developments of the 1980s which are the most far-reaching and pre-
sentable as sustained narrative have to do with the stalking of the consistency
of determinacy. By the late 1970s a more or less complete structure theory
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for the projective sets was in place, a resilient edifice founded on determi-
nacy with both strong buttresses and fine details. In 1976 the researchers
had started the Cabal Seminar in the Los Angeles area, and in a few years,
with John Steel and Woodin having joined the ranks, attention began to shift
to sets of reals beyond the projective sets, to inner models, and to questions
of overall consistency. Most of the work before the crowning achievements
of the later 1980s appears in the several proceedings of the Cabal Seminar
appearing in 1978, 1981, 1983, and 1988.

With the growing sophistication of methods, the inner model L(R) in-
creasingly became the stage for the play of determinacy, both as the domain
to extend the structural consequences of AD and as the natural inner model
for AD that can exhibit characterizations. Scales having held the key to
the structure theory for the projective sets, Martin and Steel established a
limiting case for the scale property; with the Σ2

1 sets of reals being those
definable with one existential third-order quantifier, they showed that AD
and V = L(R) imply that Σ2

1 is the largest class with the scale property.
Steel moreover developed a fine structure theory for L(R), and analyzing
the minimal complexity of scales there, he extended some of the structure
theory under AD to sets of reals in L(R). As for characterizations, Kechris
and Woodin showed that in L(R), AD is equivalent to the existence of many
(“Suslin”) cardinals that have strong partition properties. Woodin also es-
tablished that in L(R), AD is equivalent to Turing Determinacy, determinacy
for only sets of reals closed under Turing equivalence.

The question of the overall consistency of determinacy came increasingly
to the fore. Is AD consistent relative to some large cardinal hypothesis? Or,
with its strong consequences, can AD subsume large cardinals in some sub-
stantial way or be somehow orthogonal? Almost a decade after his initial
result that the existence of a measurable cardinal implies Π1

1-determinacy,
Martin and others showed that determinacy for sets in the “difference hierar-
chy” built on the Π1

1 sets implies the existence of corresponding inner models
with many measurable cardinals. Then in 1978 Martin, returning to the ho-
mogeneity idea of his early Π1

1 result, applied it with the Martin-Solovay tree
representation for Π1

2 sets, together with algebraic properties of elementary
embeddings posited close to Kunen’s large cardinal inconsistency, to estab-
lish Π1

2-determinacy. A direction was set but generality only came in 1984,
when Woodin showed that an even stronger large cardinal hypothesis implies
ADL(R). So, a mooring was secured for AD after all in the large cardinal
hierarchy. With Woodin’s hypothesis apparently too remote, it would now
be a question of scaling it down according to the methods becoming available
for proofs of determinacy, perhaps even achieving an equi-consistency result.

The rich 1984 Foreman-Magidor-Shelah work would have crucial conse-
quences for the stalking of consistency also for determinacy. Shelah carried
out a version of their collapsing argument that does not add any new reals
but nonetheless gets an ℵ1-complete ℵ2-saturated ideal over ω1. Woodin then
pointed out that with no new reals adjoined the generic elementary embed-
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ding induced by such an ideal can be used to establish that the ground model
L(R) reals are actually Lebesgue measurable. Thus Shelah and Woodin had
established an outright result: If there is a supercompact cardinal, then every
set of reals in L(R) is Lebesgue measurable. This result not only portended
the possibility of getting ADL(R) from a supercompact cardinal, but through
the specifics of the argument stimulated the reducing of the hypothesis. While
Woodin was visiting Jerusalem in June 1984, he came up with what is now
known as a Woodin cardinal. The hypothesis was then reduced as follows: If
there are infinitely many Woodin cardinals with a measurable cardinal above
them, then every set of reals in L(R) is Lebesgue measurable. An early sug-
gestion of optimality of hypothesis was that if the “infinitely” is replaced by
“n” for some n ∈ ω, then one can conclude that every Σ1

n+2 set of reals is
Lebesgue measurable. The measurable cardinal hovering above would be a
recurring theme, the purpose loosely speaking to maintain a stable environ-
ment with the existence of sharps.

Especially because of its subsequent centrality, it is incumbent to give an
operative definition of Wooding cardinal: For a set A, κ is α-A-strong iff
there is an elementary embedding j : V → M witnessing that κ is α-strong
which moreover preserves A: A∩Vα = j(A)∩Vα. A cardinal δ is Woodin iff
for any A ⊆ Vδ, there is a κ < δ which is α-A-strong for every α < δ.

A Woodin cardinal, evidently a technical, consistency-wise strengthening
of a strong cardinal, is an important example of concept formation through
method. The initial air of contrivance gives way to seeing that Woodin car-
dinal seemed to encapsulate just wanted is needed to carry out the argument
for Lebesgue measurability. That argument having been based on first col-
lapsing a large cardinal to get a saturated ideal and then applying the cor-
responding generic elementary embedding, Woodin later in 1984 stalked the
essence of method and formulated stationary tower forcing. An outgrowth
of the Foreman-Magidor-Shelah work, this notion of forcing streamlines their
forcing arguments to show that a Woodin cardinal suffices to get a generic
elementary embedding j : V →M with critical point ω1 and ωM ⊆M . With
a new, minimizing large cardinal concept isolated, there would now be dra-
matic new developments both in determinacy and inner model theory. One
important scaling down result was the early 1985 result of Shelah: If κ is
Woodin, then in a forcing extension κ = ω1 and NSω1 is ℵ2-saturated. The
large cardinal strength now seemed minimal for getting such an ideal, and
there was anticipation of achieving an equi-consistency.

Steel in notes of Spring 1985 developed an inner model for a weak version of
Woodin cardinal. While inner models for strong cardinals had only required
linear iterations for comparison, the new possibility of overlapping extenders
and moving generators had led Mitchell in 1979 to develop iteration trees of
iterated ultrapowers for searching for possible well-founded limits of models
along branches. A particularly simple example of an iteration tree is an
alternating chain, a tree consisting of two ω-length branches with each model
in the tree an extender ultrapower of the one preceding it on its branch, via
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an extender taken from a corresponding model in the other branch. Initially,
Steel tried to avoid alternating chains, but the Foreman-Magidor-Shelah work
showed that for dealing with Woodin cardinals they would be a necessary
part. Their use soon led to a major breakthrough in the investigation of
determinacy.

In the Fall of 1985 Martin and Steel showed that Woodin cardinals im-
ply the existence of alternating chains in which both branches have well-
founded direct limits, and used this to establish: If there are infinitely many
Woodin cardinals, then PD holds. This was a culmination of method in
several respects. In the earlier Martin results getting Π1

1-Determinacy and
Π1

2-Determinacy, trees on ω × κ for some cardinal κ had been used, to each
node of which were attached ultrafilters in a coherent way that governed ex-
tensions. Kechris and Martin isolated the relevant concept of homogeneous
tree, the point being that sets of reals which are the projections p[T ] of such
trees T—the homogeneously Suslin sets—are determined. With PD, the scale
property had been propagated through the projective hierarchy. Now with
Woodin cardinals, having representations via homogeneous trees was propa-
gated, getting determinacy itself. In particular, Martin and Steel established:
If n ∈ ω and there are n Woodin cardinals with a measurable cardinal above
them, then Π1

n+1-determinacy holds.
Within weeks after the Martin-Steel breakthrough, Woodin used it to-

gether with stationary towers to investigate tree representations in L(R) to
establish: If there are infinitely Woodin cardinals with a measurable cardi-
nal above them, then ADL(R) holds. With the consistency strength of AD
having been gauged by this result, Woodin soon established the crowning
equi-consistency result: The existence of infinitely many Woodin cardinals
is equi-consistent with the Axiom of Determinacy. Both directions of this
result, worked out with hindsight in Chaps. 22 and 23 of this Handbook,
involve substantial new arguments.

This was a remarkable achievement of the concerted effort to establish
the consistency strength of AD along the large cardinal hierarchy. But even
this would just be a beginning for Woodin, who would go from strength
to strength to establish many structural results involving AD and stronger
principles, to become preeminent with Shelah in set theory.

5.3. Later Developments

We conclude our historical survey by describing here some prominent devel-
opments of the later 1980s and early 1990s, those in the broad directions
of inner model theory and singular cardinal combinatorics to be elaborated
in sequences of chapters of this Handbook. Other prominent developments,
more individuated, are appropriately described within the chapter summaries
themselves that follow at the end. Set theory would continue to expand and
broaden in further directions, but we are inevitably limited in what can be
covered here and in the Handbook.
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In inner model theory, Martin and Steel in 1986 took the analysis of itera-
tion trees beyond their determinacy work to develop inner models of Woodin
cardinals. In order to effect comparison, they for the first time came to
grips with the central iterability problem of the existence and uniqueness
of iteration trees extending a given iteration tree. They were thus able to
establish that “the measurable cardinal above” cannot be eliminated from
their determinacy result by showing: If n ∈ ω and there are n Woodin car-
dinals, then there is an inner model with n Woodin cardinals and a Δ1

n+2

well-ordering of the reals. (The existence of such a well-ordering precludes
Π1

n+1-determinacy.) These models were of form L[ �E] where �E is a coherent
sequence of extenders, but the comparison process used did not involve the
models themselves, but rather a large model constructed from a sequence of
background extenders, extenders in the sense of V whose restrictions to L[ �E]
led to the sequence �E. With the comparison process thus external to the
models, their structure remained largely veiled, and for example only CH,
not GCH, could be established.

In 1987 Stewart Baldwin made a suggestion, one which Mitchell then newly
forwarded, which led to a crucial methodological advance. Up to then, the ex-
tender models L[ �E ] constructed relative to a coherent sequence of extenders
�E had each extender in the sequence “measure” all the subsets in L[ �E ] of its
critical point. The Baldwin-Mitchell idea was to construct only with “par-
tial” extenders E which if indexed at γ only measures the sets in Lγ [ �E�γ].
This together with a previous Mitchell strategy of carrying out the com-
parison process using finely calibrated partial ultrapowers (“dropping to a
mouse”) led to a comparison process internal to L[ �E ] based on the use of
fine structure. The infusion of fine structure made the development of the
new extender models more complex, but with this came the important divi-
dends of a more uniform presentation, a much stronger condensation, and a
more systematic comparison process. During 1987–1989, Mitchell and Steel
worked out the details and showed that if there is a Woodin cardinal then
there is an inner model L[ �E ], L-like in satisfying GCH and so forth, in
which there is a Woodin cardinal. The process involved the correlating of
iteration trees for L[ �E ] with iteration trees in V and applying the former
Martin-Steel results. A canonical, fine structural inner model of a Woodin
cardinal newly argued for the consistency of the concept, as well as provided
a great deal of understanding about it as set in a finely tuned, layer-by-layer
hierarchy.

What about a core model “up to” a Woodin cardinal, in analogy to KDJ for
L[U ]? In 1990, Steel solved the “core model iterability problem” by showing
that large cardinals in V are not necessary for showing that certain models
L[ �E ] have sufficient iterability properties. With this, he constructed a new
core model, first building a “background certified” Kc based on extenders
in V and then the “true” core model K. Steel was thus able to extend the
previous work of Mitchell on the core model K[U ] up to ∃κ(o(κ) = κ++)
to establish e.g.: If there is an ℵ1-complete ℵ2-saturated ideal over ω1 and
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a measurable cardinal, then there is an inner model with a Woodin cardi-
nal. Thus, Shelah’s 1985 forcing result and Steel’s, except for the artifact of
“the measurable cardinal above”, had calibrated an important consistency
strength, and what had become a central goal of forcing and inner model
theory was handily achieved.

In the early 1990s, Steel, Mitchell, and Ernest Schimmerling pushed the
Jensen covering argument over the hurdles of the new fine structural Steel
core model K to establish a covering lemma up to a Woodin cardinal. Schim-
merling both established combinatorial principles in K as well established
new consistency strengths, e.g. PFA implies that there is an inner model
with a Woodin cardinal.

The many successes would continue in inner model theory, but we bring our
narrative to a close at a fitting point. Mitchell’s Chap. 18 in this Handbook
is given over to the concerted study of covering over various models; Steel’s
Chap. 19 provides the outlines of inner model theory in general terms as well
as an important application to HOD; and Schimmerling’s Chap. 20 develops
Steel’s core model K up to a Woodin cardinal as well as provide applications
across set theory.

The later 1980s featured a distinctive development that led to a new con-
ceptual framework of applicability to singular cardinals, new incisive results
in cardinal arithmetic, and a re-orienting of set theory to new possibilities for
outright theorems of ZFC. Starting in late 1987 Shelah returned to the work
on bounds for powers of singular cardinals and drew out an extensive un-
derlying structure of possible cofinalities of reduced products, soon codified
as pcf theory. With this emerged new work in singular cardinal combina-
torics, with Shelah himself initially providing applications to model theory,
partition relations, Jónsson algebras, Boolean algebras, and cardinal arith-
metic. This last was epitomized by a dramatic result that exhibited how
the newly seen structural constraints impose a tight bound: If δ is a limit
ordinal with |δ|cf(δ) < ℵδ then ℵcf(δ)

δ < ℵ(|δ|+4), so that in particular if ℵω

is a strong limit cardinal, then 2ℵω < ℵω4 . Quite remarkably, a ZFC re-
sult bounds 2ℵω with a small aleph not indexed in terms of the power set
operation!

Suppose that A is an infinite set of cardinals and F is a filter over A.
The product ΠA consists of functions f with domain A such that f(a) ∈ a
for every a ∈ A. For f, g ∈ ΠA, the relation =F defined by f =F g iff
{a ∈ A | f(a) = g(a)} ∈ F is an equivalence relation on ΠA, and the reduced
product ΠA/F consists of the equivalence classes. We can impose order,
officially on ΠA/F but still working with functions themselves, by: f <F g
iff {a ∈ A | f(a) < g(a)} ∈ F .

Shelah’s new theory took as central the investigation of the possible cofi-
nalities function:

pcf(A) = {cf(ΠA/D) | D is an ultrafilter over A}
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as calibrated by the ideals

J<λ[A] = {b ⊆ A | cf(ΠA/D) < λ whenever
D is an ultrafilter over A such that b ∈ D}.

These concepts had appeared before in Shelah’s work, notably in his 1980 re-
sult ℵcf(δ)

δ < ℵ(|δ|cf(δ))+ , but now they became autonomous and were propelled
forward by the discovery of unexpectedly rich structure.

With an eye to substantive cofinal subsets A of a singular cardinal, the
abiding assumption was that A is a set of regular cardinals satisfying |A| <
min(A). With this one gets that for any ultrafilter D over A, cf(ΠA/D) < λ
iff D∩J<λ[A] �= ∅, and further, that pcf(A) has a maximum element. At the
heart is the striking result that J<λ+ [A] is generated by J<λ[A] together with
a single set Bλ ⊆ A. Shelah in fact got “nice” generators Bλ derived from
imposing the structure of elementary substructures of a sufficiently large
H(Ψ). This careful control on the possible cofinalities then led, when A
consists of all the regular cardinals in an interval of cardinals, to |pcf(A)| ≤
|A|+++, and in particular to the ℵω4 bound mentioned above.

Shelah’s work on pcf theory to 1993 appeared in his 1994 book Cardinal
Arithmetic, and since then he has further developed the theory and provided
wide-ranging applications. Through its applicability pcf theory has to a sig-
nificant extent been woven into modern set theory as part of the ZFC facts
of singular cardinal combinatorics. Chapter 14 of this Handbook presents
a version of pcf theory and its applications to cardinal arithmetic, and the
theory makes it appearance elsewhere as well, most significantly in Chap. 15.

The Singular Cardinal Hypothesis (SCH) and the train of results start-
ing with the Prikry-Silver result of the early 1970s were to be decisively
informed by results of Moti Gitik. Gitik’s work exhibits a steady engage-
ment with central and difficult issues of set theory and a masterful virtuosity
in the application of sophisticated techniques over a broad range. Gitik by
1980 had established, through an iterated Prikry forcing, the conspicuous
singularization result: If there is a proper class of strongly compact cardinals,
then in a ZF inner model of a class forcing extension every infinite cardinal
has cofinality ω. Mentioned earlier was the mid-1970s result that NSω1 being
precipitous is equi-consistent with having a measurable cardinal. In 1983,
Gitik established: The precipitousness of NSω2 is equi-consistent with hav-
ing a measurable cardinal κ such that o(κ) = 2 in the Mitchell order. The
difficult, forcing direction required considerable ingenuity because of inherent
technical obstructions.

Turning to the work on SCH, in 1988 Woodin dramatically weakened the
large cardinal hypothesis needed to get a measurable cardinal κ satisfying
2κ > κ+, and hence the failure of SCH with the subsequent use of Prikry
forcing, to a proposition technically strengthening measurability. He also
showed that one can in fact get Magidor’s conclusion that ℵω could be the
least cardinal at which GCH fails. Soon afterwards Gitik established both
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directions of an equi-consistency: First, he established that one can get the
consistency of Woodin’s proposition from just ∃κ(o(κ) = κ++). Then, he ap-
plied a result from Shelah’s pcf theory to Mitchell’s K[U ] analysis to establish,
bettering a previous result of Mitchell, that ∃κ(o(κ) = κ++) is actually nec-
essary to get the failure of SCH. Hence, The failure of SCH is equi-consistent
with ∃κ(o(κ) = κ++).

Woodin’s model in which GCH first fails at ℵω required a delicate con-
struction to arrange GCH below and an ingenious idea to get 2ℵω = ℵω+2.
How about getting 2ℵω > ℵω+2? In a signal advance of method, Gitik and
Magidor in 1989 provided a new technique to handle the general singular
cardinals problem with appropriately optimal hypotheses. The Prikry-Silver
two-stage approach, first making 2κ large and then singularizing κ without
adding any new bounded subsets or collapsing cardinals, had been the ba-
sic model for attacking the singular cardinals problem. Gitik and Magidor
showed how to add many subsets to a large cardinal κ while simultaneously
singularizing it without adding any new bounded subsets or collapsing car-
dinals. Thus, it became much easier to arrange any particular continuum
function behavior below κ, like achieving GCH below, while at the same
time making 2κ arbitrarily large. Moreover, the new method smacked of
naturalness and optimality.

The new Gitik-Magidor idea was to add many new Prikry ω-sequences
corresponding to κ-complete ultrafilters over κ while maintaining the basic
properties of Prikry forcing. There is an evident danger that if these Prikry
sequences are too independent, information can be read from them that cor-
responds to new reals being adjoined. The solution was to start from a suffi-
cient strong large cardinal hypothesis and develop an extender-based Prikry
forcing structured on a “nice system” of ultrafilters 〈Uα | α < λ〉, a system
such that for many α ≤ β < λ there is a ground model function f : κ → κ
such that: For all X ⊆ κ, X ∈ Uα iff f −1(X) ∈ Uβ . (Having such a projec-
tion function is the classical way of connecting two ultrafilters together, and
one writes that Uα ≤RK Uβ under the Rudin-Keisler partial order.) By this
means one has the possibility of adding new subsets of κ, corresponding to
different Prikry sequences, which are still dependent on each other so that
no new bounded subsets need necessarily be added in the process. Gitik and
Magidor worked out how their new approach leads to what turns out to be op-
timal or near optimal consistency results, and incorporating collapsing maps
as in previous arguments of Magidor and Shelah, they got models in which
GCH holds below ℵω yet 2ℵω = ℵα+1 for any prescribed countable ordinal α.

In subsequent work Gitik, together with Magidor, Mitchell, and others,
have considerably advanced the investigation of powers of singular cardinals.
Equi-consistency results have been achieved for large powers of singular car-
dinals along the Mitchell order and with α-strong cardinals, and uncountable
cofinalities have been encompassed, the investigation ongoing and with dra-
matic successes. Much of this work is systematically presented in Gitik’s
Chap. 16 in this Handbook.
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We now leave the overall narrative, having pursued several longitudinal
themes to appropriate junctures. Stepping back to gaze at modern set theory,
the thrust of mathematical research should deflate various possible metaphys-
ical appropriations with an onrush of new models, hypotheses, and results.
Shedding much of its foundational burden, set theory has become an intrigu-
ing field of mathematics where formalized versions of truth and consistency
have become matters for manipulation as in algebra. As a study couched in
well-foundedness ZFC together with the spectrum of large cardinals serves
as a court of adjudication, in terms of relative consistency, for mathematical
propositions that can be informatively contextualized in set theory by let-
ting their variables range over the set-theoretic universe. Thus, set theory
is more of an open-ended framework for mathematics rather than an eluci-
dating foundation. It is as a field of mathematics proceeding with its own
internal questions and capable of contextualizing over a broad range that set
theory has become an intriguing and highly distinctive subject.

6. Summaries of the Handbook Chapters

This Handbook is divided into three volumes with the first devoted to Com-
binatorics, the Continuum, and Constructibility; the second devoted to El-
ementary Embeddings and Singular Cardinal Combinatorics; and the third
devoted to Inner Models and Determinacy.

The following chapter summaries engage the larger historical contexts as
they serve to introduce and summarize the contents. In many cases we build
on our preceding survey as a framework and proceed to elaborate it in the
directions at hand, and in some cases we introduce the topics as new offshoots
and draw them in. Consequently, some summaries are shorter on account of
the leads from the survey and others longer because of the new lengths to
which we go.

VOLUME I

1. Stationary Sets. The veteran set theorist Thomas Jech is the author
of Set Theory (third millennium edition, 2002), a massive and impressive
text that comprehensively covers the full range of the subject up to the
elaborations of this Handbook. In this first chapter, Jech surveys the work
directly involving stationary sets, a subject to which he has made important
contributions. In charting out the ramifications of a basic concept buttressing
the uncountable, the chapter serves, appropriately, as an anticipatory guide
to techniques and results detailed in subsequent chapters.

The first section provides the basic theory of stationary subsets of a regular
uncountable cardinal κ. The next describes the possibilities for stationary set
reflection: For S ⊆ κ stationary in κ, is there an α < κ such that S ∩ α is
stationary in α? With reflection having become an important heuristic in set
theory, stationary set reflection commended itself as a specific, combinatorial
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possibility for investigation. Focusing on the non-stationary ideal, the third
section surveys the possibilities for its saturation and precipitousness.

The later sections study these various issues as adapted to notions of closed
unbounded and stationary for subsets of Pκλ = {x ∈ P (λ) | |x| < κ}, a study
that the author had pioneered in the early 1970s. The wide-ranging involve-
ments in proper forcing, Boolean algebras and stationary tower forcing are
described. Of particular interest are reflection principles based on Pℵ1λ. Fore-
man, Magidor, and Shelah in their major 1984 work had shown that Martin’s
Maximum implies that a substantial reflection principle holds for stationary
subsets of Pℵ1λ for every λ ≥ ω2. Todorcevic then showed that a stronger
reflection principle SRP follows from MM, one from which substantial conse-
quences of MM already follow, like the ℵ2-saturation of NSω1 . Qi Feng and
Jech subsequently formulated a streamlined principle PRS equivalent to SRP.

2. Partition Relations. In this chapter two prominent figures in the field
of partition relations, András Hajnal and Jean Larson, team up to present
the recent work, the first bringing to bear his expertise in relations for un-
countable cardinals and the second her expertise in relations for countable
ordinals. The investigation of partition relations has been a steady, rich, and
concrete part of the combinatorial investigation of the transfinite, a source
of intrinsically interesting problems that have stimulated the application of
a variety of emerging techniques.

With the classical, 1956 Erdős-Rado Theorem �n(κ)+ −→ (κ+)n+1
κ having

established the context as the transfinite generalization of Ramsey’s Theo-
rem, extensive use of the basic tree or “ramification” method had led by the
mid-1960s to an elaborately parametrized theory. This theory was eventu-
ally presented in the 1984 Erdős-Hajnal-Rado-Máté book, which is initially
reflected in the first two sections of the chapter.

The next sections emphasize new methods as leading not only to new
results but also providing new proofs of old results, and in this spirit they
develop a 1991 method of Baumgartner, Hajnal, and Todorcevic and es-
tablish their generalizations of the Erdős-Rado Theorem. This method in-
volves taking chains of elementary substructures of a sufficiently rich struc-
ture 〈H(λ),∈, <∗, . . .〉 and associating ideals along the way. Next, the en-
hanced method of the recent, 1998 Foreman-Hajnal result on successors of
measurable cardinals is used establish a watershed, 1972 Baumgartner-Hajnal
Theorem in the special case ω1 −→ (α)2m for any α < ω1 and m ∈ ω. Shelah,
with his considerable combinatorial prowess, has steadily made important
contributions to the theory of partition relations, and several are presented,
among them a recent result involving strongly compact cardinals and another
invoking his pcf theory.

The investigation of partition relations for small countable ordinals was a
current from the beginnings of the general theory in the late 1950s and has
focused, for natural reasons, on the relation α −→ (α,m)2 for finite m, the
assertion that if the pairs from α are assigned 0 or 1, then either there is an
H ⊆ α of order-type α all of whose pairs are assigned 0, or m elements in α
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all of whose pairs are assigned 1. A formative early 1970s result was Chen-
Chung Chang’s that with ordinal exponentiation, ωω → (ωω, 3)2, the proof
considerably simplified by Larson. Remarkably, after the passing of more
than two decades Carl Darby and Rene Schipperus working independently
established the first new positive and negative results, the latter by way of
the same counterexamples. In the last two sections, a negative result ωω2 �→
(ωω2

, 6) and a positive result ωωω → (ωωω

, 3) are established, the careful
combinatorial analysis in terms of blocks of ordinals and trees illustrative of
some of the most detailed work with small order-types.

3. Coherent Sequences. This chapter is a systematic account by Stevo
Todorcevic of his penetrating analysis of uncountable order structures, with
ω1 being both a particular and a paradigmatic case. The chapter is a short
version of his recent monograph Walks on Ordinals and Their Characteristics
(2007), but has separate value for being more directed and closer to the
historical route of discovery.

The analysis for a regular cardinal θ begins with a C-sequence 〈Cα | α < θ〉
where for successors α = β + 1, Cα = {β}, and for limits α, Cα is a closed
unbounded subset of α. In the case θ = ω1, one requires that for limits α,
Cα has order-type ω, so that we have a “ladder system”. One can climb
up, but also walk down: Given α < β < θ, let β1 be the least member
of Cβ − α, let β2 the least member of Cβ1 − α, and so forth, yielding the
walk β > β1 > · · · > βn = α. Through a sustained analysis Todorcevic has
shown that these walks have a great deal of structure as conveyed by various
“distance functions” or “characteristics” ρ on [θ]2, where ρ(α, β) packages
information about the walk from β to α.

Initially, Todorcevic in 1985 used such a function to settle the main parti-
tion problem about the complexity of ω1, by establishing the negative “square
brackets partition relation” ω1 �→ [ω1]2ω1

: There is a function f : [ω1]2 → ω1

such that for any unbounded X ⊆ ω1, f“[X]2 = ω1, i.e. for any ζ < ω1 there
are α < β both in X such that f(α, β) = ζ. Todorcevic’s f was based on the
property that if S ⊆ ω1 is stationary, then for any unbounded X ⊆ ω1 there
are α < β both in X such that the walk from β to α has a member of S.
More generally, Todorcevic introduced the oscillation map to effect a version
of this property for regular θ > ω1 to show that if there is a stationary S ⊆ θ
which does not reflect, i.e. there is no α < θ such that S ∩ α is stationary in
α, then the analogous θ �→ [θ]2θ holds.

The first sections of the chapter develops several distance functions for
the case θ = ω1 as paradigmatic. Systematic versions of “special” Aronszajn
trees and the (Shelah) result that adding a Cohen real adds a Suslin tree
are presented, as well as a range of applications to Hausdorff gaps, Banach
spaces, model theory, graph theory and partition relations.

The later sections encompass general θ, with initial attention given to
systematic characterizations of Mahlo and weakly compact cardinals. There
is soon a focus on square (or coherent) sequences, those C-sequences 〈Cα |
α < θ〉 such that Cα = Cβ ∩ α whenever α is a limit of Cβ . With these a
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range of applications is provided involving the principle �κ, higher Kurepa
trees, and Jensen matrices. The oscillation map is latterly introduced, and
with it the proof of the general negative square brackets partition relation
as stated above. Finally, elegant characterizations of Chang’s Conjecture are
presented. Throughout, there is the impression that one has gotten at the
immanent structure of the uncountable from which a wide range of combina-
torial consequences flow.

4. Borel Equivalence Relations. Descriptive set theory as fueled by the
incentive for generalization is appropriately construed as the investigation of
definable sets in Polish spaces, i.e. separable, completely metrizable spaces.
For such spaces one can define the Borel and projective sets and the corre-
sponding hierarchies through definability. In the 1990s fresh incentives came
into play that expanded the investigation into quotient spaces X/E for a
Polish space X and a definable equivalence relation E on X, such quotients
capturing various important structures in mathematics. New methods had to
be developed, in what amounts to the investigation of definable equivalence
relations on Polish spaces.

In this short chapter Greg Hjorth provides a crisp survey of Borel equiv-
alence relations on Polish spaces as organized around the Borel reducibility
ordering ≤B . In an initial disclaimer, he points out how he is leaving aside
several other approaches, but in any case his account provides a worthy look
at a modern, burgeoning subject.

For Polish spaces X and Y , a function f : X → Y is Borel if the preimage
of any Borel set is Borel. An equivalence relation on X is Borel if it is Borel as
a subset of X×X. If E is a Borel equivalence relation on X and F is a Borel
equivalence relation on Y , then E ≤B F asserts that there is a Borel f : X →
Y such that x1Ex2 ↔ f(x1)Ff(x2). The emphasis here is on the equivalence
relations, with only the Borel sets of the underlying spaces being at issue.
There is the correlative E <B F , and with id(X) indicating the identity
relation on X, an example is id(R) <B E0, where E0 is the equivalence
relation of eventual agreement on ω2. E0 is a reconstrual of Vitali’s classical
equivalence relation, with which he established that with AC there is a non-
Lebesgue measurable set. The seminal Harrington-Kechris-Louveau “Glimm-
Effros dichotomy” result is: For any Borel equivalence relation E, exactly one
of E ≤B id(R) or E0 ≤B E holds.

Starting with this seminal result the author discusses various structure
theorems, concluding with his work on turbulence. Next is the work on count-
able Borel equivalence relations, i.e. those whose equivalence classes are all
countable. This topic has notable interactions across diverse fields of mathe-
matics, and an enduring problem is how to characterize the hyperfinite Borel
equivalence relations. The author next discusses ≤B as effective cardinal-
ity, bringing in his results with determinacy. The final topic is classification
problems, problems of locating variously given Borel equivalence relations in
the structure given by ≤B . The range of issues here speaks to the importance
and relevance of Borel equivalence relations in larger mathematics.
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5. Proper Forcing. Uri Abraham provides a lucid exposition of Shelah’s
proper forcing. In a timely monograph Proper Forcing (1982) and a book
Proper and Improper Forcing (1998), Shelah had set out his penetrating,
wide-ranging work on and with proper forcing. Striking a nice balance,
Abraham presents the basic theory of proper forcing and then some of the
variants and their uses that illustrate its wide applicability. This chapter is
commended to the reader conversant even with only the basics of forcing to
assimilate what has become a staple part of the theory and practice of forc-
ing. To be noted is that being of the Israeli school, Abraham writes “p > q”
for p being a stronger condition than q.

In the first two sections, basic forcing notions are reviewed, and proper
forcing is motivated and formulated. The basic lemma that properness is
preserved in countable support iterations is carefully presented, as well as the
basic fact that under CH a length ≤ ω2 iteration of ℵ1 size proper forcings
satisfies the ℵ2-chain condition and so preserves all cardinals.

A forcing partial order P is ωω-bounding iff the ground model reals are
cofinal under eventual dominance <∗ in the reals of any generic extension by
P . The third section presents the preservation of ωω-bounding properness
in countable support iterations. With this is established a finely wrought
result of Shelah’s, answering a question of classical model theory, that it is
consistent that there are two countable elementarily equivalent structures
having no isomorphic ultrapowers by any ultrafilter over ω.

A forcing partial order P is weakly ωω-bounding iff the ground model re-
als are unbounded under eventual dominance <∗ in the reals of any generic
extension by P . The fourth section presents the preservation of weakly ωω-
bounding properness, one that deftly and necessarily has to assume a stronger
property at successor stages. With this is established another finely wrought
result of Shelah’s, answering a question in the theory of cardinal character-
istics, that it is consistent with 2ℵ0 = ℵ2 that the bounding number b is less
than the splitting number s.

The final section develops iterated proper forcing that adjoins no new
reals. A relatively complex task, this has been a prominent theme in Shelah’s
work, and to this purpose he has come up with several workable conditions.
Abraham motivates one condition, Dee-completeness, with his first result in
set theory, and then establishes an involved preservation theorem. As pointed
out, through this approach one can provide a new proof of Jensen’s result
that CH + SH is consistent, which for Shelah was an important stimulus in
his initial development of proper forcing.

6. Combinatorial Cardinal Characteristics of the Continuum. This
and the next chapters cover the recent, increasingly systematic, work across
the wide swath having to do with cardinal characteristics, or invariants, of
the continuum and their possible order relationships. In this chapter, the
broad-ranging Andreas Blass provides a perspicuous account of combinato-
rial cardinal characteristics through to some of his own work. He deftly
introduces characteristics in turn together with more and more techniques
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for their analysis, and at the end surveys the extensive forcing consistency
results.

There is initially a discussion of the dominating number d and the bound-
ing number b, one that introduces several generalizing characteristics corre-
sponding to an ideal I: add(I), cov(I), non(I), cof(I). The next topic is
the splitting number s and related characteristics having to do with Ramsey-
type partition theorems.

A systematic approach, first brought out by Peter Vojtáš, is then presented
for describing many of the characteristics and the relationships among them.
A triple A = 〈A−, A+, A〉 such that A ⊆ A− × A+ is simply a relation,
and its norm ‖A‖ is the smallest cardinality of any Y ⊆ A+ such that ∀x ∈
A−∃y ∈ Y (〈x, y〉 ∈ A). The dual of A = 〈A−, A+, A〉 is A⊥ = 〈A+, A−,¬Ă〉,
where ¬Ă is the complement of the converse Ă of A, i.e. 〈x, y〉 ∈ ¬Ă iff
〈y, x〉 /∈ A. In these terms, for example, if D = 〈ωω, ωω,<∗〉, then ‖D‖ = d

and ‖D⊥‖ = b. A morphism for a relation A = 〈A−, A+, A〉 to another B =
〈B−, B+, B〉 is a pair φ = (φ−, φ+) of functions such that φ− : B− → A−;
φ+ : A+ → B+; and

∀b ∈ B−∀a ∈ A+(〈φ−(b), a〉 ∈ A→ 〈b, φ+(a)〉 ∈ B).

It is seen that having such a morphism implies that ‖A‖ ≥ ‖B‖ and ‖A⊥‖ ≤
‖B⊥‖. Through this overlay of relations and morphisms one can efficiently
incorporate both categorical combinations of relations as well as conditions on
morphisms, like being Borel or continuous, into the study of characteristics.

The author proceeds to discuss characteristics corresponding to the ideal
B of meager sets and to the ideal L of null sets: add(B), cov(B), non(B),
cof(B), add(L), cov(L), non(L), cof(L). The main results are established
in terms of relations and morphisms, and one gets to the inequalities among
these characteristics and b and d as given by what is known as Cichoń’s
diagram. The characteristics of measure and category are further pursued in
the next chapter.

The succeeding topics have to do with cardinalities of families F ⊆ P (ω)
as mediated by ⊆∗, where X ⊆∗ Y iff X − Y is finite. Forcing axioms
are brought into play as now particularly informative for drawing ordering
conclusions. Then characteristics corresponding to maximal almost disjoint
(MAD) families and independent families are investigated.

The author finally discusses characteristics related to or developed through
his own work. Discussing filters and ultrafilters over ω, he gets to his principle
of Near Coherence of Filters (NCF), a principle proved consistent by Shelah,
and results about ultrafilters generated from filters in terms of characteris-
tics. He then discusses his evasion and prediction, which initially had an
algebraic motivation but became broadened into a combinatorial framework
that provides a unifying approach to many of the characteristics.

The concluding section is largely a survey of what happens to the charac-
teristics when one iteratively adjoins many generic reals of one kind, dealing
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in turn with the following reals: Cohen, random, Sacks, Hechler, Laver, Math-
ias, Miller. As such, this is an informative account of these various generic
reals and how they mediate the continuum.

7. Invariants of Measure and Category. Tomek Bartoszynski presents
the recent work on measure and category as viewed through their cardinal
invariants, or characteristics. The account updates the theory presented in
the substantive Set Theory: On the Structure of the Real Line (1995) by
Bartoszynski and Haim Judah, which had stood as a standard reference for
this general area for quite some time.

After putting the language of relations and morphisms (see the previ-
ous summary) in place, the author pursues an approach, one advocated by
Ireneusz Rec�law, of emphasizing classes of sets “small” according to various
criteria corresponding to the ideal invariants. One develops Borel morphisms
that lead to inclusion relations among the classes and thence to the inequal-
ities of Cichon’s diagram. Combinatorial characterizations of membership in
these classes and thus of the invariants are given, as well as a new under-
standing of the ideal of null sets as maximal, in terms of embedding, among
analytic P-ideals.

Turning to cofinality, the author establishes Shelah’s remarkable and un-
expected 1999 result that it is consistent that cf(cov(L)) = ω. The author
then provides a systematic way of associating to each of the invariants in
Cichon’s diagram a generic real so that iteration with countable support in-
creases that invariant and none of the others. Corresponding issues about
the classes of small sets further draw in proper forcing techniques.

8. Constructibility and Class Forcing. In this chapter Sy Friedman
describes work on the limits of possibilities for reals in terms of forcing and
constructibility, the supporting technique being Jensen coding. In the mid-
1960s Solovay, when investigating the remarkable properties of 0#, raised
several questions about the scope of the recently devised forcing method.
For sets x, y let x ≤L y denote that x is constructible from y, i.e. x ∈ L[y],
and let x <L y be correlative. 0# cannot be adjoined to L by forcing because
of its global consequences for L, but 0# was plausibly considered minimal
in this respect. A (weak form of a) question of Solovay’s was: If r is a real
satisfying r <L 0#, does r belong to some generic extension of L?

In 1975–1976 Jensen devised his impressive “coding the universe in a real”
technique and with it established (a strong form of): If GCH holds, then
there is a class partial order P such that if G is P -generic, then V [G] has the
same cardinals and cofinalities yet for some real r there, V [G] |= “V = L[r]”.
The intricately woven P here was built using fine structure theory in L-like
situations and provided a means of coding up more and more layers of the
cumulative hierarchy while crucially maintaining its cardinal structure. Not
only cofinalities but those properties compatible with models of form L[r]
all continue to hold, so that this real r veritably codes the entire universe.
Jensen showed that assuming 0# exists it is consistent that there is such a real
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r <L 0#, answering Solovay’s question in the negative, the intention there
having been to address forcing with set partial orders. Not only did Jensen
bring class forcing into prominence for establishing new consistency results
about sets, but also for establishing outright theorems of ZFC + “0# exists”.

Starting in the mid-1980s Friedman reworked and extended the Jensen
theory and established some notable results about 0# and class forcing, and
this work eventually appeared in his book Fine Structure and Class Forcing
(2000). This chapter is a short version of the book, appropriate to the task
of working more directly toward several problems of Solovay and developing
techniques where needed. After stating three problems of Solovay as motiva-
tion, Friedman develops the criterion of tameness for class partial orders for
preserving ZFC and gets at the property of relevance, having a generic defin-
able in L[0#]. He then provides his proof of Jensen’s coding theorem assum-
ing that 0# does not exist, this assumption allowing a comparatively simple
argument free of fine structure but making appeals to the Jensen Covering
Theorem. With this the Solovay problems are addressed in turn. To conclude,
wide-ranging applications are given as well as a nice list of open problems.
9. Fine Structure. This and the next chapter deal with fine structure and
are complementary in that they present different versions, both due initially
to Jensen, as well as applications in different directions. In this chapter Ralf
Schindler and Martin Zeman provide an incisive, self-contained account of
Jensen’s original fine structure theory for the Jα hierarchy relativized to a
predicate A. Much is drawn from Zeman’s book Inner Models and Large
Cardinals (2002), but diverging from it Schindler and Zeman steer to the
use of the Mitchell-Steel rΣn formulas for discussing iterated projecta and
embeddings. With A being a sequence of extenders this was the approach
that had been taken for the use of fine structure in inner model theory. The
chapter thus provides the fine structure groundwork for Chaps. 18, 19, and 20
of this Handbook.

After the preliminaries about J-structures, the chapter focuses on the ac-
ceptable ones, those that satisfy GCH in a strong form. The projecta of these
J-structures are described, and then the Downward and Upward Extensions
of Embeddings Lemmas are established. Iterated projecta are then formu-
lated and rΣn introduced for expressing preservation through embeddings
using very good parameters. Next, standard parameters are fully analyzed
and all the considerations about soundness and solidity witnesses necessary
for inner model theory are given.

A later section analyzes fine ultrapowers, fine structure preserving ul-
trapowers by extenders, treating the “short” and “long” cases uniformly,
and draws out the connections with the Upward Extensions of Embeddings
Lemma. Finally, two illustrative applications to L are presented, with gener-
alizable arguments: a proof, in the absence of 0#, of the “countably closed”
weak covering property for L and a proof of �κ for κ > ω.
10. Σ∗ Fine Structure. Philip Welch considerably rounds out the discus-
sion of fine structure by presenting the Σ∗ version and the extensive work
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on square principles and morasses, providing commentary throughout about
the interactions with inner model theory.

Σ∗ fine structure is due to Jensen and detailed in Zeman’s book Inner
Models and Large Cardinals (2002). The theory is a notable advance in
that it isolated the “right” classes of formulas for the articulation of fine
structure results. The classes form a certain ramified version of the Levy
hierarchy, the Σ(n)

k formulas for n, k ∈ ω, which level-by-level are able to
capture syntactically the semantic role of standard parameters. In particular,
Σ(n)

1 (Jα) relations can be uniformized by Σ(n)
1 (Jα) relations defined uniformly

for all α. And the Σ(n)
1 formulas are exactly the formulas preserved by the

rΣn+1 embeddings involving very good parameters.
The first section of the chapter establishes the Σ∗ theory, with the treat-

ment much as in Zeman’s book. The Σ∗ approach is shown to advantage in
the development of the Σ∗ ultrapower, Σ∗ fine structure preserving extender
ultrapowers. Then the more general pseudo-ultrapower (which corresponds
to the use of “long” extenders) is developed, with a refinement toward coming
applications.

The second section is devoted to square principles. Jensen had established
that if V = L, then in addition to the principles �κ a global, class version
� holds. Most of the section is taken up by a Σ∗ pseudo-ultrapower proof of
this result, one that provides a global � sequence with uniform features.

The section concludes with an extensive and detailed description of the re-
cent investigation of square principles in inner models. Of particular interest
is the failure of �κ, this for singular κ precluding covering properties for inner
models. Around 2000 an elucidating systemic characterization was achieved.
Solovay’s initial 1970s result—that if κ is λ+-supercompact and λ ≥ κ, then
�λ fails—had led to refinements, and Jensen had extracted a streamlined
large cardinal concept, later dubbed subcompactness, still sufficient so that:
If κ is subcompact, then �κ fails. Then in a remarkable analysis, Zeman
and Schimmerling established: In “Jensen-style” extender models L[ �E ], if
�κ fails, then κ is subcompact. These results established the reach of �κ

well beyond current inner model theory, in that subcompact cardinals, far
stronger than Woodin cardinals, are not known to have canonical inner mod-
els. By 2005 Steel established: If �κ fails for some singular strong limit
cardinal κ, then ADL(R) holds.

The chapter is brought to an end with a survey of the extensive work on
morasses. A (κ, 1) morass is a system approximating the Lα’s for κ < α ≤ κ+

by means of Lβ ’s for β < κ and maps fβ,β′ between them as regulated by
a series of conditions. Just after his development of fine structure Jensen
formulated morasses and established their existence in L in order to establish
model-theoretic “cardinal transfer” theorems there. A great deal of work has
since been carried out on morass structures as providing approximations to
large structures in terms of indexed arrays of small structures, and morasses
have come to carry the weight of the extent of combinatorial structure in the
constructible universe.
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VOLUME II

11. Elementary Embeddings and Algebra. In this chapter Patrick De-
hornoy describes a notable development arising out of the investigation of
algebraic features of very strong elementary embeddings. After Kunen es-
tablished his result that a strong large cardinal postulation is inconsistent,
it was natural to investigate remaining possibilities just weaker and so still
of great consistency strength. One was that there exists a (non-identity)
elementary embedding j : Vλ → Vλ for some limit λ. There is a collective
structure here, for letting Eλ be the set of such embeddings, Eλ is closed
under functional composition ◦, as well as application: For j, k ∈ Eλ, let
j[k] =

⋃
γ<λ j(k ∩ Vγ), regarding k of course as a set of ordered pairs; then

j[k] is in Eλ as well. Composition ◦ and application [ ] together satisfy a hand-
ful of laws, and the latter satisfies the left distributive law j[k[l]] = j[k][j[l]].
Martin’s 1978 result, that if there is an “iterable” elementary j : Vλ → Vλ

then Π1
2-Determinacy holds, first used application [ ] and these laws for j

applied to itself.
Laver saw that application provided a wealth of elementary embeddings

and a proliferation of critical points. With this he initiated a systematic
investigation into the structure of Eλ for its own sake. In 1989 he established
the freeness of the subalgebra generated by one j in 〈Eλ, [ ]〉 subject to the
left distributive law and the analogous result for 〈E , [ ], ◦〉. Moreover, with his
analysis Laver established that the corresponding word problem for the left
distributive law is solvable, i.e. it is recursively decidable whether two given
expressions in the language of one generator and [ ] are equivalent according to
the left distributive law. This elicited considerable interest, with a hypothesis
near the limits of consistency entailing solvability in finitary mathematics. In
1992 Dehornoy eliminated the large cardinal assumption from the solvability
result with an elegant argument that led to unexpected results about the
Artin braid group.

Dehornoy in this chapter effectively presents the body of work on Eλ and
the left distributive law. Beyond the solvability of the word problem, he also
presents the Laver-Steel theorem about the set of critical points of members
of Eλ having order-type ω, a result that initially applied results about the
Mitchell ordering in inner model theory; Randall Dougherty’s result that the
growth rate of the critical points is faster than Ackermann’s function; and
results on the finite “Laver tables” using Eλ �= ∅ that thus far have not been
established in ZFC alone.

12. Iterated Forcing and Elementary Embeddings. James Cummings
provides a lucid exposition of that core part of the mainstream of forcing and
large cardinals having to do with iterated forcing and extensions of elemen-
tary embeddings. Forcing and large cardinals are elaborated in the directions
of ideals and generic elementary embeddings in the next chapter and in the
direction of Prikry-type forcings in Chap. 16. Drawing on his wide-ranging
knowledge, Cummings provides a well-organized account, in mainly short,
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crisp sections, starting from the basics and proceeding through a series of
techniques, with historical progression a rough guide and conceptual com-
plexity a steady one. This chapter is commended to the reader conversant
even with only the basics of forcing and large cardinals to assimilate what
have become important techniques of modern set theory.

The early sections proceed through the basics of elementary embeddings,
ultrapowers and extenders, large cardinal axioms, forcing, some forcing par-
tial orders, and iterated forcing. The first ascent is to building generic objects
to extend (“lift”) elementary embeddings in forcing extensions. Describing
Silver’s Easton support iteration and the key idea of master condition, his
1971 result is established: If κ is κ++-supercompact, then there is a forcing
extension in which κ is measurable and 2κ = κ++. Next, Magidor’s impor-
tant technique of making do with an “increasingly masterful” sequence of
conditions is presented. Then, the general idea of absorption, embedding
a complex partial order into a simple one, is discussed. This is illustrated
with Magidor’s 1982 result (also highlighted in Chap. 15): If there are in-
finitely many supercompact cardinals, then in a forcing extension in which
they become the ℵn’s, every stationary subset of ℵω+1 reflects.

Precipitousness is the subject of the two longer sections of the chapter. In
the first, the Jech-Prikry-Mitchell-Magidor mid-1970s result is established,
building on the previous work: If there is a measurable cardinal κ, then there
is a forcing extension in which κ = ω1 and NSω1 is precipitous. This involves
exploiting the absorptive properties of the initial Levy collapse with iterated
“club shooting”. In the second, and longest, section a proof is provided of
the 1983 Gitik result: The precipitousness of NSω2 is equi-consistent with
having a measurable cardinal κ such that o(κ) = 2 in the Mitchell order. The
difficult, forcing direction exhibited Gitik’s virtuosity of technique, and all
the features of a “preparation forcing” before the iterated club shooting are
carefully laid out: Namba forcing, RCS iteration, the S and I conditions.

The rest of the chapter reverts to short sections that describe a wide range
of techniques and results, of which we mention the more conspicuous. Pre-
senting Kunen’s universal collapse and Silver’s collapse, Kunen’s focal 1972
result is established: If κ is huge, then there is forcing extension in which
κ = ω1 and there is an ℵ1-complete ℵ2-saturated ideal over ω1. Laver’s
termspace forcing for introducing a universal generic object by forcing with
a partial order of terms is described and applied to establish Magidor’s 1973
result: It is consistent that the least strong compact cardinal is the least mea-
surable cardinal. The “Laver diamond” and its original use to make super-
compact cardinals “indestructible” is presented, and with this Baumgartner’s
1983 consistency result is established: If there is a supercompact cardinal κ,
then there is a forcing extension in which κ = ω2 and PFA holds. Finally,
Woodin’s technique of “altering generic objects” is used to establish his 1988
consistency result of getting a measurable cardinal κ satisfying 2κ > κ+ from
what turned out, by later work of Gitik, to be the optimal hypothesis. The
incorporation of these various, historically important results in one chapter
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speak to how iterated forcing methods have been comprehensively assimilated
in modern set theory.

13. Ideals and Generic Elementary Embeddings. In this the longest
chapter of this Handbook, Matthew Foreman provides a wealth of methods
and results surrounding the general theme of ideals and generic elementary
embeddings. In Cummings’s chapter it was shown how to extend large car-
dinal embeddings after forcing with a partial order P , by doing additional
forcing Q. If G ⊆ P is generic, then from the point of view of V [G], this
can be viewed as saying that forcing with Q creates a “generic” elementary
embedding. Foreman’s chapter takes up this theme in more generality; it
is concerned with the abstract question of when such a Q exists. What is
at play is the basic synthesis of forcing and ultrapowers whereby one starts
with an ideal I over a cardinal κ; forces with P (κ) − I where p is stronger
than q if p − q ∈ I; produces an ultrafilter over the ground model P (κ);
and then gets a generic elementary embedding of the ground model into the
corresponding ultrapower. With the possibilities of ideals occurring low in
the cumulative hierarchy, so that large cardinal ideas can be applied to clas-
sical problems of set theory, an enormous subject has grown as attested to
by this chapter. Indeed, in it a very wide range and variety of material have
been marshalled, and this comes together with an informal and inviting en-
gagement that provides if not proofs, sketches of proofs, and if not sketches,
outlines that “show”.

Not just a miscellany, the chapter has been organized in terms of overall
guiding themes. At the broadest level are the “three parameters” describ-
ing the strength of a generic elementary embedding j : V → M : how j
moves the ordinals; how large and closed M is; and the nature of the forcing
that provided j. This last is the new parameter at play beyond the “con-
ventional” large cardinal hypotheses. Ideals through their forcing properties
thus assuming a crucial role, another guiding theme is the distinction be-
tween “natural” ideals that have intrinsic definitions and ideals “induced”
by elementary embeddings. As the chapter progresses, strong ideal assump-
tions gain an autonomy as “generic large cardinals” in their own right, and
the chapter is further delineated according to consequences of generic large
cardinals and consistency results about them.

Section 2 introduces the basics of generic ultrapowers and begins the study
of the correspondence between combinatorial properties of ideals and struc-
tural properties of generic ultrapowers. Topics include criteria for precipi-
tousness, the disjointing property, normality, limitations on closure, canonical
functions, selectivity and the use of generic embeddings for reflection.

Section 3 provides a range of examples of natural and induced ideals.
Among the natural ideals considered are the nonstationary ideals NSλ, their
important generalizations to nonstationary subsets over power sets P (X),
Chang ideals, Shelah’s I[λ] and club guessing ideals, non-diamond ideals, and
uniformization ideals. How induced ideals arise is taken up next, with an
important example being the master condition ideals, with their connections
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to proper forcing. In a general setting, goodness and self-genericity are ex-
plored for making natural ideals also induced. Self-genericity can be secured
through semiproper forcing and can secure the saturation or precipitousness
of natural ideals.

Section 4 takes a closer look at combinatorial properties of ideals and struc-
tural properties of generic ultrapowers. Topics include a range of saturation
properties, layered ideals, Rudin-Keisler projections, where the ordinals go
under generic elementary embeddings, and the sizes of sets in dual filters.
Iterations of generic elementary embeddings are also developed as well as
generic elementary embeddings arising from towers of ideals, i.e. sequences
of ideals interrelated by projection maps.

Section 5 considers consequences of positing strong ideals, or generic large
cardinals, low in the cumulative hierarchy. The wide-ranging topics include
graphs and groups; Chang’s Conjecture, Jónsson cardinals, and �κ; CH,
GCH, and SCH; stationary set reflection; Suslin and Kurepa trees; partition
properties; descriptive set theory; and non-regular ultrafilters. As empha-
sized, NSω1 being ℵ2-saturated importantly has countervailing consequences.

Section 6 discusses limitative results on the possibilities for generic large
cardinals. These play a role analogous to the Kunen limitation on conven-
tional large cardinals, and indeed, argumentation for it is initially applied.
A range of restrictions on ideal properties is subsequently presented, among
them results that stand as remarkable successes: the Gitik-Shelah result
that if κ is regular and δ+ < κ, then the ideal generated by NSκ and
{α < κ | cf(α) = δ} is not κ+-saturated; their result that there is no ℵ1-
complete ℵ0-dense nowhere prime ideal; the Matsubara-Shioya result that
for ω < κ ≤ λ with κ regular, Iκλ is not precipitous; and the Foreman-
Magidor result that for ω < κ ≤ λ with κ regular, NSκλ is not λ+-saturated
unless κ = λ = ω1.

Having progressed to the middle of the chapter, one sees that the chapter
naturally divides into halves, the latter having to do with consistency results
for strong ideal assumptions. The long Sect. 7 attends to the main consis-
tency results for induced ideals having strong properties. After developing
the basic master condition theory for extending elementary embeddings, a
general theorem—the Duality Theorem—is established for characterizing the
forcing necessary for constructing the elementary embedding coming from an
induced ideal. With this in place, a systematic account of various forcing
techniques for getting precipitous and saturated ideals is provided. High-
lights are Kunen’s technique for getting an ℵ1-complete ℵ2-saturated ideal
over ω1 from a huge cardinal; Magidor’s variation for which an “almost huge”
cardinal suffices; Foreman’s iteration to get κ-complete κ+-saturated ideals
over κ for every regular κ > ω; Woodin’s ℵ1-complete ℵ1-dense ideal over ω1

from an almost huge cardinal; and Foreman’s ℵ1-complete ℵ1-dense uniform
ideal over ω2 from two coordinated almost huge cardinals.

Section 8 in turn attends to consistency results for natural ideals having
strong properties. In the first of two main approaches, one starts with an in-
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duced ideal with strong properties and forces that ideal to be a natural ideal
while retaining substantial properties. Important examples are the Magidor
and Woodin arguments for getting the nonstationary ideal to be precipitous
and (somewhere) saturated respectively, and the Foreman-Komjáth argu-
ment for getting the tail club guessing filter to be saturated. In the second
approach, one starts with a natural ideal and manipulates its antichain struc-
ture to make the generic ultrapower have strong properties. The important
example is the “antichain catching” technique of the 1984 Foreman-Magidor-
Shelah work for getting the nonstationary ideal to be saturated.

Section 9 broaches the extension of the context to towers of ideals. First
brought into prominence by Woodin with his stationary tower forcing, this
extension allows for more flexibility in minimizing assumptions and in draw-
ing conclusions. After considering “induced” towers, techniques based on
antichain catching are presented for getting nice generic ultrapowers. The
stationary towers are the “natural” towers, and examples of Woodin and
Douglas Burke are described. Finally, examples of stationary tower forcing
are provided.

Section 10 briefly discusses the consistency strength of ideal assumptions.
How inner model theory has successfully established lower bounds comple-
menting forcing consistency results is quickly summarized. The focus, how-
ever, is on how knowing the image of just a few sets under a generic elemen-
tary embedding suffices to show that there is a conventional large cardinal
in an inner model whose embedding agrees with the generic embedding. No-
tably, equi-consistency results for very large cardinals like the n-huge cardi-
nals are derived by this means.

Section 11 is a speculative discussion of the possibility of adopting generic
large cardinal axioms along with their conventional cousins as additional
axioms for mathematics. There is summarizing, comparisons, and prediction,
and the reader could profitably read this section before surmounting all the
others. Section 12 is an extensive, detailed list of open problems. These two
last sections indicate the wealth of possibilities at this general confluence of
the methods of forcing and ultrapowers.

14. Cardinal Arithmetic. Uri Abraham and Menachem Magidor provide
a broad-based account of Shelah’s pcf theory and its applications to cardinal
arithmetic, an account that exhibits the gains of considerable experience.

A beginning section sets out a general theory of ordinal-valued functions
modulo ideals and cofinal sequences thereof, through to the existence of exact
upper bounds as derived from a diamond-like club guessing principle. Delin-
eating consequences, Silver’s Theorem and a covering result of Magidor are
established forthwith.

The next sections develop the basic theory of the central pcf function as
calibrated by the crucial ideals J<λ[A]. The various aspects of an unex-
pectedly rich structure are presented, the surround of the focal result that
J<λ+ [A] is generated by J<λ[A] together with a single set Bλ ⊆ A.

The latter sections make the ascent to the applications in cardinal arith-
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metic. First, the general Shelah study of the cofinality of [μ]κ = {x ⊆ μ |
|x| = κ} under ⊆ is presented. One takes a sufficiently large HΨ(= H(Ψ))
and structured chains of elementary substructures to get specifically related
generators Bλ. With this the 1980 Shelah result ℵcf(δ)

δ < ℵ(|δ|cf(δ))+ is se-
cured. Proceeding through a finer analysis leading to “transitive” generators
Bλ, the now famous result, instantiated by 2ℵω < ℵω4 when ℵω is a strong
limit, is established.

The last section is devoted to Shelah’s remarkable “revised GCH” result
established in the early 1990s. With his investigation of cofinalities leading
to “covering” sets Shelah advocated the consideration of

λ[κ] = min
{
|P| | P ⊆ [λ]≤κ ∧ ∀u ∈ [λ]κ∃x ∈ [P ]<κ

(
u =

⋃
x
)}

as a “revised” power set operation. GCH is equivalent to the assertion that
for all regular κ < λ, λ[κ] = λ. Using a variant of the pcf function, Shelah
established that λ[κ] = λ for every λ ≥ �ω (where �ω = sup{�n | n ∈ ω}
with �0 = ℵ0 and �n+1 = 2�n) and with κ < λ sufficiently large. Thus, pcf
theory provided a viable, substantive version of the GCH provable in ZFC.

15. Successors of Singular Cardinals. The investigation of combinatorial
properties at successors of singular cardinals, with ℵω+1 being paradigmatic,
has emerged as a distinctive subject in modern set theory. Historically, the
early forcing arguments to secure substantial propositions low in the cumu-
lative hierarchy by collapsing large cardinals to ℵ1 or ℵ2 did not adapt to
ℵω+1. The situation became accentuated when the 1970s work on covering
properties for inner models showed that the failure of �κ for singular κ would
require strong large cardinal hypotheses. In the 1980s expansion, the rela-
tive consistency of strong propositions about ℵω+1 entailing the failure of
�ℵω were duly achieved, and with the emergence of pcf theory a new com-
binatorially elaborated setting was established as well. In recent years, the
conceptual space between �κ-like properties and their antithetical reflection
properties has become clarified through methods and principles that have
particular applicability at successors of singular cardinals.

Todd Eisworth in this chapter provides a well-organized account of the
modern theory for successors of singular cardinals, an account that covers
the full range from consistency results to combinatorics. After a first section
setting out three illustrative problems about ℵω+1 the second section takes
on one, stationary set reflection, as its theme. Let Refl(κ) be the assertion
that every stationary S ⊆ κ reflects, i.e. there is an α < κ such that S ∩ α
is stationary in α. A central tension is brought to the foreground with the
discussion of how �κ denies Refl(κ+) in a strong sense and how supercom-
pact cardinals, and even strong compact cardinals through indecomposable
ultrafilters, imply versions of stationary set reflection. The rest of the sec-
tion is devoted to establishing, as an entrée into the issues, Magidor’s 1982
result: If there are infinitely many supercompact cardinals, then in a forcing
extension in which they become the ℵn’s, Refl(ℵω+1) holds.
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The third section is given over to a detailed exegesis of the ideal I[λ].
Part of his deep combinatorial analysis, Shelah isolated I[λ] after strands
had appeared in his work as early as 1978, and I[λ] has grown in importance
to become a central concept. In accessible terms, S ⊆ λ is in I[λ] iff there
is a sequence ā = 〈aα : α < λ〉 with aα ⊆ α and a closed unbounded C ⊆ λ
such that every δ ∈ S ∩ C is singular and has a cofinal A ⊆ δ of order-type
cf(δ), each of whose initial segments appears in {aβ | β < δ}. This articulates
a subtle sense of fast approachability, and for singular μ, APμ asserts that
I[μ+] is an improper ideal, i.e. μ+ ∈ I[μ+]. �μ implies APμ, and through
Shelah’s incisive analysis of I[λ], one gets to the consistency of the failure of
APℵω from a supercompact cardinal. The section is brought to a close with
Shelah’s result, a bulwark of his pcf theory, on the existence of scales: With
μ singular let A ⊆ μ be a set of regular cardinals cofinal in μ of order-type
cf(μ) such that cf(μ) < min(A) as in pcf theory. Consider ΠA with respect
to the filter F = {X ⊆ cf(μ) | |cf(μ) − X| < cf(μ)} of co-bounded sets.
Then Shelah showed that 〈ΠA,<∗

F 〉 has a linearly ordered, cofinal sequence
of length μ+—a scale for μ. (In terms of pcf theory, ΠA/F has true cofinality
μ+.)

The fourth section provides an extensive exploration of applications of
scales and weak square principles. Attention soon focuses on the Foreman-
Magidor Very Weak Square at μ (VWSμ), particularly its close relationship
to I[μ+]. VWSμ is a square principle so weak that APμ implies it, and
moreover, it is consistent to have a supercompact cardinal together with
VWSμ holding for every singular μ. The rest of the section is devoted to how
scales with additional properties get us further across the divide between
weak square principles and reflection properties. A family consisting of non-
empty sets is free iff it has an injective choice function, and is κ-free iff
every subfamily of cardinality less that κ is free. NPT(κ, θ) is the assertion
that there is a κ-free, non-free family of κ non-empty sets each of cardinality
less than θ. That NPT(κ,ℵ1) fails for any singular cardinal κ is part of
Shelah’s work on singular compactness. The existence of “good” scales leads
to NPT(ℵω+1,ℵ1), a central result of important work of Magidor and Shelah
on the freeness of abelian groups. The notions of “very good” and even
“better” scales provide avenues for further combinatorial elucidation.

The last section discusses square-brackets partition relations, with the fo-
cus on Jónsson algebras. The existence of such algebras was an important
motivation of Shelah’s development of pcf theory, and early on Shelah estab-
lished that ℵω+1 carries a Jónsson algebra. The general question of whether
every successor of a singular cardinal carries a Jónsson algebra remains un-
solved, and the section sketches the expanse of Shelah’s work here.

16. Prikry-Type Forcings. In this chapter Moti Gitik presents the full
range of forcing techniques that have been developed to investigate powers
of singular cardinals and the Singular Cardinal Hypothesis. With his tech-
nical virtuosity and persistence Gitik has been the main contributor to the
subject, and to the organization and presentation of this chapter he brings



84 Kanamori / Introduction

his extensive knowledge, providing several simplifications of the previously
published work. To be noted is that being of the Israeli school, Gitik writes
“p > q” for p being a stronger condition than q.

The first half deals with the work on countable cofinality. An initial sec-
tion presents the basic Prikry forcing and its variants through to a strongly
compact version, all having the characteristic property of adjoining new co-
final subsets without adjoining bounded subsets or collapsing cardinals. The
next several sections then present the Gitik-Magidor extender-based forcing
for adjoining many Prikry sequences with optimal hypotheses. As a warm-
up, the simpler case when κ is already singular, κ = sup{κn | n ∈ ω}, is
presented. One posits extenders on each κn and uses the embeddings to de-
velop a system of ultrafilters Unα on κn for adjoining Prikry sequences tα.
The forcing itself relies on getting Cohen subsets of κ+ to guide the construc-
tion. Then the main case of an extender-based Prikry forcing with a single
extender on a regular κ is presented. This forcing elaborates the previous by
singularizing κ and confronts the added difficulty that the support of a con-
dition may have cardinality κ. Finally, the forcing that additionally brings
the whole situation down to render κ = ℵω with interwoven Levy collapses
is presented.

The latter half of the chapter begins with the work on uncountable cofinal-
ity. First, the basics of Radin forcing for adjoining a closed unbounded subset
to a large cardinal consisting of formerly regular cardinals is carefully pre-
sented in an extensive section. This forcing had originally been given in terms
of an elementary embedding j : V → M , and next, a presentation based on
a coherent sequence of ultrafilters is given, this providing a treatment also
encompassing Magidor forcing for changing to uncountable cofinality. Then
Carmi Merimovich’s extender-based Radin forcing is broached.

The last section handles iterations of general “Prikry-type forcings”. Such
an iteration had first occurred in Magidor’s 1973 result that it is consistent
that the least strongly compact cardinal is the least measurable cardinal, and
here Magidor’s proof is simplified. After discussing an interesting forcing due
to Jeffrey Leaning, the section turns to Easton support iterations of Prikry-
type forcings. It is observed that this provides another way of establishing
the consistency of the failure of SCH from the optimal hypothesis ∃κ(o(κ) =
κ++). The chapter ends with five open problems about powers of singular
cardinals.

VOLUME III

17. Beginning Inner Model Theory. In this first of several chapters on
inner model theory, William Mitchell authoritatively sets out the theory from
L[U ] and KDJ through to inner models of strong cardinals, the “coarse the-
ory” not requiring fine structure. He thus performs the service of laying out
the larger features and strategies of inner model theory that will frame the
later chapters. There is iteration, comparison, coherence, and coiteration,
and at one end sharps and mice and the other end coherent sequences of
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(non-overlapping) extenders. Beyond this, he provides two illuminating dis-
cussions about the further developments that involve fine structure. One is
on the advantages of the modern Baldwin-Mitchell presentation with partial
extenders even for the cases that he considers. The other is about what in
general the core model should be in set theory, separate from any specific
large cardinal assumptions.

18. The Covering Lemma. Mitchell here draws on his experience and
expertise to provide an incisive account of the covering leitmotiv for inner
models, which has been central to the development of inner model theory.
The Jensen argument for the Covering Lemma for L has not only stimulated
the formulation of new inner models in which the argument can be applied
but has proven to be robust through these models to establish various results
about the global affinity between inner models and the universe.

The first two sections discuss variants of the covering lemma and their
applications. What is brought out is that the basic Jensen argument as
a conceptual construction can be implemented in a range of inner models,
but that the conclusions that one can draw depends on the large cardinal
hypotheses involved and the complexity that one wants to sustain.

The third section outlines a proof, complete except for some fine structure
details, of the Jensen and Dodd-Jensen covering results for L and L[U ]. Al-
though proofs for these cases have been devised that do not appeal to fine
structure, it is deployed here in order to maintain generalizability. In fact,
the Baldwin-Mitchell approach with partial extenders is already adopted for
the technical advantages of local uniformity that it provides. One signifi-
cant feature of the L[U ] case is that a weak covering property is established
first and used to study ultrapower-generated indiscernibles leading to Prikry
generic sequences.

The last section is devoted largely to a proof of covering for Mitchell’s core
model K[U ] for coherent sequences U of ultrafilters. The previous proof has
now to be further elaborated on account of the possible generation of com-
plicated systems of indiscernibles, including possibly those leading to generic
sequences for the Magidor forcing for changing to uncountable cofinalities.
Drawing out what is possible from the covering argument, an elaborate con-
clusion is articulated and established. Gitik, for one direction of his cul-
minating equi-consistency result on the Singular Cardinals Hypothesis, had
applied this covering conclusion together with elements of Shelah’s pcf the-
ory to establish that if SCH fails, then in an inner model ∃κ(o(κ) ≥ κ++)
holds. This synthetic result is next presented as a crucial application. The
section, and chapter, concludes with a discussion of how the covering proof
and conclusion can be extended to a strong cardinal, and the progress made
with weaker versions of covering up to a Woodin cardinal and beyond.

19. An Outline of Inner Model Theory. In this chapter John Steel
provides a general theory of extender models, the canonical inner models for
large cardinals, getting to his model Kc. Moreover, he provides a remarkable
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application, to the effect that under ADL(R), HODL(R) up to a high rank
Vδ is an extender model. Since it was Steel who in the mid-1990s provided
the framework and made the crucial, final advances in this inner model the-
ory, this chapter carries the stamp of experience and authority. The next
chapter provides the construction of Steel’s core model K up to a Woodin
cardinal, a construction based on Kc, and a range of combinatorial applica-
tions. Chapter 22 describes how iteration trees, a basic component of the Kc

construction, found their first substantial use in determinacy.
After covering the basics of extenders, an early section sets out the care-

fully wrought definition of a fine extender sequence �E. These are coherent
sequences enhanced with acceptability for J

�E and the Baldwin-Mitchell idea
of having Eα be only an extender for subsets in J

�E�α
α . A potential premouse

is then a structure J
�E
α where �E is a fine extender sequence. With Chap. 9

preliminaries, fine structure considerations are imposed on potential premice
and fine structure preserving ultrapowers are schematically described.

The next section engages the project of comparing two potential premice
through coiteration. Iteration trees become central for handling overlapping
extenders, and iterability for comparison is articulated in terms of games and
iteration strategies for securing well-founded limits of models along branches.
Fine structural considerations have become crucial to carrying out the process
internally in extender models.

The succeeding section establishes the Dodd-Jensen Lemma about the
minimality of iterations copied across fine structure preserving maps, as well
as a weak Neeman-Steel version sufficient for present purposes. A further
section deals with crucial results about solidity and condensation. These
sections, elaborating the analysis starting with iterations trees, carve a fine
path through a thicket of detail.

With these preparations, a culminating section provides the Kc construc-
tion and the resulting Steel background certified core model Kc. The model is
an extender model L[ �E ] for a fine extender sequence �E defined according to
the following stratagem: Given �E�α, an F is next adjoined if it is “certified”
by a “background extender” F ∗, in that F is the restriction to J

�E�α
α of F ∗,

an extender in V with sufficiently strong properties to guarantee iterability
of �E�α�〈F 〉. That such an �E can be defined canonically is at the heart of
the construction.

The concluding two sections bring inner model theory and determinacy to-
gether for the analysis of HODL(R). Both sections proceed under the assump-
tion that there are infinitely many Woodin cardinals with a measurable car-
dinal above them, so that in particular ADL(R) holds. The main thrust of the
first section is that the reals in the minimal iterable inner model Mω satisfying
“there are infinitely many Woodin cardinals” are exactly the reals in ODL(R).
The last section builds on this work to establish, using the (full) Dodd-Jensen
Lemma, that HODL(R) is “almost” an iterate M∞ of Mω. Specifically, for δ
the large projective ordinal (δ∼

2
1)

L(R), HODL(R)∩Vδ = M∞ ∩Vδ. This suffices
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in particular to establish under ADL(R) that HODL(R) |= GCH. It is remark-
able that an inner model incipiently based on global definability can be shown
to have structure as given by local definability and extender analysis.

20. A Core Model Tool Box and Guide. Building on the general theory
of the previous chapter, Ernest Schimmerling develops its historical source,
Steel’s core model K up to a Woodin cardinal, and discusses combinatorial
applications of it across set theory. Having been one of the contributors to the
covering lemma theory for K and the initiating investigator of combinatorial
principles there, Schimmerling provides a measured, wide-ranging account,
one with careful accreditations.

The first half of the chapter is devoted to the basic theory of K. Going
“up to” a Woodin cardinal, the “anti-large cardinal hypothesis” that there is
no inner model with a Woodin cardinal is assumed. But moreover as Steel
initially did, an additional “technical hypothesis” that there is a measur-
able cardinal Ω is assumed. Ω becomes regulative for the construction of
K, schematically playing the role of the class On of ordinals. Regarding Kc

as now a set premouse of height Ω, one works with weasels, other such pre-
mice, and uses the crucial simplifying property that if they have no Woodin
cardinals, then their iteration trees have at most one cofinal well-founded
branch. A definition of K second-order on H(Ω) is first developed, and then
a first-order, recursive definition.

With K in hand, a useful “tools” section provides, without proof, a range
of properties of K, from covering, forcing absoluteness and rigidity to com-
binatorial principles. The next section outlines a proof of the “countably
closed” weak covering property for K. The proof assumes familiarity with
that of analogous results as given e.g. in Chaps. 9 and 18 and very much de-
pends on the first-order definition of K. The final section provides, without
proof, applications of K and generally, core models at the level that involves
iteration trees. One sees at a glance how central this inner model theory
has become, with the involvements described in determinacy, trees, ideals,
forcing axioms, and pcf theory.

21. Structural Consequences of AD. In this first of several chapters
on determinacy, Steve Jackson surveys the structural consequences of de-
terminacy for sets of reals. The chapter thus serves as a fitting sequel to
Moschovakis’s book Descriptive Set Theory (1980). The advances have been
in two directions, the extension of the scale theory beyond the projective sets
into a substantial class of sets of reals in L(R) and the analysis of the fine
combinatorial structure of cardinals provided by the computation of the pro-
jective ordinals. With both directions calibrated by the analysis of definable
sets in terms of definable well-ordered stratifications, the structure theory
has remarkable richness and complexity as well as overall coherence.

An early section lays the basis with a review of basic notions: scales and
periodicity, the Coding Lemma, projective ordinals, Wadge reducibility—and
with some topics already going beyond the scope of the Moschovakis book—



88 Kanamori / Introduction

Σ2
1 sets of reals and infinite-exponent partition relations.
The next section develops the scale theory provided by Suslin cardinals

under AD, the arguments mainly due to Martin. Let S(κ) denote the class
of κ-Suslin sets. A cardinal κ is Suslin iff S(κ)−

⋃
κ′<κ S(κ′) �= ∅. That ℵ1

is a Suslin cardinal is a classical result, and PD implies that the projective
ordinals δ1

n for odd n ∈ ω are Suslin. The late 1970s Martin-Steel result that
AD + V = L(R) implies that Σ2

1 is the largest class with the scale property
and Σ2

1 =
⋃

κ S(κ) provides the new, broad context. With S(κ) taken as
the analogue of the analytic sets, corresponding analogues of the projective
hierarchy and projective ordinals are formulated. The scale property is then
inductively propagated using Wadge reducibility and the weakly homoge-
neous trees available. Thus, the scale theory of the projective sets has been
successfully abstracted, with the arguments applied in a suitably articulated
setting.

The succeeding two sections present a schematic approach to the compu-
tation of the projective ordinals, which had been carried out by the author
in a tour de force in the latter 1980s. κ −→ (κ)λ asserts that if the increas-
ing functions from λ into κ are partitioned into two cells, then there is an
H ⊆ κ of cardinality κ such that all the increasing functions from λ into H
are in one cell. The strong partition property for κ is the assertion κ −→ (κ)κ

and the weak partition property for κ is the assertion ∀λ < κ((κ −→ (κ)λ).
In the early 1970s Martin established under AD the strong partition prop-
erty for ω1, a striking result at the time. Kunen then carried out a detailed
analysis of ultrapowers that led to the weak partition property for δ1

3, which
Martin had previously shown under AD to be ℵω+1, the third uncountable
regular cardinal. In the section on “a theory of ω1”, this work is reorganized
by starting with the weak partition property for ω1 and establishing in turn
the upper bound δ1

3 ≤ ℵω+1; the strong partition property for ω1; the lower
bound ℵω+1 ≤ δ1

3; and the weak partition property for δ1
3. This is done in

terms of generalizable “descriptions”, and the section on higher descriptions
starts with the weak partition property for δ1

3 and proceeds analogously to
establish the upper bound δ1

5 ≤ ℵωωω +1; the strong partition property for δ1
3;

the lower bound ℵωωω +1 ≤ δ1
5; and the weak partition property for δ1

5. In
this indicated propagation with descriptions, the author’s computation of
δ1

5 and larger projective ordinals has been given a fortunate perspicuity and
surveyability.

The final section explores the possibilities for extending throughout L(R)
the sort of fine analysis given by the computation of the projective ordinals.
A weak square principle �κ,λ is established toward the goal of getting at
global principles that might help propagate the inductive analysis via the
Suslin cardinals.

22. Determinacy in L(R). Woodin’s culminating result that AD is equi-
consistent with the existence of infinitely many Woodin cardinals figures cen-
trally in this and the next chapters, which establish each direction of the
equi-consistency in turn. In this chapter Itay Neeman develops the theme of
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getting determinacy from large cardinals. In getting technically optimal such
results through the use of “long” games, Neeman’s book The Determinacy of
Long Games (2004) was an important contribution along these lines. In this
chapter Neeman ultimately provides a complete, tailored proof of Woodin’s
result that if there are infinitely Woodin cardinals with a measurable cardinal
above them, then ADL(R). He first provides the historical and mathematical
lines of approach in terms of concepts and methods of wider applicability and
then proceeds with his own, well-crafted trajectory to the final conclusion.

The first several sections presents the basic, Martin-Steel theory of itera-
tion trees. Iterability for the needed case of linear compositions of trees of
length ω is articulated in terms of games and strategies and then established.
The importance of Woodin cardinals is then brought out for creating com-
plex iteration trees, the complexity discussed in terms of the author’s notion
of type for a set of formulas in place of the former Martin-Steel alternating
chains.

The next sections start the ascent to the determinacy of sets in L(R). The
first vehicle is the concept of a homogeneously Suslin set of reals, a projec-
tion of a homogeneous tree and hence determined. After recasting Martin’s
classical Π1

1-Determinacy result, the 1985 Martin-Steel breakthrough result
is presented, with its propagation of determinacy through the projective hi-
erarchy with Woodin cardinals and iteration trees.

The last several sections make the final ascent with the author’s specific ap-
proach, one based on getting determinacy by making Woodin cardinals count-
able with forcing rather than using stationary tower forcing as in Woodin’s
original proof. First, Woodin cardinals, through forcing and absoluteness, are
shown to establish the determinacy of an important class of sets of reals wider
than the homogeneously Suslin sets, the universally Baire sets of Qi Feng,
Magidor, and Woodin. Second, getting at the technical heart of the matter,
it is shown that given any real, models with many Woodin cardinals can be
iterated to absorb the real in a further generic extension. Finally, with a least
counter-example argument, AD is established in a “derived model” assuming
the existence of infinitely many Woodin cardinals—getting one direction of
Woodin’s equi-consistency result—and assuming further the existence of a
measurable cardinal above, AD is established in L(R) itself.

23. Large Cardinals from Determinacy. In this extensive, well-rounded,
and sophisticated chapter Peter Koellner and Hugh Woodin set out the lat-
ter’s work on getting large cardinals from determinacy hypotheses. The focal
results were in place by the early 1990s, but this is the first venue where
a full-fledged, systematic account is provided. With hindsight the authors
are able to present a well-motivated, self-contained development organized
around structural themes buttressing the extensive results.

The first two thirds of the chapter are framed as making an ascent to
the Generation Theorem, an abstract theorem that provides a template for
generating Woodin cardinals from refined determinacy hypotheses. In fact,
the early sections add layer upon layer of complexity in an informative, well-



90 Kanamori / Introduction

motivated manner to get at more and more large cardinal conclusions.
Section 2 casts Solovay’s seminal 1967 result that ω1 is measurable under

ZF + AD in a generalizable manner that draws out boundedness and cod-
ing techniques for getting normal ultrafilters. The generalizability is then
illustrated by showing that under ZF + AD the projective ordinal (δ∼

2
1)

L(R),
“the least stable in L(R)”, is a measurable cardinal in HODL(R). Gearing
up, Sect. 3 reviews the Moschovakis Coding Lemma and provides a strong,
uniform version that will become crucial. Section 4 then establishes, as a
precursor to the Generation Theorem, that under ZF + DC + AD a pivotal
ordinal ΘL(R) is a Woodin cardinal in HODL(R). First, reflection properties
are developed that will play the role played earlier by boundedness. Then
the notion of strong normality is used to establish that (δ∼

2
1)

L(R) is λ-strong
for cofinally many λ < ΘL(R). Reflection properties and uniform coding are
then worked to secure strong normality. Finally, with crucial appeals to AD
and special properties of HODL(R), the strongness properties established for
(δ∼

2
1)

L(R) are shown to relativize for T ⊆ Θ in HODL(R) to provide corre-
sponding λ-T -strong cardinals δT , thus leapfrogging up to get that ΘL(R) is
Woodin in HODL(R).

The heights are reached in Sect. 5 where the work of the previous section
is abstracted to establish two theorems on Woodin cardinals in a general
setting. The first shows that in certain strong determinacy contexts HOD
can contain many Woodin cardinals, and the second is the central Generation
Theorem. The aim of this theorem is to show that the construction of Sect. 4
can be driven by lightface determinacy alone. To simulate the previous use of
real parameters, the notion of strategic determinacy is introduced, a notion
that resembles boldface determinacy but can nonetheless hold in settings
with AC. Indeed, this notion is motivated by showing that it can hold in
L[S, x], where S is a class of ordinals and x is a real. With this in hand the
Generation Theorem is finally established, and a number of instantial cases
are presented.

Section 6 applies the Generation Theorem to derive the optimal amount
of large cardinal strength from both lightface and boldface determinacy. The
main lightface result is that ZF + DC + Δ1

2-determinacy implies that there
is a Turing cone of reals x such that ω

L[x]
2 is a Woodin cardinal in HODL[x].

The task here is to show that Δ1
2-determinacy secures strategic determinacy.

The main boldface result is that ZF + AD implies that in a generalized
Prikry forcing extension, there are infinitely many Woodin cardinals in the
corresponding HOD. The task here is to show that the Generation Theorem
can be iteratively applied to generate infinitely many Woodin cardinals.

Section 7 attends to a reduction to second-order Peano Arithmetic. A first
localization of the Generation Theorem shows that Δ1

2-determinacy implies
that for a Turing cone of reals x, ωL[x]

1 is a Woodin cardinal in L[x]. A second
localization then shows that the proof can in fact be carried out in second-
order Peano Arithmetic, to establish that if that theory plus Δ1

2-determinacy
is consistent, then so is ZFC + “On is Woodin”, the latter assertion to be
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understood schematically.
The synthetic final Sect. 8 describes the remarkable confluences, seen in the

later 1990s, of definable determinacy and inner model theory. First, actual
equivalences between propositions of definable determinacy and propositions
about the existence of inner models with Woodin cardinals are described.
Then, the earlier HOD analysis is revisited in light of the Steel work on
HODL(R), described in his Chap. 19. The full HODL(R) is not itself an exten-
der model, but can nonetheless be comprehended as a fine-structural inner
model of a new sort.

24. Forcing over Models of Determinacy. In this last chapter Paul
Larson describes work of Woodin on forcing over models of determinacy.
We take the opportunity here to describe that work, thereby framing the
chapter. After his remarkable successes culminating in his synthetic equi-
consistency results about AD and large cardinals, Woodin in the mid-1990s
entered a new, middle period of his research with the investigation of Pmax

forcing extensions of models of AD. Quickly becoming a far-reaching theory
of maximal and canonical forcing extensions that model ZFC, the subject
shed new light on the inner workings of determinacy at the level of P (ω1)
and the extent of structure in ZFC extensions, even to the possible failure of
the Continuum Hypothesis.

Woodin’s remarkable The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (1999) in nearly one-thousand pages sets out of his
work into his middle period. The book’s main thrust is the specification of a
canonical, maximal model of ZFC in the following sense: Assume ADL(R) and
that there is a Woodin cardinal with a measurable cardinal above it. Then
there is in L(R) a (countably closed and homogeneous) partial order Pmax

so that for G Pmax-generic over L(R), L(R)[G] models ZFC, and: for any
Π2 (i.e. ∀x∃y) sentence satisfied in the structure 〈H(ω2),∈,NSω1〉, that sen-
tence is already satisfied in 〈H(ω2),∈,NSω1〉L(R)[G], the structure relativized
to the generic extension.

With H(ω2) suitably accommodating P (ω1) and the intrinsic ideal NSω1

participating, Woodin argues that 〈H(ω2),∈,NSω1〉 is the next natural exten-
sion of second-order arithmetic, which is identifiable with 〈H(ω1),∈〉. A piv-
otal, historical point about Pmax is that since ¬CH is equivalent to a Π2

sentence of 〈H(ω2),∈〉 and there is a generic extension satisfying ¬CH yet
preserving the hypotheses of the above result, CH actually fails in L(R)[G].
Generally, various combinatorial propositions about ω1 are similarly consis-
tent via “mild” forcing and are expressible as Π2 assertions about 〈H(ω2),∈,
NSω1〉, and hence, these propositions hold in L(R)[G]. In this very substantial
sense, L(R)[G] is a canonical generic extension of L(R).

In his book Woodin’s presents an axiom that codifies his motivation for
formulating Pmax:

(∗) ADL(R) and: L(P(ω1)) is a Pmax-generic extension of L(R).

Woodin then develops a variant Qmax of Pmax that provides extensions in
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which NSω1 is ℵ1-dense. Woodin had famously shown that NSω1 being ℵ1-
dense is equivalent in ZF to AD, and with Qmax he provides a systematic
treatment of this result.

Woodin subsequently investigates Pmax extensions of AD models larger
than L(R). This enterprise is fueled by a corresponding strong form AD+ of
AD, and with it Woodin is able to starting scaling combinatorial propositions
about ω2 and even forms of Chang’s Conjecture. In the final chapter of his
book Woodin casts a light into the horizon with the formulation of his Ω-
logic. With this new logic and AD+, a more pristine approach can be taken to
¬CH, one that can subsume Pmax extensions in a more direct, albeit abstract,
formulation. In work of the 21st century, Woodin will argue for the negation
of the Continuum Hypothesis on the basis of his Ω-logic and a corresponding
Ω Conjecture.

Larson in this final chapter of this Handbook offers a preparatory guide
to Woodin’s Pmax, one that is to be highly appreciated for providing a pa-
tient, accessible approach. The first seven sections present a complete, self-
contained analysis of the Pmax extension of L(R) in an illuminating manner,
proceeding incrementally by introducing hypotheses and methods as needed.
After setting out the theory of iterated generic elementary embeddings fun-
damental to Pmax, the partial order is formulated and its countable closure is
established. After developing A-iterability, a generalized iterability property,
it is applied to establish crucial structural results about the Pmax extension of
L(R). Then the heralded Π2 maximality with respect to 〈H(ω2),∈,NSω1〉 is
established, and assuming Woodin’s axiom (∗), the notable minimality result
that any subset of ω1 added by a generic filter generates the entire extension.

The last several sections briefly consider Pmax extensions of larger models
under AD+; Woodin’s Ω-logic and Ω Conjecture; and several variations of
Pmax, starting with Qmax. This sampling reflects the accomplishments with
Pmax and suggests the expansive possibilities to be explored.
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1. The Closed Unbounded Filter

1.1. Closed Unbounded Sets

Stationary sets play a fundamental role in modern set theory. This chapter
attempts to explain this role and to describe the structure of stationary sets
of ordinals and their generalizations.

The concept of stationary set first appeared in the 1950’s; the definition
is due to Gérard Bloch [16], and the fundamental theorem on stationary sets
was proved by Géza Fodor [24]. However, the concept of a stationary set is
implicit in the work of Paul Mahlo [71].

The precursor of Fodor’s Theorem is the 1929 result of Pavel Alexandroff
and Pavel Urysohn [2]: If f(α) < α for all α such that 0 < α < ω1, then f is
constant on an uncountable set.

Let us call an ordinal function f regressive if f(α) < α whenever α > 0.
Fodor’s Theorem (Theorem 1.5) states that every regressive function on a
stationary set is constant on a stationary set. As a consequence, a set S ⊆ ω1

is stationary if and only if every regressive function on S is constant on an
uncountable set.

In this section we develop the theory of closed unbounded and stationary
subsets of a regular uncountable cardinal.

If X is a set of ordinals, then α is a limit point of X if α > 0 and
sup(X ∩ α) = α. A set X ⊆ κ is closed (in the order topology on κ) if
and only if X includes Lim(X), the set of all limit points of X less than κ.

1.1 Definition. Let κ be a regular uncountable cardinal. A set C ⊆ κ
is closed unbounded (or club for short) if it is closed and also an unbounded
subset of κ. A set S ⊆ κ is stationary if S∩C �= ∅ for every closed unbounded
C ⊆ κ.

It is easily seen that the intersection of any number of closed sets is closed.
The basic observation is that if C1 and C2 are both closed unbounded, then
C1 ∩C2 is also closed unbounded. This leads to the following basic property.

1.2 Proposition. The intersection of less than κ closed unbounded subsets
of κ is closed unbounded.

Consequently, the closed unbounded sets generate a κ-complete filter on
κ called the closed unbounded filter. The dual ideal (which is κ-complete and
contains all singletons) consists of all sets that are disjoint from some closed
unbounded set—the nonstationary sets, and is thus called the nonstationary
ideal, denoted NS.

If I is any nontrivial ideal on κ, then I+ denotes the set P (κ) − I of
all I-positive sets. Thus, stationary subsets of κ are exactly those that are
NS-positive.
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1.3 Definition. Let 〈Xα : α < κ〉 be a κ-sequence of subsets of κ. Its
diagonal intersection is the set

Δα<κXα =
{
ξ < κ : ξ ∈

⋂
α<ξXα

}
;

its diagonal union is

Σα<κXα =
{
ξ < κ : ξ ∈

⋃
α<ξXα

}
.

The following lemma states that the closed unbounded filter is closed under
diagonal intersections (or dually, that the nonstationary ideal is closed under
diagonal unions):

1.4 Lemma. If 〈Cα : α < κ〉 is a sequence of closed unbounded subsets of κ,
then its diagonal intersection is closed unbounded.

This immediately implies Fodor’s Theorem:

1.5 Theorem (Fodor [24]). If S is a stationary subset of κ and if f is a
regressive function on S, then there exists some γ < κ such that f(α) = γ on
a stationary subset of S.

Proof. Let us assume that for each γ < κ there exists a closed unbounded
set Cγ such that f(α) �= γ for each α ∈ S ∩ Cγ . Let C = Δγ<κCγ . As C is
closed unbounded, there exists an α > 0 in S ∩ C. By the definition of C it
follows that f(α) ≥ α, a contradiction. �

A nontrivial κ-complete ideal I on κ is called normal (and so is its dual
filter) if I is closed under diagonal unions; equivalently, if for every A ∈ I+,
every regressive function on A is constant on some I-positive set. Thus
Fodor’s Theorem (or Lemma 1.4) states that the nonstationary ideal (and
the club filter) is normal. In fact, the nonstationary ideal is the smallest
normal κ-complete ideal on κ:

1.6 Proposition. If F is a normal κ-complete filter on κ, then F contains
all closed unbounded sets.

Proof. If C is a club subset of κ, let 〈aα : α < κ〉 be the increasing enumera-
tion of C. Then

C ⊇ Δα<κ{ξ : aα+1 < ξ < κ} ∈ F,

because F contains all final segments (being nontrivial and κ-complete). �

In other words, if I is normal, then every I-positive set is stationary.
The quotient algebra B = P (κ)/NS is a κ-complete Boolean algebra,

where the Boolean operations Σα<γ and Πα<γ for γ < κ are induced by⋃
α<γ and

⋂
α<γ . Fodor’s Theorem implies that B is in fact κ+-complete: If

{Xα : α < κ} is a collection of subsets of κ, then Δα<κXα and Σα<κXα are,
respectively, the greatest lower bound and the least upper bound of the equiv-
alence classes Xα/NS ∈ B. This observation also shows that if 〈Xα : α < κ〉
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and 〈Yα : α < κ〉 are two enumerations of the same collection, then ΔαXα

and ΔαYα differ only by a nonstationary set.
The following characterization of the club filter is often useful, in particular

when used in its generalized form (see Sect. 6). Let F : [κ]<ω → κ; an ordinal
γ < κ is a closure point of F if F (α1, . . . , αn) < γ whenever α1, . . . , αn < γ. It
is easy to see that the set ClF of all closure points of F is a club. Conversely,
if C is a club, define F : [κ]<ω → κ by letting F (e) be the least element
of C greater than max(e). It is clear that ClF = Lim(C). Thus every club
contains ClF for some F , and we have this characterization of the club filter:

1.7 Proposition. The club filter is generated by the sets ClF , for all
F : [κ]<ω → κ. A set S ⊆ κ is stationary if and only if for every F :
[κ]<ω → κ, S contains a closure point of F .

1.2. Splitting Stationary Sets

It is not immediately obvious that the club filter is not an ultrafilter—that
there exist stationary sets that are co-stationary, i.e. whose complement is
stationary. The basic result is the following theorem of Solovay:

1.8 Theorem (Solovay [85]). Let κ be a regular uncountable cardinal. Then
every stationary subset of κ can be partitioned into κ disjoint stationary sets.

Solovay’s proof of this basic result of combinatorial set theory uses methods
of forcing and large cardinals, and we shall describe it later in this section.
For an elementary proof, see e.g. [49, p. 434].

To illustrate the combinatorics involved, let us prove a special case of
Solovay’s theorem.

1.9 Proposition. There exist ℵ1 pairwise disjoint stationary subsets of ω1.

Proof. For each limit α < ω1, choose an increasing sequence 〈aα
n : n ∈ ω〉

with limit α. We claim that there is an n such that for all η < ω1, there are
stationary many α such that aα

n ≥ η: Otherwise there exists, for each n, some
ηn such that aα

n ≥ ηn for only a nonstationary set of α’s. By ω1-completeness,
for all but a nonstationary set of α’s the sequences {aα

n}n are bounded by
supn ηn. A contradiction.

Thus let n be such that for all η, the set Sη = {α : aα
n ≥ η} is stationary.

The function f(α) = aα
n is regressive and so by Fodor’s Theorem, there is

some γη ≥ η such that Tη = {α : aα
n = γη} is stationary. Clearly, there are

ℵ1 distinct values of γη and therefore ℵ1 mutually disjoint sets Tη. �

Let κ be a regular uncountable cardinal, and let λ < κ be regular. Let

Eκ
λ = {α < κ : cf(α) = λ}.

For each λ, Eκ
λ is a stationary set. An easy modification of the proof of

Proposition 1.9 above shows that for every regular λ < κ, every stationary
subset of Eκ

λ can be split into κ disjoint stationary sets.
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The union
⋃

λ Eκ
λ is the set of all singular limit ordinals less than κ. Its

complement is the set Reg(κ) of all regular cardinals less than κ. The set
Reg(κ) is stationary just in case κ is a Mahlo cardinal.

1.3. Generic Ultrapowers

Let M be a transitive model of ZFC, and let κ be a cardinal in M . Let U
be an M -ultrafilter, i.e. an ultrafilter on the set algebra P (κ) ∩M . Using
functions f ∈ M on κ, one can form an ultrapower N = UltU (M), which is
a model of ZFC but not necessarily well-founded:

f =∗ g ⇐⇒ {α : f(α) = g(α)} ∈ U,

f ∈∗ g ⇐⇒ {α : f(α) ∈ g(α)} ∈ U.

The (equivalence classes of) constant functions cx(α) = x provide an elemen-
tary embedding j : (M,∈) → (N,∈∗), where j(x) = cx, for all x ∈M .

An M -ultrafilter U is M -κ-complete if it is closed under intersections of
families {Xα : α < γ} ∈ M , for all γ < κ; U is normal if every regressive
f ∈M is constant on a set in U .

1.10 Proposition. Suppose that U is a nonprincipal M -κ-complete, normal
M -ultrafilter on κ. Then the ordinals of N have a well-ordered initial segment
of order type at least κ + 1, j(γ) = γ for all γ < κ, and κ is represented in
N by the diagonal function d(α) = α.

Now let κ be a regular uncountable cardinal and consider the forcing no-
tion (P,<) where P is the collection of all stationary subsets of κ, and the
ordering is by inclusion. Let B be the complete Boolean algebra B = B(P ),
the completion of (P,<). Equivalently, B is the completion of the Boolean
algebra P (κ)/NS. Let us consider the generic extension V [G] given by a
generic G ⊆ P . It is rather clear that G is a nonprincipal V -κ-complete
normal ultrafilter on κ. Thus Proposition 1.10 applies, where N = UltG(V ).
The model UltG(V ) is called a generic ultrapower.

There is more on generic ultrapowers in Foreman’s chapter in this Hand-
book; here we use them to present the original argument of Solovay’s [85].
First we prove a lemma (that will be generalized in Sect. 2):

1.11 Lemma. Let κ be a regular uncountable cardinal, and let S be a sta-
tionary set. Then the set

T = {α ∈ S : either α /∈ Reg(κ) or S ∩ α is not a stationary subset of α}

is stationary.

Proof. Let C be a club and let us show that T ∩ C is nonempty. Let α be
the least element of the nonempty set S ∩ C ′ where C ′ = Lim(C − ω). If α
is not regular, then α ∈ T ∩C and we are done, so assume that α ∈ Reg(κ).
Now C ′ ∩ α is a club subset of α disjoint from S ∩ α, and so α ∈ T . �
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We shall now outline the proof of Solovay’s theorem:

Proof of Theorem 1.8. Let S be a stationary subset of κ that cannot be par-
titioned into κ disjoint stationary sets. By Proposition 1.9 and the remarks
following its proof, we have S ⊆ Reg(κ). Let I = NS�S, i.e. I = {X ⊆ κ :
X ∩ S ∈ NS}. The ideal I is κ-saturated, i.e. every disjoint family W ⊆ I+

has size less than κ; equivalently, B = P (κ)/I has the κ-chain condition. I
is also κ-complete and normal.

Let G ⊆ I+ be generic, and let N = UltG(V ) be the generic ultrapower.
As I is κ-saturated, N is well-founded (this is proved by showing that every
name ḟ for a function in V on κ can be replaced by an actual function on κ).
Thus we have (in V [G]) an elementary embedding j : V → N where N is
a transitive class, j(γ) = γ for all γ < κ, and κ is represented in N by the
diagonal function d(α) = α. Note that if A ⊆ κ is any set (in V ), then
A ∈ N : this is because A = j(A)∩κ; in fact A is represented by the function
f(α) = A ∩ α.

Now we use the fact that κ-c.c. forcing preserves stationarity (cf. Theo-
rem 1.13 below). Thus S is stationary in V [G], and because N ⊆ V [G], S is
a stationary set in the model N . By the ultrapower theorem we have

V [G] � S ∩ α is stationary for G-almost all α.

This, translated into forcing, gives

{α ∈ S : S ∩ α is not stationary} ∈ I

but that contradicts Lemma 1.11. �

Another major application of generic ultrapowers is Silver’s Theorem:

1.12 Theorem (Silver [84]). Let λ be a singular cardinal of uncountable
cofinality. If 2α = α+ for all cardinals α < λ, then 2λ = λ+.

Silver’s Theorem is actually stronger than this. It assumes only that
2α = α+ for a stationary set of α’s (see Sect. 2 for the definition of “sta-
tionary” when λ is not regular). The proof uses a generic ultrapower. Even
though UltG(V ) is not necessarily well founded, the method of generic ultra-
powers enables one to conclude that 2λ = λ+ when 2α = α+ holds almost
everywhere.

Silver’s Theorem can be proved by purely combinatorial methods [9, 10].
In [29], Galvin and Hajnal used combinatorial properties of stationary sets
to prove a substantial generalization of Silver’s Theorem (superseded only by
Shelah’s powerful pcf theory). For further generalizations using stationary
sets and generic ultrapowers, see [50] and [51].

One of the concepts introduced in [29] is the Galvin-Hajnal norm of an
ordinal function. If f and g are ordinal functions on a regular uncountable
cardinal κ, let f < g if {α < κ : f(α) < g(α)} contains a club. The relation



1. The Closed Unbounded Filter 99

< is a well-founded partial order, and the norm ‖f‖ is the rank of f in the
relation <.

We remark that if f < g, then in the generic ultrapower (by NS), the
ordinal represented by f is smaller than the ordinal represented by g.

By induction on η one can easily show that for each η < κ+ there exists
a canonical function fη : κ → κ of norm η, i.e. ‖fη‖ = η and whenever
‖h‖ = η, then {α : fη(α) ≤ h(α)} contains a club. (Proof: Let f0(α) = 0,
fη+1(α) = fη(α) + 1. If η < κ+ is a limit ordinal, let λ = cf(η) and let
η = limξ→λ ηξ. If λ < κ, let fη(α) = supξ<λ fηξ

(α) and if λ = κ, let
fη(α) = supξ<α fηξ

(α).)
A canonical function of norm κ+ may or may not exist; existence is con-

sistent with ZFC (cf. [52]). The existence of canonical functions fη for all η
is equi-consistent with a measurable cardinal [58].

1.4. Stationary Sets in Generic Extensions

Let M and N be transitive models and let M ⊆ N . Let κ be a regular un-
countable cardinal and let S ∈M be a subset of κ. Clearly, if S is stationary
in the model N , then S is stationary in M ; the converse is not necessarily
true, and κ may even not be regular or uncountable in N . It is important to
know which forcing extensions preserve stationarity and we shall return to
the general case in Sect. 5. For now, we state two important special cases:

1.13 Theorem. Let κ be a regular uncountable cardinal and let P be a notion
of forcing.

(a) If P satisfies the κ-chain condition, then every club C ∈ V [G] has a
club subset D in the ground model. Hence every stationary S remains
stationary in V [G].

(b) If P is λ-closed for every λ < κ, then every stationary S remains
stationary in V [G].

Proof (Outline). (a) This follows from this basic fact on forcing: if P is κ-c.c.,
then every unbounded A ⊆ κ in V [G] has an unbounded subset in V .

(b) Let p � Ċ is a club; we find a γ ∈ S and a q ≤ p such that q � γ ∈ Ċ
as follows: we construct an increasing continuous ordinal sequence {γα}α<κ

and a decreasing sequence {pα} of conditions such that pα+1 � γα+1 ∈ Ċ,
and if α is a limit ordinal, then γα = limξ<α γξ and pα is a lower bound of
{pξ}ξ<α. There is some limit ordinal α such that γα ∈ S. It follows that
pα � γα ∈ Ċ. �

We shall now describe the standard way of controlling stationary sets in
generic extensions, called shooting a club. First we deal with the simplest
case when κ = ℵ1. Let S be a stationary subset of ω1, and consider the
following forcing PS (cf. [12]): The forcing conditions are all bounded closed
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sets p of countable ordinals such that p ⊆ S. A condition q is stronger than
p if q end-extends p, i.e. p = q ∩ α for some α.

It is clear that this forcing produces (“shoots”) a closed unbounded subset
of S in the generic extension, thus the complement of S becomes nonstation-
ary. The main point of [12] is that ω1 is preserved and in fact V [G] adds no
new countable sets. Also, every stationary subset of S remains stationary.

The forcing PS has the obvious generalization to κ > ℵ1, but more
care is required to guarantee that no new small sets of ordinals are added.
For instance, this is the case when S contains the set Sing of all singular
ordinals < κ. For a more detailed discussion of this problem see [1].

1.5. Some Combinatorial Principles

There has been a proliferation of combinatorial principles involving closed
unbounded and stationary sets. Most can be traced back to Jensen’s investi-
gation of the fine structure of L [59] and generalize either Jensen’s diamond
(♦) or square (�). We conclude this section by briefly mentioning diamond
and club-guessing, and only their typical special cases.

1.14 Theorem (♦(ℵ1), Jensen [59]). Assume V = L. There exists a se-
quence 〈aα : α < ω1〉 with each aα ⊆ α, such that for every A ⊆ ω1, the set
{α < ω1 : A ∩ α = aα} is stationary.

Note that every A ⊆ ω is equal to some aα, and so ♦(ℵ1) implies 2ℵ0 = ℵ1.

1.15 Theorem (♦(Eℵ2
ℵ0

), Gregory [40]). Assume GCH. There exists a se-
quence 〈aα : α ∈ Eℵ2

ℵ0
〉 with each aα ⊆ α, such that for every A ⊆ ω2, the set

{α < ω2 : A ∩ α = aα} is stationary.

1.16 Theorem (Club-guessing, Shelah [82]). There exists a sequence 〈cα :
α ∈ Eℵ3

ℵ1
〉, where each cα is a closed unbounded subset of α, such that for

every club C ⊆ ω3, the set {α : cα ⊆ C} is stationary.

Unlike most generalizations of square and diamond, Theorem 1.16 is a
theorem of ZFC but we note that the gap (between ℵ1 and ℵ3) is essential.

2. Reflection

2.1. Reflecting Stationary Sets

An important property of stationary sets is reflection. It is used in several
applications, and provides a structure among stationary sets—it induces a
well founded hierarchy. Natural questions about reflection and the hierarchy
are closely related to large cardinal properties.

We start with a generalization of stationary sets. Let α be a limit ordinal
of uncountable cofinality, say cf(α) = κ > ℵ0. A set S ⊆ α is stationary if it
meets every closed unbounded subset of α. The closed unbounded subsets of
α generate a κ-complete filter, and Fodor’s Theorem 1.5 yields this:
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2.1 Lemma. If f is a regressive function on a stationary set S ⊆ α, then
there exists a γ < α such that f(ξ) < γ on a stationary subset of S.

If S is a set of ordinals and α is a limit ordinal such that cf(α) > ω, we
say that S is stationary in α if S ∩ α is a stationary subset of α.

2.2 Definition. Let κ be a regular uncountable cardinal and let S be a
stationary subset of κ. If α < κ and cf(α) > ω, S reflects at α if S is
stationary in α. S reflects if it reflects at some α < κ.

It is implicit in the definition that κ > ℵ1.
For our first observation, let α < κ be such that cf(α) > ω. There is a club

C ⊆ α of order type cf(α) such that every element of C has cofinality < cf(α).
Thus if S ⊆ κ is such that every β ∈ S has cofinality ≥ cf(α), then S does not
reflect at α. In particular, if κ = λ+ where λ is regular, then the stationary
set Eκ

λ does not reflect.
On the other hand, if λ < κ is regular and λ+ < κ, then Eκ

λ reflects at
every α < κ such that cf(α) > λ.

To investigate reflection systematically, let us first look at the simplest
case, when κ = ℵ2. Let E0 = Eℵ2

ℵ0
and E1 = Eℵ2

ℵ1
. The set E1 does not

reflect; can every stationary S ⊆ E0 reflect?
Let us recall Jensen’s Square Principle [59]: (�κ) There exists a sequence

〈Cα : α ∈ Lim (κ+)〉 such that:

(i) Cα is club in α,

(ii) if β ∈ Lim(Cα), then Cβ = Cα ∩ β, and

(iii) if cf α < κ, then |Cα| < κ.

Now assume that �ω1 holds and let 〈Cα : α ∈ Lim(ω2)〉 be a square
sequence. Note that for each α ∈ E1, the order type of Cα is ω1. It follows
that there exists a countable limit ordinal η such that the set S = {γ ∈ E0 : γ
is the ηth element of some Cα} is stationary. But for every α ∈ E1, S has at
most one element in common with Cα, and so S does not reflect.

Thus �ω1 implies that there is a nonreflecting stationary subset of Eℵ2
ℵ0

.
Since �ω1 holds unless ℵ2 is Mahlo in L, the consistency strength of “every
S ⊆ Eℵ2

ℵ0
reflects” is at least a Mahlo cardinal. This is in fact the exact

strength:

2.3 Theorem (Harrington-Shelah [41]). The following are equi-consistent:

(i) the existence of a Mahlo cardinal,

(ii) every stationary set S ⊆ Eℵ2
ℵ0

reflects.
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Theorem 2.3 improves a previous result of Baumgartner [6] who proved
the consistency of (ii) from a weakly compact cardinal. Note that (ii) implies
that every stationary set S ⊆ Eℵ2

ℵ0
reflects at stationary many α ∈ Eℵ2

ℵ1
.

A related result of Magidor (to which we return later in this section) gives
this equi-consistency:

2.4 Theorem (Magidor [70]). The following are equi-consistent:

(i) the existence of a weakly compact cardinal,

(ii) every stationary set S ⊆ Eℵ2
ℵ0

reflects at almost all α ∈ Eℵ2
ℵ1

.

Here, “almost all” means all but a nonstationary set.
Let us now address the question whether it is possible that every stationary

subset of κ reflects. We have seen that this is not the case when κ is the
successor of a regular cardinal. Thus κ must be either inaccessible or κ = λ+

where λ is singular.
Note that because a weakly compact cardinal is Π1

1 indescribable, every
stationary subset of it reflects. In [68], Kunen showed that it is consistent that
every stationary S ⊆ κ reflects while κ is not weakly compact. In [76] it is
shown that the consistency strength of “every stationary subset of κ reflects”
is strictly between greatly Mahlo and weakly compact. (For definition of
greatly Mahlo, see Sect. 2.2.)

If, in addition, we require that κ be a successor cardinal, then much
stronger assumptions are necessary. The argument we gave above using �ω1

works for any κ:

2.5 Proposition (Jensen). If �λ holds, then there is a nonreflecting sta-
tionary subset of Eλ+

ℵ0
.

As the consistency strength of ¬�λ for singular λ is at least a strong
cardinal (as shown by Jensen), one needs at least that for the consistency of
“every stationary S ⊆ λ+ reflects”. In [70], Magidor proved the consistency
of “every stationary subset of ℵω+1 reflects” from the existence of infinitely
many supercompact cardinals.

We mention the following applications of nonreflecting stationary sets:

2.6 Theorem (Mekler-Shelah [76]). The following are equi-consistent:

(i) every stationary S ⊆ κ reflects,

(ii) every κ-free abelian group is κ+-free.

2.7 Theorem (Tryba [90]). If a regular cardinal κ is Jónsson, then every
stationary S ⊆ κ reflects.

2.8 Theorem (Todorčević [88]). If Rado’s Conjecture holds, then for every
regular κ > ℵ1, every stationary S ⊆ Eκ

ℵ0
reflects.
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2.2. A Hierarchy of Stationary Sets

Consider the following operation (the Mahlo operation) on stationary sets.
For a stationary set S ⊆ κ, the trace of S is the set of all α at which S
reflects:

Tr(S) = {α < κ : cf(α) > ω and S ∩ α is stationary in α}.

The following basic properties of trace are easily verified.

2.9 Lemma.

(a) If S ⊆ T , then Tr(S) ⊆ Tr(T ),

(b) Tr(S ∪ T ) = Tr(S) ∪ Tr(T ),

(c) Tr(Tr(S)) ⊆ Tr(S),

(d) If S  T mod NS, then Tr(S)  Tr(T ) mod NS.

Property (d) shows that the Mahlo operation may be considered as an
operation on the Boolean algebra P (κ)/NS.

If λ < κ is regular, let Mκ
λ = {α < κ : cf(α) ≥ λ}, and note that Tr(Eκ

λ)
= Tr(Mκ

λ) = Mκ
λ+ .

The Mahlo operation on P (κ)/NS can be iterated α times, for α < κ+.
Let

M0 = κ,

Mα+1 = Tr(Mα),
Mα = Δξ<κMαξ

(α limit, α = sup{αξ : ξ < κ}).

The sets Mα are defined mod NS (the limit stages depend on the enumera-
tion of α). The sequence {Mα}α<κ+ is decreasing mod NS, and when α < κ,
then Mα = Mκ

λ where λ is the αth regular cardinal. Note that κ is (weakly)
Mahlo just in case Mκ = Reg(κ) is stationary, and that by Lemma 1.11,
{Mα}α is strictly decreasing (mod NS, as long as Mα is stationary). Follow-
ing [13], κ is called greatly Mahlo if Mα is stationary for every α < κ+.

We shall now consider the following relation between stationary subsets
of κ.

2.10 Definition (Jech [47]).

S < T iff S ∩ α is stationary for almost all α ∈ T.

In other words, S < T iff Tr(S) ⊇ T mod NS. As an example, if λ < μ are
regular, then Eκ

λ < Eκ
μ. Note also that the language of generic ultrapowers

gives this description of <:

2.11 Proposition. S < T iff T � S is stationary in UltG(V ).
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The following lemma states the basic properties of <.

2.12 Lemma.

(a) A < Tr(A),

(b) If A < B and B < C, then A < C,

(c) If A  A′ and B  B′ mod NS, and if A < B, then A′ < B′.

By (c), < can be considered a relation on P (κ)/NS. By Proposition 1.11,
< is irreflexive and so it is a partial ordering. The next theorem shows that
the partial ordering < is well founded.

2.13 Theorem (Jech [47]). The relation < is well founded.

Proof. Assume to the contrary that there are stationary sets such that A1 >
A2 > A3 > · · · . Therefore there are clubs Cn such that An∩Cn ⊆ Tr(An+1)
for n = 1, 2, . . . . For each n, let

Bn = An ∩ Cn ∩ Lim(Cn+1) ∩ Lim(Lim(Cn+2)) ∩ · · · .

Each Bn is stationary, and for every n, Bn ⊆ Tr(Bn+1). Let αn = min(Bn).
Since Bn+1∩αn is stationary, we have αn+1 < αn, and therefore, a decreasing
sequence α1 > α2 > α3 > · · · . A contradiction. �

As < is well founded, we can define the order of stationary sets A ⊆ κ,
and of the cardinal κ:

o(A) = sup({o(X) + 1 : X < A}),
o(κ) = sup({o(A) + 1 : A ⊆ κ stationary}).

We also define o(ℵ0) = 0, and o(α) = o(cf(α)) for every limit ordinal α.
Note that o(Eκ

ℵ0
) = 0, and in general o(Eκ

λ) = o(Mκ
λ) = α, if λ is the αth

regular cardinal. Also, o(ℵn) = n, o(κ) ≥ κ+1 iff κ is Mahlo, and o(κ) ≥ κ+

iff κ is greatly Mahlo.

2.3. Canonical Stationary Sets

If λ is the αth regular cardinal, then Eκ
λ has order α; moreover, the set is

canonical, in the sense explained below. In fact, canonical stationary sets
exist for all orders α < κ+.

Let E be a stationary set of order α. If X ⊆ E is stationary, then
o(X) ≥ o(E). We call E canonical of order α if (i) every stationary X ⊆ E
has order α, and (ii) E meets every set of order α.

Clearly, a canonical set of order α is unique (mod NS), and two canonical
sets of different orders are disjoint (mod NS). In the following proposition,
“maximal” and  is meant mod NS.
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2.14 Proposition (Jech [47]). A canonical set E of order α exists iff there
exists a maximal set M of order α. Then (mod NS)

E  M − Tr(M), M  E ∪ Tr(E), and Tr(E)  Tr(M).

One can show that the sets Mα obtained by iterating the Mahlo operation
are maximal (as long as they are stationary). Thus when we let Eα = Mα −
Tr(Mα), we get canonical stationary sets, of all orders α < κ+ (for α < o(κ)).

The canonical stationary sets Eα and the canonical function fα of Galvin-
Hajnal norm α are closely related:

2.15 Proposition (Jech [47]). For every α < κ+, α < o(κ),

Eα  {ξ < κ : fα(ξ) = o(ξ)}.

2.4. Full Reflection

Let us address the question of what is the largest possible amount of reflec-
tion, for stationary subsets of a given κ. As A < B means that A reflects at
almost all points of B, we would like to maximize the relation <. But A < B
implies that o(A) < o(B), so we might ask whether it is possible that A < B
for any two stationary sets such that o(A) < o(B).

By Magidor’s Theorem 2.4 it is consistent that S < Eℵ2
ℵ1

, and therefore
S < T for every S of order 0 and every T of order 1. However, this does not
generalize, as the following lemma shows that when κ ≥ ℵ3, then there exist
S and T with o(S) = 0 and o(T ) = 1 such that S ≮ T .

2.16 Lemma (Jech-Shelah [53]). If κ ≥ ℵ3, then there exist stationary sets
S ⊆ Eκ

ℵ0
and T ⊆ Eκ

ℵ1
such that S does not reflect at any α ∈ T .

Proof. Let Sγ , γ < ω2, be pairwise disjoint stationary subsets of Eκ
ℵ0

, and
let Cα, α ∈ Eκ

ℵ1
, be such that for every α, Cα is a club subset of α, of order

type ω1. Because at most ℵ1 of the sets Sγ meet each Cα, there exists for
each α some γ(α) such that Cα ∩ Sγ(α) = ∅.

There exists some γ such that the set T = {α : γ(α) = γ} is stationary;
let S = Sγ . For every α ∈ T , S ∩ Cα = ∅ and so S does not reflect at α. �

This lemma illustrates some of the difficulties involved when dealing with
reflection at singular ordinals. This problem is investigated in detail in [53],
where the best possible consistency result is proved for stationary subsets of
the ℵn, n < ω.

Let us say that a stationary set S ⊆ κ reflects fully at regular cardinals
if for any stationary set T of regular cardinals o(S) < o(T ) implies S < T ,
and let us call Full Reflection the statement that every stationary subset of
κ reflects fully at regular cardinals.

Full Reflection is of course nontrivial only if κ is a Mahlo cardinal. A mod-
ification of Theorem 2.4 shows that Full Reflection for a Mahlo cardinal is



106 Jech / Stationary Sets

equi-consistent with weak compactness. The following theorem establishes
the consistency strength of Full Reflection for cardinals in the Mahlo hierar-
chy:

2.17 Theorem (Jech-Shelah [54]). The following are equi-consistent, for
every α ≤ κ+:

(i) κ is Π1
α-indescribable,

(ii) κ is α-Mahlo and Full Reflection holds.

(A regular cardinal κ is α-Mahlo if o(κ) ≥ κ + α; κ is Π1
1-indescribable iff

it is weakly compact.)
Full Reflection is also consistent with large cardinals. The paper [56]

proves the consistency of Full Reflection with the existence of a measurable
cardinal. This has been improved and further generalized in [38].

Finally, the paper [91] shows that any well-founded partial order of size
≤ κ+ can be realized by the reflection ordering < on stationary subsets of κ,
in some generic extension (using P 2κ-strong κ in the ground model).

3. Saturation

3.1. κ+-saturation

By Solovay’s Theorem 1.8 every stationary subset of κ can be split into κ
disjoint stationary sets. In other words, for every stationary S ⊆ κ, the ideal
NS�S is not κ-saturated. A natural question is if the nonstationary ideal can
be κ+-saturated.

An ideal I on κ is κ+-saturated if the Boolean algebra P (κ)/I has the
κ+-chain condition. Thus NS�S is κ+-saturated when there do not exist
κ+ stationary subsets of S such that the intersection of any two of them
is nonstationary. The existence and properties of κ+-saturated ideals have
been thoroughly studied since their introduction in [85], and involve large
cardinals. The reader will find more details in Foreman’s chapter in this
Handbook. We shall concentrate on the special case when I is the nonsta-
tionary ideal.

The main question, whether the nonstationary ideal can be κ+-saturated,
has been answered. But a number of related questions are still open.

3.1 Theorem (Gitik-Shelah [37]). The nonstationary ideal on κ is not
κ+-saturated, for every regular cardinal κ ≥ ℵ2.

3.2 Theorem (Shelah). It is consistent, relative to the existence of a Woodin
cardinal, that the nonstationary ideal on ℵ1 is ℵ2-saturated.

The consistency result in Theorem 3.2 was first proved in [87] using a
strong determinacy assumption. That hypothesis was reduced in [92] to AD,
while in [27], the assumption was the existence of a supercompact cardinal.
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Shelah’s result (announced in [81]) is close to optimal: by Steel [86], the sat-
uration of NS plus the existence of a measurable cardinal imply the existence
of an inner model with a Woodin cardinal.

All the models mentioned in the preceding paragraph satisfy 2ℵ0 > ℵ1.
This may not be accidental, and it has been conjectured that the saturation
of NS on ℵ1 implies that 2ℵ0 > ℵ1. In fact, Woodin proved this [94] under
the additional assumption that there exists a measurable cardinal. We note
in passing that by [27], 2ℵ0 = ℵ1 is consistent with NS�S being saturated for
some stationary S.

Woodin’s construction [94] yields a model (starting from AD) in which
the ideal NS on ℵ1 is ℵ1-dense, i.e. the algebra P (ω1)/NS has a dense set
of size ℵ1. This, and Woodin’s more recent work using Steel’s inner model
theory, gives the following equi-consistency.

3.3 Theorem (Woodin). The following are equi-consistent:

(i) ZF + AD,

(ii) There are infinitely many Woodin cardinals,

(iii) The nonstationary ideal on ℵ1 is ℵ1-dense.

See the Koellner-Woodin chapter of this Handbook for (i) implies (ii), and
the Neeman chapter for (ii) implies (i).

As for the continuum hypothesis, Shelah proved in [80] that if NS on ℵ1

is ℵ1-dense, then 2ℵ0 = 2ℵ1 .
We remark that the mere existence of a saturated ideal affects cardinal

arithmetic, cf. [63] and [51].
Let us now return to Theorem 3.1. The general result proved in [37] is

this:

3.4 Theorem (Gitik-Shelah [37]). If ν is a regular cardinal and ν+ < κ,
then NS�Eκ

ν is not κ+-saturated.

The proof of Theorem 3.4 combines an earlier result of Shelah (Theo-
rem 3.7 below) with an application of the method of guessing clubs (as in
Theorem 1.16). The earlier result uses generic ultrapowers and states that
if κ = λ+ and ν �= cf(λ) is regular, then no ideal concentrating on Eκ

ν is
κ+-saturated.

The method of generic ultrapowers is well suited for κ+-saturated ideals.
Forcing with P (κ)/I where I is a normal κ-complete κ+-saturated ideal
makes the generic ultrapower N = UltG(V ) well founded, preserves the car-
dinal κ+, and satisfies PN (κ) = PV [G](κ). It follows that all cardinals < κ
are preserved in V [G], and it is obvious that if Eκ

ν ∈ G, then N (and therefore
V [G] as well) satisfies cf(κ) = ν.

Shelah’s Theorem 3.7 below follows from a simple combinatorial lemma.
Let λ be a cardinal and let α < λ+ be a limit ordinal. Let us call a family
{Xξ : ξ < λ+} a strongly almost disjoint (s.a.d.) family of subsets of α if
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every Xξ ⊆ α is unbounded, and if for every ϑ < λ+ there exist ordinals
δξ < α, for ξ < ϑ, such that the sets Xξ − δξ, ξ < ϑ, are pairwise disjoint.
Note that if κ is a regular cardinal than there is a s.a.d. family {Xξ : ξ < κ+}
of subsets of κ.

3.5 Lemma. If α < λ+ and cf(α) �= cf(λ), then there exists no strongly
almost disjoint family of subsets of α.

Proof. Assume to the contrary that {Xξ : ξ < λ+} is a s.a.d. family of subsets
of α. We may assume that each Xξ has order type cf(α). Let f be a function
mapping λ onto α. Since cf(λ) �= cf(α) there exists for each ξ some γξ < λ
such that Xξ∩f“γξ is cofinal in α. There is some γ and a set W ⊆ λ+ of size
λ such that γξ = γ for all ξ ∈ W . Let ϑ > sup(W ). By the assumption on
the Xξ there exist ordinals δξ < α, ξ < ϑ, such that the Xξ − δξ are pairwise
disjoint. Thus f −1(Xξ − δξ), ξ ∈ W , are λ pairwise disjoint subsets of γ.
A contradiction. �

3.6 Corollary (Shelah [79]). If κ is a regular cardinal and if a notion of
forcing P makes cf(κ) �= cf(|κ|), then P collapses κ+.

Proof. Assume that κ+ is not collapsed; thus in V [G], (κ+)V = λ+ where
λ = |κ|. In V there is a s.a.d. family {Xξ : ξ < (κ+)V }, and it remains a
s.a.d. family in V [G], of size λ+. Since cf(κ) �= cf(λ), in V [G], this contradicts
Lemma 3.5. �

3.7 Theorem (Shelah). If κ = λ+, if ν �= cf(λ) is regular and if I is a
normal κ-complete κ+-saturated ideal on κ, then Eκ

ν ∈ I.

Proof. If not, then forcing with I-positive subsets of Eκ
ν preserves κ+ as well

as cf(λ), and makes cf(κ) = ν; a contradiction. �

Theorem 3.4 leaves open the following problem: If λ is a regular cardinal,
can NS�Eλ+

λ be λ++-saturated? (For instance can NS�Eℵ2
ℵ1

be ℵ3-saturated?)
Let us also mention that for all regular ν and κ not excluded by Corollary 3.7,
it is consistent that NS�S is κ+-saturated for some S ⊆ Eκ

ν (see [33]).
If κ is a large cardinal, then NS�Reg(κ) can be κ+-saturated, as the follow-

ing theorem shows. Of course, κ cannot be too large: if κ is greatly Mahlo,
then the canonical stationary sets Eα κ ≤ α < κ+ witness nonsaturation.

3.8 Theorem (Jech-Woodin [57]). For any α < κ+, the following are equi-
consistent:

(i) κ is measurable of order α,

(ii) κ is α-Mahlo and the ideal NS�Reg(κ) on κ is κ+-saturated.
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3.2. Precipitousness

An important property of saturated ideals is that the generic ultrapower is
well-founded. It has been recognized that this property is important enough
to single out and study the class of ideals that have it. The ideals for which the
generic ultrapower is well founded are called precipitous. They are described
in detail in Foreman’s chapter in this Handbook; here we address the question
of when the nonstationary ideal is precipitous.

Precipitous ideals were introduced by Jech and Prikry in [50]. There are
several equivalent formulations of precipitousness. Let I be an ideal on some
set E. An I-partition is a maximal family of I-positive sets such that the
intersection of any two of them is in I. Let GI denote the infinite game of two
players who alternately pick I-positive sets Sn such that S1 ⊇ S2 ⊇ S3 ⊇ · · · .
The first player wins if

⋂∞
n=1 Sn = ∅.

3.9 Theorem (Jech-Prikry [50, 45, 46, 30]). Let I be an ideal on a set E.
The following are equivalent:

(i) Forcing with P (E)/I makes the generic ultrapower well-founded,

(ii) For every sequence {Wn}∞
n=1 of I-partitions there exists a sequence

{Xn}∞
n=1 such that Xn ∈Wn for each n, and

⋂∞
n=1 Xn �= ∅,

(iii) The first player does not have a winning strategy in the game GI .

The problem of whether the nonstationary ideal on κ can be precipitous
involves large cardinals. For κ = ℵ1 the exact consistency strength is the
existence of a measurable cardinal:

3.10 Theorem (Jech-Magidor-Mitchell-Prikry [58]). The following are equi-
consistent:

(i) There exists a measurable cardinal,

(ii) NS on ℵ1 is precipitous.

For κ ≥ ℵ2, stronger large cardinal assumptions are involved. For κ = ℵ2,
the consistency strength is a measurable of order 2:

3.11 Theorem (Gitik [31]). The following are equi-consistent:

(i) There exists a measurable cardinal of order 2,

(ii) NS on ℵ2 is precipitous.

See Cummings’ chapter in this Handbook for proofs of both of these the-
orems. For the general case, the paper [47] provided lower bounds for the
consistency strength of “NS is precipitous” in terms of the Mitchell order,
while models with NS precipitous for κ > ℵ2 were constructed in [33] and
[27] from strong assumptions. In [35] and [36], Gitik established the exact
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consistency strength of “NS on κ is precipitous” when κ is the successor of
a regular cardinal λ (the existence of an (ω, λ + 1)-repeat point), as well as
nearly optimal lower and upper consistency bounds for κ inaccessible. Addi-
tional lower bounds for the case κ = λ+ where λ is a large cardinal appear
in [95].

The problem of whether the nonstationary ideal on κ can be precipitous
while κ is measurable was first addressed by Kakuda in [61] who proved
that many measurables are necessary. This lower bound was improved to
having Mitchell order κ+ + 1 in [47], and to a repeat point in [34]. Gitik’s
paper also shows that the existence of a supercompact cardinal suffices for
the consistency of the nonstationary ideal on a supercompact cardinal being
precipitous.

4. The Closed Unbounded Filter on Pκλ

4.1. Closed Unbounded Sets in PκA

One of the useful tools of combinatorial set theory is a generalization of the
concepts of closed unbounded set and stationary set. This generalization,
introduced in [43] and [44], replaces 〈κ,<〉 with 〈Pκλ,⊂〉, and is justified by
the fact that the crucial Theorem 1.5 remains true under the generalization.

For κ a regular uncountable cardinal and A a set of cardinality at least κ,
let PκA denote the set {x : x ⊆ A and |x| < κ}. Furthermore, we let
[X]ν = {x ⊆ X : |x| = ν} whenever |X| ≥ ν and ν an infinite cardinal.

4.1 Definition (Jech [44]). Let κ be a regular uncountable cardinal and let
|A| ≥ κ.

(a) A set X ⊆ PκA is unbounded (in PκA) if for every x ∈ PκA there is a
y ⊇ x such that y ∈ X.

(b) A set X ⊆ PκA is closed (in PκA) if for any chain x0 ⊆ x1 ⊆ · · · ⊆
xξ ⊆ · · · , ξ < α, of sets in X, with α < κ, the union

⋃
ξ<α xξ is in X.

(c) A set C ⊆ PκA is closed unbounded if it is closed and unbounded.

(d) A set S ⊆ PκA is stationary (in PκA) if S ∩ C �= ∅ for every closed
unbounded C ⊆ PκA.

The closed unbounded filter on PκA is the filter generated by the closed
unbounded sets. We remark that when A = κ, then the set κ ⊆ Pκκ is closed
unbounded, and the club filter on κ is the restriction to κ of the club filter
on Pκκ. As before, the basic observation is that the intersection of two clubs
is a club, and we have again:
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4.2 Proposition. The club filter on PκA is κ-complete.

For the generalization of Theorem 1.5, let us first define the diagonal in-
tersection.

Δa∈AXa =
{
x ∈ PκA : x ∈

⋂
a∈xXa

}
.

The generalization of Lemma 1.4 is this:

4.3 Lemma. If 〈Ca : a ∈ A〉 is a sequence of closed unbounded sets in PκA,
then its diagonal intersection is closed unbounded.

Again, this lemma immediately implies the appropriate generalization of
Theorem 1.5:

4.4 Theorem (Jech [44]). If S is a stationary set in PκA and if f is a
function on S such that f(x) ∈ x for every x ∈ S − {∅}, then there exists
some a ∈ A such that f(x) = a on a stationary subset of S.

In Proposition 1.6 we showed that the club filter is the smallest normal
filter on κ. We shall now do the same for PκA. A κ-complete filter F on PκA
is normal if for every a ∈ A, {x ∈ PκA : a ∈ x} ∈ F , and if F is closed under
diagonal intersections.

The following fact (proved by induction on |D|) is quite useful; D is
⊆-directed if for any x, y ∈ D there is a z ∈ D such that x ∪ y ⊆ z.

4.5 Proposition. If X is a closed set in PκA, then for any ⊆-directed D
with |D| < κ,

⋃
D ∈ X.

Let f : [A]<ω → PκA; a set x ∈ PκA is a closure point of f is f(e) ⊆ x
whenever e ⊆ x. The set Clf of all closure points x ∈ PκA is easily seen to
be a club. More importantly, the sets Clf generate the club filter:

4.6 Proposition (Menas [77]). For every closed unbounded set C in PκA
there is an f : [A]<ω → PκA such that Clf ⊆ C.

Proof. By induction on |e| we find an infinite set f(e) ∈ C such that e ⊆ f(e)
and that f(e′) ⊆ f(e) whenever e′ ⊆ e. To see that Clf ⊆ C, let x be a
closure point of f . As x =

⋃
{f(e) : e ∈ [x]<ω} is the union of a small

⊆-directed subset of C, we have x ∈ C. �

4.7 Corollary (Carr [18]). If F is a normal κ-complete filter on PκA, then
F contains all closed unbounded sets.

Proof. Let F+ denote the F -positive sets, those whose complement is not
in F . A consequence of normality is that if X ∈ F+ and g is a function on
X such that g(x) ∈ [x]<ω for all x ∈ X, then g is constant on a set in F+.

Now assume that there is a club not in F . Thus there is an f : A→ PκA
such that the complement X of Clf is F -positive. For each x ∈ X there is
some e = g(x) ∈ [x]<ω such that f(e) � x. Therefore there is some e such that
{x : f(e) � x} ∈ F+. This is a contradiction, because {x : f(e) ⊆ x} ∈ F . �
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As another consequence of Proposition 4.6 we consider projections and
liftings of stationary sets. Let A ⊆ B (and |A| ≥ κ). For X ∈ PκB, the
projection of X is the set

X�A = {x ∩A : x ∈ X};

for Y ∈ PκA, the lifting of Y is

Y B = {x ∈ PκB : x ∩A ∈ Y }.

4.8 Proposition (Menas [77]). Let A ⊆ B.

(i) If S is stationary in PκB, then S�A is stationary in PκA.

(ii) If S is stationary in PκA, then SB is stationary in PκB.

Proof. (i) is easy and holds because if C is a club in PκA, then CB is a club
in PκB. For (ii), it suffices to prove that if C is a club in PκB, then C�A
contains a club in PκA.

If C ⊆ PκB is a club, by Proposition 4.6 there is an f : [B]<ω → PκB
such that Clf ⊆ C. Let g : [A]<ω → PκA be as follows: let g(E) = (the
f -closure of e) ∩A. Since Clf �A = Clg, we have Clg ⊆ C�A. �

When κ = ℵ1, Proposition 4.6 can be improved by replacing f by a func-
tion with values in A, i.e. an operation on A. For f : [A]<ω → A, let Clf
denote the set {x : f(e) ∈ x whenever e ⊆ x}. The following characterization
of the club filter on Pω1A was given in [66]; this and [67] used Pω1A in the
study of model theory.

4.9 Theorem (Kueker [66]). The club filter on Pω1A is generated by the sets
ClF where F : [A]<ω → A.

When κ > ℵ1, then the clubs ClF where F : [A]<ω → A, do not generate
the club filter: every F has countable closure points while the set of all
uncountable x ∈ PκA is closed unbounded. However, a slight modification of
Theorem 4.9 works, namely Proposition 4.10 below. Let us call the club ClF
for F : [A]<ω → A strongly closed unbounded.

Let us consider Pκλ where λ ≥ κ. We note that the set

{x ∈ Pκλ : x ∩ κ ∈ κ}

is closed unbounded. It turns out that the club filter is generated by adding
this set to the filter generated by the strongly club sets.

4.10 Proposition (Foreman et al. [27]). For every club C in Pκλ there exists
a function F : [λ]<ω → λ such that

{x ∈ Pκλ : x ∩ κ ∈ κ and F“[x]<ω ⊆ x} ⊆ C.
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Now let us consider Pκλ for κ = ν+ where ν is uncountable. As the set
[λ]ν is closed unbounded in Pν+λ, let us consider the restriction of the club
filter to [λ]ν . We say that a set S ⊆ [λ]ν is weakly stationary if it meets every
strongly club set. It turns out that the question whether weakly stationary
sets are stationary involves large cardinals. By Proposition 4.10, this question
depends on whether the set {x ∈ [λ]ν : x ∩ ν+ ∈ ν+} is in the strongly club
filter. The following reformulation, implicit in [27], establishes the relation
to large cardinals:

4.11 Proposition. There exists a weakly stationary nonstationary set in [λ]ν

if and only if the (nonstationary) set {x ∈ [λ]ν : x � ν} is weakly stationary.

4.12 Corollary. The following are equivalent:

(i) The club filter on [ω2]ℵ1 is not generated by strongly club sets,

(ii) Chang’s Conjecture.

4.2. Splitting Stationary Sets

Let us now address the question whether stationary sets can be split into
a large number of disjoint stationary sets. In particular, does Theorem 1.8
generalize to PκA? As only the size of A matters, and the club filter on Pκκ
is basically just the club filter on κ, we shall consider subsets of Pκλ where
λ is a cardinal and λ > κ.

We have |Pκλ| = λ<κ and so the maximal possible size of a disjoint family
of subsets of Pκλ is λ<κ. While it is consistent that every stationary set splits
into λ<κ disjoint stationary subsets (see Corollary 4.18), this is not provable
in ZFC. The reason is that there may exist closed unbounded sets in Pκλ
whose size is less than λ<κ. For instance, [8] shows that there exists a club
in Pω3ω4 of size ℵℵ1

4 ; thus if 2ℵ2 > 2ℵ1 · ℵ4, then Pω3ω4 is not the union of
ℵ<ℵ3

4 disjoint stationary sets. An earlier result [11] proved the consistency of
a stationary set S ⊆ Pω1ω2 such that NS�S is 2ℵ0 -saturated.

A modification of Solovay’s proof, using the generic ultrapower by NS,
gives this:

4.13 Theorem (Gitik [32]). Every stationary subset of Pκλ can be parti-
tioned into κ disjoint stationary sets.

The question of splitting stationary sets has been more or less completely
solved for splitting into λ sets. Let us first observe that the nonexistence of
λ disjoint stationary sets is equivalent to λ-saturation:

4.14 Lemma. If Xα, α < λ, are stationary sets in Pκλ such that Xα∩Xβ ∈
NS for all α �= β, then there exist pairwise disjoint stationary sets Yα with
Yα ⊆ Xα for all α < λ.

Proof. Let Yα = Xα ∩ {x : α ∈ x and ∀β ∈ x(β �= α→ x /∈ Xβ)}. �
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A long series of results by Jech [44], Menas [77], Baumgartner, DiPrisco
and Marek [19], Matsubara [72, 73] established the following:

4.15 Theorem.

(i) Pκλ can be partitioned into λ disjoint stationary sets.

(ii) If κ is a successor cardinal, than every stationary subset of Pκλ can be
partitioned into λ disjoint stationary sets.

(iii) If 0# does not exist, then every stationary subset of Pκλ can be parti-
tioned into λ disjoint stationary sets.

A complete proof of this theorem can be found in Kanamori’s book [62].
The results (ii) and (iii) are best possible, in the following sense:

4.16 Theorem (Gitik [32]). It is consistent, relative to a supercompact car-
dinal, that κ is inaccessible, λ > κ, and some stationary set S ⊆ Pκλ cannot
be partitioned into κ+ disjoint stationary subsets.

For a simplification of Gitik’s proof, as well as further results, see [83].
The proof of Theorem 4.15 involves the following set, which clearly is

stationary:
S0 = {x ∈ Pκλ : |x ∩ κ| = |x|}.

This stationary set can be partitioned into λ disjoint stationary sets, and if
either κ = ν+ or 0# does not exist, then S0 contains a club (cf. [62]).

Clearly, in Gitik’s model the set S0 does not contain a club. Thus the
statement that for some κ and λ,

{x ∈ Pκλ : |x ∩ κ| < |x|}

is stationary, is a consistent large cardinal statement. Its exact consistency
strength (between 0# and Ramsey) is pinned down in [5] and [20].

As for splitting into λ<κ sets, the following result of Matsubara together
with Theorem 4.15 proves the consistency result mentioned earlier:

4.17 Proposition (Matsubara [74]). Assume GCH. If cf(λ) < κ, then every
stationary subset of Pκλ can be partitioned into λ+ disjoint stationary sets.

4.18 Corollary. Assume GCH and that 0# does not exist. Then every
stationary subset of Pκλ can be partitioned into λ<κ disjoint stationary sets.

4.3. Saturation

By Theorem 4.15, the nonstationary ideal on Pκλ is not λ-saturated (even
though NS�S can be κ+-saturated for some S). The next question is whether
it can be λ+-saturated, and the answer is again no.
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4.19 Theorem (Foreman-Magidor [26]). For every regular uncountable car-
dinal κ and every cardinal λ > κ, the nonstationary ideal on Pκλ is not
λ+-saturated.

See Foreman’s chapter in this Handbook for this result. We note that
special cases of this theorem had been proved earlier, cf. [4, 73, 60, 17].

When dealing with λ+-saturation, we naturally employ generic ultrapow-
ers and use the fact that the ultrapower is well founded; a normal λ+-
saturated ideal on Pκλ is precipitous. The nonstationary ideal on Pκλ (for
regular λ) can be precipitous. The consistency, a result of Goldring [39], is
relative to a Woodin cardinal, and strengthens an earlier result in [27]. On
the other hand, the paper [75] gives instances of κ and λ for which NS on
Pκλ cannot be precipitous.

5. Proper Forcing and Other Applications

5.1. Proper Forcing

One of the most fruitful applications of the club filter on Pω1A is Shelah’s
concept of proper forcing. As proper forcing is discussed in detail in Abra-
ham’s chapter in this Handbook, I shall only give a brief account in this
section. The rest of Sect. 5 deals with applications of the club filter on Pω1A
in the theory of Boolean algebras.

When dealing with closed unbounded sets in Pω1A we may as well restrict
ourselves to infinite sets, and thus consider the space [A]ℵ0 (where A is an
uncountable set). By Kueker’s Theorem 4.9, a set X ⊆ [A]ℵ0 is in the club
filter just in case it contains the set ClF of all closure points of some operation
on A. Equivalently, X contains all elementary submodels of some model
with universe A. A useful modification of this is the following consequence
of Proposition 4.8.

5.1 Proposition. A set X ⊆ [A]ℵ0 is in the club filter if for some sufficiently
large λ, X contains M ∩A, for all countable M ≺ Hλ such that A ∈M .

Here Hλ = 〈Hλ,∈〉 where Hλ is the set of all sets hereditarily of power
< λ; “sufficiently large” means 2|TC(A)| < λ.

Let us now turn to proper forcing. First we remark that the preservation
Theorem 1.13 generalizes to [A]ℵ0 :

5.2 Theorem.

(a) If P satisfies the countable chain condition, then every club C ∈ V [G]
in [A]ℵ0 has a club subset in the ground model. Hence every stationary
subset of [A]ℵ0 remains stationary in V [G].

(b) If P is countably closed, then every stationary subset of [A]ℵ0 remains
stationary in V [G].
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For a proof, we refer the reader to [7, Theorem 2.3] or [48, p. 87]. This
leads to the important definition, cf. [79]:

5.3 Definition. A notion of forcing P is proper if for every uncountable
set A, every stationary subset of [A]ℵ0 remains stationary in V [G].

There are several equivalent definitions of properness, most using the club
filter on [A]ℵ0 . Let me state one of them (see [79, p. 77], [48, p. 97]):

5.4 Proposition. A complete Boolean algebra B is proper if and only if for
every nonzero a ∈ B for every uncountable λ and every collection {aαβ :
α, β < λ} such that Σβ<λaαβ = a for every α < λ, there exists a club
C ⊆ [λ]ℵ0 such that Πα∈xΣβ∈xaαβ �= 0 for all x ∈ C.

5.2. Projective and Cohen Boolean Algebras

The club filter on [A]ℵ0 turns out to be a useful tool in the study of Boolean
algebras. Here we present a uniform approach to the investigation of two
related concepts, projective and Cohen Boolean algebras. For simplicity, we
consider only atomless Boolean algebras of uniform density.

5.5 Definition.

(a) A Boolean algebra B is projective if for some Boolean algebra C, the
free product B ⊕ C is a free Boolean algebra.

(b) A Boolean algebra B is a Cohen algebra if its completion is isomorphic
to the completion of a free Boolean algebra.

Projective algebras have several other (equivalent) definitions and are pro-
jective in the sense of universal algebra; we refer to [64] for details. Forcing
with Cohen algebras adds Cohen reals. In the present context, it is the
following equivalences that make these two classes interesting: Let A be a
subalgebra of a Boolean algebra B. A is a relatively complete subalgebra
of B, A ≤rc B, if for each b ∈ B there is a smallest element a ∈ A such that
b ≤ a. A is a regular subalgebra of B, A ≤reg B, if every maximal antichain
in A is maximal in B. Let 〈A1 ∪ A2〉 denote the subalgebra generated by
A1 ∪A2.

5.6 Theorem.

(a) (Ščepin [78]) A Boolean algebra B is projective if and only if the set
{A ∈ [B]ℵ0 : A ≤rc B} contains a club C with the property that for all
A1, A2 ∈ C, 〈A1 ∪A2〉 ∈ C.

(b) (Koppelberg [65], Balcar-Jech-Zapletal [3]) A Boolean algebra B is Co-
hen if and only if the set {A ∈ [B]ℵ0 : A ≤reg B} contains a club with
the property that for all A1, A2 ∈ C, 〈A1 ∪A2〉 ∈ C.

This leads naturally to the following concepts:
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5.7 Definition.

(a) (Ščepin) A Boolean algebra B is openly generated if the set {A ∈ [B]ℵ0 :
A ≤rc B} contains a club.

(b) (Fuchino-Jech) A Boolean algebra B is semi-Cohen if the set {A ∈
[B]ℵ0 : A ≤reg B} contains a club.

Openly generated (also called rc-filtered) and semi-Cohen Boolean alge-
bras are investigated systematically in [42] and [3], respectively.

Our first observation is that every projective algebra is openly generated
and every Cohen algebra is semi-Cohen; and if |B| = ℵ1 and B is openly
generated (or semi-Cohen), then B is projective (or Cohen). Because a σ-
closed forcing preserves stationary sets in [B]ℵ0 (by Theorem 5.2), we have:

5.8 Corollary. B is openly generated (resp. semi-Cohen) iff V P � B is
projective (resp. Cohen), where P is the σ-closed collapse of |B| onto ℵ1.

An immediate consequence is that the completion of a semi-Cohen algebra
is semi-Cohen.

Using some simple algebra and Proposition 4.8, one can show that every
rc-subalgebra of an openly generated algebra is openly generated and every
regular subalgebra of a semi-Cohen algebra is semi-Cohen. Consequently, we
have:

5.9 Corollary.

(a) (Ščepin) If B is projective and A ≤rc B has size ℵ1, then A is projec-
tive.

(b) (Koppelberg) If B is a Cohen algebra and A ≤reg B has size ℵ1, then
A is Cohen.

Finally, the use of the club filter yields a simple proof of the following
theorem:

5.10 Theorem.

(a) (Ščepin [78], Fuchino [28]) The union of any continuous ≤rc-chain of
openly generated algebras is openly generated.

(b) (Balcar-Jech-Zapletal [3]) The union of any continuous ≤reg-chain of
semi-Cohen algebras is semi-Cohen.

Proof. Let B be the union and let λ be sufficiently large; by Proposition 5.1
it suffices to show that for every countable M ≺ Hλ such that B ∈M , B∩M
is a relatively complete (resp. regular) subalgebra of B. It is not very difficult
to prove this. �
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6. Reflection

In Sect. 2 we introduced the important concept of reflection. One can expect
that its generalization to Pκλ will be equally important. This is indeed
the case, and in particular, reflection of stationary sets in [λ]ℵ0 at sets of
cardinality ℵ1 plays a significant role in applications of Martin’s Maximum.

Let us begin with a generalization of reflection of which very little is known
(see [55] for a consistency result): Let κ be inaccessible, and let λ > κ. For
each x ∈ Pκλ, let κx = x ∩ κ; note that for almost all x, κx is a cardinal.
When κa is regular uncountable, we say that a stationary S reflects at a if
S ∩ Pκaa is a stationary subset of Pκaa.

The following argument shows that there are limitations to reflection: Let
S ⊆ Eλ

ℵ0
and T ⊆ Eλ

ℵ1
be such that S does not reflect at any α ∈ T (see

Lemma 2.16). Let Ŝ = {x ∈ Pκλ : sup(x) ∈ S} and T̂ = {a ∈ Pκλ :
sup(a) ∈ T}. Then Ŝ does not reflect at any a ∈ T̂ .

A similar generalization leads to significant results in the large cardinal
theory and we shall now investigate this generalization.

6.1. Reflection Principles

In [27], Foreman, Magidor and Shelah introduced Martin’s Maximum and
proved a number of consequences. Let us recall that Martin’s Maximum
(MM) states that whenever P is a notion of forcing that preserves stationary
subsets of ℵ1, and D is a family of ℵ1 dense subsets of P , then there exists a
D-generic filter on P . By [27] Martin’s Maximum is consistent relative to a
supercompact cardinal.

Among the consequences of MM proved in [27] are the following:

• The nonstationary ideal on ℵ1 is ℵ2-saturated.

• For every regular κ ≥ ℵ2, every stationary set S ⊆ Eκ
ℵ0

contains a closed
set of order type ω1.

• 2ℵ0 = ℵ2.

• For every regular κ ≥ ℵ2, κℵ0 = κ.

The authors of [27] introduced the following Reflection Principle and
proved that it follows from MM.

If S is a stationary subset of [λ]ℵ0 and X ∈ [λ]ℵ1 we say that S reflects at
X if S ∩ [X]ℵ0 is stationary in [X]ℵ0 .

6.1 Definition (Reflection Principle, Foreman-Magidor-Shelah [27]). For
every regular λ ≥ ℵ2, every stationary set S ⊆ [λ]ℵ0 reflects at some X ∈ [λ]ℵ1

such that X ⊇ ω1.

For a given regular λ, let us call the property in Definition 6.1 Reflection
Principle at λ. As for the extra condition X ⊇ ω1, this is not just an ad hoc
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requirement. Its role is clarified in the following two propositions. (Compare
this with the remark following Theorem 2.3.)

6.2 Proposition (Feng-Jech [21]). Let λ ≥ ℵ2 be a regular cardinal.

(a) Reflection Principle at λ holds iff for every stationary set S ⊆ [λ]ℵ0 ,
the set {X ∈ [λ]ℵ1 : S reflects at X} is stationary in [λ]ℵ1 .

(b) Every stationary S ⊆ [λ]ℵ0 reflects at some X ∈ [λ]ℵ1 iff for every
stationary set ⊆ [λ]ℵ0 , the set {X ∈ [λ]ℵ1 : S reflects at X} is weakly
stationary in [λ]ℵ1 .

For λ = ℵ2 the assumption X ⊇ ω1 can be dropped; it is unknown if the
same is true in general:

6.3 Proposition (Feng-Jech [21]). Reflection Principle at ℵ2 holds if and
only if every stationary S ⊆ [ω2]ℵ0 reflects at some X ∈ [ω2]ℵ1 .

The significance of this and related reflection principles is illustrated by
the fact that they imply the major consequences of MM. Firstly, Reflection
Principle at ℵ2 implies that the continuum is at most ℵ2:

6.4 Theorem (Shelah [80], Todorčević [89]). If every stationary S ⊆ [ω2]ℵ0

reflects at some X ∈ [ω2]ℵ1 , then 2ℵ0 ≤ ℵ2.

Proof. For each uncountable α < ω2, let Cα ⊆ [α]ℵ0 be a club of cardinal-
ity ℵ1, and let D =

⋃
ω1≤α<ω2

Cα. By Propositions 6.3 and 6.2(a), the set
D contains a club, and we have |D| = ℵ2. However, it is proved in [11] that
every club in [ω2]ℵ0 has cardinality ℵℵ0

2 ; hence 2ℵ0 ≤ ℵ2. �

Reflection Principle at ℵ2 is not particularly strong; it is equi-consistent
with the existence of a weakly compact cardinal. A modification of Magidor’s
construction [70] gives a model in which every stationary S ⊆ [ω2]ℵ0 reflects
at [α]ℵ0 for almost all α ∈ Eℵ2

ℵ1
.

The general Reflection Principle, for all regular λ ≥ ℵ2, is a stronger
large cardinal property. A modification of the proof of Theorem 25 in [27]
shows that the Reflection Principle implies that the nonstationary ideal on
ω1 is presaturated (i.e. precipitous, and forcing with P (ω1)/NS preserves ω2).
This has strong large cardinal consequences.

The Reflection Principle follows from MM and in fact from a weaker forcing
axiom MA+ (σ-closed). (This latter axiom is known to be strictly weaker
than MM.) In fact, MA+ (σ-closed) implies (cf. [14]) for every regular λ ≥ ℵ2,
for every stationary set ·S ⊆ [λ]ℵ0 , the set {X ∈ [λ]ℵ1 : S reflects at X}
meets every ω1-closed unbounded set C in [λ]ℵ1 . This reflection principle
was introduced in [23].

Todorčević formulated a strengthening of the Reflection Principle and
proved that his Strong Reflection Principle (SRP) implies that the nonsta-
tionary ideal on ω1 is ℵ2-saturated, that every stationary subset of Eκ

ℵ0
con-

tains a closed copy of ω1 and that for every regular κ ≥ ℵ2, κℵ0 = κ (cf. [15]).
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In [22], another reflection principle is introduced, called Projective Station-
ary Reflection, and proved to be equivalent to the Strong Reflection Principle
(SRP = PSR).

6.5 Definition (Feng-Jech [22]). A stationary set S ⊆ [A]ℵ0 where A ⊇ ω1, is
projective stationary if for every club C ⊆ [A]ℵ0 , the projection (S ∩C)�ω1 =
{x ∩ ω1 : x ∈ S ∩ C} to ω1 contains a club.

6.6 Definition (Projective Stationary Reflection (PSR), Feng-Jech [22]). For
every regular λ ≥ ℵ2, every projective stationary set S ⊆ [Hλ]ℵ0 contains an
increasing continuous ∈-chain {Nα : α < ω1} of elementary submodels of Hλ.

If S ⊆ [Hλ]ℵ0 is stationary, let PS be the forcing notion consisting of
countable increasing continuous ∈-chains {Nα : α < γ} ⊆ S of elementary
submodels of Hλ. The set S is projective stationary just in case PS preserves
stationary subsets of ω1. Thus PSR follows from Martin’s Maximum. It is
also proved in [22] that PSR implies the Reflection Principle.

6.7 Theorem (Feng-Jech [22]). Assume PSR.

(a) For every regular κ ≥ ℵ2, every stationary set S ⊆ Eκ
ℵ0

contains a
closed set of order type ω1.

(b) The nonstationary ideal on ω1 is ℵ2-saturated.

Proof. (a) This is proved by applying PSR to the projective stationary set

{N ∈ [Hκ]ℵ0 : S ∈ N ≺ Hκ and sup(N ∩ κ) ∈ S},

where S is a given stationary subset of Eκ
ℵ0

.
(b) Let A be a maximal antichain of stationary subsets of ω1. Then the

set

X = {N ∈ [Hω2 ]
ℵ0 : A ∈ N ≺ Hω2 and N ∩ ω1 ∈ S for some S ∈ A ∩N}

is projective stationary. By PSR, there exists an ∈-chain {Nα : α < ω1} ⊆ X,
and we let N =

⋃
α<ω1

Nα. One can verify that A ⊆ N , and therefore
|A| ≤ ℵ1. �

Finally, recent work of Woodin shows that Strong Reflection implies that
2ℵ0 = ℵ2, in fact δ1

2 = ω2:

6.8 Theorem (Woodin [94]). Assume SRP. Then the set {N ∈ [Hω3 ]
ℵ1 :

N ≺ Hω3 and the order type of N ∩ ω3 is ω1} is weakly stationary. This
together with the saturation of the nonstationary ideal, implies that δ1

2 = ω2.
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6.2. Nonreflecting Stationary Sets

The results about reflecting stationary sets in [λ]ℵ0 at sets of size ℵ1 do not
generalize to [λ]κ for κ ≥ ℵ1. For instance, the analog of the Reflection
Principle is false:

6.9 Proposition. If λ is sufficiently large, then it is not the case that every
stationary S ⊆ [λ]ℵ1 reflects at some X ∈ [λ]ℵ2 such that X ⊇ ω2.

In Sect. 6.1 we mentioned that the Reflection Principle implies that NS
on ω1 is presaturated. To prove Proposition 6.9, one first shows that the
generalization of the Reflection Principle would yield presaturation of NS
on ω2, thus (as in Shelah’s Corollary 3.7) a forcing notion that changes the
cofinality of ω2 to ω while preserving ℵ1 and ℵ3. But that is impossible.

Specific examples of nonreflecting stationary subsets of [λ]ℵ1 are given
in [25]. That paper also explains why the consistency proof of Reflection
Principle does not generalize. A model of MA+ (σ-closed) is obtained by
Lévy collapsing (to ℵ1) cardinals below a supercompact. A crucial fact is
that the collapse preserves stationary sets in [λ]ℵ0 (Theorem 5.2(a)). Un-
fortunately, the analog of this is false in general, as <κ-closed forcing can
destroy stationary sets in Pκλ.

Following [27], a model N ≺ Hλ is internally approachable (IA) if there
exists a chain 〈Nα : α < γ〉 whose initial segments belong to N , with N =⋃

α<γ Nα. Let κ be a regular uncountable cardinal and let λ ≥ κ be regular.
The set PκHλ ∩ IA is stationary and its projection to κ contains a club.
Moreover, every countable N is internally approachable and so [Hλ]ℵ0 ∩ IA
contains a club.

It is proved in [25] that every <κ-closed forcing preserves stationary sub-
sets of PκHλ ∩ IA, and that the <κ-closed collapse of Hλ shoots a club
through PκHλ ∩ IA. As for a generalization of Reflection Principle, they
prove that if cardinals between κ and a supercompact are collapsed to κ,
then in the resulting model, every stationary set S ⊆ PκHλ ∩ IA reflects at a
set of size κ.

7. Stationary Tower Forcing

In this last section we give a brief description of stationary tower forcing,
introduced by Woodin in [93]. See also [69] and Foreman’s chapter in this
Handbook.

Let δ be an inaccessible cardinal. Let Q and P be the following notions of
forcing (stationary tower forcing):

A forcing condition in Q is a pair (A,S) where A ∈ Vδ and S is a stationary
subset of [A]ℵ0 ; (A,S) < (B, T ) if A ⊇ B and S�B ⊆ T .

A forcing condition in P is a pair (A,S) where A ∈ Vδ and S is a weakly
stationary subset of P|A|A; (A,S) < (B, T ) if A ⊇ B and S�B ⊆ T .



122 Jech / Stationary Sets

In fact, stationary tower forcing is somewhat more general than these two
examples, and uses the following generalization of stationary sets (considered
e.g. in [20]). A set S is stationary in P (A) if S ⊆ P (A) and if for every
F : [A]<ω → A, S contains a closure point of F , i.e. a set X ⊆ A such that
F (e) ∈ X for all e ∈ [X]<ω. As in Proposition 4.8, projections and liftings
of stationary sets are stationary. Also, the analog of Theorem 4.4 holds.
Note that the sets S�PκA are exactly the weakly stationary sets in PκA, and
S�{X ∈ Pκλ : X ∩ κ ∈ κ} are the stationary sets in Pκλ.

The general version of stationary tower forcing uses conditions (A,S)
where S is stationary in P (A).

If G is a generic filter on Q, then for each A ∈ Vδ, the set GA = {S :
(A,S) ∈ G} is a V -ultrafilter on ([A]ℵ0)V ; similarly for P . Moreover, if
A ⊆ B, then GB projects to GA. In V [G] we form a limit ultrapower M =
UltG(V ) by the GA, A ∈ Vδ. The elements of M are represented by functions
(in V ) whose domain is some A ∈ Vδ. Let j : V → M be the generic
embedding, i.e. the elementary embedding from V into the limit ultrapower.

The ultrapower has a well founded initial segment up to at least δ: each
ordinal α ≤ δ is represented by the function fα(x) = x ∩ α. The identity
function id(x) = x represents the set j“Vδ. Woodin’s main tool is the follow-
ing:

7.1 Theorem (Woodin [93]). Suppose δ is a Woodin cardinal. If G is
a generic on either Q or P , then the generic ultrapower UltG(V ) is well
founded, and the model M is closed under sequences of length < δ.

When forcing with Q, one has crit(j) = ω1 and j(ω1) = δ. For applica-
tions, see [93].

Forcing with P gives more flexibility and yields various strong forcing
results. We conclude this section with a typical application. Assume that ℵω

is strong limit. Let

S = {X ∈ [Vℵω+1 ]
ℵω : X ∩ ℵω+1 ∈ ℵω+1 and cf(X ∩ ℵω+1) = ℵ3}

and let G be a generic on P such that S ∈ G. Then crit(j) = ℵω+1 and
cfM (ℵω+1) = ℵ3. As PV [G](ωn) = PM (ωn) = PV (ωn) for all n, we conclude
that forcing with P (below (Vℵω+1 , S)) changes the cofinality of ℵω+1 to ℵ3

while preserving ℵω.
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1. Introduction

The study of partition relations dates back to 1930, when Frank P. Ramsey
[49] proved his oft-cited theorem.

1.1 Theorem (Ramsey’s Theorem). Assume 1 ≤ r, k < ω and f : [ω]r → k
is a partition of the r element subsets of ω to k pieces. Then there is an
infinite subset X ⊆ ω homogeneous with respect to this partition. That is,
for some i < k, f“[X]r = {i}.

In 1941, Ben Dushnik and Edwin Miller [9] looked at partitions of the
set of all pairs of elements of an uncountable set, involving Paul Erdős in
solving one of their more difficult problems (see Theorem 7.4). In 1942,
Erdős [10] proved some basic generalizations of Ramsey’s Theorem, includ-
ing among others the theorem generally called the Erdős-Rado Theorem for
pairs. In the early fifties, Erdős and Richard Rado [15, 17] initiated a system-
atic investigation of quantitative generalizations of this result. They called
it the partition calculus. There are cases in mathematical history when a
well-chosen notation can enormously enhance the development of a branch
of mathematics and a case in point is the ordinary partition symbol (see
Definition 1.3)

α→ (βξ)r
ξ<γ

invented by Rado [16], reducing Ramsey’s Theorem to ω → (ω)r
γ for 1 ≤ r,

γ < ω. It became clear that a careful analysis of the problems according
to the size and nature of the parameters leads to an inexhaustible array of
problems, each seemingly simple and natural. These classical investigations
were completed in the 1965 paper [18] of Erdős, András Hajnal and Rado,
and were extended in the book [19] written jointly with Attila Máté. We cite
this compendium from time to time for proofs we omit and as a resource for
some open problems we include.

In 1967, after the first post-Cohen set theory conference, held in Los An-
geles, Erdős and Hajnal wrote a list of unsolved problems for the ordinary
partition symbol and related topics. This paper [12] appeared in print four
years later.

A great many new results were proved by the then young researchers.
However, unlike many other classical problems, these problems have resisted
full solution. The introduction of new methods and the discovery of new ideas
usually has given only incremental progress, and objectively, we are as far
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as ever from complete answers. However, small steps requiring new methods
have been continuously made, quite a few of them during the writing of this
paper, and we will concentrate on them.

For easy reference, in the ordinary partition relation α → (βξ)r
γ , we call

α the resource, βξ the goals, and γ the set of colors. We will be focusing on
two main subjects:

1. New ZFC theorems obtained via the elementary submodel method both
for ordinary partition relations and for polarized partition relations (see
Definition 1.5).

2. The new results obtained in the late nineties for partition relations with
a countable resource.

Section 2 describes the classical proofs of the (balanced) form of the Erdős-
Rado Theorem and the Positive Stepping Up Lemma. These are the results
where the resource is regular and the goals are equal and of the form τ , or
τ +1 for some cardinal τ . In Sect. 2.3 we state but do not prove the Negative
Stepping Up Lemma complementing these results.

In Sect. 3, we describe the elementary submodel method and in particular,
the use of nonreflecting ideals first introduced in [4]. We give an alternate
proof of the balanced Erdős-Rado Theorem, and give a proof of the unbal-
anced form of it using the new method.

In Sect. 4, especially in Sect. 4.2, we fully develop the method of ele-
mentary submodels. We give streamlined proofs of both the balanced and
unbalanced forms of the Baumgartner-Hajnal-Todorcevic Theorems [4] in
Sects. 4.3 and 4.4. These results generalize the Erdős-Rado Theorem to al-
low goals which are ordinals more complex than cardinals τ and their ordinal
successors, τ + 1. We state a result of Matthew Foreman and Hajnal [20] for
the successors of measurable cardinals. Using the methods of the Foreman-
Hajnal proof, in Sect. 4.5, we give a direct proof of a special case of the
Baumgartner-Hajnal Theorem [2].

In Sect. 5, we discuss the Milner-Rado Paradox and the new ordinal
Ω(κ) < κ+ introduced in the Foreman-Hajnal result [20], which is related
to a form of the Milner-Rado Paradox.

In Sect. 6, we discuss a new development, the first in the twenty-first
century. Solving a problem of Foreman and Hajnal, Saharon Shelah [59]
proved that if there is a strongly compact cardinal, then there are cardinals
κ such that κ+ → (κ + 2)2ω.

In Sect. 7, we briefly discuss the case of singular resources. We state, but
do not prove, several theorems on this subject from the 1965 Erdős, Hajnal
and Rado paper [18] and the 1975 Shelah paper [56].

In Sect. 8, we describe a new variant of the elementary submodel method
called double ramification, which was invented by Baumgartner and Hajnal
to establish their Theorem 8.2.
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In Sect. 8.1, we use it for the proof of

(∗)
(
κ+

κ

)

→
(
κ
κ

)1,1

γ

where κ is weakly compact and γ < κ. Result (∗) was previously known
only if γ < ω (see the discussion before Theorem 8.2). In Sect. 8.2, we use
the method for the proof of Shelah’s Theorem [58] stating that (∗) holds for
κ a singular strong limit cardinal (of uncountable cofinality) which satisfies
2κ > κ+ and for γ < cf(κ).

In Sect. 9, we discuss the spectacular progress by Carl Darby [7, 8] and
Rene Schipperus [53, 51] on the cases where the resource α is a countable
ordinal, listing their negative partition results in Theorem 9.9, and give a
sample counterexample, ωω2

� (ωω2
, 6)2. This example is not optimal, but

was chosen to illustrate the methods of Darby without all the complicating
detail.

In Sect. 10, we outline a proof of a special case of the positive results by
Schipperus that ωωβ → (ωωβ

, 3)2 for β ≥ 2 the sum of one or two indecom-
posable ordinals (Darby independently proved the result for β = 2).

We close this section with some background definitions.

1.1. Basic Definitions

1.2 Definition. Let X be a set, r < ω and β, γ be ordinals.

1. A map f : [X]r → γ is called an r-partition of X with γ colors.

2. For ξ < γ, a subset Y ⊆ X is called homogeneous for f in color ξ if
f“[Y ]r = {ξ}.

3. The set Y ⊆ X is homogeneous for f if it is homogeneous for f in some
color ξ < γ.

4. A linearly ordered set X has order type β, in symbols, ot(X) = β, if it
is order isomorphic to β.

1.3 Definition. Let α, βξ for ξ < γ, and γ be ordinals and suppose 1 ≤ r < ω.
The ordinary partition symbol

α→ (βξ)r
γ

means that the following statement is true.

For every r-partition of α with γ colors, f : [α]r → γ, there exist
ξ < γ and X ⊆ α such that ot(X) = βξ and X is homogeneous
for f in color ξ.
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We write
α �→ (βξ)r

γ

to indicate that the negation of this statement is true. If all βξ equal β, then
we write

α→ (β)r
γ (or α �→ (β)r

γ).

A further more or less self explanatory abbreviation is α → (β0, (β)γ)2 in
case βξ = β for 1 ≤ ξ < γ.

1.4 Remark. Note that the notation of Definition 1.3 is so devised that if
we start with a positive partition relation α → (βξ)r

γ , then the truth of the
assertion is preserved under increasing the resource ordinal α on the left-hand
side of the arrow (→) and decreasing the ordinal goals βξ, or the colors γ on
the right-hand side of the arrow. And this latter statement holds, with some
exceptions, for the exponent r as well (see [19]).

We stated Definition 1.3 in this generality, because it will suffice for most
of what we will prove. It should be clear that further generalizations can
be made. For example, a similar symbol Θ → (Θξ)δ

γ can be defined where
Θ,Θξ, δ are order types, by starting with an arbitrary ordered set 〈X,≺〉 for
which ot(X,≺) = Θ, partitioning its subsets of order type δ,

[X]δ = {Y ⊆ X : ot(Y,≺) = δ},

into γ color classes, and as above, looking for homogeneous subsets of the
prescribed color and order type. As general Ramsey theory developed in both
finite and infinite combinatorics, problems were considered in which the set
partitioned was a subset of [X]δ rather than all of [X]δ, and the homogeneous
sets consisted of possibly other kinds of subsets of [X]δ. Partition relations
proliferated. For a review of some of them we refer to [19], since we can not
try to cover all of them in the limit space of this chapter.

In [18], among other generalizations, polarized partitions were introduced.
In fact, this paper is the only place in the published literature where these
relations are systematically discussed.

1.5 Definition. Let α,β be ordinals and suppose that α0, α1 ≤ α and
β0, β1 ≤ β. The polarized partition relation

(
α
β

)

→
(
α0 α1

β0 β1

)

means that the following statement is true.

For all ordered sets A and B of order type α, β respectively, and
all partitions f : A × B → 2, there is an i < 2 and sets Ai ⊆ A,
Bi ⊆ B such that ot(Ai) = αi, ot(Bi) = β1 and f“Ai×Bi = {i}.
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2. Basic Partition Relations

2.1. Ramsey’s Theorem

2.1 Definition. Assume 〈X,≺〉 is an ordered set and f : [X]r → γ is an
r-partition of length γ of X, 1 ≤ r < ω.

1. For V ∈ [X]r−1, define fV : X − V → γ by

fV (u) = f(V ∪ {u}).

2. f is endhomogeneous on X if for every V ∈ [X]r−1, the function fV is
homogeneous on X| # V = {u ∈ X : V ≺ u}.

3. Let

X− =

{
X − {m} if X has a maximal element m,

X otherwise.

4. Assume f is endhomogeneous on X. Define f − : [X−]r−1 → γ by
f −(V ) = η iff ∀u ∈ X| # V (fV (u) = η) for V ∈ [X−]r−1.

The next lemma follows immediately from the definitions.

2.2 Lemma. Using the above notation, if f is endhomogeneous on X, Y ⊆
X− and f − is homogeneous on Y then f is homogeneous on Y and on Y ∪{m}
if m is the maximal element of X.

We first give a direct proof of the well-known Ramsey’s Theorem using non-
principal ultrafilters and postponing the more natural ramification method
to the next section for two reasons. First, Erdős and Rado considered this
approach part of their “combinatorics” (Erdős called the ultrafilters “mea-
sures”). Second, having given a proof here, we do not have to adapt the
formulation of the ramification to cover the case when the resource is a reg-
ular limit cardinal.

2.3 Theorem (Ramsey’s Theorem).

ω → (ω)r
k for 1 ≤ r, k < ω.

Proof. By induction on r. For r = 1 the claim is obvious. Assume r > 1
and f : [ω]r → k. Let U be a non-principal ultrafilter on ω and V ∈ [ω]r−1.
Define f̃(V ) and A(V ) as follows: let f̃(V ) = i for the unique i < k for
which the set A(V, i) := {u ∈ ω − V : fV (u) = i} is in U , and set A(V ) :=
A(V, f̃(V )).

We can choose by induction on n an increasing sequence 〈xn : n < ω〉
of integers satisfying xn ∈

⋂
{A(V ) : V ∈ [{xj : j < n}]r} for n < ω. Let

X = {xn : n < ω}. Then f −�[X]r−1 = f̃�[X]r−1 and f is endhomogeneous
on X. By the induction hypothesis, there is a Y ⊆ X with ot(Y ) = ω so
that Y is homogeneous for f −. Finally, by Lemma 2.2, Y is the desired set
homogeneous for f . �
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2.2. Ramification Arguments

2.4 Remark (A brief history). The first transfinite generalization of Ram-
sey’s theorem appeared in the paper [9] of Dushnik and Miller. They proved
κ → (κ, ω)2 for regular κ and Erdős proved this for singular κ as well. His
proof was included in [9]. This theorem, unique of its kind, logically belongs
to Sect. 7 where we will discuss it briefly.

The basic theorems about partition relations with exponent r = 2 were
first stated and proved in 1942 in an almost forgotten paper of Erdős [10].
There he proved (2κ)+ → (κ+)2κ for κ ≥ ω; he indicated the counterexamples
2κ �→ (3)2κ and 2κ �→ (κ+)22; and he proved ω2 → (ω2, ω1)2 assuming CH. The
Erdős-Rado Theorem for exponent larger than 2 was proved later in [17].
(See Corollary 2.10.) Kurepa also worked on related questions quite early
(see the discussion by Todorcevic in Section C of [37]).

Few theorems have been provided with as many simplified proofs as the
Erdős-Rado Theorem (2κ)+ → (κ+)2κ. Erdős and Rado used the so called
“ramification method”. We will present this method in the proof of the next
theorem. After some “streamlining,” it still seems to be the simplest way for
obtaining balanced partition relations for cardinals, ones in which all the goals
are the same cardinal. For the unbalanced case, we will present a method
worked out in [4]. This method will be used in the proofs of a number of more
recent results which will be presented in later sections. Given limitations of
time and energy, and a desire for coherence, we decided to focus on results
amenable to this method.

2.5 Theorem. Assume 2 ≤ r < ω, κ ≥ ω, γ < κ, λ = 2<κ and

f : [λ+]r → γ.

Then there exists an X ⊆ λ+ with ot(X) = κ + 1 such that f is endhomoge-
neous

Proof. For α < λ+, define an increasing sequence β
α

= 〈βα
η : η < ϕα〉 of

ordinals less then α and an ordinal ϕα by transfinite recursion on η. For
α = 0, set ϕ0 = 0 and let β

0
be the empty sequence. For positive α, to start

the recursion, let βα
q := q for q < max({α, r − 1}), and for α < r − 1, let

ϕα = α. To continue the recursion, assume r − 2 < η and βα
ζ is defined for

ζ < η. Let β̂α
η = sup({βα

ζ + 1 : ζ < η}), and define sets

Bα
η := {βα

ζ : ζ < η},
Aα

η := {β < α : β̂α
η ≤ β ∧ (∀V ∈ [Bα

η ]r−1)(fV (β) = fV (α))}.

Let βα
η := min(Aα

η ) if Aα
η �= ∅. If Aα

η = ∅, put ϕα = η. Clearly for each
α < λ+, the set Bα

ϕα
∪ {α} is an endhomogeneous set of order type ϕα + 1,

and we may define f −
α on [Bα

ϕα
]r−1 as in Definition 2.1. If β ∈ Bα

ϕα
, then it

is easy to show by induction on η < ϕβ that ββ
η = βα

η . Thus if β ∈ Bα
ϕα

, then
f −

α agrees with f −
β on [Bβ

ϕβ
]r−1.
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Define a relation ≺ on λ+ by β ≺ α iff β ∈ Bα
ϕα

. It is easy to verify
that T := 〈λ+,≺〉 is a tree on λ+ and rankT (α) = ϕα for α < λ+. T is
called the canonical partition tree of f on λ+, and Tϕ, as usual, denotes the
{α < λ+ : rankT (α) = ϕ}.

For α < λ+, let Cα : [ϕα]r−1 → γ be defined by Cα(U) = f −
α (V ) where

V = {βα
ζ : ζ ∈ U}. It follows by transfinite induction on ϕ that for α, β ∈ Tϕ,

if Cα = Cβ , then α = β. Hence |Tϕ| ≤ |γ||ϕ| ≤ λ for ϕ < κ. Then
|
⋃

ϕ<κ Tϕ| ≤ λ, Tκ �= ∅ and for all α ∈ Tκ, Bα
κ ∪ {α} is a set of order type

κ + 1 which is endhomogeneous for f . �

2.6 Remark. Note that (2<κ)<κ = 2<κ can hold for singular κ. Indeed
it is easy to see that either (2<κ)<κ = 2<κ or cf((2<κ)<κ) = cf(κ) and
2<κ = sup({(2τ )+ : τ < κ}). The proof described above gives Theorem 2.5
under the condition γ ≤ λ provided λ<κ = λ.

2.7 Theorem (The Stepping Up Lemma). Assume κ ≥ ω, 1 ≤ r < ω, γ < κ
and κ→ (αξ)r

γ . Then

(2<κ)+ → (αξ + 1)r+1
γ .

This is an immediate consequence of Lemma 2.2 and Theorem 2.5.

2.8 Definition. Define expi(κ) by recursion on i < ω:

exp0(κ) = κ,

expi+1(κ) = 2expi(κ).

2.9 Theorem (The Erdős-Rado Theorem). Assume κ ≥ ω, γ < cf(κ). Then
for all 2 ≤ r < ω,

expr−2(2
<κ)+ → (κ + (r − 1))r

γ .

Proof. Starting from the trivial relation κ → (κ)1γ for γ < cf(κ), we get
(2<κ)+ → (κ + 1)2γ , by Theorem 2.7. This is the case r = 2 of the the-
orem. The result follows by induction on r with repeated applications of
Theorem 2.7. �

A better known but weaker form of the theorem is the following.

2.10 Corollary. Assume κ ≥ ω. Then for all 1 ≤ r < ω,

expr−1(κ)+ → (κ+ + (r − 1))r
κ.

Note that while Theorem 2.9 guarantees for example that κ+ → (κ + 1)2γ
holds for γ < cf(κ) for a singular strong limit cardinal κ, Corollary 2.10 does
not say anything about this case.



3. Partition Relations and Submodels 137

2.3. Negative Stepping Up Lemma

2.11 Theorem (The Negative Stepping Up Lemma). Assume κ > 0 is a
cardinal, 2 ≤ r < ω, 1 ≤ γ and κ � (λξ)r

γ , where each λξ > 0 is a cardinal.
Then 2κ

� (1+λξ)r+1
γ , provided at least one of the following conditions hold:

1. γ ≥ 2, κ, λ0, λ1 ≥ ω and λ0 is a regular cardinal;

2. γ ≥ 2, κ, λ0 ≥ ω, λ0 is a regular cardinal, and r ≥ 4;

3. γ ≥ 2, κ, λ0, λ1 ≥ ω, and r ≥ 4;

4. κ ≥ ω and λξ < ω for all ξ < γ.

For a proof, we refer the reader to the compendium by Erdős, Hajnal,
Máté and Rado [19], which includes additional negative stepping up results.
We do quote one related open problem from that reference.

2.12 Question (Problem 25.8 in [19]). Assume GCH. Does

ℵωω+1+1 � (ℵωω+1+1, (4)ω)3?

The following theorem provides a context for this question.

2.13 Theorem. Assume GCH. Then

1. ℵω+1 � (ℵω+1, (3)ω)2; and

2. ℵωω+1 � (ℵωω+1 , (3)ω)2.

3. Partition Relations and Submodels

For the rest of this paper we will adopt the following conventions. Whenever
we write “H(τ)”, τ will be a regular cardinal, and “H(τ)” will stand for a
structure A with domain the collection of sets H(τ) which are of hereditary
cardinality < τ . The structure A will be an expansion of 〈H(τ),∈,$〉, where
$ is a fixed well-ordering of H(τ). The expansion will depend on context,
and will usually include all of the relevant “data” for the proof at hand.
Note that the well-ordering $ yields well-defined Skolem hulls for all sets
X ⊆ H(τ).

3.1 Definition. Assume κ ≥ ω, 2<κ = λ. Let H := H(λ++). A set N is
said to be suitable for κ if it satisfies the following conditions: 〈N,∈〉 ≺ H,
|N | = λ, [N ]<cf(κ) ⊆ N , [N ]<κ ⊆ N if λ<κ = λ, λ+1 ⊆ N , α := N∩λ+ ∈ λ+,
cf(α) = cf(κ). The ordinal α(N) = α will be called the critical ordinal of N .
Note that α ⊆ N by assumption.
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We assume that the reader is familiar with the theory of stationary subsets
of an ordinal. To make our terminology definite, for a limit ordinal α, a subset
B ⊆ α is a club if B is cofinal (unbounded) and closed in the order topology
of α. A set S ⊆ α is stationary if B ∩ S �= ∅ for every club subset of α. The
notation Stat(α) will denote the set of stationary subsets of α.

We will make use of the following facts about elementary submodels.

3.2 Facts. Let λ = 2<κ. For every set A with |A| ≤ λ and A ∈ H(λ++),
there is an elementary chain 〈N0,∈〉 ≺ · · · ≺ 〈Nα,∈〉 ≺ · · · ≺ H, with
A ⊆ N0, indexed by α < λ+ that is continuous, and internally approachable
(i.e. Nβ ∈ Nα+1 for all β ≤ α), and the set

S0 = {α < λ+ : α(Nα) = α and Nα is suitable for κ}

the intersection of a club in λ+ with Scf(κ),λ+ = {α < λ+ : cf(α) = cf(κ)}.

3.3 Definition. A subset S ⊆ H(λ++) is amenable for this sequence if
S ∩ α ∈ Nα+1 for α ∈ S0. A function g is amenable if g�α ∈ Nα+1 for all
α ∈ S0.

Note that S0 itself may be assumed to be amenable.
In this section we will only use the existence of one N suitable for κ. The

ideals defined below were introduced in [4] for regular κ. In most of the later
applications we will only consider the regular case.

3.4 Definition. Let N be suitable for κ ≥ ω, λ = 2<κ, α(N) = α. We
define a set I = Iα = I(N) ⊆ P(α) as follows. For X ⊆ α,

X ∈ I ⇐⇒ (∃Y )(Y ⊆ λ+ ∧ Y ∈ N ∧ α /∈ Y ∧ |X − Y | < κ).

Note that for regular κ, the last clause can be replaced by X ⊆ Y .

3.5 Lemma. Let N be suitable for κ ≥ ω, λ = 2<κ, α(N) = α. We define
a set F = Fα as follows:

Fα := {Z ∈ N : Z ⊆ λ+ ∧ α ∈ Z}.

Then (i) X /∈ I = Iα if and only if |X ∩ Z| ≥ κ for all Z ∈ Fα; and (ii) the
elements Z of Fα are stationary subsets of λ+.

Proof. (i) follows directly from Definition 3.4. To see that (ii) holds, we verify
that α ∈ Z ⊆ λ+, Z ∈ N imply that Z is stationary. Otherwise Z ∩ β = ∅
for some club B ∈ N . Then B ∩α is cofinal in α, by elementarity and α ∈ B
since B is closed. �

3.6 Lemma. If N is suitable for κ, then I = I(N) is a cf(κ)-complete proper
ideal on α = α(N). Moreover, if λ<κ = λ, then I is κ-complete.
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Proof. The completeness clearly follows from [N ]<cf(κ) ⊆ N and [N ]<κ ⊆ N
respectively. To see that α /∈ I, let Z ∈ N be a subset of λ+ with α ∈ Z.
It is enough to show that |Z ∩ α| = λ. Since Z ∈ N , also sup(Z) ∈ N . As
α ∈ Z and N ∩ λ+ = α, it follows that sup(Z) = λ+. Then a fortiori there
is a one-to-one function g : λ → Z. Hence there is a g ∈ N like this. Using
λ + 1 ⊆ N , we get that ran(g) ⊆ N ∩ λ+ = α. �

In what follows we will often suppress details like those given above.

3.7 Definition. Assume N is suitable for κ, λ = 2<κ and α = α(N). For
X ⊆ α, we say X reflects the properties of α if X ∩ Z �= ∅ for all Z ∈ Fα.

3.8 Lemma. Assume N is suitable for κ, λ = 2<κ and α = α(N). If X ⊆ α
and X ∈ I+, then X reflects the properties of α, so we call I = Iα the
non-reflecting ideal on α (induced by N).

Notation. Assume f : [X]2 → γ is a function, η < γ and α ∈ X. For sim-
plicity, we often write f(α, β) for f({α, β}), specifying which of the ordinals
α, β is smaller, if necessary. Denote the set {β < α : f(α, β) = η} by f(α; η).

3.9 Lemma (Connection Lemma). Assume κ ≥ ω and λ = 2<κ. Further
suppose that N is suitable for κ with α(N) = α, f ∈ N is a 2-partition of
λ+ with γ < cf(κ) colors, and X ⊆ f(α; η) ∩ α for some η < γ is such that
X /∈ I = I(N). Then there is some Y ⊆ X with ot(Y ) = cf(κ) so that
Y ∪ {α} is homogeneous for f in color η.

Proof. Let Z be a subset of X ∪ {α} maximal with respect to the following
properties: α ∈ Z and Z is homogeneous for f in color η. If |Z| ≥ cf(κ),
then we are done. Assume by way of contradiction that |Z| < cf(κ). Then
sup(Z∩α) < α and Z∩α ∈ N . Let A =

⋂
{f(u; η) : u ∈ Z∩α}. Then A ∈ N

and α ∈ A. Hence, by the reflection property, A ∩ (X − sup(Z ∩ α)) �= ∅.
If y ∈ A ∩ (X − sup(Z ∩ α)), then {y} ∪ Z is homogeneous for f in color η,
contradicting the maximality of Z. �

3.10 Theorem (Erdős-Rado Theorem (unbalanced form)). Let κ be an in-
finite cardinal and γ < cf(κ). Then

(2<κ)+ → ((2<κ)+, (cf(κ) + 1)γ)2.

Proof. Let λ = 2<κ, and suppose f : [λ+]2 → γ is a 2-partition of λ+

into γ colors. Use Facts 3.2 to choose N suitable for κ with f ∈ N . For
notational simplicity, let α = α(N) and I = I(N). If f(α; η)∩α /∈ I for some
1 ≤ η < γ, then we are done by Lemma 3.9. By Lemma 3.6, we may assume
that α − f(α; 0) ⊆

⋃
{f(α; η) ∩ α : 1 ≤ η < γ} ∈ I. By Definition 3.4, there

is a set Z ∈ N with Z ⊆ λ+ and α ∈ Z for which |Z − f(α; 0)| < κ. Define a
set W in H(λ++) as follows:

W := {β ∈ Z : |Z − f(β; 0)| < κ}.



140 Hajnal and Larson / Partition Relations

Then W ∈ N and α ∈ W . Then by Lemma 3.5 we infer that W ∈ Stat(λ+)
and for g(δ) := {β < δ : f(β, δ) �= 0}, we have |g(δ)| < κ for all δ ∈ W .
By Fodor’s Set Mapping Theorem [19], there is a stationary subset S ⊆ W
free for g (i.e. γ /∈ g(δ) for all δ �= γ ∈ S), and S is homogeneous for f in
color 0. �

Note that with some abuse of notation we have proved the following
stronger result.

3.11 Theorem. Let κ ≥ ω, λ = 2<κ and suppose γ < cf(κ). Then

λ+ → (Stat(λ+), (cf(κ) + 1)γ)2.

This theorem should be compared with the case r = 2 of Theorem 2.9
and it should be observed that while for regular κ, the above theorem is a
strengthening of Corollary 2.10, for singular κ the results are incomparable.
It should also be noted that using Theorem 2.7, the above result can be
stepped up to the following.

3.12 Corollary. Assume κ ≥ ω and γ < cf(κ). Then for all 1 ≤ r < ω,

expr−2(2
<κ)+ → ((2<κ)+, (κ + (r − 1))γ)r.

Finally it should be remarked that we did not try to state the strongest
possible forms of the Erdős-Rado theorems. Clearly the methods give similar
results in cases where the resource cardinal κ is a regular limit cardinal. For
a detailed discussion we refer to [19].

4. Generalizations of the Erdős-Rado Theorem

4.1. Overview

In this section we focus on the problem of what positive relations of the form

(2<κ)+ → (αξ)2γ

can be proved for regular κ and γ < κ in ZFC. The case for singular κ will
be almost entirely omitted because of limitations of space. Many problems
remain unsolved, and the simplest of these will be stated at the end of this
subsection. We start by discussing limitations, the first of which comes from
the next theorem.

4.1 Theorem (Hajnal [25], Todorcevic). If 2κ = κ+, then

κ+ �→ (κ+, κ + 2)2.
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Proof Outline. We only sketch the proof given in [25], omitting Todorcevic’s
proof for singular κ, which has been circulated in unpublished notes. Let
{Aα : α < κ+} be a well-ordering of [α]κ. Define a sequence of sets Bα ∈
[κ+]κ for α < κ+ by transfinite recursion on α, in such a way that the
following two conditions are satisfied:

1. |Bα ∩Bβ | < κ for all β < α;

2. Bα ∩ Aβ �= ∅ for all β < α for which |Aβ −
⋃
{Bγ : γ ∈ F}| = κ for all

F ∈ [α]<κ.

To complete the proof, for β < α < κ+, set f(β, α) = 1 if and only if β ∈ Bα.
The constraint that |Bα ∩ Bβ | < κ for all β < α < κ+ implies that f has

no homogeneous subsets of order type κ + 2 for color 1. The assertion that
it has no homogeneous subsets of order type κ+ for color 0 follows from the
claim below.

4.2 Claim. Assume A is a subset of size κ+. Then there is a subset B
of A of size κ which is not almost contained in the union of fewer than κ
many Bβ’s.

On the one hand, if fewer than κ many Bβ ’s meet A in a set of size κ, then
any subset B ⊆ A of size κ in the complement of the union of these Bα’s
proves the claim. Otherwise, choose a sequence Bβ(η) indexed by η < κ of
κ many sets whose intersection with A has cardinality κ, and let B be the
union of the intersections A ∩Bβ(η). �

Henceforth we will assume that the goals, αξ, are all ordinals, αξ < κ+ for
ξ < γ.

For κ = ω, the best possible result, ω1 → (α)2k for all α < ω1 and k
finite was conjectured by Erdős and Rado [15] in 1952 and proved by James
Baumgartner and Hajnal [2] in 1971, already in a more general form. Using
a self-explanatory extension of the ordinary partition relation for linear order
types, it says

Θ → (ω)1ω implies Θ → (α)2k for all α < ω1, k < ω.

Soon after it was generalized (also in a self-explanatory way) by Todorce-
vic to partial orders [63]. Schipperus [52] proved a topological version. The
Baumgartner-Hajnal proof used “Martin’s Axiom + absoluteness”. An el-
ementary proof not using this kind of argument was given by Fred Galvin
[21] in 1975. We will treat this theorem later in Sect. 4.5, where we will also
give a brief history of earlier work on this conjecture, because some of these
approaches served as starting points for other investigations.

We will treat first the case κ = cf(κ) > ω. The reason for this strange
order is really technical. The results to be presented for the case κ > ω
were proved later and much of the method of using elementary substruc-
tures was worked out while proving them. We will give a new proof of the
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Baumgartner-Hajnal Theorem which can be extended to successors of mea-
surable cardinals and uses the methods developed for the treatment of the
cases κ > ω.

For the cases κ > ω, there are further limitations.

4.3 Theorem. Assume that κ = τ+ ≥ ω1 and GCH holds. Then there are κ-
complete, κ+-c.c. forcing conditions showing the consistency of the following
negative partition relations:

κ+ �→ (κ : τ)22 and κ+ �→ (κ : 2)2τ .

Here the relations mean that there are no homogeneous sets of the form
[A,B] := {{α, β} : α ∈ A ∧ β ∈ B} where A < B, ot(A) = κ, and ot(B) = τ
or ot(B) = 2 respectively. The forcing results are due to Hajnal and stated
in [13]. The first result, κ+ �→ (κ : τ)22, was shown by Rebholz [50] to be
true in L. It is interesting to remark that while the proofs of Theorem 4.1
really give κ+

� (κ+, (κ : 2))2 in the relevant cases, these two statements are
really not equivalent. In [35], Komjáth proves it consistent with ZFC that
ω1 � (ω1, ω + 2)2 and ω1 → (ω1, (ω : 2))2 hold.

In view of the limitations above, the following result of Baumgartner,
Hajnal and Todorcevic [4], which we prove in Sect. 4.3 (see Theorem 4.12),
is the best possible balanced generalization of the Erdős-Rado Theorem for
finitely many colors to ordinal goals: for all regular uncountable cardinals κ
and finite γ, if ρ < κ is an ordinal with 2|ρ| < κ, then

(2<κ)+ → (κ + ρ)2γ .

Note that for γ = 2, this result was proved much earlier by Shelah in Sect. 6
of [55].

As a generalization of the unbalanced form, we prove in Sect. 4.4 (see
Theorem 4.18) that for all regular uncountable cardinals κ and all finite m, γ,

(2<κ)+ → (κω+2 + 1, (κ + m)γ)2.

In this discussion we have restricted ourselves to 2-partitions, since the
situation is different for larger tuples. For example, Albin Jones [27, 31] has
shown that for all finite m,n, ω1 → (ω +m,n)3, complementing the result of
Erdős and Rado [17] who showed ω1 � (ω + 2, ω)3. Eric Milner and Karel
Prikry [43] proved that ω1 → (ω + ω + 1, 4)3.

We conclude this subsection with some open questions.

4.4 Question. For which α < ω1 and which n < ω does the partition relation
ω1 → (α, n)3 hold?

4.5 Question. Are the following statements provable in ZFC + GCH?

1. ω3 → (ω2 + ω, ω2 + ω1)2?

2. ω3 → (ω2 + 2)2ω?
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Though there are additional limitations for γ ≥ ω, which we will discuss
in Sect. 5, both theorems may actually generalize for infinite γ with 2|γ| < κ,
but nothing like this is known with the exception of the following very recent
result a proof of which will be given in Sect. 6.

4.6 Theorem (Shelah [59]). λ+ → (κ+μ)2μ for μ < κ = cf(κ) and λ = 2<κ,
under the assumption that μ < σ ≤ κ for some strongly compact cardinal σ.

4.2. More Elementary Submodels

In this subsection we prove a generalization of Connection Lemma 3.9 for
regular κ. Let λ = 2<κ and assume that 〈〈Nα,∈〉 : α < κ+〉 is a sequence of
submodels of H := H(λ++) satisfying the requirements outlined in Facts 3.2,
with A = {f} where f : [λ+]2 → γ is a given 2-partition of λ+ with γ colors.
For notational convenience, we will let

S0 := {α < λ+ : α ∩Nα = α and Nα is suitable for κ}.

For α ∈ S0, we will write Iα for the ideal I(Nα) of Definition 3.4.

4.7 Lemma (Set Mapping Lemma). Assume that S ⊆ S0 is stationary and
g : S → P(λ+) is a set mapping so that g(α) ⊆ α and g(α) ∩ S ∈ Iα for all
α ∈ S. Then there is a stationary set S′ ⊆ S which is free for g. That is,
g(α) ∩ S′ = ∅ for all α ∈ S′. Moreover, if S and g are amenable, then so
is S′.

Proof. Since S is a set of limit ordinals, for each α ∈ S, we can choose βα < α
and Yα ⊆ λ+ so that α /∈ Yα ∈ Nβα and g(α) ⊆ Yα. By Fodor’s Theorem,
first βα and then Yα stabilize on a stationary set. That is, for some stationary
S′ ⊆ S and some Y ⊆ λ+, we have α /∈ Y and g(α) ⊆ Y for all α ∈ S′. �

4.8 Corollary. Suppose S ⊆ S0. An element α ∈ S is a reflection point of
S if S ∩ α /∈ Iα. Then the set S − S̃ is non-stationary, where S̃ denotes the
set of reflection points of S. Moreover, if S is amenable, then so is S′.

Proof. Assume by way of contradiction that S′ := S − S̃ is stationary, and
define g(α) := S′ ∩ α for α ∈ S′. By the Set Mapping Lemma 4.7, there
is a stationary subset S′ ′ ⊆ S′ so that S′ ′ is free for g. On the other hand,
if β < α are both in S′ ′ ⊆ S′, then β ∈ g(α) := S′ ∩ α, contradicting the
freeness of S′ ′ for g. �

4.9 Definition. For α < λ+ and σ ∈ <ωγ, we define ideals I(α, σ) by
recursion on |σ|. To start the recursion, we set

I(α, ∅) :=

{
P(α) if α /∈ S0, and
Iα if α ∈ S0.

If σ = τ�〈i〉 and I(α, τ) has been defined, then for all X ⊆ α,

X ∈ I(α, σ) ⇐⇒ {β < α : X ∩ β ∩ f(α; i) /∈ I(β, τ)} ∈ I(α, ∅).
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4.10 Lemma. Suppose α < λ+ and σ ∈ <ωγ.

1. I(α, σ) is a κ-complete ideal;

2. if α /∈ S0, then I(α, σ) = P(α);

3. I(α, ∅) ⊆ I(α, σ).

Proof. In the special case of σ = ∅, (1) follows either from Lemma 3.6 or
the triviality that P(α) is κ-complete. Use recursion on |σ| to complete the
proof of (1), since at each successor stage, I(α, τ�〈i〉) is gotten by averaging
κ-complete ideals according to a κ-complete ideal.

Note that (2) follows immediately from the definition of I(α, σ).
(3) is also proved by induction on |σ| simultaneously for all α < λ+. For

α /∈ S0, it follows from the second item, so assume α ∈ S0. It is trivial for
σ = ∅, so assume it is true for I(α, τ) where σ = τ�〈i〉, and let X ∈ I(α, ∅) =
Iα = I(Nα) be arbitrary. By definition of I(Nα), there is some Y ⊆ λ+ so
that α /∈ Y ∈ Nα and X ⊆ Y . Since α is limit, there is a β0 < α with
Y ∈ Nβ0 . Since the sequence of submodels is continuous, Y ∈ Nβ for all β
with β0 < β < α, and for β /∈ Y , we either have X ∩ β ∈ Iβ if β ∈ S0 or have
X∩β ∈ I(β, 0) otherwise. Hence by the induction hypothesis, X∩β ∈ I(β, τ)
for β /∈ Y with β0 < β < α. That is, if β < α and X ∩ β /∈ I(β, τ), then
β ∈ Y ∪ (β0 + 1). So X ∈ I(α, σ), since α /∈ Y − (β0 + 1) ∈ Nα. �

We postpone the proof that some of these ideals are proper.

4.11 Lemma (Second Connection Lemma). Suppose X ⊆ α, X /∈ I(α, σ)
and suppose i ∈ ran(σ). Then there is a subset Y ⊆ X ∪ {α} with ot(Y ) =
κ + 1 homogeneous for f in color i.

Proof. The proof is by induction on |σ|. If σ = ∅, then there is nothing
to prove. Next suppose σ = τ�〈j〉 for some j < γ. By Lemma 4.10, we
know that X ∩ β /∈ I(β, τ) for some β < α with β ∈ X. Thus the induction
hypothesis gives the statement for i ∈ ran(τ). Next assume i = j. Then by
Lemma 4.10(3), we know that X /∈ Iα and Connection Lemma 3.9 yields the
desired result. �

4.3. The Balanced Generalization

In this subsection we will prove, as announced earlier, the following balanced
generalization of the Erdős-Rado Theorem.

4.12 Theorem (Baumgartner, Hajnal, Todorcevic [4]). Suppose κ is a reg-
ular uncountable cardinal, γ is finite and ρ < κ is an ordinal with 2|ρ| < κ.
Then

(2<κ)+ → (κ + ρ)2γ .
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For notational simplicity, we are fixing κ, λ = 2<κ, a 2-partition f :
[λ+]2 → γ, and ρ as in the statement of the theorem throughout this sub-
section, and we continue the notation introduced in Sects. 4.1 and 4.2. In
what follows, it will be convenient to look at the least indecomposable ordinal
ξ ≥ ρ, rather than ρ directly. In preparation for the proof, we give several
preliminary facts about ideals.

4.13 Definition. For ordinals ξ, sets x ⊆ λ+ and sequences σ ∈ <ωγ, define
x is (ξ, σ)-canonical for f by recursion on |σ|. To begin the recursion, we
say x is (ξ, ∅)-canonical for f if x = {α} for some α < λ+. For σ = τ�〈i〉,
we say x is (ξ, σ)-canonical for f if x is the union of a <-increasing sequence
〈xη : η < ξ〉 so that each xη is (ξ, τ)-canonical for η < ξ and f(u, v) = i for
all u ∈ xη and v ∈ xζ with η < ζ < ξ.

The following lemma is left to the reader as an exercise.

4.14 Lemma. Assume that ξ is an indecomposable ordinal and σ ∈ nγ for
some n < ω. Then

1. ot(x) = ξn for all x which are (ξ, σ)-canonical for f ;

2. if x is (ξ, σ)-canonical for f , then every y ⊆ x with ot(y) = ξn, is also
(ξ, σ)-canonical for f and J := {z ⊆ y : ot(z) < ξn} is a proper ideal;

3. if x is (ξ, σ)-canonical for f , then for every i ∈ ran(σ), there is some
y ⊆ x with ot(y) = ξ which is homogeneous for f in color i.

4.15 Lemma (Reflection Lemma). Assume X �∈ I(α, σ) for some α < λ+,
σ ∈ <ωγ, and further suppose that ξ < κ is indecomposable. Then there is a
set x ⊆ X which is (ξ, σ)-canonical for f .

Proof. The proof is by induction on |σ|. To start, notice the lemma is
vacuously true for σ = ∅. Next suppose σ = τ�〈i〉. Construct a se-
quence 〈xη : η < ξ〉 by recursion on η < ξ. Assume that ζ < ξ and
that the sets xη ⊆ X ∩ f(α; i) are (ξ, τ)-canonical for f for η < ζ. Let
Z = {β < λ+ : (∀η < ζ)(∀δ ∈ xη)(f(δ, β) = i)}. Since 〈xη : η < ξ〉 ∈ Nα,
we have Z ∈ Nα and α ∈ Z. Since {β < α : X ∩ β ∩ f(α; i) /∈ I(β, τ)} �∈ Iα,
we can choose β < α so that β ∈ Z ∈ Nβ , X ∩ β ∩ f(α; i) /∈ I(β, τ) and
sup(

⋃
{xη < ζ}) < β. By the induction hypothesis, we can choose a set

xζ ⊆ X ∩ Z which is (ξ, τ)-canonical for f with xη < xζ for all η < ζ.
This recursion defines 〈xζ : ζ < ξ〉, and x =

⋃
{xζ : ζ < ξ} is the required

set (ξ, σ)-canonical for f . �

We need one more lemma which will be used in the proof of the unbalanced
version (Theorem 4.18) as well.

4.16 Lemma. Assume S ⊆ S0 is stationary and Γ ⊆ γ is non-empty. Then
there are S′ ⊆ S stationary and σ ∈ <ωΓ with σ one-to-one such that
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1. S ∩ β ∩ f(α; j) ∈ I(β, σ), for every β, α ∈ S′ with β < α and every
j ∈ Γ− ran(σ); but

2. S ∩ α /∈ I(α, σ) for α ∈ S′.

Moreover, if S is amenable, then so is S′.

Proof. Let σ be of maximal length so that ran(σ) ⊆ Γ, σ is one-to-one, and

S′ ′ := {α ∈ S : S ∩ α /∈ I(α, σ)} is stationary.

For j ∈ Γ− ran(σ), let

gj(α) := {β < α : S ∩ β ∩ f(α; j) /∈ I(β, σ)}.

By the maximality of σ, it follows that gj(α) ∩ S′ ′ ∈ Iα for all but non-
stationarily many α ∈ S. By Lemma 4.7, there is a stationary subset S′ ⊆ S′ ′

which is free for gj . �

Let S := {σ ∈ <ωγ : σ is one-to-one}.
For α < λ+ and σ ∈ S, say (X,Y ) fits (α, σ) if X ⊆ α, X /∈ I(α, σ) and

f(β; j) ∩X ∈ I(α, σ) for all β ∈ Y and j /∈ ran(σ).
From Lemma 4.16 we get the following corollary by applying the lemma

with Γ = γ.

4.17 Corollary. For every stationary set S ⊆ S0, there are σ ∈ S, α ∈ S
and a stationary subset S′ ⊆ S so that (S ∩ α, S′) fits (α, σ).

With these lemmas in hand, we turn to the proof of the main theorem of
this subsection.

Proof of Theorem 4.12. Using Corollary 4.17, we define αm ∈ S0, σm ∈ S,
and stationary Zm ⊆ S0 by recursion on m so that the following conditions
are satisfied:

1. α0 < · · · < αm < · · · ; Z0 ⊇ · · · ⊇ Zm ⊇ · · · ; and

2. (Zm ∩ αm, Zm+1) fits (αm, σm).

Since S is finite, σk = σn for some k < n < ω. We conclude that there are
a sequence σ ∈ S, ordinals β0 < β1, and sets X0, X1 such that the following
statement is true:

X0 < X1, Xi /∈ I(βi, σ) for i < 2, and f(η; j) ∩X0 ∈ I(β0, σ) for
every j /∈ ran(σ) and every η ∈ X1.

Let ξ be the least indecomposable ordinal with ρ ≤ ξ. By the Reflection
Lemma 4.15, there is a y ⊆ X1 such that y is (ξ, σ)-canonical for f .

We shrink X0 to X = X0 −
⋃
{f(δ; j) : j /∈ ran(σ) and δ ∈ y}. Then

X /∈ I(β0, σ) since I(β0, σ) is κ-complete, |y| < κ and f(δ; j) ∈ I(β0, σ) for
j /∈ ran(σ), δ ∈ y ⊆ X1.
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Let J = {Z ⊆ y : Z is not (ξ, σ)-canonical for f}. By Lemma 4.14, J is a
proper ideal on y.

For every δ ∈ X, there is an i(δ) ∈ ran(σ) so that f(δ; i) ∩ y /∈ J . Thus
for every δ ∈ X, by Lemma 4.14(3), there is a y(δ) ⊆ y of order type ρ such
that {δ} ∪ y(δ) is homogeneous for f in color i(δ).

Using the fact that ω|ρ| = 2|ρ| · ω < κ, we now obtain i0 ∈ ran(σ), y′ ⊆ y
and X ′ ⊆ X with X ′ /∈ I(α, σ) so that i(δ) = i0 and y(δ) = y′ for all δ ∈ X ′.
Thus f(δ0, δ1) = i0 for all δ0 ∈ X ′ and δ1 ∈ y′.

By the Second Connection Lemma 4.11, we get an X ′ ′ ⊆ X ′ of order type
κ homogeneous for f in color i0. Finally X ′ ′ ∪ y′ is the required set of order
type κ + ρ homogeneous for f in color i0. �

4.4. The Unbalanced Generalization

4.18 Theorem (Baumgartner, Hajnal, Todorcevic [4]). Suppose κ is a reg-
ular uncountable cardinal, and m, γ are finite. Then

(2<κ)+ → (κω+2 + 1, (κ + m)γ)2.

This subsection is devoted to the proof of this theorem, and for notational
convenience we set λ = 2<κ throughout. Also, fix a partition f : [λ+]2 →
1 + γ. We also continue to use the notation introduced in Sects. 4.1, 4.2
and 4.3.

The strategy of the proof is to derive Theorem 4.18 from the following
auxiliary assumption:

Q(κ) 2<κ = κ and ∀〈fα : α < κ+〉 ⊆ κκ ∃g ∈ κκ (fα ≺ g)

where ≺ is the relation of eventual domination on κκ (i.e. h1 ≺ h2 iff h1(α) <
h2(α) for all but less than κ many α).

Then as in the original proof of the Baumgartner-Hajnal Theorem [2], we
observe that the assumption Q(κ) is unnecessary, and therefore that Theo-
rem 4.18 holds in ZFC.

Let us justify this observation before going on to prove the theorem from
the assumption of Q(κ).

Let P0 be the natural κ-closed forcing for collapsing 2<κ onto κ. Then in
V P0 we have λ = κ. Working in V P0 and using a standard iterated forcing
argument (as in [1]) we can force every sequence of functions in κκ of length
κ to be eventually dominated via a partial ordering P1 that is κ-closed and
has the λ+-chain condition. Let P = P0 ∗P1. Then P is κ-closed and in V P ,
both λ = κ and Q(κ) hold. Note that in V P , we will have 2κ > κ+, since
this inequality is implied by Q(κ).

Assuming we have proved Theorem 4.18 under the assumption of Q(κ),
we may assume it holds in V P . Suppose that f : [λ+]2 → γ + 1 is a 2-
partition in V . Then in V P , there is some A ⊆ λ+ such that either (a) A is
homogeneous for f in color 0 and ot(A) = κω+2 +1, or (b) A is homogeneous
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for f in color i > 0 and ot(A) = κ+m. Suppose (a) holds. Note that κω+2+1
is the same whether computed in V or in V P . Let h : κ → κω+2 + 1 be a
bijection with h ∈ V . In V P , fix an order-isomorphism j : κω+2 + 1 → A.
Now, working in V , find a decreasing sequence 〈pξ : ξ < κ〉 of elements
of P and a sequence 〈αξ : ξ < κ〉 of elements of λ+ such that for all ξ,
pξ � j(h(ξ)) = αξ. This is easy to do by recursion on ξ, using the fact that P
is κ-closed. But now it is clear that {αξ : ξ < κ} ∈ V has order type κω+2 +1
and is homogeneous for f in color 0. Case (b) may be handled the same way.

For the rest of this subsection, assume Q(κ) holds. We may also assume
that κ > ω since for κ = ω we have the much stronger result Theorem 4.30.

First we prove a consequence of Q(κ).

4.19 Lemma. Assume Q(κ). For all positive � < ω and every sequence
〈Xα : α < κ+〉 of subsets of κ� of order type < κ�, there is a sequence
〈Zν : ν < κ〉 of subsets of κ� of order type < κ� such that every Xα is a
subset of some Zν .

Proof. Use induction on �. For � = 1, the sets Xα ⊆ κ1 = κ are bounded and
we may define Zν := ν.

For the induction step, assume 〈Xα : α < κ+〉 is a given sequence of
subsets of κk+1 of order type < κk+1. Write κk+1 =

⋃
ν<ρ Uρ as the union of

an increasing sequence U0 < · · · < Uρ < · · · in which ot(Uρ) = κk. For each
α < κ+ and ρ < κ, define

Yα,ρ :=

{
Xα ∩ Uρ, if ot(Xα ∩ Uρ) < κk,

∅, otherwise.

Since each Uρ is isomorphic to κk, we may apply the induction hypothesis
to each sequence 〈Yα,ρ : α < κ+〉 to get 〈Wμ,ρ : μ < κ〉, so that every Yα,ρ

is a subset of some Wμ,ρ and each Wμ,ρ is a subset of Uρ of order type less
than κk.

For each α < κ+, define gα : κ → κ by gα(ρ) is the least μ so that
Yα,ρ ⊆ Wμ,ρ. Choose an increasing g : κ → κ eventually dominating all the
gα for α < κ. Define

Zν :=
⋃

μ<ν ∪
⋃
{Wμ,ρ : ρ ≥ ν ∧ μ ≤ g(ρ)}.

Then 〈Zν : ν < κ〉 satisfies the requirements of the lemma for � = k + 1.
Therefore by induction, the lemma follows. �

From this point forward in the subsection, we assume that there is no
homogeneous set for color 0 of the order type required. We may also assume
that the result is true for γ′ < γ.

4.20 Lemma. Assume S ⊆ S0 is stationary. For all Σ ⊆ [1, γ] with Σ �= ∅,
there are a stationary set S′ ⊆ S and a one-to-one function σ ∈ <ωΣ such
that the following two properties hold:
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1. for every stationary S′ ′ ⊆ S′ there is some α ∈ S′ ′ with S′ ′∩α /∈ I(α, σ);

2. for all j ∈ Σ−ran(σ) and all β, α ∈ S′, if β < α, then f(α; j)∩β∩S′ ∈
I(β, σ).

Proof. By induction on |Σ|. For the basis case of |Σ| = 1, suppose Σ = {i} for
some positive i ≤ γ. Then either ran(σ) = {i}, the first property holds with
S′ = S and the second holds vacuously, or by the Set Mapping Lemma 4.7,
there is a stationary subset S′ ⊆ S free for color i.

For the induction step, assume the lemma is true for some non-empty
proper subset T ⊆ [1, γ] and let i ∈ [1, γ]− T . We must show the statement
is also true for Σ = T ∪ {i}. Let ST ⊆ S and τ witness that the lemma is
true for T . Consider two cases depending on whether or not the following
statement is true, where Stat(ST ) := Stat(λ+) ∩ P(ST ):

(∗) ∀S∗ ∈ Stat(ST ) ∃α ∈ S∗({β < α : S∗ ∩ β ∩ f(α; i) /∈ I(β, τ)} /∈ Iα).

For the first case, assume that (∗) holds. Then we can choose SΣ = ST

and σ = τ�〈i〉, since the first item holds by (∗) and the second remains true
since no new j comes into play.

For the second case, assume that (∗) fails and choose a stationary S∗ ⊆ ST

showing the failure. Define

g(α) := {β < α : S∗ ∩ β ∩ f(α; i) /∈ I(β, τ)}.

Applying the Set Mapping Lemma 4.7 to g and S∗, we get a stationary
SΣ ⊆ S∗ free for g which together with σ = τ satisfy the required two
conditions. �

Our next lemma uses the fact that by Q(κ), we have 2<κ = κ. For
notational convenience, for each α ∈ S0, define

Fα := {Z ∈ Nα : Z ⊆ κ+ ∧ α ∈ Z}.

Also, for any 0 < � ≤ γ and any one-to-one function σ ∈ �−1[1, γ], call a set
Y (α, σ)-slim if Y ⊆ S0, ot(Y ) = κ�, Y /∈ I(α, σ), and for all W ⊆ Y , the
equivalence W /∈ I(α, σ) if and only if ot(W ) = κ� holds.

4.21 Lemma. For all one-to-one functions σ ∈ <ω[1, γ], for all X ⊆ S0 with
X /∈ I(α, σ), if �− 1 is the length of σ, then there exists Y ⊆ X such that Y
is (α, σ)-slim.

Proof. To start the induction, note that if X /∈ I(α, ∅) = Iα for some α ∈ S0,
then there is some Y ⊆ X with ot(Y ) = κ so that Y /∈ Iα. This implication
is true because Fα has cardinality at most κ and can be diagonalized in X.
Then Y is (α, ∅)-slim, by the κ-completeness of Iα. The rest follows by
induction on the length of σ. �

The following corollary is immediate from the previous two lemmas.
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4.22 Corollary. There are a stationary set S1 ⊆ S0, a nonempty subset
Σ ⊆ [1, γ] and a one-to-one function σ ∈ �−1Σ such that the following two
conditions hold:

1. for all stationary S ⊆ S1, there are α ∈ S and X ⊆ α of order type κ�

so that X /∈ I(α, σ);

2. for all β < α ∈ S1 and all j ∈ [1, γ]−Σ, one has f(α; j) ∩ β ∈ I(β, σ).

For notational convenience, write X = Σν<κXν to indicate that X0 <
· · · < Xν < · · · and X =

⋃
ν<κ Xν . For the remainder of this section, let

S1 ⊆ S0, σ and � as in the previous corollary be fixed.

4.23 Definition. For α ∈ S0, define H(α, n) by recursion on n < ω. To
start the recursion, define

H(α, 0) := {X ⊆ S1 : X is (α, σ)-slim}.

If H(α, n) has been defined, then X ∈ H(α, n+1) if and only if the following
conditions are satisfied:

1. X ⊆ S1 and there exists 〈Xν ∈ H(α, n) : ν < κ〉 with X = Σν<κXν ;

2. for all F ∈ Fα, there exists νF so that Xν ⊆ F for all ν > νF ;

3. for all ν < ν′ < κ and x ∈ Xν , y ∈ Xν′ , one has f(x, y) = 0.

Note that every X ∈ H(α, n) has ot(X) = κ�+n and X contains a subset
of order κn homogeneous for f in color 0. Furthermore, every Y ⊆ X of
order type κ�+n has a subset in H(α, n).

We now prove the lemma containing the main idea of the proof.

4.24 Lemma (Key Lemma). Suppose α ∈ S1, n < ω and X ⊆ S1 with
X ∈ H(α, n). Then there are β0 ∈ S1 with β0 > α and 〈Tν ⊆ X : ν < κ〉
with ot(Tν) = κ�+n so that for all β ∈ S1 with β > β0, there is some ν < κ
such that ot(Tν − f(β; 0)) < κ�+n.

Proof. Let M be a maximal subset of S1 with the property that for all V ∈
[M ]<ω, ot(

⋂
{X − f(β; 0) : β ∈ V }) = κ�+n. We claim that |M | ≤ κ and

then we are done, by the maximality of M .
Assume for the sake of a contradiction that |M | = κ+, and let

Π :=
{⋂

β∈V X − f(β; 0) : V ∈ [M ]<ω
}
.

Extend Π∪{X−Y : Y ⊆ X ∧ot(X) < κ�+n} to an ultrafilter U on X. Then
for every β ∈M , there is a j(β) ∈ Σ so that X ∩f(β; j(β)) ∈ U . Hence there
is some j ∈ Σ so that the set Mj := {β ∈ M : j(β) = j} has cardinality κ+.
By κ+ → (κ+, n)2, there is a set H ⊆ Mj of size n which is homogeneous
for f in color j. Now X ∩

⋂
{f(β; j) : β ∈ H} is in U , so it must have order

type κ�+n. By Lemma 4.11 it contains a set W of type κ homogeneous for f
in color j. This is the contradiction that proves the lemma. �
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4.25 Lemma. Assume S ⊆ S1 is stationary. Then for all n < ω, there are
α ∈ S and X ⊆ S so that X ∈ H(α, n).

Proof. Work by induction on n. For the basis case, n = 0, the statement
follows from Corollary 4.22 and Lemma 4.21.

For the induction step, a standard ramification argument gives the result.
Assume the claim is true for some n. Let α ∈ S be arbitrary. We define a
sequence

{Xξ : ξ < κ} ⊆ H(αξ, n)

by recursion on ξ < κ. Assume that Xη ∈ H(αη, n), Xη ⊆ S ∩ f(α; 0) are
defined for η < ξ. Let Sξ = {β ∈ S :

⋃
{Xη : η < ξ} ⊆ f(β; 0)}. Then α ∈ Sξ

and Sξ ∈ Nα. Then Sξ is stationary, and so by the induction hypothesis it
contains a subset X ∈ H(αξ, n) for some αξ ∈ α ∩ Sξ. By elementarity, we
may assume X ∈ Nα. By the Key Lemma, there are Tν ⊆ X for ν < κ such
that ot(Tν) = κ�+n and |S −

⋃
ν<κ Zν | ≤ κ where

Zν = {β < κ : ot(Tν − f(β; 0)) < κ�+n}.

Then, by elementarity S −
⋃

ν<κ Zν ⊆ α, hence α ∈ Zν for some ν < κ and
Xν = Tν ∩ f(α; 0) satisfies the requirement.

⋃
ν<κ Xν ∈ H(α, n + 1) and as

a bonus we have that
⋃

ν<κ Xν ⊆ f(α; 0). �

The same ramification argument gives the next lemma as well.

4.26 Lemma. Assume S ⊆ S1 is stationary. Then there exist an increasing
sequence 〈αξ ∈ S : ξ < κ〉 and a family 〈Xξ,n ⊆ S : ξ < κ ∧ n < ω〉 with each
Xξ,n ∈ H(αξ, n) so that if either ξ < η or ξ = η and k < �, then Xξ,k < Xη,�

and f(x, y) = 0 for all x ∈ Xξ,k, y ∈ Xη,�.

The above lemma gives the result for κω+1, since the set

X :=
⋃
{Xξ,n : ξ < κ ∧ n < ω}

is homogeneous for f in color 0.
To finish the proof, we use yet another ramification argument.

4.27 Lemma. Let X be a set of order type κω+1 as described above, and let
Xn :=

⋃
{Xξ,n : ξ < κ}. Note that ot(Xn) = κ�+n+1. Let

J := {Y ⊆ X : ∃n0 < ω ∀n > n0 (ot(Y ∩Xn) < κ�+n)}.

Then J is an ideal and there are {Tν ∈ J+ : ν < κ} and β0 ∈ S1 such that
for all β ∈ S1 with β > β0, the set Tν − f(β; 0) is in J .

Let M be a maximal subset of S1 so that
⋂

β∈V X − f(β; 0) /∈ J for finite
V ⊆M .

To see that |M | = κ, we proceed just like in the proof of Lemma 4.24. We
only need the fact that if Z ⊆ X and Z /∈ J , then for all j ∈ Σ, the set Z
contains a subset of type κ homogeneous for f in color j.
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Since |M | = κ, the set Π := {
⋂

β∈V X − f(β; 0) : V ∈ [M ]<ω} is a family
of size κ such that for all β /∈M , there is some Z ∈ Π so that Z−f(β; 0) ⊆ Y
for some Y ∈ Π.

The next lemma is the final tool we need.

4.28 Lemma. Assume T ∈ J+. Then there is a J ⊆ J with |J | ≤ κ such that
for all β ∈ S1 with T −f(β; 0) ∈ J , there is a Y ∈ J so that T −f(β; 0) ⊆ Y .

Proof. Choose Jn ⊆ [Xn]�+n+1 with |Jn| ≤ κ so that for all β ∈ S1 with
ot(Xn − f(β; 0)) < κ�+n+1 there is a Yn ∈ Jn with T − f(β; 0) ⊆ Yn. Let

J0 :=
{⋃

n<ωYn : ∀n < ω Yn ∈ Jn

}
.

Note that |J0| = κω = κ. Finally, set

J :=
{
A ∪B : A ∈ J0 and B =

⋃
{Xi : i ≤ n} for some n < ω

}
.

Then J will do the job. �

4.5. The Baumgartner-Hajnal Theorem

Here is a brief overview of the history of the Baumgartner-Hajnal Theorem
and some of its generalizations. Erdős and Rado conjectured that ω1 → (α)2k
and λ0 → (α)2k, for λ0 the order type of the reals, and for all k < ω, α < ω1.

Fred Galvin figured out, for order types Θ, that Θ → (ω)1ω would be the
right necessary and sufficient condition for Θ→ (α)2k to hold for all α < ω1.

Hajnal [25] proved in 1960 that λ0 → (η0, α ∨ α∗)2 where η0 is the or-
der type of the rationals. More significantly, Galvin proved λ0 → (α)22, for
α < ω1, but contrary to the first expectations, this proof provided no clues for
the general case. For the resource ω1, Galvin could only prove ω1 → (ω2, α)2

for α < ω1.
Another result of Prikry [48] said ω1 → (α, (ω : ω1))2. This result was

later generalized by Todorcevic [64] to

ω1 → ((α)k, (α : ω1))2 for all α < ω1.

Finally we mention a very significant consistency result of Todorcevic [63]
that PFA (Proper Forcing Axiom) implies

ω1 → (ω1, α)2 for all α < ω1.

(For context, recall that PFA implies that c = ω2.)
Before going back to the main line of discussion, we make another detour.

It was already asked in the Erdős-Hajnal problem lists [12, 13] if the partition
relations ω2 → (α)22 were consistent for α < ω2. Though there is nothing to
refute such consistency, the results going in this direction are weak and rare.

The first consistency result was obtained by Richard Laver [40] in 1982,
and independently discovered by Akihiro Kanamori [33], using what is now
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called a Laver ideal I on κ (a non-trivial, κ-complete ideal with the strong
saturation property that given κ+ sets not in the ideal, there are κ+ of them
so that the intersection of any < κ of these is also not in the ideal). He
proved that if there is a Laver ideal on κ, then

κ+ → (κ · 2 + 1, α)2 holds for all α < κ+.

Laver also proved the consistency of the hypothesis that there is a Laver ideal
on ω1 and derived as a corollary the consistency (relative to a large cardinal,
of course) of

ω2 → (ω1 · 2 + 1, α)2 holds for all α < ω2.

Foreman and Hajnal [20] tried to get a stronger consistency result for ω2

from the stronger assumption that ω1 carries a dense ideal, and indeed, they
proved that in this case

ω2 → (ω1
2 + 1, α)2 holds for all α < ω2.

They however discovered that their proof gives a much stronger result for
successors.

4.29 Theorem (Foreman and Hajnal [20]). Suppose κ > ω is measurable
and m < ω. Then κ+ → (α)2m for all α < Ω(κ).

Here κ < Ω(κ) < κ+ is a rather large ordinal. We will comment about
these results in detail in Sect. 5, but for lack of space and energy we will not
include proofs.

4.30 Theorem (Baumgartner and Hajnal [2]). If an order type Θ satisfies
Θ → (ω)1ω, then it also satisfies Θ → (α)2k for all α < ω1 and finite k.

4.31 Corollary. For all α < ω1 and m < ω,

ω1 → (α)2m.

So we decided to give a proof of Corollary 4.31 using the ideas of the
Foreman-Hajnal proof. This will serve two purposes. It will make the text
almost complete as far as the old results are concerned, and it will commu-
nicate most of the ideas of the new Foreman-Hajnal proof.

Notation. Let 〈〈Nα,∈〉 : α < ω1〉 be a sequence of elementary submodels of
H(ω2) satisfying Facts 3.2 with λ = κ = ω, A = {f} where f : [ω1]2 → m,
and

S0 := {α < ω1 : ω1 ∩Nα = α and Nα is suitable for ω}.

Here S0 is a club set in ω1. We may assume S0 is amenable.

4.32 Definition. We define Sρ by transfinite recursion on ρ < ω1: S0 has
already been defined; Sρ+1 := S̃ρ, the set of reflection points of Sρ (see
Corollary 4.8); and Sρ :=

⋂
σ<ρ Sσ for ρ a limit.
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4.33 Lemma. For all ρ < ω1, the set Sρ is amenable.

Proof. Use induction on ρ and Corollary 4.8 to prove that 〈Sσ : σ < ρ〉 ⊆
Nα+1 for α ∈ Sρ. The details and the remainder of the proof are left to the
reader. �

Next we are going to define diagonal sets, cross sets, and cross systems.

4.34 Definition. For α ∈ S0, for the sake of brevity, we put

Fα := {Z ∈ Nα : Z ⊆ ω1 ∧ α ∈ Z}.

(Note that for X ⊆ α, we have X /∈ Iα if and only if X ∩ Z �= ∅ for all
Z ∈ Fα; see the discussion of notation after Lemma 3.6.)

Call D ⊆ α a diagonal set for α ∈ S0 if sup(D) = α and |D − Z| < ω for
all Z ∈ Fα.

Clearly every diagonal set D for α has order type ω, and every cofinal
subset of it is also diagonal. Moreover, a diagonal set D for α is reflecting
for α in the sense described after Lemma 3.6.

4.35 Lemma. For all α ∈ S0 and X ⊆ α with X /∈ Iα, there is a diagonal
set D ⊆ X for α. If X ∈ Nα+1, then D can be chosen in Nα+1.

Proof. Since |Fα| = ω, we can diagonalize it. �

Notation. Assume that 〈Dn : n < ω〉 is a sequence of sets of ordinals and
α ∈ S0. Then the sequence converges to α in Nα, in symbols, Dn =⇒ α, if
and only if for every Z ∈ Fα there is some n0 so that for all n > n0, Dn ⊆ Z.

For a set D of ordinals, we denote by D its closure in the ordinal topology.

4.36 Definition. By transfinite recursion on ρ < ω1, we define, for α ∈ Sρ,
the concept D is a cross set of rank ρ for α as follows:

1. For α ∈ S0, the set {α} is cross set of rank 0 for α.

2. For ρ > 0, the set D is cross set of rank ρ for α if α ∈ Sρ and there is
a witnessing sequence 〈Dn : n < ω〉 satisfying the following conditions:

(a) each Dn is a cross set of rank ρn for αn for some ρn < ρ and for
αn := sup(Dn);

(b) D0 ∪ {α0} < · · · < Dn ∪ {αn} < · · · ;
(c) Dn =⇒ α;

(d) if ρ = σ + 1, then ρn = σ for all n < ω; if ρ is a limit, then
ρ = sup(ρn);

(e) D =
⋃

n<ω Dn.
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4.37 Remark. Note that a cross set D of rank 1 for α is a diagonal set for α,
and if {αn : n < ω} is the set of αn := sup(Dn) for a witnessing sequence
for D, then {αn : n < ω} is also a diagonal set for α.

The next lemma is proved by induction on ρ.

4.38 Lemma. If D is a cross set for α of rank ρ, then ot(D) = ωρ.

We now define the concept of a cross system of rank ρ for α. Informally,
this is just the closure of a cross set of rank ρ for α, equipped with functions
that remember the sets appearing in the definition of the cross set of rank α.

4.39 Definition. By transfinite recursion on ρ < ω1, we define, for α ∈ Sρ,
the concept D = 〈D,<D, rankD, succD〉 is a cross system of rank ρ for α as
follows:

1. For α ∈ S0, a quadruple D = 〈D,<D rankD, succd〉 is a cross system
of rank 0 for α if and only if D = {α}, <D= ∅, rank(α) = 0, and
succ(α) = ∅.

2. For ρ > 0, a quadruple D = 〈D,<D, rankD, succD〉 is a cross system
of rank ρ for α with underlying cross set D if there is a witnessing
sequence 〈Dn : n < ω〉 of cross systems so that

(a) Dn is a cross system of rank ρn for αn for all n < ω;

(b) D =
⋃
{Dn : n < ω} is a cross set with witnessing sequence 〈Dn :

n < ω〉, where Dn underlies Dn;

(c) D =
⋃
{Dn : n < ω} ∪ {α};

(d) <D is defined by α <D β for all β ∈ D − {α}, and <D �Dn =<Dn

for n < ω.

(e) under <D, D is a (rooted) tree with root α;

(f) rankD : D → ρ + 1 is defined by rankD(α) = ρ, and rankD �Dn =
rankDn for n < ω.

Finally, succD(β) is just a redundant notation for the set of immediate
successors of β in the tree under <D.

Note that for ρ > 0 and n < ω, under the notation of Definition 4.36,
succD(α) = {αn : n < ω} and rankD(αn) = ρn.

Note that the underlying set of a cross system is definable as the set of
elements in D of rank 0.

4.40 Lemma. Assume D = 〈D,<D, rankD, succD〉 is a cross system of
rank ρ for α. Then for all β ∈ D, rankD(β) = ∅ if and only if β ∈ D.

The next two lemmas are proved by induction on ρ.

4.41 Lemma (Reflection Lemma). Assume D is a cross system of rank ρ
for α. Then for γ ∈ D −D, succD(γ) is a diagonal set for γ.
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4.42 Definition. Assume D is a cross system of rank ρ for α with underlying
set D. We say that C is a full subset of D if α ∈ C and C ∩ succD(β) is
infinite for β ∈ C with rankD(β) > 0.

4.43 Lemma (Induction lemma for cross systems). Assume D is a cross
system of rank ρ for α with underlying set D. For every full subset C of D,
there is a set B ⊆ C ∩ D so that B ⊆ C and B is the underlying set for a
cross system of rank ρ for α.

4.44 Definition. By recursion on ρ < ω1 define, for α ∈ Sρ, the concept D
is an f -canonical cross system of rank ρ for α as follows.

1. For α ∈ S0, the unique cross system of rank 0 for α is an f -canonical
cross set of rank 0.

2. For ρ > 0, D is an f -canonical cross system of rank ρ for α if it is a
cross system of rank ρ for α with a witnessing sequence 〈Dn : n < ω〉
for which the following additional conditions hold:

(g) for n < ω, Dn is an f -canonical cross system of rank ρn for αn;

(h) there is some i so that f(β, γ) = i for all β ∈ Dn and γ ∈ Dp with
n < p < ω.

This usage is slightly different from the use of the word “canonical” in
Definition 4.13. In this section we do not use the term (ξ, σ)-canonical.

The following is one of the oldest ideas in the subject.

4.45 Lemma (Homogeneity Lemma). For all σ < ω1 there is some ρ < ω1

so that if D is an f -canonical cross system of rank ρ, then there is a set
H ⊆ D of order type ωσ which is homogeneous for f .

The proof is left to the reader. Detailed proofs can be found in both [2]
and in [21] of Galvin, where the first elementary proof of Theorem 4.30 was
given.

We need one more technical lemma, a strengthening of Lemma 4.43, before
launching into the main proof.

4.46 Lemma (Induction lemma for canonical cross systems). Assume D is
an f -canonical cross system of rank ρ for α. Suppose C is a full subset of D.
Then there is a set B ⊆ C ∩D so that B ⊆ C and B is the underlying set of
an f -canonical system of rank ρ for α.

Proof. Use induction on ρ and the fact that every cofinal subset of a diagonal
set for β is diagonal for β. �

By the Homogeneity Lemma 4.45, the following lemma will be sufficient
to prove Corollary 4.31.

4.47 Lemma (Main Lemma). For all ρ < ω1, α ∈ Sρ and F ∈ Fα, there is
an f -canonical system D of rank ρ for α with D ⊆ S0 ∩ F and D ∈ Nα+1.
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Note that it would be sufficient to prove Lemma 4.47 without the last
clause, which is needed to support induction.

The rest of this section is devoted to the proof of Lemma 4.47. We need
further preliminaries. In what follows, U is a fixed non-principal ultrafilter
on ω with U ∈ N0.

4.48 Definition. Define, by recursion on ρ < ω1, deference functions iD
where D is a cross system of rank ρ for α. For α ∈ S0 and a cross system D
of rank 0 for α, define iD(ξ) for ξ with α < ξ < ω1 by iD(ξ) = i if and only
if f({α, ξ}) = i. Assume ρ > 0 and deference functions have been defined for
cross systems of rank σ < ρ. For a cross system D of rank ρ for α, define iD(ξ)
for ξ with α < ξ < ω1 by iD(ξ) = i if and only if {n < ω : iDn(ξ) = i} ∈ U
where 〈Dn : n < ω〉 is the witnessing sequence of cross systems for D.

Notice that if D ∈ Nα+1, then the deference function iD : ω1−(α+1) → m
is also in Nα+1. Note also that iD(ξ) can be defined “inside D” for a fixed ξ,
as follows.

4.49 Definition. Assume D is a cross system of rank ρ for α and α <
ξ < ω1. Define jD(β, ξ) for β ∈ D by transfinite recursion on rankD(β) as
follows. If rankD(β) = 0, then jD(β, ξ) = f({β, ξ}). For σ > 0 and β with
rankD(β) = σ, set jD(β, ξ) = j for that j < m so that {n < ω : jD(βn, ξ) =
j} ∈ U , where βn is the nth element of succD(β).

The proof that these two definitions coincide is left to the reader.

4.50 Lemma. Assume D is a cross system of rank ρ for α. Then for all ξ
with α < ξ < ω1, jD(α, ξ) = iD(ξ).

Note that jD is an element of Nα+1 if D ∈ Nα+1.
Next we use a fixed enumeration of pairs of natural numbers to define a

standard well-ordering for D where D is a cross system. For the remainder
of this section, assume ϕ : ω × ω → ω − {0} is a fixed bijection which is
monotonic in both variables, and which is in N0.

4.51 Definition. Define, by recursion on positive ρ < ω1, for cross systems
D of rank ρ, a standard well-ordering of D.

1. For α ∈ S1, if D = {αn : n < ω} is the underlying set of a cross system
D of rank 1, then the standard well-ordering of D has least element
d0 = α, and for positive k, has kth element dk = αk−1.

2. For ρ > 1, if D =
⋃
{Dn : n < ω} is the underlying set of a cross system

D of rank ρ where Dn is the underlying set of Dn of the witnessing
sequence of D, then the standard well-ordering of D has least element
d0 = α, and for positive k = ϕ(n, j), has kth element dk = dn,j , where
dn,j is the jth element of Dn.

By some abuse of notation, we write dn for the nth element of the standard
well-ordering.
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4.52 Lemma. For all positive ρ < ω1 and all α ∈ Sρ, if D is a cross system
of rank ρ for α and 〈dk : k < ω〉 is the standard well-ordering of D, then for
all positive n < ω, there is some m < n so that dn ∈ succD(dm).

Proof. The proof is by induction on ρ over the recursive definition of standard
well-orderings. �

Proof of the Main Lemma 4.47. The proof is by induction on ρ. For ρ = 0,
the lemma is trivial.

For the induction step, assume ρ > 0 and the lemma is true for all σ < ρ.
Let α ∈ Sρ and F ∈ Fα be arbitrary. If ρ = σ + 1, then let ρn = σ for all
n < ω. If ρ is a limit, then let 〈ρn : n < ω〉 ∈ Nα+1 be a strictly increasing
cofinal sequence with limit ρ, and assume ρ0 ≥ 1.

Now, for all n < ω, α ∈ Sρn+1, so α is a limit of ordinals in Sρn and
α ∈ S̃ρn . Temporarily fix an enumeration of Fα as {Gn : n < ω}. By
definition of S̃ρn , (Sρn ∩ F ∩G0 ∩ · · · ∩Gn) ∩ α /∈ Iα.

Define by recursion sequences 〈αn : n < ω〉 and 〈Dn : n < ω〉. To start,
choose α0 ∈ (Sρ0 ∩ F ∩G0) ∩ α large enough so that F , G0 ∈ Nα0 . Then F ,
G0 ∈ Fαn . Use the induction hypothesis on ρ0, α0, F ′

0 = F ∩ G0 to find an
f -canonical cross system D0 ∈ Nα0+1 of rank ρ0 for α0 so that D0 ⊆ S0∩F ′

0.
Continue, taking care to make sure the sequence of αn’s increases to α.

If αn has been defined, then choose αn+1 ∈ (Sρn+1 ∩ F ∩G0 ∩ · · · ∩Gn+1 −
(αn+1))∩α large enough so that F,G0, G0, . . . , Gn+1 ∈ Nα0 . Then F,G0, . . . ,
Gn+1 ∈ Fαn+1 . Use the induction hypothesis on ρn+1, αn+1, F ′

n+1 = F ′
n ∩

Gn+1 ∩ω1− (αn+1 + 1) to find an f -canonical cross system Dn+1 ∈ Nαn+1+1

of rank ρn+1 for αn+1 so that Dn+1 ⊆ S0 ∩ F ′
n+1.

Also, since m is finite, there is an infinite subsequence of 〈αn : n < ω〉 ∈
Nα+1 and an i < m so that iDn(α) = i for all n in the subsequence. By
shrinking if necessary, we may assume, without loss of generality, that this
subsequence is the entire sequence. Now 〈Dn : n < ω〉 is a witnessing se-
quence for a cross set of rank ρ for α by construction. Hence 〈Dn : n < ω〉 is
a witnessing sequence for a cross system of rank ρ for α.

Finally, as Nα, α ∈ Nα+1, and since Sρ is amenable by Lemma 4.33, we
may assume that 〈Dn : n < ω〉 is defined in Nα+1.

Claim. There is an infinite set T ⊆ ω with T ∈ Nα+1 and a family {Cn :
n ∈ T} so that Cn is a full subset of Dn for n ∈ T and f(β, γ) = i for all
β ∈ Cn and γ ∈ Cp with n, p ∈ T and n < p.

The induction step of the Main Lemma follows from the claim by Lem-
ma 4.46, as each Cn can be replaced by an f -canonical system Cn ∈ Nαn+1

and 〈Cn : n ∈ T 〉 is the witnessing sequence of the desired f -canonical system
of rank ρ for α.

To prove the claim, we will pick elements of {α}∪
⋃
{Dn : n ∈ ω} according

to a certain bookkeeping. We pick α first. Infinitely often we pick a new
element n for T , larger than any element of T picked earlier. Our choice of
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n means we have picked the top point αn of Dn. For each point n of T , we
promise that infinitely often we will pick an element of Dn according to the
standard well-ordering of Dn.

For notational convenience, let n(β) denote that value of n with β ∈ Dn.
Assume we have picked a finite non-empty set A ⊆ {α} ∪

⋃
{Dn : n < ω}

which satisfies the following condition:

∗(A)
For any n < p, β ∈ Dn ∩A and ξ ∈ Dp ∩A,

jDn(β, ξ) = jDn(β, α) = i.

We have to pick a new point γ for A so that the enlarged set still satisfies
the condition ∗(A ∪ {γ}).

For the first scenario, suppose we want to add a new αp to A. That is, we
want to add a new value p to T . Let

Z0 = Z0(A) =
⋂
{{ξ : jDn(β)(β, ξ) = i} : β ∈ A}.

Note that Z0 is in Nα and α ∈ Z0. As succ(α) is reflecting, we can choose
the desired αp ∈ succ(α) as large as we want.

For the second scenario, assume we want to pick a β to add to A so that
β ∈ Dp for some p ∈ T where αp ∈ A and so that β ∈ succ(γ) for some γ ∈
A ∩ Dp. There are three cases, αp = min(A ∩ succD(α)), αp = max(A ∩
succD(α)), and min(A ∩ succD(α)) < αp < max(A ∩ succD(α)). We sketch
only the last, and leave the others to the reader. Let A− := A ∩

⋃
{Dn :

n < p}, and A+ := A ∩
⋃
{Dn : n > p}, and define

Z+ = Z+(A) :=
⋂
{δ ∈ succDp(γ) : jDp(δ, ξ) = i ∧ ξ ∈ A+}.

Now Z+ is a subset of succDp(γ) which is a reflecting subset of γ by the
Reflection Lemma 4.41. Since by ∗(A), jDp(γ, ξ) = i for ξ ∈ A, and A is
finite, it follows that Z+ is a reflecting subset of γ. Next define

Z− = Z−(A) :=
⋂
{ξ < ω1 : jDn(δ)(δ, ξ) = i ∧ δ ∈ A−}.

By Lemma 4.50, Z− ∈ Nmax(A−)+1. Since max(A−) < γ, it follows that
Z− ∈ Nγ . By ∗(A), γ ∈ Z−. Hence Z+ ∩ Z− is infinite and any element of
Z+ ∩ Z− is a suitable choice for β.

Use the technique of “jumping around” and these two scenarios to inter-
twine the recursive definitions of T and of all the Cn’s for n ∈ T . Specifically,
use the standard well-ordering of α to define a sequence 〈ηk : k < ω〉. At
stage 0, pick η0 = α. Suppose η� has been defined for � < k. Look at dk.
If dk ∈ succD(α), then use the first scenario to choose ηk ∈ succD(α). If
dk ∈ succD(η�) for some � < k, then use the second scenario to choose
ηk ∈ succD(η�). Otherwise, set ηk = ηk−1. Finally, let E = {ηk : k < ω}.

Let T = {p < ω : (∃k)(ηk = αp)}. Since the standard order lists all the
successors of α, the set T is infinite and in Nα+1. For p ∈ T , let Cp = E∩Dp.
Temporarily fix p ∈ T . For any γ ∈ Cp, since αp = d� for some �, and
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succDn(γ) forms an infinite monotonic subsequence of {dk : k < ω}, the set
Cp has infinitely many successors of γ. Thus Cp is full. Therefore T and the
sets {Cp : p ∈ T} are the ones required to prove the claim.

As noted above, the claim suffices to complete the induction step of the
Main Lemma, so it follows. �

5. The Milner-Rado Paradox and Ω(κ)

Erdős and Rado considered Ramsey’s Theorem to be a generalization of the
pigeon-hole principle (for cardinals). In 1965, Milner and Rado [44] turned
around this view, noting that the pigeon-hole principle is a partition relation
with exponent 1, and that a partition relation with exponent 1 and ordinal
resource and goal would be a pigeon-hole principle for ordinals.

A case in point of this approach is the easily checked family of partition
relations κn → (κn)1γ for κ ≥ ω, n < ω, and γ < cf(κ). Soon Milner and
Rado discovered that basically nothing stronger is true.

5.1 Theorem (Milner-Rado [44]). For all cardinals κ ≥ ω and all α < κ+,

α � (κn)1n<ω.

Proof. It is sufficient to prove

(∗) κρ
� (κn)1n<ω for ρ < κ+.

Clearly we may assume κ > ω. We prove (∗) by transfinite induction on ρ.
We can write κρ =

⋃
ν<σ Aν with A0 < · · · < Aν < · · · and each ot(Aν) =

κρν for some ρν < ρ, where σ = cf(ρ) if cf(ρ) > 1 and σ = κ otherwise.
By the induction hypothesis, each Aν =

⋃
n<ω Aν,n where ot(Aν,n) < κn

for ν < σ, n < ω. In the case of σ = ω, define a witnessing partition
κρ =

⋃
j<ω Bj where Bj = Aν,n for j = 2ν(2n + 1). In the case of σ > ω, let

B0 := ∅, Bn+1 :=
⋃
{Aν,n : ν < σ}. Clearly κρ =

⋃
n<ω Bn; and ot(Bn+1) ≤∑

ν<σ κn ≤ κn+1 < κω. �

We state one consequence of the above theorem giving further limitations
on to positive relations (as discussed in Theorem 4.3).

5.2 Theorem. For all cardinals κ ≥ ω, κ+ � (κn)2n<ω.

Proof. For α < κ+, use Theorem 5.1 to choose partitions α =
⋃

n<ω Aα
n

with ot(Aα
n) < κn for each n < ω. Define f : [κ+]2 → ω as follows: for

α < β < κ+, set f(α, β) = n + 1 if and only if α ∈ Aβ
n. �

The word paradox was used in reference to Theorem 5.1 because this result
was so contrary to expectations. It turned out that the phenomena described
in Theorem 5.1 is involved in many problems concerning uncountable cardi-
nals, and often it leads to unexpected difficulties.
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In this section we are trying to turn this tide and use the paradox in our
favor. For the remainder of this section, let κ be a fixed infinite cardinal.

5.3 Definition. For α < κ+, call a partition α =
⋃

γ∈Γ Aγ with Γ < κ an
MR-decomposition of α if there is a sequence 〈nγ : γ < Γ〉 ∈ Γω such that
ot(Aγ) = κnγ .

From Theorem 5.1 and the fact that any δ < κn is the finite sum of ordinals
of the form κm · ν where m < n and ν < κ, we get the following corollary.

5.4 Corollary. Each α < κ+ has an MR-decomposition.

Another way to put Definition 5.3 is that α has an MR-decomposition if
there are sequences 〈nγ : γ < Γ〉 ∈ Γω and functions Ψγ : [κ]nγ → α for
γ < Γ < κ such that Ψγ is the canonical monotone map from [κ]nγ ordered
lexicographically into α.

The next definition from [20] is motivated by this formulation.

5.5 Definition. Call α < κ+ codeable if there are Γ < κ and sequences
〈nγ : γ < Γ〉 ∈ Γω and 〈Ψγ : γ < Γ〉 so that Ψγ : [κ]nγ → α for γ < Γ and for
every A ∈ [κ]κ,

ot
(⋃

γ<ΓΨγ“[A]nγ
)

= α.

5.6 Definition. Let Ω(κ) be defined as the least ordinal Ω ≤ κ+ so that
each α < Ω is codeable.

Note that this definition from [20] is only interesting if κ is a large cardinal,
say at least a Jónsson cardinal.

The following list of properties of Ω(κ) proved in [20] gives some sense of
this ordinal for a measurable cardinal κ > ω.

1. Ω(κ) < κ+;

2. Ω(κ) is closed under the operations of ordinal addition, multiplication,
exponentiation, and taking fixed points of these operations;

3. Ω(κ) cannot be changed by (κ,∞)-distributive forcing;

4. if V ⊆W and both V and W are models of ZFC + “κ is measurable”,
then Ω(κ)V ≤ Ω(κ)W ;

5. by using generic elementary embeddings in the situation of 4., it is
possible to make Ω(κ)V < Ω(κ)W .

Moreover, Ω(κ) is big, e.g. if U is a normal ultrafilter on κ and ν is the least
ordinal such that Lν [U ] ∩ κ<κ = L[U ] ∩ κ<κ, then L[U ] |= Ω(κ) = ν. Since
the statement δ < Ω(κ) is upwards absolute, this implication shows that the
value of Ω(κ)V is at least as big as ν. Moreover ν is much bigger than, for
example, the first η > κ such that Lη[U ] is an admissible structure, but much
to our regret, we must omit the proofs.



162 Hajnal and Larson / Partition Relations

However, we have to confess that we know very little about the combi-
natorial properties involved in the definitions of Ω(κ). In fact, we do not
know if Ω(κ) would become smaller if we stipulated that the mappings Ψγ

be monotone.

6. Shelah’s Theorem for Infinitely Many Colors

In this section we prove Shelah’s Theorem 4.6, that λ+ → (κ + μ)2μ for
μ < κ = cf(κ) and λ = 2<κ, under the assumption that μ < σ ≤ κ for some
strongly compact cardinal σ.

We say that B ⊆ λ+ has essential colors for g, I, where g is a 2-partition
of λ+ and I is a normal ideal on λ+, if B /∈ I and every C ⊆ B with C /∈ I
satisfies g“[C]2 = g“[B]2.

6.1 Lemma (Reduction to essential colors). Assume μ < κ = cf(κ), and
λ := 2<κ. Further suppose that g : [λ+]2 → μ is a 2-partition of λ+ with μ
colors, I is a normal ideal concentrating on Sκ,λ+ , and A ⊆ λ+ is not in I.

Then there are a subset B ⊆ A and a normal ideal J ⊇ I, such that B has
essential colors for g, J .

Proof. By the normality of I and Facts 3.2 we can choose N ≺ H(λ++)
suitable for κ such that g, I, A ∈ N , N ∩ λ+ = α < λ+, α ∈ A, and N
satisfies the following condition:

(∗) for all C ∈ N , if α ∈ C ⊆ λ+, then C /∈ I.

To see this situation may be assumed, choose an elementary chain N0 ≺ · · · ≺
Nα ≺ H(λ++) as in Sect. 4.4 and use normality to see that

{α ∈ S0 : (∗) fails for some C} ∈ I.

To prove the lemma, define a decreasing sequence 〈Aξ : ξ < κ〉 of subsets
of λ+ by recursion on ξ < κ. To start the recursion, let A0 := A. Assume
0 < ξ < κ and Aζ is defined for ζ < ξ in such a way that

Aζ ∈ N and α ∈ Aζ ⊆ λ+, for ζ < ξ.

Put Aξ =
⋂

ζ<ξ Aζ in case ξ is a limit ordinal.
Suppose Aζ has been defined, and set Γζ = g“[Aζ ]2. Let Iζ be the normal

ideal generated on Aζ from

I ∩ P(Aζ) ∪ {x ⊆ Aζ : g“[x]2 � Γζ}.

If Aζ /∈ Iζ , then set Aζ+1 = Aζ . If Aζ ∈ Iζ , then it is a finite or diagonal
union of elements of the generating set. We treat the case where there is a
sequence Bζ = 〈Bζ,η : η < λ+〉 such that Aζ =

⋃
η<λ+ Bζ,η, and for η < λ+,

Bζ,η ∩ (η + 1) = ∅, and either Bζ,η ∈ I or g“[Bζ,η]2 � Γζ .
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Then, by elementarity, there is a sequence Bζ ∈ N as described above.
Moreover, α ∈ Bζ,η for some η < λ+ with η < α and η ∈ N , and thus
Bζ,η ∈ N for this η. We set Aζ+1 = Bζ,η for this η. Note that in this
case, α ∈ Aζ+1 /∈ I and g“[Aζ+1]2 � g“[Aζ ]2. This defines the sequence
〈Aη : η < κ〉.

Since g maps pairs from λ+ into μ, there are at most μ < κ many ζ with
Aζ � Aζ+1. Let ζ be the least ordinal with Aζ = Aζ+1, and set B := Aζ .
Then Iζ is a proper ideal on B. The ideal J generated from I ∪ Iζ is normal,
and B /∈ J . So by definition of Iζ , B has essential colors for g, J . �

Given a 2-partition g, we say that y and z are color equivalent over x
and write y ≡g

x z if x < y, x < z, ot(y) = ot(z), and the order isomorphism
π : x∪y → x∪z has π�x = id and is color preserving: g(ζ, η) = g(π(ζ), π(η)).

6.2 Corollary. For any 2-partition g : [λ+]2 → μ, and any normal ideal J ,
if B has essential colors for g, J , then there is a set C ⊆ B with B − C ∈ J
such that for all α ∈ C, for all x ∈ [α]<κ, and for all γ ∈ Γ := g“[B]2, the
set D(α, x, γ) is J-positive, where

D(α, x, γ) := {β ∈ C : α < β ∧ {α} ≡g
x {β} ∧ g(α, β) = γ}.

Proof. To see that the set B has the desired property, assume to the contrary
that for all α in some J-positive set X ⊆ B, there are x(α) ∈ [α]<κ and
γ(α) ∈ g“[B]2 such that the set D(α, x(α), γ(α)) ∈ J . By normality and
cf(α) = κ, there are Y ⊆ X with Y /∈ J such that for some x, γ one has
x(α) = x, γ(α) = γ for all α ∈ Y . Then for some Z ⊆ Y with Z /∈ J
the condition {α} ≡g

x {β} holds for all α, β ∈ Z. If for each α ∈ Z the
set {β ∈ Z : g(α, β) = γ} ∈ J , then, because of the normality, for the set
W := {δ ∈ Z : ∀β ∈ δ ∩ Z (g(β, δ) �= γ)} both W /∈ J and γ /∈ g“[W ]2 would
hold, contradicting the fact that B has essential colors for g, J . �

The above lemma and corollary are to be used with different 2-partitions,
and hence were stated in generality. Now fix a 2-partition f : [λ+]2 → μ for
which we seek a homogeneous set of type κ + μ.

6.3 Lemma (Pulldown Lemma). There is a subset S0 ⊆ Sκ,λ+ closed in
Sκ,λ+ such that for all α ∈ S0, for all x ∈ [α]<κ, and for all z ∈ [λ+ − (α +
1)]<κ, there is a y ∈ [α− sup(x)]<κ such that y ≡f

x z.

Proof. Let S0 be as in Facts 3.2. Then Lemma 6.3 is true by reflection. �

The Pulldown Lemma 6.3 does not say anything about the colors of edges
that go between the sets y and z, while Corollary 6.2 detailed a situation in
which any essential color may be pre-selected.

We apply Lemma 6.1 to f and the smallest normal ideal on λ+, the non-
stationary ideal, to get B0 ⊆ S0 and J0, so J0 is a normal ideal extending
the non-stationary ideal, and B0 has essential colors for f, J0. We apply
Corollary 6.2 to get A0 ⊆ B0 so that B0 −A0 ∈ J0 and the other conditions
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of the corollary hold for all α ∈ A0. Then we choose α0 ∈ A0, and put
T := A0 − α0.

6.4 Lemma. There exists a function h : T × T → μ such that for all x ∈
[α0]<κ and z ∈ [T ]<σ there is a y ∈ [α0 − sup(x)]<σ such that

(a) y ≡f
x z via π : x ∪ y → x ∪ z; and

(b) f(ζ, ζ ′) = h(π(ζ), ζ ′) for all ζ ∈ y, ζ ′ ∈ z, π(ζ) �= ζ ′.

Proof. As σ is strongly compact is suffices to show that for every Z ∈ [T ]<σ

there exists a function H : Z × Z → μ as required.
Assume for the sake of contradiction that for every H : Z×Z → μ there is

an xH ∈ [α]<σ such that for all y ⊆ α− sup(xH) satisfying (a), the function
given by (b) is not H.

Let x =
⋃
{xH : H : Z × Z → μ}. Then |x| < σ as |x| ≤ μ|Z| < σ, since

σ is strongly inaccessible.
By Lemma 6.3, there is a y satisfying (a). Then (b) defines a function

H : Z × Z → μ. By the definition of x, the set xH ⊆ x is a set on which the
function defined by (b) for y is not H, and that is a contradiction. �

Now we define k : [λ+]2 → μ× μ for u, v ∈ λ+ with u < v by

k(u, v) = 〈f(u, v), h(u, v)〉.

Next apply Lemma 6.1 and Corollary 6.2 to k and the normal ideal J0 and
the set T .

6.5 Corollary. We get a normal ideal J1 ⊇ J0, a non-empty set Γ ⊆ μ× μ,
and subsets S1 ⊆ B1 ⊆ T with B1 /∈ J1, B1 − S1 ∈ J1 such that B1 has
essential colors for k, J1, and for each α ∈ S1 and for each x ∈ [α]<κ and
〈γ, δ〉 ∈ Γ the set E(α, x, 〈γ, δ〉) is J1-positive, where

E(α, x, 〈γ, δ〉) := {β ∈ S1 : α < β ∧ {α} ≡k
x {β} ∧ k(α, β) = 〈γ, δ〉}.

6.6 Lemma. There is a subset a ∈ [S1]<σ such that for every partition of
a, say a =

⋃
{aζ : ζ < μ}, there is a ζ < μ such that for every γ < μ, there

is a subset bζ,γ of aζ of type μ homogeneous for f in the color γ.

Proof. Notice that S1 /∈ J . We claim that if A ⊆ S1 does not contain a
subset of order type μ homogeneous for f in color γ for some γ ∈ μ, then
A ∈ J . Indeed, for each α ∈ A choose a maximal subset Mα ⊆ (α + 1) ∩ A
homogeneous for f in color γ with α ∈Mα. If A �∈ J then, by the normality
of J , Mα is constant on a set not in J , and that yields, using the normality of
J , a set not in J not containing any edge of color γ in f , just as in the proof of
the Erdős-Rado Theorem 3.10. Hence S1 has the property that any partition
of it into μ pieces has a part A which contains a homogeneous subset of type
μ for every γ ∈ f“[S1]2.

By the strong compactness of σ, there must be a set a ⊆ S1 of size < σ
satisfying the same statement as S1 about f , all partitions into μ parts and
the existence of homogeneous subsets of type μ for all colors γ ∈ f“[S1]2. �
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We now describe the construction of the required homogeneous set.
Recall that immediately following Lemma 6.3 we chose α0. Next choose a

as in Lemma 6.1 Then choose α1 ∈ S1 satisfying Corollary 6.5.
Then α0 < a < α1.
Define aγ,δ := {u ∈ a : k(u, α1) = 〈γ, δ〉}.
By Lemma 6.6 there is a 〈γ0, δ0〉 ∈ Γ such that aγ0,δ0 contains a subset

of type μ homogeneous for color γ for every γ, hence it contains a subset
b ⊆ αγ0,δ0 of type ot(b) = μ homogeneous for f in color δ0. This will be
“our color” and b will be the “μ-part” of our set. We are going to construct
the “λ-part” of the set by transfinite recursion on ξ < κ as follows. Assume
ξ < k and we have constructed X = Xξ of order type ξ homogeneous for f
in color δ0 and so that all edges from X to b ∪ {α1} have color δ0.

We now apply Corollary 6.2 to α1, and X ∪ b and we obtain an α2 ∈ S1,
with α1 < α2 such that {α1} ≡k

X∪b {α2} and k(α1, α2) = 〈γ0, δ0〉.
As a corollary of this we have δ0 = f(u, α1) = f(u, α2) for u ∈ X, since

δ0 = f(u, α1) for u ∈ X is assumed, and h(v, α1) = h(v, α2) = δ0 for v ∈ b,
by the choice of b.

Apply Lemma 6.4 for α0 to Xand b ∪ {α1, α2} ⊆ T . We get b′ ∪ {α′
1, α

′
2}.

We claim that Xξ+1 = X ∪ {α′
2} is homogeneous in color δ0 and sends all

edges to b ∪ {α1} of color δ0.
Indeed f(u, α′

2) = f(u, α2) = δ0 for u ∈ X by the equivalence over X.
For v ∈ b, we have f(α′

2, v) = f(v, α′
2) = h(v, α2) = h(v, α1) = δ0. By

choice of α2, we have k(α1, α2) = 〈g(α1, α2), h(α2, α1)〉 = 〈γ0, δ0〉. Hence
f(α′

2, α1) = δ0 also.

7. Singular Cardinal Resources

It should be clear to the attentive reader that neither the ramification method
as described in Remark 2.4 nor its refinements discussed up to now can yield
any specific partition results for a singular resource. To get such results the
method of canonization was invented in [18].

7.1 Definition. Assume f : [κ]r → γ is an r-partition of length γ of κ,
and 〈Aν : ν < μ〉 is a sequence of disjoint subsets of κ. Then f is said to
be canonical on 〈Aν : ν < μ〉 if f(x) = f(y) for all x, y ∈ A :=

⋃
ν<μ Aν

whenever x, y are positioned the same way in the sequence, i.e. if

|x ∩Aν | = |y ∩Aν | for all ν < μ.

The idea is that, for a singular cardinal κ, we want to find a sequence
〈Aν : ν < cf(κ)〉 with |Aν | < κ for ν < cf(κ), and A :=

⋃
{Aν : ν < cf(κ)}

of power κ such that f is canonical on 〈Aν : ν < cf(κ)〉 and use it to piece
together large homogeneous sets. The following is the classical canonization
theorem.
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7.2 Theorem (General Canonization Lemma [18]). Suppose that τ ≥ 2 is a
cardinal, r ≥ 1 is an integer, 〈κξ : ξ < μ〉 is a strictly increasing sequence of
infinite cardinals with κ0 ≥ τ |μ| and exp( r

2 )(κξ) < exp( r
2 )(κη) for ξ < η < μ.

For any disjoint union A =
⋃̇
{Aν : ν < μ}, and any coloring f : [A]r → τ , if

|Aν | ≥ (exp( r
2 )(κν))+ for all ν < μ, then there are sets Bν ⊆ Aν for ν < μ

so that |Bν | ≥ κν
+ and the sequence 〈Bν : ν < μ〉 is canonical with respect

to f .

We are omitting the proof, since any reader with some experience in com-
binatorics should be able to reconstruct it, and since neither this proof nor
the subsequent proofs fall into the line of the methods we are describing. We
include canonization results because we think that no chapter on partition
relations would be complete without them.

Here is the very first application of Theorem 7.2.

7.3 Theorem (Reduction Theorem). Assume κ > cf(κ) is a strong limit
cardinal. Then κ→ (κ, κν)21≤ν<γ if and only if cf(κ) → (cf(κ), κν)21≤ν<γ.

Indeed, the next theorem is the only one obtained for a singular resource
using a method different from canonization. The elementary proof of the
theorem is left to the reader (see [19]).

7.4 Theorem (Erdős; Dushnik and Miller [9]). For every infinite cardinal κ,
κ→ (κ, ω)2.

See also [19] for a proof. The General Canonization Lemma implies Theo-
rem 7.4 for singular strong limit κ and for cf(κ) > ω it yields κ→ (κ, ω+1)2.
It has been a longstanding problem if this partition relation holds if we do
not assume that κ is strong limit. Recently Shelah [54] proved this partition
relation holds under the much weaker condition that 2cf(κ) < κ.

Erdős, Hajnal and Rado in [18] pursued the idea of finding the right gen-
eralization of the form κ → (κ, ω1)2 for singular κ. The first possible case
is κ = ℵc+ , where c = 2ω, and the Reduction Theorem 7.3 gives a positive
answer in case κ is a strong limit. The very first question of the Erdős-Hajnal
problem list [12] asks if this additional hypothesis is necessary. Shelah and
Stanley in [60] and [61] proved that the partition relation κ → (κ, ω1)2 can
be both false and true if κ is not a strong limit cardinal. A description of
this deep result is beyond the scope of this section.

There is one more canonization result that we want to mention. It was
isolated during the discussion of the ordinary partition relation in the book
[19] that the following result should be true, and Shelah later proved it.

7.5 Theorem (Shelah [56]). Assume that κ is a singular cardinal of weakly
compact cofinality. If κ < 2<κ and 2ρ < 2<κ for ρ < κ, then

2<κ → (κ)22.
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To prove this partition relation, Shelah worked out a new group of can-
onization results in [56]. We only state here one of the main results. Call
a sequence of cardinals 〈κν : ν < μ〉 exponentially increasing if ξ < ν < μ
implies 2κξ < 2κν . A sequence of sets 〈Bν : ν < μ〉 is weakly canonical if
f(u) = f(v) whenever u, v ∈ [

⋃
ν<μ Bν ]r and |u ∩ Bν | = |v ∩ Bν | ≤ 1 for

every ν < μ. A set F ⊆ P(A) sustains A over κ if for every X ⊆ A with
|X| = (2κ)+, there is a Y ∈ F so that Y ⊆ X and |Y | = κ+.

7.6 Theorem (Shelah’s Canonization Lemma [56]). Suppose 〈κξ : ξ < μ〉 is
an exponentially increasing sequence of infinite cardinals with κ0 ≥ τ, μ, ω,
for a cardinal τ ≥ 2. Then for any disjoint union A =

⋃̇
{Aν : ν < μ}, any

sequence 〈Fν ⊆ P(Aν) : ν < μ〉, and any coloring f : [A]2 → τ , if |Aν | > 2κν

and Fν sustains Aν for all ν < μ, then there is a sequence 〈Bν : ν < μ〉
weakly canonical with respect to f with |Bν | = κν

+ for all ν < μ.

8. Polarized Partition Relations

Polarized partition relations were defined in the introduction. We do not
have the space to give an orderly discussion of the problems and results on
this partition relation. Rather, we will only give a few examples, where
the method of elementary submodels described in the previous section can
be resourcefully used. The first appearance in the literature of the use of
elementary submodels for the proofs of polarized partition relations is the
following theorem of Jones which generalizes a result of Erdős, Hajnal and
Rado [18] from 1965:

8.1 Theorem (Jones [30]). Let κ be an infinite cardinal and λ = 2<κ. Then
the following polarized partition relation holds:

(
λ+

λ+

)

→

⎛

⎝
λ+ γ κ + 1

or
γ λ+ κ + 1

⎞

⎠

1,1

.

In the remainder of this section, we apply the method of elementary sub-
models using the “method of double ramification”.

8.1. Successors of Weakly Compact Cardinals

The first example is chosen with an eye to a clean presentation of the method.

8.2 Theorem (Baumgartner and Hajnal [3]). Suppose that κ is a weakly
compact cardinal. Then

(
κ+

κ

)

→
(
κ
κ

)1,1

γ

for γ < κ.
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Before going into the details of the proof, we give some historical remarks
and state an open problem. In [26], Hajnal proved that for measurable κ,
the following partition relations holds:

(
κ+

κ

)

→
(
α
κ

)1,n

<κ

for n < ω and α < κ+.

In an early paper of Choodnovsky [6], it was claimed that
(
κ+

κ

)

→
(
α
κ

)1,1

<κ

for α < κ+

remains valid for weakly compact κ, but no proof was given. Realizing that
this claim was by no means obvious, both Kanamori [32] and Wolfsdorf [66]
published proofs that the relation is true for two colors:

(
κ+

κ

)

→
(
α
κ

)1,1

2

for α < κ+.

Theorem 8.2 was generalized in the thesis of Jones [29, 28], who proved,
using elementary submodels, that for weakly compact cardinals κ,

(
κ+

κ

)

→
((

α
κ

)

m

,

(
κn

κ

)

γ

)1,1

for m,n < κ, γ < κ, α < κ+.

To the best of our knowledge, the following problem remains unsolved.

8.3 Question. Does the partition relation
(
κ+

κ

)

→
(
α
κ

)1,1

ω

hold for all weakly compact κ ≥ ω, α ≥ κω?

The rest of this subsection is devoted to the proof of Theorem 8.2 for κ > ω.
To that end, let κ > ω be a weakly compact cardinal, and let f : κ+×κ→ γ
be a fixed partition. We outline background assumptions below, using work
from earlier sections.

8.4 Definition. Let 〈〈Nα,∈〉 : α < κ+〉 be a sequence of elementary sub-
models of H(κ++) satisfying Facts 3.2 with λ = κ<κ = κ and A = {f}. Let
〈Iα : α < κ+〉 be the ideals defined in Definition 3.4 and let

S0 := {α < κ+ : α(Nα) = α ∧ cf(α) = κ ∧Nα is suitable}

as defined in Sect. 4.2. Note that for α ∈ S0, Iα is a κ-complete proper ideal,
by Lemma 3.6.

8.5 Definition. Call N = 〈Nα,ξ : α < κ+ ∧ ξ < κ〉 a double ramification
system for 〈Nα : α < κ+〉 as in Definition 8.4 if for each α < κ+, the sequence
〈Nα,ξ : ξ < κ〉 ∈ Nα+1 is an increasing continuous sequence of elementary
submodels of Nα with

⋃
{Nα,ξ : ξ < κ} = Nα such that |Nα,ξ| < κ for ξ < κ.
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We use the name double ramification system since, as we explained in the
proof of the Erdős-Rado Theorem, the Nα’s play the role of the ramification
system of Erdős and Rado.

Just like in Facts 3.2, using general facts about elementary submodels,
and the uncountability and strong Mahloness of κ, we can see that there is a
system satisfying the next definition.

8.6 Definition. Let N = 〈Nα,ξ : α < κ+ ∧ ξ < κ〉 be a double ramification
system such that for each α ∈ S0 there is a T 0

α ⊆ κ, with T 0
α ∈ Stat(κ)

satisfying the following conditions for all ξ ∈ T 0
α:

1. Nα,ξ ∩ κ = ξ > γ;

2. ξ is a regular cardinal; and

3. [Nα,ξ]<ξ ⊆ Nα,ξ.

Next we relativize certain important sets to the submodels of the double
ramification system.

8.7 Definition. For each α ∈ S0 and ξ ∈ T 0
α, define the following sets:

1. Xα,ξ := Nα,ξ ∩ κ+;

2. Iα,ξ := {X ⊆ ξ : (∃Y )(Y ⊆ κ ∧ Y ∈ Nα,ξ ∧ ξ /∈ Y ∧X ⊆ Y )};

3. Îα,ξ := {X ⊆ Xα,ξ : (∃Y )(Y ⊆ κ+ ∧ Y ∈ Nα,ξ ∧ α /∈ Y ∧X ⊆ Y )}.

8.8 Lemma. For α ∈ S0 and ξ ∈ T 0
α, both Iα,ξ and Îα,ξ are ξ-complete

ideals, and Iα,ξ is proper.

Proof. The first statement follows from the fact that [Nα,ξ]<ξ ⊆ Nα,ξ. To
see that Iα,ξ is proper, then just like in Lemma 3.6, assume Z ⊆ κ, ξ ∈ Z
and Z ∈ Nα,ξ. Then sup(Z) ∈ Nα,ξ, hence sup(Z) = κ and sup(Z) ∩ ξ = ξ.
This implies ξ /∈ Iα,ξ. �

Note that Îα,ξ is proper for many α and ξ as well (see Corollary 8.11
below).

Notation. For all ν < γ, let

f ↓(α; ν) := {ξ < κ : f(α, ξ) = ν} for α < κ+,

f ↑(ξ; ν) := {α < κ+ : f(α, ξ) = ν} for ξ < κ.

8.9 Definition. For α ∈ S0 and ξ ∈ T 0
α, let

aα,ξ := {ν < γ : f ↓(α; ν) ∩ ξ /∈ Iα,ξ}.

Note that aα,ξ �= ∅ by Lemma 8.8 and the fact that γ < ξ.
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8.10 Lemma (Main Lemma). There are subsets a ⊆ γ and S ⊆ S0 with S ∈
Stat(κ+), and for each α ∈ S, there is a subset Tα ⊆ T 0

α with Tα ∈ Stat(κ),
so that f(α, η) ∈ a = aα,η for all α ∈ S and η ∈

⋃
{Tβ : β ∈ S}.

Proof. First thin each T 0
α for α ∈ S0 to a stationary subset T 1

α so that for
some aα, one has aα,ξ = aα for all ξ ∈ T 1

α. Then thin S0 to a stationary
subset S1 so that for some a ⊆ γ and for all α ∈ S1, aα = a. We may assume
without loss of generality that γ < ξ for all ξ ∈ T 1

α.
Notice that for all α ∈ S1 and all ξ ∈ T 1

α, if ν /∈ a, then f ↓(α; ν)∩ ξ ∈ Iα,ξ.
Hence, by the definition of f ↓ and the ξ-completeness of Iα,ξ, it follows that
{η < ξ : f(α, η) /∈ a} ∈ Iα,ξ. By Definition 8.7, for α ∈ S1 and ξ ∈ T 1

α, we can
choose sets Yα,ξ ⊆ κ such that ξ /∈ Yα,ξ ∈ Nα,ξ and {η < ξ : f(α, η) /∈ a} ⊆
Yα,ξ. Using Fodor’s Theorem twice, we get Y ⊆ κ, S ⊆ S1 with S ∈ Stat(κ+),
and 〈Tα ⊆ T 1

α : α ∈ S〉 such that Tα ∈ Stat(κ) for all α ∈ S, and Yα,ξ = Y
for α ∈ S and ξ ∈ Tα.

Consequently, for all ξ ∈
⋃
{Tβ : β ∈ S}, we have ξ /∈ Y , since ξ /∈ Yβ,ξ = Y .

However, if α ∈ S and η < κ are such that f(α, η) /∈ a, then for some ξ ∈ Tα,
one has η ∈ Yα,ξ = Y , so the theorem follows. �

8.11 Corollary. There is an α < κ+, so that for κ-many ξ, the following
condition holds:

(+) (∃ν < γ)(f ↓(α; ν) ∩ ξ /∈ Iα,ξ ∧ f ↑(ξ; ν) ∩Xα,ξ /∈ Îα,ξ).

Proof. Let α be such that S∩α /∈ Iα. Such an α must exist by Corollary 4.8.
A standard argument shows that if S ∩ α /∈ Iα, then W = {ξ < κ : S ∩ α ∩
Xα,ξ ∈ Îα,ξ} is non-stationary in κ. By Main Lemma 8.10, f(β, ξ) ∈ a for
ξ ∈ Tα and β ∈ S∩α∩Xα,ξ. Hence f ↑(ξ; ν)∩Xα,ξ /∈ Îα,ξ for some ν ∈ a and
for every ξ ∈ Tα −W . On the other hand, f ↓(α; ν) ∩ ξ /∈ Iα,ξ for all ν ∈ a
and for every ξ ∈ Tα. �

8.12 Lemma (Compactness Lemma). Assume that for some α < κ+ there
are κ-many ξ so that for some Aξ ⊆ Xα,ξ, Bξ ⊆ ξ with ot(Aξ) = ot(Bξ) = ξ,
the set Aξ × Bξ is homogeneous for f . Then there are A ⊆ κ+, B ⊆ κ with
ot(A) = κ + 1 and ot(B) = κ such that A×B is homogeneous for f .

Proof. Use the weak compactness of κ via its Π1
1-indescribability. �

After all these preliminaries, Theorem 8.2 now follows from Corollary 8.11,
the Compactness Lemma 8.12 above, and the Reflection Lemma below.

8.13 Lemma. Assume that for α as in Corollary 8.11 and for some ν < γ,
the ordinal ξ satisfies the formula (+) of Corollary 8.11. Then there are
A ⊆ Xα,ξ, B ⊆ ξ with ot(Aξ) = ot(Bξ) = ξ so that A × B is homogeneous
for f in color ν.
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Proof. Let A := f ↑(ξ; ν)∩Xα,ξ and let B = f ↓(α; ν)∩ξ. Since (+) holds for ν

and ξ, we know that B /∈ Iα,ξ and A /∈ Îα,ξ. These last two statements imply
the existence of the sets A, B as required. Indeed, we can define sequences
A = {aμ : μ < ξ} ⊆ A and B = {bμ : μ < ξ} ⊆ B by transfinite recursion on
μ < ξ so that for all μ′, μ′ ′ < ξ,

f(aμ′ , bμ′ ′ ) = ν,

aμ′ ∈ f ↑(ξ; ν),

bμ′ ′ ∈ f ↓(α; ν).

At stage μ < ξ, assume this has been done for μ′, μ′ ′ < μ. First choose aμ.
Toward that end, let

Z−
μ := {β < κ+ : f(β, bμ′ ′ ) = ν for all μ′ ′ < μ}.

Then α ∈ Z−
μ since bμ′ ′ ∈ f ↓(α; ν) for all μ′ ′ < μ. Since f , {bμ′ ′ : μ′ ′ < μ} ∈

Nα,ξ, it follows that Z−
μ ∈ Nα,ξ. So Z−

μ ∩A−{aμ′ : μ′ < μ} is not in Îα,ξ, so
we can choose αμ from it.

Then choose bμ similarly using f ↑(ξ; ν) in the role of f ↓(α; ν) and Iα,ξ

instead of Îα,ξ and taking care to make f(aμ′ , bμ) = ν for μ′ ≤ μ. �

8.2. Successors of Singular Cardinals

In this subsection we investigate the following question.

8.14 Question. Assume κ is a singular strong limit cardinal and γ < κ.
Under what circumstances does the following partition relation hold?

(∗)
(
κ+

κ

)

→
(
κ
κ

)1,1

γ

.

The problem was isolated in Problem 11 of [18], where it was asked if (∗)
holds for κ = ℵω1 under GCH. In the same paper, it was proved that (∗)
holds provided cf(κ) = ω, but we omit the proof of this fact.

After about thirty years, a shocking partial result was proved by Shelah.

8.15 Theorem (Shelah [58]). Assume κ is a singular strong limit cardinal
of uncountable cofinality. Then (∗) holds if 2κ > κ+.

For another proof of this result, see Kojman [34]. A little extra information
is contained in an unpublished result of Foreman, which we prove here using
the result of Shelah.

8.16 Theorem (Foreman unpublished). Suppose that κ is a singular strong
limit cardinal in V and (2κ)V > (κ+)V . Then there is a κ-complete partial
order P which satisfies the (2κ)+-chain condition so that

V P |= 2κ = κ+ and
(
κ+

κ

)

→
(
κ
κ

)1,1

γ

for γ < κ.
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Proof. We can choose for P the κ+-complete Levy collapse of 2<κ to κ+. For
every p ∈ P and every name for a partition ḟ , we can define in V a decreasing
sequence 〈pα | α < κ+〉 of conditions and a function g : κ+ × κ → γ such
that p0 = p and

∀α < κ+ ∀β ≤ α ∀ξ < κpα � ḟ(β, ξ) = g(β, ξ).

By Theorem 8.15, we can choose A, B such that A × B is homogeneous for
g and |A| = |B| = κ. For some α < κ, we have A,B ⊆ α and then

pα � ∃A ∃B(|A| = |B| = κ ∧A×B is homogeneous for ḟ).

Hence V P satisfies the claim. �

All other problems remain unsolved, even for γ = 2. For notational conve-
nience, for the rest of this section let μ = cf(κ). We may assume that μ > ω,
and we will embark on a lengthy proof of a mild strengthening of the result
of Shelah.

8.17 Theorem. Suppose that κ is a singular strong limit cardinal of un-
countable cofinality μ. Then (∗∗) holds if 2κ > κ+:

(∗∗)
(
κ+

κ

)

→
(
κ + 1

κ

)

γ

.

The proof we are going to describe will be a double ramification, quite sim-
ilar in structure to the proof of Theorem 8.2 and different from the simplified
proof of Theorem 8.15 in Kojman [34].

8.18 Definition. Choose �κ = 〈κν : ν < μ〉 to be an increasing continuous
sequence of cardinals satisfying the following properties:

1. sup({κν : ν < μ}) = κ;

2. μ < κ0; and

3. 2κν < κν+1 = cf(κν+1) for ν < μ.

We use results of Shelah’s pcf theory [57] (see also the Abraham-Magidor
chapter in this Handbook) to guarantee the existence of the sequence delin-
eated in the next definition.

8.19 Definition. Choose �λ = 〈λν : ν < μ〉 to be an increasing sequence
of regular cardinals with κν < λν < κ for ν < μ such that the product
Π :=

∏
ν<μ λν satisfies

(∀{ϕα : α < κ+} ⊆ Π)(∃ϕ ∈ Π)(∀α < κ+)(ϕα ≺ ϕ)

where ≺ is the relation of eventual domination on Π.
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We now choose a sequence of models to serve as the skeleton of a double
ramification.

8.20 Definition. Let A := μ ∪ {μ, f,�κ,�λ}. Using Facts 3.2, we can choose
an increasing chain 〈〈Nα,∈〉 : α < κ+〉 of elementary submodels of H(κ++)
with A ∈ N0 such that

S0 := {α < κ+ : α(Nα) = α > κ ∧ cf(α) = μ ∧Nα is suitable for κ}

is a club in Sμ,κ+ . As in Definition 3.4, we define

Iα := {X ⊆ α+ : ∃Y (Y ⊆ κ+ ∧ Y ∈ Nα ∧ α /∈ Y ∧ |X − Y | < κ)},

and note that since κ is singular, the last condition may no longer be replaced
by X ⊆ Y .

8.21 Facts. The following statements hold.

1. Iα is a μ-complete proper ideal for all α ∈ S0;

2. for every stationary S ⊆ S0, there is some α ∈ S so that S ∩ α /∈ Iα;

3. for every α ∈ S0, every X ∈ P(α)− Iα and every τ < κ, there is some
W ⊆ X with |W | = τ so that W ∈ Nα.

Proof. The first item follows from Lemma 3.6, and the second from Corol-
lary 4.8. To see that the third item holds, fix α ∈ S0, and assume X ∈
P(α) − Iα. By the definition of Iα, we have |X| ≥ κ. Let τ < κ be given.
Since cf(κ) = μ < κ, there is a β < α with |X ∩ β| ≥ τ . Since Nα ≺ H(κ++)
and β ∈ Nα, there is some U in Nα with |U | < κ and |X ∩ U | ≥ τ . Then
any W ⊆ X ∩ U with |W | = τ satisfies the requirement of the item since
|P(U)| < κ and therefore P(U) ⊆ Nα. �

For notational convenience, we use the same names for our double ramifi-
cation system here as in the proof of Theorem 8.2.

8.22 Definition (Double ramification). For each α ∈ S0, we choose <α, a
well-ordering of type κ of Nα. Choose N = 〈Nα,ν : α < κ+ ∧ ν < μ〉 for
the skeleton chosen above so that for α ∈ S0, the sequence 〈Nα,ν : ν < μ〉 is
increasing, continuous and internally approachable and satisfies the following
conditions:

1. A ∈ Nα,0;

2. κν ⊆ Nα,ν , |Nα,ν | = κν , and Nα,ν contains the νth section of Nα,ν in
the well-ordering <α for each ν < μ.

Next we relativize certain important sets to the submodels of the double
ramification system.
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Notation. For each α ∈ S0, define the set Xα,ν := Nα,ν ∩ λν for ν < μ and
the function ϕα : μ→ κ so that ϕα(ν) := sup(Xα,ν).

The following facts follow from Definition 8.19 of Π and �λ.

8.23 Lemma. For every α ∈ S0, the function ϕα is in Π, and there is a
function ϕ ∈ Π which eventually dominates all the ϕα for α ∈ S0. That is,
for each α ∈ S0, there is some να < μ, so that ϕα(ν) < ϕ(ν) for all ν with
να ≤ ν < μ.

For the remainder of this section, fix a function ϕ which eventually dom-
inates all the ϕα for α ∈ S0, and let να as above be the point at which
domination sets in.

8.24 Definition. For α ∈ S0 and ν with να ≤ ν < μ, define

Iα,ν := {X ⊆ ν : ∃Y (Y ⊆ λ ∧ Y ∈ Nα,ν ∧ ϕ(ν) /∈ Y ∧ |X − Y | < κν)}.

8.25 Lemma. Let α ∈ S0 and ν with να ≤ ν < μ be given. Then

1. Iα,ν is a proper ideal;

2. for each X ⊆ Xα,ν with X ∈ I+
α,ν , there is a W ⊆ X with |W | = κν so

that W ∈ Nα,ν+1.

Proof. For the first item, note that the set Iα,ν is an ideal because Nα,ν is
closed with respect to finite unions. To see that Xα,ν /∈ Iα,ν , let Z ∈ Nα,ν

be a subset of λν with ϕ(ν) ∈ Z. It is enough to show |Z ∩ Xα,ν | ≥ κν .
Now Z ∈ Nα,ν and sup(Z) ∈ Nα,ν . Hence sup(Z) = λν . Thus there is a
one-to-one function g : κν → Z. Using the fact that κν and λν are in Nα,ν ,
by elementarity, there is a function g ∈ Nα,ν like this. Using the fact that
κν + 1 ⊆ Nα,ν , we get that ran(g) ⊆ Nα,ν ∩ λν = Xα,ν .

For the second item, there is a subset W ⊆ X with |W | = κν by Defini-
tion 8.24. Also, by Definition 8.22, we know that Xα,ν ∈ Nα,ν+1, 2κν < κν+1

and P(Xα,ν) ⊆ Nα,ν+1. Therefore W ∈ Nα,ν+1 as required. �

Recall the notation f ↓(α; i) introduced after Lemma 8.8:

f ↓(α; i) := {ξ < κ : f(α, ξ) = i} for α < κ+, i < γ.

Using the facts that γ, ω < μ and 2μ < κ, we can show directly that
(
κ+

μ

)

→
(

Stat(κ+)
Stat(μ)

)1,1

γ

.

We get the next lemma by applying this partition relation to the coloring
f ◦ ϕ of κ+ × μ.

8.26 Lemma. There are S ⊆ S0, T ⊆ μ, ν < μ and i < γ such that
S ∈ Stat(κ+), T ∈ Stat(μ), ν ∩ T = ∅, ϕ“T ⊆ f ↓(α; i) and να = ν for all
α ∈ S.
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We now prove our main claim.

8.27 Lemma (Main Claim). There is an α ∈ S such that S ∩ α /∈ Iα and

{ν ∈ T : f ↓(α; i) ∩Xα,ν /∈ Iα,ν} ∈ Stat(μ).

Proof. By Corollary 4.8, it is sufficient to see that

{α ∈ S : {ν ∈ T : f ↓(α; i) ∩Xα,ν /∈ Iα,ν} ∈ Stat(μ)} ∈ Stat(κ+).

Let Tα := {ν ∈ T : f ↓(α, i) ∩ Xα,ν ∈ Iα,ν} for α ∈ S. Assume by way of
contradiction that for some S′ ∈ Stat(κ+) ∩ P(S), one has Tα ∈ Stat(μ) for
all α ∈ S′.

For α ∈ S′, ν ∈ Tα, choose Yα,ν satisfying the following conditions: Yα,ν ⊆
λν , Yα,ν ∈ Nα,ν , ϕ(ν) /∈ Yα,ν , and |f ↓(α; i) ∩ Xα,ν − Yα,ν | < κν . For each
α ∈ S′, by Fodor’s Theorem, the sets Yα,ν stabilize on a stationary subset
of Tα. That is, for each α ∈ S′, there are T ′

α ⊆ Tα with T ′
α ∈ Stat(μ), Yα and

ρα < κ such that Yα,ν = Yα and |f ↓(α; i)∩Xα,ν − Yα,ν | ≤ ρα for ν ∈ T ′
α and

Yα ∩ {ϕ(ν) : ν ∈ T ′
α} = ∅.

Note that
⋃
{Xα,ν : ν ∈ T ′

α} = κ, hence

|f ↓(α; i)− Yα| ≤ ρα.

Now, using Fodor’s Theorem again, Yα stabilizes on a stationary subset of S′.
That is, there are T ′ ∈ Stat(μ), Y and ρ such that for some S′ ′ ∈ Stat(κ+)∩
P(S′), one has T ′

α = T ′, Yα = Y and ρα = ρ for all α ∈ S′ ′.
Now choose two elements α′, β′ ∈ S′ ′ with α′ < β′, and let ν′ ∈ T ′ be such

that β′ ∈ Nα′,ν′ and κν′ > ρ. Since α′ ∈ S′ ′ ⊆ S and ν′ ∈ T ′ ⊆ T , it follows
that f(β′, ϕ(ν′)) = i by Lemma 8.26. In other words, ϕ(ν′) ∈ f ↓(β′; i).
However, f ↓(β′; i) ∈ Nα′,ν′ , hence

f ↓(β′; i) ∩Xα′,ν′ /∈ Iα′,ν′ .

This last fact contradicts the inequality |f ↓(β′; i) − Y | < ρ and the lemma
follows. �

To finish the proof of Theorem 8.17 using the Main Claim 8.27, we want
to define sequences 〈Aξ : ξ < μ〉 with Aξ ⊆ κ and 〈Bξ : ξ < μ〉 with Bξ ⊆ S0

so that the sets are pairwise disjoint, |Aξ| = |Bξ| = κξ, Aξ, Bξ ∈ Nα,νξ
for

some νξ ∈ T 0, where T 0 := {ν ∈ T : f ↓(α; i)∩Xα,ν /∈ Iα,ν} is the set defined
in the Main Claim 8.27, and f is constantly i on the set

⋃
ξ<μBξ ∪ {α} ×

⋃
ξ<μAξ.

To carry out an induction of length μ to define the desired sequences, we
only need the following lemma.
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8.28 Lemma. Assume A,B ∈ Nα,ν for some ν ∈ T 0, B ⊆ S, ρ < κ, and f
is homogeneous of color i on (B∪{α})×A. Then the following two statements
hold.

1. There is a C ∈ [κ − (A ∪ B)]ρ with C ⊆
⋂
{f ↓(β; i) : β ∈ B ∪ {α}} so

that for some ν′ ∈ T 0 with κν′ > ν, one has C ∈ Nα,ν′ .

2. There is a D ∈ [S − (A ∪ B)]ρ with A ⊆
⋂
{f ↓(β; i) : β ∈ D} so that

for some ν′ ∈ T 0 with κν′ > ν, one has D ∈ Nα,ν′ .

Proof. For the first item, choose ν′ ∈ T 0 with ν′ > ν and κν′ > ρ. By the
definition of S, we know f(β, ϕ(ν′)) = i for β ∈ B ∪ {α}. By the Main
Claim 8.27, we know that f ↓(α; i) ∩ Xα,ν′ /∈ Iα,ν′ . Let Z =

⋂
{f ↓(β; i) :

β ∈ B}. Then Z ∈ Nα,ν′ and ϕ(ν′) ∈ Z. Hence |Z ∩ f ↓(α; i) ∩Xα,ν′ | ≥ ρ by
Lemma 8.25, and we can choose a subset of this intersection for C.

For the second item, the set Z :=
⋂
{f ↑(η; i) : η ∈ A} is in Nα,ν and

α ∈ Z. Since S ∩ α /∈ Iα, we can choose a suitable D by Facts 8.21. �

9. Countable Ordinal Resources

9.1. Some History

In this section we look at ordinal partition relations of the form α→ (β,m)2

for limit ordinals α and β of the same cardinality. The goal m will be taken
to be finite, since if π : α → |α| is a one-to-one mapping, then the partition
defined on pairs x < y < α by

f(x, y) =

{
0, if x < y and π(x) < π(y),
1, if x < y and π(x) > π(y)

shows that α �→ (|α|+ 1, ω)2.
This particular branch of the partition calculus dates back to the 1950’s, in

particular to the seminal paper of Erdős and Rado [17] which introduced the
partition calculus for linear order types and to the paper of Ernst Specker [62],
in which he proves the following theorem.

9.1 Theorem (Specker [62]). The following partition relations hold:

1. ω2 → (ω2,m)2 for all m < ω;

2. ωn �→ (ωn, 3)2 for all 3 ≤ n < ω.
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The finite powers of ω are all additively indecomposable (AI), since they
cannot be written as the sum of two strictly smaller ordinals. It is well-
known that the additively indecomposable ordinals are exactly those of the
form ωγ (see Exercise 5 on page 43 of Kunen [36]). We will focus on additively
indecomposable α and β. There are additional combinatorial complications
for decomposable ordinals.

For notational convenience in discussions of α → (β,m)2, call α the re-
source, β the 0-goal and m the 1-goal.

For a specified countable 0-goal β and finite 1-goal m, it is possible to
determine an upper bound for the resource α needed to ensure that the
positive partition relation holds. In particular, Erdős and Milner showed
ω1+μm → (ω1+μ, 2m)2. This result dates back to 1959 and a proof appeared
in Milner’s thesis in 1962. See also pages 165–168 of [65] where the proof is
given via the following stepping up result:

9.2 Theorem. Suppose γ, δ are countable and k is finite. If ωγ →
(ω1+δ, k)2, then ωγ+δ → (ω1+δ, 2k)2.

9.3 Corollary (Erdős and Milner [14]). If m < ω and μ < ω1, then
ω1+μ·� → (ω1+μ, 2�)2.

The partition calculus for finite powers of ω is largely understood via the
results below of Nosal. Her work built on Corollary 9.3 and earlier work by
Galvin (unpublished), Hajnal, Haddad and Sabbagh [24], Milner [42].

9.4 Theorem (Nosal [46, 47]).

1. If 1 ≤ � < ω, then ω2+� → (ω3, 2�)2 and ω2+� �→ (ω3, 2� + 1)2.

2. If 1 ≤ � < ω and 4 ≤ r < ω, then ω1+r·� → (ω1+r, 2�)2 and ωr+r·� �→
(ω1+r, 2� + 1)2.

Some progress has been made for the case in which the goal is ω4. Nosal
showed in her thesis that ω6 �→ (ω4, 3)2, which is sharp, since ω7 → (ω4, 4)2

by Corollary 9.3. Darby (unpublished) has shown that ω9 �→ (ω4, 5)2.

9.2. Small Counterexamples

In this section we look at partition relations of the form α �→ (α,m)2 for
limit ordinals α and m < ω.

In the previous section, we noted that Specker proved that ωn �→ (ωn, 3)2.
In the 1970’s, Galvin used pinning, defined below, to exploit the counterex-
ample ω3 �→ (ω3, 3)2 to the full.

9.5 Definition. Suppose α and β are ordinals. A mapping π : α → β is a
pinning map of α to β if ot(X) = α implies ot(π“X) = β for all X ⊆ α. We
say α can be pinned to β, in symbols, α → β, if there is a pinning map of α
to β.
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9.6 Theorem (Galvin [22]). For all countable ordinals β ≥ 3, if β is not AI
and α = ωβ, then α �→ (α, 3)2.

The first countable ordinal not covered by the Specker and Galvin re-
sults mentioned so far is ωω. Chang showed that ωω → (ωω, 3)2 and Milner
modified his proof to work for all m < ω.

9.7 Theorem (Chang [5]; Milner; see also [38, 65]). For all m < ω,

ωω → (ωω,m)2.

Chang’s original manuscript was about 90 pages long, and he received
$250 from Erdős for this proof, one of the largest sums Erdős had paid to
that time. Erdős continued to focus attention on partition relations of the
form α→ (α,m)2 through offering money. In 1985, he [11] offered $1000 for
a complete characterization of those countable α for which α→ (α, 3)2.

9.8 Definition. Any ordinal α can be uniquely written as the sum of AI
ordinals, α = α0 + · · · + αk with α0 ≥ · · · ≥ αk. This sum is called the
additive normal form (ANF) of α, and in this case, we say the ANF of α
has k + 1 summands. The summand αk is called the final summand. The
initial part of the ANF of α is α0 + · · · + αk−1 if k > 0 and, for notational
convenience, is 0 if α is AI.

An AI ordinal α is multiplicatively indecomposable (MI) if it is cannot be
written as a product γ · δ where γ, δ are AI and α > γ ≥ δ. Any AI ordinal
α can be written uniquely as a product of MI ordinals α = α0 · · · · · αk

with α0 ≥ · · · ≥ αk. This product is called the multiplicative normal form
(MNF) of α, and in this case, we say the MNF of α has k + 1 factors. The
factor α̂ := αk is called the final factor. The initial part of the MNF of α is
α := α0 + · · ·+ αk−1 if k > 0 and, for notational convenience, is α := 1 if α
is MI.

Note that if α = ωβ , then α is MI exactly when β is AI. Thus Galvin’s
result (Theorem 9.6) may be rephrased to say that for all countable ordinals
α > ω2, if α is not MI, then α �→ (α, 3)2. In the 1990’s, Darby [7] and
Schipperus [53, 51], working independently, came up with new families of
counterexamples for MI ordinals α. Larson [39] built on their work to improve
one of the results obtained by both of them.

9.9 Theorem.

1. (Darby) If β = ωα+1 and m→ (4)3232 , then ωωβ �→ (ωωβ

,m)2.

2. (Darby; Schipperus; Larson) If β ≥ γ ≥ 1, then ωωβ+γ �→ (ωωβ+γ

, 5)2.

3. (Darby; Schipperus) If β ≥ γ ≥ δ ≥ 1, then ωωβ+γ+δ �→ (ωωβ+γ+δ

, 4)2.

4. (Schipperus) If β ≥ γ ≥ δ ≥ ε ≥ 1, then ωωβ+γ+δ+ε �→ (ωωβ+γ+δ+ε

, 3)2.



9. Countable Ordinal Resources 179

We plan to sketch a proof that there is some finite k so that ωω2
�

(ωω2
, k)2, using the basic approach developed by Darby and some of his con-

struction lemmas. Surprisingly, the partition counterexamples developed by
Darby and Schipperus were the same, even if their approaches to uniformiza-
tion were at least cosmetically different.

Rather than working directly with the ordinals, we use collections of finite
increasing sequences from ω under the lexicographic ordering. Since our
sequences are increasing, we will identify them with the set of their elements.

We write s�t for the concatenation of the two sequences under the as-
sumption that the last element of s is smaller than the first element of t, in
symbols s < t.

We extend the notion of concatenation from individual sequences to sets
of sequences by setting

S�T := {s�t | s ∈ S ∧ t ∈ T ∧ s < t}.

9.10 Definition. Define sets Gα for α = ω� by recursion on 1 ≤ � < ω.

Gω := {〈m〉�〈k1, k2, . . . , km〉 | m < k1 < k2 < · · · < km < ω},

Gωk+1 :=
⋃{
{〈m〉}�

m copies
︷ ︸︸ ︷
Gωk

� · · ·�Gωk | m < ω
}
.

Given a collection of sequences S and a particular sequence t, write S(t) :=
{s ∈ S | t ( s} for the set of extensions of t in S.

9.11 Lemma. For 1 ≤ �,m, p < ω, ot(Gω�(〈m〉)) = (ωω�−1
)m, ot(Gω�) =

ωω�

, and

ot
(

p copies
︷ ︸︸ ︷
Gω�

� · · ·�Gω�

)
= (ωω�

)p.

Proof. First observe that ot(Gω(〈m〉)) = ωm for all 1 ≤ m < ω and
ot(Gω) = ωω. Next notice that for subsets S and T ⊆ [ω]<ω which have
indecomposable order types and which have arbitrarily large first elements,
the order type of the concatenation S�T is the product of the order types
ot(T ) · ot(S). Then use induction on �, m, and p. �

9.12 Remark. Darby [7, Definition 2.8] defines Gα for all α < ω1 so that
ot(Gα) = ωα using a nice ladder system to assign to each limit ordinal an
increasing cofinal sequence of type ω. In particular, for α = α · ω where α is
an AI ordinal, the cofinal sequence is αm = α ·m.

Our main interest is in Gα for α AI. We defined Gωk for k < ω in Defini-
tion 9.10. If α = α · ω where α is an AI ordinal, then

Gα =
⋃{
{〈m〉}�

m copies
︷ ︸︸ ︷
Gα

� · · ·�Gα | m < ω
}
.
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If α ≥ ωω is an AI ordinal not of the form α = α ·ω, then the cofinal sequence
is a strictly increasing sequence 〈αm : m < ω〉 of AI ordinals and Gα is the
union of {〈m〉}�Gαm .

Recall we write s ( t to indicate that s is an initial segment of t, and
s � t to indicate it is a proper initial segment.

9.13 Definition. For any collection of increasing sequences S ⊆ [ω]<ω, let
S∗ denote the collection of initial segments of elements of S. For any s ∈ S∗,
let S(s) := {t ∈ S | s ( t} be the set of all extensions of s that are in S.

9.14 Definition (See Definition 3.1 of [7]). Suppose ω < α = α·α̂ < ω1 is AI
but not MI with initial part α and final factor α̂. Call a non-empty sequence
p ∈ G∗

α a level prefix of Gα if ot(Gα(p)) = ωγ where the final summand in
the ANF of γ is α.

The next lemma is of particular interest when s is a level prefix.

9.15 Lemma (See Lemma 2.9 of [7]). Suppose γ ≤ α < ω1 where the ANF
of γ is γ = γ0 + γ1 + · · ·+ γk for k > 0. Further suppose that s ∈ G∗

α � {∅}.
If ot(Gα(s)) = ωγ, then Gα(s) = {s}�Gγk

� · · ·�Gγ0 .

Proof. We only prove this in the special case where α = α · ω and γ = α · n.
In this case, s has an extension in Gα(〈m〉) = {〈m〉}�Gα

� · · ·�Gα for
m = min(s) by Definition 9.10 or Remark 9.12. Let t ( s be the longest
initial segment of s for which Gα(t) is the concatenation of {t} with some
finite number of copies of Gα. There must be such a t since 〈m〉 has this
property. If s = t, then we are done. So assume by way of contradiction
that u = s � t �= ∅. By the maximality of t, it follows that u ∈ G∗

α � Gα.
Since u �= ∅, Gα(u) has order type δ for some δ < ωα with δ > 1. Let
r be the number of copies of Gα in the decomposition of Gα(t). If r = 1,
then Gα(s) = {t}�Gα(u) has order type δ < ωα. If r > 1, then Gα(s) is
the concatenation of {t}�Gα(u) with r − 1 copies of Gα, so has order type
ωα·(r−1) · δ, by the argument of Lemma 9.11. In both cases, since δ �= 1 and
δ �= ωα, we have a contradiction to the assumption that ot(Gα(s)) = ωα·n. �

9.16 Definition (See Definition 3.1 of [7]). Suppose the MNF of α < ω1 has
at least four factors. Call t ∈ G∗

α a sublevel prefix of Gα if there are a level
prefix p for Gα and a level prefix q for Gα so that t = p�q. Call u ∈ G∗

α

a sub-sublevel prefix of Gα if there are a sublevel prefix t for Gα and a level
prefix r for Gα so that u = t�r.

If we look at a pair s ≤lex t from Gα, if s and t are disjoint as sets, then they
partition one another into convex segments. That is, s and t can be expressed
as concatenations, s = s0

�s1
� · · ·�sn−1(�sn) and t = t0

�t1
� · · ·�tn−1

where s0 < t0 < s1 < t1 < · · · < sn−1 < tn−1(< sn).
The next definition uses Definition 9.16 to identify four types of segments

used in the proofs of the negative partition relations 2–4 of Theorem 9.9.
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9.17 Definition. Suppose the MNF of α < ω1 has at least four factors.
Further suppose that s ∈ Gα has been decomposed into a convex partition
s = s0

�s1
� · · ·�sn where s0 < s1 < · · · < sn.

1. Call si a �-segment of s if i = 0 or i = n or there are a level prefix t of
Gα and a ∈ Gα so that s0

� · · ·�si−1 � t � s0
� · · ·�si−1

�si ( t�a.

2. Call si a $-segment of s if it is not a �-segment of s and there are
a sublevel prefix u of Gα and b ∈ Gα so that s0

� · · ·�si−1 � u �
s0

� · · ·�si−1
�si ( u�b.

3. Call si a -segment of s if it is not a � or $-segment of s and there
are a sub-sublevel prefix u of Gα and c ∈ G

α
so that s0

� · · ·�si−1 �
v � s0

� · · ·�si−1
�si � v�c.

4. Call si a •-segment of s there are a sub-sublevel prefix u of Gα and
c ∈ G

α
so that v � s0

� · · ·�si−1 and s0
� · · ·�si−1

�si ( v�c.

For simplicity, we include an example for which only �-segments are
needed to illustrate the technique. We have chosen to give an example that
is easy to discuss rather than an optimal one.

9.18 Proposition. The following partition relation holds: ωω2
� (ωω2

, 6)2.

The remainder of this section is devoted to the proof of Proposition 9.18.
We define a graph Γ on G = Gω2 below. Then in Lemma 2, we show it has no
1-homogeneous set of size 6. After considerably more work, in Lemma 9.31,
we show it has no 0-homogeneous subset of order type ωω2

. These two lemmas
complete the proof.

9.19 Definition. Let G = Gω2 . Call a coordinate x of x ∈ G a box coordinate
if it is either the minimum or the maximum of x or if x = min(x − p) for
some level prefix p ( x. Define a graph Γ : [G]2 → 2 by Γ(x,y) = 1 if and
only if there are convex partitions

x = X0
�X1

�X2
�X3

�X4 and y = Y0
�Y1

�Y2
�Y3

with X0 < Y0 < X1 < Y1 < X2 < Y2 < X3 < Y3 < X4 so that all of X0, X2,
X4 are �-segments of x, Y0, Y3 are �-segments of y, and none of X1, X3,
Y1, Y2 have box coordinates of x, y, respectively.

For notational convenience, let γ−(x,y) = max(Y1), γ+(x,y) = min(Y2),
δ−(x,y) be the largest box coordinate of Y0, and δ+(x,y) be the smallest box
coordinate of Y3. The graphical display below shows how the two sequences
are interlaced and which have box coordinates if Γ(x,y) = 1.

X0 X1 X2 X3 X4

Y0 Y1 Y2 Y3

9.20 Lemma. The graph Γ has no 1-homogeneous set of size six.
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Proof. The proof starts with a series of claims which delineate basic proper-
ties of the partition.

Claim A. Suppose x < y, Γ(x,y) = 1.

1. There is a box coordinate x ∈ x with min(y) < x < max(y).

2. For any box coordinate x ∈ x with min(y) < x < max(y), the inequal-
ities γ−(x,y) < x < γ+(x,y) hold.

3. There is no sequence x < y < x′ ∈ x where min(y) < x ∈ x, x′ <
max(y) and y is a box coordinate of y.

Proof. Use the diagram above to verify these basic properties. �

Claim B. Suppose {x,y, z}< ⊆ G is 1-homogeneous for Γ. If �x ∈ x,
�y ∈ y, and �z ∈ z are box coordinates and min(z) < �x,�y < max(z),
then either �x,�y < �z or �z < �x,�y.

Proof. Suppose the hypothesis holds but the conclusion fails. Then either
(a) �x < �z < �y or (b) �y < �z < �x. Note that min(y) < min(z) < �x
and �x < max(z) < max(y), since y < z. By Claim A(2), γ−(x,y) < �x <
γ+(x,y). Use the definition of Γ to find x−, x+ ∈ x such that δ−(x,y) <
x− < γ−(x,y) and γ+(x,y) < x+ < δ+(x,y). If (a) holds, then either
�x < �z < x+ or γ+(x,y) < �z < �y is a sequence that contradicts
Claim A(3). If (b) holds, then either �y < �z < γ−(x,y) or x− < �z < �x
is a sequence that contradicts Claim A(3). Thus the above claim follows. �

Claim C. Suppose {x,y, z}< ⊆ G is 1-homogeneous for Γ. If �x ∈ x,
�y ∈ y are box coordinates with min(z) < �x,�y < max(z), then some
coordinate z of z lies between �x and �y.

Proof. For the first case, suppose �x < �y. In this case, let z = γ+(x, z).
Then z ∈ z and by Claim A, �x < z. By definition of Γ, there is some
x′ ∈ x with z < x′ < max(z). Since y < z, it follows that x′ < max(y), so
x′ < δ+(x,y) ≤ �y. By transitivity, �x < z < �y. The second case for
�y < �x is left to the reader with the hint that z = γ−(x, z) works. �

Now prove the lemma from the claims. Assume by way of contradiction
that U = {a,b, c,d, e, f}< ⊆ G is 1-homogeneous for Γ. Use Claim A to
choose box coordinates ε0 ∈ a, ε1 ∈ b, ε2 ∈ c, ε3 ∈ d, ε4 ∈ e, so that
min(f) < εi < max(f). Let ijk� be a permutation of 0123 so that εi <
εj < εk < ε�. Use Claim C to choose coordinates e′, e′ ′ ∈ e and f ′ ∈ f with
εi < e′ < εj < f ′ < εk < e′ ′ < ε�. By Claim B, either (a) ε4 < εi or (b)
ε� < ε4. Choose coordinate f ′ ′ ∈ f between ε4 and the appropriate one of εi

and ε�.
Let x,y ∈ U be such that εi ∈ x and ε� ∈ y. By Claim A, δ−(x, f) <

γ−(x, f) < εi and ε� < γ+(y, f) < δ+(y, f).
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Let e = E0
�E1

�E2
�E3

�E4, f = F0
�F1

�F2
�F3 be the partition that

witnesses Γ(e, f) = 1. Note that ε4 ∈ E2.
If (a) holds, then δ+(y, f) ∈ F3, and

ε4 < f ′ ′ < e′ < f ′ < e′ ′ < δ+(y, f).

However, this inequality contradicts the definition of g, since there are only
two blocks between E2 and F3. If (b) holds, then δ−(x, f) ∈ F0, and

δ−(x, f) < e′ < f ′ < e′ ′ < f ′ ′ < ε4.

This inequality also contradicts the definition of g, since there are only two
blocks between F0 and E2. In either case we have reached the contradiction
required to prove the lemma. �

Now we turn to the task of showing that every subset X ⊆ G of order type
ωω2

includes a pair {x,y}< ⊆ X so that Γ(x,y) = 1. The first challenge
is to guarantee that when we build a segment of one of x and y, we will
be able to extend it starting above the segment of the other that we will
have constructed in the meanwhile. To that end, we introduce β-prefixes
and maximal β-prefixes.

9.21 Definition. Suppose α < ω1. Call a sequence s ∈ G∗
α a β-prefix of

W ⊆ Gα if ot(W (s)) = β, and a maximal β-prefix if no proper extension is
a β-prefix.

9.22 Lemma (Galvin; see Lemma 4.5 of [7]). Suppose s ∈ G∗
α and β is AI.

If W ⊆ Gα has ot(W (s)) ≥ β, then there is an extension t ) s so that t is
a maximal β-prefix for W .

The proof of the above lemma depends on the fact that the sequences in
Gα are well-founded under extension. We use the next lemma for sequences
r which are either maximal ω2-prefixes or maximal ω3-prefixes.

9.23 Lemma. Suppose δ < β ≤ ωα for AI δ and β. Further suppose
W ⊆ Gα and r is a maximal β-prefix for W . Then r has infinitely many
one point extensions r�〈p〉 ∈ W ∗ with ot(W (r�〈p〉)) ≥ δ. Also, for any
sequence s, there is a sequence t so that s < t, r�t ∈ W ∗, and r�t is a
maximal δ-prefix for W .

Proof. Since r is a maximal β-prefix for W , ot(W (r�〈p〉)) < β for all p < ω.
Consequently, since β is AI, it follows that

∑
q<p<ω ot(W (r�〈p〉)) = β for all

q < ω. Since
∑

q<p<ω γp ≤ δ if each γp < δ, it follows that for infinitely many
p < ω, W (r�〈p〉) has order type ≥ δ. Thus given s, there is a p > max(s)
with ot(W (r�〈p〉)) ≥ δ. In particular, W (r�〈p〉) �= ∅. To complete the
proof, apply Lemma 9.22 to get t ) 〈p〉 so that r�t is a maximal δ-prefix. �

In our construction of x, y, we must be able to iterate the process of
extending to a level prefix. To that end, we introduce the notion of levels.
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9.24 Definition (See Definition 5.2 of [7]). Suppose α is AI but not MI and
q is a level prefix of Gα. The level of W prefixed by q is the set

L(W,q) := {a ∈ Gα |W (q�a) �= ∅}.

A non-empty sequence s ∈ G∗
α − Gα ends in the level of W prefixed by q if

there is some a ∈ L(W,q) so that q ( s � q�a.

Next we state without proof a series of lemmas from Darby [7] that lead
up to Lemma 9.29. The interested reader can fill in the proofs for the case
where α = ω� < ωω.

9.25 Lemma (See Lemmas 4.6, 4.7 of [7]). Suppose δ ≤ γ ≤ α < ω1, where δ,
γ are AI and γ · δ ≤ α. If s ∈ G∗

α is a maximal γ · δ-prefix for W ⊆ Gα, then
the following set has order type δ:

W (β, s) := {p ∈ G∗
α | s ( p and p is a maximal γ-prefix for W}.

9.26 Lemma (See Lemma 5.5 of [7]). Suppose α < ω1 is AI but not MI,
q is a level prefix of Gα and W ⊆ Gα. If s ends in level L(W,q) and
ot(W (s)) ≥ ωα·n, then for any γ < α, there is an a ∈ L(W,q) so that
s � q�a and ot(W (q�a)) ≥ ωα(n−1)+γ.

9.27 Lemma (See Lemma 5.6 of [7]). Suppose α < ω1 is AI but not MI,
W ⊆ Gα and every level of W has order type ≤ ωδ. If s ∈ G∗

α and
ot(Gα(s)) = ωα·β, then ot(W (s)) ≤ ωδ·β.

9.28 Lemma (See Lemma 5.7 of [7]). Suppose α < ω1 is AI but not MI,
W ⊆ Gα(〈m〉) and ot(W ) > ωγ. Then for any δ so that δ ·m < γ, there is a
level of W of order type > ωδ.

The following lemma of Darby, mildly rephrased since the general defin-
ition of Gα has been omitted, is the key to constructing pairs 1-colored by
any generalization of the graph Γ to a Γα defined for α = α ·ω, since it allows
one to plan ahead: one takes a sufficiently large set, thins it to something
tractable, dives into a large level to work within, knowing that on exit from
the level, one will have a large enough set of extensions to continue according
to plan.

9.29 Lemma (See Lemma 5.9 of [7]). Suppose α is AI but not MI, 0 < m < ω
and ot(Gα(〈m〉)) = ωα·β. Further suppose W ⊆ Gα(〈m〉) and ot(W ) ≥
ωα·n+ε where ε ≤ α and 0 < n < ω, and assume δ is such that δ ·β < ε. Then
there is a set U ⊆W and a level prefix q so that U = U(q), ot(L(U,q)) > ωδ

and ot(U(q�a)) ≥ ωα·(n−1)+ε for all a ∈ L(U,q).

Here our focus is on ωωk

for finite k, that is, on α = ωk. In this case,
Gα(〈m〉) has order type ωωk−1·m, so the β of the previous lemma is simply m.
The following weaker version of the above lemma suffices for our purposes.
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9.30 Lemma. Suppose α = α · ω is AI but not MI, 0 < n ≤ m < ω,
and W ⊆ Gα(〈m〉) has order type ≥ ωα·n. Further assume δ is such that
δ ·m < α. Then there is a set U ⊆W and a level prefix q so that U = U(q),
ot(L(U,q)) > ωδ and ot(U(q�a)) ≥ ωα·(n−1) for all a ∈ L(U,q).

9.31 Lemma. Suppose W ⊆ Gω2 has order type ωω2
. Then there is a pair

x, y from W so that Γ(x,y) = 1.

Proof. We revisit the set Gω2 to better understand how it is constructed by
unraveling the recursive construction. A typical element σ is

〈m〉�〈b1〉�〈a1
1, . . . , a

1
b1〉

�〈b2〉�〈a2
1, . . . , a

2
b2〉 · · ·

�〈bm〉�〈am
1 , . . . , am

bm
〉.

Notice that the initial element, m, tells how many levels there will be, and
each level starts with a box coordinate, bi, which determines the order type
of the level, ωbi . To make the identification of the various types of elements
visually immediate, we fold the sequence σ into a tree, with the initial element
at the top, the box coordinates as immediate successors, and the remaining
coordinates as terminal nodes. To rebuild the sequence from the tree, one
walks through the tree in depth first, left-to-right order.

�
��

�� �
�

�
�

�� �
�

�
�

��

���������

m

a1,1 a1,b1

b1

a2,1 a2,b2

b2

· · · · · ·

bm· · ·

am,1 am,bm· · ·

Use Lemmas 9.22, 9.23, and 9.30 to build x = X0
�X1

�X2
�X3

�X4 and
y = Y0

�Y1
�Y2

�Y3 one convex segment at a time so that

X0 < Y0 < X1 < Y1 < X2 < Y2 < X3 < Y3 < X4.

For notational convenience, we plan to let i < j < k < � be such that
max(X0) = xi, max(X1) = xj , max(X2) = xk, max(X3) = x�. Similarly, we
plan to let s < t < u be such that max(Y0) = ys, max(Y1) = yt, max(Y2) =
yu. In addition it will be convenient to write b for the largest box coordinate
of X0, b′ for the largest box coordinate of X2, and c = δ−(x,y) for the largest
box coordinate of Y0. Here is a pair of subtrees of the trees we get by folding
the sequences we build for x and y, that include only the critical coordinates
named above, together with max(x), max(y). These subtrees highlight the
relationships between the critical coordinates, and allow one to see at a glance
which of the segments are �-segments.

�
��

�� �
�

�
�

�� �
�

�
� 	

		

........................................

................................

m

b b′

max(x)

n

c

ys yt yuxi xj xk x� max(y)
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Observe that since G is the union of G(〈0〉), G(〈1〉), G(〈2〉), . . . , it follows
that for β < ω2, there are infinitely many mβ < ω with ot(W ∩G(〈mβ〉)) ≥
ωβ . We start our construction by choosing m so that U0 := W ∩G(〈m〉) has
order type at least ωω·4.

Next we apply Lemma 9.30 to find a set U1 ⊆ U0 and a level prefix p
so that U1 = U1(p), ot(L(U1,p)) > ω5, and ot(U1(p�a)) ≥ ωω·3 for all
a ∈ L(U1,p). Apply Lemma 9.22 to get u, a maximal ω4 prefix in L(U1,p).
Then b = min(u) is the box coordinate of our diagram. We set X0 = p�u
and note that max(u) = xi on our diagram.

Choose n > xi so that V0 := W ∩ G(〈n〉) has order type at least ωω·4.
Continue as in the previous step. Use Lemma 9.30 to find a set V1 ⊆ V0 and
a level prefix q so that V1 = V1(q), ot(L(V1,q)) > ω7, and ot(V (q�a)) ≥
ωω·3 for all a ∈ L(V1,q). Let v be a maximal ω6 prefix in L(V1,q). Then
c = min(v) is the box coordinate of our diagram. We set Y0 = q�v and note
that max(v) = ys on our diagram.

By Lemma 9.23, there is a sequence X1 with Y0 < X1 so that u�X1 is a
maximal ω3 prefix in L(U1,p). Note that X0

�X1 is not a level prefix nor is
any one point extension.

By Lemma 9.23, there is a sequence Y1 with X1 < Y1 so that v�Y1 is a
maximal ω5 prefix in L(V1,q).

By Lemma 9.23, the sequence u�X1 has infinitely many one point ex-
tensions in L(U1,p)∗. By choosing a suitable one point extension and then
extending it into L(U1,p), we find w so that Y1 < w and u�X1

�w ∈
L(U1,p). By choice of U1 and p, we know ot(U1(p�(u�X1

�w))) ≥ ωω·3.
Use Lemma 9.30 to find U2 ⊆ U1(p�(u�X1

�w)) and a level prefix p′ so
that U2 = U2(p′), ot(L(U2,p′)) > ω5, and ot(U2(p′�a)) ≥ ωω·3 for all
a ∈ L(U2,p′). Then p�(u�X1

�w) ( p′. Apply Lemma 9.22 to get u′, a
maximal ω4 prefix in L(U2,p′). Then b′ = min(u′) is another box coordinate
in our diagram. Then p′�u′ is not a level prefix of U2, nor is any one point
extension of it a level prefix. We set X2 = p′

� (X0
�X1), and note that

max(X2) = max(u′) = xk on our diagram.

By Lemma 9.23, there is a sequence Y2 with X2 < Y2 so that v�Y1
�Y2

is a maximal ω4 prefix in L(V1,q).

By Lemma 9.23, there is a sequence X3 with Y2 < X3 so that u′�X3 is a
maximal ω3 prefix in L(U2,p′).

By Lemma 9.23, the sequence v�Y1
�Y2 has infinitely many one point

extensions in L(V1,q)∗. Hence by first choosing a suitable one point extension
and then extending it into L(V1,q), and finally extending it into V1, we can
find Y3 so that X3 < Y3 and y = Y0

�Y1
�Y2

�Y3 ∈ V1 ⊆W .

By Lemma 9.23, the sequence u′�X3 has infinitely many one point exten-
sions in L(U2,p′)∗. Hence by first choosing a suitable one point extension
and then extending it into L(U2,p′), and finally extending it into U2, we can
find X4 so that Y3 < X4 and x = X0

�X1
�X2

�X3
�X4 ∈ U2 ⊆W .



10. A Positive Countable Partition Relation 187

By construction, X0, X2, X4 and Y0, Y3 are all �-segments, while X1, X3

and Y1, Y2 have no box coordinates. Thus x,y witnesses the fact that W is
not a 0-homogeneous set for Γ. �

Lemmas 9.20 and 9.31 show that Γ is a witness to ωω2
� (ωω2

, 6)2. The
coloring can easily be generalized to ωωα

where α is decomposable, since it
was described using only box segments and segments without box coordi-
nates. Hence the proof of Lemma 9.20 carries through for these generaliza-
tions. In the proof of Lemma 9.31, we have taken advantage of the fact that
α = 2 is a successor ordinal, but use of lemmas from Darby’s paper allow one
to modify the given construction suitably.

The proof of the previous lemma gives some evidence for the following
remark.

9.32 Remark. We have the following heuristic for building pairs. Suppose
σ is a list of specifications of convex segments detailing which have box,
triangle, bar (or dot) coordinates and which do not. If the first two and last
two segments are to be box segments, then for any ordinal α of sufficient
decomposability for the description to make sense, there is a disjoint pair
x,y ∈ Gωα so that the sequence of convex segments they create fits the
description.

For the actual construction, one needs to iterate the process of taking
levels and look at the approach taken carefully.

10. A Positive Countable Partition Relation

The previous section focused on countable counterexamples. Here we survey
positive ordinal partition relations of the form α → (α,m)2 for countable
limit ordinals α and sketch the proof of one of them.

Darby [7] and Schipperus [53, 51] independently extended Chang’s positive
result for ωω and m = 3 to larger countable limit ordinals.

10.1 Theorem (Chang for β = 1 (see Theorem 9.7); Darby for β = 2 [7];
Schipperus for β ≥ 2 [53]). If the additive normal form of β < ω1 has one or
two summands, then ωωβ → (ωωβ

, 3)2.

Recall that Erdős [11] offered $1000 for a complete characterization of the
countable ordinals α for which α → (α, 3)2. It is not difficult to show that
additively decomposable ordinals fail to satisfy this partition relation. Recall
that additively indecomposable ordinals are powers of ω. Specker showed
that finite powers of ω greater than ω2 fail to satisfy it. Galvin showed
(see Theorem 9.6) that additively decomposable powers of ω greater than ω2

fail to satisfy it. Thus attention has been on indecomposable powers of ω,
α = ωωβ

, that is, the countable ordinals that are multiplicatively indecom-
posable. Schipperus (see Theorem 9.9) showed that if the additive normal
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form of β has at least four summands, then α �→ (α, 3)2. Thus to complete
the characterization of which countable ordinals α satisfy this partition rela-
tion it suffices to characterize it for ordinals of the form α = ωωβ

where the
additive normal form of β has exactly three summands. We list below the
first open case.

10.2 Question. Does ωω3 → (ωω3
, 3)2?

In light of Theorem 9.9, Darby and Larson have completed the character-
ization of the set of m < ω for which ωω2 → (ωω2

,m)2 with the following
result.

10.3 Theorem (Darby and Larson [8]). ωω2 → (ωω2
, 4)2.

We complete this subsection with a sketch of the Schipperus proof that
ωωω → (ωωω

, 3)2, using somewhat different notation than he used originally.
The sketch will be divided into seven subsections:

1. representation of ωωω

as a collection T (ω) of finite trees;

2. analysis of node labeled trees;

3. description of a two-player game G(h,N) for h a 2-partition of T (ω)
into 2 colors and N ⊆ ω infinite;

4. uniformization of play of the game G(h,N) via constraint on the second
player to a conservative style of play determined by an infinite set
H ⊆ N and a bounding function b;

5. construction of a three element 1-homogeneous set when the first player
has a winning strategy for all games in G(h,N) in which the second
player makes conservative moves;

6. construction of an almost 0-homogeneous set of order type ωωω

when
the first player has no such strategy;

7. completion of the proof.

10.1. Representation

Recall that, by convention, we are identifying a finite set of natural numbers
with the increasing sequence of its members. The trees we have in mind
for our representation are subsets of [ω]<ω which are trees under the subset
relation, and the subset relation is the same as the end-extension relation
when the subsets are regarded as increasing sequences.

In the proof that the coloring Γ had no independent subset of order
type ωω2

, we found it convenient to fold an element

x = 〈m,n1, a
1
1, . . . , a

1
n1

, n2, a
2
1, . . . , a

2
n2

, . . . , nm, am
1 , . . . , am

nm
〉



10. A Positive Countable Partition Relation 189

of Gω2 into a tree with root 〈m〉, immediate successors 〈m,ni〉 and terminal
nodes 〈m,ni, a

i
j〉. Then we could walk through the tree, node by node, so

that the maximum element of each node continually increased along the walk,
just as the elements of x increase.

We already have representations of ωωβ

from the previous section as sets of
increasing sequences under the lexicographic ordering. The definition of those
sets is recursive, so we fold these sets up into trees recursively. Specifically,
the next definition uses the representations of Gωβ detailed in Definition 9.10
and Remark 9.12.

10.4 Definition. Define by recursion on β ≤ ω a sequence of folding maps,
Fβ : Gωβ → T :

1. For τ = 〈k〉 ∈ Gω0 = G1, set F0(τ) := {〈k〉}.

2. For τ = 〈m〉�σ1
�σ2

� · · ·�σm ∈ Gωn+1 , set

Fn+1(τ) := {〈m〉} ∪
⋃
{{〈m〉}�Fn(σi) : 1 ≤ i ≤ m}.

3. For τ = 〈m〉�σ ∈ Gωω , set Fω(τ) := {〈m〉} ∪ {〈m〉}�Fm(σ).

Let T (β) be the range of Fβ .

Prove the following lemmas by induction on β.

10.5 Lemma. For each β ≤ ω, the mapping Fβ is one-to-one and τ =⋃
Fβ(τ). Thus, <lex on Gωβ induces an order < on T (β).

10.6 Lemma. For all β ≤ ω and all infinite H ⊆ ω, the collection of
sequences in Gωβ∩[H]<ω has order type ωωβ

, and hence so does the collection
of trees in T (β,H) := T (β) ∩ P([H]<ω).

Let T be the collection of all finite trees (T,() of increasing sequences
with the property that if s, t ∈ T and as sets, s ⊆ t, then as sequences,
s ( t. Identify each t ∈ T ∈ T with the set of its elements. Then ( and ⊆
coincide, so this identification permits one to use set operations on the nodes
of T .

10.7 Lemma. For all β < ω1, for all T ∈ T (β), the following conditions are
satisfied:

1. (transitivity) s � t ∈ T implies s ∈ T ;

2. (closure under intersection) for all s, t ∈ T , s ∩ t is an initial segment
of both s and t;

3. (rooted) (T,() is a rooted tree with ∅ /∈ T ;

4. (node ordering) for all s �= t in T , exactly one of the following holds:
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(a) s � t,

(b) t � s,

(c) s ≤lex t and s < t− (s ∩ t),

(d) t ≤lex s and t < s− (s ∩ t).

10.8 Definition. For all β < ω1, for all T ∈ T (β), order the nodes of T by
u < v if and only if u � v or u <lex v.

10.9 Lemma. For all β < ω1, for all non-empty initial segments S, T of
trees in T (β),

⋃
S �

⋃
T if and only if S � T .

Proof. By Lemma 10.7, if ∅ �= S � T ( T ′ ∈ T (β), then
⋃

S �
⋃

T . For
β = 0, the reverse implication is trivially true, and for β > 0, it is true by
definition of the fold map and the induction hypothesis. �

10.10 Definition. For all β ≤ ω, define eβ : [ω]<ω → {−1} ∪ (β + 2) by
recursion:

eβ(∅) = β + 1;

eβ(σ�〈m〉) =

⎧
⎪⎨

⎪⎩

−1 if eβ(σ) ≤ 0,
eβ(σ)− 1 if eβ(σ) > 0 successor,
max(σ) if eβ(σ) = ω limit.

We refer to eβ(x) as the ordinal of x.

Use induction on β, the definition of Fβ , and the previous lemma to prove
the next lemma.

10.11 Lemma. For all β ≤ ω, for all T ∈ T (β), for all t ∈ T , eβ(t) ≥ 0,
and if eβ(t) > 0, then t has a proper extension u ∈ T .

The following consequence of the recursive nature of Definition 10.10 is
useful in induction proofs.

10.12 Lemma. For all β ≤ ω, for all 〈m〉�τ ∈ [ω]<ω, eβ(〈m〉) = β and if
τ �= ∅ and γ = eβ(〈m,max(τ)〉) ≥ 0, then eβ(〈m〉�τ) = eγ(τ).

10.13 Definition. Suppose T ∈ T . For all t ∈ T , let �(t, T ) be the number
of successors of t in T .

10.14 Lemma. For all β ≤ ω, for all T ∈ T (β), for all t ∈ T ,

�(t, T ) =

⎧
⎪⎨

⎪⎩

0, if eβ(t) = 0,
1, if eβ(t) = ω is a limit,
max(t), if eβ(t) is a successor.



10. A Positive Countable Partition Relation 191

10.15 Lemma. For all β ≤ ω, for all T ⊆ [ω]<ω, T ∈ T (β) if and only if
T satisfies the four conclusions of Lemma 10.7, and for all t ∈ T , eβ(t) ≥ 0
and �(t, T ) has the value specified in Lemma 10.14.

Proof. By Lemmas 10.7, 10.11, and 10.14, if (T,() ∈ T (β), then it satisfies
the given list of conditions.

To prove the other direction, work by induction on β to show that if
T ⊆ [ω]<ω satisfies the given conditions for β, then

⋃
T ∈ Gωβ and T =

Fβ(
⋃

T ) ∈ T (β). �

10.16 Definition. For 0 < β ≤ ω and ∅ �= S � T ∈ T (β), the critical node
of S, in symbols cri(S), is the largest s ∈ S with �(s, S) smaller than the
value predicted in Lemma 10.14. For notational convenience, let cri(∅) = ∅,
and set cri(T ) = ∅ for T ∈ T (β).

The next lemma shows why the name was chosen.

10.17 Lemma. For 0 ≤ β ≤ ω and S ( T ∈ T (β), if t := min(T − S), then
t = cri(S)�〈max(t)〉.

Proof. Let m < ω be such that 〈m〉 ∈ T . Then 〈m〉 is the least element of T .
If S = ∅, then t = 〈m〉 = cri(S)�〈max(t)〉 and the lemma follows. Otherwise,
〈m〉 must be in S, and because it is the root of T , 〈m〉 � t := min(T − S).
Let r = t−{max(t)}. Then 〈m〉 ( r � t, �(r, S) < �(r, T ), so r is an element
of S with �(r, S) smaller than the value specified in Lemma 10.14.

If p ∈ T and p <lex t, then p ∈ S, since S � T and T = min(T − S).
Moreover, if p <lex t and p � q ∈ T , then q <lex t. Hence if p <lex t,
then �(p, S) = �(p, T ) takes on the value specified in Lemma 10.14. Thus
cri(S) � t, so cri(S) ( r. It follows that r = cri(S) and t = cri(S)�〈max(t)〉
as required. �

10.18 Lemma. For all β ≤ ω, the set of initial segments of trees in T (β) is
well-founded under �.

Proof. The proof is by induction on β. For β = 0, the lemma is clearly true,
since the longest possible sequences are those of the form ∅, 〈m〉 for some
m < ω.

Next suppose the lemma is true for k < ω and β = k+1. Let S0, S1, . . . be
an arbitrary �-increasing sequence, and without loss of generality, assume it
has at least two trees in it. Then there is some m < ω so that 〈m〉 ∈ S1. By
the definition of the fold map Fk, it follows that for i > 1, the tree Si satisfies⋃

Si = 〈m〉�σi,1
� · · ·�σi,ni for some ni ≤ m, where Fk(σi,j) ∈ T (k) for

j < ni, and for some σ′ ) σi,ni , Fk(σ′) ∈ T (k), so σi,ni =
⋃

Ti for Ti an
initial segment of a tree in T (k). If i < � and Ti, T� are such that ni = n�,
then for j < ni, σi,j = σ�,j . Thus by the induction hypothesis, for each n
with 1 ≤ n ≤ m, there can be at most finitely many trees in the sequence
with ni = n. Hence the sequence must be finite, and the lemma is true for
β = k + 1.
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The proof for β = ω is similar, since for all initial segments S of trees
in T (ω), either S = ∅, S = {〈m〉}, or S = {〈m〉}�S′ for some m < ω and
some S′ which is an initial segment of a tree in T (m). The details are left to
the reader.

Therefore, by induction, the lemma holds for all β ≤ ω. �

10.2. Node Labeled Trees

A typical proof of a positive partition relation for a countable ordinal for
pairs includes a uniformization of an arbitrary 2-partition into 2 colors, but
only for those pairs for which some easily definable additional information
is also uniformized. We will introduce node labellings to provide that extra
information, but before we do so, we examine convex partitions of disjoint
trees and the partition nodes that determine them.

10.19 Definition. For trees S0, S1 from T (β) with
⋃

S0 ∩
⋃

S1 = ∅, call
t ∈ Sε a partition node if t < max(Sε) and there is some u ∈ S1−ε with
max(t) < max(u) < min(

⋃
Sε − (1 + max(t)).

For notational convenience, write T (∅, t] for the initial segment of T con-
sisting of all nodes s ≤ t ∈ T , and, for t < u in T , write T (t, u] for
{s ∈ T : t < s ≤ u}. With this notation in hand, we can state the lemma
below justifying the label partition nodes. This lemma follows from Lem-
mas 10.7 and 10.9.

10.20 Lemma. Suppose S0, S1 are in T (β) and
⋃

S0 ∩
⋃

S1 = ∅. Further
suppose t00, t

0
1, . . . , t

0
k−1 ∈ S0 and t10, t

1
1, . . . , t

1
�−1 ∈ S1 are the partition nodes

of these trees if any exist. Set t0−1 = t1−1 = ∅, t0k = max(S0), t0� = max(S1).
Then every node of Sε is in one and only one Sε(tεi−1, t

ε
i ], and the sets σε

i =⋃
Sε(tεi−1, t

ε
i ]− tεi−1 satisfy

σ0
0 < σ1

0 < σ0
1 < σ1

1 < · · · < σ0
�−1 < σ1

�−1(< σ0
k−1).

Now we introduce node labellings. For simplicity, this concept is given a
general form.

10.21 Definition. Suppose β ≤ ω and N ⊆ ω is infinite. For any initial
segment S ( T ∈ T (β), a function C is a node labeling of S into N if
C : S → [N ]<ω satisfies max(C(s)) < max(s) for all s ∈ S with C(s) �= ∅.

We carry over from T (β) the notions of extension, complete tree and trivial
tree. In particular, call (T,D) a (proper) extension of (S,C), in symbols,
(S,C) � (T,D), if S � T and D�S = C. Call (T,D) complete (for β) if
T ∈ T (β); call it trivial if (T,D) = (∅, ∅).

Call a pair S, T from T (β) local if S and T have a common root; otherwise
it is global. Similarly, call (S,C), (T,D) local if S, T is local and otherwise
call it global.
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10.22 Definition. A pair ((S0, C0), (S1, C1)) is strongly disjoint if (a) either
S0 = ∅ = S1 or (

⋃
S0 ∪ ran(C0)) ∩ (

⋃
S1 ∪ ran(C1)) = ∅ and (b) for all

s, t ∈ S0∪S1, whenever max(s) < max(t) and Cε(t) �= ∅, then also max(s) <
min(Cε(t)).

10.23 Definition. Call a pair ((S0, C0), (S1, C1)) of node labeled trees clear
if S0 < S1, ((S0, C0), (S1, C1)) is strongly disjoint, all partition nodes t ∈
S0 ∪ S1 are leaf nodes (eβ(t) = 0), and if for all ε < 2 and all s ∈ Sε,

• Cε(s) = ∅ if eβ(s) = 0;

• Cε(s) = {�(s, Sε(∅, t]) : s � t ∈ Sε is a partition node} if eβ(s) is a
successor ordinal;

• Cε(s) = {eβ(t) : s � t ∈ Sε & |Cε(t)| > 1} if eβ(s) = ω is a limit
ordinal.

Call a pair S0, S1 of trees from T (β) clear if it is local or if it is global and
there are node labellings C0, C1 with ((S0, C0), (S1, C1)) clear.

For β > ω, the value of the node labeling for s with eβ(s) limit is more
complicated to describe.

Notice that for 2 ≤ β ≤ ω, if (S0, C0), (S1, C1) is a global clear pair and
neither C0 nor C1 is constantly the empty set, then all initial segments of
partition nodes are identifiable: they are the root of the tree, successor nodes
whose node label is non-empty, and nodes of ordinal 0 whose immediate
predecessor has non-empty node label that identifies it as a successor which
is a partition node.

From the definition of clear, if u is a partition node of one of a pair of
trees, say (S,C) then for each initial segment s whose ordinal eω(s) is a suc-
cessor, the node label C(s) must have as a member the number of immediate
successors of s which are less than or equal to u in the lexicographic order. If
we index the immediate successors of s in S in increasing lexicographic order
starting with 1, then this value is the index of the immediate successor of s
which is an initial segment of u. This analysis motivates the next definition.

10.24 Definition. Consider a node labeled tree (S,C) with root 〈m〉. A non-
root node t of (S,C) is a prepartition node if for all s � t with eβ(s) a
successor ordinal, �(s, S(∅, t]) ∈ C(s), and if eω(s) ∈ C(〈m〉) whenever β = ω
and |C(s)| > 1 The root is a prepartition node if S ∈ T (0) or C(〈m〉) �= ∅ or
(S,C) has a non-root prepartition node. Call (S,C) relaxed if S /∈ T (0) and
max(S) is a prepartition node of ordinal 0.

Node labeled trees, clear pairs, prepartition nodes and relaxed initial seg-
ments are used in the game introduced in the next section.
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10.3. Game

In this section we develop the game G(h,N) in which two players collaborate
to build a pair of node labeled trees.

Here is a brief description of the game. Player I, the architect, plays
specifications for Player II, the builder, telling him (a) which tree to extend,
(b) whether to complete the tree or to build it to the next decision point,
and (c) what the size of the node label of the next node to be constructed is,
if it is not already determined. In turn, the builder extends the designated
tree by a series of steps, adding a node and node label at each step using
elements of N , until he reaches the next decision point on the given tree, if
he has been so directed, or until he completes the tree. The architect wins if
the pair ((S,C), (T,D)) created at the end of the play of the game is a global
clear pair with h(S, T ) = 1; otherwise the builder wins.

Before giving a detailed description of the general game, as a warm-up
exercise, consider a 2-partition h into 2 colors, an infinite set N , and the
game G0(h,N) in which the architect plays the strategy σ0 directing the
builder to complete the first tree and then complete the second tree. The
builder can use a fold map to fold an initial segment of N into a tree S and
assign the constantly ∅ node labeling C to create his first response, (S,C).
Then he can fold a segment of N starting above

⋃
S into a tree T and assign

the constantly ∅ node labeling D to create his second response, (T,D). By
construction, the pair ((S,C), (T,D)) is clear, since there are no partition
nodes, so {S, T} is a clear global pair. If all pairs {X,Y } of trees created
using nodes from N in this game have h(X,Y ) = 1, then playing another
game, starting with (T,D) as the initial move of the builder and ending with
(U,E), one builds a triple {S, T, U} each pair of which h takes to color 1.
Thus if σ0 is a winning strategy for the architect, then the architect can
arrange for a triangle to be constructed.

As a second warm-up exercise, consider a 2-partition h into 2 colors, an
infinite set N with 0 /∈ N , and the game G1(h,N) in which the architect
plays the strategy σ1 directing the builder to build the first tree to the next
decision point starting from a root node whose node label has 0 elements, to
start and complete the second tree, and then to complete the first tree.

In response to the architect’s first set of specifications, the builder uses
the least element n0 of N to build the root, 〈n0〉 and gives it the empty set
as node label. He then uses the next two elements of N , namely n1 and n2

by setting 〈n0, n2〉 as the immediate successor of the root with node label
C0(〈n0, n2〉) = {n1}. He continues with successive elements of N , extending
the critical node of the tree create to that point, giving the new node an
empty label unless the node to be created is the successor of a prepartition
node whose index is the sole element of the node label of the prepartition
node, in which case he extends and labels it as he did the successor of the
root. He continues until he has created and labeled a prepartition node u
whose ordinal is eω(u) = 0, and the pair (S0, C0) he has built is his response.
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In response to the architect’s second set of specifications, the builder uses
elements of N larger than any used so far to build a tree T in T (ω) and gives
it the constantly ∅ labeling. Then he responds to the final set of specifications
of the architect by completing S0 to S in T (ω) and extending C0 to C with
all new nodes receiving empty node labels.

In the brief description of the game, the architect was allowed to direct
the builder to stop at the next decision point. The decision point is either
when a partition node has been created and it is time to switch to the other
tree or when the next node to be created is permitted to have a node label
whose size is greater than 2. Notice that if the architect switches trees after
the builder has created a prepartition node with ordinal 0, then that node
becomes a partition node.

10.25 Definition. A decision node of (S,C) is a prepartition node t with
ordinal eω(t) such that either eω(t) = 0 or eω = � + 1 is a successor ordinal
with � ∈ C(t�1), t is the critical node of S and 1+�(t, S) is an element of C(t).

In the game G0(h,N), the final pair of trees S, T had the property that
min(

⋃
S) < min(

⋃
T ) and max(

⋃
S) < max(

⋃
T ). Call such a pair an

outside pair. In the game G1(h,N), the final pair of trees S, T had the
property that min(

⋃
S) < min(

⋃
T ) and max(

⋃
S) > max(

⋃
T ). Call such

a pair an inside pair.

10.26 Definition. Suppose N ⊆ ω is infinite and h is a 2-partition of T (ω)
into 2 colors. Then G(h,N) is a two player game played in rounds. Player I
is the architect who issues specifications, and Player II is the builder whose
creates or extends one of a given pair of trees in round � to ((S�, C�), (T�, D�)).
Note that if the second tree has not been started in round �, then T� = D� = ∅.
The architect’s moves: In the initial round, the architect declares the type
of pair to be produced, either inside or outside. In round �, the architect
specifies the tree to be created or extended (first or second), specifies whether
the extension is to completion with all new nodes receiving empty labels or
to the point at which a decision node is created and labeled (completion or
decision), and specifies the size of the label for the next node to be created.
In her initial move, the architect must specify the first tree be created. She
may not direct the builder to extend a tree which is complete.
The builder’s moves: In round �, the builder creates or extends the specified
tree through a series of steps in which he adds one node and its label using
elements of N larger than any used to that point. If he has been directed to
continue to completion, he does so while assigning the empty set node label
to all new nodes. Otherwise he adds nodes one at a time, until he creates the
first decision node. He adds a node after determining the size of the node
label, and choosing the node label, since all elements of the node label must
be smaller than the single point used to extend the critical node. The size of
the label of the first node to be created is specified by the architect’s move.
Otherwise, the builder determines if the node will be a prepartition node
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with non-zero ordinal. If so, its node label has one element and otherwise its
node label is empty.

Stopping condition: Play stops at in round � if both trees are complete.

Payoff set: The architect wins if both S� and T� are complete, the pair is
inside or outside as specified at the onset, the pair ((S�, C�), (T�, D�)) is a
global clear pair and h(S�, T�) = 1; otherwise, the builder wins.

We are particularly interested in this game when we have a fixed 2-
partition, h : [T (β)]2 → 2, but the game may be modified to work with
2-partitions into more colors. This game may also be modified to require the
builder to use an initial segment of an infinite sequence from N specified by
the architect in her move or be modified to start with a specified pair of node
labeled trees.

10.27 Lemma. Suppose N ⊆ ω is infinite and h is a 2-partition of T (ω)
with 2 colors. Then every run of G(h,N) stops after finitely many steps.

Proof. Use Lemma 10.18. �

10.4. Uniformization

In this subsection, we prove the key dichotomy in which one or the other
player has a winning strategy, at least up to some constraints on the play.
Basically, we build a tree out of the plays of the game, show it is well-founded,
and use recursion on the tree to define an infinite subset H ⊆ ω so that plays
where the builder uses sufficiently large elements of H are uniform enough to
allow us to prove the dichotomy.

10.28 Definition. Suppose N ⊆ ω is infinite, and h is a 2-partition of T (ω)
with 2 colors. Let S(N) be the set of sequences of consecutive moves in the
game G(h,N), including the empty sequence.

10.29 Lemma. For infinite N ⊆ ω, (S(N),�) is a rooted, well-founded tree.

Proof. The root is the empty sequence. End-extension clearly is a tree order
on S(N), and � is well-founded since every game is finite. �

The basic idea for the builder is to use elements from a specified set and
to always start high enough.

10.30 Definition. Suppose N is an infinite set with 1 < min(N) and no
two consecutive integers in N . Then a function b : S(N) → ω is a bounding
function if b(∅) = 0, and if s ( t, then b(s) ≤ b(t).

Use a bounding function and an infinite set to delineate conservative moves
for the builder.
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10.31 Definition. Suppose H ⊆ N ⊆ ω is infinite with 1 < min(N) that b

is a bounding function. If �R is a position in the game G(h,N) ending with
a move by the architect, then a move ((S�, C�), (T�, D�)) for the builder is
conservative for b and H if all new nodes and node labels are created using
elements of H greater than b(�R).

10.32 Lemma (Ramsey Dichotomy). Suppose N ⊆ ω is infinite, and h is
a 2-partition of T (ω) with 2 colors. Then there is an infinite subset H ⊆ N
and a bounding function b so that 1 < min(H), no two consecutive integers
are in H, and the following statements hold:

1. for every position �R ∈ S(N) ending in a play for the architect, there is
a conservative (for b and H) move for the builder; and

2. either the architect has a strategy σ by which she wins G(h,N) if the
builder plays conservatively, the builder wins every run of G(h,N) by
playing conservatively (for b and H).

Before we tackle the proof of the dichotomy, we introduce some preliminary
definitions and lemmas.

10.33 Definition. Call a set B ⊆ [ω]<ω thin if no u from B is a proper
initial segment of any other v from B. Call B a block for N ⊆ ω if for every
infinite set H ⊆ N , there is exactly one u ∈ B which is an initial segment
of H. Call it a block if it is a block for ω.

Note that if B is a block, then it is thin. A major tool of the proof of the
dichotomy is the following theorem.

10.34 Theorem (Nash-Williams Partition Theorem). Let N ⊆ ω be infinite.
For any finite partition of a thin set c : W → n, there is an infinite set M ⊆ N
so that c is constant on W �M .

For a proof see [45] or [23]. The terminology thin comes from [23].
Here are some easy examples of blocks.

10.35 Lemma. The families {∅}, and [ω]k for k < ω are blocks.

10.36 Lemma. Suppose w ⊆ ω is an increasing sequence, and B ⊆ [ω]<ω is
thin. Then there is at most one initial segment u of w with u ∈ B. If B is
a block, then there is exactly one such initial segment.

10.37 Lemma. Suppose H ⊆ N ⊆ ω is infinite, h is a 2-partition of T (ω)
with 2 colors, and b is bounding function. For every position �R ∈ S(N)
ending in a move by the architect, there is some k ≥ b(�R) and a block B(�R)
for H − k such that for all B ∈ B(�R), the builder can build his responding
move using all elements of B.
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Proof. Recall the architect may not direct the builder to extend a complete
tree, so if the architect has just moved, the tree she directs the builder to
extend is not complete. Thus the builder’s individual steps are specified up
to the choice of elements of N , and his stopping point is determined by his
individual steps. Hence the set of sequences of new elements used is thin.
Moreover, for any infinite increasing sequence w from H above b(�R) and
above the largest element of N used in prior moves, the builder can create a
move using an initial segment of w. Therefore the set of possible moves is a
block. �

At this point we are prepared to prove the main result of this section.

Proof of Ramsey Dichotomy 10.32. Without loss of generality, assume 1 <
min(N) and N has no two consecutive elements, since otherwise one can
shrink N to an infinite set for which these conditions hold. These conditions
assure that no decision node is an immediate successor of another decision
node.

Let ρ∗ be the rank of S(N). Use recursion on μ ≤ ρ∗ to define a sequence
〈Mμ ⊆ N : μ < ρ∗〉 and a valuation v : S(N) → 2.

For μ = 0, the sequences �R of rank 0 are ones in which the last move
completes the play of the game. Let M0 = N , and define v(�R) = 0 on a
sequence of rank 0 if the game ends with a win for the architect and v(�R) = 1
otherwise.

Next suppose that 0 < μ < ρ∗, and v has been defined on all nodes of rank
less than μ. Enumerate all the nodes of rank μ as �R0

μ, �R1
μ, . . . and let M −1

μ

be Mμ−1 if μ is a successor ordinal and let M −1
μ be a diagonal intersection

of a sequence Mν for a set of ν cofinal in μ otherwise.
Extend v to the nodes of rank μ and define sets M i

μ by recursion. For the
first case, suppose �Ri

μ ends with a move for the builder, and set M i
μ = M i−1

μ .
If there is some move ai

μ with �Ri
μ

�〈ai
μ〉 ∈ S(N) and v(�Ri

μ
�〈ai

μ〉) = 1, then
set v(�Ri

μ) = 1, and otherwise set v(�Ri
μ) = 0.

For the second case, assume �Ri
μ ends with an move for the architect. Let

B(�Ri
μ) be the block of Lemma 10.37 for the set M i−1

μ and the position �Ri
μ.

Define c : B(�Ri
μ) → 2 by c(d) = v(�Ri

μ
�〈P (d)〉) where P (d) is the unique

approved move for the builder whose new elements are created using exactly
the elements of d. Apply the Nash-Williams Partition Theorem 10.34 to c to
get an infinite set M i

μ ⊆ M i−1
μ and let v(Ri

μ) be the constant value of c on
B(�Ri

μ) restricted to M i
μ.

Continue by recursion as long as possible, extending v to all nodes of
rank μ. If there are only finitely many of them, let Mμ be M i

μ where �Ri
μ is

the last one. If there are infinitely many, let Mμ be a diagonal intersection
of the sets M i

μ.
Since every non-empty sequence of moves in the game G(N) extends the

empty sequence, this root of S(N) has the largest rank of any element of
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S(N), namely rank ρ∗ − 1. Let H = Mρ∗ −1. Let v(∅) be 1 if there is some
move a by the architect so that v(〈a〉) = 1, and set v(∅) = 0 otherwise.

Define b on S(N) by recursion. Let b(�R) = 2 for all �R ∈ S(N) with
|�R| ≤ 1. Continue by recursion on |�R|. For notational convenience, let �R−

be obtained from �R ∈ S(N) − {∅} by omission of the last entry. If b(�R−)
has been defined and the last move in �R is B� = ((S�, C�), (T�, D�)) for the
builder, then let b(�R) be the least b greater than b(�R−) and any element of
⋃

(S� ∪ ran(C�) ∪ T� ∪ ran(D�)). If b(�R−) has been defined, the last move in
�R is a� for the architect, and �R = �Ri

μ, then let b(�R) be the least b greater
than b(�R−) so that for all d in the restriction of B(�Ri

μ) to subsets of H with
min(d) > b, there is a conservative move for the builder for position �R with
new elements d. The existence of a value for b(�R) in this latter case follows
from the fact that H ⊆∗ M i

μ by construction, and by Lemma 10.37.
Since all �R in S(N) are finite, this recursion extends b to all of S(N). This

definition of H and b guarantees that the builder can always respond with
conservative moves to plays of the architect.

If v(∅) = 1, then the strategy for the architect is to keep v(�R) = 1. Given
the definition of v, the architect will always succeed, as long as the builder
moves conservatively with H and b. If v(∅) = 0, and the builder always
moves conservatively with H and b, then he will win, again by the recursive
definition of v and the definition of winning the game. �

10.5. Triangles

For this section we assume that h : [T (ω)]2 → 0 is fixed and that an infinite
set H ⊆ ω and a bounding function b are given so that the architect has a
winning strategy σ for games of G(h,H) in which the builder plays conserv-
atively for b and H. The goal is to outline how one uses the strategy of the
architect to construct a triangle.

10.38 Lemma. Suppose σ is a strategy for the architect with which she wins
G(h,N) if the builder moves conservatively for H, b. Then there is a three
element 1-homogeneous set for h.

Proof. Consider the possibilities for σ(∅). The architect must declare the
pair to be built will be inside or outside, the initial move is to complete the
first tree or construct it to a decision point and must declare the size d of
the node label of the initial node constructed. We construct our triangles
by playing multiple interconnected games in which the architect uses σ, the
builder plays conservatively for H and b, and plays sufficiently large that
his plays work in all the relevant games. While technically we should report
a pair of node labeled trees for each play of the builder, for simplicity, we
frequently only mentioned the one just created or modified.

Case 1. Using σ, the architect specifies the builder constructs a complete
tree in her initial move.
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Then the architect must call for an outside pair and must set d = 0,
since otherwise the pair constructed will not be clear. The builder responds
via conservative play with a complete tree (S,C) whose node labeling is
constantly the empty set. The strategy σ must then specify that the builder
constructs a second complete tree whose initial node has a node label of size 0.
The builder responds via conservative play with a complete tree (T,D) whose
node labeling is constantly ∅. Since σ is a winning strategy, h(S, T ) = 1.

Next the architect shifts to the game where the builder has responded to
the opening move with (T,D), applies the strategy σ, to which the builder re-
sponds with (U,E), a (third) complete tree whose node labeling is constantly
∅ starting sufficiently large for this response to be appropriate for the game
where the builder has responded to the opening move with (S,C). Since σ
is a winning strategy, h(T, U) = 1 = h(S,U). Thus {S, T, U} is the required
triangle.

Case 2. Using σ, the architect declares the pair will be an inside pair, and
specifies the initial node label size d = 0 and that the builder constructs to a
decision node.

The proof in this case is similar to the last, with the architect starting
one game to which the builder responds with a first tree (S0, C0) where the
decision node is a prepartition node of ordinal zero, since no levels were coded
for introducing decision nodes with successor ordinals. Thus the next play
for the architect is to direct the builder to create a complete tree all of whose
nodes are labeled by ∅.

The architect stops moving on the first game and, using σ, starts a new
game, directing the builder to start high enough that the tree constructed
could be the beginning of his response in the first game. The builder responds
with a tree (T0, D0) where the decision node is a prepartition node of ordinal
zero The architect continues this game using σ and the builder responds
with a complete tree (U,E) all of whose nodes are labeled with ∅. After
the architect and builder each move a final time on this game, the builder
has created a complete tree (T,D) extending (T0, D0). Since σ is a winning
strategy, h(T, U) = 1.

Now return to the first game: the builder plays (T,D′) where D′ is the
constantly empty set node labeling; The architect uses σ to respond and
requires the builder to construct high enough that his response works in the
game where the builder plays (U,E) as well as the one where the builder plays
(T,D′). Since σ is a winning strategy, h(S, T ) = h(S,U), Thus {S, T, U} is
the required triangle.

Case 3. Using σ, the architect declares the pair will be an outside pair, and
specifies the initial node label size d = 0 and that the builder constructs to a
decision node.

The proof in this case is similar to the last, so only the list of subtrees to
be constructed is given. Start with (S0, C0) and (T0, D0) as responses to the
first two moves of the architect in the first game. Next build (U0, E0) and
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(S,C) as second and third moves in a game where (S0, C0) is the first move,
and (U0, E0) is started high enough to be a response in the game starting
with (T0, D0). Finally build (T,D) and (U,E) in the game starting with
responses (T0, D0) and (U0, E0) and continuing high enough that play using
(S,C) in the appropriate games is conservative.

In the remaining two cases, we use σ and conservative play for the builder
to create trees S, T, U with node labellings (S,C1) , (S,C2), (T,D0), (T,D1),
(U,E0) and (U,E1) through plays G0,1, G0,2, G1,2 of the game G(h,H). We
pay special attention to the creation of the initial segments up to the first
partition nodes for each pair and to the terminal segments, after the last
partition nodes. We refer to the remainder of the run as “the mid-game”.

Case 4. Using σ, the architect declares the pair will be an inside pair, and
specifies the initial node label size d > 0 and directs the builder to construct
the first tree to a decision node.

We start by displaying a schematic overview of the construction:

S T U T U S U U S T T S

Next we outline the steps to be taken.

1. Choose from H codes for d levels for S and U ; choose d larger levels for
S and T ; start the initial segment of S with respect to T ; continue it to
get the initial segment of S with respect to U (the difference is in the
node labellings only), and apply σ to the results to determine the sizes
d′, d′ ′ of node labels for the roots of T, U in G0,1, G0,2, respectively.

2. Choose d′ levels for T ’s interaction with U ; choose d larger levels for
T ’s interaction with S; start the initial segment of T with respect to S;
continue it to get the initial segment of T with respect to U ; and apply
σ to determine the size d′ ′ ′ of the node label of the root of U for G1,2.

3. Choose d′ ′ ′ levels for U ’s interaction with T ; choose d′ ′ larger levels for
U ’s interaction with S; start the initial segment of U with respect to
S; continue it to get the initial segment of U with respect to T .

4. Play the mid-game of G1,2 to the call for the completion of U .

5. The initial segments of T and U with respect to S are complete, so
update the node labellings C0 and C1.

6. Play the mid-game of G0,2 until the architect calls for the completion
of S. In particular, play until U is complete.

7. Update the node labeling E1 for U by labeling all the new nodes by
the empty set.



202 Hajnal and Larson / Partition Relations

8. Complete the play of the game G0,1, starting by extending the part of
S created in the play of the mid-game G0,2. Such a start is possible,
since the levels of S for interaction with T are larger than those for
interaction with U .

9. Update the node labellings C2 for S and D2 for T by labeling all the
new nodes by the empty set.

Care must be taken to direct the builder to start high enough that all
moves in the tree plays of G(h,H) are conservative. Since the construction
of the initial segments calls for introducing levels, we describe the first such
step in greater detail.

We know that we will need to choose levels for splitting of S with respect to
T and U , and for splitting T with respect to U . Depending on the strategy σ,
we may need to choose levels for the splitting of T with respect to S and for
the splitting of U with respect to S and T . Here is a picture of the approach
we plan to take on these splitting levels, in the general case where we need
levels for all pairs.
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To start the construction, choose 2d + 1 elements from H above b(〈σ(∅)〉)

ending in m0, and use them to define C1(〈m0〉) and C2(〈m0〉) satisfying
C2(〈m0〉) < C1(〈m0〉).

Start playing a game G0,1 where the architect starts with R0,1
0 = σ(∅) and

the builder must use the elements of C1(〈m0〉) and m0 to start his initial
move, R0,1

1 . Continue to play until the architect’s last move R0,1
p before

directing the builder to switch to the second tree. One can identify this point
in the run of the game, since it is the first time the architect has stopped
on a node, call it v0, whose level is one more than min(C1(〈m0〉)). Let
(S1

p−1, C
1
p−1) be the tree paired with (∅, ∅) by the builder in his last move.

Let C2 be the node labeling of S1
p−1 with the value of C2(〈m0〉) specified

above, with the empty set assigned for nodes which are not initial segments
of v0, and for initial segments of v0 longer than the root, are the singletons
needed to guarantee that v0 is a prepartition node. Then the architect directs
the builder to extend this node labeled tree to a response R0,2

1 to σ(∅) in the
second game G0,2. The two players continue the game until the architect, in
R0,2

q , directs the builder to switch to the second tree to start with a node
label of size d′ ′ and to go to a decision node. Such a move is the only one that
will lead to a clear pair. Let (S2

q−1, C
2
q−1) be the tree played by the builder

in his previous move.
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Return to game G0,1 and require the builder to respond to R0,1
p with

(S1
p+1, C

1
p+1) for S1

p+1 = S2
q−1 and C1

p+1 the node labeling where all new
nodes that are not initial segments of the largest node are labeled with the
empty set and initial segments of the largest node are labeled minimally so
that it is a prepartition node. Let d′ be the size of the node label for the root
of the second tree determined by the architect’s use of σ in response to this
move of the builder.

The remaining details are left to the reader. The careful reader will note
that there is one possibility in which the architect initially calls for d = 1,
specifies a node label of size 2 at the first decision node, and after the com-
pletion of the first full segment, calls for an empty node label for the root of
the second tree. The construction proceeds as above but is simpler, so these
details are also left to the reader.

As in the previous cases, since σ is a winning strategy for the architect,
the set {S, T, U} we have constructed is the required triangle.

Case 5. Using σ, the architect declares the pair will be an outside pair, and
specifies the initial node label size d > 0 and directs the builder to construct
the first tree to a decision node.

This case is substantially like the previous one, so we give the schematic
below to guide the reader and a few comments on how to move from one
section to the next.

S T S T U S U S T U T U

We start by building initial segments of S and T . We begin by choosing
d small levels for the interaction of S with T and d larger levels for the
interaction of S with U . We start to build the initial segment of S with
respect to its convex partition by U , then extend that start to build the
initial segment of S with respect to its convex partition by T . We obtain
the size d′ of the root node label of the second tree in G0,1 by applying σ,
choose d′ small levels for the interaction of T with S, and d larger levels for
the interaction of T with U . We start building the initial segment of T with
respect to U , then extend it to the initial segment of T with respect to S.

We play the mid-game of G0,1 until the architect calls for the completion
of S. In the process we have completed the initial segments of S and T with
respect to U , so we update C2 and D2, and apply σ to the current state of
play of G0,2 to find d′ ′ and to the current state of play of G1,2 to find d′ ′ ′.

We choose d′ ′ smaller levels for the interaction of U with respect to S
and d′ ′ ′ larger levels for the interaction of U with respect to T . We start
building the initial segment of U with respect to T , then extend it to the
initial segment of U with respect to S.

We play the mid-game of G0,2 until the builder has completed the con-
struction of S and the architect has called for the completion of U . In the
process we have completed the initial segment of U with respect to T , and
the final segment of S with respect to T so we update E1 and C1.
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Then we play the mid-game of G1,2 and complete the play of that game
with the final segments of T and U . Finally, we update D0 and E0 on the
new elements of T and U which complete the games G0,1 and G0,2.

As in the previous cases, since σ is a winning strategy for the architect,
the set {S, T, U} we have constructed is the required triangle. �

10.6. Free Sets

Our next goal is the construction of a subset of T (ω) of order type ωωω

which
is 0-homogeneous for global pairs.

Recall the characterization of subsets of Gω of order type at least ωs that
dates back to the late 1960’s or early 1970’s. (see [42, 41, 65]).

10.39 Definition. A non-empty set S ⊆ {σ ∈ Gω : min(σ) = n} is free
above coordinate k if for every x = 〈x0, x1, . . . , xn〉 ∈ S, there is an infinite
set N ⊆ ω so that for each x′ ∈ N , the set of extensions of 〈x0, x1, . . . , xk, x

′〉
in S is non-empty. The set S is free in s coordinates if there are s coordinates
above which it is free.

10.40 Lemma (See Lemma 7.2.2 of [65]). A set S ⊆ {σ ∈ Gω : min(σ) = n}
has ot(S) ≥ ωs if and only if there is a subset V ⊆ S so that V is free in s
coordinates.

We would like to adapt this idea to sets of node labeled trees from T (β).
By an abuse of notation, write t ∈ (T,D) ∈ X to mean that t ∈ T for some
(T,D) ∈ X. The next definition facilitates our discussion. Recall that eβ(s)
is the ordinal of s.

10.41 Definition. For β ≤ ω and any s ∈ (S,C) ∈ T ∗(β), call s a signal
node if either |C(s)| > 1 or eβ(s) limit and |C(s)| = 1.

Recall Definition 10.24 of relaxed initial segments of trees in T (β). The
first three parts of the next definition guarantee that locally Γ-free sets have
nice regularity properties, and the last three guarantee (1) signal nodes are
introduced whenever there is no constraint, (2) signal nodes are given large
node labels, and (3) there are arbitrarily large starts for extensions of relaxed
initial segments of trees in the collection. The definition of Γ-free from locally
Γ-free guarantees that there are arbitrarily large new starts for trees as well.

10.42 Definition. Suppose β ≤ ω and 0 /∈ Γ ∈ [β + 1]<ω. A non-empty
set X of node labeled trees from T (β) is locally Γ-free for β if the following
conditions are satisfied:

1. (commonality) if β > 0, then every tree in X has a proper relaxed initial
segment and every local pair from X has a common proper relaxed
initial segment and otherwise is disjoint;

2. (conformity) if r ∈ (S,C) ∈ X and k ∈ C(r) �= ∅, then there is some
relaxed (T,D) ( (S,C) so that r � max(T ) and if the ordinal of r is a
successor, then �(r, T ) = k;
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3. (Γ-signality) for any signal node r ∈ (S,C) ∈ X, either eβ(r) ∈ Γ or
for some p � r with eβ(p) = ω, there is a k ∈ C(p) so that eβ(r) = k;

4. (Γ-forecasting) for any relaxed (S,C) ( (T,D) ∈ X, if γi ∈ Γ, then
there is some signal node r � max(S) with eβ(r) = γi; and if p �
max(S) is a signal node, k ∈ C(p), and eβ(p) = ω is a limit ordinal,
then there is some signal node r � max(S) with eβ(r) = k;

5. (signal size) for any signal node r ∈ (S,C) ∈ X, the inequality |C(r)| <
max(r) holds, and max(t) < max(r) implies max(t) < |C(r)| for all
t ∈ (T,D) ∈ X;

6. (push-up) for every k < ω and every relaxed initial segment (T,D) �
(U,E) ∈ X, there is some complete extension (V, F ) 	 (T,D) in X
whose new elements start above k, i.e. k < min(

⋃
V ∪ ran(F )−

⋃
T ∪

ran(D)).

We say X is Γ-free for β if it is locally Γ-free for β, and for all k < ω, there
is some 〈m〉 ∈ (S,C) ∈ X such that k < |C(〈m〉)| if β ∈ Γ and k < m
otherwise.

By an abuse of notation, for a collection X of node labeled trees from
T (β), we let ot(X) = ot({S : ∃C(S,C) ∈ X}).

10.43 Lemma. For all β ≤ ω, for all 0 /∈ Γ ∈ [β + 1]<ω, if X is Γ-free for
β, then ot(X) ≥ ζ(β,Γ) where

ζ(β,Γ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω if β = 0,
ω2 if β > 0 and Γ = ∅,
ωω|Γ|

if β > 0 and ω /∈ Γ �= ∅, and
ωωω

otherwise.

Proof. Relaxed trees, especially with a specified node as an initial segment
of the max, play an important role in the definition of free and locally free.
Here is some notation to facilitate the discussion. For any set X of node
labeled trees, define X(t) := {(T,D) ∈ X : t ∈ (T,D)}.

10.44 Claim. If X is Γ-free for β = 0 and 0 /∈ Γ ⊆ 1, then ot(X) ≥ ω.

Proof. Since 0 /∈ Γ ⊆ 1, it follows that Γ = ∅. Since any Γ-free for β = 0 set
X has arbitrarily large roots, it must have order type at least ω. �

For 1 ≤ β ≤ ω, Γ ⊆ β + 1, Y a set of node labeled trees from T (β) and
m < ω, define ρ(β,Γ, Y,m) := 0 unless Y (〈m〉) �= ∅ is locally Γ-free for β and
there is some (S,C) ∈ Y with 〈m〉 ∈ (S,C), and in the latter case, set

ρ(β,Γ, Y,m) :=

⎧
⎪⎨

⎪⎩

1, if Γ = ∅,
ωω�

, if Γ �= ∅ and β = max(Γ) limit,
ωωμ ·�, otherwise,
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where, for non-empty Γ, � := |C(s)| − 1 for s the least signal node of (S,C),
μ := |Γ| − 1. This function is well-defined, since if Y (〈m〉) �= ∅ is locally
Γ-free for β with Γ non-empty, then all elements of Y (〈m〉) have a proper
relaxed initial segment in common with (S,C) which must include the least
signal node of (S,C).

Let ∗(β,Γ) be the following statement.

∗(β,Γ) For all locally Γ-free for β sets Y , if 〈m〉 ∈ (S,C) ∈ Y ,
then ot(Y (〈m〉)) ≥ ρ(β,Γ, Y,m).

10.45 Claim. For all β ≥ 1 and 0 /∈ Γ ⊆ β + 1, if X is Γ-free for β and
∗(β,Γ) holds, then ot(X) ≥ ζ(β,Γ).

Proof. Use induction on n to prove the claim for subsets Γ ⊆ ω of size n.
To start the induction, consider subsets of size 0. If X is ∅-free for β ≥ 1,

then by definition, X(〈m〉) is non-empty for infinitely many m, and by com-
monality and push-up, ot(X(〈m〉)) ≥ ω, so ot(X) ≥ ω2 = ζ(β, ∅).

Next assume the claim is true for subsets of size k and that n = k + 1.
If X is Γ-free for β ≥ 1 and 0 /∈ Γ ⊆ β + 1 satisfies ω /∈ Γ and |Γ| = k + 1,
then there are arbitrarily large � for which there are m ∈ (S,C) ∈ X with
� < |C(〈m〉)| if β ∈ Γ and with � < m otherwise. In the latter case, by
Γ-forecasting and by signal size, there are arbitrarily large � for which the
first signal node s ∈ (S,C) ∈ X has � < |C(s)|. Since ∗(β,Γ) holds, it follows
that there are arbitrarily large � < m with ot(X(〈m〉)) ≥ ωωk� for k = |Γ|−1,
hence ot(X) ≥ ωωk+1

= ζ(β,Γ) as desired.
Therefore by induction, the claim holds for all finite subsets Γ ⊆ ω.
To complete the proof, consider Γ with ω ∈ Γ. Then β = ω. Suppose X

is Γ-free for ω and ω ∈ Γ. Then the root node of every tree in X is a signal
node. Also X has arbitrarily large values for |C(〈m〉)| by the definition of
Γ-free for β = ω ∈ Γ. Hence from ∗(ω,Γ) it follows that ot(X(〈m〉)) ≥ ωω�

for � = |C(〈m〉)| − 1, so ot(X) = ωωω

= ζ(ω,Γ) as required. �

10.46 Claim. For all β ≥ 1 and 0 /∈ Γ ⊆ β + 1, the statement ∗(β,Γ) holds.

Proof. Suppose Y is locally ∅-free for β ≥ 1 and 〈m〉 ∈ (S,C) ∈ Y . Then by
commonality and push-up, ot(Y (〈m〉)) ≥ ω, so ∗(β, ∅) holds.

Use induction on β to show that for all non-empty 0 /∈ Γ ⊆ β + 1, the
statement ∗(β,Γ) holds. For the basis case, β = 1, the only case to be
considered is Γ = {1}. Suppose Y is locally {1}-free and 〈m〉 ∈ (S,C) ∈ Y .
Then 〈m〉 is a signal node, and Z := {

⋃
T : (T,D) ∈ Y (〈m〉)} is free in

|C(〈m〉)| coordinates in the sense of Definition 10.39 by conformity and push-
up. Thus Z has order type ω|C(〈m〉)| by Lemma 10.40. Hence Y (〈m〉) has
this order type as well, so ∗(1, {1}) holds.

For the induction step, assume ∗(β′) is true for all β′ with 1 ≤ β′ < β.
Suppose Γ is non-empty with 0 /∈ Γ ⊆ β + 1, Y is locally Γ-free for β and
〈m〉 ∈ (S,C) ∈ Y . It follows that Y (〈m〉) is also locally Γ-free for β. Let
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(S−, C−) be the minimal proper relaxed initial segment of (S,C), required by
commonality. Then (S−, C−) is a common initial segment of all trees in Y .
Let 〈m,m−〉 be the unique initial segment of max(S−) of length 2.

Case 1. max(Γ) < β or max(Γ) = β = ω.
For each (T,D) ∈ Y , the derived tree (T̂ , D̂) is defined by t̂ ∈ T̂ if and

only if 〈m,m−〉 ( 〈m〉�t̂ ∈ T , and D̂(t̂) = D(〈m〉�t̂).
Let Z be the collection of derived trees. Note that 〈m−〉 is an element of

every tree in Z. Let β′ = β − 1 and Γ′ = Γ if β is finite, and let β′ = m
and Γ′ = (Γ − {ω}) ∪ C(〈m〉) otherwise. Then Z = Z(〈m−〉) is locally
Γ′-free for β′. Also, ot(Y (〈m〉)) ≥ ot(Z(〈m−〉)), so in this case, the desired
inequality follows by the induction hypothesis.

Case 2. Γ = {ζ + 1}.
Consider the set E ⊆ T (1) of 〈m, k1, k2, . . . , km〉 such that there is a

(T,D) ∈ Y such that for all 1 ≤ i ≤ m, 〈m, ki〉 ∈ T . By conformity and
push-up, the set E is free in � = |C(〈m〉)|−1 many coordinates, so it has order
type ω�, by Lemma 10.40. Thus ot(Y (〈m〉)) ≥ ot(E) = ω� = ρ(β, γ, Y,m) as
required.

Case 3. ζ + 1 ∈ Γ �= {ζ + 1}.
Notice that every tree (T,D) in Y (〈m〉) may be thought of as a collection

of m node labeled trees from T (ζ) extending from the root 〈m〉.
Call an initial segment (T,D) of a tree in Y (〈m〉) large if max(T ) is a

prepartition node with ordinal 0 such that �(s, T ) = max(C(s)) for all proper
s � t with |s| > 1. Every element of Y (〈m〉) has exactly |C(〈m〉)| many large
initial segments.

Let Γ′ = Γ− {ζ + 1} and set μ = |Γ′|. Fix attention on a large (T,D) for
which �(〈m〉, T ) < max(C(〈m〉)), and let k be the least element of C(〈m〉)
greater than �(〈m〉, T ). Let E(T,D) be the set of initial segments (T ′, D′) of
elements of Y extending (T,D) to a tree with root 〈m〉 extended by exactly
k subtrees from T (ζ). Then E(T,D) has order type ωωμ

, since the collec-
tion of trees that occur for the kth slot are Γ′-free for ζ. In fact the set of
maximal large initial segments of these trees also has order type ωωμ

, since
each has exactly ω extensions in E(T,D) and ωωμ

is multiplicatively inde-
composable. From this analysis, it follows that ot(Y (〈m〉)) ≥ ωωμ ·�, where
� = |C(〈m〉)| − 1, so ∗(β,Γ) holds in this final case.

Therefore by induction on β, the claim follows. �

Now the lemma follows from Claims 10.44, 10.45 and 10.46. �

10.47 Lemma. Suppose h is a 2-partition of T (ω) with 2 colors and N ⊆ ω
is infinite with 1 < min(N) and no two consecutive integers are in N . Further
suppose a bounding function b and H ⊆ N infinite are such that the builder
wins every run of G(h,N) by playing conservatively for b and H. Then there
is a set Y ⊆ T (ω) of order type ωωω

so that h(S, T ) = 0 for all global pairs
from Y .
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Proof. We will use recursion to build a {ω}-free for ω set X such that every
global pair ((S,C), (T,D)) from X has a coarsening ((S,C ′), (T,D′)) which
is a final play in a run of G(h,N) in which the builder plays conservatively for
b and H. (By a coarsening, we mean that C ′(s) ⊆ C(s) and D′(t) ⊆ D(t) for
all s ∈ S, t ∈ T .) Since the builder wins the game, h(S, T ) = 0 for such pairs.
Thus Y = {S : (∃C)((S,C) ∈ X)} is the desired set, since, by Lemma 10.43,
Y has order type ωωω

.
To start the recursion, let X0 be the set with only (∅, ∅) in it. For positive

j < ω, we enumerate the node labeled trees in
⋃

i<j Xi which are proper ini-
tial segments, starting with (∅, ∅) = (S′

j,0, C
′
j,0) and ending with (S′

j,nj
, C ′

j,nj
).

Speaking generally, in stage j, for each k ≤ nj , we consider the kth initial
segment, (S′

j,k, C
′
j,k), use moves of the architect and builder in G(h,H) to cre-

ate a relaxed or complete extension, (Sj,k, Cj,k), using elements of H larger
than anything mentioned up to that point. Then we let Xk be the set of all
(Sj,k, Cj,k) for k ≤ nj .

A simple induction shows that there are only finitely many proper initial
segments to be considered in each stage and they fall into at most three
types: trivial (i.e. (∅, ∅)), ready for completion (i.e. a relaxed initial segment
(T,D) such that for all s ⊆ max(T ) whose ordinal is a successor, �(s, T ) =
max(D(s))), or relaxed but not ready for completion.

In stage j, for the trivial initial segment, one starts G(h,H) at the begin-
ning. Otherwise, for the kth initial segment, one continues a game in which
the first tree is (S′

j,k, C
′
j,k) and the second tree is the relaxed initial segment

constructed to extend (∅, ∅) in this stage, namely (Sj,0, Cj,0).
In the games played, the architect uses the following strategy. She always

directs the builder to create or extend the first tree. If the architect is making
her first move on the kth initial segment and it is relaxed, then she declares
the next node label size to be 0 and calls for completion if (S′

j,k, C
′
j,k) is

ready for completion, and for decision otherwise. Recall that if the architect
calls for completion, then the node label of new elements is the empty set.
Otherwise, the architect uses the least element of H larger than any used to
that point as the size of the next node label, and calls for construction to the
next decision node.

The builder always responds conservatively for H, b, and always plays
large enough to have the play remain conservative for any possible game that
could be constructed using coarsenings of the given trees.

Play stops at the end of the first move by the builder in which he creates
a tree (Sj,k, Cj,k) which is relaxed or complete.

In any stage, with any starting initial segment, after finitely many steps
of the game, the builder has constructed the required relaxed or complete
extension. Since there are only finitely many trees to extend in a given
round, eventually each round is finished. Therefore, the construction stops
after ω rounds with a set X =

⋃
Xj of trees. Let X be the set of complete

trees in X. By construction, X is {ω}-free, so by Lemma 10.43, the set
Y := {S : (∃C)((S,C) ∈ X)} has order type ωωω

.
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To check that Y is the required set, suppose that ((S0, C0), (S1, C1)) is a
global pair from the set X with (S0, C0) < (S1, C1). By the construction,
every partition node of (Sε, Cε) is the maximum of some relaxed segment of
(Sε, Cε), and every splitting node r has eβ(r) in C(〈mε〉), where a splitting
node r ∈ Sε is one of the form s ∩ t for distinct partition nodes s, t ∈ Sε.
Hence there are coarsenings (S0, D0) and (S1, D1) so that for all r ∈ Sε,

Dε(r) =

⎧
⎪⎨

⎪⎩

{�(r, Sε(∅, s]) : r � s partition node} eω(r) successor,
{eω(t) : r � t splitting node} eω(r) limit,
∅ otherwise.

Thus ((S0, D0), (S1, D1)) satisfies Definition 10.23 and is a global clear pair.
If max(

⋃
S0) > max(

⋃
S1), then the pair is inside, and otherwise it is outside.

Use this knowledge in the architect’s initial move; use the values of |Dε(r)|
for the sizes of the node labels in the architect’s moves; and orchestrate her
moves to create the pair of node labeled trees when the builder is required
to use the elements of

⋃
S0 ∪ ran(D0) ∪

⋃
S1 ∪ ran(D1). Since the architect

has no winning strategy, and the builder’s plays were large enough for any
coarsening, it follows that this run of the game is a win for the builder. Thus
h(S0, S1) = 0 as desired. �

10.7. Completion of the Proof

In this subsection, we complete the proof that ωωω → (ωωω

, 3)2 by assembling
the appropriate lemmas. We start with h : [T (ω)]2 → 2. We apply the
Ramsey Dichotomy 10.32 to h and N = ω to get H ⊆ ω infinite, a bounding
function b and a favored player.

If the architect has a winning strategy by which she wins G(h,N) when
the builder plays conservatively, then there is a 1-homogeneous triangle by
Lemma 10.38.

Otherwise, the builder wins every run of G(h,N) by playing conservatively,
so by Lemma 10.47, there is a set Y of order type ωωω

so that all global pairs
get color 0. Partition Y into sets Yn so that Y0 < Y1 < · · · , all pairs from
Yn are local, and ot(Yn) ≥ ωω1+2n

. Apply Corollary 9.3 to each Yn. If for
some n, the result is a 1-homogeneous triangle, we are done. Otherwise, we
get 0-homogeneous sets Zn ⊆ Yn of order type ωω1+n

, and Z =
⋃

Zn is the
0-homogeneous set required for completion of the proof of the theorem.
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[18] Paul Erdős, András Hajnal, and Richard Rado. Partition relations for
cardinal numbers. Acta Mathematica Academiae Scientiarum Hungari-
cae, 16:93–196, 1965.
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A transfinite sequence Cξ ⊆ ξ (ξ < θ) of sets may have a number of
“coherence properties” and the purpose of this chapter is to study some of
them, as well as some of their uses. Here, “coherence” usually means that
the Cξ’s are chosen in some canonical way, beyond the natural requirement
that Cξ be closed and unbounded in ξ for all ξ. For example, choosing a
canonical “fundamental sequence” of sets Cξ ⊆ ξ for ξ < ε0 relying on the
specific properties of the Cantor normal form for ordinals below the first
ordinal satisfying the equation x = xx is a basis for a number of important
results in proof theory. In set theory, one is interested in longer sequences as
well and usually has a different perspective in applications, so one is naturally
led to use some other tools beside the Cantor normal form. It turns out that
the sets Cξ can not only be used as “ladders” for climbing up in recursive
constructions but also as tools for “walking” from an ordinal to a smaller
one. This notion of a “walk” and the corresponding “distance functions”
constitute the main body of study in this chapter. We show that the resulting
“metric theory of ordinals” not only provides a unified approach to a number
of classical problems in set theory but also has its own intrinsic interest.
For example, from this theory one learns that the triangle inequality of an
ultrametric

e(α, γ) ≤ max{e(α, β), e(β, γ)}
has three versions, depending on the natural ordering between the ordinals
α, β and γ, that are of a quite different character and are occurring in quite
different places and constructions in set theory. The most frequent occurrence
is the case α < β < γ when the triangle inequality becomes something that
one can call the “transitivity” of e. Considerably more subtle is the case
α < γ < β of this inequality. It is this case of the inequality that captures
most of the coherence properties found in this chapter. Another thing one
learns from this theory is the special role of the first uncountable ordinal in
this theory. Any natural coherence requirement on the sets Cξ (ξ < θ) that
one finds in this theory is satisfiable in the case θ = ω1. The first uncountable
cardinal is the only cardinal on which the theory can be carried out without
relying on additional axioms of set theory. The first uncountable cardinal is
the place where the theory has its deepest applications as well as its most
important open problems. This special role can perhaps be explained by the
fact that many set-theoretical problems, especially those coming from other
fields of mathematics, are usually concerned only about the duality between
the countable and the uncountable rather than some intricate relationship
between two or more uncountable cardinalities. This is of course not to say
that an intricate relationship between two or more uncountable cardinalities
may not be a profitable detour in the course of solving such a problem. In
fact, this is one of the reasons for our attempt to develop the metric theory of
ordinals without restricting ourselves only to the realm of countable ordinals.

The chapter is organized as a discussion of five basic distance functions
on ordinals, ρ, ρ0, ρ1, ρ2 and ρ3, and the reader may choose to follow the
analysis of any of these functions in various contexts. The distance functions
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will naturally lead us to many other derived objects, most prominent of
which is the “square-bracket operation” that gives us a way to transfer the
quantifier “for every unbounded set” to the quantifier “for every closed and
unbounded set”. This reduction of quantifiers has proven to be quite useful
in constructions of various mathematical structures, some of which have been
mentioned or reproduced here.

I wish to thank Bernhard König, Piotr Koszmider, Justin Moore and
Christine Härtl for help in the preparation of the manuscript.

1. The Space of Countable Ordinals

This is by far the most interesting space considered in this chapter. There
are many mathematical problems whose combinatorial essence can be refor-
mulated as a problem about ω1, the smallest uncountable structure. What
we mean by “structure” is ω1 together with a system Cα (α < ω1) of funda-
mental sequences, i.e. a system with the following two properties:

(a) Cα+1 = {α},

(b) Cα is an unbounded subset of α of order-type ω, whenever α is a count-
able limit ordinal > 0.

Such a sequence we shall simply call a C-sequence, here and when we gen-
eralize to ω1 replaced by a general regular κ and Cα is a closed unbounded
subset of α for limit α < κ.

Despite its simplicity, this structure can be used to derive virtually all
other known structures that have been defined so far on ω1. There is a nat-
ural recursive way of picking up the fundamental sequences Cα, a recursion
that refers to the Cantor normal form which works well for, say, ordinals
< ε0.1 For longer fundamental sequences one typically relies on some other
principles of recursive definition and one typically works with fundamental
sequences with as few extra properties as possible. We shall see that the
following assumption is what is frequently needed and will therefore be im-
plicitly assumed whenever necessary:

(c) If α is a limit ordinal, then Cα does not contain limit ordinals.

1.1 Definition. A step from a countable ordinal β towards a smaller ordinal
α is the minimal point of Cβ that is ≥ α. The cardinality of the set Cβ ∩ α,
or better to say the order-type of this set, is the weight of the step.

1.2 Definition. A walk (or a minimal walk) from a countable ordinal β to
a smaller ordinal α is the sequence β = β0 > β1 > · · · > βn = α such that
for each i < n, the ordinal βi+1 is the step from βi towards α.
1 One is tempted to believe that the recursion can be stretched all the way up to ω1 and
this is probably the way P.S. Alexandroff found his famous Pressing Down Lemma (see [1]
and [2, appendix]).
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Analysis of this notion leads to several two-place functions on ω1 that give
a rich structure with many applications. So let us describe some of these
functions.

1.3 Definition. The full code of the walk is the function ρ0 : [ω1]2 −→ ω<ω

defined recursively by

ρ0(α, β) = 〈|Cβ ∩ α|〉�ρ0(α,min(Cβ \ α)),

where ρ0(α, α) = 0,2 and the symbol � refers to the sequence obtained by
concatenating the one-term sequence 〈|Cβ∩α|〉 with the already known finite
sequence ρ0(α,min(Cβ \ α) of integers. Clearly, knowing ρ0(α, β) and the
ordinal β one can reconstruct the (upper) trace

Tr(α, β) = {β0, . . . , βn},

remembering that β = β0 > β1 > · · · > βn = α, of the walk from β to α.
The lower trace is defined to be

L(α, β) = {λ0, λ1, . . . , λn−1},

where λi = max(
⋃i

j=0 Cβj ∩ α) for i < n and so λ0 ≤ λ1 ≤ · · · ≤ λn−1.

1.4 Definition. The full lower trace of the minimal walk is the function
F : [ω1]2 −→ [ω1]<ω defined recursively by

F(α, β) = F(α,min(Cβ \ α)) ∪
⋃

ξ∈Cβ ∩αF(ξ, α),

where F(γ, γ) = {γ} for all γ.

Clearly, F(α, β) ⊇ L(α, β) but F(α, β) is considerably larger than L(α, β)
as it includes also the traces of walks between any two ordinals ≤ α that
have ever been referred to during the walk from β to α. The following two
properties of the full lower trace are straightforward to check (see [66]).

1.5 Lemma. For all α ≤ β ≤ γ,

(a) F(α, γ) ⊆ F(α, β) ∪ F(β, γ),

(b) F(α, β) ⊆ F(α, γ) ∪ F(β, γ).

1.6 Lemma. For all α ≤ β ≤ γ,

(a) ρ0(α, β) = ρ0(min(F(β, γ) \ α), β)�ρ0(α,min(F(β, γ) \ α)),

(b) ρ0(α, γ) = ρ0(min(F(β, γ) \ α), γ)�ρ0(α,min(F(β, γ) \ α)).

2 Technically speaking, ρ0 operates on [ω1]2 so ρ0(α, α) = 0 makes no sense. What we
mean is that whenever the formal recursive definition of ρ0(α, β) involves the term ρ0(α, α)
we take it to be equal to 0. This will be applied frequently in this chapter, not always in
explicit form.
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1.7 Definition. The ordering <c on ω1 is defined as follows:

α <c β iff ρ0(ξ, α) <r ρ0(ξ, β),

where ξ = Δ(α, β) = min{η ≤ min{α, β} : ρ0(η, α) �= ρ0(η, β)}. Here <r

refers to the right lexicographical ordering on ω<ω defined by letting s <r t
iff s is an end-extension of t or s(i) < t(i) for i = min{j : s(j) �= t(j)}.

1.8 Lemma. The Cartesian square of the total ordering <c of ω1 is the
union of countably many chains.

Proof. It suffices to decompose the set of all pairs (α, β) where α < β. To
each such pair we associate a hereditarily finite set p(α, β) which codes the
finite structure obtained from F(α, β)∪{β} by adding relations that describe
the way ρ0 acts on it. To show that this parametrization works, suppose we
are given two pairs (α, β) and (γ, δ) such that

p(α, β) = p(γ, δ) = p and α <c γ.

We must show that β ≤c δ. Let

ξαβ = min(F(α, β) \Δ(α, γ)) and
ξγδ = min(F(γ, δ) \Δ(α, γ)).

Note that F(α, β)∩Δ(α, γ) = F(γ, δ)∩Δ(α, γ) so ξαβ and ξγδ correspond to
each other in the isomorphism of the (α, β) and (γ, δ) structures. It follows
that:

ρ0(ξαβ , α) = ρ0(ξγδ, γ)(= tα,γ),
ρ0(ξαβ , β) = ρ0(ξγδ, δ)(= tβ,δ).

Applying Lemma 1.6 we get:

ρ0(Δ(α, γ), α) = tαγ
�ρ0(Δ(α, γ), ξαβ),

ρ0(Δ(α, γ), γ) = tαγ
�ρ0(Δ(α, γ), ξγδ).

It follows that ρ0(Δ(α, γ), ξαβ) �= ρ0(Δ(α, γ), ξγδ). Applying Lemma 1.6 for
β and δ and the ordinal Δ(α, γ) we get:

ρ0(Δ(α, γ), β) = tβδ
�ρ0(Δ(α, γ), ξαβ), (3.1)

ρ0(Δ(α, γ), δ) = tβδ
�ρ0(Δ(α, γ), ξγδ). (3.2)

It follows that ρ0(Δ(α, γ), β) �= ρ0(Δ(α, γ), δ). This shows Δ(α, γ) ≥ Δ(β, δ).
A symmetric argument shows the other inequality Δ(β, δ) ≥ Δ(α, γ). It
follows that

Δ(α, γ) = Δ(β, δ)(= ξ̄).
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Our assumption is that ρ0(ξ̄, α) <r ρ0(ξ̄, γ) and since these two sequences
have tαγ as common initial part, this reduces to

ρ0(ξ̄, ξαβ) <r ρ0(ξ̄, ξγδ). (3.3)

On the other hand tβδ is a common initial part of ρ0(ξ̄, β) and ρ0(ξ̄, δ), so
their lexicographical relationship depends on their tails which by (3.1) and
(3.2) are equal to ρ0(ξ̄, ξαβ) and ρ0(ξ̄, ξγδ) respectively. Referring to (3.3) we
conclude that indeed ρ0(ξ̄, β) <r ρ0(ξ̄, δ), i.e. β <c δ. �

1.9 Notation. Well-ordered sets of rationals. The set ω<ω ordered by the
right lexicographical ordering <r is a particular copy of the rationals of the
interval (0, 1] which we are going to denote by Qr or simply by Q. The next
lemma shows that for a fixed α, ρ0(ξ, α) is a strictly increasing function of
ξ from α into Qr. Let (ρ0)α denote this function which we identify with its
range, i.e. view as a member of the tree σQr of all well-ordered subsets of
Qr, ordered by end-extension.

1.10 Lemma. ρ0(α, γ) <r ρ0(β, γ) whenever α < β < γ.

At this point we recall several standard concepts for trees of height ω1,
concepts that generally figure in what follows: A tree of height ω1 is an Aron-
szajn tree if all of its levels and chains are countable. A tree of height ω1 is a
special Aronszajn tree if it is an Aronszajn tree that admits a decomposition
into countably many antichains or, equivalently, admits a strictly increasing
map into the rationals. Finally, a tree of height ω1 is a Souslin tree if all of
its chains and antichains countable.

The sequence (ρ0)α (α < ω1) of members of σQr naturally determines the
subtree

T (ρ0) = {(ρ0)β�α : α ≤ β < ω1}.

Note that for a fixed α, the restriction (ρ0)β�α is determined by the way (ρ0)β

acts on the finite set F(α, β). This is the content of Lemma 1.6. Hence all
levels of T (ρ0) are countable, and therefore T (ρ0) is a particular example of
an Aronszajn tree. We shall now see that T (ρ0) is in fact a special Aronszajn
tree. The proof of this will depend on the following straightforward fact.

1.11 Lemma. {ξ < β : ρ0(ξ, β) = ρ0(ξ, γ)} is a closed subset of β whenever
β < γ.

It follows that T (ρ0) does not branch at limit levels. From this we can
conclude that T (ρ0) is a special subtree of σQ since this is easily seen to be
so for any subtree of σQ which is finitely branching at limit nodes.

1.12 Definition. Identifying the power set of Q with the particular copy 2Q

of the Cantor set, define for every countable ordinal α,

Gα = {x ∈ 2Q : x end-extends no (ρ0)β�α for β ≥ α}.
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1.13 Lemma. Gα (α < ω1) is an increasing sequence of proper Gδ-subsets
of the Cantor set whose union is equal to the Cantor set.

1.14 Lemma. The set X = {(ρ0)β : β < ω1} considered as a subset of the
Cantor set 2Q has universal measure zero.

Proof. Let μ be a given non-atomic Borel measure on 2Q. For t ∈ T (ρ0), set

Pt = {x ∈ 2Q : x end-extends t}.

Note that each Pt is a perfect subset of 2Q and therefore is μ-measurable.
Let

S = {t ∈ T (ρ0) : μ(Pt) > 0}.
Then S is a downward closed subtree of σQ with no uncountable antichains.
By an old result of Kurepa (see [55]), no Souslin tree admits a strictly in-
creasing map into the reals (as for example σQ does). It follows that S must
be countable and so we are done. �

1.15 Definition. The maximal weight of the walk is the two-place function
ρ1 : [ω1]2 −→ ω defined recursively by

ρ1(α, β) = max{|Cβ ∩ α|, ρ1(α,min(Cβ \ α))},

where we stipulate that ρ1(α, α) = 0 for all α < ω1.3 Thus ρ1(α, β) is simply
the maximal integer appearing in the sequence ρ0(α, β).

1.16 Lemma. For all α < β < ω1 and n < ω,

(a) {ξ ≤ α : ρ1(ξ, α) ≤ n} is finite,

(b) {ξ ≤ α : ρ1(ξ, α) �= ρ1(ξ, β)} is finite.

Proof. The proof is by induction. To prove (a) it suffices to show that for
every n < ω and every A ⊆ α of order-type ω there is a ξ ∈ A such that
ρ1(ξ, α) > n. Let η = sup(A). If η = α one chooses arbitrary ξ ∈ A with
the property that |Cα ∩ ξ| > n, so let us consider the case η < α. Let
α1 = min(Cα \ η). By the inductive hypothesis there is a ξ ∈ A such that:

ξ > max(Cα ∩ η) and ρ1(ξ, α1) > n.

Note that ρ0(ξ, α) = 〈|Cα ∩ η|〉�ρ0(ξ, α1), and therefore

ρ1(ξ, α) ≥ ρ1(ξ, α1) > n.

To prove (b) we show by induction that for every A ⊆ α of order-type ω
there exists a ξ ∈ A such that ρ1(ξ, α) = ρ1(ξ, β). Let η = sup(A) and let
β1 = min(Cβ \ η). Let n = |Cβ ∩ η| and let

B = {ξ ∈ A : ξ > max(Cβ ∩ η) and ρ1(ξ, β1) > n}.
3 This is another use of the convention ρ1(α, α) = 0 that is necessary for the recursive
definition to work.
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Then B is infinite, so by the induction hypothesis we can find ξ ∈ B such
that ρ1(ξ, α) = ρ1(ξ, β1). Then

ρ1(ξ, β) = max{n, ρ1(ξ, β1)} = ρ1(ξ, β1),

so we are done. �

1.17 Remark. Define (ρ1)α from ρ1 just as (ρ0)α was defined from ρ0 above.
It follows that the sequence

(ρ1)α : α −→ ω (α < ω1)

of finite-to-one functions is coherent in the sense that (ρ1)α =∗ (ρ1)β�α when-
ever α ≤ β. (Here =∗ for functions denotes agreement on all but finitely many
arguments.) The corresponding tree

T (ρ1) = {t : α −→ ω : α < ω1 and t =∗ (ρ1)α}

is a homogeneous, special Aronszajn tree with many other interesting prop-
erties, some of which we are going to describe here. For example, we have
the following fact whose proof (see [66]) is quite analogous to that of Lemma
1.8.

1.18 Lemma. The Cartesian square of T (ρ1) ordered lexicographically is the
union of countably many chains.

1.19 Definition. Consider the following extension of T (ρ1):

T̃ (ρ1) = {t : α −→ ω : α < ω1 and t�ξ ∈ T (ρ1) for all ξ < α}.

If we order T̃ (ρ1) by the right lexicographical ordering <r we get a com-
plete linearly ordered set. It is not continuous, as it contains jumps of the
form

[t�〈m〉, t�〈m + 1〉��0 ],

where t ∈ T (ρ1) and m < ω. Removing the right-hand points from all the
jumps we get a linearly ordered continuum which we denote by Ã(ρ1) For
the proof of the following, see [66].

1.20 Lemma. Ã(ρ1) is a homogeneous non-reversible ordered continuum
that can be represented as the union of an increasing ω1-sequence of Cantor
sets.

1.21 Definition. The set T̃ (ρ1) has another natural structure, a topology
generated by the family of sets of the form

Ṽt = {u ∈ T̃ (ρ1) : t ⊆ u},

for t a node of T (ρ1) of successor length as a clopen subbase. Let T 0(ρ1)
denote the set of all nodes of T (ρ1) of successor length. Then T̃ (ρ1) can be
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regarded as the set of all downward closed chains of the tree T 0(ρ1) and the
topology on T̃ (ρ1) is simply the topology one obtains from identifying the
power set of T 0(ρ1) with the cube {0, 1}T 0(ρ1) with its Tychonoff topology.4

T̃ (ρ1) being a closed subset of the cube is compact. In fact T̃ (ρ1) has some
very strong topological properties such as the property that closed subsets of
T̃ (ρ1) are its retracts.

1.22 Lemma. T̃ (ρ1) is a homogeneous compactum whose function space
C(T̃ (ρ1)) is generated by a weakly compact subset.5

Proof. The proof that T̃ (ρ1) is homogeneous is quite similar to the corre-
sponding part of the proof of the Lemma 1.20. To see that T̃ (ρ1) is an Eber-
lein compactum, i.e. that the function space C(T̃ (ρ1)) is weak compactly
generated, let {Xn} be a countable antichain decomposition of T (ρ1) and
consider the set K = {2−nχṼt

: n < ω, t ∈ Xn} ∪ {χ∅}. Note that K is a
weakly compact subset of C(T̃ (ρ1)) which separates the points of T̃ (ρ1). �

The coherent sequence (ρ1)α : α −→ ω (α < ω1) of finite-to-one maps can
easily be turned into a coherent sequence of maps that are actually one-to-
one. For example, one way to achieve this is via the following formula:

ρ̄1(α, β) = 2ρ1(α,β) · (2 · |{ξ ≤ α : ρ1(ξ, β) = ρ1(α, β)}|+ 1).

Define (ρ̄1)α from ρ̄1 just as (ρ1)α was defined from ρ1; then the (ρ̄1)α’s
are one-to-one. From ρ1 one has a natural sequence rα (α < ω1) of elements
of ωω defined as follows:

rα(n) = |{ξ ≤ α : ρ1(ξ, α) ≤ n}|.

Note that rβ eventually dominates rα whenever α + ω < β.

1.23 Definition. The sequences eα = (ρ̄1)α (α < ω1) and rα (α < ω1) can
be used in describing a functor G �−→ G∗, which to every graph G on ω1

associates another graph G∗ on ω1 as follows:

{α, β} ∈ G∗ iff {e−1
α (l), e−1

β (l)} ∈ G

for all l < Δ(rα, rβ) for which these preimages are both defined and different.

The proof of the following lemma can be found in [66].

1.24 Lemma. Suppose that every uncountable family F of pairwise disjoint
finite subsets of ω1 contains two sets A and B such that A⊗B ⊆ G.6 Then
the same is true about G∗ provided the uncountable family F consists of finite
cliques7 of G∗.
4 This is done by identifying a subset V of T 0(ρ1) with its characteristic function χV :

T 0(ρ1) −→ 2.
5 Compacta K with this property of their function spaces C(K) are known in the literature
under the name of Eberlein compacta.
6 Here, A ⊗ B = {{α, β} : α ∈ A, β ∈ B, α �= β}.
7 A clique of G∗ is a subset C of ω1 with the property that [C]2 ⊆ G∗.
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1.25 Lemma. If there is an uncountable Γ ⊆ ω1 such that [Γ]2 ⊆ G∗ then
ω1 can be decomposed into countably many sets Σ such that [Σ]2 ⊆ G.

Proof. Fix an uncountable Γ ⊆ ω1 such that [Γ]2 ⊆ G∗. For a finite binary
sequence s of length equal to some l + 1, set

Γs = {ξ < ω1 : e(ξ, α) = l for some α in Γ with s ⊆ rα}.

Then the sets Γs cover ω1 and [Γs]2 ⊆ G for all s. �

1.26 Remark. Let G be the comparability graph of some Souslin tree T .
Then for every uncountable family F of pairwise disjoint cliques of G (fi-
nite chains of T ) there exist A �= B in F such that A ∪ B is a clique of G
(a chain of T ). However, it is not hard to see that G∗ fails to have this prop-
erty (i.e. the conclusion of Lemma 1.24). This shows that some assumption
on the graph G in Lemma 1.24 is necessary. There are indeed many graphs
that satisfy the hypothesis of Lemma 1.24. Many examples appear when one
is trying to apply Martin’s Axiom to some Ramsey-theoretic problems. Note
that the conclusion of Lemma 1.24 is simply saying that the poset of all finite
cliques of G∗ is c.c.c. while its hypothesis is a bit stronger than the fact that
the poset of all finite cliques of G is c.c.c. in all of its finite powers. Apply-
ing Lemma 1.25 to the case when G is the incomparability graph of some
Aronszajn tree, we see that the statement saying that all Aronszajn trees
are special is a purely Ramsey-theoretic statement in the same way Souslin’s
Hypothesis, that there are no Souslin trees, is.

2. Subadditive Functions

In this section we describe a metric feature of the space ω1 of countable
ordinals. One first encounters this feature by analyzing properties of the
following function.

2.1 Definition. The rho-function ρ : [ω1]2 −→ ω is defined recursion follows:

ρ(α, β) = max{|Cβ ∩ α|, ρ(α,min(Cβ \ α)), ρ(ξ, α) : ξ ∈ Cβ ∩ α},

where we stipulate that ρ(α, α) = 0 for all α < ω1.

2.2 Lemma. For all α < β < γ < ω1 and n < ω,

(a) {ξ ≤ α : ρ(ξ, α) ≤ n} is finite,

(b) ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ)},

(c) ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)}.
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Proof. Note that ρ(α, β) ≥ ρ1(α, β), so (a) follows from the corresponding
property of ρ1. The proof of (b) and (c) is simultaneous by induction on α,
β and γ:

To prove (b), consider n = max{ρ(α, β), ρ(β, γ)}, and let

ξα = min(Cγ \ α) and ξβ = min(Cγ \ β).

We have to show that ρ(α, γ) ≤ n.

Case 1b. ξα = ξβ . Then by the inductive hypothesis,

ρ(α, ξα) ≤ max{ρ(α, β), ρ(β, ξβ)}.

From the definition of ρ(β, γ) ≤ n we get that ρ(β, ξβ) ≤ ρ(β, γ), so replacing
ρ(β, ξβ) by ρ(β, γ) in the above inequality we get ρ(α, ξα) ≤ n. Consider a
ξ ∈ Cγ ∩ α = Cγ ∩ β. By the inductive hypothesis

ρ(ξ, α) ≤ max{ρ(ξ, β), ρ(α, β)}.

From the definition of ρ(β, γ) we see that ρ(ξ, β) ≤ ρ(β, γ), so replacing
ρ(ξ, β) with ρ(β, γ) in the last inequality we get that ρ(ξ, α) ≤ n. Since
|Cγ ∩ α| = |Cγ ∩ β| ≤ ρ(β, γ) ≤ n, referring to the definition of ρ(α, γ) we
conclude that ρ(α, γ) ≤ n.

Case 2b. ξα < ξβ . Then ξα ∈ Cγ ∩ β, so

ρ(ξα, β) ≤ ρ(β, γ) ≤ n.

By the inductive hypothesis

ρ(α, ξα) ≤ max{ρ(α, β), ρ(ξα, β)} ≤ n.

Similarly, for every ξ ∈ Cγ ∩ α ⊆ Cγ ∩ β,

ρ(ξ, α) ≤ max{ρ(ξ, β), ρ(α, β)} ≤ n.

Finally |Cγ ∩ α| ≤ |Cγ ∩ β| ≤ ρ(β, γ) ≤ n. Combining these inequalities we
get the desired conclusion ρ(α, γ) ≤ n.

To prove (c), consider now n = max{ρ(α, γ), ρ(β, γ)}. We have to show
that ρ(α, β) ≤ n. Let ξα and ξβ be as above and let us consider the same
two cases as above.

Case 1c. ξα = ξβ = ξ̄. Then by the inductive hypothesis

ρ(α, β) ≤ max{ρ(α, ξ̄), ρ(β, ξ̄)}.

This gives the desired bound ρ(α, β) ≤ n, since ρ(α, ξα) ≤ ρ(α, γ) ≤ n and
ρ(β, ξβ) ≤ ρ(β, γ) ≤ n.

Case 2c. ξα < ξβ . Applying the inductive hypothesis again we get

ρ(α, β) ≤ max{ρ(α, ξα), ρ(ξα, β)} ≤ n.

This completes the proof. �
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The following simple consequence shows that the function ρ has a consid-
erably finer coherence property than ρ1.

2.3 Lemma. If α < β < γ and ρ(α, β) > ρ(β, γ), then ρ(α, γ) = ρ(α, β).

2.4 Definition. Define ρ̄ : [ω1]2 −→ ω as follows

ρ̄(α, β) = 2ρ(α,β) · (2 · |{ξ ≤ α : ρ(ξ, α) ≤ ρ(α, β)}|+ 1).

Using the properties of ρ one easily checks the following facts about its
stretching ρ̄.

2.5 Lemma. For all α < β < γ < ω1,

(a) ρ̄(α, γ) �= ρ̄(β, γ),

(b) ρ̄(α, γ) ≤ max{ρ̄(α, β), ρ̄(β, γ)},

(c) ρ̄(α, β) ≤ max{ρ̄(α, γ), ρ̄(β, γ)}.

The following property of ρ̄ is also sometimes useful (see [66]).

2.6 Lemma. Suppose ηα �= ηβ < min{α, β} and ρ̄(ηα, α) = ρ̄(ηβ , β) = n.
Then ρ̄(ηα, β), ρ̄(ηβ , α) > n.

2.7 Definition. For p ∈ ω<ω define a binary relation <p on ω1 by letting
α <p β iff α < β, ρ̄(α, β) ∈ |p|, and

p(ρ̄(ξ, α)) = p(ρ̄(ξ, β))

for any ξ < α such that ρ̄(ξ, α) < |p|.

2.8 Lemma.

(a) <p is a tree ordering on ω1 of height ≤ |p|+ 1,

(b) p ⊆ q implies <p⊆<q.

Proof. This follows immediately from Lemma 2.5. �

2.9 Definition. For x ∈ ωω, set

<x =
⋃
{<x�n: n < ω}.

The proof of the following lemma can also be found in [66].

2.10 Lemma. For every p ∈ ω<ω there is a partition of ω1 into finitely
many pieces such that if α < β belong to the same piece then there is a q ⊇ p
in ω<ω such that α <q β.

2.11 Theorem. For every infinite subset Γ ⊆ ω1, the set

GΓ = {x ∈ ωω : α <x β for some α, β ∈ Γ}

is a dense open subset of the Baire space.
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Proof. This is an immediate consequence of Lemma 2.10. �

2.12 Definition. For α < β < ω1, let α <ρ̄ β denote the fact that ρ̄(ξ, α) =
ρ̄(ξ, β) for all ξ < α. Then <ρ̄ is a tree ordering on ω1 obtained by identifying
α with the member ρ̄(·, α) of the tree T (ρ̄). Note that <ρ̄⊆<x for all x ∈ ωω

and that there exists an x ∈ ωω such that <x =<ρ̄ (e.g., one such x is the
identity map id : ω −→ ω).

The following result is an analogue of Lemma 2.10 for the incomparability
relation, though its proof is considerably simpler.

2.13 Lemma. If Γ is an infinite <ρ̄-antichain, the set

HΓ = {x ∈ ωω : α ≮x β for some α < β in Γ}

is a dense open subset of Baire space.

2.14 Definition. For a family F of infinite <ρ̄-antichains, we say that a
real x ∈ ωω is F -Cohen if x ∈ GΓ ∩ HΓ for all Γ ∈ F . We say that x is
F -Souslin if no member of F is a <x-chain or a <x-antichain. We say that
a real x ∈ ωω is Souslin if the tree ordering <x on ω1 has no uncountable
chains nor antichains, i.e. when x is F -Souslin for F equal to the family of
all uncountable subsets of ω1.

Note that since every uncountable subset of ω1 contains an uncountable
<ρ̄-antichain, if a family F refines the family of all uncountable <ρ̄-antichains,
then every F -Souslin real is Souslin. The following fact summarizes Theorems
2.11 and 2.13 and connects the two kinds of reals.

2.15 Theorem. If F is a family of infinite <ρ̄-antichains, then every F-
Cohen real is F-Souslin.

2.16 Corollary. If the density of the family of all uncountable subsets of ω1

is smaller than the number of nowhere dense sets needed to cover the real
line, then there is a Souslin tree.

2.17 Remark. Recall that the density of a family F of infinite subsets of
some set S is the minimal size of a family F0 of infinite subsets of S with the
property that every member of F is refined by a member of F0. A special case
of Corollary 2.16, when the density of the family of all uncountable subsets
of ω1 is equal to ℵ1, was first observed by Miyamoto (unpublished).

2.18 Corollary. Every Cohen real is Souslin.

Proof. Every uncountable subset of ω1 in the Cohen extension contains an
uncountable subset from the ground model. So it suffices to consider the
family F of all infinite <ρ̄-antichains from the ground model. �
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If ω1 is a successor cardinal in the constructible universe, then ρ̄ can be
chosen to be coanalytic and so the transformation x �−→<x will transfer
combinatorial notions of Souslin, Aronszajn or special Aronszajn trees into
the corresponding classes of reals that lie in the third level of the projective
hierarchy. This transformation has been explored in several places in the
literature (see e.g. [3, 21]).

2.19 Remark. We have just seen how the combination of the subadditiv-
ity properties (2.5(b),(c)) of the coherent sequence ρ̄α : α −→ ω (α < ω1)
of one-to-one mappings can be used in controlling the finite disagreement
between them. It turns out that in many contexts the coherence and the
subadditivities are essentially equivalent restrictions on a given sequence
eα : α −→ ω (α < ω1). For example, the following construction shows that
this is so for any sequence of finite-to-one mappings eα : α −→ ω (α < ω1).

2.20 Definition. Given a coherent sequence eα : α −→ ω (α < ω1) of
finite-to-one mappings, define τe : [ω1]2 −→ ω as follows

τe(α, β) = max{max{e(ξ, α), e(ξ, β)} : ξ ≤ α and e(ξ, α) �= e(ξ, β)}.

2.21 Lemma. For every α < β < γ < ω1,

(a) τe(α, β) ≥ e(α, β),

(b) τe(α, γ) ≤ max{τe(α, β), τe(β, γ)},

(c) τe(α, β) ≤ max{τe(α, γ), τe(β, γ)}.

Proof. Since (a) is true if e(α, β) = 0, let us assume e(α, β) > 0. By our con-
vention, e(α, α) = 0 and so e(α, α) �= e(α, β) = 0. It follows that τe(α, β) ≥
max{max{e(α, α), e(α, β)} = e(α, β). This shows (a).

To show (b), let n = max{τe(α, β), τe(β, γ)}. Suppose τe(α, γ) > n. Then
we can choose ξ ≤ α such that e(ξ, α) > n or e(ξ, γ) > n. If e(ξ, α) > n
then e(ξ, β) = e(ξ, α) > n and so e(ξ, β) �= e(ξ, γ). It follows that τe(β, γ) ≥
e(ξ, β) > n, a contradiction. If e(ξ, γ) > n then e(ξ, β) = e(ξ, γ) > n. In
particular, e(ξ, α) �= e(ξ, β). It follows that τe(β, γ) ≥ e(ξ, β) > n, a contra-
diction.

The proof of (c) is similar. �

2.22 Definition. A mapping a : [ω1]2 −→ ω is transitive if

a(α, γ) ≤ max{a(α, β), a(β, γ)}

for all α < β < γ < ω1.

Transitive maps occur quite frequently in set-theoretic constructions. For
example, given a sequence Aα (α < ω1) of subsets of ω that increases relative
to the ordering ⊆∗ of inclusion modulo a finite set, the mapping a : [ω1]2 −→
ω defined by

a(α, β) = min{n : Aα \ n ⊆ Aβ}
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is a transitive map. The transitivity condition by itself is not nearly as useful
as its combination with the other subadditivity property (2.5(c)). Fortu-
nately, there is a general procedure that produces a subadditive dominant to
every transitive map.

2.23 Definition. For a transitive a : [ω1]2 −→ ω define ρa : [ω1]2 −→ ω
recursively as follows:

ρa(α, β) = max{|Cβ ∩ α|, a(min(Cβ \ α), β),
ρa(α,min(Cβ \ α)), ρa(ξ, α) : ξ ∈ Cβ ∩ α}.

2.24 Lemma. For all α < β < γ < ω1 and n < ω,

(a) {ξ ≤ α : ρa(ξ, α) ≤ n} is finite,

(b) ρa(α, γ) ≤ max{ρa(α, β), ρa(β, γ)},

(c) ρa(α, β) ≤ max{ρa(α, γ), ρa(β, γ)},

(d) ρa(α, β) ≥ a(α, β).

Proof. The proof of (a), (b), (c) is quite similar to the corresponding part
of the proof of Lemma 2.2. This comes of course from the fact that the
definition of ρ and ρa are closely related. The occurrence of the factor
a(min(Cβ \ α), β) complicates a bit the proof that ρa is subadditive, and
the fact that a is transitive is quite helpful in getting rid of the additional
difficulty. The details are left to the interested reader. Given α < β, for every
step βn → βn+1 of the minimal walk β = β0 > β1 > · · · > βk = α, we have
ρa(α, β) ≥ ρa(βn, βn+1) ≥ a(βn, βn+1) by the very definition of ρa. Applying
the transitivity of a to this path of inequalities we get the conclusion (d). �

2.25 Lemma. ρa(α, β) ≥ ρa(α + 1, β) whenever 0 < α < β and α is a limit
ordinal.

Proof. Recall the assumption (c) about the fixed C-sequence Cξ (ξ < ω1)
on which all our definitions are based: if ξ is a limit ordinal > 0, then no
point of Cξ is a limit ordinal. It follows that if 0 < α < β and α is a limit
ordinal, then the minimal walk β → α must pass through α+1 and therefore
ρa(α, β) ≥ ρa(α + 1, β). �

Let us now give an application of ρa to a classical phenomenon of occur-
rence of gaps in the quotient algebra P(ω)/fin.

2.26 Definition. A Hausdorff gap in P(ω)/fin is a pair of sequences
Aα (α < ω1) and Bα (α < ω1) such that

(a) Aα ⊆∗ Aβ ⊆∗ Bβ ⊆∗ Bα whenever α < β, but

(b) there is no C such that Aα ⊆∗ C ⊆∗ Bα for all α.
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The following straightforward reformulation shows that a Hausdorff gap
is just another instance of a nontrivial coherent sequence

fα : Aα −→ 2 (α < ω1),

where the domain Aα of fα is not the ordinal α itself but a subset of ω and
that the corresponding sequence of domains Aα (α < ω1) is a realization of
ω1 inside P(ω)/fin in the sense that Aα ⊆∗ Aβ whenever α < β.

2.27 Lemma. A pair of ω1-sequences Aα (α < ω1) and Bα (α < ω1) form a
Hausdorff gap iff the pair of ω1-sequences Āα = Aα ∪ (ω \Bα) (α < ω1) and
B̄α = ω \Bα (α < ω1) has the following three properties:

(a) Āα ⊆∗ Āβ whenever α < β,

(b) B̄α =∗ B̄β ∩ Āα whenever α < β,

(c) there is no B such that B̄α =∗ B ∩ Āα for all α.

From now on we fix a strictly ⊆∗-increasing chain Aα (α < ω1) of infinite
subsets of ω and let a : [ω1]2 −→ ω be defined by

a(α, β) = min{n : Aα \ n ⊆ Aβ}.

Let ρa : [ω1]2 −→ ω be the corresponding subadditive dominant of a defined
above. For α < ω1, set

Dα = Aα+1 \Aα.

2.28 Lemma. The sets Dα\ρa(α, γ) and Dβ \ρa(β, γ) are disjoint whenever
0 < α < β < γ and α and β are limit ordinals.

Proof. This follows immediately from Lemmas 2.24 and 2.25. �

We are in a position to define a partial mapping m : [ω1]2 −→ ω by

m(α, β) = min(Dα \ ρa(α, β)),

whenever α < β and α is a limit ordinal.

2.29 Lemma. The mapping m is coherent, i.e., m(α, β) = m(α, γ) for all
but finitely many limit ordinals α < min{β, γ}.

Proof. This is by the coherence of ρa and the fact that ρa(α, β) = ρa(α, γ)
already implies m(α, β) = m(α, γ). �

2.30 Lemma. m(α, γ) �= m(β, γ) whenever α �= β < γ and α, β are limit
ordinals.

Proof. This follows from Lemma 2.28. �
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For β < ω1, set

Bβ = {m(α, β) : α < β and α limit}.

2.31 Lemma. Bβ =∗ Bγ ∩Aβ whenever β < γ.

Proof. By the coherence of m. �

Note the following immediate consequence of Lemma 2.28 and the defini-
tion of m.

2.32 Lemma. m(α, β) = max(Bβ ∩ Dα) whenever α < β and α is a limit
ordinal.

2.33 Lemma. There is no B ⊆ ω such that B ∩Aβ =∗ Bβ for all β.

Proof. Suppose that such a B exists and for a limit ordinal α let us define
g(α) = max(B ∩Dα). Then by Lemma 2.32, g(α) = m(α, β) for all β < ω1

and all but finitely many limit ordinals α < β. By Lemma 2.30, it follows
that g is a finite-to-one map, a contradiction. �

2.34 Theorem. For every strictly ⊂∗-increasing chain Aα (α < ω1) of sub-
sets of ω, there is a sequence Bα (α < ω1) of subsets of ω such that:

(a) Bα =∗ Bβ ∩Aα whenever α < β,

(b) there is no B such that Bα =∗ B ∩Aα for all α.

3. Steps and Coherence

3.1 Definition. The number of steps of the minimal walk is the function
ρ2 : [ω1]2 −→ ω defined recursively by

ρ2(α, β) = ρ2(α,min(Cβ \ α)) + 1,

with the convention that ρ2(γ, γ) = 0 for all γ.

This is an interesting mapping which is particularly useful on higher car-
dinalities and especially in situations where the more informative mappings
ρ0, ρ1 and ρ lack their usual coherence properties. Here is a typical property
of this mapping which will be explained in much more general terms in later
sections of this chapter.

3.2 Lemma. supξ<α|ρ2(ξ, α)− ρ2(ξ, β)| <∞ for all α < β < ω1.

In this section we use ρ2 only to succinctly express the following mapping.
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3.3 Definition. The last step function of the minimal walk is the map
ρ3 : [ω1]2 −→ 2 defined by letting

ρ3(α, β) = 1 iff ρ0(α, β)(ρ2(α, β)− 1) = ρ1(α, β).

In other words, we let ρ3(α, β) = 1 just in case the last step of the walk
β → α comes with the maximal weight.

3.4 Lemma. {ξ < α : ρ3(ξ, α) �= ρ3(ξ, β)} is finite for all α < β < ω1.

Proof. It suffices to show that for every infinite Γ ⊆ α there exists a ξ ∈ Γ
such that ρ3(ξ, α) = ρ3(ξ, β). Shrinking Γ we may assume that for some fixed
ᾱ ∈ F (α, β) and all ξ ∈ Γ:

(1) ᾱ = min(F (α, β) \ ξ),

(2) ρ1(ξ, α) = ρ1(ξ, β),

(3) ρ1(ξ, α), ρ1(ξ, β) > max{ρ1(ᾱ, α), ρ1(ᾱ, β)}.

It follows (see Lemma 1.6) that for every ξ ∈ Γ:

ρ0(ξ, α) = ρ0(ᾱ, α)�ρ0(ξ, ᾱ),

ρ0(ξ, β) = ρ0(ᾱ, β)�ρ0(ξ, ᾱ).

So for any ξ ∈ Γ, ρ3(ξ, α) = 1 iff the last term of ρ0(ξ, ᾱ) is its maximal term
iff ρ3(ξ, β) = 1. �

The sequence (ρ3)α : α −→ 2 (α < ω1)8 is therefore coherent in the sense
that (ρ3)α =∗ (ρ3)β�α whenever α < β. We need to show that the sequence
is not trivial, i.e. that it cannot be uniformized by a single total map from
ω1 into 2. In other words, we need to show that ρ3 still contains enough
information about the C-sequence Cα (α < ω1) from which it is defined. For
this it will be convenient to assume that Cα (α < ω1) satisfies the following
natural condition:

(d) If α is a limit ordinal > 0 and if ξ occupies the nth place in the increasing
enumeration of Cα (that starts with min(Cα) on its 0th place), then
ξ = λ + n + 1 for some limit ordinal λ (possibly 0).

3.5 Definition. Let Λ denote the set of all countable limit ordinals and for
an integer n ∈ ω, let Λ + n = {λ + n : λ ∈ Λ}.

The assumption (d) about the C-sequence is behind the following property
of ρ3.

3.6 Lemma. ρ3(λ + n, β) = 1 for all but finitely many n with λ + n < β.

8 Recall the way one always defines the fiber-functions from a two-variable function applied
to the context of ρ3: (ρ3)α(ξ) = ρ3(ξ, α).
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3.7 Lemma. For all β < ω1, n < ω, the set {λ ∈ Λ : λ + n < β and
ρ3(λ + n, β) = 1} is finite.

Proof. Given an infinite subset Γ of (Λ+n)∩β we need to find a λ+n ∈ Γ such
that ρ3(λ+n, β) = 0. Shrinking Γ if necessary assume that ρ1(λ+n, β) > n+2
for all λ+n ∈ Γ. So if ρ3(λ+n, β) = 1 for some λ+n ∈ Γ then the last step
of β → λ + n would have to be of weight> n + 2 which is impossible by our
assumption (d) about Cα (α < ω1). �

The meaning of these properties of ρ3 perhaps is easier to comprehend if
we reformulate them in a way that resembles the original formulation of the
existence of Hausdorff gaps.

3.8 Lemma. Let Bα = {ξ < α : ρ3(ξ, α) = 1} for α < ω1. Then:

(1) Bα =∗ Bβ ∩ α for α < β,

(2) (Λ + n) ∩Bβ is finite for all n < ω and β < ω1,

(3) {λ + n : n < ω} ⊆∗ Bβ whenever λ + ω ≤ β.

In particular, there is no uncountable Γ ⊆ ω1 such that Γ ∩ β ⊆∗ Bβ for
all β < ω1. On the other hand, the P-ideal9 I generated by Bβ (β < ω1) is
large as it contains all intervals of the form [λ, λ + ω). The following general
dichotomy about P-ideals shows that here indeed we have quite a canonical
example of a P-ideal on ω1.

3.9 Definition. The P-ideal dichotomy: For every P-ideal I of countable
subsets of some set S either:

(1) there is an uncountable X ⊆ S such that [X]ω ⊆ I, or

(2) S can be decomposed into countably many sets orthogonal to I.

3.10 Remark. It is known that the P-ideal dichotomy is a consequence
of the Proper Forcing Axiom and moreover that it does not contradict the
Continuum Hypothesis (see [64]). This is an interesting dichotomy which will
be used in this article for testing various notions of coherence as we encounter
them. For example, let us consider the following notion of coherence, already
encountered above at several places, and see how it is influenced by the P-
ideal dichotomy.

3.11 Definition. A mapping a : [ω1]2 −→ ω is coherent if for every α < β <
ω1 there exist only finitely many ξ < α such that a(ξ, α) �= a(ξ, β), or in other
words, aα =∗ aβ�α.10 We say that a is nontrivial if there is no h : ω1 −→ ω
such that h�α =∗ aα for all α < ω1.
9 Recall that an ideal I of subsets of some set S is a P-ideal if for every sequence An (n < ω)
of elements of I there is a B in I such that An \ B is finite for all n < ω. A set X is
orthogonal to I if X ∩ A is finite for all A in I.
10 A mapping a : [ω1]2 −→ ω is naturally identified with a sequence aα (α < ω1), where
aα : α −→ ω is defined by aα(ξ) = a(ξ, α).
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Note that the existence of a coherent and nontrivial a : [ω1]2 −→ 2 (such
as, for example, the function ρ3 defined above) is something that corresponds
to the notion of a Hausdorff gap (cf. the previous lemma) in this context.
Notice moreover, that this notion is also closely related to the notion of an
Aronszajn tree since

T (a) = {t : α −→ ω : α < ω1 and t =∗ aα}

is such an Aronszajn tree whenever a : [ω1]2 −→ ω is coherent and non-
trivial.11 In fact, we shall call an arbitrary Aronszajn tree T coherent if T
is isomorphic to T (a) for some coherent and nontrivial a : [ω1]2 −→ ω. In
case the range of the map a is actually smaller than ω, e.g. equal to some
integer k, then it is natural to let T (a) be the collection of all t : α −→ k
such that α < ω1 and t =∗ aα. This way, we have coherent binary, ternary,
etc. Aronszajn trees rather than only ω-ary coherent Aronszajn trees.

3.12 Definition. The support of a map a : [ω1]2 −→ ω is the sequence
supp(aα) = {ξ < α : a(ξ, α) �= 0} (α < ω1) of subsets of ω1. A set Γ
is orthogonal to a if supp(aα) ∩ Γ is finite for all α < ω1. We say that
a : [ω1]2 −→ ω is nowhere dense if there is no uncountable Γ ⊆ ω1 such that
Γ ∩ α ⊆∗ supp(aα) for all α < ω1.

Note that ρ3 is an example of a nowhere dense coherent map for the simple
reason that ω1 can be covered by countably many sets Λ + n (n < ω) that
are orthogonal to ρ3. The following immediate fact shows that ρ3 is indeed
a prototype of a nowhere dense and coherent map a : [ω1]2 −→ ω.

3.13 Proposition. Under the P-ideal dichotomy, for every nowhere dense
and coherent map a : [ω1]2 −→ ω the domain ω1 can be decomposed into
countably many sets orthogonal to a.

3.14 Notation. To every a : [ω1]2 −→ ω associate the corresponding Δ-
function Δa : [ω1]2 −→ ω as follows:

Δa(α, β) = min{ξ < α : a(ξ, α) �= a(ξ, β)}

with the convention that Δa(α, β) = α whenever a(ξ, α) = a(ξ, β) for all
ξ < α. Given this notation, it is natural to let

Δa(Γ) = {Δa(α, β) : α, β ∈ Γ, α < β}

for an arbitrary set Γ ⊆ ω1.
The following simple fact reveals a crucial property of coherent trees.

11 Similarities between the notion of a Hausdorff gap and the notion of an Aronszajn
tree have been further explained recently in the two papers of Talayco [53, 54], where it
is shown that they naturally correspond to first cohomology groups over a pair of very
similar spaces.
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3.15 Lemma. Suppose that a : [ω1]2 −→ ω is nontrivial and coherent and
that every uncountable subset of T (a) contains an uncountable antichain.
Then for every pair Σ,Ω of uncountable subsets of ω1 there exists an un-
countable subset Γ of ω1 such that Δa(Γ) ⊆ Δa(Σ) ∩Δa(Ω).

3.16 Notation. For a : [ω1]2 −→ ω, set

U(a) = {A ⊆ ω1 : A ⊇ Δa(Γ) for some uncountable Γ ⊆ ω1}.

By Lemma 3.15, U(a) is a uniform filter on ω1 for every nontrivial coherent
a : [ω1]2 −→ ω for which T (a) contains no Souslin subtrees. It turns out that
under some very mild assumption, U(a) is in fact a uniform ultrafilter on ω1.
The proof of this can be found in [66].

3.17 Theorem. Under MAω1 , the filter U(a) is an ultrafilter for every non-
trivial and coherent a : [ω1]2 −→ ω.

3.18 Remark. One may find Theorem 3.17 a bit surprising in view of the
fact that it gives us an ultrafilter U(a) on ω1 that is Σ1-definable over the
structure (Hω2 ,∈). It is well-known that there is no ultrafilter on ω that is
Σ1-definable over the structure (Hω1 ,∈).

It turns out that the transformation a �−→ U(a) captures some of the
essential properties of the corresponding and more obvious transformation
a �−→ T (a). To state this we need some standard definitions.

3.19 Definition. For two trees S and T , by S ≤ T we denote the fact
that there is a strictly increasing map f : S −→ T . Let S < T whenever
S ≤ T and T 	 S and let S ≡ T whenever S ≤ T and T ≤ S. In general,
the equivalence relation ≡ on trees is very far from the finer relation ∼=, the
isomorphism relation. However, the following fact shows that in the realm of
trees T (a), these two relations may coincide and moreover, that the mapping
T (a) �−→ U(a) reduces ≡ and ∼= to the equality relation among ultrafilters
on ω1 (see [65]).

The following fact reveals in particular that the class of coherent trees has
the Schroeder-Bernstein property. Its proof can again be found in [66].

3.20 Theorem. Assuming MAω1 , for every pair of coherent and nontrivial
mappings a : [ω1]2 −→ ω and b : [ω1]2 −→ ω, the trees T (a) and T (b) are
isomorphic iff T (a) ≡ T (b) iff U(a) = U(b).

3.21 Definition. The shift of a : [ω1]2 −→ ω is defined to be the mapping
a(1) : [ω1]2 −→ ω determined by the equation a(1)(α, β) = a(α + 1, β̂), where
β̂ = min{λ ∈ Λ : λ ≥ β}. The n-fold iteration of the shift operation is defined
recursively by the formula a(n+1) = (a(n))(1).

The following fact, whose proof can be found in [66], shows that Aronszajn
trees are not well-quasi-ordered under the quasi-ordering ≤ (see also [65]).
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3.22 Theorem. If a is nontrivial, coherent and orthogonal to Λ, then T (a) >
T (a(1)).

3.23 Corollary. If a is nontrivial, coherent and orthogonal to Λ + n for all
n < ω, then T (a(n)) > T (a(m)) whenever n < m < ω.

Proof. Note that if a is orthogonal to Λ + n for all n < ω, then so is every of
its finite shifts a(m). �

3.24 Corollary. T (ρ(n)
3 ) > T (ρ(m)

3 ) whenever n < m < ω.

Somewhat unexpectedly, with very little extra assumptions we can say
much more about ≤ in the domain of coherent Aronszajn trees (for proofs
see [65] and [66]).

3.25 Theorem. Under MAω1 , the family of coherent Aronszajn trees is to-
tally ordered under ≤.

3.26 Remark. While under MAω1 , the class of coherent Aronszajn trees is
totally ordered by ≤, Corollary 3.24 gives us that this chain of trees is not
well-ordered. This should be compared with an old result of Ohkuma [39]
that the class of all scattered trees is well-ordered by ≤ (see also [32]). It
turns out that the class of all Aronszajn trees is not totally ordered under
≤, i.e. there exist Aronszajn trees S and T such that S 	 T and T 	 S.
The reader is referred to [65] and [66] for more information on this and other
related results that we chose not to reproduce here.

4. The Trace and the Square-Bracket Operation

Recall the notion of a minimal walk from a countable ordinal β to a smaller
ordinal α along the fixed C-sequence Cξ (ξ < ω1) : β = β0 > β1 > · · · >
βn = α where βi+1 = min(Cβi \ α). Recall also the notion of a trace

Tr(α, β) = {β0, β1, . . . , βn},

the finite set of places visited in the minimal walk from β to α. The following
simple fact about the trace lies at the heart of all known definitions of square-
bracket operations not only on ω1 but also at higher cardinalities.

4.1 Lemma. For every uncountable subset Γ of ω1 the union of Tr(α, β) for
α < β in Γ contains a closed and unbounded subset of ω1.

Proof. It suffices to show that the union of traces contains every countable
limit ordinal δ such that sup(Γ ∩ δ) = δ. Pick an arbitrary β ∈ Γ \ δ and let

β = β0 > β1 > · · · > βk = δ

be the minimal walk from β to δ. Let γ < δ be an upper bound of all sets of
the form Cβi ∩ δ for i < k. By the choice of δ there is an α ∈ Γ ∩ δ above γ.
Then the minimal walk from β to α starts as β0 > β1 > · · · > βk, so in
particular δ belongs to Tr(α, β). �
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We shall now see that it is possible to pick a single place [αβ] in Tr(α, β)
so that Lemma 4.1 remains valid with [αβ] in place of Tr(α, β). Recall that
by Lemma 1.11,

Δ(α, β) = min{ξ ≤ α : ρ0(ξ, α) �= ρ0(ξ, β)}

is a successor ordinal. We shall be interested in its predecessor,

4.2 Definition. σ(α, β) = Δ(α, β)− 1.

Thus, if ξ = σ(α, β), then ρ0(ξ, α) = ρ0(ξ, β) and so there is a natural iso-
morphism between Tr(ξ, α) and Tr(ξ, β). We shall define [αβ] by comparing
the three sets Tr(α, β),Tr(ξ, α) and Tr(ξ, β).

4.3 Definition. The square-bracket operation on ω1 is defined as follows:

[αβ] = min(Tr(α, β) ∩ Tr(σ(α, β), β)) = min(Tr(σ(α, β), β) \ α).

Next, recall the function ρ0 : [ω1]2 → ω<ω defined from the C-sequence
Cξ (ξ < ω1) and the corresponding tree T (ρ0). For γ < ω1 let (ρ0)γ be the
fiber-mapping : γ → ω<ω defined by (ρ0)γ(α) = ρ0(α, γ).

4.4 Lemma. For every uncountable subset Γ of ω1 the set of all ordinals of
the form [αβ] for some α < β in Γ contains a closed and unbounded subset
of ω1.

Proof. For t ∈ T (ρ0) let Γt = {γ ∈ Γ : (ρ0)γ end-extends t}. Let S be
the collection of all t ∈ T (ρ0) for which Γt is uncountable. Clearly, S is a
downward closed uncountable subtree of T . The lemma is established once
we prove that every countable limit ordinal δ > 0 with the following two
properties can be represented as [αβ] for some α < β in Γ:

(1) sup(Γt ∩ δ) = δ for every t ∈ S of length < δ,

(2) every t ∈ S of length < δ has two incomparable successors in S both of
length < δ.

Fix such a δ and choose β ∈ Γ \ δ such that (ρ0)β�δ ∈ S and consider the
minimal walk from β to δ:

β = β0 > β1 > · · · > βk = δ.

Let γ < δ be an upper bound of all sets of the form Cβi ∩ δ for i < k.
Since the restriction t = (ρ0)β�γ belongs to S, by (2) we can find one of its
end-extensions s in S which is incomparable with (ρ0)β . It follows that for
α ∈ Γs, the ordinal σ(α, β) has the fixed value

ξ = min{ξ < |s| : s(ξ) �= ρ0(ξ, β)} − 1.

Note that ξ ≥ γ, so the walk β → δ is a common initial part of walks
β → ξ and β → α for every α ∈ Γs ∩ δ. Hence if we choose α ∈ Γs ∩ δ
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above min(Cδ \ ξ) (which we can by (1)), we get that the walks β → ξ and
β → α never meet after δ. In other words for any such α, the ordinal δ
is the minimum of Tr(α, β) ∩ Tr(ξ, β), or equivalently δ is the minimum of
Tr(ξ, β) \ α. �

It should be clear that the above argument can easily be adjusted to give us
the following slightly more general fact about the square-bracket operation.

4.5 Lemma. For every uncountable family A of pairwise disjoint finite
subsets of ω1, all of the same size n, the set of all ordinals of the form
[a(1)b(1)] = [a(2)b(2)] = · · · = [a(n)b(n)] for some a �= b in A contains a
closed and unbounded subset of ω1.12

It turns out that the square-bracket operation can be used in construc-
tions of various mathematical objects of complex behavior where all known
previous constructions needed the Continuum Hypothesis or stronger enu-
meration principles. The usefulness of [··] in these constructions is based
on the fact that [··] reduces the quantification over uncountable subsets of
ω1 to the quantification over closed unbounded subsets of ω1. For example
composing [··] with a unary operation ∗ : ω1 −→ ω1 which takes each of the
values stationary many times one gets the following fact about the mapping
c(α, β) = [αβ]∗.

4.6 Theorem. There is a mapping c : [ω1]2 −→ ω1 which takes all the values
from ω1 on any square [Γ]2 of some uncountable subset Γ of ω1.

Note that the basic C-sequence Cα (α < ω1) which we have fixed at the
beginning of this chapter can be used to actually define a unary operation
∗ : ω1 −→ ω1 which takes each of the ordinals from ω1 stationarily many
times. So the projection [αβ]∗ can actually be defined in our basic structure
(ω1, ω, �C). We are now at the point to see that our basic structure is actually
rigid.

4.7 Lemma. The algebraic structure (ω1, [··], ∗) has no nontrivial automor-
phisms.

Proof. Let h be a given automorphism of (ω1, [··], ∗). If the set Γ of fixed
points of h is uncountable, h must be the identity map. To see this, consider
a ξ < ω1. By the property of the map c(α, β) = [αβ]∗ stated in Theorem 4.6
there exists a γ < δ in Γ such that [γδ]∗ = ξ. Applying h to this equation we
get

h(ξ) = h([γδ]∗) = (h([γδ]))∗ = [h(γ)h(δ)]∗ = [γδ]∗ = ξ.

It follows that Δ = {δ < ω1 : h(δ) �= δ} is in particular uncountable.
Shrinking Δ and replacing h by h−1, if necessary, we may safely assume
12 For a finite set x of ordinals of size n we use the notation x(1), x(2), . . . , x(n) or
x(0), x(1), . . . , x(n − 1), depending on the context, for the enumeration of x according
to the natural ordering on the ordinals.
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that h(δ) > δ for all δ ∈ Δ. Consider a ξ < ω1 and let Sξ be the set of all
α < ω1 such that α∗ = ξ. By our choice of ∗ the set Sξ is stationary. By
Lemma 4.5 applied to the family A = {{δ, h(δ)} : δ ∈ Δ} we can find γ < δ
in Δ such that [γδ] = [h(γ)h(δ)] belongs to Sξ, or in other words,

[γδ]∗ = [h(γ)h(δ)]∗ = ξ.

Since [h(γ)h(δ)]∗ = h([γδ]∗) we conclude that h(ξ) = ξ. Since ξ was an
arbitrary countable ordinal, this shows that h is the identity map. �

We give now an application of this rigidity result to a problem in model
theory about the quantifier Qx = “there exist uncountably many x” and
its higher dimensional analogues Qnx1 · · ·xn = “there exist an uncountable
n-cube many x1, . . . , xn”. By a result of Ebbinghaus and Flum [15] (see also
[40]) every model of every sentence of L(Q) has nontrivial automorphisms.
However we shall now see that this is no longer true about the quantifier Q2.

4.8 Example. A sentence of L(Q2) with only rigid models. The sentence φ
will talk about one unary relation N , one binary relation < and two binary
functional symbols C and E. It is the conjunction of the following seven
sentences

(φ1) Qx x = x,

(φ2) ¬Qx N(x),

(φ3) < is a total ordering,

(φ4) E is a symmetric binary operation,

(φ5) ∀x < y N(E(x, y)),

(φ6) ∀x < y < z E(x, z) �= E(y, z),

(φ7) ∀x∀n{N(n) → ¬Q2uv[∃u′ < u∃v′ < v(u′ �= v′ ∧ E(u′, u) = E(v′, v) =
n) ∧ ∀u′ < u ∀v′ < v(E(u′, u) = E(v′, v) = n → (C(u′, v′) �= x ∨
C(u, v) �= x))]}.

The model of φ that we have in mind is the model (ω1, ω,<, c, e) where
c(α, β) = [αβ]∗ and e : [ω1]2 −→ ω is any mapping such that e(α, γ) �= e(β, γ)
whenever α < β < γ (e.g. we can take e = ρ̄1 or e = ρ̄). The sentence φ7

is simply saying that for every ξ < ω1 and every uncountable family A of
pairwise disjoint unordered pairs of countable ordinals there exist a �= b in A
such that

c(min a,min b) = c(max a,max b) = ξ.

This is a consequence of Lemma 4.5 and the fact that Sξ = {α : α∗ = ξ}
is a stationary subset of ω1. These are the properties of [··] and ∗ which
we have used in the proof of Lemma 4.7 in order to prove that (ω1, [··], ∗)
is a rigid structure. So a quite analogous proof will show that any model
(M,N,<,C,E) of φ must be rigid.
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The crucial property of [··] stated in Lemma 4.5 can also be used to provide
a negative answer to the basis problem for uncountable graphs by construct-
ing a large family of pairwise orthogonal uncountable graphs.

4.9 Definition. For a subset Γ of ω1, let GΓ be the graph whose vertex-set
is ω1 and whose edge-set is equal to {{α, β} : [αβ] ∈ Γ}.
4.10 Lemma. If the symmetric difference between Γ and Δ is a stationary
subset of ω1, then the corresponding graphs GΓ and GΔ are orthogonal to each
other, i.e. they do not contain uncountable isomorphic subgraphs.

We have seen above that comparing [··] with a map π : ω1 −→ I where
I is some set of mathematical objects/requirements in such a way that each
object/requirement is given a stationary preimage, gives us a way to meet
each of these objects/requirements in the square of any uncountable subset
of ω1. This observation is the basis of all known applications of the square-
bracket operation. A careful choice of I and π : ω1 −→ I gives us a projection
of the square-bracket operation that can be quite useful. So let us illustrate
this on yet another example.

4.11 Definition. Let H be the collection of all maps h : 2n −→ ω1 where n
is a positive integer denoted by n(h). Choose a mapping π : ω1 −→ H which
takes each value from H stationarily many times. Choose also a one-to-one
sequence rα (α < ω1) of elements of the Cantor set 2ω. Note that both these
objects can actually be defined in our basic structure (ω1, ω, �C). Consider
the following projection of the square-bracket operation:

[[αβ]] = π([αβ])(rα�n(π([αβ]))).

It is easily checked that the property of [··] stated in Lemma 4.5 corre-
sponds to the following property of the projection [[αβ]]:

4.12 Lemma. For every uncountable family A of pairwise disjoint finite
subsets of ω1, all of the same size n, and for every n-sequence ξ1, . . . , ξn

of countable ordinals there exist a and b in A such that [[a(i)b(i)]] = ξi for
i = 1, . . . , n.

This projection of [··] leads to an interesting example of a Banach space
with “few” operators, which we will now describe.

4.13 Theorem. There is a nonseparable reflexive Banach space E with the
property that every bounded linear operator T : E −→ E can be expressed
as T = λI + S where λ is a scalar, I the identity operator of E, and S an
operator with separable range.

Proof. Let I = 3× [ω1]<ω and let us identify the index-set I with ω1, i.e. pre-
tend that [[··]] takes its values in I rather than ω1. Let [[··]]0 and [[··]]1 be the
two projections of [[··]].

G = {G ∈ [ω1]<ω : [[αβ]]0 = 0 for all {α, β} ∈ [G]2},
H = {H ∈ [ω1]<ω : [[αβ]]0 = 1 for all {α, β} ∈ [H]2}.
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Let K be the collection of all finite sets {{αi, βi} : i < k} of pairs of
countable ordinals such that for all i < j < k:

(i) max{αi, βi} < min{αj , βj},

(ii) [[αiαj ]]0 = [[βiβj ]]0 = 2,

(iii) [[αiαj ]]1 = [[βiβj ]]1 = {αl : l < i} ∪ {βl : l < i}.

The following properties of G,H and K should be clear:

(1) G and H contain all the singletons, are closed under subsets and they
are 1-orthogonal to each other in the sense that G ∩ H contains no
doubleton.

(2) G and H are both 2-orthogonal to the family of the unions of members
of K.

(3) If K and L are two distinct members of K, then there are no more than
5 ordinals α such that {α, β} ∈ K and {α, γ} ∈ L for some β �= γ.

(4) For every sequence {αξ, βξ} (ξ < ω1) of pairwise disjoint pairs of count-
able ordinals there exist arbitrarily large finite sets Γ,Δ ⊆ ω1 such that
{αξ : ξ ∈ Γ} ∈ G, {βξ : ξ ∈ Γ} ∈ H and {{αξ, βξ} : ξ ∈ Δ} ∈ K.

For a function x from ω1 into R, set

‖x‖H,2 = sup
{(∑

α∈Hx(α)2
) 1

2 : H ∈ H
}
,

‖x‖K,2 = sup
{(∑

{α,β} ∈K(x(α)− x(β))2
) 1

2s : K ∈ K
}
.

Let ‖ · ‖ = max{‖ · ‖∞, ‖ · ‖H,2, ‖ · ‖K,2} and define Ē2 = {x : ‖x‖ <∞}. Let
1α be the characteristic function of {α}. Finally, let E2 be the closure of the
linear span of {1α : α ∈ ω1} inside (Ē2, ‖ · ‖). The following facts about the
norm ‖ · ‖ are easy to establish using the properties of the families G,H and
K listed above.

(i) If x is supported by some G ∈ G, then ‖x‖ ≤ 2 · ‖x‖∞.

(ii) If x is supported by
⋃

K for some K in K, then ‖x‖ ≤ 10 · ‖x‖∞.

The role of the seminorm ‖ · ‖H,2 is to ensure that every bounded operator
T : E2 −→ E2 can be expressed as D + S, where D is a diagonal operator
relative to the basis13 1α (α < ω1) and where S has separable range.

Note that ‖x‖ ≤ 2‖x‖2 for all x ∈ �2(ω1). It follows that �2(ω1) ⊆ E2

and the inclusion is a bounded linear operator. Note also that �2(ω1) is a
dense subset of E2. Therefore E2 is a weak compactly generated space. For
13 Indeed it can be shown that 1α (α < ω1) is a “transfinite basis” of E2 in the sense
of [51]. So every vector x of E2 has a unique representation as Σα<ω1x(α)1α and the
projection operators Pβ : E2 → E2�β (β < ω1) are uniformly bounded.
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example, W = {x ∈ �2(ω1) : ‖x‖2 ≤ 1} is a weakly compact subset of E2

and its linear span is dense in E2. To get a reflexive example out of E2 one
uses an interpolation method of Davis, Figiel, Johnson and Pelczynski [9] as
follows. Let pn be the Minkowski functional of the set 2nW +2−nBall(E2).14

Let

E =
{
x ∈ E2 : ‖x‖E =

(∑∞
n=0pn(x)2

) 1
2 <∞

}
.

By [9, Lemma 1], E is a reflexive Banach space and �2(ω1) ⊆ E ⊆ E2 are
continuous inclusions. Note that pn(x) < r iff x = y + z for some y ∈ E2 and
z ∈ �2(ω1) such that ‖y‖ < 2−nr and ‖z‖2 < 2nr. Then the reflexive version
of the space also has the property that every bounded operator T : E −→ E
has the form λI + S. �

4.14 Remark. The above example is reproduced from Wark [70] who based
his example on a previous construction due to Shelah and Steprans [50]. The
reader is referred to these sources and to [66] for more information.

We only mention yet another interesting application of the square-bracket
operation, given recently by Erdős, Jackson and Mauldin [17]:

4.15 Theorem. For every positive integer n there exist collections H and
X of hyperplanes and points of R

n, respectively, and a coloring P : H −→ ω
such that:

(1) any n hyperplanes of distinct colors meet in at most one point,

(2) there is no coloring Q : X −→ ω such that for every H ∈ H there exists
at most n− 1 points x in X ∩H such that Q(x) = P (H).

Let us now introduce yet another projection of the square-bracket opera-
tion which has some universality properties.

4.16 Definition. Let H now be the collection of all maps h : 2n×2n −→ ω1

where n = n(h) < ω and let π be a mapping from ω1 onto H that takes each
of the values stationarily many times. Define a new operation on ω1 by

|αβ| = π([αβ])(rα�n(π([αβ])), rβ�n(π([αβ]))).

4.17 Lemma. For every positive integer n, every uncountable subset Γ of
ω1 and every symmetric n × n-matrix M of countable ordinals there is a
one-to-one φ : n −→ Γ such that |φ(i)φ(j)| = M(i, j) for i, j < n.

14 I.e. pn(x) = inf{λ > 0 : x ∈ λB}, where B denotes this set.
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5. A Square-Bracket Operation on a Tree

In this section we try to show that the basic idea of the square-bracket oper-
ation on ω1 can perhaps be more easily grasped by working on an arbitrary
special Aronszajn tree rather than T (ρ0). So let T = 〈T,<T 〉 be a fixed
special Aronszajn tree and let a : T −→ ω be a fixed map witnessing this,
i.e. a mapping with the property that a−1({n}) is an antichain of T for all
n < ω. We shall assume that for every s, t ∈ T the greatest lower bound s∧ t
exists in T . For t ∈ T and n < ω, set

Fn(t) = {s ≤T t : s = t or a(s) ≤ n}.

Finally, for s, t ∈ T with ht(s) ≤ ht(t), let

[st]T = min{v ∈ Fa(s∧t)(t) : ht(v) ≥ ht(s)}.

(If ht(s) ≥ |ht(t) we let [st]T = [ts]T .)
The following fact corresponds to Lemma 4.4 when T = T (ρ0).

5.1 Lemma. If X is an uncountable subset of T , the set of nodes of T of
the form [st]T for some s, t ∈ X intersects a closed and unbounded set of
levels of T .

We do not give a proof of this fact as it is almost identical to the proof of
Lemma 4.4 which deals with the special case T = T (ρ0). But one can go fur-
ther and show that [··]T shares all the other properties of the square-bracket
operation [··] described in the previous section. Some of these properties,
however, are easier to visualize and prove in the general context. For exam-
ple, consider the following fact which in the case T = T (ρ0) is the essence of
Lemma 4.

5.2 Lemma. Suppose A ⊆ T is an uncountable antichain and that for each
t ∈ A be given a finite set Ft of its successors. Then for every stationary set
Γ ⊆ ω1 there exists an arbitrarily large finite set B ⊆ A such that the height
of [xy]T belongs to Γ whenever x ∈ Fs and y ∈ Ft for some s �= t in B.

Let us now examine in more detail the collection of graphs GΓ(Γ ⊆ ω1) of
4.9 but in the present more general context.

5.3 Definition. For Γ ⊆ ω1, let KΓ = {{s, t} ∈ [T ]2 : ht([st]T ) ∈ Γ}.

Working as in Lemma 4.10 one shows that (T,KΓ) and (T,KΔ) have no
isomorphic uncountable subgraph whenever the symmetric difference between
Γ and Δ is a stationary subset of ω1, i.e. whenever they represent different
members of the quotient algebra P(ω1)/NS. In particular, KΓ contains no
square [X]2 of an uncountable set X ⊆ T whenever Γ contains no closed and
unbounded subset of ω1. The following fact is a sort of converse to this. Its
proof can be found in [66].
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5.4 Lemma. If Γ contains a closed and unbounded subset of ω1 then there
is a proper forcing notion introducing an uncountable set X ⊆ T such that
[X]2 ⊆ KΓ.

5.5 Corollary. The graph KΓ contains the square of some uncountable subset
of T in some ω1-preserving forcing extension if and only if Γ is a stationary
subset of ω1.

Proof. If Γ is disjoint from a closed and unbounded subset then in any ω1-
preserving forcing extension its complement Δ = ω1 \ Γ will be a stationary
subset of ω1. So by the basic property Lemma 5.1 of the square-bracket
operation no such a forcing extension will contain an uncountable set X ⊆ T
such that [X]2 ⊆ KΓ. On the other hand, if Γ is a stationary subset of
ω1, going first to some standard ω1-preserving forcing extension in which Γ
contains a closed and unbounded subset of ω1 and then applying Lemma 5.4,
we get an ω1-preserving forcing extension having an uncountable set X ⊆ T
such that [X]2 ⊆ KΓ. �

5.6 Remark. Corollary 5.5 gives us a further indication of the extreme
complexity of the class of graphs on the vertex-set ω1. It also bears some
relevance to the recent work of Woodin [74] who, working in his Pmax-forcing
extension, was able to associate a stationary subset of ω1 to any partition
of [ω1]2 into two pieces. So one may view Corollary 5.5 as some sort of
converse to this since in the Pmax-extension one is able to get a sufficiently
generic filter to the forcing notion P = PΓ of Lemma 5.4 that would give us
an uncountable X ⊆ T such that [X]2 ⊆ KΓ. In other words, under a bit of
PFA or Woodin’s axiom (∗), a set Γ ⊆ ω1 contains a closed and unbounded
subset of ω1 if and only if KΓ contains [X]2 for some uncountable X ⊆ T .

6. Special Trees and Mahlo Cardinals

One of the most basic questions frequently asked about set-theoretical trees is
the question whether they contain any cofinal branch, a branch that intersects
each level of the tree. The fundamental importance of this question has
already been realized in the work of Kurepa [31] and then later in the works
of Erdős and Tarski in their respective attempts to develop the theory of
partition calculus and large cardinals (see [16]). A tree T of height equal
to some regular cardinal θ may not have a cofinal branch for a very special
reason as the following definition indicates.

6.1 Definition. For a tree T = 〈T,<T 〉, a function f : T → T is regressive
if f(t) <T t for every t ∈ T that is not a minimal node of T. A tree T of
height θ is special if there is a regressive map f : T −→ T with the property
that the f -preimage of every point of T can be written as the union of < θ
antichains of T .
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This definition in case θ = ω1 reduces indeed to the old definition of special
tree, a tree that can be decomposed into countably many antichains. More
generally we have the following:

6.2 Lemma. If θ is a successor cardinal then a tree T of height θ is special
if and only if T is the union of fewer than θ antichains.

The new definition, however, seems to be the right notion of specialness
as it makes sense even if θ is a limit cardinal.

6.3 Definition. A tree T of height θ is Aronszajn if T has no cofinal branches
and if every level of T has size < θ.

Recall the well-known characterization of weakly compact cardinals due to
Tarski and his collaborators: a strongly inaccessible cardinal θ is weakly com-
pact if and only if there are no Aronszajn trees of height θ. We supplement
this with the following:

6.4 Theorem. The following are equivalent for a strongly inaccessible car-
dinal θ:

(1) θ is Mahlo,

(2) there are no special Aronszajn trees of height θ.

Proof. Suppose θ is a Mahlo cardinal and let T be a given tree of height θ all
of whose levels have size < θ. To show that T is not special let f : T −→ T be
a given regressive mapping. By our assumption of θ there is an elementary
submodel M of some large enough structure Hκ such that T, f ∈ M and
λ = M ∩ θ is a regular cardinal < θ. Note that T �λ is a subset of M and
since this tree of height λ is clearly not special, there is an t ∈ T �λ such
that the preimage f −1({t}) is not the union of < λ antichains. Using the
elementarity of M we conclude that f −1({t}) is actually not the union of < θ
antichains.

The proof that (2) implies (1) uses the method of minimal walks in a rather
crucial way. So suppose to the contrary that our cardinal contains a closed
and unbounded subset C consisting of singular strong limit cardinals. Using
C, we choose a C-sequence Cα (α < θ) such that: Cα+1 = {α}, Cα = (ᾱ, α)
for α limit such that ᾱ = sup(C ∩ α) < α but if α = sup(C ∩ α) then take
Cα such that:

(a) tp(Cα) = cf(α) < min(Cα),

(b) ξ = sup(Cα ∩ ξ) implies ξ ∈ C,

(c) ξ ∈ Cα and ξ > sup(Cα ∩ ξ) imply that ξ = η + 1 for some η ∈ C.

Given the C-sequence Cα (α < θ) we have the notion of minimal walk along
the sequence and various distance functions defined above. In this proof we
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are particularly interested in the function ρ0 from [θ]2 into the set Qθ of all
finite sequences of ordinals from θ:

ρ0(α, β) = 〈tp(Cβ ∩ α)〉�ρ0(α,min(Cβ \ α))

where we stipulate that ρ0(γ, γ) = 0 for all γ < θ. We would like to show
that the tree

T (ρ0) = {(ρ0)β�α : α ≤ β < θ}

is a special Aronszajn tree of height θ. Note that the size of the αth level
(T (ρ0))α of T (ρ0) is controlled in the following way:

|(T (ρ0))α| ≤ |{Cβ ∩ α : α ≤ β < θ}|+ |α + ω|. (3.4)

So under the present assumption that θ is a strongly inaccessible cardinal,
all levels of T (ρ0) do indeed have size < θ. It remains to define the regressive
map

f : T (ρ0) −→ T (ρ0)

that will witness specialness of T (ρ0). Note that it really suffices defining f
on all levels whose index belong to our club C of singular cardinals. So let
t = (ρ0)β�α be a given node of T such that α ∈ C and α ≤ β < θ. Note that
by our choice of the C-sequence every term of the finite sequence of ordinals
ρ0(α, β) is strictly smaller than α. So, if we let f(t) = t�
ρ0(α, β)�, where

·� is a standard coding of finite sequences of ordinals by ordinals, we get a
regressive map. To show that f is one-to-one on chains of T (ρ0), which would
be more than sufficient, suppose ti = (ρ0)βi�αi (i < 2) are two nodes such
that t0 � t1. Our choice of the C-sequence allows us to deduce the following
general fact about the corresponding ρ0-function as in the case θ = ω1 dealt
with above in Lemma 1.11.

If α ≤ β ≤ γ, α is a limit ordinal, and if ρ0(ξ, β) = ρ0(ξ, γ)
for all ξ < α, then ρ0(α, β) = ρ0(α, γ).

Applying this to the triple of ordinals α0, β0 and β1 we conclude that
ρ0(α0, β0) = ρ0(α0, β1). Now observe another fact about the ρ0-function
whose proof is identical to that of θ = ω1 dealt with above in Lemma 1.10.

If α ≤ β ≤ γ then ρ0(α, γ) <r ρ0(β, γ).

Applying this to the triple α0 < α1 ≤ β1 we in particular have that
ρ0(α0, β1) �= ρ0(α1, β1). Combining this with the above equality gives us
that ρ0(α0, β0) �= ρ0(α1, β1) and therefore that f(t0) �= f(t1). �

A similar argument gives us the following characterization of Mahlo cardi-
nals due to Hajnal, Kanamori and Shelah [20] which improves a bit an earlier
characterization of this sort due to Schmerl [46]. Its proof can also be found
in [66].
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6.5 Theorem. A cardinal θ is a Mahlo cardinal if and only if every regressive
map f defined on a cube [C]3 of a closed and unbounded subset of θ has an
infinite min-homogeneous set X ⊆ C.15

Starting from the case n = 1 one can now easily deduce the following
characterization also due to Hajnal, Kanamori and Shelah [20].

6.6 Theorem. The following are equivalent for an uncountable cardinal θ
and a positive integer n:

(1) θ is n-Mahlo,

(2) Every regressive map defined on [C]n+2 for some closed and unbounded
subset C of θ has an infinite min-homogeneous subset.

The proof of Theorem 6.4 gives us the following well-known fact, first
established by Silver (see [36]) when θ is a successor of a regular cardinal,
which we are going to reprove now.

6.7 Theorem. If θ is a regular uncountable cardinal which is not Mahlo in
the constructible universe, then there is a constructible special Aronszajn tree
of height θ.

Proof. Working in L we choose a closed and unbounded subset C of θ consist-
ing of singular ordinals and a C-sequence Cα (α < θ) such that Cα+1 = {α},
Cα = (ᾱ, α) when ᾱ = sup(C ∩ α) < α, while if α is a limit point of C we
take Cα to have the following properties:

(i) ξ = sup(Cα ∩ ξ) implies ξ ∈ C,

(ii) ξ > sup(Cα ∩ ξ) implies ξ = η + 1 for some η ∈ C.

We choose the C-sequence to also have the following crucial property:

(iii) |{Cα ∩ ξ : ξ ≤ α < θ}| ≤ |ξ|+ ℵ0 for all ξ < θ.

It is clear then that the tree T (ρ0), where ρ0 is the ρ0-function of Cα (α < θ),
is a constructible special Aronszajn tree of height θ. �

We are also in a position to deduce the following well-known fact.

6.8 Theorem. The following are equivalent for a successor cardinal θ:

(a) There is a special Aronszajn tree of height θ.

(b) There is a C-sequence Cα (α < θ) such that tp(Cα) ≤ θ− for all α and
such that {Cα ∩ ξ : α < θ} has size ≤ θ− for all ξ < θ.

15 Recall, that X is min-homogeneous for f if f(α, β, γ) = f(α′, β′, γ′) for every pair
α < β < γ and < α′ < β′ < γ′ of triples of elements of X such that α = α′.
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Proof. If Cα (α < θ) is a C-sequence satisfying (b) and if ρ0 is the associated
ρ0-function then T (ρ0) is a special Aronszajn tree of height θ. Suppose <T

is a special Aronszajn tree ordering on θ such that [θ− · α, θ− · (α + 1)) is its
αth level. Let C be the club of ordinals < θ divisible by θ−. Let f : θ −→ θ−

be such that the f -preimage of every ordinal < θ− is an antichain of the
tree (θ,<T ). We choose a C-sequence Cα (α < θ) such that Cα+1 = {α},
Cα = (ᾱ, α) for α limit with the property that ᾱ = sup(C ∩ α) < α, but if α
is a limit point of C we take Cα more carefully as follows: Cα = {αξ : ξ < η}
where

αλ = sup{αξ : ξ < λ} for λ limit < η,

α0 = the <T -predecessor of α with minimal f -image,
αξ+1 = the <T -predecessor of α with minimal f -image subject

to the requirement that f(αξ+1) > f(αζ+1) for all ζ < ξ,
η = the limit ordinal ≤ θ− where the process stops, i.e.

sup{f(αξ+1) : ξ < η} = θ−.

Note that if α and β are two limit points of C and if γ <T α, β then Cα∩γ =
Cβ ∩ γ. From this one concludes that the C-sequence is locally small, i.e.
that {Cα ∩ γ : γ ≤ α < θ} has size ≤ θ− for all γ < θ. �

6.9 Corollary. If θ<θ = θ then there exists a special Aronszajn tree of
height θ+.

6.10 Corollary. In the constructible universe, special Aronszajn trees of any
regular uncountable non-Mahlo height exist.

6.11 Remark. In a large portion of the literature on this subject the notion
of a special Aronszajn tree of height equal to some successor cardinal θ+

is somewhat weaker, equivalent to the fact that the tree can be embedded
inside the tree {f : α −→ θ : α < θ & f is 1 − 1}. One would get our
notion of specialness by restricting the tree on successor ordinals losing thus
the frequently useful property of a tree that different nodes of the same limit
height have different sets of predecessors. The result 6.9 in this weaker form
is due to Specker [52], while the result 6.10 is essentially due to Jensen [23].

7. The Weight Function on Successor Cardinals

In this section we assume that θ = κ+ and we fix a C-sequence Cα (α < κ+)
such that

tp(Cα) ≤ κ for all α < κ+.

Let ρ1 : [κ+]2 −→ κ be defined recursively by

ρ1(α, β) = max{tp(Cβ ∩ α), ρ1(α,min(Cβ \ α))},
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where we stipulate that ρ1(γ, γ) = 0 for all γ < κ+.

7.1 Lemma. |{ξ ≤ α : ρ1(ξ, α) ≤ ν}| ≤ |ν|+ ℵ0 for all α < κ+ and ν < κ.

Proof. Let ν+ be the first infinite cardinal above the ordinal ν. The proof
of the conclusion is by induction on α. So let Γ ⊆ α be a given set of order-
type ν+. We need to find a ξ ∈ Γ such that ρ1(ξ, α) > ν. This will clearly
be true if there is a ξ ∈ Γ such that tp(Cα ∩ ξ) > ν. So, we may assume
that tp(Cα ∩ ξ) ≤ ν for all ξ ∈ Γ. Then there must be an ordinal α1 ∈ Cα

such that Γ1 = {ξ ∈ Γ : α1 = min(Cα \ ξ)} has size ν+. By the inductive
hypothesis there is a ξ ∈ Γ1 such that, ρ1(ξ, α1) > ν ≥ tp(Cα ∩ ξ). It follows
that

ρ1(ξ, α) = max{tp(Cα ∩ ξ), ρ1(ξ, α1)} = ρ1(ξ, α1) > ν.

This finishes the proof. �

7.2 Lemma. If κ is regular, then {ξ ≤ α : ρ1(ξ, α) �= ρ1(ξ, β)} has size < κ
for all α < β < κ+.

Proof. The proof is by induction on α and β. Let Γ ⊆ α be a given set
of order-type κ. We need to find ξ ∈ Γ such that ρ1(ξ, α) = ρ1(ξ, β). Let
γ = sup(Γ), γ0 = max(Cβ ∩ γ), and β0 = min(Cβ \ γ). Note that by our
assumption on κ and the C-sequence, these two ordinals are well-defined and

γ0 < γ ≤ β0 < β.

By Lemma 7.1 and the inductive hypothesis there is an ξ in Γ ∩ (γ0, γ) such
that

ρ1(ξ, α) = ρ1(ξ, β0) > tp(Cβ ∩ γ).

It follows that Cβ ∩ γ = Cβ ∩ ξ and β0 = min(Cβ \ ξ), and so

ρ1(ξ, β) = max{tp(Cβ ∩ ξ), ρ1(ξ, β0)} = ρ1(ξ, β0) = ρ1(ξ, α).

�

7.3 Remark. The assumption about the regularity of κ in Lemma 7.2 is
essential. For example, it can be seen (see [5, p. 72]) that the conclusion of
this lemma fails if κ is a singular limit of supercompact cardinals.

7.4 Definition. For κ regular, define ρ̄1 : [κ+]2 −→ κ by

ρ̄1(α, β) = 2ρ1(α,β) · (2 · tp{ξ ≤ α : ρ1(ξ, β) = ρ1(α, β)}+ 1).

7.5 Lemma. If κ is a regular cardinal then

(a) ρ̄1(α, γ) �= ρ̄1(β, γ) whenever α < β < γ < κ+,

(b) |{ξ ≤ α : ρ̄1(ξ, α) �= ρ̄1(ξ, β)}| < κ whenever α < β < κ+.
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7.6 Remark. Note that Lemma 7.5 gives an alternative proof of Corol-
lary 6.9 since under the assumption κ<κ = κ the tree T (ρ̄1) will have levels
of size at most κ. It should be noted that the coherent sequence (ρ̄)α (α < κ+)
of one-to-one mappings is an object of independent interest which can be par-
ticularly useful in stepping-up combinatorial properties of κ to κ+. It is also
an object that has interpretations in such areas as the theory of Čech-Stone
compactifications of discrete spaces (see, e.g. [71, 8, 43, 30, 13]). We have
already noted that if κ is singular then we may no longer have the coherence
property of Lemma 7.2. To get this property, one needs to make some addi-
tional assumption on the C-sequence Cα (α < κ+), an assumption about the
coherence of the C-sequence. This will be subject of some of the following
chapters where we will concentrate on the finer function ρ rather than ρ1.

8. The Number of Steps

The purpose of this section is to isolate a condition on C-sequences Cα

(α < θ) on regular uncountable cardinals θ as weak as possible subject to a
requirement that the corresponding function

ρ2(α, β) = ρ2(α,min(Cβ \ α)) + 1

is in some sense nontrivial, and in particular, far from being constant. With-
out doubt the C-sequence Cα = α (α < θ) is the most trivial choice and the
corresponding ρ0-function gives no information about the cardinal θ. The
following notion of the triviality of a C-sequence on θ seems to be only mar-
ginally different.

8.1 Definition. A C-sequence Cα (α < θ) on a regular uncountable cardinal
θ is trivial if there is a closed and unbounded set C ⊆ θ such that for every
α < θ there is a β ≥ α with C ∩ α ⊆ Cβ .

The proof of the following fact can be found in [66].

8.2 Theorem. The following are equivalent for any C-sequence Cα (α < θ)
on a regular uncountable cardinal θ and the corresponding function ρ2:

(i) Cα (α < θ) is nontrivial.

(ii) For every family A of θ pairwise disjoint finite subsets of θ and every
integer n there is a subfamily B of A of size θ such that ρ2(α, β) > n
for all α ∈ a, β ∈ b and a �= b in B.

8.3 Corollary. Suppose that Cα (α < θ) is a nontrivial C-sequence and let
T (ρ0) be the corresponding tree (see Sect. 6 above). Then every subset of
T (ρ0) of size θ contains an antichain of size θ.
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Proof. Consider a subset K of [θ]2 of size θ which gives us a subset of T (ρ0)
of size θ as follows: {(ρ0)β�(α + 1): {α, β} ∈ K}. Here, we are assuming
without loss of generality that the set consists of successor nodes of T (ρ0).
Clearly, we may also assume that the set takes at most one point from a given
level of T (ρ0). Shrinking K further, we obtain that ρ2 is constant on K. Let
n be the constant value of ρ2�K. Applying Theorem 8.2(ii) to K and n, we
get K0 ⊆ K of size θ such that ρ2(α, δ) > n for all {α, β} and {γ, δ} from K0

with properties α < β, γ < δ and α < γ. Then {(ρ0)β�(α + 1): {α, β} ∈ K0}
is an antichain in T (ρ0). �

8.4 Remark. It should be clear that nontrivial C-sequences exist on any
successor cardinal. Indeed, with very little extra work one can show that
nontrivial C-sequences exist for some inaccessible cardinals quite high in the
Mahlo hierarchy. To show how close this is to the notion of weak compactness,
we state an interesting characterization of it, proved in [66], which is of
independent interest.16

8.5 Theorem. The following are equivalent for an inaccessible cardinal θ:

(i) θ is weakly compact.

(ii) For every C-sequence Cα (α < θ) there is a closed and unbounded set
C ⊆ θ such that for all α < θ there is a β ≥ α with Cβ ∩ α = C ∩ α.

We have already remarked that every successor cardinal θ = κ+ admits a
nontrivial C-sequence Cα (α < θ). It suffices to take the Cα’s to be all of
order-type ≤ κ. It turns out that for such a C-sequence the corresponding
ρ2-function has a property that is considerably stronger than Theorem 8.2(ii).
The proof of this can again be found in [66].

8.6 Theorem. For every infinite cardinal κ there is a C-sequence on κ+ such
that the corresponding ρ2-function has the following unboundedness property:
for every family A of κ+ pairwise disjoint subsets of κ+, all of size < κ, and
for every n < ω there exists a B ⊆ A of size κ+ such that ρ2(α, β) > n
whenever α ∈ a and β ∈ b for some a �= b in B.

Theorems 8.2 and 8.6 admit the following variation.

8.7 Theorem. Suppose that a regular uncountable cardinal θ supports a
nontrivial C-sequence and let ρ2 be the associated function. Then for every
integer n and every pair of θ-sized families A0 and A1, where the members
of A0 are pairwise disjoint bounded subsets of θ and the members of A1 are
pairwise disjoint finite subsets of θ, there exist B0 ⊆ A0 and B1 ⊆ A1 of size
θ such that ρ2(α, β) > n whenever α ∈ a and β ∈ b for some a ∈ B0 and
b ∈ B1 such that sup(a) < min(b).

16 It turns out that every C-sequence on θ being trivial is not quite as strong as the weak
compactness of θ. As pointed out to us by Donder and König, one can show this using a
model of Kunen [29, §3].
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9. Square Sequences

9.1 Definition. A C-sequence Cα (α < θ) is a square sequence if and only
if it is coherent, i.e. it has the property that Cα = Cβ ∩ α whenever α is a
limit point of Cβ .

Note that the nontriviality conditions appearing in Definition 8.1 and The-
orem 8.5 coincide in the realm of square sequences:

9.2 Lemma. A square sequence Cα (α < θ) is trivial if and only if there is
a closed and unbounded subset C of θ such that Cα = C ∩ α whenever α is a
limit point of C.

To a given square sequence Cα (α < θ) one naturally associates a tree
ordering <2 on θ as follows by letting α <2 β if and only if α is a limit point
of Cβ . The triviality of Cα (α < θ) is then equivalent to the statement that
the tree (θ,<2) has a chain of size θ. In fact, one can characterize the tree
orderings <T on θ for which there exists a square sequence Cα (α < θ) such
that for all α < β < θ,

α <T β if and only if α is a limit point of Cβ . (3.5)

9.3 Lemma. A tree ordering <T on θ admits a square sequence Cα (α < θ)
satisfying (3.5) if and only if

(i) α <T β can hold only for limit ordinals α and β such that α < β,

(ii) Pβ = {α : α <T β} is a closed subset of β, which is unbounded in β
whenever cf(β) > ω and

(iii) minimal as well as successor nodes of the tree <T on θ are ordinals of
cofinality ω.

Proof. For each ordinal α < θ of countable cofinality we fix a subset Sα ⊆ α
of order-type ω cofinal with α. Given a tree ordering <T on θ with properties
(i)–(iii), for a limit ordinal β < θ let P+

β be the set of all successor nodes from
Pβ ∪ {β} including the minimal one. For α ∈ P+

β let α− be its immediate
predecessor in Pβ . Finally, set

Cβ = Pβ ∪
⋃
{Sα ∩ [α−, α) : α ∈ P+

β }.

It is easily checked that this defines a square sequence Cβ (β < θ) with the
property that α <T β holds if and only if α is a limit point of Cβ . �

9.4 Remark. It should be clear that the proof of Lemma 9.3 shows that the
exact analogue of this result is true for any cofinality κ < θ rather than just
for the cofinality ω.

The most important result about square sequences is of course the follow-
ing well-known result of Jensen [23].
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9.5 Theorem. If a regular uncountable cardinal θ is not weakly compact
in the constructible universe then there is a nontrivial square sequence on θ
which is moreover constructible.

9.6 Corollary. If a regular uncountable cardinal θ is not weakly compact in
the constructible universe then there is a constructible Aronszajn tree on θ.

Proof. Let Cα (α < θ) be a fixed nontrivial square sequence which is con-
structible. Changing the Cα’s a bit, we may assume that if β is a limit
ordinal with α = min Cβ or if α ∈ Cβ but sup(Cβ ∩α) < α then α must be a
successor ordinal in θ. Consider the corresponding function ρ0 : [θ]2 −→ Qθ

ρ0(α, β) = tp(Cβ ∩ α)�ρ0(α,min(Cβ \ α)),

where ρ0(γ, γ) = ∅ for all γ < θ. Consider the tree

T (ρ0) = {(ρ0)β�α : α ≤ β < θ}.

Clearly T (ρ0) is constructible. By (3.4) the αth level of T (ρ0) is bounded
by the size of the set {Cβ ∩ α : β ≥ α}. Since the intersection of the form
Cβ ∩ α is determined by its maximal limit point modulo a finite subset of
α, we conclude that the αth level of T (ρ0) has size ≤ |α| + ℵ0. Since the
sequence Cα (α < θ) is nontrivial, the proof of Theorem 8.5 shows that T (ρ0)
has no cofinal branches. �

9.7 Lemma. Suppose Cα (α < θ) is a square sequence on θ, <2 the as-
sociated tree ordering on θ and T (ρ0) = {(ρ0)β�α : α ≤ β < θ} where
ρ0 : [θ]2 −→ Qθ is the associated ρ0-function. Then α �−→ (ρ0)α is a strictly
increasing map from the tree (θ,<2) into the tree T (ρ0).

Proof. If α is a limit point of Cβ then Cα = Cβ ∩ α so the walks α→ ξ and
β → ξ for ξ < α get the same code ρ0(ξ, α) = ρ0(ξ, β). �

The purpose of this section, however, is to analyze a family of ρ-functions
associated with a square sequence Cα (α < θ) on some regular uncountable
cardinal θ, both fixed from now on. Recall that an ordinal α divides an
ordinal γ if there is a β such that γ = α·β, i.e. γ can be written as the
union of an increasing β-sequence of intervals of type α. Let κ ≤ θ be a fixed
infinite regular cardinal. Let Λκ : [θ]2 −→ θ be defined by

Λκ(α, β) = max{ξ ∈ Cβ ∩ (α + 1) : κ divides tp(Cβ ∩ ξ)}.

Finally, we are ready to define the main object of study in this section:

ρκ : [θ]2 −→ κ

defined recursively by

ρκ(α, β) = sup{tp(Cβ ∩ [Λκ(α, β), α)), ρκ(α,min(Cβ \ α)),
ρκ(ξ, α) : ξ ∈ Cβ ∩ [Λκ(α, β), α)},
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where we stipulate that ρκ(γ, γ) = 0 for all γ.
The following consequence of the coherence property of Cα (α < θ) will

be quite useful.

9.8 Lemma. If α is a limit point of Cβ then ρκ(ξ, α) = ρκ(ξ, β) for every
ξ < α.

Note that ρκ is something that corresponds to the function ρ : [ω1]2 −→ ω
considered in Definition 2.1 (see also Sect. 11) and that the ρκ’s are simply
various local versions of the key definition. It turns out that they all have
the crucial subadditive properties (see [66]).

9.9 Lemma. If α < β < γ < θ then

(a) ρκ(α, γ) ≤ max{ρκ(α, β), ρκ(β, γ)},

(b) ρκ(α, β) ≤ max{ρκ(α, γ), ρκ(β, γ)}.

The following is an immediate consequence of the fact that the definition
of ρκ is closely tied to the notion of a walk along the fixed square sequence.

9.10 Lemma. ρκ(α, γ) ≥ ρκ(α, β) whenever α ≤ β ≤ γ and β belongs to the
trace of the walk from γ to α.

9.11 Lemma. Suppose β ≤ γ < θ and that β is a limit ordinal > 0. Then
ρκ(α, γ) ≥ ρκ(α, β) for coboundedly many α < β.

Proof. Let γ = γ0 > γ1 > · · · > γn−1 > γn = β be the trace of the walk from
γ to β. Let γ̄ = γn−1 if β is a limit point of Cγn−1 , otherwise let γ̄ = β. Note
that by Lemma 9.8, in any case we have that

ρκ(α, β) = ρκ(α, γ̄) for all α < β. (3.6)

Let β̄ < β be an upper bound of all Cγi ∩ β (i < n) which are bounded in β.
Then γ̄ is a member of the trace of any walk from γ to some ordinal α in the
interval [β̄, β). Applying Lemma 9.10 to this fact gives us

ρκ(α, γ) ≥ ρκ(α, γ̄) for all α ∈ [β̄, β).

Since ρκ(α, γ̄) = ρκ(α, β) for all α < β (see (3.6)), this gives us the conclusion
of the lemma. �

The proof of the following lemma can be found in [66].

9.12 Lemma. The set Pκ
ν (β) = {ξ < β : ρκ(ξ, β) ≤ ν} is a closed subset of

β for every β < θ and ν < κ.

For α < β < θ and ν < κ set

α <κ
ν β if and only if ρκ(α, β) ≤ ν.
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9.13 Lemma.

(1) <κ
ν is a tree ordering on θ,

(2) <κ
ν ⊆<κ

μ whenever ν < μ < κ,

(3) ∈�(θ × θ) =
⋃

ν<κ <κ
ν .

Proof. This follows immediately from Lemma 9.9. �

Recall the notion of a special tree of height θ from Sect. 6, a tree T for
which one can find a T -regressive map f : T −→ T with the property that
the preimage of any point is the union of < θ antichains. By a tree on θ
we mean a tree of the form (θ,<T ) with the property that α <T β implies
α < β.

9.14 Lemma. If a tree T naturally placed on θ is special, then there is an
ordinal-regressive map f : θ −→ θ and a closed and unbounded set C ⊆ θ
such that f is one-to-one on all chains separated by C.

Proof. Let g : θ −→ θ be a T -regressive map such that for each ξ < θ the
preimage g−1({ξ}) can be written as a union of a sequence Aδ(ξ) (δ < λξ) of
antichains, where λξ < θ. Let C be the collection of all limit α < θ with the
property that λξ < α for all ξ < α. Choose an ordinal-regressive f : θ −→ θ
as follows. If there is a δ ∈ C such that g(α) < δ ≤ α, then f(α) is smaller
than the minimal member of C above g(α), f(α) codes in some standard way
the ordinal g(α) as well as the index δ of the antichain Aδ(g(α)) to which α
belongs, and f(α) /∈ C. If no member of C separates g(α) and α, let f(α) be
the maximal member of C that is smaller than α. �

By Lemma 9.13 we have a sequence <κ
ν (ν < κ) of tree orderings on θ.

The following lemma tells us that they are frequently quite large orderings.

9.15 Lemma. If θ > κ is not a successor of a cardinal of cofinality κ then
there must be a ν < κ such that (θ,<κ

ν ) is a nonspecial tree on θ.

Proof. Suppose to the contrary that all trees are special. By Lemma 9.14 we
may choose ordinal-regressive maps fν : θ −→ θ for all ν < κ and a single
closed and unbounded set C ⊆ θ such that each of the maps fν is one-to-one
on <κ

ν -chains separated by C. Using the Pressing Down Lemma we find a
stationary set Γ of cofinality κ+ ordinals < θ and λ < θ such that fν(γ) < λ
for all γ ∈ Γ and ν < κ. If |λ|+ < θ, let Δ = λ, Γ = Γ0 and if |λ|+ = θ,
represent λ as the increasing union of a sequence Δξ (ξ < cf(|λ|)) of sets of
size < |λ|. Since κ �= cf(|λ|) there is a ξ̄ < cf(|λ|) and a stationary Γ0 ⊆ Γ
such that for all γ ∈ Γ0, fν(γ) ∈ Δξ̄ for κ many ν < κ. Let Δ = Δξ̄. This
gives us subsets Δ and Γ0 of θ such that

(1) |Δ|+ < θ and Γ0 is stationary in θ,

(2) Σγ = {ν < κ : fν(γ) ∈ Δ} is unbounded in κ for all γ ∈ Γ0.
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Let θ̄ = κ+ · |Δ|+. Then θ̄ < θ and so we can find β ∈ Γ0 such that Γ0∩C∩β
has size θ̄. Then there will be ν0 < κ and Γ1 ⊆ Γ0 ∩ C ∩ β of size θ̄ such
that ρκ(α, β) ≤ ν0 for all α ∈ Γ1. By (2) we can find Γ2 ⊆ Γ1 of size θ̄ and
ν1 ≥ ν0 such that fν1(α) ∈ Δ for all α ∈ Γ2. Note that Γ2 is a <κ

ν1
-chain

separated by C, so fν1 is one-to-one on Γ2. However, this gives us the desired
contradiction since the set Δ, in which fν1 embeds Γ2 has size smaller than
the size of Γ2. This finishes the proof. �

It is now natural to ask the following question: under which assumption
on the square sequence Cα (α < θ) can we conclude that neither of the trees
(θ,<κ

ν ) will have a branch of size θ?

9.16 Lemma. If the set Γκ = {α < θ : tp(Cα) = κ} is stationary in θ, then
none of the trees (θ,<κ

ν ) has a branch of size θ.

Proof. Assume that B is a <κ
ν -branch of size θ. By Lemma 9.12, B is a closed

and unbounded subset of θ. Pick a limit point β of B which belongs to Γκ.
Pick α ∈ B ∩ β such that tp(Cβ ∩ α) > ν. By definition of ρκ(α, β) we have
that ρκ(α, β) ≥ tp(Cβ ∩ α) > ν since clearly Λκ(α, β) = 0. This contradicts
the fact that α <κ

ν β and finishes the proof. �

9.17 Definition. A square sequence on θ is special if the corresponding tree
(θ,<2) is special, i.e. there is a <2-regressive map f : θ −→ θ with the
property that the f -preimage of every ξ < θ is the union of < θ antichains of
(θ,<2).

9.18 Theorem. Suppose κ < θ are regular cardinals such that θ is not a
successor of a cardinal of cofinality κ. Then to every square sequence Cα

(α < θ) for which there exist stationarily many α such that tp(Cα) = κ, one
can associate a sequence Cαν (α < θ, ν < κ) such that:

(i) Cαν ⊆ Cαμ for all α and ν ≤ μ,

(ii) α =
⋃

ν<κ Cαν for all limit α,

(iii) Cαν (α < θ) is a nonspecial (and nontrivial) square sequence on θ for
all ν < κ.

Proof. Fix ν < κ and define Cαν by induction on α < θ. So suppose β is a
limit ordinal < θ and that Cαν is defined for all α < β. If Pκ

ν (β) is bounded
in β, let β̄ be the maximal limit point of Pκ

ν (β) (β̄ = 0 if the set has no limit
points) and let

Cβν = Cβ̄ν ∪ Pκ
ν (β) ∪ (Cβ ∩ [max(Pκ

ν (β)), β)).

If Pκ
ν (β) is unbounded in β, let

Cβν = Pκ
ν (β) ∪

⋃
{Cαν : α ∈ Pκ

ν (β) and α = sup(Pκ
ν (β) ∩ α)}.
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By Lemmas 9.9 and 9.12, Cβν (β < θ) is well defined and it forms a square
sequence on θ. The properties (i) and (ii) are also immediate. To see that
for each ν < κ the sequence Cβν (β < θ) is nontrivial, one uses Lemma 9.16
and the fact that if α is a limit point of Cβν occupying a place in Cβν that is
divisible by κ, then α <κ

ν β. By Lemma 9.15, or rather its proof, we conclude
that there is a ν̄ < κ such that Cβν (β < θ) is nonspecial for all ν ≥ ν̄. This
finishes the proof. �

The following facts whose proof can be found in [66] gives us a square
sequence satisfying the hypothesis of Lemma 9.18.

9.19 Lemma. For every pair of regular cardinals κ < θ, every special square
sequence Cα (α < θ) can be refined to a square sequence C̄α (α < θ) with the
property that tp(C̄α) = κ for stationarily many α < θ.

Finally we can state the main result of this section which follows from
Theorem 9.18 and Lemma 9.19.

9.20 Theorem. A regular uncountable cardinal θ �= ω1 carries a nontrivial
square sequence iff it also carries such a sequence which is moreover nonspe-
cial.

9.21 Corollary. If a regular uncountable cardinal θ �= ω1 is not weakly
compact in the constructible universe then there is a nonspecial Aronszajn
tree of height θ.

Proof. By Theorem 9.5, θ carries a nontrivial square sequence Cα (α < θ).
By Theorem 9.20 we may assume that the sequence is moreover nonspecial.
Let ρ0 be the associated ρ0-function and consider the tree T (ρ0). As in
Corollary 9.6 we conclude that T (ρ0) is an Aronszajn tree of height θ. By
Lemma 9.7 there is a strictly increasing map from (θ,<2) into T (ρ0), so T (ρ0)
must be nonspecial. �

9.22 Remark. The assumption θ �= ω1 in Theorem 9.20 is essential as there
is always a nontrivial square sequence on ω1 but it is possible to have a
situation where all Aronszajn trees on ω1 are special. For example MAω1

implies this. In [33], Laver and Shelah have shown that any model with a
weakly compact cardinal admits a forcing extension satisfying CH and the
statement that all Aronszajn trees on ω2 are special. A well-known open
problem in this area asks whether one can have GCH rather than CH in a
model where all Aronszajn trees on ω2 are special.

10. The Full Lower Trace of a Square Sequence

In this section θ is a regular uncountable cardinal and Cα (α < θ) is a
nontrivial square sequence on θ. Recall the function Λ = Λω : [θ]2 −→ θ:

Λ(α, β) = maximal limit point of Cβ ∩ (α + 1).
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(Λ(α, β) = 0 if Cβ ∩ (α + 1) has no limit points.)
The purpose of this section is to study the following recursive trace for-

mula, describing a mapping F : [θ]2 −→ [θ]<ω:

F(α, β) = F(α,min(Cβ \ α)) ∪
⋃
{F(ξ, α) : ξ ∈ Cβ ∩ [Λ(α, β), α)},

where F(γ, γ) = {γ} for all γ.
As in the case θ = ω1, the full lower trace has the following two properties

(see [66]).

10.1 Lemma. For all α ≤ β ≤ γ,

(a) F(α, γ) ⊆ F(α, β) ∪ F(β, γ),

(b) F(α, β) ⊆ F(α, γ) ∪ F(β, γ).

10.2 Lemma. For all α ≤ β ≤ γ,

(a) ρ0(α, β) = ρ0(min(F(β, γ) \ α), β)�ρ0(α,min(F(β, γ) \ α)),

(b) ρ0(α, γ) = ρ0(min(F(β, γ) \ α), γ)�ρ0(α,min(F(β, γ) \ α)).

Recall the function ρ2 : [θ]2 −→ ω which counts the number of steps in the
walk along the fixed C-sequence Cα (α < θ) which in this section is assumed
to be moreover a square sequence:

ρ2(α, β) = ρ2(α,min(Cβ \ α)) + 1,

where we let ρ2(γ, γ) = 0 for all γ. Thus ρ2(α, β) + 1 is simply equal to the
cardinality of the trace Tr(α, β) of the minimal walk from β to α.

10.3 Lemma. supξ<α|ρ2(ξ, α)− ρ2(ξ, β)| <∞ for all α < β < θ.

Proof. By Lemma 10.2, supξ<α|ρ2(ξ, α)− ρ2(ξ, β)| is less than or equal than
supξ∈F (α,β)|ρ2(ξ, α)− ρ2(ξ, β)|. �

10.4 Definition. Set I to be the set of all countable Γ ⊆ θ such that
supξ∈Δ ρ2(ξ, α) = ∞ for all α < θ and infinite Δ ⊆ Γ ∩ α.

10.5 Lemma. I is a P-ideal of countable subsets of θ.

Proof. Let Γn (n < ω) be a given sequence of members of I and fix β < θ
such that Γn ⊆ β for all n. For n < ω set Γ∗

n = {ξ ∈ Γn : ρ2(ξ, β) ≥ n}.
Since Γn belongs to I, Γ∗

n is a cofinite subset of Γn. Let Γ∞ =
⋃

n<ω Γ∗
n.

Then Γ∞ is a member of I such that Γn \ Γ∞ is finite for all n. �

10.6 Theorem. The P-ideal dichotomy implies that a nontrivial square se-
quence can exist only on θ = ω1.

Proof. Applying the P-ideal dichotomy on I from Definition 10.4 we get the
two alternatives (see Definition 3.9):
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(1) there is an uncountable Δ ⊆ θ such that [Δ]ω ⊆ I, or

(2) there is a decomposition θ =
⋃

n<ω Σn such that Σn⊥I for all n.

By Lemma 10.3, if (1) holds, then Δ ∩ α must be countable for all α < θ
and so the cofinality of θ must be equal to ω1. Since we are working only
with regular uncountable cardinals, we see that (1) gives us that θ = ω1 must
hold. Suppose now (2) holds and pick k < ω such that Σk is unbounded in θ.
Since Σk⊥I we have that (ρ2)α is bounded on Σk ∩α for all α < θ. So there
is an unbounded set Γ ⊆ θ and an integer n such that for each α ∈ Γ the
restriction of (ρ2)α on Σk ∩α is bounded by n. By Theorem 8.2 we conclude
that the square sequence Cα (α < θ) we started with must be trivial. �

10.7 Definition. By Sθ we denote the sequential fan with θ edges, i.e. the
space on (θ × ω) ∪ {∗} with ∗ as the only nonisolated point, while a typical
neighborhood of ∗ has the form Uf = {(α, n) : n ≥ f(α)} ∪ {∗} where
f : θ −→ ω.

The tightness of a point x in a space X is equal to θ if θ is the minimal
cardinal such that, if a set W ⊆ X \ {x} accumulates to x, then there is a
subset of W of size ≤ θ that accumulates to x.

10.8 Theorem. If there is a nontrivial square sequence on θ then the square
of the sequential fan Sθ has tightness equal to θ.

The proof will be given after a sequence of definitions and lemmas.

10.9 Definition. Given a square sequence Cα (α < θ) and its number of
steps function ρ2 : [θ]2 −→ ω we define d : [θ]2 −→ ω by letting

d(α, β) = sup
ξ≤α

|ρ2(ξ, α)− ρ2(ξ, β)|.

10.10 Lemma. For all α ≤ β ≤ γ,

(a) ρ2(α, β) ≤ d(α, β),

(b) d(α, γ) ≤ d(α, β) + d(β, γ),

(c) d(α, β) ≤ d(α, γ) + d(β, γ).

Proof. The conclusion (a) follows from the fact that we allow ξ = α in the
definition of d(α, β). The conclusions (b) and (c) are consequences of the
triangle inequalities of the �∞-norm and the fact that in both inequalities we
have that the domain of functions on the left-hand side is included in the
domain of functions on the right-hand side. �

10.11 Definition. For γ ≤ θ, let

Wγ = {((α, d(α, β)), (β, d(α, β))) : α < β < γ}.
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The following lemma establishes that the tightness of the point (∗, ∗) of
S2

θ is equal to θ, giving us the proof of Theorem 10.8.

10.12 Lemma. (∗, ∗) ∈ W̄θ but (∗, ∗) /∈ W̄γ for all γ < θ.

Proof. To see that Wθ accumulates to (∗, ∗), let U2
f be a given neighborhood

of (∗, ∗). Fix an unbounded set Γ ⊆ θ on which f is constant. By Theorem 8.2
and Lemma 10.10(a) there exists an α < β in Γ such that d(α, β) ≥ f(α) =
f(β). Then ((α, d(α, β)), (β, d(α, β))) belongs to the intersection Wθ ∩ U2

f .
To see that for a given γ < θ the set Wγ does not accumulate to (∗, ∗), choose
g : θ −→ ω such that

g(α) = 2d(α, γ) + 1 for α < γ.

Suppose Wγ∩ U2
g is nonempty and choose ((α, d(α, β)), (β, d(α, β))) from this

set. Then

d(α, β) ≥ 2d(α, γ) + 1 and d(α, β) ≥ 2d(β, γ) + 1,

and so, d(α, β) ≥ d(α, γ) + d(β, γ) + 1, contradicting Lemma 10.10(c). �

Since θ = ω1 admits a nontrivial square sequence, Theorem 10.8 leads to
the following result of Gruenhage and Tanaka [19].

10.13 Corollary. The square of the sequential fan with ω1 edges is not
countably tight.

10.14 Question. What is the tightness of the square of the sequential fan
with ω2 edges?

10.15 Corollary. If a regular uncountable cardinal θ is not weakly compact
in the constructible universe then the square of the sequential fan with θ edges
has tightness equal to θ.

11. Special Square Sequences

The following well-known result of Jensen [23] supplements the corresponding
result for weakly compact cardinals listed above as Theorem 9.5.

11.1 Theorem. If a regular uncountable cardinal θ is not Mahlo in the
constructible universe then there is a special square sequence on θ which is
moreover constructible.

Today we know many more inner models with sufficient amount of fine
structure necessary for building special square sequences. So the existence
of special square sequences, especially at successors of strong-limit singular
cardinals, is tied to the existence of some other large cardinal axioms. The
reader is referred to the relevant chapters of this Handbook for the specific
information. In this section we give the combinatorial analysis of walks along
special square sequences and the corresponding distance functions. Let us
start by restating some results of Sect. 9.
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11.2 Theorem. Suppose κ < θ are regular cardinals and that θ carries a
special square sequence. Then there exist Cαν (α < θ, ν < κ) such that:

(1) Cαν ⊆ Cαμ for all α and ν < μ,

(2) α =
⋃

ν<κ Cα for all limit α,

(3) Cαν (α < θ) is a nontrivial square sequence on θ for all ν < κ.

Moreover, if θ is not a successor of a cardinal of cofinality κ then each of the
square sequences can be chosen to be nonspecial.

11.3 Theorem. Suppose κ < θ are regular cardinals and that θ carries a
special square sequence. Then there exist <ν (ν < κ) such that:

(i) <ν is a closed tree ordering of θ for each ν < κ,

(ii) ∈�(θ × θ) =
⋃

ν<κ <ν ,

(iii) no tree (θ,<ν) has a chain of size θ.

11.4 Lemma. The following are equivalent when θ is a successor of some
cardinal κ:

(1) there is a special square sequence on θ,

(2) there is a square sequence Cα (α < θ) such that tp(Cα) ≤ κ for all
α < θ.

Proof. Let Dα (α < κ+) be a given special square sequence. By Lemma 6.2
the corresponding tree (κ+, <2) can be decomposed into κ antichains so let
f : κ+ −→ κ be a fixed map such that f −1({ξ}) is a <2-antichain for all
ξ < κ. Let α < κ+ be a given limit ordinal. If Dα has a maximal limit point
ᾱ < α, let Cα = Dα \ ᾱ. Suppose now that {ξ : ξ <2 α} is unbounded in α
and define a strictly increasing continuous sequence cα(ξ) (ξ < ν(α)) of its
elements as follows. Let cα(0) = min{ξ : ξ <2 α}, cα(η) = supξ<ηcα(ξ) for η
limit, and cα(ξ+1) is the minimal <2-predecessor γ of α such that γ > cα(ξ)
and has the minimal f -image among all <2-predecessors that are > cα(ξ).
The ordinal ν(α) is defined as the place where the process stops, i.e. when
α = supξ<ν(α)cα(ξ). Let Cα = {cα(ξ) : ξ < ν(α)}. It is easily checked that
this gives a square sequence Cα (α < κ+) with the property that tp(Cα) ≤ κ
for all α < κ+. �

Square sequences Cα (α < κ+) that have the property tp(Cα) ≤ κ for
all α < κ+ are usually called �κ-sequences. So let Cα (α < κ+) be a �κ-
sequence fixed from now on. Let

Λ(α, β) = maximal limit point of Cβ ∩ (α + 1)



262 Todorcevic / Coherent Sequences

when such a limit point exists; otherwise Λ(α, β) = 0. The purpose of this
section is to analyze the following distance function:

ρ : [κ+]2 −→ κ

defined recursively by

ρ(α, β) = max{tp(Cβ ∩ α), ρ(α,min(Cβ \ α)),
ρ(ξ, α) : ξ ∈ Cβ ∩ [Λ(α, β), α)},

where we stipulate that ρ(γ, γ) = 0 for all γ < κ+. Clearly ρ(α, β) ≥ ρ1(α, β),
so by Lemma 7.1 we have

11.5 Lemma. |{ξ ≤ α : ρ(ξ, α) ≤ ν}| ≤ |ν|+ ℵ0 for α < κ+ and ν < κ.

The following two crucial subadditive properties of ρ have proofs that are
almost identical to the proofs of the corresponding properties of, say, the
function ρω discussed above in Sect. 9.

11.6 Lemma. For all α ≤ β ≤ γ,

(a) ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ)},

(b) ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)}.

The following immediate fact will also be quite useful.

11.7 Lemma. If α is a limit point of Cβ, then ρ(ξ, α) = ρ(ξ, β) for every
ξ < α.

The following as well is an immediate consequence of the fact that the
definition of ρ is closely tied to the notion of a minimal walk along the square
sequence.

11.8 Lemma. ρ(α, γ) ≥ max{ρ(α, β), ρ(β, γ)} whenever α ≤ β ≤ γ and β
belongs to the trace of the walk from γ to α.

Using Lemmas 11.7 and 11.8 one proves the following fact exactly as in
the case of ρκ of Sect. 9 (the proof of Lemma 9.11).

11.9 Lemma. If 0 < β ≤ γ and β is a limit ordinal, then there is a β̄ < β
such that ρ(α, γ) ≥ ρ(α, β) for all α in the interval [β̄, β).

The proof of the following fact is also completely analogous to the proof
of the corresponding fact for the local version ρκ considered above in Sect. 9
(the proof of Lemma 9.12).

11.10 Lemma. Pν(γ) = {β < γ : ρ(β, γ) ≤ ν} is a closed subset of γ for all
γ < κ+ and ν < κ.

The discussion of ρ : [κ+]2 −→ κ now splits naturally into two cases
depending on whether κ is a regular or a singular cardinal (with the case
cf(κ) = ω of special importance).
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12. Successors of Regular Cardinals

In this section, κ is a fixed regular cardinal, Cα (α < κ+) a fixed �κ-sequence
and ρ : [κ+]2 −→ κ the corresponding ρ-function. For ν < κ and α < β < κ+

set
α <ν β if and only if ρ(α, β) ≤ ν.

The following is an immediate consequence of the analysis of ρ given in
the previous section.

12.1 Lemma.

(a) <ν is a closed tree ordering of κ+ of height ≤ κ for all ν < κ,

(b) <ν ⊆<μ whenever ν ≤ μ < κ,

(c) ∈�(κ+ × κ+) =
⋃

ν<κ <ν .

The following result shows that these trees have some properties of small-
ness not covered by statements of Lemma 12.1.

12.2 Lemma. If κ > ω, then no tree (κ+, <ν) has a branch of size κ.

Proof. Suppose towards a contradiction that some tree (κ+, <ν) does have
a branch of size κ and let B be one such fixed branch (maximal chain). By
Lemmas 11.5 and 11.10, if γ = sup(B) then B is a closed and unbounded
subset of γ of order-type κ. Since κ is regular and uncountable, Cγ ∩ B is
unbounded in Cγ , so in particular we can find α ∈ Cγ ∩B such that tp(Cγ ∩
α) > ν. Reading off the definition of ρ(α, γ) we conclude that ρ(α, β) =
tp(Cγ ∩ α) > ν. Similarly we can find a β > α belonging to the intersection
of lim(Cγ) and B. Then Cβ = Cγ ∩ β so α ∈ Cβ and therefore ρ(α, β) =
tp(Cβ ∩ α) > ν contradicting the fact that α <ν β. �

A tree of height κ is Souslin if all of its chains and antichains are of
cardinality less than κ.

12.3 Lemma. If κ > ω, then no tree (κ+, <ν) has a tree of height κ which
is Souslin subtree.

Proof. Forcing with subtree of (κ+, <ν) of height κ which is Souslin would
produce an ordinal γ of cofinality κ and a closed and unbounded subset B of
Cγ forming a chain of the tree (κ+, <ν). It is well-known that in this case B
would contain a ground model subset of size κ, contradicting Lemma 12.2. �

12.4 Lemma. If κ > ω then for every ν < κ and every family A of κ
pairwise disjoint finite subsets of κ+ there exists an A0 ⊆ A of size κ such
that for all a �= b in A0 and all α ∈ a, β ∈ b we have ρ(α, β) > ν.
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Proof. We may assume that for some n and all a ∈ A we have |a| = n.
Let a(0), . . . , a(n − 1) enumerate a given element a of A increasingly. By
Lemma 12.3, shrinking A we may assume that a(i) (a ∈ A) is an antichain
of (κ+, <ν) for all i < n. Going to a subfamily of A of equal size we may
assume to have a well-ordering <w of A with the property that if a <w b
then no node from a is above a node from b in the tree ordering <ν . Define
f : [A]2 −→ {0} ∪ (n × n) by letting f(a, b) = 0 if a ∪ b is an <ν-antichain;
otherwise, assuming a <w b, let f(a, b) = (i, j) where (i, j) is the minimal pair
such that a(i) <ν b(j). By the Dushnik-Miller partition theorem [14], either
there exists an A0 ⊆ A of size κ such that f is constantly equal to 0 on [A0]2

or there exist (i, j) ∈ n× n and an infinite A1 ⊆ A such that f is constantly
equal to (i, j) on [A1]2. The first alternative is what we want, so let us see
that the second one is impossible. Otherwise, choose a <w b <w c in A1.
Then a(i) and b(i) are both <ν-dominated by c(j), so they must be <ν-
comparable, contradicting our initial assumption about A. This completes
the proof. �

The unboundedness property of Lemma 12.4 can be quite useful in de-
signing forcing notions satisfying good chain conditions. Having such appli-
cations in mind, we now state a further refinement of this kind of unbound-
edness property of the ρ-function. Its tedious proof can be found for example
in [66].

12.5 Lemma. Suppose κ > 0, let γ < κ+ and let {αξ, βξ} (ξ < κ) be a
sequence of pairwise disjoint elements of [κ+]≤2. Then there is an unbounded
set Γ ⊆ κ such that ρ{αξ, βη} ≥ min{ρ{αξ, γ}, ρ{βη, γ}} for all ξ �= η in Γ.17

This lemma allows a further refinement as follows (see [66]). A cardinal κ
is λ-inaccessible if ντ < κ for all ν < κ and τ < λ.

12.6 Lemma. Suppose κ is λ-inaccessible for some λ < κ and that A is a
family of size κ of subsets of κ+, all of size < λ. Then for every ordinal
ν < κ there is a subfamily B of A of size κ such that for all a and b in B:

(a) ρ{α, β} > ν for all α ∈ a \ b and β ∈ b \ a.

(b) ρ{α, β} ≥ min{ρ{α, γ}, ρ{β, γ}} for all α ∈ a\b, β ∈ b\a and γ ∈ a∩b.

12.7 Definition. The set-mapping D : [κ+]2 −→ [κ+]<κ is defined by

D(α, β) = {ξ ≤ α : ρ(ξ, α) ≤ ρ(α, β)}.

(Note that D(α, β) = {ξ ≤ α : ρ(ξ, β) ≤ ρ(α, β)}, so we could take the
formula

D{α, β} = {ξ ≤ min{α, β} : ρ(ξ, α) ≤ ρ{α, β}}
as our definition of D{α, β} when there is no implicit assumption about the
ordering between α and β as there is whenever we write D(α, β).)
17 Here, and everywhere else later in this chapter, the convention is that, ρ{α, β} is meant
to be equal to ρ(α, β) if α < β, equal to ρ(β, α) if β < α, and equal to 0 if α = β.
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12.8 Lemma. If κ is λ-inaccessible for some λ < κ, then for every family
A of size κ of subsets of κ+, all of size < λ, there exists a B ⊆ A of size κ
such that for all a and b in B and all α ∈ a \ b, β ∈ b \ a and γ ∈ a ∩ b:

(a) α, β > γ =⇒ D{α, γ} ∪D{β, γ} ⊆ D{α, β},
(b) β > γ =⇒ D{α, γ} ⊆ D{α, β},
(c) α > γ =⇒ D{β, γ} ⊆ D{α, β},
(d) γ > α, β =⇒ D{α, γ} ⊆ D{α, β} or D{β, γ} ⊆ D{α, β}.

Proof. Choose B ⊆ A of size κ satisfying the conclusion (b) of Lemma 12.6.
Pick a �= b in B and consider α ∈ a \ b, β ∈ b \ a and γ ∈ a ∩ b. By the
conclusion of 12.6(b), we have

ρ{α, β} ≥ min{ρ{α, γ}, ρ{β, γ}}. (3.7)

a. Suppose α, β > γ. Note that in this case a single inequality ρ(γ, α) ≤
ρ{α, β} or ρ(γ, β) ≤ ρ{α, β} given to us by (3.7) implies that we actually
have both inequalities simultaneously holding. The subadditivity of ρ
gives us ρ(ξ, α) ≤ ρ{α, β}, or equivalently ρ(ξ, β) ≤ ρ{α, β} for any
ξ ≤ γ with ρ(ξ, γ) ≤ ρ(γ, α) or ρ(ξ, γ) ≤ ρ(γ, β). This is exactly the
conclusion of Lemma 12.8(a).

b. Suppose that β > γ > α. Using the subadditivity of ρ we see that in
both cases given to us by (3.7) we have that ρ(α, γ) ≤ ρ{α, β}. So the
inclusion D{α, γ} ⊆ D{α, β} follows immediately.

c. Suppose that α > γ > β. The conclusion D{β, γ} ⊆ D{α, β} follows
from the previous case by symmetry.

d. Suppose that γ > α, β. Then ρ(α, γ) ≤ ρ{α, β} gives D{α, γ} ⊆
D{α, β} while ρ(β, γ) ≤ ρ{α, β} gives us D{β, γ} ⊆ D{α, β}.

This completes the proof. �

12.9 Remark. Note that min{x, y} ∈ D{x, y} for every {x, y} ∈ [κ+]2, so
the conclusion (a) of Lemma 12.8 in particular means that γ < min{α, β}
implies γ ∈ D{α, β}. In applications, one usually needs this consequence of
Lemma 12.8(a) rather than Lemma 12.8(a) itself.

12.10 Definition. The Δ-function of some family F of subsets of some
ordinal κ (respectively, a family of functions with domain κ) is the function
Δ : [F ]2 −→ κ defined by Δ(f, g) = min(f $ g), (respectively, Δ(f, g) =
min{ξ : f(ξ) �= g(ξ)}).

Note the following property of Δ:

12.11 Lemma. Δ(f, g) ≥ min{Δ(f, h),Δ(g, h)} for all {f, g, h} ∈ [F ]3.
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12.12 Remark. This property can be very useful when transferring objects
that live on κ to objects on F . This is especially interesting when F is of
size larger than κ while all of its restrictions F�ν = {f ∩ ν : f ∈ F} (ν < κ)
have size < κ, i.e. when F is a Kurepa family (see for example [10]). We shall
now see that it is possible to have a Kurepa family F = {fα : α < κ+} whose
Δ-function is dominated by ρ, i.e. Δ(fα, fβ) ≤ ρ(α, β) for all α < β < κ+.

12.13 Theorem. If �κ holds and κ is λ-inaccessible then there is a λ-closed
κ-c.c. forcing notion P that introduces a Kurepa family on κ.

Proof. Put p in P , if p is a one-to-one function from a subset of κ+ of size
< λ into the family of all subsets of κ of size < λ such that for all α and β
in dom(p):

p(α) ∩ p(β) is an initial part of p(α) and of p(β), (3.8)

Δ(p(α), p(β)) ≤ ρ(α, β) provided that α �= β. (3.9)

Let p ≤ q whenever dom(p) ⊇ dom(q) and p(α) ⊇ q(α) for all α ∈ dom(q).
Clearly P is a λ-closed forcing notion. The proof that P satisfies the κ-chain
condition, depends heavily on the properties of the set-mapping D and can
be found in [66]. �

Recall that a poset satisfies property K (for Knaster) if every uncountable
subset has a further uncountable subset consisting of pairwise compatible
elements. Note that in the case κ = ω1 the proof of the previous theorem
shows that the corresponding poset has the property K rather just the c.c.c.

12.14 Corollary. If �ω1 holds, and so in particular if ω2 is not a Mahlo
cardinal in the constructible universe, then there is a property K poset, forcing
the Kurepa hypothesis.

12.15 Remark. This is a variation on a result of Jensen, namely that under
�ω1 there is a c.c.c. poset forcing the Kurepa hypothesis. Veličković [67] was
the first to use the function ρ to reprove Jensen’s result though his proof
works only in case κ = ω1 and produces only a c.c.c. poset rather than a
property K poset. It should also be noted that Jensen also proved (see [24])
that in the Levy collapse of a Mahlo cardinal to ω2 there is no c.c.c. poset
forcing the Kurepa hypothesis. We shall now see that ρ provides sufficient
ground for another well-known forcing construction, the forcing construction
of Baumgartner and Shelah [4] of a locally compact scattered topology on ω2

all of whose Cantor-Bendixson ranks are countable.

12.16 Theorem. If �ω1 holds then there is a property K forcing notion that
introduces a locally compact scattered topology on ω2 all of whose Cantor-
Bendixson ranks are countable.

Proof. Let P be the set of all p = 〈Dp,≤p,Mp〉 where Dp is a finite subset of
ω2, where ≤p is a partial ordering of Dp compatible with the well-ordering
and Mp : [Dp]2 −→ [ω2]<ω has the following properties:
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(i) Mp{α, β} ⊆ D{α, β} ∩Dp,

(ii) Mp{α, β} = {α} if α ≤p β and Mp{α, β} = {β} if β ≤p α,

(iii) γ ≤p α, β for all γ ∈Mp{α, β},

(iv) for every δ ≤p α, β there is a γ ∈Mp{α, β} such that δ ≤p γ.

We let p ≤ q if and only if Dp ⊇ Dq, ≤p�Dq =≤q and Mp�[Dq]2 = Mq. To
verify that P satisfies property K one again relies heavily on the properties of
the function D. Full details about this can be found for example in [66]. �

12.17 Remark. A function f : [ω2]2 −→ [ω2]≤ω has property Δ if for every
uncountable set A of finite subsets of ω2 there exist a and b in A such that
for all α ∈ a\ b, β ∈ b\a and γ ∈ a∩ b, α, β > γ implies γ ∈ f{α, β}, if β > γ
implies f{α, γ} ⊆ f{α, β}, and if α > γ implies f{β, γ} ⊆ f{α, β}. This
definition is due to Baumgartner and Shelah [4] who used it in their forcing
construction of the scattered topology on ω2. They were also able to force
a function with the property Δ using a σ-closed ω2-c.c. poset. This part of
their result was reproved by Veličković (see [4, p.129]) who showed that the
function D{α, β} = {ξ ≤ min{α, β} : ρ(ξ, α) ≤ ρ{α, β}} has property Δ. We
have seen above that D has many more properties of independent interest
which are likely to be needed in similar forcing constructions. The reader is
referred to papers of Koszmider [27] and Rabus [41] for further work in this
area.

13. Successors of Singular Cardinals

In the previous section we saw that the function ρ : [κ+]2 −→ κ defined from
a �κ-sequence Cα (α < κ+) can be quite a useful tool in stepping-up objects
from κ to κ+. In this section we analyze the stepping-up power of ρ under the
assumption that κ is a singular cardinal of cofinality ω. So let κn (n < ω) be
a strictly increasing sequence of regular cardinals converging to κ fixed from
now on. This immediately gives rise to a rather striking tree decomposition
<n (n < ω) of the ∈-relation on κ+:

α <n β if and only if ρ(α, β) ≤ κn. (3.10)

13.1 Lemma.

(1) ∈�(κ+ × κ+) =
⋃

n<ω <n,

(2) <n⊆<n+1,

(3) (κ+, <n) is a tree of height ≤ κ+
n .

13.2 Definition. Let Fn(α) = {ξ ≤ α : ρ(ξ, α) ≤ κn}, and let fα(n) =
tp(Fn(α)) for α < κ+ and n < ω. Let L = {fα : α < κ+}, considered as a
linearly ordered set with the lexicographical ordering.
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Since L is a subset of ωκ, it has an order-dense subset of size κ, so in
particular it contains no well-ordered subset of size κ+. The following result
shows, however, that every subset of L of smaller size is the union of countably
many well-ordered subsets.

13.3 Lemma. For each β < κ+, Lβ = {fα : α < β} can be decomposed into
countably many well-ordered subsets.

Proof. Let Lβn = {fα : α ∈ Fn(β)} for n < ω. Note that the projection
f �−→ f�(n + 1) is one-to-one on Lβn so each Lβn is lexicographically well-
ordered. �

13.4 Remark. Note that K = {{(n, fα(n)) : n < ω} : α < κ+} is a family
of countable subsets of ω × κ which has the property that K�X = {K ∩X :
K ∈ K} has size ≤ |X| + ℵ0 for every X ⊆ ω × κ of size < κ. We shall
now see that with a bit more work a considerably finer such a family can be
constructed.

13.5 Definition. If a family K ⊆ [S]ω is at the same time locally countable
and cofinal in [S]ω then we call it a cofinal Kurepa family (cofinal K-family
for short). Two cofinal K-families H and K are compatible if H ∩K ∈ H∩K
for all H ∈ H and K ∈ K. We say that K extends H if they are compatible
and if H ⊆ K.

13.6 Remark. Note that the size of any cofinal K-family K on a set S is
equal to the cofinality of [S]ω. Note also that for every X ⊆ S there is a
Y ⊇ X of size cf([X]ω) such that K ∩ Y ∈ K for all K ∈ K.

13.7 Definition. Define CK(θ) to be the statement that every sequence
Kn (n < ω) of comparable cofinal K-families with domains included in θ
which are closed under ∪, ∩ and \ can be extended to a single cofinal K-
family on θ, which is also closed under these three operations.

13.8 Lemma. CK(ω1) is true and if CK(θ) is true for some θ such that
cf([θ]ω) = θ then CK(θ+) is also true.

Proof. The easy proof of CK(ω1) is left to the reader.
Suppose CK(θ) and let Kn (n < ω) be a given sequence of compatible

cofinal K-families as in the hypothesis of CK(θ+). By Remark 13.6 there is a
strictly increasing sequence δξ (ξ < θ+) of ordinals < θ such that Kn�δξ ⊆ Kn

for all ξ < θ+ and n < ω. Recursively on ξ < θ+ we construct a chain
Hξ (ξ < θ+) of cofinal K-families as follows. If ξ = 0 or ξ = η + 1 for some
η, using CK(δξ) we can find a cofinal K-family Hξ on δξ extending Hξ−1

and Kn�δξ (n < ω). If ξ has uncountable cofinality then the union of H̄ξ =⋃
η<ξHη is a cofinal K-family with domain included in δξ, so using CK(δξ)

we can find a cofinal K-family Hξ on δξ extending H̄ξ and Kn�δξ (n < ω). If ξ
has countable cofinality, pick a sequence {ξn} converging to ξ and use CK(δξ)
to find a cofinal K-family Hξ on δξ extending Hξn (n < ω) and Kn (n < ω).
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When the recursion is done, set H =
⋃

ξ<θ+ Hξ. Then H is a cofinal K-family
on θ+ extending Kn (n < ω). �

13.9 Corollary. For each n < ω there is a cofinal Kurepa family on ωn.

13.10 Definition. Let κ be a cardinal of cofinality ω. A Jensen matrix on κ+

is a matrix Jαn (α < κ+, n < ω) of subsets of κ with the following properties,
where κn (n < ω) is some increasing sequence of cardinals converging to κ:

(1) |Jαn| ≤ κn for all α < κ+ and n < ω,

(2) for all α < β and n < ω there is an m < ω such that Jαn ⊆ Jβm,

(3)
⋃

n<ω[Jβn]ω =
⋃

α<β

⋃
n<ω[Jαn]ω whenever cf(β) > ω,

(4) [κ+]ω =
⋃

α<κ+

⋃
n<ω[Jαn]ω.

13.11 Remark. The notion of a Jensen matrix is the combinatorial essence
behind Silver’s proof of Jensen’s model-theoretic two-cardinal transfer theo-
rem in the constructible universe (see [23, appendix]), so the matrix could
equally well be called “Silver matrix”. It has been implicitly or explicitly
used in several places in the literature. The reader is referred to the paper
of Foreman and Magidor [18] which gives quite a complete discussion of this
notion and its occurrence in the literature.

13.12 Lemma. Suppose some cardinal κ of countable cofinality carries a
Jensen matrix Jαn (α < κ+, n < ω) relative to some sequence of cardinals
κn (n < ω) that converge to κ. If CK(κn) holds for all n < ω then CK(κ+)
is also true.

Proof. Let Kn (n < ω) be a given sequence of compatible cofinal K-families
with domains included in κ+. Given Jαn, there is a natural continuous chain
Jξ

αn (ξ < ω1) of subsets of κ+ of size ≤ κn such that J0
αn = Jαn and Jξ+1

αn equal
to the union of all K ∈

⋃
n<ω Kn which intersect Jξ

αn. Let J∗
αn =

⋃
ξ<ω1

Jξ
αn.

It is easily seen that J∗
αn (α < κ+, n < ω) is also a Jensen matrix. By recur-

sion on α and n we define a sequence Hαn (α < κ+, n < ω) of compatible
cofinal K-families as follows. If α = β + 1 or α = 0 and n < ω using CK(κn)
we can find a cofinal K-family Hαn with domain J∗

αn compatible with Hαm

(m < n), H(α−1)m (m < ω) and Km�J∗
αn (m < ω). If cf(α) = ω let αn

(n < ω) be an increasing sequence of ordinals converging to α. Using
CK(κn) we can find a cofinal K-family Hαn which extends Hαm (m < n),
Km�J∗

αn (m < ω) and each of the families Hαik (i < ω, k < ω and J∗
αik

⊆
J∗

αn). Finally, suppose that cf(α) > ω. For n < ω, set

Hαn = [J∗
αn]ω ∩

(⋃
ξ<α

⋃
m<ωHξm

)
.

Using the properties of the Jensen matrix (especially (3)) as well as the
compatibility of Hξm (ξ < α,m < ω) one easily checks that Hαn is a cofinal
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K-family with domain J∗
αn which extends each member of Hαm (m < n)

and Km�J∗
αn (m < ω) and which is compatible with all of the previously

constructed families Hξm (ξ < α,m < ω). When the recursion is done we set

H =
⋃

α<κ+

⋃
n<ωHαn.

Using the property (4) of J∗
αn (α < κ+, n < ω), it follows easily that H is a

cofinal K-family on κ+ extending Kn (n < ω). �

13.13 Theorem. If a Jensen matrix exists on any successor of a cardinal
of cofinality ω, then a cofinal Kurepa family exists on any domain.

The ρ-function ρ : [κ+]2 −→ κ associated with a �κ-sequence Cα (α < κ+)
for some singular cardinal κ of cofinality ω leads to the matrix

Fn(α) = {ξ < α : ρ(ξ, α) ≤ n}(α < κ+, n < ω) (3.11)

which has the properties (1)–(3) of Definition 13.10 as well as some other
properties not captured by the definition of a Jensen matrix. If one addition-
ally has a sequence aα (α < κ+) of countable subsets of κ+ that is cofinal in
[κ+]ω one can extend the matrix (3.11) as follows:

Mβn =
⋃

α<nβ(aα ∪ {α}) (β < κ+, n < ω).

(Recall that <n is the tree ordering on κ+ defined by the formula α <n β iff
ρ(α, β) ≤ κn where κn is a fixed increasing sequence of cardinals converging
to κ.) The matrix Mβn (β < κ+, n < ω) has properties not captured by
Definition 13.10 that are of independent interest.

13.14 Lemma.

(1) α <n β implies Mαn ⊆Mβn,

(2) Mαm ⊆Mαn whenever m < n,

(3) if β = sup{α : α <n β} then Mβn =
⋃

α<nβ Mαn,

(4) every countable subset of κ+ is covered by some Mβn,

(5) M = {Mβn : β < κ+, n < ω} is a locally countable family if we have
started with a locally countable K = {aα : α < κ+}.

13.15 Remark. One can think of the matrix M = {Mβn : β < κ+, n < ω}
as a version of a “morass” for the singular cardinal κ (see [68]). It would be
interesting to see how far one can go in this analogy. We give a few applica-
tions just to illustrate the usefulness of the families we have constructed so
far.

13.16 Definition. A Bernstein decomposition of a topological space X is a
function f : X −→ 2N with the property that f takes all the values from 2N

on any subset of X homeomorphic to the Cantor set.
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13.17 Remark. The classical construction of Bernstein [6] can be inter-
preted by saying that every space of size at most continuum admits a Bern-
stein decomposition. For larger spaces one must assume Hausdorff’s separa-
tion axiom, a result of Nešetril and Rődl (see [38]). In this context Malykhin
was able to extend Bernstein’s result to all spaces of size < c+ω (see [35]).
To extend this to all Hausdorff spaces, some use of square sequences seems
natural. In fact, the first Bernstein decompositions of an arbitrary Haus-
dorff space have been constructed using �κ and κω = κ+ for every κ > c of
cofinality ω by Weiss [72] and Wolfsdorf [73]. We shall now see that cofinal K-
families are quite natural tools in constructions of Bernstein decompositions.
The proof of this result can be found for example in [66].

13.18 Theorem. Suppose every regular θ > c supports a cofinal Kurepa fam-
ily of size θ. Then every Hausdorff space admits a Bernstein decomposition.

It is interesting that various less pathological classes of spaces admit a
local version of Theorem 13.18 (see [66]).

13.19 Theorem. Every metric space that carries a cofinal Kurepa family
admits a Bernstein decomposition.

13.20 Definition. Recall the notion of a coherent family of partial functions
indexed by some ideal I, a family of the form fa : a −→ ω (a ∈ I) with the
property that {x ∈ a ∩ b : fa(x) �= fb(x)} is finite for all a, b ∈ I.

It can be seen (see [64]) that the P-ideal dichotomy (see Definition 3.9)
has a strong influence on such families provided I is a P-ideal of countable
subsets of some set Γ.

13.21 Theorem. Assuming the P-ideal dichotomy, for every coherent family
of functions fa : a −→ ω (a ∈ I) indexed by some P-ideal I of countable
subsets of some set Γ, either

(1) there is an uncountable Δ ⊆ Γ such that fa�Δ is finite-to-one for all
a ∈ I, or

(2) there is a g : Γ −→ ω such that g�a =∗ fa for all a ∈ I.

Proof. Let L be the family of all countable subsets b of Γ for which one can
find an a in I such that b \ a is finite and fa is finite-to-one on b. To see that
L is a P-ideal, let {bn} be a given sequence of members of L and for each n
fix a member an of I such that fan is finite-to-one on bn. Since I is a P-ideal,
we can find a ∈ I such that an \a is finite for all n. Note that for all n, bn \a
is finite and that fa is finite-to-one on bn. For n < ω, let

b∗
n = {ξ ∈ bn ∩ a : fa(ξ) > n}.

Then b∗
n is a cofinite subset of bn for each n, so if we set b to be equal to

the union of the b∗
n’s, we get a subset of a which almost includes each bn and
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on which fa is finite-to-one. It follows that b belongs to L. This completes
the proof that L is a P-ideal. Applying the P-ideal dichotomy to L, we get
the two alternatives that translate into the alternatives (1) and (2) of the
theorem. �

This leads to the natural question whether for any set Γ one can construct
a family {fa : a −→ ω} of finite-to-one mappings indexed by [Γ]ω. This
question was answered by Koszmider [26] using the notion of a Jensen matrix
discussed above. We shall present Koszmider’s result using the notion of a
cofinal Kurepa family instead.

13.22 Theorem. If Γ carries a cofinal Kurepa family then there is a coher-
ent family fa : a −→ ω (a ∈ [Γ]ω) of finite-to-one mappings.

Proof. Let K be a fixed well-founded cofinal K-family on Γ and let <w be a
well-ordering of K compatible with ⊆. It suffices to produce a coherent family
of finite-to-one mappings indexed by K. This is done by induction on <w.
Suppose K ∈ K and fH : H −→ ω is determined for all H ∈ K with H <w K.
Let Hn (n < ω) be a sequence of elements of K that are <w K and have the
property that for every H ∈ K with H <w K there is an n < ω such that
H ∩K =∗ Hn ∩K. So it suffices to construct a finite-to-one fK : K −→ ω
which coheres with each fHn (n < ω), a straightforward task. �

13.23 Corollary. For every nonnegative integer n there is a coherent family
fa : a −→ ω (a ∈ [ωn]ω) of finite-to-one mappings.

13.24 Remark. It is interesting that “finite-to-one” cannot be replaced by
“one-to-one” in these results. For example, there is no coherent family of
one-to-one mappings fa : a −→ ω (a ∈ [c+]ω). We finish this section with a
typical application of coherent families of finite-to-one mappings discovered
by Scheepers [44].

13.25 Theorem. If there is a coherent family fa : a −→ ω (a ∈ [Γ]ω)
of finite-to-one mappings, then there is an F : [[Γ]ω]2 −→ [Γ]<ω with the
property that for every strictly ⊆-increasing sequence an (n < ω) of count-
able subsets of Γ, the union of F (an, an+1) (n < ω) covers the union of
an (n < ω).

Proof. For a ∈ [Γ]ω let xa : ω −→ ω be defined by letting xa(n) = |{ξ ∈
a : fa(ξ) ≤ n}|. Note that xa is eventually dominated by xb whenever a is
a proper subset of b. Choose Φ : ωω −→ ωω with the property that x <∗ y
implies Φ(y) <∗ Φ(x), where <∗ is the ordering of eventual dominance on
ωω (i.e. x <∗ y if x(n) < y(n) for all but finitely many n’s). Define another
family of functions ga : a −→ ω (a ∈ [Γ]ω) by letting

ga(ξ) = Φ(xa)(fa(ξ)).

Note the following interesting property of ga (a ∈ [Γ]ω):

F (a, b) = {ξ ∈ a : gb(ξ) ≥ ga(ξ)} is finite for all a � b in [Γ]ω.
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So if an (n < ω) is a strictly ⊆-increasing sequence of countable subsets of Γ
and ξ̄ belongs to some an̄ then the sequence of integers gan(ξ̄) (n̄ ≤ n < ω)
must have some place n ≥ n̄ with the property that gan(ξ̄) < gan+1(ξ̄), i.e. a
place n ≥ n̄ such that ξ ∈ F (an, an+1). �

13.26 Remark. Note that if κ is a singular cardinal of cofinality ω with
the property that cf([θ]ω) < κ for all θ < κ, then the existence of a cofinal
Kurepa family on κ+ implies the existence of a Jensen matrix on κ+. So
these two notions appear to be quite close to each other. The three basic
properties of the function ρ : [κ+] −→ κ (Lemmas 11.5 and 11.6(a),(b)) seem
much stronger in view of the fact that the linear ordering as in Lemma 13.3
cannot exist for κ above a supercompact cardinal and the fact that Foreman
and Magidor [18] have produced a model with a supercompact cardinal that
carries a Jensen matrix on any successor of a singular cardinal of cofinal-
ity ω. The “Chang’s conjecture” (κ+, κ) � (ω1, ω) is the model-theoretic
transfer principle asserting that every structure of the form (κ+, κ,<, . . .)
with a countable signature has an uncountable elementary submodel B with
the property that B ∩ ω1 is countable. Note that (κ+, κ) � (ω1, ω) for some
singular κ of cofinality ω implies that every locally countable family K ⊆ [κ]ω

must have size ≤ κ. So, one of the models of set theory that has no cofinal
K-family on, say ℵω+1, is the model of Levinski, Magidor and Shelah [34],
in which (ℵω+1,ℵω) � (ω1, ω) holds. It seems still unknown whether the
conclusion of Theorem 13.25 can be proved without additional set-theoretic
assumptions.

14. The Oscillation Mapping

In what follows, θ will be a fixed regular infinite cardinal.

osc : P(θ)2 −→ Card

is defined by
osc(x, y) = |x \ (sup(x ∩ y) + 1)/ ∼ |,

where ∼ is the equivalence relation on x \ (sup(x∩ y) + 1) defined by letting
α ∼ β iff the closed interval determined by α and β contains no point from y.
So, if x and y are disjoint, osc(x, y) is simply the number of convex pieces the
set x is split by the set y. The oscillation mapping has proven to be a useful
device in various schemes for coding information. It usefulness in a given
context depend very much of the corresponding “oscillation theory”, a set of
definitions and lemmas that disclose when it is possible to achieve a given
number as oscillation between two sets x and y in a given family X . The
following definition reveals the notion of largeness relevant to the oscillation
theory that we develop in this section.

14.1 Definition. A family X ⊆ P(θ) is unbounded if for every closed and
unbounded subset C of θ there exist x ∈ X and an increasing sequence
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{δn : n < ω} ⊆ C such that sup(x ∩ δn) < δn and [δn, δn+1) ∩ x �= ∅ for all
n < ω.

This notion of unboundedness has proven to be the key behind a number
of results asserting the complex behavior of the oscillation mapping on X 2.
The case θ = ω seems to contain the deeper part of the oscillation theory
known so far (see [58], [59, §1] and [63]), though in this section we shall only
consider the case θ > ω. We shall also restrict ourselves to the family K(θ)
of all closed bounded subsets of θ rather than the whole power-set of θ. Our
next lemma is the basic result about the behavior of the oscillation mapping
in this context. Its proof can again be found in [66].

14.2 Lemma. If X is an unbounded subfamily of K(θ) then for every pos-
itive integer n there exist x and y in X such that osc(x, y) = n.

Lemma 14.2 also has a rectangular form.

14.3 Lemma. If X and Y are two unbounded subfamilies of K(θ) then for
all but finitely many positive integers n there exist x ∈ X and y ∈ Y such
that osc(x, y) = n.

Recall the notion of a nontrivial C-sequence Cα (α < θ) on θ from Sect. 8,
a C-sequence with the property that for every closed and unbounded subset
C of θ there is a limit point δ of C such that C ∩ δ � Cα for all α < θ.

14.4 Definition. For a subset D of θ let lim(D) denote the set of all α < θ
with the property that α = sup(D ∩ α). A subsequence Cα (α ∈ Γ) of some
C-sequence Cα (α < θ) is stationary if the union of all lim(Cα) (α ∈ Γ) is a
stationary subset of θ.

14.5 Lemma. A stationary subsequence of a nontrivial C-sequence on θ is
an unbounded family of subsets of θ.

Proof. Let Cα (α ∈ Γ) be a given stationary subsequence of a nontrivial C-
sequence on θ. Let C be a given closed and unbounded subset of θ. Let Δ
be the union of all lim(Cα) (α ∈ Γ). Then Δ is a stationary subset of θ. For
ξ ∈ Δ choose αξ ∈ Γ such that ξ ∈ lim(Cαξ

). Applying the assumption that
Cα (α ∈ Γ) is a nontrivial C-subsequence, we can find a ξ ∈ Δ∩ lim(C) such
that

C ∩ [η, ξ) � Cαξ
for all η < ξ. (3.12)

If such a ξ cannot be found using the stationarity of the set Δ ∩ lim(C) we
would be able to use the Pressing Down Lemma on the regressive mapping
that would give us an η < ξ violating (3.12) and get that a tail of C trivializes
Cα (α ∈ Γ). Using (3.12) and the fact that Cαξ

∩ ξ is unbounded in ξ we can
find a strictly increasing sequence δn (n < ω) of elements of (C∩ξ)\Cαξ

such
that [δn, δn+1) ∩ Cαξ

�= ∅ for all n. So the set Cαξ
satisfies the conclusion of

Definition 14.1 for the given closed and unbounded set C. �
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Recall that Qθ denotes the set of all finite sequences of ordinals < θ and
that we consider it ordered by the right lexicographical ordering. We need
the following two further orderings on Qθ: s ( t if and only if s is an initial
segment of t, and s � t if and only if s is a proper initial part of t.

14.6 Definition. Given a C-sequence Cα (α < θ) we can define an action
(α, t) �−→ αt of Qθ on θ recursively on the ordering ( of Qθ as follows:
α∅ = α, α〈ξ〉 is equal to the ξth member of Cα if ξ < tp(Cα); otherwise
α〈ξ〉 = α, and finally, αt� 〈ξ〉 = (αt)〈ξ〉.

14.7 Remark. Note that if ρ0(α, β) = t for some α < β < θ then βt = α. In
fact, if β = β0 > · · · > βn = α is the walk from β to α along the C-sequence,
each member of the trace Tr(α, β) = {β0, β1, . . . , βn} has the form βs where
s is the uniquely determined initial part of t. Note, however, that in general
βt = α does not imply that ρ0(α, β) = t.

14.8 Notation. Given a C-sequence Cα (α < θ) on θ we shall use osc(α, β)
to denote osc(Cα, Cβ).

The proof of the following result can be found in [66].

14.9 Theorem. If Cα (α < θ) is a nontrivial C-sequence on θ, then for
every unbounded set Γ ⊆ θ and positive integer n there exist α < β in Γ and
t ( ρ0(α, β) such that osc(αt, βt) = n, but osc(αs, βs) = 1 for all s � t.

14.10 Corollary. Suppose a regular uncountable cardinal θ carries a non-
trivial C-sequence. Then there is an f : [θ]2 −→ ω which takes all the values
from ω on any set of the form [Γ]2 for an unbounded subset of θ.

Proof. Given α < β < θ, if there is a t ( ρ0(α, β) satisfying the conclusion
of 14.9, put f(α, β) = osc(αt, βt)− 2; otherwise put f(α, β) = 0. �

14.11 Remark. The class of all regular cardinals θ that carry a nontrivial
C-sequence is quite extensive. It includes not only all successor cardinals
but also some inaccessible as well as hyperinaccessible cardinals such as for
example, the first inaccessible cardinal or the first Mahlo cardinal. In view
of the well-known Ramsey-theoretic characterization of weak compactness,
Corollary 14.10 leads us to the following natural question.

14.12 Question. Can the weak compactness of a strong limit regular un-
countable cardinal be characterized by the fact that for every f : [θ]2 −→ ω
there exists an unbounded set Γ ⊆ θ such that f“[Γ]2 �= ω? This is true
when ω is replaced by 2, but can any other number beside 2 be used in this
characterization?

15. The Square-Bracket Operation

In this section we show that the basic idea of the square-bracket operation
on ω1 introduced in Definition 4.3 extends to a general setting on an arbi-
trary uncountable regular cardinal θ that carries a nontrivial C-sequence Cα
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(α < θ). The basic idea is based on the oscillation map defined in the pre-
vious section and, in particular, on the property of this map described in
Theorem 14.9: for α < β < θ we set

[αβ] = βt, where t ( ρ0(α, β) is such that osc(αt, βt) ≥ 2
but osc(αs, βs) = 1 for all s � t; if such a t does not exist,
we let [αβ] = α.

(3.13)

Thus, [αβ] is the first place visited by β on its walk to α where a nontrivial
oscillation with the corresponding step of α occurs. What Theorem 14.9
is telling us is that the nontrivial oscillation indeed happens most of the
time. Results that would say that the set of values {[αβ] : {α, β} ∈ [Γ]2}
is in some sense large no matter how small the unbounded set Γ ⊆ θ is,
would correspond to the results of Lemmas 4.4–4.5 about the square-bracket
operation on ω1. It turns out that this is indeed possible and to describe it
we need the following definition.

15.1 Definition. A C-sequence Cα (α < θ) on θ avoids a given subset Δ of
θ if Cα ∩Δ = ∅ for all limit ordinals α < θ.

The proof of the following lemma is quite similar to the proof of the cor-
responding fact in case θ = ω1 considered above though its full proof can be
found in [66].

15.2 Lemma. Suppose Cα (α < θ) is a given C-sequence on θ that avoids
a set Δ ⊆ θ. Then for every unbounded set Γ ⊆ θ, the set of elements of Δ
not of the form [αβ] for some α < β in Γ is nonstationary in θ.

A similar proof gives the following more general result.

15.3 Lemma. Suppose Cα (α < θ) avoids Δ ⊆ θ and let A be a family of
size θ consisting of pairwise disjoint finite sets, all of some fixed size n. Then
the set of all elements of Δ that are not of the form [a(1)b(1)] = [a(2)b(2)] =
· · · = [a(n)b(n)] for some a �= b in A is nonstationary in θ.

Since [αβ] belongs to the trace Tr(α, β) of the walk from β to α it is not
surprising that [··] strongly depends on the behavior of Tr. The following is
one of the results which brings this out.

15.4 Lemma. The set Ω \ {[αβ] : {α, β} ∈ [Γ]2} is not stationary in θ if
and only if the set Ω \

⋃
{Tr(α, β) : {α, β} ∈ [Γ]2} is not stationary in θ.

This fact suggests the following definition.

15.5 Definition. The trace filter of a given C-sequence Cα (α < θ) is the
normal filter on θ generated by sets of the form

⋃
{Tr(α, β) : {α, β} ∈ [Γ]2}

where Γ is an unbounded subset of θ.
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15.6 Remark. Having a proper (i.e. �= P(θ)) trace filter is a strengthening
of the nontriviality requirement on a given C-sequence Cα (α < θ). For
example, if a C-sequence avoids a stationary set Ω ⊆ θ, then its trace filter is
nontrivial and in fact no stationary subset of Γ is a member of it. Note the
following analogue of Lemma 15.4: the trace filter of a given C-sequence is the
normal filter generated by sets of the form {[αβ] : {α, β} ∈ [Γ]2} where Γ is
an unbounded subset of θ. So to obtain the analogues of the results of Sect. 4
about the square-bracket operation on ω1 one needs a C-sequence Cα (α < θ)
on θ whose trace filter is not only nontrivial but also not θ-saturated, i.e. it
allows a family of θ pairwise disjoint positive sets. It turns out that the
hypothesis of Lemma 15.2 is sufficient for both of these conclusions.

15.7 Lemma. If a C-sequence on θ avoids a stationary subset of θ, then
there exist θ pairwise disjoint subsets of θ that are positive with respect to its
trace filter.18

Proof. This follows from the well-known fact (see [25]) that if there is a
normal, nontrivial and θ-saturated filter on θ, then for every stationary Ω ⊆ θ
there exists a λ < θ such that Ω ∩ λ is stationary in λ (and the fact that
the stationary set which is avoided by the C-sequence does not reflect in this
way). �

15.8 Corollary. If a regular cardinal θ admits a nonreflecting stationary
subset then there is a c : [θ]2 −→ θ which takes all the values from θ on any
set of the form [Γ]2 for some unbounded set Γ ⊆ θ.

To get such a c, one composes the square-bracket operation of some C-
sequence, that avoids a stationary subset of θ, with a mapping ∗ : θ −→ θ
with the property that the ∗-preimage of each point from θ is positive with
respect to the trace filter of the square sequence. In other words, c is equal
to the composition of [··] and ∗, i.e. c(α, β) = [αβ]∗. Note that, as in Sect. 4,
the property of the square-bracket operation from Lemma 15.3 leads to the
following rigidity result which corresponds to Lemma 4.7.

15.9 Lemma. The algebraic structure (θ, [··], ∗) has no nontrivial automor-
phisms.

15.10 Remark. Note that every θ which is a successor of a regular cardinal κ
admits a nonreflecting stationary set. For example, Ω = {δ < θ : cf(δ) = κ}
is such a set. Thus any C-sequence on θ that avoids Ω leads to a square
bracket operation which allows analogues of all the results from Sect. 4 about
the square-bracket operation on ω1. The reader is urged to examine these
analogues.

Let us now introduce a useful projection of the square-bracket operation,
the analogue of Definition 4.11 considered above. This concerns the case
18 A subset A of the domain of some filter F is positive with respect to F if A ∩ F �= ∅
for every F ∈ F .
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when θ is the successor of some regular cardinal κ and when the square-
bracket operation is based on a fixed C-sequence Cα (α < κ+) on κ+ such
that tp(Cα) ≤ κ for all α, or equivalently, such that Cα (α < κ+) avoids
the set Ωκ = {δ < κ+ : cf(δ) = κ}. Let [··] be the corresponding square-
bracket operation. Let λ be the minimal cardinal such that 2λ ≥ κ+. Choose
a sequence rξ (ξ < κ+) of distinct subsets of λ. Let H be the collection
of all maps h : P(D(h)) −→ κ+ where D(h) is a finite subset of λ. Let
π : κ+ −→ H be a map with the property that π−1({h}) ∩ Ωκ is stationary
for all h ∈ H. Finally, define an operation [[··]] on κ+ as follows:

[[αβ]] = π([αβ])(rα ∩D(π([αβ]))).

The following is a simple consequence of the property Lemma 15.3 of the
square-bracket operation.

15.11 Lemma. For every family A of size κ+ consisting of pairwise disjoint
finite subsets of κ+ all of some fixed size n and every sequence ξ0, . . . , ξn−1

of ordinals < κ+ there exist a �= b in A such that [[a(i)b(i)]] = ξi for all i < n.

For sufficiently large cardinals θ we have the following variation on the
theme first encountered above in Theorem 8.2 and the reader can find its full
proof in [66].

15.12 Theorem. Suppose θ is bigger than the continuum and carries a C-
sequence avoiding a stationary set Γ of cofinality > ω ordinals in θ. Let A
be a family of θ pairwise disjoint finite subsets of θ, all of some fixed size n.
Then for every stationary Γ0 ⊆ Γ there exist s, t ∈ ωn and a positive integer
k such that for every l < ω there exist a < b 19 in A and δ0 > δ1 > · · · > δl

in Γ0 ∩ (max(a),min(b)) such that:

(1) ρ2(δi+1, δi) = k for all i < l,

(2) ρ0(a(i), b(j)) = ρ0(δ0, b(j))�ρ0(δ1, δ0)� · · ·�ρ0(δl, δl−1)�ρ0(a(i), δl)
for all i, j < n,

(3) ρ2(δ0, b(j)) = tj and ρ2(a(i), δl) = si for all i, j < n.

From now on, θ is assumed to be a fixed cardinal satisfying the hypotheses
of Theorem 15.12. It turns out that Theorem 15.12 gives us a way to define
another square-bracket operation which has complex behavior not only on
squares of unbounded subsets of θ but also on rectangles formed by two
unbounded subsets of θ. To define this new operation we choose a mapping
h : ω −→ ω such that:

for every k,m, n, p < ω and s ∈ ωn there is an l < ω such
that h(m + l · k + s(i)) = m + p for all i < n. (3.14)

19 Recall that if a and b are two sets of ordinals, then the notation a < b means that
max(a) < min(b).
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15.13 Definition. [··]h : [θ]2 −→ θ is defined by letting [αβ]h = βt where
t = ρ0(α, β)�h(ρ2(α, β)).

Thus, [αβ]h is the h(ρ2(α, β))th place that β visits on its walk to α. It is
clear that Theorem 15.12 and the choice of h in (3.14) give us the following
conclusion.

15.14 Lemma. Let A be a family of θ pairwise disjoint finite subsets of θ,
all of some fixed size n, and let Ω be an unbounded subset of θ. Then almost
every δ ∈ Γ has the form [a(0)β]h = [a(1)β]h = · · · = [a(n − 1)β]h for some
a ∈ A, β ∈ Ω, a < β.20

In fact, one can get a projection of this square-bracket operation with seem-
ingly even more complex behavior. Keeping the notation of Theorem 15.12,
pick a function ξ �−→ ξ∗ from θ to ω such that {ξ ∈ Γ : ξ∗ = n} is stationary
for all n. This gives us a way to consider the following projection of the trace
function Tr∗ : [θ]2 −→ ω<ω:

Tr∗(α, β) = 〈min(Cβ \ α)∗〉�Tr∗(α,min(Cβ \ α)),

where we stipulate that Tr∗(γ, γ) = 〈γ∗〉 for all γ < θ. It is clear that the
proof of Theorem 15.12 allows us to add the following conclusions:

15.12∗ Theorem. Under the hypothesis of Theorem 15.12, its conclusion
can be extended by adding the following two new statements:

(4) Tr∗(δ1, δ0) = · · · = Tr∗(δl, δl−1),

(5) The maximal term of the sequence Tr∗(δ1, δ0) = · · · = Tr∗(δl, δl−1) is
bigger than the maximal term of any of the sequences Tr∗(δ0, b(j)) or
Tr∗(a(i), δl) for i, j < n.

15.15 Definition. For α < β < θ, let [αβ]∗ = βt for t the minimal initial
part of ρ0(α, β) such that β∗

t = max(Tr∗(α, β)).

Thus [αβ]∗ is the first place in the walk from β to α where the function
∗ reaches its maximum among all other places visited during the walk. Note
that combining the conclusions (1)–(5) of Theorem 15.12(∗) we get:

15.12∗ ∗ Theorem. Under the hypothesis of Theorem 15.12, its conclusion
can be extended by adding the following:

(6) [a(i)b(j)]∗ = [δ1δ0]∗ for all i, j < n.

Having in mind the property of [··]h stated in Lemma 15.14, the following
variation is now quite natural.

15.16 Definition. [αβ]∗
h = [α[αβ]∗]h for α < β < θ.

20 Here “almost every” is to be interpreted by “all except a nonstationary set”.
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Using Theorem 15.12(∗ ∗)(1)–(6) one easily gets the following conclusion.

15.17 Lemma. Let A be a family of θ pairwise disjoint finite subsets of θ,
all of some fixed size n. Then for all but nonstationarily many δ ∈ Γ one can
find a < b in A such that [a(i)b(j)]∗

h = δ for all i, j < n.

15.18 Remark. Composing [··]∗
h with a mapping π : θ −→ θ with the prop-

erty that π−1({ξ})∩Γ is stationary for all ξ < θ, one gets a projection of [··]∗
h

for which the conclusion of Lemma 15.17 is true for all δ < κ. Assuming that
θ is moreover a successor of a regular cardinal κ (of size at least continuum),
in which case Γ can be taken to be {δ < κ+ : cf(δ) = κ}, and proceeding as
in 15.11 above we get a projection [[··]]∗

h with the following property:

15.19 Lemma. For every family A of pairwise disjoint finite subsets of κ+

all of some fixed size n and for every q : n× n −→ κ+ there exist a < b in A
such that [[a(i)b(j)]]∗

h = q(i, j) for all i, j < n.

15.20 Remark. The first example of a cardinal with such a complex bi-
nary operation was given by the author [58] using the oscillation mapping
described above in Sect. 14. It was the cardinal b, the minimal cardinality
of an unbounded subset of ωω under the ordering of eventual dominance.
The oscillation mapping restricted to some well-ordered unbounded subset
W of ωω is perhaps still the most interesting example of this kind due to
the fact that its properties are preserved in forcing extensions that do not
change the unboundedness of W (although they can collapse cardinals and
therefore destroy the properties of the square-bracket operations on them).
This absoluteness of osc is the key feature behind its applications in various
coding procedures (see e.g. [61]).

15.21 Theorem. For every regular cardinal κ of size at least the continuum,
the κ+-chain condition is not productive, i.e. there exist two partially ordered
sets P0 and P1 satisfying the κ+-chain condition but their product P0 × P1

fails to have this property.

Proof. Fix two disjoint stationary subsets Γ0 and Γ1 of {δ < κ+ : cf(δ) = κ}.
Let Pi be the collection of all finite subsets p of κ+ with the property that
[αβ]∗

h ∈ Γi for all α < β in p. By Lemma 15.17, P0 and P1 are κ+-c.c. posets.
Their product P0 × P1, however, contains a family 〈{α}, {α}〉 (α < κ+) of
pairwise incomparable conditions. �

15.22 Remark. Theorem 15.21 is due to Shelah [48] who proved it using
similar methods. The first ZFC examples of non-productiveness of the κ+-
chain condition were given by the author in [57] using what is today known
under the name pcf theory. After the full development of pcf theory it became
apparent that the basic construction from [57] applies to every successor of
a singular cardinal [49]. A quite different class of cardinals θ with θ-c.c. non-
productive was given by the author in [56]. For example, θ = cf(c) is one of
these cardinals. For an overview of recent advances in this area, the reader
is referred to [37]. The following problem seems still open:
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15.23 Question. Suppose that θ is a regular strong limit cardinal and the
θ-chain condition is productive. Is θ necessarily a weakly compact cardinal?

16. Unbounded Functions on Successors
of Regular Cardinals

In this section, κ is a regular cardinal and Cα (α < κ+) is a fixed sequence
with tp(Cα) ≤ κ for all α < κ+. Define ρ∗ : [κ+]2 −→ κ by

ρ∗(α, β) = sup{tp(Cβ ∩α), ρ∗(α,min(Cβ \α)), ρ∗(ξ, α) : ξ ∈ Cβ ∩α}, (3.15)

where we stipulate that ρ∗(γ, γ) = 0 for all γ < κ+. Since ρ∗(α, β) ≥ ρ1(α, β)
for all α < β < κ+ by Lemma 7.1 we have the following:

16.1 Lemma. For ν < κ, α < κ+ the set Pν(α) = {ξ ≤ α : ρ∗(ξ, α) ≤ ν}
has size no more than |ν|+ ℵ0.

The proof of the following subadditivity properties of ρ∗ is very similar to
the proof of the corresponding fact for the function ρ from Sect. 11.

16.2 Lemma. For all α ≤ β ≤ γ,

(a) ρ∗(α, γ) ≤ max{ρ∗(α, β), ρ∗(β, γ)},

(b) ρ∗(α, β) ≤ max{ρ∗(α, γ), ρ∗(β, γ)}.

We mention a typical application of this function to the problem of the
existence of partial square sequences which, for example, have some applica-
tions in pcf theory (see [7]).

16.3 Theorem. For every regular uncountable cardinal λ < κ and stationary
Γ ⊆ {δ < κ+ : cf(δ) = λ}, there is a stationary set Σ ⊆ Γ and a sequence
Cα (α ∈ Σ) such that:

(1) Cα is a closed and unbounded subset of α,

(2) Cα ∩ ξ = Cβ ∩ ξ for every ξ ∈ Cα ∩ Cβ.

Proof. For each δ ∈ Γ, choose ν = ν(δ) < κ such that the set P<ν(δ) =
{ξ < δ : ρ∗(ξ, δ) < ν} is unbounded in δ and closed under taking suprema of
sequences of size < λ. Then there are ν̄, μ̄ < κ and stationary Σ ⊆ Γ such
that ν(δ) = ν̄ and tp(P<ν̄(δ)) = μ̄ for all δ ∈ Σ. Let C be a fixed closed and
unbounded subset of μ̄ of order-type λ. Finally, for δ ∈ Γ set

Cδ = {α ∈ P<ν̄(δ) : tp(P<ν̄(α)) ∈ C}.

Using Lemma 16.2, one easily checks that Cα (α ∈ Σ) satisfies the conditions
(1) and (2). �
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Another application concerns the fact described above in Sect. 13, that
the inequalities from Lemma 16.2(a),(b) are particularly useful when κ has
cofinality ω. Also consider the well-known phenomenon first discovered by
Prikry (see [25]), that in some cases, the cofinality of a regular cardinal κ can
be changed to ω, while preserving all cardinals.

16.4 Theorem. In any cardinal-preserving extension of the universe which
has no new bounded subsets of κ, but in which κ has a cofinal ω-sequence
diagonalizing the filter of closed and unbounded subsets of κ restricted to the
ordinals of cofinality > ω, there is a sequence Cαn(α ∈ lim (κ+), n < ω) such
that for all α < β in lim(κ+):

(1) Cαn is a closed subset of α for all n,

(2) Cαn ⊆ Cαm, whenever n ≤ m,

(3) α =
⋃

n<ω Cαn,

(4) α ∈ lim(Cβn) implies Cαn = Cβn ∩ α.

Proof. For α < κ+, let Dα be the collection of all ν < κ for which P<ν(α)
is σ-closed, i.e. closed under suprema of bounded countable subsets. Clearly,
Dα contains a closed unbounded subset of κ, restricted to cofinality > ω
ordinals. Note that ν ∈ Dβ and ρ∗(α, β) < ν imply that ν ∈ Dα. In the
extended universe, pick a strictly increasing sequence νn (n < ω) which
converges to κ and has the property that for each α < κ+ there is an n < ω
such that νm ∈ Dα for all m ≥ n. Let n(α) be the minimal integer n with
this property.

Given α < κ+ and n < ω, we define Cαn according to the following cases.
If there is a γ ≥ α such that n ≥ n(γ) and supPνn(γ) ∩ α = α, let γ(α, n)
be the minimal such γ and let Cαn = Pνn(γ(α, n)) ∩ α. If there is no such
γ ≥ α, we let Cαn = ∅ for n < n(α) and Cαn = Pνn(α) ∩ α for n ≥ n(α).

Then one can easily verify that Cαn (α < κ+, n < ω) satisfies the condi-
tions (1), (2), (3) and (4). Detailed checking of this, however, can be found
in [66]. �

16.5 Remark. The combinatorial principle appearing in the statement of
Theorem 16.4 is a member of a family of square principles that has been stud-
ied systematically by Schimmerling and others (see e.g. [45]). It is definitely
a principle sufficient for all of the applications of �κ appearing in Sect. 13
above.

16.6 Definition. A function f : [κ+]2 −→ κ is unbounded if f“[Γ]2 is un-
bounded in κ for every Γ ⊆ κ+ of size κ. We shall say that such an f is
strongly unbounded if for every family A of size κ+, consisting of pairwise
disjoint finite subsets of κ+, and every ν < κ there exists an A0 ⊆ A of size
κ such that f(α, β) > ν for all α ∈ a, β ∈ b and a �= b in A0.
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16.7 Lemma. If f : [κ+]2 −→ κ is unbounded and subadditive (i.e. it satis-
fies the two inequalities 16.2(a),(b)), then f is strongly unbounded.

Proof. For α < β < κ+, set α <ν β if and only if f(α, β) ≤ ν. Then our
assumption about f satisfying Lemma 16.2(a) and (b) reduces to the fact that
each <ν is a tree ordering on κ+ compatible with the usual ordering on κ+.
Note that the unboundedness property of f is preserved by any forcing notion
satisfying the κ-chain condition, so in particular no tree (κ+, <ν) can contain
a subtree of height κ which is Souslin. In the proof of Lemma 12.4 above
we have seen that this property of (κ+, <ν) alone is sufficient to conclude
that every family A of κ many pairwise disjoint subsets of κ+ contains a
subfamily A0 of size κ such that for every a �= b in A0 every α ∈ a is <ν-
incomparable to every β ∈ b, which is exactly the conclusion of f being
strongly unbounded. �

The following useful facts whose proof can be found in [66] relates the
notions of unboundedness and subadditivity.

16.8 Lemma. The following are equivalent:

(1) There is a structure (κ+, κ,<,Rn)n<ω with no substructure B of size κ
such that B ∩ κ is bounded in κ.

(2) There is an unbounded function f : [κ+]2 −→ κ.

(3) There is a strongly unbounded, subadditive function f : [κ+]2 −→ κ.

16.9 Remark. Recall that Chang’s Conjecture is the model-theoretic trans-
fer principle asserting that every structure of the form (ω2, ω1, <, . . .) with
a countable signature has an uncountable elementary submodel B with the
property that B∩ω1 is countable. This principle shows up in many consider-
ations including the first two uncountable cardinals ω1 and ω2. For example,
it is known that it is preserved by c.c.c. forcing extensions, that it holds in
the Silver collapse of an ω1-Erdős cardinal, and that it in turn implies that
ω2 is an ω1-Erdős cardinal in the core model of Dodd and Jensen (see e.g. [12,
25]).

16.10 Corollary. The negation of Chang’s Conjecture is equivalent to the
statement that there exists an e : [ω2]2 −→ ω1 such that:

(a) e(α, γ) ≤ max{e(α, β), e(β, γ)} whenever α ≤ β ≤ γ,

(b) e(α, β) ≤ max{e(α, γ), e(β, γ)} whenever α ≤ β ≤ γ,

(c) For every uncountable family A of pairwise disjoint finite subsets of
ω2 and every ν < ω1 there exists an uncountable A0 ⊆ A such that
e(α, β) > ν whenever α ∈ a and β ∈ b for every a �= b ∈ A0.
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16.11 Remark. Note that if a mapping e : [ω2]2 −→ ω1 has properties
(a), (b) and (c) of Corollary 16.10, then De : [ω2]2 −→ [ω2]ℵ0 defined by
De{α, β} = {ξ ≤ min{α, β} : e(ξ, α) ≤ e{α, β}} satisfies the weak form of
the Baumgartner-Shelah definition of a Δ-function considered above, where
only the first condition is kept. It could be shown, however, that all three
properties of a Δ-function cannot be achieved assuming only the negation
of Chang’s Conjecture. This shows that the function ρ, based on a �ω1 -
sequence, is a considerably deeper object than an e : [ω2]2 −→ ω1 satisfying
Corollary 16.10(a),(b),(c).

Recall that the successor of the continuum is characterized as the minimal
cardinal θ with the property that every f : [θ]2 −→ ω is constant on the square
of some infinite set. We shall now see that in slightly weakening the partition
property by replacing squares by rectangles one gets a characterization of a
quite different sort. To see this, let us use the arrow notation

(
θ
θ

)

−→
(
ω
ω

)1,1

ω

to succinctly express the statement that for every map f : θ× θ −→ ω, there
exist infinite sets A,B ⊆ θ such that f is constant on their product. Let θ2

be the minimal θ which fails to satisfy this property. Note that ω1 < θ2 ≤ c+.
The following result whose proof can be found in [66] shows that θ2 can have
the minimal possible value ω2, as well as that θ2 can be considerably smaller
than the continuum.

16.12 Theorem. Chang’s Conjecture is equivalent to the statement that
(
ω2

ω2

)

−→
(
ω
ω

)1,1

ω

holds in every c.c.c. forcing extension.

16.13 Remark. The relative size of θ2 (or its higher-dimensional analogues
θ3, θ4, . . .) in comparison to the sequence of cardinals ω2, ω3, ω4, . . . is of con-
siderable interest, both in set theory and model theory (see e.g. [47, 60, 62]).
On the other hand, even the following most simple questions, left open by
Theorem 16.12, are still unanswered.

16.14 Question. Can one prove any of the bounds like θ2 ≤ ω3, θ3 ≤ ω4,
θ4 ≤ ω5, etc. without appealing to additional axioms?

Note that by Corollary 16.10, Chang’s Conjecture is equivalent to the
statement that within every decomposition of the usual ordering on ω2 as an
increasing chain of tree orderings, one of the trees has an uncountable chain.
Is it possible to have decompositions of ∈�(ω2 × ω2) into an increasing ω1-
chain of tree orderings of countable heights? It turns out that the answer to
this question is equivalent to a different well-known combinatorial statement
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about ω2 rather than Chang’s Conjecture itself. Recall that f : [κ+]2 −→ κ
is transitive if f(α, γ) ≤ max{f(α, β), f(β, γ)} whenever α ≤ β ≤ γ. Given
a transitive map f : [κ+]2 −→ κ, one defines ρf : [κ+]2 −→ κ recursively on
α ≤ β < κ+ as follows

ρf (α, β) = sup{f(min(Cβ \ α), β), tp(Cβ ∩ α),
ρf (α,min(Cβ \ α)), ρf (ξ, α) : ξ ∈ Cβ ∩ α},

where we stipulate that ρf (α, α) = 0 for all α < κ+.

16.15 Lemma. For every transitive map f : [κ+]2 −→ κ the corresponding
ρf : [κ+]2 −→ κ has the following properties:

(a) ρf (α, γ) ≤ max{ρf (α, β), ρf (β, γ)} whenever α ≤ β ≤ γ,

(b) ρf (α, β) ≤ max{ρf (α, γ), ρf (β, γ)} whenever α ≤ β ≤ γ,

(c) |{ξ ≤ α : ρf (ξ, α) ≤ ν}| ≤ |ν|+ ℵ0 for ν < κ and α < κ+,

(d) ρf (α, β) ≥ f(α, β) for all α < β < κ+.

Transitive maps are frequently used combinatorial objects, especially when
one works with quotient structures. Adding the extra subadditivity condition
Lemma 16.15(b), one obtains a considerably more subtle object which is much
less understood. For example, let fα : κ −→ κ (α < κ+) be a given sequence
of functions such that fα <∗ fβ whenever α < β.21 Then the corresponding
transitive map f : [κ+]2 −→ κ is defined by f(α, β) = min{μ < κ : fα(ν) <
fβ(ν) for all ν ≥ μ}. Let ρf be the corresponding ρ-function that dominates
this particular f and for ν < κ let <f

ν be the corresponding tree ordering of
κ+, i.e., α <f

ν β if and only if ρf (α, β) ≤ ν.

16.16 Lemma. Suppose fα ≤ g for all α < κ+ where ≤ is the ordering of
everywhere dominance. Then for every ν < κ the tree (κ+, <f

ν ) has height
≤ g(ν).

Proof. Let P be a maximal chain of (κ+, <f
ν ). f(α, β) ≤ ρf (α, β) ≤ ν for

every α < β in P . It follows that fα(ν) < fβ(ν) ≤ g(ν) for all α < β in P .
So P has order-type ≤ g(ν). �

Note that if we have a function g : κ −→ κ which bounds the sequence
fα (α < κ+) in the ordering <∗ of eventual dominance, then the new sequence
f̄α = min{fα, g} (α < κ+) is still strictly <∗-increasing but now bounded by
g even in the ordering of everywhere dominance. So this proves the following
result of Galvin (see [22, 42]).

16.17 Corollary. The following two conditions are equivalent for every reg-
ular cardinal κ.
21 Here, fα <∗ fβ whenever {ν < κ : fα(ν) ≥ fβ(ν)} is bounded in κ.
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(1) There is a sequence fα : κ −→ κ (α < κ+) which is strictly increasing
and bounded in the ordering of eventual dominance.

(2) The usual order-relation of κ+ can be decomposed into an increasing
κ-sequence of tree orderings of heights < κ.

16.18 Remark. The assertion that every strictly <∗-increasing κ+-sequen-
ce of functions from κ to κ is <∗-unbounded is strictly weaker than Chang’s
Conjecture and in the literature it is usually referred to as weak Chang’s
Conjecture. This statement still has considerable large cardinal strength (see
[11]). Also note the following consequence of Corollary 16.17 which can be
deduced from Lemmas 16.1 and 16.2 above as well.

16.19 Corollary. If κ is a regular limit cardinal (e.g. κ = ω), then the usual
order-relation of κ+ can be decomposed into an increasing κ-sequence of tree
orderings of heights < κ.

17. Higher Dimensions

The reader must have noticed already that in this chapter so far, we have only
considered functions of the form f : [θ]2 −→ I or equivalently sequences fα :
α −→ I (α < θ) of one-place functions. To obtain analogous results about
functions defined on higher-dimensional cubes [θ]n one usually develops some
form of stepping-up procedure that lifts a function of the form f : [θ]n −→ I to
a function of the form g : [θ+]n+1 −→ I. The basic idea seems quite simple.
One starts with a coherent sequence eα : α −→ θ (α < θ+) of one-to-one
mappings and wishes to define g : [θ+]n+1 −→ I as follows:

g(α0, α1, . . . , αn) = f(eαn(α0), . . . , eαn(αn−1)). (3.16)

In other words, we use eαn to send {α0, . . . , αn−1} to the domain of f and then
apply f to the resulting n-tuple. The problem with such a simple-minded
definition is that for a typical subset Γ of θ+, the sequence of restrictions
eδ�(Γ ∩ δ) (δ ∈ Γ) may not cohere, so we cannot produce a subset of θ that
would correspond to Γ and on which we would like to apply some property
of f . It turns out that the definition (3.16) is basically correct except that
we need to replace eαn by eτ(αn−2,αn−1,αn), where τ : [θ+]3 −→ θ+ is defined
as follows (see Definition 14.6):

τ(α, β, γ) = γt, where t = ρ0(α, γ) ∩ ρ0(β, γ). (3.17)

The function ρ0 to which (3.17) refers is of course based on some C-sequence
Cα (α < θ+) on θ+. The following result shows that if the C-sequence
is carefully chosen, the function τ will serve as a stepping-up tool. The
following lemma whose proof can be found in [66] gives the basic idea behind
this.
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17.1 Lemma. Suppose ρ0 and τ are based on some �θ-sequence Cα (α < θ+)
and let κ be a regular uncountable cardinal ≤ θ. Then every set Γ ⊆ θ+ of
order-type κ contains a cofinal subset Δ such that, if ε = sup(Γ) = sup(Δ),
then ρ0(ξ, ε) = ρ0(ξ, τ(α, β, γ)) for all ξ < α < β < γ in Δ.

Recall that for a given C-sequence Cα (α < θ+) such that tp(Cα) ≤ θ for
all α < θ+, the range of ρ0 is the collection of all finite sequences of ordinals
< θ. There is a natural way to identify Qθ with θ itself via the well-ordering
of Qθ of length θ: s <w t if and only if max(s) < max(t), or max(s) = max(t)
and t ⊆ s, or max(s) = max(t) and s(i) �= t(i) for some i in the common
domain of s and t and s(i) < t(i) for the minimal such i. This identification
gives us a way to define a lift-up of an arbitrary map f : [θ]n −→ I (really,
f : [Qθ]n −→ I) to a map f+ : [θ+]n+1 −→ I by the following formula:

f+(α0, . . . , αn−1, αn) = f(ρ0(α0, ε), . . . , ρ0(αn−1, ε)), (3.18)

where ε = τ(αn−2, αn−1, αn).
Let us examine how this stepping-up procedure works on a particular

example, a combinatorial property of a function f which has been stepped
up by Velleman [69] from n = 3 to n = 4 using his version of the gap-2
morass.

17.2 Theorem. Suppose θ is an arbitrary cardinal for which �θ holds. Sup-
pose further that for some regular κ > ω and integer n ≥ 2 there is a map
f : [θ]n −→ [[θ]<κ]<κ such that:

(1) A ⊆ min(a) for all a ∈ [θ]n and A ∈ f(a).

(2) For all ν < κ and Γ ⊆ θ of size κ there exist a ∈ [Γ]n and A ∈ f(a)
such that tp(A) ≥ ν and A ⊆ Γ.

Then θ+ and κ satisfy the same combinatorial property, but with n + 1 in
place of n.

Proof. Identifying Qθ with θ using the wellordering <w defined above, we
assume that actually f : [Qθ]n −→ [[Qθ]<κ]<κ. Apply the idea of (3.18) and
define g : [θ+]n −→ [[θ+]<κ]<κ by the formula

g(α0, . . . , αn−1, αn) = (ρ0)−1
ε (f(ρ0(α0, ε), . . . , ρ0(αn−1, ε))),

where ε = τ(αn−2, αn−1, αn) and where τ is based on a fixed �θ-sequence.

Note that the transformation (ρ0)−1
ε does not necessarily preserve (1), so

we intersect each member of a given g(a) with min(a) in order to satisfy this
condition. To check (2), let Γ ⊆ θ+ be a given set of size κ. By Lemma 17.1,
shrinking Γ we may assume that Γ has order-type κ and that if ε = sup(Γ),
then

ρ0(ξ, ε) = ρ0(ξ, τ(α, β, γ)) for all α < β < γ in Γ. (3.19)
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It follows that g restricted to [Γ]n+1 satisfies the formula

g(α0, . . . , αn−1, αn) = (ρ0)−1
ε (f(ρ0(α0, ε), . . . , ρ0(αn−1, ε))). (3.20)

Shrinking Γ further we assume that the mapping (ρ0)ε : (ε,∈) −→ (Qθ, <w)
is strictly increasing, when restricted to Γ. Given an ordinal ν < κ, we apply
(2) for f to the set Δ = {ρ0(α, ε) : α ∈ Γ} and find a ∈ [Δ]n and A ∈ f(a)
such that tp(A) ≥ ν and A ⊆ Δ. Let {α0, . . . , αn−1} be the increasing
enumeration of the preimage (ρ0)−1

ε (a) and pick αn ∈ Γ above αn−1. Let B
be the preimage (ρ0)−1

ε (A). Then B ∈ g(α0, . . . , αn−1, αn), tp(B) ≥ ν and
B ⊆ Γ. This completes the proof. �

If we apply this stepping-up procedure to the projection [[··]] of the square-
bracket operation defined in Definition 4.11, one obtains analogues of families
G,H and K of Theorem 4.13 for ω2 instead of ω1. This will give us the
following result whose proof can be found in [66].

17.3 Theorem. Assuming �ω1 , there is a reflexive Banach space E with
a transitive basis of type ω2 with the property that every bounded operator
T : E −→ E can be written as a sum of an operator with a separable range and
a diagonal operator (relative to the basis) with only countably many changes
of constants.

17.4 Remark. In [28], Koszmider has shown that such a space cannot be
constructed on the basis of the usual axioms of set theory. We refer the reader
to that paper for more details about these kinds of examples of Banach spaces.

For the rest of this section we shall examine the stepping-up method with
fewer restrictions on the given C-sequence Cα (α < θ+) on which it is based.

17.5 Theorem. The following are equivalent for a regular cardinal θ such
that log θ+ = θ.22

(1) There is a substructure of the form (θ++, θ+, <, . . .) with no substruc-
ture B of size θ+ with B ∩ θ+ of size θ.

(2) There is an f : [θ++]3 −→ θ+ which takes all the possible values on the
cube of any subset Γ of θ++ of size θ+.

Proof. To prove the nontrivial direction from (1) to (2), we use Lemma 16.8
and choose a strongly unbounded and subadditive e : [θ++]2 −→ θ+. We
also choose a C-sequence Cα (α < θ+) such that tp(Cα) ≤ θ for all α < θ+

and consider the corresponding function ρ∗ : [θ+]2 −→ θ defined above in
(3.15). Finally, we choose a one-to-one sequence rα (α < θ++) of elements of
{0, 1}θ+

and consider the corresponding function Δ : [θ++]2 −→ θ+:

Δ(α, β) = Δ(rα, rβ) = min{ν : rα(ν) �= rβ(ν)}. (3.21)

22 log κ = min{λ : 2λ ≥ κ}.
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The definition of f : [θ++]3 −→ θ is given according to the following two
rules applied to a given triple x = {α, β, γ} ∈ [θ++]3 (α < β < γ):

Rule 1. If Δ(rα, rβ) < Δ(rβ , rγ) and rα <lex rβ <lex rγ or rα >lex rβ >lex

rγ , let
f(α, β, γ) = min(Pν(Δ(β, γ)) \Δ(α, β)),

where ν = ρ∗(min{ξ ≤ Δ(α, β) : ρ∗(ξ,Δ(α, β)) �= ρ∗(ξ,Δ(β, γ))},Δ(β, γ)).

Rule 2. If α ∈ x is such that rα is lexicographically between the other two
rξ’s for ξ ∈ x, if β ∈ x \ {α} is such that Δ(rα, rβ) > Δ(rα, rγ), where γ is
the remaining element of x and if x does not fall under Rule 1, let

f(α, β, γ) = min(Pν(e(β, γ)) \ e(α, β)),

where ν = ρ∗{Δ(α, β), e(β, γ)}.
The proof of the theorem is complete once we show the following: for every

stationary set Σ of cofinality θ ordinals < θ+ and every Γ ⊆ θ++ of size θ+

there exist α < β < γ in Γ such that f(α, β, γ) ∈ Σ. The details of this can
again be found in [66]. �

17.6 Theorem. If θ is a regular strong limit cardinal carrying a nonreflect-
ing stationary set, then there is an f : [θ+]3 −→ θ which takes all the values
from θ on the cube of any subset of θ+ of size θ.

Proof. This is really a corollary of the proof of Theorem 17.5, so let us only
indicate the adjustments. By Corollary 16.19 and Lemma 16.7, we can choose
a strongly unbounded subadditive map e : [θ+]2 −→ θ. By the assumption
about θ we can choose a C-sequence Cα (α < θ) avoiding a stationary set
Σ ⊆ θ and consider the corresponding notion of a walk, trace, ρ0-function
and the square-bracket operation [··] as defined in (3.13) in Sect. 15. As in
the proof of Theorem 17.5, we choose a one-to-one sequence rα (α < θ+) of
elements of {0, 1}θ and consider the corresponding function Δ : [θ+]2 −→ θ:

Δ(α, β) = Δ(rα, rβ) = min{ν < θ : rα(ν) �= rβ(ν)}.

The definition of f : [θ+]3 −→ θ is given according to the following rules,
applied to a given x ∈ [θ+]3.

Rule 1. If x = {α < β < γ}, Δ(rα, rβ) < Δ(rβ , rγ) and rα <lex rβ <lex rγ ,
or rα >lex rβ >lex rγ , let

f{α, β, γ} = [Δ(α, β)Δ(β, γ)].

Rule 2. If α ∈ x is such that rα is lexicographically between the other two
rξ’s for ξ ∈ x, if β ∈ x \ {α} is such that Δ(rα, rβ) > Δ(rα, rγ), where γ is
the remaining element of x, and they do not satisfy the conditions of Rule 1,
set

f{α, β, γ} = min(Tr(Δ(α, β), e{β, γ}) \ e{α, β}),
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i.e. f{α, β, γ} is the minimal point on the trace of the walk from e{β, γ}
to Δ(α, β) above the ordinal e{α, β}; if such a point does not exist, set
f{α, β, γ} = 0.

Then it suffices to show that for every stationary Ω ⊆ Σ and every Γ ⊆ θ+

of size θ, there exists an x ∈ [Γ]3 such that f(x) ∈ Ω. The details of this are
given in [66]. �

Since log ω1 = ω, we get the following consequence of Theorem 17.5.

17.7 Theorem. Chang’s Conjecture is equivalent to the statement that for
every f : [ω2]3 −→ ω1 there is an uncountable Γ ⊆ ω2 such that f“[Γ]3 �= ω1.

17.8 Remark. Since this same statement is stronger for functions from
higher dimensional cubes [ω2]n into ω1 Theorem 17.7 shows that they are
all equivalent to Chang’s Conjecture. Note also that n = 3 is the minimal
dimension for which this equivalence holds, since the case n = 2 follows from
the Continuum Hypothesis, which has no relationship to Chang’s Conjecture.

For the rest of this section we examine the stepping-up procedure without
the assumption that some form of Chang’s Conjecture is false. So let θ be
a given regular uncountable cardinal and let Cα (α < θ+) be a fixed C-
sequence such that tp(Cα) ≤ κ for all α < θ+. Let ρ∗ : [θ+]2 −→ θ be
the ρ∗-function defined above in (3.15). Recall that, in case Cα (α < θ+)
is a �θ-sequence, the key to our stepping-up procedure was the function
τ : [θ+]3 −→ θ+ defined by the formula (3.17). Without the assumption of
Cα (α < θ+) being a �θ-sequence, the following related function turns out
to be a good substitute: χ : [θ+]3 −→ ω defined by

χ(α, β, γ) = |ρ0(α, γ) ∩ ρ0(β, γ)|.

Thus χ(α, β, γ) is equal to the length of the common part of the walks γ → α
and γ → β.

17.9 Definition. A subset Γ of θ+ is stable if χ is bounded on [Γ]3.

The following result whose proof can be found in [66] relates this notion
to the unboundedness property of ρ∗.

17.10 Lemma. Suppose that Γ is a stable subset of θ+ of size θ. Then
{ρ∗(α, β) : {α, β} ∈ [Ω]2} is unbounded in θ for every Ω ⊆ Γ of size θ.

17.11 Definition. The 3-dimensional version of the oscillation mapping,
osc : [θ+]3 −→ ω is defined on the basis of the 2-dimensional version of
Sect. 14 as follows

osc(α, β, γ) = osc(Cβs \ α,Cγt \ α),

where s = ρ0(α, β)�χ(α, β, γ) and t = ρ0(α, γ)�χ(α, β, γ).
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In other words, we let n be the length of the common part of the two walks
γ → α and γ → β, then we consider the walks γ = γ0 > · · · > γk = α and
β = β0 > · · · > βl = α from γ to α and β to α respectively; if both k and
l are bigger than n, i.e. if γn and βn are both defined, we let osc(α, β, γ) be
equal to the oscillation of the two sets Cβn \α and Cγn \α. If min{k, l} < n,
we let osc(α, β, γ) = 0. The proof of the following basic fact about the
three-dimensional oscillation mapping can again be found in [66].

17.12 Lemma. Suppose that Γ is a subset of θ+ of size κ, a regular un-
countable cardinal, and that every subset of Γ of size κ is unstable. Then for
every integer n ≥ 1, there exist α < β < γ in Γ such that osc(α, β, γ) = n.

Applying the last two lemmas to the subsets of θ+ of size θ, we get an
interesting dichotomy:

17.13 Lemma. Every Γ ⊆ θ+ of size θ can be refined to a subset Ω of size θ
such that either:

(1) ρ∗ is unbounded and therefore strongly unbounded on Ω, or

(2) the oscillation mapping takes all possible values on the cube of Ω.

We finish the section with a typical application of this dichotomy.

17.14 Theorem. Suppose θ is a regular cardinal such that log θ+ = θ. Then
there is an f : [θ++]3 −→ ω which takes all the values from ω on the cube of
any subset of θ++ of size θ+.

Proof. We choose two C-sequences Cα (α < θ+) and C+
α (α < θ++) on θ+

and θ++ respectively, such that tp(Cα) ≤ θ for all α < θ+ and tp(C+
α ) ≤ θ+

for all α < θ++. Let ρ∗ : [θ+]2 −→ θ and ρ∗+ : [θ++]2 −→ θ+ be the corre-
sponding ρ∗-functions defined above in Lemma 3.15. Also choose a one-to-one
sequence rα (α < θ++) of elements of {0, 1}θ+

and consider the correspond-
ing function Δ : [θ++]2 −→ θ+ defined in (3.21). We define f : [θ++]3 −→ θ+

according to the following two cases for a given triple α < β < γ of elements
of θ++.

Case 1. (Cβs ∩ Cγt) \ α �= ∅, where s = ρ0(α, β)�χ(α, β, γ) and t =
ρ0(α, γ)�χ(α, β, γ) assuming of course that ρ0(α, β) has length ≥χ(α, β, γ).

Rule 1. If Δ(rα, rβ) < Δ(rβ , rγ) and rα <lex rβ <lex rγ or rα >lex rβ >lex

rγ , set
f(α, β, γ) = min(Pν(Δ(β, γ)) \Δ(α, β)),

where ν = ρ∗(min{ξ ≤ Δ(α, β) : ρ∗(ξ,Δ(α, β)) �= ρ∗(ξ,Δ(β, γ))},Δ(β, γ)).

Rule 2. If ᾱ ∈ {α, β, γ} is such that rᾱ is lexicographically between the
other two rξ’s for ξ ∈ {α, β, γ}, if β̄ ∈ {α, β, γ}\{ᾱ} is such that Δ(rᾱ, rβ̄) >
Δ(rᾱ, rγ̄), where γ̄ is the remaining member of {α, β, γ}, and if {α, β, γ} does
not fall under Rule 1, let

f(α, β, γ) = min(Pν(ρ∗+{β̄, γ̄}) \ ρ∗+(α, β)),
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where ν = ρ∗{Δ(α, β), ρ∗+(β, γ)}.

Case 2. (Cβs ∩ Cγt) \ α = ∅, where s = ρ0(α, β)�χ(α, β, γ) and t =
ρ0(α, γ)�χ(α, β, γ) assuming of course that ρ0(α, β) has length ≥χ(α, β, γ).
Let

f(α, β, γ) = osc(α, β, γ).

If a given triple α < β < γ does not fall into one of these two cases, let
f(α, β, γ) = 0.

Then it suffices to show that for every Γ ⊆ θ++ of size θ+, the image f“[Γ]3

either contains all positive integers or almost all ordinals < θ+ of cofinality θ.
The details of this are given in [66]. �

17.15 Corollary. There is an f : [ω2]3 −→ ω which takes all the values on
the cube of any uncountable subset of ω2.

17.16 Remark. Note that the dimension 3 in this corollary cannot be
lowered to 2 as long as one does not use some additional axioms to con-
struct such f . Note also that the range ω cannot be replaced by a set of
bigger size, as this would contradict Chang’s Conjecture. We have seen
above that Chang’s Conjecture is equivalent to the statement that for every
f : [ω2]3 −→ ω1 there is an uncountable set Γ ⊆ ω2 such that f“[Γ]3 �= ω1. Is
there a similar reformulation of the Continuum Hypothesis? More precisely,
one can ask the following question.

17.17 Question. Is CH equivalent to the statement that for every
f : [ω2]2 −→ ω there exists an uncountable Γ ⊆ ω2 with f“[Γ]2 �= ω?
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über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wis-
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[16] Paul Erdős and Alfred Tarski. On some problems involving inaccessi-
ble cardinals. In Yehoshua Bar-Hillel, E. I. J. Poznanski, Michael O.
Rabin, and Abraham Robinson, editors, Essays on the Foundations of
Mathematics, pages 50–82. Magnes Press, Jerusalem, 1961.
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Mathématiques de l’Université de Belgrade, 4:1–138, 1935.

[32] Richard Laver. Better-quasi-orderings and a class of trees. In Gian Carlo
Rota, editor, Studies in Foundations and Combinatorics, volume 1 of Ad-
vances in Mathematics, Supplementary Studies, pages 31–48. Academic
Press, San Diego, 1978.

[33] Richard Laver and Saharon Shelah. The ℵ2-Souslin hypothesis. Trans-
actions of the American Mathematical Society, 264:411–417, 1981.

[34] Jean-Pierre Levinski, Menachem Magidor, and Saharon Shelah. Chang’s
conjecture for ℵω. Israel Journal of Mathematics, 69:161–172, 1990.

[35] Viatcheslav I. Malykhin. On Ramsey spaces. Soviet Mathematics. Dok-
lady, 20:894–898, 1979.

[36] William J. Mitchell. Aronszajn trees and the independence of the trans-
fer property. Annals of Mathematical Logic, 5:21–46, 1972.

[37] J. Donald Monk. Cardinal Invariants on Boolean Algebras. Birkhäuser,
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This chapter is setting out to achieve an impossibility, namely to survey
the rapidly exploding field of Borel equivalence relations as found in descrip-
tive set theory and the connections with areas entirely outside logic. The
choice of content and emphasis is inevitably molded by this author’s own
prejudices and research history; others may have a radically different vision
of the subject. For instance I have somewhat arbitrarily chosen to say nothing
about the study of equivalence relations arising in Borel ideals, as found in
papers such as [64, 51, 11], or the parallel theory of Borel linear orderings as
found in say [49, 30], or the still unpublished work of Hugh Woodin’s and of
Richard Ketchersid’s on the cardinality of certain Borel equivalence relations
under strong determinacy assumptions, the work on general Σ∼

1
1 equivalence

relations as found in [4], or the topological Vaught conjecture as discussed
in [60, 45, 5, 37]. Moreover the discussion of Borel equivalence relations is
organized around the Borel reducibility order, ≤B , rather than notions such
as orbit equivalence, as found in say [22, 20, 23, 59, 40], or notions of isomor-
phism, as discussed in [9]. Without a super-human effort to the contrary, it
is easy to slip in to discussing what I know best, which, regretfully perhaps,
are the papers I have written. Finally I should admit to being much more
conversant with the mathematics of the subject than the history, and since
my main concern is to communicate the most vibrant ideas with a certain
immediacy undoubtedly some important citations have been overlooked.

Thus I stand impeached with prejudice, ignorance, arbitrariness, arro-
gance, and discourtesy.

But as unfortunate as these failings may be, they are inevitable, and I
say all of this simply so the reader will understand that this is a project
doomed to at least partial failure and nevertheless worth pursuing in the
hope of partial success. A similar but rather different point of view can be
found [52]. The reader might also look at [6] for a closer examination of
some of the issues surrounding actions induced by Polish group actions, or
at [37] for a discussion of the Vaught conjecture, or [58] for orbit equivalence.
Another survey is given in [39], but in fact I am unable to even point to any
small set of papers which would be fully adequate.

1. Definitions

Before moving on to the theory of Borel equivalence relations it would be
helpful to discuss Borel sets in general. A thorough and more complete
account can be found in [50].

1.1 Definition. A Polish space is a separable topological space which admits
a compatible complete metric. The Borel subsets of a Polish space are those
appearing in the σ-algebra generated by the open sets—that is to say, if we
begin with the open sets and continue applying the operations of countable
union, countable intersection, and complementation, then the Borel sets are
those appearing in the collection which thereby arises.
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Inside the Borel sets we make further distinctions. Thus a set is Σ∼
0
1 if it is

open, and after that we define recursively a set to be Π∼
0
α if its complement

is Σ∼
0
α, and to be Σ∼

0
α if it is a countable union of Borel sets each of which are

Π∼
0
β for some β < α. It is easily shown that Π∼

0
α ⊆ Σ∼

0
α+1 and every Borel set

will be Σ∼
0
α for some α < ω1. At the bottom level of this hierarchy there is

alternate notations used by analysts—for instance a Π∼
0
2 set is also called Gδ

and a Σ∼
0
2 set is also called Fσ.

For much of the time we are unconcerned with the topological structure of
a Polish space, focusing instead on its Borel structure. Accordingly, a set X
equipped with a σ-algebra B is a standard Borel space if there is some Polish
topology on X which gives rise to B as the collection of Borel sets.

1.2 Examples.

1. R and C are Polish. Any compact metric space is Polish.

2. There is a natural way to think of the collection of all subsets of the
natural numbers as a Polish space. By associating with each set its
characteristic function, or indicator function, we can identify the power
set of N, denoted by P(N), with

{0, 1}N =df 2N,

which is a compact space in the product topology. Similarly P(N×N)
or P(S) any countable set S.

3. Any Borel subset of a Polish space is a standard Borel space in the
inherited Borel structure (see [55, 13.4], [50]).

4. The Borel probability measures on a standard Borel space themselves
again form a standard Borel space (this ultimately follows from the
Riesz representation theorem; compare [50, 17.23]).

5. Consider the collection of subsets of N × N × N which form the graph
of a function

• : N× N → N

providing a finite rank torsion-free abelian group structure on N. This
collection in the natural Borel structure is a standard Borel space, since
it is a Borel subset of the Polish space N× N× N.

6. Given a countable language we can form two possible Polish topologies
on the space of L-structures on N. For simplicity assume the language is
relational, though the more general case of L having function symbols
is only slightly more complicated. We let Mod(L) be the set of all
L-structures with the natural numbers as their underlying set.
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The first of the topologies is τqf . For ψ(�x) a formula in L and �a =
(a1, . . . , an) a sequence in N, we let U(ψ(�x),�a) be the collection of all N ∈
Mod(L) with

N |= ψ(�a),

and then τqf is the collection the topology with basis consisting of all the
sets of the form U(ψ(�x),�a), as ψ ranges over the quantifier-free formulas. If
L consists of relations R1, R2, . . ., each Ri and n(i)-ary relation, then it is
easily seen that (Mod(L), τqf ) is isomorphic to

∏
i∈N

2Nn(i) in the product
topology. Since the class of Polish spaces is closed under product (see [36,
§2.1]) we have that (Mod(L), τqf ) is Polish.

The more subtle topology is τfo, with basis consisting of all U(ψ(�x),�a) as
ψ ranges over first-order formulas. This is a again a Polish topology, though
the proof of this, say as found at [36, 2.42], is less obvious.

While these are divergent choices in topology, there is really one reasonable
choice of Borel structure on this space. Since τfo ⊇ τqf and both are Polish
topologies, they give rise to the same Borel structure. (This follows from [50,
18.10, 18.14].)

1.3 Definition. Given a Polish space X, we let F(X) be the collection of
all closed subsets of X, equipped with the σ-algebra generated by sets of the
form {F ∈ F(X) : U ∩ F �= ∅} for U open.

This is known as the Effros Borel structure on the closed subsets of X. It
is not hard to show that F(X) equipped with this Borel structure is indeed
a standard Borel space—see for instance [36, §2] or [50].

The reader should definitely consult [50] for a more reasonable introduction
to the theory of Borel sets. This is the smallest sketch.

1.4 Definition. A function

f : X → Y

is said to be Borel if f −1[B] is Borel for any Borel set B ⊆ Y .
An equivalence relation E on X is said to be Borel if it is Borel as subset

of X × X. We then use [x]E to denote the equivalence class of x for any
x ∈ X—that is to say, the set {y ∈ X : xE y}.

1.5 Definition. Given E and F Borel equivalence relations on standard
Borel X and Y , we write

E ≤B F,

E is Borel reducible to F , if there is a Borel f : X → Y such that for all
x1, x2 ∈ X

x1 E x2 ⇐⇒ f(x1)F f(x2);

in other words, f pushes down to an injective map

f̄ : X/E → Y/F
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between the quotient spaces.
After this we naturally set E <B F if there is a Borel reduction from

E to F but not F to E. We set E ∼B F if each is Borel reducible to the
other. Note that the order ≤B is transitive, since the composition of two
Borel functions is again Borel.

The above definition is only for Borel f , but one can of course consider
more general classes of functions if this seems too stingy—for instance, C-
measurable functions, projective functions, L(R) functions. In virtually all
cases this makes no difference—the failures of reducibility for Borel functions
persist to these wider classes. Indeed, appropriately understood most of
the theorems about Borel equivalence relations turn into theorems about
cardinality in L(R). See Sect. 4 below.

It should also be admitted that there are other ways in which we can
compare Borel equivalence relations, for instance asking that there be iso-
morphisms of the underlying spaces that conjugate the relations, or in the
presence of a measure we can ask for measure preserving isomorphisms be-
tween the spaces which conjugate the equivalence relations almost every-
where; indeed this second notion is the subject of extensive study in areas
such as operator algebras (for instance [59]), geometric group theory (for in-
stance [22, 62]), and the rigidity theory in the sense of Zimmer [70]. For the
purposes of descriptive set theory, I incline to the view that ≤B is the central
notion. Indeed some kind of defense of the philosophical significance of ≤B

is given in Sect. 4.

1.6 Examples.

1. For X a Polish space, we let id(X) be the identity relation on the space
X. Since any two uncountable standard Borel spaces are isomorphic
[50, 15.6], it follows that for any uncountable X we have

id(X) ≤B id(R).

2. We let E0 be the equivalence relation of eventual agreement on infinite
binary sequences. Thus for �x = (x0, x1, . . .), �y = (y0, y1, . . .) ∈ 2N, we
set

�xE0 �y

if and only if there exists some N ∈ N with

∀n > N(xn = yn).

Here we have
id(2N) <B E0.

To see that there is a Borel reduction from id(2N) to E0 is routine. It
follows simply because there is perfect set in Cantor space consisting of
mutually generic reals.
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The failure of reducibility in the other direction is more subtle. First
one observes that E0 is given by the continuous action of the countable
group ⊕

N

Z/2Z

with (g0, g2, . . .) · (x0, x1, . . .) = (g0 + x0 mod 2, g1 + x1 mod 2, . . .).
Then given a supposed Borel reduction f of E0 to the identity relation
on 2N we can find a comeager set C on which f is continuous. Then we
can take ⋂

�g∈
⊕

Z/2Z

�g · C,

which will still be comeager and now invariant. Taking any �x in this
set we obtain that f will be constant on [�x]E0 . Since this equivalence
class is dense, f will constant on the entire set

⋂
�g �g ·C. Since this set is

uncountable, it contains many equivalence classes with a contradiction.
(For a more detailed and general argument, see [36, 3.2].)

3. We let E1 be the equivalence relation of eventual agreement on infinite
sequences of reals. Here one has

E0 <B E1.

(See [53], or even [36].)

4. Given a countable group Γ, we let 2Γ be the collection of all functions

f : Γ → {0, 1}

with the product topology. We let Γ act on 2Γ with

γ · f(δ) = f(γ−1δ),

the left shift action. We then let EG be the resulting equivalence rela-
tion.

In the case that we start with G = F2, the free group on two generators,
one has

E0 <B EF2 .

(See for instance Appendix A of [44] for a survey of stronger and more
general results one can prove in this direction.)

5. An example of historical importance is the Vitali equivalence rela-
tion, Ev. For r, s ∈ R set

r Ev s

if and only if
r − s ∈ Q.
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The classical argument that this equivalence relation has no measurable
selector can be modified to show that id(R) <B Ev; alternatively one
may appeal to a variation of the Baire category argument at example 2
just above.

On the other hand, at the level of Borel reducibility there is no distinc-
tion between E0 and Ev. (See for instance the argument after [35, 1.5]
for a short proof that E0 ∼B Ev.)

6. Let X2 be the space of all h ∈ 2N×N, where at each n �= m there exists
a k with h(n, k) �= h(m, k). In other words, if we set hn ∈ 2N to be
given by hn(k) = h(n, k) then for n �= m we have hn �= hm.

Then define T2 on X2 by h1T2h
2 if and only if the corresponding count-

able sets in 2N are equal—that is to say,

{h1
n : n ∈ N} = {h2

n : n ∈ N}.

Thus if we let S∞ be the group all permutations of N, acting on X2 by

σ · h(n, k) = h(σ−1(n), k),

then T2 is the resulting equivalence relation.

It is well-known that for any EG as above, arising from a countable
group G acting on 2G, one has

EG <B T2.

(See for instance [36, 2.64].)

1.7 Definition. An equivalence relation E on standard Borel X is said to
be smooth or tame if E ≤B id(R).

Smoothness amounts to asserting the existence of a countable algebra
{Bn : n ∈ N} of E-invariant Borel sets which separates points—which is
to say

xE y ⇐⇒ ∀n(x ∈ Bn ⇐⇒ y ∈ Bn).

This in turn is equivalent to saying that X/E = {[x]E : x ∈ X} in the
quotient Borel structure consisting of all E-invariant Borel sets is a subset of
a standard Borel space. (See [29, 48].)

1.8 Definition. A Borel equivalence relation E on a standard Borel space X
is said to be countable if every equivalence class is countable. It is essentially
countable if there is some other countable Borel equivalence relation F with
E ≤B F .

1.9 Example. Let F2 be the free group on two generators and let E∞ arise
from action of F2 on 2F2 . Then this is countable, since the responsible group
is countable.
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It is known from [48] that this equivalence relation is universal among the
countable equivalence relations, in the sense that for every countable Borel
equivalence relation E one has

E ≤B E∞.

We will not get ensnared in the details of this argument here, but it might be
helpful to point out that the proof depends on the Feldman-Moore theorem,
which in some sense reduces to the study of countable Borel equivalence
relations to the study of the orbit equivalence relations induced by countable
groups.

1.10 Theorem (Feldman-Moore [15, 16]). If E is a countable Borel equiv-
alence relation on X, then there is a Borel group of automorphisms whose
orbits equal the E-equivalence classes.

Proof. With the Luzin-Novikov Uniformization Theorem [50, 18.10, 18.15]
we can find a sequence of Borel functions (fn)n∈N such that [x]E always
equals {fn(x) : n ∈ N}. We can find Borel sets Bn consisting of exactly the
points on which fn(x) �= x. We can then find a partition of Bn into Borel
sets {Cn,i : i ∈ N} with fn[Cn,i] disjoint from Cn,i and f |Cn,i one-to-one. We
then let gn,i be the function which is the identity off of fn[Cn,i]∪Cn,i, equal
to fn on Cn,i, and to f −1

n on f [Cn,i]. It follows by Luzin-Novikov again that
each gn,i is Borel.

Letting G be the countable group of automorphisms generated by {gn,i :
i, n ∈ N} we obtain E = EG, the orbit equivalence relation induced by G. �

1.11 Lemma. A countable Borel equivalence relation is smooth if and only
if it has a Borel selector—that is to say, a Borel set which meets every equiv-
alence class in exactly one point.

Proof. This follows rapidly from the Luzin-Novikov Uniformization Theorem.
See for instance [48], or [7] for far more general results. �

This lemma fails for general equivalence relations. For instance if we take
C ⊆ N

N × N
N with the projection {x : ∃y((x, y) ∈ C)} non-Borel, and set

(x, y)E(x′, y′) on C exactly when x = x′, then a Borel selector would result
in the projection being Borel, since the one-to-one image of any Borel set
under a Borel function is Borel.

1.12 Definition. An equivalence relation E is hyperfinite if there is a se-
quence of Borel equivalence relations, (Fn)n∈N, with each Fn having all its
equivalence classes finite, each Fn ⊆ Fn+1, and E =

⋃
n∈N

Fn.

1.13 Lemma (See [48]). A countable Borel equivalence relation E on X is
hyperfinite if and only if E ≤B E0.
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1.14 Definition. An equivalence relation E on a standard Borel space X is
treeable if its classes form the components of a Borel treeing on X—that is
to say, there is T ⊆ X ×X which is Borel with respect to the product Borel
structure, is symmetric, acyclic, loopless, and for which we have xE y if and
only if there is a finite chain x0 = x, x1, x2, . . . , xn = y, each (xi, xi+1) ∈ T .
(So here one has in mind the notion of tree prevalent in certain branches of
combinatorics or computer science, rather than descriptive set theory—an
acyclic graph, with no distinguished root in the various connected compo-
nents).

1.15 Definition. Let F2 be the free group on two generators. Let F (2F2)
be the free part of the shift action of F2 on 2F2—that is to say, the set of
h : F2 → {0, 1} such that for all σ ∈ F2 there exists τ with h(σ−1τ) �= h(τ),
equipped with the action (σ ·h)(γ) = h(σ−1γ). We then let ET ∞ be the orbit
equivalence arising from this action of F2 on F (2F2).

In most cases treeable equivalence relations have been studied simply in the
case that E is already countable. Here one has an analogue of Lemma 1.13.

1.16 Lemma (See [48] or [41]). A countable equivalence relation is treeable
if and only if it is Borel reducible to ET ∞.

Although this survey is primarily concerned with Borel equivalence rela-
tions, one must naturally connect this study with the analysis of those lying
just outside this class.

1.17 Definition. A subset of a standard Borel space is analytic or Σ∼
1
1 if it

is the image under a Borel function of a Borel set.

1.18 Definition. A Polish group is a topological group which is Polish as a
space. Given a Polish group G, a Polish G-space is a Polish space equipped
with a continuous action of G; a standard Borel G-space is a standard Borel
space equipped with a Borel action by G.

In either case, if X is the space we use EX
G , or even just EG when there is

no doubt to X, to denote the resulting orbit equivalence relation, and [x]G
to denote the orbit of a point x.

The equivalence relations arising from the Borel action of a Polish group
are always Σ∼

1
1, but frequently non-Borel. As noted in [6], for any such EX

G

we can write X as an ℵ1 union of invariant Borel sets,

X =
⋃

α<ω1
Xα,

and EX
G restricted to each Xα Borel.

1.19 Examples.

1. Let S∞ be the group of all infinite permutations of the natural numbers
equipped with the topology of pointwise convergence—that is to say,
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a basic open set has the form {σ ∈ S∞ : σ(n0) = k0, . . . , σ(n�) = k�}.
For L a countable language we let S∞ act on Mod(L) in the natural
way:

(σ · M) |= R(n0, . . . , n�)

if and only if
M |= R(σ−1(n0), . . . , σ−1(n�)).

The resulting equivalence relation is nothing other than isomorphism
on this class of structure, and for any reasonably rich one has that ES∞

is Σ∼
1
1 but non-Borel.

2. Given L as above, and ϕ ∈ Lω1,ω, a countably infinitary formula, we
let Mod(ϕ) be the structures in Mod(L) which satisfy ϕ. Since this is
a Borel subset of a Polish space, it is a standard Borel space in its own
right, and in the induced action a standard Borel S∞-space.

Here one should see [6] for further details. The first paper to consider
these examples seriously from the point of the view of the ≤B ordering
is [18].

3. Given a Polish group G we can let it act on itself by conjugation

σ · ρ = σ−1ρσ.

In many cases this corresponds naturally to some kind of classification
problem. For instance, if M∞ is the group of all measure-preserving
transformations of the unit interval considered up to agreement almost
everywhere, then this group is indeed Polish in the natural topology
and the equivalence relation arising from its conjugation action is the
equivalence relation of isomorphism of measure-preserving transforma-
tions. Or if we let U∞ be the unitary group on infinite dimensional
Hilbert space, we are find ourselves confronted with the classification
up to unitary equivalence of unitary operators. Or one may consider
Hom([0, 1]), the homeomorphism group of the unit interval, for the
classification problem for homeomorphisms of the unit interval up to
topological similarity. All these examples are discussed at length in [36].

2. A Survey of Structure Theorems

2.1. Structure

At the base level of the ≤B there is a sharp structure. The first of these
results is due to Jack Silver. Although it was proved sometime prior to the
general study of Borel equivalence relations, it may be paraphrased in modern
terminology as follows.
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2.1 Theorem (Silver [63]). If E is a Borel equivalence relation, then exactly
one of the following holds:

(I) E ≤B id(N); or

(II) id(R) ≤B E.

In some ways this belongs to the prehistory of the subject. Momentum de-
veloped only after the seminal dichotomy theorem of Leo Harrington, Alexan-
der Kechris, and Alain Louveau. This is sometimes known as the Glimm-
Effros dichotomy, since forerunners of this theorem were proved by Glimm
and then later Effros, who had the result in the case that E is an Fσ equiv-
alence relation induced by the continuous action of a Polish group.

2.2 Theorem (Harrington-Kechris-Louveau [29]). If E is a Borel equivalence
relation, then exactly one of the following holds:

(I) E ≤B id(R); or

(II) E0 ≤B E.

Sketch of Proof. We describe some of the combinatorics under the drastic
assumption that E is a countable Borel equivalence relation. This is mis-
leading as to the difficulty of the proof, since then the vast majority of the
mathematical issues simply evaporate. It should also be pointed out that the
theorem in this case was already known to Glimm [28] and Effros [10].

First we can appeal to Theorem 1.10 to obtain a countable group G acting
by Borel transformations on the Polish space X with EG = E. Applying a
change of topology argument, as found in say [50, §13], we may assume G
acts by homeomorphisms.

Now there are two possibilities.
First of all we may have that for any x �= y ∈ X we have the closures of

their orbits, [x]G, [y]G, distinct. In that case one defines a map

X → F(X),

x �→ [x]G,

from X to the space of all closed subsets of X with the standard Borel struc-
ture. It is easily seen that this map is Borel, and so we obtain a reduction of E
to id(F(X)). Since any two uncountable Borel spaces are Borel isomorphic,
this is as good as a reduction to id(R).

The other case is that there are distinct orbits with the same closure. We
will now work entirely inside some X0 ⊆ X consisting of all y with [y]G = C
for some closed C. X0 is a Gδ subset of X, and hence Polish in its own
right. (See for instance [36, §2.1].) At this stage we are assuming that X0

contains more than one orbit for the purpose of deriving a contradiction. We
let {gn : n ∈ N} enumerate the group G. Now note that EG is Fσ, and
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our assumptions on X0 imply that both it and its complement are dense in
X0 ×X0.

We then construct non-empty open neighborhoods (Us)s∈2<N in X0 and
(gs)s∈2<N so that:

(i) Us ⊆ Ut for s a strict extension of t;

(ii) with respect to a compatible complete metric on X0, the diameter of
each Us is less than 2−n for s ∈ 2n;

(iii) gs�0 = gs; gs�1 = gsg〈0,0,...,0〉�1; g〈0,0,...,0〉 = e, the identity of the
group;

(iv) gs · U〈0,0,...,0〉 = Us, where 〈0, 0, . . . , 0〉 is the constantly zero sequence
of the same length as s;

(v) if s, t ∈ 2n+1 and s(n) �= t(n), then for all i ≤ n we have gi ·Us∩Ut = ∅.

Assuming we can effect this elaborate arrangement, the conclusion is brief.
(iv) will guarantee that for each s, t ∈ 2n we have

gtg
−1
s · Us = Ut,

and then repeated applications of (iii) ensures for any w ∈ 2<N

gtg
−1
s · Us�w = Ut�w.

Thus for any x ∈ 2N there will be a unique point

θ(x) ∈
⋂

Ux|n
,

and if x(n) = y(n) all n ≥ N , then

gx|n
g−1

y|n
(θ(y)) = θ(x),

whilst if x(n) �= y(n) for infinitely many n then (v) guarantees EG-inequiva-
lence.

So suppose we have done this up through (Us)s∈2n , (gs)s∈2n . By the den-
sity of the complement of EG we can find some x, y ∈ U〈0,0,...,0〉 which are
inequivalent. We can then let xs = gs · x, ys = gs · y. We form small
enough open sets W,V around x, y so that if Ws = gs ·W , Vs = gs · V , then
gi · Vs ∩Wt = ∅, g−1

i · Vs ∩Wt = ∅.
We then find a point x′ ∈ [x]G ∩ V〈0,0,...,0〉 by the density of the orbits.

We let g〈0,0,...,0〉�1 be a group element moving x to x′. We let gs�1 be
gsg〈0,0,...,0〉�1. We then build a sufficiently small set U ∗ ⊆ W so that if we
let Ut = gt · U ∗ for each t ∈ 2n+1 then for i ≤ n we have ensured (i), (ii),
and (v). �
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The argument for general Borel E is far harder, and uses the Gandy-
Harrington topology. There is no known proof of Theorem 2.2 which does
not use ideas from logic.

Therefore at the base of the picture one obtains the Borel equivalence
relations with finitely many classes, followed by any Borel equivalence relation
with exactly ℵ0 many classes, then the identity relation on the reals, and
then E0, or, equivalently when considered up to Borel reducibility, the Vitali
equivalence relation.

It should be mentioned that Harrington-Kechris-Louveau implies Silver’s
theorem. If f : 2N → X witnesses E0 ≤B E then we can find a comeager
set on which this function is continuous, and then inside this comeager we
can find a compact perfect set of E0-inequivalent reals. On the other hand
if E ≤ id(R) then the equivalence classes of E can be identified with a Σ∼

1
1

subset of a Polish space, whereupon Silver’s theorem reduces to the perfect
set theorem for Σ∼

1
1 sets.

Immediately after this one obtains a splintering. It is known from [53]
that there are no other Borel equivalence relations E such that for any other
Borel F one has either E ≤B F or F ≤B E. Instead we have:

2.3 Theorem (Kechris-Louveau [53]). Let E be a Borel equivalence relation
with E ≤B E1. Then exactly one of the following holds:

(I) E ≤B E0; or

(II) E1 ≤B E.

2.4 Definition. Let EN
0 be the equivalence relation on (2N)N given by

�xEN
0 �y

if and only if
∀n(xn E0 yn);

that is to say, we have E0-equivalence at every coordinate.

2.5 Theorem (Hjorth-Kechris [43]). Let E be a Borel equivalence relation
with E ≤B EN

0 . Then exactly one of the following holds:

(I) E ≤B E0; or

(II) EN
0 ≤B E.

There are no other known immediate successors to E0, but Ilijas Farah
[12] has proposed a continuum of plausible examples which are inspired by
ideas in Banach space theory. What he does show is that these examples are
incomparable, and that any equivalence relation strictly below any of them
is essentially countable. The gnawing technical difficulty at the end of his
argument is our inability to determine which countable equivalence relations
are hyperfinite. Very recently, in a spectacular and unpublished piece of work,
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Su Gao and Steve Jackson showed all equivalence relations arising from the
Borel actions of countable abelian groups are hyperfinite, and on this basis
we might hope for further clarification in the coming years.

Although we are at a loss to provide further global dichotomy theorems,
there is something more that can be said if we restrict ourselves to the region
of equivalence relations which are below isomorphism of countable structures.

2.6 Definition. For L a countable language, we let ∼=mod(L) be isomorphism
on the standard Borel space of L-structures with underlying set N. For
ψ ∈ Lω1,ω we let ∼=mod(ψ) be the restriction of this equivalence relation to
models of ψ.

2.7 Lemma (Becker-Kechris [6]). Let E be Borel. Then the following are
equivalent:

(I) E ≤B
∼=mod(L) for some countable language L.

(II) E ≤B ES∞ , where ES∞ arises from the continuous action of a S∞ on
a Polish space.

2.8 Definition. If either of these equivalent conditions hold, then we say
that E admits classification by countable structures.

In the still unpublished [31] a dichotomy theorem was recently announced
for equivalence relations admitting classification by countable structures. It
should be emphasized that this proof is long and has not been refereed, and
accordingly the result has a provisional status.

2.9 Theorem (Hjorth [31]). Let E be a Borel equivalence relation admitting
classification by countable structures. Then exactly one of the following holds:

(I) E ≤ E∞, that is to say, E is essentially countable; or

(II) EN
0 ≤B E.

2.2. Anti-Structure

The last section represented the good news. Now for the evil.
Refining an earlier result of Woodin’s, Louveau and Boban Velickovic em-

bedded P(N)/Fin into the Borel equivalence relations considered up to Borel
reducibility.

2.10 Theorem (Louveau-Velickovic [56]). There is an assignment

A �→ EA

of Π∼
0
3 equivalence relations to subsets of N such that

EA1 ≤B EA2

if and only if A2 \A1 is finite.
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Therefore there is no global structure theorem for the ≤B ordering.
Given the dichotomy theorems of [53] and [43] we might at least hope for

some kind of basis of immediate successors to E0, but even this seems unlikely.
In [13] Farah obtains an infinite descending chain in ≤B which is unlikely to
be above an immediate successor to E0. I say unlikely, though it is hard to
make a fast guess at this point. Literally Farah obtains the existence of a
sequence (Fn)n∈N with each Fn+1 <B Fn, none of them essentially countable,
and with the further property that any equivalence relation E ≤B Fn at every
n must be essentially countable. Since the Fn’s arise in a very simple form,
in particular the continuous action of an abelian Polish group, there is some
grounds for thinking the only countable equivalence relations reducible to
one of these will be reducible to E0.

Farah’s work also disproves the existence of a dichotomy theorem for being
classifiable by countable structures in many dramatic ways. For instance he
obtains an uncountable sequence of Borel equivalence relations, (Ex)x∈2N ,
which are not classifiable by countable structures, and such that for any
x �= y and Borel E with

E ≤B Ex, Ey

we have E classifiable by countable structures.

2.3. Beyond Good and Evil

There are slender few candidates for outright Borel dichotomy theorems in
the style of Theorems 2.2 and 2.10 and the later results of Farah would seem
to rush hopes for a global analysis of the ≤B ordering. On the other hand
it still seems that there are results which would help us understand when
equivalence relations fall on some side of a key divide.

A distinction of philosophical interest is when we can classify by countable
structures, which has clear parallels in broader mathematical practice. Here
one has in mind for instance certain branches of topology, where one seeks
complete algebraic invariants, and in effect one is trying to classify a cer-
tain equivalence relation by a countable algebraic structure considered up to
isomorphism. The introduction of [36] surveys several examples along these
lines from a variety of different mathematical areas.

2.11 Definition. Let G be a Polish group and X a Polish G-space. For
U ⊆ G an open neighborhood of the identity, V ⊆ X an open neighborhood
of a point x, the local U -V -orbit of x, written O(x, U, V ), is the set of all y
such that there exists a finite sequence of points x0 = x, x1, x2, . . . , xn = y
in U with each xi+1 ∈ V · xi—that is to say, we can move from xi to xi+1

using some group element in V . Then we say that the action of G on X is
turbulent if the following three things hold:

(i) every orbit [x]G is dense in X;

(ii) every orbit [x]G is meager in X;
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(iii) given x, y ∈ X, U an open neighborhood of y, V an open neighborhood
of the identity in G, there is some x′ ∈ [x]G ∩ U with y in the closure
of the local orbit O(x′, U, V ).

2.12 Theorem (Hjorth [36]). If EG arises from a turbulent action of G on
the Polish G-space X and L is a countable language, then EG is not Borel
reducible to ∼=mod(L).

Sketch of Proof. We present the argument in a simple case with a number of
simplifying assumptions. Consider the example of an S∞ action given before,
where the space is X2, consisting of all h ∈ 2N×N, where at each n �= m there
exists a k with h(n, k) �= h(m, k). Then define T2 on X2 by h1T2h

2 if and
only if the corresponding countable sets in 2N are equal. This is the orbit
equivalence relation arising from the S∞ action

(σ · h)(m,n) = h(σ−1(m), n).

We assume toward a contradiction that θ : X → X2 witnesses EG ≤B T2.
Every Borel function is continuous on a comeager set, so let us actually

make the simplifying assumption that θ is continuous everywhere.

Claim: For any n there is a comeager collection of x ∈ X which have some
basic open neighborhood Vx,n of the identity in S∞ for which there is a
comeager collection of σ ∈ Vx,n having

(θ(x))(n, ·) = (θ(σ · x))(n, ·).

Proof of Claim: For each individual point x and m we consider the Borel
function

fm
x : G→ N

which assigns to g ∈ G the natural number f(g) with θ(x)(m, ·) = θ(g ·
x)(f(g), ·). Each Borel set has the property of Baire, hence we can find open
sets (Om

n )n∈N with dense union in G such that OnΔf −1(n) is meager at
every n. Then for any

g ∈
⋂

m

⋃
nOm

n

we have at each � some basic open V ⊆ G such that for a comeager collection
of h ∈ V

θ(g · x)(�, ·) = θ(hg · x)(�, ·).

Thus we have show that inside each orbit the collection of g ∈ G for which
g · x has the required property is comeager. Now the conclusion of the claim
follows by the Kuratowski-Ulam Theorem (see [50]).

Let us make the additional and rather radical assumption that

x �→ Vx,n
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is defined everywhere, and “continuous” in the sense that given any basic
open V and n the collection of x with Vx,n = V is open.

Let x, y ∈ X. Consider some n. It suffices to show that there is a repre-
sentative of the orbit of x,

x′ ∈ [x]G,

which has θ(x′)(n, ·) = θ(y)(n, ·). By the above simplifying assumptions we
can find a basic open neighborhood of U of y and V a basic open neighborhood
of the identity in the group which has

(θ(z))(n, ·) = (θ(σ · z))(n, ·)
all z ∈ U, σ ∈ V .

Now if we take x′ ∈ [x]G with

y ∈ O(x′, U, V )

then we can find a sequence of points (zi)i∈N, each zi ∈ O(x′, U, V ) with

zi → y.

By the assumptions on U and V we have θ(zi)(n, ·) = θ(x′)(n, ·) at all n,
and hence θ(x′)(n, ·) = θ(y)(n, ·), as required. �

As a practical matter [36] suggests turbulence to be the key phenomena
in determining whether an equivalence relation is classifiable by countable
structures. This has been supported in various examples and practical inves-
tigations, such as [26, 54], as well as some partial results given in [36]. The
correct theorem was not established until a few years later.

2.13 Theorem (Hjorth [38]). Let G be a Polish group and X a Polish G-
space. Suppose EX

G is Borel. Then exactly one of the following hold:

(I) EX
G admits classification by countable structures; or

(II) there is a turbulent Polish G-space Y with EY
G ≤ EX

G .

3. Countable Borel Equivalence Relations

The subject of countable Borel equivalence relations is notable for its inter-
actions with such diverse fields as geometric group theory, the ergodic theory
of non-amenable groups, operator algebras, and superrigidity in the sense of
Zimmer. There is a sense in which this interaction has been largely one way,
since one finds logicians borrowing from these other fields rather than these
areas being serviced by logic.

In the course of this period it is perhaps unsurprising that logicians have
made a few notable contributions to the benefit of the other fields. However
in almost every case the applications do not consist in applying deep ideas
from logic, as found in say the work of Hrushovski [47], but rather the natural
result of mathematicians from one field rethinking the problems from another
and approaching with a different point of view.
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3.1. The Global Structure

In some form or another almost every argument which distinguishes countable
Borel equivalence relations in the ≤B ordering uses measure theory. At the
very base level we can use Baire category arguments to show id(R) <B E0

but beyond this there is a fundamental obstruction.

3.1 Theorem (Sullivan-Weiss-Wright [65]). Let E be a countable Borel equiv-
alence relation on a Polish space X. Then there is a comeager set on which
E is hyperfinite.

Sketch of Proof. (This draws on Segal’s thesis [61]; see also [58].) E is in-
duced by a countable group G acting by Borel automorphisms. Let us make
the simplifying assumptions that G acts by homeomorphisms and the space
is zero-dimensional—these assumptions are harmless, but we will skip over
this point in the interest of keeping the argument short.

Let B be a countable basis for X consisting of clopen sets. Let (gn)n∈N

enumerate the countable group G.
At each n let Yn be the collection of sequences

�A = (A0, A1, . . . , An),

where each Ai is a finite subset of B. Given such a sequence we let R �A be
the graph on X given by

xR �A x′

if there is some i ≤ n, V, V ′ ∈ Ai, with x ∈ V, x′ ∈ V ′ and

gi · x = x′.

We let E �A be the equivalence relation arising from the connected components
of R �A.

We then let Y ∗
n be the subset of Yn for which the induced equivalence

relation E �A has all its equivalence classes finite. Given �A = (A0, . . . , An) ∈
Y ∗

n , �B = (B0, . . . , Bm) ∈ Y ∗
n where m ≥ n, we say that �B extends �A if every

at every i ≤ n
Ai ⊆ Bi.

Claim: Given any x, y = gi · x, n ≥ i and

�A ∈ Y ∗
n

we can find an extension �B ∈ Y ∗
n with

xR �B y.

Proof of Claim: The point is that we can add to Ai a small enough open set
W around x that will specify x with sufficient exactness to ensure that for
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any x′ ∈ W , the E �A equivalence class of x consists of {hi · x′ : i ≤ �} for
some finite sequence h0, . . . , h�−1 of group elements. (This is where we use
zero-dimensionality.) Then we can find V ∈ B that specifies x with sufficient
precision to ensure that for any x′ ∈ V and z E �A x′ we have either z = x′ or
z /∈ V . Similarly we can do the same for y with some V ′. Then if we were
to take the simple extension �B which has Bi = Ai ∪ {V, V ′} but Bj = Aj at
j �= i, then E �A has index at most two in E �B. (Claim �)

We then let Y be the space of all infinite sequences

( �An)n∈N ∈
∏

n∈N
Y ∗

n

where each �An+1 extends An. Any such ( �An)n∈N ∈ Y gives rise to an in-
creasing sequence of Borel equivalence relations with finite classes, taking
F

( �An)n∈N

n to be E �An .
∏

n∈N
Y ∗

n comes with a natural product topology, under
which it is Polish. Y is a closed subset of this product space, and hence
Polish in its own right. The above claim shows that for all x ∈ X there is a
comeager collection of ( �An)n∈N ∈ Y with

[x]E =
⋃

n∈N
[x]

F
( �An)n∈N
n

.

Thus by Kuratowski-Ulam (see [50]), there is a comeager collection of
( �An)n∈N ∈ Y for which there is a comeager collection of x with [x]E =
⋃

n∈N
[x]

F
( �An)n∈N
n

. Taking any such ( �An)n∈N ∈ Y and corresponding comea-
ger set, we are done. �

On the other hand the subject of countable Borel equivalence relations
considered up to Borel reducibility might collapse into a kind of death by
heat dispersal if all these examples were hyperfinite. It turns that in the
presence of an invariant probability measure, non-amenable groups give rise
to equivalence relations which are not hyperfinite.

3.2 Definition. A countable group Γ is amenable if for any finite F ⊆ Γ
and ε > 0 there is a finite, non-empty A ⊆ Γ such that for all σ ∈ F

|AΔσA|
|A| < ε.

As a word on the notation, we use |B| to denote the cardinality of the set
B and BΔC to denote the symmetric difference of the sets B and C. Thus
amenability amounts to the existence of something like “almost invariant”
subsets of the group—given any finite collection of group elements, any tol-
erance (ε > 0), we can find a finite set which when translated by any of the
group elements differs from its original position on a relatively small number
of elements.



316 Hjorth / Borel Equivalence Relations

3.3 Examples.

1. Z is amenable. Given F = {k1, . . . , k�} in the group and ε > 0, we let
k = max(|k1|, . . . , |k�|), the max of the absolute values, and then let

N >
2(k + 1)

ε
.

The set A = {−N,−N+1,−N+2, . . . , 0, 1, . . . , N−1, N} is as required.

2. On the other hand, F2 = 〈a, b〉, the free group on two generators, is
most famously non-amenable. Just take ε = 1/10, F = {a, b, a−1, b−1}.
We can see this by dividing the non-identity elements of F2 into four
regions, Ca, Cb, Ca−1 , Cb−1 , where a (reduced) word is in the region Cu

if it begins with u.

Consider some putative set A that is trying to witness amenability for
1/10 and {a, b, a−1, b−1}. For u = a, b, a−1, or b−1, n ∈ N, if at least
n of A’s elements are not in Ca−1 , Cb−1 , Ca, or Cb, respectively, then
at least n of u · A’s elements are in Ca, Cb, Ca−1 , or Cb−1 , respectively.
Therefore we can clearly find two distinct u1, u2 with at least three
fifths of ui · A’s elements in Cui . One of these sets must differ from A
by at least 1

10 |A|.
Note that there is nothing special here about the use of almost in-
variant sets in F2. We would obtain a similar contradiction if we con-
sidered almost invariant functions in �1(F2). Given f ∈ �1(F2) and
u ∈ {a, b, a−1, b−1} we could look at the norm of the corresponding fu

defined by fu(σ) = f(σ) if σ ∈ Cu, fu(σ) = 0 otherwise.

3.4 Definition. A standard Borel probability space is a standard Borel space
X equipped with an atomless σ-additive probability measure μ on its Borel
sets.

3.5 Theorem. Let Γ be a countable non-amenable group. Suppose Γ acts
freely and by measure preserving transformations on a standard Borel proba-
bility space (X,μ). Then EΓ is not hyperfinite.

Proof. We sketch the argument just in the case that G = F2.
For a contradiction suppose EF2 =

⋃
n∈N

Fn, where each Fn is finite, Borel,
and has Fn ⊆ Fn+1. At each x ∈ X we define

fn,x : F2 → R

with
fn,x(σ) =

1
|[x]Fn |

if σ−1 · xFnx,
fn,x(σ) = 0
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otherwise. Let
fn(σ) =

∫

X

fn,x(σ) dμ.

For any x we have ||fn,x||�1 = 1, and so certainly ||fn||�1 = 1, and in fact for
any measurable set A ⊆ X

∑

σ

∫

A

fn,x(σ) dμ ≤ μ(A).

Claim: For any γ ∈ F2, as n→∞

||fn − γ · fn||�1 → 0.

Proof of Claim: Note that if xFnγ · x then

γ · fn,x = fn,γ·x,

since for any σ we have

γ · fn,x(σ) = fn,x(γ−1σ) =
1

|[x]Fn |

(

=
1

|[γ · x]Fn |

)

if and only if σ−1γ · xFnx, which, by the assumption xFnγ · x, amounts to
saying if and only if

fn,γ·x(σ) =
1

|[γ · x]Fn |
.

Thus if we let An,γ = {x ∈ X : xFnγ · x}, then
∫

An,γ

γ · fn,x(σ) dμ =
∫

γ·An,γ

fn,x(σ) dμ,

and hence

||fn − γ · fn||�1 ≤ 2
∑

σ

∫

X\An,γ

fn,x(σ) = 2
∫

X\An,γ

∑

σ

fn,x(σ)

= 2μ(X \An,γ).

Since μ(An,γ) → 1 as n→∞, we are done. (Claim �)

Now we have established the existence of almost invariant functions in
�1(F2), and this can be refuted by the same kind of argument as used to
show the non-amenability of F2. �

For the longest while there was only a small finite number of countable
Borel equivalence relations known to be distinct in the ≤B ordering. It was a
notorious open problem to establish even the existence of ≤B-incomparable
examples. This was finally settled by:
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3.6 Theorem (Adams-Kechris [2]). There exists an assignment of countable
Borel equivalence relations to Borel subsets of R,

B �→ EB,

such that EB ≤B EC if and only if B ⊆ C.

Formally their result relied on the superrigidity theory of Zimmer [70] for
lattices in higher rank Lie groups, and thus in turn had connections with
earlier work of Margulis and Mostow. I will say nothing about Zimmer’s
work as such, but instead try to describe some of the engine which drives the
theory.

3.7 Definition. For a compact metric space K we let M(K) denote the
probability measures on K. By the Riesz representation theorem this can be
identified with a closed subset of the dual of C(K), and thus is a Polish space
in its own right. Note that the homeomorphism group of K acts on M(K)
in a natural way:

(ψ · μ)(f) = μ(ψ−1 · f),

where ψ−1 · f is defined by (ψ−1 · f)(x) = f(ψ(x)).

3.8 Definition. Given a group Γ acting on a space X and another group H
we say that

α : Γ×X → H

is a cocycle if for all γ1, γ2 ∈ Γ, x ∈ X

α(γ2, γ1 · x)α(γ1, x) = α(γ1γ2, x).

Here is a typical situation in which a cocycle arises. Given Γ a group of
Borel automorphisms of standard Borel space X, H a countable group acting
freely and in a Borel manner on a standard Borel space Y , if

θ : X → Y

witnesses EX
Γ ≤B EY

H , then we obtain a Borel cocycle by letting α(γ, x) be
unique h ∈ H with

h · θ(x) = θ(γ · x).

3.9 Lemma (Furstenberg [21], Zimmer [70]). If Δ is a countable amenable
group acting in a Borel manner on a standard Borel probability space (X,μ)
and

α : Δ×X → Hom(K)

is a cocycle into the homeomorphism group of a compact metric space K,
then we can find a measurable assignment of measures

x �→ νx,
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X →M(K),

which is almost everywhere equivariant, that is to say

∀μx∀γ(α(γ, x) · νx) = νγ·x.

The applications of this lemma and its forerunners are much too involved
to be discussed here. Some understanding of what is going on can be given by
the following simple lemma. In fact, the hypotheses of the lemma can never
be realized, and indeed the real theorem is that equivalence relations of the
form EX

Γ×Z
are never treeable, but I simply want to give a short illustration

of some key ideas.

3.10 Lemma. Suppose Γ is a non-amenable countable group. Let X =
{0, 1}Γ×Z and let μ be the product measure on this space. Let Γ × Z act in
the natural way on this space:

σ · f(τ) = f(σ−1τ)

for any f ∈ X, σ, τ ∈ Γ× Z.
Suppose F2 acts freely and by Borel automorphisms on standard Borel

probability space Y . Suppose

θ : X → Y

witnesses EX
Γ×Z

≤B EY
F2

.
Then there is homomorphism ρ : Γ→ F2 and an alternative reduction

θ̂ : X → Y,

which is equivalent in the sense that

θ̂(x)EY
F2

θ(x)

for all x ∈ X and whose resulting cocycle accords with ρ almost everywhere,
in the sense that

∀μx∀γ(ρ(γ) · θ̂(x)) = θ̂(γ · x).

Sketch of Proof. Let
α : (Γ× Z)×X → F2

be the induced cocycle.
Let ∂(F2) denote the infinite reduced words from {a, b, a−1, b−1}. This

is a compact metric space on which F2 acts by homeomorphisms. (See [44,
Appendix C].) Following Lemma 3.9 we can find a measurable assignment

X →M(∂(F2)),

x �→ μx,
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with
α(e, �) · μx = μ(e,�)·x

for all � ∈ Z and a.e. x ∈ X. (We will use e for the identity in Γ and 0 for
the identity in Z.)

Claim: We can choose this assignment so that the measures μx concentrate
almost everywhere on more than two points.
Proof of Claim: (Sketch only; see [44, Appendix C] for a completely precise
argument for a more general claim.) Suppose instead that every such Z-
equivariant assignment of measures concentrates on at most two points.

The key observation here is that if

x �→ μx

is such an assignment of measures then for any γ ∈ Γ so is

x �→ α(γ, 0)−1 · μ(γ,0)·x.

Thus to prevent a situation in which we could simply pile on more and more
of these measures, passing from say x �→ μx to

x �→
μx + α(γ, 0)−1 · μ(γ,0)·x

2

we must be able to obtain an assignment which is actually Γ-equivariant.
Using certain strong ergodicity properties of the shift action of Γ on X

(see [44, Appendix A]) and the hyperfiniteness of the action of F2 on ∂(F2)
(see [44, Appendix C]) we obtain that there is a single measure ν0 such that
for almost all x we have some σx ∈ F2 with

σx · μx = ν0.

Thus replacing θ with the reduction

θ̂ : x �→ σx · θ(x)

we obtain a reduction of EX
Γ×Z

to EX
H where H is the subgroup of F2 corre-

sponding which stabilizes the measure ν0. This subgroup will be amenable
(see [44, Appendix C]), which in turn provides a contradiction to the non-
amenability of Γ× Z (see [44, Appendix A] again). (Claim �)

So now we obtain an assignment of measures that concentrates on at least
three points almost everywhere. Here an observation of Russ Lyons (the
rough idea is that a measure on ∂(F2) concentrating on more than three
points can be assigned a center in an F2-equivariant manner—again, see [44,
Appendix C]) gives us a measurable map

η : X → F2
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such that
η((e, �) · x) = α((e, �), x) · η(x)

almost everywhere. Replacing θ : X → Y by

θ̂ : X → Y,

x �→ η(x)−1 · θ(x)

we obtain a reduction with an induced cocycle

α̂ : (Γ× Z)×X → F2

with α̂((e, �), x) = e almost everywhere.
Then, as at the proof of [44, 2.2], the ergodicity of the action of Z on X

gives that for any γ ∈ Γ,
x �→ α̂((γ, 0), x)

is a.e. invariant. From this it is easily seen that we obtain the required
homomorphism into F2. �

Arguments of this form can be found very clearly in papers by Scott Adams
such as [1], though in truth the ideas trace back to Margulis and Mostow by
way of Zimmer [70].

Hjorth and Kechris [44] give a self-contained proof of the existence of
many ≤B-incomparable countable Borel equivalence relations using argu-
ments along these lines, but something similar is implicit in the superrigidity
results of [70] to which Adams and Kechris appeal in the course of prov-
ing Theorem 3.6. In that case one is dealing not with the compact space
∂(F2) but certain compact quotients of an algebraic group (see for instance
[70, p. 88]) or the measures on projective space over a locally compact field
(see [70, 3.2.1]). The appearance of product group actions is more subtle,
but present; superrigidity typically on works for groups of matrices of rank
greater than two, when we can hope to find a subgroup which indeed has the
form Γ× Z for Γ non-amenable.

In passing it should also be mentioned that there are applications of
Furstenberg’s lemma to the theory of the homeomorphism group of the circle.
In [27] the combinatorial properties of M(S1) play a role in understanding
what kinds of homomorphisms are possible into Homeo(S1).

3.2. Treeable Equivalence Relations

The situation with the countable Borel equivalence relations can in some
sense be viewed as resolved. It is a giant mess, with many incomparable
examples, but we know it to be the ghastly mess that it is. The situation
with treeable countable Borel equivalence relations is far different.

It is well-known that not all treeable equivalence relations are hyperfinite.
If one take the free part of the shift action of F2 on 2F2 then the resulting
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equivalence relation, ET ∞, is treeable—we define a Borel treeing by x T x′

if there is a generator of F2 which moves x to x′. The equivalence relation
is not hyperfinite, as shown for instance in [44], since the product measure
concentrates on the free part and is F2-invariant.

It is also known that there is a maximal countable treeable equivalence
relation. [48] shows that for any treeable countable Borel equivalence relation
E one has E ≤B ET ∞.

After that precious little is known. Reference [40] gives the existence of a
treeable equivalence relation E with E0 <B E <B ET ∞, but at the time of
writing it is still open whether there are exactly two non-hyperfinite treeable
countable Borel equivalence relations up to Borel reducibility.

3.3. Hyperfiniteness

One of the enduring problems in this field is to determine which countable
Borel equivalence relations are hyperfinite. Nowadays this is almost always
asked in the Borel context, since the measure theoretic setting is completely
understood.

3.11 Theorem (Connes-Feldman-Weiss [8]). Let G be a countable amenable
group acting by measure preserving transformations on a standard Borel prob-
ability space (X,μ). Then there is a conull set on which the orbit equivalence
relation is hyperfinite.

Equivalently, we can find a measurable reduction of EG to E0.
Even this result for very simple groups remains excruciatingly difficult in

the Borel setting.

3.12 Theorem (Jackson-Kechris-Louveau [48]). Let G be a finitely generated
group with a nilpotent subgroup H with [G : H], the index of H in G, finite.
If G acts by Borel automorphisms on a standard Borel space X, then the
resulting equivalence relation EG is hyperfinite.

There was a considerable pause until quite recently it was shown:

3.13 Theorem (Gao-Jackson [25]). Let G be a countable abelian group. If G
acts by Borel automorphisms on a standard Borel space X, then the resulting
equivalence relation EG is hyperfinite.

To give an idea of how difficult these problems have proved, it was not
until Theorem 3.13, despite considerable efforts, we even knew that the com-
mensurability equivalence relation on R \ {0},

r Ec s ⇐⇒ r/s ∈ Q

was hyperfinite.
It would be natural to conjecture all EG’s arising from the Borel action

of an countable amenable group on a standard Borel space are hyperfinite.
This conjecture is presently far out of reach, and actually has little in the
way of supporting evidence.
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4. Effective Cardinality

One way in which to look at the theory of Borel reducibility is as a kind
of theory of Borel cardinality, and in this sense there are definitely roots in
papers by Harvey Friedman such as [17]. If we were to truly embrace a math-
ematical ontology consisting solely of Borel objects, then we would also be
naturally led to consider certain kinds of quotients arising from Borel equiv-
alence relations and to make any comparison along the lines of cardinality it
seems we would use something like Borel reducibility.

In this sense I am more inclined to consider the theory of ≤B as some-
thing like a theory of cardinality, as opposed to a theory of reducibility of
information, as one finds in the theory of Turing reducibility. In fact there
are close parallels between the structure of the ≤B-ordering on Borel equiva-
lence relations and the cardinality theory of L(R) under suitable determinacy
assumptions.

4.1 Definition. For A,B ∈ L(R) write

|A|L(R) ≤ |B|L(R),

the L(R) cardinality of A does not exceed that of B, if there is an injection

i : A ↪→ B

in L(R).

4.2 Lemma (Folklore, but see [32]). Assume ADL(R). Let E,F be Borel
equivalence relations on R. If

|R/E|L(R) ≤ |R/F |L(R)

then there is a function
f : R → R

in L(R) with for all x1, x2 ∈ R

x1 E x2 ⇐⇒ f(x1)F f(x2).

Then in parallel to Silver’s theorem Woodin has shown:

4.3 Theorem (Woodin). Let A ∈ L(R). Then exactly one of the following
holds:

(I) There is an ordinal α with |A|L(R) ≤ |α|L(R)—in other words, A is
well-orderable; or

(II) |R|L(R) ≤ |A|L(R).

And for Harrington-Kechris-Louveau:
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4.4 Theorem (Hjorth [33]). Assume ADL(R). Let A ∈ L(R). Then exactly
one of the following holds:

(I) There is an ordinal α with |A|L(R) ≤ |2α|L(R)—in other words, A has a
well-orderable separating family; or

(II) |R/Ev|L(R) ≤ |A|L(R).

In (II) we can equivalently say that P(ω)/Fin embeds into A.
The theory of effective cardinality, whether we choose to explicate it using

Borel functions and objects or the more joyously playful world of L(R), can
also be compared with the idea of classification difficulty. If the effective car-
dinality of A is below that of B, then any objects which succeed as complete
invariants for B do as well for A. Here one could even begin certain kinds of
wild speculations, to the effect that subconsciously part of the mathematical
activity of vaguely searching for some kind of ill-defined classification theorem
for a class of objects is in fact a query as to its effective cardinality.

Even if circumspection draws us back from grand fantasies along these
lines, calculations of Borel cardinality undoubtedly say something about clas-
sification difficulty. A non-reduction result, saying E not Borel reducible
to F , will inform as to which kinds of objects would be insufficient, in the
Borel category at least, to act as complete invariants for E.

Finally, in the context of L(R) there is a curious refinement of the usual
Borel hierarchy theorem.

4.5 Theorem (Hjorth [34]). Assume ADL(R). Then for every α < β < ω1

|Π∼
0
α|L(R) < |Π∼

0
β |L(R).

Thus, not only is Π∼
0
α strictly included in Π∼

0
β , it is also smaller in effective

cardinality. Sharper results are possible here. Andretta et al. [3] determines
the exact levels of the Wadge degrees which provide new cardinals in L(R).

5. Classification Problems

Until this point our discussion has largely been concerned with the structural
properties of the ≤B ordering. However in the sum total of papers on the
subject, the majority deal not with the abstract issues of this partial order,
but instead with the specific problems of placing certain naturally occurring
equivalence relations in this hierarchy.

Here one pictures specific levels of classification difficulty, and for an exam-
ple “from the wild” we ask whether it is smooth, or classifiable by countable
structures, or universal for countable Borel equivalence relations, and so on.
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5.1. Smooth versus Non-Smooth

At the very base, we have the distinction between smooth and non-smooth.
If E ≤B id(R) then we can classify the E-classes by points in a concrete
space.

The very first writings dealing at all with attempting to understand the
classification difficulty of mathematical problems as a kind of science in and
of itself are due to George Mackey, for instance in [57]. Very specifically he
was concerned with understanding which groups have smooth duals. Here
given U(H), the unitary group of a separable Hilbert space, and irreducible
representations

σ1, σ2 : Γ → U(H),

we set σ1 ∼ σ2 if there is some unitary T ∈ U(H) with

T −1 ◦ σ1(γ) ◦ T = σ2(γ)

all γ ∈ Γ. For Γ countable, the space of unitary representations is a Polish
space, since it is a closed subset of

U(H)Γ,

and then the irreducible representations form a Gδ subset of those, and hence
again Polish in the subspace topology (see for instance [10]). We say that the
group Γ has smooth dual if the equivalence relation ∼ on the irreducibles is
smooth. Ultimately it was determined in [66] that the countable groups with
smooth duals are exactly the abelian by finite.

Another example is the equivalence relation of matrices over C considered
up to similarity. As remarked in [29], this equivalence relation is smooth,
since we can assign to a matrix its canonical Jordan form as a complete
invariant.

Some authors following on from this have drawn out from Mackey’s writ-
ings the entirely general view that in all branches of mathematics the dividing
line between classifiable and non-classifiable is given by the smooth versus
non-smooth distinction. Indeed the author of [10] appears to flirt with such a
opinion. For a rather different take one might look at the introduction of [36];
indeed this work cites many apparent classification theorems—Baer’s analysis
of rank one torsion free abelian groups, the von Neumann-Halmos analysis of
discrete spectrum transformations, the spectral theorem for infinite dimen-
sional unitary operators—for equivalence relations which are non-smooth.

5.2. Universal for Polish Group Actions

It is a well-known result—probably first due to Leo Harrington, but for a
proof see [46]—that there is no universal Borel equivalence relation: For
every Borel equivalence relation E there is another Borel equivalence relation
F which does not Borel reduce to E. On the other hand there is a universal
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Σ∼
1
1 equivalence relation, which we might in some sense think of as sitting on

the throne above all our examples.
As a practical matter almost all the equivalence relations which seem to

have independent interest arise as, or are reducible to, orbit equivalence re-
lations induced by the continuous action of a Polish group on a Polish space.
Among these there is an uppermost example: EX∞

G∞
, induced by the contin-

uous action of a Polish group G∞ on a Polish space X∞. Although we are
stepping slightly outside the subject of Borel equivalence relations as such,
EX∞

G∞
can be viewed as a kind of extreme, at the opposite end to id(R), of an

equivalence relation with maximal complexity.
In unpublished work Kechris and Solecki showed that in the natural Borel

structure compact metric spaces considered up to homeomorphism are ∼B

with, bi-Borel reducible with, EX∞
G∞

. A recent and published example is given
by [26], where they show that complete separable metric spaces considered
up to isometry is ∼B to EX∞

G∞
, as are closed subsets of the Urysohn space

under the orbit equivalence relation induced by the isometry group of this
space.

5.3. Universal for S∞

As shown in [6], for each Polish group G there is a corresponding Polish G-
space X with EX

G universal for orbit equivalence relations of G, moreover in
the case of G = S∞ we can take X to be Mod(L) for any L which contains
at least one relation of arity two or higher. For future reference let us fix
some such universal space for S∞ orbit equivalence relations and denote the
corresponding equivalence relation by E∞S∞ . Again this is Σ∼

1
1 but not Borel.

The study of which equivalence relations lie at the level of E∞S∞ go right
back to the first work of logicians on the ≤B ordering.1 One finds ≤B defined
independently, quite by accident with the exact same notation and terminol-
ogy, in [29] and [18]. The first of these papers deals with the structural result
of Theorem 2.2, and the second almost entirely with specific issues of which
classes of isomorphism are ∼B with E∞S∞ . More generally, given any E
which admits classification by countable structures, we automatically have
E ≤B E∞S∞ and we can go on to ask when in fact the reverse ≥B holds as
well.

Friedman and Stanley [18] demonstrate, among other examples, that iso-
morphism of countable groups, countable fields, and countable linear or-
derings, are all ∼B E∞S∞ . (In general, given any ψ ∈ Lω1,ω, the set of
M ∈ Mod(L) satisfying ψ is Borel, and hence forms a standard Borel space
in its own right.) More recently [24] show countable boolean algebras up to
isomorphism are universal in this class.

1 I choose these words warily. Although the notion of ≤B does not appear explicitly in
the writings of Mackey, and was first formally isolated in the late 1980s, in some form the
idea is already implicit, both in Mackey and in other authors such as [14].
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In general most of the questions in this area which can be reasonably posed
have been answered. However one wound remains with us from [18]:

Question (Friedman-Stanley). Is isomorphism on countable torsion free
abelian groups ∼B to E∞S∞?

This question remains open despite several efforts to give it closure.

5.4. E∞

If E is a countable equivalence relation then Theorem 1.10 shows E is induced
by the Borel action of a countable group, G. Any countable group is realizable
as a closed subgroup of S∞, and so by [6] we have that E admits classification
by countable structures.

Thus the countable Borel equivalence relations form a subclass of the
equivalence relations admitting classification by countable structures, with
a top most example E∞. The subclass is proper, since T2 from our ear-
lier examples, corresponding to equality on countable sets of reals, is <B

above E∞. In fact, the lesson we take away from say [46] is that the countable
Borel equivalence relations are only a tiny part of the totality of equivalence
relations admitting classification by countable structures.

Nevertheless many important examples lie in the class of countable Borel
equivalence relations, and on the whole this has proved to be one of the
hardest and most exciting parts of the discipline. In general terms a class of
countable structures tends to be ≤B E∞, that is to say, essentially countable,
if there is some notion of finite rank.

Simon Thomas and Velickovic, [69], in answer to questions raised in [42],
show that isomorphism on finitely generated groups and fields of finite tran-
scendence degree are ∼B E∞.

5.5. E0

If the diagram has a well-described bottom, id(R), then it equally has a well-
defined second rung, that of E0. Implicitly in the classical literature on this
subject there is a classification theorem in terms of hyperfiniteness.

5.1 Theorem (Baer, in effect; see [19]). Isomorphism on rank one torsion
free abelian groups is hyperfinite.

In fact, Baer’s original result dates back to the 1920s and is not stated in
this form. Rather he explicitly associates to each rank one torsion free group
a kind of type, consisting of a description of orders considered up to finite
difference, and goes on to show that the type is a complete invariant. This
has generally been considered a satisfactory classification of the rank one
torsion free groups, and Fuchs in [19] asks the vague but earnest question
whether the rank two torsion free abelian groups can be “classified”.
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5.2 Definition. For each n let Sn be the subgroups of (Qn,+). Let ∼=n be
the isomorphism relation on these groups.

Every rank n torsion free abelian group appears as a subgroup of Q
n,

and in turn these subgroups all have rank ≤ n. Moreover two subgroups
of Q

n are isomorphic if and only if there is a linear transformation over the
rationals which sends one to the other, and thus the equivalence relation ∼=n

has countable classes—and thus ≤B E∞.
The authors of [42] observe that Baer had implicitly shown ∼=1≤B E0

and went on to suggest as a possible explication of Fuchs’ question whether
∼=2≤B E0. With absolutely no evidence, and armed only with the arrogance
of ignorance, [42] conjectured that ∼=2∼B E∞.

This conjecture was refuted by Thomas in a spectacular sequence of pa-
pers. There are several papers around the subject of isomorphism on finite
rank torsion free abelian groups, most of which are surveyed in [67].

5.3 Theorem (Thomas [68]). At every n

∼=n <B
∼=n+1 .
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1. Introduction

It is sometimes the case that new concepts not only widen our horizons,
but also bring difficult old results into main stream and within common
knowledge. Properness, introduced and developed by Saharon Shelah, is
such a concept and the wealth of results, both old and new, that it provides
justifies its early introduction into advanced set theory courses. My aim is to
provide an introductory exposition of the theory of proper forcing which will
also give some of its interesting applications, to the point where the reader
can continue with research papers and with the more advanced material in
Shelah’s book [15]. I assume that the reader has some knowledge of axiomatic
set theory and is familiar with the basics of the forcing method, including
some iterated forcing (the consistency proof of Martin’s Axiom is sufficient).

We deal here with countable support iteration. This type of iteration ap-
peared in Jensen’s consistency proof of the Continuum Hypothesis with the
Souslin Hypothesis, and it also appeared in Laver’s work on Borel’s Conjec-
ture (see [3] and [10]). (These two outstanding results will not be treated
here. They have now simpler proofs in which the theory of proper forcing is
used to concentrate on the single step of the iteration.)

The chapter contains four parts. First: preservation of properness in
countable support iteration. Second: preservation of the ωω-bounding prop-
erty, and an application concerning non-isomorphism of ultrapowers of ele-
mentarily equivalent structures. Third: preservation of unboundedness, and
an application concerning two cardinal invariants, the bounding number and
the splitting number. Fourth: Dee-completeness, forcings that add no count-
able sets of ordinals. These results are all due to Shelah, and most of them
appear in Chapters V and VI of his proper forcing book [15], but are pre-
sented here at a more concrete level, and sometimes with simpler proofs.
(Theorem 5.8, concerning the chromatic number of Hajnal-Máté graphs, is
due to the author.)

Our notations follow a standard usage, and the introduction describes
them and reviews some elementary facts about forcing. Note that a ≤ b in
a forcing poset denotes here that b carries more information than a. We say
then that b extends a.

A preorder is a transitive and reflexive relation on a set (its domain). If ≤ is
a preorder on A and a ≤ b then we say that b extends a. We say that a, b ∈ A
are compatible if there exists some x ∈ A that extends a and b. Otherwise,
a and b are incompatible, and a set of pairwise incompatible elements is called
an antichain. A set D ⊆ A is dense iff

∀a ∈ A∃d ∈ D (a ≤ d),

and D is predense iff

∀a ∈ A∃d ∈ D (a and d are compatible).
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A preorder is separative iff whenever b does not extend a there is an extension
of b that is incompatible with a. We say that P = (A,≤) is a forcing poset iff
≤ is a separative preorder on A with a minimal element 0P . We often write
≤P for the preordering of P . In the context of iteration, preorderings are
more convenient than (antisymmetric) orderings, because this is what one
naturally obtains. (The reader who prefers orderings can remain with posets
of course, but at the price of taking quotients with their notational burden.)

Let P = (A,≤) be a forcing poset. We say that G ⊆ A is a filter iff G
is downwards closed: ∀x ≤ y (y ∈ G −→ x ∈ G), and any two members of
G are compatible in G. We say that G is (V, P )-generic iff G is a filter over
P that meets (has a non-empty intersection with) every dense set of P that
lies in V . It is convenient to employ (V, P )-generic filters and to be able to
speak about actual generic extensions V [G]. I assume that the reader knows
how to avoid such ontological commitments.

V P is the class of all P forcing names in V . If a ∈ V P and G is (V, P )-
generic, then a[G] (or aG) denotes the interpretation of a in V [G]. It is
convenient to define the interpretation of names in such a way that every
set in V can be interpreted as a name: a[G] = {y[G] | ∃p ∈ G(〈p, y〉 ∈ a)}.
Usually for a set a ∈ V , ǎ denotes the (canonical) name of a. However,
often a rather than ǎ is written here in forcing formulas, for graphical clarity
and since this is very rarely a source of confusion. If ϕ is a forcing formula
then “ϕ holds in V P ” means that 0P �P ϕ. Often �P ϕ is written instead of
0P �P ϕ. Also, I seldom put quotation marks around forcing formulas. The
canonical name of the (V, P )-generic filter is denoted G

∼
.

The reason for employing separative posets is the following characteriza-
tion: P is separative iff for any p, q ∈ P , p�P q ∈ G

∼
implies q ≤ p. Notice

that p, q ∈ P is written rather than the more accurate p, q ∈ A. A poset may
be used as a name for its own universe.

The relation P � Q on forcing posets P and Q means that there is a
function (projection) π : Q→ P such that

1. π is order-preserving (that is, q1 ≤Q q2 implies π(q1) ≤P π(q2)), π is
onto P , and π(0Q) = 0P .

2. For every q ∈ Q and p′ ∈ P such that p′ ≥ π(q) there is a q′ ≥ q in Q
such that π(q′) = p′.

If P � Q and D ⊆ P is dense, then π−1(D) is dense in Q. Hence, if H is
a (V,Q)-generic filter, then its image π“H generates a (V, P )-generic filter.

We say that π is a trivial projection iff π(q1) = π(q2) implies that q1, q2

are compatible in Q. It can be seen that π is trivial iff for any (V, P )-generic
filter G, π−1(G) is a (V,Q)-generic filter.

In many applications the projection of P �Q satisfies a stronger property
than 2: for any p ∈ P and q ∈ Q, if p ≥ π(q) then q has an extension q1 ∈ Q,
denoted p + q, such that
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1. π(q1) = p, and

2. if r ∈ Q is such that r ≥ q and π(r) ≥ p, then r ≥ q1.

If this additional property holds then every p ∈ P can be identified with
i(p) = p + 0Q. (That is, P can be assumed to be a subposet of Q.)

If Q ∈ V P is a forcing poset (that is, by our convention, forced by the zero
condition to be a forcing poset), then P ∗ Q, the two-step iteration, is the
forcing poset defined as follows. First, some sufficiently large set Vα is chosen
so that if b ∈ V P is any name then there is already a name a ∈ Vα such that
for any p ∈ P , if p�P b ∈ Q, then p�P b = a. (Vα here is the set of all sets
of rank < α.) Now form P ∗Q as the set of all pairs (p, q) such that p ∈ P ,
q ∈ Vα ∩ V P and p�P q ∈ Q. The preordering ≤=≤P ∗Q is defined by

(p, q) ≤ (p′, q′) iff p ≤P p′ and p′ �P q ≤Q q′.

The map π(p, q) = p is a projection. Usually one does not bother to define
the set Vα from which the names q are taken and P ∗ Q is presented as a
class.

I will summarize (without proofs) some basic facts about two-step itera-
tions. The two notions, projection and two-step iteration, are closely related.
If P �R with projection π : R→ P , and if G0 is a (V, P )-generic filter, then
form in V [G0] the following set

Q = R/G0 = {r ∈ R | π(r) ∈ G0}

and define a partial, separative preorder ≤=≤R/G0 on Q by

r1 ≤ r2 iff every ≤R extension of r2 in R/G0 is
≤R -compatible with r1 in R/G0.

(5.1)

Equivalently,

r1 ≤ r2 iff r1 ≤R g + r2 for some g ∈ G0 with π(r2) ≤P g. (5.2)

It follows that r1 ≤ r2 iff for any g1, g2 ∈ G0, g1 + r1 ≤ g2 + r2. Sometimes,
we write R/G

∼ 0, or even R/P , for the V P name of Q = R/G0.

1.1 Lemma. Assume P � R as above and G0 is a (V, P )-generic filter.
Suppose that in V [G0] we have a sequence 〈ri | i ∈ ω〉 such that ri ∈ R/G0

and ri ≤R/G0 ri+1. Then there is a sequence 〈si | i ∈ ω〉 such that each si

has the form si = gi + ri for some gi ∈ G0 and si ≤R si+1.

Proof. Suppose that gi ∈ G0 is defined. Since ri ≤R/G0 ri+1, there exists a
g ∈ G0 such that ri ≤R g + ri+1. We may take g ≥ gi. Since π(g + ri+1) = g,
we get gi + ri ≤R g + ri+1. So that gi+1 = g works. �
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Now let Q
∼

be the name of Q in V P and form the two-step iteration P ∗Q
∼

.
Then R with its original ordering ≤R is isomorphic to a dense subset of P ∗Q

∼
.

Namely, the map r �→ (π(r), ř) is that embedding (where ř is the V P name
of r). Thus R itself can be viewed as a two-step iteration: the projection P
followed by the quotient poset whose name is denoted by R/G

∼ 0.
Suppose now that some forcing poset Q ∈ V P is given and R = P ∗ Q is

formed. Then P � R, with projection π(p, q) = p. The stronger property of
projections holds here, and we can identify p ∈ P with (p, 0∼) ∈ P ∗Q. Let G0

be (V, P )-generic, and form R/G0 as above. R/G0 = {(p, q) ∈ P ∗Q | p ∈ G0}
ordered as in (5.1). Then the following holds for (p1, q1), (p2, q2) ∈ R/G0

(p1, q1) ≤R/G0 (p2, q2) iff ∃p ∈ G0 ((p1, q1) ≤P ∗Q (p, q2)).

In V [G0], both R/G0 and Q[G0] can be formed. (Q[G0] is the interpretation
of Q in V [G0].) These are essentially the same poset. That is, the map

i : (p, q) �→ q[G0]

taking (p, q) ∈ R/G0 into the interpretation of q is a trivial projection.
Let P and R be any posets such that P � R. We have said that if H is a

(V,R)-generic filter, then G0 = π“H is (V, P )-generic, and clearly H ⊆ R/G0.
In fact, H is a (V [G0], R/G0)-generic filter.

On the other hand, if G0 is (V, P )-generic, and if G1 is (V [G0], R/G0)-
generic, then G1 ⊆ R is a (V,R) generic filter and π“G1 = G0.

Now, given a poset P , suppose that Q ∈ V P is a poset and R = P ∗Q is
formed. Let G0 be (V, P )-generic, and G1 be (V [G0], Q[G0])-generic, where
Q[G0] is the interpretation of Q in V [G0]. Define in V [G0] the trivial pro-
jection i : R/G0 → Q[G0] as above, and define H = i−1(G1) in V [G0][G1].
That is,

H = {(p, q) ∈ P ∗Q | p ∈ G0 ∧ q[G0] ∈ G1}.
Then H is an (R/G0, V [G0])-generic filter (the pre-image of a trivial projec-
tion). Hence (by the preceding paragraph) H is also (V, P ∗Q)-generic, and
π“H = G0. Abusing the product notation we write H = G0 ∗G1.

Let R = P ∗ Q. I want to explain the equation V R = (V P )Q. We shall
define a function

ρ : V R → V P

from the R-names into the P -names such that the following holds for every
(V,R)-generic filter H and G0 = π“H its projection.

1. As we have seen, G0 = π“H = {p ∈ P | (p, q) ∈ R for some q ∈ H} is
(V, P )-generic, and H is (V [G0], R/G0)-generic.

2. For every a ∈ V R, a[H] = (ρ(a)[G0])[H]. That is, the interpretation
a[H] of a in V [H] can be obtained in two steps: first interpret ρ(a)
in V [G0], as a name, and then interpret this name in the remaining
forcing over R/G0.
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Usually, we write a/G0 instead of ρ(a)[G0] (without mentioning ρ) and then
a/G

∼ 0 is written for ρ(a).
To define ρ let pair : V P×V P → V P be a (definable) map such that for any

τ1, τ2 ∈ V P , pair(τ1, τ2)[G0] = 〈τ1[G0], τ2[G0]〉. In plain words, pair(τ1, τ2) is
a canonical name for the pair formed from (the interpretations of) τ1 and τ2.
Define now ρ by rank induction so that for any a ∈ V R

ρ(a) = {〈π(r), pair(ř, ρ(y))〉 | r ∈ R and 〈r, y〉 ∈ a},

where ř is the canonical P -name for r. Suppose now that H is (V,R)-generic
and G0 is (V, P )-generic through the projection G0 = π“H. For any a ∈ V R

ρ(a)[G0] = {pair(ř, ρ(y))[G0] | (r, y) ∈ a ∧ π(r) ∈ G0}
= {〈r, ρ(y)[G0]〉 | (r, y) ∈ a ∧ r ∈ R/G0}.

Now the required equality

ρ(a)[G0][H] = a[H]

is established by the following equalities:

ρ(a)[G0][H] = {ρ(y)[G0][H] | ∃r ∈ H((r, y) ∈ a ∧ r ∈ R/G0)}
= {y[H] | ∃r ∈ H (r, y) ∈ a}
= a[H].

The function ρ can be defined as above whenever P � R.
The following lemma is often used.

1.2 Lemma. Assume that P � R, and D ⊆ R is dense. Let G be a (V, P )-
generic filter. Then the following holds in V [G]: Every q ∈ R with π(q) ∈ G
has an extension d ∈ D with π(d) ∈ G. In other words, D ∩R/G is dense in
R/G.

Proof. Suppose that p ∈ P forces that π(q) ∈ G
∼
. Then π(q) ≤P p, and hence

there is an extension q1 of q with π(q1) = p. Now extend further q1 to a
condition d ∈ D, and then π(d) forces d ∈ D ∩R/G as required. �

We will encounter the following situation in Sect. 3.

1.3 Lemma. Q0 � Q1 � Q2 are posets with projections πi,j : Qi → Qj for
0 ≤ j < i ≤ 2. The projections commute: π2,0 = π1,0 ◦ π2,1. Suppose G0

is a (V,Q0)-generic filter, and form Q′
1 = Q1/G0 and Q′

2 = Q2/G0. Then
π2,1 : Q′

2 → Q′
1 is a projection and the quotient Q′

2/Q
′
1 can be seen to be

exactly Q2/Q1.
Let G

∼ (Q1/G0) be the canonical name in V [G0] of the Q1/G0 generic filter.
Then

(Q2/G0)/G∼ (Q1/G0) ∈ V [G0]Q1/G0 .

If G1 is a (V [G0], Q1/G0)-generic filter, then the interpretation of that name,
(Q2/G0)/G1, is equal to Q2/G1. In addition, G1 is (V,Q1)-generic and if
f

∼
∈ V Q2 then (f

∼
/G0) ∈ V [G0]Q1/G0 and (f

∼
/G0)/G1 is f

∼
/G1.
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1.1. Countable Support Iterations

We deal here only with countable support iterations. An iteration of length γ
(an ordinal) is defined by induction. For this, one needs a scheme to produce
the next poset in the iteration. Suppose that this scheme is given by some
function F (a formula that defines a function) such that for every forcing
poset P , F (P ) = Q is in V P a forcing poset. Then the iteration 〈Pα | α ≤ γ〉
is defined so that:

1. Members of Pα are functions defined on α.

2. If α < γ then Pα = {f |̀α | f ∈ Pγ}.

3. Every f ∈ Pγ has a countable support, which is a set Sf = S ⊆ γ such
that f is trivial outside of S, that is, f(ξ) is the Pξ name of the zero
condition for ξ ∈ γ \ S.

The definition of the iteration is as follows.

1. P0 is the trivial poset consisting of the minimal condition ∅ alone, and
V P0 is (or is isomorphic to) V . If Pα is already defined and α < γ, then
Pα+1 is defined as the set of all functions f defined on α + 1 such that
f |̀α ∈ Pα, f(α) ∈ V Pα and

f |̀α �Pα f(α) ∈ Q,

where Q = F (Pα). We define f1 ≤ f2 iff f1 |̀α ≤ f2 |̀α and f2 |̀α �Pα

f1(α) ≤ f2(α). It is evident that Pα+1 is defined to be isomorphic to
Pα ∗ Q. (Since we want Pα+1 to be a set, we must limit the possible
values of f(α).)

2. If δ ≤ γ is a limit ordinal and Pi is defined for every i < δ, then Pδ

is the set of all countably supported functions f defined on δ and such
that for every α < δ, f |̀α ∈ Pα. Thus for every α < δ, f(α) ∈ V Pα

and f has a countable support. Define f1 ≤ f2 iff for every α < δ,
f1 |̀α ≤Pα f2 |̀α.

We assume that the reader knows the basic properties of these countable
support iterations: first, that they form forcing posets, and then, that if
γ0 < γ then π : Pγ → Pγ0 defined by π(p) = p|̀γ0 is a projection of Pγ

onto Pγ0 . If q ∈ Pγ0 and q ≥ π(p), then p1 = q + p is defined in Pγ by the
requirement that

p1(ξ) = q(ξ) for ξ < γ0 and p1(ξ) = p(ξ) for ξ ≥ γ0. (5.3)

Strictly speaking Pγ0 is not a subset of Pγ , but in practice we identify f ∈ Pγ0

with f + 0γ which is the trivial extension of f on γ. The ordering on Pγ is
denoted ≤Pγ or just ≤γ for clarity. We shall often write �γ instead of �Pγ .

The poset name F (Pα) = Qα is called “the αth iterand”. In complex
consistency proofs, the exact definition of F , and even its existence, is often
passed over in silence. The term “bookkeeping device” is often invoked to
refer to that part of the construction which is omitted.
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2. Properness and Its Iteration

In this section we define properness and prove that the countable support
iteration of proper forcing is proper. A slightly different proof can be read
in [4].

In discussing proper forcing, the phrase “let λ be a sufficiently large cardi-
nal, and Hλ the collection of sets of cardinality hereditarily < λ” appears so
often that it deserves a remark. The role of Hλ is to encapsulate enough of
the universe of sets V to reflect the statements in which we are interested. So
the exact meaning of “sufficiently large” depends on the circumstances, and
other reflecting sets such as Vλ can replace Hλ (but less naturally). When
dealing with a forcing poset of cardinality κ, any cardinal λ > 2κ is suffi-
ciently large for our purposes. We will be interested in countable elementary
substructures of 〈Hλ,∈, <, etc.〉, where < is some fixed well-ordering of Hλ,
and etc. may include the poset P , the forcing relation, and other relevant
parameters. The role of the well-ordering < is to allow for inductive con-
structions. For notational clarity we just write M ≺ Hλ, and omit the ∈
relation, the well-order and the other parameters. We often say “M ≺ Hλ is
as usual” to indicate that Hλ refers to a richer structure and the reader may
have to include in M all those parameters that are relevant.

So let P be a poset, M ≺ Hλ be countable, with P ∈ M , as usual, and
let G be (V, P )-generic. Define M [G] = {a[G] | a ∈ M}. So M [G] is the
set of all interpretations of names that lie in M . Since the forcing relation
is (definable) in M (by virtue of the largeness of λ) the Forcing Theorem
implies that M [G] ≺ Hλ[G] (for details, see [15, Theorem 2.11]). However
M [G] is not necessarily a generic extension of M . What does it mean that
M [G] is a generic extension of M? This is a delicate question because of
the special status of the members of M : on one account they are just points
with no other meaning than that provided by the structure M itself, and on
the other hand, they are bona fide members of Hλ and carry information of
which M is not aware. By collapsing M onto a transitive structure only the
local properties remain and we are no longer confused by this double role.
So let π : M → M̄ be the transitive collapsing of M , and let π“G = Ḡ be
the image of G. Then genericity of G over M means that Ḡ is M̄ -generic
over π(P ). That is, Ḡ has a non empty intersection with every dense subset
of π(P ) that lies in M̄ . I find that collapsing is illuminating, but of course
one can give a more direct definition: G is (M,P )-generic iff for any D ⊆ P
dense in P such that D ∈M , G ∩D �= ∅.

Properness of P , as we shall see in a moment, ensures that this is the
normal situation. A good example for a non-proper forcing is the forcing
P that collapses ω1 to ω. (The “conditions”, the members of P , are finite
functions from ω into ω1 and the ordering is extension.) Here it is obvious
that the generic function g : ω → ω1 onto ω1 is not M̄ -generic, since it
involves ordinals not in M̄ .

To define properness, we need the concept of an (M,P )-generic condition.
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Let P be a poset and M ≺ Hλ, with P ∈M , be an elementary substructure.
A condition q ∈ P is said to be (M,P )-generic iff for every dense subset
D ⊆ P such that D ∈ M , D ∩M is predense above q, i.e., for any q1 ≥ q,
there is a q2 ≥ q1 extending some d ∈ D ∩M . Sometimes, when the identity
of P is clear from the context, we just say that q is an “M -generic” condition.

In the proof of the properness preservation theorem we shall employ the
following

2.1 Lemma. A condition q is (M,P )-generic iff for every D ∈M dense in
P there is a name p

∼ ∈ V P such that

q �P p
∼ ∈M ∩D ∩G

∼
.

2.2 Definition. A poset P is called proper iff for any λ > 2|P | and countable
M ≺ Hλ with P ∈ M , every p ∈ P ∩M has an extension q ≥ p that is an
(M,P )-generic condition.

Properness, and genericity of a condition have the following equivalent
property which is often used. A condition q is (M,P )-generic iff

q �P M [G
∼
] ∩On = M ∩On.

Assuming a predicate V that denotes the ground model, we can replace this
by

q �P M [G
∼
] ∩ V = M ∩ V.

Thus P is proper iff for any λ > 2|P | and countable M ≺ Hλ with P ∈ M ,
every p ∈ P ∩M has an extension q ≥ p such that for every τ ∈M ∩V P and
every q′ ≥ q, if q′ �P τ ∈ V , then q′ �P τ ∈M .

We will prove that in the definition of properness, the quantification “for
any λ > 2|P | and every countable M ≺ Hλ” can be weakened to “for λ =
(2|P |)+ (or, for some λ > 2|P |) and for a closed unbounded set of M ≺
Hλ . . .”, and the resulting definition is equivalent to the original. (See also
[15, Chap. III].)

One of the first consequences of properness is the following. If P is proper,
and G a (V, P )-generic filter, then ℵ1 is not collapsed in V [G]. Moreover,
every countable set of ordinals in V [G] is included in an old countable set
(from V ). Indeed, if q is (M,P )-generic and τ ∈M is a name for an ordinal,
then q forces τ to be in M . (By the alternative definition, or argue as follows.
The set D of conditions that determine the value of τ is dense in P and is
in M , and hence D ∩M is dense above q which implies that every extension
of q can be further extended to force τ = α for some α ∈M .) It follows from
this observation that if P is proper and forcing with P introduces no new
subsets of ω, then forcing with P adds no new countable sets of ordinals.

The simplest examples of proper forcing posets are the countably closed
posets and the c.c.c. posets. It is illuminating to realize that despite the
obvious difference between these two families of posets, they have (at some
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level of abstraction) the same reason for not collapsing ω1—namely their
properness. If P is c.c.c., then any condition is (M,P )-generic, and if P is
countably closed then any upper bound of an (M,P )-complete sequence is
(M,P )-generic. For an arbitrary proper poset, finding generic conditions is
usually the main burden of the proof.

A large family of posets was defined by Baumgartner [1], and called Axiom
A posets. It turns out that they are all proper.

2.3 Definition. A poset (P,≤) satisfies Axiom A iff there are partial orders
〈≤i| i < ω〉 on P , with ≤0 =≤, such that:

1. For i < j, ≤j ⊆≤i.

2. For every p ∈ P , dense D ⊆ P , and n < ω, there are p′ ∈ P and
countable D0 ⊆ D such that p ≤n p′ and D0 is predense above p′ (i.e.,
if p′ ′ ≥ p′ then p′ ′ is compatible with some condition in D0).

3. If 〈pi ∈ P | i ∈ ω〉 is a sequence such that pi ≤i pi+1, then there is a
p ∈ P (called the fusion of the sequence) such that for every i, pi ≤i p.

A poset (P,≤) satisfies Axiom A∗ iff in addition the D0 above can be
taken to be finite.

The Sacks-Spector conditions (subtrees of 2<ω with arbitrarily high split-
ting) satisfies Axiom A∗.

It is easy to prove that any Axiom A forcing is proper (see Baumgart-
ner [1]). In fact, if M ≺ Hλ is countable with P ∈M and p0 ∈ P ∩M , then
for any i there is an (M,P )-generic condition p such that p0 ≤i p.

The projection of a proper poset is also proper. That is, if P � Q and Q
is proper, then P is proper. In fact, if M ≺ Hλ and q ∈ Q is (M,Q)-generic,
then π(q) is (M,P )-generic.

Another equivalent definition of when a condition is (M,P )-generic can
be obtained from the following lemma.

2.4 Lemma. Let P be a poset, M ≺ Hλ countable with P ∈ M (where
λ > 2|P | so that P(P ) ∈ Hλ) and suppose that p ∈ P is some (M,P )-generic
condition. If x, y ∈ M ∩ V P are such that p�x ∈ y, then for some p1 ≥ p
and (a, b) ∈ y ∩M , where a ∈ P and b ∈ V P , a ≤ p1 and p1 �x = b hold.

Proof. In order to illustrate in a simple setting two possible approaches, we
give two proofs for this lemma. It follows immediately from the definition of
forcing that there is an extension of p (denoted p1) and a pair (a, b) ∈ y such
that p1 ≥ a and p1 �x = b. The point of the lemma, however, is to get such
a pair (a, b) in M whenever p is (M,P )-generic. Consider the set

E = {p0 ∈ P | ∃(a, b) ∈ y (a ≤ p0 and p0 �x = b)}.

Note that E ∈ M is an open subset of P that is dense above p. Let F ⊆ P
be the set of all conditions that are in E or else are incompatible with every
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condition in E. Then F ∈ M is dense (open) and so p is compatible with
some p0 ∈ F ∩M . Since E is dense above p, p0 ∈ E ∩M and hence the
defining clause applies to p0. But M is an elementary substructure, and
hence there is a pair (a, b) ∈ y ∩M with a ≤ p0 and such that p0 �x = b.
This proves the lemma.

For the second proof, let π0 : M → M̄ be the transitive collapse. Let G be
an arbitrary (V, P )-generic filter containing p. Define G0 = π0“G∩M . Then
G0 is a (M̄, π0(P ))-generic filter and π0 can be extended to π1 : M [G] →
M̄ [G0]. For every m ∈ M ∩ V P , π1(m[G]) = π1(m)[G0]. We have M [G] ≺
Hλ[G], so that π−1

1 is an elementary embedding of M̄ [G0] into Hλ[G].
Since p�x ∈ y, x[G] ∈ y[G]. Hence π1(x[G]) ∈ π1(y[G]) = π1(y)[G0].

So there are (a0, b0) ∈ π1(y) such that a0 ∈ G0 and π1(x[G]) = b0[G0].
Hence, for (a, b) = π−1

1 (a0, b0), (a, b) ∈ y ∩ M and we have a ∈ G and
x[G] = π−1

1 (b0[G0]) = b[G].
Back in V , let p1 ≥ p be an extension that forces these facts about (a, b).

Thus, p1 � a ∈ G
∼

(so that p1 ≥ a) and p1 �x = b, as required. �

The next lemma is used in the proof that the two-step iteration of proper
posets is proper.

2.5 Lemma. Let P be a forcing poset, and Q ∈ V P a forcing poset in V P .
Let M ≺ Hλ be countable with P,Q ∈ M , and suppose that λ is sufficiently
large. Then (p, q) ∈ P ∗Q is (M,P ∗Q)-generic iff

p is (M,P )-generic

and
p�P q is (M [G

∼ 0], Q)-generic,

where G
∼ 0 is the canonical name for the (V, P )-generic filter.

Now we prove that the iteration of two proper posets is again proper, and
in fact the following stronger claim holds which we establish for later use.

2.6 Lemma. Suppose that P0 is proper, and P1 is proper in V P0 (that is,
P1 is a P0-name and 0P0 forces it to be proper). Let R = P0 ∗ P1 be the two-
step iteration, and let π : R −→ P0 be the projection defined by π(p, q∼) = p.
Suppose that M ≺ Hλ is countable with R ∈ M . Then every r ∈ R ∩M an
M -generic extension. Moreover, the following holds: Suppose that p0 ∈ P0 is
an (M,P0)-generic condition. For any name r∼ ∈ V P0 if

p0 �P0 r∼ ∈M ∩R and π(r∼) ∈ G
∼ 0 (5.4)

(G
∼ 0 is the canonical name of the generic filter over P0) then there is some

p1∼
∈ V P0 such that (p0, p1∼

) is an M -generic condition and

(p0, p1∼
) �R r∼ ∈ G

∼
.

(Being a P0-name, r∼ is also an R-name and it may appear in R-forcing
formulas. G

∼
is the canonical name of the (V,R)-generic filter.)
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Proof. Let G0 be any (V, P0)-generic filter containing p0. The name r∼ is not
necessarily in M , but by (5.4) it is interpreted as some condition r in M ∩R
such that π(r) ∈ G0. Say r = (r0, r1∼

) where r1∼
is a P0 name for a condition

in P1. In M [G0], r1∼
is interpreted as a condition r1 in (the G0 interpretation

of) P1. Since P1 is proper, there is an extension p1 of r1 that is M [G0]-
generic. Let p1∼

be a name of p1 forced to have all of these properties. In
particular,

p0 �P0
p1∼

extends the second component of r∼ in P1.

Then u = (p0, p1∼
) is as required. Firstly, Lemma 2.5 gives that

u is (M,R)-generic.

Secondly,
u �R r∼ ∈ G

∼
(5.5)

is proved as follows. Observe that r∼ is not a condition, but a V P0 name and
hence a V R name of a condition in R. However, any condition above p0 can
be extended to decide the value of r∼ as a condition in R. Suppose any u′ ∈ R
that extends u and determines for some r ∈ R that

u′ � r∼ = r,

where r ∈ R is of the form r = (r0, r1∼
). To prove (5.5) we will show that

u′ � r ∈ G
∼
. Assume that u′ = (u′

0, u∼
′
1). Since u′

0 �P0 π(r∼) ∈ G
∼ 0, and as P0

is separative, r0 ≤ u′
0. But

u′
0 � p1∼

extends r1∼
(the second component of r∼),

and this implies r ≤ u′ in R. Thus u′ � r ∈ G
∼
. Since u′ is an arbitrary

extension of u that identifies r∼, u �R r∼ ∈ G
∼
. �

2.1. Preservation of Properness

We prove here that the countable support iteration of proper forcing posets
is proper. The expression “〈Pα | α ≤ γ〉 is an iteration of posets that satisfy
property X” (such as properness) means that each successor stage Pα+1 is
isomorphic to some Pα ∗Qα formed with an iterand Qα ∈ V Pα that satisfies
property X in V Pα .

2.7 Theorem. Let δ be a limit ordinal. Suppose that 〈Pα | α ≤ δ〉 is a
countable support iteration of proper forcings. Then Pδ is proper.

We assume that δ is a limit ordinal, since the successor case was han-
dled by Lemma 2.6. The inductive proof of the theorem is a paradigm for
all preservation theorems given here, but first an intuitive (yet incorrect)
overview of the proof is given. Let be given a countable structure M ≺ Hλ
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with Pδ ∈ M and a specified condition p0 ∈ Pδ ∩M . We are required to
extend p0 to an (M,Pδ)-generic condition. This is done in ω steps. Fix an
increasing ω-sequence γi ∈ δ ∩M , unbounded in δ ∩M . (The sequence itself
is not assumed to be in M , only its members.) At the n-th step we want to
define qn ∈ Pγn that is (M,Pγn)-generic, and is an extension of p0�γn. We
also require that qn+1�γn = qn. The final condition q =

⋃
n<ω qn is in Pδ,

and it extends the given condition p0 since each initial condition does. Now
at the n-th step we must also take care of Dn, the n-th dense set of Pδ in M
in some pre-fixed enumeration of all the dense subsets of Pδ that are in M . It
follows that we need at this step an auxiliary condition pn ∈ Pδ ∩M ∩Dn−1

that extends pn−1 and such that qn extends pn�γn. We will first extend pn to
some pn+1 ∈ Dn and then commit all the following qm’s to extend pn+1�γm

as well. Surely we cannot succeed in such a construction, for if we do, then
q ∈

⋂
n∈ω Dn and this is too much (unless no reals are added, but this is a

different story). So where did we go astray? When we claimed that pn+1

with pn+1�γn ≤ qn can be found in Dn. We could do that only in case
{r ∈ Pγn ∩M | r ≤ qn} is a generic filter over M . Otherwise, we may only
have a name for such a pn+1. It turns out that this is enough for the proof,
but we must formulate a slightly more involved inductive assumption.

2.8 Lemma (The Properness Extension Lemma). Let 〈Pα | α ≤ γ〉 be a
countable support iteration of proper forcing posets. Let λ be a sufficiently
large cardinal. Let M ≺ Hλ be countable, with γ, Pγ ∈ M etc. For any
γ0 ∈ γ ∩M , and q0 ∈ Pγ0 that is (M,Pγ0)-generic the following holds. If
p0∼
∈ V Pγ0 is such that

q0 �Pγ0
p0∼
∈ Pγ ∩M and p0∼

�γ0 ∈ G
∼ 0

where G
∼ 0 is the canonical name for the generic filter over Pγ0 , then there is

an (M,Pγ)-generic condition q such that q�γ0 = q0 and

q �Pγ
p0∼
∈ G

∼
(5.6)

where G
∼

is the canonical name of the generic filter over Pγ , and we view p0∼
as a name in V Pγ .

An equivalent formulation of (5.6) is that for every q′ ≥ q, if q′ identifies
p0∼

(that is, q′ �pγ
p0∼

= p0, for some p0 ∈ Pγ), then p0 ≤ q′.

We emphasize that p0∼
is not necessarily in M , but it is forced by q0 to be

a condition in Pγ ∩M .

Proof of Theorem 2.7. Given M ≺ Hλ and p0 ∈ Pδ, we apply the lemma
with λ0 = 0 and p0 viewed as a name in the trivial poset P0 = {∅}. �

Proof of Lemma 2.8. The proof of the lemma is by induction on γ. For γ a
successor, the lemma was essentially stated as Lemma 2.6. (There are two
subcases here. γ0 + 1 = γ, and γ0 + 1 < γ. The first subcase is essentially
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stated as Lemma 2.6, and the second subcase is reduced to the first by the
inductive hypothesis.)

So assume that γ is a limit ordinal. Pick an increasing sequence 〈γi | i ∈ ω〉
cofinal in γ ∩M , with γi ∈M and where γ0 is the given ordinal. (Note that
γ may well be uncountable but γ ∩M is a countable set of ordinals.) Fix an
enumeration {Di | i ∈ ω} of all the dense subsets of Pγ that are in M .

We will define by induction on n < ω conditions qn ∈ Pγn and names pn∼
in V Pγn such that:

1. q0 ∈ Pγ0 is the given condition; qn ∈ Pγn is (M,Pγn)-generic; and
qn+1�γn = qn.

2. p0∼
is given. pn∼

is a Pγn -name such that

qn �Pγn
pn∼

is a condition in Pγ ∩M such that:

(a) pn∼
�γn ∈ G

∼ γn ,

(b) pn−1∼
≤γ pn∼

,

(c) pn∼
is in Dn−1 (for n > 0).

(Here and subsequently �γ may be written instead of �Pγ and ≤γ instead
of ≤Pγ .) To see where we are going, suppose that qn, pn∼

have already been
constructed for all n ∈ ω. Then let q =

⋃
n qn. We claim that for every n:

q �γ pn∼
∈ G

∼ γ . (5.7)

It can be seen that this claim implies that q is (M,Pγ)-generic (because pn∼
is forced to be in Dn−1 ∩M , and by Lemma 2.1).

To prove the claim in (5.7), note first that by 2(b), for every n < m,

q �γ pn∼
≤γ pm∼

.

By 2(a), for every m,
q �γ pm∼

�γm ∈ G
∼ γm .

Hence, for every m and n such that m ≥ n

q �γ pn∼
�γm ∈ G

∼ γm .

This implies that for every n

q �γ pn∼
∈ G

∼ γ .

Indeed, for any q′ extending q in Pγ , if q′ � pn∼
= p, for some p ∈ Pγ , then

q′ �γ p ∈ Pγ ∩M and p�γm ∈ G
∼ γm , for m ≥ n.
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Since the posets Pγn are separative, it follows that p�γm ≤ q′ for every m.
Hence p ≤ q′, because p ∈ M and thus dom(p) ⊆ γ ∩M , so that dom(p) ⊆
sup{γm | m < ω}. So q′ � p ∈ G

∼ γ . This holds for any extension q′ of q that
determines pn∼

, and hence q � pn∼
∈ G

∼ γ .
Returning now to the inductive construction, assume that qn and pn∼

have
been constructed. We will first define pn+1∼

in V Pγn , and then qn+1. Imagine
a generic extension V [Gn], made via Pγn , such that qn ∈ Gn. Then pn∼

[Gn],
the realization of pn∼

, is some condition pn in Pγ ∩M such that pn�γn ∈ Gn.
Since qn is (M,Pγn)-generic, Gn∩M intersects every dense subset of Pγn that
lies in M . An easy density argument now gives a condition pn+1 ∈ Dn ∩M ,
extending pn, such that pn+1�γn ∈ Gn. (Argue in the collapsed structure M̄
and use Lemma 1.2.) We let pn+1∼

be a Pγn -name of pn+1, forced by qn to
satisfy all of these properties of pn+1. That is,

qn �γn
pn+1∼

∈ Dn ∩M, pn∼
≤γ pn+1∼

, and pn+1∼
�γn ∈ G

∼ γn .

Now that pn+1∼
is defined, apply the inductive assumption of this lemma

to γn < γn+1, qn, and pn+1∼
�γn+1. This gives qn+1 ∈ Pγn+1 that satisfies the

required inductive assumptions. �

We draw two further conclusions from the Properness Extension Lemma.

2.9 Corollary. Let 〈Pi | i ≤ δ〉 be a countable support iteration of proper
forcings.

1. Suppose that cf(δ) > ω. Then any real (or countable set of ordinals) in
V Pδ already appears in V Pi for some i < δ.

2. Suppose that cf(δ) = ω and 〈γi | i ∈ ω〉 is increasing and cofinal in δ.
Then for every name f

∼
∈ V Pδ of a countable sequence of ordinals and

every condition p0 ∈ Pδ, there is an extension p ≥ p0 such that for
every n ∈ w, there is a Pγn name cn such that p�δ f

∼
(n) = cn.

Proof. Let f
∼
∈ V Pδ be a real. Find a countable M ≺ Hλ with f

∼
∈ M ,

and let q ∈ Pδ be some (M,Pδ)-generic condition (given by the lemma). If
i = sup(M ∩ δ) then i < δ. The support of any condition in Pδ ∩ M is
included in i and f

∼
∩M can be viewed as a V Pi name forced by q to be equal

to f
∼
.

For item 2, let M ≺ Hλ be countable, containing all relevant parameters
(including the name of the real). Repeat the proof of the Extension Lemma
with 〈γi | i ∈ ω〉 as the cofinal sequence and instead of dealing with all dense
sets let Dn−1 be the set of conditions that determine f

∼
(n− 1). Let p be the

resulting (M,Pδ)-generic condition. �

2.2. The ℵ2-Chain Condition

In almost all applications given here, we assume the Continuum Hypothesis
(CH) in the ground model, and iterate ω2 proper forcings, each of size ℵ1.
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To conclude that ℵ2 and higher cardinals are not collapsed, the following
theorem can be invoked. More general chain condition theorems (which deal
with bigger posets) can be found in Shelah’s book ([15, Chap. VIII] on the
p.i.c. condition, for example) and in Sect. 5.4.

2.10 Theorem. Assume CH. Let 〈Pi | i ≤ δ〉 be a countable support iteration
of length δ ≤ ω2 of proper forcings of size ℵ1. Then Pδ satisfies the ℵ2-c.c.

Proof. The assumption is that each iterand Qα has size ℵ1 in V Pα , but the
posets Pi themselves may be large (2ℵ1 , because of the names involved). In
any family {rξ | ξ ∈ ω2} ⊆ Pδ, we must find two compatible conditions.
Fixing a large λ, pick for every ξ ∈ ω2 a countable Mξ ≺ Hλ such that rξ ∈
Mξ. Look at the isomorphism types of the countable structures Mξ. Since CH
holds, there is a set I ⊆ ω2 of size ℵ2 such that all Mξ for ξ ∈ I are pairwise
isomorphic. But the transitive collapse is determined by the isomorphism
type, and hence there is a single transitive structure M̄ to which all Mξ for
ξ ∈ I are collapsed. In addition, we may form a Δ-system for the countable
sets Mξ ∩ ω2 (again by CH). This leads to the following assumptions on I.

1. For some fixed transitive structure M̄ , hξ : Mξ → M̄ , where hξ are the
collapsing functions for ξ ∈ I.

2. The countable sets Mξ ∩ ω2 form a Δ-system: For some countable
C ⊆ ω2,

Mζ1 ∩Mζ2 ∩ ω2 = C for all ζ1 �= ζ2 in I.

Moreover, C is an initial segment of Mξ ∩ ω2, and there is no interleav-
ing of the Mξ∩ω2\C parts. That is, if we define μξ = min(Mξ∩ω2\C)
then for ξ1 < ξ2 in I, sup(C) < μξ1 , and sup(Mξ1 ∩ ω2) < μξ2 . We also
assume that hξ(rξ) does not depend on ξ and is a fixed member of M̄ .

We now claim that any two conditions with indices in I are compatible.
Given ξ1, ξ2 ∈ I, it suffices to show that r1 = rξ1�μξ1 = rξ1 |̀sup(C) and
r2 = rξ2�μξ2 are compatible. Because then, if r ∈ Psup(C) extends r1 and r2,
then p = r∪ rξ1 |̀(ω2 \C)∪ rξ2 |̀(ω2 \C) extends the two given conditions. The
fact that C is an initial segment of Mξ ∩ δ and hence that p is a function in
Pδ is used in the proof (if the iteration were of length δ > ω2 then ℵ2 may
indeed be collapsed).

Let μ = μξ1 , and let h : Mξ1 → Mξ2 be an isomorphism of the two
structures. Then h is the identity on μ ∩Mξ1 = h(μ) ∩Mξ2 , and h(r1) = r2.
We shall prove that if p is any (Mξ1 , Pμ)-generic condition extending r1, then
p extends r2, and hence r1 and r2 are compatible as required. The iterands
are of power ℵ1 and we may assume that their universe is always ω1. Then
for every α in its domain, r1(α) is forced by r1 |̀α to be a countable ordinal.
A similar statement holds for r2. However, r1(α) is not necessarily the same
name as r2(α).

The following lemma therefore suffices.
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2.11 Lemma. Let M1 and M2 be two isomorphic countable elementary sub-
structures of Hλ. Let h : M1 →M2 be an isomorphism, and μ ∈M1 ∩ ω2 be
such that h is the identity on μ∩M1. (We do not require that h(μ) �= μ, but
this is possible.) If p ∈ Pμ is any (M1, Pμ)-generic condition then for any
condition r ∈ Pμ ∩M1, p ≥ r implies p ≥ h(r). (Hence any (M1, Pμ)-generic
condition is also (M2, Ph(μ))-generic.)

Proof. The proof is by induction on μ.

Case 1. μ is a limit ordinal. Note that, for any r ∈ Pμ ∩M1, r and h(r)
have the same support, since h is the identity on μ and the support is
countable. Assume that p ∈ Pμ is (M1, Pμ)-generic and r ∈ Pμ ∩M1,
p ≥ r as in the lemma. In order to prove that p ≥ h(r), it suffices to
prove for every μ′ ∈ μ ∩M1 that p|̀μ′ ≥ h(r)|̀μ′. This follows from the
inductive assumption, because p|̀μ′ is (M1, Pμ′ )-generic, and p|̀μ′ ≥ r |̀μ′

implies that p|̀μ′ ≥ h(r�μ′) = h(r)�μ′.

Case 2. μ = μ′ + 1. As p ≥ r in Pμ′+1 (= Pμ′ ∗Qμ′ ), p�μ′ extends r�μ′ and

p�μ′ � p(μ′) extends r(μ′) in Qμ′ . (5.8)

By Lemma 2.5, p�μ′ is (M1, Pμ′ )-generic, and the inductive condition
implies that p|̀μ′ extends h(r)|̀μ′. We want to prove that

p|̀μ′ � p(μ′) extends h(r)(μ′) in Qμ′ .

Consider any t in Pμ′ that extends p|̀μ′, and we shall find an extension
t′ of t in Pμ′ forcing r(μ′) = h(r)(μ′). Thus

t′ � p(μ′) extends h(r)(μ′)

follows from (5.8) as required. The set of conditions that “know” the
value of r(μ′) (as an ordinal in ω1) is dense above r |̀μ′ and is in M1.
Hence, by genericity of t, t is compatible with some s ∈ Pμ′ ∩M1, s ≥
r�μ′, such that

s �μ′ r(μ′) = α

for some α < ω1. Since h(μ′) = μ′, and h(α) = α, this implies that

h(s) �μ′ h(r)(μ′) = α.

Let t′ ∈ Pμ′ be a common extension of t and s. By the inductive
assumption, t′ extends h(s) as well and so t′ �μ′ r(μ′) = α = h(r)(μ′).

�

This completes the proof of Theorem 2.10. �
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Knowing the ℵ2-c.c. we can prove by induction on δ ≤ ω2 that |Pδ| ≤ 2ℵ1 .
This helps in defining iterations of length ω2 of proper forcing posets of size
ℵ1 each, when we want to ensure that every A ⊆ ω1 in V Pω2 has had its
chance to be considered at some successor stage of the iteration.

A useful consequence of the previous lemma is the following

2.12 Theorem. Assume CH. Let 〈Pi | i ≤ δ〉 be a countable support iteration
of length δ < ω2 of proper forcings of size ℵ1. Then CH holds in V Pδ .

Proof. Write P for Pδ. Let x ∈ V P be a name forced by p0 ∈ P to be a
function from ω2 into P(ω) (the power set of ω). We shall find an extension
p1 of p0 and two indexes ξ0 �= ξ1 such that p1 �x(ξ0) = x(ξ1).

As above, we define countable Mξ ≺ Hλ with P, x, ξ ∈Mξ for ξ < ω2. By
CH, there are ξ1 �= ξ2 with an isomorphism h : Mξ1 → Mξ1 taking ξ1 to ξ2

and such that Mξ1 ∩ δ = Mξ2 ∩ δ. Let p2 be an (Mξ1 , P )-generic condition
extending p1. Then p2 is also (Mξ2 , P )-generic by the lemma, and hence

p2 �x(ξ1) = x(ξ2)

follows from h(ξ1) = ξ2. �

2.3. Equivalent Formulations

Suppose that Q is a non-proper poset and P is a proper poset. Then, in V P ,
Q remains non-proper. To prove this basic result we need an equivalent
formulation of properness in terms of preservation of stationary subsets of
Pℵ1(A). Here, Pℵ1(A) = [A]<ℵ1 is the collection of all countable subsets of A.
We refer the reader to Jech’s chapter on stationary sets for basic properties
of the closed unbounded filter on Pℵ1(A). We shall rely on the following
facts for any uncountable set A. (1) The collection of closed unbounded sets
generates a countably closed and normal filter over Pℵ1(A). (2) For any closed
unbounded set C ⊆ Pℵ1(A) there is a function f : [A]<ℵ0 → A such that if
x ∈ Pℵ1(A) is closed under f , then x ∈ C. (3) If A1 ⊆ A2 and C ⊆ Pℵ1(A2)
is closed unbounded, then {x ∩ A1 | x ∈ C} contains a closed unbounded
subset of Pℵ1(A1). (4) A subset S of Pℵ1(A) is said to be stationary if it has
non-empty intersection with every closed unbounded set. If S is stationary
and f is a function such that f(x) ∈ x for every non-empty x ∈ S, then for
some a ∈ A, the set {x ∈ S | f(x) = a} is stationary.

Let P be a poset and p ∈ P a condition. We say that D ⊆ P is pre-dense
above p if ∀p′ ≥ p∃d ∈ D (p′ and d are compatible in P ). Equivalently, D is
pre-dense above p if the set D′ of all extensions of members of D is dense
above p.

Given any poset P , form A = P ∪ P(P ), a disjoint union of the poset
universe with its power set. The “test-set” for P is the collection of all
a ∈ Pℵ1(A) such that, for any p0 ∈ P ∩ a there exists an extension p ∈ P
such that, for every D ∈ a ∩ P(P ), if D is dense in P then D ∩ a is pre-
dense above p. We can say that p is “generic” for a, and then the test-set is
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the collection of all a, countable subsets of A, that have generic conditions
extending each member of P ∩ a.

If T ⊆ Pℵ1(A) is the test-set of P then its complement Pℵ1(A)\T is called
the “failure set” for P .

2.13 Theorem (Properness Equivalents). For any poset P the following are
equivalent.

1. P is proper (as in Definition 2.2).

2. For some λ > 2|P | and any countable M ≺ Hλ with P ∈ M , every
p0 ∈ P ∩M has an extension p ≥ p0 that is an M -generic condition.

3. For every uncountable λ, P preserves stationary subsets of Pℵ1(λ).
That is, if S ⊆ Pℵ1(λ) is stationary, then it remains so in any generic
extension via P .

4. For λ0 = 2|P |, P preserves stationary subsets of Pℵ1(λ0).

5. The test set for P , as defined above, contains a closed unbounded subset
of Pℵ1(A).

Proof. Clearly, 1 ⇒ 2 . We prove that 1 ⇒ 3 . So assume that P is proper,
and let S ⊆ Pℵ1(λ) be a stationary set. To prove that S remains stationary
in any extension via P , we take any f ∈ V P such that p0 � f : [λ]<ℵ0 → λ,
and we shall find an extension p ∈ P so that some x ∈ S is forced by p be
closed under f . Pick a sufficiently large cardinal κ and a countable M ≺ Hκ

with λ, P, p0, f ∈ M and such that M ∩ λ ∈ S. We can find one since the
collection of intersections M ∩ λ for structures M as above contains a closed
unbounded subset of Pℵ1(λ). As P is assumed proper, there is an extension
p ≥ p0 that is (M,P )-generic. The genericity of p then implies that p�M ∩λ
is closed under f .

3 ⇒ 4 is trivial, and 2 ⇒ 4 is just like 1 ⇒ 3 . We prove now that 4 ⇒ 5 .
Assume that P preserves stationarity of subsets of Pℵ1(λ0) for λ0 = 2|P |.

Define A = P ∪ P(P ). Then |A| = λ0. Suppose that S, the failure set for
P as defined above, is stationary, and we shall derive a contradiction. By
normality, we may assume that the failure is due to the same p0 ∈ a for a ∈ S.
Let G ⊆ P be a (V, P )-generic filter containing p0. Then S is stationary in
V [G] since P preserves stationarity. Define a function g : A→ A so that if D
is dense in P then g(D) ∈ G. Since S is stationary, there is an x ∈ S closed
under g. If p ≥ p0 forces this fact about x, then p shows that x is in fact in
the test set for P .

Finally we prove 5 ⇒ 1 . Suppose that λ > 2|P |, M ≺ Hλ is countable,
and P ∈ M . Then A = P ∪ Pℵ1(P ) ∈ Hλ and A ∈ M . The test set for P is
also in M . Assuming that this set contains a closed unbounded set, we may
find such a closed unbounded set C in M . This implies that M ∩ A ∈ C,
and hence there exists an (M,P )-generic condition above any condition in
M ∩ P . �
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3. Preservation of ωω-Boundedness

The set of functions from ω to ω is denoted ωω (the “reals”). For f, g ∈ ωω
and k < ω define f <k g iff ∀n ≥ k(f(n) ≤ g(n)). <∗=

⋃
k <k is the

bounding (also called eventual bounding) relation: If f <∗ g, then g bounds
(or dominates) f , and if f <0 g then g totally bounds f . A basic fact is that
any countable F ⊆ ωω is bounded by some g ∈ ωω.

A forcing poset P is said to be ωω-bounding iff for every generic filter
G ⊆ P , V ∩ ωω bounds V [G] ∩ ωω, i.e., for every g ∈ ωω ∩ V [G] there is an
h ∈ ωω ∩ V with g <∗ h (we could equivalently require g <0 h). Our aim is
to prove that the countable support iteration of proper ωω-bounding posets
is ωω-bounding.

Let P be a poset and f
∼
∈ V P a name of a real (i.e., a name forced by 0P to

be a real). We say that an increasing sequence p̄ = 〈pi | i ∈ ω〉 of conditions
in P interprets f

∼
as f ∗ ∈ ωω iff for every n < ω pn forces f

∼
�n = f ∗�n. We

write in this case f ∗ = intp(p̄, f
∼
).

3.1 Definition. Let P be a forcing poset and f
∼
∈ V P a name of a real.

Suppose that p̄ = 〈pi | i ∈ ω〉 is an increasing sequence of conditions in P
that interprets f

∼
. We say that p̄ respects g ∈ ωω iff

intp(p̄, f
∼
) <0 g. (5.9)

The following surprising property turns out to be important for the preser-
vation theorem.

3.2 Theorem. If P is ωω-bounding, then P satisfies the following ostensibly
stronger property: Let f

∼
∈ V P be a name of a real and let M ≺ Hκ be

countable, with P, f
∼
∈M . Suppose that g ∈ ωω dominates all the reals of M ,

and p̄ ∈M is an increasing sequence of conditions in P that interprets f
∼

and
respects g. Then, for some p ∈ P ∩M and h ∈M , h <0 g and p �P f

∼
≤0 h.

So that
p�P f

∼
<0 g.

Proof. The point of the theorem is this. As P is ωω-bounding, every condition
in M can be extended to force that f

∼
is bounded by some real in M and hence

that f
∼

<∗ g, but it takes the theorem to find p ∈M that forces f
∼

<0 g.
Work in M . By assumption p̄ = 〈pi | i ∈ ω〉 is an increasing sequence of

conditions in P that interprets f
∼

as f ∗, and f ∗ <0 g. For each n, that P is
ωω-bounding and pn � f

∼
�n = f ∗�n implies that there is an extension p′

n of
pn and an hn ∈ ωω ∩M such that:

1. p′
n � f

∼
≤0 hn.

2. hn |̀n = f ∗ |̀n.

Let u ∈ ωω be defined by

u(m) = max{hi(m) | i ≤ m}.
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Then u ∈ M , and is hence bounded by g; say u <� g. This implies that
h� <0 g by the following argument. For k < �, h�(k) = f ∗(k) < g(k), and for
k ≥ � h�(k) ≤ u(k) < g(k). Now p′

� is as required: it forces f
∼

<0 g since it
forces f

∼
≤0 h�.

Remark that we can require that p extends any given condition in the
sequence p̄. �

A main tool in the preservation proof is the notion of a derived sequence.
Let Q1 and Q2 be two forcing posets such that Q1�Q2, and let π : Q2 → Q1

be the related projection. Let f
∼

be a Q2-name forced by 0Q2 to be a real,
and let r̄ = 〈ri | i ∈ ω〉 be an increasing sequence of conditions in Q2 that
interprets f

∼
. Fix a well-ordering of Q2. Suppose that G1 is a (V,Q1)-generic

filter. Recall that Q2/G1 = {q ∈ Q2 | π(q) ∈ G1}. We shall define in V [G1]
an increasing sequence s̄ = 〈si | i ∈ ω〉 of conditions in Q2/G1 that interprets
f

∼
by the following induction.

1. If π(ri) ∈ G1 then si = ri. (In this case π(rk) ∈ G1 for every k < i and
sk = rk.)

2. If π(ri) �∈ G1, then let si be the first Q2-extension of si−1 that is in
Q2/G1 and determines the value of f

∼
|̀i.

Thus, if π(ri) ∈ G1 for all i ∈ ω1, then si = ri for all i, but if n is the
first index such that π(rn) �∈ G1, then si = ri for i < n, and for i ≥ n we
define si ∈ Q2 as the first extension of si−1 with π(si) ∈ G1 and such that si

determines f
∼
�i in the forcing relation � Q2 .

We say that the sequence s̄ defined above in V [G1] is “derived” from r̄,
G1, and f

∼
. We write δG1(r̄, f∼) to denote this derived sequence in Q2/G1.

The V Q1-name of the derived sequence is denoted δ∼Q1(r̄, f∼).

3.3 Lemma. Let Q1 � Q2 be posets with projection π : Q2 → Q1, and
suppose that Q1 is ωω-bounding (no such assumption is made about Q2).
Suppose that:

1. f
∼
∈ V Q2 is forced by every condition to be a real.

2. r̄ = 〈ri | i < ω〉 is an increasing sequence of conditions in Q2 (above
some given p ∈ Q2) that interprets f

∼
.

3. M ≺ Hκ is countable with Q1, Q2, f∼, r̄, p ∈M .

4. g ∈ ωω bounds all the reals of M , and int(r̄, f
∼
) <0 g. That is, r̄ respects

g in its interpretation of f
∼
.

Then some condition s ∈ Q1 ∩M extends π(p) and forces that the derived
sequence δ∼Q1(r̄, f∼) respects g in its interpretation of f

∼
and is above p in the

Q2 ordering.
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Proof. Let δ∼ = δ∼Q1(r̄, f∼) be the name of the derived sequence, δ∼ ∈ V Q1 .
Define a name of a real, h

∼
∈ V Q1 , by

h
∼

= int(δ∼, f
∼
).

That is, if G1 is a (V,Q1)-generic filter, let δG1(r̄, f∼) be the resulting derived
sequence, a Q2-increasing sequence of conditions in Q2/G1 interpreting f

∼
,

and let h
∼
[G1] be that interpretation.

Define pi = π(ri) ∈ Q1 for i ∈ ω. Then 〈pi | i ∈ ω〉 ∈ M and pi �Q1 ri =
δ∼(i). That is, as pi �Q1 ri ∈ Q1/G∼ 1, pi “knows” that ri is the i-th member
of the derived sequence. Consequently, pi determines h

∼
�i (in Q1 forcing) as

ri determines f
∼
�i (in Q2 forcing). Namely

int(〈pi | i ∈ ω〉, h
∼
) = int(r̄, f

∼
).

Hence, int(〈pi | i ∈ ω〉, h
∼
) <0 g, and so by the surprising theorem there exists

a s ≥ p0 in Q1 ∩M so that s�Q1 h
∼

<0 g. That is,

s�Q1 int(δ∼Q1(r̄, f∼), f
∼
) <0 g.

Since s ≥ p0, s forces that r0 is the first member of the derived sequence,
and hence that all members of the derived sequence extend p in Q2. �

In the following we shall apply the previous lemma in a slightly more
complex situation in which the discussion is not in V , but rather in V Q0 ,
where Q0 � Q1 � Q2. We will use G

∼ 0 and G
∼ 1 as canonical names for the

generic filters Q0 and Q1.

3.4 Lemma. Suppose that Q0 �Q1 �Q2 are posets with commuting projec-
tions πi,j : Qi → Qj, for 0 ≤ j < i ≤ 2. Assume that Q1 (and hence Q0) is
proper and ωω-bounding. Suppose that:

1. f
∼
∈ V Q2 is a name of a real.

2. M ≺ Hκ is countable with Q0, Q1, Q2, f∼ ∈ M . Let q0 ∈ Q0 be an
(M,Q0)-generic condition. Assume that g ∈ ωω bounds all the reals
of M .

3. p
∼ ∈ V Q0 is given such that q0 �Q0

p
∼ ∈ (Q2/G∼ 0) ∩M .

4. q0 forces that there is in M [G
∼ 0] a Q2-increasing sequence of conditions

in Q2/G∼ 0 that interprets f
∼
, respects g, and is above p

∼ in the Q2 order-
ing.

Then there is an (M,Q1)-generic condition q1 such that

(a) π1,0(q1) = q0.

(b) q1 �Q1 π2,1(p∼) ∈ G
∼ 1.
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(c) q1 forces that there is in M [G
∼ 1] a Q2-increasing sequence of conditions

in Q2/G∼ 1 that interprets f
∼

and respects g, and is above p
∼ in the Q2

ordering.

Proof. Observe that what the lemma does is to push the situation described
in 4 from G

∼ 0 to G
∼ 1. That is, the basic object that interests us is a sequence of

conditions in Q2-increasing in the ordering of Q2 and interpreting f
∼

(in � Q2)
as a function that respects g. The assumed sequence (in 4) is compatible
with G

∼ 0, and the resulting sequence is compatible with G
∼ 1.

Let G0 be some (V,Q0)-generic filter containing q0. Work in M [G0] ≺
Hκ[G0] and apply the previous lemma as follows. Observe first that g dom-
inates all the reals in M [G0], since q0 is (M,Q0)-generic. Observe also that
π2,1 : Q2/G0 → Q1/G0 is a projection (see Lemma 1.3). Then f

∼
/G0 ∈

V [G0]Q2/G0 is a name of a real. Following 4, let r̄ ∈M [G0] be an increasing
sequence of conditions in Q2/G0 that interprets f

∼
/G0 (since it interprets f

∼
)

and respects g (and is above p
∼[G0] in ≤Q2). We apply the previous lemma

to Q2/G0, Q1/G0, and f
∼
/G0 in V [G0]. Thus by that lemma some condition

s ∈ (Q1/G0) ∩M [G0] exists which extends π2,1(p∼[G0]) and forces in Q1/G0

that the derived sequence δ∼Q1/G0(r̄, f∼/G0) respects g in its interpretation of
f

∼
/G0, and is above p

∼[G0] in Q2/G0.
Now let s∼ ∈ V Q0 be a name of s, forced to have all the properties of s

described above. (Observe that s∼ is not in M since its definition involves g,
but it is forced to become a condition in M .) By the Properness Extension
Lemma there is a q1 ∈ Q1 that is (M,Q1)-generic such that π1,0(q1) = q0

and q1 �Q1 s∼ ∈ G
∼ 1. So q1 �Q1 π2,1(p∼) ∈ G

∼ 1. We claim that q1 is as required.
Let G be any (V,Q1)-generic filter containing q1. Then G0 = π1,0“G is

(V,Q0)-generic and p = p
∼[G0], s = s∼[G0] can be formed. Since q1 ∈ G and

q1 � s∼ ∈ G
∼ 1, s ∈ G. Now G is also (V [G0], Q1/G0)-generic, and we write

G1 = G to emphasize that G1 ⊆ Q1/G0. Since s ∈ G1, whatever s forces
holds in V [G1]. Namely, there is in M [G1] a Q2/G0 increasing sequence in
(Q2/G0)/G1 = Q2/G1 that respects g in its interpretation of f

∼
/G0 and is

above p in the ordering of Q2/G0. If pn is the n-th member of this sequence,
then for some finite function e we have pn �Q2/G0 (f

∼
/G0)�n = e. So there is

some g ∈ G0 such that g + pn �Q2
f

∼
�n = e. Using Lemma 1.1, we can amend

the derived sequence (that is, replace conditions p with conditions of the form
g + p where g ∈ G0) and obtain a sequence of conditions in Q2/G1 that is
increasing in Q2 and respects g in its interpretation of f

∼
(in Q2 forcing) and

is above p in Q2. �

3.5 Theorem. Let 〈Pi | i ≤ δ〉 be a countable support iteration of proper
ωω-bounding posets. Then Pδ is (proper and) ωω-bounding.

Proof. We know that Pδ is proper, and the ωω-bounding property of Pδ is
proved by induction on δ. The successor case is obvious and so we assume
that δ is a limit ordinal. Let f

∼
be a Pδ-name of a real; we must find a

condition (extending a given condition p0 ∈ Pδ) that forces f
∼

<0 g for some
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ground model g ∈ ωω. Pick M ≺ Hκ, countable, with Pδ, f∼, p0 ∈ M . Let
γn ∈ δ∩M for n ∈ ω be increasing and cofinal in M ∩ δ. For simplicity, start
with γ0 = 0.

Find in M an increasing sequence r̄ = 〈ri | i ∈ ω〉 of conditions in Pδ that
interprets f

∼
as f ∗ ∈ ωω, starting with the given condition p0. Find g ∈ ωω

that bounds the reals of M , and such that f ∗ <0 g. To prove the theorem,
we will find q ∈ Pδ (extending p0) that forces f

∼
<0 g.

We intend to define by induction on n ∈ ω conditions qn ∈ Pγn , and names
pn∼
∈ V Pγn , that satisfy the following four properties (the first two are as in

the Properness Extension Lemma 2.8 but the dense sets are not needed).

1. q0 ∈ P0 is the trivial condition; qn ∈ Pγn is (M,Pγn)-generic; and
qn+1�γn = qn.

2. p0∼
= p0 is given in Pδ, and pn∼

is a Pγn -name such that: qn �Pγn

“pn∼
is a condition in Pδ ∩M with pn∼

�γn ∈ G
∼ γn and pn−1∼

≤δ pn∼
.”

3. qn �γn“pn∼
determines f

∼
|̀n in Pδ-forcing to be totally bounded by g |̀n.”

4. qn �γn“some r ∈ M [G
∼ γn ] is a Pδ-increasing sequence of conditions in

Pδ/G∼ γn that interprets f
∼
, respects g, and is above pn∼

.”

In words, this last asserts that if G is a (V, Pγn)-generic filter containing qn,
then there is in M [G] a Pδ-increasing sequence r of conditions in Pδ/G that
interpret f

∼
(in Pδ forcing) and respect g, and are all above pn∼

[G] in Pδ.
If we succeed in this and define q =

⋃
n qn, then q �δ pn∼

∈ G
∼ δ, as in (5.7).

So 3. implies that q � f
∼

<0 g.
To start the induction observe that r̄ respects g so that 4. holds for n = 0.

Suppose that qn ∈ Pγn , and pn∼
∈ V Pγn are defined. We first define pn+1∼

and
then qn+1.

Let G be a (V, Pγn)-generic filter containing qn. Then by 4. there is in M [G]
a Pδ-increasing sequence r of conditions in Pδ/G that interpret f

∼
, respect g,

and are above pn∼
[G]. Let pn+1 be r(n+1), the (n+1)-th member of r, which

determines f
∼
�(n + 1) = v for some v : n + 1 → ω with v <0 g�(n + 1). Then

pn+1∼
is defined to be a V Pγn name of pn+1.

Now for Q0 = Pγn , Q1 = Pγn+1 , Q2 = Pδ, Lemma 3.4 can be applied to qn

(as q0 ∈ Q0) and pn+1∼
(as p

∼ ∈ V Q0). So there exists some qn+1 ∈ Pγn+1 that
is (M,Pγn+1)-generic with qn = π(qn+1) and such that the required inductive
assumptions hold. �

3.1. Application: Non-Isomorphism of Ultrapowers

The significance of Theorem 3.7 proved in this section is clarified by compar-
ing the following two theorems of Keisler and of Shelah concerning the notion
of elementary equivalence (see the book by Comfort and Negrepontis [2]).
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3.6 Theorem (Keisler [9]). If 2λ = λ+ and A,B are structures of size ≤ λ+

in a language of size λ, then A ≡ B implies that A and B have isomorphic
ultrapowers,

Aλ/p ∼= Bλ/p

obtained by some ultrafilter p on λ.

Keisler also showed that it is not possible to obtain this result if the lan-
guage has size λ+.

The following was proved by Shelah [12]:

If A ≡ B are both of size ≤ κ, then Aα/p ∼= Bα/p for some
ultrafilter p on 2κ = α.

In particular, for countable elementarily equivalent structures, Shelah’s the-
orem provides an ultrafilter on a set of size 2ℵ0 that makes their ultrapowers
isomorphic, and Keisler’s theorem obtains an ultrafilter on ω, provided that
2ℵ0 = ℵ1. The theorem proved in this section shows that CH is indeed
necessary for obtaining the ultrafilter to be on ω (see Shelah [14]).

3.7 Theorem. Assuming CH, there are two countable elementarily equiva-
lent structures A ≡ B and there is a generic extension in which 2ℵ0 = ℵ2 and
for any ultrafilters p, q on ω

Aω/p �∼= Bω/q.

To prove this theorem, we will consider two propositions, P1 and P2, show
that they imply the existence of A ≡ B as in the theorem, and then establish
their consistency.

Let DP (Diverging and Positive) denote the set of functions h ∈ ωω di-
verging to infinity with h(n) > 0 for every n. If 〈An | n ∈ ω〉 is a sequence of
finite (non-empty) sets, then Πn<ωAn is the set of all functions f defined on
ω with f(n) ∈ An for every n.

(P1) If 〈An | n ∈ ω〉 is a sequence of finite sets, and {fα | α ∈ ω1} ⊆ Πn<ωAn,
then, for every h ∈ DP, there is a choice of subsets Hn ⊆ An, n ∈ ω,
such that

(a) |Hn| ≤ h(n) for all n,

(b) ∀α < ω1∃n0∀n ≥ n0 (fα(n) ∈ Hn).

(P2) (ωω,<∗) has a cofinal sequence of length ω1.

It is left as an exercise to prove that Martin’s Axiom + 2ℵ0 > ℵ1 implies P1

but negates P2, and CH implies P2 but negates P1.
Our aim now is to prove the following theorem.

3.8 Theorem. P1 ∧ P2 implies the existence of two countable elementarily
equivalent structures that have no isomorphic ultrapowers with ultrafilters
on ω.
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We first investigate a consequence of P2 concerning the structure of ultra-
powers of a certain type of graph. Let Δ be the bipartite graph obtained by
taking U and V to be two copies of ω, with edges such that every n ∈ V is
connected exactly to those k in U such that k ≤ n. Let p be any nonprincipal
ultrafilter over ω, and form the ultrapower P = Δω/p. Consider the cofinal
sequence 〈fα | α ∈ ω1〉 from P2, and form for every fα an element aα of
UP obtained by viewing fα(n) ∈ U (and taking the equivalence class of fα).
The fact that the sequence of functions is cofinal in ωω implies the following
property of P (expressed with U and V as predicates):

There is a sequence ai ∈ U , i ∈ ω1 such that there is no b ∈ V
edge connected with every ai.

(5.10)

Indeed, any [b] ∈ V P is the equivalence class of some function n �→ b(n),
and there is some fα that bounds b. Hence b is not connected to fα in the
ultrapower.

In fact, we can redo this argument even in the following slightly more
general situation. Suppose that Δ is a bipartite graph built on two copies U
and V of ω, just as before, but now we know that the following holds.

For every finite set X ⊆ V there is some u ∈ U such that no
x ∈ X is connected with u.

(5.11)

Then define a sequence un ∈ U by induction on n such that un is not con-
nected to any one of the first n nodes of V . Here too (5.10) holds in any
ultrapower. That is, in Δω/p there is a set of ω1 members of U such that
there is no b ∈ V that is connected to all of them. In fact, this result on ul-
trapowers can be generalized to ultraproducts of countable bipartite graphs
that satisfy property (5.11) above. These ultraproducts must satisfy (5.10).

Define Γk,� to be the finite bipartite graph with two disjoint sets of vertices
U and V , where |U | = k, and the vertices in V are obtained by associating
with every x ⊆ U of size ≤ � a vertex ax in V that is edge connected exactly
with the vertices of x.

We are particularly interested in graphs of the form Γn2+1,n because they
have the following property: for any X ⊆ V with cardinality ≤ n there is
some a ∈ U that is not connected to any x ∈ X.

Let Γ be the disjoint union of the graphs Gn = Γn2+1,n for 2 ≤ n < ω.
The language of the structure Γ includes not only the edge relation but also
the predicates U and V , and a partial order <Γ that puts the vertices of Gn

below those of Gm for n < m. The nodes in Gn are incomparable in <Γ.
The connected components of the graph Γ are the copies of the Γn2+1,n.

(Because for n ≥ 2, Γk,n is connected. In fact, any two nodes that are in
the same Gn are connected by a sequence of at most four edges.) So the
connected components of Γ are exactly the maximal antichains of <Γ and
this fact can be expressed by a single sentence.

Let ΓNS be some countable nonstandard elementary extension of Γ. Then
ΓNS ≡ Γ, but ΓNS also contains infinite connected components. The con-
nected components of ΓNS are, again, its <Γ antichains. Assuming P1
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and P2, we are going to prove that ΓNS and Γ have no isomorphic ultra-
powers on ω. Observe that any non-standard (infinite) component of ΓNS

has property (5.11). Hence the following statement is true in any nonprinci-
pal ultrapower (ΓNS)ω/q. The set of components C that satisfy the following
property is cofinal in the ordering <Γ.

There are ai ∈ C ∩ U for i ∈ ω1 such that there is no b ∈ V edge
connected with every ai.

(5.12)

Indeed, the set of components that are in fact ultraproducts of nonstandard
components of ΓNS is such a cofinal set in the ordering <Γ of all components.

On the other hand no ultrapower of Γ over ω can satisfy this property,
because the following holds in any ultrapower Γω/p. There is a complement
of an initial set of components C in the <Γ ordering for which:

If ai ∈ C ∩ U for i ∈ ω1, then there is some b ∈ V connected to
all the ai’s.

(5.13)

It is easy to establish (5.13) for Γω/p once the following observation is
made. Suppose that h ∈ DP, p is a nonprincipal ultrafilter on ω, and
G = (ΠnGh(n))/p. Then (P1) implies that G is a bipartite graph with the
following property.

If ai ∈ G ∩ U , for i ∈ ω1, then there is a b ∈ G ∩ V connected to
all the ai’s.

(5.14)

This follows by applying P1 to An = h(n)2 + 1, {aα | α ∈ ω1}, and h.
Now we turn to the consistency result itself.

3.9 Theorem. Let 〈An | n ∈ ω〉 be a sequence of finite sets. Let h ∈ DP
(diverging to ∞ with h(n) ≥ 1). Then there is a proper, ωω-bounding forcing
poset P , of size 2ℵ0 , such that in any generic extension V [G] via P the
following holds.

There is in V [G] a sequence 〈Hn | n ∈ ω〉, with Hn ⊆ An and
|Hn| ≤ h(n), that eventually bounds every ground-model f ∈
ΠnAn. That is, if f ∈ V ∩ Πn<ωAn, then for some k and for
all n ≥ k, f(n) ∈ Hn.

To obtain the desired model where P1 and P2 hold, assume CH + 2ℵ1 = ℵ2

and iterate with countable support ω2 many posets as in the theorem. By
CH, the resulting poset satisfies the ℵ2-c.c. (Theorem 2.10). This ensures P1,
since any parameters for P1 appears in an initial segment of the iteration, so
that a suitable bookkeeping device takes care of all possible sequences. P2 is
a consequence of the fact that the resulting poset is ωω-bounding and hence
the ground reals give a bounding sequence of length ω1 (by the preservation
theorem). We turn to the proof of the theorem.

For any finite set A let P(A) be the power set of A, and Pm(A) be the
collection of subsets of A of cardinality ≤ m. We say that E ⊆ P(A) is a
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k-cover (k a natural number) if for every x ⊆ A of size ≤ k, for some e ∈ E,
x ⊆ e.

Referring to the given DP function h, define

S =
⋃

�<ω

∏
0≤i<�Ph(i)(Ai).

That is, η ∈ S iff η is a finite sequence such that for i ∈ dom(η), η(i) is a
subset of Ai of size ≤ h(i). S forms a tree under extension (inclusion). We
will force with infinite subtrees of S that are good in the following sense.

Let T ⊆ S be a subtree (that is, a collection of sequences in S closed under
initial segments). We make the following definitions.

1. If η ∈ T then the number dom(η) is also called the height of the node η.
Let T �m be the collection of all nodes in T of height < m.

2. We say that η ∈ T is the stem of T if η is comparable to all nodes of T
(under inclusion), and η is maximal with this property.

3. A node η ∈ T is said to be k-covering in T iff its (immediate) successors
in T form a k-cover of the appropriate Ai (i = dom(η)). That is,
{μ(i) | μ ∈ T extends η} is a k-cover of Ai.

Let P be the poset (under inclusion) of all infinite subtrees T ⊆ S that have
a stem σ(T ), and each node η ∈ T is at least 1-covering (except the nodes
below the stem which are not 1-covering), and such that, for every k, except
for finitely many nodes, all nodes of T are k-covering.

In any forcing extension via P , the generic sequence of stems provides
a sequence Hn ⊆ An with |Hn| ≤ h(n). A density argument shows that
every ground model f ∈ ΠnAn is eventually bounded by the Hn’s. In this
argument, use the obvious remark that if E ⊆ Pm(A) is a k-cover, and
a ∈ A, then the collection of e ∈ E such that a ∈ e form a (k− 1)-cover of A.
Both properness and the ωω-bounding property follow once we prove that P
satisfies Axiom A∗ of Baumgartner (see Definition 2.3). For this we define
relations ≤k, for 0 ≤ k < ω, on the trees in P .
≤0 is just the poset ordering (inverse inclusion).
Define T1 ≤1 T2 iff T2 is a pure extension of T1: that is, T2 extends T1,

and they have the same stem.
Define T1 ≤k T2 for k > 1 iff T1 ≤1 T2, T1 |̀k = T2 |̀k and for every i ≤ k,

for any η ∈ T2, if η is i-covering in T1 then η remains i-covering in T2. The
following is a direct consequence of the definitions.

3.10 Lemma. ≤k is transitive, and k < � implies that ≤�⊆≤k.

3.11 Lemma. If T1 ≤1 T2 ≤2, . . . , Tn ≤n Tn+1, . . . , then a fusion T ∈ P
can be defined such that Ti ≤i T for all i.

Proof. Indeed, T =
⋃

1≤i<ω Ti�i works. �
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Given a name τ
∼

of an ordinal we must show that every T ∈ P has a ≤k

extension that decides τ
∼

up to finitely many possibilities. (This can be seen
to be an equivalent formulation of item 2 in Definition 2.3.)

Say that a tree T is m-covering if every node in T (not below the stem) is
m-covering. For any T ∈ P and η ∈ T , let T (η) be the subtree of T obtained
by letting η to be the stem. The following lemma suffices to prove Axiom A∗.

3.12 Lemma. Let τ
∼

be a P -name of an ordinal. If m ≥ 2k and T is m-
covering, then T has a pure extension T ′ that is k-covering and such that for
some finite set B of ordinals, T ′ � τ

∼
∈ B.

Proof. A node η of T is good iff T (η) has a pure, k-covering extension that
decides τ

∼
up to finitely many possibilities. η is bad if it is not good. So, the

lemma says that the stem of T is good.
Let X be a set of successors of some η in T ; we say that X is a majority

set if X is k-covering. More formally, X is a majority set if for i = |η| the
collection {μ(i) | μ ∈ X} is a k-cover of Ai.

Observe that since any η ∈ T is m-covering and m ≥ 2k, if the set of
successors of η is given as a union X1 ∪X2, then X1 or X2 is a majority set.
(For otherwise there are sets x1, x2 ⊆ Ai of size k each such that x1 is not
covered by the nodes of X1 and x2 is not covered by the nodes of X2. But
then x1 ∪ x2 is of size ≤ m and is not covered by any successor of η!) Hence
if η ∈ T is bad, then the bad successors of η form a majority set.

For any trees T1, T2 we say that T2 is a majority extension of T1 if T2 ≥ T1

is obtained by taking only majority sets of successors in T1. Equivalently, T2

is a pure extension of T1 which is k-covering.
Now if the lemma does not hold and the stem is bad, then there is a ma-

jority extension T ′ of T consisting entirely of bad nodes. This is impossible:
pick any T ′ ′ ≥ T ′ that decides τ

∼
, and find in T ′ ′ a node η such that T (η) is

k-covering. Then η must be good (already in T ). �

4. Preservation of Unboundedness

This section is adapted from [13] (reworked in [15, Chap. VI]). A forcing
poset P is said to be weakly ωω-bounding if the old reals are not bounded in
the extension. That is, the following holds in every extension V [G] via P : for
any f ∈ ωω ∩ V [G] there is a g ∈ V such that {n | f(n) ≤ g(n)} is infinite.
For example, the Cohen-real forcing is weakly ωω-bounding. (Given f ∈ V P ,
let {cn | n ∈ ω} enumerate all Cohen conditions, and define g(n) so that
some extension of cn forces that g(n) = f

∼
(n).)

4.1 Theorem. The weak ωω-bounding property is preserved by the limit of a
countable support iteration of proper posets if each initial part of the iteration
is weakly ωω-bounding.
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Thus, if δ is a limit and 〈Pi | i ≤ δ〉 is a countable support iteration of
proper posets and every Pi for i < δ is weakly ωω-bounding, then Pδ is weakly
ωω-bounding as well.

Observe the difference between the formulation of this theorem and that of
Theorem 3.5: here we speak about initial parts of the iteration—not about
the iterands. In the next subsection we will explain why the iteration of
weakly ωω-bounding posets is not necessarily weakly ωω-bounding, and we
will define the notion of almost bounding and show that the iteration of
almost bounding posets is weakly ωω-bounding.

Theorem 4.1 is proved by induction on δ. Let f
∼

be a name for a real in
V Pδ , and p0 ∈ Pδ an arbitrary condition. Pick M ≺ Hκ countable, with
Pδ, p0, f∼ ∈M as usual. Fix an increasing sequence γi ∈ δ ∩M converging to
sup(δ ∩M). Let g ∈ ωω <∗-dominate all the reals of M . We will find in Pδ

an extension q of p0 that forces

{n ∈ ω | f
∼
(n) ≤ g(n)} is infinite.

As before, we define by induction conditions qn ∈ Pγn that are (M,Pγn)-
generic, and names pn∼

∈ V Pγn such that:

1. qn+1�γn = qn.

2. qn �γn“pn∼
is in Pδ ∩M and extends pn−1∼

, and pn∼
�γn ∈ G

∼ n (the generic
filter over Pγn)”.

3. qn �γn “pn∼
�δ for some k ≥ n, f

∼
(k) ≤ g(k)”.

When done, q =
⋃

n qn is in Pδ, and for every n

q �δ pn∼
∈ Gδ

(we have seen that in proving the Properness Extension Lemma 2.8). Hence
q “knows” what every interpretation of pn∼

knows, i.e., q �δ for some k ≥ n,
f

∼
(k) ≤ g(k). This holds for every n. Hence q is as required.
We now turn to the inductive definition. To begin with, p0∼

is in fact
a condition—the given p0—and q0 ∈ Pγ0 is an (M,Pγ0)-generic condition
extending p0�γ0.

Suppose that qn and pn∼
are defined; we shall obtain pn+1∼

and then qn+1.
Imagine a generic extension V [Gn], where qn ∈ Gn ⊆ Pγn . Then pn∼

is realized
as some condition pn ∈ Pδ ∩M such that pn�γn ∈ Gn.

In M [Gn], define an increasing sequence 〈ri | i ∈ ω〉 beginning with r0 =
pn, of conditions in Pδ that decide the values of f

∼
, and such that ri�γn ∈ Gn

(use Lemma 1.2). Let f ∗ be the real thus interpreted; so for every k < ω, rk

forces (in Pδ forcing) that f
∼
�k = f ∗�k. Obviously f ∗ ∈M [Gn].

Since Pγn is weakly ωω-bounding, for some h ∈ ωω ∩ M , h(i) is above
f ∗(i) for infinitely many i’s. But h <∗ g, and hence for some i0 ≥ n + 1,
f ∗(i0) < g(i0). For j = i0 + 1, rj fixes the value of f

∼
(i0) to be f ∗(i0). Now
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define pn+1∼
to be a Pγn -name of rj . Finally, qn+1 is defined by the Properness

Extension Lemma to be a condition in Pγn+1 such that qn+1�γn = qn and

qn+1 �γn+1
pn+1∼

�γn+1 ∈ G
∼ n+1.

The proof is finished, but it is worth remarking that the definition of pn+1∼
depends on g, the function that dominates M , hence pn+1∼

cannot be defined
in M . But of course it is always realized as some condition in M .

4.1. The Almost Bounding Property

The successor case, which causes no problem for the ωω-bounding property, is
not obvious at all for the weakly ωω-bounding property. In fact, it is possible
to have Q1 weakly ωω-bounding, Q2 ∈ V weakly ωω-bounding in V Q1 , yet
Q1×Q2 adds a dominating real. For example, add ℵ1 many Cohen reals (this
is Q1), and then do the Hechler forcing with conditions from V . (Hechler
[6] posets adds a generic function in ωω by giving finite information on the
generic function, and a function in ωω which the generic must from now on
dominate. See also Jech [7].) Now, though Q2 adds a dominating real to V ,
it is an exercise to see that Q2 is weakly ωω-bounding in V Q1 , because the
Q2-name of any real is already in V Q1 |̀α for some countable α.

In order to tackle the successor stage, we introduce a notion that is of in-
termediate strength between weakly ωω-bounding and ωω-bounding—almost
ωω-bounding.

4.2 Definition. A poset Q is called almost ωω-bounding iff for every Q-name,
f

∼
∈ ωω, and condition q ∈ Q, there exists g ∈ ωω such that

For every infinite A ⊆ ω, there is a q′ ≥ q such that: (∗)

q′ � for infinitely many n ∈ A, f
∼
(n) ≤ g(n). (5.15)

Notice the order of quantification: ∃g ∈ ωω∀A ⊆ ω. If it is reversed, then
(for proper posets) this property becomes the weak ωω-bounding property.

4.3 Lemma. If P is weakly ωω-bounding, and Q ∈ V P is almost ωω-
bounding (in V P ), then P ∗Q is weakly ωω-bounding.

Proof. Let f
∼

be a P ∗ Q-name, and (p, q) ∈ P ∗ Q a condition that forces
f

∼
∈ ωω. We will find a generic extension via P ∗ Q with a filter containing

(p, q) in which f
∼

is weakly bounded by some function in V . First take a
(V, P )-generic G with p ∈ G. Working in V [G], f

∼
“becomes” a name in

Q-forcing of a real, and we continue to denote this name by f
∼
. Q “is” now

an almost ωω-bounding forcing poset, and q ∈ Q a condition. By definition,
there is in V [G] a function g ∈ ωω such that (∗) (in Definition 4.2) holds.
Since P is weakly ωω-bounding, g is weakly bounded, say by h ∈ V , and

A = {n | g(n) ≤ h(n)}
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is infinite, in V [G]. So there is an extension q′ of q in Q for which (5.15) of
(∗) holds. If the second generic extension is done with q′ in the generic filter,
then for an infinite subset A0 ⊆ A, f(n) ≤ g(n) holds for n ∈ A0. Thus f

∼
is

weakly dominated by h ∈ V . �

By combining Theorem 4.1 and Lemma 4.3 we get the following theorem.

4.4 Theorem. The iteration of almost ωω-bounding, proper posets is weakly
ωω-bounding.

4.2. Application to Cardinal Invariants

This section deals with two cardinal invariants b and s of the continuum.
For additional information on these cardinals the reader may consult Blass’s
chapter in this Handbook. Following [13] we will establish here the consis-
tency of

bounding number < splitting number.

The bounding number b is the smallest cardinality of an unbounded subset
of ωω (in the eventual dominance ordering <∗). In what follows, [ω]ω denotes
the set of infinite subsets of ω, and ⊆∗ between members of [ω]ω denotes
eventual inclusion, i.e. A ⊆∗ B iff A \B is finite.

The splitting number s is the smallest cardinality of a “splitting” set S ⊆
[ω]ω, where S is splitting iff for every infinite A ⊆ ω, some B ∈ S splits A, that
is, both A∩B and A \B are infinite. In other words, say that A ⊆ ω makes
an ultrafilter on S ⊆ [ω]ω if for every B ∈ S either A ⊆∗ B or A ⊆∗ ω \ B.
Thus S is splitting iff no A makes an ultrafilter on S.

4.5 Theorem. Assume CH. There is a generic extension in which 2ℵ0 = ℵ2,
cardinals are not collapsed, and b < s.

The general structure of the consistency proof for this theorem is to iterate
ω2 almost ωω-bounding proper forcings that “kill” the old reals as a splitting
family. Finally, by Theorem 4.4, the reals of the ground model are still not
dominated, and hence b = ℵ1, but s = ℵ2 because no set of size ℵ1 can be
splitting. This is so because every set of reals of size ℵ1 is included in some
stage γ < ω2 of the iteration and hence was “killed” at the following stage
(by introducing some A that makes an ultrafilter on P(ω) ∩ Vγ). Thus we
only need the following.

4.6 Theorem. There is a proper, almost ωω-bounding poset Q of size 2ℵ0

such that in V Q:

There is an infinite set A ⊆ ω such that for every B ⊆ ω from V ,
A ⊆∗ B or A ⊆∗ ω \B.

Proof. The first forcing notion that comes to mind is Mathias forcing [11].
It consists of pairs (u,E) where u is a finite and E an infinite subset of ω.



4. Preservation of Unboundedness 365

Extension is defined by (u1, E1) ≤ (u2, E2) iff E2 ⊆ E1, u2 is an end-extension
of u1, and u2 \ u1 ⊆ E1. If G is a generic filter, then U =

⋃
{u | (u,E) ∈

G for some E} makes an ultrafilter on P(ω)∩V (it is not split by any subset
of ω in the ground model). However, this forcing introduces a dominating
real—the enumeration of the generic subset—and hence we must search for
another solution.

The conditions in Q will be pairs (u, T ) such that u ⊆ ω is finite, and
T = 〈ti | i ∈ ω〉 is a sequence of “logarithmic measures”. Each ti consists of a
finite subset si of ω, also denoted int(ti), and a finite measure, specified below,
defined on all subsets of int(ti) and taking natural number values. We have
that max(u) < min(si) ≤ max(si) < min(si+1). Define int(T ) =

⋃
i int(ti);

this is an infinite set of numbers in ω above u, and the order on Q will be
such that if (u1, T1) ≤ (u2, T2) holds, then (u1, int(T1)) ≤ (u2, int(T2)) as
Mathias conditions. The reason that the reals in V do not split the generic
real U =

⋃
{u | ∃T (u, T ) ∈ G} is the same as for the Mathias forcing: it

will be shown that if (u1, T1) ∈ Q then whenever int(T1) = x ∪ y, there is an
extension (u2, T2) of (u1, T1) in Q such that int(T2) ⊆ x or int(T2) ⊆ y. To
define Q we need first the notion of “logarithmic measure”.

A logarithmic measure on S ⊆ ω (S is usually finite) is a function h :
Pω(S) → ω (where Pω(S) is the collection of all finite subsets of S) and such
that if A∪B ⊆ S is finite and h(A∪B) ≥ �+1 then h(A) ≥ � or h(B) ≥ �. It
follows that if h(A0 ∪ · · · ∪An−1) > � then h(Aj) ≥ �− j for some 0 ≤ j < n.

When h is a logarithmic measure on S and S is finite, then h(S) is called
the level of h, and is denoted level(h).

Actually, our measures will all be induced by a collection of positive sets
as follows: Given a collection P ⊆ Pω(S) that is closed upwards (a ∈ P and
a ⊆ b imply b ∈ P ), a logarithmic measure h induced by P is inductively
defined as follows on Pω(S):

1. h(e) ≥ 0 for every e ∈ Pω(S).

2. h(e) > 0 iff e ∈ P .

3. For � ≥ 1, h(e) ≥ � + 1 iff |e| > 1 and whenever e = e1 ∪ e2 then
h(e1) ≥ � or h(e2) ≥ �.

Then h(e) = � iff � is the maximal natural number such that h(e) ≥ � (there
has to be such � and h(e) <∞).

We have, for measures defined by positive sets, that if h(e) = k and e ⊆ a
then h(a) ≥ k.

For example, if the positive sets are those containing at least two points,
then h(X) is the least i for which |X| ≤ 2i. We will use the following
observation.

4.7 Lemma. Let P ⊆ Pω(ω) be an upwards closed collection (of finite non-
empty sets). The following condition implies that the measure h induced by
P on Pω(ω) has arbitrarily high values:
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For every decomposition ω = A1∪· · ·∪An into finitely many sets,
for some i, Pω(Ai) ∩ P �= ∅.

Assuming this condition, for every k < ω and decomposition ω =
⋃

i<n Ai

into n < ω sets, for some i < n, h(e) ≥ k for some e ⊆ Ai.

Proof. Suppose that P satisfies the condition of the lemma, and we shall
prove by induction on k < ω the required conclusion.

For k = 1, this is just the assumed condition. Assume the claim for k = �,
and let us prove it for � + 1. Let ω =

⋃
i<n Ai be a decomposition such that

(contrary to our lemma) for every j < ω, for all i < n, h(Ai ∩ j) �≥ � + 1.
Thus for every i < n there are e1 and e2 such that Ai ∩ j = e1 ∪ e2 and both
h(e1) �≥ � and h(e2) �≥ �. Kőnig’s lemma can be used to find a decomposition
Ai = Ei

1 ∪Ei
2 such that there is no x with h(x) ≥ � included in Ei

1 or in Ei
2.

Hence a decomposition of ω into 2n sets contradicts the inductive assumption
for �. �

To prove Theorem 4.6, we define the poset Q which was informally de-
scribed above. Q consists of all pairs p = (u, T ) where

1. u ⊆ ω is finite (called the stem of p) and

2. T = 〈ti | i ∈ ω〉 is a sequence of measures ti = (si, hi) where hi is a
logarithmic measure on si, a finite subset of ω (si = int(ti)), such that

(a) max(u) < min(s0).

(b) max(si) < min(si+1).

(c) The level of the measures diverges to infinity, and, moreover,
level(hi) < level(hi+1). (We defined level(hi) = hi(si).)

Recall that int(T ) =
⋃
{si | i ∈ ω}. For convenience, we write p = (u, T )

even when max(u) is not below min(s0). This p refers then to the condition
obtained by throwing away sufficiently many ti’s, that is, p = (u, 〈ti | i ≥ k〉)
where k is first such that max(u) < min(sk).

The extension relation for Q is defined by:

(u1, T1) ≤ (u2, T2),

where T� = 〈t�i | i ∈ ω〉, t�i = (s�
i , h

�
i) for � = 1, 2, if and only if

1. u2 is an end extension of u1, and u2 \ u1 ⊆ int(T1).

2. int(T2) ⊆ int(T1). Moreover, there is a sequence of finite subsets of ω,
〈Bi | i ∈ ω〉 with max(Bi) < min(Bi+1) and max(u2) < min(s1

j ) for
j = min(B0), such that s2

i ⊆
⋃
{s1

j | j ∈ Bi}.

3. For every i: if e ⊆ s2
i is h2

i -positive (i.e., h2
i (e) > 0), then for some j,

e ∩ s1
j is h1

j -positive.
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The reader may check that this defines an order on Q. An extension that
does not change the stem is called a pure extension. Observe that if (w,R)
extends (v, T ) then (w,R) extends (w, T ) as well. That is, any extension can
be formed by first extending the stem and then taking a pure extension. We
shall prove that Q is proper and almost ωω-bounding.

For properness, Axiom A will be shown to hold. The ≤n relations needed
are defined as follows. <0 is the extension relation on Q just defined. For
n > 0,

(u1, T1) ≤n (u2, T2) iff (u2, T2) is a pure extension of
(u1, T1) and for 0 ≤ i < n− 1, h1

i = h2
i .

That is, the stem and the first n−1 measures (and sets) are the same in both
conditions. In particular (u1, T1) ≤1 (u2, T2) iff (u2, T2) is a pure extension
of (u1, T1).

We can check the fusion property. Suppose that p0 ≤1 p1 ≤2 · · · ≤i−1

pi−1 ≤i pi . . . is a fusion sequence, where p� = (u�, 〈t�i | i ∈ ω〉). Then set
p = (u, T ) by u = u0, and T = 〈ti | i ∈ ω〉 defined as ti = ti+1

i (p takes the
common stem u, and the measure ti that is common to all the conditions
with indices above i) then p ∈ Q and pi ≤i p for all i.

To verify Axiom A, we have to prove that for any n ∈ ω, p = (u, T ), and
dense open set D, there are a countable D0 ⊆ D and an extension p ≤n p0,
such that D0 is predense above p0.

We say that a condition (u, T ) (with T = 〈ti | i ∈ ω〉) is preprocessed for
D and i iff for every v ⊆ i that is an end extension of u, if (v, 〈tj | j ≥ i〉) has
a pure extension in D, then (v, 〈tj | j ≥ i〉) is already in D. The following
can be easily proved:

1. If (u, T ) is preprocessed for D and i, then any extension is also pre-
processed for D and i.

2. Any given condition has a ≤i+1 extension that is preprocessed for D
and i.

3. Hence by taking the fusion of a sequence, one may obtain an extension
of any given condition that is preprocessed for every i.

Now if p0 = (u, T ) is preprocessed for every i and D0 is the set of all conditions
in D of the form (v, 〈tj | j ≥ i〉), then D0 is predense above p0. Thus Axiom
A holds.

The almost ωω-bounding property of Q is of course the main point.

4.8 Lemma (Main Lemma). Let f
∼

be a Q-name for a function in ωω, and
q ∈ Q a condition. There is a pure extension p ≥ q, p = (u, T ), T = 〈ti |
i ∈ ω〉, with the following property:

For any i and s ⊆ int(ti) that is ti-positive, if v ⊆ i then for some
w ⊆ s, ((v ∪ w), T ) determines the value of f

∼
(i).
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We first show how this lemma implies the almost bounding property (De-
finition 4.2). Given f

∼
and q, let p ∈ Q be as in the lemma. For each i,

define

g(i) = max{k | for some v ⊆ i and w ⊆ int(ti), (v ∪ w, T ) � f
∼
(i) = k} .

Now let A ⊆ ω be any infinite set. Put p′ = (u, 〈ti | i ∈ A〉). Then p′

extends p and

p′ � for infinitely many i ∈ A, f
∼
(i) ≤ g(i).

To see this, let p′ ′ be any extension of p′ and k an arbitrarily high integer. Say
p′ ′ = (v,R) where R = 〈ri | i ∈ ω〉. Find i > k, i ∈ A, such that v ⊆ i, and
int(R)∩ int(ti) is ti-positive (there is such an i by the definition of extension
in Q). Using the property of the Main Lemma for s = int(R) ∩ int(ti), let
w ⊆ s be such that (v ∪ w, T ) decides the value of f

∼
(i). Then (v ∪ w,R)

extends p′ ′ and makes the same decision because it is also an extension of
(v ∪ w, T ).

Now we turn to the proof of the Main Lemma. The required condition p
is obtained as a fusion of a sequence defined inductively in ω steps. At the
ith step we have a condition pi = (u, 〈tj | j ∈ ω〉) and we define pi+1 so that
pi ≤i+1 pi+1. That is, u and t0, . . . , ti−1 are not touched in the extension.
We start with T = 〈tj | j ≥ i〉 and apply the following lemma 2i times,
considering each v ⊆ i in turn.

4.9 Lemma. Let (∅, T ) be a condition, f
∼

a name for a function in ωω, and
i any natural number. Fix v ⊆ i. There is a pure extension (∅, R) of (∅, T )
with R = 〈r� | � ∈ ω〉 such that for every � and r�-positive s ⊆ int(r�), for
some w ⊆ s, (v ∪ w, 〈rm | m > �〉) determines the value of f

∼
(i). (Observe

that any further pure extension of (∅, R) retains this property.)

Proof. We may assume that (∅, T ) (and thence any extension) is preprocessed
for f

∼
(i): If an extension (w,R) determines the value of f

∼
(i), then already

(w, T ) determines that value.
Define a measure h on int(T ) induced by the following positive sets. A fi-

nite set x ⊆ int(T ) is positive iff

1. For some l, x∩ int(tl) is tl-positive. (tl are the measures composing T .)

2. For some w ⊆ x, (v ∪ w, T ) determines the value of f
∼
(i).

1. ensures that if (∅, R) is obtained by taking a sequence of subsets of int(T )
with increasing h-measures, then (∅, R) is an extension of (∅, T ). 2. ensures
that this extension has the required properties.

It remains to check that the basic property required to obtained arbitrarily
high values of h holds (Lemma 4.7). So let int(T ) = A0 ∪ · · · ∪ An−1 be a
partition, and we will find some A� that contains a positive set. Because the
measures ti are logarithmic and increasing to infinity, for some � < n there
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exists an infinite index set I ⊆ ω such that the ti-measures of A� ∩ int(ti)
for i ∈ I are diverging to infinity. (Otherwise, for every � < n there is a
finite bound on the ti measures of A� ∩ int(ti) for i ∈ ω, and hence there is a
bound k on the measures of A� ∩ int(ti) where � < n and i ∈ ω. But this is
impossible when the measure of ti is greater than k + n.) We may thus find
an extension of (v, T ) of form (v,R) such that int(R) ⊆ A�. Now pick any
extension (v ∪ w,R′) of (v,R) that decides the value of f

∼
(i). Then already

(v ∪ w, T ) decides that value. This shows the existence of a positive subset
of A�, namely a finite union x of int(rm)’s such that w ⊆ x. �

This completes the proof of Theorem 4.6. �

5. No New Reals

This last section deals with proper posets that add no new reals, that is,
introduce no new subsets of ω in any generic extension. (Such posets add
no countable sequences of ordinals either, but the shorter expression is the
customary description.) It follows from the work of Jensen and Johnsbr̊aten
[8] that the countable support iteration of forcing posets that add no new reals
may well add a new real. This shows the need for more complex schemes for
iterating posets that add no new reals, and the notion of Dee-completeness is
simpler than any other scheme introduced by Shelah for that purpose. The
preservation proof that we present here uses the notion of α-properness, and
we therefore begin with this notion (following Shelah [15, Chap. V]). Our aim
is to explain Dee-completeness by means of a simple example (in Sect. 5.2),
and then to give a rather detailed proof of the Dee-completeness Iteration
Theorem 5.17.

5.1. α-Properness

Let α > 0 be a countable ordinal and M̄ = 〈Mi | i < α〉 a sequence of
countable, elementary substructures of Hλ (where λ is some fixed regular
cardinal). We say that M̄ is an α-tower iff

1. For every limit δ < α, Mδ =
⋃

i<δ Mi.

2. For every j < α, 〈Mi | i ≤ j〉 ∈Mj+1.

Since λ is regular (or, at least, cf(λ) > ℵ0) if M ⊆ Hλ is countable then
M ∈ Hλ. Thus, for j < α, 〈Mi | i ≤ j〉 ∈ Hλ so that 2. makes sense.

5.1 Definition. Let α > 0 be a countable ordinal. A forcing poset P is
α-proper iff for sufficiently large λ and every α-tower M̄ = 〈Mi | i < α〉 of
countable, elementary substructures of Hλ such that P ∈ M0, the following
holds: Every p ∈ P ∩M0 has an extension q ≥ p that is (Mi, P )-generic for
every i < α. We say that q is (M̄, P )-generic in this case.
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Clearly, properness is 1-properness. We say that P is <ω1-proper if it is
α-proper for every countable ordinal α.

Any c.c.c. poset is <ω1-proper. Any countably closed poset is <ω1-proper.
In proving this, one sees why each successor structure in the tower needs to
contain the sequence of structures up to that point.

Another example is given by Axiom A posets (Definition 2.3). Let P be
an Axiom A poset and prove by induction on α < ω1 that P is α-proper. For
α = ω we argue as follows. Let M̄ = 〈Mi | i < ω〉 be a tower of countable,
elementary substructures of Hλ with P ∈M0, and let p0 ∈ P ∩M0 be a given
condition. Construct by induction conditions pi ∈ P such that:

pi ≤i pi+1, and pi+1 ∈Mi+1 is (Mi, P )-generic.

Let q be the fusion condition, satisfying pi ≤i q for all i. Then pi ≤ q and q
is thence (Mi, P )-generic.

It is not difficult to check that if P is α-proper then it is (α + 1)-proper.
So properness implies n-properness for every n < ω. It does not imply ω-
properness. If α = β1 + β2 is a sum of two smaller ordinals, then any poset
that is both β1 and β2 proper is also α proper. So, for α-properness, the
values that really count are indecomposable countable ordinals.

Equivalent Definition

As for properness, it is useful to know that if P and Q are posets, P is α-
proper and Q is α-proper in V P , then Q is α-proper already in V . A suitable
notion of closed unbounded sets is introduced which is the basis for an equiv-
alent definition of α-properness, from which that useful fact follows. Recall
that Pℵ1(A) is the collection of all countable subsets of A.

5.2 Definition. Let A be an uncountable set and α a countable ordinal.

1. Pα
ℵ1

(A) is the set of all increasing and continuous sequences 〈ai | i < α〉
where ai ∈ Pℵ1(A) for all i < α. (The sequence is increasing if ai ⊆ aj

for i < j, and it is continuous if for limit δ < α, aδ =
⋃

i<δ ai.)

2. Let F : (
⋃

β<α P β
ℵ1

(A)) × [A]<ℵ0 → Pℵ1(A) be given. We say that F
is an α-function. A sequence 〈ai | i < α〉 ∈ Pα

ℵ1
(A) is said to be closed

under F if for every β < α that is a successor ordinal or zero, for every
x ∈ [aβ ]<ℵ0 , F (〈ai | i < β〉, x) ⊆ aβ . So a0 is closed under the function
taking x ∈ [a0]<ℵ0 to F (∅, x); a1 is closed under the function taking
x ∈ [a1]<ℵ0 to F (〈a0〉, x), and so forth.

3. Let G(F ) ⊆ Pα
ℵ1

(A) be the collection of all α-sequences that are closed
under F . Then {G(F ) | F is an α-function} generates a countably
closed filter on Pα

ℵ1
(A), which is denoted Dα

ℵ1
(A).

4. We say that S ⊆ Pα
ℵ1

(A) is stationary if its complement is not in
Dα

ℵ1
(A).
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Useful examples of Dα
ℵ1

(A) sets are the following:

1. The collection of all α-towers 〈Mi | i < α〉 of countable elementary
substructures of Hλ. Here A is the set Hλ, and Mi refers to the universe
of that structure.

2. For a closed unbounded set C ⊆ Pℵ1(A), collect all sequences 〈ai |
i < α〉 ∈ Pα

ℵ1
(A) such that ai ∈ C for all i.

In a sense, Dα
ℵ1

(A) is normal. If g : Pℵ1(A) → A is a choice function (namely
g(x) ∈ x whenever x is non-empty) and S ⊆ Pα

ℵ1
(A) is stationary, then for

some fixed v ∈ A, {〈ai | i < α〉 ∈ S | g(a0) = v} is stationary.
The following is standard.

5.3 Lemma. Suppose that A0 ⊆ A1 are uncountable and C1 ∈ Dα
ℵ1

(A1).
Define C0 = {〈ai ∩A0 | i < α〉 | 〈ai | i < α〉 ∈ C1}. Then C0 ∈ Dα

ℵ1
(A0).

The proof of the following theorem resembles that of the Properness Equiv-
alents Theorem 2.13.

5.4 Theorem. For any poset P and countable ordinal α the following are
equivalent.

1. P is α-proper (as in Definition 5.1).

2. For some λ > 2|P |, for every α-tower M̄ of countable elementary sub-
structures of Hλ, any condition in M0 has an extension that is (M̄, P )-
generic.

3. For every uncountable λ, P preserves stationary subsets of Pα
ℵ1

(λ).

4. For λ0 = 2|P |, P preserves stationary subsets of Pα
ℵ1

(λ0).

5. The α-test set for P , as defined below, is in Dα
ℵ1

(A).

Form A = P ∪ P(P ). Then 〈ai | i < α〉 ∈ Pα
ℵ1

(A) is in the α-test set
for P iff for every p0 ∈ a0 ∩ P there is a p ∈ P that is ai-generic for
every i < α. (That is, for every D ∈ ai ∩ P(P ), if D is dense in P ,
then D is pre-dense above p.)

Preservation of α-Properness

We shall prove the following.

5.5 Theorem. Let α < ω1 be a countable ordinal and 〈Pi | i ≤ γ〉 a countable
support iteration of α-proper posets. Then the limit Pγ is α-proper.

The theorem is obtained as a particular case of the α-Extension Lemma
which is proved by induction on α. As the case α = ω involves almost
all the essential ideas of the general case, the reader may concentrate on
ω-properness.
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5.6 Lemma (The α-Extension Lemma). Let α be any countable ordinal and
〈Pi | i ≤ γ〉 a countable support iteration of α-proper posets. Let λ be a
sufficiently large cardinal, and let M̄ = 〈Mξ | ξ ≤ α〉 be an (α + 1)-tower
of countable elementary substructures of Hλ, with γ, Pγ , α ∈ M0. For every
γ0 ∈ γ ∩M0 and q0 ∈ Pγ0 that is (M̄, Pγ0)-generic, the following holds:

If p0∼
∈ V Pγ0 is such that

q0 �γ0
p0∼
∈ Pγ ∩M0 ∧ p0∼

|̀γ0 ∈ G
∼ 0

(where G
∼ 0 is the canonical name for the (V, Pγ0)-generic filter), then there is

an (M̄, Pγ)-generic condition q such that

q |̀γ0 = q0 and q �γ p0∼
∈ G

∼

(where G
∼

is the canonical name for the (V, Pγ)-generic filter, and the name
p0∼
∈ V Pγ0 is now viewed as member of V Pγ ).

Proof. The proof is by induction on α < ω1 and for any fixed α by induction
on γ. We begin with α = α′ + 1 a successor ordinal. We are given a tower
M̄ = 〈Mξ | ξ ≤ α′ + 1〉, a condition q0, and a name p0∼

as in the lemma. We
intend to define a name r∼ ∈ V Pγ0 such that q0 forces (in Pγ0) the following
sentences.

1. r∼ ∈Mα ∩ Pγ is 〈Mξ | ξ ≤ α′〉-generic.

2. r∼|̀γ0 ∈ G
∼ 0, and p0∼

<Pγ r∼.

Then, using the Properness Extension Lemma 2.8, we can find a q ∈ Pγ that
is (Mα, Pγ)-generic and such that q |̀γ0 = q0 and q � r∼ ∈ G

∼
. It follows that q

is as required.
To define r∼, let G0 be a (V, Pγ0)-generic filter with q0 ∈ G0, and we shall

describe r∼[G0]. Let p0 ∈ Pγ∩M0 be the interpretation of p0∼
. Then p0 |̀γ0 ∈ G0

and we can find a q′
0 ∈ G0 that extends both q0 and p0 |̀γ0. Now we can apply

the inductive assumption on α′ to the tower 〈Mξ | ξ ≤ α′〉, to q′
0 and to p0,

and we find a q′ ∈ Pγ such that q′ |̀γ0 = q′
0, q′ is (〈Mξ | ξ ≤ α′〉, Pγ)-generic,

and p0 <Pγ q′. Since Mα[G0] ≺ Hλ[G0], we can find a q∗ ∈Mα[G0] with simi-
lar properties as q′. Namely, q∗ ∈ Pγ (and so q∗ ∈Mα, as Mα[G0]∩V = Mα),
q∗ |̀γ0 ∈ G0, p0 <Pγ q∗, and q∗ is (〈Mξ | ξ ≤ α′〉, Pγ)-generic. Let r∼ be a name
of q∗ forced by q0 to have these properties. Then r∼ is as required.

Assume now that α is a limit ordinal. In case γ is a successor ordinal, we
can inductively apply the following two-step iteration lemma, whose proof is
similar to the corresponding case of proper forcing (and is hence not given
here).

5.7 Lemma. Suppose that P0 is α-proper and P1 ∈ V P0 is α-proper in V P0 .
Then R = P0∗P1 is α-proper, and the following holds. Suppose that M̄ ≺ Hλ

is an α-tower and R ∈ M0. Let r∼ ∈ V P0 be a name, and p0 ∈ P0 be an
(M̄, P0)-generic condition such that

p0 �P0 r∼ ∈M0 ∩R and π(r∼) ∈ G
∼ 0
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where π : R → P0 is the projection (taking (a, b) ∈ R to a), and G
∼ 0 is the

canonical name for the (V, P0)-generic filter. Then there is a name p1∼
∈ V P0

such that

1. (p0, p1∼
) is (M̄,R)-generic, and

2. (p0, p1∼
) �R r∼ ∈ G

∼

where G
∼

is the canonical name for the (V,R)-generic filter.

Continuing the proof of the α-Extension Lemma for α a limit ordinal,
assume now that γ is a limit ordinal. We fix a sequence 〈αn | n ∈ ω〉
increasing and cofinal in α, and a sequence 〈γi | i ∈ ω〉 increasing in γ and
such that γn ∈Mαn with γ0 the given ordinal. (If cf(γ) = ω, let 〈γi | i ∈ ω〉 be
an increasing, cofinal in γ sequence in M0 ∩ γ, with γ0 as given. If cf(γ) > ω,
define γn = sup(γ ∩Mαn−1) for n ≥ 1.) We intend to define by induction on
n < ω conditions qn ∈ Pγn and names pn∼

∈ V Pγn such that:

1. q0 ∈ Pγ0 is the given condition. And for n > 0, qn ∈ Pγn is (〈Mξ | αn <
ξ ≤ α〉, Pγn)-generic and qn+1 |̀γn = qn. (In fact, qn is generic for the
complete tower, but this follows from item 2 below.)

2. p0∼
is given. pn∼

is a Pγn -name such that

qn �γn
pn∼

is a condition in Pγ ∩Mαn+1 such that:

(a) pn∼
|̀γn ∈ G

∼ γn ,

(b) pn−1∼
≤γ pn∼

,

(c) pn∼
is an (〈Mξ | ξ ≤ αn〉, Pγ)-generic

condition (when n > 0).

When this sequence is defined, q =
⋃

n qn is a condition in Pγ and

q �γ pn∼
∈ G

∼ γ

as we have seen in the proof of the Properness Extension Lemma. But as q
forces that pn∼

is (〈Mξ | ξ ≤ αn〉, Pγ)-generic, q itself is (〈Mξ | ξ ≤ αn〉, Pγ)-
generic for every n ∈ ω, and the proof of the lemma is concluded since q is
then (〈Mξ | ξ < α〉, Pγ) and hence (M̄, Pγ)-generic (as α is a limit ordinal).

We turn now to the inductive construction. Suppose that qn and pn∼
are

defined. As before, we shall first define pn+1∼
and then qn+1.

We define pn+1∼
as a Pγn -name by the following requirements. If G is any

(V, Pγn)-generic filter containing qn, form

Mαn+1+1[G] ≺ Hλ[G], (5.16)

and let p ∈ Pγ be the interpretation of pn∼
. Then p ∈ Pγ ∩ Mαn+1 and

p|̀γn ∈ G. As qn, p|̀γn ∈ Pγn are in G, there is a q′
n ∈ G that extends
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both qn and p|̀γn. By the αn+1-Properness Extension Lemma applied to
q′
n and p there is a q∗

n ∈ Pγ such that q∗
n |̀γn = q′

n, p ≤γ q∗
n, and q∗

n is
(〈Mξ | αn +1 ≤ ξ ≤ αn+1〉, Pγ)-generic. It follows from (5.16) that (similarly
to q∗

n) there is in Mαn+1+1 a condition q∗ ∈ Pγ such that q∗ |̀γn ∈ G, p ≤γ q∗,
and q∗ is (〈Mξ | αn + 1 ≤ ξ ≤ αn+1〉, Pγ)-generic. Then we define the
interpretation of pn+1∼

in V [G] to be q∗.
Clearly qn forces that pn+1∼

is in Pγ ∩Mαn+1+1 and

1. pn+1∼
|̀γn ∈ G

∼ γn ,

2. pn∼
≤ pn+1∼

in Pγ ,

3. pn+1∼
is (〈Mξ | αn + 1 ≤ ξ ≤ αn+1〉, Pγ)-generic (and so by item 2 it is

(〈Mξ | ξ ≤ αn+1〉, Pγ)-generic).

Now pn+1∼
|̀γn+1 is forced by qn to be in Mαn+1+1 and the inductive assumption

for γn+1 can be applied to yield a condition qn+1 ∈ Pγn+1 that is (〈Mξ |
αn+1 < ξ ≤ α〉, Pγn+1)-generic and such that

qn+1 �γn+1
pn+1∼

|̀γn+1 ∈ G
∼ γn+1 .

Hence qn+1 is also (〈Mξ | ξ ≤ αn+1〉, Pγn+1)-generic. This completes the
proof of the α-Extension Lemma, and hence of the α-properness preservation
theorem. �

5.2. A Coloring Problem

The definitions needed for Dee-completeness are quite complex and they can
be better understood with an example. Hence, before presenting the general
definition of Dee-completeness (in Sect. 5.3) we discuss a particular case. The
simplest that I know is a problem of Hajnal and Máté concerning the chro-
matic number of graphs in a certain family of graphs on ω1 described below.
(There is also a nostalgic reason for discussing this example: Theorem 5.8 is
my first result in set theory.) The chromatic number of any (non-directed)
graph g = (V,E) is the least cardinal κ such that there is a function f : V → κ
from the set of vertices V into κ such that for every α �= β in V , if αE β
then f(α) �= f(β).

Hajnal and Máté investigated in [5] the following family of graphs g =
(V,E) with set of vertices V = ω1, and in which for any limit δ ∈ ω1 the set
χg

δ = {α | α ∈ δ and αE δ} forms an ω-sequence cofinal in δ (and for non-limit
β ∈ ω1 there is no α < β such that αE β). We shall call such graphs Hajnal-
Máté graphs. They had shown that if the diamond principle � holds, then
there is an Hajnal-Máté graph of chromatic number ℵ1, and if MA + 2ℵ0 > ℵ1

holds, then every Hajnal-Máté graph has countable chromatic number. They
had suggested that Jensen’s method [3] for proving the consistency of CH +
“there are no Souslin trees” may lead to a consistency proof for CH + “the
chromatic number of every Hajnal-Máté graph is ℵ0”. This turned out to be
true.
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5.8 Theorem. Assume 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2. There is a generic extension
that adds no new reals, collapses no cardinals, and such that every Hajnal-
Máté graph in the extension has a countable chromatic number and 2ℵ1 = ℵ2.

Let g = (V,E) be a Hajnal-Máté graph. Define Pg as the poset for making
the chromatic number of g countable. That is, h ∈ Pg iff for some countable
ordinal γ, h : γ + 1 → ω is such that whenever α < β ≤ γ and αEβ then
h(α) �= h(β). So the domain, dom(h), of a condition in Pg is always a
countable successor ordinal.

The ordering on Pg is extension.
Clearly if h ∈ Pg and γ′ < γ = dom(h) is a successor ordinal then

h|̀γ′ ∈ Pg. It is easy to check that any condition in Pg has extensions with
arbitrarily high domain in ω1.

If h ∈ Pg and x is a finite function from dom(x) ⊆ ω1 to ω, we say that x
is compatible with h if h ∪ x is a function that assigns distinct values (in ω)
to connected vertices.

5.9 Lemma. If h ∈ Pg and γ + 1 = dom(h), then for every countable μ
above γ there is some condition h′ > h with μ + 1 = dom(h′). Moreover, for
any finite x that is compatible with h there is an extension h′ of h∪ x in Pg.

Thus if G is generic over Pg then
⋃

G is defined on ω1 and the chromatic
number of g in the extension is countable.

We plan to prove that Pg is proper, α-proper for every countable α, and
show how to iterate Pg forcings without adding new reals. Then 2ℵ1 = ℵ2

implies that an iteration of length ω2 suffices to ensure that all Hajnal-Máté
graphs produced are taken care of, and the theorem can be established.

5.10 Lemma. Pg is proper. Moreover, if M ≺ Hλ is countable, Pg ∈ M ,
and h0 ∈ Pg∩M , then for any finite x compatible with h0 there is an (M,Pg)-
generic condition h compatible with x. (x is not necessarily in M .)

Proof. Given h0 ∈ Pg ∩ M with dom(h0) = γ0 + 1, list all dense sets
〈Di | i ∈ ω〉 that are in M . Let δ = M ∩ ω1 and let χg

δ be the ω-sequence
of ordinals that are connected in g to δ. Our aim is to define an increas-
ing sequence of conditions hn ∈ M so that hn+1 ∈ Dn and then to define
h =

⋃
n∈ω hn and to extend h on δ as well, in order to obtain an (M,Pg)-

generic condition. The problem, of course, is that h may map χg
δ onto ω and

leave no place for the value of δ, or that it assigns a value that is incompatible
with x. The solution is based on the fact that δ “is” ω1 for M .

We make an observation. Given a condition f ∈ Pg, and v, a finite function
compatible with f , let Hf (v) be the first (in some well-ordering) condition
in Pg that extends f ∪ v.

5.11 Claim. Let D ⊆ Pg be dense. For any f ∈ Pg there is a closed
unbounded set Cf ⊆ ω1 such that for every γ ∈ C and finite function v
defined on a subset of γ and compatible with f , if h = Hf (v), then h has an
extension h′ ∈ D such that dom(h′) < γ.



376 Abraham / Proper Forcing

This claim is not difficult to prove.
Consider the given finite function x compatible with h0. We may assume

that δ ∈ dom(x) (or else extend x). Let x0 = x ∩M and x1 = x \M be the
lower and upper parts of x. By further extending h0 in M we may assume
that x0 ⊆ h0. We can also assume that if α < δ and α is connected in
the graph to some point in the domain of x1 above δ then α ∈ dom(h0) (as
there are only finitely many such αs). So, in fact, in defining hn’s we must
only be careful to avoid k = x(δ) on χg

δ . This k is “reserved” as the value
for δ. Assume that hn ∈ M is defined and k �∈ hn“χg

δ . For f = hn and
D = Dn there is an unbounded set Cf ⊆ ω1 as in the claim above. As Cf

is definable, Cf ∈ M . Let γ be the first member of Cf above dom(hn). Let
u = χg

δ∩γ\dom(hn). Then u is finite since γ < δ. Let v be a function defined
on u, compatible with hn, and avoiding the value k. Then h = Hf (v) has an
extension h′ = hn+1 ∈ Dn that lives in γ, so that {〈δ, k〉} is still compatible
with hn+1. Finally h =

⋃
n∈ω hn∪{〈δ, k〉} is (M,Pg)-generic. This completes

the properness proof for Pg. �

The generic condition h thus obtained is a “completely generic” condition,
which means that it actually defines an (M,Pg)-generic filter. This shows
that Pg adds no new reals.

5.12 Definition. If P ∈ M is a poset, then q ∈ P is completely (M,P )-
generic iff {p ∈ P ∩M | p ≤ q} is an (M,P )-generic filter. We say that G is
bounded by q and also that q induces G.

A poset P is completely proper iff P is proper and the properness defi-
nition applies to P with “completely generic condition” replacing “generic
condition”.

Clearly, completely proper posets do not add new reals. In fact, P is com-
pletely proper iff P is proper and adds no new reals. (If the latter condition
holds and M is as in the definition of properness, find q that is (M,P )-generic
and then further extend it to some condition that determines G

∼
∩M .)

Thus we know that Pg adds no new reals, and now we prove by induction
on α < ω1 that

5.13 Lemma. Pg is α-proper. In fact, if 〈Mξ | ξ ≤ α〉 is any α tower of
countable elementary submodels of Hλ with Pg ∈ M0 and h0 ∈ M0 is any
condition, then for every finite x compatible with h0 there is an extension
h ∈ Pg that is completely (Mξ, Pg)-generic for every ξ ≤ α and is compatible
with x.

Proof. The proof of the lemma is by induction on ω ≤ α < ω1. Using the
properness Lemma 5.10 we assume that α is a limit ordinal, and pick an
increasing and cofinal sequence αn. We define an increasing sequence hn of
conditions compatible with x such that hn+1 ∈Mαn+1+1 is 〈Mξ | ξ ≤ αn+1〉.
Then

⋃
n∈ω hn ∪ {〈δ, x(δ)〉} is as required. �
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Now we make a crucial observation which is the key to the proof that
the iteration of Pg posets adds no new reals. Let M ≺ Hλ be a countable
elementary substructure with Pg ∈M , and let p0 ∈ Pg ∩M be given. Recall
that G∗ ⊆ Pg ∩M is an (M,Pg)-generic filter if it is a filter over Pg ∩M that
intersects every dense set in M . Define

Genp0(M,Pg)

to be the set of all (M,Pg)-generic filters containing p0. An (M,Pg)-generic
G∗ is extendible to a condition in Pg iff for some q ∈ Pg, G∗ = {p ∈ Pg ∩M |
p < q}. We say in this case that q bounds G∗. Clearly G∗ is extendible to
a condition in Pg iff its range of values on χg

δ (where δ = ω1 ∩M) is not all
of ω. For any ω-sequence x cofinal in δ, we shall say that G∗ is appropriate
for x iff

⋃
G∗ |̀x omits at least one value. So G∗ is extendible to a condition

in Pg iff G∗ is appropriate for χg
δ .

For an ω-sequence x cofinal in δ = ω1 ∩M define

Ap0
x = {G∗ ∈ Genp0(M,Pg) | G∗ is appropriate for x}.

Thus Ap0
χg

δ
is the collection of all G∗ ∈ Genp0(M,Pg) extendible to a condition

in Pg.
We claim that (for a fixed p0) the collection

{Ap0
x | x ⊆ δ is a cofinal ω sequence}

has the countable intersection property. That is, if X = {xi | i ∈ ω} is some
countable collection of ω-sequences cofinal in δ = ω1 ∩M , then there is some
G∗ in

⋂
i∈ω Ap0

xi
. To prove this, find some ω-sequence x converging to δ and

such that range(xi) \ range(x) is finite for every i. It is easy to define such
x that almost contains each xi by induction. If G∗ is some (M,Pg)-generic
filter containing p0 that omits infinitely many values on x (and now we can
easily define such a filter), then G∗ ∈ Ap0

xi
for every i.

We describe in general terms what is involved in proving that the iteration
adds no new reals. In proving that the iteration of Pg-like forcings does not
add any new real we will be asked to produce a completely generic condition
for some M ≺ Hλ without knowing the value of χg

δ . This ω-sequence of
ordinals connected to δ will only be given as a name. So instead of χδ we
will be offered a countable collection {xi | i ∈ ω} of ω-sequences with the
assurance that χg

δ is forced to be among them. We will still be able to find
G∗ by taking into consideration all the xi’s as was shown above. The essence
of this argument is embodied in the following lemma.

5.14 Lemma. Suppose that M0 ≺ M1 ≺ Hλ are countable elementary sub-
structures with M0 ∈M1. Suppose that P ∈M0 is a poset that adds no new
reals, and that g ∈ V P ∩M0 is a name for some Hajnal-Máté graph. Let
G0 ∈M1 be some (M0, P )-generic filter. Then there exists an (M0, P ∗ Pg)-
generic filter G1 extending G0, and there exists a name r∼ ∈ V P such that the
following holds.
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If q ∈ P is a (plain) (M1, P )-generic condition that bounds G0

(and is hence completely (M0, P )-generic), then the condition
(q, r∼) ∈ P ∗ Pg bounds G1.

In fact, both the filter G1 and the name r∼ are definable from parameters
in M1 and a countable enumeration of M1. Thus, if M1 ∈ M2 ≺ Hλ then
G1, r∼ ∈M2.

Proof. Let μ : M0 → N0 be the Mostowski collapsing function of M0 onto
a transitive structure N0. Then N0 ∈ M1. Let G0 = μ“G0 ⊆ μ(P ) be the
image of G0 under the collapsing map. Forming N0[G0] as a generic extension,
μ(g)[G0] is a Hajnal-Máté graph there denoted h. This graph is clearly on
δ = ω1 ∩M0. As G0 ∈M1, N0[G0] ∈M1.

Let X = {xi | i ∈ ω} be an enumeration (the least in some global well
order) of all ω-sequences x in M1 that are cofinal in δ. We know how to find
an (N0[G0], Ph)-generic filter H that is appropriate for every xi. Now form
G1 = G0 ∗ H. Then G1 is an N0-generic filter extending G0. The required
filter G1 is the μ pre-image of G1.

The name r∼ ∈ V P is defined by the following requirement as a condition
in Pg with domain δ + 1. It is easier to describe the interpretation of r∼ in
(V, P )-generic extensions V [G]. If

⋃
H (which is a function on δ that lies

in V ) can be extended (by assigning a value to δ) to a condition in Pg[G],
then let r∼[G] be that condition.

Assume now that q ∈ P is as in the lemma, a bound of G0 = μ−1“G0

that is also an (M1, P )-generic condition. Since P adds no new countable
sequences, there exists in M1 a dense set of conditions in P that determine
the value of χg

δ in V . Thus q �χg
δ ∈ M1, and hence q � ∃i ∈ ω (χg

δ = xi).
Hence q �H is bounded by r∼. �

Observe that r∼ is a name of a function defined on δ + 1. Although r∼|̀δ
is, in a sense,

⋃
H, r∼(δ) is just a name and any specific value for r∼(δ) may

conflict with some xi. Only after determining (generically) χg
δ can we assign

a compatible value to r∼(δ).
In applications we need a slightly stronger version of this lemma, in which

a condition (p0, p1) ∈ P ∗Pg ∩M0 is also given, and p0 < q is assumed. Then
r∼ is also required to satisfy q �P r∼ > p1, so that the given condition (p0, q0)
is in the (M0, P )-generic filter determined by (q, r∼).

The final model of CH + “every Hajnal-Máté graph has countable chro-
matic number” is obtained through an iteration with countable support of
posets of the form Pg, done over a ground model in which CH holds. Since
each Pg has size ℵ1 the iteration satisfies the ℵ2-c.c., and a suitable book-
keeping device ensures that every possible Hajnal-Máté graph is dealt with.

As a preparation for the final iteration we prove here that Pω (the iteration
of the first ℵ0 posets) adds no new reals. So let Pn be defined by Pn+1 ≡
Pn ∗ Pgn where gn is a name for some Hajnal-Máté graph. Specifically, the
members of Pn are functions defined on n and Pω is the countable support
limit.
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Let M0 ≺ Hλ be some countable elementary substructure with Pω ∈ M0,
and p0 ∈ Pω ∩M0 a given condition. It suffices to find an extension of p0

that is completely (M0, Pω)-generic. Let 〈Dn | n ∈ ω〉 be an enumeration of
all dense subsets of Pω that are in M0.

Starting with M0 build a tower 〈Mn | n ∈ ω〉 of countable elementary
substructures of Hλ. We plan to define a sequence of conditions qn ∈ Pn and
pn ∈ Pω ∩M0 such that

1. qn ∈ Pn is completely (M0, Pn)-generic, and it is (Mk, Pn)-generic for
every k ≥ n,

2. pn |̀n ≤ qn, and qn = qn+1 |̀n,

3. pn ≤ pn+1 in Pω, and pn+1 ∈ Dn ∩M0.

When the construction is done, define q =
⋃

n qn. Then q ≥ pk |̀n for every
n and hence q ≥ pk for every k. This shows that q ∈ Pω is completely
(M0, Pω)-generic, because the pk’s visit every dense set in M0.

Suppose that pn and qn are defined. The assumption that qn is completely
(M0, Pn)-generic means that

G0 = {p ∈ Pn ∩M0 | p ≤ qn}

is (M0, Pn)-generic. Use Lemma 1.2 to find pn+1 ≥ pn with pn+1 ∈ Dn ∩M0

and such that pn+1 |̀n ≤ qn.
Notice that G0 ∈ Mn because the set D of conditions q ∈ Pn that are

completely (M0, Pn)-generic is pre-dense above qn. Since D ∈ Mn, qn is
compatible with a member q of D ∩Mn and, in the definition of G0, q can
replace qn.

The previous lemma is applicable to M0 ∈Mn ∈Mn+1 and to P = Pn. So
there is a name r∼ ∈Mn+1 such that (qn, r∼) ∈ Pn+1 is completely (M0, Pn+1)-
generic and pn+1 |̀n + 1 ≤ (qn, r∼). As Pgn is (forced to be) ω-proper, there is
a name r′ ∈ V Pn such that

qn � r∼ < r′ & r′ is (〈Mi[G∼ Pn ] | i ≥ n + 1〉, Pgn)-generic.

Define qn+1 = qn
�〈r′〉. Then qn+1 ∈ Pn+1 is tower generic for 〈Mk | k ≥

n + 1〉, qn = qn+1 |̀n, and qn+1 ≥ pn+1 |̀n + 1.

5.3. Dee-Completeness

The aim of Dee-completeness is to provide a framework for obtaining models
of CH. It allows countable support iteration of a large family of posets that
add no new countable sets. Our definitions here are slightly different from
those originally given by Shelah [15, Chap. V], but we have kept the original
names believing that our interpretation of the basic ideas is accurate.

A completeness system is a three-argument function D(N,P, p0) defined
when
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1. N is a countable transitive model of ZFC− (ZFC minus the Power Set
Axiom),

2. P ∈ N is a forcing poset in N , and

3. p0 ∈ P .

D(N,P, p0) is consequently a non-empty collection of non-empty subsets of
Genp0(N,P ). That is, if A ∈ D(N,P, p0) then every G ∈ A is a filter over P
containing p0 and intersecting every dense subset of P in N .

For example, if g ∈ N is some Hajnal-Máté graph and P = Pg is in N the
poset for coloring g with countably many colors, then we define D(N,P, p0) =
{AX | X ⊆ N} where AX ⊆ Genp0(N,P ) is defined as follows. In case
X is an ω-sequence cofinal in ωN

1 , then G ∈ AX iff G ∈ Genp0(N,P ) is
such that

⋃
G|̀X omits infinitely many colors. If X is not as above, then

AX = Genp0(N,P ). It is reasonable to have g as a parameter, although in
our case it is reconstructible from P .

We apply D to non-transitive structures as well: if M ≺ Hλ is a count-
able elementary submodel, P ∈ M a poset, and p0 ∈ P ∩ M , then we
let π : M → N be the transitive collapsing isomorphism and for each
X ∈ D(N, π(P ), π(p0)) we define π−1(X) = {π−1“G | G ∈ X}. This
yields D(M,P, p0) = {π−1(X) | X ∈ D(N, π(P ), π(p0))}. In simple terms,
D(M,P, p0) is defined by viewing the argument (M,P, p0) as a representation
of its isomorphism type.

We say that a poset P is Dee-complete (or just complete, for brevity)
with respect to a completeness system D if for sufficiently large λ, for every
countable M ≺ Hλ with P ∈ M and every p0 ∈ P ∩M , there is an X ∈
D(M,P, p0) such that every G ∈ X is bounded in P . (Thus P is completely
proper.)

Repeating this definition, now with transitive structures, we obtain that
P is Dee-complete with respect to D if the following holds for every countable
M ≺ Hλ with P ∈M :

For any p0 ∈ P ∩M , if π : M → N is the transitive collapse, there
is an X ∈ D(N, π(P ), π(p0)) such that

for every G ∈ X, π−1“G is bounded in P.

(5.17)

We say that a completeness system is countably complete iff whenever
Ai ∈ D(N,P, p) for i ∈ ω then

⋂
i∈ω Ai �= ∅. We have seen that for every

Hajnal-Máté graph g the system defined above is countably complete. Thus
every Pg is Dee-complete with respect to a countably complete system.

It is sometimes convenient to add a parameter to D. We shall say that
D is a completeness system with a parameter if D is a four argument func-
tion: D(N,P, p0, c) is defined when N , P , p0 are as in the definition given
above, and c ∈ N is the parameter. As before, D(N,P, p0, c) is a non-empty
collection of non-empty subsets of Genp0(N,P ). We say that a poset P is
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Dee-complete with respect to a completeness system D with parameter iff for
sufficiently large λ there is a c ∈ Hλ such that:

for every countable M ≺ Hλ with P, c ∈ M and every p0 ∈
P ∩M , if π : M → N is the transitive collapse, then there is an
X ∈ D(N, π(P ), π(p0), π(c)) such that, for every G ∈ X, π−1“G is
bounded in P .

(5.18)

In fact, the parameters are dispensable by the following lemma. Recall
that by Hλ we mean the structure (Hλ,∈, <) where < is a fixed well-ordering
of Hλ.

5.15 Lemma. Let P be a poset that is Dee-complete with respect to some
countably complete completeness system D with parameter. Then P is also
Dee-complete with respect to some three-argument countably complete com-
pleteness system D

′.

Proof. Let λ be sufficiently large so that Hλ with parameter c ∈ Hλ shows the
completeness of P with respect to D (as in (5.18)). Then, for λ′ > λ<λ +22c

,
Hλ ∈ Hλ′ and D ∈ Hλ′ (since D is a function from Hℵ1 to PP(Hℵ1)). So Hλ′

satisfies the statement ψ(P, λ, c,D) saying that λ is a cardinal with P, c ∈ Hλ

and D is a four-argument system such that (5.18) holds.
Using the assumed well-ordering of Hλ′ , let λ0, c0, and D0 be minimal

such objects for which ψ(P, λ0, c0,D0) holds. If M ≺ Hλ′ is any countable
elementary substructure with P ∈ M , then λ0, c0,D0 ∈ M since they are
definable in Hλ′ , and moreover, these objects are minimal in M to satisfy
ψ(P, λ0, c0,D0). Observe that HM

λ0
= M∩Hλ0 ≺ Hλ0 , and also that if D ∈M

is a subset of P then D ∈ HM
λ0

.
Let π : M → N be the collapse onto a transitive structure. Then π0 =

π�Hλ0 is the collapse of a countable elementary substructure of Hλ0 , namely
HM

λ0
onto HN

π(λ0)
= N0.

So D0(N0, π(P ), π(p0), π(c0)) has the required good properties, and in par-
ticular each G ∈ X ∈ D0(N0, π(P ), π(p0), π(c0)) is generic not only over N0

but also over N . This leads to the following definition of D
′ as required by

the lemma.
If N is any countable transitive structure, R ∈ N a poset and r ∈ R,

define D′(N,R, r) as follows. Look for λ′
0, c

′
0, that are minimal to satisfy

∃Dψ(R, λ′
0, c

′
0, D) in N , and apply D0(HN

λ′
0
, R, r, c′

0). If there is no such λ′
0,

then D
′(N,R, r) is arbitrarily defined. �

The definition of Dee-completeness has the form “for λ sufficiently large
etc.”. It is not difficult to see that if there is a completeness system that
works for one λ, there is one that works for all larger λ as well. We are
going to argue now that it is always possible in this case to take λ = (2|P |)+

(Shelah, personal communication).
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5.16 Lemma. If a poset P is complete with respect to a countably complete
completeness system D then there is a countably complete (four-argument)
completeness system D

′ so that already λ0 = (2|P |)+ suffices to demonstrate
the completeness of P . That is, for some c ∈ Hλ0 , (5.18) holds.

Proof. The definition of D
′ is simple. For any countable transitive struc-

ture N , poset R ∈ N , condition r ∈ R, and parameter p ∈ N , define

D
′(N,R, r, p) = D(p,R, r)

if this makes sense, that is, if p is transitive, R, r ∈ p and D(p,R, r) is indeed
a collection of sets of (N,R)-generic filters as required. In case this definition
does not make sense, let D

′(N,R, r, p) be defined as an arbitrary collection
of subsets of Genr(N,R) with the countable intersection property. We must
define a good parameter c ∈ Hλ0 that will work.

Let λ be sufficiently large so that for every countable M ≺ Hλ with P ∈ Hλ

(5.17) holds. Let κ = |P | be the cardinality of P , and assume for simplicity
that κ is the universe of P . We may assume that λ > λ0 = (2κ)+ (or else there
is nothing to show). Let K be an elementary substructure of Hλ of cardinality
2κ (containing all subsets of κ). Clearly, every elementary substructure of K
is also an elementary substructure of Hλ, so that if we let π : K → K̄ be
the transitive collapse of K then, for every M ≺ K̄, the transitive collapse of
M is the transitive collapse of an elementary substructure of K, namely the
pre-image of M .

We claim that c = K̄ ∈ Hλ0 works. Let M ≺ Hλ0 be countable with
P, K̄ ∈ M , and p0 ∈ P ∩M be given. Then M ∩ K̄ ≺ K̄. Let π : M → N
be the collapsing function onto a transitive structure. π(K̄) is the transitive
collapse of M ∩ K̄, and D

′(N, π(P ), π(p0), π(K̄)) = D(π(K̄), π(P ), π(p0)).
The point is that if G ∈ X ∈ D(π(K̄), π(P ), π(p0)), then G is not only
(π(P ), π(K̄))-generic filter but also (N,P )-generic, since any subset of π(κ)
in N is already in π(K̄) (as any subset of κ in M is already in M ∩ K̄). �

Our aim is to prove the following

5.17 Theorem (Dee-Completeness Iteration Theorem). The countable sup-
port iteration of any length γ of <ω1-proper posets, each Dee-complete with
respect to some countably complete system in the ground model, does not add
any new reals.

Note the inductive character of this theorem. For Qi ∈ V Pi to be Dee-
complete with respect to a system that lies in V , one needs that Pi adds no
new countable sets—so that every countable transitive set in V Pi is in V .

To prove the theorem we shall first define for each countable M ≺ Hλ (with
Pγ ∈M) an (M,Pγ)-generic filter Gγ . Then we will prove that Gγ is bounded
in Pγ . That is, we will find a condition in Pγ that is completely (M,Pγ)-
generic. The definition of Gγ is by induction, and we shall actually have to
define for every γ0 < γ and Gγ0 that is (M,Pγ0)-generic, a filter Gγ that
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extends Gγ0 . There will be two main cases in this definition: γ successor and
γ limit, and likewise there will be two cases in the proof that Gγ is bounded.
We start with what is needed for the successor case.

Two-Step Iteration

Let P be a poset and Q
∼
∈ V P a name forced (by 0P ) to be a poset. Let

λ be sufficiently large and M0 ≺ Hλ be a countable elementary submodel
such that P,Q

∼
∈ M0. We want to find a criterion for when a condition

(q0, q1) ∈ P ∗ Q
∼

is completely (M0, P ∗ Q
∼

)-generic. A first guess is: q0 is
completely (M0, P )-generic and q0 forces that q1 is completely (M0[G∼

], Q
∼

)-
generic. But a moment’s reflection reveals that this is not sufficient for (q0, q1)
to determine, in V , an (M0, P ∗Q∼

)-generic filter. So we need a finer criterion.
Let π : M0 → N0 be the transitive collapsing map. Suppose that q0 ∈ P

is completely (M0, P )-generic and let GP ⊆ P ∩M0 be the (M0, P )-generic
filter induced by q0. Then G0 = π“GP is an (N0, π(P ))-generic filter and we
can form the (transitive) extension N ∗

0 = N0[G0]. In N0, π(Q
∼

) is a name, and
its interpretation Q∗

0 = π(Q
∼

)[G0] is a poset in N ∗
0 .

Let G
∼
∈ V P be the canonical name of the generic filter over P . If F is any

(V, P )-generic filter containing q0, then M0[F ] ≺ Hλ[F ] can be formed and
the collapsing map π on M0 can be extended to collapse M0[F ] onto N ∗

0 . Let
π

∼
be the name of this extended collapse. Then q0 �P π

∼
: M0[G∼

] → N ∗
0 . We

phrase now the desired criterion but omit the routine proof.

5.18 Lemma. With the above notation, (q0, q1) is completely (M0, P ∗ Q
∼

)-
generic iff

1. q0 is completely (M0, P )-generic, and

2. for some (N ∗
0 , Q∗

0)-generic G1 ⊆ Q∗
0, q0 �π

∼
−1“G1 is bounded by q1.

In this case, the filter induced by (q0, q1) over M0 ∩ P ∗Q
∼

is π−1“G0 ∗ G1.

Given a countable M0 ≺ Hλ such that the two-step iteration P ∗ Q
∼

is
in M0, our aim (under some assumptions stated in the following definition) is
to extend each (M0, P )-generic filter G0 to an (M0, P ∗Q∼

)-generic filter. This
definition depends not only on M0, but also on another countable elementary
submodel M1 ≺ Hλ such that M0 ∈ M1. In addition, we assume some
p0 ∈ P ∗Q

∼
which we want to include in the extended filter. All of this leads

to a five place function E(M0,M1, P ∗Q
∼
, G0, p0) that we define now.

5.19 Definition. Let P be a poset that adds no new countable sets of
ordinals, and suppose that Q

∼
,D

∼
∈ V P are such that

�P D
∼
∈ V is a countably complete system

and Q
∼

is Dee-complete with respect to D
∼
.
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Let λ be sufficiently large, and M0 ≺ M1 ≺ Hλ be countable elementary
submodels with M0 ∈ M1 and P,Q

∼
,D

∼
∈ M0. Let G0 ⊆ M0 ∩ P be (M0, P )-

generic and suppose that G0 ∈M1. Let p0 ∈ (P ∗Q
∼

)∩M0 be given, p0 = (a, b∼)
with a ∈ G0. Then we define

G = E(M0,M1, P ∗Q
∼
, G0, p0), (5.19)

an (M0, P ∗Q
∼
)-generic filter containing p0, by the following procedure.

Let π : M0 → N0 be the transitive collapse, and G0 = π“G0. Form
N ∗

0 = N0[G0]. Observe that N ∗
0 ∈ M1. Let Q∗

0 = π(Q
∼

)[G0], and D0 =
π(D

∼
)[G0]. Then D0 ∈ N0 because it is forced to be in the ground model.

So D0 = π(D) where D ∈ M0 is a countably complete completeness system.
Thus D(N ∗

0 , Q∗
0, b

∗) is defined in M1 where b∗ = π(b∼)[G0] is a condition in
Q∗

0. Since M1∩D(N ∗
0 , Q∗

0, b
∗) is countable, ∃G1 ∈

⋂
(M1∩D(N ∗

0 , Q∗
0, b

∗)). G1

is (N ∗
0 , Q∗

0)-generic and b∗ ∈ G1.
Form G0 ∗ G1 = G, an (N0, π(P ∗ Q

∼
))-generic filter. Then π(p0) ∈ G.

Finally, set
E(M0,M1, P ∗Q

∼
, G0, p0) = π−1“G.

This completes Definition 5.19.

In fact, we want to define a formula ψ so that

Hλ |= ψ(G,M0,M1, P ∗Q
∼
, G0, p0)

iff (5.19) holds. That is, we want to define E in Hλ. We cannot take the
above definition literally because it relies on the assumption that M0 and M1

are elementary substructures of Hλ, something which is not expressible in
Hλ itself. So we redo that definition for any countable subsets M0 and M1 of
Hλ (or models of ZF−). Whenever Definition 5.19 above relies on some fact
that happens not to hold, we let G have an arbitrary value. For example, if
N ∗

0 is not in M1 or if M1 ∩ D(N ∗
0 , Q∗

0, b
∗) is empty, then we let G be some

arbitrary fixed (M0, P ∗Q
∼

)-generic filter.
The following is a main lemma which exhibits the crux of the argument

(compare with Lemma 5.14). It analyzes the iteration of two posets when
the second is Dee-complete.

5.20 Lemma (The Gambit Lemma). Let P be a poset and suppose that
Q

∼
,D

∼
∈ V P are such that

�P D
∼
∈ V is a countably complete system

and Q
∼

is Dee-complete with respect to D
∼
.

Let λ be sufficiently large, and M0 ≺ M1 ≺ Hλ be countable elementary
submodel with M0 ∈M1 and P,Q

∼
,D

∼
∈M0. Suppose that q0 ∈ P is (M1, P )-

generic as well as completely (M0, P )-generic, and let G0 ⊆ M0 ∩ P be the
M0 filter over M0 ∩ P induced by q0. Let p0 ∈ P ∗ Q

∼
, p0 ∈ M0 be given

so that p0 = (a, b∼) and a ∈ G0. Then there is a q1 ∈ V P so that (q0, q1)
is completely (M0, P ∗ Q

∼
)-generic and p0 < (q0, q1). In fact, (q0, q1) bounds

G = E(M0,M1, P ∗Q
∼
, G0, p0).
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Proof. Notice that G0 ∈ M1 by the following argument. Let R be the col-
lection of all conditions r ∈ P that are completely (M0, P )-generic. Then
R ∈M1 and q0 ∈ R. Since q0 is (M1, P )-generic it follows that it is compat-
ible with some r ∈ R ∩M1. But any two compatible conditions in R induce
the same filter, and hence G0 is the filter induced by r.

As in Definition 5.19, let π : M0 → N0 be the transitive collapse, and
G0 = π“G0. We recall the definition of E(M0,M1, P ∗ Q

∼
, G0, p0). Form

N ∗
0 = N0[G0]. Let Q∗

0 = π(Q
∼

)[G0], and D0 = π(D
∼
)[G0]. D0 ∈ N0 and

D0 = π(D) where D ∈ M0 is a countably complete completeness system.
Thus D(N ∗

0 , Q∗
0, b

∗) is defined in M1 where b∗ = π(b∼)[G0] is a condition in
Q∗

0. Since M1 ∩ D(N ∗
0 , Q∗

0, b
∗) is countable and non-empty, we were able to

pick G1 ∈
⋂

(M1 ∩D(N ∗
0 , Q∗

0, b
∗)), (N ∗

0 , Q∗
0)-generic with b∗ ∈ G1. We defined

G = G0 ∗ G1, and defined G = E(M0,M1, P ∗Q
∼
, G0, p0) as π−1“G.

Let G
∼
∈ V P be the canonical name of the generic filter over P . Then q0

forces that π can be extended to a collapse π
∼

which is onto N ∗
0 : that is,

q0 �P π
∼

: M0[G∼
] → N ∗

0 .

The conclusion of our lemma follows if we show that

q0 �P π
∼

−1“G1 is bounded in Q
∼
. (5.20)

In this case, if we define q1 ∈ V P so that q0 �P q1 bounds π
∼

−1“G1, then the
previous lemma (5.18) implies that the (M0, P ∗Q

∼
)-generic filter induced by

(q0, q1) is π−1“G0 ∗ G1.
So let F be (V, P )-generic with q0 ∈ F . π

∼
[F ] collapses M0[F ] onto N ∗

0 , and
there is a set X ∈ D(N ∗

0 , Q∗
0, b

∗) so that if H ∈ X is any filter then π
∼

−1“H is
bounded in Q

∼
[F ]. As M1[F ] ≺ Hλ[F ], we can have X ∈M1[F ]. But since D

is in the ground model, X ∈M1. Thus G1 ∈ X, where G1 is the filter defined
above. This proves (5.20). �

Proof of Theorem 5.17

Let Pγ be a countable support iteration of length γ, obtained by iterating
Qi ∈ V Pi as in the theorem. That is, each Qi is Dee-complete in V Pi for
some countably complete system taken from V . Let λ be a sufficiently large
cardinal. To prove the theorem we first describe a machinery for obtaining
generic filters over countable submodels of Hλ. We define a function E that
takes five arguments E(M0, M̄ , Pγ , G0, p0), of the following types.

1. M0 ≺ Hλ is countable, Pγ ∈M0 (so γ ∈M0), and p0 ∈ Pγ ∩M0.

2. For some γ0 ∈ M0 ∩ γ, G0 is an (M0, Pγ0)-generic filter such that
p0 |̀γ0 ∈ G0. We assume that G0 ∈M1.

3. The order type of M0 ∩ [γ0, γ) is α.
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4. M̄ = 〈Mξ | 1 ≤ ξ ≤ α〉 is a tower of countable elementary submodels
of Hλ, and M0 ∈ M1. It will be clear later why we separate M0 from
the rest of the tower.

The value returned, Gγ = E(M0, M̄ , Pγ , G0, p0) is an (M0, Pγ)-generic
filter that extends G0 and contains p0. Formally, in saying that Gγ extends
G0 we mean that the restriction projection takes Gγ onto G0. The definition
of E(M0, M̄ , Pγ , G0, p0) is by induction on α < ω1.

Assume that α = α′ + 1 is a successor ordinal. Then γ = γ′ + 1 is also
a successor. Assume first that γ0 = γ′. Then α = 1 and we have only two
structures: M0 and M1. Since Pγ is isomorphic to Pγ0 ∗ Qγ0 , we can define
Gγ by Definition 5.19. So

Gγ = E(M0,M1, Pγ0 ∗Qγ0 , G0, p0).

Assume next that γ0 < γ′. Then

Gγ′ = E(M0, 〈Mξ | 1 ≤ ξ ≤ α′〉, Pγ′ , G0, p0 |̀γ′)

is defined and is an (M0, Pγ′ )-generic filter that extends G0 and contains
p0 |̀γ′. Moreover, we assume that Gγ′ ∈ Mα, for otherwise the inductive
definition stops. (When we finish this definition, it will be evident that it
continues through every α < ω1 since Mα ≺ Hλ and the parameters are all
in Mα.)

This brings us to the previous case and we define

Gγ = E(M0,Mα, Pγ′ ∗Qγ′ , Gγ′ , p0). (5.21)

Now suppose that α is a limit ordinal, and let 〈αn | n ∈ ω〉 be an increasing
and cofinal sequence with α0 = 0. Let γn ∈M0 be the corresponding increas-
ing and cofinal in γ sequence (so that αn is the order-type of M0 ∩ [γ0, γn)).
Let 〈Dn | n ∈ ω〉 be an enumeration of all dense subsets of Pγ that are in
M0.

We define Gγ = E(M0, M̄ , Pγ , G0, p0) as follows. We define by induction
on n ∈ ω a condition pn ∈ Pγ ∩M0 and an (M0, Pγn)-generic filter Gn ∈
Mαn+1 such that:

1. G0 and p0 are given. pn |̀γn ∈ Gn.

2. pn ≤ pn+1 and pn+1 ∈ Dn.

Suppose that Gn and pn are defined. First, we can easily find a pn+1 ∈
Dn ∩M0 such that pn+1 |̀γn ∈ Gn. Now define

Gn+1 = E(M0, 〈Mξ | αn + 1 ≤ ξ ≤ αn+1〉, Pγn+1 , Gn, pn+1 |̀γn+1). (5.22)

Finally, let Gγ be the generic filter generated by {pn | n ∈ ω}. This completes
the definition of E(M0, M̄ , Pγ , G0, p0).

Theorem 5.17 is a direct consequence of the following lemma.



5. No New Reals 387

5.21 Lemma (Dee-Properness Extension Lemma). Let 〈Pi | i ≤ γ〉 be a
countable support iteration of forcing posets (γ is any ordinal) where each
iterand Qi satisfies the following in V Pi :

1. Qi is α-proper for every countable α.

2. Qi is Dee-complete with respect to some countably complete complete-
ness system in the ground model V .

Suppose that M0 ≺ Hλ is countable, Pγ ∈ M0 and p0 ∈ Pγ ∩M0. For any
γ0 ∈ γ∩M0, if α is the order-type of M0∩ [γ0, γ) and M̄ = 〈Mk | k ≤ α〉 is a
tower of countable elementary substructures (starting with the given M0) then
the following holds. For any q0 ∈ Pγ0 that is completely (M0, Pγ0)-generic as
well as (M̄, Pγ0)-generic, if p0 |̀γ0 < q0 then there is some q ∈ Pγ such that
q0 = q |̀γ0, p0 < q and q is completely (M0, Pγ)-generic. In fact, the filter
induced by q is E(M0, 〈Mξ | 1 ≤ ξ ≤ α〉, Pγ , G0, p0) where G0 ⊆ Pγ0 ∩M0 is
the filter induced by q0.

Proof. Let G0 ⊆ Pγ0 ∩ M0 be the (M0, Pγ0)-generic filter induced by q0.
Observe that G0 ∈ M1 follows from the assumption that q0 is (also) M1-
generic. We shall prove by induction on α (the order-type of M0 ∩ [γ0, γ))
that q can be found which bounds Gγ = E(M0, 〈Mξ | 1 ≤ ξ ≤ α〉, Pγ , G0, p0).

Suppose first that α = α′ + 1 and consequently γ = γ′ + 1 are successor
ordinals. Define, in Mα, X ⊆ Pγ0 a maximal antichain of conditions r such
that

1. r bounds G0.

2. r is 〈Mξ | 1 ≤ ξ ≤ α′〉-generic.

Then X ∈ Mα is pre-dense above q0. By our inductive assumption every
r0 ∈ X has a prolongation r1 ∈ Pγ′ that bounds Gγ′ = E(M0, 〈Mξ | 1 ≤
ξ ≤ α′〉, Pγ′ , G0, p0 |̀γ′). Since all the parameters are in Mα, we get that
Gγ′ ∈Mα. Since Mα ≺ Hλ, we can choose r1 ∈Mα whenever r0 ∈ X ∩Mα.
This defines a name r1∼

∈ V Pγ0 , forced by q0 to be in Mα ∩ Pγ′ . Namely, if
G is any (V, Pγ0)-generic filter containing q0, then X ∩ G contains a unique
condition r0, and we let r1∼

[G] = r1. By the Properness Extension Lemma
we can find a q1 ∈ Pγ′ with q1 |̀γ0 = q0 so that q1 is (Mα, Pγ′ )-generic, and
q1 � r1∼

is in the generic filter. It follows that q1 bounds Gγ′ . We must define
q2 ∈ Pγ such that q2 |̀γ′ = q1 and q2 bounds Gγ . In order to define q2(γ′) use
Lemma 5.20 and (5.21).

Now assume that α is a limit ordinal. We follow the definition of Gγ (see
(5.22)). Recall that we had an ω-sequence 〈αn | n ∈ ω〉 cofinal in α, and we
defined γn cofinal in γ as the resulting sequence. We defined by induction
pn ∈ Pγ ∩M0 and filters Gn ⊆ Pγn , Gn ∈ Mαn+1, and defined Gγ as the
filter generated by the pn’s. We shall define now qn ∈ Pγn by induction on
n ∈ ω so that the following hold.

1. qn bounds Gn.
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2. pn |̀γn < qn.

3. qn = qn+1 |̀γn.

4. qn is 〈Mξ | αn + 1 ≤ ξ ≤ α〉 generic over Pγn .

Thus, as qn gains in length, it loses its status as an Mξ generic condition for
0 < ξ ≤ αn. So, finally, q =

⋃
n∈ω qn is not Mξ-generic for any ξ > 0. But

these Mξ’s are not needed anymore as q gained its complete genericity over
M0.

Suppose that qn is defined. Let X in Mαn+1+1 be a maximal antichain
in Pγn of conditions r that induce Gn and are 〈Mξ | αn + 1 ≤ ξ ≤ αn+1〉-
generic over Pγn . Observe that X is pre-dense above qn. For each r0 ∈ X
find a r1 ∈ Pγn+1 such that r1 bounds Gn+1, pn+1 |̀γn+1 < r1, and r1 |̀γn = r0

(use the inductive assumption). If r0 ∈ X ∩Mαn+1+1 then r1 is taken from
Mαn+1+1. Now view {r1 | r0 ∈ X} as a name r∼ for a condition forced by
qn to lie in Mαn+1+1. By the α-Extension Lemma define qn+1 that satisfies
2–4 above and such that qn+1 � r∼ ∈ G

∼
. Then qn+1 bounds Gn+1 and is as

required. �

Simple Completeness Systems

An important chapter in the theory of forcing is the study of forcing ax-
ioms. These are axioms in the spirit of Martin’s Axiom, and the best known
among those related to proper forcing is probably the Proper Forcing Axiom
(PFA) which uses a supercompact cardinal for its consistency. PFA is due
to Baumgartner, and [1] contains many applications and a consistency proof.
(The reader can also read a consistency proof in Cummings’s chapter in this
Handbook.) Chapters VII, VIII, XVII of [15] discuss many of these proper
forcing axioms, and we shall restrict our attention here to just one axiom: a
variant of Axiom II of Chap. VII which is used to obtain consistency results
with CH. This will motivate the notion of simple completeness systems and
will lead to the p.i.c.

Assume that κ is a supercompact cardinal in the ground model V . Define
a countable support iteration Pγ , for γ ≤ κ of <ω1-proper posets, of cardi-
nality < κ each, that are Dee-complete for countably complete completeness
systems from V . The actual choice of the iterand is done by some “Laver
diamond” function.

Let P = Pκ be the resulting countable support iteration. It follows by
arguments that are very similar to those used for the PFA consistency result
that if G is (V, P )-generic, then V [G] satisfies the following axiom, formulated
with the ground model V as a predicate:

GCH holds. V is a ZFC subuniverse containing all reals, and such
that the following holds. Let P be any poset such that

1. P is <ω1-proper.
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2. P is Dee-complete with respect to some countably complete
completeness system from V .

Then for any sequence Dα ⊆ P of dense subsets of P for α < ω1,
there is some filter G ⊆ P such that G∩Dα �= ∅ for every α < ω1.

It can be maintained that an axiom should not relate to a subuniverse V in
its formulation, and that a more local axiom is required. For this the notion
of simplicity is introduced, and we bring here an axiom which is a variant of
the original formulation of Shelah [15].

Let HC = (Hℵ1 ,∈) be the structure consisting of the universe of all hered-
itarily countable sets together with the membership relation ∈. We say that
a completeness system D is simple over HC if there is a first-order formula
ψ(y0, . . . , y4) in the ∈ language such that for every transitive and countable
model N of ZFC−, poset P ∈ N , and p ∈ P

D(N,P, p) = {AX | X ∈ Hℵ1}

where
AX = {G ∈ Genp(N,P ) | HC |= ψ(G,X,N, P, p)}. (5.23)

For example, ψ(G,X,N, P, p) could say the following.
Assume that:

1. In N , g is a Hajnal-Máté graph, P = Pg, and p ∈ P .

2. X is an unbounded ω-sequence in ωN
1 .

Then G ⊆ P is (N,P )-generic, p ∈ G, and the restriction of
⋃

G to X omits
infinitely many colors. If the above assumptions do not hold, then G is any
(N,P )-generic filter containing p.

Now the axiom that can be used to obtain results that are consistent
with CH is the following (PFA for countably complete simple completeness
systems).

CH holds. If P is any <ω1-proper poset that is Dee-complete for
some countably complete completeness system that is simple over
HC, and if {Di | i ∈ ω1} is a collection of dense subsets of P , then
there is a filter G ⊆ P that meets all of the Di’s.

(5.24)
As mentioned, the consistency of this axiom relies on a supercompact

cardinal in the ground model, yet in many of the specific applications of this
axiom, the supercompact cardinal is not needed. For example, the Souslin
hypothesis (which says there are no Souslin trees) is a consequence of the
axiom, and in fact the axiom implies that every Aronszajn tree is special. For
every Aronszajn tree T , there is a <ω1-proper poset which is Dee-complete
with respect to some countably complete simple over HC system, and which
specializes T (see Shelah [15, Chap. V]). Hence the axiom quoted above
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implies this strong form of the Souslin hypothesis. Yet, to get the consistency
with CH of “every Aronszajn tree is special” no large cardinal is needed—this
is the result of Jensen [3]. We may, without any large cardinal assumption,
iterate such specializing posets (by the Dee-Completeness Iteration Theorem)
and obtain the same consistency result. If we do so, we encounter a small
difficulty which is discussed in the following subsection, namely that the
specializing posets have size 2ℵ1 each and so it is unclear, at this stage,
that the iteration satisfies the ℵ2-c.c. Although we shall not describe the
specializing posets, it turns out that they satisfy the ℵ2-p.i.c. (a strong form
of the chain condition described below) and hence the ℵ2-c.c of the iteration
follows. Another use of the ℵ2-p.i.c. (which is the one that will be exemplified)
is to obtain extensions in which 2ℵ1 > ℵ2.

5.4. The Properness Isomorphism Condition

Using the iteration scheme of the previous section we know how to obtain
models of ZFC + CH + 2ℵ1 = ℵ2 + “Every Hajnal-Máté graph has count-
able chromatic number”. In this section we modify a little the construction
in order to obtain such models with 2ℵ1 arbitrarily large. To obtain this,
Shelah uses the following simple idea. Starting with 2ℵ1 already large, form
a countable support product of all posets of the form Pg that are in the
ground model. This takes care of all Hajnal-Máté graphs in V . Now iterate
such large products ω2 times, and obtain a model of ZFC + CH + 2ℵ1 large
+ “Every Hajnal-Máté graph has countable chromatic number”. The main
technical problem in this approach is to prove that the iteration satisfies the
ℵ2-c.c. After we prove that this is the case, we will argue that every Hajnal-
Máté graph in the extension already appears in some intermediate stage and
hence acquired a countable chromatic number at the following stage. To
establish the ℵ2-c.c. we will use the condition named ℵ2-p.i.c. (for Proper-
ness Isomorphism Condition), introduced in [15, Chap. VIII] exactly for such
applications in mind.

We employ the following terminology. Suppose M0,M1 ≺ Hλ are count-
able, isomorphic, elementary submodels, and ℵ2 ≤ κ < λ is a regular cardinal
such that κ ∈ M0 ∩M1; typically κ = ℵ2. We say that M0 and M1 are in
standard situation (with respect to κ) iff

1. The sets A = M0 ∩M1 ∩κ, B = (M0 \M1)∩κ, and C = (M1 \M0)∩κ
are arranged A < B < C (where X < Y means that ∀x ∈ X∀y ∈
Y (x < y)).

2. The isomorphism, denoted h : M0 → M1, is the identity function on
M0 ∩M1 (so in particular on A).

5.22 Definition. Let M0 and M1 be in standard situation with h : M0 →M1

the isomorphism. Suppose that P ∈ M0 ∩M1 is a poset. We say that a
condition q ∈ P is simultaneously (M0, P )- and (M1, P )-generic iff
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1. q is both (M0, P )- and (M1, P )-generic,

2.
q �P (∀r ∈M0 ∩ P ) r ∈ G

∼
iff h(r) ∈ G

∼
(5.25)

where G
∼

is the name of the P generic filter.

Equivalently, (5.25) can be stated as: for every q′ ≥ q and r ∈ M0 ∩ P ,
if r < q′ then h(r) < q′. Yet another equivalent formulation is that p forces
that h can be extended to an isomorphism of M0[G∼

] onto M1[G∼
].

Note that the requirement in 1. that q be (M1, P )-generic is dispensable,
since it follows from 2. when q is (M0, P )-generic.

5.23 Definition. Let κ be an uncountable regular cardinal. A poset P
satisfies the κ-p.i.c. if the following holds for sufficiently large cardinals λ
and any two isomorphic countable elementary submodels M0,M1 ≺ Hλ with
P ∈M0 ∩M1 that are in standard situation. For any p ∈M0 ∩ P there is a
q > p in P that is simultaneously (M0, P )- and (M1, P )-generic. (Hence, in
particular, q > h(p).)

This definition is phrased so that the κ-p.i.c. of P implies its properness
(take M0 = M1), but for clarity we shall use the expression “P is a proper
κ-p.i.c. poset”.

For example, any proper poset of size ℵ1 is ℵ2-p.i.c. because M0 ∩ P =
M1 ∩ P . So our discussion here generalizes Sect. 2.2. In fact, if P is proper
and |P | < κ then P satisfies the κ-p.i.c. (see [15, Chap. VIII]), but μℵ0 < κ
for μ < κ is needed for the lemma that derives the κ chain condition (see
below). The Cohen forcing poset for adding ℵ2 reals (with finite conditions),
while c.c.c., is not ℵ2-p.i.c. In contrast, the poset for adding subsets of ω1

with countable conditions is ℵ2-p.i.c.

5.24 Lemma. If κ is a regular cardinal such that μℵ0 < κ for every μ < κ,
then any κ-p.i.c. poset satisfies the usual κ-c.c.

Proof. In fact, every collection {pi | i < κ} ⊆ P contains a subcollection of
size κ of pairwise compatible conditions. For each i < κ pick some countable
Mi ≺ Hλ with pi ∈Mi. Since μℵ0 < κ for every μ < κ, a standard Δ-system
argument yields a set I ⊆ κ of cardinality κ such that {Mi∩κ | i ∈ I} form a
Δ-system. So for i, j ∈ I with i < j, Mi and Mj are in standard situation. We
may also assume that (Mi, pi) and (Mj , pj) are isomorphic (so h : Mi →Mj

is an isomorphism such that h(pi) = pj). Now the κ-p.i.c. implies that some
q ∈ P extends both pi and pj . �

We shall prove now the main theorem using a short argument followed by
a series of lemmas which are brought without proof or with a short proof
since they resemble those of Sect. 2.

5.25 Theorem. Suppose that κ is a regular cardinal and μℵ0 < κ for every
μ < κ.
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1. If Pκ is a countable support iteration of length κ of proper κ-p.i.c.
posets, then Pκ satisfies the κ-c.c.

2. If Pγ is a countable support iteration of length γ < κ of proper κ-
p.i.c. posets, then Pγ satisfies the κ-p.i.c. (For this we do not need the
assumption on μℵ0 .)

Proof. To prove the first part, consider a collection {pi | i < κ} ⊆ Pκ. Use
Fodor’s Theorem to fix a bound i0 < κ on sup(i∩ dom(pi)) on a stationary set
of indices i’s with uncountable cofinality, so that dom(pi) form a Δ-system.
This shows that it suffices to prove that Pi0 , the iteration of the first i0 < κ
posets, is κ-c.c. In fact it is κ-p.i.c. as the second part of the theorem shows.
The proof of this part is in the following sequence of lemmas. �

5.26 Lemma. Let P be a poset and Q ∈ V P a name of a poset. Form
R = P ∗Q. Then for any countable M0,M1 ≺ Hλ in standard situation and
such that R ∈M0 ∩M1 we have the following characterization: (p, q) ∈ R is
simultaneously (M0, R)- and (M1, R)-generic iff

1. p ∈ P is simultaneously (M0, P )- and (M1, P )-generic; and

2. p�P q is simultaneously (M0[G∼ P ], Q)and (M1[G∼ P ], Q)-generic.

For the proof, use Lemma 2.5 and the equivalent statement following
(5.25).

5.27 Lemma. Suppose that P is a κ-p.i.c. poset and Q ∈ V P is (forced to
be) κ-p.i.c. there. Then R = P ∗Q is also κ-p.i.c. and the following stronger
form of Lemma 2.5 holds.

Suppose that

1. M0,M1 ≺ Hλ with R ∈ M0 ∩M1 are countable elementary submodels
in standard situation.

2. p0 ∈ P is a simultaneously (M0, P )- and (M1, P )-generic.

3. r∼ ∈ V P is a name such that

p0 �P r∼ ∈M0 ∩R and π(r∼) ∈ G
∼ 0

where π : P ∗ Q → P is the projection, and G
∼ 0 is the canonical name

for the P -generic filter.

Then there is some q0 ∈ V P such that (p0, q0) is simultaneously (M0, R)- and
(M1, R)-generic and

(p0, q0) �R r∼ ∈ G
∼
.

So also
(p0, q0) �R h(r∼) ∈ G

∼
.
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The following lemma completes the proof of the second item of Theo-
rem 5.25.

5.28 Lemma (Extension of p.i.c.). Let Pγ be a countable support iteration
of length γ < κ of proper posets that are κ-p.i.c. Let λ be sufficiently large
and M0,M1 ≺ Hλ be countable with Pγ ∈M0 ∩M1 and that are in standard
situation. For any γ0 ∈ γ ∩M0 and q0 ∈ Pγ0 that is simultaneously (M0, Pγ0)-
and (M1, Pγ0)-generic the following holds. If p0∼

∈ V Pγ0 is such that

q0 �γ0
p0∼
∈ Pγ ∩M0 and p0∼

|̀γ0 ∈ G
∼ 0

(where G
∼ 0 is the name of the Pγ0 generic filter) then there is a condition

q ∈ Pγ such that q |̀γ0 = q0, q is simultaneously (M0, Pγ)- and (M1, Pγ)-
generic, and q �γ p0∼

∈ G
∼
. (Thus also q �γ h(p0∼

) ∈ G
∼
.)

The proof follows the same steps of the Properness Extension Lemma 2.8.
The following discussion can help to clarify some of the definitions and

statements described above. Let HM be the collection of all Hajnal-Máté
graphs. Recall that for any g ∈ HM, Pg is the poset for making the chromatic
number of g countable. Let P = Πℵ0

g∈HMPg be the countable support product
of all ground model Pg’s. That is, f ∈ P iff f is a function defined on HM
with f(g) ∈ Pg and such that f(g) = ∅ for all but countably many g’s. The
ordering is coordinate wise extension.

The reader can go over the corresponding steps for Pg and prove that P
is

1. proper,

2. α-proper for every α < ω1,

3. Dee-complete for a countably complete completeness system D,

4. an ℵ2-p.i.c. poset.

Acknowledgments

I wish to thank James Cummings and Robert Solovay for discussions and
comments that improved earlier versions of the chapter. The referee and
editor clarified the text in many places and my thanks are extended to them
as well.

Bibliography

[1] James E. Baumgartner. Iterated forcing. In Adrian R.D. Mathias, edi-
tor, Surveys in Set Theory, volume 87 of London Mathematical Society
Lecture Note Series, pages 1–59. Cambridge University Press, London,
1983.



394 Abraham / Proper Forcing

[2] W. Wistar Comfort and Stylianos Negrepontis. The Theory of Ultrafil-
ters. Springer, Berlin, 1974.

[3] Keith J. Devlin and H̊avard Johnsbr̊aten. The Souslin Problem, vol-
ume 405 of Lecture Notes in Mathematics. Springer, Berlin, 1974.

[4] Martin Goldstern. Tools for your forcing constructions. In H. Judah, edi-
tor, Set Theory of the Reals, volume 6 of Israel Mathematical Conference
Proceedings, pages 305–360, 1992.
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1. Introduction

The first theorem about cardinal characteristics of the continuum is Cantor’s
classical result [38] that the cardinality c = 2ℵ0 of the continuum is strictly
larger than the cardinality ℵ0 of a countably infinite set. The distinction
between ℵ0 and c was soon put to good use, especially in real analysis, where
countable sets were shown to have many useful properties that cannot be
extended to sets of cardinality c. Here are a few familiar examples; more
examples are implicit throughout this chapter.

• Countably many nowhere dense sets cannot cover the real line. (The
Baire Category Theorem.)

• If countably many sets each have Lebesgue measure zero then so does
their union.

• Given countably many sequences of real numbers, there is a single se-
quence that eventually dominates each of the given ones.

• Let countably many bounded sequences Sk = 〈xk,n〉n∈ω of real num-
bers be given. There is an infinite subset A of ω such that all the
corresponding subsequences Sk�A = 〈xk,n〉n∈A converge.

Each of these results becomes trivially false if the hypothesis of countability
is weakened to allow cardinality c. It is natural to ask whether the hypothesis
can be weakened at all and, if so, by how much. For which uncountable
cardinals, if any, do these results remain correct?

If the Continuum Hypothesis (CH) is assumed, the answer is trivial. The
results are false already for ℵ1 because ℵ1 = c. But the Continuum Hypoth-
esis, though not refutable from the usual (ZFC) axioms of set theory, is also
not provable from them, so one can reasonably ask what happens if CH is
false. Then there are cardinals strictly between ℵ0 and c, and it is not evident
whether the results cited above remain valid when “countable” is replaced
by one of these cardinals.

Not only is it not evident, but it is not decidable in ZFC. For example, it
is consistent with ZFC that c = ℵ2 and all the cited results remain correct
for ℵ1, but it is also consistent that c = ℵ2 and all the cited results fail for ℵ1.
It may seem that this undecidability prevents us from saying anything useful
about extending the results above to higher cardinals. Fortunately, though
little can be said about extending any one of these results, there are surprising
and deep connections between extensions of different results. For example,
if the Lebesgue measure result quoted above remains true for a cardinal κ,
then so do the results about Baire category and about eventual domination.

A major goal of the theory of cardinal characteristics of the continuum is
to understand relationships of this sort, either by proving implications like
the one just cited or by showing that other implications are unprovable in
ZFC. The cardinal characteristics are simply the smallest cardinals for which
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various results, true for ℵ0, become false. (The characteristics corresponding
to the four results cited above are called cov(B), add(L), b, and s, respec-
tively, so the implication at the end of the preceding paragraph would be
expressed by the inequalities add(L) ≤ cov(B) and add(L) ≤ b.) We shall
be concerned here only with results about ℵ0 that are false for c, so the
characteristics we consider lie in the interval from ℵ1 to c, inclusive.

A second goal of the theory, which we touch on only briefly here, is to
find situations, in set theory or other branches of mathematics, where cardi-
nal characteristics arise naturally. Wherever a result involves a countability
hypothesis, one can ask whether it extends to some uncountable cardinals.
Quite often, one can extend it to all cardinals below some previously stud-
ied characteristic. (Of course, if the result fails for c, one can simply use
it to define a new characteristic, but this is of little value unless one can
relate it to more familiar characteristics or at least give a simple, combina-
torial description of it.) Such applications are fairly common in set-theoretic
topology—notice that the two standard survey articles on cardinal character-
istics, [42] and [111], appeared in topology books. They are becoming more
common in other branches of mathematics as these branches come up against
set-theoretic independence results.

We digress for a moment to comment on the meaning of “continuum” in
the name of our subject. In principle, “continuum” refers to the real line
R or to an interval like [0, 1] in R, regarded as a topological space. It is,
however, common practice in set theory to apply the word also to spaces like
ω2, ωω and [ω]ω. Here ωX means the space of ω-sequences of elements of X,
topologized as a product of discrete spaces. Thus, ω2 consists of sequences of
zeros and ones; it may be identified with the power set Pω of ω. [ω]ω is the
subspace of Pω consisting of the infinite sets. All these spaces are equivalent
for many purposes, since any two become homeomorphic after removal of
suitable countable subsets. We remark in particular that there is a continu-
ous bijection from ωω to [0, 1), whose inverse is continuous except at dyadic
rationals. This bijection, which takes the sequence (a0, a1, . . . ) ∈ ωω to the
number whose binary expansion is a0 ones, a zero, a1 ones, a zero, . . . , also
behaves nicely with respect to measure. Lebesgue measure on [0, 1) corre-
sponds to the product measure on ωω obtained from the measure on ω giving
each point n the measure 2−n−1. Similarly, the obvious “binary notation”
map from ω2 onto [0, 1], which fails to be one-to-one only over the dyadic
rationals, makes Lebesgue measure correspond to the product measure on
ω2 obtained from the uniform measure on 2. In view of correspondences like
these, we shall, without further explanation, apply cardinal characteristics
like cov(B) and add(L) to all these versions of the continuum (with the
corresponding measures), although they were defined in terms of R (with
Lebesgue measure).

Another aspect of our subject’s name also deserves a brief digression. Are
these cardinals really characteristics of the continuum, or do they depend
on more of the set-theoretic universe? Of course they depend on the class
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of cardinals; a characteristic that ceases to be a cardinal in some forcing
extension will obviously cease to be a characteristic there also. So a more
reasonable question would be whether the characteristics are determined by
the continuum and the cardinals. More specifically, can cardinal character-
istics of the continuum be changed by a forcing that neither adds reals nor
collapses cardinals? Mildenberger [78] has shown that, for certain character-
istics, such changes are possible but only in the presence of inner models with
large cardinals.

As a final comment on the name of the subject, we mention that the
traditional terminology was “invariants” rather than “characteristics”; see for
example [99]. The alternative name “characteristics” was introduced because
the invariants varied; indeed, much of the theory is about what sorts of
variation are possible. Nevertheless, “invariant” is still in very common use—
for example in Bartoszyński’s chapter in this Handbook and [115].

We adopt the following standard notations for dealing with “modulo fi-
nite” notions on the natural numbers. First, ∀∞x means “for all but finitely
many x”; here x will always range over natural numbers, so the quantifier is
equivalent to “for all sufficiently large x”. Similarly ∃∞x means “for infinitely
many x” or equivalently “there exist arbitrarily large x such that”. Notice
that these quantifiers stand in the same duality relation as simple ∀ and ∃,
namely ¬∀∞x is equivalent to ∃∞x¬. An asterisk is often used to indicate a
weakening from “for all” to “for all but finitely many”. In particular, for sub-
sets X and Y of ω, we write X ⊆∗ Y to mean that X is almost included (or
included modulo finite) in Y , i.e., ∀∞x (x ∈ X =⇒ x ∈ Y ). Similarly, for
functions f, g ∈ ωω, we write f ≤∗ g to mean ∀∞x (f(x) ≤ g(x)). We often
use “almost” to mean modulo finite sets. For example, an almost decreasing
sequence of sets is one where Xm ⊇∗ Xn whenever m < n.

We use the standard abbreviations (some already mentioned above): ZFC
for Zermelo-Fraenkel set theory including the axiom of choice, CH for the
Continuum Hypothesis (c = ℵ1), and GCH for the Generalized Continuum
Hypothesis (2ℵα = ℵα+1 for all cardinals ℵα).

2. Growth of Functions

The ordering ≤∗ on ωω provides two simple but frequently useful cardinal
characteristics, the dominating and (un)bounding numbers.

2.1 Definition. A family D ⊆ ωω is dominating if for each f ∈ ωω there is
g ∈ D with f ≤∗ g. The dominating number d is the smallest cardinality of
any dominating family, d = min{|D| : D dominating}.

2.2 Definition. A family B ⊆ ωω is unbounded if there is no single f ∈ ωω
such that g ≤∗ f for all g ∈ B. The bounding number b (sometimes called
the unbounding number) is the smallest cardinality of any unbounded family.
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2.3 Remark. Had we used the “everywhere” ordering (f ≤ g if ∀x (f(x) ≤
g(x))) instead of the “almost everywhere” ordering, d would be unchanged,
as any dominating D could be made dominating in the new sense by adding
all finite modifications of its members. But b would drop down to ℵ0, as the
constant functions form an unbounded family in the new sense.

Both b and d would be unchanged if in their definitions we replaced ωω
with ωR or with the set of sequences from any linear ordering of cofinality ω.

The following theorem gives all the constraints on b and d that are provable
in ZFC.

2.4 Theorem. ℵ1 ≤ cf(b) = b ≤ cf(d) ≤ d ≤ c.

Proof. That ℵ1 ≤ b means that, for every countably many functions gn :
ω → ω, there is a single f ≥∗ all of them. Such an f is given by f(x) =
maxn≤x gn(x).

To prove that b ≤ cf(d), let D be a dominating family of size d, and let
it be decomposed into the union of cf(d) subfamilies Dξ of cardinalities < d.
So there is, for each ξ, some fξ not dominated by any g ∈ Dξ. There can be
no f dominating all the fξ, for such an f would not be dominated by any
g ∈ D. So {fξ : ξ < cf(d)} is unbounded.

The proof that cf(b) = b is similar, and the rest of the theorem is obvious.
�

Hechler [57] has shown that, if P is a partially ordered set in which every
countable subset has an upper bound, then P can consistently be isomorphic
to a cofinal subset of (ωω,≤∗). More precisely, given any such P , Hechler
constructs a c.c.c. forcing extension of the universe where there is a strictly
order-preserving, cofinal embedding of P into (ωω,≤∗). (Hechler’s proof,
done soon after the invention of forcing, has been reworked, using a more
modern formulation, by Talayco in [109, Chap. 4] and by Burke in [36].)
Hechler’s result implies that the preceding theorem is optimal in the following
sense.

2.5 Theorem. Assume GCH, and let b
′, d′, and c′ be any three cardinals

satisfying
ℵ1 ≤ cf(b′) = b

′ ≤ cf(d′) ≤ d
′ ≤ c

′

and cf(c′) > ℵ0. Then there is a c.c.c. forcing extension of the universe
satisfying b = b

′, d = d′, and c = c′.

Proof. Apply Hechler’s theorem to P = [d′]<b
′
partially ordered by inclusion.

The regularity of b
′ implies that any < b

′ elements in P have an upper bound,
but some b

′ elements (e.g., distinct singletons) do not. From cf(d′) ≥ b
′ and

GCH we get that |P | = d′. Fewer than d′ elements of P cannot be cofinal,
for their union (as sets) has cardinality smaller than d′. These observations
imply that b = b

′ and d = d′ in the forcing extension given by Hechler’s
theorem. Finally, to get c = c′, adjoin c′ random reals; these will not damage
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b or d, as the ground model’s ωω is cofinal in the ωω of any random real
extension. �

To see that b < d is consistent, it is not necessary to invoke Hechler’s
theorem. The original Cohen models [40] for the negation of CH have b = ℵ1

and d = c. In fact, if one adjoins κ ≥ ℵ1 Cohen reals (by the usual product
forcing) to any model of set theory, then the resulting model has b = ℵ1 while
d becomes at least κ.

The contrary situation, that b = d, has the following useful characteriza-
tion.

2.6 Theorem. b = d if and only if there is a scale in ωω, i.e., a dominating
family well-ordered by ≤∗.

Proof. If D = {fξ : ξ < b} is a dominating family of size b, then we obtain
a scale {gξ : ξ < b} by choosing each gξ to dominate fξ and all previous gη

(η < ξ); this can be done because we need to dominate fewer than b functions
at a time.

Conversely, if there is a scale, choose one and let B be an unbounded family
of size b. By increasing each element of B if necessary, we can arrange for B
to be a subset of our scale. But then, being unbounded, it must be cofinal in
the well-ordering ≤∗ of the scale. Therefore it is a dominating family. �

There are several alternative ways of looking at b and d. We present two
of them here and refer to [42, 56, 58] for others.

The first of these involves the “standard” characteristics of an ideal, de-
fined as follows.

2.7 Definition. Let I be a proper ideal of subsets of a set X, containing all
singletons from X.

• The additivity of I, add(I), is the smallest number of sets in I with
union not in I.

• The covering number of I, cov(I), is the smallest number of sets in I
with union X.

• The uniformity of I, non(I), is the smallest cardinality of any subset
of X not in I.

• The cofinality of I, cof(I) is the smallest cardinality of any subset B
of I such that every element of I is a subset of an element of B. Such
a B is called a basis for I.

It is easy to check that both cov(I) and non(I) are ≥ add(I) and
≤ cof(I). In fact, add(I) is a lower bound for the cofinalities cf(non(I))
and cf(cof(I)) also. In this chapter, I will always be a σ-ideal, so its ad-
ditivity (and therefore the other three characteristics) will be uncountable.
Furthermore, I will have a basis consisting of Borel sets; since there are only
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c Borel sets, the cofinality (and therefore the other three characteristics) will
be ≤ c. (That the other three characteristics are ≤ c follows already from
the simpler fact that the underlying set X is the continuum.)

The ideal relevant to the present section is the σ-ideal Kσ generated by
the compact subsets of ωω, i.e., the ideal of sets coverable by countably many
compact sets. Its connection with ≤∗ was pointed out by Rothberger in [91].

2.8 Theorem. add(Kσ) = non(Kσ) = b and cov(Kσ) = cof(Kσ) = d.

Proof. Since a subset of the discrete space ω is compact if and only if it is
finite, the Tychonoff theorem implies that a subset of ωω is compact if and
only if it is closed and included in a product of finite subsets of ω. There is
no loss of generality in taking the finite subsets to be initial segments, so we
find that all sets of the form

{f ∈ ωω : f ≤ g} =
∏

n∈ω[0, g(n)]

are compact and every compact set is included in one of this form. It follows
that all sets of the form {f ∈ ωω : f ≤∗ g} (with ≤∗ instead of ≤) are in Kσ

and every set in Kσ is a subset of one of these. (The last uses that b ≥ ℵ1

to show that countably many bounds g for countably many compact sets are
all ≤∗ a single bound.)

This connection between Kσ and ≤∗ easily implies the theorem. �

Recalling that ωω is homeomorphic, via continued fraction expansions, to
the space of irrational numbers R−Q (topologized as a subspace of R), we see
that the theorem remains valid if we interpret Kσ as the σ-ideal generated
by the compact subsets of R − Q. In particular, d is characterized as the
minimum number of compact sets whose union is R − Q. (Here the choice
of “continuum” is important. The corresponding cardinals for the spaces ω2,
[0, 1], and R are clearly 1, 1, and ℵ0, respectively.)

Yet another way of looking at the ordering ≤∗ and the associated cardinals
b and d involves partitions of ω into finite intervals. (The earliest reference I
know for this idea is Solomon’s [103].)

2.9 Definition. An interval partition is a partition of ω into (infinitely
many) finite intervals In (n ∈ ω). We always assume that the intervals are
numbered in the natural order, so that, if in is the left endpoint of In then
i0 = 0 and In = [in, in+1). We say that the interval partition {In : n ∈ ω}
dominates another interval partition {Jn : n ∈ ω} if ∀∞n∃k (Jk ⊆ In). We
write IP for the set of all interval partitions.

2.10 Theorem. d is the smallest cardinality of any family of interval parti-
tions dominating all interval partitions. b is the smallest cardinality of any
family of interval partitions not all dominated by a single interval partition.

Proof. We prove only the first statement, as the second can be proved sim-
ilarly or deduced from the proof of the first using the duality machinery of
Sect. 4.
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Suppose first that we have a family F of interval partitions dominating all
interval partitions. To each of the partitions {In = [in, in+1) : n ∈ ω} in F ,
associate the function f : ω → ω defined by letting f(x) be the right endpoint
of the interval after the one containing x; thus if x ∈ In then f(x) = in+2−1.
We shall show that these functions f form a dominating family, so d ≤ |F|.
Given any g ∈ ωω, the required f dominating g is obtained as follows. Form
an interval partition {Jn = [jn, jn+1) : n ∈ ω} such that whenever x ≤ jn

then g(x) < jn+1; it is trivial to do this by choosing the jn inductively. Let
{In = [in, in+1) : n ∈ ω} in F dominate this {Jn : n ∈ ω}, and let f be
the function associated to {In : n ∈ ω}. To see that g(x) ≤ f(x) for all
sufficiently large x, we chase through the definitions as follows. Let n be the
index such that x ∈ In and let (since x is sufficiently large) k be an index such
that Jk ⊆ In+1. Then as x ≤ jk, we have g(x) ≤ jk+1− 1 ≤ in+2− 1 = f(x).
This completes the proof that d ≤ |F|.

To produce a dominating family of interval partitions of cardinality d, we
begin with a dominating family D of cardinality d in ωω, and we associate
to each g ∈ D an interval partition {Jn = [jn, jn+1) : n ∈ ω} exactly as
in the preceding paragraph. To show that the resulting family of d interval
partitions dominates all interval partitions, let an arbitrary interval partition
{In = [in, in+1) : n ∈ ω} be given, associate to it an f ∈ ωω as in the
preceding paragraph, and let g ∈ D be ≥∗ f . We shall show that the {Jn :
n ∈ ω} associated to this g dominates {In : n ∈ ω}. For any sufficiently
large n, we have f(jn) ≤ g(jn) ≤ jn+1 − 1. By virtue of the definition of f ,
this means that the next Ik after the one containing jn lies entirely in Jn. �

3. Splitting and Homogeneity

In this section, we treat several characteristics related to the “competition”
between partitions trying to split sets and sets trying to be homogeneous
for partitions. We begin with a combinatorial definition of a characteristic
already mentioned, from an analytic point of view, in the introduction.

3.1 Definition. A set X ⊆ ω splits an infinite set Y ⊆ ω if both Y ∩X and
Y −X are infinite. A splitting family is a family S of subsets of ω such that
each infinite Y ⊆ ω is split by at least one X ∈ S. The splitting number s is
the smallest cardinality of any splitting family.

Having defined s differently in the introduction, we hasten to point out
that the definitions are equivalent.

3.2 Theorem. s is the minimum cardinality of any family of bounded ω-
sequences Sξ = 〈xξ,n〉n∈ω of real numbers such that for no infinite Y ⊆ ω do
all the corresponding subsequences Sξ�Y = 〈xξ,n〉n∈Y converge. The same is
true if we consider only sequences consisting of just zeros and ones.

Proof. The second assertion, where all Sξ are in ω2, is a trivial rephrasing of
the definition of s; just regard the sequences Sξ as the characteristic functions
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of the sets in a splitting family. The key point is that, for the characteristic
function of X, convergence means eventual constancy, and so convergence of
its restriction to Y means that Y is not split by X.

Half of the first assertion follows immediately from the second. To prove
the other half of the first assertion, use the fact that a bounded sequence of
real numbers converges if (though not quite only if) for each k the sequence
of kth binary digits converges. �

The last part of the preceding proof implicitly used the fact that s is
uncountable. We omit the easy, direct proof of this, because it will also
follow from results to be proved later (ℵ1 ≤ t ≤ h ≤ s; see Sect. 6).

Theorem 2.10 makes it easy to relate s to d.

3.3 Theorem. s ≤ d.

Proof. By Theorem 2.10, fix a family of d interval partitions dominating all
interval partitions. To each partition Π = {In : n ∈ ω} in this family,
associate the union ϕ(Π) =

⋃
n I2n of its even-numbered intervals. We shall

show that these d sets ϕ(Π) constitute a splitting family. To this end, consider
an arbitrary infinite subset X of ω. Associate to it an interval partition ψ(X)
in which every interval contains at least one member of X. Our dominating
family of interval partitions contains a Π that dominates ψ(X). But then
each interval of Π, except for finitely many, includes an interval of ψ(X) and
therefore contains a point of X. It follows immediately that both ϕ(Π) and
its complement (the union of the odd-numbered intervals) contain infinitely
many points of X. So ϕ(Π) splits X. �

We record for future reference the basic property of the constructions ϕ
and ψ that makes the preceding proof work: For any interval partition Π and
any infinite X ⊆ ω,

Π dominates ψ(X) =⇒ ϕ(Π) splits X.

The inequality in the theorem can consistently be strict. For example, if
one adds κ > ℵ0 Cohen reals to a model of set theory, then in the resulting
model d ≥ κ (as remarked earlier) while s = ℵ1 because any ℵ1 of the added
Cohen reals constitute a splitting family.

The splitting number is the simplest of a family of characteristics defined
in terms of structures that are not simultaneously homogeneous (modulo fi-
nite) on any one infinite set. For s, the “structures” are two-valued functions
and “homogeneous” simply means constant. Other notions of structure and
homogeneity are suggested by various partition theorems. We shall charac-
terize the analog of s arising from Ramsey’s Theorem and briefly mention a
few other analogs afterward.

3.4 Definition. A set H ⊆ ω is homogeneous for a function f : [ω]n → k
(a partition of [ω]n into k pieces) if f is constant on [H]n. H is almost
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homogeneous for f if there is a finite set F such that H − F is homogeneous
for f . parn is the smallest cardinality of any family of partitions of [ω]n into
two pieces such that no single infinite set is almost homogeneous for all of
them simultaneously.

We note that par1 is simply s and that the definition of parn would be
unchanged if we allowed partitions into any finite number of pieces (for any
such partition could be replaced with the finitely many coarser partitions
into two pieces). We note also that the use of almost homogeneity in the
definition is essential; it is easy to produce countably many partitions with
no common infinite homogeneous set.

3.5 Theorem. For all integers n ≥ 2, parn = min{b, s}.

Proof. Notice first that parn ≤ parm if n ≥ m, because any partition
[ω]m → 2 can be regarded as a partition of [ω]n ignoring the last n−m ele-
ments of its input. In particular, we have parn ≤ s, and if we show par2 ≤ b

then the ≤ direction of the theorem will be proved. For the ≥ direction, we
must consider arbitrary n, but in fact we shall confine attention to n = 2
since the general case is longer but not harder.

To show par2 ≤ b, let B ⊆ ωω be an unbounded family of size b, assume
without loss of generality that each g ∈ B is monotone increasing, and asso-
ciate to each such g the partition of [ω]2 that puts a pair {x < y} into class 0
if g(x) < y and into class 1 otherwise. We shall show that no infinite H ⊆ ω
is almost homogeneous for all these partitions simultaneously. Notice first
that a homogeneous set of class 1 must be finite since, if x is its first element,
then all the other elements are majorized by g(x). So suppose, toward a con-
tradiction, that H is infinite and almost homogeneous of class 0 for all the
partitions associated to the functions g ∈ B. Consider the function h sending
each natural number x to the second member of H above x. For each x, we
have x < y < h(x) with both y and h(x) in H. By almost homogeneity of H,
we have, for each g ∈ B and for all sufficiently large x, g(y) < h(x) and thus,
by monotonicity of g, g(x) < h(x). Thus, g ≤∗ h for all g ∈ B, contrary to
our choice of B.

To show par2 ≥ min{b, s}, suppose we are given a family of κ < min{b, s}
partitions fξ : [ω]2 → 2; we must find an infinite set almost homogeneous for
all of them. First, consider the functions

fξ,n : ω → 2 : x �→ fξ{n, x}.

(This is undefined for x = n; define it arbitrarily there.) Since the number of
these functions is κ·ℵ0 < s, there is an infinite A ⊆ ω on which they are almost
constant; say fξ,n(x) = jξ(n) for all x ≥ gξ(n) in A. Furthermore, since κ < s

we can find an infinite B ⊆ A on which each jξ is almost constant, say jξ(n) =
iξ for all n ≥ bξ in B. And since κ < b we have a function h majorizing each
gξ from some integer cξ on. Let H = {x0 < x1 < · · · } be an infinite subset of
B chosen so that h(xn) < xn+1 for all n. Then this H is almost homogeneous
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for each fξ. Indeed, if x < y are elements of H larger than bξ and cξ, then
y > h(x) ≥ gξ(x) and so fξ({x, y}) = fξ,x(y) = jξ(x) = iξ. �

One can define characteristics analogous to parn using stronger partition
theorems in place of Ramsey’s Theorem, for example Hindman’s finite sums
theorem [59] or the Galvin-Prikry theorem [49] and its extension to analytic
sets by Silver [102]. It is not difficult to see that these characteristics are
bounded above by min{b, s}. The Silver and (a fortiori) the Galvin-Prikry
variants of par are easily seen to be bounded below by the characteristic h

defined in Sect. 6. Eisworth has also obtained (private communication) a
lower bound of the form min{b, s′}, where s′ is the following variant of s.
A cardinal κ is < s′ if, for any κ reals, there exist

1. a transitive model N of enough of ZFC containing the given reals,

2. U ∈ N such that N satisfies “U is a non-principal ultrafilter on ω”, and

3. an infinite a ⊆ ω almost included in every member of U .

Eisworth’s proof uses forcing techniques from [61], but a direct combinatorial
proof can be based on [17, Theorem 4]. Note that, if we weakened requirement
(2) in the definition of s′ to say only that U is a non-principal ultrafilter in
the Boolean algebra of subsets of ω in N (but U need not be in N), then
the cardinal defined would be simply s. It is not known whether s′ < s is
consistent.

For the variant of par based on Hindman’s theorem, the best lower bound
known to me is the characteristic p defined in Sect. 6. The proof that this is
a lower bound uses the construction from Martin’s Axiom mentioned in [16,
p. 93], the observation that Martin’s Axiom is applied here to a σ-centered
poset, and Bell’s theorem (Theorem 7.12 below).

One can also consider weaker sorts of homogeneity. For example, define
par1,c to be the smallest cardinality of a family F of functions f : ω → ω such
that there is no single infinite set A ⊆ ω on which all the functions from F
are almost one-to-one or almost constant, where “almost” means, as usual,
except at finitely many points in A. (The subscript 1, c refers to the canonical
partition theorem for sets of size 1.) Each function f gives rise to a partition
f ′ : [ω]2 → 2, where f ′({x, y}) = 0 just when f(x) = f(y). The sets where f
is one-to-one or constant are the homogeneous sets of f ′, so par1,c ≥ par2. In
fact equality holds here, because par1,c is ≤ both s and b. To see the former,
associate to each set X from a splitting family its characteristic function. To
see the latter, fix a family of b interval partitions not dominated by any single
interval partition (by Theorem 2.10) and associate to each of these partitions
a function f constant on exactly the intervals of the partition. Since such an
f is not constant on any infinite set, it suffices to show that there is no infinite
A on which each f is almost one-to-one. But if there were such an A, then
we could build an interval partition in which each interval contains at least
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three elements of A, and this partition would dominate all the partitions in
our chosen, allegedly undominated family.

We now shift our focus from counting partitions to counting candidates
for homogeneous sets.

3.6 Definition. A family R of infinite subsets of ω is unsplittable if no single
set splits all members of R. It is σ-unsplittable if no countably many sets
suffice to split all members of R. The unsplitting number r, also called the
refining or reaping number , is the smallest cardinality of any unsplittable
family. The σ-unsplitting number rσ is the smallest cardinality of any σ-
unsplittable family.

Obviously, r ≤ rσ. It is not known whether strict inequality here is con-
sistent with ZFC.

We omit the proof of the following theorem since it involves nothing beyond
what went into the proof of Theorem 3.2.

3.7 Theorem. rσ is the minimum cardinality of any family of infinite sets
Y ⊆ ω such that, for each bounded sequence 〈xn〉n∈ω of real numbers, the
restriction 〈xn〉n∈Y to some Y in the family converges. If we consider only
sequences of zeros and ones, then the corresponding minimum cardinality is r.

We emphasize that, although in Theorem 3.2 the cardinal was the same
for real-valued sequences as for two-valued sequences, the analogous equality
in the present theorem is an open problem.

3.8 Theorem. b ≤ r.

Proof. As in the proof of Theorem 3.3, let ϕ be the operation sending any
interval partition to the union of its even-numbered intervals, and let ψ be an
operation sending any infinite subset X of ω to an interval partition in which
every interval contains at least one member of X. Let R be an unsplittable
family of r infinite subsets of ω; thanks to Theorem 2.10, we can complete
the proof by showing that no interval partition Π dominates all the partitions
ψ(X) for X ∈ R. But, as we showed in the proof of Theorem 3.3 and recorded
for reference immediately thereafter, if Π dominated all these ψ(X), then
ϕ(Π) would split every X ∈ R, contrary to the choice of R. �

We next introduce the homogeneity cardinals associated to Ramsey’s The-
orem and the “one-to-one or constant” theorem. As in the discussion of
partition counting, we could define homogeneity cardinals from Hindman’s
theorem, the Galvin-Prikry theorem, etc., but (as there) not much could be
said about them.

3.9 Definition. homn is the smallest size of any familyH of infinite subsets of
ω such that every partition of [ω]n into two pieces has an almost homogeneous
set in H. hom1,c is the smallest size of any family H of infinite subsets of ω
such that every function f : ω → ω is almost one-to-one or almost constant
on some set in H.
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This definition would be unchanged if we deleted “almost”, for we could
put into H all finite modifications of its members. Notice that hom1 = r and
that homn ≥ homm if n ≥ m (the reverse of the corresponding inequality for
par).

3.10 Theorem. For all integers n ≥ 2, homn = max{d, rσ}. In addition,
max{d, r} ≤ hom1,c ≤ max{d, rσ}.

Proof. Although this proof contains only one idea not already in the proof of
Theorem 3.5 and the subsequent discussion of par1,c, we repeat some of the
earlier ideas to clarify why we now have r in one assertion and rσ elsewhere.

To show that max{d, r} ≤ hom1,c, we assume that H is as in the definition
of hom1,c, and we show that its cardinality is ≥ both r and d. For the former,
we find that H is unsplittable because if X splits H then the characteristic
function of X is neither almost one-to-one nor almost constant on H. For
the comparison with d, associate to each H ∈ H an interval partition ΠH

such that each of its intervals contains at least three members of H. By The-
orem 2.10, we need only check that every interval partition Θ is dominated
by such a ΠH . Given Θ, let f be constant on exactly its intervals, and find
H ∈ H on which f is almost one-to-one (as f is not constant on any infinite
set). But then any interval of ΠH (except for finitely many) contains three
points from H, all from different intervals of Θ, so it must contain a whole
interval of Θ. So we have the required domination.

Next, we show that hom2 ≤ max{rσ, d} by constructing an H of size
max{rσ, d} with the homogeneity property required in the definition of hom2.
(Note the similarity of this construction with the argument proving par2 ≥
min{b, s}.) Let D ⊆ ωω be a dominating family of size d. Let R be a σ-
unsplittable family of size rσ. For each A ∈ R, let RA be an unsplittable
family of r subsets of A. For each h ∈ D, each A ∈ R, and each B ∈ RA,
let H = H(h,A,B) be an infinite subset of B such that, for any x < y
in H, h(x) < y. The family H of all these sets H(h,A,B) has size at most
max{rσ, d}, and we shall now show that it contains an almost homogeneous
set for every partition f : [ω]2 → 2. Given f , define (as in the proof of
Theorem 3.5) fn : ω → 2 : x �→ f{n, x}. As R is σ-unsplittable, it contains
an A on which each fn is almost constant, say fn(x) = j(n) for all x ≥ g(n)
in A. The function j : A→ 2 is almost constant on some B in the unsplittable
familyRA, say j(n) = i for all n ≥ b in B. And D contains an h dominating g,
say h(x) ≥ g(x) for all x ≥ c. It is now routine to check (as in the proof of
Theorem 3.5) that f is constant with value i on all pairs of elements larger
than b and c in H(h,A,B).

The proof that homn ≤ max{rσ, d} for n > 2 is similar to the preceding
but uses n rather than two nestings of σ-unsplittable families (with no σ
needed for the last one). We omit the details.

The preceding arguments, along with the observation that “one-to-one or
constant” is a special case of homogeneity for partitions of pairs, establish
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that
max{r, d} ≤ hom1,c ≤ hom2 ≤ hom3 ≤ · · · ≤ max{rσ, d}.

All that remains to be proved is that rσ ≤ hom2, and this requires a method
not involved in Theorem 3.5. The following argument is due to Brendle [31].
(Shelah had previously established the corresponding result for hom3.)

Let H be as in the definition of hom2, and let countably many functions
fn : ω → 2 be given. We seek a set in H on which each fn is almost constant.
Define, for each x ∈ ω, the sequence of zeros and ones x̂ = 〈fn(x)〉n∈ω, so
x̂n = fn(x). Then define a partition of [ω]2 by putting {x < y} into class 0
if x̂ lexicographically precedes ŷ and into class 1 otherwise. Let H ∈ H be
almost homogeneous for this partition, let H ′ be a homogeneous set obtained
by removing finitely many elements from H, and from now on let x and y
range only over elements of H ′. Suppose H ′ is homogeneous for class 0. (The
case of class 1 is analogous.) Then as x increases, x̂0 can only increase. That
is, if the value of f0(x) ever changes, then it changes from 0 to 1 and remains
constant forever after. Once x̂0 has stabilized, x̂1 can only increase and must
therefore stabilize. Continuing in this way, we see that, as x increases through
values in H ′, each x̂n eventually stabilizes. This means that each fn(x) is
almost constant on H ′ and therefore on H, as required. �

3.11 Remark. The last paragraph of this proof is similar to the proof that
cardinals κ satisfying the partition relation κ −→ (κ)22 are strong limit car-
dinals. The nature of the stabilization, where each component moves at
most once after all its predecessors have stabilized, is also reminiscent of the
proof that all requirements are eventually satisfied in a finite-injury priority
argument.

4. Galois-Tukey Connections and Duality

We interrupt the description and discussion of particular cardinal character-
istics in order to set up some machinery that is useful for describing many
(though not all) of the characteristics and the relationships between them.
This machinery was isolated by Vojtáš [112] under the name of “generalized
Galois-Tukey connections”; the basic ideas had been used, but neither iso-
lated nor named, in earlier work of Fremlin [47] and Miller (unpublished).
The definitions of many cardinal characteristics have the form “the smallest
cardinality of any set Y (of objects of a specified sort) such that every ob-
ject x (of a possibly different sort) is related to some y ∈ Y in a specified
way.” And many proofs of inequalities between such cardinals involve the
construction of maps between the various sorts of objects involved in the
definitions. This is formalized as follows.

4.1 Definition. A triple A = (A−, A+, A) consisting of two sets A± and
a binary relation A ⊆ A− × A+ will be called simply a relation. In con-
nection with such a relation, we call A− the set of challenges and A+ the
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set of responses; we read xAy (meaning (x, y) ∈ A) as “response y meets
challenge x”.

4.2 Definition. The norm ‖A‖ of a relation A = (A−, A+, A) is the smallest
cardinality of any subset Y of A+ such that every x ∈ A− is related by A to
at least one y ∈ Y . That is, it is the minimum number of responses needed
to meet all challenges.

The definitions of cardinal characteristics in the preceding sections (as well
as many others) amount to norms of relations. Furthermore, characteristics
tend to come in pairs whose relations are dual to each other in the following
sense.

4.3 Definition. If A = (A−, A+, A) then the dual of A is the relation
A⊥ = (A+, A−,¬Ă) where ¬ means complement and Ă is the converse of A;
thus (x, y) ∈ ¬Ă if and only if (y, x) /∈ A.

4.4 Example. Let D be the relation (ωω, ωω,<∗). Then ‖D‖ = d and
‖D⊥‖ = ‖(ωω, ωω,≯∗)‖ = b. By Theorem 2.10, the same equations hold if
we replace D with D′ = (IP, IP, is dominated by). (Recall from Definition 2.9
that IP is the set of interval partitions.)

Let R be the relation (P(ω), [ω]ω, does not split). Then ‖R‖ = r and
‖R⊥‖ = s.

Let Homn be the relation (P, [ω]ω, H) where P is the set of partitions
f : [ω]n → 2 and where fHX means that X is almost homogeneous for f .
Then ‖Homn‖ = homn and ‖Homn

⊥‖ = parn.
Let I be an ideal of subsets of X. Let Cov(I) be the relation (X, I,∈)

and let Cof(I) be the relation (I, I,⊆). Then we have ‖Cov(I)‖ = cov(I),
‖Cov(I)⊥‖ = non(I), ‖Cof(I)‖ = cof(I), and ‖Cof(I)⊥‖ = add(I).

In general, we name the relation corresponding to a characteristic by cap-
italizing the name of the characteristic, except when another name is readily
available, e.g., as the dual of a previously defined relation.

4.5 Remark. We remarked earlier that the definition of d would be unaf-
fected if we replaced ≤∗ by ≤. That is, d is the norm not only of the D

defined above but also of (ωω, ωω,≤). The dual of this last relation, however,
has norm ℵ0, not b.

Similar remarks apply to R and Hom. It was for the sake of duality that
we used “modulo finite” even in definitions where it could have been left out.

The following example indicates another situation where a change in a
relation does not affect its norm but might affect the norm of the dual.

4.6 Example. Let Rσ be the relation (ωP(ω), [ω]ω, does not split), where
an ω-sequence of sets is said to split X if at least one term in the sequence
splits X. Then ‖Rσ‖ = rσ and ‖Rσ

⊥‖ = s.
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Thus, both r and rσ can be regarded as duals of s. Duality is well-defined
on relations but in general not on characteristics.

4.7 Remark. For any relation A, one can define a relation Aσ that is related
to A as Rσ in the preceding example is related to R. That is,

Aσ = (ωA−, A+, Aσ)

where fAσa means that f(n)Aa for all n ∈ ω. Thus, ‖Aσ‖, also written
‖A‖σ, is the minimum number of responses needed so that every countably
many challenges can be met simultaneously by a single one of these responses.
For some relations, the σ construction produces nothing new; for example,
dσ = d. But for other relations, interesting new characteristics arise in this
way. We already mentioned rσ above; sσ is studied in, for example, [64] and
[73].

Clearly, ‖Aσ‖ ≥ ‖A‖. Whether the reverse inequality is provable in ZFC
or whether strict inequality is consistent is, as we mentioned above, an open
problem for A = R. It is also open for A = R⊥; that is, it is not known
whether sσ > s is consistent. On the other hand, it is known that cov(L)σ >
cov(L) is consistent. See Bartoszyński’s chapter in this Handbook for a proof
that cov(L) can consistently have countable cofinality; it is easy to see that
no ‖Aσ‖ can have countable cofinality.

Notice that the transformation A �→ Aσ does not commute with duality.
Indeed, in all non-trivial cases, (Aσ)⊥ has the same norm as A⊥, whereas,
as indicated above, (A⊥)σ may well have a different norm.

The next definition captures the construction used in the proofs of many
cardinal characteristic inequalities.

4.8 Definition. A morphism from one relation A = (A−, A+, A) to another
B = (B−, B+, B) is a pair ϕ = (ϕ−, ϕ+) of functions such that

• ϕ− : B− → A−,

• ϕ+ : A+ → B+,

• for all b ∈ B− and a ∈ A+, if ϕ−(b)Aa then bBϕ+(a).

We use “morphism” instead of Vojtáš’s “generalized Galois-Tukey con-
nection” partly for brevity and partly because our convention differs from
his as to direction. A morphism from A to B is a generalized Galois-Tukey
connection from B to A.

It is clear from the definitions that if ϕ = (ϕ−, ϕ+) is a morphism from A
to B then ϕ⊥ = (ϕ+, ϕ−) is a morphism from B⊥ to A⊥.

Relations and morphisms form (as the name “morphism” suggests) a cat-
egory in an obvious way, and we shall use the notation ϕ : A → B for
morphisms. The category has products and coproducts, but these seem to
be of little relevance to cardinal characteristics. Duality is a contravariant
involution.
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4.9 Theorem. If there is a morphism ϕ : A → B then ‖A‖ ≥ ‖B‖ and
‖A⊥‖ ≤ ‖B⊥‖.

Proof. It suffices to prove the first inequality, as the second follows by apply-
ing the first to the dual morphism ϕ⊥.

Let X ⊆ A+ have cardinality ‖A‖ and contain responses meeting all
challenges in A−. Then Y = ϕ+(X) ⊆ B+ has cardinality ≤ ‖A‖, so we
need only check that it contains responses meeting all challenges from B−.
Given b ∈ B−, find in X a response x meeting ϕ−(b). Then ϕ+(x) is in Y and
meets b because, by definition of morphism, ϕ−(b)Ax implies bBϕ+(x). �

Morphisms and Theorem 4.9 were implicit in several proofs of inequalities
in the preceding sections. For example, the proof of Theorem 2.10 exhibits
morphisms in both directions between D and D′ = (IP, IP, is dominated by),
where IP is the set of all interval partitions. Both morphisms consist of the
same two maps (in opposite order). One map sends any interval partition
to the function sending any natural number x to the right endpoint of the
next interval of the partition after the interval containing x. The other sends
any function f ∈ ωω to an interval partition {[jn, jn+1) : n ∈ ω} such that
f(x) < jn+1 for all x ≤ jn. The existence of this pair of morphisms implies
not only that d = ‖D′‖, but also, by duality, b = ‖D′ ⊥‖. The latter is the
second assertion of Theorem 2.10, whose proof we omitted earlier.

The preceding example is somewhat atypical in that the same maps give
morphisms in both directions between the same relations. Usually, one has
a morphism in only one direction, and therefore an inequality rather than
equality between cardinal characteristics. For example, the essential point
in the proof of s ≤ d (Theorem 3.3), can be expressed by saying that the
functions ϕ and ψ defined in that proof constitute a morphism (ψ,ϕ) : D′ →
R⊥. It follows that they also constitute a morphism (ϕ, ψ) : R → D′ ⊥, so we
have b ≤ r (Theorem 3.8). Morphisms, duality, and Theorem 4.9 codify the
observation that Theorems 3.3 and 3.8 have “essentially the same proof.”

If I is an ideal on X containing all singletons, then in view of Example 4.4,
the inequalities add(I) ≤ cov(I) ≤ cof(I) and add(I) ≤ non(I) ≤ cof(I)
follow from the existence of morphisms from Cof(I) = (I, I,⊆) to both
Cov(I) = (X, I,∈) and its dual Cov(I)⊥ = (I, X, �,). The first of these can
be taken to be (S, id), where S is the singleton map x �→ {x} and id is the
identity map. The second can be taken to be (id, N), where N sends each
I ∈ I to some element of X − I.

The inequalities ‖Aσ‖ ≥ ‖A‖, for all A, also arise from morphisms
Aσ → A. The map on challenges sends each a ∈ A− to the constant function
ω → A− with value a, and the map on responses is the identity function.

The inequalities parn ≤ b and parn ≤ s in Theorem 3.5 and their duals
homn ≥ d and homn ≥ r in Theorem 3.10 are also given by morphisms, as an
inspection of the proofs will show. The same goes for Brendle’s improvement
of the last of these inequalities, with rσ in place of r, and the same goes for
the analogous inequalities for par1,c and hom1,c.
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But the same cannot be said (yet) for the reverse inequalities, parn ≥
min{b, s} and its dual homn ≤ max{d, rσ}, simply because the minimum
and maximum here are not (yet) realized as the norms of natural relations.
There are, fortunately, several ways to combine two relations into a third
whose norm is the maximum (or the minimum) of the norms of the first two.
Two of these provide what we need in order to present in terms of morphisms
the proofs of the inequalities just cited; we present a third combination along
with these two because of its category-theoretic naturality.

To avoid trivial exceptions, we assume in the following that, in the relations
(A−, A+, A) under consideration, the sets A± are not empty. We also adopt
the convention of using a boldface letter for the relation whose components
are denoted by the corresponding lightface letter; thus A = (A−, A+, A).

4.10 Definition. The categorical product A×B is (A− -B−, A+×B+, C),
where - means disjoint union and where xC (a, b) means xAa if x ∈ A− and
xB b if x ∈ B−.

The conjunction A ∧ B is (A− × B−, A+ × B+,K), where (x, y)K (a, b)
means xAa and y B b.

The sequential composition A;B is (A− × A+B−, A+ ×B+, S), where the
superscript means a set of functions and where (x, f)S (a, b) means xAa and
f(a)B b.

The dual operations are the categorical coproduct A + B = (A⊥ ×B⊥)⊥,
the disjunction A ∨B = (A⊥ ∧B⊥)⊥, and the dual sequential composition
A;̆B = (A⊥;B⊥)⊥.

The two categorical operations are, as their names suggest, the product
and coproduct in the category of relations and morphisms.

The conjunction was called the product in a preprint version of [112] and
has therefore sometimes been called the old product. It is a sort of parallel
composition. A challenge consists of separate challenges in both components
and a (correct) response consists of (correct) responses in both components
separately.

Sequential composition describes a two-inning game between the chal-
lenger and the responder. The first inning consists of a challenge x in A
followed by a response a there; the second inning consists of a challenge f(a)
in B, which may depend on the previous response a, followed by a response
b there. To model this in a single inning, we regard the whole function f as
part of the challenge. As in the case of conjunction, a correct response in the
sequential composition must be correct in both components.

Notice that one can obtain a description of disjunction by simply changing
the last “and” to “or” in the definition of conjunction. The dualization of
sequential composition is more complicated; not only does “and” become
“or” but the functional dependence changes so that the response in B can
depend on the challenge in A.

The following theorem describes the effect of these operations on norms.
Its proof is quite straightforward and therefore omitted.
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4.11 Theorem.

1. ‖A×B‖ = max{‖A‖, ‖B‖}.

2. max{‖A‖, ‖B‖} ≤ ‖A ∧B‖ ≤ ‖A‖ · ‖B‖.

3. ‖A;B‖ = ‖A‖ · ‖B‖.

4. ‖A + B‖ = min{‖A‖, ‖B‖}.

5. ‖A ∨B‖ = min{‖A‖, ‖B‖}.

6. ‖A;̆B‖ = min{‖A‖, ‖B‖}.

When the norms are infinite, maxima and products are the same, so the
second and third items in the theorem simplify to ‖A ∧ B‖ = ‖A;B‖ =
max{‖A‖, ‖B‖}. (In the finite case there is no such simplification. Both of
the inequalities involving ‖A∧B‖ can be strict; consider A = B = (3, 3, �=).)

4.12 Example. In the proof of Theorem 3.10, the part showing that hom2 ≤
max{rσ, d} actually gives a morphism from Rσ; (R∧D) to Hom2, as detailed
below. By Theorems 4.9 and 4.11, the existence of such a morphism implies
both hom2 ≤ max{rσ, r, d} = max{rσ, d} and par2 ≥ min{s, b} (the part of
Theorem 3.5 that really involves all three cardinals simultaneously).

To exhibit the morphism implicit in the proof of Theorem 3.10, we first
describe Rσ; (R∧D). Following the definitions, we find that a challenge here
amounts to a triple (S, F,G) where S is an ω-sequence of subsets Sn of ω,
F is a function assigning to each infinite A ⊆ ω a subset F (A) of ω, and G
is a function assigning to each such A a function G(A) ∈ ωω. A response is
a triple (A,B, h) where A and B are infinite subsets of ω and h ∈ ωω. The
response (A,B, h) meets the challenge (S, F,G) if (1) A is not split by any
component Sn of S, (2) B is not split by F (A), and (3) G(A) <∗ h. Using
the notation (fn, j, g, H) of the proof of Theorem 3.10 and the notation
eA for the increasing enumeration of an infinite A ⊆ ω, we can describe the
morphism from Rσ; (R∧D) to Hom2 as follows. The “challenge” part sends
any partition f : [ω]2 → 2 to (S, F,G), where Sn has characteristic function
fn, where F (A) has characteristic function j◦eA, and where G(A) = g. (The j
and g in the proof of Theorem 3.10 depend on A.) The “response” part of the
morphism sends a triple (A,B, h) to H(h,A, eA(B)). The verification that
these two operations constitute a morphism is as in Theorems 3.5 and 3.10.
(The need for eA in the present discussion but not in the earlier proofs results
from our tacit use, in the earlier proofs, of the equivalence between splitting
phenomena in ω and the analogous phenomena in any infinite subset A. eA

serves to make the equivalence explicit.)
We remark that the formal structure, Rσ; (R ∧ D), reflects the intuitive

structure of the proof of Theorem 3.5. That proof invoked the hypothesis
κ < s twice (corresponding to Rσ and R) and κ < b once (corresponding
to D). The first use of κ < s logically precedes the other two (corresponding
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to sequential composition) because the unsplit set A obtained at the first
step is used to produce the j and g for the other two steps. The second use
of κ < s and the use of κ < b can proceed in parallel, as neither depends on
the other (corresponding to conjunction).

4.13 Example. Sequential composition also occurs naturally in much sim-
pler situations. Consider, for example, the following variant of unsplitting:
R3 = (ω3, [ω]ω, is almost constant on). Its norm r3 is the minimum number
of infinite subsets of ω not all split by a single partition of ω into three pieces.
This cardinal is easily seen to be equal to r, but one direction of the proof
involves a sequential composition. A “3-unsplittable” family is obtained by
starting with an unsplittable family and then forming, within each of its
sets, a further unsplittable family. The union of the latter families is then
3-unsplittable (and even 4-unsplittable). In terms of morphisms, one obtains
R; R → R3 (as well as the trivial R3 → R).

Equipped with the concept of morphism, we can address an issue that
had been glossed over in the introduction. If one believes the Continuum
Hypothesis (CH), then the theory of cardinal characteristics becomes trivial,
for they are all equal to ℵ1. Nevertheless, there is non-trivial combinatorial
content in proofs like those of Theorems 2.10 and 3.3, even if CH holds and
makes the theorems themselves trivial. That combinatorial content is used
to construct the morphisms D ↔ D′ → R⊥, so one might hope that the
existence of such morphisms is what the argument “really” proves, a non-
trivial result even in the presence of CH. Yiparaki [114] showed that this
hope is not justified; CH implies not only the equality of all our cardinal
characteristics but also the existence of morphisms in both directions between
the corresponding relations. The last part of the following theorem embodies
this result.

4.14 Theorem. Let A = (A−, A+, A) and B = (B−, B+, B) be two relations
and let κ be an infinite cardinal.

1. ‖A‖ ≤ κ if and only if there is a morphism from (κ, κ,=) to A.

2. If ‖A‖ = |A+| = κ, then there is a morphism from A to (κ, κ,<).

3. If ‖A⊥‖ = |A−| = κ, then there is a morphism from (κ, κ,<) to A.

4. If ‖A‖ = |A+| = ‖B⊥‖ = |B−| ≥ ℵ0, then there is a morphism from A
to B.

Proof. The “if” direction of 1 is immediate from Theorem 4.9 and the fact
that ‖(κ, κ,=)‖ = κ. For the “only if” direction, let ϕ+ : κ→ A+ enumerate
a set of at most κ responses meeting all challenges; then for each challenge
a ∈ A− let ϕ−(a) be any α < κ such that ϕ+(α) meets a.

For 2, let ϕ+ : A+ → κ be any one-to-one map. Then, for any α < κ, the
set {a ∈ A+ : ϕ+(a) ≤ α} has cardinality smaller than κ = ‖A‖, so some
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challenge in A− has no correct response in this set. Let ϕ−(α) be any such
challenge.

Note that 2 remains true if we replace (κ, κ,<) with (κ, κ,≤). Then dual-
ization gives 3.

Finally, to prove 4, just compose the morphisms A→ (κ, κ,<) → B given
by 2 and 3. �

If CH holds, then part 4 of this theorem applies to most of the relations
in Example 4.4 above, for the cardinals involved are ℵ1. The only exceptions
are Cov(I) and Cof(I), but even here we can (indirectly) apply part 4 when
I is the ideal of measure zero sets or the ideal of meager sets in R or a similar
ideal. More precisely, if I is an ideal on R and I has a cofinal subset I0

of size ≤ c, then part 4 applies directly to variants of Cov(I) and Cof(I)
with I replaced by I0. But it is trivial to check that there are morphisms
in both directions between these variants and the original relations. In effect
then, part 4 provides morphisms in both directions between any two of the
relations we are considering; CH trivializes not only the inequalities between
cardinal characteristics but also the morphisms between the corresponding
relations.

Nevertheless, there is still some hope of using morphisms to describe the
combinatorial content of the theory in a way that makes good sense even when
CH holds. This hope is based on the observation that the morphisms given
by Theorem 4.14 are highly non-constructive; they involve well-orderings of
the continuum (and similar sets). By contrast, the morphisms given by the
proofs of cardinal characteristic inequalities are much better behaved. They
consist of Borel maps with respect to the usual topologies on the sets involved
(like ωω and P(ω)). Two clarifications are in order here. One is that, when
the sets involved are bases I0 for some ideals, as in the preceding paragraph,
then the sets in I0 should be coded by reals in some standard way. For
example, if I is the ideal of meager (resp. measure zero) sets in R, then I0

can be taken to consist of the Fσ (resp. Gδ) members of I, and there are
well-known ways of coding such sets (or arbitrary Borel sets) by reals. The
second clarification is that Pawlikowski and Rec�law have shown [85] that,
with suitable coding, the morphisms can be taken to consist of continuous
maps; nevertheless, we shall continue to use “Borel” as our main criterion of
simplicity.

The existence of Borel morphisms seems to serve well as a codification
of the combinatorial content of proofs of cardinal characteristic inequalities.
On the one hand, the usual proofs provide Borel morphisms. On the other
hand, when an inequality is not provable then, although it may hold in spe-
cific models and even have morphisms attesting to it (e.g., in models of CH),
there will never be Borel morphisms attesting to it. The following theo-
rem establishes this last fact for the particular unprovable inequality d ≤ s.
Similar arguments can be given for other unprovable inequalities, but they
usually involve notions of forcing more complicated than the Cohen forcing
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used here. We remark that the theorem proves a bit more than was claimed
above; a morphism ϕ attesting to d ≤ s cannot have even one of its two
constituent functions ϕ± Borel. (The weaker result that ϕ± cannot both be
Borel in this situation was established in [22].)

4.15 Theorem. If ϕ is a morphism R⊥ → D, then neither ϕ+ nor ϕ− is a
Borel function.

Proof. Recalling the definitions of R and D, we see that

ϕ− : ωω → [ω]ω,

ϕ+ : P(ω) → ωω, and
ϕ−(a) is split by b =⇒ a <∗ ϕ+(b).

Suppose first that ϕ− were a Borel function, with code p (in a standard
coding system for Borel sets and functions). Adjoin to the universe a Cohen-
generic function c : ω → ω, and define d = ϕ̃−(c), where ϕ̃− is the Borel
function coded by p in V [c]. Thus d ∈ [ω]ω in V [c]. The ground model reals
form a splitting family in the Cohen extension V [c] (because they form a non-
meager family there; see Sect. 11.3 and the proof of Theorem 5.19 below).
So there is a real r ∈ V ∩ P(ω) that splits d. In the ground model V , let
g = ϕ+(r) and notice that, because ϕ is a morphism,

∀x ∈ ωω [ϕ−(x) is split by r =⇒ x <∗ g].

This is a Π1
1 statement about r, g, and the code p of ϕ−. So it remains

true in V [c], where p codes ϕ̃− and where x can take c as a value. Thus we
find, in V [c], since ϕ̃−(c) = d is split by r, that c <∗ g. But this is absurd;
a Cohen-generic c ∈ ωω cannot be dominated by a g from the ground model.
This contradiction shows that ϕ− cannot be a Borel map.

Now suppose instead that ϕ+ were a Borel function, with Borel code p.
Let c ∈ P(ω) be Cohen-generic and let e = ϕ̃+(c), where ϕ̃+ is the Borel
function coded by p in V [c]. Thus e ∈ ωω in V [c]. The ground model reals
are unbounded in ωω in a Cohen extension, so fix r ∈ V ∩ ωω with r �<∗ e.
Let q = ϕ−(r), an infinite subset of ω in V . Because ϕ is a morphism,

∀x ∈ P(ω) [q is split by x =⇒ r <∗ ϕ+(x)].

As before, this is a Π1
1 statement about q, r, and p, so it remains true in V [c].

There c is a possible value of x and p codes ϕ̃+, so from r �<∗ e = ϕ̃+(c) we
can infer that q is not split by c. This is absurd, as every infinite subset of ω
in the ground model V is split by the Cohen subset c of ω. �

The use of Borel morphisms can also clarify the need for sequential (and
other) composition operations on relations. Specifically, a forcing argument
is used in [22] to show that some naturally occurring morphisms involving
sequential compositions (e.g., the proof of Theorem 5.6 below) cannot be
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simplified to use conjunctions or products or even sequential composition in
a different order. Mildenberger [77] and Spinas [107] have obtained similar
results by combinatorial methods in some cases where the forcing method of
[22] does not apply. A forcing argument in [24] shows that the sequential
composition Rσ; (R ∧D) used in the proof of hom2 ≤ max{rσ, d} cannot be
replaced by simply Rσ∧D. But other potential simplifications in this problem
and similar simplifications in other problems, though they seem unlikely, have
not been proved impossible.

4.16 Remark. Let A and B be relations where A± and B± are sets of
reals. Call a morphism ϕ : A→ B semi-Borel (on the positive side) if ϕ+ is
a Borel function. Thus, Theorem 4.15 asserts that certain morphisms cannot
be semi-Borel.

Call a set X of reals small with respect to A if there is no semi-Borel
morphism from (X,X,=) to A. Without “semi-Borel”, this definition would
say simply that |X| < ‖A‖, by the first part of Theorem 4.14. With “semi-
Borel,” smallness is a weaker notion, related to the topological (or Borel)
structure of X, not just to its cardinality. It can be expressed as “no image
of X under a Borel function to A+ contains responses meeting all challenges
from A−.”

The smallness properties associated in this way to the relations involved
in Cichoń’s diagram (see the end of Sect. 5) were introduced and studied
by Pawlikowski and Rec�law [85], who connected them with various classical
smallness properties of sets of reals. Bartoszyński’s chapter in this Handbook
contains extensive information about this topic.

5. Category and Measure

Despite their origins in real analysis, Baire category and Lebesgue measure
are, to a large extent, combinatorial notions. As such, they have close ties
with some of the objects discussed in the preceding sections. We give here a
rather cursory presentation of some of these combinatorial aspects of category
and measure. For a more complete treatment, see Bartoszyński’s chapter in
this Handbook and the book [5] of Bartoszyński and Judah.

Recall Definition 2.7 of the four cardinal characteristics add, cov, non,
cof associated to any proper ideal (containing all singletons) on any set.
We shall be interested in these and in the corresponding relations (Cof ⊥,
Cov, Cov⊥, and Cof , respectively, from Example 4.4) when the ideal is
either the σ-ideal of meager (also called first category) sets or the σ-ideal
of sets of Lebesgue measure zero (also called null sets). We use B and L
respectively to denote these two ideals. (The notation stands for “Baire” and
“Lebesgue”; other authors have used C for “Category,” K for “Kategorie,”
M for “meager,” M for “measure,” and N for “null”.) As indicated in the
introduction, we do not distinguish notationally between the meager ideals on
various versions of the continuum, R, ω2, ωω, etc., and similarly for measure.
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The various versions of each cardinal characteristic are equal; the various
versions of each relation admit morphisms in both directions. We tolerate
an additional, equally innocuous ambiguity by not distinguishing between an
ideal and a basis for it. Thus, we may pretend that B consists of meager Fσ

sets and that L consists of Gδ null sets. If we discuss Borel morphisms, we
further identify Fσ and Gδ sets with some standard encoding as reals.

We begin our treatment of Baire category by giving a convenient combi-
natorial description of meagerness in the space ω2. This idea was introduced
in a more specialized context by Talagrand [108].

5.1 Definition. A chopped real is a pair (x,Π), where x ∈ ω2 and Π is an
interval partition of ω. Recall that we introduced the notation IP for the set
of all interval partitions; we write CR for the set ω2 × IP of chopped reals.
A real y ∈ ω2 matches a chopped real (x,Π) if x�I = y�I for infinitely many
intervals I ∈ Π.

5.2 Theorem. A subset M of ω2 is meager if and only if there is a chopped
real that no member of M matches.

Proof. The set of reals y that match a given chopped real (x, {In : n ∈ ω}) is

Match(x, {In : n ∈ ω}) =
⋂

k

⋃
n≥k{y : x�In = y�In},

the intersection of countably many dense open sets. So Match(x,Π) is comea-
ger, and the “if” part of the theorem follows.

To prove “only if,” suppose M is meager, and fix a countable sequence of
nowhere dense sets Fn that cover M . Note that, for the standard (product)
topology on ω2, to say that a set F is nowhere dense means that for every
finite sequence s ∈ <ω2 there is an extension t ∈ <ω2 such that no y ∈ F
extends t. Note also that the union of finitely many nowhere dense sets is
nowhere dense, so we can and do arrange that Fn ⊆ Fn+1 for all n. Then
we can complete the proof by constructing a chopped real (x, {In : n ∈ ω})
such that, for each n, no real in Fn agrees with x on In. This suffices because
then any y that matches (x, {In : n ∈ ω}) will be outside infinitely many Fn,
hence outside them all by monotonicity, and hence outside M .

To define In and x�In, suppose the earlier Ik (k < n) are already defined
and are contiguous intervals. So we know the point m where In should start.
In will be the union of 2m contiguous subintervals Ji (i < 2m) defined as
follows. List all the functions m→ 2 as ui (i < 2m). By induction on i, choose
Ji and x�Ji so that no element of Fn is an extension of ui∪

⋃
j≤i(x�Jj). These

choices are possible because Fn is nowhere dense. Finally, let In =
⋃

j<2m Ji;
having already defined each x�Ji, we have determined x�In.

If y agrees with x on In, then y extends ui∪
⋃

j≤i(x�Jj) for some i, namely
the i such that ui = y�m. Therefore, y /∈ Fn, as required. �

The theorem shows that the sets Match(x,Π) form a base for the filter
of comeager sets and so their complements form a base for the ideal B. We
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may therefore confine attention to these complements when discussing the
cardinal characteristics of B and the associated relations. In this connection,
it is useful to have the following combinatorial formulation of the inclusion
relation between these sets; we leave the straightforward proof to the reader.

5.3 Proposition. Match(x,Π) ⊆ Match(x′,Π′) if and only if for all but
finitely many intervals I ∈ Π there exists an interval J ∈ Π′ such that J ⊆ I
and x′�J = x�J .

We shall say that (x,Π) engulfs (x′,Π′) when the equivalent conditions in
the proposition hold.

Thus, we have morphisms in both directions between Cof(B) and

Cof ′(B) = (CR,CR, is engulfed by),

as well as morphisms in both directions between Cov(B) and

Cov′(B) = (ω2,CR, does not match).

Notice that if (x,Π) engulfs (x′,Π′) then Π dominates Π′. Combining this
with the characterization of d and b in Theorem 2.10 and the characterization
of add(B) and cof(B) in Example 4.4, we obtain the following inequalities.

5.4 Corollary. add(B) ≤ b and d ≤ cof(B).

Another relation between the characteristics from Sect. 2 and the charac-
teristics of Baire category follows from Theorem 2.8.

5.5 Proposition. b ≤ non(B) and cov(B) ≤ d.

Proof. In ωω, any set of the form {f : f ≤ g} is clearly nowhere dense
(because every finite sequence in <ωω has an extension in <ωω with some
values greater than the corresponding values of g). The proof of Theorem 2.8
shows, therefore, that all compact sets in ωω are nowhere dense and therefore
Kσ ⊆ B. That immediately implies cov(Kσ) ≥ cov(B) and non(Kσ) ≤
non(B). (Indeed, whenever I ⊆ J are ideals, we have a morphism Cov(I) →
Cov(J ) given by the identity map on challenges and the inclusion map on
responses.) Now Theorem 2.8 completes the proof. �

All ZFC-provable inequalities among b, d, and the four characteristics of
B are obtainable by transitivity from the preceding corollary and proposition
and the general facts that add ≤ cov ≤ cof and add ≤ non ≤ cof for any
nontrivial ideal. There are, however, two additional relations due to Miller
[80] and Truss [110], each involving three of these cardinals.

5.6 Theorem.

1. There is a morphism from (Cov′(B))⊥; D′ to Cof ′(B).

2. cof(B) = max{non(B), d}.
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3. add(B) = min{cov(B), b}.

Proof. Recall that D′ = (IP, IP, is dominated by) where IP is the set of inter-
val partitions, that ‖D′‖ = d, and that ‖D′ ⊥‖ = b. Thus, if we prove part 1
of the theorem, then the ≤ half of part 2 and the ≥ half of part 3 will follow
by Theorems 4.9 and 4.11. The other halves of parts 2 and 3 were already
established, so we need only prove part 1.

A morphism ϕ as claimed in part 1 would consist of a function ϕ− from
the set CR of chopped reals to CR× (ω2)IP and a function ϕ+ from ω2× IP
to CR, satisfying an implication to be exhibited after we simplify notation a
bit. As a map into a product, ϕ− consists of two maps, α : CR → CR and
β : CR → (ω2)IP. We shall take α and ϕ+ to be identity maps. (Recall that
CR = ω2 × IP, so this makes sense.) It remains to define β so as to satisfy
the required implication, which now reads: For all x ∈ CR, all y ∈ ω2, and
all Π ∈ IP,

[y matches x and Π dominates β(x)(y)] =⇒ [(y,Π) engulfs x].

It does not matter how we define β(x)(y) when y does not match x. If y
does match x, i.e., if there are infinitely many intervals I in the partition
component of the chopped real x on which x and y agree, then we define
β(x)(y) to be some interval partition each of whose intervals includes at least
one such I. �

5.7 Remark. It is easy to specify the β in the last part of the proof more
explicitly so that β(x)(y) is a Borel function of x and y; since the other com-
ponents of ϕ are trivial, we can say that part 1 of the theorem is witnessed by
a Borel morphism. It is shown in [22] that one cannot get a Borel morphism
in part 1 if one replaces the sequential product there with the categorical
product, or the conjunction, or the sequential product in the other order.

Before turning from category to measure, we give an elegant, combinatorial
description of cov(B), due to Bartoszyński [4].

5.8 Definition. Call two functions x, y ∈ ωω infinitely equal if ∃∞n (x(n) =
y(n)) and eventually different otherwise, i.e., if ∀∞n (x(n) �= y(n)).

5.9 Theorem.

1. cov(B) = ‖(ωω, ωω, eventually different)‖.

2. non(B) = ‖(ωω, ωω, infinitely equal)‖.

Proof. We prove only part 1 as part 2 is dual to it. The ≤ direction is clear
once one observes that, for any x ∈ ωω, the set of y ∈ ωω eventually different
from x is meager. (In fact, sending x to this set defines half of a morphism
from the relation on the right of part 1 to Cov(B) (when the reals are taken
to be ωω); the other half of the morphism is the identity map.)
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To prove the ≥ direction of part 1, we show how to match, with a single
real y, all the chopped reals in a family {(xα,Πα) : α < κ}, where

κ < ‖(ωω, ωω, eventually different)‖.

Note that the norm here is trivially ≤ d (there’s a morphism from D

consisting of the identity map in both directions). So by Theorem 2.10 there
is an interval partition Θ not dominated by any Πα.

Temporarily fix an arbitrary α < κ. Non-domination means that Πα

has infinitely many intervals that include no interval of Θ and are therefore
covered by two adjacent intervals of Θ. Call a pair of adjacent intervals of Θ
good if they cover an interval of Πα; so there are infinitely many good pairs.

Define a function fα on ω as follows. fα(n) is obtained by taking 2n + 1
disjoint good pairs, taking the union of the two intervals in each pair to obtain
2n + 1 intervals J0, . . . , J2n, and then forming the set of restrictions of xα to
these intervals:

fα(n) = {xα�J0, . . . , xα�J2n}.
Note that, although the values of fα are not natural numbers, they can be
coded as natural numbers.

Now un-fix α. By our hypothesis on κ, find a function g infinitely equal
to each fα. Without harming this property of g, we can arrange that, for
each n, g(n) is a set of 2n + 1 functions, each mapping an interval of ω to 2.
Furthermore, we can arrange that these 2n+1 intervals are disjoint and each
of them is the union of two adjacent intervals of Θ. (Any n for which g(n)
is not of this form could not contribute to the agreement between g and any
fα, so we are free to modify g(n) arbitrarily.)

We define a function y : ω → 2 by recursion, where at each stage we
specify the restriction of y to a certain pair of adjacent intervals in Θ. After
stages 0 through n− 1 are completed, y is defined on only 2n intervals of Θ,
so at least one of the 2n + 1 members of g(n), say z(n), has its domain J
disjoint from where y is already defined. Extend y to agree with z(n) on J .
This completes the recursion; if there are places where y never gets defined,
define it arbitrarily there.

To complete the proof, we show that y matches every (xα,Πα). Consider
any α and any one of the infinitely many n for which g(n) = fα(n). At stage n
of the construction of y, we ensured that y extends some z(n) ∈ g(n) = fα(n).
But the construction of fα(n) ensures that z(n) is the restriction of xα to
an interval (the union of a good pair of intervals from Θ) that includes an
interval of Πα. Thus y agrees with xα on that interval of Πα. Since this
happens for infinitely many n, y matches (xα,Πα). �

5.10 Remark. The preceding proof exhibits a morphism from Cov′(B) to
D′̆;(ωω, ωω, eventually different). Ignoring the coding needed to make fα and
g functions into ω, we can say that the “challenge” half of the morphism is
the construction of y from Θ and g and the “response” half of the morphism
sends any (x,Π) (where we omit the α subscripts needed in the proof but
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not here) to the pair consisting of Π and the function that maps any Θ not
dominated by Π to the f as in the proof (and maps Θ’s that are dominated
by Π arbitrarily).

It is an open problem whether one can omit the “D;̆” part, i.e., whether
there is a Borel morphism from Cov′(B) to (ωω, ωω, eventually different).
An essentially equivalent question is whether any forcing that adds a real (in
ωω) infinitely equal to all ground model reals (called a “half-Cohen” real)
must add a Cohen real. The proof above shows that if one first adds an
unbounded real and then a half-Cohen real over the resulting model, the
final model contains a Cohen real over the ground model.

We now turn to Lebesgue measure (and equivalent measures on ω2, ωω,
etc.) and its connections with Baire category. The first such connection was
given by Rothberger [90].

5.11 Theorem. cov(B) ≤ non(L) and cov(L) ≤ non(B).

Proof. Let Π be the interval partition whose nth interval In has n + 1 el-
ements for all n. Define a binary relation R on ω2 by letting xR y mean
that x�In = y�In for infinitely many n, i.e., that y matches the chopped real
(x,Π). Notice that R is symmetric and, for every x, the set Rx = {y : xR y}
is a comeager set of measure zero. (“Comeager” was proved in Theorem 5.2.
The calculation for “measure zero” consists of noticing that, once x is fixed,
the y’s that agree with it on In form a set of measure 2−(n+1), so the y’s that
agree with x on at least one In beyond Ik form a set of measure at most 2−k,
and so the y’s that do this for all k form a set of measure zero.)

Thus, letting R = (ω2, ω2, R), we have morphisms ϕ : R → Cov(L) and
ψ : R⊥ → Cov(B), where ϕ+ and ψ+ send x to Rx and ω2−Rx respectively
and where both ϕ− and ψ− are the identity on ω2. Composing each of
these morphisms with the dual of the other, we get morphisms Cov(B)⊥ →
Cov(L) and Cov(L)⊥ → Cov(B). Since cov = ‖Cov‖ and non = ‖Cov⊥‖
for both ideals, the theorem follows. �

5.12 Remark. The relation R in the preceding proof could be replaced by
any relation of the form “x⊕ y ∈ M” where ⊕ is addition modulo 2 and M
is any comeager set of measure zero. For example, M could be the set of 0–1
sequences in which the density of 1’s in initial segments does not approach
1/2.

In this form, the proof generalizes to any pair of translation-invariant (with
respect to ⊕) ideals that concentrate on disjoint sets.

The rest of our discussion of measure characteristics is based on a combi-
natorial characterization, due to Bartoszyński [3], of add(L). To formulate
it, we need the following terminology.

5.13 Definition. A slalom is a function S assigning to each n ∈ ω a set
S(n) ⊆ ω of cardinality n. We say that a real x ∈ ωω goes through slalom S
if ∀∞n (x(n) ∈ S(n)).
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5.14 Theorem. add(L) is the smallest cardinality of any family F ⊆ ωω
such that there is no single slalom through which all the members of F go.

For the proof, we refer to Bartoszyński’s original paper [3], his chapter
in this Handbook, his book with Judah [5, Theorem 2.3.9], or Fremlin’s
article [47].

5.15 Remark. The theorem would remain true if we modified the definition
of “slalom” by requiring S(n) to have cardinality f(n) instead of n; here f can
be any function ω → ω that grows without bound. We refer to this modified
notion of slalom as an f -slalom (or f(n)-slalom). Suppose, for example, that
κ is a cardinal such that every κ functions in ωω go through a single f -slalom.
To show that any κ functions xα go through a single slalom in the original
sense, partition ω into intervals such that the nth interval starts at or after
f(n). Let yα(n) be (or code) the restriction of xα to the nth interval. From
an f -slalom through which all the yα go, one easily gets a slalom in the
original sense through which all the xα go.

Despite this observation, it is not true that one could simply omit the
cardinality bound (n or f(n)) in the definition of slalom and merely require
each S(n) to be finite. Indeed, with this weakening, the cardinal described
in the theorem would be simply b, which can be strictly larger than add(L).

As indicated for example in Oxtoby’s book [83], there are a great many
similarities between Baire category and Lebesgue measure. The following in-
equality, due to Bartoszyński [3] and independently but a bit later to Raison-
nier and Stern [89], was an early indication that the symmetry is not so
extensive as one might have thought. (The first indication of this was She-
lah’s proof [98] that ZF (without choice) plus “all sets of reals have the Baire
property” is consistent if ZF is, whereas the consistency of ZF plus “all sets
of reals are Lebesgue measurable” requires the consistency of an inaccessi-
ble cardinal.) The theme of measure-category asymmetry is developed much
further in the book [5].

5.16 Theorem. add(L) ≤ add(B).

Proof. In view of Theorem 5.6, it suffices to prove that add(L) ≤ b and
add(L) ≤ cov(B). The former is immediate, in view of Theorem 5.14, for
a family of reals going through a single slalom is obviously bounded. (It
should be mentioned that the inequality add(L) ≤ b was originally proved
by Miller [81] before Theorem 5.14 was known.) For the second inequality,
we use Theorem 5.9.

If κ < add(L) and if we are given κ functions xα ∈ ωω, we must find
a single function y infinitely equal to them all. Fix an interval partition Π
whose nth interval In has cardinality ≥ n. To each xα associate the function
x′

α ∈ ωω where x′
α(n) codes (in some standard way) xα�In. Let S be a slalom

through which all the x′
α go. We may assume that all n elements of S(n)

code functions In → ω, for any other elements can be replaced with such
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codes without harming the fact that all x′
α go through S. For each n, choose

a function yn : In → ω that agrees at least once with each of the n members
of S(n); this is trivial to arrange, since |In| ≥ n. Then the union of all the
yn is the desired y. Indeed, every xα agrees with y at least once in each In

except for finitely many. �

5.17 Remark. The preceding proof, though short, has a defect from the
point of view of morphisms between relations. Because it relies on Theo-
rems 5.6 and 5.9, it involves sequential compositions. In fact, it provides
a Borel morphism from Cof(L);Cof(L);Cof(L) to Cof(B). The presence
of these sequential compositions is an artifact of the proof. Bartoszyński’s
chapter in this Handbook contains a different proof, giving a Borel morphism
from Cof(L) to Cof(B).

Since the proof gave a morphism, we also have the dual result.

5.18 Corollary. cof(B) ≤ cof(L).

Our discussion of the four standard characteristics (add, cov, non, and
cof) of measure and category, along with b and d, is now complete, in the
following strong sense. If one assigns to each of these ten characteristics one
of the values ℵ1 and ℵ2, and if the assignment is consistent with the equations
and inequalities proved above, then that assignment is realized in some model
of ZFC. We shall comment on a few of these models in Sect. 11 below, but
we refer to [6] or [5, Chap. 7] for all the details.

The inequalities between these ten cardinal characteristics are summa-
rized in the following picture, known as Cichoń’s diagram, in which one goes
from larger to smaller cardinals by moving down or to the left along the ar-
rows. (A 45◦ counterclockwise rotation would produce a Hasse diagram in
the customary orientation. We’ve drawn the arrows in the direction of the
morphisms between the corresponding relations, hence from larger to smaller
characteristics.)

cov(L) ←− non(B) ←− cof(B) ←− cof(L)∣
∣

⏐
(

⏐
(

∣
∣

∣
∣ b ←− d

∣
∣

⏐
(

⏐
(

⏐
(

⏐
(

add(L) ←− add(B) ←− cov(B) ←− non(L)

To conclude this section, we point out an elementary connection between
the covering and uniformity numbers studied here and the splitting and re-
fining numbers from Sect. 3.

5.19 Theorem. s ≤ non(B),non(L) and r ≥ cov(B), cov(L).

Proof. For any infinite A ⊆ ω, the sets X ⊆ ω that fail to split A form a
meager, measure-zero set UA. Then the function A �→ UA and the identity
function on P(ω) constitute a morphism from R to Cov(B) and also to
Cov(L). �
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6. Sparse Sets of Integers

This section is primarily about two characteristics, t and h, related to the idea
of thinning out infinite subsets of ω, i.e., replacing them by subsets, usually
so as to achieve some useful property like homogeneity for some partition.
t is concerned with the (transfinite) thinning process itself; h focuses on what
can be achieved by iterated thinning. We shall also briefly consider two
characteristics, p and g, whose definitions resemble those of t and h, though
their most significant properties are treated only in later sections.

We begin with the definition and simplest properties of t.

6.1 Definition. A pseudointersection of a family F of sets is an infinite set
that is ⊆∗ every member of F .

6.2 Definition. A tower is an ordinal-indexed sequence 〈Tα : α < λ〉 such
that:

1. Each Tα is an infinite subset of ω.

2. Tβ ⊆∗ Tα whenever α < β < λ.

3. {Tα : α < λ} has no pseudointersection.

The tower number t is the smallest λ that is the length of a tower.

6.3 Remark. Hechler [55] has constructed a model where many regular
cardinals occur as the lengths of towers.

Some authors define “tower” using only the first two clauses in the defini-
tion above, i.e., an almost decreasing sequence in [ω]ω; what we call a tower,
they would call an inextendible tower. Also, some authors take towers to
be almost increasing sequences of co-infinite subsets of ω rather than almost
decreasing sequences of infinite sets.

We shall not always be as careful as we were in clause 3 of the definition
about the distinction between a sequence like 〈Tα : α < λ〉 and the set
{Tα : α < λ} of its terms.

6.4 Proposition. t is a regular uncountable cardinal.

Proof. Regularity is clear since any cofinal subsequence of a tower is a tower.
To show that there can be no tower 〈Tn : n ∈ ω〉 of length ω, note that
we could form an infinite set X by taking any element of T0, any different
element of T0 ∩ T1, any different element of T0 ∩ T1 ∩ T2, etc., since all these
sets are infinite. This X would be a pseudointersection, violating requirement
3 in the definition of tower. �

Before continuing with further properties of t, we introduce h, its basic
properties, and its connection with t.
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6.5 Definition. A family D ⊆ [ω]ω is open if it is closed under almost sub-
sets. It is dense if every X ∈ [ω]ω has a subset in D. The distributivity
number h is the smallest number of dense open families with empty intersec-
tion.

6.6 Remark. The open sets as defined here constitute a topology on [ω]ω,
which we call the lower topology . Density as defined here agrees with topo-
logical density in the lower topology as long as D is closed under finite mod-
ifications (for example if it is open). Analogous definitions can be made for
any pre-ordered set in place of ([ω]ω,⊆∗).

The name “distributivity number” comes from viewing ([ω]ω,⊆) as a no-
tion of forcing and asking how distributive the associated complete Boolean
algebra is. Standard techniques from forcing theory show that the answer is
given by h. More precisely, Boolean meets of fewer than h terms distribute
over arbitrary (finite or infinite) joins, but meets of h terms need not distrib-
ute even over binary joins. Equivalently, in a forcing extension by ([ω]ω,⊆),
h has new subsets but smaller ordinals do not (not even new functions into
the ordinals). We shall see later (6.20) that this forcing extension collapses c

to h if h < c.

6.7 Proposition. The intersection of any fewer than h dense open families
is dense open. h is a regular cardinal.

Proof. The second sentence follows immediately from the first. (It also fol-
lows from the remark about distributivity.) To show that the intersection
of fewer than h dense open families Dα is dense open, note first that it is
obviously open. As for density, let X be any infinite subset of ω and consider
the families D′

α = {Y ∈ Dα : Y ⊆ X}. These are fewer than h dense open
families of subsets of X, so they have a common member Y . That is, Y ⊆ X
and Y ∈

⋂
αDα. �

The definition of t is essentially about the process of thinning out infinite
subsets of ω by repeatedly passing to (almost) subsets. If one attempts to
iterate such a thinning process transfinitely, the definition of t ensures that
one will not get stuck at limit stages of cofinality < t.

The definition of h addresses the same idea from the point of view of what
such thinning can achieve. A dense open family is one that one can get into,
from an arbitrary infinite subset of ω, by passing to a subset (and subsequent
passages to further (almost) subsets will not undo this achievement). The
next proposition is just the result of comparing these intuitions that stand
behind t and h.

6.8 Proposition. t ≤ h.

Proof. Suppose κ < t, and let κ dense open families Dα (α < κ) be given; we
must find a set in their intersection. Define an almost decreasing sequence
〈Tα : α ≤ κ〉 by the following recursion. T0 = ω. Tα+1 is any subset of Tα
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that is in Dα; this exists because Dα is dense. If λ ≤ κ is a limit ordinal,
then Tλ is any pseudointersection of {Tα : α < λ}; this exists because κ < t

so {Tα : α < λ} cannot be a tower, yet the previous steps ensured that it
satisfies the first two requirements for a tower. Since Tκ ⊆∗ Tα+1 for all
α < κ, we have, thanks to openness, that Tκ is in all the families Dα. �

It is consistent with ZFC to have t < h. In fact, Dordal [41] built a model
where h = ℵ2 = c but there are no towers of length ω2.

Upper bounds for h, and therefore also for t, can be obtained by considering
specific examples of dense open families. One family of examples consists
of {X ∈ [ω]ω : X is not split by Y } for arbitrary Y . Another consists of
{X ∈ [ω]ω : ∀∞x ∈ X ∀y ∈ X (if x < y then f(x) < y)} for arbitrary
f : ω → ω. Using these, one easily obtains the following proposition, but we
give another proof to suggest another class of examples.

6.9 Theorem. h ≤ b, s.

Proof. By Theorem 3.5 it suffices to show h ≤ par2. So let κ < h partitions
fα of [ω]2 be given; we must find an infinite set almost homogeneous for
them all. For each α, let Dα be the family of all infinite subsets of ω that
are almost homogeneous for fα. Then Dα is dense open, thanks to Ramsey’s
Theorem. So there is a set H common to all the Dα. �

6.10 Remark. The same proof shows that one can get simultaneous almost
homogeneity for fewer than h partitions of more complicated sorts, provided
one has the analog of Ramsey’s Theorem to ensure density. Thus, for ex-
ample, Silver’s partition theorem for analytic sets [102] implies that any < h

partitions of [ω]ω into an analytic and a coanalytic piece have a common
infinite almost homogeneous set.

By Proposition 6.8, the upper bounds on h apply also to t, but for t we can
improve b to add(B). In order to prove this, we need the following lemma,
in which Q denotes the set of rational numbers and “dense” has its usual
topological (or order-theoretic) meaning for subsets of Q. Both the lemma
and the subsequent theorem are from [93] (stated for special cases but the
proofs work in general); they were rediscovered in [86].

6.11 Lemma. Suppose λ < t and 〈Tα : α < λ〉 is an almost decreasing
sequence of dense subsets of Q. Then there exists a dense X ⊆ Q that is
almost included in every Tα.

Proof. In each interval I with rational endpoints, consider the almost de-
creasing sequence 〈Tα ∩ I : α < λ〉 of infinite subsets of I. As it is too short
to be a tower, there is an infinite YI ⊆ I almost included in all the Tα. (The
union of all the YI is dense, but it need not be ⊆∗ Tα, so we must work a bit
harder to get X.) Enumerate each YI as an ω-sequence 〈yI,n〉. For each α
let fα(I) ∈ ω be an upper bound for the finitely many n such that yI,n /∈ Tα.
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Since λ < t ≤ b (and the set of intervals I is countable), let g be a function to
ω from the set of rational intervals such that g dominates all the fα’s. Then

X =
⋃

I{yI,n : n > g(I)}

is dense in Q (because it contains almost all of each YI) and is almost included
in each Tα (for X − Tα consists of finitely many elements from each of the
finitely many YI where g(I) < fα(I)). �

6.12 Theorem. t ≤ add(B).

Proof. We must show that if κ < t then the intersection of any κ dense
open subsets Gα (α < κ) of R is comeager. We begin by defining an almost
decreasing sequence 〈Tα : α ≤ κ〉 of dense subsets of Q. Start with T0 = Q.
At limit stages, apply the lemma. At successor stages, set Tα+1 = Tα ∩Gα;
this is dense because it is the intersection of two dense sets one of which is
open. Note that Tκ, being ⊆∗ each Tα+1 (α < κ) is also ⊆∗ each Gα.

For t ∈ Tκ and α < κ, define fα(t) ∈ ω to be some n such that (t− 1
n , t +

1
n ) ⊆ Gα if t ∈ Gα, and 0 otherwise. Since Tκ is countable and κ < t ≤ b,
there is a g : Tκ → ω dominating all the fα’s.

For each finite F ⊆ Tκ, let

UF =
⋃

t∈Tκ −F

(

t− 1
g(n)

, t +
1

g(n)

)

.

Then UF is dense, because it almost includes Tκ, and it is obviously open;
since there are only countably many F ’s,

⋂
F UF is comeager, and it remains

only to prove that this intersection is included in the intersection of the Gα’s.
In fact, each Gα includes one of the UF ’s; given α just take F to contain the
finitely many t ∈ Tκ −Gα and the finitely many t where g(t) < fα(t). �

6.13 Remark. By a countable support iteration of Mathias forcing over a
model of CH, one obtains a model where h = ℵ2 but cov(B) and therefore
add(B) are only ℵ1 (as no Cohen reals are produced). Thus, the preceding
theorem cannot be improved by putting h in place of t.

The next theorem can be viewed as another upper bound on t.

6.14 Theorem. If ℵ0 ≤ κ < t then 2κ = c.

Proof. We need only check that 2κ ≤ c, and we do this by building a complete
binary tree of κ + 1 levels, whose nodes are distinct subsets of ω. More
precisely, we associate to every sequence η ∈ ≤κ2 an infinite subset Tη of ω
in such a way that:

1. If η is an initial segment of θ, then Tθ ⊆∗ Tη.

2. If neither of η and θ is an initial segment of the other, then Tη ∩ Tθ is
finite.
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The construction is by recursion on the length of η, starting with T∅ = ω. At
successor stages, we define Tη 〈0〉 and Tη 〈1〉 to be any two disjoint, infinite
subsets of Tη. Finally, for θ of limit length λ, we observe that 〈Tθ�α : α < λ〉
is an almost decreasing sequence but cannot be a tower because λ ≤ κ < t.
So there is an infinite X almost included in all these Tθ�α; any such X can
serve as Tθ.

It is immediate that the construction has the desired properties. In par-
ticular, the 2κ sets Tη, for all η of length κ, are infinite and almost disjoint
and therefore certainly distinct. �

6.15 Corollary. t ≤ cf(c).

Proof. If κ < t then, by Theorem 6.14 and König’s theorem, cf(c) =
cf(2κ) > κ. �

Returning to consider h in more detail, we first give an alternative way to
view dense open families of subsets of ω.

6.16 Definition. An almost disjoint family is a family of infinite sets, every
two of which have finite intersection. A maximal almost disjoint (MAD)
family is an infinite almost disjoint family of subsets of ω, maximal with
respect to inclusion.

6.17 Remark. Note that MAD families are required to be infinite; in the
absence of this requirement, any partition of ω into finitely many infinite sets
would count as MAD. Note also that, if A is MAD and X is any infinite
subset of ω, then X ∩A is infinite for at least one A ∈ A.

6.18 Proposition. If A is a MAD family, then A↓= {X ∈ [ω]ω : ∃A ∈ A
(X ⊆∗ A)} is dense open. Every dense open family includes one of this form.

Proof. The first statement is proved by routine checking of definitions. For
the second, let D be dense open, and let A0 be an infinite, almost disjoint
subfamily of D; for example, take some X ∈ D and partition it into infinitely
many infinite pieces. By Zorn’s Lemma, let A ⊇ A0 be an almost disjoint
family included in D and maximal among such families. We claim that A
is maximal among all almost disjoint families, not just those included in D.
Once we establish this claim, we will have A MAD and A↓⊆ D as required.

To establish maximality, consider any X ∈ [ω]ω. As D is dense, it contains
a subset Y of X. As A is maximal among almost disjoint subfamilies of D,
it contains a set A that has infinite intersection with Y and therefore also
with X. �

6.19 Corollary. h is the minimum number of MAD families such that,
for each X ∈ [ω]ω, one of these families contains at least two sets whose
intersections with X are infinite.
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Proof. X has infinite intersection with at least two sets from a MAD fam-
ily A if and only if X /∈ A↓. With this observation, the corollary follows
immediately from the proposition and the definition of h. �

The following theorem of Balcar, Pelant, and Simon [2] was the original
motivation for the introduction of h. A tree of the sort described by this
theorem is called a base matrix tree (for [ω]ω). The theorem would become
false if h were replaced by any smaller cardinal. The symbol h was chosen to
refer to the “height” of the base matrix tree.

6.20 Theorem. There is a family T ⊆ [ω]ω with the following properties.

1. Ordered by reverse almost inclusion, T is a tree of height h with root ω.

2. Each level of T , except for the root, is a MAD family.

3. Every X ∈ [ω]ω has a subset in T .

Proof. Let Dα for α < h be dense open families with no common member.
We define the levels Tα of the desired tree inductively as follows. At level 0,
put ω. At a limit level λ < h, use Proposition 6.7 to obtain a dense open
family included in all Tα↓ for α < λ. By Proposition 6.18, shrink this to a
dense open family of the form A↓, and let that A be Tλ.

At an odd-numbered successor stage, say 2α + 1, choose T2α+1 as a MAD
family included in both T2α↓ and Dα. This can be done by Propositions 6.7
and 6.18.

At an even-numbered successor stage, say 2α+2, proceed as follows. Call a
set X ∈ [ω]ω active at this stage if it has infinite intersection with c members
of T2α+1. Assign to each active X some ψ(X) ∈ T2α+1 that has infinite
intersection with X, and do this in such a way that ψ is one-to-one. This
is easily done by arranging all the active X’s in a well-ordered sequence, of
length ≤ c, and defining ψ by recursion along this ordering. At each stage
of the recursion, there are c elements of T2α+1 that have infinite intersection
with the current X and fewer than c of them have already been assigned as
earlier values of ψ, so there are plenty of candidates left to serve as ψ(X).
Once ψ has been defined, partition each Y ∈ T2α+1 into two infinite pieces
Y ′ and Y ′ ′, subject to the requirement that if Y = ψ(X) for some (unique)
X then Y ′ ⊆ X. Then let T2α+2 consist of these sets Y ′ and Y ′ ′ for all
Y ∈ T2α+1.

This completes the construction of T . The first two parts of the theorem
are clear, and the third will be clear once we show that every X ∈ [ω]ω is
active at some stage 2α+2. To this end, we consider a fixed X and we build a
binary subtree of T , of height ω, as follows. Its root is the root ω of T . After
its nth level has been constructed, consisting of 2n nodes Z of T , all at the
same level of T , say level αn, and all having infinite intersection with X, we
produce the next level as follows. For each node Z of level n in our subtree,
Z ∩ X is an infinite set and cannot be in all the dense open families Dξ as
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these were chosen to have no common member. Since T2ξ+1 ⊆ Dξ, Z ∩ X
must meet at least two sets in Tβ for all sufficiently large β. Choose a β
that is sufficiently large in this sense for all 2n Z’s; call it αn+1, and let the
successors of each Z at this level be two nodes that meet Z ∩ X infinitely.
Note that these are necessarily ⊆∗ Z (for otherwise they would be almost
disjoint from Z), so we are getting a subtree of T . After the subtree has
been constructed, use the fact that h is uncountable and regular to see that
the supremum, say γ, of the αn’s is still < h, so there are a γth and a (γ+1)st
level of T .

For each path p through our subtree, the nodes along that path, intersected
with X, form an almost-decreasing ω-sequence, so there is an infinite X ′ ⊆ X
almost included in all of them (as t > ω). That X ′ has infinite intersection
with some node Y in level γ + 1 of T , because the level is a MAD family.
This Y has infinite intersection with each of the nodes Z along the path p,
so Y is almost included in each of these Z’s (because T is a tree). Since
distinct nodes at the same level are almost disjoint, distinct paths p must
lead to distinct nodes Y . So we have c nodes Y at level γ + 1, all meeting
X infinitely. Since γ is a limit ordinal, γ = 2γ and X is active at stage
2γ + 2. �

6.21 Remark. Clause 3 of the theorem implies that forcing with the poset
([ω]ω,⊆∗) is equivalent to forcing with the tree (T ,⊆∗). It is not difficult
to modify the construction of the base matrix tree so that each node has
c immediate successors. Then this forcing clearly adjoins a function from
h onto c. Since h is not collapsed and no reals are added (because of the
distributivity), we find that h is the cardinality of the continuum in the
forcing extension by ([ω]ω,⊆∗).

We introduce a cardinal p, a slight modification of t, that is often useful
because of its connection with forcing; see Theorem 7.12 below. Notice that
it makes sense to ask about pseudointersections of families more general than
towers. An obvious necessary condition for a family to have a pseudointer-
section is the strong finite intersection property defined below; p measures
the extent to which this necessary condition is also sufficient.

6.22 Definition. A family F of infinite sets has the strong finite intersection
property if every finite subfamily has infinite intersection. The pseudointer-
section number p is the smallest cardinality of any F ⊆ [ω]ω with SFIP but
with no pseudointersection.

Since a tower is a family with SFIP and no pseudointersection, we im-
mediately get half of the following proposition. The other half, that p is
uncountable, is proved exactly as for t (and is improved in Proposition 6.24
below).

6.23 Proposition. ℵ1 ≤ p ≤ t.
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It is not known whether p can be strictly smaller than t, but the next
theorem shows that, for this to happen, p would have to be at least ℵ2 and
(therefore) t at least ℵ3. To prove the theorem, we need a proposition that
will be useful again later (in the proofs of Theorems 8.13 and 9.25) and is of
some interest in its own right as it can serve as a characterization of d (the
d in the hypothesis is easily seen to be optimal). The theorem and a version
of the proposition are in [92]; a form of the proposition closer to the present
one is in [66].

6.24 Proposition. Suppose 〈Cn : n ∈ ω〉 is a decreasing (or almost decreas-
ing) sequence of infinite subsets of ω, and suppose A is a family of fewer than
d subsets of ω such that each set in A has infinite intersection with each Cn.
Then {Cn : n ∈ ω} has a pseudointersection B that has infinite intersection
with every set in A.

Proof. We may assume 〈Cn : n ∈ ω〉 is decreasing, for if it is only almost
decreasing then we can replace each Cn with

⋂
k≤n Ck without affecting the

other hypotheses or the conclusion, as each new Cn differs only finitely from
the old.

For any h ∈ ωω, let Bh =
⋃

n∈ω(Cn ∩ h(n)). Each Cn includes all but the
first n terms of this union, and these terms are finite, so Bh is a pseudoint-
ersection of the Cn’s. It remains to choose h so that A∩Bh is infinite for all
A ∈ A.

For each such A, let fA(n) denote the nth element of the infinite set A∩Cn.
Observe that, if h(n) > fA(n) for some A and n, then A∩Bh has cardinality
at least n, for it contains the first n elements of A ∩ Cn. So Bh can serve as
the B in the proposition provided ∀A ∈ A∃∞n (h(n) > fA(n)). But there
are fewer than d functions fA, so there is an h not dominated by any of
them. �

6.25 Theorem. If p = ℵ1, then t = ℵ1.

Proof. Since t ≤ h ≤ b ≤ d, the result is immediate if d = ℵ1. So we assume
for the rest of the proof that d > ℵ1.

By hypothesis we have a family A = {Aα : α < ℵ1} with SFIP but
with no pseudointersection, and we may assume that it is closed under finite
intersections. We build a tower 〈Tα : α < ℵ1〉 of length ℵ1 by recursion,
ensuring at each stage that Tα has infinite intersection with each A ∈ A and
that Tα+1 ⊆ Aα. We start with T0 = ω, and at countable limit stages λ
we continue the tower by applying the proposition (with 〈Cn : n ∈ ω〉 being
a cofinal subsequence of 〈Tα : α < λ〉). At successor stages we set Tα+1 =
Tα ∩Aα. It is easy to verify that this defines an almost decreasing sequence
with the claimed properties. It is a tower, because any pseudointersection of
the Tα’s would also be a pseudointersection of the Aα’s. �

We close this section by discussing the groupwise density number g, a
close relative of h. More information about it, including the motivation for
its definition, is in Sect. 8.
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6.26 Definition. A family G ⊆ [ω]ω is groupwise dense if it is open in
the lower topology (i.e., closed under almost subsets) and, for every interval
partition Π, some union of (infinitely many) intervals of Π belongs to G.
The groupwise density number g is the smallest number of groupwise dense
families with empty intersection.

It is conventional, though perhaps unnatural, to include closure under
almost subsets in the definition of “groupwise dense” even though it is not in
the definition of “dense”. The first part of the following proposition gives a
convenient synonym for “groupwise dense”, namely “nonmeager open” where
“non-meager” refers to the usual topology of [ω]ω (as a subspace of Pω ∼= ω2)
whereas “open” refers to the lower topology.

6.27 Proposition.

1. A family G ⊆ [ω]ω is groupwise dense if and only if it is closed under
almost subsets and nonmeager in the standard topology.

2. The intersection of any fewer than g groupwise dense families is group-
wise dense.

3. g is regular.

4. h ≤ g ≤ d.

Proof. Identify [ω]ω with a cocountable subset of ω2 via characteristic func-
tions. Let G ⊆ [ω]ω be closed under almost subsets. By Theorem 5.2, it is
nonmeager if and only if it contains enough reals to match each chopped real
(x,Π). Thanks to closure under subsets, it suffices to match those chopped
reals whose first component x is the identically 1 function. But matching
these chopped reals is precisely what the definition of groupwise density re-
quires.

For part 2, suppose Gα are fewer than g groupwise dense families. Their
intersection G is clearly closed under almost subsets, so consider an arbitrary
interval partition Π = {In : n ∈ ω}. We must find an infinite set X ⊆ ω
such that

⋃
n∈X In ∈ G. That is, we must find an X common to the families

Hα = {X ∈ [ω]ω :
⋃

n∈X In ∈ Gα}. Since there are fewer than g of these
families, it suffices to prove that each of them is groupwise dense. This is
a routine verification; to see that Hα contains a union of intervals from a
partition Θ, use that Gα contains a union of intervals from the partition
{
⋃

n∈J In : J ∈ Θ}.
The regularity of g follows immediately from part 2.
Every groupwise dense family G is dense. Indeed, given any infinite X ⊆ ω,

we can form an interval partition in which each interval contains a member
of X. Then G contains a union of such intervals and therefore, being closed
under subsets, contains an infinite subset of X. This observation immediately
gives h ≤ g.
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Finally, to show that g ≤ d, let D be a dominating family of size d, and
associate to each f ∈ D the set

Gf = {X ∈ [ω]ω : ∃∞n (X ∩ [n, f(n)) = ∅)}.

Then Gf is groupwise dense; given any interval partition Π, we can form an
element of Gf by taking infinitely many intervals from Π, separated by gaps
so long that each gap includes [n, f(n)) for some n. But there can be no X
common to all the Gf , for if there were then the function sending each n ∈ ω
to the next larger member of X would not be dominated by any f ∈ D. So
we have d groupwise dense families with empty intersection. �

6.28 Remark. This proposition shows that, in the lattice of subsets of [ω]ω

closed downward with respect to ⊆∗, the non-meager sets form a filter, indeed
a <g-complete filter. This may be somewhat surprising, since in the lattice
(Boolean algebra) of all subsets of [ω]ω, two non-meager sets can be disjoint;
in fact there are c pairwise disjoint non-meager sets.

6.29 Remark. The characteristics studied in this section, as well as s and
r from Sect. 3 above and a from Sect. 8 below, have interesting analogs in
structures other than [ω]ω. One example is the system of dense subsets of Q,
ordered by ⊆∗. Little is known about these characteristics, but Lemma 6.11
says that the tower number in this situation is no smaller than the ordinary
tower number.

Another example is the set of partitions of ω into infinitely many pieces,
ordered by “coarser than modulo finite”. Several characteristics of this sort
have been studied by Krawczyk (unpublished).

7. Forcing Axioms

Forcing axioms are combinatorial statements designed to express what is
achieved by certain sorts of iterated forcing constructions. They serve to hide
such constructions in a “black box”; instead of showing that a statement
of interest can be forced by such a construction, one derives it from the
combinatorial principle. The oldest and still the most frequently used of
these principles is Martin’s Axiom, introduced in [74]. To state it, we need
some terminology from forcing theory.

7.1 Definition. Let (P,≤) be a nonempty partially ordered set. Two ele-
ments p, q ∈ P are compatible if they have a common lower bound and incom-
patible otherwise. An antichain is a set of pairwise incompatible elements.
P satisfies the countable chain condition (c.c.c.) or countable antichain con-
dition if all its antichains are countable. More generally, P satisfies the
<κ-chain condition if all its antichains have cardinalities < κ.

A subset D ⊆ P is dense if every element of P is ≥ an element of D. If
D is a family of dense subsets of P , then G ⊆ P is D-generic if it is closed
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upward and directed downward (every two members have a common lower
bound) and intersects every D ∈ D.

7.2 Definition. Martin’s Axiom (MA) is the statement that, if D is a family
of fewer than c dense subsets of a partial order P with c.c.c., then there is
a D-generic filter G ⊆ P . More generally, if κ is a cardinal and K is a class
of nonempty partial orders, then we write MAκ(K) for the statement that
every family D of κ dense subsets in a member P of K admits a D-generic
G ⊆ P . MA<κ(K) is defined analogously. One omits the subscript when it
is “<c” and one omits the class K when it is the class of c.c.c. posets.

Thus, MA is MA<c(c.c.c.). Some authors write MAκ to mean what we
have called MA<κ.

MA describes the model obtained by a finite support forcing iteration, of
length some uncountable κ = κ<κ, in which all c.c.c. posets (of the extension)
of size < κ are used as forcing conditions during the iteration. This iteration,
which is itself a c.c.c. forcing, produces a model of MA and c = κ. Thus, MA
is consistent with the continuum being arbitrarily large. Although only small
(smaller than κ) posets were used during the iteration, a reflection argument
(essentially the Löwenheim-Skolem Theorem; see the second preliminary sim-
plification in the proof of Theorem 7.12 below) shows that all c.c.c. posets,
not only the small ones, acquire generic sets with respect to small families of
dense subsets. For details about this, see [106] or [68, Sect. VIII.6].

For orientation, we mention that:

• MAω(all posets) is provable in ZFC, and therefore CH implies MA.

• MAℵ1(all posets) is refutable. Take P to be <ωℵ1 ordered by reverse
inclusion, take Dα = {p ∈ P : α ∈ ran(p)}, and observe that a generic
G would give a map

⋃
G of ω onto ℵ1.

• MAc(Cohen) is refutable, where “Cohen” refers to the single poset <ω2
ordered by reverse inclusion. For each f : ω → 2, let Df = {p : p �⊆ f}
and observe that a generic G would give a function

⋃
G : ω → 2

different from every f .

The last two of these observations indicate why MA refers only to c.c.c. posets
and only to < c dense sets.

The effect of MA on cardinal characteristics of the continuum is to make
them large, as the next two theorems and their corollaries show. These results
are from [74].

7.3 Theorem. MA implies add(L) = c.

Proof. Suppose κ < c and we are given κ sets Nα ⊆ R (α < κ) of measure
zero. We must show, assuming MA, that their union has measure 0. It
suffices to find, for each positive ε, a set of measure ≤ ε that includes all the
Nα as subsets.
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Given ε, let P be the set of open subsets of R having measure < ε, and
order P by reverse inclusion. In order to apply MA to this P , we first verify
the c.c.c. Let uncountably many elements p of P be given. Inside each
of these open sets, find a finite union q(p) of open intervals with rational
endpoints, large enough so that μ(p−q(p)) < ε−μ(p). Notice that this implies
μ(p − q(p)) < 1

2 (ε − μ(q(p))). There are only countably many possibilities
for q(p), so two (in fact uncountably many) of the q(p) must be the same q.
But then the union of the two corresponding p’s has measure < ε (because it
consists of q plus the two remainders p− q, and each remainder has measure
less than half of ε − μ(q)), so it is in P and is a common lower bound for
those two p’s. Thus, an uncountable family of p’s cannot be an antichain.

For each of the given Nα’s, let Dα = {p ∈ P : Nα ⊆ p}, and notice
that this is a dense subset of P (because a set of measure zero is included in
open sets of arbitrarily small measure). Since κ < c, MA provides a generic
G meeting all the Dα. Then

⋃
G includes all the Nα. Furthermore, as a

directed union of open sets of measure < ε, this
⋃

G has measure ≤ ε. �

7.4 Corollary. MA implies that all the cardinals in Cichoń’s diagram are
equal to c and that r = c.

7.5 Remark. The partial ordering used in the proof of the theorem is called
the amoeba order. To understand the name, visualize the open sets in three
dimensional space instead of R, and visualize the proof of density of Dα as
extruding a tentacle1 from a given open set to engulf Nα.

The proof of c.c.c. for the amoeba actually establishes the stronger prop-
erty of being σ-linked in the sense of the following definition.

7.6 Definition. In a partial order, a subset S is called linked if every two
of its elements are compatible. It is n-linked if every n of its members have
a common lower bound. It is centered if every finitely many of its members
have a common lower bound. σ-linked means the union of countably many
linked subsets. σ-n-linked and σ-centered are defined analogously.

Clearly, σ-centered implies σ-linked, which in turn implies c.c.c. σ-n-linked
becomes stronger as n increases, but still remains weaker than σ-centered.

In the proof of Theorem 7.3, we essentially showed that the amoeba is
σ-linked, as witnessed by the countably many sets {p : q(p) = q}, where q
ranges over finite unions of rational intervals and where q(p) is defined for
all p as it was defined in the proof above for p in the supposed antichain.
A similar argument shows that the amoeba is σ-n-linked for all n. But it is
not σ-centered.

Instead of working directly with sets of measure zero, one can prove the
preceding theorem by using Theorem 5.14, which described add(L) in terms
of slaloms. Given fewer than c functions ω → ω, one needs a slalom through

1 It has been pointed out to me that an amoeba has pseudopodia, not tentacles. But it
seems easier to visualize tentacles.
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which all of them go. This is obtainable by applying MA to a poset P
consisting of pieces of slaloms. Specifically, a member p of P is a function on
ω assigning to each n a finite set of natural numbers, such that, for some k,
|p(n)| is n for n < k and k for n ≥ k. The ordering is componentwise reverse
inclusion, and the relevant dense sets are {p : ∀n > k (f(n) ∈ p(n))}, where k
witnesses that p ∈ P and where f is one of the given functions that should go
through our slalom. This forcing is called localization forcing in [5, Sect. 3.1].

7.7 Theorem. MA implies p = c.

Proof. Suppose F ⊆ [ω]ω has the strong finite intersection property and
|F| < c. To find a pseudointersection X for F , we apply MA to the following
poset P . A member of P is a pair (s, F ) where s is a finite subset of ω and F
is a finite subset of F . (The “meaning” of (s, F ) is that the desired X should
include s and should, except for s, be included in each A ∈ F .) The ordering
puts (s′, F ′) ≤ (s, F ) if

s is an initial segment of s′, F ′ ⊇ F, and ∀A ∈ F (s′ − s ⊆ A).

Any two pairs with the same first component are compatible, as one can just
take the union of the second components. (In fact, any finitely many pairs
with the same first component have a common lower bound. So this ordering
is σ-centered.) For each A ∈ F , the set DA = {(s, F ) ∈ P : A ∈ F} is dense.
So is Dn = {(s, F ) ∈ P : |s| > n} because of the SFIP of F . MA provides a
generic G meeting all these dense sets. Let X =

⋃
(s,F )∈G s. This is infinite

because G meets each Dn. To see that it is almost included in each A ∈ F ,
use that G and DA have a common member (s0, F0). That means A ∈ F0,
and we shall show that X − s0 ⊆ A. Any member k of X − s0 is in s− s0 for
some (s, F ) in G, and, as G is directed downward, it contains some (s′, F ′) ≤
both (s, F ) and (s0, F0). Then k ∈ s− s0 ⊆ s′ − s0 ⊆ A, as required. �

7.8 Remark. The forcing used in the preceding proof is called Mathias
forcing with respect to F . One can equivalently view it as consisting of pairs
(s,A) where A is the intersection of finitely many sets from F ; in this form,
the ordering (s′, A′) ≤ (s,A) is defined by

s is an initial segment of s′, A′ ⊆ A, and s′ − s ⊆ A.

Mathias forcing (without respect to any F) means the similarly defined poset
where the second components A can be arbitrary infinite subsets of ω. In
contrast to Mathias forcing with respect to an F with SFIP, this Mathias
forcing does not satisfy the c.c.c. It can be viewed as a two-step forcing
iteration, where the first step is forcing with ([ω]ω,⊆∗), which adjoins a
generic ultrafilter U on ω, and the second step is Mathias forcing with respect
to U .

7.9 Corollary. MA implies p = t = h = g = s = c.
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Thus, all the characteristics we have discussed are equal to c if MA holds.
The proofs actually show a bit more, if we introduce new characteristics
related directly to MA.

7.10 Definition. For any class K of posets, m(K) is the smallest κ for which
MAκ(K) is false. If K is the class of c.c.c. posets, we omit mention of it and
write simply m.

Thus MA is the statement m = c. Clearly,

m ≤ m(σ-linked) ≤ m(σ-3-linked) ≤ · · · ≤ m(σ-centered) ≤ m(Cohen).

See [69] for a model where m < m(σ-linked); similar techniques can be used
to get strict inequalities between other such variants of m.

The proofs of the last two theorems and our remarks about the σ-linked
and σ-centered properties of the posets in the proofs establish the following
inequalities.

7.11 Corollary. m(σ-linked) ≤ add(L) and m(σ-centered) ≤ p.

Of course, one could be even more specific about the posets used; for
example the proof above shows that m(amoeba) ≤ add(L). In fact, equality
holds here; see [5, Theorem 3.4.17].

The second half of the last corollary can also be improved to an equality,
Bell’s Theorem [12].

7.12 Theorem. m(σ-centered) = p.

Proof. In view of Corollary 7.11, it suffices to consider an arbitrary σ-centered
poset P , say the union of centered parts Cn, and to find a D-generic G for a
prescribed family D of fewer than p dense subsets of P . It is convenient to
begin with several simplifications of the problem.

First, we may assume that each D ∈ D is closed downward, because closing
the dense sets will not affect D-genericity.

Second, we may assume that |P | < p. Indeed, suppose the theorem were
proved in this case, and suppose we are given the situation above with |P | ≥ p.
By the Löwenheim-Skolem Theorem, the structure (P,≤, Cn, D)n∈ω,D∈D has
an elementary substructure P ′ of cardinality < p. Then P ′ is σ-centered and
D′ = {P ′ ∩ D : D ∈ D} is a family of < p dense subsets, so there is a
D′-generic G′ ⊆ P ′. The upward closure of G′ in P is then D-generic, as
required.

Third, instead of producing a D-generic G, it suffices to produce a linked
L meeting every D ∈ D. Indeed, suppose we could always do this. Then,
given P and D as above, we enlarge D by adjoining the sets

Dp,q = {r ∈ P : r is incompatible with p or with q, or r ≤ p, q},

which are easily seen to be dense. If L is linked and meets all the sets in D
and all the Dp,q, then the upward closure G of L is D-generic. The only thing
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to check is that it is directed downward. To find a common lower bound for
any p, q ∈ G, we may, by lowering both, assume that p and q are in L. Let
r ∈ L∩Dp,q. Then r cannot be incompatible with p or with q as L is linked;
so r ≤ p, q, as required.

Fourth, we may assume that, for each n ∈ ω, there is some Dn ∈ D disjoint
from Cn. Otherwise, Cn could serve as the required L.

Fifth, we may assume that D is closed under finite intersections. Closing
it in this way does no harm, because the cardinality |D| will not be increased
(unless it was finite—a trivial case) and the intersection of any finitely many
dense, downward-closed sets is again dense and downward closed.

After all these simplifications, we begin the real work of the proof. For
each p ∈ P and each D ∈ D, let A(p,D) be the set of those n ∈ ω such that
some member of Cn ∩D is ≤ p.

I claim that, for each k ∈ ω, the family Fk = {A(p,D) : p ∈ Ck and
D ∈ D} has the strong finite intersection property. By our fourth simplifi-
cation, it suffices to show that each finite subfamily F0

k of Fk has nonempty
intersection, for we could always include in F0

k sets of the form A(p,Dn) for
any finitely many of the Dn and so keep any finitely many n’s out of the
intersection. By our fifth simplification, we may assume that the sets in F0

k

are A(pi, D) for various pi ∈ Ck but just one D ∈ D, for different D’s could
be replaced with their intersection. As Ck is centered, the pi’s have a lower
bound p, and below that we can find a member q of the dense set D. If
q ∈ Cn then n ∈

⋂
F0

k . This completes the verification of the claim.
Since |Fk| ≤ |P | · |D| < p by our second simplification, Fk has a pseudoin-

tersection Ak.
Next, we define several labellings of the ω-branching tree <ωω of height ω,

a primary labeling by natural numbers and, for each D ∈ D, a secondary
labeling by members of P . In the primary labeling, the label of the root
is (arbitrarily chosen as) 0, and if a node has label k then the labels of
its immediate successors are the numbers in Ak (once each). The secondary
labeling associated to a particular D ∈ D is defined as follows. The secondary
label of the root is an arbitrary element of C0. If a node has been given
secondary label p and if an immediate successor of it has primary label n,
then the secondary label of that successor is to be an element of Cn ∩D that
is ≤ p in P , provided such an element exists, i.e., provided n ∈ A(p,D)—in
this case we call that successor node “good” for D. If no such element exists,
then the secondary label of that successor node is chosen arbitrarily from Cn

and the node is called “bad” for D. Notice that, whether a node is good or
bad, its secondary label is always in Cn where n is its primary label.

Because Ak is a pseudointersection for Fk, all but finitely many of the
immediate successors of any node are good for any particular D ∈ D. For
each node s and each D ∈ D, let fD(s) be a number so large that all the
nodes s�〈m〉 for m ≥ fD(s) are good for D. Since |D| < p ≤ b (and since
the tree has only countably many nodes), there is g : <ωω → ω that is >∗ all
the fD.
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Using g, we define a path X through the tree <ωω by starting at the root
and, after reaching a node s, proceeding to s�〈g(s)〉. Our choice of g ensures
that, for each D ∈ D, all but finitely many nodes along the path X are good
for D. Choose, for each D, a node sD on X such that it and all later nodes
on X are good for D, and let pD be its secondary label associated to D. Thus
pD ∈ D. This guarantees that L = {pD : D ∈ D} meets every D ∈ D.

To complete the proof, we verify that L is linked. Consider any two ele-
ments pD, pD′ ∈ L. If sD = sD′ then both of pD, pD′ are in the same Cn,
where n is the primary label of sD, so they are compatible because Cn is
centered. Suppose therefore that sD occurs before sD′ along the path X. By
choice of sD, all the nodes along the path X from sD to sD′ are good for D,
so the secondary labeling associated to D puts at the node sD′ a label q that
is ≤ pD. But, being in the same Cn, q and pD′ are compatible. Therefore so
are pD and pD′ . �

There is a similar (but easier) result about countable partial orders.

7.13 Theorem. m(Cohen) = m(countable) = cov(B).

Proof. Since Cohen forcing is a countable poset, MAκ(countable) implies
MAκ(Cohen). We shall complete the proof by showing that MAκ(Cohen)
implies κ < cov(B) and that this in turn implies MAκ(countable).

Assume MAκ(Cohen) and let κ nowhere dense subsets Xα of ω2 be given.
We must show that the Xα do not cover ω2. For each α, let Dα be the set
of those s ∈ <ω2 that have no extensions in Xα. Because Xα is nowhere
dense (in the topological sense), Dα is dense (in the partial order sense). So
MAκ(Cohen) gives us a generic G ⊆ ω2 meeting every Dα. Then

⋃
G ∈ ω2

is in none of the Xα.
Finally, assume κ < cov(B), and let κ dense subsets Dα of a countable

poset P be given. Let T : ωP → ωP be the transformation that turns any
sequence x ∈ ωP into a (weakly) decreasing sequence T (x) in a greedy way;
that is, T (x)(0) = x(0), and T (x)(n + 1) = x(n + 1) if this is ≤ T (x)(n)
in P , and otherwise T (x)(n + 1) = T (x)(n). We similarly define T on finite
sequences instead of infinite ones.

The sets Uα = {x ∈ ωP : ∃n (T (x)(n) ∈ Dα)} are dense open subsets of
ωP (where P has the discrete topology and ωP has the product topology so it
is homeomorphic to ωω). To verify density, consider any nonempty s ∈ <ωP ,
let p be the last term of T (s), and let q ≤ p be in Dα. Then every extension
of s�〈q〉 is in Uα.

As κ < cov(B), there is an x in the intersection of all the Uα. Then
the range of the decreasing sequence T (x) meets every Dα, and the upward
closure of this range is therefore the desired generic set. �

As an application of Bell’s Theorem 7.12, we give an analog of Proposi-
tion 6.24, weakening the hypothesis of countability (of the list of C’s) and
strengthening the hypothesis of cardinality < d (for A) by replacing both
with the hypothesis of cardinality < p.
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7.14 Theorem. Suppose C and A are families of < p subsets of ω, and
suppose every intersection of finitely many sets from C and one set from A
is infinite. Then C has a pseudointersection B that has infinite intersection
with each set in A.

Proof. Let P be Mathias forcing with respect to C, as defined in the proof of
Theorem 7.7 and the remark following it. As shown there, this is σ-centered,
and for each C ∈ C the set DC = {(s, F ) ∈ P : C ∈ F} is dense. Furthermore,
for each A ∈ A and each n ∈ ω, the set DA,n = {(s, F ) ∈ P : |s ∩ A| > n}
is dense because each intersection of finitely many sets from C and one set
from A is infinite.

As both |C| and |A| are < p = m(σ-centered), P has a generic subset
G meeting all these DC and DA,n. As in the proof of Theorem 7.7, we
define B =

⋃
(s,F )∈G s and we find that this is a pseudointersection of C.

Furthermore, it has infinite intersection with each A ∈ A because G meets
each DA,n. �

As a consequence, we obtain that p, like its relatives t, h, and g, is regular,
but the proof is trickier than for the relatives. This proof is taken from [48,
Sect. 21], where it is attributed to Szymański.

7.15 Theorem. p is regular.

Proof. Suppose p were singular with cofinality λ < p. Let A be a family of
p subsets of ω having the strong finite intersection property but having no
pseudointersection. Express A as the union of an increasing λ-sequence of
subfamilies Aα, each of cardinality < p. To simplify later considerations, we
assume without loss of generality that A and all the Aα are closed under
finite intersections.

In this situation, we have the following improvement of Theorem 7.14. If C
is any family of fewer than p sets such that every intersection of finitely many
sets from C and one set from A is infinite, then C has a pseudointersection B
whose intersection with each set from A is infinite. (The improvement is that
A has size p rather than strictly smaller size.) To prove this, note first that
each C ∪ Aα has the SFIP and has size < p, so it has a pseudointersection
Zα. Then apply Theorem 7.14 with {Zα : α < λ} in the role of A.

We intend to build an almost decreasing λ+1-sequence 〈Cα : α ≤ λ〉 such
that each Cα for α < λ is a pseudointersection of Aα. If we can do this then,
because the Cα are almost decreasing and the Aα are increasing and cover A,
Cλ will be a pseudointersection of A, a contradiction.

We define the Cα by recursion. To make the recursion work, we carry along
the additional requirement that each Cα must have infinite intersection with
every member of A.

Suppose α ≤ λ and Cβ is already defined for all β < α in such a way that
our requirements are satisfied. We need to define Cα so that it is ⊆∗ each
previous Cβ , it is ⊆∗ each member of Aα, and it has infinite intersection with
every member of A. Such a set is produced by applying the improvement
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above of Theorem 7.14 with C = {Cβ : β < α}∪Aα, provided the hypothesis
of that improvement is satisfied. So we need only check that every intersection
X of finitely many Cβ ’s (β < α) and finitely many members of Aα and
one member of A is infinite. Since the Cβ ’s are almost decreasing, since
Aα ⊆ A, and since A is closed under finite intersection, such an X almost
includes Cβ ∩ A for some β < α and some A ∈ A. The induction hypothesis
guarantees that Cβ ∩A and therefore X are infinite. �

7.16 Remark. This section has dealt almost exclusively with forcing axioms
for the class of c.c.c. posets and subclasses, because these are the forcing
axioms most relevant to cardinal characteristics. To avoid giving a completely
unbalanced picture, however, we should at least mention that numerous other
forcing axioms have been considered. The most popular of these is the Proper
Forcing Axiom PFA, which is MAℵ1(proper). Proper forcing was defined
by Shelah [97, Chap. III], who showed that it permits countable support
iterations without collapsing ℵ1; see Abraham’s chapter in this Handbook.
PFA summarizes the result of a countable support iteration of all small proper
posets. Unlike the construction of a model for MA, where the improvement
from small c.c.c. posets to all c.c.c. posets was handled by a Löwenheim-
Skolem argument, the construction of a model for PFA uses a supercompact
cardinal in the ground model to get the necessary reflection property for the
corresponding improvement from small to all.

8. Almost Disjoint and Independent Families

This section is devoted to families of subsets of ω with various special prop-
erties, and particularly to those families that are maximal with respect to
these properties.

Recall from Sect. 6 that an almost disjoint family is a family of infinite sets
whose pairwise intersections are finite, and that the phrase “maximal almost
disjoint (MAD) family” refers to an infinite family of subsets of ω maximal
with respect to almost disjointness.

Although a set of size κ clearly cannot support a family of more than κ
disjoint sets, the situation for almost disjoint sets is quite different.

8.1 Proposition. On any countably infinite set, there is a family of c almost
disjoint subsets.

Proof. It clearly does not matter which countably infinite set we consider.
Choosing the binary tree <ω2 as the ambient set, we can use its c branches
as the almost disjoint family. �

8.2 Remark. There are at least two other similar and equally easy proofs of
this proposition. One uses the set of rationals as the ambient set and assigns
to every real r a sequence of distinct rationals converging to r; sequences
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with different limits are clearly almost disjoint. Another uses ω × ω as the
ambient set and assigns to each positive real r the set {(n, /rn0) : n ∈ ω}.

The proposition and Zorn’s lemma imply the existence of a MAD family of
cardinality c, but there may also be smaller MAD families. For example, it is
shown in [68, Theorem VIII.2.3] that if one adds any number of Cohen reals
to a model of CH, then the resulting model has a MAD family of size ℵ1; see
also Sect. 11. Hechler [55] gives a model with MAD families of many different
cardinalities.

8.3 Definition. The almost disjointness number a is the smallest cardinality
of any MAD family.

8.4 Proposition. b ≤ a.

Proof. Let A be a MAD family of size a, let Cn (n ∈ ω) be any countably
many members of it, and let A′ be the rest of A. By making finite changes
to each Cn, we can arrange that these sets are really disjoint, not just almost
disjoint, and that they partition ω. By a suitable bijection, identify ω with
ω × ω in such a way that Cn is the column {n} × ω. Each A ∈ A′ has only
finitely many elements per column, so we can define fA : ω → ω to be the
function whose graph is the upper boundary of A. If there were a function
g : ω → ω that is >∗ all the fA, then its graph would be almost disjoint from
all A ∈ A′ and all Cn, contrary to maximality of A. So the fA’s constitute
an unbounded family of size a. �

Shelah [99] showed that b < a is consistent. He also showed there that, if
we define as like a except that we use ω × ω as the ambient set and require
the MAD family to consist of graphs of partial functions, then a < as is
consistent. Brendle has pointed out the following alternative proof of the
consistency of a < as. By part 2 of Theorem 5.9, we have non(B) ≤ as. We
shall see in Sect. 11 that the random real model (obtained by forcing with
a large measure algebra over a model of GCH) has non(B) = c > ℵ1 and
a = ℵ1. Therefore it has a < as.

Little else is known about connections between a and other cardinal char-
acteristics, but Shelah has shown in [100] that a > d is consistent.

8.5 Remark. Proposition 8.1 can be used to evaluate the “dual” of h. Unlike
the definitions of t and p, that of h fits the “norm of relation” format discussed
in Sect. 4. Indeed, h = ‖([ω]ω,DO, /∈)‖ where DO is the family of dense open
subsets of [ω]ω. (There is an important difference between this relation and
those associated to cardinal characteristics in Sects. 4 and 5. The elements
of DO cannot be coded by reals, nor does DO possess a nice base whose
elements can be coded by reals.) It is natural to ask about the norm of the
dual relation, i.e., the minimum size of a family X ⊆ [ω]ω such that every
dense open family D intersects X . It follows from Proposition 8.1 that this
cardinal is c. In fact, the same also holds for the dual of g, by nearly the
same proof.
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8.6 Theorem. The minimum number of sets in [ω]ω meeting every dense
open family, or even every groupwise dense family, is c.

Proof. Suppose X ⊆ [ω]ω has cardinality < c; we shall find a groupwise dense
(hence dense open) D ⊆ [ω]ω disjoint from X . Let D = {Y ∈ [ω]ω : ∀X ∈ X
(X �⊆∗ Y )}. This D is clearly disjoint from X and closed under almost
subsets, so we need only check that, for any interval partition {In : n ∈ ω},
the union of some infinitely many of its intervals is in D. Let A be a family
of c almost disjoint subsets of ω, and for each A ∈ A let A′ =

⋃
n∈A In. Then

the A′ are also almost disjoint, so no two of them can almost include the
same X ∈ X . Since there are more A′’s than X’s, some A′ must not almost
include any X, i.e., some A′ must be in D. �

8.7 Corollary. cf(c) ≥ g.

Proof. Let [ω]ω =
⋃

α<cf(c) Xα, where each |Xα| < c. By the theorem, there
are groupwise dense families Dα each disjoint from the corresponding Xα. No
set can belong to all the Dα, for it would then belong to no Xα. So we have
cf(c) groupwise dense families with empty intersection. �

Notice that this corollary subsumes Corollary 6.15. The intermediate re-
sult that cf(c) ≥ h was proved in [2]. Among the familiar cardinal charac-
teristics of the continuum, g is the largest one known (to me) to be a lower
bound for cf(c). In particular, it is consistent that b > cf(c) and it is consis-
tent that s > cf(c). For the former, start with a model satisfying MA and
c = ℵ2 and GCH at all larger cardinals, and adjoin ℵℵ1 random reals. Then
c = ℵℵ1 and b, unaffected by the random reals, is ℵ2 > cf(c). For the latter,
start with a model of c = ℵℵ1 , and do an ℵ2-stage, finite support iteration
of Mathias forcing with respect to (arbitrarily chosen) ultrafilters. The finite
support iteration automatically adds Cohen reals at limit stages of cofinal-
ity ω and choosing one of them at each stage provides a splitting family of
size ℵ2. There is no smaller splitting family, because any ℵ1 reals lie in an
intermediate extension and fail to split the subsequently added Mathias reals.

8.8 Definition. A family I of subsets of ω is independent if the intersection
of any finitely many members of I and the complements of any finitely many
other members of I is infinite.

The “infinite” at the end of the definition could be equivalently replaced
with “nonempty” if we assumed that I is infinite.

8.9 Proposition. There is an independent family of cardinality c.

Proof. Let C be the set of finite subsets of Q. Since C is countably infinite,
it suffices to find c independent subsets of C. For each real r, let

Er = {F ∈ C : |F ∩ (−∞, r)| is even}.
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To see that these sets Er are independent, let any finitely many distinct reals
r1, . . . , rk, s1, . . . , sl be given. We must find an F ∈ C that belongs to all the
Eri and none of the Esj . But this is easy; F consists of 0 or 1 rationals from
each of the (k + l + 1) intervals into which the r’s and s’s partition R, the
choice of 0 or 1 being made so as to get the right parities. �

8.10 Remark. The preceding proposition is due to Fichtenholz and Kan-
torovich [46]. It was generalized by Hausdorff [54] who showed that any
infinite cardinal κ has 2κ independent subsets.

Hausdorff’s construction (for κ = ℵ0) uses the countable set C of pairs
(a,B) where a ranges over finite subsets of ω and B ranges over subsets of
P(a). To each X ⊆ ω associate the subset {(a,B) ∈ C : a∩X ∈ B} of C. It
is easy to verify that all these subsets are independent.

The corresponding generalization of Proposition 8.1 fails. Baumgartner
[8, Theorem 5.6] showed that ℵ1 need not have 2ℵ1 uncountable subsets with
pairwise countable intersections.

The proposition and Zorn’s lemma provide a maximal independent family
of size c, but there may be smaller maximal independent families.

8.11 Definition. The independence number i is the smallest cardinality of
any maximal independent family of subsets of ω.

No upper bounds (except for the trivial c) are known for i, but there are
two lower bounds.

8.12 Proposition. r ≤ i.

Proof. Let I be a maximal independent family, and letR consist of all the sets
obtainable by intersecting finitely many sets from I and the complements of
finitely many others. The definition of independence ensures that R ⊆ [ω]ω,
and R must be unsplittable because if X were to split all its members then
I ∪ {X} would be independent, contrary to the maximality of I. So |R| ≥ r,
from which it follows that |I| ≥ r. �

The following more difficult estimate of i is due to Shelah [111, Appendix
by Shelah]. The proof we give, a simplification of Shelah’s, is from [20]; the
simplification was found independently by Bill Weiss.

8.13 Theorem. d ≤ i.

Proof. Suppose I is an independent family of cardinality < d; we shall show
that it is not maximal. Throughout the proof, we let X and Y stand for finite,
disjoint subfamilies of I; thus, the independence of I means that

⋂
X −

⋃
Y

is always infinite, and our goal is to find Z such that each
⋂
X −

⋃
Y meets

both Z and ω − Z in an infinite set.
Select any countably many sets Dn ∈ I, and let I ′ be the rest of I.

Write D0
n for Dn and write D1

n for ω − Dn. For each x : ω → 2, apply
Proposition 6.24 with

Cn =
⋂

k<nD
x(k)
k
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and
A =

{⋂
X −

⋃
Y : X ,Y finite disjoint subfamilies of I ′}.

Independence of I gives the hypotheses of the proposition. So we get Bx ⊆ ω
with:

1. Bx ⊆∗ ⋂
k<n D

x(k)
k for all n.

2. Bx has infinite intersection with each
⋂
X −

⋃
Y ∈ A.

It follows from 1 that the Bx’s for distinct x are almost disjoint.
Fix two disjoint, countable, dense (in the usual topology) subsets Q and

Q′ of ω2. Removing finitely many elements from Bx for each x ∈ Q ∪ Q′,
we can arrange that these countably many Bx’s are really disjoint, not just
almost disjoint. Set

Z =
⋃

x∈QBx and Z ′ =
⋃

x∈Q′ Bx.

So Z and Z ′ are disjoint. We shall show that Z has infinite intersection with
every

⋂
X −

⋃
Y ; the same argument applies to Z ′, so ω − Z will also have

infinite intersection with every
⋂
X −

⋃
Y , and so the proof will be complete.

Let finite, disjoint X ,Y ⊆ I be given, and let X ′ and Y ′ be their inter-
sections with I ′. Fix n so large that, if Dk is in X or Y then k < n. Using
the density of Q, fix x ∈ Q such that if Dk is in X or Y then x(k) is 0 or 1,
respectively. Thus,

⋂
X −

⋃
Y =

(⋂
X ′ −

⋃
Y ′) ∩

⋂

k:Dk ∈X ∪Y
D

x(k)
k

⊇
(⋂
X ′ −

⋃
Y ′) ∩

⋂

k<n

D
x(k)
k

⊇∗ (⋂
X ′ −

⋃
Y ′) ∩Bx.

The last intersection here is infinite, by property 2 of Bx. It is included in Z
because x ∈ Q. So we have an infinite set almost included in Z∩(

⋂
X−

⋃
Y),

and the proof is complete. �

9. Filters and Ultrafilters

This section is devoted to filters and ultrafilters on ω. We begin by summa-
rizing the terminology we use. Note that we require all filters to contain the
cofinite sets, so all our ultrafilters are non-trivial.

9.1 Definition. A filter (on ω) is a family F ⊆ Pω that contains all cofinite
sets but not the empty set, is closed under supersets, and is closed under finite
intersections. An ultrafilter (on ω) is a filter with the additional property
that, for any X ⊆ ω, either X or its complement belongs to F . A base for a
filter F is a subfamily of F containing subsets of all the sets in F .
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We occasionally stretch the meaning of “base” of F to apply to a family
B such that for every F ∈ F there is B ∈ B with B ⊆∗ F (rather than
B ⊆ F ). This stretching will make no essential difference but will simplify a
few statements.

We shall need the following well-known consequences of the definition.
A subset X of Pω is included in a filter if and only if it has the strong finite
intersection property, and then the smallest filter including X consists of the
almost supersets of intersections of finite subfamilies of X . We say that X
generates this filter.

An ultrafilter is the same thing as a maximal filter; thus by Zorn’s lemma
every family with SFIP is included in an ultrafilter. Since an ultrafilter
contains a set X ⊆ ω if and only if it does not contain ω−X, it follows that
a family Y ⊆ Pω is disjoint from some ultrafilter if and only if no finitely
many members of Y almost cover ω.

9.2 Definition. Let F be a subset of Pω (usually a filter, but the definition
makes sense in general) and let f : ω → ω. Then f(F) is defined to be
{X ⊆ ω : f −1(X) ∈ F}.

If F is a filter or an ultrafilter, then so is f(F) provided it contains all
cofinite sets. This proviso is automatically satisfied if f is finite-to-one, which
will usually be the case in what follows.

9.3 Definition. A filter F is feeble if, for some finite-to-one f : ω → ω, f(F)
consists of only the cofinite sets.

The cofinite sets constitute the smallest filter, so feeble filters should also
be thought of as small. They are at the opposite extreme from ultrafilters.

9.4 Proposition. The following are equivalent for any filter F on ω.

1. F is feeble.

2. There is a partition of ω into finite sets such that every set in F inter-
sects all but finitely many pieces of the partition.

3. There is an interval partition as in 2 above.

4. {ω −X : X ∈ F} is not groupwise dense.

5. F is meager (in the usual topology on Pω ∼= ω2).

Proof. The equivalence of 1 and 2 is immediate if one views the pieces of a
partition (as in 2) as the sets on which a finite-to-one function (as in 1) is
constant. If a partition Π is as in 2, then we can find an interval partition
Θ, each of whose intervals includes at least one piece of Π; then Θ works
in 3. The equivalence of 3 and 4 is just the definition of groupwise density.
Finally, the equivalence of 4 and 5 follows from Proposition 6.27 because
complementation (X �→ ω −X) is a homeomorphism from Pω to itself and
thus preserves meagerness. �
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We next consider how many sets are needed to generate a large filter, where
“large” can have a strong interpretation—ultrafilter—or a weak one—non-
feeble filter. The former gives a new cardinal characteristic, while the latter
gives a new view of an old characteristic. Notice that any infinite generating
set for a filter yields a base of the same cardinality just by closing under finite
intersections. So we can equivalently ask about cardinalities of bases.

We begin with a result similar to Propositions 8.1 and 8.9, namely that
ultrafilter bases can be large. Of course, any ultrafilter is a base for itself and
has cardinality c; the following proposition, due to Posṕı̌sil [88], shows that
for some ultrafilters there are no smaller bases.

9.5 Proposition. There is an ultrafilter on ω every base of which has car-
dinality c.

Proof. Let I be an independent family of size c, by Proposition 8.9, and let
X consist of

• all sets in I and

• the complements of all sets of the form
⋂
C with C an infinite subset of

I.

The independence of I easily implies that X has the SFIP, so there is an
ultrafilter U ⊇ X . Suppose, toward a contradiction, that U had a base Y of
cardinality < c. As each set in I has a subset in Y and |I| > |Y|, there must be
infinitely many sets in I all including the same Y ∈ Y . Then the intersection
of these infinitely many sets from I is in U (because it includes Y ), but its
complement is in X and thus also in U . This contradiction completes the
proof. �

Nevertheless, it is consistent that some ultrafilters have bases of cardinality
smaller than c.

9.6 Definition. u, sometimes called the ultrafilter number , is the minimum
cardinality of any ultrafilter base.

Kunen [68, Chap. 8, Ex. A10] built a finite support iterated forcing model
where c = ℵℵ1 but u = ℵ1. Baumgartner and Laver [11] showed that an
ℵ2-step, countable support iteration of Sacks forcing (over a model of GCH)
produces a model where certain ultrafilters in the ground model (the selective
ones) generate ultrafilters in the extension. Thus, their model has u = ℵ1

while c = ℵ2.
An ultrafilter base is an unsplittable family, for if X were to split it then

neither X nor ω − X could be in the ultrafilter it generates. Thus, we
immediately have the following inequality.

9.7 Proposition. r ≤ u.
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In most known models, r = u, but Goldstern and Shelah [52] showed that
the inequality can be strict. A stronger connection between r and ultrafilters
is given by the following result of Balcar and Simon [1].

9.8 Definition. A pseudobase or π-base for a filter F on ω is a family
X ⊆ [ω]ω such that every set in F has a subset in X .

This differs from the notion of base only in that X need not be a subfamily
of F .

9.9 Proposition. r is the minimum cardinality of any ultrafilter pseudobase.

Proof. A family X ⊆ [ω]ω is an ultrafilter pseudobase if and only if there is
an ultrafilter disjoint from

Y = {Y ⊆ ω : Y has no subset in X}.

As mentioned above, this is equivalent to saying that ω is not almost cov-
ered by finitely many sets from Y . Equivalently, whenever ω is partitioned
into finitely many pieces, one of the pieces must have an almost subset in X .
This means that X must be unsplittable, 3-unsplittable (in the sense of Ex-
ample 4.13), . . . , n-unsplittable for all finite n. On the one hand, mere
unsplittability requires X to have cardinality at least r. On the other hand
we can, as in Example 4.13, produce an n-unsplittable family of size r for
each n and then take the union of these families to obtain an X as above of
size r. �

We now consider what is needed to generate a non-feeble filter. The first
part of the following theorem is essentially due to Solomon [103]; the second
part is an unpublished result of Petr Simon.

9.10 Theorem. Every filter on ω generated by fewer than b sets is feeble,
but there is a non-feeble filter generated by b sets.

Proof. Consider first a filter with a base of fewer than b sets, and associate to
each set A in this base an interval partition ΠA chosen so that each interval
in the partition contains an element of A. By Theorem 2.10, there is a single
interval partition dominating all these ΠA’s. It clearly satisfies statement 3
in Proposition 9.4, so our filter is feeble.

To produce a non-feeble filter generated by b sets, we distinguish two cases,
according to whether b = d.

If b = d, invoke Theorem 2.10 to get a b-indexed family of interval par-
titions Πα (α < b) dominating all interval partitions. We build the desired
filter and a generating family X for it by a recursion of length b, starting
with the family of cofinite sets, and adding at most one new set to X at each
stage. At stage α, see whether the filter Fα generated by the sets already
put into X contains a set disjoint from infinitely many intervals of Πα. If so,
do nothing at stage α. If not, put into X the union of the even-numbered
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intervals of Πα, and note that the SFIP of X is preserved. In either case, our
final filter will contain a set missing infinitely many intervals of Πα. After all
b steps have been completed, we have a filter that is not feeble because any
interval partition as in statement 3 of Proposition 9.4 could not be dominated
by any Πα.

There remains the case that b < d. Let B be an unbounded family of
size b in ωω; without loss of generality, assume it is closed under forming
the pointwise maximum of two functions and assume each function g ∈ B is
non-decreasing. Since |B| < d, let f ∈ ωω be non-decreasing and dominated
by no member of B. Thus, the sets

Xg = {n ∈ ω : g(n) < f(n)} (g ∈ B)

are infinite. The family {Xg : g ∈ B} is closed under finite intersections
(because B is closed under maxima), so it is a base for a filter F . To complete
the proof, we suppose that F is feeble and we deduce a contradiction.

Suppose therefore that {In : n ∈ ω} is an interval partition such that
each set in F meets all but finitely many In’s. Define f ′ : ω → ω by letting
f ′(k) be the value of f at the right endpoint of the next In after the one
containing k. Consider an arbitrary g ∈ B and a k so large that Xg, being
in F , meets the next interval In after the one containing k. Calling that
interval [a, b] and letting c be in its intersection with Xg, we have, since f
and g are non-decreasing,

g(k) ≤ g(c) < f(c) ≤ f(b) = f ′(k).

Thus, g <∗ f ′; since g was an arbitrary element of B, we have a contradiction
to the fact that B is unbounded. �

9.11 Remark. The first part of the preceding proof actually shows that a
filter with a pseudobase of size < b must be feeble.

It is easy to see that every filter F is the intersection of some ultrafilters,
in fact of at most c ultrafilters. Indeed, for each A ∈ Pω − F , the family
F ∪{ω−A} has the SFIP and is therefore included in an ultrafilter UA. The
intersection of these UA’s is F .

The next two propositions contain information about how many ultra-
filters must be intersected in order to get filters that are small in one or
another sense. The first one, due to Plewik [87], is another application of
Proposition 8.1.

9.12 Proposition. The intersection of fewer than c ultrafilters is not feeble.

Proof. Suppose the feeble filter F is the intersection of ultrafilters Uα. Let f
be a finite-to-one function such that f(F) consists only of the cofinite sets.
Let A be a family of c almost disjoint subsets of ω. For each A ∈ A, we
have ω − A /∈ f(F) (as A is infinite), so ω − f −1(A) = f −1(ω − A) /∈ F ,
so ω − f −1(A) /∈ Uα for at least one α, and so f −1(A) ∈ Uα. But the sets
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f −1(A) are almost disjoint because f is finite-to-one. So no two can be in
the same Uα. Therefore there must be at least as many Uα’s as there are A’s,
namely c. �

9.13 Proposition. There are d ultrafilters whose intersection is not sent to
an ultrafilter by any finite-to-one function.

Proof. By Theorem 2.10, choose a family of d interval partitions dominating
all interval partitions, and associate to each Π = {In : n ∈ ω} in this family
two ultrafilters UΠ and VΠ such that one contains AΠ =

⋃
n I8n and the other

contains BΠ =
⋃

n I8n+4. We shall show that the d ultrafilters UΠ and VΠ

are as required.
Suppose, to the contrary, that their intersection F is mapped to an ultra-

filter by a finite-to-one map f . Let Θ be an interval partition such that each
of the finite fibers f −1({n}) is included in the union of two adjacent intervals
of Θ. (Simply build Θ inductively so that the right end of each interval is
greater than all elements of all fibers whose left ends were in the previous
interval.) Let Π be an interval partition in our originally chosen family that
dominates Θ. Then each interval of Θ, except for finitely many, is included
in the union of two consecutive intervals of Π. It follows that each fiber of f ,
except for finitely many, is covered by four consecutive intervals of Π and
therefore cannot meet both AΠ and BΠ. So f(AΠ) and f(BΠ) are almost
disjoint and f(F), being an ultrafilter, must contain the complement of one
of them, say ω−f(AΠ). But then this complement would be in f(UΠ), which
is absurd as AΠ ∈ UΠ. �

We shall next present some consequences of the inequality u < g. This
inequality was introduced in [23] (where g was first defined) as a “black box”
summary of the crucial properties of the models, due to Shelah [25, 26], in
which every two ultrafilters have a common finite-to-one image. Since then,
numerous additional consequences and reformulations of u < g have been
found, and we present some of them here.

9.14 Definition. For any family F ⊆ [ω]ω, we write ∼F for its complement
and F∼ for the family of complements of its members.

∼F = [ω]ω −F and F∼ = {ω −X : X ∈ F}.

We write F̆ for the dual family ∼F∼ = {X ∈ [ω]ω : ω −X /∈ F}.

If F is closed under supersets then F̆ consists of just those X ∈ [ω]ω that
intersect every member of F . If F is a filter then F ⊆ F̆ , with equality
holding exactly when F is an ultrafilter.

9.15 Lemma. Suppose that X ,Y ⊆ [ω]ω, that |X | < g, and that Y∼ is
groupwise dense. Then there is a finite-to-one f : ω → ω such that

∀X ∈ X ∃Y ∈ Y (f(Y ) ⊆ f(X)).
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Proof. For each X ∈ X define

GX = {Z ∈ [ω]ω : ∃Y ∈ Y ∀a, b ∈ Z (if [a, b) ∩ Y �= ∅ then [a, b) ∩X �= ∅)}.

We verify that GX is groupwise dense. GX is clearly closed under subsets, and
it is closed under finite modifications because Y is. Now suppose Π is any
interval partition. Coarsening it, we may assume that each of its intervals
contains an element of X. As Y∼ is groupwise dense, it contains a union of
infinitely many intervals of Π. Call that union Z, and call its complement,
which is in Y , Y . We show that Z ∈ GX , witnessed by Y . Suppose a < b are
in Z and there is an element of Y in [a, b). That means that a whole interval
of Π must lie between a and b, and that interval contains a member of X.
This completes the proof that GX is groupwise dense.

Since there are fewer than g X’s in X , there is a Z common to all the
GX ’s. Fix such a Z and define f : ω → ω by letting f(n) be the number of
elements of Z that are ≤ n. Thus f is finite-to-one, being constant on the
intervals [a, b) where a < b are consecutive in Z. For each X ∈ X , the fact
that Z ∈ GX implies that there is Y ∈ Y with f(Y ) ⊆ f(X), as required. �

9.16 Theorem. Assume u < g. For any filter F on ω either F is feeble or
there is a finite-to-one f such that f(F) is an ultrafilter.

Proof. Apply the lemma with X being an ultrafilter base of cardinality < g

and Y being F . If F is not feeble, then Y∼ is groupwise dense by Propo-
sition 9.4, so the lemma provides a finite-to-one f such that f(X) ∈ f(F)
for all X ∈ X and therefore for all X in the ultrafilter U generated by X .
Thus, the ultrafilter f(U) is included in the filter f(F). Since ultrafilters are
maximal filters, the inclusion cannot be proper, and f(F) is an ultrafilter. �

9.17 Remark. The conclusion of this theorem is called the principle of filter
dichotomy . It is not known whether it implies u < g.

The hypothesis of the theorem can be replaced by the apparently weaker
r < g. Indeed, if X is not an ultrafilter base but merely unsplittable, the
proof above provides a finite-to-one f such that f(F) is also unsplittable.
But an unsplittable filter is an ultrafilter.

The improvement is, however, illusory, for Mildenberger has shown that
the inequalities u < g and r < g are equivalent. In fact, she proved r ≥
min{u, g}.

9.18 Corollary. Assume u < g (or just filter dichotomy). For every two
ultrafilters U and V on ω, there is a finite-to-one function f with f(U) =
f(V).

Proof. Apply filter dichotomy to the filter U ∩ V . It is not feeble, and any f
that maps it to an ultrafilter must map both U and V to the same ultrafilter.

�
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9.19 Remark. The conclusion of this corollary is called the principle of
near coherence of filters (NCF). The name refers to the easily equivalent
formulation: For any two filters F and G on ω, there is a finite-to-one function
f such that f(F) and f(G) are coherent in the sense that their union generates
a filter.

NCF implies u < d, but it is not known whether it implies u < g or even
filter dichotomy.

Corollary 9.18 can be improved to handle not just two ultrafilters but any
number < c, by essentially the same proof, using Proposition 9.12 to ensure
that the intersection filter is not feeble. NCF alone implies the improvement
to < d ultrafilters. It is also equivalent to the statement that every ultrafilter
has a finite-to-one image that is generated by < d sets. See [15] for these
results and more information on NCF.

9.20 Corollary. If u < g (or just filter dichotomy) then b = u and d = c.

Proof. Without any hypothesis, we have b ≤ r ≤ u and d ≤ c. If we assume
filter dichotomy then Proposition 9.13 provides a feeble filter that is the
intersection of d ultrafilters, and then Proposition 9.12 says that d ≥ c.

Theorem 9.10 gives a non-feeble filter with a basis of b sets. By filter
dichotomy, some image of this filter, which also has a basis of b sets (the
images of the sets in the previous basis), is an ultrafilter. So u ≤ b. �

9.21 Remark. The conclusion d = c can be strengthened to g = c under
the hypothesis u < g; see [19].

The following result of Laflamme [70] extends the preceding dichotomy to
a trichotomy for all upward-closed families. Its conclusion is in fact equivalent
to u < g but we omit the proof of this; see [19].

9.22 Theorem. Assume u < g. For any family Y ⊆ [ω]ω that is closed
under almost supersets, there is a finite-to-one f : ω → ω such that one of
the following holds:

• f(Y) contains only cofinite sets.

• f(Y) = [ω]ω.

• f(Y) is an ultrafilter.

Proof. Let Y be as in the theorem and let X be an ultrafilter base of car-
dinality < g. If Y∼ is not groupwise dense, then we have (by definition of
groupwise dense) the first alternative in the theorem, and if ∼Y is not group-
wise dense, then we have the second alternative. So we assume that both Y∼
and ∼Y = Y̆∼ are groupwise dense. The former lets us apply Lemma 9.15
to obtain a finite-to-one g such that each g(X) with X ∈ X includes some
g(Y ) with Y ∈ Y . If U is the ultrafilter with base X , then we have that
g(U) ⊆ g(Y). Since finite-to-one images preserve groupwise density and com-
mute with complementation, we also have that g(Y̆)∼ is groupwise dense,
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so we can apply the lemma with the base {g(X) : X ∈ X} of g(U) in the
role of X and with g(Y̆) in the role of Y . We obtain a finite-to-one h such
that hg(U) ⊆ hg(Y̆) = (hg(Y))̆ . Since dualization (̆ ) reverses inclusions and
fixes ultrafilters, we get hg(U) ⊇ hg(Y). The reverse inequality follows from
g(U) ⊆ g(Y). So the finite-to-one map hg sends Y to an ultrafilter. �

We conclude this section with a brief discussion of some special sorts of
ultrafilters. The theory of these ultrafilters is quite extensive, but we shall
consider only those aspects that directly involve some of the cardinal char-
acteristics defined earlier.

9.23 Definition. An ultrafilter U on ω is selective if every function f : ω → ω
becomes either one-to-one or constant when restricted to some set in U . It is
a P-point ultrafilter if every function f : ω → ω becomes either finite-to-one
or constant when restricted to some set in U . It is a Q-point if every finite-
to-one function f : ω → ω becomes one-to-one when restricted to some set
in U .

9.24 Remark. Clearly, an ultrafilter is selective if and only if it is both a
P-point and a Q-point.

The name “selective” refers to the fact that, when ω is partitioned into
pieces that are not in U then some set in U selects one element per piece.
Selective ultrafilters are also called Ramsey ultrafilters because Kunen showed
(see [28]) that, if U is selective and f : [ω]k → 2, then some set in U is
homogeneous for f . Thus, any pseudobase for a selective ultrafilter must have
cardinality at least hom = max{rσ, d}. Selective ultrafilters are also called
RK-minimal, for they are minimal in the Rudin-Keisler ordering defined by
putting f(U) ≤ U for all ultrafilters U and all mappings f .

An ultrafilter U is a P-point if and only if every decreasing (or almost-
decreasing) ω-sequence of sets from U has a pseudo-intersection in U . To
prove the equivalence of this with the definition above, just arrange that
f(n) is constant exactly on the differences of consecutive sets in the decreas-
ing sequence. (One can assume without loss of generality that the sequence
begins with ω and that its intersection is empty.) There is a general topo-
logical concept of P-point (see for example [95, 50]), namely a point (in a
topological space) such that every countable intersection of open neighbor-
hoods of it includes another open neighborhood of it. When applied to the
topological space βω − ω, the Stone-Čech remainder of the discrete space ω,
whose points are naturally identified with (non-trivial) ultrafilters on ω, this
topological notion becomes the concept defined above. The “P” in “P-point”
refers to prime ideals (in rings of functions); see [50, Exercises 4J and 4L].

The “Q” in “Q-point” was chosen because it is next to “P” in the alphabet.
Q-points are also called rare ultrafilters.

There are ultrafilters that are neither P-points nor Q-points. Indeed, if U
is any ultrafilter on ω then

V = {X ⊆ ω2 : {a : {b : 〈a, b〉 ∈ X} ∈ U} ∈ U}
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is an ultrafilter on ω2. It is not a P-point because the first projection ω2 → ω
is neither finite-to-one nor constant on any set in V . It is not a Q-point
because the second projection is finite-to-one on a set in V , namely {〈a, b〉 :
a < b}, but not one-to-one on any set in V .

The existence of P-points, Q-points, and selective ultrafilters is more prob-
lematic. W. Rudin [95] showed that implies the existence of P-points, and
other existence results followed, with the hypothesis weakened to MA or even
to p = c once these axioms had been formulated; see for example [28, 13, 14,
75, 94].

But some hypotheses beyond ZFC are needed for such existence results.
Kunen [67] showed that adding ℵ2 random reals to a model of GCH produces
a model with no selective ultrafilters. Miller [79] showed that an ℵ2-step,
countable support iteration of Laver forcing over a model of GCH produces a
model with no Q-points. And Shelah [97, Sect. VI.4], [113] produced a model
with no P-points by iterating a product of Grigorieff forcings.

We shall be concerned here with conditions for the existence of these spe-
cial ultrafilters. It turns out that cardinal characteristics can be used to give
necessary and sufficient conditions for the extendibility, to special ultrafil-
ters, of all filters with sufficiently small bases. Thus, they provide sufficient,
though not necessary, conditions for the mere existence of special ultrafilters.
The first result of this sort is due to Ketonen [66], who showed that c = d im-
plies the existence of P-points, by a proof that essentially gives the following
result.

9.25 Theorem.

1. If c = d then every filter generated by fewer than c sets is included in
some P-point.

2. There is a filter generated by d sets that is not included in any P-point.

3. Every ultrafilter generated by fewer than d sets is a P-point.

Proof. For part 1, assume c = d, let F be a filter generated by fewer than c

sets, and let 〈Sα : α < c〉 be an enumeration of all decreasing ω-sequences of
infinite subsets of ω, Sα = 〈Sα

0 ⊇ Sα
1 ⊇ · · ·〉. We shall define an increasing

sequence of filters 〈Fα : α ≤ c〉, starting with F0 = F , taking unions at
limit stages, and at successor stages adding one new generator to the filter
in such a way that either the new generator is a pseudointersection of Sα or
it is the complement of some Sα

n . Of course, we must make sure that the
newly added generator at stage α + 1 has infinite intersection with every set
in Fα, so that Fα+1 will be a filter. But this is not difficult. If, for some n,
Sα

n /∈ Fα, then ω − Sα
n can be added. If, on the other hand, Sα

n ∈ Fα for
all n, then, because Fα is generated by fewer than d sets, Proposition 6.24
provides a pseudointersection of Sα that has infinite intersection with every
finite intersection of the generators of Fα and hence with every set in Fα.
That pseudointersection can serve as the new generator for Fα+1. Thus,
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the construction of the sequence of filters can be carried out, and it clearly
ensures that any ultrafilter extending Fc is a P-point.

For part 2, consider the filter on ω2 generated by the sets {〈a, b〉 : a ≥ n}
for n ∈ ω and the sets {〈a, b〉 : b > f(a)} for f in a dominating family D ⊆ ωω
of cardinality d. An ultrafilter extending this filter cannot be a P-point, for
any set on which the first projection ω2 → ω is constant or finite-to-one is
disjoint from a set in the filter and is therefore not in the ultrafilter.

For part 3, let U be an ultrafilter generated by fewer than d sets and let
S = 〈Sn〉 be a decreasing sequence of sets from U . As in the proof of part 1,
Proposition 6.24 provides a pseudointersection of S that meets every finite
intersection of generators of U . But as U is an ultrafilter, it follows that this
pseudointersection is in U . �

Canjar [37] proved the following analogous result for selective ultrafil-
ters. It was also found independently by Bartoszyński and Judah; see [5,
Sect. 4.5.B].

9.26 Theorem.

1. If c = cov(B) then every filter generated by fewer than c sets is included
in some selective ultrafilter.

2. There is a filter generated by cov(B) sets that is not included in any
selective ultrafilter.

Proof. For part 1, we proceed as in the corresponding proof for P-points,
using an enumeration 〈fα : α < c〉 of ωω in place of the enumeration of
decreasing sequences Sα. At stage α we have a filter Fα with a basis X
of fewer than cov(B) sets and we wish to form Fα+1 by adding one new
generator, a set on which fα is one-to-one or constant. If some set of the form
(fα)−1({n}) (on which f is constant) has infinite intersection with every set
in Fα, then it can serve as the new generator. So from now on we assume that
this is not the case. We intend to find a “selector” g ∈

∏
n∈R(fα)−1({n}),

where R = ran(fα), such that for each set X in the basis X of Fα we have
∃∞n (g(n) ∈ X). Once we have such a g, its range can clearly serve as the new
generator for Fα+1. To obtain g, notice first that the space

∏
n∈R(fα)−1({n})

from which we want to choose it is a product of countable (possibly finite)
discrete sets, so it is not covered by fewer than cov(B) meager sets. But for
each X ∈ X , those g that fail to have infinitely many values in X form a
meager set. So, since |X | < cov(B), the desired g exists.

Part 2 is immediate from part 2 of the preceding theorem if cov(B) = d,
so we may assume for the rest of the proof that cov(B) < d (recall Propo-
sition 5.5). By Theorem 5.2, fix a family of cov(B) chopped reals (xα,Πα)
such that no single real matches them all. Assume without loss of general-
ity that every finitely many of these chopped reals are engulfed by another
chopped real from the chosen family, i.e., the family is directed upward with
respect to the engulfing relation. Since we are assuming cov(B) < d, there is
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an interval partition Θ = {Jn : n ∈ ω} not dominated by any of the Πα. This
implies that each Πα has infinitely many intervals Ik that do not include any
interval of Θ; such an Ik is covered by Jn ∪ Jn+1 for some n.

Let Z be the set of functions z whose domains are unions of two consecutive
intervals of Θ and whose values are 0’s and 1’s. For z ∈ Z, let p(z) be the n
such that dom(z) = Jn ∪ Jn+1. Thus, p : Z → ω is finite-to-one. Let F be
the filter on Z generated by the sets {z ∈ Z : p(z) > n} for all n ∈ ω and the
sets

Aα = {z ∈ Z : ∃I ∈ Πα (I ⊆ dom(z) and z�I = xα�I)}

for all α. We must check that these sets have the SFIP, so consider any
finitely many of them. We may assume only one of them is of the form
{z ∈ Z : p(z) > n}; if there are more, keep only the one with the largest n as
it is a subset of the others. Thanks to our assumption that any finitely many
(xα,Πα) are engulfed by another, we may also assume that only one Aα is
involved, for if (xβ ,Πβ) engulfs certain (xα,Πα)’s, then the corresponding
Aβ is almost included in the corresponding Aα’s. So our task is simply to
check that each Aα contains z’s with arbitrarily large p(z). But this follows
immediately from the fact that infinitely many intervals of Πα are included
in sets of the form Jn ∪ Jn+1.

So F is a filter generated by cov(B) sets. Let U be any ultrafilter ex-
tending F . p is a finite-to-one function, so it is certainly not constant on
any set in U . Suppose it were one-to-one on some set X ∈ U . One of
X0 = {x ∈ X : p(x) even} and X1 = {x ∈ X : p(x) odd} is in U ; say it is Xi.
Then the union g of all the members of Xi is a partial function from ω to 2
such that each Πα contains infinitely many intervals on which g agrees with
xα (because Xi meets all sets in F). Any extension of g to a total function
ω → 2 therefore matches all the (xα,Πα), contrary to our choice of these
chopped reals. So p is not one-to-one on any set in U . �

By analogy with part 3 of Theorem 9.25, one might expect Theorem 9.26
to assert that every ultrafilter generated by fewer then cov(B) sets is se-
lective. Though true, that assertion is vacuous, since Theorem 5.19 and
Proposition 9.7 give cov(B) ≤ r ≤ u.

Canjar [37] also obtained an analogous result for Q-points.

9.27 Theorem.

1. If cov(B) = d then every filter generated by fewer than d sets can be
extended to a Q-point.

2. If cov(B) < d then there is a filter generated by cov(B) sets that is not
included in any Q-point.

The proof of Theorem 9.26 also establishes part 2 of the present theorem,
and part 1 is established similarly to parts 1 of Theorems 9.25 and 9.26.
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10. Evasion and Prediction

The terminology of prediction and evasion and the evasion number e were
introduced in [21] on the basis of motivation from algebra. Since then, several
variants have been studied, particularly in [30, 33], but we begin with the
original version.

10.1 Definition. A predictor is a pair π = (D, 〈πn : n ∈ D〉) where D ∈ [ω]ω

and where each πn : nω → ω. This predictor π predicts a function x ∈ ωω
if, for all but finitely many n ∈ D, πn(x�n) = x(n). Otherwise, x evades π.
The evasion number e is the smallest cardinality of any family E ⊆ ωω such
that no single predictor predicts all members of E .

We may identify a predictor (D, 〈πn : n ∈ D〉) with
⋃

n∈D πn, a partial
function from <ωω to ω.

The idea behind the definition is that the values x(n) of an unknown x ∈
ωω are being revealed one at a time (in order) and we are trying to guess some
of these values just before they are revealed. A predictor (D, 〈πn : n ∈ D〉)
is a strategy for guessing x(n), for each n ∈ D, after we have seen x�n, and
it predicts x if it is successful in the sense that almost all of its guesses about
x are correct.

Clearly, it would make no difference if we defined predictors with πn :
nC → C and used them to predict functions in ωC for any countably infinite
set C.

What was directly relevant to the algebraic subject of [21] was not e but a
variant, the linear evasion number el, whose definition is similar except that
the components of a predictor are linear functions πn : Z

n → Q and the
functions being predicted are in ωZ. Thus a remnant of algebra (linearity)
was mixed with the combinatorics. Fortunately, it is proved in [33] that el =
min{e, b}, so the algebra can be eliminated in favor of pure combinatorics.

Several additional variants were defined in [30] by restricting the possible
values of the functions being predicted, as follows.

10.2 Definition. Let f : ω → ω−{0, 1}. Let ef be the smallest cardinality of
any family E ⊆

∏
n∈ω f(n) such that no single predictor predicts all members

of E . When f is the constant function with value n ≥ 2, we write en instead
of ef . The unbounded evasion number eubd is the minimum of ef over all
functions f as above.

Clearly, ef ≥ eg whenever f ≤ g, and eubd ≥ e. The following theorem
from [30] summarizes relationships between these variants and the original e

(as well as b and s).

10.3 Theorem.

1. en = e2 for all n ≥ 2.

2. e2 ≥ s.
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3. e ≥ min{eubd, b}.

4. It is consistent that e < eubd.

5. It is consistent that eubd < e2.

Proof. We only sketch the proofs, referring to [30] for details.
For part 1, the idea is to predict a function x : ω → n (where n ≥ 3)

by predicting the two functions k �→ x(k) mod 2 and k �→ /x(k)/20, whose
ranges are smaller than n. More precisely, after predicting the former on
some D, one predicts (on some D′ ⊆ D) the restriction of the latter to D.

For part 2, we show that a family E ⊆ ω2 that is not splitting (when
viewed in Pω) can be predicted. If X is an infinite set on which each x ∈ E is
almost constant, then let π be the predictor, with domain D = X−{minX},
predicting that x will take, at any point of D, the same value that it took at
the last previous member of X. This guess is right almost always, for every
x ∈ E .

For part 3, the idea is that any fewer than min{eubd, b} functions can be
predicted by first dominating them with some f (as there are fewer than b

of them) and then regarding them as functions in
∏

n∈ω f(n), where they
can be predicted (as there are fewer than eubd ≤ ef of them). Some care is
needed as each function is below f only almost everywhere.

Part 4 is proved by an iterated forcing argument, where each step is a σ-
centered forcing adding a predictor that predicts all ground-model elements
of

∏
n∈ω f(n) for some f . A condition consists of a finite part of the desired

predictor plus a promise to predict correctly all later values of finitely many
functions. A finite support iteration of this clearly makes eubd large in the
extension. We omit the hard part of the proof, namely showing that e does
not become large.

For part 5, iterate Mathias forcing with countable supports for ℵ2 steps
over a model of GCH. The resulting model has h = c = ℵ2, so both b and
s are ℵ2. By part 2, we have e2 = ℵ2. On the other hand, the forcing
adds no Cohen reals, so cov(B) = ℵ1. We shall see below (Table 2 and its
explanation) that e ≤ cov(B). So by part 3 we have min{eubd, b} ≤ ℵ1. Since
b = ℵ2, we must have eubd = ℵ1. �

Returning from the discussion of these variants to the original e, we have
the following results.

10.4 Theorem.

1. add(L), p ≤ e ≤ non(B), cov(B).

2. It is consistent that e < add(B).

3. It is consistent that b < e.

In part 1, the inequality involving cov(B) is due to Kada [63], and the rest
of part 1 is from [21]. Parts 2 and 3 are from [30] and [33] respectively.
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Proof. The upper bound of cov(B) will follow from Tables 2 and 3 and their
justification below. The upper bound of non(B) follows from the observation
that any predictor can predict only a meager set of functions. (The set of
functions predicted by any π also has measure zero in the standard measure,
described in the introduction, on ωω. So non(L) is also an upper bound, but
this is a weaker bound than cov(B) by Theorem 5.11.)

To establish the lower bound of p, we use Theorem 7.12. We assume
MAκ(σ-centered) and show that any family H of κ functions can be predicted
by some predictor (D,π). Let P be the set of triples (d, p, F ) where d is a
finite subset of ω, p is a finite partial function into ω whose domain consists of
sequences from nω for n ∈ d, and F is a finite subset of H. (The “meaning”
of (d, p, F ) is that d is an initial segment of D, p is a finite part of π, and the
functions in F will be predicted correctly at all points of D − d.) Partially
order P by putting (d′, p′, F ′) ≤ (d, p, F ) if d is an initial segment of d′,
p ⊆ p′, F ⊆ F ′, and whenever n ∈ d′ − d and x ∈ F then p′(x�n) is defined
and equal to x(n). Any finitely many elements with the same first and second
components have a lower bound, obtained by taking the union of the third
components. So MAκ(σ-centered) provides G ⊆ P generic with respect to
the dense sets {(d, p, F ) ∈ P : x ∈ F} for all x ∈ H, {(d, p, F ) ∈ P : s ∈
dom(p) or n /∈ d, n < max d} for all n ∈ ω, s ∈ nω, and {(d, p, F ) ∈ P :
|d| ≥ n} for all n ∈ ω. (For proving the density of the last of these, the
idea is that, starting with any (d, p, F ), we can enlarge d by choosing m so
large that all the x�m for x ∈ F are distinct and then adjoining m to d and
enlarging p as required by the definition of ≤. The choice of m ensures that
the required enlargements of p do not conflict.) Then by letting D and π be
the unions of the first components and second components, respectively, of
the triples in G, we obtain a predictor predicting all the functions in H.

To prove the lower bound of add(L), suppose we are given a family H of
fewer than add(L) functions x : ω → ω. Let {In : n ∈ ω} be the interval
partition where |In| = n+1. To each x ∈ H associate the function defined by
x′(n) = x�In. By Theorem 5.14, we can assign to each n a set S(n) consisting
of n functions In → ω in such a way that ∀x ∈ H∀∞n (x′(n) ∈ S(n)). Any
n functions produce at most n− 1 branching points, i.e., points k where two
of the functions first differ. So there is some in ∈ In that is not a branching
point for any of the n functions in S(n). So we can define a predictor with
D = {in : n ∈ ω} by setting π(s) = z(in) if s has length in and z ∈ S(n)
and s agrees with z on In ∩ in. (Extend p arbitrarily to those s whose length
is in D but which admit no such z.) This π predicts all x ∈ H because the
associated x′ have almost all their values in S(n).

This completes (modulo Tables 2 and 3) the proof of part 1. For parts 2
and 3, we only indicate the forcings used, referring to [30, 33] for the hard
parts of the proofs.

Part 2 is proved by a finite support iteration of Hechler forcing. Since this
adds Cohen reals and dominating reals, both cov(B) and b and therefore
also their minimum add(B) are large in the extension. The hard part of the
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proof is to show that e remains small.
Part 3 is proved by a finite support iteration where each step adds a

predictor that predicts all ground model reals. As in the proof of p ≤ e

above, a condition consists of a finite part of the desired predictor together
with finitely many functions that are to be predicted correctly at all later
points. This forcing clearly makes e large; the hard part is to prove that b

remains small. �

10.5 Remark. Laflamme has improved the inequality p ≤ e in Theorem 10.4
to t ≤ e. In [71, Proposition 2.3] he shows that t ≤ eubd, and he mentions
that t ≤ e follows via part 3 of Theorem 10.3.

We turn next to some additional variations on the theme of prediction
and evasion. These variations turn out to be closely connected to cardinals
studied in previous sections. We consider three sorts of variations, singly and
in combination.

First, the predictor could guess less information than the exact value of
the x(n) being predicted. Thus, we consider predictors (D, 〈πn : n ∈ D〉)
where each πn : nω → Pω, and we consider that x ∈ ωω is predicted by such
a π if ∀∞n (x(n) ∈ πn(x�n)). To avoid trivialities, the sets that occur as
values of πn must be small in some sense. (The predictor whose values are all
equal to ω predicts every x.) We shall consider the following six possibilities
for the values of πn.

• Singletons. (This is the case considered above.)

• Sets of cardinality k for some fixed k ∈ ω.

• Sets of cardinality f(n), where f is a function ω → ω that tends to
infinity.

• Finite sets.

• Co-infinite sets.

• Proper subsets of ω.

Thus, we shall refer to “single-valued” predictors, “k-valued” predictors, etc.
Each type of predictor gives rise to an evasion number, namely the minimum
number of functions not all predicted by a single predictor of that type.

Clearly, as the predictor’s guesses become less specific (as we go down
the list above), prediction becomes easier, evasion harder, and the evasion
number larger.

Notice also that we could replace “finite sets” as values for π with “initial
segments of ω” without affecting the evasion number, for given any predictor
π of one sort we can trivially produce a predictor π′ of the other sort pre-
dicting all the functions predicted by π. For the same reason, we can replace
“proper subsets of ω” with “co-singletons”.
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The next variation concerns which values of x a predictor must guess
correctly in order to predict x; it was also considered by Kada [63]. The
definitions above permit the predictor to specify an infinite set D and guess
x(n) only for n ∈ D; it predicts x if almost all of these guesses are correct. We
can make the definition more restrictive by requiring D = ω. This variation
will be called global prediction, and the original version will, when we want
to emphasize the difference, be called local prediction.

Alternatively, we can make the definition less restrictive by saying that
π predicts x if infinitely many (rather than almost all) of the guesses are
right. We refer to this as infinite prediction. Notice that in this situation
one might as well take D = ω, because extending a predictor to a larger D can
only increase the collection of functions it predicts. Thus, for both global and
infinite prediction, we usually regard a predictor as either a sequence 〈πn〉n∈ω

or as the union of such a sequence, π : <ωω → ω.
Clearly, as we move from global to local to infinite prediction, prediction

becomes easier, evasion harder, and the evasion number larger.
The final variation that we consider here is to make πn(s) independent

of s. In other words, the predictor is not allowed to see x�n but only knows
n when guessing x(n). Thus, the predictor is essentially just a function π on
ω or D, taking “small” values in one of the senses above. We refer to such
predictors as non-adaptive while predictors of the original sort are adaptive.
Clearly, adaptive prediction is easier than non-adaptive prediction, evasion
harder, and the evasion number larger.

The six choices for “small”, the three choices global or local or infinite,
and the two choices non-adaptive or adaptive give 36 evasion numbers, one
of which (singleton, local, adaptive) is e. Many of the others coincide with
cardinals discussed earlier, and for the rest there are bounds in terms of such
cardinals. This information is summarized in the following tables. The first
column of each table lists the six species of smallness, with G representing a
typical guess for x(n).

Our remarks above imply that the entries in each table increase (weakly)
from top to bottom and from left to right; also, as we go from one table to the
next (global to local to infinite), the entries in any single position increase
(weakly). We shall usually refer to these facts as “monotonicity” without
going into any more detail.

The question marks in four of the entries indicate that I do not know the
values of these evasion numbers but only the indicated bounds and the result
of Mildenberger (unpublished) that the following three cardinals are equal:

• e,

• the smaller of e2 and the question mark in the “|G| = k” line of Table 2,

• the smaller of eubd and the question mark in the “|G| finite” line of
Table 2.
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Table 1: Evasion numbers for global prediction
Non-adaptive Adaptive

|G| = 1 2 ℵ1

|G| = k k + 1 m(σ-k-linked) ≤? ≤ add(L)
|G| = f(n) add(L) add(L)
G finite b b

ω −G infinite non(B) non(B)
G � ω non(B) non(B)

Table 2: Evasion numbers for local prediction
Non-adaptive Adaptive

|G| = 1 2 e

|G| = k k + 1 e ≤? ≤ cov(B),non(B)
|G| = f(n) min{e, b} e ≤? ≤ cov(B),non(B)
G finite b e, b ≤? ≤ d,non(B)
ω −G infinite non(B) non(B)
G � ω non(B) non(B)

One could regard these entries with question marks as defining four more
cardinal characteristics. On the other hand, one might regard the entry e

in Table 2 as a euphemism for a question mark with the bounds given in
Theorem 10.4. The difference between e and the question marks is that the
former has been studied enough to indicate that it differs from the previously
studied characteristics, while the question marks might well reduce to some-
thing simpler. It is, however, known [34, p. 359] that, in the global prediction
table, neither of the inequalities around the question mark can be improved
to a provable equality.

In the following paragraphs, we give reasons for the table entries, leaving
some details to the reader.
2 and k + 1 For both global and local prediction, k + 1 distinct constant

functions evade any non-adaptive predictor of k-element sets. And any k
functions clearly can be predicted.

add(L) In the non-adaptive column of Table 1, the occurrence of add(L)
expresses Theorem 5.14 and the remark following it. The occurrence in the
adaptive column comes from the fact that an adaptive f(n)-valued predictor
π gives rise to a non-adaptive f ′(n)-valued predictor π′ (for a larger f ′) such
that all functions globally predicted by π are also globally predicted by π′.
Given π, associate to each s ∈ <ωω and each natural number n the set πs(n)
of all possible values of x(n) for functions x ∈ ωω that start with s and are
correctly predicted by π thereafter. (That is, x(k) is s(k) for k < length(s)
and π(x�k) for all larger k.) Also fix an enumeration of <ωω in an ω-sequence.
Let π′(n) be the union of the sets πs(n) as s ranges over the first n elements
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Table 3: Evasion numbers for infinite prediction
Non-adaptive Adaptive

|G| = 1 cov(B) cov(B)
|G| = k cov(B) cov(B)
|G| = f(n) cov(B) cov(B)
G finite d d

ω −G infinite c c

G � ω c c

of <ωω. It is easy to find an appropriate f ′ depending only on f and to verify
that π′ globally predicts everything that π does.
b We may take a finite-valued predictor’s guesses to be initial segments

of ω, i.e., natural numbers, a guess being correct if it is greater than the
actual value of the function being guessed. In this light, the occurrence of b

in the non-adaptive column of Table 1 expresses just the definition of b. The
occurrence in the adaptive column is justified by an argument analogous to
that in the discussion of add(L) above.

As for the occurrence in Table 2, consider any unbounded family E of b

non-decreasing functions. We shall see that they evade local prediction by
any non-adaptive, finite-valued predictor (π,D). As above, we assume the
values of π are natural numbers. Define π′ : ω → ω by letting π′(n) be the
value of π at the next member of D after n. By our choice of E , it contains
a member x not dominated by π′. Since x is non-decreasing, if (π,D) locally
predicted it then for all sufficiently large n ∈ ω we would have, letting k be
the next element of D after n,

x(n) ≤ x(k) < π(k) = π′(n).

This contradicts the choice of x, so x evades (π,D).
non(B) Let us consider first the bottom row in Tables 1 and 2, where

the guesses are proper subsets of ω. Without loss of generality, we may
assume that the guesses are complements of singletons. We’ll write π̃(n) for
the number absent from π(n) (and similarly for π̃(s) in the adaptive case).
Part 2 of Theorem 5.9 says that the bottom entry in the non-adaptive column
of Table 1 is non(B). By monotonicity, the other entries in the bottom row
of Tables 1 and 2 are no smaller. They are no larger because any predictor
predicts globally or locally only a meager subset of ωω.

To justify the next-to-bottom row in Tables 1 and 2, where the guesses
are co-infinite, it suffices, thanks to monotonicity, to show that a family F of
fewer than non(B) functions cannot evade global prediction by non-adaptive
co-infinite predictors. Fix a map p : ω → ω such that every p−1{n} is infinite.
The fewer than non(B) functions p ◦ f for f ∈ F are globally predicted by
a predictor π of proper subsets of ω (by Theorem 5.9); so the functions in F
are predicted by p−1 ◦ π, whose values are co-infinite.
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c Clearly, all evasion numbers are ≤ c, since any predictor, even an adap-
tive predictor of co-singletons, can be completely evaded by some function.
On the other hand, to evade infinite prediction even by non-adaptive pre-
dictors π of co-singletons requires c functions, because one needs functions
eventually equal to any prescribed f : ω → ω (giving the values omitted
by the predictor). To obtain the same result with “co-infinite” in place of
“co-singleton”, use the same “compose with p” trick as in the discussion of
non(B) above.
d As in the discussion of b above, we may assume that predictors give

natural numbers, intended as upper bounds for the values to be guessed.
Then the d in the non-adaptive column of Table 3 is justified by the definition
of d. To see that d functions suffice to evade even adaptive prediction, take
a family of d adaptive predictors that dominate all the adaptive predictors,
and choose for each of these predictors some function evading it.

cov(B) Of the six occurrences of cov(B) in Table 3, the top one in the
non-adaptive column expresses Part 1 of Theorem 5.9. To justify the rest,
it suffices by monotonicity to check that cov(B) functions suffice to evade
infinite prediction by adaptive predictors whose guesses at n have cardinality
f(n). We do this first for non-adaptive predictors, by a modification of the
argument for Theorem 5.9, and then we show how to extend the result to
the adaptive case. We may assume cov(B) < d, for otherwise the desired
information follows by monotonicity from the d’s in the next row of Table 3.

Fix cov(B) chopped reals (xα,Πα) with no single y ∈ ω2 matching them
all (by Theorem 5.2). Since cov(B) < d, fix an interval partition Θ not
dominated by any of the Πα. As in the proof of Theorem 5.9, this means that
every Πα contains infinitely many intervals each covered by two consecutive
intervals of Θ.

Define g(n) = 2 ·
∑

k≤n f(k) − 1. For each α and each n, we define a set
qα(n) as follows. Find g(n) disjoint pairs of consecutive Θ-intervals, each pair
covering a Πα-interval; let the unions of these pairs be J0, . . . , Jg(n)−1. Then
let qα(n) = {xα�J0, . . . , xα�Jg(n)−1}. So each qα(n) is a set of g(n) functions
into 2, each having as domain the union of two consecutive Θ-intervals, and
such that the domains of different members of qα(n) are disjoint.

By coding their values as natural numbers, we can regard the qα as func-
tions ω → ω. We claim that these cov(B) functions evade infinite prediction
by any non-adaptive, f(n)-valued predictor, i.e., any f -slalom.

Suppose this failed. So there is a function S assigning to each n ∈ ω a
set S(n) of f(n) elements such that for each α we have ∃∞n (qα(n) ∈ S(n)).
Without loss of generality, each element s of S(n) is a set of g(n) functions
into 2, each having as domain the union of two consecutive Θ-intervals, and
such that the domains of different members of s are disjoint. Now define
y ∈ ω2 by the following recursion, defining y on 2 ·f(n) Θ-intervals at step n.

Suppose steps 0 through n−1 have been completed, so y is already defined
on 2 ·

∑
k<n f(k) Θ-intervals. From each s ∈ S(n), remove those partial
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functions whose domains overlap the set where y is already defined. That
removes at most 2 ·

∑
k<n f(k), so at least 2 · f(n) − 1 are left, since s

had cardinality g(n). Go through the f(n) sets so obtained (one from each
s ∈ S(n)) in some order, picking one function from each, making sure that the
domain of each chosen function is disjoint from the domains of the previously
chosen functions. Since each of the domains is the union of two consecutive
Θ-intervals, each domain can overlap at most two others. Thus, there are
at least 2 · f(n) − 1 options for the first choice, at least 2 · f(n) − 3 for the
second, and so on down to at least 1 option for the f(n)th choice. So all
the choices can be made. Then extend y to agree with each of the chosen
functions on its domain. This completes step n of the recursion. After all
steps are completed, if y is not defined on all of ω, extend it arbitrarily.

For each α, there are infinitely many n with qα(n) ∈ S(n), so qα(n) is one
of the s’s considered at step n in the definition of y. So some element z of
qα(n) becomes part of y. But that z is xα�J for some J that includes an
interval of Πα. So y matches each (xα,Πα), contrary to our choice of these
chopped reals. This contradiction shows that the (coded) qα are evasive as
claimed.

It remains to extend the result to adaptive predictors whose guesses have
size f(n). Such a predictor is a function π : <ωω → [ω]<ω (with π(s) ∈ [ω]f(n)

if s ∈ nω). Identifying the domain <ωω with ω via some bijective coding,
we can view every such π as a non-adaptive predictor whose guesses have
size f ′(n) for a certain f ′ (that depends on f and the coding). Applying the
preceding argument to these non-adaptive predictors, and then reversing the
coding process, we get a family E of cov(B) functions <ωω → ω such that,
for every adaptive predictor π as above,

∃z ∈ E ∀∞s ∈ <ωω (z(s) /∈ π(s)).

Use each z ∈ E to recursively define a z′ : ω → ω by z′(n) = z(z′�n). Then
the family E ′ = {z′ : z ∈ E} evades infinite prediction by any π as above.
Indeed, with π and z as above, we have, for all but finitely many n, that

z′(n) = z(z′�n) /∈ π(z′�n).

e The entry e in Table 2 is just the definition of e. In view of what we just
proved about cov(B), we get e ≤ cov(B) by monotonicity. This completes
the proof of Theorem 10.4 above.
ℵ1 Any countably many functions hi : ω → ω are globally predicted by

the adaptive predictor defined by requiring π(s) = hi(n) if s has length n
and i is the first index with hi�n = s. Such a π predicts each hi accurately
at all n beyond the points where hi first differs from the earlier hj ’s.

On the other hand, any adaptive predictor whose values are singletons
can globally predict only countably many functions. Indeed, a function h
globally predicted by such a π is completely determined by the finite part of
h consisting of the values not correctly guessed by π.
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m(σ-k-linked) ≤? ≤ add(L) Monotonicity gives us the upper bound of
add(L). To establish the lower bound, we assume MAκ(σ-k-linked) and we
prove that any family H of κ functions ω → ω can be globally predicted by
an adaptive predictor π with k-element guesses, i.e., π : <ωω → [ω]k. Let
P be the set of pairs (p, F ) where p is a finite partial map from <ωω to
[ω]k and F is a finite subset of H with the following “branching restriction”:
For any two functions in F , if s is their longest common initial segment, then
s ∈ dom(p). (The “meaning” of (p, F ) is that p is part of the desired predictor
and that each function in F will be guessed correctly except possibly at those
places where p is defined.) Partially order P by putting (p′, F ′) ≤ (p, F ) if
p ⊆ p′, F ⊆ F ′, and, whenever f ∈ F and f�n ∈ dom(p′) − dom(p) then
f(n) ∈ p′(f�n).

This partial ordering is σ-k-linked because any k elements (p, Fi) with the
same first component have a common lower bound, constructed as follows.
First form (p,

⋃
i Fi). If this is not the desired lower bound, it is because the

branching restriction is violated. So there are some s /∈ dom(p) that are the
largest common initial segments of some f ∈ Fi and g ∈ Fj . Then i �= j
because each of the (p, Fi) satisfied the branching restriction. So any such
s, say of length n, is an initial segment of at most k members of

⋃
i Fi that

have different values at n. But then we can extend p by defining p(s) to be
a k-set containing the values at n of those ≤ k members of

⋃
i Fi. Doing this

for each such s, we get the desired lower bound.
Applying MAκ(σ-k-linked), we get a set G ⊆ P generic with respect to the

dense sets {(p, F ) ∈ P : s ∈ dom(p)} for all s ∈ <ωω and {(p, F ) ∈ P : f ∈ F}
for all f ∈ H. (The former is dense thanks to the branching restriction. To
verify the density of the latter, given any (p, F ) and any f ∈ H − F , first
form (p, F ∪ {f}). If the branching restriction is violated, extend p so as to
be defined at the new branching locations. Here we need that k ≥ 2.) Let π
be the union of all the first components of the pairs (p, F ) ∈ G. It is routine
to check (as in the proof of Theorem 7.7) that this π is an adaptive predictor
with k-set guesses, globally predicting every function from H.

e ≤? ≤ cov(B),non(B) Monotonicity implies all three inequalities.

e, b ≤? ≤ d,non(B) Again, monotonicity implies all four inequalities.

min{e, b} This is [33, Lemma 2.5]. Monotonicity gives the upper bound b.
The proof that e is also an upper bound is essentially the same as the proof of
add(L) ≤ e in Theorem 10.4. The only difference is that here we are dealing
with “partial slaloms”, i.e., functions S defined on some infinite D ⊆ ω and
satisfying |S(n)| = f(n) for all n ∈ D. Instead of predicting at all in, as in
the earlier argument, we now predict at in for n ∈ D.

To prove that min{e, b} is also a lower bound, let H be a family of fewer
than min{e, b} functions; we must find a partial slalom (in the sense defined
above) such that each h ∈ H satisfies ∀∞n ∈ D (h(n) ∈ S(n)). Since there
are fewer than b functions in H, we can find a single, strictly increasing
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g : ω → ω that dominates them all. Let {In : n ∈ ω} be an interval partition
such that, if a is the left endpoint of any In, then there is some in ∈ In with
f(in) ≥ g(a)a. To each h ∈ H associate the function defined by h′(n) = h�In.
Since the number of such h′ is < e, there is an adaptive predictor of singletons
(D′, π′) that locally predicts all the h′; that is,

∀h ∈ H∀∞n ∈ D′ (h′(n) = π′(h′�n)).

Do the following for each n ∈ D′. Let a be the left endpoint of In, and recall
that our interval partition was chosen so that g(a)a ≤ f(in) for some in ∈ In.
Consider all functions s from a into g(a); there are exactly g(a)a, and thus
no more than f(in), of them. Each gives an s′ by s′(m) = s�Im for m < n.
Then π′(s′) is some function In → ω; evaluate it at in. Doing this for each s
gives no more than f(in) numbers; let S(in) be the set of these numbers.

Doing this for all n ∈ D′, we get a partial slalom defined on D = {in : n ∈
D′}. For each h ∈ H, if π′ predicted h′(n) correctly (where n ∈ D′), then
h(in) ∈ S(in). So we have the desired partial slalom.

10.6 Remark. The variants of evasion discussed at the beginning of this
section (eg and eubd) can be combined with some of the variants in Tables 1
to 3. Finite and co-infinite predictors no longer make sense. When, as in the
case of eg, the functions to be predicted are bounded by a fixed g, we need
to pay attention to the function f in the |G| = f(n) lines of the tables; it is
no longer the case that any function tending to infinity is equivalent to any
other. Also, in this situation, the co-singleton case becomes a special case of
|G| = f(n) with f(n) = g(n) − 1. Thus, we would have three-line tables for
these variants. We omit any further discussion of these, since little is known
about them beyond carrying over some of the arguments presented above.

Another variation, lying between global and local, was introduced by
Kamo [65]. Say that a function π : <ωω → ω constantly predicts x : ω → ω if
there is n ∈ ω such that, with finitely many exceptions, any interval [m,m+n)
of length n contains some k such that x(k) = π(x�k). This concept has been
studied further by Kamo, Kada, and Brendle; see for example [32] and the
references there.

Finally, all the evasion cardinals considered in this section have duals of the
form: the smallest number of predictors needed to predict all functions. These
too have been little studied, but there is one remarkable result concerning
the number of f -slaloms needed to globally predict all members of

∏
n g(n).

Goldstern and Shelah [53] showed that this cardinal can vary with f and g
and in fact that in some models of set theory uncountably many cardinals
are of this form (infinitely many with recursive f and g).

11. Forcing

In this final section, we describe the effect of various forcing constructions
on cardinal characteristics. We shall discuss only the most commonly used
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forcing notions and their most natural iterations; for a far more extensive
discussion, see [5, Chaps. 3, 6, and 7].

Most of the forcing notions we consider are designed to add a real with
some prescribed properties, and the properties are often closely connected
with some Borel relation A = (A−, A+, A) (where we use the notation of
Sect. 4). Specifically, we say that a real x in a forcing extension solves A
(over the ground model) if x ∈ Ã+ and (a, x) ∈ Ã for all a ∈ A− in the
ground model. Here Ã denotes the relation in the extension having the same
Borel code as A has in the ground model, and similarly for Ã+ etc., but we
shall often omit the tilde since no confusion will result.

If there is a morphism ϕ : A → B whose ϕ+ component is Borel, so that
ϕ̃+ makes sense, and if x solves A then ϕ̃+(x) solves B. Indeed, given any
b ∈ B− in the ground model, let a = ϕ−(b) ∈ A−. The statement

∀u ∈ A+ (aAu =⇒ bBϕ+(u))

is true in V and absolute when expressed in terms of the Borel codes of A+,
A, B, and ϕ+. Thus it is true in any forcing extension that

∀u ∈ Ã+ (aÃu =⇒ bB̃ϕ̃+(u)).

Since a is in the ground model, we have aÃx and therefore bB̃ϕ̃+(x) as
claimed.

Notice that we do not need A−, B− or ϕ− to be Borel in the preceding
discussion.

It is easy to check that if x solves A and y solves B then (x, y) solves
the conjunction A ∧B and the product A×B. For sequential composition,
the situation is more complicated, because even if A and B are Borel, the
set of challenges in A;B is of higher type, so this relation cannot be Borel.
However, if we have a morphism ϕ : A;B→ C then under suitable Borelness
hypotheses we can conclude, by a proof very similar to that above, that if
V ⊆ V ′ ⊆ V ′ ′, if x ∈ V ′ solves A over V , and if y ∈ V ′ ′ solves B over V ′

then ϕ̃+(x, y) solves C over V . Most of the “suitable Borelness hypotheses”
are the ones obviously needed for the statement to make sense: A+, A, B+,
B, B−, and ϕ+ must be Borel. (B−, unlike A−, must be Borel so that
solving B over V ′, not over V , makes sense.) But one additional Borelness
hypothesis is needed for the proof. If we regard ϕ− : C− → A− × A+B− as
a pair of functions α : C− → A− and β : C− → A+B−, and if we regard β
as β′ : C− × A+ → B− (where β′(c, a) = β(c)(a)), then we need that β′ is
Borel. We leave the details to the reader.

Most of the iterations we consider will be either finite support iterations
of c.c.c. forcing notions or countable support iterations of proper forcing
notions. For general information about iterations, see Abraham’s chapter in
this Handbook or [62, 9, 97]. All the proper forcing notions considered below
satisfy Baumgartner’s Axiom A [9], which is stronger and usually easier to
check than properness. We usually write V for the ground model and Vα for
the model obtained after α stages of an iteration.
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11.1. Finite Support Iteration and Martin’s Axiom

A finite support iteration of c.c.c. forcing is equivalent to a single c.c.c. forcing
[106] and therefore preserves cardinals. Also, if the length λ of the iteration
has uncountable cofinality, then every real in the final extension Vλ is already
in an intermediate extension Vα, α < λ. If, cofinally often in such an iteration,
one adjoins a real solving A⊥ over the previous model, then in Vλ the norm
‖A‖ will be at least cf(λ). Indeed, given any fewer than cf(λ) members of A+

in Vλ, we can find an α < λ such that all these reals are in Vα; increasing α if
necessary, we can, by hypothesis, arrange that Vα+1 contains a real x ∈ A−
solving A⊥ over Vα. But that means in particular that x is A-related to none
of our given fewer than cf(λ) reals.

The preceding remarks indicate a way to make a characteristic ‖A‖ large,
namely iterate a c.c.c. forcing that solves A⊥, with finite support, for λ
stages, where λ is regular and large.

Applying this method with all c.c.c. forcings of size < λ (in all the inter-
mediate models) suitably interleaved, one obtains a model of MA and c = λ
provided GCH held in the ground model. If one uses only σ-centered posets
in the iteration, then one obtains a model of MA(σ-centered), i.e., p = c (see
Theorem 7.12), but MA fails and in fact cov(L) = ℵ1 (see [5, Sect. 6.5D]).
Similar constructions give models satisfying various fragments of MA while
violating others; see Appendix B1 of [48] and the references therein.

To prove independence results in the theory of cardinal characteristics, one
needs techniques for making one characteristic large while keeping another
small. As indicated above, it is not difficult to make a chosen characteristic
large, but it is usually difficult to prove that another characteristic remains
small. In fact, some characteristics cannot be kept small in a non-trivial finite
support iteration. The reason is that such an iteration always introduces
Cohen reals at all limit stages of cofinality ω. Cohen reals solve various
Borel relations (see below), notably Cov(B)⊥, and therefore finite support
iterations cannot avoid making certain characteristics, notably cov(B), large.

11.2. Countable Support Proper Iteration

A countable support iteration of proper forcing is equivalent to a single proper
forcing [97, Theorem 3.2] and therefore preserves ℵ1. For our purposes, it will
be important to also preserve larger cardinals, and this is usually ensured by
an appeal to [97, Theorem 4.1], which gives the <ℵ2-chain condition provided
(1) CH holds in the ground model, (2) the forcing notion used to produce
Vα+1 from Vα has cardinality at most c in Vα, and (3) the length of the
iteration is at most ω2. (See Abraham’s chapter in this Handbook.) The
first two of these provisos will be satisfied automatically in the situations we
are interested in, but the third is a real impediment. This limitation on the
length of the iteration prevents us from making the continuum arbitrarily
large with countable support iterations; only c = ℵ2 can be achieved. It is
shown in [11] that iterating Sacks forcing (which is proper) with countable
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support for ω2+1 steps collapses ℵ2. Also, it is pointed out in [51, Remark 0.3]
that a countable support ω1-stage iteration of any non-trivial forcings will
collapse c to ℵ1.

Our inability to produce larger values of c with the kind of detailed con-
trol available for countable support iterations has prevented the solution of
several problems. For example, although we have models with no P-points
and models with no Q-points (both obtained by countable support proper
iterations), we do not know how to achieve both simultaneously. By Theo-
rems 9.25 and 9.27, such a model would need to have cov(B) < d < c and
therefore c ≥ ℵ3. Similarly, we have no model for p < t; by Theorem 6.25,
such a model would need to have ℵ2 ≤ p < t and therefore c ≥ ℵ3. (Brendle
has pointed out, however, that there is no a priori reason why a model of
p < t could not be produced by finite support iteration. This contrasts with
the situation for producing a model with neither P-points nor Q-points; here
finite support iteration has no chance because the Cohen reals it introduces
make cov(B) large, and then Theorem 9.26 produces a selective ultrafilter.)

The “ℵ3 barrier” is widely regarded as merely a technical problem. It
has, however, resisted our efforts long enough to suggest that perhaps our
inability to produce certain models is caused not by our technical deficiencies
but by the non-existence of the models.

In the rest of this section, countable support iterations will always be of
the sort discussed above; that is, GCH will hold in the ground model, each
step will be a proper forcing notion of cardinality at most c, and the length
of the iteration will be ω2. Thus, all cardinals are preserved. Furthermore,
every real in the final model Vω2 is already in some intermediate model Vα,
α < ω2. Thus, as with finite support iterations, we can increase a charac-
teristic ‖A‖ (but only up to ℵ2) by cofinally often adding reals that solve
A⊥. To prove independence results, we want to simultaneously keep some
other characteristic small, and for this purpose there are a large number of
powerful preservation theorems; see [97, 51, 45]. For example, in a countable
support proper iteration, if each Vα∩ωω is a dominating family in Vα+1 then
V ∩ ωω is dominating in Vλ. In other words, if Vα+1 never contains a real
solving D⊥ over Vα, then d remains ℵ1 in the final model.

11.1 Remark. Zapletal [115] has shown that, under a strong large cardinal
assumption (a proper class of measurable Woodin cardinals), many cardinal
characteristics y admit an optimal notion of forcing Py to make them large.
Optimality means that, if x is any tame characteristic and x < y can be forced
by some set forcing notion, then it is forced by Py. The notion of tameness
used here is somewhat more general than being the norm of a projective
relation, in that it permits some additional restrictions on the set Y ⊆ A+

in Definition 4.1 of norms. All norms of Borel relations are tame, and so are,
for example, p, t, and u, but not, for example, g.

Zapletal gives the following specific examples (among others) of optimal
forcings for certain characteristics. See the following subsections for descrip-
tions of these forcings. Cohen forcing is optimal for cov(B). Random forcing
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is optimal for cov(L). Sacks forcing is optimal for c. Laver forcing is optimal
for b. Mathias forcing is optimal for h. Miller forcing is optimal for d. For
a somewhat more extensive description of this work of Zapletal, see the final
section of Bartoszyński’s chapter of this Handbook, and for the details see
[116].

11.3. Cohen Reals
The Cohen forcing poset, <ω2 ordered by reverse inclusion, adjoins a real
c : ω → 2 (namely the union of the conditions in the generic set) that matches
every chopped real (x,Π) from the ground model. Indeed, for each (x,Π) and
each n ∈ ω, the forcing conditions that agree with x on at least one interval
of Π beyond n form a dense set in the ground model, so by genericity one of
them must be included in c. Thus, a Cohen real solves Cov(B)⊥. (In fact,
this characterizes Cohen reals.)

The usual way to iterate Cohen forcing is with finite support. Since the
forcing poset is absolute, finite support iteration and finite support product
are equivalent. The resulting model (when the ground model satisfies GCH)
is usually called “the Cohen model” independently of the number λ of factors;
for more precision, one says “the λ Cohen real model”. This is the model
used by Cohen [40] for his proof of the independence of GCH. Because of the
c.c.c., every real in the Cohen model is already in the intermediate model
generated by (the restriction of the generic filter to) some countable sub-
product. Such a countable product (indeed, any countable atomless forcing
notion) is equivalent to the single forcing <ω2. Thus any real in the Cohen
model is in a submodel generated by a single Cohen real.

Since a Cohen real solves Cov(B)⊥, the λ Cohen real model (for any
uncountable regular λ) has cov(B) = λ = c. It follows that all cardinals in
the right half of Cichoń’s diagram equal λ in this model. Furthermore, since

cov(B) ≤ r ≤ u, i,

all these cardinals also equal c in the Cohen model. (One can also see directly
that a Cohen real splits all ground model reals, so r = λ.)

On the other hand, non(B) = ℵ1 in the Cohen model, the set of ground
model reals being non-meager. To prove this, we must show that every
chopped real (x,Π) in the extension is matched by some ground model real.
By our remarks above, we may assume that (x,Π) is in the forcing extension
by a single Cohen real. In the ground model, we construct a real y such that
for no condition p ∈ <ω2 and natural number n can p force “y does not agree
with x on any interval of Π beyond n”. Such a y is easily built by a recursion
of length ω in which each step defines y(k) for finitely many k and takes care
of one pair (p, n). Taking care of (p, n) means to proceed as follows. Extend
p to a condition q deciding a particular value for the restriction of x to the
first interval I ∈ Π whose left endpoint is greater than n and greater than
all points already in the domain of y. Then extend y to agree with that
restriction of x. Thus, q forces that y and x agree on an interval of Π beyond
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n, so p cannot force the contrary. (Note that this proof shows more than
claimed. Not only the set of all ground model reals but any non-meager set
in the ground model remains non-meager in a Cohen extension.)

In fact, non(B) = ℵ1 holds in any model obtained by adjoining at least ℵ1

Cohen reals to any ground model whatsoever. The reason is that ℵ1 Cohen
reals constitute a non-meager set.

From non(B) = ℵ1, it immediately follows that all cardinals in the left
half of Cichoń’s diagram are ℵ1. Furthermore, we have

non(B) ≥ b ≥ h ≥ t ≥ p ≥ m, non(B) ≥ s, and non(B) ≥ e,

so all these cardinals are also ℵ1 in the Cohen model.
Kunen showed [68, Theorem VIII.2.3] that a = ℵ1 in the Cohen model.

The idea is to construct, by transfinite induction in the ground model (where
CH is available) a MAD family that remains MAD when one adds a Cohen
real to the universe. It therefore remains MAD in any Cohen extension, since
a failure to remain MAD would be witnessed by a single real. We omit the
construction, since a similar one is given in the discussion of random reals
below.

Finally, we cite from [18] the result that g = ℵ1 in the Cohen model (or
indeed in any model obtained by adjoining at least ℵ1 Cohen reals to any
model at all).

11.4. Random Reals

The notion of forcing to add one random real is the Boolean algebra of Borel
sets modulo sets of Lebesgue measure zero (in any of [0, 1], R, ω2, ωω; they are
all equivalent). (Here and in general, when one refers to a Boolean algebra as
a notion of forcing, one means the algebra minus its zero element.) Random
forcing was introduced by Solovay [104, 105]. A generic G determines a real r,
called “random”, such that, if B is any Borel set in the ground model, then
r ∈ B̃ if and only if [B] ∈ G. (For basic intervals B, this is the definition
of r; for other B it is a theorem.) Thus, r solves Cov(L)⊥. This property
characterizes random reals.

Although random forcing can be iterated with finite support or with count-
able support (being c.c.c. and therefore proper), the most common way to
add many random reals uses a large measure algebra, namely the algebra of
Borel subsets modulo measure zero sets in I2 for large I. The measure here
is the product measure induced by the uniform measure on 2. This forcing
adds a random function f : I → 2 whose restrictions to countable subsets
of I in V amount to random reals. One often starts with a ground model
satisfying GCH, takes I = λ × ω, and regards the forcing as adding the λ
random reals rα : ω → 2 : n �→ f(α, n). Any real in this λ random reals
model is in the submodel generated by countably many of the rα, and this
submodel is equivalent to one obtained by adjoining a single random real to
the ground model.
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Because a random real solves Cov(L)⊥, the λ random reals model has (for
uncountable regular λ) cov(L) = λ = c. Therefore, all the cardinals in the
top row of Cichoń’s diagram equal c in this model, and so do r, u, and i.

On the other hand, d and non(L) are both ℵ1, as in the ground model.
More generally, if uncountably many random reals are added (with the usual
measure algebra forcing) to any ground model, then in the extension d will
have the same value as in the ground model while non(L) will be ℵ1. The
former follows from the fact that all reals in a random extension are majorized
by ground model reals. The latter follows from the fact that any ℵ1 of the
added random reals form a set of positive outer measure. (A measure-zero
Borel set, or rather its code, depends on only countably many of the added
random reals; all the rest of the added random reals, being random over an
intermediate model containing the code, must be outside that Borel set.)

It follows that all the cardinals in the middle and bottom rows of Cichoń’s
diagram are ℵ1, and therefore so are s, e, g, h, t, p, and m.

Finally, we show, adapting Kunen’s proof for the Cohen model, that a = ℵ1

in the random model. Since every real in the random model is in a submodel
that can be generated by a single random real, it suffices to construct a family
A in the ground model that is MAD and remains so when one random real
is adjoined to the universe. We proceed as follows in the ground model.
Because the forcing notion to adjoin one random real has cardinality c and
satisfies the c.c.c., there are only c = ℵ1 essentially different names for subsets
of ω; enumerate them as 〈xα : α < ω1〉. We construct A by a recursion of
length ℵ1, starting with a partition of ω into ℵ0 infinite pieces, and adding one
set aα to A at each step. This set will be chosen so as to be almost disjoint
from the previous aβ ’s and to have infinite intersection with the denotation
(with respect to every generic set) of xα (unless some earlier aβ already does
or xα is finite). That will ensure that A = {aα : α < ω1} remains MAD
in the random extension. Let [B] be the Boolean truth value of “xα is not
almost included in the union of finitely many ǎβ with β < α̌”. We shall make
sure that the truth value of “xα ∩ ǎα is infinite” is at least [B]. Equivalently,
since we are dealing with a measure algebra, we shall make sure that for every
n the Boolean truth value of “xα ∩ ǎα has a member > n” intersected with
[B] has measure at least μ[B]− 1

n . And of course we must ensure that aα is
almost disjoint from the earlier aβ ’s. We define aα as follows.

Let the earlier aβ ’s be enumerated in an ω-sequence as a′
n. We shall

construct aα by a recursion of length ω, adding finitely many elements at
each stage, and ensuring at stage n that the measure requirement at the end
of the last paragraph is satisfied for n. To ensure almost disjointness, we
shall not add any elements of a′

k after stage k. We now describe stage n. Let
v =

⋃
k<n a′

k, whose elements are no longer to be added to aα. With truth
value at least [B], xα− v is infinite. So [B] is the Boolean sum of (countably
many) pairwise incompatible conditions [Bi] each forcing a specific value for
the first element z of xα − v that is > n. Since the measures of all the [Bi]
add up to the measure of [B], finitely many of them come to within 1

n of that
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total. Put the corresponding finitely many z’s into aα. This completes the
construction of aα; we omit the routine verification that it does what was
required.

11.5. Sacks Reals

The Sacks forcing notion, introduced in [96] and also called perfect set forcing,
consists of perfect subtrees of <ω2, i.e., nonempty subtrees that have branch-
ing beyond each node; the partial ordering is inclusion. This is a proper
forcing that adjoins a real s, namely the unique common path through all
the trees in a generic set G.

The forcing extension V [s] enjoys the Sacks property : For every function
f : ω → V in V [s], there is a function g : ω → V in V such that for all
n ∈ ω we have f(n) ∈ g(n) and |g(n)| ≤ 2n. To prove this, suppose we
are given a name ḟ for f and a condition p. Working in V , we prune the
tree p in ω steps to produce a perfect subtree q forcing that a certain g is as
required; by genericity, this will suffice. Begin by choosing p0 ≤ p deciding
a specific value for ḟ(0). This value will be the unique element of g(0). The
first branching node a of p0 will be the first branching node of the final q;
i.e., neither a nor its immediate successors a�〈0〉 and a�〈1〉 will be pruned
away later. Regard p0 as the union of two perfect subtrees, one consisting
of the nodes comparable with a�〈0〉 and the other of the nodes comparable
with a�〈1〉. In each of these, find a perfect subtree deciding ḟ(1) (possibly
different decisions for the two subtrees). Reuniting these two subtrees, we get
a perfect subtree p1 of p0, where a is still a branching node, and such that p1

forces ḟ(1) to have one of just two specific values. Those values will be the
elements of g(1). All later steps will preserve the two second-level branching
nodes of p1. Regard p1 as the union of four perfect subtrees, one through
each of the immediate successors of those nodes. Shrink each of the four
to decide a (possibly different) value for ḟ(2); and reunite them to get p2.
Continuing in this way, we finally obtain a tree q =

⋂
n∈ω pn that is perfect

because we retain more and more branching as the construction progresses. q
is an extension of p forcing each ḟ(n) to have one of 2n specific values known
in V , so the desired g exists in V . (Although 2n emerges naturally from the
proof as the bound for |g(n)|, we could, as in Remark 5.15, replace 2n by any
function tending to ∞.)

This sort of construction, repeatedly pruning a tree but retaining more
and more branching, is referred to as fusion. It can also be used to prove
that adjoining a Sacks real produces a minimal extension in the sense that if
x ∈ V [s]− V is a set of ordinals then V [x] = V [s].

The usual way to iterate Sacks forcing is with countable support for ℵ2

steps, starting with a model of GCH. The resulting model is often called the
Sacks model. Properness of Sacks forcing implies that cardinals are preserved.
Furthermore, the Sacks model has the Sacks property, because this property
is preserved by countable support proper iterations; see [5, Sect. 6.3.F], [97,



476 Blass / Combinatorial Cardinal Characteristics of the Continuum

Sects. VI.1–2], or [51]. It follows, by the dual of Theorem 5.14, that cof(L) =
ℵ1 in the Sacks model. Therefore, all cardinals in Cichoń’s diagram as well
as d, e, b, g, s, h, t, p, and m are equal to ℵ1 in this model. Baumgartner and
Laver [11] showed that selective ultrafilters in the ground model, which exist
since GCH holds there, generate ultrafilters in the Sacks model. (In fact, the
same is true of P-points.) Therefore the Sacks model has u = r = ℵ1.

Spinas has shown (private communication) that the Sacks model satisfies
a = ℵ1. In outline, his argument is as follows. By general properties of
Souslin proper forcing (see [60], [51, Sect. 7], and [101]), it suffices to find,
in the ground model, a MAD family A that remains MAD in the extension
obtained by iterating Sacks forcing for ω1 steps with countable support. List
in an ω1-sequence all pairs (τ, p) where p is a condition in this iteration and τ
is a name forced by p to denote an infinite subset of ω. We define the desired
A = {Aα : α < ω1} by induction in the ground model, ensuring at step
α that for the αth pair (τ, p) some extension of p either forces (a) “τ ∩ Ǎα

is infinite” or forces (b) “τ is almost included in Ǎβ1 ∪ · · · ∪ Ǎβr” for some
finitely many β1, . . . , βr < α. Either way, p cannot force A∪{τ} to be almost
disjoint with τ /∈ A, so the maximality is preserved. To define Aα, assume the
previous Aβ ’s are already defined; modifying them finitely and re-numbering
them (see the proof of Proposition 8.4), we can pretend that the ω we are
working in is ω×ω and that these earlier Aβ ’s are the columns {n}×ω. We
can also assume that p forces τ to meet infinitely many of these columns,
as otherwise we already have alternative (b) above. We shall take Aα to be
{(a, b) : b < f(a)} for a suitably large f : ω → ω. Then clearly Aα is almost
disjoint from the previous Aβ ’s (the columns). To obtain alternative (a) and
thus complete the proof, we need only choose f large enough. Specifically,
use the name τ to produce a name D for the set of n such that the nth column
meets τ and a name g for a function D → ω such that p forces “D is infinite
and, for each d ∈ D, τ contains an element (d, b) with b < g(d)”. Then,
thanks to the Sacks property, p also forces “some ground model function
f : ω → ω majorizes g”. Choosing an extension of p that decides what f is,
we obtain alternative (a), and the proof is complete.

Finally, Eisworth and Shelah (unpublished) have shown that i = ℵ1 in the
Sacks model.

For many cardinal characteristics, a recent result of Shelah gives a uniform
reason why they are ℵ1 in the Sacks model. Shelah has shown that a countable
support proper iteration of forcings that individually add no reals can, at limit
stages of cofinality ω, introduce Sacks reals. But there are numerous iteration
theorems (see [97, 51, 45]) saying that certain properties of a ground model
will be unchanged by a countable support proper forcing iteration provided
they are unchanged by the individual steps. These properties, then, are not
changed by adding Sacks reals.

Another explanation for the smallness of many cardinal characteristics in
the Sacks model is that countable support iteration of Sacks forcing is the op-
timal forcing for increasing c, in the sense of Zapletal [115]; see Remark 11.1.
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Thus, all tame cardinal characteristics that can be forced to remains small
when c is increased by some set forcing in fact remain small in the Sacks
model, provided there is a proper class of measurable Woodin cardinals.

11.6. Hechler Reals

Introduced by Hechler [57] for his proof of Theorem 2.5, Hechler forcing, also
called dominating forcing, is the set of pairs (s, f) where s ∈ <ωω and f ∈ ωω.
(The “meaning” of (s, f) is that the generic real in ωω has s as an initial
segment and thereafter majorizes f .) The ordering puts (s′, f ′) ≤ (s, f) if s is
an initial segment of s′, f ≤ f ′, and s′(n) ≥ f(n) for all n ∈ dom(s′)−dom(s).
This forcing satisfies c.c.c.; in fact it is σ-centered, since any finitely many
conditions with the same first component have a lower bound. A Hechler-
generic set G determines a function g : ω → ω, namely the union of the
first components of the members of G. Such a g is called a Hechler real.
Genericity implies that it dominates all ground model functions ω → ω,
i.e., g solves D. (“Dominating real” is sometimes used as a synonym for
“Hechler real” and sometimes to mean any real that dominates all ground
model reals.) Replacing each of the values of g by its parity, we obtain a
Cohen real, g mod 2.

By “the Hechler model” we mean the result of a finite support iteration
of Hechler forcing over a model of GCH, where the number of steps is some
regular uncountable cardinal λ. One can also consider countable support
iterations (for up to ω2 stages, as usual) but we shall not do so here. Hech-
ler’s original use of Hechler forcing [57] amounted to a combination of finite
support iteration and product constructions.

Since a Hechler real solves D and its parity solves Cov(B)⊥, the Hechler
model satisfies cov(B) = b = λ = c. By Theorem 5.6, it satisfies add(B) = c.
Thus, in this model, the cardinals in the second through fourth columns of
Cichoń’s diagram equal c. Those in the first column, on the other hand, equal
ℵ1 since this forcing adds no random reals [5, second model in 7.6.9]. Since
b is large, so are r, u, a, and i. Baumgartner and Dordal showed in [10] that
s in the Hechler model is ℵ1, and therefore so are h, t, p, and m. Brendle [30,
Theorem 10.4] showed that e = ℵ1 in the Hechler model.

The value of g in the Hechler model should be ℵ1. Brendle has shown
(private communication) that it is ℵ1 if Hechler forcing is iterated for only
ω2 steps. Shelah has sketched a proof that it is ℵ1 in general, but so far as
I know this proof has yet to be written down carefully and checked (private
communication from Eisworth).

Pawlikowski [84] showed that, although add(B) is large in the Hechler
model, adjoining a single Hechler real to the ground model does not produce
any real solving Cof(B). Such a real appears, however, when two Hechler
reals are added iteratively. This last fact follows from part 1 of Theorem 5.6,
which says that Cof(B) admits a morphism from a sequential composition of
two relations each of which is solved when a single Hechler real is adjoined.
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11.7. Laver Reals

Conditions in Laver forcing are trees p ⊆ <ωω in which there is a node s,
called the stem, such that all nodes are comparable with s and every node
beyond s has infinitely many immediate successors. (So, starting at the root
of p, one finds no branching until one reaches s and then infinite branching
everywhere thereafter.) The ordering is inclusion. A generic set G determines
a function g : ω → ω called a Laver real, namely the union of the stems of
all the conditions in G, or equivalently the unique common path through all
members of G. Laver forcing is proper. Genericity implies that a Laver real
dominates all ground model functions ω → ω.

The Laver model is obtained by an ω2-stage countable support iteration of
Laver forcing over a model of GCH. (Historically, Laver forcing and countable
support iteration were introduced together in [72]. For the purpose of that
paper, producing a model of the Borel conjecture, one needs to dominate
all ground model reals, but one must not introduce Cohen reals, so neither
Hechler forcing nor a finite support iteration can be used.) Since a Laver real
solves D, the Laver model has b = ℵ2 = c. It follows that the cardinals in all
but the left column and bottom row of Cichon’s diagram are ℵ2, and so are
r, i, u, and a.

Like Hechler forcing, Laver forcing even when iterated does not produce
random reals, but unlike Hechler forcing it does not produce Cohen reals
either. In fact, the set of ground model reals does not have measure zero in
the extension. See [5, Sect. 7.3.D] for proofs of these facts. It follows that
cov(L) and non(L) are both ℵ1 in the Laver model, and therefore so are
add(L), add(B), cov(B), e, s, h, t, p, and m.

Finally, Brendle has pointed out that the proof of g = c for the Miller
model [26, 18] applies also to the Laver model. The same argument was used
for a slightly different purpose in [45, Lemma 4.3.5].

11.8. Mathias Reals

Mathias forcing was described in Remark 7.8. It consists of pairs (s,A) with
s ∈ [ω]<ω and A ∈ [ω]ω (“meaning” that the generic subset of ω has s as
an initial segment and otherwise is included in A). The ordering, defined in
Remark 7.8, is based on this meaning, and the resulting forcing is proper.
A generic filter G determines an infinite subset X of ω called a Mathias real,
namely the union of the first components of all the members of G. Mathias
forcing was used in [74] and was studied in detail in [76].

The essential property of a Mathias real X is that, if D ⊆ [ω]ω is any dense
open family in the ground model, then X is included in some member of D.
To prove this, consider an arbitrary condition (s,A) and use the density of
D to extend it to (s,A′) with A′ ∈ D. Then (s,A′) forces the generic real
X to be almost included in A′ and therefore included in some member of D
since dense open families are closed under finite modifications.
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By the Mathias model, we mean the result of an ω2-stage countable sup-
port iteration of Mathias forcing over a model of GCH. The preceding para-
graph together with a reflection argument implies that h = ℵ2 = c in this
model. Specifically, given any ℵ1 dense open families Dξ, we can find a com-
mon member as follows. Using the <ℵ2-chain condition, we obtain an α < ω2

(in fact an ω1-closed unbounded set of such α’s) such that each Dξ ∩ Vα is a
member of Vα and is a dense open set in the sense of Vα. Then the Mathias
real X adjoined in going from Vα to Vα+1 has, by the preceding paragraph,
supersets in each Dξ ∩ Vα and therefore belongs to each Dξ.

Because h is large, so are b, g, s, r, d, a, u, i, and non and cof of both
category and measure.

On the other hand, both cov(B) and cov(L) are only ℵ1 because neither
Cohen nor random reals are added. See [5, Sect. 7.4.A] for the proof. It
follows that add(L), add(B), e, t, p, and m are also ℵ1.

11.9. Miller Reals

The Miller forcing notion, introduced in [82], consists of superperfect trees
(also called rational perfect trees), i.e., subtrees of <ωω in which beyond every
node there is one with infinitely many immediate successors. The order is
inclusion. As with other such tree forcings, this is proper, and a generic set G
determines a real g : ω → ω, namely the union of the stems of the members of
G or equivalently the unique path through all members of G. It is sometimes
convenient to replace the Miller forcing notion with the isomorphic one in
which the nodes of the trees are strictly increasing finite sequences from ω.
Then the generic g is an increasing map ω → ω, the enumeration of an infinite
X ⊆ ω. Either g or X can be called a Miller real or a superperfect real.

The Miller model is the result of an ω2-stage countable support iteration of
Miller forcing over a model of GCH. It is shown in [26, 18] that a Miller real
X has supersets in all groupwise dense families from the ground model. This
and a reflection argument show, just as in the discussion of Mathias forcing
above, that g = ℵ2 = c in the Miller model. It follows that d, i, cof(B), and
cof(L) are also ℵ2.

On the other hand, it is shown in [5, 7.3.E] that both non(L) and non(B)
are ℵ1 in the Miller model. Therefore so are s, e, b, h, t, p, m, and all the
cardinals in Cichoń’s diagram except d and the two cofinalities.

It is also shown in [26] that every P-point in the ground model generates
an ultrafilter in the Miller model. Therefore this model satisfies u = r = ℵ1.

Finally, the proof that a = ℵ1 in the Sacks model can, as Spinas pointed
out, be transferred to the Miller model with only a minor modification. At the
end of the proof, instead of using the Sacks property (which fails in the Miller
model), one uses the fact that the ground model is an unbounded family in
ωω to show that p forces the function g in the extension to be majorized
on an infinite subset of D by an f from the ground model. Another proof
that a = ℵ1 in the Miller model is given in [44, Proposition 8.24]. Eisworth
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Table 4: Cardinal characteristics in iterated forcing models
MA Cohen Random Sacks Hechler Laver Mathias Miller

a c ℵ1 ℵ1 ℵ1 c c c ℵ1

b c ℵ1 ℵ1 ℵ1 c c c ℵ1

d c c ℵ1 ℵ1 c c c c

e c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

g c ℵ1 ℵ1 ℵ1 ℵ1 c c c

h c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 c ℵ1

i c c c ℵ1 c c c c

m c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

p c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

r c c c ℵ1 c c c ℵ1

s c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 c ℵ1

t c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

u c c c ℵ1 c c c ℵ1

add(L) c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

cov(L) c ℵ1 c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

non(L) c c ℵ1 ℵ1 c ℵ1 c ℵ1

cof(L) c c c ℵ1 c c c c

add(B) c ℵ1 ℵ1 ℵ1 c ℵ1 ℵ1 ℵ1

cov(B) c c ℵ1 ℵ1 c ℵ1 ℵ1 ℵ1

non(B) c ℵ1 c ℵ1 c c c ℵ1

cof(B) c c c ℵ1 c c c c

pointed out (private communication) that the same argument applies to the
Sacks model.

11.10. Summary of Iterated Forcing Results

Table 4 summarizes the preceding results concerning the values of cardinal
characteristics in the iterated forcing models described above. Remember
that in the countable support models, i.e., in the Sacks, Laver, Mathias, and
Miller columns of the table, c is just ℵ2.

Figure 1 is a Hasse diagram of the main cardinal characteristics discussed
in this chapter, except for the characteristics of the measure and category
ideals. A line joining two characteristics in the figure means that the lower
one is provably ≤ the upper one.

11.11. Other Forcing Iterations

The preceding sections cover only a few of the many kinds of iterated forcing,
over models of GCH, that have been used in the theory of cardinal charac-
teristics. There are other kinds of reals that one can adjoin, for example
infinitely equal reals, Prikry-Silver reals, Matet reals, Grigorieff reals. Ex-
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Figure 1: Hasse diagram of combinatorial characteristics

cept for Matet reals, which are defined in the last section of [18], these and
many others can be found in [5] or [62]. Most of these forcing notions do not
satisfy the c.c.c., so they are iterated with countable support and therefore
one enlarges c only to ℵ2.

A model constructed in [25, Sect. 2] involves iterating a forcing that looks
less natural than those discussed in the preceding sections or mentioned in
the preceding paragraph, but we list its cardinal characteristics here because
they are somewhat unusual, e.g., u < s. The model has u = ℵ1 and therefore
all of r, e, b, h, t, p, m, and the covering numbers and additivities for both
category and measure are ℵ1. On the other hand, it has s = c = ℵ2 and
therefore all of d, i, and the uniformities and cofinalities of both measure and
category are ℵ2. (See [25, Theorem 5.2].) In addition, this model, designed
to satisfy NCF, has g = ℵ2, as was shown in [23, Theorem 2]. It also has
a = ℵ1 by the same Souslin-forcing argument used above for Sacks and Miller
reals.

A frequently useful sort of iterated forcing is one where two or more dif-
ferent forcings are used alternately. Numerous examples of this can be found
in [5, Chap. 7]. Dow’s paper [43] describes, among other things, the models
obtained by alternating Laver and Mathias forcings; it turns out to make a
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difference which forcing one uses at limit ordinals.
Dordal [41] uses a mixed support iteration of Mathias forcings. Viewing

Mathias forcing as a two-step iteration, where one first adjoins an ultrafilter
generically and then does Mathias forcing with respect to this ultrafilter (see
Remark 7.8), he defines an iteration in which the adjunctions of ultrafilters
are done with countable support while the interleaved Mathias forcings with
respect to these ultrafilters are done with finite support.

All the preceding forcing iterations began with a ground model satisfying
GCH. Thus, all cardinal characteristics are ℵ1 in the ground model, and
the iterations are designed to raise some characteristics while leaving others
small. An alternative approach is to begin with a model where c and some
other characteristics are already large (e.g., a model of MA) and to do an
iteration, usually of small length, to lower some characteristics while leaving
others large. We briefly describe two examples; many more can be found in
[5, Chap. 7].

Start with a model of MA + ¬CH (so all the characteristics we have dis-
cussed are large) and adjoin ℵ1 random reals. Since the ωω of a random
extension is dominated by that of the ground model, we obtain a model
where b has the same large value that it had in the ground model of MA.
On the other hand, s is only ℵ1 in the extension, and in fact so is non(L),
since the ℵ1 random reals form a set of positive outer measure and thus a
splitting family. This proof for the consistency of b > s, due to Balcar and
Simon, is easier than either of the ones obtainable from Table 4 (the Hechler
and Laver models).

Another application of forcing over a model with large continuum is the
construction in [27] of a model where u < d. This model, which predates
the ones in [25, 26] that establish the stronger u < g, has the advantage
that u < d can be any prescribed uncountable regular cardinals. It begins
with a Cohen model, where d has the desired value, and extends it by a
finite support iteration of Mathias forcings with respect to carefully chosen
ultrafilters. The length of the iteration is the prescribed u. The easier part
of “carefully chosen” is that each ultrafilter contains the previously adjoined
Mathias reals, so that the sequence of Mathias reals is almost decreasing and
generates an ultrafilter in the final model. Thus u will be small. The hard
part of “carefully chosen,” which we omit here, is to keep d large.

11.12. Adding One Real

In this subsection, we briefly summarize some results about the effect on
cardinal characteristics of adjoining one real to a model of ZFC. Here the
ground model will not satisfy CH, for the single-real forcings we consider
would preserve CH and leave all characteristics at ℵ1. We consider situations
where some characteristics are large in the ground model and we ask how
adding a single real affects them. Most of what is known about this concerns
the cardinals from Cichoń’s diagram. The results summarized here are from
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[29, 35, 7, 39, 84].
Adding a Cohen real to any model of ZFC makes add(L) = cov(L) = ℵ1

and non(L) = cof(L) = c. The values of add(B), non(B), and b in the
extension are the add(B) of the ground model, and dually the values of
cof(B), cov(B), and d in the extension are the cof(B) of the ground model.

Adding a random real produces a value for cov(L) that is no smaller than
max{cov(L), b} of the ground model, and may be strictly larger. Dually, the
extension’s non(L) is at most min{non(L), d} and may be strictly smaller.
Except for cov(L) and non(L), the cardinals in Cichoń’s diagram remain
unchanged.

Adding one Hechler real makes all cardinals in the left half of Cichoń’s
diagram ℵ1 and all those in the right half c. It also makes a = ℵ1.

Adding one Laver or Mathias real makes the d of the extension ℵ1. These
forcings also collapse c to h. Since h ≤ d, it follows that a two-step iteration
of these forcings produces a model of CH.
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[7] Tomek Bartoszyński, Andrzej Ros�lanowski, and Saharon Shelah.
Adding one random real. The Journal of Symbolic Logic, 61:80–90,
1996.

[8] James E. Baumgartner. Almost-disjoint sets, the dense-set problem,
and the partition calculus. Annals of Mathematical Logic, 9:401–439,
1976.

[9] James E. Baumgartner. Iterated forcing. In Adrian R. D. Mathias, edi-
tor, Surveys in Set Theory, volume 87 of London Mathematical Society
Lecture Note Series, pages 1–59. Cambridge University Press, London,
1983.

[10] James E. Baumgartner and Peter L. Dordal. Adjoining dominating
functions. The Journal of Symbolic Logic, 50:94–101, 1985.



484 Blass / Combinatorial Cardinal Characteristics of the Continuum

[11] James E. Baumgartner and Richard Laver. Iterated perfect-set forcing.
Annals of Mathematical Logic, 17:271–288, 1979.

[12] Murray Bell. On the combinatorial principle P (c). Fundamenta Math-
ematicae, 114:149–157, 1981.

[13] Andreas Blass. Orderings of ultrafilters. PhD thesis, Harvard Univer-
sity, 1970.

[14] Andreas Blass. The Rudin-Keisler ordering of P -points. Transactions
of the American Mathematical Society, 179:145–166, 1973.

[15] Andreas Blass. Near coherence of filters, I: Cofinal equivalence of mod-
els of arithmetic. Notre Dame Journal of Formal Logic, 27:579–591,
1986.

[16] Andreas Blass. Ultrafilters related to Hindman’s finite unions theorem
and its extensions. In Stephen G. Simpson, editor, Logic and Com-
binatorics, volume 65 of Contemporary Mathematics, pages 89–124.
American Mathematical Society, Providence, 1987.

[17] Andreas Blass. Selective ultrafilters and homogeneity. Annals of Pure
and Applied Logic, 38:215–255, 1988.

[18] Andreas Blass. Applications of superperfect forcing and its relatives.
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[39] Jacek Cichoń and Janusz Pawlikowski. On ideals of subsets of the plane
and on Cohen reals. The Journal of Symbolic Logic, 51:560–569, 1986.

[40] Paul J. Cohen. The independence of the continuum hypothesis. Pro-
ceedings of the National Academy of Sciences USA, 50:1143–1148,
1963.

[41] Peter L. Dordal. A model in which the base-matrix tree cannot have
cofinal branches. The Journal of Symbolic Logic, 52:651–664, 1987.

[42] Eric van Douwen. The integers and topology. In Kenneth Kunen
and Jerry E. Vaughan, editors, Handbook of Set Theoretic Topology,
pages 111–167. North-Holland, Amsterdam, 1984.

[43] Alan Dow. Tree π-bases for βN − N in various models. Topology and
Its Applications, 33:3–19, 1989.

[44] Alan Dow. More set-theory for topologists. Topology and Its Applica-
tions, 64:243–300, 1995.

[45] Erick Todd Eisworth. Contributions to the theory of proper forcing.
PhD thesis, University of Michigan, 1994.



486 Blass / Combinatorial Cardinal Characteristics of the Continuum

[46] Grigorii Fichtenholz and Leonid Kantorovitch. Sur les opérations
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[47] David Fremlin. Cichoń’s diagram. In Gustave Choquet, Marc Rogalski,
and Jean Saint Raymond, editors, Séminaire Initiation à l’Analyse,
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[112] Peter Vojtáš. Generalized Galois-Tukey connections between explicit
relations on classical objects of real analysis. In Haim Judah, editor,
Set Theory of the Reals, volume 6 of Israel Mathematical Conferences
Proceedings, pages 619–643. American Mathematical Society, Provi-
dence, 1993.

[113] Ed Wimmers. The Shelah P-point independence theorem. Israel Jour-
nal of Mathematics, 43:28–48, 1982.

[114] O. Yiparaki. On some tree partitions. PhD thesis, University of Michi-
gan, 1994.
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1. Introduction

The purpose of this chapter is to discuss various results concerning the re-
lationship between measure and category. We are mostly interested in set-
theoretic properties of the associated ideals, particularly, their cardinal in-
variants (called characteristics in [11]). This is a very large area, and it was
necessary to make some choices. We decided to present several new results
and new approaches to old problems. In most cases we do not present the
optimal result, but a simpler theorem that still carries most of the weight of
that original result. For example, we construct Borel morphisms in the Ci-
choń diagram while continuous ones can be constructed. We believe however
that the reader should have no problems upgrading the material presented
here to the current state of the art. The standard reference for this subject
is [8], and this chapter updates it as most of the material presented here was
proved after [8] was published.

Measure and category have been studied for about a century. The beau-
tiful book [36] contains a lot of classical results, mostly from analysis and
topology, that involve these notions. The roles played by Lebesgue measure
and Baire category in these results are more or less identical. There are,
of course, classical theorems indicating lack of complete symmetry, but the
difference do not seem very significant. For example, Kuratowski’s theorem
(cf. Theorem 3.7) asserts that for every Borel function f : ω2 −→ ω2 there
exists a meager set F ⊆ ω2 such that f�(ω2 − F ) is continuous. The dual
proposition stating that for every Borel function f : ω2 −→ ω2 there exists
a measure one set G ⊆ ω2 such that f�G is continuous is false. We only
have a theorem of Luzin which guarantees that such G’s can have measure
arbitrarily close to one.

The last 15 years have brought a wealth of results indicating that hypothe-
ses relating to measure are often stronger than the analogous ones relating to
category. This chapter contains several examples of this phenomenon. Before
we delve into this subject let us give a little historical background. The first
result of this kind is due to Shelah [47]. He showed that

• If all projective sets are measurable then there exists an inner model
with an inaccessible cardinal.

• It is consistent relative to ZFC that all projective sets have the property
of Baire.

In 1984 Bartoszynski [3] and Raisonnier and Stern [40] showed that addi-
tivity of measure is not greater than additivity of category, whereas Miller
[33] had shown that it can be strictly smaller. In subsequent years several
more results of that kind were found. Let us mention one more (cf. [10])
concerning filters on ω (treated as subsets of ω2):

• There exists a measurable filter that does not have the Baire property.
In fact, every filter that has measure zero can be extended to a measure
zero filter that does not have the Baire property.
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• It is consistent with ZFC that every filter that has the Baire property
is measurable.

All these results as well as many others concerning measurability and the
Baire property of projective sets, connections with forcing and others can be
found in [8].

2. Tukey Connections

The starting point for our considerations is the following list of cardinal
invariants of an ideal. For a proper ideal J of subsets of a set X which
contains singletons (i.e. {a} ∈ J for a ∈ X) define

1. add(J ) = min{|A| : A ⊆ J &
⋃
A �∈ J },

2. cov(J ) = min{|A| : A ⊆ J &
⋃
A = X},

3. non(J ) = min{|Y | : Y ⊆ X & Y �∈ J },

4. cof(J ) = min{|A| : A ⊆ J & ∀B ∈ J ∃A ∈ A B ⊆ A}.

2.1 Definition. Suppose that P and Q are partial orderings. We say that
P � Q if there is function f : P −→ Q such that for every bounded set
X ⊆ Q, f −1(X) is bounded in P . Such a function f is called a Tukey
embedding. Define P ≡ Q if P � Q and Q � P .

Note that if f : P −→ Q is a Tukey embedding then there is an associated
function f� : Q −→ P defined so that f�(q) is a bound of the set f −1({p :
p ≤ q}). Observe that f maps every set unbounded in P onto a set unbounded
in Q and f� maps every set cofinal in Q onto a set cofinal in P .

2.2 Lemma. Suppose that I and J are ideals. If I � J , then add(I) ≥
add(J ) and cof(I) ≤ cof(J ).

Proof. Suppose that f : I −→ J is a Tukey function.
Let A ⊆ I be a family of size < add(J ). Find a set B ∈ J such that⋃

A∈A f(A) ⊆ B. It follows that
⋃
A ⊆ f�(B).

Similarly, if B ⊆ J is a basis for J , then {f�(B) : B ∈ B} is a basis
for I. �

We will need a slightly stronger definition which will encompass both car-
dinal invariants and Tukey embeddings.

2.3 Definition. Suppose that A = (A−, A+, A), where A is a binary relation
between A− and A+. Let

d(A) = {Z : Z ⊆ A+ & ∀x ∈ A− ∃z ∈ Z A(x, z)},
b(A) = {Z : Z ⊆ A− & ∀y ∈ A+ ∃z ∈ Z ¬A(z, y)},
‖A‖ = min{|Z| : Z ∈ d(A)}.
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Define A⊥ = (A+, A−, A⊥), where A⊥ = {(z, x) : ¬A(x, z)}. Note that
b(A) = d(A⊥).

Note that ‖A‖ is the smallest size of the “dominating” family in A+ and
‖A⊥‖ is the smallest size of the “unbounded” family in A−. With some
notable exceptions such as p, t, g, h, a, u (see Blass’s chapter [11] for the def-
initions), virtually all cardinal characteristics, commonly called “invariants”
of the continuum, can be expressed in this framework. For an ideal J of
subsets of X we have:

• cof(J ) = ‖(J ,J ,⊆)‖,

• add(J ) = ‖(J ,J ,⊆)⊥‖ = ‖(J ,J , �⊇)‖,

• cov(J ) = ‖(X,J ,∈)‖,

• non(J ) = ‖(X,J ,∈)⊥‖ = ‖(J , X, �,)‖.

For f, g ∈ ωω we define f ≤� g if f(n) ≤ g(n) for all but finitely many
n ∈ ω. Let

• d = ‖(ωω, ωω,≤�)‖,

• b = ‖(ωω, ωω,≤�)⊥‖ = ‖(ωω, ωω, �≥�)‖.

The notion of Tukey embedding generalizes to the following:

2.4 Definition. A morphism ϕ between A and B is a pair of functions
ϕ− : A− −→ B− and ϕ+ : B+ −→ A+ such that for each a ∈ A− and
b ∈ B+,

A(a, ϕ+(b)), whenever B(ϕ−(a), b).

If there is a morphism between A and B, we say that A � B.

Note that if a pair of functions f, f� witnesses that P � Q, then ϕ = (f, f�)
is a morphism between (P ,P ,≤) and (Q,Q,≤).

2.5 Lemma.

(1) A � B⇐⇒ A⊥ 1 B⊥,

(2) If A � B, then ‖A‖ ≤ ‖B‖ and ‖A⊥‖ ≥ ‖B⊥‖.

Proof. (1) If ϕ = (ϕ−, ϕ+) is a morphism between A and B, then ϕ⊥ =
(ϕ+, ϕ−) is a morphism between B⊥ and A⊥.

(2) Suppose that Z ∈ d(B) is such that |Z| = ‖B‖. Then {ϕ+(z) : z ∈ Z}
is cofinal in A+. In other words, ‖A‖ ≤ |Z|. �

For two Polish spaces X,Y (i.e. complete, metric, separable with no iso-
lated points) define BOREL(X,Y ) to be the space of all Borel functions from
X to Y .
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Given relation A and assuming that both A− and A+ are Polish spaces
we define families of small sets of reals as:

D(A) = {X ⊆ R : ∀f ∈ BOREL(R, A+) f“X �∈ d(A)}

and
B(A) = {X ⊆ R : ∀f ∈ BOREL(R, A−) f“X �∈ b(A)}.

In other words, D(A) consists of sets of reals whose Borel images are not
“dominating” and B(A) consists of sets whose Borel images are “bounded”.

2.6 Lemma.

(1) non(D(A)) = ‖A‖ and non(B(A)) = ‖A⊥‖.

(2) If there exists a Borel morphism from A to B, then B(B) ⊆ B(A) and
D(A) ⊆ D(B).

Proof. (1) Clearly non(D(A)) ≥ ‖A‖. To show the other inequality notice
that there is a Borel function from R onto A+.

(2) Suppose that X �∈ B(A) and let f : R −→ A− be a Borel function such
that f“X ∈ b(A). It follows that ϕ− ◦ f“X ∈ b(B). Since ϕ− ◦ f is a Borel
function it follows that X �∈ B(B). �

For cardinals κ = ‖A‖ and λ = ‖B‖ the question whether the inequality
κ ≤ λ is provable in ZFC leads naturally to the question whether A � B
and D(A) ⊆ D(B). Even though these questions are more general, in most
cases the proof that κ ≤ λ yields A � B. Moreover, the existence of a Borel
morphism witnessing that A � B uncovers the combinatorial aspects of these
problems.

Historical Remarks. Tukey embeddings were defined in [59] and further
studied in [24]. In context of the orderings considered here see [18, 19, 32].

The framework used in Definition 2.3 is due to Vojtáš [60]; the particular
formulation used here comes from [12].

3. Inequalities Provable in ZFC

The notions defined in the previous section are quite general. The focus of
this chapter is on the ideals of meager sets (B) and of measure zero (null)
sets (L) with respect to the standard product measure on μ on ω2 or the
Lebesgue measure μ on R.

For an ideal J , by a Borel mapping H : R −→ J we mean a Borel set
H ⊆ R × R such that, with (H)x = {y : (x, y) ∈ H}, H is a Borel J -set,
i.e. (H)x ∈ J for all x ∈ R.

Using this terminology we define the following classes of small sets:

• COF(L) = D(L,L,⊆) = {X ⊆ R : for every Borel L-set H,
{(H)x : x ∈ X} is not a basis of L},
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• ADD(L) = B(L,L,⊆) = {X ⊆ R : for every Borel L-set H,⋃
x∈X(H)x ∈ L},

• COV(L) = D(R,L,∈) = {X ⊆ R : for every Borel L-set H,⋃
x∈X(H)x �= R},

• NON(L) = B(R,L,∈) = {X ⊆ R : every image of X by
a Borel function is in L}.

In the same way we define ADD(B), COV(B), etc.
Finally, let

• D = D(ωω, ωω,≤�),

• B = B(ωω, ωω,≤�).

Instead of dealing with all null and meager sets we need to consider only
suitably chosen cofinal families.

1. A ∈ L if and only if there exists a family of basic open sets {Cn : n ∈ ω}
such that

∑∞
n=0 μ(Cn) <∞ and A ⊆

⋂
n∈ω

⋃
m>n Cm,

2. A ∈ B if and only if there is a family of {Fn : n ∈ ω} of closed nowhere
dense sets such that A ⊆

⋃
n∈ω Fn.

In particular every null set can be covered by a null set of type Gδ and every
meager set can be covered by a meager set of type Fσ.

For every t ∈ <ω2 let [t] = {x ∈ ω2 : t ⊆ x}, and note that the family
{[t] : t ∈ <ω2} forms a standard basis for ω2. Let C be the collection of
clopen subsets of ω2.

3.1 Definition. Let {Cn
m : n,m ∈ ω} be a family of clopen subsets of ω2

such that

1. C = {Cn
m : n,m ∈ ω},

2. μ(Cn
m) ≤ 2−n for each m,n < ω.

3.2 Lemma. A ∈ L ⇐⇒ ∃f ∈ ωω (A ⊆
⋂

m

⋃
n>m Cn

f(n)).

Proof. (⇐=) Note that the set
⋃

n>m Cn
f(n) has measure at most 2−m.

(=⇒) For an open set U ⊆ ω2 let

Ũ = {t ∈ <ω2 : [t] ⊆ U & ∀s � t ([s] �⊆ U)}.

Note that Ũ gives a canonical representation of U as a union of disjoint basic
intervals.
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Find open sets {Gn : n ∈ ω} covering A such that μ(Gn) ≤ 2−n. Let
{tn : n ∈ ω} be the lexicographic enumeration of

⋃
n∈ω G̃n. Define for n ∈ ω,

h(n + 1) = min

{

k > h(n) :
∞∑

j=k

μ
(
[tj ]

)
≤ 2−n

}

,

and let

Dn =
h(n+1)⋃

j=h(n)

[tj ].

Let f ∈ ωω be such that Dn = Cn
f(n) for each n. �

We will need an analogous characterization of meager subsets of <ω2.

3.3 Definition. Let {Un : n ∈ ω} be a basis for ω2 and let S = {Sn
m :

n,m ∈ ω} be any family of clopen sets. We say that S is good if

1. Sn
m ∩ Un �= ∅ for n,m ∈ ω,

2. For any open dense set U ⊆ ω2 and n ∈ ω there is m such that Sn
m ⊆ U .

3.4 Lemma. Suppose that the family S = {Sn
m : n,m ∈ ω} is good. Then

A ∈ B ⇐⇒ ∃f ∈ ωω
(
A ⊆ ω2−

⋂
m

⋃
n>mSn

f(n)

)
.

Proof. (⇐=) Note that the set
⋃

n>m Sn
f(n) is open and dense for every m.

(=⇒) Let 〈Fn : n ∈ ω〉 be an increasing sequence of closed nowhere dense
sets covering A. For each n let

f(n) = min{m : Sn
m ∩ Fn = ∅}.

It is clear that
⋃

n Fn ∩
⋂

m

⋃
n>m Sn

f(n) = ∅. �

Define master sets N,M ⊆ ωω × ω2 by

N =
⋂

m

⋃
n>m

⋃
f ∈ωω{f} × Cn

f(n), and

M = (ωω × ω2)−
⋂

m

⋃
n>m

⋃
f ∈ωω{f} × Sn

f(n).

Note that N is a Gδ set while M is an Fσ set. Moreover, {(N)f : f ∈ ωω} is
cofinal in L and {(M)f : f ∈ ωω} is cofinal in B.

In the sequel we will need to find a good family with some additional
properties. The following lemma shows that the representation of meager
sets does not depend on the choice of good family:

3.5 Lemma. Suppose that S = {Sn
m : n,m ∈ ω} and T = {Tn

m : n,m ∈ ω}
are good and M and M are associated master sets. Then there are Borel
functions ϕ−, ϕ+ : ωω −→ ωω such that

(M)f ⊆ (M)ϕ+(g), whenever (M)ϕ−(f) ⊆ (M)g.
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Proof. For f, g ∈ ωω and n ∈ ω define

ϕ−(f)(n) = min
{
k : Tn

k ⊆
⋃

m≥nSm
f(m)

}
, and

ϕ+(g)(n) = min
{
k : Sn

k ⊆
⋃

m≥nTm
g(m)

}
.

We leave it to the reader to verify that these functions have the required
properties. �

The following two theorems will be helpful in many subsequent construc-
tions.

3.6 Theorem. Suppose that H ⊆ ω2× ω2 is a Borel set.

(1) {x : (H)x ∈ L} is Borel,

(2) {x : (H)x ∈ B} is Borel,

(3) If U is open and (H)x is compact for every x, then {x : U ∩ (H)x = ∅}
is Borel,

(4) If for every x, (H)x is “large”, where large is either “of positive mea-
sure” or “nonmeager”, then there exists a Borel function f : ω2 −→ ω2
such that for every x, f(x) ∈ (H)x.

Proof. See [29] 16.A for (1) and (2), 18.B for (4). For (3) note that {x :
U ∩ (H)x = ∅} = {x : (H)x ⊆ ω2 − U} and inclusion between the compact
sets does not involve quantifiers over the reals. �

3.7 Theorem. If X and Y are Polish spaces and f : X −→ Y is a Borel
mapping, then there is a dense Gδ set G ⊆ X such that f�G is continuous.

Proof. This is a special case of a theorem of Kuratowski; see [29, 8.I]. �

Lemmas 3.2 and 3.4 have their two-dimensional analogs.

3.8 Lemma. The following conditions are equivalent for a Borel set H ⊆
ω2× ω2:

(1) ∀x ((H)x ∈ L),

(2) For every ε > 0 there exists a Borel set B ⊆ ω2× ω2 such that

(a) H ⊆ B,

(b) for every x, (B)x is an open set of measure < ε.

(3) There exists a Borel function x  fx such that

∀x((H)x ⊆ (N)fx).

Proof. (2) → (3) Let {Bn : n ∈ ω} be a family of Borel sets such that
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1. H ⊆
⋂

n Bn,

2. For every x, (Bn)x is an open set of measure < 2−n.

Look at the proof of Lemma 3.2 to see that for each x, (B)x = (N)fx and
the function x  fx is Borel.

(3) → (1) is obvious.
(1) → (2) By induction on complexity we show that for every ε > 0 and

every Borel set H ⊆ ω2 × ω2 there exists a Borel set B ⊇ H such that for
every x, (B)x is open and μ((B − H)x) < ε. The only nontrivial part is
to show that if the theorem holds for sets in Σ0

α, then it holds for any set
A ∈ Π0

α. To see this write A =
⋂

n An where 〈An : n ∈ ω〉 is a descending
sequence of sets in Σ0

α. For each n let Bn be the set obtained from the
induction hypothesis for An and ε/2. Let Kn = {x : μ((An − A)x) < ε/2}.
Each set Kn is Borel. Now define

B = B0 ∩ (K0 × ω2) ∪
⋃

n∈ωBn+1 ∩ ((Kn+1 −Kn)× ω2).

�

3.9 Lemma. The following conditions are equivalent for a Borel set H ⊆
ω2× ω2:

(1) ∀x ((H)x ∈ B),

(2) There exists a family of Borel sets {Gn : n ∈ ω} ⊆ ω2× ω2 such that

(a) (Gn)x is a closed nowhere dense set for all x ∈ ω2,

(b) H ⊆
⋃

n∈ω Gn.

(3) There exists a Borel function x  fx such that

∀x ((H)x ⊆ (M)fx).

Proof. (1) → (2) By induction on complexity we show that for any Borel set
H ⊆ ω2× ω2 there are Borel sets B and {Fn : n ∈ ω} such that

1. (B)x is open for every x,

2. (Fn)x is closed nowhere dense for every x and n,

3. H$B ⊆
⋃

n Fn.

As before the nontrivial part is to show the theorem for the class Π0
α given

that it holds for Σ0
α. Suppose that A ∈ Σ0

α and B is the set obtained by
applying the inductive hypothesis to A. Let 〈Un : n ∈ ω〉 be an enumeration
of basic sets in ω2. Define for n ∈ ω,

Zn = {x : Un ∩ (B)x = ∅}.
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Note that sets Zn are Borel. Let B′ =
⋃

n Zn×Un. The vertical sections of the
set F = ω2×ω2−(B∪B′) are closed nowhere dense and (ω2×ω2−A)$B′ ⊆ F ,
which completes the proof.

(2) → (3) For x ∈ ω2 let

fx(n) = min{k : ∀i ≤ n (Sn
k ∩ (Gi)x = ∅)}.

�

From these two lemmas it follows that:

3.10 Lemma. Let I be L or B and let I be the associated master set. Then
for X ⊆ R:

(1) X ∈ ADD(I) ⇐⇒
∀F ∈ BOREL(R, ωω) ∃f ∈ ωω ∀x ∈ X ((I)F (x) ⊆ (I)f ),

(2) X ∈ COF(I) ⇐⇒
∀F ∈ BOREL(R, ωω) ∃f ∈ ωω ∀x ∈ X ((I)f �⊆ (I)F (x)),

(3) X ∈ COV(I) ⇐⇒ ∀F ∈ BOREL(R, ωω) ∃z ∀x ∈ X (z �∈ (I)F (x)),

(4) X ∈ NON(I) ⇐⇒ ∀F ∈ BOREL(R, ωω) ∃f ∀x ∈ X (F (x) ∈ (I)f ).

The goal of this section is to establish:

3.11 Theorem.

(R,L,∈) (B,R, �,) (B,B,⊆) (L,L,⊆)

(ωω, ωω, �≥∗) (ωω, ωω,≤∗)

(L,L, �⊇) (B,B, �⊇) (R,B,∈) (L,R, �,)

�� �� ��

��

��

���

�

��

��

��

��

��

�

�

As a consequence of the fact that the above morphisms turn out to be Borel
we get the following two diagrams:

COV(L) NON(B) COF(B) COF(L)

B D

ADD(L) ADD(B) COV(B) NON(L)

�⊆ �⊆ �⊆

�
⊆

�⊆

�
⊆

�

⊆

�⊆

�
⊆

�⊆

�
⊆

�⊆

�

⊆
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cov(L) non(B) cof(B) cof(L)

b d

add(L) add(B) cov(B) non(L)

�≤ �≤ �≤

�
≤

�≤

�
≤

�

≤

�≤

�
≤

�≤

�
≤

�≤

�

≤

The last of these diagrams is called the Cichoń diagram.

It is enough to find the following morphisms:

1. (R,L,∈) � (B,R, �,),

2. (B,B,⊆) � (L,L,⊆),

3. (B,B, �⊇) � (ωω, ωω, �≥�),

4. (ωω, ωω, �≥�) � (B,R, �,),

5. (L,L, �⊇) � (R,L,∈).

The remaining morphisms are dual to those listed above. In each case we
will find a Borel morphism. Note that thanks to the master sets M and N
defined earlier, Borel morphisms between these structures can be interpreted
as the automorphisms of the index set i.e. ωω.

3.12 Theorem. B � L; there are two Borel functions ϕ−, ϕ+ : ωω −→ ωω
such that

(M)f ⊆ (M)ϕ+(g), whenever (N)ϕ−(f) ⊆ (N)g.

Thus, ADD(L) ⊆ ADD(B) and COF(B) ⊆ COF(L), add(L) ≤ add(B) and
cof(B) ≤ cof(L).

Proof. Let

C =

{

S ∈ ω(<ω[ω]) :
∞∑

n=1

|S(n)|
2n

<∞
}

.

For S, S′ ∈ C define S ⊆� S′ if for all but finitely many n, S(n) ⊆ S′(n).

3.13 Lemma. L ≡ C.

Proof. To see that L � C define ϕ− : ωω −→ C and ϕ+ : C −→ ωω such that
for f ∈ ωω and S ∈ C we have

(N)f ⊆ (N)ϕ+(S), whenever ϕ−(f) ⊆� S.
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For f ∈ ωω put ϕ−(f) = h, where h(n) = {f(2n), f(2n + 1)}. If S ∈ C let
ϕ+(S) = g ∈ ωω be such that

Cn
g(n) =

⋃
k∈S(n)C

2n
k ∪

⋃
k∈S(n)C

2n+1
k .

Note that this formula defines g(n) for all but finitely many n. The verifica-
tion that these functions have the required properties is straightforward.

To show that C � L we will find Borel functions ϕ− : C −→ ωω and
ϕ+ : ωω −→ C such that for S ∈ C and f ∈ ωω,

S ⊆� ϕ+(f), whenever (N)ϕ−(S) ⊆ (N)f .

Let {Gn
m : n,m ∈ ω} be a family of clopen probabilistically independent sets

such that μ(Gn
m) = 2−n. For S ∈ C define ϕ−(S) = f ∈ ωω such that

⋂
m∈ω

⋃
n>m

⋃
k∈S(n)G

n
k ⊆ (N)f .

To do this, first consider H ′ ⊆ C × ω2 defined by

(H ′)S =
⋂

m∈ω

⋃
n>m

⋃
k∈S(n)G

n
k

for S ∈ C. Note that H ′ is a Borel set and (H ′)S has measure zero for
every S. Fix a Borel isomorphism a : C −→ ωω and let H ⊆ ωω × ω2 be
defined as (H)a(S) = (H ′)S for S ∈ C. Apply Lemma 3.8 to find a Borel
function x  fx such that (H)x ⊆ (N)fx and define ϕ−(S) = fa(S).

To define ϕ+ : ωω −→ C we proceed as follows. Find a Borel set K ⊆
ωω × ω2 such that

1. (K)f is a compact set of measure ≥ 1/2 for all f ∈ ωω.

2. N ∩K = ∅.

3. For any basic open set U ⊆ ω2 and f ∈ ωω, if U ∩ (K)f �= ∅ then
U ∩ (K)f has positive measure.

To do this, first use Lemma 3.8 to find a set K ′ satisfying the first two
conditions. Let 〈Uj : j ∈ ω〉 be an enumeration of basic open sets in ω2. For
each j let Zj = {f : μ(Uj ∩ (K ′)f ) = 0}. By Theorem 3.6, the sets Zj are
Borel for each j. Define K = K ′ −

⋃
j(Zj × Uj).

For f ∈ ωω, j, n ∈ ω define

Sf
j (n) = {i ∈ ω : (K)f ∩ Uj �= ∅ & (K)f ∩ Uj ∩Gn

i = ∅}.

Note that
0 < μ((K)f ∩ Uj) ≤

∏

n

∏

i∈Sf
j (n)

μ(ω2−Gn
i ).

Thus

0 <

∞∏

n=1

(

1− 1
2n

)|Sf
j (n)|

.
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It follows that
∞∑

n=1

|Sf
j (n)|
2n

<∞,

so Sf
j ∈ C for each j. Moreover, the function f  〈Sf

j : j ∈ ω〉 ∈ ωC is Borel
(by Theorem 3.6(3)). Fix a Borel function from ωC to C with 〈Sf

j : j ∈ ω〉
Sf

∞ such that
∀j ∀∞n Sf

j (n) ⊆ Sf
∞(n).

Finally define ϕ+ by the formula:

ϕ+(f)(n) = Sf
∞(n).

Suppose that for some S ∈ C, (N)ϕ−(S) ⊆ (N)f . It follows that,

(K)f ∩
⋂

m

⋃
n>m

⋃
k∈S(n)G

n
k = ∅.

By the Baire Category Theorem, there is a basic open set Uj and m0 ∈ ω
such that Uj ∩ (K)f �= ∅ but

(K)f ∩ Uj ∩
⋃

n>m0

⋃
k∈S(n)G

n
k = ∅.

Therefore
∀∞n S(n) ⊆ Sf

j (n) ⊆ Sf
∞(n) = ϕ+(f)(n),

which finishes the proof. �

3.14 Lemma. B � C; there are Borel functions ϕ− : ωω −→ C and ϕ+ :
C −→ ωω such that for any f ∈ ωω and S ∈ C,

(M)f ⊆ (M)ϕ+(S), whenever ϕ−(f) ⊆� S.

Proof. We will need the following lemma:

3.15 Lemma. There exists a good family {Sn
m : n,m ∈ ω} such that for

each n,
∀X ∈ [ω]≤2n (⋂

j∈XSn
j �= ∅

)
.

Proof. Fix n ∈ ω. Let 〈Cm : m ∈ ω〉 be an enumeration of all clopen sets.
For k ∈ ω define

Ak =
{
l > k : Cl ∩

⋂
i∈ICi ∩ Un �= ∅ when I ⊆ k + 1 and Un ∩

⋂
i∈ICi �= ∅

}
.

Consider the family

Sn =
{⋃

i≤2nCmi : m0 ∈ ω and mi+1 ∈ Ami for i ≤ 2n
}
.

We have to check that S =
⋃

n Sn satisfies the two conditions of Definition 3.3
with Sn in the role of {Sn

m : m ∈ ω}.
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The first condition, that each member of Sn intersects Un, follows imme-
diately from the definition of Sn.

For the second condition, let U be a dense open subset of ω2. Note that,
by density of U , Ak ∩ {l ∈ ω : Un ∩Cl ⊆ U} �= ∅ for every k ∈ ω. Now define
by induction a sequence {mi : i ≤ 2n} such that Cmi ⊆ U and mi+1 ∈ Ami

for i < 2n. Clearly U ⊇
⋃

i≤2n Cmi ∈ Sn.
Suppose that V1, V2, . . . , V2n ∈ Sn. For any j ≤ 2n, Vj =

⋃
i≤2n Cmj

i
,

where mj
i ∈ Amj

i
for i, j ≤ 2n. Order the sets Vj in such a way that mi

i ≤ mj
i

for i ≤ j ≤ 2n. It is easy to show by induction that
⋂

j≤2nVj⊇
⋂

j≤2nCmj
j
�= ∅.
�

Returning to the proof of Lemma 3.14, let S =
⋃

n Sn = {Sn
m : n,m ∈ ω}

be the family constructed above. For f ∈ ωω define ϕ−(f) = f ∈ C. For
S ∈ C let ϕ+(S) = f ∈ ωω be such that

(M)f ⊇ ω2−
⋂

m∈ω

⋃
n>m

⋂
i∈S(n)S

n
i .

Since |S(n)| ≤ 2n for all but finitely many n, by Lemma 3.15,

∅ �= Un ∩
⋂

i∈S(n)S
n
i .

Now suppose that ϕ−(f) ⊆� S. This assumption means that there exists an
n0 ∈ ω such that f(m) ∈ S(m) for m ≥ n0. It follows that

(M)ϕ+(S) ⊇ ω2−
⋂

m∈ω

⋃
n>m

⋂
i∈S(n)S

n
i ⊇ ω2−

⋂
m∈ω

⋃
n>mSn

f(n).

�

Theorem 3.12 follows immediately; compose the morphisms constructed
in Lemmas 3.13 and 3.14. �

3.16 Theorem. (R,L,∈) � (B,R, �,); there are Borel functions ϕ−, ϕ+ :
R −→ ωω such that for x, y ∈ R,

x ∈ (N)ϕ+(y), whenever y �∈ (M)ϕ−(x).

Thus, COV(L) ⊆ NON(B) and COV(B) ⊆ NON(L), cov(L) ≤ non(B) and
cov(B) ≤ non(L).

Proof. Let B be a Gδ null set whose complement is meager. Use Theorem
3.6(3) and Theorem 3.7 to find Borel functions ϕ−, ϕ+ : R −→ ωω such that

∀x (B + x ⊆ (N)ϕ−(x)) and ∀y (ω2− (B + y) ⊆ (M)ϕ+(y)).

Note that in this context + is the coordinatewise addition modulo 2.
If y �∈ (N)ϕ−(x) then y �∈ B + x. It follows that x ∈ ω2 − (B + y) ⊆

(M)ϕ+(y). �
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3.17 Theorem. (B,B, �⊇) � (ωω, ωω, � �≥); there are Borel functions ϕ−, ϕ+:
ωω −→ ωω such that for f, g ∈ ωω

(M)f �⊇ (M)ϕ+(g), whenever g �≤� ϕ−(f).

In particular, D ⊆ COF(B) and ADD(B) ⊆ B, d ≤ cof(B) and add(B) ≤ b.

Proof. Let Sn be the family of clopen sets C such that there exists a k > n
and s ∈ [n,k)2 such that

C = {x ∈ ω2 : x�[n, k) = s}.

Note that the family S =
⋃

n Sn is good (given the appropriate choice of the
sequence {Un : n ∈ ω}).

For f ∈ ωω let ϕ−(f)(n) = k if and only if dom(Sn
f(n)) = [n, k).

For a strictly increasing function f ∈ ωω define ϕ+(f) = h ∈ ωω such that

(M)h = {x ∈ ω2 : ∀∞n ∃i ∈ [n, f(n)) (x(i) �= 0)}.

Note that the image of ωω under ϕ+ is rather small, ϕ+“ωω is not even cofinal
in B.

To finish the proof it is enough to show that if ϕ−(f)(n) < g(n) for
infinitely many n, then

{x ∈ ω2 : ∀∞n ∃i ∈ [n, g(n)) x(i) �= 0}
�⊆ {x ∈ ω2 : ∀∞n x�[n, ϕ−(f)(n)) �= Sn

f(n)}.

Find a sequence 〈nk : k ∈ ω〉 such that for all k,

nk < ϕ−(f)(nk) < g(nk) < nk+1.

Construct a real z such that z�[nk, ϕ−(f)(nk)) = Snk

f(nk). Thus z ∈ (M)f but
z�[n, g(n)) �≡ 0 for all n, so z ∈ {x ∈ ω2 : ∀∞n ∃i ∈

[
n, f(n)) (x(i) �= 0)}. �

3.18 Theorem. (ωω, ωω, �≥) � (B,R, �,); there are Borel functions ϕ− :
ωω −→ ωω and ϕ+ : R −→ ωω such that for f ∈ ωω and y ∈ R,

f �≥� ϕ+(y), whenever y �∈ (M)ϕ−(f).

In particular, COV(B) ⊆ D and B ⊆ NON(B), cov(B) ≤ d and b ≤ non(B).

Proof. Identify R−Q with ωω and define ϕ−(f) = h such that

(M)h = {z ∈ ωω : ∀∞n (z(n) ≤ f(n))}

and ϕ+(y) = y. �
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3.19 Theorem. (L,L, �⊇) � (L,R,∈); there are Borel functions ϕ− :
ωω −→ R and ϕ+ : ωω −→ ωω such that for f, g ∈ ωω,

(N)f �⊇ (N)ϕ+(g), whenever ϕ−(f) ∈ (N)g.

The same is true if we replace L by B.

Proof. Let ϕ− : ωω −→ R be any Borel function such that for f ∈ ωω,
ϕ−(f) �∈ (N)f (see Theorem 3.6(4)) and let ϕ+(g) = g for g ∈ ωω. Verifica-
tion that both functions have the required properties is straightforward. �

We conclude this section with some remarks concerning Luzin sets.

3.20 Definition. Given A = (A−, A+, A) and two cardinals κ ≤ λ we call
a set X ⊆ A− a (κ, λ)-Luzin set for A if |X| ≥ λ and for every Y ⊆ X,
|Y | = κ, Y ∈ b(A).

When A = (R,B,∈), κ = ℵ1 and λ > ℵ0 then we get the original Luzin set.
The set given by (R,L,∈), κ = ℵ1 and λ > ℵ0 is usually called a Sierpiński
set.

3.21 Lemma. Suppose that X is a (κ, λ)-Luzin set for A and κ ≤ λ. Then
‖A‖ ≥ λ and ‖A⊥‖ ≤ κ.

Proof. Since every set Y ⊆ X, |Y | = κ belongs to b(A) = d(A⊥), we get the
second inequality.

For the first inequality note that if y ∈ A+ then {x ∈ X ∩ A− : A(x, y)}
has size < κ ≤ |X|. Thus any family that dominates X has to have a size at
least |X| ≥ λ. �

Morphisms preserve Luzin sets.

3.22 Lemma. Suppose that A ≤ B and X is a (κ, λ)-Luzin set for A. Then
ϕ−“X is a (κ, λ)-Luzin set for B.

Proof. Clearly every subset of size κ of ϕ−“X is unbounded. Moreover, for
every b ∈ B−, ϕ−1

− (b) ∩X has size < κ. Thus |ϕ−“X| ≥ λ. �

Historical Remarks. Families of small sets as defined here appeared in
various contexts. Rec�law [42] suggested considering small sets rather than
cardinal characteristics.

Many people contributed to the proof of Theorem 3.11. In the last dia-
gram:

• Rothberger [45] showed that cov(B) ≤ non(L) and cov(L) ≤ non(B).

• Miller [33] and Truss [57] showed that add(B) = min{b, cov(B)} and
Fremlin showed that cof(B) = max{d,non(B)}.
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• Bartoszynski [3] and Raisonnier and Stern [40] showed that add(L) ≤
add(B) and cof(B) ≤ cof(L). Different proofs of these inequalities
have been found, in particular a forcing proof by Judah and Repický
in [25].

Fremlin [17] first realized that Tukey embeddings are responsible for the
inequalities in the Cichoń diagram. Pawlikowski [37] proved Lemma 3.14,
which was the crucial step in the proof of B � L.

The first diagram of Theorem 3.11:

• Vojtáš [60] proved it with arbitrary morphisms,

• Rec�law [42] proved a version with Borel morphisms (which gives the
second diagram),

• Pawlikowski and Rec�law [39] proved the existence of continuous mor-
phisms.

Lemma 3.22 was proved in [15].

4. Combinatorial Characterizations

This section is devoted to the combinatorics associated with the cardinal in-
variants of the Cichoń diagram. We will find the combinatorial equivalents of
most of the invariants as well as characterize membership in the correspond-
ing classes of small sets. We conclude the section with a characterization of
the ideal (L,⊆) as maximal in the sense of Tukey connections among a large
class of partial orderings.

4.1 Theorem. The following are equivalent:

(1) X ∈ COV(B),

(2) for every Borel function x  fx ∈ ωω there exists a function g ∈ ωω
such that

∀x ∈ X ∃∞n (fx(n) = g(n)).

Proof. (1) → (2). Suppose that x  fx ∈ ωω is a Borel function. Let
H = {〈x, h〉 ∈ ω2× ωω : ∀∞n (h(n) �= fx(n))}. Clearly H is a Borel set with
all (H)x meager and if g �∈

⋃
x∈X(H)x then g has required properties.

(2) → (1). We will need several lemmas. To avoid repetitions let us define:

4.2 Definition. Suppose that X ⊆ ω2. X is nice if for every Borel function
x  fx ∈ ωω there exists a function g ∈ ωω such that

∀x ∈ X ∃∞n (fx(n) = g(n)).
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4.3 Lemma. Suppose that X is nice. Then for every Borel function x 
〈Y x, fx〉 ∈ ω[ω]× ωω there exists a g ∈ ωω such that

∀x ∈ X ∃∞n ∈ Y x (fx(n) = g(n)).

Proof. Suppose that a Borel function x  〈Y x, fx〉 is given. Let yx
n denote

the n-th element of Y x for x ∈ ω2. For every x ∈ ω2 define a function hx as
follows:

hx(n) = fx�{yx
0 , yx

1 , . . . , y
x
n} for n ∈ ω.

Since the function x  hx is Borel and functions hx can be coded as elements
of ωω there is a function h such that

∀x ∈ X ∃∞n (hx(n) = h(n)).

Without loss of generality we can assume that h(n) is a function from an
n + 1-element subset of ω into ω.

Define g ∈ ωω in the following way. Recursively choose

zn ∈ dom
(
h(n)

)
− {z0, z1, . . . , zn−1} for n ∈ ω.

Then let g be any function such that g(zn) = h(n)(zn) for n ∈ ω.
We show that the function g has the required properties. Suppose that

x ∈ X. Notice that the equality hx(n) = h(n) implies that

fx(zn) = g(zn) and zn ∈ Y x.

That finishes the proof since hx(n) = h(n) for infinitely many n ∈ ω. �

4.4 Lemma. Suppose that X is nice. Then for every Borel function x 
fx ∈ ωω there exists an increasing sequence 〈nk : k ∈ ω〉 such that

∀x ∈ X ∃∞k (fx(nk) < nk+1).

Proof. Suppose that the lemma is not true and let x  fx be a counterex-
ample. Without loss of generality we can assume that fx is increasing for all
x ∈ X. To get a contradiction we will define a Borel function x  gx ∈ ωω
such that {gx : x ∈ X} is a dominating family. That will contradict the
assumption that X is nice.

Define for n ∈ ω,

gx(n) = fx ◦ fx ◦ · · · ◦ fx

︸ ︷︷ ︸
n+1 times

(n).

Suppose that h ∈ ωω is an increasing function. By the assumption there exist
x ∈ X and k0 such that

∀k ≥ k0 (fx(h(k)) ≥ h(k + 1)).

In particular, for k ≥ h(k0),

∀k ≥ h(k0) (h(k) ≤ gx(k))

which finishes the proof. �
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We now return to the proof of (2) → (1) for 4.1. Let x  fx ∈ ωω be a
Borel function. We want to show that

⋃
x∈X(M)fx �= ω2.

Without loss of generality we can assume that M is the set built using the
family from the proof of Lemma 3.17. For each x let gx ∈ ωω and {sx

n : n ∈ ω}
be such that Sn

fx(n) = {x ∈ ω2 : x�[n, gx(n)) = sx
n}.

By Lemma 4.4, there exists a sequence 〈nk : k ∈ ω〉 such that

1. nk+1 >
∑k

i=0 ni, for all k,

2. ∀x ∈ X ∃∞n (gx(nk) < nk+1).

For x ∈ X let Zx = {k : gx(nk) < nk+1}. By Lemma 4.3, there exists a
sequence 〈sk : k ∈ ω〉 such that

∀x ∈ X ∃∞k ∈ Zx (sx
nk

= sk).

Without loss of generality we can assume that sk : [nk,mk) −→ 2, where
mk < nk+1. Choose z ∈ ω2 such that sk ⊆ z for all k. It follows that
z �∈ (M)fx for every x ∈ X. �

As a corollary we have:

4.5 Theorem. The following are equivalent:

(1) cov(B) > κ,

(2) ∀F ⊆ [ωω]κ ∃g ∈ ωω ∀f ∈ F ∃∞n (f(n) = g(n)).

The above proof can be dualized to give:

4.6 Theorem. The following conditions are equivalent:

(1) X ×X ∈ NON(B),

(2) for every Borel function x  fx ∈ ωω there exists a function g ∈ ωω
such that

∀x ∈ X ∀∞n fx(n) �= g(n).

We only explain why we have X ×X in (1) rather than X. If we analyze
the proof of Theorem 4.1, we see that in order to produce a real z such that
z �∈

⋃
x∈X(M)fx we had to diagonalize (find an infinitely often equal real)

twice.
A similar situation arises here; each element of X produces two functions,

and a real that avoids a given meager set is constructed from two such func-
tions, each coming from a different point of X.

As a corollary we get:

4.7 Theorem. non(M) is the size of the smallest family F ⊆ ωω such that

∀g ∈ ωω ∃f ∈ F ∃∞n (f(n) = g(n)).
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4.8 Theorem. ADD(B) = B ∩ COV(B). In particular, add(B) =
min{b, cov(B)}.

Proof. The inclusion ⊆ follows immediately from Theorem 3.11.
Suppose that X ∈ B ∩ COV(B). Let x  fx ∈ ωω be a Borel function.

Since X ∈ COV(B) there is a real z such that z �∈
⋃

x∈X(M)fx . For x ∈ X
define for n ∈ ω,

gx(n) = min
{
l : ∀t ∈ n2

(
[t�z�[n, l)] ⊆

⋃
m>nSm

fx(m)

)}
.

The function x  gx is also Borel. Since X ∈ B, it follows that there is an
increasing function h ∈ ωω such that

∀x ∈ X ∀∞n (gx(n) ≤ h(n)).

Consider the set

G =
⋂

n

⋃
m>n

⋃
{[t�z�

[
m,h(m))] : t ∈ m2}.

Clearly G is a dense Gδ set. Moreover, for every x ∈ X there is n such that
⋃

m>n

⋃
{[t�z�

[
m,h(m))] : t ∈ m2} ⊆

⋃
m>nSm

fx(m).

It follows that
⋃

x∈X(M)fx ⊆ ω2−G,

which finishes the proof. �

From Theorem 3.11 it follows that D ∪NON(B) ⊆ COF(B). The other in-
clusion does not hold. We only have the following result dual to Theorem 4.8.

4.9 Theorem. If X �∈ D and Y �∈ NON(B) then X × Y �∈ COF(B). In
particular, cof(B) = max{non(B), d}.

4.10 Definition. Let R+ = {x ∈ R : x ≥ 0} and define

�1 =

{

f ∈ ω
R+ :

∞∑

n=1

f(n) <∞
}

.

For f, g ∈ �1, f ≤� g if f(n) ≤ g(n) holds for all but finitely many n.

4.11 Theorem. The following are equivalent:

(1) X ∈ ADD(L),

(2) for every Borel function x  Sx ∈ C there exists an S ∈ C such that

∀x ∈ X ∀∞n (Sx(n) ⊆ S(n)).
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(3) for every Borel function x  fx ∈ �1 there exists a function f ∈ �1

such that
∀x ∈ X (fx ≤� f).

In particular, the following conditions are equivalent:

(a) add(L) > κ,

(b) for every family F ⊆ C of size κ there exists an S̄ ∈ C such that

∀S ∈ F ∀∞n (S(n) ⊆ S̄(n)),

(c) for every family F ⊆ �1 of size κ there exists a g ∈ �1 such that

∀f ∈ F ∀∞n (f ≤� g).

Proof. We will establish the equivalence of (1) and (2). Suppose that X ∈
ADD(L) and x  Sx is a Borel function. Consider the morphism (ϕ−, ϕ+)
witnessing that C � L. Let f be such that

⋃
x∈X(N)ϕ−(Sx) ⊆ (N)f . Then

ϕ+(f) ∈ C is the object we are looking for.
Suppose that X �∈ ADD(L). Let F : X −→ ωω be a Borel function such

that
⋃

x∈X(N)F (x) �⊆ (N)f for f ∈ ωω. Consider the morphism (ϕ−, ϕ+)
witnessing that L � C. It follows that there is no S ∈ C such that

∀x ∈ X ∀∞n (ϕ−(F (x))(n) ⊆� S(n)).

Equivalence of (2) and (3) follows from:

4.12 Lemma. C ≡ �1.

Proof. To show that �1 � C define ϕ− : �1 −→ C as

ϕ−(f)(n) = {k : 2−n > f(k) ≥ 2−n−1}.

Similarly, define ϕ+ : C −→ �1 by: ϕ+(S)(n) = max{2−k : n ∈ S(k)}. It is
easy to see that these functions have the required properties.

To show that C � �1 identify ω × ω with ω via functions L,K ∈ ωω. For
S ∈ C let

ϕ−(S)(n) =
{

2−n if K(n) ∈ S(L(n)),
0 otherwise.

For f ∈ �1 let

ϕ+(f)(n) =
{

k :
1

2n−1
> f(k) ≥ 1

2n

}

.

�

The second part of Theorem 4.11 follows readily from the first. �

The dual version yields:
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4.13 Theorem. The following are equivalent:

(1) X ∈ COF(L),

(2) for every Borel function x  Sx ∈ C there exists an S ∈ C such that

∀x ∈ X ∃∞n (S(n) �⊆ Sx(n)),

(3) for every Borel function x  fx ∈ �1 there exists a function f ∈ �1

such that
∀x ∈ X ∃∞n (fx(n) ≤ f(n)).

In particular, the following are equivalent:

(a) cof(L) < κ,

(b) for every family F ⊆ C of size κ there exists an S̄ ∈ C such that

∀S ∈ F ∃∞n (S(n) �⊆ S̄(n)),

(c) for every family F ⊆ �1 of size κ there exists a g ∈ �1 such that

∀f ∈ F ∃∞n (f(n) ≤ g(n)).

Additivity of measure, add(L), has a special place among cardinal in-
variants of the continuum as being provably smaller than a large number of
them. It has been conjectured (wrongly in [2]) that this is because additivity
of measure is equivalent to Martin’s Axiom for a large class of forcing notions
(Suslin c.c.c.). Only very recently has this phenomenon been explained as
being directly related to the combinatorial complexity of the measure ideal.

4.14 Definition. We say that an ideal J ⊆ P (ω) is a P-ideal if for every
family {Xn : n ∈ ω} ⊆ J there is a X ∈ J such that Xn ⊆� X for n ∈ ω.

Define

add�(J ) = min{|A| : A ⊆ J & ¬∃Y ∈ J ∀X ∈ A X ⊆� Y }.

It is easy to see that the cof� defined analogously is equivalent to the
ordinary cofinality.

Many ideals of Borel subsets of R are Tukey equivalent to analytic (Σ1
1)

ideals of subsets of ω. For example:

• Ideal of null sets L. Work with C instead of L. For S ∈ C let AS =
{(n, k) ∈ ω × ω : k ∈ S(n)}. The family {AS : S ∈ C} generates an
analytic P-ideal on ω × ω  ω.

• (ωω,≤�). This is very similar. For f ∈ ωω let Af = {(n, k) : k ≤ f(n)}.
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• �1 is Tukey equivalent to the P-ideal of summable sets
{

X ⊆ ω :
∑

n∈X

1
n

<∞
}

.

Moreover, in all these cases the additivity of the ideal is equal to the
�additivity of the associated ideal on ω. For example, add(L) = add�(�1) =
add�(C), etc. In the remainder of this section we will show for a (nontrivial)
analytic P-ideal J on ω we have

ωω � J � L.

We need a few general facts about analytic P-ideals. To simplify the
notation let us identify ω2 with P (ω) via characteristic functions.

Let K(ω2) be the collection of compact subsets of ω2 with Hausdorff metric
dH defined as follows. For two nonempty compact sets K,L ⊆ ω2 let

dH(K,L) = max(ρ(K,L), ρ(L,K)),

where ρ(K,L) = maxx∈L d(x,K) (d is the usual metric in ω2).
Let M ⊆ K(ω2) be the collection of compact subsets of ω2 which are

downward closed. We will use the following well known facts:

4.15 Lemma.

(1) K(ω2) is a compact Polish space,

(2) M is a closed subspace of K(ω2).

Proof. See [29, 4.F]. �

Let J be an analytic P-ideal on ω. Define

F = {K ∈ M : ∀X ∈ J ∃n (X − n ∈ K)}.

It is clear that F is a filter.

4.16 Lemma. Suppose that H ⊆ F is a closed set. There exists a nonempty
relatively clopen set U ⊆ H such that

⋂
K∈UK ∈ F.

In particular, H =
⋃

n∈ω Hn, where for each n,
⋂

K∈Hn
K ∈ F.

Proof. Let 〈Un : n ∈ ω〉 be an enumeration of clopen subsets of K(ω2).
For X ∈ J and n define Hn(X) = {K ∈ H : X−n ∈ K}. The sets Hn(X)

are closed and H =
⋃

n∈ω Hn(X) for every X ∈ J . By the Baire Category
Theorem for each X there is a pair (n(X),m(X)) ∈ ω × ω such that

Hn(X)(X) ∩ Um(X) = H ∩ Um(X).
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Since J is a P-ideal, we can find (n,m) such that

{X : n(X) = n & m(X) = m} is cofinal in J .

It follows that
⋂

K∈Um ∩H K contains X − n for cofinally many X and thus
belongs to F. That finishes the proof of the first part.

To prove the second part build by induction a sequence 〈Hα : α < ω1〉
such that

1. H0 = H,

2. Hλ =
⋂

β<λ Hβ for limit λ,

3. Hα+1 = Hα − Uα, where Uα is like in the part that is already proved.

The construction has to terminate after α0 < ω1 steps with Hα0 = ∅. �

4.17 Lemma. F is Fσ in M.

Proof. Consider G = M− F. Note that for K ∈ M we have

K ∈ G ⇐⇒ ∃X ∈ J ∀n (X − n �∈ K).

It follows that G is an analytic ideal. Moreover, G is a σ-ideal; if {Kn : n ∈
ω} ⊆ G and K ⊆

⋃
n Kn then K ∈ G. To see this let Xn witness that Kn ∈ G.

Find X ∈ J such that Xn ⊆� X for all n. Clearly, X−n �∈ K for all n. Now
the lemma follows immediately from the following:

4.18 Theorem. Let I be an analytic σ-ideal of compact sets in a compact
metrizable space E. Then I is actually Gδ.

Proof. See [14], [41] or [30]. �

This completes the proof of Lemma 4.17. �

4.19 Lemma. F is countably generated.

Proof. Using Lemma 4.17 represent F =
⋃

n Hn, where each Hn is closed.
Apply Lemma 4.16 to write for n ∈ ω, Hn =

⋃
m∈ω Hn

m, where Gn
m =⋂

K∈Hn
m

K ∈ F. It is clear that {Gn
m : n,m ∈ ω} generates F. �

Let 〈Gn : n ∈ ω〉 be a descending sequence generating F. The following
lemma provides a simple (Fσδ) description of J in terms of 〈Gn : n ∈ ω〉.

4.20 Lemma. X ∈ J ⇐⇒ ∀n ∃m (X −m ∈ Gn).

Proof. The implication (=⇒) is obvious.
(⇐=) We will use the following result.

4.21 Theorem. Suppose that I ⊆ P (ω) is an ideal containing all finite sets.
The following conditions are equivalent:
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(1) I has the Baire property,

(2) I is meager,

(3) there exists a partition {In : n ∈ ω} of ω into disjoint intervals such
that

∀X ∈ I ∀∞n (In �⊆ X).

Proof. See [54] or [8]. �

Suppose that X �∈ J . The ideal J �X = {Y ∩ X : Y ∈ J } ⊆ P (X) is
analytic and hence has the Baire property. By Theorem 4.21(3) there exists
a partition {In : n ∈ ω} of X into finite sets such that

∀Z ∈ J ∀∞n (In �⊆ Z).

Consider the set
K = {Y : ∀n (In �⊆ Y )} ∈ F.

Let k be such that Gk ⊆ K. It follows that for every m ∈ ω,

X −m =� ⋃
n∈ωIn �∈ Gk,

which finishes the proof of Lemma 4.20. �

For K,L ∈ K(ω2) define K⊕L = {X ∪Y : X ∈ K, Y ∈ L}. (∪ is in P (ω)
the same as coordinate-wise maximum in ω2).

Let 〈Gn : n ∈ ω〉 continue to be a descending sequence generating F.

4.22 Lemma. For every K ∈ F there exists an m such that Gm⊕Gm ⊆ K.

Proof. Fix X ∈ J and using the fact that J is a P-ideal find k such that the
set

HX = {Y : (X − k) ∪ Y ∈ K} ∈ F.

Let n(X) be such that Gn(X) ⊆ HX . We have

{X − n(X)} ⊕Gn(X) ⊆ K.

Choose an n such that {X : n(X) = n} is cofinal in J . The set L = {X :
{X − n} ⊕ Gn ⊆ K} ∈ F. Let m ≥ n be such that Gm ⊆ L. It follows that
Gm ⊕Gm ⊆ K. �

We are ready to formulate the first result.

4.23 Theorem. Suppose that J is an analytic P-ideal on ω. Then J � �1.
In particular, add�(J ) ≥ add(L) and cof(J ) ≤ cof(L).
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Proof. Use Lemma 4.22 to find a descending sequence 〈Gn : n ∈ ω〉 generat-
ing F such that for each n,

Gn+1 ⊕ · · · ⊕Gn+1
︸ ︷︷ ︸

22n+1 times

⊆ Gn.

For X ∈ J let 〈kn(X) : n ∈ ω〉 be an increasing sequence such that

∀n (X − kn(X) ∈ Gn+2).

Identify ω with [ω]<ω and define ϕ− : J −→ C and ϕ+ : C −→ J such
that

X ⊆� ϕ+(S), whenever ϕ−(X) ⊆� S.

Since C ≡ �1 ≡ L this will finish the proof. For X ∈ J and n ∈ ω define

ϕ−(X)(n) = X ∩ kn(X) ∈ [ω]<ω  ω.

The function ϕ+ will be defined as follows. Suppose that S ∈ C is given (with
S(n) ⊆ [ω]<ω). For n ∈ ω let

Zn = {(t, s) ∈ S(n + 1)× S(n) : s ⊆ t & t−max(s) ∈ Gn+2} .

Now define
vn =

⋃
(t,s)∈Zn

t−max(s).

Note that for sufficiently large n, vn is a sum of at most 22n terms, each
belonging to Gn+2, and so, vn ∈ Gn+1.

The motivation for this definition is following: if ϕ−(X)(n) = X∩kn(X) ∈
S(n) and ϕ−(X)(n + 1) = X ∩ kn+1(X) ∈ S(n + 1), then

X ∩ kn+1(X)−max
(
X ∩ kn(X)

)
= X ∩

[
kn(X), kn+1(X)

)
⊆ vn.

The requirements of the definition describe this situation and filter out “back-
ground noise” coming with S.

Finally define
ϕ+(S) = Y =

⋃
nvn.

By the remarks above it is clear that if X ∈ J and S ∈ C then from the fact
that

∀∞n (ϕ−(X)(n) ∈ S(n))

it follows that X ⊆� Y = ϕ+(S). To finish the proof it remains to show that
the range of ϕ+ is contained in J .

Let ϕ+(S) = Y =
⋃

n vn be defined as above. For j ∈ ω, let Yj =
⋃

n≥j vn.
Since Y − Yj is finite for every j, by the lemma above, in order to show that
Y ∈ J it would suffice to show that Yj ∈ Gj .

4.24 Lemma. For each l ∈ ω,

vn ∪ vn+1 ∪ · · · ∪ vn+l ∈ Gn.
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Proof. We prove this by induction on l. For each n, vn ∈ Gn+1 so the lemma
is true for l = 0. Suppose it holds for l and all n. We have

vn ∪ vn+1 ∪ vn+l+1 = vn ∪ (vn+1 ∪ . . . vn+1+l) ∈ Gn+1 ⊕Gn+1 ⊆ Gn,

which finishes the proof. �

Since the sets Gn are closed, we conclude that Yj ∈ Gj . In particular, by
Lemma 4.20, Y = Y0 ∈ J . This completes the proof of Theorem 4.23. �

The last theorem gave us a lower bound for add�(J ). The next theorem
gives us an upper bound.

Suppose that J ⊆ P (ω) is an ideal. We say that J is atomic if there is
a Z ∈ J such that J = {X ⊆ ω : X ⊆� Z}. It is clear that add�(J ) is
undefined (or equal to ∞) for an atomic ideal.

4.25 Theorem. Suppose that J is an analytic P-ideal which is not atomic.
Then ωω � J . In particular, add�(J ) ≤ b and cof(J ) ≥ d.

Proof. Let J be an analytic P-ideal. Use Lemma 4.22 to find a descending
sequence 〈Gn : n ∈ ω〉 generating F such that for each n, Gn+1⊕Gn+1 ⊆ Gn.
To show that ωω � J it suffices (by duality), to check that (J ,J , �⊇�) �
(ωω, ωω, �≥�). Thus we need to find a function ϕ− : J −→ ωω such that
ϕ−“J is cofinal in ωω.

For X ∈ J define

ϕ−(X)(n) = min{j ≥ n : X − j ∈ Gn} for n ∈ ω.

Note that if X ⊆� Y then ϕ−(X) ≤� ϕ−(Y ).
Let g ∈ ωω be an increasing function. For X ∈ J let

Zg
X = {n : X − g(n) �∈ Gn}.

Observe that Zg
X∪Y ⊇ Zg

X∪Zg
Y for X,Y ∈ J , hence the family {Zg

X : X ∈ J }
generates an ideal which we call Ig.

Note that we are trying to show that

∀g ∈ ωω ∃X ∈ J (|ω − Zg
X | < ℵ0),

which means that all ideals Ig are trivial.
Suppose that for some g ∈ ωω, Ig is a proper ideal. We will show that J

is an atomic ideal.
Since Ig is a continuous image of J , Ig is an analytic ideal so it has the

Baire property. By Theorem 4.21, there exists a sequence of disjoint intervals
〈In : n ∈ ω〉 such that

∀X ∈ J ∀∞n (In �⊆ Zg
X).
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Let h(n) = max(In) for n ∈ ω. It follows that

∀X ∈ J ∀∞n (X − g(h(n)) ∈ Gn).

For n ∈ ω let

Un =
⋃
{Y : Y ⊆ [g(h(n)), g(h(n + 1))) : Y ∈ Gn},

and let U =
⋃

n Un. By the choice of h, for every X ∈ J , X ∩ [g(h(n)),
g(h(n + 1))) ⊆ Un holds for all but finitely many n. Thus, X ⊆� U for every
X ∈ J . Therefore, to finish the proof it is enough to check that U ∈ J .

4.26 Lemma. ∀∞n (Un ∈ Gn).

Proof. For k ∈ ω, if Uk+1 ∈ Gk+1 set U ′
k+1 = ∅. Otherwise, let U ′

k+1 ⊆ Uk+1

be such that U ′
k+1 ∈ Gk−Gk+1. Note that since Gn+1⊕Gn+1 ⊆ Gn for every

n, and Uk+1 is a union of sets in Gk+1, such a set can be found. Moreover,
for every m > k, U ′

k+1 ∪ U ′
k+2 ∪ · · · ∪ U ′

m ∈ Gk. Thus, by compactness,⋃
l>k U ′

l ∈ Gk. It follows from Lemma 4.20 that X =
⋃

k U ′
k ∈ J . On the

other hand, if X is infinite then

∃∞n (X − g(h(n)) �∈ Gn) ,

which contradicts the choice of h. �

Suppose that for n > n0, Un ∈ Gn and define Uk =
⋃

j>k+n0
Uj , for k ∈ ω.

As above, U =� Uk ∈ Gk for k ∈ ω. Therefore, by Lemma 4.20, U ∈ J . This
completes the proof of Theorem 4.25. �

Historical Remarks. Theorem 4.1 was proved in [39] and [7]. Theo-
rem 4.6 is due to Pawlikowski and Rec�law in [39]. Theorems 4.5 and 4.7
were proved in [4]. Theorem 4.8 was proved in [39]. The second part is due
to Miller [33]. The first part of Theorem 4.11 was proved in [39] and the
second in [3]. Todorcevic [56] proved Theorem 4.25. Theorem 4.23 is due to
Todorcevic [55] and Louveau and Velickovic [32]. Methods used in the proof,
in particular Lemmas 4.17 and 4.22, are due to Solecki [50, 51]. Similar ideas
were already present in [56] and earlier in [28]. Theorem 4.18 is due to Chris-
tensen and Saint Raymond. It was generalized in [30]. Theorem 4.21 was
proved by Talagrand.

5. Cofinality of cov(J ) and COV(J )

It is clear that cardinal invariants add, non and cof have uncountable co-
finality and families ADD, NON and COF are σ-ideals. It this section we
investigate cov and COV for both ideals B and L.

5.1 Theorem. COV(B) is a σ-ideal. In particular, cf(cov(B)) > ℵ0.



5. Cofinality of cov(J ) and COV(J ) 519

Proof. Suppose that {Xn : n ∈ ω} ⊆ COV(B). Let x  fx ∈ ωω be a Borel
function. It is enough to find a g ∈ ωω such that

∀n ∀x ∈ Xn ∃∞m (g(m) = fx(m)).

Let {Ak : k ∈ ω} be a partition of ω into infinitely many infinite pieces. For
each n consider the function x  fx�An and find a gn ∈ Anω such that

∀x ∈ Xn ∃∞k ∈ An (fx(k) = gn(k)).

Then g =
⋃

n gn is as required. �

In the presence of many dominating reals we have a similar result for the
measure ideal.

5.2 Theorem. If cov(L) ≤ b then cf(cov(L)) > ℵ0.

Proof. See [5] or [8]. �

The following surprising result of Shelah shows that without any additional
assumptions it is not possible to show that cov(L) has uncountable cofinality.

5.3 Theorem. It is consistent with ZFC that COV(L) is not a σ-ideal and
cf(cov(L)) = ℵ0.

The proof of this theorem will occupy the rest of this section. The model
will be obtained by a two-step finite support iteration. We start with a
suitably chosen model V0 satisfying 2ℵ0 = ℵ1 and add ℵω Cohen reals followed
by a finite support iteration of subalgebras of the random algebra B. We start
by developing various tools needed for the construction.

The Random Real Algebra

Recall that the random real algebra can be represented as

B = {P ⊆ ω2 : μ(P ) > 0 and P is closed}.

For P1, P2 ∈ B, P1 ≤ P2 if P1 ⊆ P2. Elements of B can be coded by reals
in the following way. Let P̃ ∈ V0 be a universal closed set, i.e. P̃ ⊆ ω2 × ω2
is closed and for every closed set P ⊆ ω2 there is x such that P = (P̃ )x.
Let H = {x : μ((P̃ )x) > 0}. By Theorem 3.6(1), H is a Borel set. Define
B̃ = (H × ω2) ∩ P̃ . If M is a model of ZFC then we define

BM = {P ∈ B : ∃x ∈M ∩ ω2 (P = (B̃)x)}.

Δ-systems

The following concepts will be crucial for the construction of the model.

5.4 Definition. Let R ∈ V0 be a forcing notion Suppose that p̄ = 〈pn :
n ∈ ω〉 is a sequence of conditions in R. Let Ẋp̄ be the R-name for the set
{n : pn ∈ ĠR}. In other words, for every n, pn = [[n ∈ Ẋp̄]].
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At the moment we will be concerned with the case when R = Cℵω+1 is
the forcing notion adding ℵω+1 Cohen reals. For the definition below, neither
the representation of C nor the ordering on C matters, so for simplicity, we
will identify C with ω.

5.5 Definition. Let Δ ⊆ (Cℵω+1)
ω be the collection of all sequences p̄ =

{pn : n ∈ ω} such that there exist a k, l ∈ ω and g ∈ l×ωω, s ∈ kω such that

1. dom(pn) = {β1, . . . , βk}∪̇{αn
1 , . . . , αn

l }, with β1 < · · · < βk and αn
1 <

· · · < αn
l for n ∈ ω,

2. αn
l < αn+1

1 for n ∈ ω, (so the dom(pn)’s form a Δ-system with root
{β1, . . . , βk}),

3. pn(αn
i ) = g(i, n) for every i ≤ l, n ∈ ω,

4. pn(βi) = s(i) for i ≤ k, n ∈ ω.

Let pp̄ = p0�{β1, . . . , βk}.

Note that if p̄ ∈ Δ then fp̄ =
⋃

n∈ω pn is a function. Moreover, pp̄ =
fp̄�{β1, . . . , βk} and pp̄ �Cℵω+1

Xp̄ is infinite.

5.6 Definition. A subset Δ′ ⊆ Δ is filter-like if for any p̄1, . . . , p̄n ∈ Δ′

there exists a q such that

q �Cℵω+1

⋂
i≤nXp̄i is infinite.

5.7 Theorem. Suppose that V |= 2ℵ0 = ℵ1 & 2ℵ1 = ℵω+1. Then Δ is the
union of ℵ1 filter-like sets.

Proof. Let T be the collection of 〈k, l, v, {fi,n, gj : i ≤ l, j ≤ k, n ∈ ω}, g, s〉
such that

1. k, l ∈ ω,

2. v ∈ [ℵ1]≤ ℵ0 ,

3. gj , fi,n ∈ vω are pairwise different for i ≤ l, j ≤ k, n ∈ ω,

4. g ∈ l×ωω,

5. s ∈ kω.

From the assumption about the cardinal arithmetic in V it follows that
V |= ℵℵ0

n = ℵn for n ≥ 1. In particular V |= |T | = ℵ1. Moreover, since
V |= 2ℵ1 = ℵω+1 we can find in V an enumeration 〈hα : α < ℵω+1〉 of ℵ1ω.

Given t = 〈k, l, v, {fi,n, gj : i ≤ l, j ≤ k, n ∈ ω}, g, s〉 ∈ T define Δt ⊆ Δ to
be the collection of all p̄ = 〈pn : n ∈ ω〉 such that

1. dom(pn) = {β1, . . . , βk}∪̇{αn
1 , . . . , αn

l }, with β1 < · · · < βk,
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2. pn(αn
i ) = g(i, n),

3. pn(βi) = s(i),

4. ∀i ≤ l (hαn
i
�v = fi,n),

5. ∀j ≤ k (hβj �v = gj).

5.8 Lemma. Δt is filter-like for every t ∈ T .

Proof. For simplicity, suppose that p̄1, p̄2 ∈ Δt (the proof is the same when
a larger number of p̄s is involved). First we show that fp̄1 ∪ fp̄2 is a function.
Suppose that α ∈ dom(fp̄1) ∩ dom(fp̄2). Consider the function hα and note
that exactly one of the following possibilities happens:

1. there exists exactly one pair (n, i) such that hα�v = fi,n. In this case
fp̄1 , fp̄2 agree on α with the value g(i, n),

2. there exists exactly one j ≤ k such that hα�v = gj (so fp̄1(α) =
fp̄2(α) = s(j)).

Now, put q = pp̄1 ∪ pp̄2 and note that q has the required property. �

To finish the proof of Theorem 5.7 note that Δ =
⋃

t∈T Δt. Suppose that
p̄ = 〈pn : n ∈ ω〉 ∈ Δ. Let k, l, g and s be as in Definition 5.5, and put v to
be a countable set such that hαn

i
�v and hβj �v are pairwise different. �

Finitely Additive Measures on ω

5.9 Definition. A set A ⊆ P (ω) is an algebra if

1. X ∪ Y ∈ A whenever X,Y ∈ A,

2. ω −X ∈ A whenever X ∈ A,

3. ∅, ω ∈ A, {n} ∈ A for n ∈ ω.

Given an algebra A, a function m : A −→ [0, 1] is a finitely additive measure
if

1. m(ω) = 1 and m(∅) = m({n}) = 0 for every n,

2. if X,Y ⊆ ω are disjoint, then m(X ∪ Y ) = m(X) + m(Y ).

We say that m is atomless if for every set A ∈ A, m(A) > 0 there exists a
B ⊆ A, B ∈ A such that 0 < m(B) < m(A).

Any non-principal filter on ω corresponds to a finitely additive 2-valued
measure and any ultrafilter is a maximal such measure. In the sequel we will
work with measures defined on A = P (ω).
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5.10 Definition. For a real valued function f : ω −→ [0, 1] and any finitely
additive measure m define

∫

ω

f dm = lim
n→∞

2n
∑

k=0

k

2n
·m(Ak),

where

Ak =
{

n :
k

2n
≤ f(n) <

k + 1
2n

}

.

We leave it to the reader to verify that integration with respect to m has
its usual properties.

The following is a special case of the Hahn-Banach theorem.

5.11 Theorem (Hahn-Banach). Suppose that m is a finitely additive mea-
sure on an algebra A, and X �∈ A. Let a ∈ [0, 1] be such that

sup{m(A) : A ⊆ X & A ∈ A} ≤ a ≤ inf{m(B) : X ⊆ B & B ∈ A}.

Then there exists a measure m̄ on P (ω) extending m such that m̄(X) = a.

We will need several results concerning the existence of measures in forcing
extensions.

5.12 Lemma. Let m0 ∈ V be a finitely additive measure on P (ω). For
i = 1, 2 let Ri be a forcing notion and let ṁi be an Ri-name for a finitely
additive measure on V Ri ∩P (ω) extending m0. Then there exists a R1×R2-
name for a measure ṁ3 extending both ṁ1 and ṁ2.

Proof. We extend the measures using the Hahn-Banach theorem and we only
need to check that the requirements are consistent. Suppose that we have
R1-name Ẋ and R2-name Ẏ such that �R1× R2 Ẋ ⊆� Ẏ . A necessary and
sufficient condition for both measures to have a common extension is that in
such a case m1(Ẋ) ≤ m2(Ẏ ). Let (p̄, q̄) ∈ R1 ×R2 and n̄ be such that

(p̄, q̄) �R1× R2 Ẋ − n̄ ⊆ Ẏ .

Let
Z = {n > n̄ : ∃p ∈ R1 (p ≤ p̄ & p �R1 n ∈ Ẋ)}.

Set Z belongs to V and p̄ �R1 Ẋ − n̄ ⊆ Z. Similarly q̄ �R2 Z ⊆ Ẏ . In
particular,

(p̄, q̄) �R1× R2 ṁ1(Ẋ) ≤ ṁ1(Z) = m0(Z) = ṁ2(Z) ≤ ṁ2(Ẏ ).

�

We will need the following theorem.
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5.13 Theorem. Suppose that m ∈ V is a finitely additive atomless measure
on P (ω) and v ∈ B. For a B-name Ẋ for an element of [ω]ω define

ṁv
B(Ẋ) = sup

{

inf
{∫

ω

μ(q ∩ [[n ∈ Ẋ]])
μ(q)

dm : q ≤ p

}

: p ≤ v, p ∈ ĠB

}

.

The name ṁv
B has the following properties:

(1) v �B ṁv
B : P (ω) −→ [0, 1],

(2) v �B ṁv
B is a finitely additive atomless measure,

(3) for X ∈ V ∩ P (ω) v �B ṁv
B(X) = m(X),

(4) if Ẋ is a B-name for a subset of ω and μ([[n ∈ Ẋ]]B ∩ v)/μ(v) = a > 0
for all n, then there is a condition p ∈ B, p ≤ v, such that p �B

ṁv
B(Ẋ) ≥ a.

Proof. Without loss of generality we can assume that v = 2ω and therefore
we will drop the superscript v altogether.

(1) is clear.
(2) For a B-name Ẋ for a subset of ω and p ∈ B let

mp(Ẋ) =
∫

ω

μ(p ∩ [[n ∈ Ẋ]])
μ(p)

dm

and

m�
p(Ẋ) = inf{mq(Ẋ) : q ≤ p}.

Clearly, ṁB(Ẋ) = supp∈Ġ infq≤p mq(Ẋ) = supp∈Ġ m�
p(Ẋ). Note that if p �B

Ẋ ⊆ Ẏ then p ∩ [[n ∈ Ẋ]] ⊆ p ∩ [[n ∈ Ẏ ]] for every n. It follows that
mp(Ẋ) ≤ mp(Ẏ ) and m�

p(Ẋ) ≤ m�
p(Ẏ ).

Similarly, if p �B Ẋ ∩ Ẏ = ∅ and Ż is a name for Ẋ ∪ Ẏ then mp(Ẋ) +
mp(Ẏ ) = mp(Ż) and m�

p(Ẋ) + m�
p(Ẏ ) ≤ m�

p(Ż).

5.14 Lemma. p �B ṁB(Ẋ) ≥ r ⇐⇒ m�
p(Ẋ) ≥ r.

Proof. (⇐=) This is obvious.
(=⇒) Suppose that p �B ṁB(Ẋ) ≥ r. Fix a rational t < r and p′ ≤ p. It

follows that

D = {q ≤ p′ : m�
q(Ẋ) ≥ t}

is dense below p′. Let {qn : n ∈ ω} be a maximal antichain in D. We have
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mqn(Ẋ) ≥ m�
qn

(Ẋ) ≥ t. For every k ∈ ω,

m∪j≤kqi(Ẋ) =
∫

ω

μ(
⋃

j≤k qi ∩ [[n ∈ Ẋ]])
μ(
⋃

j≤k qi)
dm

=
∫

ω

∑
j≤k μ(qj ∩ [[n ∈ Ẋ]])

∑
j≤n μ(qj)

dm

=
∑

j≤k

μ(qj)∑
i≤k μ(qi)

∫

ω

μ(qj ∩ [[n ∈ Ẋ]])
μ(qi)

dm

≥ t
∑

j≤k

μ(qj)∑
i≤k μ(qi)

= t.

We leave it to the reader to check that by passing to the limit we get that
mp′ (Ẋ) ≥ t, and since t and p′ were arbitrary, that m�

p(Ẋ) ≥ r. �

Now we show that ṁB is a finitely additive measure.
Suppose that �B Ẋ ⊆ Ẏ . Suppose that p �B ṁB(Ẋ) > ṁB(Ẏ ). Let

q ≤ p and r be such that q �B ṁB(Ẋ) > r ≥ ṁB(Ẏ ). Then m�
q(Ẋ) ≥ r and

m�
q(Ẏ ) < r—contradiction.
Suppose that �B Ẋ ∩ Ẏ = ∅ and let Ż be a name for Ẋ ∪ Ẏ . Let p, r1, r2

be such that p �B ṁB(Ẋ) ≥ r1 and p �B ṁB(Ẏ ) ≥ r1. It follows that
m�

p(Ẋ) ≥ r1 and m�
p(Ẏ ) ≥ r2. Thus m�

p(Ż) ≥ r1 + r2, so p �B ṁB(Ż) ≥
ṁB(Ẋ) + ṁB(Ẏ ).

Suppose that p �B ṁB(Ż) > ṁB(Ẋ) + ṁB(Ẏ ). There are reals r1, r2

and q ≤ p such that q �B ṁB(Ẋ) < r1, q �B ṁB(Ẏ ) < r2 and q �B

ṁB(Ż) > r1 + r2. Use Lemma 5.14, to find q′ ≤ q such that mq′ (Ẋ) < r1

and mq′ (Ẏ ) < r2. By the lemma, mq′ (Ż) ≥ m�
q′ (Ż) ≥ r1 + r2. On the other

hand, since mq′ is additive, mq′ (Ż) < r1 + r2—contradiction.
(3) Suppose that Ẋ is a B-name and for some p ∈ B and X ∈ V ∩ P (ω),

p �B Ẋ = X. That means that for every q ≤ p,

μ(q ∩ [[n ∈ Ẋ]])
μ(q)

=
{

1 if n ∈ X,
0 if n �∈ X.

It follows that p �B ṁB(X) ≥ m(X). Since ṁB is a measure, by looking at
the complements we get, p �B 1−ṁB(X) ≥ 1−m(X), hence p �B ṁB(X) =
m(X).

(4) Suppose that μ([[n ∈ Ẋ]]B) = a > 0 for n ∈ ω. Let

D = {p : ∃ε > 0 mp(Ẋ) ≤ (1− ε) · a}.

If D is not dense in B, then the condition witnessing that has the required
property.



5. Cofinality of cov(J ) and COV(J ) 525

So suppose that D is dense and work towards a contradiction. Let {qn :
n ∈ ω} be a maximal antichain in D. Clearly

∑∞
n=0 μ(qn) = 1. Let ε0 > 0

be such that mq0(Ẋ) ≤ (1− ε0) · a, which means that
∫

ω

μ(q0 ∩ [[n ∈ Ẋ]]) dm ≤ (1− ε0) · a · μ(q0).

Similarly for n > 0,
∫

ω

μ(qn ∩ [[n ∈ Ẋ]]) dm ≤ a · μ(qn).

Let q =
⋃

i≤n qn. We have
∫

ω

μ(q∩ [[n ∈ Ẋ]]) dm ≤ (1−ε0) ·a ·μ(q0)+
n∑

j=1

a ·μ(qj) = a ·μ(q)−ε0 ·a ·μ(q0).

This is a contradiction since

lim
μ(q)→1

∫

ω

μ(q ∩ [[n ∈ Ẋ]]) dm = a.

�

The Iteration

Let V0 be a model satisfying 2ℵ0 = ℵ1 and 2ℵ1 = 2ℵ2 = · · · = ℵω+1. In V0

we will define the following objects:

1. A finite support iteration 〈Pα, Q̇α : α < ℵω+1〉.

2. A sequence 〈Aα : ℵω ≤ α < ℵω+1〉.

3. A sequence 〈ṁξ
α : ℵω ≤ α < ℵω+1, ξ < ℵ1〉 such that

(a) ṁξ
α is a Pα-name for a finitely additive measure on ω,

(b) ṁξ
α extends

⋃
β<α ṁξ

β . In particular, if cf(γ) > ℵ0 then ṁξ
γ =

⋃
β<γ ṁξ

β .

The definition is inductive. Formally, given Pα, {ṁξ
α : ξ < ℵ1} and Aα we

define {ṁξ
α+1 : ξ < ℵl} followed by Aα+1 and then Pα+1 = Pα � Q̇α.

For limit α, Pα and {ṁξ
α : ξ < ℵ1} will be defined by the previous values

and Aα = ∅. Since the definition of ṁξ
α is most complicated it is more natural

to proceed in the reverse order by making commitments about the defined
objects as we go along.

We will use the following notation: suppose that 〈Pα, Q̇α : α < δ〉 is a
finite support iteration and A ⊆ δ, A ∈ V0. Let P(A) be the subalgebra
generated by Ġ�A and let V0[Ġ�A] denote model V0[Ġ ∩ P(A)]. As we are
going to iterate c.c.c. forcing notions of size 2ℵ0 , it follows that if |A| = ℵn,
n > 0 then V0[Ġ�A] |= 2ℵ0 = ℵn.

To define the iteration we require that:
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A0. Aα ⊆ α for α < ℵω+1.

Let 〈Pα,Qα : α < ℵω+1〉 be a finite support iteration such that

�α Qα =
{
C if α < ℵω,

BV0[Ġ�Aα] if α ≥ ℵω.

5.15 Lemma. Suppose that G is Pα-generic over V0 and x ∈ V0[G]∩ P (ω).
Then x can be computed from countably many generic reals. In other words,
there exists a countable set {αn : n ∈ ω} ⊆ α, {αn : n ∈ ω} ∈ V0 and a Borel
function f ∈ ω(ω2) −→ ω2, f ∈ V0 such that x = f(Ġ(α1), . . . , Ġ(αn), . . . ).

Proof. Induction on α.

Case 1. α = β + 1. Let G ⊆ Pα be a generic filter and let x ∈ V0[G].
Work in the model V0[G�β]. Since Pα = Pβ � BV0[Ġ�Aβ ] there exists a Borel
function f̃ ∈ V0[G ∩ Pβ ] such that

V0[G ∩ Pα] |= f̃(G(β)) = x.

Since f̃ is coded by a real, there exists a set {αn : n ∈ ω} ⊆ β and a function
f ∈ V0 such that

f̃ = f(G(α1), . . . , G(αn), . . . ).

The required function is constructed from f and the set {αn : n ∈ ω} ∪ {β}.

Case 2. cf(α) = ℵ0. Fix an increasing sequence 〈αn : n ∈ ω〉 such that
supn αn = α and suppose that x is a Pα-name for a real number (i.e. a set
of countably many antichains). Let xn be a Pαn -name for a real obtained
by taking those conditions in these antichains that belong to Pαn . Observe
that typically xn(i) is defined only for finitely many values of i, and that
only below various conditions in Pαn . So, formally, we need to extend this
definition (arbitrarily) so that every condition in Pαn forces that xn is a
real. Note that �Pα limn xn = x. Apply the induction hypothesis to xn’s
to get Borel functions fn and countable sets An. Let A =

⋃
n An and let

f : ω×ω(ω2) −→ ω2 be defined as

f(. . . , xn
m, . . . ) = lim

n
fn(. . . , xn

m, . . . ).

Case 3. cf(α) > ℵ0. Since no reals are added at the step α there is nothing
to prove. �

Furthermore, we will require that

A1. |Aα| < ℵω for any ℵω ≤ α < ℵω+1.

A2. For every set A ∈ [ℵω+1]<ℵω ∩ V0 there are cofinally many α with
A ⊆ Aα.
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To state the next requirement we will need the following notation: suppose
that A ⊆ ℵω+1. Let P�A = {p ∈ P : dom(p) ⊆ A}. Suppose that ḟ ⊆ ω2×ω2
is a name for an arbitrary function from ω2 to ω2 (not necessarily Borel).
Then ḟ�A = {(ẋ, ẏ) ∈ ḟ : ẋ, ẏ are P�A-names}.

A3. dom(ṁξ
α�Aβ) = P (ω) ∩ V0[Ġ�Aβ ] for every ξ < ℵ1 and ℵω ≤ β ≤ α <

ℵω+1. In other words, ṁξ
α�Aβ is a name for finitely additive measure

on P (ω) ∩ V0[Ġ�Aβ ].

Suppose that the measures {ṁξ
α+1 : ξ < ℵ1} are given, and suppose that

in order to meet the requirement A2 we have to cover certain set A of size
ℵn. Define a sequence 〈Aγ

α+1 : γ < ω1〉 such that

1. A0
α+1 = A,

2. Aβ
α+1 ⊆ Aδ

α+1 for β ≤ δ,

3. Aδ
α+1 =

⋃
β<δ Aβ

α+1 for limit δ,

4. for every set X ∈ V0[Ġ�Aβ
α+1] and ξ < ℵ1, ṁξ

α+1(X) ∈ V0[Ġ�Aβ+1
α+1],

5. |Aγ
α+1| = ℵn + ℵ1 for all γ.

Note that since V0[Ġ�Aβ
α+1] |= 2ℵ0 = ℵn, in order to produce Aβ+1

α+1 we
have to add to Aβ

α+1 at most ℵn + ℵ1 countable sets. Finally let Aα+1 =⋃
γ<ω1

Aγ
α+1. It is clear that Aα+1 is as required.

If δ is limit then we put Aδ = ∅. Note that in both cases condition A3 is
satisfied by the induction hypothesis and the fact that ṁξ

δ extends
⋃

α<δ ṁξ
α.

In order to finish the construction we have to define measures {ṁξ
α : ℵω ≤

α < ℵω+1}.
We start with the definition of a certain dense subset of P and from now

on use only conditions belonging to this subset. Let D ⊆ P be a subset such
that p ∈ D if

1. dom(p) ∈ [ℵω+1]<ω,

2. p(α) ∈ <ωω  C, for α ∈ dom(p) ∩ ℵω,

3. for each α ∈ dom(p)− ℵω,

(a) �α p(α) ∈ BV0[Ġ�Aα],

(b) there is a clopen set Cα ⊆ ω2 such that

�α
μ(Cα ∩ p(α))

μ(Cα)
≥ 1− 1

2n−j+5
,

where n = |dom(p)− ℵω| and j = |α ∩ (dom(p)− ℵω)|.
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5.16 Lemma. D is dense in P.

Proof. Induction on max(dom(p)). �

Let C be the collection of clopen subsets of 2ω. Represent Cℵω+1 as the
collection of functions q such that dom(q) ∈ [ℵω+1]<ω and q(α) ∈ C for
α < ℵω and q(α) ∈ C for α ≥ ℵω.

Note that there is a natural projection π from D to Cℵω+1 defined as

π(p)(α) =
{
p(α) if α < ℵω,
Cα if α ≥ ℵω.

For a sequence p̄ = 〈pn : n ∈ ω〉 let π(p̄) = 〈π(pn) : n ∈ ω〉. Suppose that p̄ is
such that π(p̄) ∈ Δ, as defined in Definition 5.5. We will define a condition
pp̄ in the following way; dom(pp̄) = Δ̃, where Δ̃ is the root of the Δ-system
{dom(pn) : n ∈ ω}.

Case 1. α ∈ Δ̃ ∩ ℵω. Let pp̄(α) be the common value of pn(α) for n ∈ ω.

Case 2. α ∈ Δ̃ − ℵω. Work in the model V = V0[Ġ�Aα] and let C =
π(pn(α)). Clearly V |= C ∈ B. It follows that for some k > 0 and every
n ∈ ω,

V |= μ(C ∩ pn(α))
μ(C)

≥ 1− 1
2k

.

Let Ẋ be a B-name such that [[n ∈ Ẋ]] = C ∩ pn(α). Apply, Theorem 5.13
in V , to find a condition r ∈ B, r ≤ C such that

r �B ṁC
B(Ẋp̄) ≥ 1− 1

2k
.

Let pp̄(α) = r.
Now we turn our attention to the sequence 〈ṁξ

α : ℵω ≤ α < ℵω+1〉. By
Theorem 5.7, Δ is a union of ℵ1 filter-like sets and each of these sets will yield
one of the measures ṁξ. Specifically, let Δ =

⋃
ξ<ℵ1

Δξ be the decomposition
into as in Theorem 5.7. For ξ < ℵ1 let

Δξ = {p̄ ∈ [P ]ω : π(p̄) ∈ Δξ}.

The measure ṁξ
α will be first defined on the set

{Ẋp̄ : p̄ ∈ Δξ ∩ [Pα]ω}.

We will do it in such a way that for p̄ ∈ Δξ ∩ [Pα]ω

pp̄ �α ṁξ
α(Ẋp̄) > 0,

where pp̄ is the condition defined above. Next ṁξ
α will be extended arbitrarily

to the set P (ω) ∩ V Pα
0 .
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Here are the details; fix ξ < ℵ1 and define ṁξ
α as follows:

Case 1. α = ℵω. Consider the family

Ḣξ = {Ẋp̄ : p̄ ∈ Δξ ∩ [Pℵω ]ω, pp̄ ∈ ĠP}.

It is easy to see that Ḣξ is a Pℵω -name for a filter base. Let Ḟξ be any
P-name for an ultrafilter extending Ḣξ and let ṁξ

ℵω
be the corresponding

measure. In other words, for Ẋ ∈ Ḣξ,

�ℵω ṁξ
ℵω

(Ẋ) = 1.

Case 2. α > ℵω and cf(α) = ℵ0. Since ṁξ
α extends

⋃
β<α ṁξ

β , we have to
define ṁξ

α on the set
{
Ẋp̄ : p̄ ∈ Δξ ∩

(
[Pα]ω −

⋃
β<α[Pβ ]ω

)}
.

Put A = Δξ ∩ ([Pα]ω −
⋃

β<α[Pβ ]ω) and for p̄ ∈ A let j = jp̄ ∈ ω be such
that

β = sup
n∈ω

αn
j−1 < sup

n∈ω
αn

j = α,

where αn
i is the i’th element of dom(pn). Consider sequences p̄− = 〈pn�αn

j :
n ∈ ω〉 and p̄+ = 〈pn�[αn

j , α) : n ∈ ω〉. Let Ḣξ be a Pα-name for the family
{Ẋp̄+ : p̄ ∈ A}. Note that

1. �α Ḣξ is a filter base,

2. ∀Ẋ ∈ Ḣξ ∀β < α ∀Ẏ ∈ [ω]ω ∩ V
Pβ

0 �α Ẋ ∩ Ẏ is infinite.

Suppose that p̄ ∈ A and note that

pp̄− �β ṁξ
β(Ẋp̄− ) = a > 0.

By the remarks made above, we can set ṁα(Ẋp̄+) = 1 and ṁα(Ẋp̄) = a.
Finally note that the value a is forced by pp̄.

Case 3. α is a limit and cf(α) > ℵ0. Let ṁξ
α =

⋃
β<α ṁξ

β . This definition is
correct since no subsets of ω are added at the step α.

Case 4. α = δ + 1. As before we have to define ṁξ
α on

{Ẋp̄ : p̄ ∈ Δξ ∩ ([Pα]ω − [Pδ]ω)}.

Set A = Δξ ∩ ([Pα]ω− [Pδ]ω) and note that if p̄ ∈ A then δ ∈
⋂

n∈ω dom(pn).
Thus, let C be a clopen set such that π(pn(δ)) = C for n ∈ ω. Let V =
V0[Ġ�Aδ]. Find a forcing notion R such that Pδ = (Pδ�Aδ) �R. It follows
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that V Pα
0 = V

Pδ+1
0 = V R×B. By the induction hypothesis m = ṁξ

δ�Aδ is a
finitely additive measure. In other words m ∈ V is a finitely additive measure
defined on P (ω)∩V . Clearly ṁξ

δ is an extension of m to V R ∩P (ω). On the
other hand let ṁC

B be an extension of m to V B as given by Theorem 5.13.
Let ṁξ

α = ṁξ
δ+1 be the common extension of ṁξ

δ and ṁC
B guaranteed by

Lemma 5.12. It is clear that ṁξ
α has the required properties.

Finally let ṁξ =
⋃

ℵω ≤α<ℵω+1
ṁξ

α. Note that each ṁξ is a P-name for a
finitely additive measure on P (ω) ∩ V P

0 .

Proof of Theorem 5.3

We are ready now for the proof of the main theorem. The following lemma
gives the lower bound for cov(L).

5.17 Lemma. V P
0 |= cov(L) ≥ ℵω. In particular, [R]<ℵω ⊆ COV(L).

Proof. Suppose that {Hα : α < κ < ℵω} is a family of measure zero sets in
V P

0 . Let N be a master set for L defined earlier. Without loss of generality
we can assume that for some fα ∈ ωω, Hα = (N)fα , and let ḟα be a P-name
for fα. As in Lemma 5.15, let Kα ∈ [ℵω+1]ℵ0 ∩ V0 be a countable set such
that fα ∈ V0[Ġ�Kα]. Find β such that

⋃
α<κ Kα ⊆ Aβ . The random real

added by BV0[Ġ�Aβ ] avoids all null sets coded in V0[Ġ�Aβ ], in particular, all
Hα’s. �

It remains to be checked that cov(L) ≤ ℵω in the extension.
Let X = {fα : α < ℵω} = Ġ�ℵω be the sequence of the first ℵω Cohen

reals added by P . Our intention is to show that X �∈ COV(L). In fact we
will show that ⋃

α<ℵω
(N)fα = ω2,

where N is the master set defined in the previous section. That will finish
the proof since X is a countable union of sets of smaller size (so they are
all in COV(L)) and thus X witnesses that COV(L) is not a σ-ideal and that
cov(L) ≤ ℵω.

Suppose the opposite and let z be such that

V P
0 |= z �∈

⋃
α<ℵω

(N)fα .

5.18 Lemma. There exists a P-name Ẏ for a subset of ℵω and n̄ ∈ ω such
that

1. �P Ẏ ∈ [ℵω]ℵ1 ,

2. �P
ω2−

⋃
α∈Ẏ

⋃
n>n̄ Cn

fα(n) is uncountable.

Proof. Denote by ż a P-name for z and let δ < ℵω+1 be the least ordinal
such that ż is a Pδ-name. We have the following two cases:

Case 1. δ = λ + 1 is a successor ordinal. Suppose first that δ > ℵω. Work
in V = V0

Pλ and let Bλ = BV0[Ġ�Aλ]. For each α < ℵω choose qα ∈ Bλ and
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nα ∈ ω such that V |= qα �Bλ
ż �∈

⋃
n>nα

Cn
fα(n). Since Bλ has a dense

subset of size < ℵω, we can find q ∈ Bλ and n̄ ∈ ω such that the set

Y = {α : qα = q & nα = n̄}

is uncountable. Consider the set C = ω2−
⋃

α∈Y

⋃
n>n̄ Cn

fα(n) in V . Observe
that C is a closed set and if it was countable then all its elements would be
in V . However, V Bλ |= z ∈ C and z �∈ V .

If δ < ℵω, then the argument is identical except that we use C instead of
Bλ. In fact one can show that

V P
0 ∩ ω2 ⊆

⋃
α<ω1

(N)fα ⊆
⋃

α<ℵω
(N)fα .

Case 2. δ is a limit and cf(δ) = ℵ0. In V Pδ
0 we can find an n̄ ∈ ω and an

uncountable set Z ⊆ ℵω such that

V Pδ
0 |= z �∈

⋃
α∈Z

⋃
n>n̄Cn

fα(n).

Let Ż be a Pδ-name for Z. Suppose that G ⊆ Pδ is a generic filter over V0.
For each α < ω1 choose pα ∈ Pδ ∩ G and ηα such that pα �Pδ

Ż(α) = ηα,
where Ż(α) is a P-name for the α-th element of Z.

There is an uncountable set I ⊆ ω1, and λ < δ such that pα ∈ Pλ ∩ G
for α ∈ I. Let Y = {ηα : α ∈ I} and let Ẏ be a Pλ-name for Y . As in the
previous case, consider the set C = ω2−

⋃
α∈Y

⋃
n>n̄ Cn

fηα (n) in V Pλ
0 . We see

that C is uncountable because it contains an element which does not belong
to V Pλ

0 . �

Find different ordinals {ηα : α < ω1} and conditions {pα : α < ω1} ⊆ P
such that pα �P ηα ∈ Ẏ . Using the Δ-lemma we can assume that there are
k̃, l̃ ∈ ω, s ∈ k̃ω and clopen sets {Cj : j ≤ l̃} such that

1. dom(pα) form a Δ-system,

2. dom(pα) = {γα
1 < · · · < γα

k̃
< ℵω ≤ δα

1 < · · · < δα
l̃
},

3. ∀α ∀j ≤ k̃ (pα(γα
j ) = s(j)),

4. for all j ≤ l̃

�αj

μ(Cj ∩ pα(δα
j ))

μ(Cj)
≥ 1− 1

2l̃−j+5
.

Without loss of generality we can assume that ηα ∈ dom(pα). Furthermore
we can assume that for some j0 ≤ k̃, ηα = γα

j0
and that s(j0) = s� with

|s�| = n�.
Consider the first ω conditions p̄ = {pn : n ∈ ω}. Our next step is to

extend the pn’s slightly to get a new sequence p̄�. We will need the following
definition.
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5.19 Definition. For a clopen set C ⊆ ω2 define supp(C) to be the smallest
set F ⊆ ω such that C = (C ∩ F 2)× ω−F 2. Thus, the support of C is the set
of coordinates that carry information about C.

Let Kn = {m : supp(Cn�

m ) ⊆ n} and let {Jn : n ∈ ω} be a partition of ω
such that |Jn| = |Kn| for each n. Fix a function o ∈ ωω such that o“Jn = Kn

for every n. Define

p�
n =

{
pn(α) if α �= ηn,
s��(n�, o(n)) if α = ηn.

Observe that there is ξ < ℵ1 such that p̄� = {p�
n : n ∈ ω} ∈ Δξ. This is

being witnessed by the k̃, l̃, s ∈ k̃ω, clopen sets {Cj : j ≤ l̃} and function g
defined as

g(i, n) =
{
s(i) if i ≤ k̃, i �= j0,
s��(n�, o(n)) if i = j0.

Our goal is to show:

5.20 Theorem. There exists a condition p�� and ε > 0 such that

p�� �P ∃∞n
|{m ∈ Jn : p�

m ∈ ĠP}|
|Jn|

≥ ε.

Before we prove this theorem let us see that Theorem 5.3 follows readily
from it. Recall that in Lemma 5.18 we showed that �P

ω2 −⋃
α∈Ẏ

⋃
n>n̄ Cn

fα(n) is uncountable. Since this set is closed, there is a P-
name for a perfect tree Ṫ such that �P

⋃
α∈Ẏ

⋃
n>n̄ Cn

fα(n) ∩ [Ṫ ] = ∅. Let
Żn = {m ∈ Jn : p�

m ∈ ĠP} for n ∈ ω. It follows that for every n,

p�� �P
(⋃

k∈Żn
Cn�

k

)
�n ∩ Ṫ �n = ∅.

This is because for a clopen set C and a tree T , if C ∩ [T ] = ∅ then
(C�supp(C)) ∩ (T �supp(C)) = ∅. Fix n ∈ ω and suppose that |Ṫ �n| = m.
The size of the set Jn is equal to

(
2n

2n−n�

)
. On the other hand the number of

sets Cn�

k which are disjoint with Ṫ �n is at most
(

2n −m
2n−n�

)
. Put 2−n�

= ε. It
follows, after some elementary calculations, that for some constant a ≥ 1:

|Żn|
|Jn|

≤
(

2n −m
2n−n�

)

(
2n

2n−n�

) =
m∏

j=1

(

1− 2n−n�

2n −m + j

)

≤ a · e−ε·m.

Thus
|Żn|
|Jn|

≤ a · e−ε·|Ṫ �n|.

Since p�� �P lim supn
|Żn |

|Jn | ≥ ε we get that p�� �P limn |Ṫ �n| < ∞ (the size
of T �n increases with n). In particular,

p�� �P Ṫ is not perfect,
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which gives a contradiction.

Proof of Theorem 5.3: Conclusion

In order to complete the proof of Theorem 5.3 we have to prove Theo-
rem 5.20. We will need one more modification of the sequence p̄� and we will
require the construction described below.

5.21 Lemma. Let Δ̃ be a finite subset of ℵω+1 − ℵω. Suppose that {qi :
i ≤ N} is a sequence of conditions in P such that

(1) dom(qi) = Δ̃,

(2) ∀α ∈ Δ̃ ∃aα ∀i ≤ N �α μ(qi(α)) = aα > 3/4.

Then there exists a condition q� such that

(a) dom(q�) = Δ̃,

(b) q� ∈ P,

(c) ∀α ∈ Δ̃ �α μ(q�(α)) ≥ 2aα − 1,

(d) q� �P {k ≤ N : ∀α ∈ Δ̃ q��α �α ẋα ∈ qk(α)} has at least 2− |Δ̃| · N ·∏
α∈Δ̃ aα elements, where ẋα is the generic real added by Ġ(α).

Proof. If Δ̃ = ∅, then there is nothing to prove.
We proceed by induction on max(Δ̃) which we denote by β. Let q′

k = qk�β
for k ≤ N . Apply the induction hypothesis to get a condition q′ such that

1. dom(q′) = Δ̃− {β},

2. q′ ∈ P ,

3. ∀α ∈ Δ̃− {β} �α μ(q′(α)) ≥ 2aα − 1,

4. q′ �P {k ≤ N : ∀α ∈ Δ̃ − {β} q′�α �α ẋα ∈ qk(α)} has at least
2− |Δ̃|+1 ·N ·

∏
α∈Δ̃− {β} aα elements.

Let Ẇ be a P-name for the set

{k ≤ N : ∀α ∈ Δ̃− {β} q′�α �α ẋα ∈ qk(α)}.

Let {W i : i ≤ �} be a list of subsets of N of size at least 2− |Δ̃|·N ·
∏

α∈Δ̃− {β} aα

and {qi : i ≤ �} a maximal antichain below q′ such that qi �P Ẇ = W i for
i ≤ �.

We will need the following easy observation.



534 Bartoszynski / Invariants of Measure and Category

5.22 Lemma. Suppose that {An : n < N} is a family of subsets of ω2 of
measure a > 0. Let

B =
{

x ∈ ω2 : x belongs to at least
N · a

2
sets Ai

}

.

Then μ(B) ≥ max{a/2, 2a− 1}.

Proof. Let χAi be the characteristic function of the set Ai for i ≤ N . It
follows that

∫ ∑
i≤N χAi = N · a. On the other hand, estimation of this

integral yields,

N · μ(B) +
N · a

2
(1− μ(B)) ≥ N · a

and after simple computations we get μ(B) ≥ a/2
1−a/2 . It follows that we get

the following estimates:

μ(B) ≥ a/2
1− a/2

≥ max{a/2, 2a− 1} =

{
a/2 if a < 2

3 ,

2a− 1 if a ≥ 2
3 .

�

Work in V Pβ and for each i ≤ � apply Lemma 5.22 to the family {qk(β) :
k ∈W i} and obtain a condition ri ∈ BV0[Ġ�Aβ ] such that

ri � {k ∈W i : ẋβ ∈ qk(β)} has at least
|W i|

2
· aβ elements,

and �β μ(ri) ≥ 2aβ − 1.
Finally, define q� to be a P-name such that for i ≤ �, qi � q�(β) = ri. It

is easy to see that q� is as required. �

Let qk = p�
k�Δ̃, where Δ̃ = {α1 < · · · < α�} is the root of the Δ-system

{dom(p�
k�[ℵω,ℵω+1) : k ∈ ω}.

For each n apply Lemma 5.21 to the family {qk : k ∈ Jn} to get a condition
q�
n such that

1. dom(q�
n) = Δ̃,

2. ∀i ≤ � �αi

μ(q�(αi)∩Cαi
)

μ(Cαi
) ≥ 2(1− 1

2�−i+5 )− 1 = 1
2�−i+4 ,

3. q�
n �P |{k ≤ N : ∀α ∈ Δ̃ (q�

n�α �α ẋα ∈ qk(α))}| ≥ |Jn |
2�+1 .

Define for k ∈ ω,

p��
k (α) =

{
p�

k(α) ∩ q�
n if α ∈ Δ̃, k ∈ Jn,

p�
k(α) otherwise.



6. Consistency Results and Counterexamples 535

Let p̄�� = {p��
n : n ∈ ω}. Find ξ < ℵ1 such that p̄�� ∈ Δξ. According to our

definitions,
p�� = pp̄�� �P ṁξ(Ẋp̄��) > 0.

In particular,

p�� �P Ẋp̄�� = {n : p��
n ∈ ĠP} is infinite.

Let ε = 2−�−1 and note that

p��
n �P

|{k ∈ Jn : p�
k ∈ ĠP}|

|Jn|
≥ ε.

It follows that p�� is the condition required in Theorem 5.20.

Historical Remarks. Theorem 5.1 was proved by Miller [34]. Better
estimates are true (see [7] and [6] or [8]). Theorem 5.2 was proved in [5]
(see [8]). Theorem 5.3 is due to Shelah. His [49] contains a more a general
construction, where in addition MAℵ1 holds.

6. Consistency Results and Counterexamples

This section is devoted to the consistency results involving cardinal invariants
of the Cichoń diagram and non-inclusion between the corresponding classes
of small sets. We will describe several such constructions in detail.

Suppose that P is a forcing notion. Let D(P) denote the family of all
dense subsets of P and G(P) the family of all filters on P . With P we can
associate the following cardinal invariants:

1. ma(P) = min{|A| : A ⊆ D(P) & ¬∃G ∈ G(P) ∀D ∈ A (G ∩D �= ∅)},

2. am(P) = min{|G| : G ⊆ G(P) & for every countable sequence {Dn : n ∈
ω} ⊆ D(P) ∃G ∈ G(P) ∀n (G ∩Dn �= ∅)}.

In other words, ma(P) is the size of the smallest family of dense subsets
of P for which there is no filter intersecting all of them and am(P) is the size
of the smallest family of filters such that for every countable family of dense
subsets of P there is a filter in the family that intersects all of them.

Consider the forcing notions:

• Amoeba forcing A = {U ⊆ ω2 : U is open and μ(U) < 1/2}. For
U, V ∈ A, U ≤ V if U ⊇ V .

• Random real forcing B = {P ⊆ ω2 : P is a closed set of positive
measure}.

• Cohen forcing C.

• Dominating real forcing D = {〈n, f〉 : n ∈ ω & f ∈ ωω}. For 〈n, f〉,
〈m, g〉 ∈ D, 〈n, f〉 ≤ 〈m, g〉 if n ≥ m & f�m = g�m & ∀k f(k) ≥ g(k).



536 Bartoszynski / Invariants of Measure and Category

We have the following result (see [8] for the proof):

6.1 Theorem.

1. add(L) = ma(A) and cof(L) = am(A).

2. cov(L) = ma(B) and non(L) = am(B).

3. cov(B) = ma(C) and non(B) = am(C).

4. add(B) = ma(D) and cof(B) = am(D).

This description is particularly well suited to use with the finite support
iteration. If P is a c.c.c. forcing notion having “nice” definition and Pκ is a
finite support iteration of P of length κ then

1. If V |= 2ℵ0 = ℵ1 then V Pω2 |= ma(P) = ℵ2.

2. If V |= 2ℵ0 = ℵ2 then V Pω1 |= am(P) = ℵ1.

This example motivates the following definition: a pair of models V and V ′

is dual if
V |= ma(P) = 2ℵ0 ⇐⇒ V ′ |= am(P) < 2ℵ0 .

For our purpose we restrict our attention to the coefficients of the Cichoń
diagram and define that V is dual to V ′ if all of the following hold for J = B
and for J = L:

1. V |= cov(J ) = 2ℵ0 ⇐⇒ V ′ |= non(J ) < 2ℵ0 ,

2. V |= add(J ) = 2ℵ0 ⇐⇒ V ′ |= cof(J ) < 2ℵ0 ,

3. V |= non(J ) = 2ℵ0 ⇐⇒ V ′ |= cov(J ) < 2ℵ0 ,

4. V |= cof(J ) = 2ℵ0 ⇐⇒ V ′ |= add(J ) < 2ℵ0 ,

5. V |= b = 2ℵ0 ⇐⇒ V ′ |= d < 2ℵ0 ,

6. V |= d = 2ℵ0 ⇐⇒ V ′ |= b < 2ℵ0 .

To illustrate this consider the following theories:

ZFC + add(B) = cov(L) = ℵ2 + add(L) = ℵ1

and
ZFC + cof(L) = ℵ2 + cof(B) = non(L) = ℵ1.

A model for the first of these theories can be obtained by a finite support
iteration of B � D of length ℵ2 over a model for CH and the second by
iteration of B � D of length ℵ1 over a model for 2ℵ0 = ℵ2. It is clear that
add(B), cov(L) and cof(B) and non(L) have the required values. What is
less obvious is that add(L) = ℵ1 in the first and cof(L) = ℵ2 in the second
case. To check that we need a preservation result which ensures that the
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iteration which we use does not change the value of these invariants. Such
theorems were proved in [27, 43, 8].

We will not study these examples any further because this method has one
fundamental weakness: it can give us only some of the models we need. This
is because the finite support iteration adds Cohen reals. We will use however
the notion of duality outlined above. From now on we will focus on obtaining
the models using countable support iteration. To this end we will associate
with every cardinal invariant of the Cichoń diagram a proper forcing notion
and a “preservation theorem” as follows:

• add(L) � Amoeba forcing A, preservation of “not adding amoeba
reals”.

• cov(L) � random real forcing B, preservation of “not adding random
reals”.

• cov(B) � Cohen forcing C, preservation of “not adding Cohen reals”.

• non(B) � forcing PTf,g, preservation of non-meager sets.

• b � Laver forcing LT, preservation of “not adding unbounded reals”.

• d � rational perfect set forcing PT, preservation of “not adding dom-
inating reals”.

• 2ℵ0 � Sacks forcing S, preservation of Sacks property.

• cof(L) � forcing S2, preservation of non-meager sets, and preserva-
tion of “not adding unbounded reals”.

• non(L) � forcing Sg,g� , preservation of positive outer measure.

We do not assign anything to add(B) and cof(B) because they are ex-
pressible using the remaining invariants. We refer the reader to [8] for the
definitions of all these forcing notions and the formulation of the preservation
theorems. We will illustrate the problems with the following examples.

6.2 Example. Dominating number d. Rational perfect set forcing PT as-
sociated with d is one of the forcing notions that increase d without affecting
other characteristics in the Cichoń diagram (except those bigger than d).

The preservation theorem can be stated as follows. We say that a proper
forcing notion P is ωω-bounding if

∀f ∈ V P ∩ ωω ∃g ∈ V ∩ ωω ∀n (f(n) ≤ g(n)).

It is clear that P is ωω-bounding if and only if P preserves dominating fam-
ilies. See Abraham’s chapter [1] for the proof of the following theorem.

6.3 Theorem. The countable support iteration of proper ωω-bounding forc-
ing notions is ωω-bounding.
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This is the ideal situation—no matter what forcing notion we assign to
cov(L), non(B), cof(L) and non(L) it has to be ωω-bounding and this
property is preserved under countable support iteration.

6.4 Example. Covering numbers cov(B) and cov(L). The choice of forcing
notions that we assign to these invariants is determined by Theorem 6.1; it
has to be equivalent to Cohen and random real forcing respectively.

The preservation theorem could be stated as follows (see [26] or [8]).

6.5 Theorem. Suppose that Pδ = limα<δ Pα (δ a limit) is a countable sup-
port iteration of proper forcing notions such that for every α < δ, Pα does
not add random reals. Then Pδ does not add random reals.

The question whether this theorem remains true if we replace words “ran-
dom” by “Cohen” is open. However, even if the preservation theorem for
not adding Cohen reals is true, both results cover only limit stages of the
iteration. For the successor steps we do not have an analog of Theorem 6.3,
and indeed we can find two c.c.c. forcing notions P and Q such that P does
not add random reals, and �P “Q does not add random reals” but P � Q
adds random reals. Similarly for Cohen reals.

These facts impose the following requirements:

• any iteration of finite length of forcing notions assigned to b, non(B),
d, cov(B), non(L) and cof(L) does not add random reals,

• iteration of any length of forcing notions assigned to b, cov(L),
non(B), non(L) and cof(L) does not add Cohen reals.

It is easy to verify that each of the forcing notions chosen for these invariants
have the required properties. However, the reasons why they, for example,
do not add Cohen reals are different in each case. Thus, the preservation
theorems are often difficult, technical and at the same time not very general.

The full proof that the construction outlined above is possible can be found
in [8]. A preservation theorem for not adding Cohen reals that covers the
cases we are interested in can be found in [44].

We will take all these constructions for granted and present some applica-
tions.

Let us consider the following examples:

6.6 Theorem. It is consistent with ZFC that

b = ℵ2 + cov(L) = non(L) = ℵ1.

Proof. Recall that for any tree T , stem(T ) is the longest node of T such that
for all t ∈ T , t ⊆ stem(T ) or stem(T ) ⊆ t and for s ∈ T , succT (s) = {t : s ⊆
t & |t| = |s|+ 1}.



6. Consistency Results and Counterexamples 539

Laver forcing LT is the following forcing notion:

T ∈ LT ⇐⇒ T ⊆ <ωω is a tree &
∀s ∈ T (|s| ≥ stem(T ) → |succT (s)| = ℵ0).

For T, T ′ ∈ LT, T ≤ T ′ if T ⊆ T ′.

6.7 Lemma.

(1) V LT |= V ∩ ωω is bounded in ωω.

(2) V LT |= V ∩ ω2 �∈ L.

(3) LT does not add random reals.

Moreover (2) and (3) hold for the countable support iteration of Laver
forcing as well.

Proof. See [8]. �

Let Pω2 be a countable support iteration of length ℵ2 of Laver forcing. It
follows from Lemma 6.7 that b = ℵ2 in V Pω2 , while both cov(L) and non(L)
are equal to ℵ1. �

6.8 Theorem. It is consistent with ZFC that

d = ℵ1 + cov(L) = non(L) = ℵ2.

Proof. We will use forcing notion EE defined below rather than Sg,g� ; it has
a much simpler definition and has the required properties (but difficulties
appear when unbounded reals are added).

The infinitely equal forcing notion EE is defined as follows: p ∈ EE if the
following conditions are satisfied:

1. dom(p) ⊆ ω, |ω − dom(p)| = ℵ0.

2. p : dom(p) −→ <ω2.

3. p(n) ∈ n2 for all n ∈ dom(p), and

for p, q ∈ EE we define p ≤ q if p ⊇ q.

6.9 Lemma. Forcing EE has the following properties:

1. V P |= V ∩ ω2 ∈ L. In fact,

∀x ∈ V ∩ ω2 ∃∞n (x�n = fG(n)),

where fG is a generic real.

2. P does not add random reals.

3. P is ωω-bounding.
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Proof. See [8]. �

Let {Pα, Q̇α : α < ω2} be a countable support iteration such that for every
α < ω2,

1. �α Q̇α  EE if α is even, and

2. �α Q̇α  B if α is odd.

Let G be a Pω2-generic filter over V |= CH.
It is clear that V [G] |= non(L) = cov(L) = ℵ2. To see that d = ℵ1 in the

extension note that both forcing notions B and EE are ωω-bounding and use
Theorem 6.3. �

Now consider the corresponding problem concerning the families of small
sets. The question is whether the models constructed for the Cichoń diagram
yield the sets witnessing the strict inclusion between the corresponding classes
of sets. For example, add(L) < cov(L) is consistent. Is this construction of
any help if we want to construct a set X ∈ COV(L) − ADD(L)? It is clear
that we cannot show that in ZFC alone. For example, it is consistent that
ADD(L) = COV(L) = [R]≤ ℵ0 (a model for Dual Borel Conjecture, see [8]).

However, the theory ZFC+CH provides a sufficiently rich universe in which
such constructions can be carried out. Moreover <-results about invariants
add, cov, etc. in a natural way yield � results about ADD, COV, etc.

We will describe here several such constructions in detail. First consider
those that involve only forcing notions satisfying c.c.c.

6.10 Theorem (ZFC + CH). There is a set X ⊆ R such that X ∈ D and
X �∈ NON(L) ∪ NON(B).

Proof. The construction is canonical. Set the cardinal invariants correspond-
ing to the families that X belongs to ℵ2 and the other ones to ℵ1. In
our case d = ℵ2 and non(L) = non(B) = ℵ1. Now consider the forc-
ing notion that produces the model for the dual setup, i.e. b = ℵ1 and
cov(L) = cov(B) = ℵ2. According to our table it is the iteration of Cohen
and random forcings, C � B. Let 〈Mα : α < ℵ1〉 be an increasing sequence
of countable submodels of H(λ) (here and elsewhere in this chapter H(λ)
denotes the collection of sets whose transitive closure has size < λ)) such
that

1. ω2 ⊆
⋃

α<ω1
Mα,

2. for every α < ω1, Mα+1 |= Mα is countable,

3. 〈Mβ : β ≤ α〉 ∈Mα+1.
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For each α choose a pair (cα, rα) ∈Mα+1 such that (cα, rα) is C�B-generic
over Mα. Note that such a pair will also be generic over Mβ for β < α. Let
zα encode (cα, rα) as

zα(n) =
{
cα(k) if n = 2k,
rα(k) if n = 2k + 1.

Let X = {zα : α < ω1}. We will show that X has the required properties.
To show that X ∈ D fix a Borel function F : R −→ ωω and find α0 such

that F is coded in Mα0 . Let f be any function which dominates Mα0 ∩ ωω.
For any α < ω1, F (zα) ∈ MC�B

α0
. Since C � B does not add dominating

reals it follows that for every α there is a function g ∈ Mα0 ∩ ωω such that
g �≤� F (zα). Since g is dominated by f we conclude that f �≤� F (zα) for
every α < ω1.

To see that X �∈ NON(B) ∪ NON(L) let Y = {cα : α < ω1}. Observe that
Y is a continuous image of X. Moreover, if F ∈ Mα0 is a meager set then
cα �∈ F for α > α0 since cα is a Cohen real over Mα0 . The argument that
X �∈ NON(L) is analogous. �

Observe that the crucial point of the above construction is that the real zα

defined at the step α is generic not only over model Mα but also over models
Mβ for β < α. To illustrate this point suppose that P is a forcing notion,
M ⊆ N are two submodels of H(λ) and P ∈ M . Let A ∈ M be a maximal
antichain in P . If P satisfies c.c.c. then A ⊆M , as a range of a function on ω.
If P is absolutely c.c.c. then N |= A is an maximal antichain, so a P-generic
real over N is also P-generic over M . If P is not absolutely c.c.c. then we no
longer know if A is a maximal antichain in N . In fact, we do not know if A
is an antichain at all, if the incompatibility relation is not absolute between
M and N . However, if both M and N are elementary submodels of H(λ),
then N |= A is a maximal antichain. Finally, if P does not satisfy c.c.c.,
then it is no longer true that A ⊆M , so a P-generic real over V may not be
generic over M . Recall that a condition p ∈ P is (M,P)-generic if p forces
that the above situation does not happen. If for every countable M ≺ H(λ)
the collection of (M,P)-generic conditions is dense in P , then P is proper.

The following strengthenings of properness will allow us to carry out the
construction from the proof of Theorem 6.10 for non-c.c.c. posets. See Abra-
ham’s chapter [1] for more on these concepts.

6.11 Definition. Suppose that P is a forcing notion and α < ω1 is an
ordinal. We say that P is α-proper if for every sequence 〈Mβ : β ≤ α〉 such
that

1. for every β, Mβ is a countable elementary submodel of H(λ),

2. {Mγ : γ ≤ β} ∈Mβ+1,

3. Mβ+1 |= Mβ is countable,
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4. Mλ =
⋃

β<λ Mβ for limit λ,

5. P ∈M0,

and for every p ∈ P ∩M0, there exists a q ≤ p which is (Mβ ,P)-generic for
β ≤ α.

6.12 Definition. A forcing notion P satisfies Axiom A if there exists a
sequence 〈≤n: n ∈ ω〉 of orderings on P (not necessarily transitive) such that

1. if p ≤n+1 q, then p ≤n q and p ≤ q for p, q ∈ P ,

2. if 〈pn : n ∈ ω〉 is a sequence of conditions such that pn+1 ≤n pn, then
there exists a p ∈ P such that p ≤n pn for all n, and

3. if A ⊆ P is an antichain, then for every p ∈ P and n ∈ ω there exists a
q ≤n p such that {r ∈ A : q is compatible with r} is countable.

All forcing notions assigned to the cardinal invariants from Cichoń diagram
satisfy Axiom A.

6.13 Lemma. If P satisfies Axiom A, then P is α-proper for every α < ω1.

Proof. Proceed by induction on α. Let 〈Mβ : β ≤ α〉 be a sequence of models
having the required properties. Fix p ∈ P ∩M0 and n ∈ ω. We will find a
q ≤n p which is Mβ-generic for β ≤ α. If α = 0, then it is the usual proof
that Axiom A implies properness. If α = γ+1, then first find a q′ ≤n p which
is Mδ-generic for δ ≤ γ and then use properness of P to get q ≤n q′ which
is Mα-generic. If α is limit, then fix an increasing sequence 〈αn : n ∈ ω〉
such that supn αn = α. Use the induction hypothesis to find conditions
{pk : k ∈ ω} such that

1. pk+1 ∈Mαk+1,

2. pk is Mγ-generic for γ < αk,

3. pk+1 ≤n+k pk for each k.

Let q be such that q ≤n+k pk for each k. It is the condition we are looking
for. �

6.14 Theorem (ZFC + CH). There is a set X ⊆ R such that X ∈ B and
X �∈ COV(L) ∪ NON(L).

Proof. In terms of cardinal invariants the statement of the theorem corre-
sponds to the dual to the model for b = ℵ2 and cov(L) = non(L) = ℵ1,
that is, the one where d = ℵ1 and cov(L) = non(L) = ℵ2. The set we are
looking for is defined using the forcing notion used to construct that model
(cf. Theorem 6.8).

Let 〈fα : α < ω〉 be an enumeration of R. Let 〈Mα : α < ω1〉 be a sequence
of countable elementary submodels of H(λ) such that
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1. fα ∈Mα,

2. 〈Mβ : β ≤ α〉 ∈Mα+1, and Mα+1 |= Mα is countable,

3. Mγ =
⋃

α<γ Mα for limit γ.

Note that from (2) it follows that for every β < α, Mα |= “Mβ is countable.”
Let 〈eα, rα : α < ω1〉 be a sequence of reals such that

1. eα, rα ∈Mα+1,

2. eα is EE-generic over Mβ for β ≤ α,

3. rα is B-generic over Mβ [eα] for β ≤ α.

For α < ω1 define

zα(n) =
{
eα(k) if n = 2k,
rα(k) if n = 2k + 1.

Let Z = {zα : α < ω1}.
Z �∈ NON(L). The set X = {rα : α ∈ ω1} is a Borel image of Z. Given

f ∈ ωω find an α such that f = fα. Notice that rβ �∈ (N)f for β > α. In
fact, this proof shows that no uncountable subset of Z is in NON(L).

Z �∈ COV(L). Consider the set Y = {eα : α < ω1} which is a Borel image
of X. Let P = {f ∈ ω([ω]<ω) : ∀n (f(n) ∈ n2)}. Let

H̃ = {(f, x) : f ∈ P , x ∈ ω2 & ∃∞n x�n = f(n)}.

It is easy to see that H̃ is a Borel set in P × ω2 and (H̃)f ∈ L for every f .
Suppose that x ∈ ω2. Find an α such that x ∈Mα and note that for β > α,
x ∈ (H̃)eβ

. It follows that no uncountable subset of Z is in COV(L).
X ∈ D. Let F : X −→ ωω be a Borel function. Find an α such that F is

coded in Mα. Let f ∈ ωω be such that for every g ∈Mα ∩ ωω, g ≤� f . Since
Mα is countable, such an f exists. Since both B and EE are ωω-bounding
(and therefore so is EE�B) for every β > α, there exists a g ∈Mα such that
F (zα) ≤� g ≤� f . �

6.15 Theorem (ZFC+CH). There is a set X ⊆ R such that X ∈ COV(L)∩
NON(L) and X �∈ D.

Proof. Let 〈Mα : α < ω1〉 be a sequence of countable elementary submodels
of H(λ) as in the previous proof.

In this case we use the Laver forcing from Theorem 6.6. The only difference
is that in order to ensure that the constructed set belongs to COV(L) we
construct a set of witnesses for that.

Let 〈lα, rα : α < ω1〉 be a sequence of reals such that

1. lα, rα ∈Mα+1,
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2. lα is LT-generic over Mβ for β ≤ α,

3. rα is B-generic over Mα[lβ ] for all β < ω1.

To meet the condition (3) we need the following result:

6.16 Theorem. Suppose that N ≺ H(λ) is a countable model of ZFC. Let
S ∈ N ∩ LT and let x be a random real over N . There exists a T ≤ S such
that T is N -generic and T �LT x is random over N [Ġ].

Proof. See [27], [38] or [8]. �

Let X = {lα : α < ω1}. The difference between this and the previous
construction is that we define the set of witnesses {rα : α < ω1} that X ∈
COV(L).

X ∈ COV(L). Let H ⊆ ωω × ω2 be a Borel set with null sections. Find α
such that H ∈Mα. Note that

rα �∈
⋃

β<ω1
(H)lβ ,

since rα is random over Mα[lβ ] for all β and (H)lβ ∈Mα[lβ ].
X ∈ NON(L). Let F : X −→ ω2 be a Borel function. Find α such that F

is coded in Mα. Let B =
⋃
{A : A ∈ L ∩Mα}. Since Mα is countable, B is

a null set. By Lemma 6.7(3) for every β > α, F (lα) ∈ B.
X �∈ D. This is obvious, since by Lemma 6.7(1), for every α

∀f ∈Mα ∩ ωω ∀∞n (f(n) < lα(n)).

�

The method of constructing counterexamples to the Cichoń diagram de-
scribed above is very elegant and effective but assumes a rather large body
of knowledge involving forcing, preservation theorems, and so forth. We will
conclude this section with a sketch of an alternative method of constructing
examples of small sets which is also quite general but more direct. Along the
way we translate the forcing results that we have used into statements about
sets of reals.

Suppose that P is a forcing notion and conditions of P are sets of reals.
Note that all forcing notions associated with the Cichoń Diagram are (or can
be taken to be) of this form. For a description of a much larger class of
forcing notions of that kind see [44].

Let
IP = {X ⊆ R : ∀p ∈ P ∃q ≤ p (q ∩X = ∅)}.

The following lemma lists the obvious observations about IP .

6.17 Lemma.

(1) IP is an ideal,
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(2) X ∈ IP iff there exists a maximal antichain A ⊆ P such that
X ∩

⋃
A = ∅,

(3) ∀p ∈ P (p �∈ IP ).

Suppose that P is a forcing notion satisfying Axiom A. Let

Iω
P = {X ⊆ R : ∀p ∈ P ∀n ∈ ω ∃q ≤n p (q ∩X = ∅)}.

Note that Iω
P is a σ-ideal contained in IP .

If P satisfies c.c.c., then we can witness that P satisfies Axiom A by
putting p ≤0 q if p ≤ q, and for n > 0, p ≤n q if p = q. In this case Iω

P = {∅}.
However, for non-c.c.c. forcings as well as some c.c.c. posets (like the random
real algebra B) we can define ≤n’s in such a way that Iω

P = IP .
First we will describe how to translate the forcing theorems.

6.18 Lemma. Suppose that P is a forcing notion such that

(1) P is proper,

(2) for every V -generic filter G ⊆ P there exists a real xG such that V [G] =
V [xG],

(3) conditions of P are Borel sets of reals, ordered by inclusion, and

(4) every countable antichain in P can be represented by a countable family
of pairwise disjoint elements of P.

Then for every P-name ẋ such that �P ẋ ∈ ω2 and p ∈ P there exists a Borel
function F ∈ V , F : ω2 −→ ω2 and a q ≤ p such that q �P ẋ = F (xĠ).

Proof. Fix ẋ and let An be a maximal antichain of conditions deciding
ẋ�n. Use properness to find a q ≤ p such that each A′

n = {r ∈ An :
r is compatible with q} is countable. By the assumption we can assume that
elements of A′

n are pairwise disjoint. Define Fn : q −→ 2n as

Fn(x) = s if x ∈ r ∈ A′
n and r �P ẋ�n = s.

Note that F = limn Fn is the function we are looking for. �

Let P be a forcing notion satisfying the assumptions of the above lemma.

• P does not add random reals if for every P-name ẋ for an element of
ω2 and every p ∈ P there is a q ≤ p and an H ∈ V ∩ L such that
q �P ẋ ∈ H.

• P is ωω-bounding if for every P-name ḟ for an element of ωω and every
p ∈ P there is a q ≤ p and a g ∈ V ∩ ωω such that q �P ḟ ≤� g.

• P preserves outer measure if for every set of positive outer measure
X ⊆ ω2, X ∈ V and every Ḟ , a P-name for a Borel function from ω2
to ωω and p ∈ P there is a q ≤ p such that q �P X − (N)Ḟ (xĠ)) �= ∅.
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These statements translate as:

• (not adding random reals) For every Borel function F : ω2 −→ ω2
and p ∈ P there exist a set H ∈ L, q ≤ p and A ∈ IP such that
F“(q −A) ⊆ H.

• (P is ωω-bounding) For every Borel function F : ω2 −→ ωω and p ∈ P
there is a function f ∈ ωω, q ≤ p and A ∈ IP such that F“(q−A) ≤� f .

• (P preserves outer measure) For every set of positive outer measure
X ⊆ ω2, and every Borel function F : ω2 −→ ωω and p ∈ P there is
q ≤ p and A ∈ IP such that X −

⋃
x∈q−A(N)F (x) �= ∅.

If in addition P satisfies Axiom A and IP = Iω
P , then we can put A = ∅.

Second proof of Theorem 6.14. For p, q ∈ EE and n ∈ ω we define p ≤n q if
p ≤ q and first n elements of ω − dom(p) and ω − dom(q) are the same.

For p, q ∈ B and n ∈ ω let p ≤n q if p ≤ q and μ(q − p) ≤ 2−n−1 · μ(q).
The forcing notions EE, B (and the remaining ones as well) can be repre-

sented as collections of perfect subsets of ω2 (or ωω). This is not critical for
the construction, but it makes it more natural.

In case of EE for n ∈ ω let kn = 2n+1 − 1. Consider sets P ⊆ ω2 of form⋂
n∈ω[Cn], where {Cn : n ∈ ω} satisfies the following conditions:

1. Cn ⊆ [kn,kn+1)2,

2. for every n, |Cn| = 1 or |Cn| = 2n (so Cn = [kn,kn+1)2),

3. ∃∞n (|Cn| = 2n).

It is clear that every condition p ∈ EE corresponds to a set P as above and
vice versa. Therefore from now on we identify EE with these sets.

Let B � EE be the collection of subsets H ⊆ 2ω × 2ω such that

1. H is Borel and dom(H) = {x : (H)x �= ∅} ∈ B,

2. ∀x ((H)x �= ∅ → (H)x ∈ EE).

The elements of B � EE are B-names for the elements of EE. Thus, the set
B�EE indeed corresponds to the iteration of B and EE. For H1, H2 ∈ B�EE
and n ∈ ω let H1 ≤ H2 mean that

1. dom(H1) ≤n dom(H2),

2. ∀x ∈ dom(H1) ((H1)x ≤n (H2)x).

Note that ≤n on B � EE witnesses that it satisfies Axiom A.
Let 〈xα : α < ω1〉 be an enumeration of ω2, 〈Fα : α < ω1〉 an enumeration

of BOREL(ω2 × ω2, ωω), and 〈fα : α < ω1〉 an enumeration of ωω. We will
build an ω1-tree A of elements of B�EE. Let Aα denote the α-th level of A.
The tree A satisfies the following recursive conditions:
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1. ∀β > α ∀n ∀H ∈ Aα ∃H ′ ∈ Aβ (H ′ ≤n H),

2. ∃f ∈ ωω ∀α ∀H ∈ Aα+1 (Fα“H ≤� f),

3. ∀H ∈ Aα+1 (dom(H) ∩ (N)fα = ∅),

4. ∀H ∈ Aα+1 ∀x ∈ dom(H) ∃∞n (|Cx
n| = 1 & Cx

n ⊆ xα), where (H)x =⋂
n[Cx

n].

Case 1. α = β + 1. We will describe how to build a set of immediate
successors of an element H ∈ Aβ . Given H ∈ Aβ and n ∈ ω find an
H ′

n ≤n H satisfying conditions (3) and (4). By further shrinking we can
ensure that (2) holds as well. Condition (2) follows from the statement that
the iteration of EE and B is ωω-bounding.

Case 2. α is limit. Suppose that H ∈ Aβ0 for some β0 ∈ ω and that n ∈ ω
is given. Fix an increasing sequence 〈βk : k ∈ ω〉 such that βk → α. Choose
a sequence 〈Hk : k ∈ ω〉 such that

1. H0 = H1 = · · · = Hn = H,

2. for k ≥ 0, Hn+k+1 ≤n Hn+k,

3. Hk+n ∈ Aβk
.

Use Axiom A to find an H ′ such that H ′ ≤k Hk. Level Aα will consist of
elements selected in this way.

Let X = {(xp, yp) : p ∈ A} be a selector from elements of A. Note that
π1(X) = {xp : (xp, yp) ∈ X} �∈ NON(L) (by (3)), π2(X) = {yp : (xp, yp) ∈
X} �∈ COV(L) (by (4)) and X ∈ D (by (2)). �

Now let us look at the set constructed in Theorem 6.15.

Second proof of Theorem 6.15. For every T ∈ LT and s ∈ <ωω define a node
T (s) in the following way: T (∅) = stem(T ) and for n ∈ ω let T (s�n) be the
n-th element of succT (T (s)).

For T, T ′ ∈ LT and n ∈ ω define T ≤n T ′ if T ≤ T ′ & ∀s ∈ n≤n (T (s) =
T ′(s)). In particular, T ≤0 T ′ is equivalent to T ≤ T ′ and stem(T ) =
stem(T ′). It is easy to check that Laver forcing satisfies Axiom A.

Suppose that

1. 〈fα : α < ω1〉 is an enumeration of ωω,

2. 〈Fα : α < ω1〉 is an enumeration of BOREL(ωω, ω2),

3. 〈Gα : α < ω1〉 is an enumeration of BOREL(ωω, ωω).

We build an ω1-tree A satisfying the following inductive conditions:

1. ∀β > α ∀n ∀T ∈ Aα ∃S ∈ Aβ (S ≤n T ),
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2. ∀T ∈ Aα+1 ∀x ∈ [T ] (fα ≤� x) (LT adds a dominating real (Lem-
ma 6.7(1))),

3. for every T ∈ Aα+1, Fα“T has measure zero (LT does not add random
reals (Lemma 6.7(3))),

4. ∀T ∈ Aα+1 (ω2−
⋃

x∈[T ](N)Gα(x) is uncountable) (LT preserves outer
measure (Lemma 6.7(2))).

Next we want to chose a selector X from elements of A. Condition (2)
will guarantee that X �∈ D and (3) that X ∈ NON(L). Unfortunately (4)
does not suffice to show that X ∈ COV(L). It is conceivable that 2ω =⋃

T ∈Aα+1

⋃
x∈[T ](N)Gα(x), because COV(L) is not a σ-ideal. Therefore we

need stronger property:

4′. For every Borel function F : ωω −→ ωω and every sequence 〈Tn : n ∈ ω〉
of conditions in LT there exists an uncountable set Y ⊆ 2ω such that for
each x ∈ Y we can find sequence a 〈Sn

k : n, k ∈ ω〉 such that Sn
k ≤k Tn

and y �∈
⋃

n,k

⋃
x∈[Sn

k ](N)F (n).

Property (4′) is a translation of Theorem 6.16.
Now we construct X along with A. At the step α we have Xα and Aα. Let

Aα = 〈Tn : n ∈ ω〉 and pick y �∈ Xα together with 〈Sn
k : n, k ∈ ω〉 = Aα+1 as

in (4′). �

Historical Remarks. Parts (1) and (4) of Theorem 6.1 are due to Truss
[57] and [58] and parts (2) and (3) to Solovay [52]. Theorem 6.3 and other
preservation results are due to Shelah [46]. Various presentations of these
results appear in [22, 26] and most generally in [48]. Models for the Cichoń
diagram were constructed by Miller in [33], more in [27] and the latest ones
in [9]. Theorem 6.7(2) is due to Judah and Shelah [27], the remaining parts
are due to Laver [31]. The forcing EE and Lemma 6.9 are due to Miller [33].
Brendle [13] constructed the counterexamples for the � for the families of
small sets. Constructions of this type were already considered in [20]. The
technique of “Aronszajn tree of perfect sets” was invented by Todorcevic (see
[21]). Theorem 6.16 is due to Judah and Shelah.

7. Further Reading

There are new developments that occurred after the previous sections were
written that to some extent relate to the subject of this chapter, and to the
theory of cardinal invariants in general. We will discuss these results briefly
and point the reader to the relevant publications. We will start with a brief
account of Zapletal’s theory. The main reference here is [62].

In the previous section we described a canonical way of building models
where cardinal invariants related to measure and category have various val-
ues. Similarly, we also described a way to use forcing notions to construct
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sets that belong to some families of small sets but not to others. The key
to these constructions was the ability to pair each cardinal invariant with a
forcing notion that increased it and nothing else. The second feature was the
duality, that is the ability to obtain the results in pairs. The choice of the
appropriate forcing notions was dictated by the heuristics. Zapletal’s theory
puts those results in a more general context and explains that in most cases
these choices are in fact canonical. Moreover, the constructions of the previ-
ous section are special cases of a more general phenomenon. To large extent,
Zapletal’s theory explains the duality as well.

7.1 Definition. A cardinal invariant y is tame if y is the minimum size of
a set of reals A with properties φ(A) and such that ∀x ∈ R ∃y ∈ A θ(x, y),
where θ is a projective formula that does not mention A and φ quantifies
only over ω and A. The set A is a witness for y.

It is easy to see that all cardinal invariants considered in this section are
tame.

7.2 Definition. We say that a cardinal invariant inv can be isolated if there
is a forcing notion Pinv such that for every tame cardinal invariant y, if r < inv

holds in some set forcing extension then it holds in a Pinv extension of a model
for CH.

Let LC stand for an unspecified large cardinal assumption; typically these
are needed to show regularity properties for various families of sets.

7.3 Theorem (Zapletal [61, 62]). Assume LC. The following cardinal in-
variants can be isolated: c, b, d, cov(B), and cov(L). The isolating forcing
notion is the countable support iteration of length ℵ2 of the corresponding
forcing notion defined in the previous section.

While some cardinal invariants cannot be isolated (cof(B) and non(B) for
example), and some are not tame (h and g for example) this is a very powerful
theorem which gives a lot of structure to the theory of cardinal invariants.

The duality heuristic is explained by the following result:

7.4 Theorem (Zapletal [62]). Let I be an analytic σ-ideal of subsets of R.
If ZFC proves cov(I) = c then ZFC proves non(I) ≤ ℵ2.

Let I be a projective σ-ideal of subsets of R. If ZFC+LC proves cov(I) = c

then ZFC + LC proves non(I) ≤ ℵ2.

The subject of Zapletal’s theory is the study of posets of form PI =
Borel(R)/I where I is a σ-ideal. The cardinal invariants mentioned in Theo-
rem 7.3 are the covering numbers of various σ ideals and the isolating forcing
notions are the iterations of forcings PI . For example, let the σ-ideal gener-
ated by bounded subsets of ωω be called bounded. Then cov(bounded) = d

and Pd is the countable support iteration of length ω2 of Pbounded. Further-
more, Pbounded has a dense subset isomorphic to Miller forcing.
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The models that are obtained by using forcing notions that isolate cardinal
invariants are very interesting because of their strong combinatorial proper-
ties as exhibited by Zapletal’s theorem. His work in [61], further expanded
in [62], leads to axioms that describe combinatorial properties of these mod-
els. Historically, the first such attempt was undertaken by Ciesielski and
Pawlikowski in [16]. They formulated a family of axioms of varying strength
capturing the combinatorics of the Sacks model. Their axioms have a form:

CPA⇐⇒ c = ℵ2 and for any appropriately dense subset A of Sacks forcing
there is a subfamily A0 of size ℵ1 such that |R \

⋃
A0| ≤ ℵ1.

The CPA axioms of Ciesielski and Pawlikowski are geared towards deriv-
ing the maximum number of properties of the Sacks model, which is the goal
of [16]. Zapletal’s work leads to more abstractly formulated family of ax-
ioms CPA(I), which imply the Ciesielski and Pawlikowski axioms in case of
Sacks forcing. The starting point is the analysis of the forcing notions of the
form PI , and their countable iterations. It turns out that for a large class of
ideals I, for a countable ordinal α, a countable support iteration of length α
of PI is isomorphic with Borel(Rα)/Iα, where Iα is a Fubini-power of I.

7.5 Definition. Let α < ω1. We say that a set B ⊆ αR is I-perfect if

1. for β < α and s ∈ B�β = {u�β : u ∈ B}, the set {r ∈ R : s�r ∈
B�β + 1} is I-positive,

2. for every increasing sequence 〈βn : n ∈ ω〉 and sn ∈ B�βn such that
sn ⊆ βn+1,

⋃
n sn ∈ B�

⋃
n βn.

Let Iα be the ideal on α
R defined as the collection of all sets A ⊆ α

R such
that Player I has a winning strategy in the following game G(A).

The game G(A) lasts α rounds; at the round β < α Player I plays Bβ ∈ I
and Player II responds with rβ ∈ R−Bβ . Player II wins if 〈rβ : β < α〉 ∈ A.
Otherwise, Player I wins.

It is not hard to see that Player II has a winning strategy in G(A) iff A
contains an I-positive set.

Now we can define CPA(I). Let G be a game consisting of ω1 moves that is
played as follows: at the stage β < ω1 Player I plays αβ < ω1, and I-perfect
set Bβ ⊆ αβ R and a Borel function fβ : Bβ −→ R. Player II responds with
a Borel I-positive set Cβ ⊆ Bβ . Player I wins iff

⋃
β<ω1

fβ“Cβ = R.
CPA(I) is the statement cov(I) > ℵ1 and Player II does not have a winning

strategy in G.
For a large class of ideals I, and very tame cardinal invariants y (a small

technical modification of tame invariants) we have:

7.6 Theorem (Zapletal [62]). ZFC+LC proves that y < cov(I) can be forced
if and only if ZFC + LC + CPA(I) proves that r < cov(I).

A different approach to exploring the combinatorial strength of cardinal
invariants is presented in [35]. Recall that ♦ stands for the principle:
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There is a sequence 〈Sα : α < ω1〉 such that Sα ⊆ α and for all X ⊆ ω1,
{α < ω1 : X ∩ α = Sα} is stationary.

Hrušák [23] initiated a study of modifications of ♦ that relate to cardinal
invariants. This theory was further developed in [35].

7.7 Definition. Let A = (A−, A+, A) be a relation as considered in Defini-
tion 2.3. Let Φ(A) stand for the statement:

For every function F : <ω12 −→ A− there exists a function g : ω1 −→ A+

such that for all f : ω1 −→ 2, {α : F (f�α) = g(α)} is stationary.
We call a function F : <ω12 −→ X (where X is a Polish space) Borel if for

every α < ω1, F �<α2 : <α2 −→ X is Borel. Note that <α2 is homeomorphic
to ω2.

For a Borel A let ♦(A) stand for the statement:
For every Borel function F : <ω12 −→ A− there exists a function g :

ω1 −→ A+ such that for all f : ω1 −→ 2, {α : F (f�α) = g(α)} is stationary.

The function g is called a ♦-sequence for F . Moreover, we often write
♦(‖A‖) rather than ♦(A). For example ♦(non(B)) stands for ♦(B,R, �,).

7.8 Lemma (Moore-Hrušák-Dzamonja [35]).

1. Φ(A) implies ♦(A) whenever A is Borel,

2. ♦ implies Φ(A),

3. ♦(A) implies ‖A‖ = ℵ1,

4. If A � B then Φ(B) implies Φ(A),

5. If A,B are Borel and A � B is witnessed by a Borel morphism then
♦(B) implies ♦(A).

Proof. (1) is obvious. To see (2) let 〈Sα : α < ω1〉 be a ♦-sequence (for
elements ω12). Put g(α) ∈ A+ such that F (Sα)Ag(α). Then g is a ♦(A)-
sequence since {α : f�α = Aα} ⊆ {α : F (f�α)Ag(α)}.

(3) Let F0 : ω2 −→ A− be a (Borel) surjection. Extend F0 to F by putting,
for an infinite α and s ∈ α2, F (s) = F0(s�ω). If g is a ♦-sequence for F then
the range of g witnesses that ‖A‖ = ℵ1.

(4) and (5) are easy to verify. �

The diamond principles ♦(A) are forms of anti-Martin’s Axiom ‖A‖ = ℵ1.
Typically ♦(A) is stronger than ‖A‖ = ℵ1, for example ♦(d) implies that
ωω can be partitioned into ℵ1 compact sets, while d = ℵ1 does not [35, 53].
Similarly, in most cases ♦(A) is consistent with the negation of CH, and
♦(A) holds in many “natural” models for ‖A‖ = ℵ1 including all minimal
models for the tame cardinal invariants considered earlier. For example, ♦(b),
♦(non(B)), ♦(non(L)), ♦(cov(B)), ♦(cov(L)) hold in the Miller model,
and similarly for the Laver, random, Cohen and Sacks models.

We will conclude with some consequences of the ♦-principles from [35].
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7.9 Theorem.

1. ♦(b) implies that a = ℵ1.

2. ♦(non(B)) implies that there exists a Suslin tree.

3. ♦(non(L)) does not imply that there exists a Suslin tree.

4. ♦(non(L)) +♦(non(B)) do not imply that there exists a Sierpiński or
Luzin set.
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[41] Jean Saint Raymond. Caractérisations D’espaces Polonais. D’apres des
travaux recents de J.P.R. Christensen et D. Preiss. In Seminaire Cho-
quet, 11–12e anneés (1971–1973). Secrétariat Mathématique, Paris,
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The method of forcing has had great success in demonstrating the rela-
tive consistency and independence of set-theoretic problems with respect to
the traditional ZFC axioms, or to extensions of these axioms asserting the
existence of large cardinals. One begins with a model M , selects a partial
ordering P ∈ M and shows that statements of interest hold in extensions of
M of the form M [G], when G is P -generic over M .

However, forcing can play another role in set theory. Not only is it a tool
for establishing relative consistency and independence results, it is also a tool
for proving theorems. This theorem-proving role of forcing in set theory did
not become fully apparent until the development of class forcing.

In class forcing, the partial ordering P is no longer assumed to be an
element of M , but instead a class in M . Section 2 below introduces the
necessary definitions. We can nevertheless in this introduction explain the
special role of class forcing in set theory by beginning with the basic question:

Do P -generic classes exist?

This question never arises in the traditional use of forcing to establish
consistency results, for the simple reason that, thanks to the Löwenheim-
Skolem Theorem, one can assume that the model M is countable. This
assumption ensures an easy construction of a P -generic class. Without the
countability assumption, our question becomes a serious one, in light of the
following, where L is Gödel’s universe of constructible sets, and where “L-
definable” means “L-definable without parameters”:

There exist L-definable class forcings P0 and P1 such that whenever G0, G1

are P0-generic, P1-generic over L, respectively:

(a) ZFC holds in 〈L[G0], G0〉 and in 〈L[G1], G1〉.

(b) ZFC (indeed Replacement) fails in 〈L[G0, G1], G0, G1〉.

This result forces us to make a choice: we cannot preserve ZFC and have
generics for all ZFC preserving L-definable class forcings.

The Silver-Solovay theory of 0# provides a useful criterion for selecting
the L-definable forcings which “should” have generics. We say that L is
rigid if there is no elementary embedding from 〈L,∈〉 to itself, other than
the identity.

L is rigid in class-generic extensions of L. If L is not rigid, then there is a
smallest inner model in which L is not rigid, and this inner model is L[0#],
where 0# is a real.

Now we say that an L-definable forcing P is relevant if there is a class
which is P -generic over L and which is definable in the inner model L[0#].
If P0 and P1 are relevant forcings then clearly generics for P0 and for P1 can
coexist, as they both exist definably over L[0#]. Moreover, by adopting the
base theory ZFC + “0# exists”, we can hope to use the theory of relevant
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forcing to prove new theorems, by constructing objects which actually exist
(in the inner model L[0#]) rather than objects which may exist only in a
generic extension of the universe.

In this article we discuss the basic theory and applications of class forcing,
with an emphasis on three problems posed by Solovay which can be resolved
using it. As class forcing, unlike traditional set forcing, does not in general
preserve ZFC, we first isolate the first-order property of tameness, necessary
and sufficient for this preservation. After mentioning four basic examples,
we discuss the question of the relevance of class forcing before turning to
the most important technique in the subject, the technique of Jensen coding.
Armed with these ideas we then proceed to describe the solutions to the
Solovay problems. We next discuss generic saturation, a concept which helps
to explain the special role of 0# in this theory. We end by briefly describing
some other applications.

For the deeper study of class forcing, including the many proofs omitted
here, we refer the reader to [5]. Two examples of class forcing not treated
in this paper are due to Woodin. These are the class forcing versions of the
stationary tower forcing, discussed in [20], and the extender algebra forcing,
found in [13]. We also mention the paper [21], where a theory of “locally set-
generic” class forcings is presented in terms of a strengthening of tameness.

1. Three Problems of Solovay

Solovay’s three problems each demand the existence of a real that neither
constructs 0#, nor is attainable by set forcing over L.

1.1 Definition. If x, y are sets of ordinals then we write x ≤L y for x ∈ L[y];
x <L y for x ≤L y and y 	L x; and x =L y for x ≤L y and y ≤L x.

Genericity Problem. Does there exist a real R <L 0# such that R does
not belong to any generic extension of L?

It was to answer this question affirmatively (when “generic” is interpreted
to mean “set-generic”) that Jensen proved his Coding Theorem. Roughly
speaking, he showed that if G is generic for Easton forcing at successors, the
standard L-definable class forcing that adds a κ-Cohen subset to κ for each
L-successor cardinal κ, then there is a real R <L 0#, obtained by class forcing
over 〈L[G], G〉, such that L[G] ⊆ L[R] and G is definable over L[R]. Then
R does not belong to a set-generic extension of L as L[G] is not included in
any such extension.

Solovay’s second problem concerns definability of reals.

1.2 Definition. R is an absolute singleton if for some formula ϕ, R is the
unique solution to ϕ in every inner model containing R.
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Shoenfield’s Absoluteness Theorem states that if ϕ is Π1
2 (i.e., of the form

∀x∃yψ where x and y vary over reals and ψ is arithmetical) then ϕ(R) ←→
M � ϕ(R) where M is any inner model containing R. Thus any Π1

2-singleton
(i.e., unique solution to a Π1

2 formula) is an absolute singleton; 0# is an
example. Also 0 is trivially an example. Solovay asked if there are any less
evident examples.

Π1
2-Singleton Problem. Does there exists a real R, 0 <L R <L 0# such

that R is a Π1
2-singleton?

Suppose that R is set-generic over L. Then it can be shown that R be-
longs to a P -generic extension of L, where there are only countably many
constructible subsets of P , and therefore we can build a P -generic contain-
ing any condition in P . So we conclude that if R is nonconstructible and
set-generic over L, then R cannot be a Π1

2-singleton, as there must be other
P -generic extensions with reals R′ �= R satisfying any given Π1

2 formula satis-
fied by R. This is why the Π1

2-singleton problem requires Jensen’s method: an
affirmative answer to the Π1

2-singleton problem implies an affirmative answer
to the genericity problem (for set-genericity).

Solovay’s third problem concerns admissibility spectra. Let T be a sub-
theory of ZFC and R a real. The T -spectrum of R, ΛT (R), is the class of all
ordinals α such that Lα[R] � T . A general problem is to characterize the pos-
sible T -spectra of reals for various theories T . An important special case is
where T = T0 = (ZFC without the Power Set Axiom and with Replacement
restricted to Σ1 formulas). We may refer to this as “admissibility theory”,
as an ordinal α is R-admissible if and only if it is either ω or belongs to the
T0-spectrum, or admissibility spectrum, of R. We denote the latter by Λ(R).

There are some basic facts that limit the possibilities for Λ(R): First,
if R belongs to a set-generic extension of L, then Λ(R) contains Λ − β for
some ordinal β, where Λ = Λ(0). This is because if α ∈ Λ and P ∈ Lα,
then Lα[G] � T0 for P -generic G. Second, if 0# ≤L R then Λ(R) − β ⊆ L-
inaccessibles for some β. This is because if 0# ∈ Lβ [R] then every α in
Λ(R)− β is in Λ(0#) and hence is a “Silver indiscernible”, an ordinal which
is very large (and in particular inaccessible) in L.

Thus to get a nontrivial admissibility spectrum for R without 0# we need
Jensen’s methods. An ordinal is recursively inaccessible if it is admissible
and also the limit of admissibles.

Admissibility Spectrum Problem. Does there exist a real R <L 0# such
that Λ(R) = the recursively inaccessible ordinals?

Before we can say more about the solutions to the Solovay problems, we
must first develop the basic theory of class forcing, to which we turn next.
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2. Tameness

We want our class forcings to preserve ZFC. First we isolate a first-order
condition that guarantees this.

2.1 Definition. A ground model is a structure 〈M,A〉 where:

(a) 〈M,A〉 is a transitive model of ZFC; i.e., M is a transitive model of
ZFC, A ⊆ M and Replacement holds in M for formulas mentioning A
as a unary predicate.

(b) M � V = L(A) =
⋃
{L(A ∩ Vα) | α ∈ On}, the smallest inner model

containing each of the sets A ∩ Vα, α ∈ On.

Property (a) implies that 〈M,A〉 is amenable: for x in M , A ∩ x also
belongs to M . Property (b) guarantees that if M ⊆ N � ZFC, then M is
definable over 〈N,A〉.

From now on, 〈M,A〉 will always denote a ground model. Suppose that
G ⊆ P where P ⊆ M is an 〈M,A〉-forcing, i.e., a pre-ordering (reflexive,
transitive relation) with greatest element 1P , definable over 〈M,A〉. G is
P -generic over 〈M,A〉 if G is compatible, upward-closed and G ∩ D �= ∅
whenever D ⊆ P is dense and 〈M,A〉-definable.

For any G ⊆M we define M [G] as follows: A name is a set σ ∈M whose
elements are of the form 〈τ, a〉, τ a name and a ∈ M (defined recursively).
Interpret names by: σG = {τG | 〈τ, a〉 ∈ σ for some a ∈ G}. Then M [G] =
{σG | σ a name}. A P -generic extension of 〈M,A〉 is a model 〈M [G], A,G〉
where G is P -generic over 〈M,A〉. P is an M -forcing if it is an 〈M,A〉-
forcing for some A. A generic extension of M is a model 〈M [G], A,G〉 for
some choice of A,P and of G P -generic over 〈M,A〉. X ⊆M is generic over
M if X is definable in a generic extension of M .

Set forcings always preserve ZFC but class forcings in general do not.
Fix a ground model 〈M,A〉 and 〈M,A〉-forcing P . P is ZFC preserving if
〈M [G], A,G〉 is a model of ZFC for all G which are P -generic over 〈M,A〉.
For countable M there is a useful first-order property equivalent to ZFC
preservation, called tameness, which we now describe. First we consider
ZFC− = ZFC without the Power Set Axiom:

2.2 Definition. D ⊆ P is predense ≤ p ∈ P if every q ≤ p is compatible
with an element of D. q ∈ P meets D if q extends an element of D. P is
pretame if whenever p ∈ P and 〈Di | i ∈ a〉, a ∈ M , is an 〈M,A〉-definable
sequence of classes predense ≤ p there exists a q ≤ p and a 〈di | i ∈ a〉 ∈ M
such that for each i ∈ a, di ⊆ Di and di is predense ≤ q.

2.3 Proposition. Suppose that M is countable and P is ZFC− preserving.
Then P is pretame.

Proof. Given 〈Di | i ∈ a〉 and p as in the statement of pretameness choose G
such that p ∈ G, G P -generic over 〈M,A〉 and consider f(i) = least rank of
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an element of G ∩Di. If pretameness failed for p, 〈Di | i ∈ a〉 then for every
q ≤ p and α ∈ On(M) there would be an r ≤ q and i ∈ a with r incompatible
with each element of Di ∩ Vα. But then by genericity, no ordinal of M can
bound the range of f , so Replacement fails in 〈M [G], A,G,M〉. As 〈M,A〉 is
a ground model, Replacement fails in 〈M [G], A,G〉. �

The forcing relation p � ϕ(σ1, . . . , σn) is defined by: 〈M [G], A,G〉 �
ϕ(σG

1 , . . . , σG
n ) for each G which is P -generic over 〈M,A〉.

2.4 Proposition. Supose that P is pretame, P -forcing is definable (i.e., for
each formula ϕ, the relation p � ϕ(σ1, . . . , σn) of p, σ1, . . . , σn is 〈M,A〉-
definable) and the Truth Lemma holds for P -forcing (i.e., for G P -generic
over 〈M,A〉, 〈M [G], A,G〉 � ϕ(σG

1 , . . . , σG
n ) iff ∃p ∈ G, p � ϕ(σ1, . . . , σn)).

Then P is ZFC− preserving.

Proof. Suppose that G is P -generic over M . As M [G] is transitive and con-
tains ω, it is a model of all axioms of ZFC− with the possible exception of
Pairing, Union and Replacement.

For Pairing, given σG
1 , σG

2 consider σ = {〈σ1, 1P 〉, 〈σ2, 1P 〉}. Then σG =
{σG

1 , σG
2 }.

For Replacement, suppose that f : σG −→ M [G], f definable (with pa-
rameters) in 〈M [G], A,G〉 and by the Truth Lemma choose p ∈ G, p � f is
a total function on σ. Then for each σ0 of rank < rankσ, D(σ0) = {q | for
some τ , q � σ0 ∈ σ −→ f(σ0) = τ} is dense ≤ p. Thus by the definability
of P -forcing and pretameness we get that for each q ≤ p there is an r ≤ q
and α ∈ On(M) such that Dα(σ0) = {s | s ∈ Vα and for some τ of rank < α,
s � σ0 ∈ σ −→ f(σ0) = τ} is predense ≤ r for each σ0 of rank < rankσ.
By genericity there is a q ∈ G and α ∈ On(M) such that q ≤ p and Dα(σ0)
is predense ≤ q for each σ0 of rank < rankσ. Thus ran(f) = πG where
π = {〈τ, r〉 | rank τ < α, r ∈ Vα, r � τ ∈ ran(f)}. So ran(f) ∈M [G].

For Union, given σG consider π = {〈τ, p〉 | p � τ ∈
⋃

σ}. This is not
a set, but for each α we may consider πα = π ∩ V M

α . By Replacement in
〈M [G], A,G〉, πG

α is constant for sufficiently large α ∈ On(M). For such α
we have πG

α =
⋃

σG. �

Thus the work in establishing the equivalence (for countable M) of ZFC−

preservation with pretameness resides in:

2.5 Lemma (Main Lemma). If P is pretame and M is countable, then
P -forcing is definable and the Truth Lemma holds for P -forcing.

Proof. We define a relation �∗, prove the lemma for �∗, and finally show
that � and �∗ are the same.

2.6 Definition (of �∗ ). We say that D ⊆ P is dense ≤ p if ∀q ≤ p∃r (r ≤ q
and r belongs to D).

(a) p �∗ σ ∈ τ iff {q | ∃〈π, r〉 ∈ τ such that q ≤ r, q �∗ σ = π} is dense ≤ p.
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(b) p �∗ σ = τ iff for all 〈π, r〉 ∈ σ ∪ τ , p �∗ (π ∈ σ ←→ π ∈ τ).

(c) p �∗ ϕ ∧ ψ iff p �∗ ϕ and p �∗ ψ.

(d) p �∗ ∼ ϕ iff ∀q ≤ p(∼ q �∗ ϕ).

(e) p �∗ ∀xϕ iff for all names σ, p �∗ ϕ(σ).

Note that circularity is avoided in (a), (b) as max(rankσ, rank τ) goes
down (in at most three steps) when these definitions are applied.

2.7 Sublemma.

(a) If p �∗ ϕ and q ≤ p, then q �∗ ϕ.

(b) If {q | q �∗ ϕ} is dense ≤ p then p �∗ ϕ.

(c) If ∼ p �∗ ϕ then there is q ≤ p such that q �∗ ∼ ϕ.

Proof of Sublemma 2.7.
(a) Clear, by induction on ϕ, as dense ≤ p −→ dense ≤ q.
(b) Again by induction on ϕ. The proof uses the following facts: if {q |

D is dense ≤ q} is dense ≤ p then D is dense ≤ p; if {q | q �∗ ∼ ϕ} is dense
≤ p then ∀q ≤ p(∼ q �∗ ϕ), using (a).

(c) Immediate by (b). �

2.8 Sublemma (Definability of �∗). For each formula ϕ, the relation
p �∗ ϕ(σ1 · · ·σn) of p, σ1, . . . , σn is 〈M,A〉-definable.

Proof of Sublemma 2.8. It suffices to show that the relations p �∗ σ ∈ τ and
p �∗ σ = τ are 〈M,A〉-definable. Note that by modifying A if necessary,
we may assume that the relations “x = V M

α ”, “p, q are compatible”, “d is
predense below p”, as well as (P,≤), are Δ1-definable over 〈M,A〉.

Using pretameness we shall define a function F from pairs (p, σ ∈ τ),
(p, σ = τ) into M such that:

(a) F (p, σ ∈ τ) = (i, d) where ∅ �= d ∈ M , d ⊆ P , q ∈ d −→ q ≤ p and
either (i = 1 and q �∗ σ ∈ τ for all q ∈ d) or (i = 0 and q �∗ σ /∈ τ for
all q ∈ d).

(b) The same holds for σ = τ , σ �= τ instead of σ ∈ τ, σ /∈ τ .

(c) F is Σ1-definable over 〈M,A〉.

Given this we can define p �∗ σ ∈ τ by: p �∗ σ ∈ τ iff for all q ≤ p,
F (q, σ ∈ τ) = (1, d) for some d. This definition is correct because Lemma 2.7
gives us that p �∗ σ ∈ τ ←→ {q | q �∗ σ ∈ τ} is dense ≤ p. Similarly for
p �∗ σ = τ .

Now define F by recursion on σ ∈ τ , σ = τ . We consider the cases
separately.
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σ ∈ τ Given p, search for 〈π, r〉 ∈ τ and q ≤ p, q ≤ r such that F (q, σ = π) =
(1, d) for some d. If such exist, let F (p, σ ∈ τ) = (1, e) where e is
the union of all such d which appear by the least possible stage α
(i.e., this Σ1 property is true in 〈V M

α , A ∩ V M
α 〉, α least). If not, then⋃

{d | for some q ≤ r, F (q, σ = π) = (0, d)} ∪ {q | q is incompatible
with r} = D(π, r) is dense below p for each 〈π, r〉 ∈ τ . So also search
for 〈d(π, r) | 〈π, r〉 ∈ τ〉 ∈ M and q ≤ p such that d(π, r) ⊆ D(π, r)
for each 〈π, r〉 and each d(π, r) is predense ≤ q; if this latter search
terminates then set F (p, σ ∈ τ) = (0, e), where e consists of all such
q witnessed by the least possible stage α. One of these searches must
terminate (by pretameness) and hence F (p, σ ∈ τ) is defined and either
of the form (1, e) where q ∈ e −→ q ≤ p, q �∗ σ ∈ τ , or of the form
(0, e) where q ∈ e −→ q ≤ p, q �∗ σ /∈ τ .

σ = τ Given p, search for 〈π, r〉 ∈ σ ∪ τ and q ≤ p, r such that
F (q, π ∈ σ) = (i, d), q′ ∈ d, F (q′, π ∈ τ) = (1 − i, e) and if this search
terminates then set F (p, σ = τ) = (0, f) where f is the union of all such
e which appear by the least possible stage α. If this search fails then
for each 〈π, r〉 ∈ σ ∪ τ , D(π, r) =

⋃
{e | for some q ≤ p, some q′, d, i,

F (q, π ∈ σ) = (i, d), q′ ∈ d, F (q′, π ∈ τ) = (i, e)}∪{q | q is incompatible
with r} is dense ≤ p. So also search for 〈d(π, r) | 〈π, r〉 ∈ σ ∪ τ〉 ∈ M
and q ≤ p such that for each 〈π, r〉 ∈ σ∪τ , d(π, r) ⊆ D(π, r) and d(π, r)
is predense ≤ q. If this latter search terminates then q �∗ σ = τ for
all such q and let F (p, σ = τ) = (1, f), where f consists of all such q
witnessed to obey the above by the least stage α. One of these searches
must terminate (by pretameness) and hence F (p, σ = τ) is defined and
either of the form (0, f) where q ∈ f → q ≤ p, q �∗ σ �= τ , or of the
form (1, f) where q ∈ f → q ≤ p, q �∗ σ = τ .

�

Now that we have the definability of �∗ we can prove:

2.9 Sublemma. For G P -generic over M :

〈M [G], A,G〉 � ϕ(σG
1 , . . . , σG

n ) iff for some p ∈ G, p �∗ ϕ(σ1, . . . , σn).

Proof of Sublemma 2.9. By induction on ϕ.

σ ∈ τ (−→) If σG ∈ τG then choose a 〈π, r〉 ∈ τ such that σG = πG and
r ∈ G. By induction we can choose p ∈ G, p ≤ r, p �∗ σ = π. Then
p �∗ σ ∈ τ . (←−) If p ∈ G, {q | ∃〈π, r〉 ∈ τ such that q ≤ r,
q �∗ σ = π} = D is dense ≤ p then by genericity we can choose q ∈ G,
〈π, r〉 ∈ τ such that q ≤ r, q �∗ σ = π; then by induction σG = πG and
as r ≥ q ∈ G we get r ∈ G and hence by definition of τG, πG ∈ τG. So
σG ∈ τG.

σ = τ (−→) Suppose that σG = τG. Consider D = {p | either p �∗ σ = τ
or for some 〈π, r〉 ∈ σ ∪ τ , p �∗ ∼ (π ∈ σ ←→ π ∈ τ)}. Then
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D is dense, using the definition of p �∗ σ = τ and Lemma 2.7(c).
By genericity there is a p ∈ G ∩ D and by induction it must be that
p �∗ σ = τ . (←−) Suppose that p ∈ G, p �∗ σ = τ . Then by induction,
πG ∈ σG ←→ πG ∈ τG for all 〈π, r〉 ∈ σ ∪ τ . So σG = τG.

ϕ ∧ ψ Clear by induction, using the fact that if P and q belong to G then
for some r in G, r ≤ p and r ≤ q.

p, q ∈ G −→ ∃r ∈ G (r ≤ p and r ≤ q).

∼ ϕ Clear by induction, using the density of {p | p �∗ ϕ or p �∗ ∼ ϕ}.

∀xϕ (−→) Suppose that M [G] � ∀xϕ. As in the proof of (−→) for σ = τ ,
there is a p ∈ G such that either p �∗ ∀xϕ or for some σ, p �∗ ∼ ϕ(σ).
By induction the latter is impossible so p �∗ ∀xϕ. (←−) Clear by
induction.

�

2.10 Sublemma. The relations �∗ and � are the same.

Proof of Sublemma 2.10. By Sublemma 2.9, p �∗ ϕ(σ1, . . . , σn) −→ p �
ϕ(σ1, . . . , σn). And ∼ p �∗ ϕ(σ1, . . . , σn) −→ q �∗ ∼ ϕ(σ1, . . . , σn) for some
q ≤ p (by Sublemma 2.7(c)) −→ ∼ p � ϕ(σ1, . . . , σn) using the countability
of M to obtain a generic G, p ∈ G. �

This completes the proof of Lemma 2.5. �

P is tame if P is pretame and in addition 1P � “Power Set Axiom”. The
latter is first-order for pretame P as pretameness yields the definability of
P -forcing. By the Truth Lemma for P -forcing we get:

2.11 Theorem (Stanley [19], Friedman [5]; Tameness Theorem). Suppose
that M is countable. Then P is ZFC preserving iff P is tame.

3. Examples

We next discuss the four basic examples of tame class forcings, which serve
as prototypes for more complex examples, such as Jensen coding. In each of
these basic examples we take the ground model to be 〈L, ∅〉. We shall show
that these forcings preserve cofinalities (i.e., for any ordinal α, cf(α)L =
cf(α)L[G], for P -generic G) and preserve GCH (i.e., P -generic extensions
satisfy GCH).

Easton Forcing

A condition in P is a function p : α(p) → L where α(p) ∈ On and p(α) = ∅
unless α is infinite and regular, in which case p(α) ∈ 2<α = {f | f : β → 2
for some β < α}. We also require Easton support which means that {β <
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α | p(β) �= ∅} is bounded in α for inaccessible α. For any α, and p ∈ P ,
p(≤α) denotes p�[0, α] and p(>α) denotes p�(α, α(p)). Also, for X ⊆ P ,
X(≤α) = {p(≤α) | p ∈ X} and X(>α) = {p(>α) | p ∈ X}.

3.1 Proposition. P is tame and preserves both cofinalities and GCH.

Proof. First we verify pretameness. Suppose that p ∈ P , 〈Di | i < κ〉 is an
L-definable sequence of classes predense ≤p and κ is regular. Let 〈qi | i < κ〉
list all elements of P (≤κ) = {q(≤κ) | q ∈ P}, using the Easton support
requirement. View each i < κ as a pair 〈i0, i1〉 and define p0 = p; pi+1 =
least r ≤ pi such that r(≤κ) = pi(≤κ) and qi0 ∪ r(>κ) is a condition meeting
some ri ∈ Di1 , if possible (pi+1 = pi otherwise); pλ =

⋃
{pi | i < λ} for

limit λ ≤ κ. Then p∗ = pκ ≤ p has the property: if r ≤ p∗ meets Di then
r extends rj for some j < κ. Thus di = {rj | rj ∈ Di} is predense ≤ p∗ for
each i, proving pretameness.

To verify the remaining properties we may use:

3.2 Lemma (Product Lemma). Suppose that P = P0×P1 where P0 and P1

are 〈M,A〉-definable.

(a) If G0 is P0-generic over 〈M,A〉 and G1 is P1-generic over 〈M [G0],
A,G0〉, then G0 ×G1 is P -generic over 〈M,A〉.

(b) If G is P -generic over 〈M,A〉, then G = G0 × G1 where G0 is P0-
generic over 〈M,A〉. If in addition P0-forcing is definable, then G1 is
P1-generic over 〈M [G0], A,G0〉.

Proof. (a) Suppose that D ⊆ P is dense and 〈M,A〉-definable. Then D1 =
{p1 | for some p0 in G0, (p0, p1) meets D} is 〈M [G0], A,G0〉-definable. We
claim that it is dense on P1: given p1 ∈ P1 form D0(p1) = {p0 | (p0, p

′
1) meets

D for some p′
1 ≤ p1}. Then D0(p1) is dense since D is, so G0 ∩D0(p1) �= ∅.

Thus (p0, p
′
1) meets D for some p0 ∈ G0 and some p′

1 ≤ p1, and therefore p′
1

is an extension of p1 in D1.
As D1 is dense we can choose a p1 ∈ G1 ∩ D1 and so we get (p0, p1) ∈

G0 × G1 with (p0, p1) meeting D. As G0 × G1 is compatible and closed
upwards (since G0, G1 are) we have shown that G0 × G1 is P -generic over
〈M,A〉.

(b) Let G0 = {p0 ∈ P0 | (p0, p1) belongs to G for some p1}, G1 = {p1 |
(p0, p1) belongs to G for some p0}. Clearly G ⊆ G0 × G1 and conversely if
(p0, p1) ∈ G0 × G1 then (p0, p1) is compatible with every element of G, and
hence by the genericity of G, (p0, p1) belongs to G. If D0 ⊆ P0 is dense and
〈M,A〉-definable then D = {(p0, p1) | p0 belongs to D0} ⊆ P is dense and
〈M,A〉-definable, and since G meets D we get that G0 meets D0. So G0 is
P0-generic over 〈M,A〉, as compatibility and upward closure for G0 follow
from these properties for G.

Suppose that D1 ⊆ P1 is 〈M [G0], A,G0〉-definable and dense. Then D =
{(p0, p1) | p0 � p1 ∈ D1} is 〈M,A〉-definable by the definability of P0-forcing
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(where “p1 ∈ D1” is expressed using a defining formula for D1). Also D
is dense ≤ (p0, p1) provided p0 � D1 is dense. As G0 is P0-generic over
〈M,A〉 we can choose a p0 ∈ G0 so that p0 � D1 is dense, and then the
genericity of G over 〈M,A〉 produces (p′

0, p1) ∈ G such that p′
0 � p̂1 ∈ D1;

then p1 ∈ G1 ∩D1 and as compatibility, upward closure for G1 are clear, we
have shown that G1 is P1-generic over 〈M [G0], A,G0〉. �

In the case of Easton forcing, P  P (>κ)× P (≤κ) and if G is P -generic,
then L[G] = L[G(>κ)][G(≤κ)]; (b) applies as P (>κ) is pretame and hence
P (>κ)-forcing is definable. As P (>κ) is ≤κ-closed and P (≤κ) has cardinality
κ for regular κ (by Easton support), we get the preservation of “cofinality
> κ” for regular κ and hence all cofinalities are preserved. And we have
that for regular κ any subset of κ in L[G] belongs to L[G(≤κ)]. As G(≤κ) is
equivalent to a subset of κ, GCH follows at regular κ. For singular κ we get
P(κ) = P(κ)L[G(≤κ+)] and hence 2κ = (2κ)L[G(≤κ+)] = κ+. �

Long Easton Forcing

We drop the Easton support requirement. For successor cardinals κ we
still have that P (≤κ) has cardinality κ, P (>κ) is ≤κ-closed, and so the
previous arguments show us that P is tame, “cofinality > κ” is preserved
for successor cardinals κ and GCH is preserved. But not all cardinals need
be preserved. Recall that a cardinal κ is Mahlo if it is inaccessible and in
addition {α < κ | α is regular} is stationary in κ.

3.3 Theorem. If κ is Mahlo, then κ+ is collapsed by P ; otherwise κ+ is
preserved.

Proof. Let G = 〈Gα | α infinite, regular〉 be P -generic. For each α < κ
consider Aα ⊆ κ defined by: β ∈ Aα iff α ∈ Gβ .

3.4 Claim. Suppose that κ is Mahlo. Then {Aα | α < κ} ⊆ L but for no
γ < (κ+)L do we have {Aα | α < κ} ⊆ Lγ .

Proof of Claim. For any α < κ and condition p, we can extend p to q so that
α < κ̄ < κ, κ̄ regular implies that p(κ̄) has length greater than α. Thus Aα

is forced to belong to L.
Given γ < (κ+)L and a condition p, define f(κ̄) = length(p(κ̄)) for regular

κ̄ < κ. As κ is Mahlo, f has stationary domain and hence by Fodor’s Theorem
we may choose α < κ such that length(p(κ̄)) is less than α for stationary
many regular κ̄ < κ. Then p can be extended so that Aα is guaranteed to be
distinct from the κ-many subsets of κ in Lγ . �

Thus κ+ is collapsed if κ is Mahlo. Conversely, if κ is not Mahlo, then
choose a closed unbounded C ⊆ κ consisting of cardinals which are not
inaccessible (we may assume that κ is a limit cardinal). Suppose that 〈Dα |
α ∈ C〉 is a definable sequence of dense classes. Given p we can successively
extend p(≥ α+) for α in C so that {q ≤ p | q and p agree at or above α+
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and q belongs to Dα} is predense ≤ p. There is no difficulty in obtaining a
condition at a limit stage less than κ precisely because conditions are trivial
at limit points of C. Thus we have shown that P (<κ)×P (>κ) preserves κ+

as κ-many dense classes can be simultaneously reduced to predense subsets
of size < κ (i.e., for any p in P and definable sequence 〈Dα | α < κ〉 of dense
classes there are q ≤ p and 〈dα | α < κ〉 such that dα ⊆ Dα, Card(dα) < κ
and dα is predense ≤ q for each α). Finally P  P (<κ)×P (>κ)×P (κ) and
P (κ) preserves κ+ as it has size κ. �

The previous proof shows that full cofinality preservation is obtained if we
consider long Easton forcing at successors, where κ-Cohen sets are added only
for infinite successor cardinals κ. We shall consider this and other variants
of long Easton forcing in the next section, on relevant forcing.

Reverse Easton Forcing

We consider the iteration defined by: P (0) = {∅}, the trivial forcing;
P (≤α) is the two-step iteration P (<α) ∗ P (α), where P (α) is the trivial
forcing unless α is regular, in which case P (α) = 2<α = α-Cohen forcing;
for limit λ, P (<λ) = Direct Limit 〈P (<α) | α < λ〉 if λ is regular and
P (<λ) = Inverse Limit 〈P (<α) | α < λ〉 if λ is singular. (Thus conditions in
P (<λ) are trivial on a final segment of λ if λ is regular, and are unrestricted
otherwise. That is, Easton supports are being used.) Let P be Direct Limit
〈P (<α) | α ∈ On〉.

3.5 Proposition (See Sect. 2.3 of [5]).

(a) If κ is regular, then P (≤κ) has a dense suborder of size κ.

(b) For α < β, P (<β)  P (≤α) ∗ P (α, β) where P (α, β) is the natural
reverse Easton iteration of γ-Cohen forcings, α < γ < β, defined in
L[G(≤α)].

(c) If κ is regular, then P (≤κ) � P (κ,On) is ≤κ-closed, where P (κ,On)
is the direct limit of 〈P (κ, α) | κ ≤ α ∈ On〉.

It follows that P = Direct Limit 〈P (<α) | α ∈ On〉 is tame and preserves
cofinalities and GCH.

Amenable Forcing

In amenable forcing, the generic class G is amenable to the ground model,
in the sense that G ∩ Vα belongs to the ground model for every ordinal α.
The basic example P of amenable forcing over L consists of all p : α → 2,
ordered by extension. P is ≤κ-closed for all κ and hence tame. Cofinality
and GCH preservation are trivial as P adds no new sets.
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4. Relevance

We now address the issues raised in the introduction by discussing when
generic classes exist for L-definable forcings. For this purpose we shall recall
the Silver-Solovay theory of 0#.

4.1 Proposition. There exist tame L-definable forcings P0 and P1 such that
not both P0 and P1 have generics.

Proof. For any ordinal α, let n(α) be the least n such that Lα is not a model
of Σn-Replacement, if such an n exists. Let S0 = {α | n(α) exists and is
even}. P0 consists of all closed p such that p ⊆ S0, ordered by p ≤ q iff q is
an initial segment of p.

Note that S0 is unbounded in On: Given α, let β be least such that β > α
and Lβ � Σ1-Replacement; then n(β) = 2 so β ∈ S0. If G0 ⊆ P0 is P0-generic
over L then

⋃
G0 is therefore a closed unbounded subclass of On included

in S0. To show that P0 is tame, it suffices to show that it is κ+-distributive for
every L-regular κ : If 〈Di | i < κ〉 is an L-definable sequence of classes dense
in P0 and p ∈ P0, then choose n odd so that 〈Di | i < κ〉 is Σn definable and
choose 〈αi | i < κ〉 to be the first κ-many α such that Lα is Σn-elementary
in L and κ, p, x ∈ Lα where x is the defining parameter for 〈Di | i < κ〉. We
can define p ≥ p0 ≥ p1 ≥ · · · so that pi+1 meets Di and

⋃
pi = αi, using the

Σn-elementarity of Lαi in L. As n(αi) = n+ 1 and n+ 1 is even, we have no
problem in defining pλ to be

⋃
{pi | i < λ} ∪ {αλ} for limit λ ≤ κ and we see

that q = pκ ≤ p meets each Di.
Now define P1 in the same way, but using S1 = {α | n(α) is defined and

odd}. Then P1 is also tame yet if G0 and G1 are P0 and P1-generic over L
respectively, then

⋃
G0 and

⋃
G1 are disjoint closed unbounded subclasses

of On. �

Thus we need a criterion for choosing L-definable forcings for which we
can have a generic. Our approach is to isolate a “property of transcendence”
(#) such that:

(a) In tame class-generic extensions of L, (#) fails.

(b) If (#) is true in V , then there is a least inner model L(#) satisfying
(#).

Then our criterion for generic class existence is: P has a generic iff it has
one definable over L(#).

4.2 Definition. An amenable 〈L,A〉 is rigid if there is no nontrivial elemen-
tary embedding 〈L,A〉 → 〈L,A〉. L is rigid if 〈L, ∅〉 is rigid.

We take (#) to be: L is not rigid. First we discuss property (b) above,
i.e., that there is a least inner model in which L is not rigid (if there is one
at all).
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4.3 Theorem (Kunen; Silver [16], Solovay [17]). Suppose that L is not rigid.
Then there is a unique closed unbounded class I = {iα | α ∈ On} of L-
indiscernibles whose Skolem hull is L. Moreover, I is unbounded in every
uncountable cardinal and if 0# = first-order theory of 〈L,∈, i0, i1, . . .〉 (where
the first ω elements i0, i1, . . . of I are introduced as constants) then we have
the following:

(a) 0# ∈ L[I], I is Δ1(L[0#]) in the parameter 0# and I is unbounded in
α whenever Lα[0#] � Σ1-Replacement.

(b) 0#, viewed as a real, is the unique solution to a Π1
2 formula (i.e., a

formula of the form ∀x∃yψ where x, y vary over reals and ψ is arith-
metical).

(c) If f : I → I is increasing and not the identity, then there is a unique
j : L → L extending f with critical point in I, and every j : L → L is
of this form.

(d) If 〈L,A〉 is amenable, then A is Δ1(L[0#]), 〈L,A〉 is not rigid and a
final segment of I is a class of 〈L,A〉-indiscernibles.

4.4 Remark.

(i) As I is closed and unbounded in every uncountable cardinal, it fol-
lows that every uncountable cardinal belongs to I and 0# = first-order
theory of 〈L,∈, ω1, ω2, . . .〉.

(ii) The Σ1
2-absoluteness of L ([15]) implies that the unique solution to a

Σ1
2 formula is constructible; so in a sense (b) is best possible.

(iii) I is a class of strong indiscernibles: if �i,�j are increasing tuples from
I of the same length and x < min(�i ), min(�j ), then for any ϕ, L �
ϕ(x,�i ) ←→ ϕ(x,�j ).

In case the conclusion of Theorem 4.3 holds (i.e. in case L is not rigid) we
say that “0# exists” and refer to I as the Silver indiscernibles. Note that
Theorem 4.3 implies that if L is not rigid, then L[0#] is the smallest inner
model in which L is not rigid, verifying that “L is not rigid” obeys condition
(b) of our property of transcendence (#).

Before turning to condition (a) of property (#) we mention Jensen’s Cov-
ering Theorem and some of its consequences. A set X is covered in L if there
is a constructible Y such that X ⊆ Y , Card(Y ) = Card(X).

4.5 Theorem (Jensen [4]). Suppose that there exists an uncountable set of
ordinals which is not covered in L. Then 0# exists.

For proofs of Theorems 4.3, 4.5 see [5, Sect. 3.1].
Using the Covering Theorem, we see that the existence of 0# takes many

equivalent forms.
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4.6 Theorem. Each of the following is equivalent to the existence of 0#:

(a) L is not rigid.

(b) 〈L,A〉 is not rigid whenever 〈L,A〉 is amenable (i.e., whenever A ⊆ L
and A ∩ Lα ∈ L for every ordinal α).

(c) Some uncountable set of ordinals is not covered in L.

(d) Some singular cardinal is regular in L.

(e) κ+ �= (κ+)L for some singular cardinal κ.

(f) Every constructible subset of ω1 either contains or is disjoint from a
closed, unbounded subset of ω1.

(g) {α | α is an L-cardinal} is Δ1-definable with parameters.

(h) There exists a j : Lα → Lβ, crit(j) = κ, κ+ ≤ α.

(i) There exists a j : Lα → Lβ, crit(j) = κ, (κ+)L ≤ α, α ≥ ω2.

Proof. It is straightforward to show that these all follow from the existence
of 0#; using Theorem 4.3. Also (a), (b) imply the existence of 0# by The-
orem 4.3. Conditions (d), (e) each easily imply (c), and we get 0# from (c)
via Theorem 4.5. Condition (f) implies (a), since we get an elementary em-
bedding L→ L  Ult(L,U) = ultrapower of L by U , where U consists of all
constructible subsets of ω1 containing a closed unbounded subset. (g) implies
that (κ+)L < κ+ for κ a sufficiently large cardinal; by taking κ singular we
get 0# via condition (e). To see that (h) implies the existence of 0#, define
an ultrafilter U on constructible subsets of κ by: X ∈ U iff κ ∈ j(X). Then
Ult(L,U) is well-founded, for if not then by Löwenheim-Skolem there would
be an infinite descending chain in Ult(Lκ+ , U) which contradicts κ+ ≤ α.

Finally we show that (i) implies the existence of 0#. Define U as before
by: X ∈ U iff κ ∈ j(X). First suppose that κ is at least ω2. We shall
argue that U is countably complete, i.e. that if {Xn | n ∈ ω} ⊆ U , then⋂
{Xn | n ∈ ω} �= ∅. (This gives 0# as it implies that Ult(L,U) is well-

founded.) By the Covering Theorem 4.5, there is an F ∈ L of cardinality ω1

such that Xn ∈ F for each n. Then as we have assumed that κ ≥ ω2, F has
L-cardinality less than κ. We may assume that F is a subset of P(κ) ∩ L,
and hence as α is an L-cardinal, F belongs to Lα and there is a bijection
h : F ←→ γ for some γ < κ, h ∈ Lα. But then F ∗ = {X ∈ F | κ ∈ j(X)}
belongs to Lα as X ∈ F ∗ ←→ κ ∈ j(h−1)(h(X)) and F ∗ has nonempty
intersection as j(F ∗) = ran(j � F ∗) and κ ∈

⋂
j(F ∗). Thus {Xn | n ∈ ω}

has nonempty intersection since it is a subset of F ∗. If κ is less than ω2, then
we have α ≥ ω2 ≥ κ+ so we have a special case of (h). �

The next theorem verifies (a) of transcendence property (#).



572 Friedman / Constructibility and Class Forcing

4.7 Theorem (Beller [1], Friedman [5]). Suppose that G is P -generic over
〈L,A〉 and P is tame. Then L[G] |= 0# does not exist.

Proof. Suppose that p0 ∈ P , p0 � “I, the class of Silver indiscernibles, is
a closed unbounded class satisfying i < j in I → Li ≺ Lj”. Suppose that
p ≤ p0 and p � α ∈ I. Then Lα ≺ L in any P -generic extension 〈L[G], A,G〉
with p ∈ G. (By Löwenheim-Skolem we can assume that such a G exists for
the sake of this argument.) Thus, an L-Satisfaction predicate is definable over
〈L,A〉 as L |= ϕ(x) iff for some p ∈ P below p0, some α with x ∈ Lα, p � ϕ(x)
is true in Lα. This is a contradiction if A = ∅, for then L-satisfaction would
be L-definable. But note that for any A such that 〈L,A〉 is amenable we can
apply the same argument to get the 〈L,A〉-definability of 〈L,A〉-satisfaction,
using the fact that by Theorem 4.3(d), 〈Lα, A∩Lα〉 ≺ 〈L,A〉 for α in a final
segment of I. �

4.8 Definition. A forcing P defined over a ground model 〈L,A〉 is relevant
if there is a G P -generic over 〈L,A〉 which is definable (with parameters)
over L[0#].

Examples of Relevance

Assume that 0# exists. Then any L[0#]-countable P ∈ L is relevant, as
there are only countably many constructible subsets of P (using the fact that
ω

L[0#]
1 is inaccessible in L). Note that this includes the case of any forcing

P ∈ L definable in L without parameters.
The situation is far less clear for uncountable P ∈ L. The next result

treats the case of κ-Cohen forcing.

4.9 Proposition. Suppose that κ is L-regular and let P (κ) denote κ-Cohen
forcing in L: conditions are constructible p : α → 2, α < κ and p ≤ q iff p
extends q.

(a) If κ has cofinality ω in L[0#], then P (κ) is relevant.

(b) If κ has uncountable cofinality in L[0#], then P (κ) is not relevant.

Proof. Let jn denote the first n Silver indiscernibles ≥ κ.
(a) We use the fact that P (κ) is κ-distributive in L. Let κ0 < κ1 < · · ·

be an ω-sequence in L[0#] cofinal in κ. Then any D ⊆ P (κ) in L belongs to
Hull(κn∪jn) for some n, where Hull denotes Skolem hull in L. As Hull(κn∪jn)
is constructible of L-cardinality < κ we can use the κ-distributivity of P (κ)
to choose p0 ≥ p1 ≥ · · · successively below any p ∈ P (κ) to meet all dense
D ⊆ P (κ) in L.

(b) Note that in this case κ ∈ Lim I, as otherwise κ =
⋃
{κn | n ∈ ω}

where κn =
⋃

(κ ∩ Hull(κ̄ + 1 ∪ jn)) < κ, κ̄ = max(I ∩ κ), and hence κ has
L[0#]-cofinality ω. Suppose that G ⊆ P (κ) were P (κ)-generic over L. For
any p ∈ P (κ) let α(p) denote the domain of p. Define p0 ≥ p1 ≥ · · · in G so
that α(pn+1) ∈ I and pn+1 meets all dense D ⊆ P (κ) in Hull(α(pn) ∪ jn).
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Then p =
⋃
{pn | n ∈ ω} meets all dense D ⊆ P (κ) in Hull(α ∪ j) where

α =
⋃
{α(pn) | n ∈ ω} ∈ I and j =

⋃
{jn | n ∈ ω}. But then p is P (α)-

generic over L, as every constructible dense D̄ ⊆ P (α) is of the form D∩P (α)
for some D as above. So p is not constructible, contradicting p ∈ G. �

As a consequence of Proposition 4.9(b) we see that the basic class forcing
examples of Easton and long Easton forcing are not relevant. However, we
can recover relevance for these forcings by restricting to successor cardinals,
thereby not adding κ-Cohen sets for κ of uncountable L[0#]-cofinality. Easton
forcing at successors is defined as follows: Conditions are constructible p :
α(p) → L where p(α) = ∅ unless α is a successor cardinal of L, in which
case p(α) ∈ α-Cohen forcing; we also require that if α is L-inaccessible then
{β < α | p(β) �= ∅} is bounded in α and define p ≤ q iff p(α) extends q(α)
for each α < α(q).

4.10 Theorem. Let P be Easton forcing at successors. Then P is relevant.

Proof. By recursion on i ∈ I, the class of Silver indiscernibles, we define
G(<i) to be P (<i)-generic over L, where P (<i) is Easton forcing at suc-
cessors restricted to Li. For i = min I take G(<i) to be any P (<i)-generic
(note that P (<i) is countable in L[0#]). If G(<i) has been defined, we now
define G(<i∗) as follows (where i < i∗ are adjacent in I) : P (<i∗) factors
as P (<i) × P (i, i∗) where P (i, i∗) is i+-closed in L, so it suffices to define
a P (i, i∗)-generic G(i, i∗), for then G(<i∗) = G(<i) × G(i, i∗) is P (<i∗)-
generic. To obtain G(i, i∗), successively choose p0 ≥ p1 ≥ · · · in G(i, i∗) so
that pn+1 meets all dense D ⊆ P (i, i∗) in Hull(i ∪ jn) where jn = first n
Silver indiscernibles ≥ i. Then set G(i, i∗) = {p | p ≥ pn for some n}.

Finally if i ∈ Lim I, let G(<i) =
⋃
{G(<j) | j ∈ I ∩ i}. Note that if

D ⊆ P (<i) is dense and constructible then for some j ∈ I ∩ i, D ∩ P (<j) is
dense and constructible and hence is met by G(<j) ⊆ G(<i). So G(<i) is
P (<i)-generic. Similarly, G =

⋃
{G(<i) | i ∈ I} is P -generic over L (and in

fact meets all L-amenable dense D ⊆ P ). �

Reverse Easton forcing is relevant, without restriction.

4.11 Theorem. Let P be the basic example of reverse Easton forcing defined
in the last section. Then P is relevant.

Proof. Recall that P (<α) has a dense subset of L-cardinality ≤ (α+)L for
each α. By recursion on i ∈ I we define G(≤i) = G(<i) ∗G(i) to be P (≤i)-
generic over L, where P (≤i) = P (<i) ∗ P (i), the first i + 1 stages in the
iteration defining P . We will have that i ≤ j in I implies G(j) extends G(i);
this will enable us to get through limit stages. For i = min I, take G(≤i) to be
any P (≤i)-generic in L[0#]. If G(≤i) has been defined and i∗ = I-successor
to i, then write P (<i∗) as P (≤i)∗P [i+1, i∗) and as P (≤i) � P [i+1, i∗) is i+-
closed we can select G[i + 1, i∗) to be P [i + 1, i∗)G(≤i)-generic over L[G(≤i)]
(the collection of dense sets that must be met is the countable union of
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subcollections of size i in L[G(≤i)], using the Hull(i∪ jn)’s as in the previous
proof). Then G(<i∗) = G(≤i) ∗ G[i + 1, i∗) is P (<i∗)-generic over L. We
also choose G(i∗) to be P (i∗)G(<i∗)-generic over L[G(< i∗)], extending the
condition G(i) in this forcing.

For i ∈ Lim I take G(<i) to be
⋃
{G(<j) | j ∈ I ∩ i}; as in the previous

proof G(<i) is P (<i)-generic over L. And we take G(i) =
⋃
{G(j) | j ∈ I∩i},

which by our construction extends each G(j) for j ∈ I ∩ i. Again we get
genericity for G(≤i) from that of G(≤j) for j ∈ I ∩ i, as G(<i) and G(i)
extend G(<j) and G(j) respectively for each j ∈ I ∩ i. �

Before turning to long Easton forcing at successors (obtained from Eas-
ton forcing at successors by dropping the support condition that {β < α |
p(β) �= ∅} be bounded in α for L-inaccessible α), we establish the relevance
of thin Easton forcing at successors. The latter is obtained by weakening the
support condition in Easton forcing at successors to: {β < α | p(β+) �= ∅} is
nonstationary in α for L-inaccessible α.

4.12 Theorem. Let P be thin Easton forcing at successors. Then P is
relevant.

Proof. This proof uses, as do later proofs, the notion of reduction of dense
sets. For any L-cardinal δ, P can be factored as P (≤δ) × P (>δ). If α is an
L-cardinal greater than δ and D ⊆ P (≤α) is open dense, then we say that
p ∈ P (≤α) reduces D below δ if for some successor L-cardinal δ̄ ≤ δ, any
extension q of p can be extended into D without changing q above δ̄. (In case
δ is itself a successor L-cardinal, then we can of course take δ̄ to be δ itself.)

Now let i be any indiscernible and for any n let jn be the first n in-
discernibles ≥ i. We can define pi

0 ≥ pi
1 ≥ · · · in P (≤i+) such that if

D ⊆ P (≤i+) is open dense and belongs to Hull(γ+ ∪ jn) then pi
n+1 reduces

D below γ+ for any L-cardinal γ < i. This is possible by successively extend-
ing on [γ++, i+] (without violating the nonstationary support requirement).
Let Gi

0 = {p ∈ P (≤i+) | p ≥ pi
n for some n}.

Gi
0 is not P (≤i+)-generic over L as p ∈ Gi

0 → p(j+) = ∅ for all j ∈ I ∩ i.
Notice that for i0 < i1 < · · · < in ≤ i in I, Gi0

0 ∪ · · · ∪ Gin
0 is a compatible

set of conditions. We take G(≤i+) = {p ∈ P (≤i+) | p ≥ q0 ∧ · · · ∧ qn for
some ql ∈ Gil

0 , where i0 < · · · < in ≤ i in I}. Now we claim that G(≤ i+)
is P (≤ i+)- generic over L. Indeed if D ⊆ P (≤i+) is dense and belongs
to Hull({k0, . . . , km} ∪ jn) with k0 < · · · < km < i in I, then pi

n+1 reduces
D below k+

m, pi
n+1 ∧ pkm

n+2 reduces D below k+
m−1, . . . and eventually we get

pi
n+1 ∧ pkm

n+2 ∧ · · · ∧ pk0
n+m+2 in G(≤i+) meeting D.

Now note that in the above we could have chosen our initial pi
0 ∈ P (≤i+)

to reduce every dense D ⊆ P ∩Li in Hull(γ+ ∪ {i}) below γ+, for any γ < i.
Thus the resulting generic G(≤i+) meets every dense D ⊆ P ∩ Li definable
over Li. Now let G =

⋃
{G(≤i+) | i ∈ I} and we see that G is P -generic

over L. �
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In the above proof we use thin supports to guarantee that for i < j in I,
the “pre-generics” Gi

0 and Gj
0 agree at i+ (indeed they equal ∅ at i+). A less

severe restriction is to require coherence on a closed unbounded set:

4.13 Definition. Let P denote long Easton forcing at successors and suppose
that p belongs to P (≤κ+), where κ is L-regular. For ξ ∈ [κ, κ+) let fξ be
the L-least 1-1 function from κ onto ξ. For s ∈ P (κ+) = κ+-Cohen forcing
and α < κ define sα as follows: If ξ = length(s) ≤ κ or α �= κ ∩ fξ[α],
then sα = ∅. Otherwise sα has domain [α, ξ̄) where ξ̄ = ordertype fξ[α]
and sα(δ) = s(fξ(δ)). We say that p is coherent at κ if p(κ+)α and p(α+)
are compatible for closed unboundedly many α < κ. A condition p in P is
coherent if for each L-inaccessible κ in the domain of p, p is coherent at κ.
Coherent Easton forcing at successors is the forcing whose conditions are the
coherent conditions in long Easton forcing at successors.

4.14 Theorem. Let P be coherent Easton forcing at successors. Then P is
relevant.

Proof. Follow the proof of the previous Theorem. The only new observation is
that by virtue of coherence at indiscernibles, we again have the compatibility
of Gi

0 and Gj
0 for i < j in I. �

4.15 Remark. Thin Easton forcing at successors and coherent Easton forc-
ing at successors serve as prototypes for Jensen coding, introduced in the
next section. In Jensen coding, conditions are sequences of pairs (pα, p∗

α)
where coherence is used on the “coding strings” pα and thinness is used on
the “restraints” p∗

α.

Finally we turn to long Easton forcing at successors.

4.16 Theorem. Let P be long Easton forcing at successors. Then P is
relevant.

Proof. Suppose that p belongs to P and i is a Silver indiscernible. We say
that p is coherent at i if p(i+) and π(p)(i+) are compatible, where π : L→ L
is an elementary embedding with critical point i. Equivalently: p(i+)α and
p(α+) are compatible for all α in a set X belonging to the “L-ultrafilter”
derived from the embedding π (cf. the proof of Theorem 4.6). It suffices
to show that if p belongs to P (≤i+) and is coherent at indiscernibles ≤ i
and D ⊆ P (≤i+) where D ∈ L is L-definable from indiscernibles ≥ i, then
p has an extension meeting D which is coherent at indiscernibles ≤ i. For
then, we can repeat the proof of Theorem 4.12, using conditions which are
coherent at indiscernibles ≤ i to construct Gi

0, and therefore again obtain
the compatibility of Gi

0 and Gj
0 for i < j in I.

Given p and D as above, recursively extend p(α+) for α < i an L-limit
cardinal to q(α+) as follows: if q�α has been defined, then let q(α+) be least
so that for some least rα ∈ P (< α), rα ∪{q(α+)} extends q�α∪{p(α+)} and
meets D. Now choose X in the ultrafilter derived from π (X containing all
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indiscernibles < i) such that the rα cohere for α in X to a condition r in
P (<i). Also define r(i+) to be π(r)(i+). Then r extends p, is coherent at
indiscernibles ≤ i, and meets D. �

Indiscernible Preservation

Though we have shown a number of variants of Easton forcing to be rel-
evant, we can ask for more, namely that our generic classes preserve indis-
cernibles. This will be important in the next section, where Jensen coding
is introduced, as we can only code a class by a real (in L[0#]) if the class
preserves (a periodic subclass of) the class I of Silver indiscernibles.

4.17 Definition. A class A ⊆ L preserves indiscernibles if I is a class of
indiscernibles for the structure 〈L[A], A〉.

4.18 Theorem. For each of Easton at successors, reverse Easton, thin Eas-
ton at successors, coherent Easton at successors and long Easton at successors
there is a generic class G that preserves indiscernibles.

Proof. The generic classes built earlier for thin Easton at successors, coherent
Easton at successors, and long Easton at successors preserve indiscernibles.
We now treat the case of reverse Easton forcing. It suffices, for iω the ωth
indiscernible, to build an H ⊆ Liω which is P (<iω)-generic over Liω and
such that t(j1, . . . , jn) ∈ H iff t(j′

1 . . . j′
n) ∈ H whenever j1 < · · · < jn and

j′
1 < · · · < j′

n belong to I ∩ iω. For then define G by: t(k1, . . . , kn) ∈ G
for k1 < · · · < kn in I iff t(i1, . . . , in) ∈ H for i1 < · · · < in the first n
indiscernibles. This is well-defined using the above property of H. And G
is P -generic over L: it suffices to consider predense D ∈ L as P has the
∞-chain condition. Write D ∈ L as s(l1, . . . , lm) where l1 < · · · < lm in I;
then D = s(i1, . . . , im) is predense on P (<iω). If p̄ = t(i1, . . . , in) ∈ H
meets D, then p = t(l1, . . . , lm, lm+1, . . . , ln) meets D, where lm < lm+1 <
· · · < ln belong to I. Also p ∈ G by definition of G. Finally, note that if
k1 < · · · < km < l1 < · · · < lm, k1, . . . , km in I and l1, . . . , lm are limit
members of I, then for any ϕ, 〈L[G], G〉 � ϕ(k1, . . . , km) ←→ ϕ(l1, . . . , lm)
by the Truth Lemma and the fact that G obeys the same invariance property
that characterized H. So I is a class of indiscernibles for 〈L[G], G〉.

Now we build H. Let H2 ⊆ P (<i2) be a P (<i2)-generic in L[0#] and
H1 = H2 ∩ P (<i1). We must now define H3 ⊆ P (<i3) to be P (<i3)-generic
so that t(i1,�j ) ∈ H2 iff t(i2,�j ) ∈ H3, where �j is an increasing sequence from
I − iω. Note that H2(i1), a subset of i1 generic over L[H1], is a condition in
the i2-Cohen forcing defined over L[H2]; choose H3(i2) to be a generic for this
forcing extending H2(i1). Now note that for each n there is a tn(i1,�jn∗ ) =
pn ∈ H2 which reduces all predense D ⊆ P (<i2) in Hull(i1 ∪{i1, k1, . . . , kn})
below i1, where iω ≤ k1 < · · · < kn belong to I, using the i+1 -distributivity
of P (>i1)H2(≤i1) in L[H2(≤i1)]. So if we define H ′

3 = {tn(i2,�jn) | n ∈ ω}
we have that H ′

3 reduces all predense D ⊆ P (<i3) with D ∈ L below i2.
So, the desired H3 can be defined by H3 = {p ∈ P (<i3) | p(≤i2) ∈ H3(≤i2)
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and p compatible with H ′
3}. By construction, t(i1,�j ) ∈ H2 iff t(i2,�j ) ∈ H3.

Note that H3 was uniquely determined by this last condition, once a choice
of H3(i2) was made.

H4 is uniquely determined by P (<i4)-genericity and the condition that
t(i1, i2,�j ) belongs to H3 iff t(i2, i3,�j ) belongs to H4, as the forcing to add
H3(i2) is i+1 -distributive (and the forcing to add H3(>i2) is i+2 -distributive).
We must check that t(i1, i3,�j ) ∈ H4 iff t(i2, i3,�j ) ∈ H4. Now any condition
in H4 is extended by one of the form p = (p0, p1) where p0 ∈ H4(≤i3) and
p1 = t(i3,�j ), as such p reduce all dense D ⊆ P (<i4) with D ∈ L below i3.
So, it suffices to show that t(i1, i3,�j ) ∈ H4(≤i3) iff t(i2, i3,�j ) ∈ H4(≤i3).
By definition of H4 we have t(i2, i3,�j ) ∈ H4(≤i3) iff t(i1, i2,�j ) ∈ H3(≤i2).
But the latter implies that t(i1, i2,�j ) = t(i1, i3,�j ), and as H3(≤i2) extends
H2(≤i1), we have that H4(≤i3) extends H3(≤i2). So t(i1, i2,�j ) ∈ H3(≤i2)
iff t(i1, i2,�j ) ∈ H4(≤i3) iff t(i1, i3,�j ) ∈ H4(≤i3).

In general, define Hm+3 by the condition that t(im, im+1,�j ) belong to
Hm+2 iff t(im+1, im+2,�j ) belongs to Hm+3. As above we get that Hm+3 is
P (<im+3)-generic and t(i1, . . . , im+1,�j ) ∈ Hm+2 iff t(i1, . . . , im, im+2,�j ) ∈
Hm+3. Finally let H =

⋃
{Hm | m ∈ ω}. Then H is P (<iω)-generic

over L and for any k1 < · · · < kl+2 < �j in I, kl+2 < iω ≤ �j we have
t(k1, . . . , kl+1,�j ) ∈ H iff t(k1, . . . , kl, kl+2,�j ) ∈ H. This is enough to imply
that t(�k0) ∈ H iff t(�k1) ∈ H whenever �k0 and �k1 are increasing sequences
from I ∩ iω. This completes the proof in the case of reverse Easton forcing.

Easton forcing at successors can be handled in the same way without need
to consider H(i) for i ∈ I, as H(α) is nontrivial only when α is a successor
L-cardinal. (Indeed, without the latter restriction the construction fails as
there is no available choice for H(i2).) �

5. The Coding Theorem

Class forcing became an important tool in set theory as a result of the fol-
lowing theorem of Jensen (see [1]):

5.1 Theorem (Coding Theorem). Suppose that 〈M,A〉 is a ground model.
Then there is an 〈M,A〉-definable class forcing P such that if G ⊆ P is
P -generic over 〈M,A〉, then:

(a) 〈M [G], A,G〉 � ZFC.

(b) For some R ⊆ ω, M [G] � V = L[R], and 〈M [G], A,G〉 � A,G are
definable from the parameter R.

Before discussing the proof of this theorem, we mention the following corol-
lary, which constitutes a partial positive solution to Solovay’s genericity prob-
lem (for set-genericity):
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5.2 Corollary. There is an L-definable class forcing for producing a real R
which is not set-generic over L.

Proof. Let P0 be Easton forcing, G0 P0-generic over L, and P0 ∗ P1 = P
a two-step iteration where P1 adds a real R as in Theorem 5.1 such that
G0 is definable over L[R]. Then in L[R] there are κ-Cohen sets for every
L-regular κ. Thus R is not set-generic over L as no forcing of size κ can add
a κ+-Cohen set. �

In fact R as in Corollary 5.2 can be chosen to satisfy R <L 0#, but this
property makes use of the relevance of Jensen coding, a topic to be discussed
later.

The proof of the Coding Theorem is far easier if one makes the further
assumption that 0# /∈M . Indeed, with this extra hypothesis there is a proof,
which we provide below, making no use of Jensen’s fine structure theory.
Instead one uses the following consequence of Jensen’s Covering Theorem
(Theorem 4.5), expressed by Theorem 4.6(i):

5.3 Proposition. Suppose that 0# does not exist, and j : Lα → Lβ is
Σ1-elementary with α ≥ ω2. If κ = crit(j) then α < (κ+)L.

We now give a brief introduction to the coding proof, assuming 0# /∈M .
We may assume that M � GCH, as this can be easily arranged by a prelim-
inary class forcing. Moreover, we need not code into a real R; it suffices to
code into a reshaped subset of ω1:

5.4 Definition. b ⊆ ω1 is reshaped if for any ξ < ω1, ξ is countable in
L[b ∩ ξ].

The following result of [9] provides one of the key ideas in the proof.

5.5 Proposition. Suppose that V = L[b], b a reshaped subset of ω1. Then
there is a c.c.c. forcing Rb for adding a real R such that b ∈ L[R].

Proof. Using the fact that b is reshaped we may define 〈Rξ | ξ < ω1〉 by:
Rξ = L[b ∩ ξ]-least real distinct from the Rξ′ for ξ′ < ξ. Separate the Rξ’s
by setting R∗

ξ = {n | n codes a finite initial segment of Rξ}.
A condition in Rb is p = (s(p), s∗(p)) where s(p) is a finite subset of ω,

s∗(p) is a finite subset of b. Extension is defined by: p ≤ q iff s(p) ⊇ s(q),
s∗(p) ⊇ s∗(q) and ξ ∈ s∗(q) implies s(p) − s(q) is disjoint from R∗

ξ . This is
c.c.c. as s(p) = s(q) implies p and q are compatible. If G is Rb-generic, then
let R =

⋃
{s(p) | p ∈ G}. We get:

ξ ∈ b←→ R ∩R∗
ξ finite.

Thus, given R we can test “ξ ∈ b” if we know Rξ; as Rξ is computable in
L[b ∩ ξ] this gives an inductive calculation of b ∩ ξ from R. �
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There is a perfectly analogous notion of reshaped subset of κ+ for any
infinite cardinal κ and if κ is an infinite successor cardinal, an analogous
forcing Rb for b a reshaped subset of κ+.

Now we do not necessarily have reshaped sets in our ground model; instead
we must force them. A reshaped string at κ is a function s : α → 2 for some
α < κ+ such that ξ ≤ α → L[s�ξ] � Card(ξ) ≤ κ. Reshaped strings at κ
of arbitrary length α < κ+ do exist and serve to approximate the desired
reshaped subsets of κ+.

We now give a rough description of the forcing conditions. P consists of
sequences p = 〈(pα, p∗

α) | α ∈ Card, α ≤ α(p)〉 where α(p) ∈ Card and:

(a) pα(p) is a reshaped string at α(p) and p∗
α(p) = ∅.

(b) For α ∈ Card ∩ α(p), (pα, p∗
α) ∈ Rpα+ , the forcing for coding pα+ ,

A ∩ α+ by a subset of α+ using reshaped strings at α.

(c) For α a limit cardinal ≤ α(p), p�α “exactly codes” pα.

(d) For α inaccessible ≤ α(p) there is a closed unbounded C ⊆ α such that
β ∈ C implies p∗

β = ∅.

Clause (d) is over-simplified in that “inaccessible” should really be (some-
thing like) “L[pα] � α is inaccessible” and C should be required to belong to
(something like) L[pα]. Clause (c) refers to the limit coding, as yet undefined.
The key idea that enables one to carry out a fine structure-free proof of the
Coding Theorem (assuming 0# does not exist) is the use of coding delays in
the limit coding. The details are supplied in the proof below.

The two main properties of P that must be demonstrated are:

(Extendibility) Suppose that p ∈ P and f : α → α with f(β) < β+ for
successor cardinals β < α. Then there exists a q ≤ p with length qβ ≥ f(β)
for each successor cardinal β < α.

(Distributivity) Suppose that Di is i+-dense on P for each i < α, i.e. for all
p there is a q ≤ p with q ∈ Di satisfying (qβ , q∗

β) = (pβ , p∗
β) for all β ≤ i.

Then for all p there is q ≤ p, q meets each Di.

Proposition 5.3 is used to facilitate the proof of Distributivity. Extendibil-
ity is not difficult, taking advantage of the coding delays.

Proof of Theorem 5.1, assuming 0# /∈M . We make the following assump-
tion about the predicate A: If Hα, with α an infinite L[A]-cardinal, denotes
{x ∈ L[A] | transitive closure (x) has L[A]-cardinality < α} then Hα = Lα[A].
This is easily arranged using the fact that GCH holds in L[A].

Let Card denote all infinite L[A]-cardinals. Also Card+ = {α+ | α ∈
Card} and Card′ = all uncountable limit cardinals.

Let α belong to Card.
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5.6 Definition (Strings). Sα consists of all s : [α, |s|) −→ 2, α ≤ |s| < α+

such that |s| is a multiple of α and for all η ≤ |s|, Lδ[A∩α, s�η] � Card(η) ≤ α
for some δ < (η+)L ∪ ω2.

Thus for α = ω or ω1, elements of Sα are “reshaped” in the natural
sense mentioned above, but for α ≥ ω2 we insist that s ∈ Sα be “quickly
reshaped” in that η ≤ |s| is collapsed relative to A ∩ α, s�η before the next
L-cardinal. This will be important when we use the nonexistence of 0# to
establish cardinal-preservation, via Proposition 5.3. Elements of Sα are called
“strings”. Note that we allow the empty string ∅α ∈ Sα, where |∅α| = α. For
s, t ∈ Sα write s ≤ t for s ⊆ t and s < t for s ≤ t, s �= t.

5.7 Definition (Coding Structures). For s ∈ Sα define μ<s, μs recursively
by: μ<∅α = α, μ<s =

⋃
{μt | t < s} for s �= ∅α and μs = least μ > μ<s

which is a limit of multiples of α such that Lμ[A ∩ α, s] � s ∈ Sα. And
As = Lμs [A ∩ α, s].

Thus by definition there is δ < μs such that Lδ[A ∩ α, s] � Card(|s|) ≤ α
and Lμs � Card(δ) ≤ |s|, when α ≥ ω2.

5.8 Definition (Coding Apparatus). For α > ω, s ∈ Sα, i < α let Hs(i) =
Σ1 Skolem hull of i ∪ {A ∩ α, s} in As and fs(i) = ordertype (Hs(i) ∩ On).
For α ∈ Card+, bs = ran(fs�Bs) where Bs = the successor elements of
{i < α | i = Hs(i) ∩ α}.

Using the above we will construct a tame, cofinality-preserving forcing P
for coding 〈L[A], A〉 by a subset Gω of ω1 which is reshaped in the sense that
proper initial segments of (the characteristic function of) Gω belong to Sω.

5.9 Definition (Partition of the Ordinals). Let B,C,D, and E denote the
classes of ordinals congruent to 0, 1, 2, and 3 mod 4, respectively. Also for
any ordinal α and X = B,C,D or E, we write αX for the αth element of
X (when X is listed in increasing order). If Y is a set of ordinals then
Y X = {αX | α ∈ Y }.

5.10 Definition (The Successor Coding). Suppose that α ∈ Card s ∈ Sα+ .
A condition in Rs is a pair (t, t∗) where t ∈ Sα, t∗ ⊆ {bs�η | η ∈ [α+, |s|)}∪|t|,
Card(t∗) ≤ α. Extension of conditions is defined by: (t0, t∗

0) ≤ (t1, t∗
1) iff

t1 ≤ t0, t
∗
1 ⊆ t∗

0 and:

(a) |t1| ≤ γB < |t0|, γ ∈ bs�η ∈ t∗
1 −→ t0(γB) = 0 or s(η).

(b) |t1| ≤ γC < |t0|, γ = 〈γ0, γ1〉, γ0 ∈ A ∩ t∗
1 −→ t0(γC) = 0.

In (b), 〈·, ·〉 is an L-definable pairing function on On so that Card(〈γ0, γ1〉) =
Card(γ0) + Card(γ1) in L for infinite γ0, γ1. An Rs-generic over As is deter-
mined by a function T : α+ −→ 2 such that s(η) = 0 iff T (γB) = 0 for suffi-
ciently large γ ∈ bs�η and such that for γ0 < α+ : γ0 ∈ A iff T (〈γ0, γ1〉C) = 0
for sufficiently large γ1 < α+. Note that Rs is an element of As.
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Now we come to the definition of the Limit Coding, which incorporates the
idea of “coding delays”. Suppose that s ∈ Sα, α ∈ Card′ and p = 〈(pβ , p∗

β) |
β ∈ Card ∩ α〉 where pβ ∈ Sβ for each β ∈ Card ∩ α. A natural definition
of “p codes s” would be: for η < |s|, pβ(fs�η(β)) = s(η) for sufficiently large
β ∈ Card ∩ α. There are a number of problems with this definition however.
First, to avoid conflict with the Successor Coding we should use fs�η(β)D

instead of fs�η(β). Second, to lessen conflict with codings at β ∈ Card′ ∩ α
we only require the above for β ∈ Card+ ∩ α. However there are still serious
problems in making sure that the coding of s is consistent with the coding of
pβ by p�β for β ∈ Card′ ∩ α.

We introduce coding delays to facilitate extendibility of conditions. The
rough idea is to code not using fs�η(β)D, but instead to code just after
the least ordinal ≥ fs�η(β)D where pβ takes the value 1. In addition, we
“precode” s by a subset of α, which is then coded with delays by 〈pβ |
β ∈ Card ∩ α〉; this “indirect” coding further facilitates extendibility of
conditions.

5.11 Definition. Suppose that α ∈ Card, X ⊆ α, s ∈ Sα. Let μ̃s be
defined just as we defined μs but with the requirement “limit of multiples
of α” replaced by the weaker condition “multiple of α”. Then note that
Ãs = Lμ̃s [A ∩ α, s] belongs to As, contains s and Σ1 Hull(α ∪ {A ∩ α, s}) in
Ãs = Ãs. Now X precodes s if X is the Σ1 theory of Ãs with parameters
from α ∪ {A ∩ α, s} (viewed as a subset of α).

5.12 Definition (Limit Coding). Suppose that s ∈ Sα, α ∈ Card′ and
p = 〈(pβ , p∗

β) | β ∈ Card∩α〉 where pβ ∈ Sβ for each β ∈ Card∩α. We wish to
define “p codes s”. First we define a sequence 〈sγ | γ ≤ γ0〉 of elements of Sα

as follows. Let s0 = ∅α. For limit γ ≤ γ0, sγ =
⋃
{sδ | δ < γ}. Now suppose

that sγ is defined and let f
sγ
p (β) = least δ ≥ fsγ (β) such that pβ(δD) = 1, if

such a δ exists. If for cofinally many β ∈ Card+∩α, fsγ
p (β) is undefined, then

set γ0 = γ. Otherwise define X ⊆ α by: δ ∈ X iff pβ((fsγ
p (β) + 1 + δ)D) = 1

for sufficiently large β ∈ Card+ ∩ α. If Even (X) = {δ | 2δ ∈ X} precodes
an element t of Sα extending sγ such that f

sγ
p , X ∈ At then set sγ+1 = t.

Otherwise let sγ+1 be sγ ∗XE (the concatenation of sγ with the characteristic
function of XE), if this results in f

sγ
p ∈ Asγ+1 ; if not, then γ0 = γ. Now p

exactly codes s if s = sγ for some γ ≤ γ0 and p codes s if s ≤ sγ for some
γ ≤ γ0.

Note that the Successor Coding only restrains pβ from taking certain
nonzero values, so there is no conflict between the Successor Coding and
these delays. The advantage of delays is that they give us more control over
where the Limit Coding takes place, thereby enabling us to avoid conflict
between the Limit Codings at different cardinals.

5.13 Definition (The Conditions). A condition in P is a sequence p =
〈(pα, p∗

α) | α ∈ Card, α ≤ α(p)〉 where α(p) ∈ Card and:

(a) pα(p) belongs to Sα(p) and p∗
α(p) = ∅.
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(b) For α ∈ Card ∩ α(p), (pα, p∗
α) belongs to Rpα+ .

(c) For α ∈ Card′, α ≤ α(p), p�α belongs to Apα and exactly codes pα.

(d) For α ∈ Card′, α ≤ α(p), α inaccessible in Apα there exists a closed
unbounded C ⊆ α such that C belongs to Apα and p∗

β = ∅ for β in C.

For α ∈ Card, P<α denotes the set of all conditions p such that α(p) < α.
Conditions are ordered by: p ≤ q iff α(p) ≥ α(q), p(α) ≤ q(α) in Rpα+ for
α ∈ Card∩α(p)∩ (α(q) + 1) and pα(p) extends qα(p) if α(q) = α(p). Also for
s ∈ Sα, ω < α ∈ Card, P s denotes P<α together with all p�α for conditions
p such that α(p) = α, pα(p) ≤ s. P s is an element of Ãs. To order conditions
in P s, define p+ = p for p ∈ P<α and for p ∈ P s − P<α, p+�α = p and
p+(α) = (s�η, ∅) where η is least such that p ∈ P s�η; then p ≤ q iff p+ ≤ q+

as conditions in P . Finally, P<s =
⋃
{P s�η | η < |s|} ∪ P<α.

It is worth noting that (c) above implies that fpα dominates the coding
of pα by p�α, in the sense that fpα strictly dominates each fpα�η

p�α , η < |pα|
on a tail of Card+ ∩ α. The purpose of (d) is to guarantee that extendibility
of conditions at (local) inaccessibles is not hindered by the Successor Coding
(see the proof of Extendibility below).

We now embark on a series of lemmas which together show that P pre-
serves cofinalities and if G is P -generic over 〈L[A], A〉 then for some reshaped
X ⊆ ω1, L[A,G] = L[X] and A is L[X]-definable from the parameter X.
Then X can be coded by a real via a c.c.c. forcing using the Solovay method
described earlier.

5.14 Lemma (Distributivity for Rs). Suppose that α ∈ Card and s ∈ Sα+ .
Then Rs is α+-distributive in As: if 〈Di | i < α〉 ∈ As is a sequence of dense
subsets of Rs and p ∈ Rs then there is a q ≤ p such that q meets each Di.

Proof. Choose μ < μs to be a large enough limit ordinal such that p, 〈Di |
i < α〉, μ<s ∈ A = Lμ[A ∩ α+, s]. Let 〈αi | i < α〉 enumerate the first α
elements of {β < α+ | β = α+ ∩Σ1 Hull of (β ∪ {p, 〈Di | i < α〉, μ<s}) in A}.

Now write p as (t0, t∗
0) and successively extend to (ti, t∗

i ) for i ≤ α as
follows: (ti+1, t

∗
i+1) is the least extension of (ti, t∗

i ) meeting Di such that t∗
i+1

contains {bs�η | η ∈ Hi ∩ [α+, |s|)} where Hi = Σ1 Hull of αi ∪ {p, 〈Di | i <
α〉, μ<s} in A and: (a) If bs�η ∈ t∗

i , s(η) = 1 then ti+1(γB) = 1 for some
γ ∈ bs�η, γ > |ti|. (b) If γ0 /∈ A, γ0 < |ti| then ti+1(〈γ0, γ1〉C) = 1 for some
γ1 > |ti|.

The lemma reduces to:

5.15 Claim. (tλ, t∗
λ), the greatest lower bound to 〈(ti, t∗

i ) | i < λ〉, exists for
limit λ ≤ α.

Proof of Claim. We must show that tλ =
⋃
{ti | i < λ} belongs to Sα.

Note that 〈ti | i < λ〉 is definable over Hλ = transitive collapse of Hλ and
by construction, tλ codes Hλ definably over Lμ̄λ

[tλ], where μ̄λ = height
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of Hλ. So tλ is reshaped, as |tλ| is singular, definably over Lμ̄λ
[tλ]. By

Proposition 5.3, μ̄λ < (|tλ|+)L if α ≥ ω2. So tλ belongs to Sα. �
�

The next lemma illustrates the use of coding delays.

5.16 Lemma (Extendibility for P s). Suppose that α is a limit cardinal,
p ∈ P s, s ∈ Sα, X ⊆ α and X ∈ As. Then there exists a q ≤ p such that
X ∩ β ∈ Aqβ for each β ∈ Card ∩ α.

Proof. Let Y ⊆ α be chosen so that Even(Y ) precodes s and Odd(Y ) is the
Σ1 theory of A with parameters from α ∪ {A ∩ α, s}, where A is an initial
segment of As of limit height large enough to extend Ãs and contain X, p.
For β ∈ Card ∩ α let Aβ =transitive collapse of Σ1 Hull(β ∪ {A ∩ α, s})
in A. Then for sufficiently large β ∈ Card′ ∩α, either Even (Y ∩ β) precodes
sβ ∈ Sβ where sβ = pre-image of s under the natural embeddingAβ −→ A, or
|pβ | < (β+)Aβ in which case fpβ is dominated by the function g(γ) = (γ+)Aγ

on a final segment of Card+ ∩ β.
Define q as follows: qβ = sβ if Even (Y ∩ β) precodes sβ ∈ Sβ . For

other β ∈ Card′ ∩ α, qβ = pβ ∗ (Y ∩ β)E , the concatenation of pβ with the
characteristic function of (Y ∩β)E . For β ∈ Card+∩α, qβ = pβ∗�0∗1∗(Y ∩ β)D

where �0 has length g(β).
As g�β, Y ∩β are definable overAβ for β ∈ Card′∩α we get g�β, Y ∩β ∈ Asβ

when Even (Y ∩ β) precodes sβ ∈ Sβ . Also g�β, Y ∩ β ∈ Aqβ for other
β ∈ Card′ ∩α as Odd (Y ∩β) codes Aβ . And note that for all β ∈ Card′ ∩α,
g�β dominates fpβ on a final segment of Card+ ∩ α (and hence q�β exactly
codes qβ), unless Even (Y ∩ β) precodes sβ and sβ = pβ , in which case q�β
exactly codes qβ = sβ because p�β does.

So we conclude that for sufficiently large β ∈ Card′ ∩α, q�β exactly codes
qβ and X∩β ∈ Aqβ . Apply induction on α to obtain this for all β ∈ Card′∩α.
Finally, note that the only problem in verifying q ≤ p is that the restraint
p∗

β may prevent us from making the extension qβ of pβ when qβ = sβ , Even
(Y ∩ β) precodes sβ . Note that this case can be avoided for sufficiently large
β < α if α is not inaccessible in As, by enlarging A. So assume that α is
inaccessible in As. But property (d) in the definition of condition guarantees
that p∗

β = ∅ for β in a closed unbounded C ⊆ α, C ∈ As. We may assume
that C ∈ A and hence for sufficiently large β as above we get β ∈ C and
hence p∗

β = ∅. So q ≤ p on a final segment of Card ∩ α, and we may again
apply induction to get q ≤ p everywhere. �

The key idea of Jensen’s proof lies in the verification of distributivity
for P s. Before we can state and prove distributivity we need some definitions.

5.17 Definition. Suppose that i < β ∈ Card and D ⊆ P s, s ∈ Sβ+ . D is
i+-predense on P s if ∀p ∈ P s∃q ∈ P s (q ≤ p, q meets D and q�i+ = p�i+).
X ⊆ Card∩ β+ is thin if for each inaccessible γ ≤ β, X ∩ γ is not stationary
in γ. A function f : Card ∩ β+ −→ V is small if for each γ ∈ Card ∩ β+,
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Card(f(γ)) ≤ γ and Support (f) = {γ ∈ Card ∩ β+ | f(γ) �= ∅} is thin. If
D ⊆ P s is predense and p ∈ P s, γ ∈ Card ∩ β+ we say that p reduces D
below γ if for some δ ∈ Card+ with δ ≤ γ, q ≤ p −→ ∃r ≤ q (r meets D
and r�[δ, β] = q�[δ, β]). Finally, for p ∈ P s, f small, f ∈ As we define Σp

f =
all q ≤ p in P s such that whenever γ ∈ Card ∩ β+, D ∈ f(γ), D predense on
P pγ+ , we have that q reduces D below γ.

5.18 Lemma (Distributivity for P s). Suppose that s ∈ Sβ+ where β ∈ Card.

(a) If 〈Di | i < β〉 belongs to As, Di is i+-dense on P s for each i < β and
p belongs to P s, then there is a q ≤ p such that q meets each Di.

(b) If p belongs to P s and f is small in As then there exists a q ≤ p such
that q belongs to Σp

f .

Proof. We demonstrate (a) and (b) by a simultaneous induction on β. If
β = ω or belongs to Card+ then by induction, (a) and (b) reduce to the
following: If S is a collection of β-many predense subsets of P s, S ∈ As then
{q ∈ P s | q reduces each D ∈ S below β} is dense on P s. The latter follows
from Lemma 5.14, since P s factors as Rs ∗Q where 1Rs � Q is β+-c.c., and
hence any p ∈ P s can be extended to a q ∈ P s such that Dq = {r | r ∪ q(β)
meets D} is predense ≤ q�β for each D ∈ S.

Now suppose that β is inaccessible. We first show that (b) holds for f ,
provided f(β) = ∅. First select a closed unbounded C ⊆ β in As such that
γ ∈ C → f(γ) = ∅ and extend p so that f�γ, C ∩ γ belong to Apγ for
each γ ∈ Card ∩ β+. Then we can successively extend p on [β+

i , βi+1] in the
least way so as to meet Σp

f on [β+
i , βi+1], where 〈βi | i < β〉 is the increasing

enumeration of C. At limit stages λ, we still have a condition, as the sequence
of first λ extensions belongs to Apβλ . The final condition, after β steps, is an
extension of p in Σp

f .
Now we prove (a) in this case. Suppose that p ∈ P s and 〈Di | i < β〉 ∈ As,

Di is i+-dense on P s for each i < β. Let μ0 < μs be a large enough limit
ordinal so that 〈Di | i < β〉, p, μ̃s ∈ Lμ0 [A ∩ β+, s] and for i < β let
μi = μ0 + ω · i < μs. For any X we let Hi(X) denote Σ1 Hull(X ∪ {〈Di |
i < β〉, p, μ̃s, s, A ∩ β+}) in Lμi [A ∩ β+, s].

Let fi : Card ∩ β → V be defined by: fi(γ) = Hi(γ) if i < γ ∈ Hi(γ) and
fi(γ) = ∅ otherwise. Then each fi is small in As and we recursively define
p = p0 ≥ p1 ≥ · · · in P s as follows: pi+1 = least q ≤ pi such that:

(a) q(β) meets all predense D ⊆ Rs, D ∈ Hi(β),

(b) q meets Σpi

fi
and Di,

(c) q�i+ = pi�i+.

For limit λ ≤ β we take pλ to be the greatest lower bound to 〈pi | i < λ〉,
if it exists.
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5.19 Claim. pλ is a condition in P s, where for each γ ∈ Card ∩ β+,

pλ(γ) =
(⋃
{pi

γ | i < λ},
⋃
{pi

γ

∗ | i < λ}
)
.

Suppose that γ belongs to Hλ(γ) ∩ β. First we verify that pλ
γ =

⋃
{pi

γ |
i < λ} belongs to Sγ . Let H̄λ(γ) be the transitive collapse of Hλ(γ) and
write H̄λ(γ) as Lμ̄[Ā, s̄], P̄ = image of P s ∩Hλ(γ) under transitive collapse,
β̄ = image of β under collapse. Also write P̄ as R̄s̄ ∗ P Ḡβ̄ where Ḡ denotes
an R̄s̄-generic (just as P s factors as Rs ∗ PGβ , Gβ denoting an Rs-generic).

Now the construction of the pi’s (see conditions (a), (b)) was designed to
guarantee: (i) Ḡβ̄ = {p̄ ∈ Rs̄ | p̄ is extended by some p̄i(β̄), i < λ} is Rs̄-
generic over H̄λ(γ), where p̄i = image of pi under collapse, and (ii) for each δ̄

in (Card+ of H̄λ(γ)), γ < δ̄ < β̄, {p̄ | p̄ is extended by some p̄i�[γ, δ̄) in P̄
p̄i

δ̄
γ }

is P̄
Ḡδ̄
γ -generic over AḠδ̄ =

⋃
{Ap̄i

δ̄ | i < λ}, where P̄
Ḡδ̄
γ =

⋃
{P̄ p̄i

δ̄
γ | i < λ}

and P̄
p̄i

δ̄
γ denotes the image under collapse of P

pi
δ

γ = {q�[γ, δ) | q ∈ P pi
δ}, δ̄ =

image of δ under collapse.

5.20 Remark. We do not necessarily have property (ii) above for δ̄ = β̄,
and this is the source of our need for the nonexistence of 0# in this proof.

By induction, we have the distributivity of P t for t ∈ Sδ, δ ∈ Card+ ∩ β,
and hence that of P̄ t̄ for t̄ ∈ S̄δ̄, δ̄ ∈ (Card+ of H̄λ(γ)), δ̄ < β̄. So the “weak”
genericity of the preceding paragraph implies that:

(d) Lβ̄ [A ∩ γ, pλ
γ ] � |pλ

γ | is a cardinal.

Also:

(e) Lμ̄[A ∩ γ, pλ
γ ] � |pλ

γ | is Σ1-singular.

Thus pλ
γ ∈ Sγ (by (e)) provided we can show that when γ ≥ ω2, μ̄ <

(|pλ
γ |+)L. But H̄λ(γ) ∼→ Hλ(γ) gives a Σ1-elementary embedding with critical

point |pλ
γ |, so by Proposition 5.3, this is true. Also note that we now get

pλ�γ ∈ Apλ
γ as well, since pλ�γ is definable over H̄λ(γ) and we defined Apλ

γ

to be large enough to contain H̄λ(γ), since Lβ̄ � |pλ
γ | is a cardinal by (d) and

β̄ is a cardinal of Lμ̄.
The previous argument applies also if γ = β, using the distributivity of

Rs, or if γ = β ∩Hλ(γ), using the fact that pλ
β collapses to pλ

γ . If γ < γ∗ =
min(Hλ(γ) ∩ [γ, β)) then we can apply the first argument to get the result
for γ∗, and then the second argument to get the result for γ.

Finally, to prove the Claim we must verify the restraint condition (d) in
the definition of P . Suppose that γ is inaccessible and for i < λ let Ci be the
least closed unbounded subset of γ in Api

γ disjoint from {γ̄ < γ | pi
γ̄

∗ �= ∅}.
If λ < γ then

⋂
{Ci | i < λ} witnesses the restraint condition for pλ at γ, if

γ < λ then the restraint condition for pλ at γ follows by induction on λ and
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if γ = λ then Δ{Ci | i < λ} witnesses the restraint condition for pλ at γ,
where Δ denotes diagonal intersection.

Thus the Claim and therefore (a) is proved in case β is inaccessible. To
verify (b) in this case, note that as we have already proved (b) when f(β) = ∅
it suffices to show: if 〈Di | i < β〉 ∈ As is a sequence of dense subsets of P s

then ∀p∃q ≤ p (q reduces each Di below β). But using distributivity we see
that D∗

i = {q | q reduces Di below i+} is i+-dense for each i < β, so again
by distributivity there is q ≤ p reducing Di below i+ for each i.

We are now left with the case where β is singular. The proof of (a) can
be handled using the ideas from the inaccessible case as follows. Choose
〈βi | i < λ0〉 to be a continuous and cofinal sequence of cardinals < β,
λ0 < β0. First we argue that p ∈ P s can be extended to meet Σp

f for any
f small in As provided f(β) = ∅: extend p if necessary so that for each
γ ∈ Card ∩ β+, f�γ and {βi | βi < γ} belong to Apγ . Now perform a
construction like the one used to prove distributivity in the inaccessible case,
extending p successively on [β0, βi

+] so as to meet Σp
f on [β0, βi

+] as well

as appropriate Σpi

fi
’s defined on [β0, βi

+] to guarantee that pλ is a condition
for limit λ ≤ λ0. Note that each extension is made on a bounded initial
segment of [β0, β) and therefore by induction Σp

f ,Σ
pi

fi
can be met on these

intervals. The result is that p can be extended to meet Σp
f on a final segment

of Card∩β and therefore by induction can be extended to meet Σp
f . Second,

use the density of Σp
f when f(β) = ∅ to carry out the distributivity proof

as we did in the inaccessible case. And again, (b) follows from (a). This
complete the proof of Lemma 5.18. �

Theorem 5.1 now follows, as the argument of the previous lemma also
shows:

5.21 Lemma (Distributivity for P ). If 〈Di | i < κ〉 is 〈M,A〉-definable
where Di is i+-dense for each i < κ and p ∈ P then there exists a q ≤ p such
that q meets each Di.

Thus P is tame and preserves cofinalities. �

The proof of Theorem 5.1 in the general case is far more difficult; we refer
the reader to [5, Sect. 4.3].

The forcing used to prove the Coding Theorem preserves a number of large
cardinal properties consistent with V = L[R], R ⊆ ω, such as the Mahlo and
α-Erdős properties. In addition for any m,n a predicate A∗ can be adjoined
to 〈M,A〉 so that if κ is Σn

m-indescribable then κ is Σn
m-indescribable relative

to A∗, and then A∗ can be coded by a real, via a modification of the forcing
described above, so as to preserve Σn

m-indescribability (see [5, Sect. 4.4]).
Preservation of Πn

m-indescribability for n > 1 is an open problem.

When considering the relevance of Jensen coding, we see the importance
of indiscernible preservation:
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5.22 Proposition. Suppose that A ⊆ L preserves indiscernibles. Then there
is a real R ∈ L[A, 0#] generic over 〈L[A], A〉 such that A is definable in L[R].
Moreover, R preserves indiscernibles.

The following proof of Proposition 5.22 is reminiscent of the proof of rel-
evance for coherent Easton forcing at successors.

Proof. First assume that A = ∅. For any indiscernible i let jn be the
first n indiscernibles ≥ i. Then define sn ∈ Si+ and pn ∈ P sn recur-
sively, meeting the following conditions: s0 = ∅, p0 = the trivial condition.
sn+1 = πi(pn)i+ where πi : L → L is an elementary embedding with critical
point i, pn+1 = least q ≤ pn in P sn meeting Σpn

fn
where fn(β) = Hull(β ∪ jn)

if β ∈ Hull(β ∪ jn), fn(β) = ∅ otherwise. (β ranges over Card∩ i+ and when
β = i we take pn

β+ to be sn.) Let Gi
0 = {p | p is extended by some pn}.

Gi
0 is not P sn -generic over Asn in general as all conditions in Gi

0 have
empty restraint at indiscernibles < i. But notice that for i0 < i1 < · · · <
in ≤ i in I, Gi0

0 ∪ · · · ∪Gin
0 is a compatible set of conditions. We take Gi to

be {p | p is extended by q0 ∧ · · · ∧ qn for some ql ∈ Gil
0 , i0 < · · · < in ≤ i

in I}. Now we claim that Gi is P sn -generic over Asn for each n. Indeed, if
D is predense on P sn and belongs to Asn , D ∈ Hull({k0, . . . , km} ∪ jn) with
k0 < · · · < km < i in I then pn+1 reduces D below k+

m, pn+2 reduces D below
k+

m−1, . . . and eventually we get pn+m+2 in Gi meeting D.
It follows that Gi(<i) = Gi ∩P i is generic over Li (for Li-definable dense

sets) and hence G is P -generic over L where G =
⋃
{Gi(<i) | i ∈ I}. Clearly

G preserves indiscernibles.
If A �= ∅ then first force to obtain GCH, preserving indiscernibles, and

then apply the above argument. �

5.23 Corollary (Jensen). There is a real R <L 0#, R not set-generic over L.
Hence the genericity problem has an affirmative solution when “generic” is
interpreted to mean “set-generic”.

Not every A ⊆ L can be coded generically by a real, in the presence of 0#,
as a result of Paris’s work on “patterns of indiscernibles”:

5.24 Definition. For α, β ∈ On, β �= 0 let Iα,β = {iα+βγ | γ ∈ On} where
〈iα | α ∈ On〉 is the increasing enumeration of I.

For any real R with L[R] not rigid, the Silver indiscernibles for L[R] are
defined just like the Silver indiscernibles for L, replacing L by L[R]. In this
case we say that “R# exists”.

5.25 Theorem (Paris [14]). If R ⊆ ω and 0# /∈ L[R], then for some
α, β < ω1, Iα,β = the Silver indiscernibles for L[R].

There exist classes A ⊆ L which are generic over L, yet relative to which
Iα,β is not a class of indiscernibles for any pair α, β. (For any B ⊆ I, there
is A generic over L such that A ∩ I = B; but B can be chosen to split each
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Iα,β .) It follows that A cannot be generically coded by a real R, as any
such R satisfies the hypothesis of Paris’s theorem. However this is the only
restriction.

5.26 Theorem. If Iα,β is a class of indiscernibles for 〈L[A], A〉 for some
α, β < ω1, then there is a real R ∈ L[A, 0#] generic over 〈L[A], A〉 such that
A is definable in L[R]. Moreover, Iα,β is a class of indiscernibles for L[R].

In addition:

5.27 Theorem. For any α, β < ω1 there exists a real R such that Iα,β =
the Silver indiscernibles for L[R].

Theorems 5.26 and 5.27 are proved by first using reverse Easton methods
to create A∗ ⊆ L such that Iα,β is a generating class of indiscernibles for
〈L[A∗], A∗〉 and then using the method of Proposition 5.22 to code A∗ by a
real, preserving the indiscernibility of Iα,β .

6. The Solovay Problems

We are now prepared to discuss the solutions to the three problems posed in
Sect. 1. For a full treatment of this material, we refer the reader to Chaps. 5,
6, 7 of [5].

The Genericity Problem

We show that there is a real R <L 0# which is not class-generic over
L. First recall the statement of the Truth Lemma, which holds for all tame
L-forcings:

Truth Lemma. If G is P -generic over 〈L,A〉 then

〈L[G], A,G〉 � ϕ(σG
1 , . . . , σG

n ) iff for some p ∈ G, p � ϕ(σ1 . . . σn).

We also have:

Uniform Definability Lemma. The relation “p � ϕ(σ1, . . . , σn)” is definable
as a relation of p, ϕ, 〈σ1, . . . , σn〉 over 〈L, Sat〈L,A〉〉 where Sat〈L,A〉 denotes
the Satisfaction relation for 〈L,A〉.

6.1 Remark. 〈L, Sat〈L,A〉〉 is amenable, as 〈L,A〉 amenable implies that
〈Li, A ∩ Li〉 ≺ 〈L,A〉 for sufficiently large i ∈ I.

A consequence is the following:

If G is P -generic over 〈L,A〉, then Sat〈L[G], A,G〉 is definable over the struc-
ture 〈L[G], Sat〈L,A〉, G〉.

Using this, we can see a strategy for producing a real R not generic over L:
If R ∈ L[G] where G is P -generic over 〈L,A〉, then by the above and Tarski’s
Undefinability of Satisfaction, Sat〈L,A〉 cannot be definable over 〈L[G], A,G〉
and hence cannot be definable over 〈L[R], A〉. Thus:
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6.2 Proposition. If R ⊆ ω is generic over L, then for some amenable
〈L,A〉, Sat〈L,A〉 is not definable over 〈L[R], A〉.

6.3 Theorem. There is a real R <L 0# such that Sat〈L,A〉 is definable over
〈L[R], A〉 for every amenable 〈L,A〉.

To prove Theorem 6.3 we define for each i ∈ I a forcing Pi ⊆ Li+ for
producing Xi ⊆ i such that for each constructible A ⊆ i, Sat〈Li, A〉 is defin-
able over 〈Li[Xi], A,Xi〉. This forcing Pi is of the Easton variety and hence
preserves cofinalities. The main part of the proof consists in showing that
there is a single X ⊆ On definable in L[0#] such that X ∩ i is Pi-generic
for all i ∈ I simultaneously, and such that X preserves indiscernibles. Then
for each amenable 〈L,A〉, Sat〈L,A〉 is definable over 〈L[X], A,X〉 and X can
be coded by a real R <L 0# with the same property, using the fact that X
preserves indiscernibles and Proposition 5.22.

The proof is not special to the Sat operator and can be used to prove:

6.4 Theorem. Suppose that F : PL(ω1) → PL(ω1) is constructible, where
PL(ω1) is the set of constructible subsets of ω1. Then there is a real R <L 0#

such that F (A) is definable over 〈Lω1 [R], A〉 for all A ∈ PL(ω1).

The Π1
2-Singleton Problem

The following result gives an affirmative solution to this problem:

6.5 Theorem. There is a real R such that 0 <L R <L 0# and R is the
unique solution to a Π1

2 formula.

The heart of the matter is to build an L-definable forcing with a unique
generic, in the form of a real. To guarantee uniqueness we design our forcing
so as to make our generic “guess” at which ordinals belong to I, the class of
Silver indiscernibles. Of course no generic can correctly answer this question,
but we arrange that only one generic does a reasonable job of guessing, in the
sense that other potential generics would in fact produce closed unbounded
classes disjoint from I, an impossibility. More precisely, a generic consists of
a real R and a class A such that:

(a) R codes A as in Jensen coding.

(b) There is a Σ1(L) procedure (i1, . . . , in) �→ p(i1, . . . , in) such that the
generic corresponding to (R,A) is {p(i1, . . . , in) | i1 < · · · < in in I}.

(c) A adds closed unbounded sets so as to “kill” any (i1, . . . , in) such that
p(i1, . . . , in) disagrees with R (in the sense that any generic containing
p(i1, . . . , in) corresponds to (R′, A′) for some real R′ different from R).

(d) No (i1, . . . , in) ∈ In can be killed.
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It follows that {p(i1, . . . , in) | i1 < · · · < in in I} is the only generic, as
by (c) another generic R′ would kill (i1, . . . , in) ∈ In such that p(i1, . . . , in)
disagrees with R′, an impossibility by (d).

Of course there is a circularity here, as to design P we need the procedure
in (b), which is defined assuming that we know P . This is resolved using the
Recursion Theorem.

The killing method above involves forcing of the reverse Easton variety
and the coding of A by R uses Jensen coding, a variety of coherent Easton
forcing at successors. Thus unlike the solution to the genericity problem, here
we must mix the relevance arguments for two different types of class forcing
together, to obtain a generic in L[0#] for P .

The Admissibility Spectrum Problem

We first describe the proof of:

6.6 Theorem (David [3], Friedman [5]). There is a real R <L 0# such that
Λ(R) ⊆ the recursively inaccessible ordinals.

We wish to arrange that R-admissibles be recursively inaccessible. Sup-
pose that we have a D ⊆ ω1 such that D-admissibles are recursively inacces-
sible. (α is D-admissible if Lα[D] obeys ZFC−, with Replacement restricted
to formulas which are Σ1 and mention D as a predicate.) Then we may hope
to code D by a real R with the same property. However, if we code D by R
in the usual way (with almost disjoint forcing) we only obtain:

α is R-admissible → α is D ∩ ωLα
1 -admissible.

The reason is that to decode D from R we need to know the almost disjoint
coding reals Rξ and it is only for ξ < ωLα

1 that we have Rξ ∈ Lα. Thus the
recovery of D from R is not “fast enough”. On the other hand we would be
in good shape if D were to have the following stronger properties:

(∗) If α is D ∩ ξ-admissible and Lα[D ∩ ξ] � ξ = ω1, then α is recursively
inaccessible.

(∗∗) If α is D-admissible and Lα[D] � ω1 does not exist, then α is recursively
inaccessible.

For then we need only recover D ∩ ωLα
1 inside Lα[R] to guarantee that α be

recursively inaccessible (or inadmissible relative to R), a recovery that can
be successfully made.

The question is how to obtain D ⊆ ω1 obeying (∗), (∗∗). The natural
thing to do is to force with conditions d which are bounded subsets of ω1

obeying (∗), (∗∗) for ξ ≤ sup(d), ordered by end extension. We now come
to the key part of the argument, which is contained in the following two
observations:
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(a) Extendibility for this forcing is trivial because given d and ξ > sup(d)
we are free to extend d to length ξ by killing all admissibles between
sup(d) and ξ. It is important for this argument that we are only con-
cerned with killing admissibility, not with preserving it.

(b) Distributivity for this forcing is easily established assuming the follow-
ing: There exists a D′ ⊆ ω2 such that:

(∗′) If α is D′ ∩ ξ-admissible and Lα[D′ ∩ ξ] � ξ = ω2 then α is recursively
inaccessible.

(∗∗′) If α is D′-admissible and Lα[D′] � ω2 does not exist, then α is recur-
sively inaccessible.

Thus, we are faced with the original difficulty, but one cardinal higher! How-
ever note that we need not already have all of D′ before we can start build-
ing D; thus the idea of the proof (as in other Jensen coding constructions)
is to build R,D,D′, D′ ′, . . . simultaneously and check distributivity for any
final segment of the forcing.

To solve the admissibility spectrum problem we must introduce the re-
quirement of admissibility preservation into the above. This requires the
method of strong coding.

6.7 Theorem. There is a real R <L 0# such that Λ(R) = the recursively
inaccessible ordinals.

We approach the problem as in the previous proof. Of course the Ex-
tendibility property is more difficult to establish (Distributivity is approxi-
mately the same). Indeed the desired extension of d to d′ of length ≥ ξ must
be made so as to preserve the admissibility of recursively inaccessible ordi-
nals. Thus our conditions must be constructed out of sets which are generic
for “local” versions of the full forcing. In fact we construct a strong coding
forcing P β ⊆ Lβ at each admissible β and then inductively build P β out of
sets which are generic for the various P β′

for β′ < β.
The main difficulty is in showing that the desired locally generic sets ac-

tually exist; note that we want a P β-generic over Lβ to exist where β may
be uncountable. The proof of local generic existence is by a simultaneous
induction with the proofs of Extendibility and Distributivity and requires a
substantial use of the kind of fine structure theory used in the construction
of higher gap morasses.

7. Generic Saturation

Suppose that P is an L-forcing which has a generic; need it have a generic
definable in L[0#]? Not necessarily, as the forcing P could produce a real R

that guarantees the countability of ω
L[0#]
1 , and clearly no such real can exist

in L[0#]. However, we can weaken this slightly to obtain a positive result:



592 Friedman / Constructibility and Class Forcing

7.1 Definition. Suppose that M ⊆ N are inner models of ZFC. We say that
N is generically saturated over M if whenever an M -forcing has a generic,
then it has one definable in a set-generic extension of N .

With a mild assumption about On = the class of all ordinals, it can be
shown that L[0#] is generically saturated over L. This assumption involves
the concept of an Erdős cardinal.

7.2 Definition. A cardinal κ is α-Erdős if whenever A ⊆ κ and C is closed
unbounded in κ, there exists an X ⊆ C such that ordertypeX = α and
γ ∈ X implies X−γ is a set of indiscernibles for 〈L[A], A, δ〉δ<γ . We say that
On is α-Erdős if this holds where κ is replaced by On and indiscernibility is
only required for Σ1 formulas.

7.3 Theorem. Suppose that On is ω + ω-Erdős. Then L[0#] is generically
saturated over L.

Theorem 7.3 is proved by starting with G P -generic over 〈L,A〉 and using
ω + ω indiscernibles for 〈L[G, 0#], A,G〉 to produce another P -generic G∗,
which is “periodic”. The latter means that for some α ∈ On and 0 < β ∈ On,
Iα,β = {iα+βγ | γ ∈ On} is a class of indiscernibles for 〈L[G∗], A,G∗〉, where
I = 〈iα | α ∈ On〉 is the increasing enumeration of I. Then by an absoluteness
argument, such a G∗ may be defined in a set-generic extension of L[0#] in
which α and β are countable.

Proof of Theorem 7.3. Suppose that G ⊆ P is P -generic over 〈L,A〉. We
shall construct another P -generic G∗ (in a set-generic extension of V ) such
that G∗ has periodic indiscernibles.

Let X be a set of indiscernibles for 〈L[0#, G], G,A〉 of ordertype ω + ω
such that α ∈ X → α is Σ1-stable in 0#, G,A. The latter means that
〈Lα[0#, G ∩ Lα], G ∩ Lα, A ∩ Lα〉 is Σ1-elementary in 〈L[0#, G], G,A〉. We
can obtain X as C = {α | α is Σ1-stable in 0#, G,A} is closed unbounded.

Choose 〈D(α1, . . . , αn) | α1 < · · · < αn in On〉 such that each 〈L,A〉-
definable open dense D ⊆ P is of the form D(α1, . . . , αn) for some α1 <
· · · < αn in I. Also assume that this sequence is Δ1〈L, Sat〈L,A〉〉. Let
D∗(α1, . . . , αn) =

⋂
{D(�β) | �β a subsequence of 〈α1, . . . , αn〉}.

For j0 ∈ X choose tj0( �k0(j0), j0, �k1(j0)) to be least in D(j0) ∩ G. By the
choice of the indiscernibles X, we can write this as t0( �k0, j0, �k1(j0)), and in
addition �k1(j0) < j1 for j0 < j1 in X.

Next for j0 < j1 in X choose tj0,j1(
�k1
0(j0, j1), j0,

�k1
1(j0, j1), j1,

�k1
2(j0, j1)) to

be least in D∗( �k0, j0, �k1(j0), j1, �k1(j1)) ∩G. By the choice of X we can write
this as t1( �k1

0, j0,
�k1
1(j0), j1,

�k1
2(j0, j1)), and by Σ1-stability this is less than j2

whenever j1 < j2 in X. But we want to argue that in fact �k1
2(j0, j1) can be

chosen independently of j0.
Assuming the latter, we have t1( �k1

0, j0,
�k1
1(j0), j1,

�k1
2(j1)) belongs to

D∗( �k0, j0, �k1(j0), j1, �k1(j1)) ∩ G for j0 < j1 in X. By modifying t1 we can
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guarantee that �k1
1(j0) = �k1

2(j0) for all j0 ∈ X, j0 �= minX. Also we can
arrange that �k0 ⊆ �k1

0, �k1(j0) ⊆ �k1
1(j0) for j0 ∈ X. By indiscernibility, the

structure 〈 �k1
1(j0), <〉 with a unary predicate for �k1(j0) has isomorphism type

independent of the choice of j0 ∈ X.
Similarly choose an element t2( �k2

0, j0,
�k2
1(j0), j1,

�k2
1(j1), j2,

�k2
1(j2)) of

D∗( �k1
0, j0,

�k1
1(j0), j1,

�k1
1(j1), j2,

�k1
1(j2)) ∩ G so that �k1

0 ⊆ �k2
0 and for j0 ∈ X,

�k1
1(j0) ⊆ �k2

1(j0) with the isomorphism type of 〈 �k2
1(j0), <〉 with unary predi-

cates for �k1(j0), �k1
1(j0) independent of j0. Continue with t3, t4, . . . .

Let iα be the minimum of X and β be the ordertype of
⋃
{ �kn

1 (j0) | n ∈ ω},
an ordinal independent of the choice of j0 ∈ X. In a generic extension where
α is countable we may also arrange that

⋃
{ �kn

0 | n ∈ ω} = I ∩ iα.
For any indiscernible iγ define �kn

1 (iγ) ⊆ I ∩ (iγ , iγ+β) so that we have that
〈I ∩ (iγ , iγ+β), <〉 with a predicate for �kn

1 (iγ) is isomorphic to 〈
⋃
{ �kn

1 (j0) |
n ∈ ω}, <〉 with a predicate for �kn

1 (j0), for j0 ∈ X. Define: G∗ = {p ∈ P |
p is extended by some tn( �kn

0 , iα1 ,
�kn
1 (iα1), . . . , iαn , �kn

1 (iαn)) where α ≤ α1 <
· · · < αn are of the form α+ βγ for some γ ∈ On}. Using the indiscernibility
of I − iα in 〈L,A〉, G∗ is compatible and meets every 〈L,A〉-definable open
dense subclass of P . Thus G∗ is P -generic and Iα,β is a class of indiscernibles
for 〈L[G∗], A,G∗〉.

To complete the proof we return to the problem of making �k1
2(j0, j1) in-

dependent of j0. First a lemma:

7.4 Lemma. Let x < y by the maximum difference order on finite sets of
ordinals: x < y iff α ∈ y where α is the greatest element of the symmetric
difference of x and y. For any j0 < j1 in X and any open dense D definable in
〈L,A〉 there exists a t(��0, j0, ��1, j1, ��2, �� ) ∈ Lmin(��)∩D∩G such that ��0 < j0 <

��1 < j1 < ��2 < �� belong to I and ��0∪ ��1∪ ��2 is the <-least finite set of ordinals
(not necessarily indiscernibles) x such that t(x∩j0, j0, x∩(j0, j1), j1, x−j1, �� )
belongs to Lmin(��) ∩D ∩G.

Proof. Let x be <-least such that for some t and indiscernibles �� > max(x),
t(x ∩ j0, j0, x ∩ (j0, j1), j1, x − j1, �� ) ∈ Lmin(�� ) ∩D ∩ G. If some α ∈ x were

not in I then there would be a t∗(x∗ ∩ j0, j0, x
∗ ∩ (j0, j1), j1, x∗ − j1, ��∗) =

t(x∩j0, j0, x∩(j0, j1), j1, x−j1, �� ) with �� an initial segment of ��∗ and x∗−α =
x∗ − (α + 1), as α is L-definable from indiscernibles < α and indiscernibles
> ��. So let ��0, ��1, ��2 be x ∩ j0, x ∩ (j0, j1), x− j1. �

For j0 < j1 in X choose

tj0,j1(
�k1
0(j0, j1), j0,

�k1
1(j0, j1), j1,

�k1
2,0(j0, j1),

�k1
2,1(j0, j1))

to be least satisfying Lemma 7.4 with D = D∗( �k0, j0, �k1(j0), j1, �k1(j1)), and
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�� denoted by �k1
2,1(j0, j1). By the choice of X we can write this as

t1( �k1
0, j0,

�k1
1(j0), j1,

�k1
2,0(j0, j1), �∞),

where �∞ denotes an arbitrary sequence of large indiscernibles (of the appro-
priate length). Note that 〈 �k1

0,
�k1
1(j0),

�k1
2,0(j0, j1)〉 is definable in 〈L[G], A,G〉

from �k0, j0, �k1(j0), j1, �k1(j1), �∞ and so �k1
2,0(j0, j1) is definable in 〈L[G], A,G〉

from �k1(j1), �∞ and ordinals ≤ j1.

7.5 Claim. �k1
2,0(j0, j1) is independent of j0.

Proof. Let j0 < j1 < · · · < j be the first ω + 1 elements of X and for any
n,m let �k(jn, j)(m) = mth element of �k1

2,0(jn, j). If the Claim fails then for
some fixed m, �k(j0, j)(m) < �k(j1, j)(m) < · · · is an increasing sequence of
indiscernibles with supremum � ∈ I (using the fact that X − j has ordertype
> length( �∞)). As these ordinals are definable in 〈L[G], A,G〉 from ordinals
in (j +1)∪ �k1(j)∪ �∞ we get that � has cofinality ≤ j in L[G]. But 0# /∈ L[G]
(as G is generic over L) so by Jensen’s Covering Theorem, � has L-cofinality
< (j+ in L[G]). As � ∈ I, � is L-regular and hence j+ in L < j+ in L[G].

But then in L[G] there is a closed unbounded C ⊆ j such that D ⊆ j,
D closed unbounded, D ∈ L→ C ⊆ D ∪ α for some α < j. Now I ∩ j is the
intersection of countably many such D’s and therefore as j has uncountable
cofinality (in L[G, 0#]) we get C ⊆ I ∪ α for some α < j. This yields
0# ∈ L[G], contradiction.

This proves the claim. �

With the claim we see that there is a P -generic G∗ (in a set-generic ex-
tension of V ) such that 〈L[G∗], A,G∗〉 has a periodic class of indiscernibles
Iα,β . It now follows by absoluteness that there is such a G∗ definable in a set-
generic extension of L[0#] in which α and β are countable. This completes
the proof of Theorem 7.3. �

It can be shown that there can be no countable bound on the α and β of
the previous proof, using the solution to the Π1

2-singleton problem. (See [5,
Sect. 8.2].)

8. Further Results

The material below is discussed in [5, Chap. 8].

Strict Genericity

In set forcing, one may show that an inner model of a generic extension is
itself a generic extension. This can fail for class forcing.
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8.1 Definition. Let M be a an inner model of ZFC. A real R is generic
over M if it belongs to a generic extension of M (via a forcing defined over
a ground model of the form 〈M,A〉). R is strictly generic over M if for some
ground model 〈M,A〉, some forcing P definable over 〈M,A〉 and some G P -
generic over 〈M,A〉, R belongs to M [G] and G is definable over 〈M [R], A〉.

8.2 Theorem. There is a real R <L 0# such that R is generic over L (for
an L-definable forcing) but R is not strictly generic over L.

As with the solution to the genericity problem, Theorem 8.2 is reduced to
the violation of a definability property: If R is strictly generic over L then for
some A amenable to L, Sat〈L[R], ∅〉 is definable over 〈L[R], A〉. The latter
can be violated using class forcing.

Minimal Universes

The minimal model of V = L[0#] can be “minimized” by a class which
does not construct 0#:

8.3 Theorem. Suppose that for no α is Lα[0#] a model of ZFC. Then
there is an A ⊆ On definable in L[0#] such that 0# /∈ L[A] and for no α is
〈Lα[A], A ∩ α〉 elementary in 〈L[A], A〉.

This result is partial evidence for the conjecture that 0# is generic over
some proper inner model of L[0#].

Countable Π1
2 Sets

Assume that R# exists for every real R (i.e. that L[R] is not rigid, for
every real R). Kechris and Woodin [10] showed that a nonempty countable
Π1

2 set must have an ordinal-definable element; we show that in a sense their
result is optimal. First some definitions.

8.4 Definition. A set of reals X is n-absolute if for some formula ϕ, R ∈
X ↔ L[R] |= ϕ(R,ω1, . . . , ωn), where ωk denotes the ωk of V . An n-absolute
singleton is a real R such that {R} is n-absolute. We say absolute for 0-
absolute, and absolute singleton for 0-absolute singleton.

8.5 Theorem (Kechris-Woodin [10]). Assume R# exists for every real R.
A nonempty countable Π1

2 set contains an n-absolute singleton for some n.

Our next result demonstrates the optimality of the previous theorem.

8.6 Theorem. For each n there is a countable Π1
2 set Xn such that R ∈ Xn

implies that R is not an n-absolute singleton.

Not all elements of countable Π1
2 sets are n-absolute singletons for some n:

8.7 Theorem. There exists a countable Π1
2 set X and R ∈ X such that for

all n, R is not an n-absolute singleton.
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Not every absolute singleton belongs to a countable Π1
2 set: If a set is Σ1

2

(with a constructible parameter) and contains a non-constructible real, then
it has a constructibly-coded perfect closed subset, and a code for this perfect
closed set can be computed as a Σ1

2 function applied to an index n ∈ ω for
the given Σ1

2 set Xn. Moreover, {n | Xn has a perfect closed subset} is Σ1
2.

It follows that in L there is a perfect closed set C, with code recursive in the
complete Σ1

2 subset of ω, such that R ∈ C implies R does not belong to any
Π1

2 set whose complement contains a non-constructible real. In particular
R ∈ C implies R does not belong to a countable Π1

2 set. As the set C has
code recursive in the complete Σ1

2 set, it contains elements which are Δ1
3 in L,

and hence which are absolute singletons.
An open problem is to provide a revealing characterization of the reals

which belong to a countable Π1
2 set.

In [8] it is proved: If X is a nonempty Π1
2 set then X has an element R

such that either R ≤L 0# or 0# ≤L R. Our next result implies that 0#

has least nonzero L-degree among reals with this property, even when X is
restricted to have a unique element.

8.8 Theorem. There exists a sequence 〈(Rn
0 , Rn

1 ) | n ∈ ω〉 of pairs of reals
such that:

(a) If a real R ≤L Rn
0 and R ≤L Rn

1 , then R ∈ L.

(b) {〈R,n, i〉 | R = Rn
i } is Π1

2.

(c) n ∈ 0# ←→ n ∈ Rn
0 ←→ n ∈ Rn

1 .

8.9 Corollary. Suppose that R is a non-constructible real and every Π1
2-

singleton is ≤L-comparable with R. Then 0# ≤L R.

Thus 0# is the least “canonical” Π1
2-singleton.

New Σ1
3 Facts

If M is an inner model with 0# /∈ M , then of course there is a true Σ1
3

sentence not holding in M , namely the sentence asserting the existence of 0#;
can this effect be achieved by forcing over M?

8.10 Theorem. There exists an ω-sequence of Σ1
3 sentences 〈ϕn | n ∈ ω〉

such that if M is an inner model, 0# /∈M :

(a) ϕn is false in M for some n.

(b) For each n, some generic extension of M satisfies ϕn.

Moreover, if M = L[R] for some real R, then the generic extensions in (b)
can be taken to be inner models of L[R, 0#].

The proof is based on the following, which may be of independent interest.
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8.11 Theorem. There exists an L-definable function n : L-Singulars → ω
such that if M is an inner model with 0# /∈M :

(a) For some n, M |= {α | n(α) ≤ n} is stationary.

(b) For each n there is a generic extension of M in which 0# does not exist
and {α | n(α) ≤ n} is non-stationary.

In (a) of the previous theorem, we intend that whenever C ⊆ On is closed
unbounded and M -definable, then there is an α ∈ C, n(α) ≤ n. In (b) we
intend that the generic extension satisfy ZFC and have a definable closed
unbounded class C ⊆ On such that α ∈ C → n(α) > n.

Killing Admissibles Revisited

8.12 Definition. α is quasi R-admissible if every well-ordering in Lα[R] has
ordertype less than α.

R-admissibility implies quasi R-admissibility, but not conversely, as the
limit of the first ω R-admissibles is quasi R-admissible but not R-admissible.
Let Λ∗(R) denote {α > ω | α is quasi R-admissible}, a closed unbounded
class of ordinals containing Λ(R).

8.13 Theorem. Suppose that ϕ is Σ1 and L |= ϕ(κ) whenever κ is an L-
cardinal. Then there is a real R <L 0# such that Λ∗(R) ⊆ {α | L |= ϕ(α)}.

8.14 Corollary (Beller [1]). Suppose that α is countable, Lα |= ZF. Then
for some real R, α is the least ordinal such that Lα[R] |= ZF.

8.15 Corollary. There is a real R <L 0# such that Λ∗(R) ⊆ {α | Lα |=
ZFC−}.

Non-Characterizability of Admissibility Spectra

There cannot be a simple characterization of admissibility spectra, by
virtue of the following result.

8.16 Theorem. Let X = {A ⊆ ωL
1 | A ∈ L and for some real R, ω

L[R]
1 = ωL

1

and Λ(R) ∩ ωL
1 = A}. Then X =L 0#.

Δ1-Coding

The results described here (with the exception of Theorem 8.27) are taken
from [6]. A real R Δ1-codes a class A ⊆ On iff A is Δ1-definable over L[R].
Every L-amenable class A is Δ1-coded by 0#. The next result provides a
converse to this result.

8.17 Proposition. Suppose that L-Card = {α | α is a cardinal of L} is Σ1

over L[R], for a real R. Then 0# ≤L R.
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Proof. Suppose that the Σ1 definition has parameters less than κ, where κ
is a singular cardinal. As κ+ is an L-cardinal, by reflection there must be
unboundedly many α < κ+ such that α ∈ L-Card. But then (κ+)L < κ+,
which implies that 0# exists. As this argument can be carried out in L[R],
in fact 0# ≤L R. �

We introduce a sufficient condition for an L-amenable class to be Δ1-
coded by a real which is class-generic over L. To motivate it we first indicate
a necessary condition for Δ1-codability:

8.18 Definition. Suppose that x is an extensional set (i.e., 〈x,∈〉 satisfies
the Axiom of Extensionality). Let x̄ denote the transitive collapse of x. For
A ⊆ On we say that x preserves A if 〈x̄,∈, A∩x̄〉 is isomorphic to 〈x,∈, A∩x〉.

8.19 Definition. For a set x and ordinal δ, x[δ] denotes {f(γ) | γ < δ,
f ∈ x, f a function whose domain contains γ}. We say that x strongly
preserves A ⊆ On if x[δ] is extensional and preserves A for each cardinal δ.
A sequence of extensional sets t0 ⊆ t1 ⊆ · · · is tight if it is continuous (i.e.,
tλ =

⋃
{ti | i < λ} for limit λ) and for each i: ti = ti+1 or ti ∈ ti+1, 〈t̄j | j < i〉

belongs to the least ZFC− model containing t̄i as an element which correctly
computes Card(t̄i).

Condensation Condition. Suppose that t is transitive, κ is regular, κ ∈ t and
x ∈ t. Then:

(a) There is a tight κ-sequence t0 ≺ t1 ≺ · · · ≺ t such that x ∈ t0 and for
each i < κ: Card(ti) = κ and ti strongly preserves A.

(b) If κ is inaccessible, then there exists a t0 ≺ t1 ≺ · · · ≺ t as above, but
where each Card(ti) = ωi.

8.20 Theorem (Δ1-Coding Theorem). Suppose that A is L-amenable and
obeys the Condensation Condition in L. Then A is Δ1-coded in a tame
class-generic extension of 〈L,A〉 by a real R such that L,L[R] have the same
cofinalities.

8.21 Corollary. Suppose that A is L-amenable, obeys the Condensation
Condition in L and preserves indiscernibles. Then A is Δ1-definable over
L[R] for some indiscernible preserving real R such that L and L[R] have the
same cofinalities.

We can apply the above to show that L-Cof(ω) = {α | α has L-cofinality ω}
is Δ1-definable in L[R], where R is a real not constructing 0#.

8.22 Lemma. There is a real R0, class-generic over L, such that R0 <L 0#,
the cardinals of L[R0] are those of L, excluding ωL

1 , and the Condensation
Condition holds for A = L-Cof(ω) in L[R0].
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8.23 Corollary. There is a real R <L 0# such that R is class-generic over L,
R preserves indiscernibles, the cardinals of L[R] are those of L, excluding ωL

1 ,
and L-Cof(ω) is Δ1 over L[R].

8.24 Corollary. There is a real R <L 0# such that every quasi R-admissible
has uncountable L-cofinality.

8.25 Corollary. There is a real R <L 0# such that the function f(α) =
[α]ω ∩ L is Δ1 over L[R].

An immune partition is F : On → 2 such that neither {α | F (α) = 0} nor
{α | F (α) = 1} contains an infinite constructible set.

8.26 Corollary. There is a real R <L 0# such that some immune partition
is Δ1(L[R]).

We consider the “characterization problem” for Δ1-definability in a real:
Is there an exact constructible criterion for a subset of an L-cardinal κ to be
the intersection with κ of a predicate which is Δ1-definable in L[R] for some
real R that preserves L-cardinals? The answer is “No” when κ is ωL

3 .

8.27 Theorem. Let S = {X ⊆ ωL
3 | X = ωL

3 ∩ A for some A ⊆ On,
A Δ1-definable in L[R] for some real R such that L[R] and L have the same
cardinals}. Then S =L 0#.

Theorem 8.27 rules out any simple characterization of when an L-amenable
predicate can be Δ1-definable in a real not constructing 0#.

Minimal Coding

We have the following strengthening of the Coding Theorem.

8.28 Theorem. Suppose that A ⊆ On and 〈L[A], A〉 is a model of ZFC +
GCH. Then there is an 〈L[A], A〉-definable class forcing P such that if G ⊆ P
is P -generic over 〈L[A], A〉:

(a) 〈L[A,G], A,G〉 is a model of ZFC + GCH.

(b) L[A,G] = L[R] for some real R and A,G are definable over L[R] from
the parameter R.

(c) L[A] and L[R] have the same cofinalities.

(d) R is minimal over L[A]: if x ∈ L[R], then either x ∈ L[A] or R ∈
L[A, x].

Thus a universe obeying GCH can be “coded minimally” by a real. Note
that in clause (d) of the Theorem, x is any set constructible from R, not
necessarily a real.
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Further Applications to Descriptive Set Theory

Solovay [70] established the consistency of a number of regularity proper-
ties for projective sets of reals, using a natural model in which ω1 is inac-
cessible to reals (i.e., ω1 is an inaccessible cardinal in L[R] for each real R).
In this section we construct other models with this property, which can be
applied to the study of regularity properties for projective sets and projective
prewellorderings.

Recall that a set of reals is Σ1
1 if it is the continuous image of a Borel set

and is Π1
1 if its complement is Σ1

1. It is Σ1
n+1 if it is the continuous image of

a Π1
n set and is Π1

n+1 if its complement is Σ1
n+1. A set of reals is Δ1

n if both
it and its complement are Σ1

n. Similar definitions apply to k-ary relations on
the reals. It a set of reals (or k-ary relation in reals) is Σ1

n for some n then
we say that it is projective.

Regularity Properties

8.29 Definition. Measure (Σ1
n) is the assertion that every Σ1

n set of reals
is Lebesgue Measurable. Category (Σ1

n) is the assertion that every Σ1
n set of

reals has the Baire Property, i.e., has meager symmetric difference with some
Borel set. Perfect (Σ1

n) is the assertion that any uncountable Σ1
n set of reals

contains a perfect closed subset. Similar definitions apply to Π1
n,Δ

1
n.

In ZFC one may prove Measure (Σ1
1), Category (Σ1

1), Perfect (Σ1
1). In

Gödel’s model L one has ∼Measure (Δ1
2), ∼Category (Δ1

2), ∼Perfect (Π1
1)

using the fact that in L there is a Δ1
2 wellordering of the reals (and the

Kondo-Addison Uniformization Theorem for Π1
1). By extending ZFC slightly

we get:

8.30 Theorem (Solovay [18]). Assume that ω1 is inaccessible to reals. Then
the following hold: Measure (Σ1

2), Category (Σ1
2), Perfect (Σ1

2).

Our next result implies that the previous Theorem is optimal. The proof
is based on [2].

8.31 Theorem. Assume the consistency of an inaccessible cardinal. Then
there is a model in which:

(a) ω1 is inaccessible to reals.

(b) There is a Δ1
3 wellordering of the reals, and hence ∼Measure (Δ1

3),
∼Category (Δ1

3).

(c) ∼Perfect (Π1
2).

8.32 Remark. We use Σ1
n,Π1

n,Δ1
n to denote the “effective” versions of Σ1

n,
Π1

n, Δ1
n; see [12] for details.

Another axiom with consequences for regularity properties of projective
sets is Martin’s Axiom (MA). (We take MA to include the hypothesis ∼ CH.)
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8.33 Theorem. MA implies Measure (Σ1
2), Category (Σ1

2).

Again this is optimal.

8.34 Theorem. This is a model of MA in which:

(a) ω1 = ωL
1 .

(b) There is a Δ1
3 wellordering of the reals.

8.35 Remark. Perfect (Π1
1) fails in the above model, as this property im-

plies that ωL
1 is countable. It is not known if (a) can be replaced by “ω1 is

inaccessible to reals” in the previous theorem (assuming the consistency of a
weakly compact cardinal; this is a necessary assumption for the consistency
of MA + “ω1 is inaccessible to reals”).

Theorem 8.31 generalizes to higher levels of the projective hierarchy. Re-
call again that κ is Mahlo if κ is inaccessible and {α < κ | α is regular} is
stationary.

8.36 Theorem. Assume the consistency of a Mahlo cardinal. Then there is
a model in which:

(a) Measure (Σ1
3), Category (Σ1

3). Perfect (Σ1
3).

(b) There is a Δ1
4 wellordering of the reals.

(c) ∼Perfect (Π1
3).

8.37 Remark. To go further, one must replace L by a sufficiently Σ1
3 correct

model. Thus, assuming the consistency of a Mahlo cardinal κ, together with
“x# exists for every bounded subset x of κ”, one obtains a model of Measure
(Σ1

4), Category (Σ1
4), Perfect (Σ1

4), ∼Perfect (Π1
4) with a Δ1

5 wellordering of
the reals. However the author does not know if this use of #’s is necessary.

Prewellorderings

A prewellordering is a reflexive, transitive well-founded relation. A well-
ordering is obtained by identifying two elements a, b when a ≤ b, b ≤ a; the
length of the prewellordering is the ordertype of its associated wellordering.

δ1
n denotes the supremum of the lengths of all Δ1

n prewellorderings of the
reals.

8.38 Theorem (Classical). δ1
1 = ω1.

Kunen and Martin showed that δ1
2 is at most ω2 (see [11]). The next result

shows that this result is the best possible.

8.39 Theorem. It is consistent with ZFC that δ1
2 = ω2.

Using the Condensation Condition, we can simultaneously have ω1 inac-
cessible to reals:



602 Friedman / Constructibility and Class Forcing

8.40 Theorem (Friedman-Woodin [7]). Assuming the consistency of an in-
accessible, there is a model in which δ1

2 = ω2 and ω1 is inaccessible to reals.

There is no explicit bound on δ1
3 provable in ZFC, even with the added

hypothesis that ω1 is inaccessible to reals.

8.41 Theorem (Sect. 8.4 of Friedman [5]). Assuming the consistency of an
inaccessible, there is a model in which ω1 is inaccessible to reals and there
is a Π1

2 wellordering of some set of reals of length κ, for any pre-chosen
L-definable cardinal κ (and hence δ1

3 ≥ κ).

9. Some Open Problems

1. Can one code a class by a real preserving Πn
m-indescribability for n > 1?

2. Define n-generic over L as follows: R is 0-generic over L iff R is generic
over L. R is n + 1-generic over L iff R is generic over an inner model
of L[S], where S is n-generic over L. Does n + 1-genericity imply n-
genericity for some n? Is there a real R <L 0# which is not n-generic
over L for any n?

3. Is 0# generic over some proper inner model of L[0#]?

4. Can one prove that L[0#] is generically saturated over L in the theory
ZFC + “0# exists”?

5. Is L[0#] the least inner model which is generically saturated over L?

6. Is there a reasonable notion of “forcing” with the property that every
real either constructs 0# or can be obtained by “forcing” over L?

7. Is there a real R such that 0 <L R <L 0# which is the unique solution
to a Π1

2 formula ϕ which provably in ZFC has at most one solution?

8. Is there a simple characterization of the reals which belong to a count-
able Π1

2 set?

9. Assuming only the consistency of an inaccessible cardinal, is it con-
sistent for each n that all Σ1

n sets of reals be Lebesgue Measurable
and have the Baire and Perfect Set properties, while there is a Δ1

n+1

wellordering of the reals?

10. Assuming only the consistency of a weakly compact cardinal, is it con-
sistent to have Martin’s Axiom, ω1 inaccessible to reals, and a Δ1

3

wellordering of the reals?

11. Is it consistent for Δ1
3-reducibility and L-reducibility to coincide?
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12. Assuming only the consistency of an inaccessible cardinal, is it con-
sistent for Post’s problem to fail in HC = the hereditarily countable
sets?

13. Is there a remarkable real ; i.e., a real R <L 0# such that R is not
generic over L, R is a Π1

2-singleton, Λ(R) = the recursively inaccessible
ordinals and R has minimal L-degree? It has not yet been shown that
there is a real R <L 0# which has more than one of these properties
simultaneously.

14. Is it consistent that any parameter-free Σ1
3 sentence true in a class

forcing extension of V , be already true in V ?
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Fine structure theory is an in-depth study of definability over levels of con-
structible hierarchies. It was invented by Ronald B. Jensen (cf. [3]), and later
pursued by Jensen, Mitchell, Steel, and others (cf. for instance [7] and [4]).
Our aim here is to give a self-contained introduction to this theory.

Fine structure theory is a necessary tool for a detailed analysis of Gödel’s
L and of more complicated constructible models; in fact, it is unavoidable
even for the construction of an important class of such models, the so-called
core models. The present chapter is thus intended as an introduction to
chapters [5], [9], and [12], where core model theory is developed and applied.
It may also be read as an introduction to [7], [4], or [15].

An important result of [3] is the Σn-uniformization theorem (cf. [3, Theo-
rem 3.1]), which implies that for any ordinal α and for any positive integer n
there is a Σn-Skolem function for Jα, i.e., a Skolem function for Σn relations
over Jα which is itself Σn-definable over Jα. The näıve approach for obtain-
ing such a Skolem function only works for n = 1; for n > 1, fine structure
theory is called for.

Classical applications of the fine structure theory are to establish Jensen’s
results that �κ holds in L for every infinite cardinal κ (cf. [3, Theorem 5.2])
and his Covering Lemma: If 0# does not exist, then every uncountable set of
ordinals can be covered by a set in L of the same size (cf. [2]). We shall prove
L |= �κ as well as a slight weakening of Jensen’s Covering Lemma in the final
section of this chapter (cf. [5] on a complete proof of the Covering Lemma);
they have been generalized by recent research (cf. [10] and [8]; cf. also [9]).

The present chapter will discuss the “pure” part of fine structure theory,
the part which is not linked to any particular kind of constructible model one
might have in mind. We shall discuss Jensen’s classical version of this theory.
We shall not, however, deal with Jensen’s Σ∗ theory (which may be found in
[15, Sects. 1.6–1.8] or in [14]), and we shall also ignore other variants of the
fine structure theory which have been created. What we shall deal with here
is tantamount to what is presented in (parts of) [7, §2 and 4].

The authors would like to thank Gunter Fuchs, Paul Larson, Adrian Math-
ias, Grigor Sargsyan, and the referee for carefully reading earlier versions of
this chapter and for bringing many errors to their attention. The second
author was partially supported by the NSF Grants DMS-0204728 and DMS-
0500799.

1. Acceptable J-structures

An inner model is a transitive proper class model of ZF. If A is a set or
a proper class, then L[A] is the least inner model which is closed under
the operation x �→ A ∩ x. An important example is L = L[∅], Gödel’s
constructible universe. V itself, the universe of all sets, is of the form L[A]
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in a class forcing extension that does not add any new sets.1

Any model of the form L[A] may be stratified in two ways: into levels
of the L-hierarchy and into levels of the J-hierarchy. The former approach
was Gödel’s original one, but it turned out that the latter one (which was
introduced by Jensen in [3]) is more useful.

In order to define the J-hierarchy we need the concept of rudimentary
functions (cf. [3, p. 233]).

1.1 Definition. Let A be a set or a proper class. A function f : V k → V ,
where k < ω, is called rudimentary in A (or, rudA) if it is generated by the
following schemata:

f(〈x1, . . . , xk〉) = xi,

f(〈x1, . . . , xk〉) = xi \ xj ,

f(〈x1, . . . , xk〉) = {xi, xj},
f(〈x1, . . . , xk〉) = h(g1(〈x1, . . . , xk〉), . . . , g�(〈x1, . . . , xk〉)),
f(〈x1, . . . , xk〉) =

⋃
y∈x1

g(〈y, x2, . . . , xk〉),
f(x) = x ∩A

f is called rudimentary (or, rud) if f is rud∅.

Let us write �x for 〈x1, . . . , xk〉. It is easy to verify that for instance the
following functions are rudimentary: f(�x) =

⋃
xi, f(�x) = xi ∪ xj , f(�x) =

{x1, . . . , xk}, and f(�x) = 〈x1, . . . , xk〉. Proposition 1.3 below will provide
more information.

If U is a set and A is a set or a proper class then we shall denote by
rudA(U) the rudA closure of U ,2 i.e., the set

U ∪ {f(〈x1, . . . , xk〉) | f is rudA and x1, . . . , xk ∈ U}.

It is not hard to verify that if U is transitive, then so is rudA(U ∪ {U}). We
shall now be interested in P(U) ∩ rudA(U ∪ {U}) (cf. Lemma 1.4 below).

1.2 Definition. Let A be a set or a proper class. A relation R ⊆ V k, where
k < ω, is called rudimentary in A (or, rudA) if there is a rudA function
f : V k → V such that R = {�x | f(�x) �= ∅}. R is called rudimentary (or, rud)
if R is rud∅.

1.3 Proposition. Let A be a set or a proper class.

(a) The relation /∈ is rud.

(b) Let f , R be rudA. Let g(�x) = f(�x) if R(�x) holds, and g(�x) = ∅ if not.
Then g is rudA.

1 This class forcing extension is obtained simply by forcing with enumerations p : α → V ,
ordered by end-extension.
2 This is in contrast to [3, p. 238], where rudA(U) stands for the rudA closure of U ∪ {U }.
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(c) If R, S are rudA, then so is R ∩ S.

(d) Membership in A is rudA.

(e) If R is rudA, then so is its characteristic function χR.

(f) R is rudA iff ¬R is rudA.

(g) Let R be rudA. Let f(〈y, �x 〉) = y ∩ {z;R(〈z, �x 〉)}. Then f is rudA.

(h) If R(〈y, �x 〉) is rudA then so is ∃z ∈ yR(〈z, �x 〉).

Proof. (a) x /∈ y iff {x} \ y �= ∅. (b) If R(�x) ↔ r(�x) �= ∅, where r is rudA,
then g(�x) =

⋃
y∈r(�x) f(�x). (c) Let R(�x) ↔ f(�x) �= ∅, where f is rudA.

Let g(�x) = f(�x) if S(�x) holds, and g(�x) = ∅ if not. g is rudA by (b), and
thus g witnesses that R ∩ S is rudA. (d) x ∈ A iff {x} ∩ A �= ∅. (e):
by (b). (f) χ¬R(�x) = 1 \ χR(�x). (g) Let g(〈z, �x〉) = {z} if R(〈z, �x〉) holds,
and g(〈z, �x〉) = ∅ if not. We have that g is rudA by (b), and f(〈y, �x〉) =⋃

z∈y g(z, �x). (h) Set f(y, �x) = y ∩ {z;R(〈z, �x〉)}. f is rudA by (g), and thus
f witnesses that ∃z ∈ yR(〈z, �x〉) is rudA. �

We shall be concerned here with structures of the form 〈U,∈, A0, . . . , Am〉,
where U is transitive. (By 〈U,∈, A0, . . . , Am〉 we shall mean the structure
〈U,∈�U,A0 ∩ U, . . . , Am ∩ U〉.) Each such structure comes with a language
LȦ0,...,Ȧm

with predicates ∈̇, Ȧ0, . . . , Ȧm. We shall restrict ourselves to the
case where m = 0 or m = 1.

If M = 〈|M |, . . .〉 is a structure, X ⊆ |M |, and n < ω then we let ΣM
n (X)

denote the set of all relations which are Σn-definable over M from parameters
in X. We shall also write ΣM

n for ΣM
n (M), and we shall write ΣM

ω for⋃
n<ω ΣM

n . Further, we shall write ΣM
n for ΣM

n (∅), where n ≤ ω.
The following lemma says that rudA(U∪{U}) is just the result of “stretch-

ing” Σ〈U,∈,A〉
ω without introducing additional elements of P(U).

1.4 Lemma. Let U be a transitive set, and let A be a set or proper class
such that A∩Vrk(U)+ω ⊆ U . Then P(U)∩ rudA(U ∪{U}) = P(U)∩Σ〈U,∈,A〉

ω .

Proof. Notice that P(U) ∩ Σ〈U,∈,A〉
ω = P(U) ∩ Σ〈U ∪{U },∈,A∩U 〉

0 , so that we
have to prove that

P(U) ∩ rudA(U ∪ {U}) = P(U) ∩Σ〈U ∪{U },∈,A〉
0

“⊇”: By Proposition 1.3 (a) and (d), /∈ and membership in A are both
rudA. By Proposition 1.3 (f), (c), and (h), the collection of rudA relations is
closed under complement, intersection, and bounded quantification. There-
fore we get inductively that every relation which is Σ0 in the language LȦ

with ∈̇ and Ȧ is also rudA.
Now let x ∈ P(U)∩Σ〈U ∪{U },∈,A〉

0 . There is then some rudA relation R and
there are x1, . . . , xk ∈ U∪{U} such that y ∈ x iff y ∈ U and R(〈y, x1, . . . , xk〉)
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holds. But then x = U ∩ {y;R(〈y, x1, . . . , xk〉)} ∈ rudA(U ∪ {U}) by Propo-
sition 1.3 (g).

“⊆”: Call a function f : V k → V , where k < ω, simple iff the following
holds true: if ϕ(v0, v1, . . . , vm) is Σ0 in the language LȦ with ∈̇ and Ȧ, then
ϕ(f(v′

1, . . . , v
′
k), v1, . . . , vm) is equivalent over transitive rudA closed struc-

tures to a Σ0 formula in the same language. It is not hard to verify induc-
tively that every rudA function is simple. (Here we use the hypothesis that
A ∩ Vrk(U)+ω ⊆ U which ensures that in this situation quantifying over A is
tantamount to quantifying over A ∩ U .)

Now let x ∈ P(U) ∩ rudA(U ∪ {U}), say x = f(〈x1, . . . , xk〉), where
x1, . . . , xk ∈ U ∪ {U} and f is rudA. Then “v0 ∈ f(〈v1, . . . , vk〉)” is (equiv-
alent over rudA(U ∪ {U}) to) a Σ0 formula in the language LȦ, and hence
x = {y ∈ U | y ∈ f(〈x1, . . . , xn〉)} is in Σ〈U ∪{U },∈,A〉

0 ({x1, . . . , xn}). �

Of course Lemma 1.4 also holds with P(U) being replaced by the set of
all relations on U . The hypothesis that A ∩ Vrk(U)+ω ⊆ U in Lemma 1.4
is needed to avoid pathologies; it is always met in the construction of fine
structural inner models.

Let U be rudA closed, and let x ∈ U be transitive. Suppose that B ∈
Σ〈U,∈,A〉

0 ({x1, . . . , xk}), where x1, . . . , xk ∈ x. Then B ∩ x ∈ Σ〈x,∈,A〉
0 , and

hence B ∩ x ∈ rudA(x ∪ {x}) by Lemma 1.4. But rudA(x ∪ {x}) ⊆ U , and
therefore B ∩ x ∈ U . We have shown the following.

1.5 Lemma. Let U be a transitive set such that for every x ∈ U there is
some transitive y ∈ U with x ∈ y, let A be a set or a proper class, and suppose
that U is rudA closed. Then 〈U,∈, A〉 is a model of Σ0 Comprehension in
the sense that if B ∈ Σ〈U,∈,A〉

0 and x ∈ U is transitive then B ∩ x ∈ U .

In the next section we shall start with studying possible failures of Σ1

Comprehension in rudA closed structures. Lemma 1.5 provides the key ele-
ment for proving that (all but two of) the structures we are now about to
define are models of “basic set theory” (cf. [1, p. 36]), a theory that consists of
Σ0 Comprehension together with Extensionality, Foundation, Pairing, Union,
Infinity, and the statement that Cartesian products exist.3

We may now define the JA
α hierarchy as follows. For later purposes it is

convenient to index this hierarchy by limit ordinals.4

1.6 Definition. Let A be a set or a proper class.

JA
0 = ∅,

JA
α+ω = rudA(JA

α ∪ {JA
α }),

JA
ωλ =

⋃
α<λJ

A
ωα for limit λ,

L[A] =
⋃

α∈OnJ
A
ωα.

3 Said structures will also be models of “the transitive closure of any set exists”, a state-
ment which—despite of a claim made in [1]—is not provable even in Zermelo’s set theory.
4 This is again in contrast with [3].
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Every JA
α is rudA closed and transitive. We shall also denote by JA

α the
structure 〈JA

α ,∈�JA
α , A ∩ JA

α 〉.
An important special case is obtained by letting A = ∅ in Definition 1.6.

We write Jα for J ∅
α, and L for L[∅]. L is Gödel’s constructible universe; it

will be studied in the last section of this chapter. Other important examples
are obtained by letting A code a (carefully chosen) sequence of extenders;
such models are discussed in [5, 9, 12].

The following is an immediate consequence of Lemma 1.4.

1.7 Lemma. Let A be a set or proper class such that A∩Vrk(U)+ω ⊆ U , and

let α be a limit ordinal. Then P(JA
α ) ∩ JA

α+ω = P(JA
α ) ∩ΣJA

α
ω .

It is often necessary to work with the auxiliary hierarchy SA
α of [3, p. 244]

which is defined as follows:

SA
0 = ∅,

SA
α+1 = SA(SA

α ),

SA
λ =

⋃
ξ<λS

A
ξ for limit λ

where SA is an operator which, applied to a set U , adds images of members
of U ∪ {U} under rudA functions from a certain carefully chosen fixed finite
list. We may set

SA(U) =
⋃15

i=0Fi“(U ∪ {U})2,
where

F0(x, y) = {x, y},
F1(x, y) = x \ y,

F2(x, y) = x× y,

F3(x, y) = {〈u, z, v〉 | z ∈ x ∧ 〈u, v〉 ∈ y},
F4(x, y) = {〈u, v, z〉 | z ∈ x ∧ 〈u, v〉 ∈ y},
F5(x, y) =

⋃
x,

F6(x, y) = dom(x),
F7(x, y) =∈ ∩ (x× x),
F8(x, y) = {x“{z} | z ∈ y},
F9(x, y) = 〈x, y〉,

F10(x, y) = x“{y},
F11(x, y) = 〈left(y), x, right(y)〉,
F12(x, y) = 〈left(y), right(y), x〉,
F13(x, y) = {left(y), 〈right(y), x〉},
F14(x, y) = {left(y), 〈x, right(y)〉},
F15(x, y) = A ∩ x.
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(Here, 〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉, and left(y) = u and right(y) = v
if y = 〈u, v〉 and left(y) = 0 = right(y) if y is not an ordered pair.) It is not
difficult to show that each Fi, 0 ≤ i ≤ 15, is rudA. A little bit more work
is necessary to show that every rudA function can be generated by using
functions from this list. The functions Fi, 0 ≤ i ≤ 15, are therefore a basis
for the set of rudA functions (cf. [3, Lemma 1.8]).

Every SA
α is transitive,5 and moreover

JA
α = SA

α (9.1)

for all limit ordinals α. It is easy to see that there is only a finite jump in
rank from SA

α to SA
α+1. A straightforward induction shows that JA

α ∩On = α
for all limit ordinals α.

Recall that a structure 〈U,∈, A1, . . . , Am〉 is called amenable if and only if
Ai ∩ x ∈ U whenever 1 ≤ i ≤ m and x ∈ U . Lemma 1.5 together with (9.1)
readily gives the following.

1.8 Lemma. Let A be a set or proper class, and let α be a limit ordinal. Let
B ∈ ΣJA

α
0 . Then 〈JA

α , B〉 is amenable, i.e., JA
α is a model of Σ0 Comprehen-

sion in the language LȦ,Ḃ with ∈̇, Ȧ and Ḃ.

1.9 Definition. A J-structure is an amenable structure of the form 〈JA
α , B〉

for a limit ordinal α and predicates A, B.

Here, 〈JA
α , B〉 denotes the structure 〈JA

α ,∈�JA
α , A∩ JA

α , B ∩ JA
α 〉. Any JA

α

is a J-structure.

1.10 Lemma. Let JA
α be a J-structure.

(1) For all β < α, 〈SA
γ | γ < β〉 ∈ JA

α . In particular, SA
β ∈ JA

α for all
β < α.

(2) 〈SA
γ | γ < α〉 is uniformly ΣJA

α
1 . That is, “x = SA

γ ” is Σ1 over JA
α as

witnessed by a formula that does not depend on α.

Proof. (1) and (2) are shown simultaneously by induction on 〈α, β〉, ordered
lexicographically. Fix α and β < α. If β is a limit ordinal then inductively

by (2), 〈SA
γ | γ < β〉 is Σ

JA
β

1 , and hence 〈SA
γ | γ < β〉 ∈ JA

α by Lemma 1.7. If
β = δ + 1 then inductively by (1), 〈SA

γ | γ < δ〉 ∈ JA
α . If δ is a limit ordinal

then SA
δ =

⋃
γ<δ SA

γ ∈ JA
α , and if δ = δ̄ + 1 then SA

δ = SA
δ̄
∪SA(SA

δ̄
) ∈ JA

α as
well. It follows that 〈SA

γ | γ < β〉 ∈ JA
α . (2) is then not hard to verify. �

We may recursively define a well-ordering <A
β of SA

β as follows. If β is a
limit ordinal then we let <A

β =
⋃

γ<β <A
γ . Now suppose that β = β̄ + 1. The

5 The above list in fact contains more functions than the list from [3, Lemma 1.8]; this

enlargement yields the transitivity of each SA
α .
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order <A
β̄

induces a lexicographical order, call it <A
β̄,lex

, of 16×SA
β̄
×SA

β̄
. We

may then set

x <A
β y ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x, y ∈ SA
β̄

and x <A
β̄

y, or else

x ∈ SA
β̄
∧ y /∈ SA

β̄
, or else

x, y /∈ SA
β̄

and (i, ux, vx) <A
β̄,lex

(j, uy, vy)

where (i, ux, vx) is <A
β̄,lex

-minimal with x = Fi(ux, vx)

and (j, uy, vy) is <A
β̄,lex

-minimal with y = Fj(uy, vy).

The following is easy to prove.

1.11 Lemma. Let JA
α be a J-structure.

(1) For all β < α, 〈<A
γ | γ < β〉 ∈ JA

α . In particular, <A
β∈ JA

α for all β < α.

(2) 〈<A
γ | γ < α〉 is uniformly ΣJA

α
1 . That is, “x =<A

γ ” is Σ1 over JA
α as

witnessed by a formula that does not depend on α.

If M = JA
α , then we shall also write <M for <A

α .
We shall now start working towards showing that J-structures have Σ1-

definable Σ1-Skolem functions.
In what follows we shall fix a recursive enumeration 〈ϕi; i ∈ ω〉 of all

Σ1 formulae of the language LȦ. (What we shall say easily generalizes to
LȦ1,...,Ȧm

.) We shall denote by 
ϕ� the Gödel number of ϕ, i.e., 
ϕ� = i iff
ϕ = ϕi. We may and shall assume that if ϕ̄ is a proper subformula of ϕ then

ϕ̄� < 
ϕ�. We shall write v(i) for the set of free variables of ϕi. Recall that
all the relevant syntactical concepts are representable in (weak fragments of)
Peano arithmetic, so that the representability of these concepts is immediate.

Let M be a structure for LȦ. We shall express by |=Σ1
M ϕi[a] the fact that

a : v(i) → M , i.e., a assigns elements of M to the free variables of ϕi, and
ϕi holds true in M under this assignment. We shall also write |=Σ1

M for the
set of 〈i, a〉 such that |=Σ1

M ϕi[a]. We shall express by |=Σ0
M ϕi[a] the fact that

|=Σ1
M ϕi[a] holds, but with ϕi being a Σ0 formula, and we shall write |=Σ0

M for
the set of 〈i, a〉 such that |=Σ0

M ϕi[a].
It turns out that once we have verified that |=Σ0

M is uniformly Δ1 over
J-structures M (which are structures of LȦ), we easily get that |=Σ1

M is Σ1-
definable over such structures and that these structures admit Σ1-definable
Σ1-Skolem functions. R on M is Δ1 iff R, ¬R are both Σ1.

Let us fix a J-structure M = JA
α , a structure for LȦ.

1.12 Proposition. Let N ∈ M be transitive. For each n < ω, there is a
unique f = fN

n ∈ M such that dom(f) = n and for all i < n, if ϕi is not a
Σ0 formula then f(i) = ∅, and if ϕi is a Σ0 formula then

f(i) = {a ∈ v(i)N | |=Σ0
N ϕi[a]}.
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Proof. As uniqueness is clear, let us verify inductively that fN
n ∈ M . Well,

fN
0 = ∅ ∈ M . Now suppose that fN

n ∈ M . If ϕn is not Σ0, then fN
n+1 =

fN
n ∪ {〈n, ∅〉} ∈M . Now let ϕi be Σ0. We have that v(n)N ∈M , and if

T = {a ∈ v(n)N | |=Σ0
N ϕn[a]}

then T ∈ P(v(n)N) ∩ΣM
0 , and thus T ∈M by Lemma 1.8. Therefore,

fN
n+1 = fN

n ∪ {〈n, T 〉} ∈M.

�

Now let Θ(f,N, n) denote the following formula.

N is transitive ∧ f : n→ N ∧ ∀i < n

[(i = 
vi0 ∈ vi1�, some vi0 , vi1 → f(i) = {a ∈ v(i)N | a(vi0) ∈ a(vi1)})
∧ (i = 
Ȧ(vi0)�, some vi0 → f(i) = {a ∈ v(i)N | a(vi0) ∈ A})
∧ (i = 
ψ0 ∧ ψ1�, some ψ0, ψ1

→ f(i) = {a ∈ v(i)N | a�v(
ψ0�) ∈ f(
ψ0�) ∧ a�v(
ψ1�) ∈ f(
ψ1�)})
∧ (i = 
∃vi0 ∈ vi1ψ�, some vi0 , vi1 , ψ, where ψ is Σ0

→ f(i) = {a ∈ v(i)N | ∃x ∈ a(vi1)(a ∪ {〈vi0 , x〉})�v(
ψ�) ∈ f(
ψ�)})
∧ (i = 
ϕ�, some ϕ, where ϕ is not Σ0 → f(i) = ∅)].

It is straightforward to check that Θ(f,N, n) holds (in M) if and only if f =
fN

n . Now Proposition 1.12 and the fact that every element of M is contained
in a transitive element of M (for instance in some SA

β ; cf. Lemma 1.10)
immediately gives the following.

1.13 Proposition. Let ϕi be Σ0, and let a : v(i) → M . Then |=Σ0
M ϕi[a] if

and only if

M |= ∃f ∃N (ran(a) ⊆ N ∧Θ(f,N, i + 1) ∧ a ∈ f(i)),

if and only if

M |= ∀f ∀N ((ran(a) ⊆ N ∧Θ(f,N, i + 1)) → a ∈ f(i)).

In particular, the relation |=Σ0
M is ΔM

1 .

We are now ready to prove two important results.

1.14 Theorem. Let M be a J-structure. The Σ1-satisfaction relation |=Σ1
M

is then uniformly ΣM
1 .

If M is a structure then h is a Σ1-Skolem function for M if

h :
⋃

i<ω({i} × v(i)|M |) → |M |,

where h may be partial, and whenever ϕi = ∃vi0ϕj and a : v(i) → |M |,

∃y ∈ |M | |=Σ1
M ϕj [(a ∪ {〈vi0 , y〉})�v(j)]

=⇒ |=Σ1
M ϕj [(a ∪ {〈vi0 , h(i, a)〉})�v(j)].
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1.15 Theorem. Let M be a J-structure. There is a Σ1-Skolem function hM

which is uniformly ΣM
1 .

The above two theorems are to be understood as follows. There are Σ1

formulae Φ, Ψ such that whenever M is a J-structure,

(a) Φ defines |=Σ1
M , i.e. |=Σ1

M ϕi[a] ⇐⇒M |= Φ(i, a), and

(b) Ψ defines hM , i.e. y = hM (i, a)⇐⇒M |= Ψ(i, a, y).

Proof of Theorem 1.14. We have that |=Σ1
M ϕi[a] iff

∃b ∈M ∃〈vi0 , . . . , vik
, j, 〉, some vi0 , . . . , vik

,

j[i = 
∃vi0 · · · ∃vik
ϕj� ∧ ϕj is Σ0 ∧ a, b are functions

∧ dom(a) = v(i) ∧ dom(b) = v(j) ∧ a = b�v(i)∧ |=Σ0
M ϕj [b]].

Here, |=Σ0
M is uniformly ΔM

1 by Proposition 1.13. The rest follows. �

Proof of Theorem 1.15. The idea here is to let y = hM (i, a) be the “first
component” of a minimal witness to the Σ1 statement in question (rather
than letting y be minimal itself). We may let y = hM (i, a) iff

∃N ∃β ∃R ∃b, all in M, ∃〈vi0 , . . . , vik
, j〉, some vi0 , . . . , vik

, j

[N = SA
β ∧R =<A

β ∧ i = 
∃vi0 · · · ∃vik
ϕj� ∧ ϕj is Σ0

∧ a, b are functions ∧ dom(a) = v(i) ∧ dom(b) = v(j) ∧ a = b�v(i)
∧ ran(b) ⊆ N∧ |=Σ0

M ϕj [b] ∧ ∀b̄ ∈ N((b̄ is a function ∧ dom(b̄) = v(j)

∧ a = b̄�v(i) ∧ ran(b̄) ⊆ N ∧ b̄ R b) → ¬ |=Σ0
M ϕj [b̄]) ∧ y = b(vi0)].

Here, “N = SA
β ” and “R =<A

β ” are uniformly ΣM
1 by Lemmata 1.10 (2)

and 1.11 (2), and |=Σ0
M is uniformly ΔM

1 by Proposition 1.13. Therefore, the
rest follows. �

If we were to define a Σ2-Skolem function for M in the same manner then
we would end up with a Σ3 definition. Jensen solved this problem by showing
that under favorable circumstances Σn over M can be viewed as Σ1 over a
“reduct” of M . Reducts will be introduced in the fifth section of this chapter.

Another useful fact is the so-called Condensation Lemma.6

1.16 Theorem. Let M = 〈JA
α , B〉 be a J-structure, and let π : M̄ −→

Σ1
M

where M̄ is transitive. Then M̄ is a J-structure, i.e., there are ᾱ ≤ α, Ā,
and B̄ such that M̄ = 〈J Ā

ᾱ , B̄〉.

6 For n < ω, X ≺Σn M means that Σn formulae with parameters taken from X are
absolute between X and M . To have π : M̄ −→

Σn

M means that ran(π) ≺Σn M .
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Proof. Set ᾱ = M̄ ∩ On ≤ α, Ā = π−1“A, and B̄ = π−1“B. We claim that
M̄ = 〈J Ā

ᾱ , B̄〉.
Well, Lemma 1.10 easily gives that SĀ

β ∈ M̄ whenever β < ᾱ. Therefore,
JA

ᾱ ⊆ M̄ . On the other hand, let x ∈ M̄ . Then π(x) ∈ SA
β for some β < α,

and hence x ∈ SĀ
β for some β < ᾱ. �

We also want to write hM (X) for the closure of X under hM , more pre-
cisely:

Convention. Let M = JA
α be a J-structure, and let X ⊆ |M |. We shall

write hM (X) for hM“(
⋃

i<ω({i} × v(i)X)).

Using Theorem 1.15, it is easy to verify that hM (X) ≺Σ1 M . There will
be no danger of confusing the two usages of “hM”. [X]<ω denotes the set of
all finite subsets of X.

1.17 Lemma. Let M = JA
α be a J-structure. There is then some surjective

f : [α]<ω →M which is ΣM
1 .

If α is closed under the Gödel pairing function, then there is a surjection
g : α→ JA

α which is ΣM
1 . For an arbitrary α, there is a surjection h : α→ JA

α

which is ΣM
1 .

Proof. We have that hM (α) ≺Σ1 M , and hence hM (α) = M . But it is
straightforward to construct a surjective g′ : [α]<ω →

⋃
i<ω({i} × v(i)α)

which is ΣM
1 . We may then set f = hM ◦ g′.

As to the existence of g, let Φ : otp(<A
α ) → JA

α denote the enumeration
of JA

α according to <A
α . It is not hard to verify by a simultaneous induction

(cf. the proof of Lemma 1.10) that for all limit ordinals β ≤ α, Φ�β is Σ
JA

β

1

and for all γ < β, Φ�γ ∈ JA
β . But now if α is closed under the Gödel pairing

function then otp(<A
α ) = α.

The existence of h is established by [3, Lemma 2.10]. �

In the following we describe a useful class of formulae, which lies some-
where between Σ1 and Π2. It turns out that many notions can be expressed
by statements belonging to this class.

1.18 Definition. We say that ϕ is a Q-formula iff ϕ is of the form

∀u ∃v ⊇ u ψ(v),

where ψ is Σ1 and does not contain u. Instead of ∀u ∃v ⊇ u we write briefly
Qv. The above formula then has the form Qv ψ(v) and we read “for cofinally
many v, ψ(v)”. A map π that preserves Q formulae is called Q-preserving
and we write

π : M̄ −→
Q

M.

A property characterized by a Q-formula is also called a Q-condition.
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1.19 Definition. Let U, V be transitive structures. A map σ : U → V is
cofinal iff for all y ∈ V there is some x ∈ U such that y ⊆ σ(x).

Let σ : U −→
Σ1

V , where U , V are transitive structures, and let ϕ be a

Q-formula. It is easy to see that

(a) ϕ is preserved downwards,

(b) if σ is cofinal, then ϕ is preserved upwards.

Note also that Q-formulae are closed under ∧ and ∨ (modulo the “basic set
theory” of [1, p. 36]).

We now introduce the notion of acceptability which is fundamental for the
general fine structure theory. As will follow from the definition, acceptability
can be considered as a strong version of GCH.

1.20 Definition. A J-structure M = 〈JA
α , B〉 is acceptable iff the following

holds: Whenever ξ < α is a limit ordinal and P(τ) ∩ JA
ξ+ω �⊆ JA

ξ for some
τ < ξ, there is a surjective map f : τ → ξ in JA

ξ+ω. (This means that
Card(ξ) ≤ τ in JA

ξ+ω.)

1.21 Lemma. Being an acceptable J-structure is a Q-property. More pre-
cisely: There is a fixed Q-sentence Ψ such that for any M = 〈|M |, A,B〉
which is transitive and closed under pairing, M is an acceptable J-structure
iff M |= Ψ.

Proof. The statement 〈|M |, A〉 = JA
α is a Q-condition for 〈|M |, A〉, as we

may write this as
Qu ∃β u = SA

β .

Here, “u = SA
β ” is the Σ1 formula from Lemma 1.10 (2). Amenability can be

expressed by
Qu ∃z z = B ∩ u.

It only remains to prove that the fact that we collapse ξ whenever we add
a new bounded subset is expressible in a Q-fashion. We note first that a
J-structure M is acceptable iff the following holds in M :

∀ limit ordinals ξ ∃n ∈ ω ∀m ≥ n ∀τ < ξ

[P(τ) ∩ SA
ξ+m �⊆ SA

ξ → ∃f ∈ SA
ξ+m f : τ onto−→ ξ].

(9.2)

Denote the sentence (9.2) by ψ. It is easy to see that if M satisfies ψ then
M is acceptable. To see the converse, fix a limit ordinal ξ and suppose that
there is a τ < ξ such that P(τ) ∩ SA

ξ+ω �⊆ SA
ξ . Let τ be minimal with this

property. By acceptability of M , there is an n ∈ ω such that SA
ξ+n contains

a function f mapping τ onto ξ. Using f , it is easy to construct a surjective
map fτ ′ : τ ′ → ξ for any τ ′ < ξ whose power set in SA

ξ+ω is larger than that
in SA

ξ (since τ ′ ≥ τ) and it follows immediately that fτ ′ ∈ SA
ξ+n+k for some

k < ω; so we have a uniform bound for all such functions.
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If the height of M is ωα for some limit α, then acceptability is equivalent
to the statement

Qξ SA
ξ |= ψ.

Otherwise, we have to state (9.2) explicitly for the last level. Hence, the
desired condition is then

〈|M |, A,B〉 is an amenable J-structure
∧Qζ (lim(ζ) → SA

ζ |= ψ) ∧ [Qζ (ζ is a limit) ∨ ϕ] (9.3)

where ϕ is the sentence

Qζ∃β < ζ [lim(β) ∧ ∀η < ζ (η > β → succ(η)) ∧ ϕ′(β, ζ)]

and ϕ′(β, ζ) is the formula

∀τ < β [∃u ∈ SA
ζ (u /∈ SA

β ∧ u ⊆ τ)→ ∃f ∈ SA
ζ f : τ onto−→ β].

ϕ is clearly a Q-sentence, hence (9.3) is a Q-sentence as well. Denote this
formula by Ψ. Then M is an acceptable J-structure iff M |= Ψ. �

1.22 Corollary.

(a) If π : M̄ −→
Σ1

M and M is acceptable, then so is M̄ .

(b) If π : M̄ −→
Q

M and M̄ is acceptable, then so is M . This holds in

particular if π is a Σ0 preserving cofinal map.

1.23 Lemma. Let M = JA
α be acceptable and let ρ ∈ M be an infinite

cardinal in M . Given u ∈ JA
ρ , any a ∈ M which is a subset of u is in fact

an element of JA
ρ .

Proof. Since u ∈ JA
ρ , there is some τ < ρ and a surjective map g : τ → u

in JA
ρ (cf. Lemma 1.17). Set ā = g−1“a. Then ā ⊆ τ and a ∈ JA

ρ ⇐⇒
ā ∈ JA

ρ . But if ā /∈ JA
ρ , then there is an f : τ

onto−→ ξ, where ξ is such that
ā ∈ JA

ξ+ω \ JA
ξ ; hence ξ ≥ ρ. This contradicts the fact that ρ is a cardinal in

JA
α . Consequently, a ∈ JA

ρ . �

1.24 Lemma. Let M be as above and ρ an infinite successor cardinal in M .
Let a ⊆ JA

ρ be such that a ∈M and Card(a) < ρ in M . Then a ∈ JA
ρ .

Proof. Let γ < ρ and g ∈M be such that g : γ onto−→ a. Define f : γ → ρ by

ζ = f(ξ) ⇐⇒ g(ξ) ∈ SA
ζ+ω \ SA

ζ .

Then f ∈M .

Claim. f is bounded in ρ.
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Suppose that this Claim holds. Let δ < ρ be such that ran(f) ⊆ δ. Then
a ⊆ SA

δ ∈ JA
ρ and, by Lemma 1.23, a ∈ JA

ρ . Hence it suffices to prove the
Claim.

Suppose that f is unbounded in ρ. Define G : ρ→M by

G(η) = the <A
α -least function of γ onto η.

This is possible since ρ is a successor cardinal in M , so we can pick γ large
enough that all we have done so far goes through. Clearly G is definable over
JA

ρ , hence G ∈M . Now define F : γ × γ
onto−→ ρ by

F (ξ, η) = G(f(ξ))(η).

Then F ∈M . By Lemma 1.17, there is some surjection g : γ → γ × γ which

is Σ
JA

γ

1 ; hence g ∈M . But then F ◦ g ∈M witnesses that ρ is not a cardinal
in M . This contradiction yields the Claim. �

1.25 Corollary. Let M , ρ be as in Lemma 1.24. Then JA
ρ |= ZFC−.

Proof. The point here is to verify the Separation and Replacement Schemata
in JA

ρ , since the rest of the axioms hold in JA
ρ automatically. The former

follows from Lemma 1.23 and the latter from Lemma 1.24 in a straightforward
way. �

1.26 Corollary. Let M be as above where ρ > ω is a limit cardinal in M .
Then JA

ρ |= ZC (where ZC is Zermelo set theory with choice).

Proof. We only have to verify the power set axiom; the rest goes through as
before. Let a ∈ JA

ρ . Pick γ < ρ such that γ is a cardinal in JA
ρ and a ∈ JA

γ .
Then for every x ∈ P(a) ∩ JA

ρ , x ∈ JA
γ . Hence P(a) ∩ JA

ρ ∈ JA
ρ . �

1.27 Corollary. Let M , ρ be as above. Then

|JA
ρ | = HM

ρ
def= {x ∈M | Card (tc(x)) < ρ in M}.

Proof. Clearly |JA
ρ | ⊆ HM

ρ . So it is sufficient to prove the converse. Suppose
that it fails. Let ρ be the least counterexample. Then ρ is a successor cardinal
in M . Let x ∈ HM

ρ be ∈-minimal such that x /∈ JA
ρ . Then x ⊆ JA

ρ . Since
card(x) < ρ in M , x ∈ JA

ρ by Lemma 1.23. Contradiction. �

2. The First Projectum

We now introduce the central notions of fine structure theory—the notions
projectum, standard code and good parameter. We stress that we are work-
ing with arbitrary J-structures and that these structures have, in general,
very few closure properties. This means that there might be bounded defin-
able subsets of these structures (in a precise sense) failing to be elements.
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However, each J-structure has an initial segment which is “firm” in the sense
that it does contain all sets reasonably definable over the whole structure.
The height of this “firm” segment is called the projectum. Standard codes
are (boldface) definable relations computing truth and good parameters are
parameters that occur in the definitions of standard codes.

2.1 Definition. The Σ1 projectum (or, first projectum) ρ(M) of an accept-
able J-structure M = JA

α is defined by

ρ(M) = the least ρ ∈ On such that P(ρ) ∩ΣM
1 �⊆M.

2.2 Lemma. Let M be as above. If ρ(M) ∈ M , then ρ(M) is a cardinal
in M .

Proof. Suppose not. Set ρ = ρ(M). Let f ∈ M be such that f : γ
onto−→ ρ for

some γ < ρ and A ∈ ΣM
1 be such that a = A∩ ρ /∈M . Let ā = f −1“a. Then

ā /∈ M , since otherwise a = f“ā ∈ M . On the other hand, ā ∈ M by the
definition of ρ, since ā ⊆ γ and ā ∈ ΣM

1 . Contradiction. �

2.3 Lemma. Let M be as above and ρ = ρ(M). Then ρ is a Σ1 cardinal
in M (i.e. there is no ΣM

1 partial map from some γ < ρ onto ρ).

Proof. Suppose that there is such a map, say f : γ
onto−→ ρ. We know that

there is a Σ
JA

ρ

1 map of ρ onto JA
ρ (cf. Lemma 1.17). Hence there is a ΣM

1

map g : γ onto−→ JA
ρ . Define a set b by

ξ ∈ b ⇐⇒ ξ /∈ g(ξ).

Then b is clearly ΣM
1 and b ⊆ γ. Moreover, b /∈ JA

ρ by a diagonal argument:
if b ∈ JA

ρ then b = g(ξ0) for some ξ0 < γ which would give ξ0 ∈ b = g(ξ0)
iff ξ0 /∈ g(ξ0). Hence b /∈ M : this follows from Lemma 1.23 if ρ ∈ M and
is immediate otherwise. On the other hand, γ < ρ, and therefore b ∈ M .
Contradiction! �

Lemma 1.17 and Lemma 1.23 now immediately give the following.

2.4 Corollary. Let M be acceptable and ρ = ρ(M).

(a) If B ⊆ JA
ρ is ΣM

1 , then 〈JA
ρ , B〉 is amenable.

(b) |JA
ρ | = HM

ρ .

Recall that we fixed a recursive enumeration 〈ϕi | i < ω〉 of all Σ1 formulae.
In what follows it will be convenient to pretend that each ϕi has exactly one
free variable. For instance, if ϕi = ϕi(vi1 , . . . , vi�

) with all free variables
shown then we might confuse ϕi with

∃vi1 . . . ∃vi�
(u = 〈vi1 , . . . , vi�

〉 ∧ ϕi(vi1 , . . . , vi�
)).
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To make things even worse, we shall nevertheless often write ϕi(x1, . . . , x�)
instead of ϕi(〈x1, . . . , x�〉). If a : v(i) → V assigns values to the free vari-
able(s) vi1 , . . . , vi�

of ϕi then, setting x1 = a(vi1), . . . , x� = a(vi�
) we shall

use the more suggestive M |= ϕi(x1, . . . , x�) rather than |=Σ1
M ϕi[a] in what

follows. We shall also write hM (i, �x) instead of hM (i, a).

2.5 Definition. Let M = 〈JB
α , D〉 be an acceptable J-structure, ρ = ρ(M)

and p ∈M . We define

Ap
M = {〈i, x〉 ∈ ω ×HM

ρ |M |= ϕi(x, p)}.

Ap
M is called the standard code determined by p. Let us stress that Ap

M

is the intersection of ω × HM
ρ with a set Ãp

M (defined in an obvious way)
which is ΣM

1 ({p}). We shall often write Ap
M (i, x) instead of 〈i, x〉 ∈ Ap

M . The
structure

Mp = 〈JB
ρ , Ap

M 〉
is called the reduct determined by p. If δ = ρ or δ < ρ where δ is a cardinal
in M , we also set

Ap,δ
M = Ap ∩ JB

δ ,

Mp,δ = 〈JB
δ , Ap,δ

M 〉.

We shall omit the subscript M whenever there is no danger of confusion.

2.6 Definition. Let M be acceptable and ρ = ρ(M).

PM = the set of all p ∈ [ρ(M),M ∩On)<ω for which

there is a B ∈ ΣM
1 ({p}) such that B ∩ ρ /∈M .

The elements of PM are called good parameters.

2.7 Lemma. Let M be as before, p ∈M and A = Ap
M . Then

p ∈ PM ⇐⇒ A ∩ (ω × ρ(M)) /∈M.

Proof. (=⇒) Pick B which witnesses that p ∈ PM . Suppose that B is defined
by ϕi. Hence B(ξ) ↔ 〈i, ξ〉 ∈ A, which means that if A∩ (ω×ρ(M)) is in M ,
then so is B ∩ ρ(M). Hence the former is not an element of M .

(⇐=) Suppose that A ∩ (ω × ρ(M)) /∈ M . Let f : ω × ρ(M) −→ ρ(M)
be defined by f(i, ωξ + j) = ωξ + 2i·3j . Clearly f is ΣM

1 uniformly and if
ρ(M) ∈M then f ∈M . Let B = f“A. Then B is ΣM

1 ({p}) and B ∩ ρ(M) /∈
M : if ρ(M) ∈M , this follows from the fact that f ∈M and A∩(ω×ρ(M)) =
f −1“(B ∩ ρ(M)); if ρ(M) /∈ M , it follows from the fact that B is cofinal in
ρ(M). �

2.8 Definition. Let M be acceptable and ρ = ρ(M). We set

RM = the set of all r ∈ [ρ(M),M ∩On)<ω such that hM (ρ ∪ {r}) = |M |.

The elements of RM are called very good parameters.
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2.9 Lemma. RM ⊆ PM �= ∅.

Proof. By the proof of Lemma 1.17, hM (M∩On) = M for any J-structure M .
Given an acceptable structure M , if A is a relation which is ΣM

1 ({p}) for some
p ∈M then A is therefore also ΣM

1 ({q}) for some q ∈ [M ∩On]<ω. As ρ(M)
is closed under the Gödel pairing function (if ρ(M) < M∩On), the inequality
easily follows. As to the inclusion, define the set a ⊆ ω ×M ∩On by

〈i, ξ〉 ∈ a ⇐⇒ 〈i, ξ〉 /∈ hM (i, 〈ξ, p〉)

for a p ∈ RM . By a diagonal argument, a ∩ ω × ρ(M) /∈ M and a is Σ1(M)
in p. Using the map f from the proof of Lemma 2.7 it is easy to turn the set
a into some b ⊆M ∩On such that b is ΣM

1 in p and b ∩ ρ(M) /∈M . �

We remark that PM and RM are often defined differently so as to include
arbitrary elements of M rather than just finite sequences of ordinals in the
half-open interval [ρ(M),M ∩On).

3. Downward Extension of Embeddings

Given a Σ0 preserving map between the reducts of two acceptable struc-
tures, the question naturally arises whether the map can be extended to a
map between the original structures. It turns out that this is possible. The
conjunction of the following three lemmas is called the Downward Extension
of Embeddings Lemma.

3.1 Lemma. Let π : M̄ p̄−→
Σ0

Mp, where p̄ ∈ RM̄ . Then there is a unique

π̃ : M̄ −→
Σ0

M such that π̃ ⊇ π and π̃(p̄) = p. Moreover, π̃ : M̄ −→
Σ1

M .

Proof. Uniqueness: Assume that π̃ has the above properties. Let x ∈ M̄ .
Then x = hM̄ (i, 〈ξ, p̄〉) for some i ∈ ω and ξ < ρ(M). Let H̄ be ΣM̄

0 such
that ∃z H̄(z, x, i, ξ, p̄) defines the Skolem function hM̄ (this involves a slight
abuse of notation). H̄ has a uniform definition, so let H have the same defi-
nition over M . Pick z such that H̄(z, x, i, ξ, p̄). Since π̃ is Σ0 preserving, we
have H(π̃(z), π̃(x), i, π̃(ξ), p), i.e. π̃(x) = hM (i, 〈π̃(ξ), p〉) = hM (i, 〈π(ξ), p〉).
Hence, there is at most one such π̃.

Existence: The above proof of uniqueness suggests how to define the exten-
sion π̃. Here we show that such a definition is correct. We first observe:

Claim. Suppose that ϕ(v1, . . . , v�) is a Σ1 formula. Let x̄i = hM̄ (ji, 〈ξ̄i, p̄〉)
for some ji ∈ ω, ξ̄i < ρ(M) and xi = hM (ji, 〈ξi, p〉) where ξi = π(ξ̄i) (i =
1, . . . , �). Then

M̄ |= ϕ(x̄1, . . . , x̄�) ⇐⇒ M |= ϕ(x1, . . . , x�).
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Proof. M̄ |= ϕ(x̄1, . . . , x̄�) is equivalent to

M̄ |= ϕ(hM̄ (j1, 〈ξ̄1, p̄〉), . . . , hM̄ (j�, 〈ξ̄�, p̄〉)).

Since hM̄ has a uniform Σ1 definition over M̄ , there is a Σ1 formula ψ such
that the above is equivalent to

M̄ |= ψ(ξ̄1, . . . , ξ̄�, p̄). (9.4)

The formula ψ clearly does not depend on the actual structure in question,
so the statement M |= ϕ(x1, . . . , x�) is equivalent to

M |= ψ(ξ1, . . . , ξ�, p). (9.5)

Now suppose that ψ(ξ1, . . . , ξ�, p) ⇐⇒ ϕk(〈ξ1, . . . , ξ�〉, p) in our fixed recursive
enumeration of Σ1 formulae, hence (9.4) is equivalent to

Ap̄
M̄

(k, 〈ξ̄1, . . . , ξ̄�〉) (9.6)

and (9.5) is equivalent to

Ap
M (k, 〈ξ1, . . . , ξ�〉). (9.7)

Since π is Σ0 preserving, (9.6) and (9.7) are equivalent. �

Now define π̃ by

π̃(hM̄ (i, 〈ξ, p̄〉))  hM (i, 〈π(ξ), p〉)

for i ∈ ω and ξ < ρ(M̄). We have to verify several facts:

– π̃ is well defined.
Let hM̄ (j1, 〈ξ̄1, p̄〉) = hM̄ (j2, 〈ξ̄2, p̄〉) for some j1, j2 ∈ ω and ξ̄1, ξ̄2 < ρ(M̄).
We have to show that hM (j1, 〈ξ1, p〉) = hM (j2, 〈ξ2, p〉), where ξi = π(ξ̄i)
(i = 1, 2). By the above claim, this follows immediately.

– π̃ is Σ1 preserving.
Since π̃ is a well defined map, this follows immediately from the above
claim.

– π̃ ⊇ π.
There is an i ∈ ω such that the equality x = hM (i, 〈x, q〉) holds uni-
formly and independently of q. In particular, for ξ < ρ(M̄) we have
ξ = hM̄ (i, 〈ξ, p̄〉), so

π̃(ξ) = hM (i, 〈π(ξ), p〉) = π(ξ).

– π̃(p̄) = p.
Similarly as above, there is an i ∈ ω such that q = h(i, 〈x, q〉) uniformly.
Hence p̄ = hM̄ (i, 〈0, p̄〉) and π̃(p̄) = hM (i, 〈0, p〉) = p.

�
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3.2 Lemma. Let M̄ , M , p̄, p, π, π̃ be as above. Suppose moreover that
p ∈ RM . Let π : M̄ p̄−→

Σn

Mp. Then

π̃ : M̄ −→
Σn+1

M.

Proof. We shall proceed by induction. Suppose that the lemma holds for n.
Suppose that we have a Σn+1 formula ϕ which is of the form

∃z1 ∀z2 . . . ∃/∀zn+1 ϕ̄(z1, . . . , zn+1, x1, . . . , x�), (9.8)

where ϕ̄ is Σ0. For notational simplicity, assume that n = 2 and � = 1. Given
a J-structure N and an arbitrary q ∈ RN , the structure N satisfies (9.8) iff
it satisfies the formula

∃ξ1 < ρ(N)∃i1∀ξ2 < ρ(N)∀i2[∃y y = hN (i2, 〈ξ2, q〉)
→ ∃y1∃y2∃x∃z3(y1 = hN (i1, 〈ξ1, q〉) ∧ y2 = hN (i2, 〈ξ2, q〉)∧

x = hN (j1, 〈ζ1, q〉) ∧ ϕ̄(y1, y2, z3, x))]
(9.9)

where x1 = hN (j1, 〈ζ1, q〉). (For an arbitrary n, the analogous fact can be
verified by a straightforward induction on n using that q is a very good
parameter.) Notice that the matrix in (9.9) is of the form ψ1 → ψ2, where
both ψ1 and ψ2 are Σ1 via a uniform transformation, i.e., there are k1, k2 ∈ ω
depending only on ϕ̄ such that (9.9) can be expressed in a Σ2-fashion over
Nq in the following way:

∃ξ1 ∃i1 ∀ξ2 ∀i2 [Aq
N (k1, 〈ξ1, i1, ξ2, i2, ζ1, j1〉)

→ Aq
N (k2, 〈ξ1, i1, ξ2, i2, ζ1, j1〉)].

Then, if in fact x1 = hM̄ (j1, 〈ζ1, p̄〉),

M̄ |= ϕ(x1) ⇐⇒ ∃ξ1 ∃i1 ∀ξ2 ∀i2 [Ap̄

M̄
(k1, 〈ξ1, i1, ξ2, i2, ζ1, j1〉)

→ Ap̄
M̄

(k2, 〈ξ1, i1, ξ2, i2, ζ1, j1〉)]
⇐⇒ ∃ξ1 ∃i1 ∀ξ2 ∀i2 [Ap

M (k1, 〈ξ1, i1, ξ2, i2, π(ζ1), j1〉)
→ Ap

M (k2, 〈ξ1, i1, ξ2, i2, π(ζ1), j1〉)]
⇐⇒ M |= ϕ(π̃(x1)).

Similar, but slightly more complicated reductions can be done for arbitrary n;
we leave this to the reader. �

3.3 Lemma. Let π : N −→
Σ0

Mp, where N is a J-structure and p ∈ RM .

Then there are unique M̄ , p̄ such that p̄ ∈ RM̄ and N = M̄p.

Proof. Let M = 〈JB
α , D〉, Mp = 〈JB

ρ , A〉 and N = 〈J B̄′

ρ̄ , Ā〉. (In particular,
A = Ap

M .) Let also X = ran(π), Y = hM (X ∪ {p}), let M̄ be the transitive
collapse of Y and let π̃ : M̄ → Y be the inverse of the Mostowski collapse.
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The map π̃ is clearly Σ1-preserving, hence M̄ is of the form 〈J B̄
ᾱ , D̄〉. We

shall show that M̄ is the desired structure. We prove first

π̃ ⊇ π and J B̄′

ρ̄ = J B̄
ρ̄ , (9.10)

which follows immediately from

if x ∈ X, y ∈ Y and y ∈ x, then y ∈ X (9.11)

since the latter tells us that the collapsing map for Y restricted to X coincides
with π−1.

So suppose that y = hM (i, 〈z, p〉) for some z ∈ X. Since both y, z ∈ Mp,
this can be equivalently expressed in the form A(k, 〈y, z〉) for some k ∈ ω.
Thus we have

∃v ∈ x A(k, 〈v, z〉)

which is preserved by a Σ0 map, so

∃v ∈ x̄ Ā(k, 〈v, z̄〉)

where (x̄, z̄) = π−1(x, z). Let ȳ ∈ x̄ be such that A(k, 〈ȳ, z̄〉). Such a ȳ is
uniquely determined: if ȳ1 were another one, we would have

A(k, 〈π(ȳ), z〉) ∧A(k, 〈π(ȳ1), z〉),

which means that π(ȳ) = hM (i, 〈z, p〉) = π(ȳ1), hence ȳ = ȳ1. This argument
also shows π(ȳ) = y. Hence y ∈ X.

We have shown (9.10) and (9.11).
Now let

p̄ = π̃−1(p).

Note that there is a ΣM̄
1 map of ρ̄ onto M̄ ; this follows immediately from the

fact that M̄ = hM̄ (J B̄
ρ̄ ∪ {p̄}) and that there is a ΣM̄

1 map of ρ̄ onto J B̄
ρ̄ . So

we have
ρ(M̄) ≤ ρ̄. (9.12)

Note also that if i ∈ ω and x ∈ N , then

Ā(i, x) ⇐⇒ A(i, π̃(x)) ⇐⇒ M |= ϕi(π̃(x), p) ⇐⇒ M̄ |= ϕi(x, p̄)
(9.13)

where 〈ϕi〉i is the fixed recursive enumeration of the Σ1 formulae. Our aim
is to show

ρ(M̄) = ρ̄ (9.14)

which reduces to proving the inequality ρ̄ ≤ ρ(M̄). Let P be ΣM̄
1 ({q̄}). By

the fact that hM̄ (J B̄
ρ̄ ∪ {p̄}) = M̄ we can find an R which is ΣM̄

1 and such
that

P (z) ⇐⇒ R(z, x, p̄)
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for some fixed x ∈ N . By (9.13), there is an i ∈ ω such that

P (z) ⇐⇒ Ā(i, 〈z, x〉).

Hence if γ < ρ̄ then P ∩ γ is a projection of Ā ∩ ({i} × γ × {x}) ∈ N ⊆ M̄ ,
thus it is itself in M̄ . This proves (9.14).

As an immediate consequence of (9.13) and (9.14) we get

Ā = Ap̄
M̄

. (9.15)

It only remains to prove that
p̄ ∈ RM̄ . (9.16)

If M̄ = N this is trivial. Otherwise there is a ΣM
1 map of ρ̄ onto J B̄

ρ̄ . Since
hM̄ (J B̄

ρ̄ ∪ {p̄}) = M̄ , the proof is complete. �

4. Upward Extension of Embeddings

In this section we present a method which gives a solution to the problem
dual to that from the previous section, where we formed the extension of an
embedding from the reduct of a J-structure to the whole structure: namely,
we now aim to build a target model that can serve as the codomain of an
extended embedding. This problem is a bit more delicate than the previous
one, since such an extension need not always exist; therefore we have to
strengthen our requirements on the embeddings we intend to extend. The
difference between forming downward and upward extensions lies in the fact
that the former ones are related to taking hulls and collapsing them, which
is always possible, whilst the latter ones are related to forming ultrapowers,
which have transitive isomorphs only if they are well-founded.

4.1 Definition. π : M̄ →M is a strong embedding iff

(a) π : M̄ −→
Σ1

M .

(b) For any R̄, R such that R̄ is rudimentary over M̄ and R is rudimentary
over M by the same definition the following holds:

If R̄ is well-founded, then so is R.

The Upward Extension of Embeddings Lemma is the conjunction of the
following lemma together with Lemmata 3.1 and 3.2.

4.2 Lemma. Let π : M̄ p̄ → N be a strong embedding, where N is acceptable
and p̄ ∈ RM̄ . Then there are unique M , p such that N = Mp and p ∈ RM .
Moreover, π̃ is strong, where π̃ ⊇ π, π̃ : M̄ −→

Σ1
M and π̃(p̄) = p.
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Proof. Uniqueness. Suppose that π̃1 : M̄ → M1 and π̃2 : M̄ → M2 are two
extensions of π satisfying the conclusions of the lemma and that p1, p2 are the
corresponding parameters. Then Ap1

M1
= Ap2

M2
, call it A, and every x ∈ Mk

is of the form hMk
(i, 〈ξ, pk〉) for some i ∈ ω and ξ ∈ N ∩ On (k = 1, 2). Let

σ : M1 → M2 be the map sending hM1(i, 〈ξ, p1〉) to hM2(i, 〈ξ, p2〉). Then σ
is well defined since

∃z z = hM1(i, 〈ξ, p1〉) ⇐⇒ A(j, 〈i, ξ〉) ⇐⇒ ∃z z = hM2(i, 〈ξ, p2〉)
(9.17)

for an appropriate j (i.e., j is such that ∃z z = hMk
(i, 〈ξ, pk〉) can be expressed

as Mk |= ϕj(〈i, ξ〉) for k = 1, 2). Also, σ is Σ1-preserving, since given any Σ1

formula ψ(v1, . . . , v�) and xs = hM1(is, 〈ξs, p1〉) (s = 1, . . . , �),

M1 |= ψ(x1, . . . , x�) ⇐⇒ M1 |= ψ(hM1(i1, 〈ξ1, p1〉), . . . , hM1(i�, 〈ξ�, p1〉))
⇐⇒ A(j, 〈〈i1, ξ1〉, . . . , 〈i�, ξ�〉〉)
⇐⇒ M2 |= ψ(hM2(i1, 〈ξ1, p2〉), . . . , hM2(i�, 〈ξ�, p2〉))
⇐⇒ M2 |= ψ(σ(x1), . . . , σ(x�))

for a suitable j (which only depends on ψ). It is then easy to see that σ
is structure preserving and σ ◦ π̃1 = π̃2. Furthermore, (9.17) implies that
ran(σ) = M2. Thus, M1 = M2, π̃1 = π̃2 and p1 = p2.

Existence. The idea of the construction is simple: using the fact that
p̄ ∈ RM̄ , we encode the whole structure M̄ and its satisfaction relation in a
rudimentary fashion over M̄ p̄. The preservation properties of π then guaran-
tee that the corresponding relations with the same rudimentary definitions
over N encode the required structure M ; the process of decoding will also
yield the extension π̃. However, the verification of all details is somewhat
technical.

Suppose that M̄ = 〈J B̄
ᾱ , D̄〉. Let k̄(〈i, z〉)  hM̄ (i, 〈z, p̄〉) and d̄ = dom(k̄).

Then membership in d̄ is expressible by a Σ1 statement over M̄ in p̄ as

x ∈ d̄ ⇐⇒ ∃i ∃z (i ∈ ω ∧ x = 〈i, z〉 ∧ ∃y y = hM̄ (i, 〈z, p̄〉).

So there is an i0 ∈ ω such that for every x ∈ M̄ p̄ we have x ∈ d̄ iff Ap̄
M̄

(i0, x).
Note that the latter is a rudimentary relation over M̄ p̄. Similarly, the identity
and membership relations as well as the membership in B̄ and D̄ can be
expressed in a Σ1 fashion over M̄ in p̄, and therefore in a rudimentary fashion
over M̄ p̄. More precisely, we introduce relations Ī , Ē, B̄∗ and D̄∗ over d̄ as
follows

x Ī y ⇐⇒ k̄(x) = k̄(y),
x Ē y ⇐⇒ k̄(x) ∈ k̄(y),

B̄∗(x) ⇐⇒ B̄(k̄(x)),
D̄∗(x) ⇐⇒ D̄(k̄(x))
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and set

D̄ = 〈d̄, Ī, Ē, B̄∗, D̄∗〉.

The symbol for = is interpreted in D̄ as Ī, the symbol for ∈ as Ē, and the
symbols for B̄, D̄ as B̄∗ and D̄∗, respectively. Thus D̄ encodes the structure
M̄ : Ī is a congruence relation on D̄, Ē represents the membership relation and
k̄ is the Mostowski collapsing isomorphism between D̄/Ī and M̄ . We denote
the Σ1-satisfaction relation for D̄ by T̄ . More precisely, for x1, . . . , x� ∈ d̄ and
i ∈ ω we have

T̄ (i, 〈x1, . . . , x�〉) ⇐⇒ D̄ |= ϕi(x1, . . . , x�)

where 〈ϕi; i ∈ ω〉 is our fixed recursive enumeration of Σ1 formulae (remem-
ber that 〈x1, . . . , x�〉 = 〈x1, 〈x2, . . . , x�〉〉 and that we write ϕi(x1, . . . , x�)
instead of ϕi(〈x1, . . . , x�〉)). One can easily show the following equivalence
by induction:

T̄ (i, 〈x1, . . . , x�〉) ⇐⇒ M̄ |= ϕi(k̄(x1), . . . , k̄(x�)).

For atomic formulae this follows immediately from the definitions of the rela-
tions Ī , Ē, B̄∗ and D̄∗. To illustrate how the induction steps go we show the
induction step for the formula ϕj(v) of the form ∃z ∈ left(v) ϕi(z, v) (recall
that left(v) = v1 and right(v) = v2 if v = 〈v1, v2〉 and undefined otherwise).
Then

D̄ |= ϕj(x1, . . . , x�) ⇐⇒ ∃w ∈ d̄[wĒx1 ∧ D̄ |= ϕi(w, x1, x2, . . . , x�)]
⇐⇒ ∃w[k̄(w) ∈ k̄(x1)

∧ M̄ |= ϕi(k̄(w), k̄(x1), k̄(x2), . . . , k̄(x�))]
⇐⇒ M̄ |= ϕj(k̄(x1), . . . , k̄(x�)).

The middle equivalence follows by the induction hypothesis, the last one by
the fact that if there is a z witnessing the bottom formula, then such a z is
always of the form k̄(w) for some w.

Let d, I, E,B∗ and D∗ be rudimentary over N by the same rudimentary
definitions as their counterparts over M̄ p̄. It follows from the above that T̄
is ΣM̄

1 in p̄ and therefore rudimentary over M̄ p̄. Let

D = 〈d, I, E,B∗, D∗〉

and T be a relation which is rudimentary over N by the same rudimentary de-
finition as T̄ . We show that T is the Σ1-satisfaction predicate for D. Strictly
speaking, we must show that the following equivalences hold, where ϕi(v)
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has the form indicated on the left hand side:

left(v) = right(v) T (i, 〈x, y〉) ⇐⇒ x I y
left(v) ∈ right(v) T (i, 〈x, y〉) ⇐⇒ xE y
B(v) T (i, x) ⇐⇒ B∗(x)
D(v) T (i, x) ⇐⇒ D∗(x)
ϕi1(v) ∧ ϕi2(v) T (i, �x ) ⇐⇒ T (i1, �x ) ∧ T (i2, �x )
¬ϕj(v) T (i, �x ) ⇐⇒ ¬T (j, �x )
∃z ∈ left(v) ϕj(z, v) T (i, 〈x, �y 〉) ⇐⇒ ∃z ∈ d (z E x ∧ T (j, 〈z, x, �y 〉))
∀z ∈ left(v) ϕj(z, v) T (i, 〈x, �y 〉) ⇐⇒ ∀z ∈ d (z E x ∧ T (j, 〈z, x, �y 〉))
∃z ϕj(z, v) T (i, �x ) ⇐⇒ ∃z ∈ d T (j, 〈z, �x 〉).

Here �x stands for 〈x1, . . . , x�〉. We again proceed by induction on formulae.
Suppose first that ϕi is an atomic formula, say the formula left(v) = right(v).
Then

∀x, y ∈ d̄ (T̄ (i, 〈x, y〉) ⇐⇒ x Ī y).

This is a Π1 statement over M̄ p̄, since the predicates d̄, T̄ and Ī are rudi-
mentary. Since π is Σ1-preserving, T (i, 〈x, y〉) iff x I y iff D |= ϕi(x, y) for all
x, y ∈ d.

Now suppose that ϕi(v) is the formula ϕi1(v) ∧ ϕi2(v). Then

∀x1, . . . , x� ∈ d̄

[T̄ (i, 〈x1, . . . , x�〉) ⇐⇒ T̄ (i1, 〈x1, . . . , x�〉) ∧ T̄ (i2, 〈x1, . . . , x�〉)].

This is again a Π1-statement over M̄ p̄, so we obtain

T (i, 〈x1, . . . , x�〉) ⇐⇒ T (i1, 〈x1, . . . , x�〉) ∧ T (i2, 〈x1, . . . , x�〉)
⇐⇒ D |= ϕi1(x1, . . . , x�) ∧ ϕi2(x1, . . . , x�)
⇐⇒ D |= ϕi(x1, . . . , x�);

the second equivalence follows from the induction hypothesis. We proceed
similarly if ϕi(v) is of the form ¬ϕj(v).

Finally, suppose that ϕi(v) introduces a quantifier; say ϕi(v) is of the
form ∃z ∈ left(v)ϕj(z, v). The implication (⇐=) follows easily: Since T̄ is a
satisfaction relation for D̄, we have

∀x, y [∃z (z Ē x ∧ T̄ (j, 〈z, x, y〉)) → T̄ (i, 〈x, y〉)].

This is a Π1-statement over M̄ p̄ and is therefore preserved upwards by π. To
see the converse, let ḡ be a ΣM̄

1 -function in p̄ uniformizing the relation

z ∈ k̄(x) ∧ ϕj(z, k̄(x), k̄(y)).

Then ḡ(u)  hM̄ (m, 〈u, p̄〉)  k̄(〈m,u〉) for an appropriate m ∈ ω; hence,

ϕi(k̄(x), k̄(y)) → 〈m,x, y〉 ∈ dom(k̄) ∧ k̄(〈m,x, y〉) ∈ k̄(x)
∧ϕj(k̄(〈m,x, y〉), k̄(x), k̄(y))
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holds in D̄ for all x, y in M̄ p̄. Translating this into the language of D̄ we
obtain

∀x, y [T̄ (i, 〈x, y〉) → 〈m,x, y〉 ∈ d̄ ∧ 〈m,x, y〉Ēx ∧ T̄ (j, 〈〈m,x, y〉, x, y〉)],

which is again a Π1-statement over M̄ p̄. The required implication for D then
follows immediately.

One consequence of the fact that T is a satisfaction relation for D is:

π : D̄−→
Σ2

D,

as follows immediately by the fact that T̄ , T are rudimentary over M̄ p̄, N
respectively by the same rudimentary definition. This implies that I is a con-
gruence relation on D and E is extensional modulo this congruence relation;
the map π simply carries both properties from D̄ over to D (Extensionality
being Π2). Note also that Ē is well-founded modulo the congruence rela-
tion Ī (in other words, the relation xĒy ∧ ¬(xĪy) is well-founded). Hence E
is well-founded modulo the congruence relation I by the strongness of π.

Let M be the transitive collapse of D and k be the collapsing map. Define
π̃ : M̄ →M by

π̃(k̄(x)) = k(π(x)) for all x ∈ d̄.

It follows immediately that

π̃ : M̄ −→
Σ2

M.

In the following we show that M has all the required properties. Note first
that M is a J-structure, say M = 〈JB

α , D〉. For the rest of the proof fix
i, i∗ ∈ ω so that

x = hQ(i, 〈x, q〉) holds uniformly over any J-structure Q,

p̄ = hM̄ (i∗, 〈0, p̄〉).

Then
x = k̄(〈i, x〉) for all x ∈ M̄ p̄ and p̄ = k̄(〈i∗, 0〉).

We first observe that |N | ⊆ M . Given any x ∈ M̄ p̄, k̄(〈j, z〉) ∈ x =
k̄(〈i, x〉) iff k̄(〈j, z〉) = w = k̄(〈i, w〉) for some w ∈ x; in other words,

〈j, z〉 ∈ d̄ =⇒ [〈j, z〉Ē〈i, x〉 ⇐⇒ ∃w ∈ x (〈j, z〉Ī〈i, w〉)]

holds for all x, y ∈ M̄ p̄ and j ∈ ω. Quantifying over M̄ p̄ we obtain a Π1-
statement, which is preserved under π. This allows us to conclude: Whenever
x ∈ N (note: 〈i, x〉 ∈ d by the fact that π is Σ1-preserving and the “same”
holds for M̄ p̄),

k(〈i, x〉) = {k(〈i, w〉);w ∈ x}.
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It follows by ∈-induction that k(〈i, x〉) = x for all x ∈ N . Furthermore, given
any x ∈ M̄ p̄,

π̃(x) = π̃(k̄(〈i, x〉)) = k(π(〈i, x〉)) = k(〈i, π(x)〉) = π(x),

and hence π̃ ⊇ π.
Let B′, A and ρ be such that N = 〈JB′

ρ , A〉 (recall that, by our assumption,
N is an acceptable structure). Set p = k(〈i∗, 0〉). It is easy to check that
π̃(p̄) = p. We now prove that A = Ap

M . Given an x ∈ M̄ p̄ and j ∈ ω,
we have Ap̄

M̄
(j, x) ⇐⇒ M̄ |= ϕj(x, p̄) ⇐⇒ M̄ |= ϕj(k̄(〈i, x〉), k̄(〈i∗, 0〉)) ⇐⇒

T̄ (j, 〈〈i, x〉, 〈i∗, 0〉〉). Hence, the Π1-statement

∀x∀j ∈ ω [Ap̄
M̄

(j, x) ↔ T̄ (j, 〈〈i, x〉, 〈i∗, 0〉〉)]

is preserved by π, which means that

A(j, x) ⇐⇒ T (j, 〈〈i, x〉, 〈i∗, 0〉〉) ⇐⇒ M |= ϕj(x, p) (9.18)

for every x ∈ N and j ∈ ω.
This equivalence easily yields that B′ = B ∩N and N = 〈JB

ρ , A〉 for ρ as
above. Pick a j such that ϕj(u, v) is the formula “B∗(u)” for any acceptable
structure of the form 〈JB∗

α∗ , D∗〉. Since B̄(x) ⇐⇒ Ap̄
M̄

(j, x) holds for every
x ∈ M̄ p̄, the preservation properties of π guarantee that A(j, x) ⇐⇒ B′(x).
However, A(j, x) is equivalent to B(x) for all x ∈ N , as follows from (9.18).

To see that A = Ap
M it suffices to show that ρ = ρ(M), as |N | = HM

ρ then
follows immediately (recall that ρ = N ∩ On). The computation below will
also yield that p ∈ RM . Notice that

k̄(〈j, x〉) = hM̄ (j, 〈x, p̄〉) = hM̄ (k̄(〈i, j〉), 〈k̄(〈i, x〉), k̄(〈i∗, 0〉)〉),

where the left equality is simply the definition of k̄. Leaving out the middle
term we obtain a Σ1 statement, so it can be represented by some m ∈ ω. More
precisely, T̄ (m, 〈〈j, x〉, 〈i, j〉, 〈i, x〉, 〈i∗, 0〉〉) holds for all x ∈ M̄ p̄ and j ∈ ω. As
above we apply π to obtain the corresponding statement for T and all x ∈ N .
Using the fact that the Σ1-Skolem functions have uniform definitions we infer
that k(〈j, x〉) = hM (k(〈i, j〉, 〈k(〈i, x〉), k(〈i∗, 0〉)〉) = hM (j, 〈x, p〉). Note that
there is a lightface ΣM

1 map7 from ρ onto |N |; since the values k(〈j, x〉) range
over all of M , we have

M = hM (ρ ∪ {p}) and ρ(M) ≤ ρ.

The latter is obviously a consequence of the former. On the other hand,
given any r ∈ M we can pick a ξ ∈ N ∩ On such that r = hM (j, 〈ξ, p〉)
for some j. For any Σ1 formula ψ, M |= ψ(η, r) iff M |= ϕm(η, ξ, p) for a
suitable m; the latter is equivalent to A(m, 〈η, ξ〉) by (9.18). Taken together,
M |= ψ(η, r) can be expressed in a rudimentary fashion over N . Since N is
7 “Lightface” means that no parameters are needed in the definition of such a function.



5. Iterated Projecta 631

amenable, every bounded ΣM
1 subset of ρ is an element of N , which means

that ρ ≤ ρ(M). Thus,

ρ = ρ(M) and p ∈ RM .

It only remains to show that π̃ is strong. Let R̄, R be binary relations which
are rudimentary over M̄,M respectively by the same rudimentary definition.
Define R̄∗, R∗ as follows

x R̄∗ y ⇐⇒ x, y ∈ d̄ ∧ k̄(x) R̄ k̄(y)
xR∗ y ⇐⇒ x, y ∈ d ∧ k(x)Rk(y).

Then R̄∗ is well-founded since R̄ is—any decreasing chain x0, x1, . . . , xn, . . .
in R̄∗ yields a decreasing chain k̄(x0), k̄(x1), . . . , k̄(xn), . . . in R̄, hence no
such chain can be infinite. Furthermore, R̄∗, R∗ are rudimentary over M̄ p̄, N
respectively by the same rudimentary definition. As π is strong, R∗ must
be well-founded. Hence R must be well-founded as well, since every infinite
decreasing chain x0, x1, . . . , xn, . . . in R has form k(z0), k(z1), . . . , k(zn), . . .
for some z0, z1, . . . , zn, . . . and the latter would be an infinite decreasing chain
in R∗. �

5. Iterated Projecta

In this section we shall show how to iterate the process of defining a projec-
tum and forming a standard code, and we shall introduce the notion of nth
projectum, nth standard code, and nth reduct.

5.1 Definition. Let M = 〈JB
β , D〉 be an acceptable J-structure. For n < ω

we recursively define the nth projectum ρn(M), the nth standard code An,p
M ,

and the nth reduct Mn,p as follows:

ρ0(M) = β, Γ0
M = {∅}, A0,∅

M = ∅, M0,∅ = M,

ρn+1(M) = min{ρ(Mn,p); p ∈ Γn
M},

Γn+1
M =

∏
i∈n+1[ρi+1(M), ρi(M))<ω,

and for p ∈ Γn+1
M ,

An+1,p
M = A

p(n),ρn+1(M)

Mn,p�n and

Mn+1,p = (Mn,p�n)p(n),ρn+1(M).

We also set ρω(M) = min{ρn(M) | n < ω}. The ordinal ρω(M) is called the
ultimate projectum of M .
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The reader will gladly verify that ρ1(M) = ρ(M). On the other hand, if
M is not 1-sound (cf. Definition 5.7 below) then it need not be the case that
ρ2(M) is the least ρ such that P(ρ) ∩ΣM

2 �⊆M .
Supposing that we know ρn(M) ≤ · · · ≤ ρ1(M) we may identify p =

〈p(0), . . . , p(n)〉 ∈ Γn+1
M with the (finite) set

⋃
ran(p) of ordinals; this will

play a role in the next section.

5.2 Definition. We define Pn
M , Rn

M ⊆ Γn
M as follows:

P 0
M = {∅}

Pn+1
M = {p ∈ Γn+1

M ; p�n ∈ Pn
M ∧ ρ(Mn,p�n) = ρn+1(M) ∧ p(n) ∈ PMn,p�n}

Rn
M is defined in the same way but with RMn,p�n in place of PMn,p�n .

As before, we call the elements of Pn
M good parameters and the elements

of Rn
M very good parameters.

5.3 Lemma. Let M be acceptable.

(a) Rn
M ⊆ Pn

M �= ∅.

(b) Let p ∈ Rn
M . If q ∈ Γn

M then An,q is rudMn,p in parameters from Mn,p.

(c) Let p ∈ Rn
M . Then ρ(Mn,p) = ρn+1(M).

(d) p ∈ Pn
M =⇒ ∀i ∈ n p(i) ∈ PMi,p�i , and similarly for Rn

M . Moreover, if
p�(n− 1) ∈ Rn−1

M then equivalence holds.

Proof. (a) This is easily shown inductively by using Lemma 2.9 and by amal-
gamating parameters.

(b) By induction on n < ω. The case n = 0 is trivial. Now let n > 0,
and suppose that (b) holds for n − 1. Write m = n − 1. Let p ∈ Rn

M

and q ∈ Γn
M . We have to show that A

q(m),ρn(M)
Mm,q�m is rudMn,p in parameters

from Mn,p. Inductively, Mm,q�m is rudMm,p�m in a parameter t ∈ Mn,p. As
p(m) ∈ RMm,p�m , there are e0 and e1 and z ∈Mn,p such that

q(m) = hMm,p�m(e0, 〈z, p(m)〉)

and
t = hMm,p�m(e1, 〈z, p(m)〉).

For i < ω and x ∈Mn,p, we have that

〈i, x〉 ∈ A
q(m),ρn(M)
Mm,q�m ⇐⇒ Mm,q�m |= ϕi(x, q(m))

⇐⇒ Mm,q�m |= ϕi(x, hMm,p�m(e0, 〈z, p(m)〉))
⇐⇒ Mm,p�m |= ϕj(〈x, z〉, p(m))

⇐⇒ 〈j, 〈x, z〉〉 ∈ A
p(m)
Mm,p�m ,
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for some j which is recursively computable from i, as Mm,q�m is rudMm,p�m in
the parameter t = hMm,p�m(e1, 〈z, p(m)〉). Thus, A

q(m),ρn(M)
Mm,q�m is rud

A
p(m)
Mm,p�m

in the parameter z.
(c) Let ρn+1(M) = ρ(Mn,q), where q ∈ Γn

M . By (b), Mn,q is rudMn,p

in parameters from Mn,p, which implies that ΣMn,q

1 ⊆ ΣMn,p

1 . But then
ρ(Mn,p) ≤ ρ(Mn,q) = ρn+1(M), and hence ρ(Mn,p) = ρn+1(M).

(d) This is shown inductively by using (c). �

The following is given just by the definition of Rn+1
M . Let M be acceptable,

and let p ∈ Rn+1
M . Then

M = hM (hM1,p�1(· · ·hMn,p�n(ρn+1(M) ∪ {p(n)}) · · · ) ∪ {p(0)}).

We thus can, uniformly over M , define a function hn+1
M basically as the

iterated composition of the Σ1-Skolem functions of the ith reducts of M , 0 ≤
i ≤ n, such that M is the hn+1

M -hull of ρn+1(M)∪{p} whenever p ∈ Rn+1
M . The

precise definition of the (partial) function hn+1
M : <ωω × <ω|Mn+1,p| → |M |

is by recursion on n < ω; we set h1
M = hM and

hn+1
M (〈�i, i0, . . . , ik〉, 〈�xi0 , . . . , �xik

〉)
= hn

M (�i, 〈hMn,p�n(i0, �xi0), . . . , hMn,p�n(ik, �xik
)〉).

5.4 Lemma. Let n < ω, and let M be acceptable. Then hn+1
M is in ΣM

ω , and

M = hn+1
M “(ρn+1(M) ∪ {p}),

whenever p ∈ Rn+1
M .

5.5 Lemma. Let 0 < n < ω. Let M be acceptable, and let p ∈ Rn
M . Then

ΣM
ω ∩ P(Mn,p) = ΣMn,p

ω .

Proof. It is easy to verify that ΣMn,p

ω ⊆ ΣM
ω ∩ P(Mn,p). Let us prove the

other direction.
It is straightforward to verify by induction on m ≤ n that if ϕ is Σ0 and

x, y ∈Mm,p�m, then

ϕ(x, hm
M (y)) is uniformly ΔMm−1,p�(m−1)

1 (x, y). (9.19)

Now let A ∈ ΣM
ω ∩ P(Mn,p), say

x ∈ A ⇐⇒ M |= ∃x1 ∀x2 · · · ∃/∀xk ϕ(x, y, x1, x2, . . . , xk),

where ϕ is Σ0 and y ∈M . By Lemma 5.4, we may write

x ∈ A ⇐⇒ ∃x′
1 ∈Mn,p ∀x′

2 ∈Mn,p · · · ∃/∀xk ∈Mn,p

ϕ(x, hn
M (y′), hn

M (x′
1), h

n
M (x′

2), . . . , h
n
M (x′

k)),

where y′ ∈Mn,p. But then A ∈ ΣMn,p

ω , with the help of (9.19) for m = n. �
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A more careful look at the proofs of Lemmata 5.4 and 5.5 shows the
following.

5.6 Lemma. Let n < ω. Let M be acceptable and p ∈ Rn
M . Let A ⊆ Mn,p

be ΣM
n+1. Then A is ΣMn,p

1 .

5.7 Definition. M is n-sound iff Rn
M = Pn

M . M is sound iff M is n-sound
for all n < ω.

We shall prove later (cf. Lemma 9.2) that every Jα is sound. In fact, a key
requirement on initial segments of a core model is that they be sound.

We can now formulate a general downward extension of embeddings lemma
as the conjunction of the following three lemmata which, in turn, are imme-
diate consequences of the corresponding lemmata for the first projectum.

5.8 Lemma. Let M̄ , M be acceptable and π : M̄n,p̄−→
Σ0

Mn,p, where p̄ ∈ Rn
M̄

.

Then there is a unique map π̃ ⊇ π such that dom(π̃) = M̄ , π̃(p̄) = p and,
setting π̃i = π̃�Hi

M̄
,

π̃i : M̄ i,p̄�i−→
Σ0

M i,p�i for i ≤ n.

The map π̃i is in fact Σ1-preserving for i ∈ n.

5.9 Lemma. Suppose that M̄ , M , p̄, p, π, π̃, π̃i, i ≤ n, are as above and
p ∈ Rn

M . Let π : M̄n,p̄−→
Σ�

Mn,p where � ∈ ω. Then

π̃i : M̄ i,p̄�i −→
Σ�+n−i

M i,p�i for i ≤ n.

Hence, π̃0 : M̄ −→
Σ�+n

M .

5.10 Lemma. Let π : N −→
Σ0

Mn,p, where M is as above. Then there are

unique M̄ , p̄ such that p̄ ∈ Rn
M̄

and N = M̄n,p̄.

The general upward extension of embeddings lemma is the conjunction of
the following lemma together with Lemmata 5.8 and 5.9.

5.11 Lemma. Let π : M̄n,p̄ → N be strong, where M̄ is an acceptable J-
structure and p̄ ∈ Rn

M̄
. Then there are unique M , p such that M is acceptable,

p ∈ Rn
M and Mn,p = N . Moreover, if π̃ is as in Lemma 5.8, then π̃ is strong.

If π and π̃ are as in Lemma 5.8 then π̃ is often called the n-completion
of π.

If we take π : M̄n,p̄ →Mn,p as in Lemma 5.8 and form the corresponding
extension π̃, we can in fact do better than stated there. It is easy to see that
for every appropriate q̄ and q = π̃(q̄),

π̃i : M̄ i,q̄�i−→
Σ1

M i,q�i for i ∈ n. (9.20)
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This suggests the general notion of a Σ(n)
� -preserving embedding, where n

indicates preservation at the nth level, i.e. if π̃(q̄) = q then (9.20) and

π̃n : M̄n,q̄ −→
Σ�

Mn,q. (9.21)

It turns out that there is a canonical class of formulae, the so called Σ(n)
� -

formulae, such that the above embeddings are exactly those which are ele-
mentary with respect to this class. This idea leads towards Jensen’s elegant
Σ∗ theory which is dealt with in [15, Sects. 1.6 ff.].

Following [7, §2], though, we shall call Σ(n)
1 elementary maps rΣn+1 ele-

mentary. Here is our official definition, which presupposes that the structures
involved possess very good parameters; it will play a role in the last two sec-
tions.

5.12 Definition. Let M , N be acceptable, let π : M → N , and let n < ω.
Then π is called rΣn+1 elementary provided that there is p ∈ Rn

M with
π(p) ∈ Rn

N , and for all i ≤ n,

π�HM
ρi(M) : M i,p�i−→

Σ1
N i,π(p)�i. (9.22)

The map π is called weakly rΣn+1 elementary provided that there is p ∈ Rn
M

with π(p) ∈ Rn
N , and for all i < n, (9.22) holds, and

π�HM
ρn(M) : Mn,p−→

Σ0
Nn,π(p).

If π : M → N is (weakly) rΣn+1 elementary then typically both M and
N will be n-sound; however, neither M nor N has to be (n + 1)-sound. It
is possible to generalize this definition so as to not assume that very good
parameters exist (cf. [7, §2]).

Lemma 5.8 therefore says that the map π can be extended to its n-
completion π̃ which is weakly rΣn+1 elementary, and Lemma 5.9 says that if
π is Σ1 elementary to begin with then the n-completion π̃ will end up being
rΣn+1 elementary.

Moreover, if a map π : M → N is rΣn+1 elementary then it respects hn+1

by Theorem 1.15, i.e.:

5.13 Lemma. Let n < ω, and let M , N be acceptable. Let π : M → N be
rΣn+1 elementary. Then for all appropriate x,

π(hn+1
M (x)) = hn+1

N (π(x)).

6. Standard Parameters

Finite sets of ordinals are well-ordered in a simple canonical way.
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6.1 Definition. Let a, b ∈ [On]<ω. Set

a <∗ b ⇐⇒ ∃α ∈ b (a \ (α + 1) = b \ (α + 1) ∧ α /∈ a).8

The ordering <∗ has a rudimentary definition, therefore it is absolute
for transitive rudimentarily closed structures and is also preserved under
embeddings which are Σ0 elementary. If we view finite sets of ordinals as finite
decreasing sequences, a <∗ b precisely when a precedes b lexicographically.
Moreover, we easily get the following.

6.2 Lemma. [On]<ω is well-ordered by <∗.

Let M be acceptable, and n < ω. The well-ordering <∗ induces a well-
ordering of Γn

M by confusing p ∈ Γn
M with

⋃
ran(p) (i.e., by identifying p

with the obvious set of ordinals; cf. above). We shall denote this latter well-
ordering also by <∗.

6.3 Definition. Let M be acceptable. The <∗-least p ∈ Pn
M is called the

nth standard parameter of M and is denoted by pn(M). We shall write Mn

for Mn,pn(M); Mn is called the nth standard reduct of M .

6.4 Lemma. Let p ∈ Rn
M . Then p can be lengthened to some p′ ∈ Pn+1

M ,
i.e., there is some p′ ∈ Pn+1

M with p′�n = p.

Proof. This follows immediately from Lemma 5.3 (c). �

6.5 Corollary. Let n > 0 and M be n-sound. Then

pn−1(M) = pn(M)�(n− 1)

Proof. By Lemma 6.4. �

6.6 Definition. Let M be acceptable. Suppose that for all n < ω, pn(M) =
pn+1(M)�n. Then we set p(M) =

⋃
n<ω pn(M). p(M) is called the standard

parameter of M .

We shall often confuse p(M) with
⋃

ran(p(M)).

6.7 Corollary. Let M be sound. Then p(M) exists, i.e., for all n < ω,
pn(M) = pn+1(M)�n.

Proof. By Corollary 6.5. �

6.8 Lemma. M is sound iff pn(M) ∈ Rn
M for all n ∈ ω.

8 I.e., max(a�b) ∈ b.
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Proof. We shall prove the non-trivial direction (⇐=). For each n > 0 we
shall prove

pn(M) ∈ Rn
M =⇒ Rn

M = Pn
M . (9.23)

This holds trivially for n = 0. Now suppose that n > 0 is least such that the
statement (9.23) fails. Hence Pn

M \Rn
M �= ∅ (cf. Lemma 5.3 (a)). Let q be the

<∗-least element of Pn
M \ Rn

M . This means that p <∗ q, where p = pn(M).
By Lemma 5.3, we may let i < n be least such that q(i) /∈ RMi,q�i .

Let us first consider the case n = 1.
Then, of course, p(0) <∗ q(0). Using the downward extension of embed-

dings lemma, we may let M̄ , q̄, π be unique such that

q̄ ∈ RM̄

π : M̄ →M is Σ1 elementary
π(q̄) = q(0)

π�HM
ρ1(M) = id.

(9.24)

As q(0) /∈ RM , π �= id. Because p(0) ∈ RM , there are e and z ∈ [ρ1(M),M ∩
On)<ω such that

q(0) = hM (e, 〈z, p(0)〉).
As p(0) <∗ q(0), by elementarity we get that

M̄ |= ∃p′ <∗ q̄ (q̄ = h(e, 〈z, p′〉)).

Letting p∗ be a witness, we may conclude that by elementarity again

π(p∗) <∗ q(0) ∧ q(0) = hM (e, 〈z, π(p∗)〉), (9.25)

where we may and shall assume that π(p∗) ∈ [ρ1(M),M ∩On)<ω. We have
that π(p∗) ∈ PM by (9.25). But π(p∗) ∈ ran(π) and π �= id, so that we must
also have that π(p∗) /∈ RM . Because π(p∗) <∗ q(0), we have a contradiction
to the choice of q.

Now let us consider the case n > 1.
If p�(n − 1) = q�(n − 1) then we may apply the above argument to the

reduct Mn−1,p�(n−1). We may thus assume that p�(n− 1) <∗ q�(n− 1). Let
i < n be least such that p�i <∗ q�i. We shall assume that i = 1 and n = 2 for
notational convenience. The general case is similar to this special case and
is left to the reader.

As p2(M) ∈ R2
M , Lemma 5.3 (d) yields that P 1

M = R1
M . As p(0) <∗ q(0),

there is some j ∈ ω and z ∈ [ρ1(M),M ∩On)<ω such that

∃p′ (p′ <∗ q(0) ∧ q(0) = hM (j, 〈z, p′〉)).

If i is the Gödel number of this Σ1 formula, we thus have that A
q(0)
M (i, z)

holds true. Let X be the smallest Σ1 submodel of the (first) reduct Mq(0).
There is then some z0 ∈ X such that A

q(0)
M (i, z0) holds true. Therefore,

∃p′ (p′ <∗ q(0) ∧ q(0) = hM (j, 〈z0, p
′〉)). (9.26)
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So there is some p′, call it q̄(0), witnessing (9.26) which is an element of the
smallest Σ1 substructure of M which contains both q(0) and z0. There is
then also some k with q̄(0) = hM (k, 〈z0, q(0)〉).

Now set q̄ = q̄(0) ∪ q(1). Then q̄ ∈ P 2
M , because q(0) = hM (j, 〈z0, q̄(0)〉)

and q ∈ P 2
M . We will now show that q̄ /∈ R2

M . As q̄(0) <∗ q(0) (and hence
q̄ <∗ q) this will contradict the choice of q and finish the proof.

Well, to see that q̄ /∈ R2
M it suffices to verify that if

Y = hM q̄(0)(ρ2(M) ∪ {q(1)})

then Y �= M q̄(0). As q̄(0) = hM (k, 〈z0, q(0)〉), we can find a recursive f :
ω → ω such that for all � ∈ ω and for all x,

A
q̄(0)
M (�, x) ⇐⇒ A

q(0)
M (f(�), 〈x, z0〉).

Therefore, as z0 ∈ X,

Y ⊆ hMq(0)(ρ2(M) ∪ {q(1)}).

But q(1) /∈ RMq(0)
, and so Y �= M q̄(0). �

There is a class of structures, for which the above characterization of
soundness has a particularly nice form. This class comprises all of the struc-
tures Jα where α is a limit ordinal. Moreover, the same applies to sufficiently
iterable premice, which are the building blocks of core models.

7. Solidity Witnesses

Solidity witnesses are witnesses to the fact that a given ordinal is a member of
the standard parameter. The key fact will be that being a witness is preserved
under Σ1 elementary maps, so that witnesses can be used for showing that
standard parameters are mapped to standard parameters.

Whereas the pure theory of witnesses is easy to grasp, it is one of the
deepest results of inner model theory that the structures considered there
(viz., iterable premice) do contain witnesses.

7.1 Definition. Let M be an acceptable structure, let p ∈ [M ∩ On]<ω,
and let ν ∈ p. Let W be another acceptable structure with ν ⊆ W , and let
r ∈ [W ∩On]<ω. We say that (W, r) is a witness for ν ∈ p w.r.t. M , p iff for
every Σ1 formula ϕ(v0, . . . , vl+1) and for all ξ0, . . . , ξl < ν

M |= ϕ(ξ0, . . . , ξl, p \ (ν + 1)) =⇒ W |= ϕ(ξ0, . . . , ξl, r). (9.27)

In this situation, we shall often suppress r and call W a witness. The
proof of Lemma 7.2 will show that if a witness exists then there is also one
where =⇒ may be replaced by ⇐⇒ in (9.27).



7. Solidity Witnesses 639

7.2 Lemma. Let M be an acceptable structure, and let p ∈ PM . Suppose
that for each ν ∈ p there is a witness W for ν ∈ p w.r.t. M , p such that
W ∈M . Then p = p1(M).

Proof. Suppose not. Then p1(M) <∗ p, and we may let ν ∈ p\p1(M) be such
that p\(ν+1) = p1(M)\(ν+1). Let us write q for p\(ν+1) = p1(M)\(ν+1).
Let (W, r) ∈ M be a witness for ν ∈ p w.r.t. M , p. Let A ∈ ΣM

1 ({p1(M)})
be such that A ∩ ρ1(M) /∈M .

Let k be the number of elements of p∩ ν, and if k > 0 then let ξ1 < · · · < ξk

be such that p1(M)∩ν = {ξ1, . . . , ξk}. There is a Σ1 formula ϕ(v0, . . . , vk+1)
such that

ξ ∈ A ⇐⇒ M |= ϕ(ξ, ξ1, . . . , ξk, q).

Because (W, r) ∈M is a witness for ν ∈ p w.r.t. M , p, we have that

M |= ϕ̄(ξ, ξ1, . . . , ξk, q) =⇒ W |= ϕ̄(ξ, ξ1, . . . , ξk, r)

for every ξ < ρ1(M) ≤ ν and every ϕ̄ which is Σ1.
Let α = sup(hW (ν ∪ {r}) ∩On), and let W̄ = JB

α (where W = JB
β , some

β ≥ α). By looking at the canonical elementary embedding from hM (ν∪{q})
into W̄ , which is Σ0 elementary and cofinal (and hence Σ1 elementary) we
get that

M |= ϕ̄(ξ, ξ1, . . . , ξk, q) ⇐⇒ W̄ |= ϕ̄(ξ, ξ1, . . . , ξk, r) (9.28)

for every ξ < ρ1(M) ≤ ν and every ϕ̄ which is Σ1. In particular, (9.28) holds
with ϕ̄ replaced by ϕ and every ξ < ρ1(M) ≤ ν. As W̄ ∈M , this shows that
in fact A ∩ ρ1(M) ∈M . Contradiction! �

7.3 Definition. Let M be acceptable, let p ∈ [M ∩ On]<ω, and let ν ∈ p.
We denote by W ν,p

M the transitive collapse of hM (ν ∪ (p \ (ν + 1))). We call
W ν,p

M the standard witness for ν ∈ p w.r.t. M , p.

7.4 Lemma. Let M be acceptable, and let ν ∈ p ∈ PM . The following are
equivalent.

(1) W ν,p
M ∈M .

(2) There is a witness W for ν ∈ p w.r.t. M , p such that W ∈M .

Proof. We have to show (2) =⇒ (1). Let σ : W ν,p
M → M be the inverse

of the transitive collapse. We may also let σ∗ : W ν,p
M → W be defined by

hW ν,p
M

(ξ, σ−1(p \ ν + 1)) �→ hW (ξ, r), ξ < ν. Set α = sup(hW (ν ∪ {r}) ∩On),
and let W̄ = JA

α (where W = JA
β , some β ≥ α). Again, σ∗ : W ν,p

M → W̄ is
Σ1 elementary.

Let us assume without loss of generality that W ν,p
M is not an initial segment

of M .
Now if σ(ν) = ν then a witness to ρ1(M) is definable over W ν,p

M , and
hence over W̄ . But as W̄ ∈ M , this witness to ρ1(M) would then be in M .
Contradiction!
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We thus have that ν is the critical point of σ. Thus, if M = JB
γ , we know

that σ(ν) is regular in M and so JB
σ(ν) |= ZFC−. We may code W ν,p

M by some
a ⊆ ν, Σ1-definably over W ν,p

M . Using σ∗, a is definable over W̄ , so that
a ∈ M . In fact, a ∈ JB

σ(ν) by acceptability. We can thus decode a in JB
σ(ν),

which gives W ν,p
M ∈ JB

σ(ν) ⊆M . �

7.5 Definition. Let M be an acceptable structure. We say that M is 1-solid
iff

W
ν,p1(M)
M ∈M

for every ν ∈ p1(M).

7.6 Lemma. Let M̄ , M be acceptable structures, and let π : M̄ −→
Σ1

M . Let

ν̄ ∈ p̄ ∈ [M̄ ∩On]<ω, and set ν = π(ν̄) and p = π(p̄). Let (W̄ , r̄) be a witness
for ν̄ w.r.t. M̄ , p̄ such that W̄ ∈ M̄ , and set W = π(W̄ ) and r = π(r̄). Then
(W, r) is a witness for ν w.r.t. M , p.

Proof. Let ϕ(v0, . . . , vl+1) be an arbitrary Σ1 formula. We know that

M̄ |= ∀ξ0, . . . , ξl < ν̄[ϕ(ξ0, . . . , ξl, p̄ \ (ν̄ + 1)) =⇒ W̄ |= ϕ(ξ0, . . . , ξl, r̄)].

As π is Π1 elementary, this yields that

M |= ∀ξ0, . . . , ξl < ν[ϕ(ξ0, . . . , ξl, p \ (ν + 1)) =⇒W |= ϕ(ξ0, . . . , ξl, r)].

We thus conclude that (W, r) is a witness for ν w.r.t. M , p. �

7.7 Corollary. Let M̄ , M be acceptable structures, and let π : M̄ −→
Σ1

M .

Suppose that M̄ is 1-solid and π(p1(M̄)) ∈ PM . Then p1(M) = π(p1(M̄)),
and M is 1-solid.

The proof of the following lemma is virtually the same as the proof of
Lemma 7.6.

7.8 Lemma. Let M̄ , M be acceptable structures, and let π : M̄ −→
Σ1

M . Let

ν̄ ∈ p̄ ∈ [On∩M̄ ]<ω, and set ν = π(ν̄) and p = π(p̄). Let (W̄ , r̄) ∈ M̄ be such
that, setting W = π(W̄ ) and r = π(r̄), (W, r) is a witness for ν w.r.t. M , p.
Then (W̄ , r̄) is a witness for ν̄ ∈ p̄ w.r.t. M̄ , p̄.

7.9 Corollary. Let M̄ , M be acceptable structures, and let π : M̄ −→
Σ1

M .

Suppose that M is 1-solid, and that in fact W
ν,p1(M)
M ∈ ran(π) for every

ν ∈ p1(M). Then p1(M̄) = π−1(p1(M)), and M̄ is 1-solid.

The following definition just extends Definition 7.5.



8. Fine Ultrapowers 641

7.10 Definition. Let M be an acceptable structure. If 0 < n < ω then we
say that M is n-solid if for every k < n, p1(Mk) = pk+1(M)(k) = pn(M)(k)
and Mk is 1-solid, i.e., if

W
ν,p1(M

k)

Mk ∈Mk

for every ν ∈ p1(Mk).

7.11 Lemma. Let M̄ , M be acceptable, let n > 0, and let π : M̄ → M
be rΣn elementary as being witnessed by pn−1(M). If M̄ is n-solid and
π(p1(M̄n−1)) ∈ PMn−1 then pn(M) = π(pn(M̄)) and M is n-solid.

7.12 Lemma. Let M̄ , M be acceptable, let n > 0, and let π : M̄ →M be rΣn

elementary as being witnessed by π−1(pn−1(M)). Suppose that M is n-solid,
and in fact W

ν,p1(M
k)

Mk ∈ ran(π) for every k < n. If π−1(pn−1(M)) ∈ Pn−1
M̄

then pn(M̄) = π−1(pn(M̄)) and M̄ is n-solid.

The ultrapower maps we shall construct in the next section shall be ele-
mentary in the sense of the following definition. (Cf. [7, Definition 2.8.4].)

7.13 Definition. Let both M and N be acceptable, let π : M → N , and let
n < ω. Then π is called an n-embedding if the following hold:

(1) Both M and N are n-sound,

(2) π is rΣn+1 elementary,

(3) π(pk(M)) = pk(N) for every k ≤ n, and

(4) ρn(N) = sup(π“ρn(M)).

Other examples for n-embeddings are typically obtained as follows. Let
M be acceptable, and let, for n ∈ ω, Cn(M) denote the transitive collapse
of hn

M“(ρn(M) ∪ {pn(M)}). Cn(M) is called the nth core of M . The nat-
ural map from Cn+1(M) to Cn(M) will be an n-embedding under favorable
circumstances.

8. Fine Ultrapowers

This section deals with the construction of “fine structure preserving” em-
beddings. Inner model theory is in need of such maps in two main contexts:
first, in “lift up arguments” which are crucial for instance in the proof of the
Covering Lemma for L or higher core models and in the proof of �κ in such
models (cf. [5] and the next section), and second, in performing iterations of
premice (cf. [5, 9, 12]). This section will deal with the construction of such
embeddings from an abstract point of view. The combinatorial objects which
are used for defining such maps are called “extenders”.

The following definition makes use of notational conventions which are
stated right after it.
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8.1 Definition. Let M be acceptable. Then E = 〈Ea | a ∈ [ν]<ω〉 is called
a (κ, ν)-extender over M with critical points 〈μa | a ∈ [ν]<ω〉 provided the
following hold:

(1) (Ultrafilter property) For a ∈ [ν]<ω we have that Ea is an ultrafilter on
the set P([μa]Card(a))∩M which is κ-complete with respect to sequences
in M ; moreover, μa is the least μ such that [μ]Card(a) ∈ Ea.

(2) (Coherence) For a, b ∈ [ν]<ω with a ⊆ b and for X ∈ P([μa]Card(a))∩M
we have that X ∈ Ea ⇐⇒ Xab ∈ Eb.

(3) (Uniformity) μ{κ} = κ.

(4) (Normality) Let a ∈ [ν]<ω and f : [μa]Card(a) → μa with f ∈M . If

{u ∈ [μa]Card(a) | f(u) < max(u)} ∈ Ea

then there is some β < max(a) such that

{u ∈ [μa]Card(a∪{β}) | fa,a∪{β}(u) = u
a∪{β}
β } ∈ Ea∪{β}.

We write σ(E) = sup{μa + 1 | a ∈ [ν]<ω}. The extender E is called short
if σ(E) = κ + 1; otherwise E is called long.

Let b = {β1 < · · · < βn}, and let a = {βj1 < · · · < βjm} ⊆ b. If
u = {ξ1 < · · · < ξn} then we write ub

a for {ξj1 < · · · < ξjm}; we also write ub
βi

for ξi. If X ∈ P([μa]Card(a)), then we write Xab for {u ∈ [μb]Card(b) | ub
a ∈ X}.

Finally, if f has domain [μa]Card(a) then we write fa,b for that g with domain
[μb]Card(b) such that g(u) = f(ub

a). Finally, we write pr for the function which
maps {β} to β (i.e., pr =

⋃
).

Notice that if E is a (κ, ν)-extender over the acceptable J-model M with
critical points μa, and if N is another acceptable J-model with P(μa)∩N =
P(μa) ∩M for all a ∈ [ν]<ω, then E is also an extender over N .

The currently known core models are built with just short extenders on
their sequence (cf. [5, 9, 12]). On the other hand, already the proof of the
Covering Lemma for L has to make use of long extenders.

The following is easy to verify.

8.2 Theorem. Let M and N be acceptable, and let π : M −→
Σ0

N cofinally

with critical point κ. Let ν ≤ N ∩On. For each a ∈ [ν]<ω let μa be the least
μ ≤M ∩On such that a ⊆ π(μ), and set

Ea = {X ∈ P([μa]Card(a)) ∩M | a ∈ π(X)}.

Then E = 〈Ea | a ∈ [ν]<ω〉 is a (κ, ν)-extender over M .

8.3 Definition. If π : M → N , E, κ, and ν are as in the statement of
Theorem 8.2 then E is called the (κ, ν)-extender derived from π.
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8.4 Theorem. Let M = 〈JA
α , B〉 be acceptable, and let E = 〈Ea | a ∈ [ν]<ω〉

be a (κ, ν)-extender over M . There are then N and π such that the following
hold:

(a) π : M −→
Σ0

N cofinally with critical point κ,

(b) the well-founded part wfp(N) of N is transitive and ν ⊆ wfp(N),

(c) N = {π(f)(a) | a ∈ [ν]<ω, f : [μa]Card(a) →M, f ∈M}, and

(d) for a ∈ [ν]<ω we have that X ∈ Ea if and only if
X ∈ P([μa]Card(a)) ∩M and a ∈ π(X).

Moreover, N and π are unique up to isomorphism.

Proof. We do not construe (c) in the statement of this theorem to presuppose
that N be well-founded; in fact, this statement makes perfect sense even if
N is not well-founded.

Let us first argue that N and π are unique up to isomorphism. Suppose
that N , π and N ′, π′ are both as in the statement of the Theorem. We claim
that

π(f)(a) �→ π′(f)(a)

defines an isomorphism between N and N ′. Note for example that π(f)(a) ∈
π(g)(b) if and only if, setting c = a ∪ b,

c ∈ π({u ∈ [μc]Card(c) | fa,c(u) ∈ gb,c(u)}),

which by (d) yields that

{u ∈ [μc]Card(c) | fa,c(u) ∈ gb,c(u)} ∈ Ec,

and hence by (d) once more that

c ∈ π′({u ∈ [μc]Card(c) | fa,c(u) ∈ gb,c(u)},

i.e., π′(f)(a) ∈ π′(g)(b).
The existence is shown by an ultrapower construction. Let us set

D = {〈a, f〉 | a ∈ [ν]<ω, f : [μa]Card(a) →M, f ∈M}.

For 〈a, f〉, 〈b, g〉 ∈ D let us write

〈a, f〉 ∼ 〈b, g〉 ⇐⇒ {u ∈ [μc]Card(c) | fa,c(u) = gb,c(u)} ∈ Ec,

for c = a ∪ b.

We may easily use (1) and (2) of Definition 8.1 to see that ∼ is an equiva-
lence relation on D. If 〈a, f〉 ∈ D then let us write [a, f ] = [a, f ]ME for the
equivalence class {〈b, g〉 ∈ D | 〈a, f〉 ∼ 〈b, g〉}, and let us set

D̃ = {[a, f ] | 〈a, f〉 ∈ D}.
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Let us also define, for [a, f ], [b, g] ∈ D̃,

[a, f ] ∈̃ [b, g] ⇐⇒ {u ∈ [μc]Card(c) | fa,c(u) ∈ gb,c(u)} ∈ Ec,

for c = a ∪ b,

Ã([a, f ]) ⇐⇒ {u ∈ [μa]Card(a) | f(u) ∈ A} ∈ Ea,

B̃([a, f ]) ⇐⇒ {u ∈ [μa]Card(a) | f(u) ∈ B} ∈ Ea.

Notice that the relevant sets are members of M , as M is rudA-closed and
amenable. Moreover, by (1) and (2) of Definition 8.1, ∈̃, Ã, and B̃ are well-
defined. Let us set

N = 〈D̃, ∈̃, Ã, B̃〉.
Claim 1. (�Loś’s Theorem) Let ϕ(v1, . . . , vk) be a Σ0 formula, and let 〈a1, f1〉,
. . . , 〈ak, fk〉 ∈ D. Then

N |= ϕ([a1, f1], . . . , [ak, fk])
⇐⇒ {u ∈ [μc]Card(c) |M |= ϕ(fa1,c

1 (u), . . . , fak,c
k (u))} ∈ Ec

for c = a1 ∪ · · · ∪ ak.

Notice again that the relevant sets are members of M . Claim 1 is shown by
induction on the complexity of ϕ, by exploiting (1) and (2) of Definition 8.1.
Let us illustrate this by verifying the direction from right to left in the case
that, say, ϕ ≡ ∃v0 ∈ v1 ψ for some Σ0 formula ψ.

We assume that, setting c = a1 ∪ · · · ∪ ak,

{u ∈ [μc]Card(c) |M |= ∃v0 ∈ v1 ψ(fa1,c
1 (u), . . . , fak,c

k (u))} ∈ Ec.

Let us define f0 : [μc]Card(c) → ran(f1) as follows.

f0(u) =

⎧
⎪⎨

⎪⎩

the <M -smallest x ∈ ran(f1) with
M |= ψ(x, fa1,c

1 , . . . , fak,c
k (u)) if some such x exists,

∅ otherwise.

The point is that f0 ∈ M , because M is rudA-closed and amenable. But
we then have that

{u ∈ [μc]Card(c) |M |= f0(u) ∈ fa1,c
1 (u) ∧ ψ(fa1,c

1 (u), . . . , fak,c
k (u))} ∈ Ec,

which inductively implies that

N |= [c, f0] ∈ [a1, f1] ∧ ψ([a1, f1], . . . , [ak, fk]),

and hence that
N |= ∃v0 ∈ v1ψ([a1, f1], . . . , [ak, fk]).

Given Claim 1, we may and shall from now on identify, via the Mostowski
collapse, the well-founded part wfp(N) of N with a transitive structure. In
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particular, if [a, f ] ∈ wfp(N) then we identify the equivalence class [a, f ] with
its image under the Mostowski collapse.

Let us now define π : M → N by

π(x) = [0, cx], where cx : [μ0]0 → {x}.

We aim to verify that N , π satisfy (a), (b), (c), and (d) from the statement
of Theorem 8.4.

Claim 2. If α < ν and [a, f ] ∈̃ [{α}, pr] then [a, f ] = [{β}, pr] for some β < α.

In order to prove Claim 2, let [a, f ] ∈̃ [{α}, pr]. Set b = a ∪ {α}. By �Loś’s
Theorem,

{u ∈ [μb]Card(b) | fa,b(u) ∈ pr{α},b(u)} ∈ Eb.

By (4) of Definition 8.1, there is some β < α such that, setting c = b ∪ {β},

{u ∈ [μc]Card(c) | fa,c(u) = pr{β},c(u)} ∈ Ec,

and hence, by �Loś’s Theorem again,

[a, f ] = [{β}, pr].

Claim 2 implies, via a straightforward induction, that

[{α}, pr] = α for α < ν. (9.29)

In particular, (b) from the statement of Theorem 8.4 holds.

Claim 3. If a ∈ [ν]<ω then [a, id] = a.

If [b, f ] ∈̃ [a, id] then by �Loś’s Theorem, setting c = a ∪ b,

{u ∈ [μc]Card(c) | f b,c(u) ∈ uc
a} ∈ Ec.

However, as Ec is an ultrafilter, there must then be some α ∈ a such that

{u ∈ [μc]Card(c) | f b,c(u) = uc
α} ∈ Ec,

and hence by �Loś’s Theorem and (9.29)

[b, f ] = [{α}, pr] = α.

On the other hand, if α ∈ a then it is easy to see that α ∈ [a, id]. This shows
Claim 3.

Claim 4. [a, f ] = π(f)(a).

Notice that this statement makes sense even if [a, f ] /∈ wfp(N).
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Let b = a ∪ {0}. We have that

{u ∈ [μb]Card(b) | fa,b(u) = ((cf ){0},b(u))(ida,b(u))} = [μb]Card(b) ∈ Eb,

by (1) of Definition 8.1, and therefore by �Loś’s Theorem and Claim 3,

[a, f ] = [0, cf ]([a, id]) = π(f)(a).

Claim 4 readily implies (c) from the statement of Theorem 8.4.

Claim 5. κ = crit(π).

Let us first show that π�κ = id. We prove that π(ξ) = ξ for all ξ < κ by
induction on ξ.

Let ξ < κ. Suppose that [a, f ] ∈̃π(ξ) = [0, cξ]. Set b = a ∪ {ξ}. Then

{u ∈ [μb]Card(b) | fa,b(u) < ξ} ∈ Eb.

As Eb is κ-complete with respect to sequences in M (cf. (1) of Definition 8.1),
there is hence some ξ̄ < ξ such that

{u ∈ [μb]Card(b) | fa,b(u) = ξ̄} ∈ Eb,

and therefore [a, f ] = π(ξ̄) which is ξ̄ by the inductive hypothesis. Hence
π(ξ) ⊆ ξ. It is clear that ξ ⊆ π(ξ).

We now prove that π(κ) > κ (if π(κ) /∈ wfp(N) we mean that κ ∈̃π(κ))
which will establish Claim 5. Well, μ{κ} = κ, and

{u ∈ [κ]1 | pr(u) < κ} = [κ]1 ∈ E{κ},

from which it follows, using �Loś’s Theorem, that κ = [{κ}, pr] < [0, cκ] =
π(κ).

The following, together with Claim 1 and Claim 5, will establish (a) from
the statement of Theorem 8.4.

Claim 6. For all [a, f ] ∈ N there is some y ∈M with [a, f ] ∈̃π(y).

To verify Claim 6, it is easy to see that we can just take y = ran(f).

It remains to prove (d) from the statement of Theorem 8.4.
Let X ∈ Ea. By (1) of Definition 8.1,

X = {u ∈ [μa]Card(a) | u ∈ X} ∈ Ea,

which, by �Loś’s Theorem and Claim 3, gives that a = [a, id] ∈̃ [0, cX ] = π(X).
On the other hand, suppose that X ∈ P([μa]Card(a)) ∩M and a ∈ π(X).

Then by Claim 3, [a, id] = a ∈ π(X) = [0, cX ], and thus by �Loś’s Theorem

X = {u ∈ [μa]Card(a) | u ∈ X} ∈ Ea.

We have shown Theorem 8.4. �
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8.5 Definition. Let M , E, N , and π be as in the statement of Theorem 8.4.
We shall denote N by Ult0(M ;E) and call it the Σ0 ultrapower of M by E,
and we call π : M → N the Σ0 ultrapower map (given by E). We shall also
write πE for π.

8.6 Definition. Let M be acceptable, and let E be a (κ, ν)-extender over M .
Let n < ω be such that ρn(M) > σ(E). Suppose that M is n-sound, and set
p = pn(M). Let

π : Mn,p → N̄

be the Σ0 ultrapower map given by E. Suppose that

π̃ : M → N

is as given by the proof of Lemmata 4.2 and 5.11. Then we write Ultn(M ;E)
for N and call it the rΣn+1 ultrapower of M by E, and we call π̃ the rΣn+1

ultrapower map (given by E).

A comment is in order here. Lemmata 4.2 and 5.11 presuppose that π is
strong (cf. Definition 4.1). However, the construction of the term model in
Sect. 4 does not require π to be strong, nor does it even require the target
model N̄ to be well-founded. Consequently, we can make sense of Ultn(M ;E)
even if π is not strong or N̄ is not well-founded. This is why we have “the
proof of Lemmata 4.2 and 5.11” in the statement of Definition 8.6. We shall of
course primarily be interested in situations where Ultn(M ;E) is well-founded
after all. In any event, we shall identify the well-founded part of Ultn(M ;E)
with its transitive collapse.

One can also construct rΣn+1 ultrapower maps without assuming that
the model one takes the ultrapower of is n-sound; this is done by pointwise
lifting up a directed system converging to the model in question. However, the
construction of Definition 8.6 seems to be broad enough for most applications.

Recall Definition 5.12. It is clear in the light of the Upward Extension of
Embeddings Lemma that any rΣn+1 ultrapower map is rΣn+1 elementary
(and hence the name). The following will give more information.

8.7 Theorem. Let M be acceptable, and let E be a (κ, ν)-extender over M .
Let n < ω be such that ρn(M) > σ(E). Suppose that M is n-sound and
(n + 1)-solid. Let

π : M → Ultn(M ;E)

be the rΣn+1 ultrapower map given by E. Assume that Ultn(M ;E) is tran-
sitive, and that π(pn+1(M)) ∈ Pn+1

N .
Then π is an n-embedding, Ultn(M ;E) is (n + 1)-solid, and π(pn+1(M))

= pn+1(N).

Proof. Set N = Ultn(M ;E). That N is n-sound follows from the Upward
Extension of Embeddings Lemma. N is (n + 1)-solid and π(pn+1(M)) =
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pn+1(N) by Lemma 7.11. By construction we have that π is the upward
Extension of

π�Mn : Mn → Ult0(Mn;E),

so that by the Upward Extension of Embeddings Lemma we shall now have
that Nn = Ult0(Mn;E), and therefore ρn(N) = Nn ∩ On = Ult0(Mn;E) ∩
On; however, π�Mn is cofinal in Ult0(Mn;E) by Theorem 8.4, and thus
ρn(N) = sup(π“ρn(M)). The Upward Extension of Embeddings Lemma
also implies that π(ρk(M)) = ρk(N) for all k < n. �

The following is sometimes called the “Interpolation Lemma.” We leave
the (easy) proof to the reader.

8.8 Lemma. Let n < ω. Let M̄ , M be acceptable, and let

π : M̄ −→M

be rΣn+1 elementary. Let ν ≤ M ∩ On, and let E be the (κ, ν)-extender
derived from π.

There is then a weakly rΣn+1 elementary embedding

σ : Ultn(M̄ ;E)→M

such that σ�ν = id and σ ◦ πE = π.

If π is as in Theorem 8.7 then it is often crucial to know that ρn+1(M) =
ρn+1(Ultn(M ;E)). In order to be able to prove this we need that 〈M,E〉
satisfies additional hypotheses.

8.9 Definition. Let M be acceptable, and let E = 〈Ea | a ∈ [ν]<ω〉 be a
(κ, ν)-extender over M . Then E is close to M if for every a ∈ [ν]<ω,

(1) Ea is ΣM
1 ({q}) for some q ∈M , and

(2) if Y ∈M , M |= Card(Y ) ≤ κ, then Ea ∩ Y ∈M .

The following theorem is the key tool for proving the preservation of the
standard parameter in iterations of mice.

8.10 Theorem. Let M be acceptable, and let E = 〈Ea | a ∈ [ν]<ω〉 be a short
(κ, ν)-extender over M which is close to M . Suppose that n < ω is such that
ρn+1(M) ≤ κ < ρn(M), M is n-sound, and Ultn(M ;E) is transitive. Then

P(κ) ∩M =P(κ) ∩Ultn(M ;E), and
ρn+1(M) =ρn+1(Ultn(M ;E)).

In particular, if M is (n + 1)-solid then Ultn(M ;E) is (n + 1)-solid and
π(pn+1(M)) = pn+1(Ultn(M ;E)).
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Proof. Set N = Ultn(M ;E). Trivially, P(κ) ∩M ⊆ P(κ) ∩N . To show that
P(κ) ∩N ⊆ P(κ) ∩M , let X ∈ P(κ) ∩N . Let X = [a, f ]M

n

E . As E is short,
μa ≤ κ; in fact, without loss of generality, μa = κ. Hence for ξ < κ, if we set

Xξ = {u ∈ [κ]Card(a) | ξ ∈ f(u)}

then {Xξ | ξ < κ} ∈ Mn ⊆ M . But ξ ∈ X ⇐⇒ Xξ ∈ Ea by �Loś’s Theorem,
and since E is close to M we get that X ∈M .

If q ∈ Mn and A ∈ ΣMn

1 ({q}), A ∩ ρn+1(M) ∈ ΣNn

1 ({π(q), ρn+1(M)}).
Because P(κ) ∩N ⊆ P(κ) ∩M , we thus have that ρn+1(N) ≤ ρn+1(M).

To show that ρn+1(M) ≤ ρn+1(N), let A ∈ ΣNn

1 ({q}) for some q ∈ Nn.
Let q = [a, f ]M

n

E , and let

x ∈ A ⇐⇒ Nn |= ϕ(x, [a, f ]),

where ϕ is Σ1. If Mn = 〈JB
α , A〉 and δ < α then we shall write Mn,δ

for 〈JB
δ , A ∩ JB

δ 〉. For δ < Nn ∩ On, Nn,δ is defined similarly. Because
πE : Mn → Nn is cofinal, we have that

x ∈ A ⇐⇒ ∃δ < Mn ∩On Nn,πE(δ) |= ϕ(x, [a, f ]).

By �Loś’s Theorem, we may deduce that for ξ < κ,

ξ ∈ A ⇐⇒ ∃δ < Mn ∩On {u ∈ [κ]Card(a) |Mn,δ |= ϕ(ξ, f(u))} ∈ Ea.

But now E is close to M , so that Ea is ΣMn

1 ({q′}) for some q′ ∈Mn, which
implies that A ∩ κ is ΣMn

1 ({q′, κ, f}).
We now finally have that π(pn+1(M)) ∈ Pn+1

M . Therefore, if M is (n+1)-
solid then Ultn(M ;E) is (n + 1)-solid and π(pn+1(M)) = pn+1(Ultn(M ;E))
by Lemma 7.12. �

We now turn towards criteria for Ultn(M ;E) being well-founded.

8.11 Definition. Let M be acceptable, and let E = 〈Ea | a ∈ [ν]<ω〉 be
a (κ, ν)-extender over M . Let λ < Card(κ) be an infinite cardinal (in V ).
Then E is called λ-complete provided the following holds true. Suppose that
〈〈ai, Xi〉 | i < λ〉 is such that Xi ∈ Eai for all i < λ. Then there is some
order-preserving map τ :

⋃
i<λ ai → σ(E) such that τ“ai ∈ Xi for every

i < λ.

8.12 Lemma. Let M be acceptable, and let E = 〈Ea | a ∈ [ν]<ω〉 be a
(κ, ν)-extender over M . Let λ < Card(κ) be an infinite cardinal. Then E is
λ-complete if and only if for every U ≺

Σ0

Ult0(M ;E) of size λ there is some

ϕ : U −→
Σ0

M such that ϕ ◦ πE(x) = x whenever πE(x) ∈ U .

Proof. (=⇒) Let U ≺
Σ0

Ult0(M ;E) be of size λ. Write U = {[a, f ] | 〈a, f〉 ∈

Ū} for some Ū of size λ. Let 〈〈ai, Xi〉 | i < λ〉 be an enumeration of all
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pairs 〈c,X〉 such that there is a Σ0 formula ψ and there are 〈a1, f1〉, . . . ,
〈ak, fk〉 ∈ Ū with c = a1 ∪ · · · ∪ ak and

X = {u ∈ [μc]Card(c) |M |= ψ(fa1,c
1 (u), . . . , fak,c

k )} ∈ Ec.

Let τ :
⋃

i<λ ai → σ(E) be order-preserving such that τ“ai ∈ Xi for every
i < λ. Let us define ϕ : U →M by setting ϕ([a, f ]) = f(τ“(a)) for 〈a, f〉 ∈ Ū .

We get that ϕ is well-defined and Σ0 elementary by the following reasoning.
Let ψ(v1, . . . , vk) be Σ0, and let 〈aj , fj〉 ∈ U , 1 ≤ j ≤ k. Set c = a1∪· · ·∪ak.
We then get that

U |= ψ([a1, f1], . . . , [ak, fk])

⇐⇒ Ult0(M ;E) |= ψ([a1, f1], . . . , [ak, fk])

⇐⇒ {u ∈ [μc]Card(c) |M |= ψ(fa1,c
1 (u), . . . , fak,c

k (u))} ∈ Ec

⇐⇒ τ“c ∈ {u ∈ [μc]Card(c) |M |= ψ(fa1,c
1 (u), . . . , fak,c

k (u))}
⇐⇒ M |= ψ(f1(τ”a1), . . . , fk(τ“ak)).

We also get that ϕ ◦ πE(x) = ϕ([∅, cx]) = cx(∅) = x.
(⇐=) Let 〈〈ai, Xi〉 | i < λ〉 be such that Xi ∈ Eai for all i < λ. Pick

U ≺
Σ0

Ult0(M ;E) with {ai, Xi | i < λ} ⊆ U , Card(U) = λ, and let ϕ :

U −→
Σ0

M be such that ϕ◦πE(x) = x whenever πE(x) ∈ U . Set τ = ϕ�
⋃

i<λ ai.

Then τ“ai = ϕ(ai) ∈ ϕ ◦ πE(Xi) = Xi for all i < λ. Clearly, ran(τ) ⊆
σ(E). �

8.13 Corollary. Let M be acceptable, and let E be an ℵ0-complete (κ, ν)-
extender over M . Then Ult0(M ;E) is well-founded. In fact, if n < ω is such
that ρn(M) ≥ σ(E) then Ultn(M ;E) is well-founded.

The concept of ℵ0-completeness is relevant for constructing inner models
below the “sharp” for an inner model with a proper class of strong cardinals
(cf. [11]). There are strengthenings of the concept of ℵ0-completeness which
are needed for the construction of inner models beyond the “sharp” for an
inner model with a proper class of strong cardinals (cf. for instance [13,
Definition 1.2], [6, Definition 1.6]).

8.14 Lemma. Let λ be an infinite cardinal, and let θ be regular. Let π :
H̄ → Hθ, where H̄ is transitive and λH̄ ⊆ H̄. Suppose that π �= id, and set
κ = crit(π). Let M be acceptable, let ρ be regular in M , and suppose that
HM

ρ ⊆ H̄. Set ν = sup(π“ρ), and let E be the (κ, ν)-extender derived from
π�HM

ρ . Then E is λ-complete.

Proof. Let 〈〈ai, Xi〉 | i < λ〉 be such that Xi ∈ Eai , and hence ai ∈ π(Xi),
for all i < λ. As λH̄ ⊆ H̄, 〈Xi | i < λ〉 ∈ H̄. Let σ : otp(

⋃
i<λ ai) ∼= γ be the
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transitive collapse; notice that γ < λ+ < κ. For each i < λ let āi = σ“ai.
We have that 〈āi | i < λ〉 ∈ H̄. But now

Hθ |= ∃τ : γ→̃On ∀i < λ τ“āi ∈ π(〈Xj | j < λ〉)(i),

as witnessed by σ. Therefore,

H̄ |= ∃τ : γ→̃On ∀i < λ τ“āi ∈ Xi.

Hence, if τ ∈ H̄ is a witness to this fact then τ ◦ σ :
⋃

i<λ ai → On is such
that τ ◦ σ“ai ∈ Xi for every i < λ. �

We leave it to the reader to find variants of this result. For instance,
extenders derived from canonical ultrapower maps witnessing that a given
cardinal κ is measurable are λ-complete for every λ < κ.

9. Applications to L

In this final section we shall illustrate how to use the above machinery in the
simplest case—in the constructible universe L. The theory developed above
is, however, general enough so that it can be used for all the currently known
core models.

We shall first prove two important lemmata. Recall that we index the
J-hierarchy with limit ordinals.

9.1 Lemma. For each limit ordinal α, Jα is acceptable.

9.2 Lemma. For each limit ordinal α, Jα is sound.

We shall prove these two lemmata simultaneously. The proof goes by
induction on α in a zig-zag way in the sense that we use soundness of Jα to
prove the acceptability of Jα+ω and then, knowing this, its soundness.

Proof. The case α = ω is trivial. Now suppose that both lemmata hold for
all limit ordinals β < α.

Claim 1. Jα is acceptable.

This is trivial for α being a limit of limit ordinals. For α = β + ω it is
clear that the only thing we have to prove is the following:

If there is a τ < β and an a ⊆ τ such that a ∈ Jβ+ω \ Jβ ,

then there is an f ∈ Jβ+ω such that f : τ onto−→ β.
(9.30)

We prove (9.30). Suppose that there are such τ , a and take τ to be the least
one such that there is a as above. Then

τ = ρω(Jβ). (9.31)
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To see (9.31) note first that if n is such that ρn(Jβ) = ρω(Jβ), then we

have a new Σ
Jn

β

1 subset of ρω(Jβ). Such a set is ΣJβ
ω by Lemma 5.5, and is

hence in Jβ + ω \ Jβ by Lemma 1.7. Therefore, τ ≤ ρω(Jβ).
Let a ⊆ τ such that a ∈ Jβ+ω \ Jβ . Then a ∈ ΣJβ

n for some n ∈ ω by
Lemma 1.7. By the above inequality, a ⊆ ρn(Jβ). Lemma 5.6 then yields that

a is Σ
Jn−1

β

1 , since, by the induction hypothesis, Jβ is sound. Consequently,
ρω(Jβ) ≤ τ . This proves (9.31).

Now we use the induction hypothesis once again to verify (9.30). By the
soundness of Jβ and by Lemmata 5.4 and 5.5, there is some f ∈ ΣJβ

ω such
that f : ρω(Jβ) → Jβ is surjective. By Lemma 1.7, f ∈ Jβ+ω. This shows
(9.30) and therefore also Claim 1.

Claim 2. Jα is sound.

We shall make use of Lemma 6.8 here. Hence, for n < ω we prove

pn(Jα) ∈ Rn
Jα

. (9.32)

Suppose that this is false. Pick the first n such that p = pn(Jα) /∈ Rn
Jα

. Let

a be ΣJn−1
α

1 ({p}) such that a ∩ ρn(Jα) /∈ Jα. Using the Downward Extension
of Embeddings Lemma we construct unique Jᾱ, p̄, π such that

p̄ ∈ Rn
Jᾱ

,

π : Jn−1,p̄�(n−1)
ᾱ → Jn−1,p�(n−1)

α is Σ1 elementary,
π(p̄(n− 1)) = p(n− 1),
π�Jρn(Jα) = id.

(9.33)

Hence a ∩ ρn(Jα) = ā ∩ ρn(Jᾱ) where ā is ΣJn−1
ᾱ

1 ({p̄(n − 1)}) by the same
definition. Hence ᾱ cannot be less than α, since otherwise a ∩ ρn(Jα) ∈ Jα.
Consequently, ᾱ = α. It is also clear by the construction that p̄ ≤∗ p. But
p ≤∗ p̄ since p is the standard parameter. Hence, p = p̄. But this means
p ∈ Rn

Jα
. Contradiction. �

Classical applications of the fine structure theory include Jensen’s results
that ♦ and � hold in L and that L satisfies the Covering Lemma. The
following is Jensen’s Covering Lemma for L.

9.3 Theorem. Suppose that 0# does not exist. Let X be a set of ordinals.
Then there is a Y ∈ L with Y ⊇ X and Card(Y ) ≤ Card(X) · ℵ1.

This result is shown in [2] (cf. also [5]). In order to illustrate the fine struc-
tural techniques we have developed we shall now give a proof of a corollary
to Theorem 9.3. Recall that a cardinal κ is called countably closed if λℵ0 < κ
whenever λ < κ.
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9.4 Corollary. Let κ be a countably closed singular cardinal. If 0# does not
exist then κ+L = κ+.

Proof. We shall use the fact that the existence of 0# is equivalent with the
existence of a non-trivial elementary embedding π : L → L. Suppose that
0# does not exist and κ is a countably closed singular cardinal such that
κ+L < κ+. We aim to derive a contradiction.

Let X ⊆ κ+L be cofinal with otp(X) < κ. We may pick an elementary
embedding

π : H̄ → Hκ+

such that H̄ is transitive, ωH̄ ⊆ H̄, X ⊆ ran(π), and Card(H̄) = otp(X)ℵ0 .
As κ is countably closed, Card(H̄) < κ, which implies that π �= id. Set
λ = π−1(κ+L), and let E be the (κ, π(λ))-extender over Jλ derived from
π�Jλ.

By Lemma 8.14, E is ℵ0-complete. By Corollary 8.13, this implies the
following.

Claim. Let α ≥ λ, α ∈ On ∪ {On}. Suppose that λ is a cardinal in Jα

(which implies that E is an extender over Jα). Suppose that ρn(Jα) ≥ λ.
Then Ultn(Jα;E) is transitive, and therefore Ultn(Jα;E) = Jβ for some
β ∈ On ∪ {On}. (If α = On then by Jα we mean L, and we want n = 0; we
shall then have Jβ = L as well.)

Now because 0# does not exist, we cannot have that α = On satisfies the
hypothesis of the Claim. Let α ∈ On \ λ be largest such that λ is a cardinal
in Jα. Let n < ω be such that ρn+1(Jα) < λ ≤ ρn(Jα). By Lemma 9.2, we
have that

Jα = hn+1
Jα

“(ρn+1(Jα) ∪ {p}),

where p = pn+1(Jα). (Cf. Lemma 5.4.) Because πE is rΣn+1 elementary by
Theorem 8.7, Lemma 5.13 implies that

X ⊆ π“Jα ⊆ hn+1
Jβ

“(π(ρn+1(Jα)) ∪ {π(p)}).

But π(ρn+1) ≤ κ, so that in particular

Jβ+ω |= π(λ) is not a cardinal.

However, π(λ) = κ+L. Contradiction! �

We finally aim to prove �κ in L. This is the combinatorial principle the
proof of which most heavily exploits the fine structure theory.

Let κ be an infinite cardinal. Recall that we say that �κ holds if and
only if there is a sequence 〈Cν | ν < κ+〉 such that if ν is a limit ordinal,
κ < ν < κ+, then Cν is a club subset of ν with otp(Cν) ≤ κ and whenever ν̄
is a limit point of Cν then Cν̄ = Cν ∩ ν̄.
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9.5 Theorem. Suppose that V = L. Let κ ≥ ℵ1 be a cardinal. Then �κ

holds.

Proof. We shall verify that there is a club C ⊆ κ+ and some 〈Cν | ν ∈
C ∧ cf(ν) > ω〉 such that if ν is a limit ordinal, κ < ν < κ+, then Cν is a
club subset of ν with otp(Cν) ≤ κ and whenever ν̄ is a limit point of Cν then
Cν̄ = Cν ∩ ν̄. It is not hard to verify that this implies �κ (cf. [1, pp. 158ff.]).

Let C = {ν < κ+ | Jν ≺Σω Jκ+}, a closed unbounded subset of κ+.
Let ν ∈ C. Obviously, κ is the largest cardinal of Jν . We may let

α(ν) be the largest α ≥ ν such that either α = ν or ν is a cardinal in
Jα. By Lemma 1.7, ρω(Jα(ν)) = κ. Let n(ν) be that n < ω such that
κ = ρn+1(Jα(ν)) < ν ≤ ρn(Jα(ν)).

If ν ∈ C, then we define Dν as follows. Dν consists of all ν̄ ∈ C ∩ ν such
that n(ν̄) = n(ν), and there is a weakly rΣn(ν)+1 elementary embedding

σ : Jα(ν̄)−→ Jα(ν)

such that σ�ν̄ = id, σ(pn(ν̄)+1(Jα(ν̄))) = pn(ν)+1(Jα(ν)), and if ν̄ ∈ Jα(ν̄) then
ν ∈ Jα(ν) and σ(ν̄) = ν. It is easy to see that if ν̄ ∈ Dν then there is exactly
one map σ witnessing this, namely the one with

σ(hn(ν̄)+1
Jα(ν̄)

(ξ, pn(ν̄)+1(Jα(ν̄)))) = h
n(ν)+1
Jα(ν)

(ξ, pn(ν)+1(Jα(ν)))

ξ < κ; we shall denote this map by σν̄,ν .

Claim 1. Let ν ∈ C. The following hold:

(a) Dν is closed.

(b) If cf(ν) > ω then Dν is unbounded.

(c) If ν̄ ∈ Dν then Dν ∩ ν̄ = Dν̄ .

Proof of Claim 1. (a) and (c) are easy. Let us show (b). Suppose that
cf(ν) > ω. Set α = α(ν) and n = n(ν). Let β < ν. We aim to show
that Dν \ β �= ∅.

Let π : Jᾱ −→
Σn+1

Jα be such that ᾱ is countable, β ∈ ran(π), and

{W ν,p1(J
k
α)

Jk
α

| ν ∈ p1(Jk
α), k ≤ n} ⊆ ran(π).

Let ν̄ = π−1(ν) (if ν = α, we mean ν̄ = ᾱ). Let

π′ = πEπ�Jν̄
: Jᾱ −→

rΣn+1
Ultn(Jᾱ;Eπ�Jν̄ ).

Write Jα′ = Ultn(Jᾱ;Eπ�Jν̄ ). By Lemma 8.8, we may define a weakly rΣn+1

elementary embedding
k : Jα′ −→ Jα

with k ◦ π′ = π. As β ∈ ran(π), k−1(ν) > β. Moreover, k−1(ν) =
sup(π“ν̄) < ν, as cf(ν) > ω. Therefore β < k−1(ν) ∈ Dν . �
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Now let ν ∈ C. We aim to define Cν . Set α = α(ν), and n = n(ν).
Recursively, we define sequences 〈νi | i ≤ θ(ν)〉 and 〈ξi | i < θ(ν)〉 as follows.
Set ν0 = min(Dν). Given νi with νi < ν, we let ξi be the least ξ < κ such
that

hn+1
Jα

(ξ, pn+1(Jα)) \ ran(σνi,ν) �= ∅.

Given ξi, we let νi+1 be the least ν̄ ∈ Dν such that

hn+1
Jα

(ξi, pn+1(Jα)) ∈ ran(σν̄,ν).

Finally, given 〈νi | i < λ〉, where λ is a limit ordinal, we set νλ = sup({νi |
i < λ}. Naturally, θ(ν) will be the least i such that νi = ν. We set Cν =
{νi | i < θ(ν)}.

The following is now easy to verify.

Claim 3. Let ν ∈ C. Then The following hold:

(a) 〈ξi | i < θ(ν)〉 is strictly increasing.

(b) otp(Cν) = θ(ν) ≤ κ.

(c) Cγ is closed.

(d) If ν̄ ∈ Cν then Cν ∩ ν̄ = Cν̄ .

(e) If Dν is unbounded in ν then so is Cν .

We have shown that �κ holds. �
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1. Σ∗ Fine Structure

Why is fine structure necessary? One answer is that, although the con-
structible hierarchy is an extremely uniform creation, it is not that uniform.
We have for any level of our Jα hierarchy uniform Σ1-Skolem functions. In
attempting to generalise this and prove the existence of Σn-uniformising func-
tions one runs immediately into the difficulty that these cannot be given a
completely uniform definition. The following example taken from [17] shows
why (see also the related [8, pp. 106–107]).

For any τ < ω1, {ζ | Jω1+τ |= “ω1+ζ does not exist”} is a Π1-relation over
Jω1+τ whose least member, i.e. τ itself, has a Σ2 definition via applications
of a posited uniformly definable Σ2-Skolem function. For such τ we should
have a resulting Σ2 definition, which, by Fodor’s Lemma, on a stationary set
D ⊆ ω1 of τ , would be given by the same Σ2 formula over Jτ , ∃u∀vΦ(u, v, t)
say. By Fodor again we may shrink D further to a stationary E so that for
some constant δ, and some fixed u0 ∈ Jω1+δ, and taking any η < ω1, if η is
in E \ (δ + 1) then (∀vΦ(u0, v, η)) holds in Jω1+η. In particular for any other
γ ∈ E \ (δ + 1) below η this Π1 fact about η also holds in Jω1+γ , where γ is
supposed to be the unique solution. This is absurd.

We deduce from this that parameters must be involved in defining
Σ2-Skolem functions. Jensen’s solution in [24] is to reduce the problem
of Σ2-uniformisation over Jτ to that of Σ1-uniformisation over a projectum
structure 〈Jρτ , Aτ 〉 with Aτ a Σ1-mastercode essentially coding up Σ1 truth
over Jτ . Σ2(Jτ ) ∩ Jρτ relations are transformed to Σ1(〈Jρτ , Aτ 〉) relations,
which can be Σ1-uniformised, and such a uniformising function can be trans-
lated back up to a Σ2 function over Jτ . This is because ρτ has been chosen
so that there is a uniform (in τ) Σ1-Skolem function mapping (a subset
of) Jρτ onto Jτ (although uniform, a parameter is inserted here dependent
on τ). In this, admittedly very scantily sketched, manner we can effectively
Σ2-uniformise all of Jτ . This machinery can be generalised for all n ≥ 2,
and thus prove Jensen’s Σn-Uniformisation Theorem: Any Σn(Jτ ) relation
can be uniformised by a Σn(Jτ ) function. However as we have observed,
there can be no uniform way of performing Σ2-uniformisations: there was
the notion of the projectum, and the parameter in the above, which will
vary between Jτ ’s. All the objects concerned (the projects, the parame-
ters etc.) nevertheless have definitions over Jτ ; however these definitions
are not at the same level of complexity in the Levy hierarchy of formulae
as the level we are working at, and at which we would wish. The Σ∗ hier-
archy of formulae replaces the Levy hierarchy and seeks to encapsulate the
idea that somehow Σn+1 is “Σ1-in-Σn” much as the above talked about Σ2

(with 2 = n + 1) as “Σ1-in-Σn” over the first reduct or projectum struc-
ture 〈Jρτ , Aτ 〉. Then we think of Σ(n+1)

1 as Σ1 in Σ(n)
1 —and that is why

Σ(n)
1 plays a part in the “atomic” clause definition of Σ(n+1)

1 below. Σ(n)
1

formulae then refer to nth reducts only indirectly through the type of the
variables.
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The Σ∗ hierarchy then, is not at all necessary for an exposition of a fine
structure theory for L: we have chosen on illustrative grounds to rework the
proofs of, say, global � for L below, using it. Although for a structure M

the Σ(n)
1 (M) hierarchy of relations is different from the usual Σn(M) hier-

archy qua hierarchy, the totality of relations Σ∗(M) =
⋃

n<ω Σ(n)
1 (M) are

the same: Σω(M). The gain in the Σ∗ hierarchy comes chiefly in the devel-
opment of the theory of fine structure suitable for mice, for fine-structural
ultrapowers, and L[E] models. One should further make the remark that
much of the work in defining the notions of projects, good and very good
parameters (the sets PM and RM ), nth codes, and reducts etc., is prior to
the notion of Σ(n)

1 relation: we shall exploit this here by referring back to
the chapter of Schindler and Zeman in this Handbook [46] for these con-
cepts.

Each section consists of one or more fine structural constructions followed
by some discussion on variants, extensions, and a necessarily brief list of
some sample applications. Thus this first section will continue after these
introductory remarks to introduce the Σ(n)

1 hierarchy of formulae, and the
accompanying relations on acceptable structures. Although these pages look
notationally complex the proofs are essentially elementary. The notion of
Σ(n)

k -preserving embeddings as those embeddings that preserve formulae of
the correct type, is of course natural and by Lemma 1.15 we can restate the
Downward Extension of Embeddings Lemma and Jensen’s uniformisation
result as a Σ(n)

1 -Uniformisation Theorem. Notions of Σ(n)
1 -Skolem function

and of the Condensation Lemma for L in a strong form follow.
In Sect. 1.1 variant fine structures are discussed: the original form of fine

structure for the Dodd-Jensen core model [10]; the use of Skolem hulls to
potentially replace parts of the fine structure apparatus, and the hyperfine
structure theory. In Sect. 1.2 the important theory of Σ∗ ultrapowers is de-
veloped. This is a natural notion of ultrapower based on the Σ(n)

1 hierarchy.
Section 1.3 reworks this material for so-called pseudo-ultrapowers, otherwise
known as long extender ultrapowers. Section 2 is devoted to using this ap-
paratus to a proof of Global � in L. As remarked later, we do not actually
need the Σ(n)

1 hierarchy and the corresponding analysis of the constructible
hierarchy to effect this. However it is illustrative of the kind of arguments
one uses in this arena. Section 2.1 gives some variants of � principles. We
only very briefly mention some applications, but do discuss consequences of
the failure of �κ. The fascinating question of whether it can be proven that
� holds in fine structural inner models is discussed in Sect. 2.2. Recent work
identifies for which κ in certain classes of L[E] models we can have �κ. Sec-
tion 3 discusses morasses and gives constructions of both a gap-1 morass and
the simplifying variant of a coarse gap-1 morass in L.

We shall not discuss in any great depth the two major applications of
contemporary fine structure: the Covering Lemma and L[E]-Inner Models.
Although we shall want to refer to these later, these two major topics are
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properly covered elsewhere in the Handbook, in the chapters by Mitchell and
by Schimmerling.
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based on Jensen’s original [28], the authoritative published reference to the
Σ(n)

1 theory is Zeman’s [62]. We are very much indebted to his volume for
much of the early part of the exposition here, as well as to the authors of [18]
and [32], and would like to thank them. We should like to thank those who
have commented helpfully on previous versions of this chapter, and again we
are particularly grateful to Martin Zeman in this regard.

By “Lim” (“Sing”) we mean the class of limit ordinals (singular limit
ordinals, respectively), by “Card” we mean the class of cardinals, and by
“Reg”, we shall mean the class of regular cardinals. For hM a Σ1-Skolem
function (see [46, 1.15]) for a structure M , we shall denote by hM (X) the
Skolem hull inside M generated from the set X ⊆ M ; more properly we
should have written hM“(ω× [X]<ω), where in turn [X]<ω denotes the class
of finite subsets of X. We use �y to denote the list y0, . . . , yh, and 〈�y 〉 =df

〈y0, . . . , yh〉 is the ordered sequence, i.e. a finite function. Order type is
abbreviated as ot. If X ⊆ On then X∗ denotes the class of limit points
of X. We use the following rudimentarily defined well-order on [On]<ω:
a <∗ b↔ max(a$b) ∈ b.

In what follows we assume that M = 〈JA
α ,∈, A,B〉 is an acceptable J-struc-

ture in the sense of [46, 1.20] with JA
α a level of a relativised J-hierarchy. That

is, it is a structure satisfying the axiom of acceptability: ∀τ < α∀ξ < τ :

P(ξ) ∩ JA
τ+1\JA

τ �= ∅ −→ (∃f ∈ JA
τ+1) (f : ξ onto→ τ).

We further recall from there that being acceptable can be expressed as a
Q-property (see [46, 1.18]). We shall write ρM = ρ(M) as usual for the
Σ1-projectum of M . ([46] prefers the notation ρ(M) here; we have also
adhered to Jensen’s notation, and that of [62], in writing here “Jα” for what
[46] would name “Jωα”.) Similarly we shall write for the (n + 1)st projectum
ρn+1

M =df min{ρMn,p | p ∈ Γn
M}. ([46] would write ρn+1(M) for ρn+1

M here,
and similarly ρ(Mn,p) for ρMn,p ; as here, we keep in general to the notation
of [62].) We can, and do, assume that parameters are finite sets of ordinals
(cf. the comment of [46] before 6.3). This applies as well to the nth-standard
parameter and the standard parameter [46, 6.3, 6.6] denoted here pn

M , pM

respectively for a structure M as above. For the notions of soundness and
n-soundness the reader can refer to [46] Definition 5.2—and see Lemma 6.8.

The Σ∗ Hierarchy of Formulae

Notions of “fine-structural” preserving maps (and ultimately ultrapowers)
can be smoothly presented in terms of Jensen’s Σ∗ hierarchy of formulae. As
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already intimated, this is a hierarchy of definability over a J-structure, with
a different order of stratification than the usual Levy hierarchy of formulae.
Although the relations Σ∗-definable over M are also the usual Σω-definable
relations, the intermediate levels of Σn-definability do not in general corre-
spond to those within Σ∗. More complex initially, the Σ∗ hierarchy pos-
sesses nice properties the Levy hierarchy lacks: again for example, over L,
Jensen’s Σn-Uniformisation Theorem states that such relations may be Σn-
uniformised albeit in a parameter. When given the Σ∗ analysis, Σ(n)

1 (Jα)
relations enjoy uniform Σ(n)

1 (Jα)-uniformising functions. Moreover the hier-
archy encapsulates the notion of elementarity that the reader of [46] Sects. 3
and 4 on downward and upward extensions of embeddings will have already
seen expressed by those results. As mentioned above, the hierarchy and all
the results here of this first section were first exposited in [28] by Jensen.

We start by defining the language L∗ = L∗
{ ∈̇,=̇,Ȧ,Ḃ}. This has variables

vi
j (i, j < ω) of type i. The atomic formulae are those of the form vi

j ∈ Ȧ,
vi

j ∈ Ḃ, vi
j ∈ vk

l , vi
j = vk

l (i, j, k, l < ω). The formulae are those obtained from
the atomic formulae by closing under ¬,∧ and typed quantification ∃vi

j , ∀vi
j .

An L∗-structure is then a structure of the form H = 〈H,A,B,∈, H0, H1, . . .〉
with H = H0 and Hi ⊇ Hj �= ∅ for i ≤ j < ω, all Hj being tran-
sitive. The variables vn

m are intended to range over Hn. An acceptable
J-model M = 〈JA

α ,∈, A,B〉 can be viewed as the L∗-structure M = 〈JA
α ,∈,

A,B,H0
M , H1

M , . . .〉, which amounts to the standard interpretation. Here the
variables vn

m are intended to range over Hn
M =df HM

ωρn
M

. Note that n ≤ m
implies ρn

M ≥ ρm
M , so this makes sense. In what follows we shall use extra

variable symbols such xn, um ad lib.
The stratification we referred to earlier is as follows:

1.1 Definition.

(a) The Σ(n)
0 formulae are the formulae in the smallest class Σ ⊆ L∗ such

that:

(i) Σ contains the atomic formulae, and the formulae Σ(m)
1 for any

m < n;
(ii) Σ is closed under ¬,∧, and quantification which binds variables

of type n by a higher type; that is if ϕ ∈ Σ, so are ∀xn ∈ ymϕ,
∃xn ∈ ymϕ, where m ≥ n;

(b) Σ(n)
k formulae are obtained by alternating k blocks of quantifiers of type

n: ∃�xn
1 ∀�xn

2 . . .Q�xn
k ϕ where ϕ ∈ Σ(n)

0 (and Q is ∀ or ∃ depending on
whether k is even or odd).

(c) Π(n)
0 = Σ(n)

0 , and Π(n)
k formulae as those of the form: ∀�xn

1 ∃�xn
2 . . .Q�xn

k ϕ
for the appropriate Q; and we define:

Σ∗ =
⋃

nΣ(n)
0

(
=
⋃

nΣ(n)
1

)
.
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The notions of Σ(n)
k relation and function are defined fairly straightfor-

wardly, using these formulae. We need to analyse such relations and func-
tions, and we need a notion of good Σ(n)

1 functions as those functions that
may be substituted into a Σ(n)

1 relation and still yield a Σ(n)
1 relation. These

will be defined below.
Over a model M Σ(n)

k relations involve a defining Σ(n)
k formula whose

variables are of a certain type.

1.2 Definition.

(i) Let M be a J-structure; R(xi1
1 , . . . , xik

k ) is a Σ(n)
k (M) relation of type

〈i1, . . . ik〉 in parameters �q ∈M<ω, if and only if R is defined over M by
a Σ(n)

k formula ϕ(vi1
1 , . . . , vik

k , �q ). (If we wish to mention the parameters
we shall say that R is “Σ(n)

k (M) in the parameters �q.”)

(ii) R is Σ(n)
k (M) if and only if it is Σ(n)

k (M) in some parameters �q.

(iii) The Σ∗(M) relations (also written Σ(ω)
1 (M)), are those Σ(n)

0 (M) for
some n, and Σ∗(M) relations are defined analogously.

A relation more formally speaking is thus a pair: 〈R, 〈i1, . . . , ik〉〉, consist-
ing of the actual graph of the relation as a subset of Hi1 ×· · ·×Hik together
with its type: 〈i1, . . . , ik〉.

1.3 Definition. A function F is a Σ(n)
k (M) function to Hi

M of argument
type 〈i1, . . . , ik〉 if and only “yi = F (xi1

1 , . . . , xik

k )” is a Σ(n)
k (M) relation of

type 〈i, i1, . . . , ik〉.

Part of our analysis will show that although, for example, Σ(n)
k (M) rela-

tions are not just graphs but come with the additional baggage of a type, for
most intents and purposes, we shall not have to worry about the type. As
the domains Hi

M ⊇ Hj
M for j ≥ i are decreasing, replacing a variable in a

formula defining a relation, by one of higher type, just reduces the domain
specified, and so the resulting relation may be regarded as a specialisation of
the original: if R(xj1

1 , . . . , xjk

k ), R(xi1
1 , . . . , xik

k ) are relations on H, then R is
a specialisation of R, if jl ≥ il (0 < l ≤ k) and R = R ∩Hj1 × · · · ×Hjk .

1.4 Lemma. If R(xi
1, �x ) is Σ(n)

k (M), and j ≥ i, then so is the specialisation
R(xj

1, �x ).

1.5 Lemma. If R(xj
1, �x ) is Σ(n)

k (M) (in �q) and j ≥ i ≥ n, then R is a
specialisation of a Σ(n)

k (M) (in �q) relation R(xi
1, �x ).

The proofs of the above are both straightforward inductions on the struc-
ture of the defining formula for R. Notice that this implies that any Σ(n)

k (M)
relation can be considered a specialisation of a Σ(n)

k (M) relation whose argu-
ments are all of type less than or equal to n. Note also that trivial operations
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like permutation of variables, or insertion of dummy ones, in a Σ(n)
k (M) re-

lation leave it in the same class of definability.
The next lemma tells how Σ(n+1)

k (M) relations R can be expressed as
Σk relations on a suitably extended (n + 1)st reduct domain. It is impor-
tant for the reader to note the uniformities implicit in the statement of the
lemma. Firstly note that although the lemma talks about Σ(n+1)

k (M) rela-
tions, the structure M really does not enter into consideration and the result
is independent of it. (The reader should be aware of this kind of ostensible
dependence on a structure M , of which it is in reality independent, as this
reoccurs in several places in the development below.) The result is really a
purely syntactic one about the defining formula for R. This is the second
uniformity: the relations Si that appear in the conclusion of the lemma are
derived entirely from the matrix of this defining formula, and depend only
on it.

1.6 Lemma. R(�xn+1, . . . , �x 0) is Σ(n+1)
k (M) if and only if there are

Σ(n)
1 (M) relations Si (i ≤ m) such that for all −→x = �xn, . . . , �x 0 ∈M :

R−→x =df {〈�xn+1〉 | R(�xn+1,−→x )} is uniformly Σk(〈Hn+1
M ,∈, Q0−→x , . . . , Qm−→x 〉),

where each Qi−→x (for i ≤ m) has the form

Qi−→x = {〈�y n+1〉 | Si(�y n+1,−→x )}.

Proof. We should first note that the “uniformly” here (a further uniformity)
refers to the fact that the same Σk formula ψ of the conclusion works for
every choice of �x. Although notationally complicated the lemma is actually
rather simple: the relations Si correspond to the fact that Σ(n)

1 formulae
play a role of atomic formulae in the definition of Σ(n+1)

0 and are in fact the
relations defined by those components. To continue in the proof of (=⇒), we
may write the formula ϕ(�xn+1, . . . , �x 0) defining R in prenex form:

∃vn+1
1 ∀vn+1

2 · · · (∃wn+1
1 ∈ un+1

1 )(∀wn+1
2 ∈ un+1

2 )
· · ·ψ(�v n+1, �w n+1, �xn+1, �x ) (+)

(the bounding variables un+1
j being amongst the �v n+1, �xn+1). As intimated

ψ is a propositional combination of Σ(n)
1 formulae ϕ0, . . . , ϕm which define for

us (relabelling the type n+1 variables as �y n+1) the Si(�y n+1, �x ) (i ≤ m). Let
Q(�y n+1, �x ) be the relation corresponding to that propositional combination
of the Si mirroring the structure ψ. Then R−→x (�t ) can be seen to be expressible
as:

∃v1∀v2 · · · (∃w1 ∈ u1)(∀w2 ∈ u2) · · ·Q−→x (�v, �w,�t ) (∗)
where now the bounding variables uj are amongst the �v,�t.

For the converse, if R−→x is Σk(〈Hn+1
M ,∈, Q0−→x , . . . , Qm−→x 〉), then it has the

form of (∗). We now just unwind the previous process, thinking of each
Qj

−→x (�v, �w,�t ) as a propositional combination of Qi−→x ; we now replace Qi−→x , �v,

�w, �t, by ϕi, �v
n+1, �wn+1, �xn+1 and obtain the Σ(n+1)

k form of (+). �
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The next lemma relates the last to the reduct structures Mn,p(�x ).

1.7 Lemma.

(i) Let 0 < k. R(�xn, . . . , �x 0) is Σ(n)
k (M) if and only if the relation R−→x =

{〈�xn〉 | R(�xn,−→x )} of the last lemma is uniformly Σk(Mn,p(�x )), where
p(−→x ) =df 〈〈�x 0〉, . . . , 〈�xn−1〉〉.

(ii) If R(�xn, . . . , �x 0) is Σ(n)
0 (M) then R−→x is uniformly rudimentary in

Mn,p(�x ); conversely if R−→x is Σ0(Mn,p(�x )) then R(�xn, . . . , �x 0) is
Σ(n)

0 (M).

Proof. By an induction on n. For n = 0 it is trivial. For (i), we suppose this
is true for m, and we shall prove it for n = m + 1.

For the forward direction, let R(�xn, . . . , �x 0) be Σ(n)
k (M). By appealing

to, and using the notation of, the last lemma, there are Σ(m)
1 (M) relations

S0, . . . , St so that for −→x = �xm, . . . , �x 0 ∈ M , R−→x is uniformly Σk(〈Hn
M ,∈,

Q0−→x , . . . , Qt−→x 〉). However each Si(�z m+1,−→x ) can be considered a specialisation
of a Σ(m)

1 (M) relation S̃i(�z m,−→x ). We use the notation −→y = �xm−1, . . . , �x 0

and p(�y ) =df 〈〈�x 0〉, . . . , 〈�xm−1〉〉. Then we can rewrite: S̃i(�z m,−→x ) as
S̃i(�z m, �xm,−→y ). The inductive hypothesis implies that

Qi−→y =df {〈�z m, �xm〉 | S̃i(�z m, �xm,−→y )}

is uniformly Σ1(Mm,p(�y )). There is thus a fixed Σ1-formula ϕj(i) such that

〈�z m, �xm〉 ∈ Qi−→y ⇐⇒ Mm,p(�y ) |= ϕj(i)(�z m, �xm)

⇐⇒ 〈j(i), �z m〉 ∈ A�x m

Mm,p(�y )

where the latter is of course the standard code predicate occurring in the
nth reduct determined by p(�x ): Mn,p(�x ) (cf. [46, 5.1]). However 〈�z m〉 ∈
Qi−→x ⇐⇒ 〈�z m, �xm〉 ∈ Qi−→y , so if we replace every occurrence of “〈�z m〉 ∈
Qi−→x ” by “〈j(i), �z m〉 ∈ A�x m

Mm,p(�y )” in the Σk(〈Hn
M ,∈, Q0−→x , . . . , Qt−→x 〉) definition

of R−→x , we obtain a Σk(Mn,p(�x )) definition for it. These substitutions and
translations did not depend on −→x or M , but only on the definition of R, and
so are themselves uniform and effective.

For the converse, suppose that R�x is uniformly Σk(Mn,p(−→x ))-definable
by some formula Φ say. This will contain atomic components of the form
“〈j, 〈�xn, �z n〉〉 ∈ A�x m

Mm,p(�y )” (continuing with the same notation as from the
first part). If we can show that these atomic formulae are expressible as Σ(m)

1

formulae (in variables j, �z n, �xn, . . . , �x 0) then we may effectively transform
Φ into a Σ(m)

k formula by substituting these Σ(m)
1 formulae for the atomic

components. We have however:

〈j, 〈�xn, �z n〉〉 ∈ A�x m

Mm,p(�y ) ⇐⇒ Mm,p(�y ) |= ϕj(〈�xn, �z n〉, �xm).
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We consider the right side here a specialisation of the relation: Mm,p(�y ) |=
ϕj(〈�w m, �z m〉, �xm) and the latter is (since Σ1 satisfaction over J-structures
is uniformly Σ1-definable) Σ1(Mm,p(�y )) in the variables j, �w m, �z m, �xm uni-
formly for all �y, and by the inductive hypothesis it is Σ(m)

1 (M). Hence by
Lemma 1.4 the atomic component is Σ(m)

1 (M) also, This suffices for (i).
For (ii), the converse direction works as above, but in the forwards di-

rection, when we perform the replacement “〈�z m〉 ∈ Qi−→x ” by “〈j(i), �z m〉 ∈
A�x m

Mm,p(�y )” as the latter is in general not Σ0 in the predicate A�x m

Mm,p(�y ) we
obtain only that it is rudimentary in Mn,p(�x )—but that is the only differ-
ence. �

We can argue similarly to the above that (n + 1)st standard codes are
themselves uniformly Σ(n)

1 -definable:

1.8 Lemma. There is an A∗(�xn+1, . . . , �x 0) which is Σ(n)
1 (M) uniformly for

all J-structures M such that (again with p(�x ) as in the last lemma, and
−→x = �xn, . . . , �x 0)

〈�xn+1〉 ∈ A
n+1,p(�x )
M ⇐⇒ A∗(�xn+1, . . . , �x 0);

i.e. A
n+1,p(�x )
M = A∗

�x.

In general Σ(n)
1 (M) relations are not closed under substitution of Σ(n)

1 (M)
functions. We shall need to define a class of functions, the good functions
which do permit this kind of substitutability. As a preliminary:

1.9 Lemma. Let m ≤ n, 0 < k. Let R(�xn, . . . , �x 0) be Σ(n)
k (M). Let

�F n, . . . , �F 0 be such that each Fm
j (�z 0, . . . , �z m) is a (possibly partial) Σ(m)

1 (M)

function to Hm
M . Then R(

−−−−→
F i(−→z )) is uniformly Σ(n)

k (M).

Proof. By induction on n. We assume it holds for l < n. For the sake of
brevity, we consider just a single Fm(�z ) of value type m ≤ n, this illus-
trates the idea and the reader will see that the rest is merely complication of
notation. We can consider R(Fm(�z ), �x ) as defined by:

M |= ∃xm(xm = Fm(�z ) ∧R(xm, �x )).

If m = n this already shows that R(Fm(�z ), �x ) is Σ(n)
k (M). So suppose m < n

and hence 0 < n. Write out a prenex form of the definition of R(xm, �x ) with
a Σ(n)

0 matrix ϕ as:

M |= ∃�v n
1 ∀�v n

2 · · ·Q�v n
k ϕ(�v, xm, �x ).

The free variable xm only occurs in the Σ(n−1)
1 “atomic constituents” of

the Σ(n)
0 formula ϕ. We shall apply the induction hypotheses to these con-

stituents: they can be effectively listed, and if ψ(xm, �y ) is a typical member
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of this list, then apply the inductive hypothesis to ψ(Fm(�z ), �y ) to yield some
Σ(n)

0 formula. If this is done throughout ϕ the resultant formula ϕ̃(�v, �z, �x ) is
itself now Σ(n)

0 . Hence R(Fm(�z ), �x ) is definable over M by

∃�v n
1 ∀�v n

2 · · ·Q�v n
k (∃xm = Fm(�z ) ∧ ϕ̃(�v, �z, �x )).

The process is clearly effective and independent of M . �

1.10 Definition. The good Σ(n)
1 (M) functions form the smallest class F,

such that, taking i, j1, . . . , jk ≤ n,

(i) each partial Σ(i)
1 (M) function to Hi

M of the form F (xjk

k , . . . , xj1
1 ) =

xi ∈ F;

(ii) if F (xjk

k , . . . , xj1
1 ) = xi ∈ F and Gi(�y ) = zji ∈ F (and the �y all have

type ≤ n), then F (Gk(�y ), . . . , G1(�y )) ∈ F.

The previous lemma together with an induction on the scheme generating
the good Σ(n)

1 functions proves:

1.11 Lemma. Let R(xi, �x ) be Σ(n)
k (M), k ≥ 1, n ≥ i. Let F i(�y ) be a good

Σ(n)
1 (M) function of value type i. Then R(F i(�y ), �x ) is uniformly Σ(n)

k (M).

Again we should remark that the Σ(n)
k definition of the resultant relation

is uniformly obtained from the scheme generating Σ(n)
1 good functions, and

the definition of R(xi, �x ). It has nothing to do with M (or �x ). The following
corollary then shows that Σ(n)

1 relations are after all characterisable by their
graphs alone.

1.12 Corollary.

(i) Let R(xi1
1 , . . . , xik

k ) and R(yj1
1 , . . . , yjk

k ) have the same graph. Then

R(xi1
1 , . . . , xik

k ) ∈ Σ(n)
1 (M) ⇐⇒ R(yj1

1 , . . . , yjk

k ) ∈ Σ(n)
1 (M).

(ii) In particular, if R(xi1
1 , . . . , xik

k ) ∈ Σ(n)
1 (M), then it is a specialisation

of R′(x0
1, . . . , x

0
k) ∈ Σ(n)

1 (M) with the same graph, and all of whose
arguments are of value type 0.

Proof. To see (i) we may substitute into R(xi1
1 , . . . , xik

k ) the good Σ(n)
1 (M)-

projection functions xi1
1 = yj1

1 , . . . , xik

k = yjk

1 . (ii) is then a special case of
this. �

Σ(n)
k -Preserving Embeddings

We may define Σ(n)
k -preserving embeddings in a natural way: Let M̄,M

be J-structures, n, l < ω.
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(i) π : M̄ −→
Σ

(n)
l

M iff π : M̄ −→M and whenever ϕ(vj1
1 , . . . , vjm

m ) ∈ Σ(n)
l ,

xi ∈ Hji

M̄
(1 ≤ i ≤ m) then π(xi) ∈ Hji

M , and

M̄ |= ϕ(�x ) ⇐⇒ M |= ϕ(
−−→
π(x));

(ii) π : M̄ −→Σ∗ M iff π : M̄ −→
Σ

(n)
1

M for all n < ω;

(iii) π : M̄ −→
Σ

(n)
0

M cofinally iff π : M̄ −→
Σ

(n)
0

M and Hn
M =

⋃
π“Hn

M̄
.

If F is a good Σ(n)
1 (M̄)-definable function, then one may show that F has

such a definition that is “functionally absolute”; i.e. a definition that defines
a function over any acceptable structure N , and thus is robust under Σ(n)

1 -
preserving maps. (See [62, 1.8.10].) The key to this is that the canonical
Σ1-Skolem function has such a definition over any acceptable J-structure,
in particular for those of the form Mn,p. Thence the same holds for any
other Σ(n)

1 (M) function to Hn
M also: briefly if f(−→x ) where −→x = �xn, . . . , �x 0

is a Σ(n)
1 (M) function to Hn

M defined by some formula ϕ, we may define
g−→x (�xn)  f(−→x ) and p(�x ) =df 〈〈�x 0〉, . . . , 〈�xn−1〉〉. This makes the definition
of g−→x (�xn) Σ1(Mn,p(�x )). However this depends only on ϕ and not −→x . Hence
there is a single fixed i so that g−→x (�xn)  hMn,p(�x )(i, �xn) and the latter
is a uniform functionally absolute definition. In short, concerning embed-
dings, any Σ(n)

1 (M̄) functionally absolute definition applied over M̄ where
π : M̄ −→

Σ
(n)
1

M also yields a Σ(n)
1 function over M .

1.13 Lemma. Let M̄,M be acceptable J-structures. Then: π : M̄ −→
Σ

(n)
k

M iff π : M̄ −→ M and whenever p̄ ∈ Γn
M̄

then p = π(p̄) ∈ Γn
M , and

π�Hn
M̄

: M̄n,p̄ −→Σk
Mn,p.

Proof. This is a direct consequence of Lemma 1.7. �

The following two lemmata correspond to [46, 5.8, 5.9] expressed in our
language.

1.14 Lemma. Let M̄ , M be acceptable J-structures. Let π : M̄ −→ M be
the n-completion of π�Hn

M̄
: M̄n,p̄ −→Σk

Mn,p where p̄ ∈ Rn
M̄

and p = π(p̄) ∈
Γn

M . Then π : M̄ −→
Σ

(n)
k

M .

Proof. Let q̄ ∈ Γn
M̄

be arbitrary. As p̄ ∈ Rn
M̄

we have that for any q = π(q̄) ∈
Γn

M that An,q̄

M̄
is rudimentary in An,p̄

M̄
in some parameter r say. (See the proof

of [46, 5.3(b)].) Then An,q
M is rudimentary in An,p

M in π(r) ∈ Hn
M by the same

rudimentary definition. So π�Hn
M̄

: M̄n,q̄ −→Σk
Mn,q. As q̄ was arbitrary,

the previous lemma shows π : M̄ −→
Σ

(n)
k

M . �
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1.15 Lemma (Downward Extension of Embeddings Lemma). Let M̄,M be
acceptable J-structures. Let π�Hn

M̄
: M̄n,p̄ −→Σk

Mn,p where p̄ ∈ Rn
M̄

. Then
there is a unique π̃ ⊇ π such that π̃(p̄) = p and π̃ : M̄ −→

Σ
(n)
k

M .

Some of the fruits of this analysis are seen in the following two lemmas, the
first of which is the analogue of Jensen’s classical Σn-Uniformisation Lemma.

1.16 Lemma (Σ(n)
1 -Uniformisation Theorem). Let R(yn, xj1

1 , . . . , xjm
m ) be

Σ(n)
1 (M) with ji ≤ n. Then there is a Σ(n)

1 (M) function F (uniformly defin-
able with respect to any such M) into Hn

M (which is thus good) uniformis-
ing R. Namely:

(a) dom(F ) = {〈xj1
1 , . . . , xjm

m 〉 ∈ M | ∃yn ∈ M(R(yn, �x ))} (where �x =
xj1

1 , . . . , xjm
m );

(b) ∀�x = xj1
1 , . . . , xjm

m ∃yn(R(yn, �x ) ←→ R(F (�x ), �x )).

Proof. Writing R in the form R(yn, �xn, . . . , �x 0) and setting again −→x =
�xn−1, . . . , �x 0, we have that if R−→x =df {〈yn, �xn〉 | R(yn, �xn,−→x )}, then Lem-
ma 1.7(i) shows that R−→x is uniformly Σ1(Mn,p(�x )), where, as before, p(�x ) =df

〈〈�x 0〉, . . . , �xn−1〉〉. If ϕi is a Σ1 formula yielding this definition, then we may
define the partial function

F (�xn,−→x ) = F−→x (�xn)  hMn,p(�x )(i, 〈�xn〉).

Then F−→x is a uniformly Σ1(Mn,p(�x ))-definable Skolem function for R−→x , and
by Lemma 1.7(i) F is Σ(n)

1 with value type n, and will do the job. �

1.17 Lemma. Let n < ω. There is a Σ(n)
1 formula defining a good Σ(n)

1 (M)
function Fn(u, v) into M (definable uniformly with respect to any J-struc-
ture M), so that

∀p(p ∈ Rn+1
M −→ |M | = Fn“Hn+1

M × {p}).

Proof. By induction on n. For n = 0, we have that p(0) ∈ RM and thus |M | =
hM“(ω × (H1

M × {p(0)})). Thus we can take F0(〈i, v〉, w) = hM (i, 〈v, w〉).
Suppose that the lemma holds for n− 1 as witnessed by Fn−1(un−1, w0) and
we prove it for n. Let p ∈ Rn+1

M . Then p�n ∈ Rn
M . Let x ∈ |M | be arbitrary;

then x = Fn−1(z, p�n) for some z ∈ Hn
M ; z in turn equals hMn,p�n(j, 〈y, p(n)〉

for some y ∈ Hn+1
M since p(n) ∈ RMn,p�n as well. Note that Fn−1(un, w0) is

also good Σ(n−1)
1 (M) (as it is obtained from the good Σ(n−1)

1 (M) function
Fn−1(un−1, w0) by specialising the first variable un−1 to un; it is a general
fact goodness is preserved by specialisation). Hence we may define

Fn(un, w0)  Fn−1(hMn,w0�n((un)0, 〈(un)1,w
0(n)〉), w0�n).

As we are substituting good Σ(n)
1 (M) functions (with value type ≤ n) into

Fn−1(un, w0) we end up with a good Σ(n)
1 (M) function Fn. �
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To bring out the nature of the above argument, we may define

gn(〈j, yn+1〉, p) = hMn,p�n(j, 〈yn+1, p(n)〉)

and more generally

gi(〈j, yi+1〉, p) = hMi,p�i(j, 〈yi+1, p(i)〉)

and this is uniformly lightface Σ(i)
1 (M) in the two variables wi+1 = 〈j, yi+1〉

and x0 = p for i ≤ n. We may compose these functions and if p ∈ Rn+1
M then

any x ∈ |M | is the value of such an iterated composition. This is expressed
below at part (ii) of the next definition and the fact that follows it.

1.18 Definition (Σ(n)
1 -Skolem Functions). Let M be an acceptable J-struc-

ture, and let p ∈ Γn
M .

(i) hn,p
M = hMn,p ;

(ii) h̃n
M (wn, x0) = g0(g1(· · · gn−1((wn)0, 〈(wn)1, x0(n− 1)〉) · · ·x0(0)〉).

Thus h̃n
M is Σ(n−1)

1 uniformly over all M . The Σ1 hull of a set X ⊆Mn,p

we shall denote by hn,p
M (X) (and is thus the set {hn,p

M (i, x)) | i ∈ ω, x ∈ X}).
Note that h̃1

M (〈j, y0〉, p(0)) = g0(j, 〈y, p(0)〉) = hM (j, 〈y, p(0)〉). If p ∈ Rn
M

then every x ∈M is of the form h̃n
M (z, p) for some z ∈ Hn

M . We may similarly
form hulls using h̃n

M : again if X ⊆ Mn,p say, and q ∈ M then the Σ(n−1)
1

hull of X ∪ {q} is the set {h̃n
M (x, q)) | x ∈ X}). The following states some of

these facts and are now easy to establish (see [62, p. 29]):

Fact. Let M be acceptable, and p ∈ Rn
M .

(i) if ωρn
M ∈ M and p ∈ Rn

M then h̃n
M is a good, uniformly defined,

Σ(n−1)
1 (M) function mapping Hn

M onto M : M = {h̃n
M (un, p) | un ∈

Hn
M}.

(ii) (a) every A ⊆ Hn
M which is Σ(n)

1 (M) is Σ1(Mn,p);

(b) ρn+1
M = ρMn,p .

1.19 Lemma. Let M be an acceptable J-structure.

(i) Σ∗(M) ⊆ Σω(M);

(ii) If M is sound then Σ∗(M) = Σω(M).

Proof. For (i) we just have to see that any typed variable vn can be replaced
by v ∈ Hn

M and the latter is definable (not necessarily at the nth level of the
Levy-hierarchy of complexity!). For (ii) we prove (⊇). Suppose by induction
we have shown that for every Σm(M) formula ϕ(�y ) there is a Σ(m)

1 (M)
formula ϕ̃(�y 0) such that (∀�x ∈ M)((ϕ(�x ))M ⇐⇒ (ϕ̃(�x ))M . Let n = m + 1



670 Welch / Σ∗ Fine Structure

and suppose p ∈ Rn
M (as M is sound). Let h̃n

M be as at (i) of the last Fact.
This is a good Σ(m)

1 function of value type 0 (and hence good Σ(n)
1 also) such

that

(∃xψ(x, �y ))M ⇐⇒ (∃u ∈ Hn
M )(ψ(h̃n

M (u, p), �y ))M

⇐⇒ (∃u ∈ Hn
M )(ψ̃(h̃n

M (u, p), �y ))M

where ψ̃ is the Π(m)
1 (M)-formula given by the inductive hypothesis. Thence

(ψ̃(h̃n
M (u, p), �y ))M is a Σ(n)

1 (M) property and (∃unψ̃(h̃n
M (u, p), �y ))M is a

Σ(n)
1 (M) relation. �

The following is a standard result. For its proof see [62, 1.11.2].

1.20 Lemma. Suppose π : M̄ −→
Σ

(n)
1

M and is such that (i) π�ωρn+1
M̄

=

id �ωρn+1
M̄

and (ii) ran(π) ∩ P ∗
M �= ∅. Then π is Σ∗-preserving.

Solidity Witnesses

Naturally the notion of solidity witness (see [46, Sect. 7]) can be defined in
this context. We shall not re-enter a discussion of these notions, but simply
give the definition.

1.21 Definition. Let M be an acceptable J-structure, p ⊆M a finite set of
ordinals, and ν ∈M . The standard witness for ν with respect to M , p is the
J-structure W = W ν,p

M where, if n is such that ωρn+1
M ≤ ν < ωρn

M :
σ : W ∼= X and X = h̃n+1

M (ν ∪ p\(ν + 1)) and σ is the inverse of the
transitive collapse.

The notion of generalised witness has an analogous definition mutatis mu-
tandis. The properties of witnesses, the definitions of n-solidity etc, then all
go through. It is easy to check for the L-hierarchy that if M = Jβ , p = pM ,
the standard parameter, and ωρn+1

M ≤ ν < ωρn
M , then ν ∈ p⇐⇒W ν,p

M ∈M .
We have for the L-hierarchy a strong form of condensation. We shall use
the fact that the L-hierarchy is sound (cf. [46, 9.2]). Note as always for the
pure J-hierarchy, the usual condensation property that hulls of a Jβ always
transitivise to some Jδ for a δ ≤ β.

1.22 Lemma (Condensation Lemma). Let M = Jβ, π : Jδ −→Σ
(n)
1

Jβ,

ωρn+1
M ≤ α < ωρn

M , π(ᾱ) = α, and π(p̄) = pJβ
\α. Then p̄ = pJδ

\ᾱ.

Proof. As π is Σ(n)
1 -preserving (and h̃n+1

M (un+1 ∪ {pM}) is good Σ(n)
1 (M))

Jδ = h̃n+1
Jδ

(ᾱ ∪ {p̄}). Thence follows that ωρn+1
Jδ

≤ ᾱ: for if this failed

we should have a Σ(n)
1 (Jδ) definable map of ᾱ < ωρn+1

Jδ
onto the whole

of Jδ. However this is impossible as the usual simple diagonalisation argument
would yield a Σ(n)

1 (Jδ)-definable subset of ᾱ which is not in Jδ. This would
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contradict the definition of ωρn+1
Jδ

. That ᾱ < ωρn
Jδ

follows from the Σ(n)
1

statement “∃un(un = π(ᾱ))” and the Σ(n)
1 -preservation property of π.

As Jδ = h̃n+1
Jδ

(ᾱ ∪ {p̄}), we have that p̄ ∈ Rn
Jδ

; this means that it can be
lengthened to a parameter p′ ∈ Pn+1

Jδ
(cf. [46, 6.4]). By the minimality prop-

erties of the standard parameter [46, 6.3] we have then that pJδ
\ᾱ ≤∗ p̄. If we

had <∗ instead of ≤∗ then we should have that p̄ ∈ h̃n+1
Jδ

(ᾱ∪{pJδ
\ᾱ}). Apply-

ing the Σ(n)
1 -preserving π we’d conclude that pM\α ∈ h̃n+1

M (α ∪ {π(pJδ
\ᾱ)})

with π(pJδ
\ᾱ) = π(pJδ

)\α <∗ pM\α. A contradiction. �

1.1. Variant Fine Structures

Although we may consider the Σ(n)
1 hierarchy as emerging finally out of the

original fine structure of [24], the historical line of development is not so
direct. From the time of Jensen’s proof of the Covering Lemma for L some
attempts at simplifications were made by several people. Silver’s development
of Silver machines built the L-hierarchy in a quite different manner by using
a very much slowed down version of construction based on creating hulls and
using a different collection of Skolem functions. As opposed to steps in the
L-hierarchy, very little happens in the transition from Mδ to Mδ+1 in this
machine hierarchy. This is expressed by a finiteness property : the hull in
Mδ+1 of a set A can be obtained by taking the hull in Mδ of A ∩ δ together
with just finitely many more ordinals less than δ (and lastly adding the
point δ). This relatively simple apparatus enjoyed sufficient condensation
properties that proofs of � and Jensen’s Covering Lemma for L could be
attained (see [8, Chap. IX] for an outline here, and [1] for a machine proof
of �). Once the theory of core models came to the fore it was not apparent
that this mechanism could be used as a substitute for the fine structure of
mice with measures that was then emerging.

The fine structure for mice has also not had a direct development. We
mention here some of the history of this fine structure, and the various uses
of the word “acceptable” in the literature. The fine structure for the mice of
the Dodd-Jensen core model [10] and [9], although used for later core models
with sequences of measures [35], and even in manuscript form of Dodd’s for
models with extenders, would seem to be far from amenable to the type
of approximation hierarchy of Silver. The Dodd-Jensen fine structure was
based on previous unpublished work of Solovay who had built on Jensen’s fine
structure for L, to do the same for L[U ]; the order of set construction was that
of relative constructibility in the traditional “macro” sense, and two notions
of “acceptability” and “strong acceptability” occurred here. The latter is now
closer to the current, and by now standard, use of the word “acceptable”.
This detailed how sets appeared in such JU

α hierarchies, and which expressed
a strong and uniform version of GCH. However they bore little resemblance
to the current ordering of L[E] hierarchies, and were becoming extremely
difficult to work with, and, past a strong cardinal, particularly hair-raising.
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Various papers from the time were published using this older fine structure,
and for very thin core models, that are inner models of KDJ, the vestigial
notions of “Q-structure” that were a part of the old theory still play a role
(e.g. [58]). However with the very successful reorganising of hierarchies due
to Baldwin and Mitchell this form of fine structure became defunct.

Magidor replaced fine structure (in the sense of eliminating the use of
projecta and mastercodes) by the use of more general Σn hulls and Skolem
functions for Σn formulae that, albeit not Σn-definable, were preserved under
condensations in reproving the Covering Lemma for L (this is the proof given
in [8]) using the J-hierarchy, and even using the L-hierarchy alone [34].

One of the chief advantages of the Baldwin-Mitchell reorganisation of the
hierarchy of construction from sequences of measures or extenders, was that
every level of the models to be constructed was sound. Mitchell and Steel
published an account [36] of a fine structure together with a model construc-
tion, of extenders whose comparison iteration required iteration trees (see
the chapter by Steel in this Handbook). This was the first time that an ac-
count of fine structure for mice whose comparison required trees of iterations,
allied with the Baldwin-Mitchell organisation of hierarchies, was published.
The fine structure used there was inspired by the nature of the predicates
that were being used. The notion of rΣn+1 formula is analogous to Σ(n)

1

used here (and the notion of rΣn+1 embedding between structures with very
good parameters is employed in [46] at 5.12). The success of this fine struc-
ture, together with the ability to build much larger models, has ensured its
widespread use and represented a leap forward in the production of models
that could contain many Woodin cardinals (cf. [50]). Jensen in a series of
circulated manuscripts developed the theory for similarly large models using
the Σ∗ language [27, 25]. Another auxiliary variety of acceptability occurs
in [14], where Feng and Jensen develop a theory of mice with some overlap-
ping of extenders in the Σ∗ language, in order to build a core model without
assuming any ‘technical hypothesis’ in the form of a large cardinal Ω in the
universe (see [41, Sect. 1]). In that paper a J-structure M = 〈JA

α ,∈, A〉 is
strongly acceptable if ∀τ < α∀�ξ < τ∀ϕ(v0) ∈ Σ1:

JA
τ+1 |= ϕ[�ξ ] ∧ JA

τ |= ¬ϕ[�ξ ] =⇒ (JA
τ+1 |= Card(τ) ≤ max{ω, �ξ }))

holds in M . Despite its name the notion is supplemental to acceptability
(which it does not in general imply).

We shall lastly mention the hyperfine structure of Friedman-Koepke [19].
This is an attractive elongation of the usual Lα-hierarchy by interspersing
infinitely many stages between the usual Lα and Lα+1. A crucial feature,
as will be seen below, for many fine-structural arguments is the notion of
singularisation of an ordinal, the place where an ordinal ν is first seen to
definably singularised by some formula. If ∃x < α ϕ(ξ, x, p) defines over Lβ

a cofinal subset of ξ’s forming C ⊆ ν (for some least β = β(ν) and according
to some <Lβ

-least finite parameter sequence of ordinals p) we can think of
the triple (β, ϕ, (p�α)) as a minimal location where ν is singularised. If we
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define Sϕ(q, x) = the <L-least ξ so that ϕ(ξ, x, q), as being the term for the
Skolem function for ϕ, we have that C = S

Lβ
ϕ “{(p, x) | x < α}. We thus

focus on structures of the form

L(β,ϕn,(p�α)) =df (Lβ ,∈, <L, N, I, S, S
Lβ
ϕ0 , S

Lβ
ϕ1 , . . . , S

Lβ
ϕn �{w <lex p�α}, . . .)

(where ϕ = ϕn, the nth formula in some standard recursive enumeration,
with all subformulae of ϕn being some ϕi for an i ≤ n). We can think of this
as the singularising structure for ν in this context, as ν is singularised by the
last object in this structure: S

Lβ
ϕn �{w <lex p�α}. The functions N, I, S are

included, where the first two are functions for naming and interpreting objects
respectively, and S is a general Skolem function. Properly construed one
may form hulls and, importantly, the finiteness property of Silver’s machines
is valid here too; one may prove condensation—that hulls inside locations
transitively collapse to other locations. Ultimately the theory allows for a
particularly elegant and short proof of Global �. This hyperfine structure
can be extended to consider premice with a single measure—thus sufficient
for forming the Dodd-Jensen KDJ, but like other alternatives to “true” fine
structure there seem to be real technical difficulties to going beyond that.

1.2. Σ∗ Ultrapowers

We give an account of the formation of a fine-structure preserving ultrapower.
[46, 8.4–8.5] gives the definition and construction of the Σ0 ultrapower. We
shall see here how to extend the usual notion of ultrapower that uses functions
within the model M , to one using Σ∗(M)-definable functions f . Such a
function f is not in general an element of the domain structure M , but with
the correct assumptions, M has enough information about the measure or
extender being used to form the ultrapower, that this can be sensibly done.
The resulting target ultrapower structure N may contain more objects than
the ordinary Σ0 ultrapower, in particular more ordinals (if we are starting
with a set model M). We shall develop this theory for ultrapowers by short
extenders that are weakly amenable with respect to the models M concerned.
This is more than one needs for dealing with premice with measures of order 0.
However, this greater generality will enable us to quickly dispose of “pseudo-
ultrapowers” in the next subsection. In any case it is still basically the
account of such ultrapowers from [28]. Suppose that M = 〈JA

α , A,B〉 is
an acceptable J-structure and E is a (κ, ν) extender over M with a single
critical point crit(E) = κ < On∩M and E = 〈Ea | α ∈ [ν]<ω〉. We shall
recall here for later the definition of weakly amenability of an extender E
with respect to M . This is defined as for any a ∈ [ν]<ω, 〈Xα | α < κ〉 ∈ M ,
that {α | Xα ∈ Ea} ∈ M . This can be shown equivalent to saying that
P(κ)∩M = P(κ)∩Ult0(M,E) (the latter denoting the usual “ordinary” Σ0

ultrapower of M by E). At some point we shall additionally assume that E
is Σ1-amenable: this in fact is just clause (1) of [46, 8.9]. Thus such E will
be “close to M” in that terminology.
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Assuming only that E is an extender, we shall write πE : M −→E N =
Ult0(M,E) for the ordinary (“coarse”) ultrapower embedding. The map
πE is a Σ0 and cofinal embedding and hence Σ1-preserving. In general this
is as much definable preservation that one could hope for. The notion of
Σ∗ ultrapower involves using functions that lie outside of M but that are
definable classes using formulae of the language L∗. Let M and E be as
above.

1.23 Definition. Suppose that E is a (κ, ν) extender over M . The relation
π : M −→∗

E N holds iff the following conditions are met:

(i) Whenever ρk
M > κ, π : M −→

Σ
(k)
0

N ; where N is transitive.

(ii) Let ρn
M = min{ρm

M |ρm
M > κ}, and H =

⋃
x∈Hn

M
π(x). Then

π�Hn
M : Hn

M −→E H.

(iii) Whenever ρk+1
M > κ, N is the closure of H∪ran(π) under good Σ(k)

1 (N)
functions.

1.24 Remark. (a) (ii) requires that π�Hn
M be the usual Σ0 ultrapower map

into H. Thus at this level we have the familiar ultrapower with functions
taken from Hn

M . Hence crit(π) = crit(E).
(b) If ωρω

M > κ then π : M −→∗
E N implies π : M −→Σ∗ N . If we define a

good Σ(−1)
1 function to be a function in M then clause (iii) makes sense even

if ρ1.M ≤ κ.

In most situations we shall want N to be well-founded (hence the defin-
ition), but sometimes it is convenient (although we shall not be concerned
with this here) to ask only that the well-founded core of N (which will be
assumed transitive) contains ν. The definition straightforwardly implies that
if ωρ1

M < κ then π : M −→E N if π : M −→∗
E N . (We’ll see that under this

hypothesis the converse is also true.) We shall see that the existence of such
a π, and an N with π : M −→∗

E N satisfying the above, implies that such
π and N are unique. Why is this plausible? Suppose such a π and N exist.
Suppose κ < ωρm+1

M for consideration as in (iii) above. Then for every z ∈ N

there is a good Σ(m)
1 (N) function F with z = F (u, π(x)) for some u ∈ H and

x ∈M for some m. Let y ∈ Hn
M be such that u ∈ π(y). Let F̄ have the same

functionally absolute definition over M as F does over N . Then F̄ is a good
Σ(m)

1 (M) function. Let ϕ(v0) be any Σ0 formula. Then M |= ϕ(F̄ (u, x)) is
a Σ(m)

1 (M) property in u, x. Let w = {v ∈ y | M |= ϕ(F̄ (v, x))}. Then, as
w ∈ Hn

M (since y ∈ Hn
M and we may assume n > m):

M |= (∀vn ∈ y)(ϕ(F̄ (vn, x)) ←→ vn+1 ∈ w).

This is Π(n)
0 , and as π is Σ∗-preserving we have:

N |= (∀vn ∈ π(y))(ϕ(F (vn, π(x))) ←→ vn ∈ π(w));
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in short, for u as above:

N |= ϕ(F (u, π(x)) ←→ u ∈ π(w).

This is tantamount to saying that Σ0 facts about (F (u, π(x)))N are deter-
mined by checking whether u ∈ π(w) for a w ∈ Hn

M suitably formed as
above. (And similarly for Σ0 facts such as “(F (u′, π(x′)) ∈ F (u, π(x)))N”.)
However π�Hn

M : Hn
M −→E H is the usual ultrapower of Hn

M by E, and this
map is determined by M and by E. And thus so are the Σ0 facts about
N mentioned above. If the ∈-diagram of N is determined then the whole
map π : M −→ N is determined—and thus unique—if it can be shown to
exist. To put it another way, the above argument shows that there is an ∈-
isomorphism between any two such ultrapowers N,N ′; however if the N,N ′

are taken as transitive, then this isomorphism is the identity.
We have implicitly in the above assumed that we can map across such good

functions in a well-defined way. We justify this more formally in a moment.
We now proceed to describe ultrapowers formed by taking these extra class

(over M) functions.

1.25 Definition. Γ = Γ(κ,M) is the set of functions f with dom(f) = [κ]k

(some k < ω) and either f ∈M or f is a good Σ(n)
1 (M) function for some n

with ωρn+1
M ≥ κ.

The extension of π to elements of Γ is effected as follows: if f ∈ Γ and
dom(f) = κ, and f with dom(f) = κ has a functionally absolute Σ(m)

1 (M)
definition in a parameter r, where ωρm+1

M > κ, then we set π(f) to be the
function with dom(π(κ)) defined over N by the same Σ(m)

1 definition us-
ing π(r). We need to argue that this is well-defined. Suppose FM (vm, u0)
and GM (vm, u0) are two good Σ(m)

1 (M) definitions in the parameters q, r
respectively of the function f. Then (∀ξ < κ)(FM (ξ, q) = GM (ξ, r)) holds
over M . However this can be expressed as Π(m+1)

0 (M):

(∀xm+1 < κ)(FM (xm+1, q) = GM (xm+1, r)).

As π is Πm+1
0 preserving, the same statement is true of π(κ), π(q), π(r), FN ,

GN over N . So π(f) is indeed independent of the choice of its functionally
absolute definition.

We shall form a suitable domain and a term model more or less exactly
following the pattern for Σ0 ultrapowers as is done in [46, 8.4], although we
shall incorporate the functions from ΓM = Γ(κ,M), and here we only have
the single relevant critical point κ (thus we set μa = κ for all a ∈ ν from
their definition). Thus our domain will be:

D = {〈a, f〉 | f ∈ ΓM , a ∈ [ν]<ω, f : [κ]card(a) −→M}.

The definitions of the ∼ and ∈̇ relations are then unaltered, and we use the
same notation “fa,b” where dom(f) = [κ]n, a ⊆ b, and a = (ui1 , . . . , uin) ⊆
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b = (u1, . . . , um) to denote the function with domain [κ]m given by fa,b(v) =
f(vi1 , . . . , vin).

〈a, f〉 ∼ 〈b, g〉 ⇐⇒ {u ∈ [κ]card(c) | fa,c(u) = gb,c(u)} ∈ Ec for c = a ∪ b,

〈a, f〉 ∈̇ 〈b, g〉 ⇐⇒ {u ∈ [κ]card(c) | fa,c(u) ∈ gb,c(u)} ∈ Ec for c = a ∪ b,

Ċ(〈a, f〉) ⇐⇒ {u | C(f(u)) |∈ Ea} (for C = A,B).

1.26 Definition. The term model D is defined as: D = 〈D,∼, ∈̇, Ȧ, Ḃ〉.
We observe:

1.27 Lemma. Let ϕ(vi0
0 , . . . , vik

k ) be either a Σ(n)
1 formula where ρn+1

M > κ,
or else a Σ(n)

0 formula where only ρn
M > κ is assumed. Let 〈a0, f0〉, . . . ,

〈ak, fk〉 ∈ D, and let b ∈ [ν]<ω be such that b ⊇ a0 ∪ · · · ∪ ak. Assume that
for j ≤ k, fj is a function to H

ij

M .
Then {u |M |= ϕ(fa0b

0 (u), . . . , fakb
k (u))} ∈M .

Proof. Assume first ρn+1
M > κ and that ϕ is Σ(n)

1 . As we have assumed the
value types of the defining formulae of the fj ∈ ΓM satisfy ij ≤ n for j ≤ k.
Then M |= ϕ(fa0b

0 (u), . . . , fakb
k (u)) defines a Σ(n)

1 (M) relation. Now if ϕ

is Σ(n)
0 and if ρn+1

M > κ still holds we have nothing to prove. However if
ρn

M > κ ≥ ρn+1
M we have in this case that either the fi ∈M or they are good

Σ(n−1)
1 and the set under consideration is a Σ(n)

0 subset of κ, and the result
is immediate. �

The following lemma is a kind of “uniformisation lemma” that we shall
need in order to prove �Loś’s theorems.

1.28 Lemma. Let R(ym, xi0, , . . . , xik) be a Σ(m)
1 relation with i0, . . . , ik ≤ m.

Let m ≤ n be such that ρn+1
M > κ, and let f0, . . . , fk ∈ Γ be good Σ(n)

1 (M)
functions with fj : [κ]l −→ H

ij

M . Then there is a good Σ(n)
1 (M) function

g : [κ]l −→ Hm
M , g ∈ Γ, such that for any u ∈ [κ]l:

M |= ∃ymR(ym, f0(u), . . . , fk(u)) ⇐⇒ M |= R(g(u), f0(u), . . . , fk(u)).

Proof. By Lemma 1.16 there is a good Σ(m)
1 (M) function F (xi0, , . . . , xik) =

ym such that:

M |= ∃ymR(ym, xi0, , . . . , xik)
⇐⇒ M |= R(F (xi0, , . . . , xik), xi0, , . . . , xik).

So set g′(u)  F (f0(u), . . . , fk(u)). g′ is then a good Σ(n)
1 (M) function.

dom(g′) ⊆ [κ]l and by Lemma 1.27, we see that a =df dom(g′) ∈ M . Now
define G(v0, w0) by

y = G(v0, w0) ⇐⇒ (y = v0 ∧ w0 ∈ a) ∨ (y = 0 ∧ w0 /∈ a).

Then G is good, Σ0(M), and hence g(u) =df G(g′(u), u) is good Σ(n)
1 (M). �
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Before proving a �Loś’s theorem later for Σ(n)
1 , we state one for Σ0:

1.29 Lemma. Let ϕ(v0, . . . , vk) be a Σ0 formula. Let 〈a0, f0〉, . . . , 〈ak, fk〉 ∈
D, and let b ∈ [ν]<ω be such that b ⊇ a0 ∪ · · · ∪ ak. Then

D |= ϕ(〈a0, f0〉, . . . , 〈ak, fk〉)
⇐⇒ {u |M |= ϕ(fa0b

0 (u), . . . , fakb
k (u))} ∈ Eb.

This is an induction on the structure of the Σ0 formula ϕ using the last two
lemmas. We shall give more detail in the Σ(n)

1 �Loś’s theorem which follows.
Using the Σ0 �Loś’s theorem 1.29 one has that if π : M −→∗

E N then
the map from D to N given by 〈a, f〉 �→ π(f)(a) is structure preserving, in
particular on ∈: 〈a, f〉 ∈̇ 〈b, g〉 ⇐⇒ π(f)(a) ∈ π(g)(b). We then have that
D is a model of Extensionality, and ∼ is a congruence relation. We thus,
as for the Σ0 ultrapower, form the equivalence classes, written as [a, f ], for
〈a, f〉 ∈ D. We shall assume from now on that ∈̇ is well founded and we thus
have an onto factor map [ ] : D −→ 〈N,∈, A′, B′〉 satisfying [x] = / ∈ [y]
iff x ∼ / ∈̇ y and Ċ(x) ⇐⇒ C ′([x]). Using Lemma 1.29 again we have the
map π : M −→Σ0 N is defined by the usual constant functions cx (with
dom(cx) = [κ]0): π(x) = [0, cx].

It will be useful to have some notation to stratify Γ(κ,M).

1.30 Definition. Suppose f ∈ Γ(κ,M).

Γ = Γn(κ,M) =df

{
{f ∈ Γ(κ,M) | ran(f) ⊆ Hn

M} if ρn+1
M > κ;

{f ∈ Γ(κ,M) | ran(f) ∈ Hn
M} if ωρn+1

M ≤ κ < ωρn
M .

1.31 Lemma. Suppose n is such that ωρn+1
M ≤ κ < ωρn

M . Set H = Hn
M , and

H =
⋃

π“H with π as above. Then:

(i) π�H : H −→E H, i.e. π�H is the coarse ultrapower map;

(ii) crit(π) = κ, and [a, f ] = π(f)(a) for a ∈ [ν]<ωand f ∈ κH ∩H;

(iii) P(κ) ∩H = P(κ) ∩H.

Proof. (i) Let x ∈ H; then x = [a, f ] for some 〈a, f〉 ∈ D. Suppose f ∈
Γm(κ,M). We just need to know that f could have been chosen from H,
i.e. as π�H is cofinal into H we can find y ∈ H with x ∈ π(y). We can
assume that ran(f) ⊆ y, by intersecting f with κ× y if need be, and now the
latter is essentially a Σ(n−1)

1 (M) bounded subset of ρn
M , and thus is in M. By

acceptability it must be in H. (ii) is the usual argument for such ultrapowers.
For (iii) (⊆) is straightforward. For (⊇) suppose x ⊆ κ, x = [a, f ] ∈ N . Then
x = {ξ < κ | ξ ∈ π(f)(a)} = {ξ < κ | {u | ξ ∈ f(u)} ∈ Ea}. Amenability
says precisely that then x ∈ H. �
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We thus have some sort of agreement with the notion of a Σ0 ultrapower at
the “crossing structure” H where the projectum crosses over the measurable
cardinal. It is more work to establish that we are getting the correct kind of
embedding to ensure Σ∗-elementarity.

1.32 Theorem (Fine Structural Ultrapower Theorem).

(i) N is an acceptable J-structure.

(ii) (a) π : M −→
Σ

(n)
0

N if ωρn
M > κ.

(b) π : M −→
Σ

(n)
2

N if ωρn+1
M > κ.

(iii) (�Loś’s Theorem) let ϕ be in Σ(n)
0 (or in Σ(n)

1 , if κ < ωρn+1
M ) and b ⊇⋃

i ai. Then

N |= ϕ(π(f1)(a1), . . . , π(fn)(an)) ⇐⇒ {u |M |= ϕ(
−−−−→
faib

i (u))} ∈ Eb.

Additionally if we assume E is close to M :

(iv) π : M −→Σ∗ N ,

(v) P(κ) ∩Σ∗(M) = P(κ) ∩Σ∗(N).

Proof. The proof of the theorem is in two stages. The main difficulty is in
showing that the maps are between the relevant reducts. What this amounts
to is showing that the elements in the natural “strata” that one defines from
the functions in Γ are actually those obtained by using the iterated definition
of projectum over N . The “strata” referred to arise as the Hn in the following
definition: Set ωρn = Hn ∩On where:

Hn =

{
{[a, f ] | f ∈ Γn ∧ 〈a, f〉 ∈ D} if ρn

M > κ,

Hn
M otherwise.

(1) Hn is transitive.

Proof of (1). Trivial if ρn
M < κ. Suppose [b, g] ∈ [a, f ] ∈ Hn. If ωρn+1

M ≤κ <
ωρn

M then transitivity follows in the usual manner for Σ0 ultrapowers. We
may assume then that g ∈ Γm for an m ≤ n and ρn+1

M > κ. Now show there
is a [b′, g′] ∈ Hn with [b′, g′] = [b, g] by appealing to Lemma 1.28. � (1)

We thus have N = H0 ⊇ H1 ⊇ H2 ⊇ · · · and that if x ∈ Hn
M , then

π(x) ∈ Hn; hence if we interpret on the N -side the variables vi
j as varying

over Hi, then π respects types. Thus 〈N,∈, A′, B′, H0, H1, H2, . . .〉 is an
L∗-structure, the pseudo-interpretation of L∗. Our task is then two-fold: to
show that π : M −→Σ∗ N in this pseudo-interpretation, and then to show
that it is actually the correct interpretation, that is, Hn = Hn

N for any n.
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(2) (�Loś’s Theorem for Pseudo-Interpretations). Let ϕ(vi1 , . . . , vik) be a
Σ(n)

1 formula, where ωρn+1
M > κ, or a Σ(n)

0 formula if ωρn+1
M ≤κ < ωρn

M .
Let [a, fj ] ∈ Hij with fj ∈ Γij , with ij ≤ n for 1 ≤ j ≤ k. Then

N |= ϕ(
−−−→
[a, fj ]) ⇐⇒ {u |M |= ϕ(f1(u), . . . , fk(u))} ∈ Ea.

Proof of (2).

Case 1. ρn+1
M > κ.

By induction on the complexity of ϕ. Note that {u | M |= ϕ(f1(u), . . . ,
fk(u))} ∈ M by Lemma 1.27. We shall only check here the quantifier step
ϕ ≡ ∃vm ψ(vm, vi1 , . . . , vik) where m ≤ n, ψ ∈ Σ(m)

0 and (2) is assumed
to hold for ψ. The forward direction is quite straightforward: we assume
N |= ϕ(

−−−→
[a, fj ]); then there is a [b, f0] ∈ Hm with a ⊆ b, f0 ∈ Γm and

N |= ψ([b, f0], [b, fab
1 ], . . . , [b, fab

k ]). By the inductive hypothesis:

{u |M |= ψ(fab
0 (u), fab

1 (u), . . . , fab
k (u))} ∈ Eb.

As ran(f0) ⊆ Hm
M we have:

{u |M |= ∃vmψ(vm, fab
1 (u), . . . , fab

k (u))} ∈ Eb

and so:
{u |M |= ∃vmψ(vm, f1(u), . . . , fk(u))} ∈ Ea.

Conversely, assume that {u |M |= ∃vmψ(vm, f1(u), . . . , fk(u))} ∈ Ea. By
Lemma 1.28 there is a g ∈ Γ, g : [κ]card(a) −→ Hm

M such that:

{u |M |= ψ(g(u), f1(u), . . . , fk(u))} ∈ Ea.

By the inductive hypothesis, N |= ψ([a, g],
−−−→
[a, fj ]). As ωρm+1

M > κ and
ran(g) ⊆ Hm

M we have an [a, g] ∈ Hm and hence N |= ∃vmψ(vm,
−−−→
[a, fj ]).

� Case 1

Case 2. ωρn+1
M ≤κ < ωρn

M .

Note that the only difficulty in Case 1 was in the converse direction, when
we had to appeal to Lemma 1.28. Again we look only at a representative
(now bounded) quantifier step: ϕ ≡ ∃vn ∈ unψ(vn, un, vi1 , . . . , vik) with (2)
assumed proven for ψ. The forward direction is just as in the previous case,
so we omit it. So suppose for some f0 ∈ Γn

{u |M |= ∃vn ∈ f0(u)ψ(vn, f0(u), f1(u), . . . , fk(u))} ∈ Ea.

We define a witnessing function g another way, making use of the fact, that
by the definition of Γn in this case, that f0 ∈ Hn

M :

g(u) =

{
the <M -least w ∈ f0(u) so that (ψ(w, f0(u), f1(u), . . . , fk(u)))M ,

0 if this w does not exist.
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We may assume n > 0 (for otherwise (2) is trivially true in this case).
Then, using the fact that the canonical well-order of M is ΔM

1 , we have
that g is a Σ(n)

0 (M) subset of κ ×
⋃

ran(f0) ∈ Hn
M , and thus is an element

of Hn
M . (This is true even if n = 0.) Then for some X ∈ Hn

M we have
{u | M |= ψ(g(u), f0(u), f1(u), . . . , fk(u))} ⊇ X ∈ Ea and we can finish as
before. � (2)

(3) (a) If ρn+1
M > κ then π : M −→

Σ
(n)
2

N in the pseudo-interpretation.

(b) If ωρn+1
M ≤κ < ωρn

M then π : M −→
Σ

(n)
1

N in the pseudo-interpre-
tation.

Proof of (3). Suppose ψ ≡ ∃vnϕ(vn, �u ) where ϕ is Σ(n)
0 (or Π(n)

1 for
part (a)). Let �x ∈ M , and assume that N |= ∃vnϕ(vn, π(�x )). Let then
[a, f ] ∈ Hn, f ∈ Γn be such that N |= ϕ([a, f ], �x ). By Case 1 (or 2 for (b))
above {u | M |= ϕ(f(u), �x )} ⊇ X ∈ Ea. Hence M |= ∃vnϕ(vn, �x ) as
ran(f) ⊆ Hn

M . � (3)
We now briefly consider what happens below the critical point κ.

(4) (i) Let κ ≥ ρn
M . Then π : M −→

Σ
(n)
ω

N in the pseudo-interpreta-
tion. (ii) π : M −→Σ∗ N in the pseudo-interpretation.

Proof of (4). (i) This is essentially because we have defined Hn = Hn
M for

such n, and π�Hn
M = id �Hn

M and thus the variables of type n are inter-
preted in the same domains. Suppose (4) failed for some least such n, as
witnessed by some Σ(n)

k formula ϕ of least complexity. Note that ϕ is not
the ‘atomic’ Σ(n−1)

1 part of a Σ(n)
0 formula (by definition of n, or else by

(3)(b) if ωρn−1
M > κ). Elementary considerations show we can assume ϕ is

then not atomic, nor of the form ¬ψ, (ψ ∧ χ) but is ϕ ≡ ∃vnψ(vn, �u ). Sup-
pose N |= ∃vnψ(vn, π(�x )) for some �x ∈ Hn

M . Let y ∈ Hn = Hn
M witness

this. N |= ψ(y, π(�x )). As ψ is a simpler formula, and π(y) = y, we have
M |= ψ(y, �x ). (ii) then follows from (i) and (3). � (4)

(5) N is an acceptable J-structure, π is Q-preserving, and Hn = JA′

ρn
for

all n < ω.

Proof of (5). The property of being an acceptable J-structure is a Q-condition
(cf. [46, 1.21]). If π : M −→ N is a standard Σ0 ultrapower, then in fact
π is Σ0 and cofinal into N and such maps preserve Q properties. How-
ever otherwise π is at least Σ(0)

2 (and a fortiori Σ2)-preserving by (3)(a)
which suffices. The same reasoning works level-by-level: if ρn+1

M > κ then
π�Hn

M : 〈Hn
m, Hn

m ∩ A,Hn
m ∩ B〉 −→Σ2 〈Hn, A′ ∩ Hn, B′ ∩ Hn〉; thus Hn

is a J-structure constructed from A′. If ωρn+1
M ≤κ < ωρn

M then π�Hn
M :

〈Hn
m, Hn

m ∩A,Hn
m ∩B〉 −→Σ0 〈Hn, A′ ∩Hn, B′ ∩Hn〉 which is moreover cofi-

nal, again, as it is a standard Σ0 ultrapower map (Lemma 1.31), so the same
is true at this level. For ρn

M ≤ κ it is trivial. � (5)

If we can now show the pseudo-interpretation is the correct one, we shall
have fulfilled all the clauses (i)–(iv) of the theorem. The following computa-
tion of the size of the relevant ordinals finishes the task: it only remains to
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show that the projecta of N correspond to the ordinals ρn. We divide into
the cases: above and below the measurable κ.

(6) ρm = ρm
N if κ ≤ ωρm

M .

Proof of (6). By induction on m. This is trivial for m = 0.

(6a) 〈Hm, B〉 is amenable for B ∈ P (ωρm) ∩Σ(m−1)
1 (N). Hence ρm ≤ ρm

N .

Proof of (6a). Suppose B ⊆ ωρm and is Σ(m−1)
1 (N) in the parameter [a, f ],

say B(x) ⇐⇒ N |= ϕ(x, [a, f ]) with ϕ ∈ Σ(m−1)
1 . Let w = [b, g] ∈ Hm. (With-

out loss of generality we shall assume a = b here.) We require
B ∩ w ∈ Hm. Define h by h(ym, v0) = {tm ∈ ym | M |= ϕ(tm, v0)}.
Thus h(ym, v0) is a Σ(m)

0 function of value type m and thus is good. Hence
it is in Γ. h is defined for all ym, v0 and k : [κ]card(a) −→ Hm

M where
k(u) = h(g(u), f(u)) (note that ran(k) is indeed contained in Hm

M , as each
element of the form h(ym, v0) is bounded Σ(m)

0 ). k is in Γ being a composition
of such.

If κ < ωρm+1
M we may conclude that k ∈ Γm as ran(k) ⊆ Hm

M . If ωρm+1
M ≤

κ < ωρm
M we need to see that k ∈ Hm

M to infer this. Notice that k(u) ⊆ g(u)
and thus K = {〈u, z〉 | u ∈ k(z)} is a Σ(m)

0 (M) of {〈u, z〉 | u ∈ g(z)} and
the latter is in Hn

M . Hence so is K and we have that k is thus rudimentary
over Mm,p where p is a suitable choice of parameters including those used to
define f, g. Hence k ∈ Hm

M . As

[κ]card(a) = {u |M |= ∀tm ∈ g(u)[ϕ(tm, f(u)) ←→ tm ∈ k(u)]} ∈ Ea

by �Loś we have N |= ∀tm ∈ [a, g](ϕ(tm, [a, f ])←→ tm ∈ [a, k]). Hence

[a, k] = [a, g] ∩ {tm | N |= ϕ(tm, [a, f ])} = w ∩A ∈ Hm. � (6a)

(6b) There is an A ⊆ ρm ∩Σ(m−1)
1 (N) such that A /∈ N . Hence ρm ≥ ρm

N .

Proof of (6b).

Case 1. κ < ωρm+1
M .

Suppose Ā is Σ(m−1)
1 (M)-definable in a parameter p, but with Ā∩ρm

M /∈M ,
for example we can find such using p̄ ∈ Pm

M .
Let A be Σ(m−1)

1 (N) in π(p̄) = p by the same formula ϕ say. We show
that A ∩ ωρm �∈ M . Suppose otherwise. Let A ∩ ωρm = [a, f ] ∈ N . Then
N |= ∀xm(xm ∈ [a, f ]←→ ϕ(xm, p)).

This is a Π(m)
1 , in p, formula, and by �Loś’s Theorem (2):

{u |M |= ∀xn(xn ∈ f(u) ←→ ϕ(xn, p))} ∈ Ea.

So there is a u ∈ [κ]card(a) with f(u) ∩ ρn
M = A ∩ ρn

M—a contradiction.

Case 2. ωρm+1
M ≤ κ < ωρm

M .
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We alert the reader to this more problematic case. Here we explicitly use
the weak amenability property of the extender to ensure that the map is
cofinal at the level of this crossing projectum structure.

Let p ∈ Pm+1
M , and set A = A

p(m−1)

Mm−1,p�m−1 . Then Ā is Σ(m−1)
1 (M) in p;

suppose that it is defined by ϕ. Let Ã be defined over N in the same way
using π(p). Mm,p�m = 〈H,A〉 is amenable and π�Hm

M is Σ0 and cofinal
into Hm. As π is Σ(m)

0 -preserving into N , we conclude that for any x ∈ Hm
M

π(x ∩A) = π(x) ∩ Ã. Hence:

(i) 〈Hm, Ã〉 is amenable; (ii) π�Hm
M : Mm,p�m −→Σ0 〈Hm, Ã〉 cofinally,

and hence is Σ1-elementary.

However now we see that ρm must equal ρm
N ; for suppose ρm < ρm

N : then
Ã ∩ Hm ∈ N . As p ∈ Pm+1

M we can pick B ∈ P(ωρm+1
M ) ∩ Σ1(Mm,p�m) in

p(m), with B /∈ M . As π�κ = id �κ we have that B ∈ P(κ) ∩Σ1(〈Hm, Ã〉).
Since 〈Hm, Ã〉 ∈ N, then so is B. By the amenability of our extender E (and
acceptability of our structures) P(κ) ∩M = P(κ) ∩ N ; hence B ∈ M—a
contradiction. � (6b)&(6)

In the course of proving (6b) we also showed:

(7) π“Pm
M ⊆ Pm

N if ωρm
M > κ.

1.33 Remark. The argument of Case 2, where ωρm+1
M ≤ κ < ωρm

M , shows
that the weak amenability of E implies thatωρm+1

N ≤ ρm+1. Without the
requirement of amenability we should only be able to prove the inequality
ωρm

N ≥ ρm and not its reverse. (Further only that (7) holds for those m with
ωρm+1

M > κ.) The assumption of amenability then ensures the Σ(m)
0 -cofinality

of the ultrapower map (and hence that it is in fact Σ(n)
1 -preserving). The

assumption of Σ1-amenability of M will enable us to prove (i) the equal-
ity ωρm

N = ρm; (ii) as well as that of the projecta below the measurable;
(iii) finally, the full Σ∗-elementarity of the map π.

1.34 Remark. Still considering the above Case 2 where ωρm+1
M ≤ κ < ωρm

M ,
we can vary assumptions on E, or M and still get that π : M −→

Σ
(n)
0

N co-
finally: if we assume E is Σ1-amenable this suffices (see [62, 3.2.6]); similarly
if Rm

M �= ∅ then we can get the same conclusion (as well as the bonus that
π“Rm

M ⊆ Rm
N see [62, 3.2.4]).

First we shall need a preliminary lemma:

1.35 Lemma. Suppose E is close to M , i.e., E is weakly amenable and
Σ1-amenable over M , and ωρn+1

M ≤ κ < ωρn
M . Let B ∈ Σn

1 (N)∩P(κ). Then
B ∈ Σn

1 (M).

Proof. Suppose for some ϕ ∈ Σ(n)
0 and all ξ,

ξ ∈ B ⇐⇒ ∃vnϕ(vn, ξ, π(f)(a)).
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By weak amenability,

ξ ∈ B ⇐⇒ ∃u ∈ Hn
M ∃vn ∈ π(u)ϕ(vn, ξ, π(f)(a)),

and by �Loś for Σ(n)
0 ,

ξ ∈ B ⇐⇒ ∃u ∈ Hn
M ({w | ∃vn ∈ uϕ(vn, ξ, f(w))} ∈ Ea).

Notice that the set Xξ = {w | ∃vn ∈ u ϕ(vn, ξ, f(w))} is a Σ(n)
0 subset of

dom(f) ∈ Hn
M (whichever n satisfies f ∈ Γn) and hence Xξ ∈ Hn

M . By the
Σ1-amenability assumption, “X ∈ Ea” is Σ1(M). Thus B ∈ Σ(n)

1 (M). �

(8) Suppose κ ≥ ωρm
M . Then (i) ρm = ρm

N , and hence Hm
M = Hm

N ; and
(ii) Σ(m)

1 (M) ∩ P(Hm
M ) = Σ(m)

1 (N) ∩ P(Hm
N ).

Proof of (8). Let n be such that ωρn+1
M ≤κ < ωρn

M . We prove (8) by induction
on m ≥ n + 1. By the last lemma if m = n + 1, or the inductive hypothesis
otherwise:

Σ(m−1)
1 (M) ∩ P(ωρm

M ) = Σ(m−1)
1 (N) ∩ P(ωρm

M ).

For (i), that ρm = ρm
N , now follows directly from the fact that (a) ∀γ <

ωρm
Ma ∈ Σ(m−1)

1 (N)∩P(γ) then a ∈ Hm
M = Hm

N ; and (b) if A ∈ Σ(m−1)
1 (M)∩

ωρm
M , A /∈M then A /∈ N .
For (ii), by Lemma 1.6 we have, substituting either M or N for T , that

C ∈ Σ(m)
1 (T ) ∩ P(Hm

T ) if and only if C ∈ Σ1(〈Hm
T , Q〉) for some Q ∈

Σ(m−1)
1 (T ) ∩ P(Hm

T ). By the inductive hypothesis (or again Lemma 1.35 if
m = n + 1), we have such a Q ∈ Σ(m−1)

1 (M) ∩Σ(m−1)
1 (N). Since (i) shows

Hm
M = Hm

N , we have, for C ⊆ Hm
M :

C ∈ Σ(m)
1 (M) ⇐⇒ C ∈ Σ1(〈Hm

M , Q〉) ⇐⇒ C ∈ Σ(m)
1 (N).

� (6&8)

We can now conclude that the ultrapower embedding is properly
Σ∗-preserving.

(9) π : M −→Σ∗ N in the standard interpretation.

Proof of (9). (4) shows that π : M −→Σ∗ N in the pseudo-interpretation.
(6) and 8(i) together show that this interpretation is the correct one. � (9)

1.36 Lemma. π“P ∗
M ⊆ P ∗

N.

Proof. Given (7) it suffices to show π“Pm
M ⊆ Pm

N if ωρm
M ≤ κ: however if

p ∈ Pm
M is chosen, there is a C ∈ Σ(m−1)

1 (M) in p with C ∩ ωρm
M /∈ M .

We have that π is Σ∗-elementary, and π�κ = id �κ, hence if C̃ has the same
Σ(m−1)

1 definition over N in π(p), we shall have C ∩ ωρm
M = C̃ ∩ ωρm

N /∈ N .
Hence π(p) ∈ Pm

N . �
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(10) For 〈a, f〉 ∈ D, [a, f ] = π(f)(a).

Proof of (10). All that we have left to show is (iii) in Definition 1.23, that
N is the closure of ran(π) ∪ ν under good Σ(n)

1 functions, for ωρn+1
M > κ.

We’ve extended π to such functions so it is enough to show [a, f ] = π(f)(a),
for f ∈ Γ. If f ∈ M this would be a standard argument (see, e.g., [46,
8.4, Claim 4]. So suppose f ∈ Γn, with dom(f) = [κ]k, for some n with
ρn+1

M > κ, and let G be a functionally absolute Σ(n)
1 definition of the graph of

f in some parameter p ∈ M . Let G̃ be given by the same definition over N
in π(p). Then [κ]k = {u | G(f(u), u, p)} ∈ Ea. Hence G̃([a, f ], a, π(p)). Then
π(f)(a) = [a, f ] as G̃ is the graph of π(f). � (10)

We are only left with proving the last clause (v) of the theorem that
P(κ)∩Σ∗(M) = P(κ)∩Σ∗(N). That ⊆ holds is given by (9). For ⊇ we argue
as follows: if for all n ρn

M > κ then P(κ) ∩Σ∗(N) ⊆ P(κ) ∩N = P(κ) ∩M .
Otherwise for some n we have ωρn+1

M ≤ κ < ωρn
M . Lemma 1.35 is not quite

sufficient, as we need to prove a result for further m ≥ n + 1.

1.37 Lemma. Let n be such that ωρn+1
M ≤ κ < ωρn

M . Let ϕ(vm, vm−1, . . . ,

vn, vn−1, . . . , v0) be a Σ(m)
1 formula for some m ≥ n. Let a ∈ [ν]<ω and

fn−1, . . . , f0 be such that f j ∈ Γj , f
j : [κ]|a| −→ Hj

M for j < n. Then there
is a Σ(m)

1 formula ϕ′(vm, vm−1, . . . , vn) which is effectively obtainable from ϕ,
the Σ1(M) definition of Ea, and the Σ(n−1)

1 (M) definitions of the f j, with
the property that (∀xm · · · ∀xn+1 ∈M) (∀f ∈ Γn, with dom(f) = [κ]|a|)

N |= ϕ(xm, . . . , xn+1, [a, f ], [a, fn−1], . . . , [a, f0])
⇐⇒ M |= ϕ′(xm, . . . , xn+1, f).

Proof. This is by induction on m ≥ n. To simplify notation, we shall assume
the Σ(n−1)

1 (M) definitions of the f j , and the Σ1(M) definition of Ea, are
in face lightface, so parameter free. (It is routine to carry these parameters
along otherwise.) We first consider the case that m = n. (This means that
the variables vm, . . . , vn+1 are absent from ϕ.) Let ϕ(vn, vn−1, . . . , v0) ≡
∃wnψ(wn, vn, vn−1, . . . , v0), where ψ ∈ Σ(n)

0 . Now for the requisite kind of f
and f j :

N |= ∃wnψ(wn, [a, f ], [a, fn−1], . . . , [a, f0])
⇐⇒ (∃yn ∈ Hn

M )N |= ∃wn ∈ π(yn)
ψ(wn, [a, f ], [a, fn−1], . . . , [a, f0])

(as π�Hn
M is cofinal into Hn); now by �Loś we have that:

(∃yn ∈ Hn
M ){u |M |= ∃wn ∈ ynψ(wn, f(u), fn−1(u), . . . , f0(u))} ∈ Ea

⇐⇒ (∃yn ∈ Hn
M )(∃zn ∈ Hn

M )(zn ∈ Ea∧
zn = {u |M |= ∃wn ∈ ynψ(wn, f(u), fn−1(u), . . . , f0(u))}).
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This last line can be seen to be a Σ(n)
1 formula after substituting the Σ(n−1)

1

definitions of the good f j(u) for vj , and is our ϕ′.
For m ≥ n + 1 the argument is similar, but simpler: let ϕ ≡ ∃wmψ with

ψ ∈ Σ(m)
0 . We suppose that we have proven the effectiveness of the translation

procedure for Σ(n−1)
1 and hence for the atomic components of ψ; further that

the result works inductively through the connectives, trivially enough. The
argument for bounded quantifiers is similar to that for unbounded; we thus
concentrate here on this one step, and assume as inductive hypothesis that
the result holds for ψ. Now, again assuming we have the requisite functions
f and f j and:

N |= ϕ(xm, . . . , xn+1, [a, f ], [a, fn−1], . . . , [a, f0])

⇐⇒ (∃wm ∈ Hm
M )N |= ψ(wm, xm, . . . , xn+1, [a, f ], [a, fn−1], . . . , [a, f0])

⇐⇒ (∃wm ∈ Hm
M )M |= ψ′(wm, xm, . . . , xn+1, f)

⇐⇒ M |= ∃wmψ′(wm, xm, . . . , xn+1, f),

using that Hn
M = Hn at the first equivalence, and the inductive hypothesis

at the second. �

This now can be used to show that P(κ) ∩Σ(m)
1 (M) ⊇ P(κ) ∩Σ(m)

1 (N).
Hence the last clause (v) is now proven and the proof of the Ultrapower
Theorem is complete. � 1.32.

1.3. Pseudo-Ultrapowers

We develop a theory of pseudo-ultrapowers. Ordinary ultrapowers (both
coarse and fine) can be considered as special types of pseudo-ultrapowers.
The latter are used in many combinatorial constructions, and particularly
come into their own in the proof of the Covering Lemma for fine structural
inner models, or for Global Square, �, or indeed many areas where combina-
torial arguments involve fine structure.

One can think of pseudo-ultrapowers as an attempt to develop an answer
to the following question. Suppose we have acceptable structures Q, Q with
a map σ : Q −→Σ0 Q cofinally between them. Suppose further that Q = JA

ν ,
Q = JA

ν and moreover that Q is extended by an acceptable M = 〈JA
β̄
, B〉

where either ν = β or else ν is a cardinal in M . Can we find a structure M
and an extension of σ to a structure preserving map σ̃ ⊇ σ, σ̃ : M −→ M ,
where M = 〈JA

β , B〉? We should hope that the extended map σ̃ would be

sufficiently fine-structural. What we should like is that σ̃ should be Σ(n)
1 for

any n with ωρn
M
≥ ν. This may not be always possible for every such n,

but with certain conditions on M we can achieve this. Weakening these
conditions could allow us to weaken the conclusion: for example, we could
have this level of elementarity if ωρn+1

M
≥ ν.
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Requiring additionally that ν be regular in M will ensure that the extended
map takes ν cofinally into its image. This requirement is a feature of the
Global � proof where we use a pseudo-ultrapower that takes just enough
functions to preserve the regularity of ν in the sense of M whilst at the same
time preserving the fact that it is Σ(n)

1 (M) singularised for some n < ω.

1.38 Definition. Γ = ΓM,ν =df

{f | (dom(f) ∈ Q ∧ ran(f) ⊆M)

∧((f ∈ Σ(n)
1 (M) ∧ ωρn+1

M
≥ ν) ∨ (f ∈ Hn

M
∧ ωρn

M
≥ ν))}.

We now define a term model, whose domain is:

D = {〈a, f〉 | f ∈ ΓM,ν ∧ a ∈ σ(dom(f))}.

We define a pseudo-epsilon relation e and a congruence I by:

〈a, f〉e〈b, g〉 ⇐⇒ 〈a, b〉 ∈ σ({〈u, v〉 | f(u) ∈ g(v)}),
〈a, f〉I〈b, g〉 ⇐⇒ 〈a, b〉 ∈ σ({〈u, v〉 | f(u) = g(v)}),

Ċ(〈a, f〉) ⇐⇒ a ∈ σ({u | f(u) ∈ C}) for C = A,B.

We set D = DQ̄,σ̄,M̄ = 〈D, I, e, Ȧ, Ḃ〉.

1.39 Lemma. Let ϕ(v0, . . . , vk) be a Σ0 formula. Let 〈a0, f0〉, . . . ,
〈ak, fk〉 ∈ D, and let b = 〈a0, . . . ak〉. Then

D |= ϕ(〈a0, f0〉, . . . , 〈ak, fk〉)
⇐⇒ b ∈ σ({〈u0, . . . uk〉 |M |= ϕ(f0(u0), . . . , fk(uk))}).

There is very little difference between the proof of this and the previous
Lemma 1.29. By this, we can see that I is an identity for D and D models
Extensionality. We shall for the purposes of this development assume that e
is well-founded. We thus can define a transitivisation map

[ ] : D −→ M ;

[x] = [y] ⇐⇒ x I y; [x] ∈ [y] ⇐⇒ x e y;

AM ([x]) ⇐⇒ Ȧ(x); BM ([x]) ⇐⇒ Ḃ(x).

With Σ0-elementarity guaranteed by the last lemma we define:

1.40 Definition. σ̃, the canonical extension of σ, is defined by: σ̃(x) =
[〈0, {〈0, x〉}〉]; M is the pseudo-ultrapower of M by σ.

1.41 Lemma. σ̃�Q = σ.



1. Σ∗ Fine Structure 687

Proof. Set Q̃ =
⋃

σ̃“Q. Then Q̃ is transitive. We shall verify: Q̃ = {[〈a, f〉] |
f ∈ Q}. For (⊇), pick a, f as specified, and set b = ran(f). As f ∈ Q,
so is b. Then [a, f ] ∈ [0, 〈0, b〉] as can be directly verified from the �Loś
lemma above. For (⊆), let x ∈ σ̃(y) with y ∈ Q. If x = [a, f ] with f ∈ Γ,
a ∈ σ(dom(f)), then a ∈ σ({u ∈ dom(f) | f(u) ∈ y}). However if we set
f ′ =df f ∩ (dom(f)× y), (where dom(f)× y is a member of Q) when f itself
is not in M , then this is at most Σ(n)

1 (M) where ωρn+1
M

≥ ν̄; it thus lies in
M and hence by acceptability, in Q. It is easy to verify by �Loś again that
[a, f ] = [a, f ′], and we have thus verified (⊆).

Define σ′ : Q̃ −→ Q by σ′([a, f ]) = σ(f)(a). We have just shown that
dom(σ′) = Q̃. σ′ is well-defined:

[a, f ] = [b, g] ⇐⇒ 〈a, b〉 ∈ σ({〈u0, u1〉 | f(u0) = g(u1)})
= {〈u0, u1〉 ∈ σ(dom(f)× dom(g)) | σ(f)(u0)
= σ(g)(u1)}

⇐⇒ σ(f)(a) = σ(g)(b).

A similar pair of equivalences show that [a, f ] ∈ [b, g] ⇐⇒ σ(f)(a) ∈
σ(g)(b), and hence σ′ is ∈-preserving.

σ′ is onto Q: this is clear, since if v ∈ Q is arbitrary and v ∈ σ(x) for some
x ∈ Q (as σ is cofinal) then let f ∈ Q be the constant function f : γ −→ x
with constant value x with γ < ν̄; then clearly v = σ(f)(α) for some α < σ(γ).
Thus σ′ can only be the identity and σ̃(x) = [0, {〈0, x〉}] = σ(x). �

The following theorem gives the basic preservation properties of pseudo-
ultrapowers. The reader should compare this with Theorem 1.32.

1.42 Theorem (Pseudo-Ultrapower Theorem). Let σ̃ : M̄ −→Σ0 M be the
canonical extension of σ : Q −→Σ0 Q. Then

(i) σ̃ is Q-preserving, M is an acceptable end extension of Q, and M =
{σ̃(f)(u) | u ∈ σ(dom(f)), f ∈ Γ}.

(ii) (a) σ̃ is Σ(n)
0 -preserving for n with ωρn

M̄
≥ ν;

(b) σ̃ is Σ(n)
2 -preserving for n with ωρn+1

M̄
≥ ν.

Proof. We stratify the functions that will be responsible for the various pro-
jectum levels of the target structure M, which we shall name as Hn at first,
later demonstrating that they have the correct interpretation. The reader will
thus see that the tactic is analogous to that of the previous fine-structural
ultrapower result.

Define

Γn =

{
{f ∈ Γ | ran(f) ⊆ Hn

M̄
} if ωρn+1

M̄
≥ ν̄,

{f ∈ Γ | ran(f) ∈ Hn
M̄
} if ωρn+1

M̄
< ν̄ ≤ ωρn

M̄
,

Hn = {[〈a, f〉] | f ∈ Γn ∧ 〈a, f〉 ∈ D} if Γn is defined,
ωρn = Hn ∩On.
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Note (i) If ωρn+1
M̄

< ν̄ ≤ ωρn
M̄

and f ∈ Γn then f ∈ M̄ .
Then as for standard ultrapowers:

(1) Hn is transitive.

(2) Let 〈
−−−−→
〈ai, fi〉〉 ∈ mD, where fi ∈ Γji and ji ≤ n, let ϕ(vj1

1 , . . . vjm
m ) ∈ Σ(n)

0

where ωρn
M̄
≥ ν̄ (or Σ(n)

1 if ωρn+1
M̄

≥ ν̄). Then

M |= ϕ[
−−−−→
[ai, fi]] ⇐⇒ �ai ∈ σ({�u |M |= ϕ[

−−−→
fi(�u )]}).

This directly yields the following as for fine ultrapowers (but only in the
pseudo-interpretation):

(3) σ̃ : M̄ −→
Σ

(n)
1

M for any n with ωρn
M̄
≥ ν̄, and σ̃ : M̄ −→

Σ
(n)
2

M for

any n with ωρn+1
M̄

≥ ν.

(4) M is acceptable. σ̃ is Q-preserving, and Hn = |JA′

ρn
| where |M | = |JA′

α′ |,
for n with ωρn

M̄
≥ ν̄.

Proof of (4). If ρ1
M̄
≥ ν̄ then by (3) σ̃ is at least Σ2-preserving; if ρ1

M̄
< ν̄

then σ̃ is actually a cofinal map (it is using only functions f in: M see the
Note above). In either case Q properties are preserved, and acceptability is
such. The last part follows just as in (5) of Theorem 1.32, again noting that
σ̃ is cofinal into Hn if ωρn

M̄
≥ ν > ωρn+1

M̄
, since only functions f ∈ Γn ⊆ |M̄ |

are used. � (4)

(5) ρm = ρm
M if ν̄ ≤ ωρm+1

M̄
; ρm ≤ ρm

M if ν ≤ ωρm
M̄

.

Proof of (5). This is by induction on m; for m = 0 it is trivial. We imitate
the corresponding proofs of (6) in Theorem 1.32.

(5a) 〈Hm, A〉 is amenable for A ∈ P (ωρm) ∩Σ(m−1)
1 (M). Hence ρm ≤ ρm

M .

Proof of (5a). As before suppose A ⊆ ωρm and is Σ(m−1)
1 (M) in the

parameter [a, f ], say A(x) ⇐⇒ N |= ϕ(x, [a, f ]) with ϕ ∈ Σ(m−1)
1 . Let

w = [b, g] ∈ Hm (again without loss of generality we shall assume a = b
here, and similarly by enlarging domains if need be, that dom(f) = dom(g)
(it suffices given f, g, a, b as here to define functions f ′, g′ with dom(f ′) =
dom(g′) = dom(f)× dom(g) and further amalgamate to get c = 〈a, b〉 etc.).
We require A ∩ w ∈ Hm. This time define

h(ym, v0) = {tm ∈ ym | M̄ |= ϕ(tm, v0)}.

Thus h(ym, v0) is a Σ(m)
0 function of value type m and thus is in Γ, being

good. We may now define k : dom(g) −→ Hm
M where k(u) = h(g(u), f(u)).
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If ν̄ ≤ ωρm+1
M we may conclude that k ∈ Γm. If ωρm+1

M < ν̄ ≤ ωρm
M we

again have that k is Σ(m)
0 -definable in parameters (note now that g ∈ Hm

M )
and we conclude that k ∈ Hm

M for the same reasons. If

dom(g) = {u |M |= ∀tm ∈ g(u)[ϕ(tm, f(u))←→ tm ∈ k(u)]}

and as a ∈ σ(dom(g)), by �Loś’s theorem we have:

M |= ∀tm ∈ [a, g](ϕ(tm, [a, f ])←→ tm ∈ [a, k]).

Hence [a, k] ∩ w = [a, g] ∩ {tm |M |= ϕ(tm, [a, f ])} = A ∩ w ∈ Hm. � (5a)

(5b) Assume ν̄ ≤ ωρm+1
M̄

. Then there is an A ⊆ ωρm∩Σ(m−1)
1 (M) such that

A /∈M . Hence ρm ≥ ρm
M .

Proof of (5b). Suppose Ā is Σ(m−1)
1 (M)-definable in a parameter p, but

with Ā ∩ ωρm
M

/∈ M , for example we can find such using p̄ ∈ Pm
M

. Let

A be Σ(m−1)
1 (M) in π(p̄) = p by the same formula ϕ, say. We show that

A ∩ ωρm �∈ M . Suppose otherwise. Let A ∩ ωρm = [a, f ] ∈ M . Then, in
the pseudo-interpretation, M |= ∀xm(xm ∈ [a, f ] ←→ ϕ(xm, p)). By �Loś’s
theorem a ∈ σ(w) where

w = {u |M |= ∀xm(xm ∈ f(u) ←→ ϕ(xm, p̄))}.

So w �= ∅ so there is a u with f(u) = Ā ∩ ρm
M

= A ∩ ρm
M

—a contradiction.
� (5)&1.42

It is possible to improve the elementarity of the embedding where ωρn
M̄
≥

ν > ωρn+1
M̄

, under certain conditions.

1.43 Lemma. σ̃ is Σ(n)
0 -preserving and cofinal (hence ρn = ρn

M ), and thus
Σ(n)

1 -preserving, if (a) n satisfies ωρn
M̄
≥ ν > ωρn+1

M̄
, and (b) Rn

M
�= ∅.

Further σ̃“Rn
M̄
⊆ Rn

M .

For a proof of this we refer the reader to [62, 3.2.4]. For our purposes in
proving Global �, we shall need a refinement of the above construction. We
should like the canonical extension map σ̃ to be sufficiently fine structure
preserving to ensure that if ν̄ is regular in M̄ , but Σ(n)

1 singularised over M̄

(by this we mean that for some β < ν̄ there is a good Σ(n)
1 map of a subset of

β cofinally into ν̄), then whilst M still thinks that ν(= σ̃(ν̄)) is regular, there
is nevertheless also a good Σ(n)

1 (M)-singularising map. This may require us
to take fewer functions than Definition 1.38 allows.

We now describe the small modification to do this. Assume then that we
are in the situation under discussion:
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1.44 Definition. Suppose that ν̄ is regular in M̄ , but is Σ(k)
1 -singularised

over M̄ for some k: we define k = k(M̄) to be least k < ω for which this is
true.

Note that this implies that ωρk+1
M̄

≤ ν̄. Moreover:

1.45 Lemma.
ωρk+1

M̄
≤ ν̄ ≤ ωρk

M̄ .

Proof. By the last remark we have to show that ν̄ ≤ ωρk
M̄

. Suppose this
failed. Then this would imply that k = m+1 for some m ∈ ω. Let r ∈ M̄ be
such that there is a good Σ(k)

1 (M̄) function f singularising ν̄ with domain of
f contained in some γ < ν̄ and with ωρk

M̄
< γ. Let X = h̃m+1

M̄
(γ ∪ {r, p}) be

the Σ(m)
1 (M̄) hull of the objects displayed where p has been chosen from P ∗

M̄
.

This is of a lower degree of elementarity, and hence X ∩ ν̄ is bounded in ν̄.
Let π : N −→ M̄ be the inverse of the transitive collapse map on X. As
π�ωρk+1

M̄
= id �ωρk+1

M̄
and p ∈ ran(π) ∩ P ∗

M̄
we map appeal to Lemma 1.20

and see that π is Σ∗-preserving. However the parameter r is in the ran(π)
and thus ran(f) ⊆ ran(π) = X. This is absurd. �

We now simply restrict the functions used in forming the canonical exten-
sion to those Σ(n)

1 (M̄)-definable functions, for an n < k.

1.46 Definition. Let M̄, ν̄, k = k(M̄) be as above. Define Γk
M̄,ν̄

=df :

{f | dom(f) ∈ Q ∧ ran(f) ⊆M) ∧ (n < k ∧ f ∈ Σ(n)
1 (M) ∧ ωρn+1

M
≥ ν)}.

1.47 Definition. Suppose we construct the pseudo-ultrapower using func-
tions from Γk

M̄,ν̄
where k = k(M̄). Then the resulting map σ̃ is the canonical

k-extension of σ and M the canonical k-pseudo-ultrapower.

1.48 Theorem (k-Pseudo-Ultrapower Theorem). Let M̄, ν̄, k = k(M̄) be as
above. Let σ̃ : M̄ −→Σ0 M be the canonical k-extension of σ : Q −→Σ0 Q.
Then

(i) σ̃ is Q-preserving, M is an acceptable end extension of Q, and M =
{σ̃(f)(u) | u ∈ σ(dom(f)), f ∈ Γ}.

(ii) (a) σ̃ is Σ(n)
2 -preserving for n < k;

(b) σ̃ is Σ(k)
0 -preserving.

1.49 Lemma. Suppose ν̄, M̄ , n = k(M̄), σ̃, M are as above. Then

(i) ρn = ρn
M , and σ̃ is Σ(n)

0 -preserving and cofinal (thus Σ(n)
1 -preserving);

(ii) σ̃(ν̄) = ν and the latter is regular in M ;

(iii) n is least so that there is a Σ(n)
1 (M) map cofinalising ν.
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Note: As in Lemma 1.45 the hypothesis implies here too that ωρn
M̄
≥ ν ≥

ωρn+1
M̄

.

Proof. From what we have already done, (i) will follow if we can show
ρn ≥ ρn

M . We first note that σ̃(ν̄) is regular in M . For σ̃(ν̄) this is ei-
ther because n = 0 and σ̃ is then Σ0 and cofinal—hence Σ1-preserving, or
because n > 0 and by the above σ̃ is Σ2-preserving. As one would hope
σ̃(ν̄) = ν: suppose η = σ̃(f)(a) < σ̃(ν̄) for some f ∈ Γk(M̄). Then f ∈ M̄ .
Set δ = sup(ran(f) ∩ ν̄). As dom(f) ∈ M̄ and ν̄ is regular in M̄ , δ < ν̄. Then
ran(σ̃(f)) ⊂ σ̃(δ). Thus η < σ̃(δ). This proves (ii).

By hypothesis there is f̄ a good function Σ(n)
1 (M̄) in a parameter p̄ say,

that maps a subset of some γ < ν̄ cofinally into ν̄. (We’ll assume ran(f) ⊆ ν̄.)
Let p = σ̃(p̄). Let Ã =df An,p

M ∩ J
An,p

M
ρn ; M̃ = 〈J Ã

ρn
, Ã〉. Then σ̃�M̄n,p̄ :

M̄n,p̄ −→Σ0 M̃ cofinally. f̄ is rudimentary over M̄n,p̄ and we can let f be
rudimentary over M̃ by the same definition. Then dom(f) is bounded in ν.
As σ̃�ν̄ is cofinal into ν (because σ is) we have σ̃“ran(f̄) ⊆ ran(f) and the
latter is thus cofinal in ν and hence f singularises ν. However if ρn < ρn

M

we should have M̃ , and thus f , both members of M . This contradicts the
regularity of ν in M which we have just remarked upon above.

Thus σ̃ is Σ(n)
0 -preserving and cofinal, hence Σ(n)

1 -preserving; σ̃(f̄) is thus
well-defined, and is a good Σ(n)

1 (M) map cofinalising ν. �

1.50 Remark. We can conclude from the above existence of the good co-
finalising map that ωρn

M ≥ ν ≥ ωρn+1
M but not that ν > ωρn+1

M even if
ν > ωρn+1

M̄
.

In the above the ∈-relation, e, of the term model D was assumed well-
founded. The Interpolation Lemma to follow is again not in the most general
form, but will be useful later. The hypotheses imply that ωρn

M̄
≥ ν ≥ ωρn+1

M̄
for the named n; we thus may form the term model using the functions in Γn.
Since M is Σ(n)

0 -embeddable into the well-founded model M by the map g
below, we can then embed the term model into M via g′([a,G]) = g(G)(a)
and g′ is then a Σ(n)

0 map. Hence it is ∈-preserving on its domain, and
so demonstrates that e is well-founded. The structure M̃ is that formed
by the pseudo-ultrapower construction as the canonical k(M̄)-extension of
σ = g�JA

ν : JA
ν −→ JA

ν from above.

1.51 Lemma (Interpolation Lemma). Suppose M = 〈JA
β
, B〉 is a structure

such that ν is regular in M , but that k(M̄) is defined, i.e. for some least
n < ω, there is a Σ(n)

1 (M) function singularising ν. Suppose further that
g : M −→

Σ
(n)
1

M = 〈JA
β , B〉. Let ν̃ = sup g“ν̄. Let σ1 =df id �JA′

ν̃ . Then

there is a structure M ′ = 〈JA′

β′ , B′〉, a map g̃ : M −→M ′ with (a) g̃ ⊇ g�JA
ν

and (b) g̃ is Σ(n)
0 and cofinal at the nth level (and hence Σ(n)

1 -preserving);
further there is a unique g′ : M ′ −→

Σ
(n)
0

M , with g = g′ ◦ g̃ and g′�ν̃ = σ1.
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Figure 10.1: The Interpolation Lemmata

Proof. As intimated, M ′ and g̃ come from the construction of this section as
the canonical k(M̄)-extension of the cofinal mapping g�JA

ν : JA
ν −→Σ0 JA

ν̃

playing the role of σ : Q −→Σ0 Q. That g̃ has the requisite properties has
been established. g′ is defined through: g′(g̃(G)(a)) = g(G)(a). Then g′ has
to be the unique such map with g = g′◦g̃ and g′�ν̃ = id �ν̃, since g′(g̃(G)(a)) =
g′ ◦ g̃(G)(g′(a)) = g(G)(a). (Note that trivially g′�ν̃ = id �ν̃ ←→ g′�J Ã

ν̃ =
id �J Ã

ν̃ .) �

A slightly more generalised form of the above will be useful. This allows
σ1 to be different from the identity function.

1.52 Lemma (Generalised Interpolation Lemma). Suppose M = 〈JA
β
, B〉 is

a structure such that ν is regular in M , but that k(M̄) is defined, i.e. for some
least n < ω, there is a Σ(n)

1 (M) function singularising ν. Suppose further for
n = k(M̄) that g : M −→

Σ
(n)
1

M = 〈JA
β , B〉 and that σ : JA

ν̄ −→ JA′

ν̃ ,

and σ1 : JA′

ν̃ : JA′

ν̃ −→ JA
ν are both Σ0 with σ cofinal, and finally that

σ1 ◦ σ = g�JA
ν̄ .

Then there is a structure M ′ = 〈JA′

β′ , B′〉, a map g̃ : M −→ M ′ with (a)

g̃ ⊇ σ and (b) g̃ is Σ(n)
0 cofinal at the nth level (and so Σ(n)

1 -preserving);
further there is a unique g′ : M ′ −→

Σ
(n)
0

M , with g = g′ ◦ g̃ and g′�ν̃ = σ1.

Proof. The argument is just as before except now g′ is defined through:
g′(g̃(G)(a)) = g(G)(σ1(a)). Again g′ has to be the unique such map with g =
g′◦g̃ and g′�ν̃ = σ1 �ν̃, since g′(g̃(G)(a)) = g′◦g̃(G)(g′(a)) = g(G)(σ1(a)). �

2. Global �
We derive a global � sequence in L, the constructible hierarchy. We assume
now V = L. Our template is basically that of the proof of Jensen [2] here,
although we use ideas from [30]. We shall build our Cν sequence along a
closed and unbounded class S ⊆ Sing of singular ordinals. The definition
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of the Cν sets themselves we shall present is extremely uniform, and quite
simple. They will be preserved by Σ0 embeddings between levels of the J-
hierarchy of a sufficient ordinal height to see that ν is singular. The choice of
the closed and unbounded class S is also rather flexible: we require S again
be simply defined so that membership in it is preserved downwards into Σ1-
elementary substructures. To this end we could take S to be the class of
all limits of admissible ordinals. (Recall that α is admissible if 〈Lα,∈〉 is a
model of Kripke-Platek set theory.) Although this is fine from a technical
point of view, it appears to require more closure on the structures Jα than it
really needs. For most purposes it will be useful to assume that ων = ν as
a minimum, (this will have the effect of tying up Cν with the ordinal height
of Jν), and that ων is sufficiently closed under some further basic ordinal
theoretic operations. We shall accordingly take S to be the class of primitive
recursively (p.r.) closed ordinals.

2.1 Definition.

(i) The primitive recursive set functions are obtained by adding to the
rudimentary functions the following schema:

f(�x, y) = g(�x, y, 〈f(�x, z) | z ∈ y〉).

f is primitive recursive (p.r.) in A ⊆ V n iff f is p.r. in χA.

(ii) X is p.r. closed (p.r. closed in A) iff X is closed under the p.r. functions
(the p.r. in A functions, respectively).

(iii) α is p.r. closed if Lα is p.r. closed.

2.2 Lemma.

(i) ω is p.r. closed.

(ii) Let α > ω. Then α is p.r. closed iff α is closed under the functions
fi (i < ω) where:

f0(ν) = ων ; fi+1(ν) = the νth fixed point of fi.

If the reader desires then the above can be taken as a definition of a
p.r. closed ordinal. It follows relatively easily that:

(1) α > ω ∧ α p.r. closed =⇒ ωα = α and hence Jα = Lα.

(2) ωα p.r. closed ⇐⇒ Jα p.r. closed.

(3) {α | α is p.r. closed} is closed and unbounded in On.

(4) If α is p.r. closed but not a limit point of the p.r. closed ordinals, then
α = supi{fi(β) | β < α} and hence cf(α) = ω.
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Noting that p.r. closure is essentially a Π2 property of a structure we obtain
the relevant property for our subsequent definitions:

2.3 Lemma. Let ωα be p.r. closed, and let f : Jα −→Σ1 Jα. Then ωα is
p.r. closed.

(As we commented above, the property of α being a limit of admissibles,
would have satisfied the consequent of the above lemma too.)

2.4 Theorem (V = L). Let S ⊆ Sing be as above. There is a uniformly
definable class 〈Cν | ν ∈ S〉 so that:

(i) Cν ⊆ ν is a set of ordinals unbounded in ν and closed beneath it;

(ii) ot(Cν) < ν;

(iii) ν ∈ (Cν)∗ =⇒ ν ∈ S ∧ Cν̄ = ν ∩ Cν ;

(iv) If f : 〈Jν , C〉 −→Σ1 〈Jν , Cν〉 then ν ∈ S and C = Cν .

We think of Cν as a canonical singularising sequence for ν, i.e. it provides
a sequence cofinal in ν, and of order type less than ν. It will be defined
using the least level of the J-hierarchy, over which we can define a map
from a bounded subset of ν cofinally into ν. Our desire for short sequences
is expressed by (ii). The important clause is (iii) the coherence property :
the limit points ν̄ of Cν , are themselves singular, and the initial segment
Cν ∩ ν̄ gives the canonical singularising sequence for ν̄ itself. (i)–(iii) are
often referred to as (one form of) Global �. Clause (iv) is also a strong
one, providing as it does information on condensation-like coherency. We
shall first give a construction of a global sequence satisfying most of the
above: it simply will not always be unbounded in ν—this may happen when
cf(ν) = ω. The theorem below contains the heart of the argument. Obtaining
the theorem above from it, is relatively speaking, at least over L, a minor
adjustment.

2.5 Theorem (V = L). There is a uniformly definable class 〈Cν | ν ∈ S〉 so
that:

(i) Cν is a set of ordinals ν and closed beneath it; if cf(ν) > ω then Cν is
unbounded in ν;

(ii) ot(Cν) < ν;

(iii) ν ∈ (Cν) =⇒ ν ∈ S ∧ Cν̄ = ν ∩ Cν ;

(iv) If f : 〈Jν , C〉 −→Σ1 〈Jν , Cν〉 then ν ∈ S and C = Cν .

As indicated if ν is a singular ordinal, then there will be a least level Jβ(ν)

of the J-hierarchy over which ν is definably singularised, i.e. there will be
a function (possibly partial) that is Σω(Jβ(ν))-definable (possibly in some
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parameters) mapping (a subset of) some γ cofinally into ν. However any
such function is also good Σ(n)

1 (Jβ(ν)) for some n. This level Jβ(ν) will be
our singularising structure Mν , and n is the level of complexity at which
we shall work. We set out a formal definition of our subject matter. No-
tice, that given Jβ(ν) all the objects defined below are Σ0-definable from
it.

2.6 Definition. Let ν ∈ S. Then we associate the following to ν:

(a) nν =df the least n ∈ ω so that there is a good Σ(n)
1 (Mν) function

singularising ν, where Mν = Jβ(ν).

(b) Mk
ν =df M

k,pMν �k
ν for k ≤ nν .

(c) hk
ν =df h

k,pMν �k
Mν

; hν =df hnν
ν ; h̃ν =df h̃nν+1

Mν
.

(d) (i) ωρν =df On∩Mnν
ν ; (ii) κν  the largest cardinal of Jν , if such

exists.

(e) pν =df pMν\ν if ν is a limit cardinal of Jν ; pν =df pMν\κν otherwise;
qν =df pν ∩ ωρnν

Mν
.

(f) αν =df max{α < ν | ν ∩ h̃ν(α ∪ {pν}) = α}, setting max ∅ = 0.

(g) γν =df min{γ < ν | there exists a Σ(n)
1

Mν ({pν}) partial function

F : a −→ ν, cofinal, with a ⊆ γ}.
Thus if ν = κ+

ν , note then we may possibly have κν in pν (if κν happens
to be in pν). We also note that pν\ν (= pν unless κν is defined) is the
least parameter p so that h̃ν(ν ∪ p) = Jβ(ν). It is easy to see that αν in
(f) is always defined, as the set of α’s specified is closed; note also that αν

is perforce strictly less than the first ordinal γ partially mapped by h̃ν(with
parameter pν) cofinally into ν. We set that first ordinal γ at (g) to be
γν . Such a γν exists, since by assumption there is some good Σ(n)

1 (Mν)
function singularising ν, using some parameter r. In fact as we are in L
we may take r = pMν . If γ′ = max(pMν ∩ ν)+1 (max(pMν ∩ κν)+1 if κν is
defined), then clearly h̃ν(γ′∪pν) is cofinal in ν (as we have enough parameters
in the domain of this hull to define our cofinalising map); hence γν ≤ γ′

exists.

2.7 Lemma. ωρnν

Mν
≥ ν ≥ ωρnν+1

Mν
.

Proof. Let n = nν . If the second inequality failed, then the partial function
Σ(n)

1 (Jβ(ν))-singularising ν would be a subset of ν and thus a bounded subset
of ωρn+1

Mν
belonging to Jβ(ν). Suppose the first inequality failed. Then n > 0,

and h̃n
Mν

maps Hn
Mν

= Jρn
Mν

onto Jβ(ν) = Mν . However h̃n
Mν

has a Σ(n−1)
1

definition, which can be easily amended to provide a Σ(n−1)
1 map from ωρn

Mν

onto ν—thus contradicting our definition of n. �
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2.8 Definition. For ν, ν ∈ S:

(i) We set f : ν̄ =⇒ ν if |f | : Jν −→Σ1 Jν , and |f | is the restriction of f ∗ :
Jβ(ν) −→Σ

(n)
1

Jβ(ν) where n = nν , ν = f ∗(ν) if ν < β(ν);κν ∈ ran(f)
(if κν is defined); αν , pν are both in ran(f ∗).

(ii) F =df {〈ν̄, |f |, ν〉 | f : ν̄ =⇒ ν}. We sometimes write if f : ν̄ =⇒ ν that
ν̄ = d(f) and ν = r(f).

(iii) If ν < β, we set p(ν) =df pν ∪ {αν , ν, κν} (the latter if κν is defined);
if ν = β then p(ν) =df pν ∪ {αν , κν} (again the latter only if it is
defined).

(iv) f ∗
(δ,v,ν) is the inverse of the transitive collapse of the hull h̃ν(δ∪{p(ν), v})

in Jβ(ν).

2.9 Lemma. If ∃ν̄(f : ν̄ =⇒ ν) then |f | and f ∗ are uniquely determined by
ran(|f |) ∩ ν.

Proof. As Jβ(ν) is sound, we have by our definitions, and Fact (i) before
Lemma 1.19, that h̃ν(ων ∪ {pν}) = Jβ(ν) (and a similar statement with ν̄
replacing ν throughout). We have a Δ1(Jν) onto map g : ων � Jν . Thus,
if Y = h̃ν((ων ∩ ran(|f |)) ∪ {pν}), then Y = h̃ν(ran(|f |) ∪ {pν}) = ran(f ∗):
if x ∈ ran(f ∗), then by soundness of Jβ̄ above ν̄, x = f ∗(hν̄(ξ̄, pν̄)) for some
ξ̄ < ων̄; thus x ∈ Y . However f ∗(hν̄(ξ̄, pν̄)) = hν(|f |(ξ̄), pν) since f ∗ is Σ(n)

1 -
preserving, we have by Lemma 1.22 that f ∗(pν̄) = pν . The converse inclusion
is immediate. �

2.10 Remark. The next lemma will show that in clause (iv) there is some
μ and a restriction map |f(δ,q,ν)| of f ∗

(δ,q,ν) so that 〈μ, |f(δ,q,ν)|, ν〉 ∈ F.

In the sequel we shall not carefully distinguish |f | (or f), from its canon-
ical extension f ∗ (observe Lemma 2.9) and sometimes write f : Jν −→Σ1 Jν

where more correctly we should write f ∗�Jν or |f | : Jν −→Σ1 Jν (as in the
conclusion of the next lemma). Or conversely if f : ν̄ =⇒ ν then we should
properly write “f ∗ : Jβ(ν) −→Σ

(n)
1

Jβ(ν)” but sometimes we are slip-shod and

again simply substitute f for f ∗ by virtue of the last lemma.
We shall first prove a pair of lemmata concerning relationships between

singularising structures, and associated maps between them. These will then
facilitate the definition of our Cν sequences.

2.11 Lemma. Let f : Jβ̄ −→Σ
(n)
1

Jβ(ν) where n = nν ; suppose f(ᾱ, p̄) =
αν , pν , and (where appropriate) f(κ̄, ν̄) = κν , ν. (The latter if ν < β(ν); if
ν = β(ν) then we take ν̄ = β̄.) Then ν̄ ∈ S, β̄ = β(ν̄) (thus Mν̄ = Jβ̄),
f : ν̄ =⇒ ν; moreover n, ᾱ, p̄, κ̄ (the latter when defined) are nν̄ , αν̄ , pν̄ , κν̄ .
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(Remark: we shall drop the qualification “when defined” from now on
and will also let the reader include or exclude the ordinal ν as appropri-
ate.)

Proof. We verify that Jβ̄ is the singularising structure for ν̄ and the other
parameters are as shown, and thus are moved correctly by f . That ν̄ ∈ S is
trivial if ν ∈ ran(f) and follows from Lemma 2.3 otherwise.

(1) p̄ = pJβ
\ν.

Proof of (1). By the Condensation Lemma 1.22. � (1)

Setting β = β(ν), we let h have the same functionally absolute definition
over Jβ̄ as h̃ν does over Jβ . h is thus Σ(n)

1 (Jβ̄).

(2) α is defined from Jβ̄ as α was defined from Jβ(ν).

Proof of (2). Set

H(ξn, ζn) ⇐⇒ h̃ν(ωξn ∪ {pν}) ∩ ν ⊆ ζn,

H(ξn, ζn) ⇐⇒ h̄(ωξn ∪ {p̄}) ∩ ν̄ ⊆ ζn.

The former H is then Π(n)Jβ

1 ({pν , ν}), (ν is omitted if ν = ωρn
Jβ

); the

latter H is Π
(n)Jβ

1 ({p̄, ν̄}), by the same definition (again, we include ν̄ when
ν̄ < ωρn

Jβ
, which occurs by the Σ(n)

1 -elementarity of f ∗ when ν = ωρn
Jβ

). As

Jβ |= H(α, α) we have Jβ̄ |= H(ᾱ, ᾱ). However for any ξ with ᾱ < ξn < ν̄

we must have Jβ̄ |= ¬H(ξn, ξn), because Jβ |= ¬H(f(ξn), f(ξn)) since α <
f(ξn) < ν. These properties describe α and ᾱ. � (2)

(3) ∃ξn
< ν̄(h̃ν(f(ξ̄n) ∪ {pν}) is unbounded in ν).

If (3) holds for some ξ then, in fact h̄(ξ ∪ {p̄}) is cofinal in ν̄, since

Jβ = Mν |= (∀ζn < ν)(∃δn < f(ξ̄n))(∃i < ω)(ζn < h̃ν(i, 〈δn, pν〉) < ν)

is a Π(n)
2 expression and hence goes down to Jβ̄ in the objects p̄, h̄, ξ̄ and ν̄

(the latter if ν = f(ν̄) < ωρn
Jβ

) It thus witnesses that β̄ = β(ν̄) and n ≥ nν̄ .
Thus also h̄ is a suitable singularising function for ν̄. So suppose (3) fails.
Note that then we must have τ =df sup f“ν̄ ≤ γν < ν. However, then we
have:

(4) τ �= ν ∩ h̃ν(τ ∪ {pν}).

We cannot have equality here as that would imply that τ ≤ αν . However the
latter is in ran(f�ν̄)!
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Hence the following true in Jβ :

∃i ∈ ω∃ξn < τ(ν > h̃ν(i, 〈ξn, pν〉) ≥ τ).

Let i, ξn witness this, and pick δ̄ < ν̄ so that f(δ̄) > ξn. Then for any μ̄ < ν̄
as f(μ̄) < τ :

Jβ |= (∃ζn < f(δ̄))(ν > h̃ν(i, 〈ζn, pν〉) ≥ f(μ̄)).

This is Σ(n)
1 and hence, for all μ̄ < ν̄, goes down to Jβ̄ . Now:

Jβ̄ |= ∀μ̄ < ν̄∃ζn < δ̄(ν̄ > h̄(i, 〈ζn, p̄〉 ≥ μ̄)).

Again, this says that h̄ is a suitable singularising function for ν̄. The only
possibility left is that (4) could hold. However that would imply that τ ≤ αν

which we have already ruled out.

(5) β̄ = β(ν̄) and n = nν̄ .

We have just seen that β̄ = β(ν̄) and n ≥ nν̄ . Suppose m < n and that
ḡ is a Σ(m)

1 (Jβ̄) good function in the parameter r̄. Let g be Σ(m)
1 (Jβ) using

the same functionally absolute definition and the parameter f(r̄). Suppose
δ̄ < ν̄. By the Σ(n)

1 -elementarity of f we have the following Σ(n)
1 statement

holds in Jβ (as ran(g�f(δ̄)) is bounded in ν):

(∃ξn < ν)(∀ζm < f(δ̄))(∀ηm < ν)(g(ζm) = ηm −→ ηm < ξn)

(assuming ν < β; otherwise drop the bound ν). As f is actually Σ(n)
1 -pre-

serving, we have in Jβ̄ :

(∃ξn < ν̄)(∀ζm < δ̄)(∀ηm < ν̄)(ḡ(ζm) = ηm −→ ηm < ξn).

As δ̄ was arbitrary, we conclude that ran(ḡ�ξ) is bounded on any ξ < ν̄.
Hence n ≤ nν̄ . �

2.12 Definition. If f : ν̄ =⇒ ν, let λ(f) =df sup f“ν; ρ(f) =df sup f“ρν̄ .

2.13 Lemma. Suppose f : ν̄ =⇒ ν, and let λ = λ(f). Then λ ∈ S and
there exists a unique f0 : ν̄ =⇒ λ with f�ν = f0�ν.

Proof. With Jβ(ν̄) = Mν̄ and Jβ(ν) = Mν a direct application of the Inter-
polation Lemma 1.51 with λ as ν̃, Mν̄ , Mν as M,M respectively, and using
f ∗ : Mν −→Σ

(n)
1

Mν (where f ∗ is the canonical extension of f) we have the

structure M̃ = Jβ̃ and maps f̃ , f ′ as specified.

(1) λ ∈ S, n = nλ.

Proof of (1). As h̃ν̄(γν̄ ∪ {pMν
, r}) is cofinal in ν for some parameter r then

λ ∩ h̃n+1

M̃
(f̃(γν̄) ∪ {p′, f̃(r)}) is cofinal in λ (setting p′ = f̃(pν) = f ′ −1(pν)).
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Figure 10.2: Lemma 2.13

Thus λ is p.r. closed, but not Σ(n)
1 -regular in Jβ̃ . Hence n ≥ nλ. We need to

show that λ is Σ(n−1)
1 -regular in Jβ̃ . Suppose this fails and there is a good

Σ(n−1)
1 (M̃) function g̃, mapping a subset of some δ̃ < λ cofinally into λ.

g̃(ξ) can be taken to be of the form G̃(ξ, s) in some parameter s where the
latter is, by the construction of the pseudo-ultrapower, of the form f̃(ḡ0)(η)
for some good Σ(n−1)

1 (Mν) function g0 and some η < λ. We now carry back
via f̃ the supposed singularisation of λ to one of ν which is a contradic-
tion. Let G be the good Σ(n−1)

1 (Mν) function by the same functionally ab-
solute definition as G̃. Define a good Σ(n−1)

1 (Mν) partial function by g(ξ)  
G((ξ)0, g0((ξ)1)). Then g will singularise ν : pick a τ < ν sufficiently large so
that f̃(τ) > max{δ̃, η}; we show that ḡ takes a subset of τ̄ cofinally into ν̄. Let
ζ < ν be arbitrary. We find a ξ < τ̄ with g(ξ) > ζ, and this will be our contra-
diction. As g̃ is assumed cofinalising, there is an ι < δ̃ so that f̃(ζ) < g̃(ι) =
G̃(ι, f̃(ḡ0)(η)) < λ.

Thus the following is Σ(n)
1 :

∃un[un < f̃(τ) ∧ f̃(ζ) < G̃((un)0, f̃(g0)((u
n)1)) < λ].

Hence in Mν we have as required:

∃un[un < τ ∧ ζ < G((un)0, g0((u
n)1)) = g(un) < ν̄].

� (1)

(2) p′ = pλ.

Proof of (2). By the pseudo-ultrapower construction we have M̃ = h̃n+1

M̃
(λ∪

{p′}) (and equals h̃n+1

M̃
(κ̃ ∪ {p′}) where κ̃ = f̃(κν) if κν is defined). Be-

cause of this we have that p′ ∈ Rn
M̃

and can thus be lengthened to a p′ ′ ∈
Pn+1

M̃
(= Rn+1

M̃
by the soundness of the L-hierarchy). By the minimality of the
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standard parameter and the definition of pλ we thus have pλ ≤∗ p′. However if
pλ <∗ p′ held, we should have for some i ∈ ω, �ξ < λ that p′ = h̃n+1

M̃
(i, 〈�ξ, pλ〉),

and thus pν = h̃n+1
ν (i, 〈f ′(�ξ ), f ′(pλ)〉) whence Mν = h̃n+1

ν (ν ∪ f ′(pλ)); this is
a contradiction as f ′(pλ) <∗ pν . � (2)

We may set f ∗
0 = f̃ once we have shown:

(3) If α̃ =df f̃(αν) then α̃ = αλ.

We note that αν = α̃.
That hλ(α̃ ∪ {pλ}) ∩ λ ⊆ α̃ is proven using:

H(ξn, ζn) ⇐⇒ hν̄(ωξn ∪ {pν̄}) ∩ ν̄ ⊆ ζn.

Then H(αν̄ , αν̄) is a Π(n)
1 fact about αν̄ that is preserved up by f̃ to yield

hλ(α̃ ∪ {pλ}) ∩ λ ⊆ α̃.
This shows that α̃ is sufficiently closed. To show that no larger ordinal

γ with α̃ < γ < λ satisfies hλ(γ ∪ {pλ}) ∩ λ ⊆ γ; as f̃�ν̄ is cofinal into
λ we may set γ̄ = f̃ −1”γ and then have αν̄ < γ̄ and f̃(γ̄) ≥ γ. So for
some i ∈ ω and ζ̄ < γ̄ we have γ̄ ≤ hν̄(i, 〈ζ̄, pν̄〉) < ν̄. Applying f̃ we have
that γ ≤ hλ(i, 〈f̃(ζ̄), pλ〉) < λ. As f̃(ζ̄) < γ we see that γ is not a closed
ordinal. � (2.13)

2.14 Lemma. Suppose f : ν̄ =⇒ ν. Then λ(f) < ν ←→ ρ(f) < ρν .

Proof. Let λ = λ(f). We prove both directions by contraposition. So in
the forward direction, suppose ρ(f) = ρν . Then, in the diagram of the pre-
vious Lemma the map f ′ is not only Σ(n)

0 but is cofinal at the nth level,
and thus Σ(n)

1 -preserving. This together with f ′(λ, pλ) = ν, pν , implies that
ν∩f ′“hλ(λ∪{pλ}) ⊆ ν∩hν(λ∪{pν}) = λ. Were λ < ν this would contradict
the fact that λ > αν as the latter is in ran(f).

Conversely, suppose λ = ν. Let k̄ be the good Σ(n)
1 (Jβ(ν)) partial function

in a parameter q̄, cofinalising ν̄. Applying the Σ(n)
1 -preserving f ∗ we have

a good function, k, with the same definition as k̄ (in the parameter f ∗(q̄)).
Now suppose ρ′ =df ρ(f) < ρν for a contradiction. Then q would be in Jρ(f),
but moreover all the witnesses to the existential quantifiers of type n needed
to see that k is cofinal in λ = ν would be in Jρ(f), and those quantifiers could
thus be replaced by bounded ones: if, say, k̄(ξ) = ζ ↔ ∃xnϕ(xn, ξ, ζ, q̄) with
ϕ ∈ Σ(n)

0 we then have

k(f ∗(ξ)) = f ∗(ζ) ⇐⇒ ∃xn ∈ Jρ(f)ϕ(xn, f ∗(ξ), f ∗(ζ), q).

Hence over Jβ(ν) we have a Σ(n)
0 definition of a singularising function for ν.

However as ν = λ ≤ ρ(f) < ρν we have that this function is in Jβ(ν). This is
a contradiction. �
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2.1. Defining Cν

We define outright what the Cν-sequences will be:

2.15 Definition. Let ν ∈ S; C+
ν =df {λ(f) | f =⇒ ν}; Cν =df C+

ν \{ν}.

2.16 Definition. Let f : ν̄ =⇒ ν. Then:

β(f) =df max{β ≤ ν | f�β = id �β}.

Simple closure says that β(f) is defined. Note that β(f) = ν iff f = idν

iff f(β(f)) ≯ β(f) (if ν < β(f)). Further, it is easy to see that Mν̄ |=
“β(f) is a regular cardinal” (this last is a standard argument: if β(f) < ν
were singular in Mν̄ then β(f) > β and Σ1-elementarity of f would be a
contradiction).

The next lemma lists some properties of f(γ,q,ν) which were defined at De-
finition 2.8 (and see Remark 2.10). The first of these is a minimality property
of f(γ,q,ν).

2.17 Lemma.

(i) If γ ≤ ν then f(γ,q,ν) is the least f =⇒ ν such that f�γ = id �γ with
q, p(ν) ∈ ran(f ∗), in that if g is any other such with these two properties
(meaning that if g =⇒ ν with extension g∗ is so that γ ∪ {q, p(ν)} ⊆
ran(g∗)), then g−1f(γ,q,ν) ∈ F.

(ii) f(γ,q,ν) = f(β,q,ν) where β = β(f(γ,q,ν)).

(iii) f(ν,0,ν) = idν .

(iv) Let f : ν̄ =⇒ ν with γ̄ ≤ ν̄, f“γ̄ ⊆ γ ≤ ν, q̄ ∈ Jν̄ , f
∗(q̄) = q, then

ran(f ∗f ∗
(γ̄,q̄,ν̄)) ⊆ ran(f ∗

(γ,q,ν)).

With (i) this implies: if β(f) ≥ γ then ff(γ̄,q̄,ν̄) = f(γ,q,ν).

(v) Set g = f(γ,q,ν); λ = λ(g) and g0 = red(g). Then q ∈ Jλ and
g0 = f(γ,q,λ).

Proof. For (i) note this makes sense since we have specified in effect that
ran(g∗) ⊇ ran(f ∗

(γ,q,ν)). (i)–(iv) are easy consequences of the definitions.
We verify (v). We know that g0 =⇒ λ. Set g′

0 = f(γ,q,λ) and we shall ar-
gue that g0 = g′

0. Let k = g−1
0 g′

0. The argument of Lemma 2.13 shows
that d(g0) = d(g); as g0�γ = id �γ, and q ∈ ran(g0) by (i) the minimal-
ity of g′

0 =⇒ λ implies we have such a k defined. Thus k ∈ F. But
k =⇒ d(g0) so we conclude, as d(g0) = d(g), that gk ∈ F. But ran((gk)∗) ∩
λ = ran(g∗) ∩ λ. So, using that gk�γ = id �γ, and q, p(ν) ∈ ran(gk), and
then (i) again, we have (gk)−1g = k−1 ∈ F. Hence k = idd(g′

0)
and thus

g0 = g′
0. �
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When we have a cofinal map f, meaning that |f | is cofinal into r(f), as in
the next lemma, then our definitions are preserved through =⇒:

2.18 Lemma. Let f : ν̄ =⇒ ν with λ(f) = ν. Let γ̄ < ν̄, and q ∈ Jν̄ , with
γ = f(γ̄), f(q̄) = q. Set ḡ = f(γ̄,q̄,ν̄); g = f(γ,q,ν). Then

(i) λ(ḡ) < ν̄ ⇐⇒ λ(g) < ν;

(ii) If λ(ḡ) < ν̄ then f(λ(ḡ)) = λ(g) and f(β(ḡ)) = β(g).

Proof. We first assume λ(ḡ) < ν̄. Set λ′ = f(λ(ḡ)). The following is
Π(n)Mν̄

1 ({λ(ḡ), γ̄, p(ν̄)}):

∀xn∀ξn < γ̄∀i < ω(xn = h̃ν̄(i, 〈ξn, q, p(ν̄)〉) ∧ xn < ν̄ −→ xn < λ(ḡ)).

(if ν̄ = On∩Mν̄ the conjunct xn < ν̄ is omitted). Hence

∀xn∀ξn < γ∀i < ω(xn = h̃ν(i, 〈ξn, q, p(ν)〉) ∧ xn < ν −→ xn < λ′)

as f is Π(n)
1 -preserving. Hence λ′ ≥ λ(g).

Claim 1. λ′ ≤ λ(g).

As λ(ḡ) < ν̄ we have ωρ(ḡ) < ωρν̄ by Lemma 2.14. Hence if we set
N̄ = 〈Jρ(ḡ), A

n,pν̄�n ∩ Jρ(ḡ)〉 we have that N ∈Mν̄ and is an amenable struc-
ture, with λ(ḡ) = sup(ν̄ ∩ hN (γ̄ ∪ {q̄, p(ν̄) ∩ ωρν̄}).

Applying f ∗, and with N = f(N), we have (noting that f({q̄, p(ν̄) ∩
ωρν̄}) = {q, p(ν) ∩ ωρν})

λ′ = sup(ν ∩ hN (γ ∪ {q, p(ν) ∩ ωρν}).

However for amenable structures (including N) we have a uniform de-
finition of the canonical Σ1(N)-Skolem function hN . As 〈N,AN 〉 is a Σ0

substructure of 〈Mn
ν , An

ν 〉, we have that hN ⊆ hν . Hence

λ′ = sup(ν ∩ hν(γ ∪ {q, p(ν) ∩ ωρν})) = sup(ν ∩ h̃ν(γ ∪ {q, p(ν)})).

Thus λ′ ≤ λ(g). This finishes Claim 1 .

Claim 2. f(β(ḡ)) = β(g).

Let β = f(β(ḡ)). Note that ḡ = f(β(ḡ),q̄,ν̄). Consequently β(ḡ) /∈ ran(g).

β = f(β(ḡ)) = f(sup{δ̄ < ν̄ | δ̄ ⊆ ran(g)})
= f(sup{δ̄ < ν̄ | δ̄ ⊆ hN (γ̄ ∪ {q̄, p(ν̄) ∩ ωρν̄})})
= sup{δ < ν | δ ⊆ hN̄ (γ ∪ {q, p(ν) ∩ ωρν})}.

And by the argument above is less than or equal to sup{δ < ν | δ ⊆
hν(δ ∪ {q, p(ν) ∩ ωρν}) = β(g). Suppose however β < β(g). Then in Mν

we have:
∃ξn < γ∃i < ω(β = h̃ν(i, 〈ξ, q, p(ν)〉).
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However f is Σ(n)
1 -preserving, so this goes down to Mν̄ as:

∃ξ̄n < γ̄∃i < ω(β(ḡ) = h̃ν̄(i, 〈ξ̄n, q̄, p(ν̄)〉).

But this implies β(ḡ) ∈ ran(ḡ) after all which is a contradiction! This finishes
Claim 2 and (ii). Finally, just note for (⇐=) of (i) as ρ(f) = ρν , if λ(g) < ν
then by Lemma 2.14 there is an η = f(η̄) < ρ(f) with h̃ν(γ ∪ {q, p(ν)}) ∩
ωρν ⊆ η. As before this is Π(n)

1 and goes down to Mν̄ as h̃ν̄(γ̄ ∪ {q̄, p(ν̄)}) ∩
ωρν̄ ⊆ η̄. Hence λ(ḡ) < λ. �

2.19 Definition. Let ν ∈ S, q ∈ Jν . B(q, ν) =df B+(q, ν)\{ν} where
B+(q, ν) =df {β(f(γ,q,ν)) | γ ≤ ν}.

Then B(q, ν) is the set of those β < ν so that β = β(f) where f =
f(β,q,ν). Recall that B∗ is always the class of limit points of B for any set
B ⊆ On.

2.20 Lemma. Let f = f(γ,q,ν) where q ∈ Jν .

(i) Suppose γ ∈ B(q, ν)∗. Then ran(f) =
⋃

β∈B(q,ν)∩γ ran(f(β,q,ν)).

(ii) Let γ ≤ ν. Suppose ν̄ is such that f : ν̄ =⇒ ν with f(q̄) = q. Then
γ ∩B(q, ν) = B(q̄, ν̄).

(iii) Let λ = λ(f); f0 = red(f). Then γ ∩B(q, λ) = γ ∩B(q, ν).

Proof. (i) is clear; (ii) follows from Lemma 2.17(iv), and (iii) from (ii) and
Lemma 2.17(v). �

2.21 Definition. Let ν ∈ S, q ∈ Jν .

Λ+(q, ν) =df {λ(f(γ,q,ν)) | γ ≤ ν},
Λ(q, ν) =df Λ+(q, ν)\{ν}.

Notice that Λ(q, ν) ⊆ Cν and we can think of these as first approximations
to Cν as q varies. We proceed to analyse these sets.

2.22 Lemma. Let ν ∈ S, q ∈ Jν .

(i) Λ(q, ν) is closed below ν;

(ii) ot(Λ(q, ν)) ≤ ν;

(iii) if λ ∈ Λ(q, ν) then q ∈ Jλ and Λ(q, λ) = λ ∩ Λ(q, ν).

Proof. Set Λ = Λ(q, ν).
(i) Let η ∈ Λ∗. We are claiming that η ∈ Λ+(q, ν). For each λ ∈ Λ(q, ν)∩η

pick βλ ∈ B(q, ν) with λ(f(β,q,ν)) = λ. Clearly λ ≤ λ′ −→ βλ′ ≤ βλ. Let γ
be the supremum of these βλ, and then using the closure of B(q, ν) from (i)
of the last lemma, we have λ(f(γ,q,ν)) = supλ λ(f(βλ,q,ν)) = η.
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(ii) Clear.
(iii) Let λ ∈ Λ, and g = λ(f(β,q,ν)), where we take β = β(g). Suppose

g : ν̄ =⇒ ν. Let g(q) = q and set g0 = red(g). Then by Lemma 2.17(v)
g0 = λ(f(β,q,ν))). If γ ≥ β then λ = λ(f(γ,q,λ)) ≤ λ(f(γ,q,ν)). If γ ≤ β
then

|f(γ,q,λ))| = |g0||f(γ,q̄,ν̄)| = |g||f(γ,q̄,ν̄)) = |f(γ,q,ν)|

where the first equality is justified by Lemma 2.17(v). �

2.23 Lemma. If f : ν̄ =⇒ ν, μ = λ(f), q ∈ Jν̄ , f(q̄) = q, then:

(i) Λ(q, ν̄) = ∅ =⇒ μ ∩ Λ(q, ν) = ∅;

(ii) f“Λ(q, ν̄) ⊆ Λ(q, μ);

(iii) if λ = max(Λ(q, ν̄)) and λ = f(λ̄) then λ = max(μ ∩ Λ(q, ν)).

Proof. (i) By its definition, if Λ(q, ν̄) = ∅ then f(0,q,ν̄) is cofinal into ν̄.
Hence ran(ff(0,q,ν̄)) is both cofinal in μ, and contained in ran(f(0,q,ν)) by
Lemma 2.17(iv), thus μ ∩ Λ(q, ν) = ∅. This finishes (i). Note that by
Lemma 2.22(iii) Λ(q, μ) = μ ∩ Λ(q, ν). Let f0 = red(f).

(ii) Let λ = λ(f(β̄,q,ν̄)) ∈ Λ(q, ν̄), and let f(β, λ) = β, λ = f0(β, λ). Then
f0(λ(f(β̄,q̄,ν̄))) = λ(f(β,q,μ)) ∈ Λ(q, μ).

(iii) Let β = sup{γ | λ(f(γ,q̄,ν̄)) ≤ λ}. Then λ(f(β̄,q̄,s̄)) = λ, and by the
assumed maximality of β we have λ(f(β̄+1,q̄,ν̄)) = ν̄. Set β = f(β̄) = f0(β̄),
then λ = f0(λ̄) = λ(f(β,q,μ)) using Lemma 2.18 for second equality. How-
ever λ(f(β+1,q,μ)) ≥ μ, since, again by Lemma 2.17(iv), ran(f0f(β̄+1,q̄, ν̄)) ⊆
ran(f(β+1,q,μ)). Hence λ = max(Λ(q, μ)) = max(μ ∩ Λ(q, ν)). �

We now note that our definitions of λ(f), B(q, ν), Λ(q, ν), etc. are ex-
tremely uniform (and indeed are primitive recursively defined) in the appro-
priate parameters. In particular if μ ∈ S, then we can define Fμ = {f(γ,q,ν) |
ν ∈ S ∩ μ, q ∈ Jν , γ ≤ ν}, Eμ = {〈ν,Mν , p(ν), h̃ν〉 | ν ∈ S ∩ μ}, and
Gμ = {〈〈ν, q〉,Λ(q, ν)〉 | q ∈ Jν , ν ∈ S ∩ μ}.

2.24 Remark. Eμ, Fμ, Gμ are uniformly Δ1(Jμ) for μ ∈ S, with, for μ′ <
μ,Eμ′ , Fμ′ , Gμ′ ∈ Jμ.

2.25 Lemma. Let f : ν̄ =⇒ ν with q ∈ Jν̄ , f(q̄) = q. Then

(i) If λ(f) = ν then |f | : 〈Jν̄ ,Λ(q̄, ν̄)〉 −→Σ1 〈Jν ,Λ(q, ν)〉;

(ii) Otherwise: |f | : 〈Jν̄ ,Λ(q̄, ν̄)〉 −→Σ0 〈Jν ,Λ(q, ν)〉.

Proof. (i) It suffices to show that |f |(Λ(q̄, ν̄) ∩ τ̄) = Λ(q, ν) ∩ |f |(τ) for arbi-
trarily large τ < ν̄. This will follow easily from the last lemma.

If λ̄ ∈ Λ(q̄, ν̄), then Λ(q̄, ν̄) ∩ λ̄ = Λ(q̄, λ̄) by Lemma 2.22, and by the
Remark, if f(λ̄) = λ, we have f(Λ(q̄, λ̄)) = Λ(q, λ) = λ ∩ Λ(q, ν) (with the
latter equality by Lemma 2.22 again). If Λ(q̄, ν̄) is unbounded in ν̄, this
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suffices; if it is empty or bounded, then the last lemma takes care of these
cases.

For non-cofinal maps (ii) we still have, if λ(f) = μ, that

|f0| : 〈Jν̄ ,Λ(q̄, ν̄)〉 −→Σ1 〈Jμ,Λ(q, μ)〉

where f0 = red(f). However Λ(q, μ) = μ ∩ Λ(q, ν), and |f0| = |f |. �

We turn to a decomposition of the Cν sets into a finite sequence of sets
of the form Λ(liν , ν). This will enable us to extend the results of the last few
lemmas from the Λ(q, ν) sets to Cν sets, whilst at the same time giving us a
handle on other data about the Cν .

2.26 Definition. Let s ∈ S, η ≤ ν. liην < ν is defined for i < mην ≤ ω by
induction on i:

l0ην = 0; li+1
ην  max(η ∩ Λ(liην , ν)).

We also write li for liην if the context is clear; also we set liν  liνν ;
mν = mνν .

We note some easily checked facts about this definition (which we shall use
without comment; the last here is by induction on i):

Facts.

• liην ≤ li+1
ην (i < mην).

• i > 0 implies liην ∈ η ∩ Cν .

• Let liην be defined, and suppose liην < μ ≤ η. Then liην = liμν .

2.27 Lemma. Let f : ν̄ =⇒ ν.

(i) If λ = λ(f) then liλν  f(liν̄);

(ii) let η < ν̄, f(η̄) = η; then liην  f(liη̄ν̄).

Proof. (i) By induction on i. If i = 0 this is trivial. Suppose i = j + 1.
Then, as inductive hypothesis ljλν = f(ljν̄), and thus |f | : 〈Jν̄ ,Λ(ljν̄ , ν̄)〉 −→Σ1

〈Jλ,Λ(ljλν , λ)〉, by the last lemma, as | red(f)| = |f |. However Λ(ljλν , λ) =
λ ∩ Λ(ljλν , ν), by Lemma 2.22. Hence, f(liν̄)  f(max Λ(ljν̄ , ν̄))  max(λ ∩
Λ(ljλν , ν))  liλν with the middle equality holding by the inductive hypothesis
and Lemma 2.23(iii).

(ii) is proved similarly. �

2.28 Corollary.

(i) Let f : ν̄ =⇒ ν cofinally. Then liν  f(liν̄).

(ii) Let λ ∈ Cν . Then liλν  liλ.
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Proof. (i) is immediate. For (ii) choose f : ν̄ =⇒ ν with λ = λ(f), and set
f0 = red(f). Then liλν  f(liν̄)  f0(liν̄)  liλ with the last equality holding
from (i). �

2.29 Lemma. Let η ≤ ν, λ = min(C+
ν \η). Then liν  liλν  liην (for any

i < ω for which any term is defined).

Proof. Induction on i, again i = 0 is trivial. Suppose ljν = ljην = ljλν

and i = j + 1. Set l = ljην ; then we have: Λ(l, ν) ∩ η = Λ(l, ν) ∩ λ,
since Λ(l, ν) ⊆ Cν and Cν ∩ [η, λ) = ∅. Suppose, without loss of general-
ity that liην is defined. Then liην = max(η ∩ Λ(l, ν)) = max(λ ∩ Λ(l, ν)) =
liλν = liλ. �

2.30 Lemma. Let j ≤ i < mν . Set l = liν . Then ljν ∈ ran(f(0,l,ν)).

Proof. Set f = f(0,l,ν). Suppose f : ν̄ =⇒ ν, and λ = λ(f). Then
ljλν  f(ljν̄) by Lemma 2.27(i). But ljν exists, and ljν < λ ≤ ν. Hence
ljν = ljλν = f(ljν̄). �

We now prove a key lemma showing that the 〈ljλν〉 sequences are finite.

2.31 Lemma. Let ν ∈ S, η ≤ ν. Then mην < ω.

Proof. Suppose this fails. Then for some η ≤ ν we have that liην is defined
for i < ω. Let λ = min(C+

ν \η). Then liλν = liην by Lemma 2.29. Choose
f : ν̄ =⇒ ν with λ = λ(f). Then liλν = liλ = f(liν̄) for i < ω by Corol-
lary 2.28(ii) and Lemma 2.27(i). Hence, taking ν as λ, we may assume,
without loss of generality, that liν is defined for i < ω for some ν ∈ S. This
will yield a contradiction. We obtain an infinite descending chain of ordi-
nals by showing that as i increases, and thus liν does so strictly too, the
maximal βi that must be contained in the range of any f :=⇒ ν together
with liν in order for ran(f) to be unbounded in ν strictly decreases. This is
absurd.

Set l = liν . Define: βi = βi
ν =df max{β | λ(f(β,l,ν)) < ν}. By the definition

of li+1
ν we have that λ(f(β,l,ν)) < νs ←→ λ(f(β,l,ν)) ≤ li+1

ν . Furthermore, by
the definition of βi:

(1) λ(fβi,l,ν) ≤ li+1
ν ;

(2) λ(fβi+1,l,ν) = ν.

Claim. βi+1 < βi for i < ω.

Proof of Claim. Set f = f(βi+1,li+1,ν). Then λ(f) = li+2. (We omit the
subscript ν from now on.) Let f : ν̄ =⇒ ν. Then ljν̄ exists and f(ljν̄) =
ljli+1,ν = ljν for j < i + 1 since lj < li+1 < ν. (The first equality comes from
Lemma 2.27(i) and (1), the second from Lemma 2.29.) � Claim
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(3) βi ≥ βi+1.

Proof of (3). Suppose not. Then (βi + 1) ∪ {li} ⊆ ran(f). Hence we have
ran(f(βi+1,li,ν)) ⊆ ran(f). Consequently by (2), λ(f) = ν > li+2. Contradic-
tion! � (3)

(4) βi �= βi+1.

Proof of (4). Suppose not. As βi+1 is the first ordinal moved by f we con-
clude that f(βi) > βi. Set g = f(βi,l,ν), ḡ = f(βi,l̄,ν̄) where l̄ = liν̄ . Then
g = f ḡ, since f�βi = id, f(l̄) = l(= liν). Hence li+1 = λ(g) = λ(f ḡ) < li+2 =
λ(f). Hence λ(ḡ) < ν̄. Now we set: g0 = f(βi,l,li+2). If further f0 = red(f),
then we have also g0 = f0g by Lemma 2.17(iv). As li+1 = λ(g) < li+2,
Lemma 2.18(ii) applies and:

f(β(ḡ)) = f0(β(ḡ)) = β(g0) = β(g) = βi.

Hence βi ∈ ran(f) which is a contradiction. This proves the Claim and hence
the lemma. �

We now set lην = lm−1
ην , where m = mην . Again we write lν for lνν . We

note that then Λ(lην , ν)∩η is either unbounded in η or is empty. We analyse
the latter case further.

2.32 Lemma. Suppose Λ(lην , ν) ∩ η = ∅. Set l = lην . Then:

(i) l = 0 =⇒ Cν ∩ η = ∅;

(ii) l > 0 =⇒ l = max(Cν ∩ η);

(iii) η ∈ C+
ν =⇒ η = λ(f(0,l,ν)).

Proof. Set ρ = min(C+
ν \(l + 1).

(1) l = lρν .

Proof of (1). Set n = mην−1. Then l = lnην < l+1 < η. Hence (by Fact after
Definition 2.1) l = lnl+1,ν . But Λ(l, ν)∩ (l + 1) = ∅. Hence ln+1

l+1,ν is undefined
and l = ll+1,ν . Hence l = lρ,ν by Lemma 2.29. � (1)

(2) λ(f(0,l,ν)) = ρ.

Proof of (2). Choose f : ν̄ =⇒ ν, with λ(f) = ρ witnessing that ρ ∈ Cν .
Then, by Lemma 2.27(i), f(lν̄) = lρν = l. Set l̄ = lν̄ . Now note that we must
have that λ(f(0,l̄,ν̄)) = ν̄. For, if this failed then f(λ(f(0,l̄,ν̄))) = λ(f(0,l,ν)) < ρ

by Lemma 2.18, and so the latter is in C+
ν ∩ (l, ρ), which is absurd! Then

λ(f(0,l,ν)) = λ(ff(0,l̄,ν̄)) = λ(f) = ρ. � (2)

From (2) it follows that ρ ≥ η (for otherwise this contradicts the definition
of l as lην). Hence we have the two alternatives:
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If l = 0 then (i) holds: ρ = min(C+
ν \1) = min(C+

ν ) ≥ η. If l > 0 then
l = max(Cν ∩ η) since (Cν ∩ η)\(l + 1) ⊆ (Cν ∩ ρ)\(l + 1) = ∅ and thus we
have (ii).

Finally for (iii) if η ∈ C+
ν then η = max(C+

ν \(l + 1) = ρ = λ(f(0,l,ν)).
�

We now get the closure of the sets C+
ν as well as a precise characterisation

of the points they contain.

2.33 Lemma. Let λ be an element or a limit point of C+
ν . Let l = lλν . Then

there is a β such that λ = λ(f(β,l,ν)). Hence Cν is closed in ν, and

C+
ν = {λ(f(β,l,ν)) | β ≤ ν, l < ν}.

Proof. The last sentence is immediate from the penultimate one.

Case 1. λ ∩ Λ(l, ν) = ∅.

Then Cν ∩ λ = ∅ or l = max(Cν ∩ λ) by the last lemma. Hence λ is not a
limit point of C+

ν . Hence λ ∈ C+
ν , and thus λ = λ(f(0,l,ν)) by (iii) of that

lemma.

Case 2. λ ∩ Λ(l, ν) is unbounded in λ.

Given μ ∈ Λ(l, ν)∩λ, let βμ be such that λ(f(βμ,l,ν)) = μ. Then λ(f(β,l,ν)) = λ
where β = supμ βμ. �

The following is (iii) of Theorem 2.5.

2.34 Lemma. λ ∈ Cν =⇒ λ ∩ Cν = Cλ.

Proof. Assume inductively the lemma proven for all ν′ with ν′ < ν, and we
prove the result for ν by induction on λ. Let l = lλν . Hence by Corol-
lary 2.28 l = lλ. By Lemma 2.33 λ ∈ Λ(l, ν). Set Λ = λ ∩ Λ(l, ν). Then by
Lemma 2.22(ii) Λ = Λ(l, λ).

Case 1. Λ = ∅.

If l = 0, then Cλ ⊆ λ ∩ Cν = ∅ (the latter by Lemma 2.32). If l > 0,
then l = lλ = max(Cλ ∩ λ) = max(Cλ) = lλν = max(λ ∩ Cν) with the
last equality also by the same lemma. As l < λ, we use the inductive
hypothesis on λ: l ∩ Cν = Cl. However, Cl = l ∩ Cλ by the overall
inductive hypothesis taking λ as a ν′ < ν. Hence Cλ = λ ∩ Cν =
Cl ∪ {l}.

Case 2. Λ is unbounded in λ.

Then μ ∈ Λ −→ μ ∈ Cν ∩ Cλ. Hence by the overall inductive hypothesis
Cμ = μ ∩ Cλ and (as μ < λ) Cμ = μ ∩ Cν . Hence Cλ = λ ∩ Cν =

⋃
μ∈Λ Cμ.

�

The following completes (i) of Theorem 2.5:
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2.35 Lemma. sup(Cν) < ν =⇒ cf(ν) = ω.

Proof. Let l = sup(Cν) = lν . Then X = On∩ ran(f(0,l,ν)) is countable, and
cofinal in ν. �

We now observe that we readily have (ii) of Theorem 2.5, since ot(Cν) ≤
∑mν −1

i=0 βi
ν < ν where the βi

ν are from Lemma 2.31.

2.36 Lemma. Let f : ν̄ =⇒ ν. Then |f | : 〈Jν̄ , Cν̄〉 −→Σ0 〈Jν , Cν〉.

Proof. It suffices to show that for arbitrarily large τ < ν̄ that |f |(Cν̄ ∩ τ) =
Cν ∩ |f |(τ). (As usual we shall write “f” for “|f |”.)

Case 1. Λ(lν̄ , ν̄) is unbounded in Cν̄ .

If λ̄ ∈ Cν̄ and λ = f(λ̄) then by Lemma 2.23 (and Lemma 2.22) λ ∈
Λ(f(lν̄), ν) ⊆ Cν . By Remark 2.24 we have Eλ̄ ∈ Jν̄ and f(Eλ) = Eλ. By
Lemma 2.32 C

λ̄
= {λ(f(0,l,ν)) < λ̄ | l < λ̄} ∈ Jν̄ and is uniformly Σ0 definable

from Eλ̄ over Jν̄ . Consequently |f |(Cλ) = Cλ by Σ1-elementarity of |f |. But
Cλ = λ ∩ Cν̄ and Cλ = λ ∩ Cν .

Case 2. Λ(lν̄ , ν̄) = ∅.

Set lν̄ = l̄ and let f(lν̄) = l. Then l = lλν where λ = λ(f). However
λ(f0,l̄,ν̄) = ν̄ by our case hypothesis. Thus λ(f(0,l,ν)) = λ(ff(0,l̄,ν̄)) = λ.
Hence Λ(l, ν)∩λ = ∅. So we have one of the following two cases holding, by
Lemma 2.32:

Case 2.1. l̄ = l = 0. Then, Cν̄ = Cν ∩ λ = ∅, and the result is triv-
ial.

Case 2.2. l̄ = maxCν̄ . Then l > 0 and thus l = max(Cν ∩ λ). Hence for
sufficiently large τ̄ > l̄:

f(τ̄ ∩ Cν̄) = f(Cν̄) = f(Cν̄ ∩ l̄ ∪ {l̄}) = (Cν ∩ l) ∪ {l} = Cν ∩ λ = f(τ̄) ∩ Cν .

�

The following completes (iv) of Theorem 2.4 on the condition that Cν is
cofinal in ν. We shall see afterwards how to tweak a C ′

ν to get the result for
the non-cofinal Cν .

2.37 Lemma. If f : 〈Jν , C〉 −→Σ1 〈Jν , Cν〉 and sup(Cν) = ν then ν ∈ S
and C = Cν .

Proof. Suppose f, C, ν are as in the antecedent. For τ ∈ Cν , let fτ : ντ =⇒ ν
with λ(fτ ) = τ . By the Interpolation Lemma we have (a) fντ ντ : Mντ

−→
Σ

(n)
1

Mτ , (b) πτ : Mτ −→
Σ

(n)
0

Mν ; (c) πτ �τ = id �τ , and (d) πτ (pτ ) = pν .
Notice that the map fντ ντ can be defined from Mντ

and Mτ inside Jν ,
and both of them in turn are there definable just from τ , since
β(τ) < ν.
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(1) πτ ,Mτ depend only on τ , and πτ is the unique Σ(n)
0 -preserving map

satisfying (b)–(d).

For such τ let X =
⋃

τ ∈Cν
ran(πτ ).

(2) Mν = X.

Proof of (2). Let x ∈ Mν . Clearly X is a Σ(n)
0 substructure of Mν . Sup-

pose x = h̃ν(i, ξ, pν) for a ξ < ν. Suppose we take for “y = h̃ν(u, v)” a func-
tionally absolute Σ(n)

1 definition of the form ∃znH(zn, y, u, v) with H ∈ Σ(n)
0 .

It will suffice to find τ > ξ and some xτ ∈ Mτ with xτ = h̃τ (i, ξ, pτ ). We
then would have πτ (xτ ) = x. For this we need to be able to find such a
suitable witnessing zn ∈ ran(πτ ) for some sufficiently large τ ∈ Cν . For this
it will suffice to know:

(3) supτ ∈Cν
(ran(πτ ) ∩ ωρν) = ωρν .

Proof of (3). Let l = lν . Then Λ(l, ν) is unbounded in ν. Let γ = sup{β |
λ(f(β,l,ν)) < ν}. Then λ(f(γ,l,ν)) = ν and sup(ran(f(γ,l,ν)) ∩ ωρν) = ωρν by
Lemma 2.14. For β < γ let λβ = λ(f(β,l,ν)). Then sup{λβ | β < γ} = ν.
However by considering kβ =df red(f(β,l,ν)) we see that ran(kβ) ⊆ Mλβ

for
β < γ. Hence ran(f(β,l,ν)) ⊆ ran(πλβ

). Thus ran(f(β,l,ν)) ⊆ X and so
sup(X ∩ ωρν) = ωρν . � (3)

If Y = ran(f) let Ỹ = h̃ν(Y ∪ {pν}).

(4) If y ∈ Ỹ ∩ Jν then ∃τ ∈ Cν(y ∈ h̃τ ((Y ∩ Jτ ) ∪ {pτ}), and hence
y ∈ Y .

Proof of (4). This is because if “y = h̃ν(i, ξ, pν)” then by (2) this holds rel-
ativised to ran(πτ ) for some τ ∈ Cν . Hence y = h̃τ (i, ξ, pτ ). But Mτ , pτ , h̃τ

etc. are Σ1-definable over Jν from τ , for any τ ∈ S ∩ ν; hence “∃τ ∈
Cν(i, ξ, pτ ∈ dom(h̃τ ))” is a Σ〈Jν ,Cν 〉

1 statement. Hence there is such a
τ = f(τ) in ran(f). Hence

πτ h̃τ (i, ξ, pτ ) = h̃ν(i, ξ, pν) = y.

Thus y ∈ Y . � (4)

We may now transitivise Ỹ and obtain f̃ ⊇ f with f̃ : M̃ −→
Σ

(n)
1

Mν , and

our usual arguments show that ν ∈ S, M̃ = Mν , and 〈ν, f, ν〉 ∈ F, etc. We
have yet to argue that C = Cν . Clearly C is unbounded in ν. Let l = lν .
Then Λ(l, ν) is unbounded in ν (otherwise if l =df f(l), then l = lν and
Λ(l, ν)—and Cν—is bounded in ν).

Claim C ⊆ Cν .
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Proof of Claim. If not let λ be least in C\Cν . Suppose (for example)
η0 < λ, η0 ∈ Cν and η > λ is min(Λ(l, ν)\λ). As η ∈ Λ(l, ν), η ∈ Λ(l, ν)
(where η =df f(η) and as above l = f(l) = lν). So η ∈ Cν . Hence
as λ ∈ C\(η0 + 1), f(λ) ∈ f(C ∩ η) = Cν ∩ η = Cη. However then λ ∈
Cη ⊆ Cν ! � Claim

However now, for λ ∈ C, we have

f(C ∩ λ ) = Cν ∩ λ = Cλ = f(Cλ ) = f(Cν ∩ λ ).

So, C ∩ λ = Cν ∩ λ for unboundedly many λ < ν, and we are done.
�

We now indicate how to modify Cν in case it is bounded in ν. As we know,
if this happens then cf(ν) = ω. To deal with this situation we substitute a
new C ′

ν . (In all other cases we shall alter nothing and set C ′
ν = Cν .) Clearly,

if we set l = lν we have that h̃ν“ω × {〈l, pν〉} is unbounded in ν, and hence
by Lemma 2.14 in ωρν .

Let un = ν ∩ h̃ν“n × {〈l, pν〉}. Then un ∈ Jν and is finite, with
⋃

n un

cofinal in ν. We take ξn,ν =df≺ n, l, αν , u0, . . . , un # (for some suitable it-
erate of the Gödel pairing function ≺ − #.) Then l < ξn,ν and the latter is
monotone as a function of n in ν.

2.38 Lemma. Let sup(Cν) < ν. Let f : Jν′ −→Σ0 Jν with ξn,ν ∈ ran(f) for
every n < ω. Then (i) ν′ ∈ S; (ii) 〈ν′, f, ν〉 ∈ F; and (iii) if f(ξ′

n) = ξn,ν then
ξ′
n = ξn,ν′ and thus Cν′ = {ξ′

n | n < ω}.

Proof. As f is cofinal into ν, it is Σ1-preserving. (i) is immediate. Let l = lν .
Let g = f(0,l,ν). Then ∀n(ξn,ν ∈ ran(g)) and λ(g) = ν. Let g : ν =⇒ ν, and
g̃ : Mν −→Σ

(n)
1

Mν .
Hence by the Generalised Interpolation Lemma 1.52 there is an M ′ (ob-

tained by taking f, f −1 ◦ g, g here as σ1, σ0, g respectively there) and there
is a g̃ : Mν −→Σ

(n)
1

M ′ and g1 : M ′ −→
Σ

(n)
1

Mν (both being cofinal at the
nth level). Just as in the proof of Lemma 2.11 M ′ = Mν′ , n = n(ν′) etc.
Then as g1 ⊇ f , (ii) follows. If g(l) = l then l = lν by Corollary 2.28; taking
l′ = f −1 ◦ g(l) this too shows that l′ = lν′ . Then if f(ξ′

n) = ξn,ν we have
ξ′
n = ξn,ν′ by the Σ(n)

1 -elementarity of g1. Hence C ′
ν′ = {ξn,ν′ | n < ω}, and

we are done. �

We now mention how a more careful computation of the order types of
the Cν-sequences can be obtained. This is needed for some applications
and was done using ordinal addition in [2], but the following is essentially
the same calculation and is from [29]. We first generalise the definition of
βi = βi

ν .

2.39 Definition. For η ≤ ν set : βi
ην =df max{β | λ(f(β,liην ,ν)) < η}.

Many of the previous properties of the βi = βi
ν carry over to these βi

ην .
Namely:
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1. λ(f(β,liην ,ν)) < ν ⇐⇒ λ(f(β,liην ,ν)) ≤ li+1
ην .

2. βi
ην is defined if and only if li+1

ην is defined, i.e. when i + 1 < mην .

3. βi
ην  βi

λν if λ = min(C+
ν \η). (Again as before, λ(f(β,liην ,ν)) < η ⇐⇒

λ(f(β,liην ,ν)) < λ.)

4. βi+1
ην < βi

ην when defined. (By the same argument as for βi+1 < βi.)

Now we set bη = bην =df {βi
ην | i + 1 < mην}. For η ∈ Cν we then set

dη = dην =df bη+ν where η+ = min(C+
ν \(η + 1)). (For the rest of the proof

we shall drop the subscript ν on ordinals, which remains unaltered through-
out.) Then we shall have:

5. Let η ∈ Cν , with liη+ < η. Then liη+ = liη (proof by induction on i).

Moreover:

6. Let η ∈ Cν , with liη+ < η then:

li+1
η+ = η if η ∈ Λ(liη, ν), and equals li+1

ν if not.

Proof of 6: liη+ = liη by 5. If η ∈ Λ(liη, ν) then η is maximal in this set
below η+. So the first alternative holds. Note that i �= mην − 1 (otherwise
by Lemma 2.33 for some β, η = λ(f(β,liην ,ν)) ∈ Λ(liη, ν)). Thus li+1

η is defined
and li+1

η+ must equal this.

2.40 Lemma. Let η, μ ∈ Cν , with η < μ. Then dη <∗ dμ.

Proof. Let η+ = min(C+
ν \(η+1)), μ+ = min(C+

ν \(μ+1)). Let i be maximal
so that liμ+ = liη+ . Then βj

μ+ = βj
η+ for j < i. As liμ+ ≤ η < μ, we have

by 6. above that li+1
μ+ is defined and li+1

μ+ = μ or li+1
μ . Moreover then βi

μ+ is
defined, and by maximality of i, li+1

η+ �= li+1
μ+ .

Claim li+1
η+ < li+1

μ+ .

That li+1
μ+ < η+ is ruled out: otherwise li+1

η+ = li+1
μ+ again. So li+1

η+ < η+ ≤
li+1
μ+ , establishing the Claim.

As βi
μ+ is defined, if βi

η+ is undefined, then we would be finished. Set
l = liμ+ = liη+ . Then λ(f(βi

η+ ,l,ν)) = li+1
η+ and λ(f(βi

μ+ ,l,ν)) = li+1
μ+ . Hence

βi
η+ < βi

μ+ and thus dη <∗ dμ as required. �

2.41 Lemma. Let α be p.r. closed so that for some α0 < α, λ(f(α0,0,ν)) = ν.
Then ot(Cν) < α.

Proof. First note that ot(〈[α]<ω, <∗〉) = α. Let α0 < α have the prop-
erty that λ(f(α0,0,ν)) = ν. Then {βi

ην | η ≤ ν, i + 1 < mην} ⊆ α0.
Thus ot〈{dη | η ∈ Cν}, <∗〉 ≤ ot(〈[α]<ω, <∗〉) < α. Thus ot(Cν) < α.

�
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We make some remarks on different versions of this proof. We have ob-
tained a rich global � sequence by taking as Cν the set of all possible λ(f)
where f =⇒ ν. There are other ways: the Cν sequences from [18] are defined
by a finite recursion piecing together enumerations of initial segments Ci

ν .
[30] does not construct the Cν sets directly, but defines the “smooth cate-
gory” of functions f : ν̄ =⇒ ν and the class of triples F. They establish
that F satisfies a short list of axioms of a smooth category (much as a morass
can specified by a list of axioms, as is done below). From the category one
can derive Global � without any reference to the model whence the category
came. The argument is purely combinatorial. This is implicit in [2], and
explicit in [29]. These category like objects were used by Jensen to axioma-
tise various structures such as premorasses, morasses, and the like, and were
further used by Stanley [49] to construct morasses via forcing. The proof
of Global � in [19] involves tying the construction to the notion of semi-
singularisation, and is based on the account in [1] of Silver’s proof of � using
Silver machines.

In larger fine structural models Global � can also be proved. The ex-
tent of this is discussed below. We sketch here what has to be done (and
overcome) in [30] in order to establish the principle in the core model built
assuming that it does not have any level M with an ordinal κ with M |=
“the Mitchell order of κ, o(κ), is κ++)”. One problem that has to be ad-
dressed from the outset is the failure of condensation in the pure form of
Lemma 1.22. (Even at the level of a single measurable cardinal this will
occur.) A key part of that paper is proving a form of a suitably enhanced
Condensation Lemma. In such models there will be many structures that
can putatively singularise an ordinal ν. One defines the class S as now a
set of pairs s = 〈νs,Ms〉 where νs ∈ Sing, and Ms is a mouse Σ(n)

1 over
which (for some n) νs is definably singularised. One requires that Ms be a
mouse which is sound above νs. If two mice Ms and M ′

s satisfy this, with
both hierarchies of Ms and M ′

s agreeing up to ν, then in fact a comparison
argument shows they are equal. One then defines much as above category
maps f : s̄ =⇒ s between Js̄ and Js, where Js =df JEMs

νs
. f now canonically

extends to an f ∗ : Ms̄ −→ Ms at the appropriate level of Σ(ns)
1 -definability.

These maps f ∗ must carry in their range a potentially extended parameter
set for the version of the Condensation Lemma to be proven (we discuss
these parameters and condensation lemmas a little more below) under the
smallness assumption of ¬∃κ(o(κ) = κ++). Having got a smooth category of
maps between pairs, we assume a unique choice of mouse Ms and so unique
s = 〈νs,Ms〉, for νs is made, in some closed and unbounded class of ordinals
D containing all singular cardinals. This should be done in some sensible
way so that if λ < νs and λ ∈ D then s�λ can be defined as an ordered pair
of λ together with an initial segment of Ms which is a mouse singularising λ,
and is also our canonical choice at λ. Then one can get an appropriate form
of Global �.
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2.2. Variants and Generalities on �
Variants on �: The Principles �κ

In [24] the principles �κ for κ > ω a cardinal were first defined.

2.42 Definition. Let κ > ω be a cardinal. The principle �κ asserts the
existence of a sequence 〈Cα | α ∈ Sing ∩κ+〉 so that:

(i) Cα is closed unbounded in α;

(ii) cf(α) < κ =⇒ |Cα| < κ;

(iii) β ∈ (Cα)∗ =⇒ β ∩ Cα = Cβ .

Note that this implies that if cf(α) = κ then ot(Cα) = κ. An equivalent
variant on this is that with (ii) replaced by the apparently weaker:

(ii)′ ot(Cα) ≤ κ.

Note first that this is immediate for regular κ. Otherwise to see this fix D ⊆
κ+1 closed and unbounded with ot(D) = cf(κ)+1, 0 ∈ D, and max(D) = κ.
Assuming we have a sequence of C ′

α’s satisfying (i), (iii), and the new clause
(ii)′ then, if ot(C ′

α) ∈ (D)∗, replace C ′
α with Cα = {β ∈ C ′

α | ot(C ′
α∩β) ∈ D};

otherwise there is a maximal δ ∈ D with δ < ot(C ′
α); in this case set

Cα = {β ∈ C ′
α | ot(Cα ∩ β) ≥ δ}.

A further equivalent variant adds to (ii)′ a strengthened

(iii)′ β ∈ Cα =⇒ β ∩ Cα = Cβ ,

but accordingly a weakened

(i)′ Cα is closed below α ∧ (cf(α) > ω =⇒ Cα is unbounded in α).

It is plausible from the definition of � that it implies ∀κ > ω(κ ∈
Card −→ �κ). The proof of this is a combinatorial argument (see
[8, VI 6.2]) which is not fine-structural, so we do not give it. In fact Jensen
showed:

2.43 Theorem (Jensen [24]). Assume V = L; then for any infinite cardi-
nal κ, �κ holds with the addition that there is a stationary E ⊆ κ+ so that
for any α, β ∈ (Cα)∗ −→ β /∈ E.

In the proof of the latter theorem a particular E ⊆ Cof(ω) =df {β ∈
On | cf(β) = ω} was designated. In fact �κ implies that for any stationary
S ⊆ κ+ there is some stationary T ⊆ S which does not reflect in this sense:
for any α < κ+(with cf(α) > ω of course) T ∩ α is not stationary. (Given
any such S, by Fodor’s Lemma, find T ⊆ S with α ∈ T −→ ot(Cα) = δ for
some fixed δ. Now if cf(β) > ω, |(Cβ)∗ ∩ T | ≤ 1 and thus T ∩ β cannot be
stationary.)

It is consistent relative to the existence of a Mahlo cardinal that �κ fails
at a regular cardinal by a result of Solovay. On the other hand:
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2.44 Theorem (Jensen [24]). Assume V = L[A] where A ⊆ κ+ and that
for any ν less than κ+, we have: L[A ∩ ν] |=“ν is singular”. Then �κ

holds.

In L the existence of �κ-sequences can be proved by localised methods
similar to that of Global �. For the L[A] result above one defines singular-
ising structures of the form Ja

β(ν) |=“a ⊆ ν” for the relativised Ja-hierarchies
in general. The assumption on the A ∩ ν is to ensure that sufficiently of-
ten there are such singularising structures for a = A ∩ ν in L[A]. One can
prove the local �κ by reworking the local proof of �κ; in [2] this is done in a
global fashion for all possible singularising structures for arbitrary a (see The-
orem 6.21 op. cit.) and then specialised results such as �κ, or combinatorial
principles necessary for the Coding Theorem, are obtained. Thus Solovay’s
result is exact: if κ+ is not Mahlo in L we may take A as a closed and un-
bounded set in κ+ of L-singular cardinals and construct a �κ(A) sequence
which implies the existence of �κ (see the next definition and discussion
below).

2.45 Definition. Let S ⊆ Sing be a class. Then denote by �(S) the asser-
tion that there exists a �-sequence 〈Cα | α ∈ S〉, satisfying:

(i) Cν is a closed subset of ν ∩ S; if cf(ν) > ω then it is unbounded
in ν;

(ii) ot(Cν) < ν;

(iii) ν ∈ (Cν)∗ =⇒ Cν̄ = ν ∩ Cν .

Let T ⊆ κ+ ∩ Sing be closed and unbounded. �κ(T ) is the assertion that
there exists a �-sequence 〈Cα | α ∈ T 〉, satisfying:

(i) Cν is a closed subset of ν ∩ T ; if cf(ν) > ω then it is unbounded
in ν;

(ii) ot(Cν) ≤ κ;

(iii) ν ∈ (Cν)∗ =⇒ Cν̄ = ν ∩ Cν .

It is a straightforward combinatorial argument in ZFC once one has a
�κ(T ) sequence for a T closed and unbounded in κ+ to fill in the gaps be-
tween successive members of T with suitable Cβ ’s to enlarge the �κ(T ) to a
�κ(κ+) = �κ sequence. For S equal to all of SingCard =df Sing∩Card, if
we have �(S) and ∀κ(�κ) then we have Global � (and conversely (Jensen)).
Thus if S ⊇ SingCard and moreover for all κ > ω S ∩ (κ, κ+) is unbounded,
then �(S) =⇒ � again by the “filling in of gaps” just referred to.
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Variants on �: Weakenings and Extensions, � with Scales

2.46 Definition. Let 0 < λ ≤ κ be cardinals, with κ uncountable. The
principle �<λ

κ asserts the existence of a sequence 〈Fα | Lim(α), α ∈ (κ, κ+)〉
with, for every limit α, 0 < |Fα| < λ, and further so that C ∈ Fα im-
plies

(i) C is closed unbounded in α;

(ii) ot(C) ≤ κ;

(iii) β ∈ C∗ =⇒ β ∩ C ∈ Fβ .

�<λ+

κ is abbreviated as �λ
κ.

In [24] �κ
κ was formulated in an equivalent formulation called �∗

κ, and
clearly �1

κ is �κ. These intermediate so-called weak square principles were
introduced by Schimmerling in [42]. We defer discussion of these principles
until later, but Jensen had already remarked in [24] that if 2κ = κ+ then
�∗

κ is equivalent to the existence of a special Aronszajn tree on κ+ (also
due to him is the straight equivalence of these two principles, without the
assumption that 2κ = κ+); in fact if κ<κ = κ then one can construct a �∗

κ

sequence; hence that if κ is regular �∗
κ follows from ZFC +GCH; further no-

tice that the case of κ singular is of particular interest for the question of the
existence of �∗

κ sequences. Whereas from �κ we can construct non-reflecting
stationary subsets of κ+ as above, this cannot be done from �∗

κ alone (al-
though �<ω

κ does suffice; see [6]). Mitchell has shown that Con(ZFC +∃κ(κ
is a Mahlo cardinal)) =⇒ Con(ZFC +¬�∗

ω1
) by a suitable forcing collapsing

κ to ℵ2.
Improved-�<λ

κ sequences add a requirement (iv) to the above definition by
insisting that at least one element C ∈ Fα has ot(C) = cf(α). In general
�κ does not imply Improved-�<λ

κ : in the Mitchell model mentioned above,
if one effects a further forcing to add back a �ω2 -sequence without adding
any ω2-sequences, one ends up with a model where Improved- �<ω2

ω2
still fails

(see [6, Sect. 5]). However [6, Theorem 10] Global � implies Improved-�<ω
κ

for every uncountable cardinal κ.
Enhancements of � have been developed. We detail just one here. The

following is a natural property allying �ℵn -sequences for n < ω with a scale
on ℵω. It was defined in [7] at 3.1. Let In = Lim ∩ (ωn, ωn+1) for n ≤ ω.
CS below will essentially be asserting the existence of �ℵn -sequences, albeit
with domains In rather than all of Sing ∩ωn+1, plus a scale for ℵω.

2.47 Definition. CS asserts the existence of 〈Cn
α | 0 < n ≤ ω, α ∈ In〉 and

〈fα |α ∈ Iω〉 so that:

(1) ∀n∀α ∈ In

(a) Cn
α ⊂ α ∩ In and is closed and unbounded in α;

(b) cf(α) < ωn =⇒ ot(Cn
α) < ωn.
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(2) ∀α ∈ Iω fα is a function so that:

(a) dom(fα) = (k, ω] for some k < ω such that ot(Cω
α ) < ωk;

(b) ∀n ∈ dom(fα), fα(n) ∈ In;

(c) β ∈ (Cω
α )∗ =⇒ dom(fα) ⊆ dom(fβ);

(d) ∀n ∈ dom(fα), (Cn
fα(n))

∗ = {fβ(n) | β ∈ (Cω
α )∗}.

(3) 〈fα | α ∈ Iω〉 forms a scale in Πnℵn+1; i.e. it is increasing and cofinal
in the eventual domination ordering.

In [7] the consistency of CS is established by forcing. (With some work
the methods here of the proof of Global square restricted to ℵω+1 together
with a few “premorass-like” considerations from the next section, establish
the existence of the scale sequence 〈fα | α ∈ Iω〉 and hence that CS holds
in L.) They use CS to demonstrate the existence of a mutually stationary
sequence on ℵω that is not tightly stationary. CS is a special case of the con-
densation coherent global �-sequences of Donder et al. [13], also shown to
hold in L, and can be derived from them. The authors used condensation co-
herent sequences to demonstrate the existence of squared scales of Abraham
and Shelah. Donder et al. [13] derive their principle again from a “category”
like object. A similar structure is the Fine Scale Principle of Friedman [17]
used in his proof of the Coding Theorem.

Applications

We discuss only very briefly some positive applications of �-sequences.
The reader should see the chapter by Todorčević in this Handbook. We do not
intend here to go extensively into applications of � and weak �λ

κ-sequences
to stationary reflection properties but refer the reader to the extensive [6]
for many results in this area, and to the chapter by Eisworth in this Hand-
book.

In [24, Sect. 6] � arguments were originally used to prove two character-
isations of weakly compact cardinals in L:

2.48 Theorem (Jensen [24]). Assume V = L; let κ ∈ Reg but not weakly
compact. Then there is a κ-Suslin tree.

The proof proceeds by establishing:

2.49 Theorem (Jensen [24]). Assume V = L; then for any non-weakly com-
pact κ ∈ Reg, there is a stationary E ⊆ κ and a sequence 〈Cα | α ∈ Lim ∩κ〉
such that (i) Cα is closed and unbounded in α, and (ii) α, β ∈ (Cα)∗ =⇒
(β /∈ E ∧ β ∩ Cα = Cβ).

From this, one characterisation of weakly compact cardinals in L already
follows. Stationary reflection is a consequence of Π1

1-indescribability: if E ⊆ κ
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is stationary, then for some β < κ we have that E ∩ β is stationary. The
theorem above thus shows that in L, for non-weakly compact κ this must fail.
The use of the 〈Cα | α ∈ Lim ∩κ〉 sequences from the above facilitates the
inductive construction of a κ-Suslin tree. Even outside of L we may obtain
(see [8]):

• CH +�ω1 =⇒ there exists an ω2-Suslin tree (Gregory [22]);

• GCH +�κ =⇒ there exists a κ+-Suslin tree.

The role of the Cα-sequences in all these (and other) proofs is typically to
ensure that the inductive definition of the required structure can be continued
at limit stages of uncountable cofinality.

A final result from Jensen’s paper is a cardinal transfer theorem due to
Silver (see Definition 3.8 for this notation).

2.50 Theorem (Silver [24]). If GCH holds, κ is a singular cardinal, and
�κ holds, then (ω1, ω) −→ (κ+, κ).

One of the major applications of � and �-like principles is in class forc-
ing : the construction of many coding conditions and coding-style condi-
tions for forcing over L or other models, involves an extensive use of �-like
(and morass-like) machinery. Jensen’s original Coding Theorem (see [2])
heavily exploited such principles, especially when formulating conditions for
coding information down past singular cardinals. Work of Sy Friedman
has transformed notions of class forcing for a variety of constructions over
L that similarly involve fine-structural arguments for defining conditions
(see [18] and the chapter by Friedman in this Handbook). Just as an ex-
ample, his Fine Scale Principle alluded to above is employed in his proof of
coding.

A recent use of the (proof of) Global � in L[E] models is that of Koepke-
Welch [33] deriving large cardinal strength from the assumptions of a mu-
tual stationarity principle of Foreman-Magidor (see again [7]). Fine struc-
tural methods are also employed by Ishiu [23] to demonstrate the existence
of strong club guessing sequences in L. Let S ⊆ μ be stationary with
μ ∈ Reg. An S-strong club guessing sequence 〈Cα |, α ∈ S〉 is a sequence
where each Cα ⊆ α is closed and unbounded, and so that for any closed
and unbounded D ⊆ μ, there is a further closed and unbounded E ⊆ μ so
that β ∈ E ∩ S =⇒ ∃δ(Cβ\δ ⊆ D). Ishiu shows that in L the existence
of a μ-strong club guessing sequence is equivalent to the non-ineffability
of μ. The heart of the proof is to show that there is a Sing ∩μ-strong
club guessing sequence. He directly constructs the Cα’s using fine struc-
tural arguments reminiscent partly of ♦∗, and partly of � methods, by
looking at singularising structures. As he does not require coherence of the
guessing sequence this is simpler than proving the existence of Global � up
to μ.
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The Failure of �κ

It was an early (1974) result of Solovay that showed that the κ+-super-
compactness of a cardinal λ implied the failure of �κ [47] (this was later
reduced to κ+-compactness by Gregory; see also [48] for a discussion of this).
With the advent of Jensen’s Covering Lemma for L it was clear that if any
cardinal κ satisfied κ+ = (κ+)L then the absolute nature of the defining
clauses of �κ implied that a �κ sequence in L is a �κ sequence in V . As the
Covering Lemma (under the assumption of ¬0#) implied that κ+ = (κ+)L for
any singular, or weakly compact cardinal κ, this means that then V would
have such �κ-sequences. In larger extender models K the Weak Covering
Lemma (and thus the correct computation of cardinal successors of singu-
lars) can be achieved for K up to a strong cardinal [27] and up to a Woodin
cardinal [37]. Hence the failure of, say, �ℵω expressed directly the failure of
the Covering Lemma over an inner model (or at least the correct cardinal
successor computation) at the cardinal ℵω. Indeed this failure came to be
seen as a test question concerning inner models, and implies (at least if ℵω

is a strong limit cardinal) the existence of ADL[R]; see Theorem 2.59 below.
The principle �κ was seen to hold at other classes of cardinals, assuming

the rigidity of a suitable canonical inner model. For Jensen’s Core Model
KMOZ built with measures of order zero, Vickers and Welch [55] showed that
successors of Jónsson cardinals were correctly computed in KMOZ, hence �κ

held at Jónsson κ (the point here is that regular Jónsson cardinals, although
weakly inaccessible need not be weakly compact, nevertheless we may show
correct cardinal successor computation at κ). Welch [59] showed the same
conclusion for the core model KSteel, assuming no inner model with a Woodin
cardinal below the measurable cardinal Ω needed for KSteel’s construction.
(That κ+ = (κ+)KSteel

under these assumptions, and hence that �κ holds,
for κ weakly compact is due to Schimmerling-Steel [43].) The Jónsson prop-
erty in fact yields some strong reflection properties on � sequences, assuming
the Weak Covering Lemma over the inner model: if there is no inner model
with a Woodin cardinal, if Ω is measurable, κ < Ω any regular Jónsson, then
the set of regular cardinals μ < κ such that �μ holds in V , is stationary
below κ ([59]). Chang’s Conjecture implies the failure of �ω1 as shown by
Todorčević.

There are extensive results in the area of forcing and � which we shall
only lightly touch on here, but we do mention that the proper forcing ax-
iom PFA causes a dramatic failure of square: Todorčević proved [52] that
ZFC +PFA � ∀κ¬�κ. Hence PFA implies the existence of an inner model
with a measurable cardinal, for example. Magidor noted that Todorčević’s
proof actually shows that ZFC +PFA � ∀κ¬�ℵ1

κ ; however this can be con-
trasted with his further result that showed (unpublished 1995) that
Con(ZFC + ∃κ(κ a supercompact cardinal)) =⇒ Con(ZFC +PFA +∀κ�ℵ2

κ ).
Hence the possibility arises to use the various weak square principles as a
means of calibrating consistency strength. The impact of Martin’s Maxi-
mum (MM) is stronger than that of PFA: Foreman and Magidor formulated
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a “very weak square” principle [15] VWSκ, weaker than �∗
κ, and the latter

showed that MM implies ¬VWSκ for κ with cf(κ) = ω. By Solovay’s result
mentioned above, a supercompact destroys the possibility of any �λ hold-
ing for any λ > κ; Shelah showed from the same assumption that any �∗

λ

will also fail for any singular λ satisfying cf(λ) < κ < λ (see [15]). How-
ever it is consistent with a supercompact κ that for a cardinal λ satisfying:
κ ≤ cf(λ) < λ that �cf(λ)

λ holds [6, Theorem 17]. This complements the
observation of Burke and Kanamori that Solovay’s methods can show that if
κ is λ+ strongly compact, and cf(λ) < κ then �<cf(λ)

λ fails.
If P is Prikry forcing at a measurable cardinal, then it was shown in [3] that

�∗
κ holds in V P. This was improved in [5] to that of �ω

κ holding; results of [6]
however show that if κ is supercompact then in V P one has the failure of �<ω

κ .
Jensen [29] showed that for regular κ the principles �λ

κ decreased in
strength as λ increases from 1 to κ. In [6] it is shown how this can be done
for singulars: from a supercompact a forcing extension can be constructed
in which some previously chosen cardinals 0 < ν < μ (which can be finite)
satisfy �μ

ℵω
but ¬�ν

ℵω
.

2.3. � in Fine-Structural Inner Models

We come now to the interesting question of the status of �-principles in
canonical inner models. As for L, Global �, and for all κ, �κ were shown by
Welch [57] to hold in the first such model to go beyond L : the Dodd-Jensen
Core Model KDJ built assuming the non-existence of an inner model with a
measurable cardinal. Wylie [60] proved the same for Jensen’s Core Model for
measures of order zero. Whereas [57] had used the older fine structure that
was available at that time, Wylie’s thesis used the modern arrangement of
the hierarchies and the corresponding fine structure.

Several issues surface at this point: Firstly, the indexing of extenders plays
an important role. Secondly, it was also apparent that extender fragments
which had been introduced by Mitchell and Steel in their fine structure for
L[E] models [36] arise also naturally when considering proofs of � for models
with many measures. Thirdly, additional further condensation results would
be needed to be proven both for them, and in general. Concerning this
third issue: for example, whereas Skolem hulls of an initial segment of the L-
hierarchy collapse to levels of L, for L[E] hierarchies (even with E coding only
sequences of measures) certain hulls may collapse not to an initial segment
of the JE

α hierarchy in which they were taken, but to initial segments of an
ultrapower of this JE

α hierarchy, thus leading to multi-claused condensation
lemmas. (This has already been mentioned above for Jensen-Zeman [30] and
is a substantial mathematical preface to their proof of Global � in the model
below o(κ) = κ++.) Wylie’s thesis contains the first kind of condensation
results of a type needed to prove � in the modern setting.

Concerning the first two issues, the indexing of extenders: several possibil-
ities arise for how one might build extender E-hierarchies. Mitchell and Steel
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built in [36] an extender model L[ �E ] with a Woodin cardinal using an index-
ing rule for building E-sequences which indexed with ordinal α an extender E
if, when taking the ultrapower j : M −→ N = Ult(M,E) then α = (ν(E)+)N

where ν was the supremum of the generators of the extender E (or simply
(crit(E)+)N if crit(E) was the sole generator). (This ordinal ν can be charac-
terised as the least ordinal ν′ ≥ (crit(E)+)N so that the extender of length α
derived from j gives rise to the same ultrapower as E.) The fragments of the
extender Eα which are of the form Eα∩([η]<ω×J

�E
ξ ) (where ξ < (κ+)J

�E
α ) are

members of J
�E
α (see the discussion at [50, 2.9]). Moreover the fragments just

defined appear cofinally in α as ξ rises to (κ+)J
�E
α . The extender Eα may now

be coded as an amenable predicate which is essential for fine structure to work.
Alternative indexing schemes have been proposed. Notably, S. Friedman

realised that reindexing could affect proofs of fine-structural principles and
suggested the scheme whereby an index α for an extender would be (j(κ))+N ,
with j and N as above. This suggestion has been fully worked out by Jensen
in [25], and shows inter alia how the results of Mitchell and Steel can be
performed using this indexing. Each scheme has its advantages, but for the
proofs of combinatorial principles such as �κ the Friedman-Jensen scheme
allows certain difficulties to be postponed to later in the large cardinal hier-
archy, beyond superstrong cardinals as we shall see later.

The analysis of fragments and condensation principles for the proof of �
there, at that time by Wylie and S. Friedman, would be continued indepen-
dently by Friedman, Jensen, Schimmerling, and Zeman.

Notwithstanding the above analyses, in L[E] models beyond measures the
question of �κ became increasingly complex. Schimmerling [42] proved that
in the Steel Core model built below a Woodin cardinal that (a) ∀κ �<κ

κ held;
(b) that in the core model below n strong cardinals �n+1

κ held for all κ. Below
one strong cardinal Schimmerling divided a certain S ⊆ κ+ into two parts
S = S0 ∪ S1 and defined a �κ-sequence 〈Ci

α | α ∈ Si〉 for i < 2. However
this was not a disjoint partition; hence setting Fα = {Ci

α | α ∈ Si, i < 2}
yielded only a �2

κ sequence. A modification of the latter proof by Jensen
in [29] showed that ∀κ �κ holds in the core model below 1 strong cardinal.
Zeman [61] showed Global � in the same model.

Jensen and Zeman’s paper [30] proves Global � in an L[E] model built
using Jensen’s fine structure and utilising the indexing of extenders of [27].
The model is relatively small, as the assumption is that there are no inner
models with a cardinal κ with Mitchell order o(κ) = κ++. The proof estab-
lishes the existence of a “smooth category” like formulation of a set of axioms,
that in turn automatically, in an entirely separate and purely combinatorial
argument, can be shown to yield up Global �. The proof reveals some of the
difficulties of extending condensation arguments to larger models. They are
able to prove the necessary sequence of lemmata by adding to the require-
ments on the range of the maps f : ν̄ =⇒ ν that we specified above, that
it contained certain further parameters. In short if certain canonical wit-
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ness maps σ sending W ν,pM

M into M were not cofinal at the nth stage where
ωρn

M > ν ≥ ωρn+1
M (where ν ∈ pM ), then it is necessary to require the maps

f to contain the ordinal sup(ran(σ)) ∩ ωρn
M witnessing that non-cofinality.

(As there are only finitely many ν ∈ pM ) this could be at most finitely
many requirements.) With this strengthening a form of the Condensation
Lemma (under the no o(κ) = κ++ assumption) is provable and the proof can
proceed. For larger models it is not clear how one can in general preserve
standard parameters: one could put the witnesses themselves into the ranges
of the maps, and thus preserve the standard parameters “downwards” into
suitable substructures. However the smooth category approach also requires
sufficient preservation in an upward direction, so it is unclear whether it is
possible to perform this in a larger model context (and is one reason we did
not demonstrate this approach in our account here).

There are serious difficulties in generalising the �κ arguments to larger
L[E] models. The problems have to do with condensation and dealing with
the extenders fragments that Schimmerling had already encountered, and
which had been already seen earlier as a hurdle as described above. This
was definitively solved in the last few years by work of Jensen on the former
properties of condensation, and of Schimmerling and Zeman on the analysis
of extender fragments. We now have a complete picture of how �κ can be
proven in Jensen style L[E] models and at precisely which place this first
breaks down, which we now describe.

Firstly a theorem due to Burke [4].

2.51 Theorem. If {a ⊆ κ+ | ot(a) ∈ Card} is stationary then �κ fails.

Secondly, we make the following definition due to (but not christened by)
Jensen. It was obtained by extracting the kernel of Solovay’s proof of the
failure of �κ from a strongly compact.

2.52 Definition. A cardinal κ is subcompact iff for every B ⊆ κ+, there
are μ < κ, A ⊆ μ+, and an elementary embedding j : 〈H(μ+),∈, A〉 −→
〈H(κ+),∈, B〉 with crit(j) = μ.

It is easy to check here that μ’s implicit weak inaccessibility implies the
regularity of κ as j(μ) = κ. The following is easily derived from Theo-
rem 2.51; the argument is very similar to Solovay’s, and seems to have been
rediscovered by Jensen. As it is direct we give it:

2.53 Theorem (Jensen). If κ is subcompact, then �κ fails.

Proof. Suppose, for a contradiction, that B ⊆ κ+ codes up a �κ-sequence
〈Dα |α < κ+〉. Let μ, A, j be suitable witnesses to the definition of sub-
compactness of κ for this B. By elementarity we have 〈Cα | α < μ+〉, a �μ

sequence, coded by A. Let S = {ν < μ+ | cf(ν) < μ}. Then easily j“S is
<μ-closed; set γ = sup(j“μ+). Then (Dγ)∗ ∩ j“S is unbounded in γ and
<μ-closed. Let T = {ν < μ+ | j(ν) ∈ (Dγ)∗}. Then T is unbounded in μ+.
Finally let E =

⋃
{Cν | ν ∈ T}; then E is a union of cohering sets and hence
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is closed and unbounded in μ+ and E ∩ ν = Cν for all ν ∈ T . However this
would imply that for all sufficiently large ν ∈ T , ot(Cν) > μ which contradicts
the definition of �μ sequence. �

A modification of the argument above yields also Burke’s theorem 2.51.
Schimmerling and Zeman’s main theorem is:

2.54 Theorem (Schimmerling and Zeman [45]). In any Jensen-style L[E]
model the following are equivalent:

(i) �κ;

(ii) �<κ
κ ;

(iii) κ is not subcompact;

(iv) {ν < κ+ | Eν �= ∅} is not stationary in κ+.

(Here (i) implies (iii) is the Burke/Jensen result mentioned above, and
(ii) implies (iii) is an easy modification of that; Schimmerling and Zeman
proved the main result here that (iv) implies (i), and Jensen proved (i) im-
plies (iv) around the time that the notion of Definition 2.52 was formulated.
Later Zeman noticed that this argument can be modified to obtain that (iii)
implies (iv).)

Thus in such L[E] models �κ holds wherever �<κ
κ does. Recall that in this

style of L[E] model, if JE
ν |= “κ is the largest cardinal”, then if λ = crit(Eν),

then Eν(λ) = κ.
As D =df {ν | JE

ν |= “κ is the largest cardinal”} is closed and unbounded
in κ+, we have, if (iv) fails, that for stationarily many ν that ν ∈ D∧Eν �= ∅.
Then for some cardinal λ < κ there are unboundedly many (in fact stationary
many) ν < κ+ with Eν �= ∅ ∧ crit(Eν) = λ ∧ jEν (λ) = κ. Thus λ is super-
strong in L[E], as κ is a cardinal of L[E] and V

L[E]
κ ⊆ Ult(L[E], Eν).

The proof of �κ for a non-subcompact κ involves splitting κ+ into disjoint
pieces S0, S1. On one of these the E-sequence is relatively benign and an
L-like construction of a �κ-sequence is possible. The harder, and new, part
is on the set S1 where the work is dealing with extender fragments rather
than levels of L[E], and in both cases it has to be shown that there is no
conflict between the sequences of the two sides, e.g. that α ∈ Si =⇒ Cα ⊆ Si.
However the important feature remains that in either case the sequence Cν

is first order definable over the least level JE
β(ν) of the L[E] hierarchy where

ν becomes singular. Finally:

2.55 Theorem (Zeman). In any Jensen style L[E] model, �(SingCard)
holds.

The use of methods from Woodin’s core model induction enabled strong
conclusions to be obtained from the failure of, first �<ω

κ and now with the
above results, that of �κ. We give some samples of the applications of Schim-
merling and Zeman’s theorem 2.54, but refer the reader to their [44] for a
full survey.
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2.56 Theorem. Let κ be a singular cardinal satisfying μℵ0 < μ for all μ < κ.
Then if �κ fails Projective Determinacy holds.

2.57 Theorem. Let κ be a weakly compact cardinal and suppose �κ fails;
then every set of reals in L(R) is determined.

The last two were first proven by Schimmerling and Steel essentially in
[43] assuming the failure of �<ω

κ . The latter theorem concluded with PD,
but was then improved by Woodin using the full Core Model Induction to
get the result quoted, still from the failure of �<ω

κ .

2.58 Theorem. Let κ be a measurable cardinal and suppose �κ fails; then
there is a transitive proper class model of ZF +ADR.

We lastly remark that:

2.59 Theorem (Steel [51]). If κ is a singular strong limit cardinal and �κ

fails then every set in L(R) is determined.

It is an open question whether the requirement on being a strong limit can
be lifted here, for example at ℵω, or whether the result can be proven from the
failure of �κ at a Jónsson cardinal κ. In these last four theorems the use of the
failure of �κ is not as a simple quotation of the failure of correct cardinal suc-
cessor computation in an inner model: there may be no canonical inner model
at hand. In essence fine structural segments are pieced together to approxi-
mate some form of a hierarchy coded by subsets Aα ⊆ κ for α < κ+. Typically
some first subset A0 codes Vκ and then the construction puts together mouse-
like segments over Aα’s. In these segments parts of a �κ sequence are pieced
together (or of �<ω

κ in fine structural hierarchies using the earlier work of
Schimmerling). The definitions of the various 〈Cν | ν < λα〉’s are purely local
(for λα increasing unboundedly below κ+; as we remarked just before Theo-
rem 2.55, the sequence Cν is definable in some sort of similar fashion to our
proof above in L: it is first-order definable over JE

β(ν) where β(ν) names the
first place in the L[E]-hierarchy where ν is definably singularised). Hence the
result can be derived without knowing that there is some inner model (which
might have required some further assumption concerning a larger measurable
cardinal, for example) over which the Covering Lemma held.

The reader should consult [41, Sect. 5] for further applications in this area.

3. Morasses

The notion of morass is a somewhat complex one. In many ways morasses
seem to encapsulate the totality of the fine structure available in a model, al-
though the � concept has been more influential. The notion can be motivated
through its original application to the Gap-2 Cardinal Transfer Theorems of
Jensen (cf. Theorem 3.9 below). However they can be construed as pictures
of the extremely regular behaviour of, e.g. the inner model L, in that one



3. Morasses 725

sees how structures, or levels of the Lα-hierarchy, say Lκ+ , can be approx-
imated by directed systems of levels Lβ for β of smaller cardinality then κ.
A morass at a cardinal κ is characterised by a gap parameter. A morass at κ
of gap 1 (a “(κ, 1) morass”) then is a system approximating the levels Lα for
α ∈ (κ, κ+] by means of levels Lβ for β < κ and maps between them: fββ′ .
A gap-2 morass at κ is a “higher gap morass”, and approximates Lκ++ by
means again of structures Lβ for β < κ and a more complex system of maps,
which can be construed as a “morass of morasses” building up a double gap
approximating process through systems of maps. There is no need to restrict
to gaps of length two, and indeed for regular κ one can define (κ, γ) morasses
for any γ < κ, once one has seen how to do it for 2.

We shall first give a definition of a gap-1 morass at κ in a manner somewhat
reminiscent of a category. This is a formal definition of maps and structures
which encapsulate the notion. The notation is intentionally similar to what
we have done for Global �: this will bring out the similarities, and also make
plausible the existence of such a structure in L.

3.1 Definition. Let κ > ω be regular. A gap-1 morass at κ is a pentuple
〈S, S1,≺, 〈Aν | ν ∈ S1〉, 〈f̂ν̄ν | ν̄ ≺ ν〉〉 satisfying the following:

M0(i) S is a set of p.r. closed pairs of ordinals 〈α, ν〉 with α < ν < κ+

such that: 〈α, ν〉, 〈α′, ν′〉 ∈ S ∧ α′ < α −→ ν′ < α.

M0(ii) S1 =df {ν | ∃α〈α, ν〉 ∈ S}; for ν ∈ S1 we let αν denote the unique
α such that 〈α, ν〉 ∈ S; S0 =df {αν | ν ∈ S1}; Sα =df {ν | αν = α}.
Then: For α ∈ S0, Sα is closed in sup(Sα); κ = sup(S0 ∩ κ) =
max(S0); Sκ is unbounded in κ+.

M0(iii) ≺ is a tree on S1; ν ≺ ν −→ αν̄ < αν .

M0(iv) (a) For ν ∈ S1, Aν is a transitive amenable structure, Jν ⊆ |Aν |;
if τ ∈ Sαν ∩ ν then |Aτ | ⊆ |Aν |.

(b) If h is a Σ1-Skolem function for Aν then |Aν | = h“(ω × J<ω
αν

).

M0(v) 〈f̂ν̄ν | ν̄ ≺ ν〉 is a commuting system of maps; f̂ν̄ν : Aν̄ −→Σ1 Aν ;
f̂ν̄ν�Jν̄ : 〈Jν̄ , Sαν̄ ∩ ν̄〉 −→Q 〈Jν , Sαν ∩ ν〉; f̂ν̄ν(αν̄) = αν ; f̂ν̄ν�αν̄ =
id �αν̄ .

CP1 If Bν =df {αν̄ | ν̄ ≺ ν} and B+
ν =df Bν ∪ {αν} then B+

ν is closed.

M1 If τ ∈ Sαν ∩ ν then Bτ is unbounded in αν .

M2 If ν̄ ≺ ν, τ̄ ∈ Sαν̄ ∩ ν̄ and τ = f̂ν̄ν(τ̄), then τ̄ ≺ τ ∧ f̂τ̄τ �Jτ̄ = f̂ν̄ν�Jτ̄ .

M3 Bν unbounded in αν implies |Aν | =
⋃

ν̄≺ν ran(f̂ν̄ν).

CP2 If ν̄ ∈ (Sαν̄ )∗ then:

(a) ν̄ ≺ ν ∧ sup(f̂ν̄ν“ν̄) = λ < ν −→ ν̄ ≺ λ ∧ f̂ν̄λ�Jν̄ = f̂ν̄ν�Jν̄ ;
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Figure 10.3: Continuity property CP2b

(b) ν̄ ≺ ν∧sup(f̂ν̄ν“ν̄) = ν∧α > αν̄ −→ [(∀τ ∈ Sαν∩ran(f̂ν̄ν) α ∈
Bτ ) −→ α ∈ Bν ].

A morass is universal if H(κ+) =
⋃

ν∈S1 |Aν |.

Note (i). Other forms of closure property can be used in M0(i) for exam-
ple that of being a limit of admissibles. By M0(i) the definition of αν (in
M0(ii)) makes sense. In M0(v) recall [46, 1.18] the definition of Q-embedding:
A Q-formula is one of the form ∀u∃v ⊇ ϕ(v), where ϕ is Σ1 and must not
contain u. Notice that this can suitably express the notion of cofinality. Then
π : M −→Q N if π preserves all Q-formulae.

Note (ii). If we are not interested in universality, then it is possible to give
a similar “axiomatic” treatment of a gap-1 morass which does not mention
L or J structures, but simple ordinal structures 〈ν,∈〉: one omits the refer-
ences to structures, thus M3 becomes “Bν is unbounded αν implies ν + 1 =⋃

ν̄≺ν ran(fν̄ν)” where now we only consider mapsfν̄ν : ν̄ + 1 −→ ν + 1.
M0(v) now must be formulated in a way that expresses the similarity of the
structure 〈ν̄ + 1, Sαν̄ ∩ ν̄〉 to that of 〈ν + 1, Sαν ∩ ν〉 (see, for example, [8] for
details). M0–M3 are known as the morass axioms and CP1, CP2 as the first
and second continuity properties respectively. It is in particular the latter
that gives the morass its strength. CP2(b) can be equivalently stated as:

CP2(b)′ [ν̄ ≺ ν ∧ sup(f̂νν“ν̄) = ν ∧ α ∈
⋂

τ ∈Sαν ∩ν

{ατ ′ | τ ≺ τ ′ ≺ f̂νν(τ)}
]

−→ (∃ν′ ≺ ν)(αν′ = α).

3.1. Construction of Gap-1 Morasses in L

Let κ be a regular cardinal. We give the construction of a universal (κ, 1)-
morass in the constructible universe. We assume then V = L. In this we can
make use of some of the notions and lemmata of the section on Global �.

Let S = {〈α, ν〉 |α < ν, ν is a limit of admissibles, ν ∈ Sing ∩κ+,
Jν |= “α is regular and is the largest cardinal”}.
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Note that for 〈α, ν〉 ∈ S, as α is a cardinal in the sense of Jν then it is a
fortiori a limit of admissibles. We remark that our taking of ν as a limit of
admissibles is overkill: much less would suffice: we just need to be able to take
the transitivisation of certain simply defined hulls of smaller Jη inside Jν . (As,
for example, the intersection of On with such a hull has order type less than
or equal to η, very mild recursions of length at most η can define the transitive
collapse maps.) Using the p.r. closed ordinals here would be possible. M0(i)
is then clear (by appealing to the acceptability of the J-hierarchy!). Likewise
M0(ii) is true of the sets S0, S1, Sα defined there. As ν ∈ Sing the concepts of
the least level β(ν) at which ν is singularised, by some Σ(n)

1 (Jβ(ν)) function
etc., as used in the proof of Global � make sense, and we adopt them here too.

3.2 Definition. Let ν ∈ S1. Then we associate the following objects to ν:

(a) The same nν , Mk
ν , hk

ν , hν , h̃ν , ρν from Definition 2.6;

(b) αν =df the largest cardinal of Jν ;

(c) pν =df pMν\αν ; qν =df pν ∩ ωρnν

Mν
.

Note that pν is thus the <∗-least parameter so that h̃ν(αν ∪{pν}) = Jβ(ν).
It is really also the same pν from before; it is only that we have renamed κν

there as αν . It has become customary to use αν for the largest cardinal in
the sense of Jν . Although “κν” would have been more consistent with the
Global � proof, this is only apparent: even for the �-proof, it is the ordinal
αν that is important, rather than the κν ; here the important ordinal is again
this αν . qν also has the same definition.

We set Aν = Mnν
ν = 〈Jρν , A

nν

β(ν)〉. M0(iv) is then immediate, as hν is
indeed a suitable Σ1-Skolem function.

3.3 Definition. For ν, ν ∈ S1:

(i) We set f : ν =⇒ ν if f : Jν −→Σ1 Jν , and f is the restriction of f ∗ :
Jβ(ν) −→Σ

(n)
1

Jβ(ν) where n = nν , ν = f ∗(ν) if ν < β(ν);αν ∈ ran(f);
pν ∈ ran(f ∗).

(ii) F = {〈ν, f, ν〉 | f : ν =⇒ ν}.

(iii) If ν < β, we set p(ν) =df pν ∪ {αν , ν}; otherwise p(ν) =df pν ∪ {αν}.

(iv) f ∗
(δ,q,ν) is the inverse of the transitive collapse of the hull

h̃ν(δ, {p(ν) ∪ q}) in Jβ(ν).

Now we have a new version of Lemma 2.9:

3.4 Lemma. If ∃ν̄(f : ν =⇒ ν) then f and f ∗ are uniquely determined by
ran(f) ∩ αν .

This justifies the following definition:
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3.5 Definition. If f : ν =⇒ ν then we set:

(i) f ∗
νν to be that unique extension f ∗ given by the last lemma;

(ii) f̂νν = f ∗
νν�Aν −→ Aν .

Lemma 2.11 still applies in this context, where now we amend the nota-
tion to read “ν ∈ S1” or “ν̄ ∈ S1” rather than just plain “S”, and drop
all references to κ. If f : ν̄ =⇒ ν we see that f(αν̄) = αν . This is clear
if ν < β(ν) (or equivalently ν̄ < β(ν̄)) since then f : Jν̄ −→ Jν is in fact
elementary. However even if β(ν) = ν, αν ∈ ran(f), hence Jν |= “f(αν̄) is a
cardinal”; but clearly f(αν̄) cannot be strictly greater than αν (as such are
not Jν-cardinals) nor strictly less (since f −1(αν) is a Jν̄-cardinal ≥ αν̄).

3.6 Definition.

(i) For f = 〈ν̄, f, ν〉 ∈ F we call f ∗ good if

f ∗�Jν̄ : 〈Jν̄ , Sαν̄ ∩ ν̄〉 −→Q 〈Jν , Sαν ∩ ν〉.

(ii) ν̄ ≺ ν iff there is an f = 〈ν̄, f, ν〉 ∈ F with f ∗ good, and f ∗�αν̄ = id �αν̄ .
We shall write in this case f : ν̄ ≺ ν. We set ν̄ � ν ←→ ν̄ ≺ ν ∨ ν̄ = ν.

One should bear in mind that again, just as for similar remarks about Eν

in the proof of Global �, “y = Sγ ∩ η” for η < ν is a simple ΣJν
0 relation

of y, γ and Jη. Thus, in particular, if f = 〈ν̄, f, ν〉 ∈ F, then f(Sαν̄ ∩ η) =
Sf(αν̄)∩f(η) = Sαν ∩f(η). What is the Q-preservation property for? For the
simple reason that if f = 〈ν̄, f, ν〉 ∈ F, then without Q-preservation of f ∗�Jν̄

we may have Sαν̄∩ν̄ unbounded in ν̄ (a Q-property) whilst Sαν ∩ ν is bounded
in ν. If we insist on Q-preservation then we shall have, if f : ν̄ =⇒ ν:

• Sαν̄ ∩ ν̄ unbounded in ν̄ iff Sαν ∩ ν is unbounded in ν.

The next three properties are Σ1:

• η = min(Sαν
∩ ν) −→ f(η) = min(Sαν ∩ ν);

• η the successor element in Sαν̄∩ν̄ of η′ implies f(η) is the successor element
of f(η′) in Sαν ∩ ν;

• η ∈ (Sαν̄ ∩ ν̄)∗ −→ f(η) ∈ (Sαν ∩ ν)∗.

The above can be easily checked. If we simply define gap-1 morasses with-
out “structural properties” i.e. simply as maps between ordinals, one specifies
these last three bullet points as an axiom on the Sα’s (see [8, p. 341]).

For almost all triples f = 〈ν̄, f, ν〉 ∈ F the Q-preservation property holds
anyway. Just as remarked before this definition, this is clear if ν < β(ν) since
then f : Jν̄ −→ Jν is even elementary. It is still clear if nν > 1 since then
f : Jν̄ −→ Jν is Σ2-preserving. It is only if nν = 1 and β(ν) = ν that we
may not get Q-preservation automatically.
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It is now reasonably clear that ≺ will be a tree: this is because if f : ν̄ ≺ ν
and g : ν′ ≺ ν then, if αν̄ < αν′ we shall have ran(f ∗) � ran(g∗) and
hence 〈ν̄, g−1◦f, ν′〉 ∈ F. It is also easy to check that the composed map
g−1 ◦ f : Jν̄ −→ Jν′ is Q-preserving, and this map witnesses that ν̄ ≺ ν′.
Equally clearly if αν̄ = αν′ , then we must have ν̄ = ν′. Thus we have ≺ is a
tree, and the second part of M0(iii) follows too.

The only remaining part of M0 is part (v). That the system of maps
commutes follows from the same for the system for =⇒. The Q-preservation
property of f : Jν̄ −→Q Jν has been built into the definition of ≺.

For the first continuity property CP1, if D ⊆ B+
ν then for each αν̄ ∈ D we

may consider the hull sets Hν̄ =df ran(f ∗
ν̄ν) in Jβ(ν). Let Y =

⋃
αν̄ ∈D Hν̄ , and

then α =df sup(D) ⊆ Y. Then one may check that if the inverse of the tran-
sitive collapse of Y is g∗ : Jβ̄ −→Σ

(n)
1

Jβ where ran(g∗) = Y , then setting g =
g∗�Jτ , g

∗(τ) = ν (if ν < β(ν)) and ατ = α, we have by Lemma 2.11 β̄ = β(τ),
and 〈τ, g, ν〉 ∈ F. That g is a Q-preserving embedding between Jτ and Jν is
also easily checked: as before this only comes into question if n = 1 and ν =
β(ν). But here we can see that a union of “Q-hulls” of the form Hν̄ forms a Q-
elementary hull Y . Thus g = g∗�τ is Q-preserving. Thus τ � ν and ατ ∈ B+

ν .
For M1: let τ ∈ Sαν ∩ ν. As Jν |= “αν is the largest cardinal” we

must have that β(τ) < ν. Now by recursion form a chain of Σ(nτ )
1 hulls

Hγ = h̃τ (γ ∪ {p(τ)}) for γ < αν . This recursion can be effected inside Jν

as the latter is an admissible set (or is the union of such); moreover we can
(i) pick out a closed and unbounded D ⊆ αν where γ ∈ D −→ Hγ ∩ αν = γ;
and (ii) form the transitive collapses of such Hγ . This is because αν is a
regular cardinal of Jν . Then γ ∈ D −→ γ = ατ̄ for some ατ̄ ∈ Bτ .

Note that we have just shown for such τ that Bτ is unbounded in τ ; but
we have also shown that Bτ ∈ Jν . In fact the relation “ατ̄ ∈ Bτ” is a uniform
ΣJν

0 relation of τ̄ , τ and β(τ). Consequently Jν knows all about the morass
relations for 〈α, τ〉 ∈ S with 〈α, τ〉 <lex 〈αν , ν〉.

For M2: note that, with the notation of the hypothesis, f ∗
ν̄ν(Jβ(τ̄)) = Jβ(τ)

and thus f ∗
ν̄ν�Jβ(τ̄) : Jβ(τ̄) −→Σω Jβ(τ). However ran(f ∗

τ̄τ ) is determined by
ran(f ∗

τ̄τ ) ∩ αν = ατ̄ = αν̄ = ran(f ∗
ν̄ν) ∩ αν . Hence f ∗

ν̄ν�Jτ̄ = f̂ν̄ν�Jτ̄ = f̂τ̄τ �Jτ̄ .
As f ∗

ν̄ν(Jτ̄ ) = Jτ we certainly have f̂ν̄ν�Jτ̄ : 〈Jτ̄ , Sατ̄ ∩ τ̄〉 −→Q 〈Jτ , Sατ ∩ τ〉.
Hence we have all the conditions for τ̄ ≺ τ .

For M3: Suppose x ∈ Aν = Mnν
ν = 〈Jρν , A

nν

β(ν)〉. Let h = hAν = hν . Then
x = hν(i, �α, αν , qν\αν) for some �α ∈ [αν ]<ω. As Bν is unbounded in αν find
α′ > max(�α ), with α′ = ατ ∈ Bν . Then x = f̂τν(hτ (i, �α, ατ , qτ\ατ )).

Now for the distinguishing axioms of the morass: CP2. For (a) we use
the Interpolation Lemma in the form of a direct application of Lemma 2.13
to get that there is an f0 : ν̄ =⇒ λ with f�ν = f0�ν (where f = f ∗

ν̄ν).
However f0 is nothing other than the required map f ∗

ν̄λ. (That f ∗
ν̄λ�Jν̄ is a

Q-embedding is also immediate, as by assumption it is cofinal into λ!.) Hence
ν̄ ≺ λ ∧ f ∗

ν̄λ�Jν̄ = f ∗
ν̄ν�Jν̄ .

For CP2(b): We work in the terms of the equivalent statement CP2(b)′.
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Given the hypotheses there, let τ = f̂ν̄ν(τ̄) for τ̄ ∈ Sαν̄ ∩ ν̄. Let X =
⋃

τ̄ ∈Sαν̄ ∩ν̄ Xτ̄ where Xτ̄ = ran(f̂τ ′τ �Jτ ′ ) and τ ′ is that unique η satisfying
τ̄ ≺ η ≺ τ and with αη = α. Note that Xτ̄ ∩ αν = α and so X ∩ αν = α.
X ≺Σ0 Jν . Let the transitive collapse map be g−1

1 : Jν�X ∼= Jν′ . Define
g0 = g−1

1 ◦ (f̂ν̄ν�Jν̄). Note moreover, that as ν̄ ∈ (Sαν̄ )∗:

w ∈ Jν̄ =⇒ ∃τ̄ ∈ Sαν̄ [w ∈ Jτ̄ ∧ f̂τ̄τ (w) = f̂τ ′τ (f̂τ̄τ ′ (w)) = f̂ν̄ν(w)]

by M2. Thus g0 is total on Jν . By assumption f ∗
ν̄ν is cofinal into ν. We

then have that both g0 and g1 are cofinal. Now we may apply the Gener-
alised Interpolation Lemma, setting g, σ and σ1 there as f ∗

ν̄ν , g0, g1 here
respectively. We obtain g̃ : Mν −→Σ

(n)
1

Jβ′ and g′ : Jβ′ −→
Σ

(n)
0

Mν with
g̃�Jν = g0, g′�Jν′ = g1. However g1 is cofinal into ν and f ∗

ν̄ν is cofinal at
the nlevel (as fν̄ν : ν̄ =⇒ ν cofinally, we can obtain this latter fact from
Lemma 2.14); the proof of the Generalised Interpolation Lemma shows that
in this case g′ is cofinal at the nth level, and so is in fact also Σ(n)

1 -preserving.
As g1(α) = αν and pν\αν ∈ ran(f ∗

νν) then pν\αν ∈ ran(g′). We have, set-
ting g′(p′) = pν\αν , by an application of Lemma 2.11, that p′ = pν′\α,
Mν′ = Jβ′ and g′ = f ∗

ν′ν , whence 〈ν′, g1, ν〉 ∈ F. However then we have that
〈ν, g0, ν

′〉 ∈ F with g̃0 = f ∗
ν,ν′ by the same Lemma again.

The Σ0-preserving yet cofinality of the maps g0 and g1 guarantees that
they are Q-preserving (note that Sαν ∩ ν, Sαν′ ∩ ν′, Sαν ∩ ν are all cofinal in
their respective ordinals). Thus f ∗

νν′ , and f ′ = f ∗
ν′ν are good (in the sense of

Definition 3.6), and ν ≺ ν′ ≺ ν with αν′ = α ∈ Bν as required. �

3.2. Variants

Higher Gap Morasses

In the construction of the gap-1 morass at ω1 say, we could have de-
fined S1 as the class of pseudo-successor cardinals, ordinals ν so that there
exists α = αν < ν so that Jν |= “α = ω1 and is the largest cardinal”.
A gap-n morass at ω1 (n < ω) would ask for classes Si (1 ≤ i ≤ n) with
ν ∈ Si −→ ∃α < νJν |= “α = ω1 ∧ ot{γ > ω | γ ∈ Card} = i”. Here we
are allowing any ν < ωn+1. In the gap-2 case, we would think of a system
that approximates to ω3 via a system of maps built out of countable objects
approximating objects of size ω1 reaching up to ω2 much as a gap-1 morass
does, but then additional maps piece these together in turn to obtain objects
of size ω2 that will reach up to ω3. An enhanced set of axioms extending
those of Definition 3.1 regulate this overall structure. Additional axioms (the
“logical axioms”) are also needed to control continuity properties and en-
sure that maps correctly transfer pieces of the morass from one structure to
another. These higher gap morasses were introduced by Jensen [26].

There is no particular need to consider only finite gaps: countable length
gaps (for morasses at ω1); and generally gap-η morasses at κ can be con-
structed in L for η < κ, κ ∈ Reg. Venturing beyond that, Irrgang has
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proposed definitions for gap-β morasses at ω1 for β > ω1 and demonstrated
their construction.

Hyperfine structural constructions exist of gap-1 morasses (Friedman et
al. [21]), and for the gap-2 case (Friedman and Piwinger [20]); the latter
is ostensibly different from the Jensen morass as they come with enhanced
preservation properties. This “perfect preservation” comes about from the
extremely fine gradations of locations, that enables even more stages in the
hierarchy than for the J-hierarchy—thus developing a structure not prima
facie available for the usual J-hierarchy.

Coarse Morasses

On occasions the full structure of the morass is simply not used and a
coarse morass suffices. As its name implies, it is obtained by dropping some
clauses from that of a full morass: namely those of the second continuity
property CP2 and M0(v). As we don’t need such fine elementarity between
the structures we can simplify M0(iv) as well. (Indeed as we shall see, this
principle requires no fine structure for its construction at all.)

3.7 Definition. Let κ > ω be regular. A coarse gap-1 morass at κ is a
quadruple 〈S, S1,≺, 〈f̂ν̄ν | ν̄ ≺ ν〉〉 satisfying M0(i)–(iii), M0(iv)(a), CP1,
M1-3 of Definition 3.1, together with

M0(v)′ 〈f̂ν̄ν | ν̄ ≺ ν〉 is a commuting system of maps; f̂ν̄ν : Aν̄ −→Σω Aν ;

f̂ν̄ν(αν̄) = αν ; f̂ν̄ν�αν̄ = id �αν̄ .

In L coarse morasses are easily constructed: take the class S of pairs 〈α, ν〉
such that:

• Both Jα, Jν are limits of ZF− models, and Jν |= “α = αν is the largest
cardinal”.

If 〈α, ν〉 ∈ S set Aν =df Jν . We define ν∗ to be the least ν′ ≥ ν so that
(i) Jν′ |= ZF−; (ii) for some p ∈ Jν′ , every x ∈ Jν′ is Jν′ -definable from
parameters in αν ∪{p}. An elementary argument shows that such a ν∗ must
exist, and we set pν to be the <L-least p satisfying (ii). Then set qν = pν

if ν∗ = ν, or to equal 〈pν , ν〉 otherwise. The standard kinds of argument we
have been using show quickly that if f ∗ : Jν′ −→Σω Jν∗ with qν ∈ ran(f ∗),
then f ∗(ν̄) = ν implies ν′ = ν̄∗; we may define ν̄ ≺ ν if there exists an
f ∗ : Jν̄∗ −→Σω Jν∗ such that f ∗�αν̄ = id �αν̄ , f ∗(αν̄) > αν̄ and qν ∈ ran(f ∗).
We set f̂ν̄ν =df f ∗�Jν̄ . It can be verified without much new work that if we
now fix a regular cardinal κ and restrict our pairs 〈α, ν〉 so that ν < κ+ with
Jν |= “αν ∈ Reg”, then (setting S1 to be the obvious class of such ν) our
relation ≺ �κ+× κ+, together with all possible maps f̂ν̄ν , satisfies the coarse
morass definitions. For more detail the reader may consult [11], where it is
further shown how to extend the gap-1 coarse notion easily to a generalised
gap global coarse morass of arbitrarily large gaps.
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Morasses with Extra Structure

Various extra structure has been imposed on the morass concept in order
to get strengthened results. This has occasioned the so-called morasses with
linear limits [12], morasses with built-in ♦, and morasses with built-in � of
Friedman [17].

Simplified Morasses

A substantial simplification of the morass notion is that of the simplified
morass of Velleman [53]. Working to try and obtain a Martin’s axiom-like
postulate equivalent to the existence of gap-1 morasses, he derived a very
simple and short list of axioms concerning sets of maps between ordinals. He
showed that given a morass one could show (by forcing) the existence of a
structure satisfying this axiom list: the simplified morass. This work derived
from earlier work of Shelah and Stanley who were trying also to obtain similar
forcing axioms. The advantage here is indeed that of simplicity: it delivers
an easily comprehended structure ready for possible application.

Velleman left open the question of whether such morasses could be con-
structed directly in L. He later went on to develop higher gap simplified
morasses [54] and morasses with linear limits. That simplified morasses ex-
isted in L was proven first by Donder [12] in the gap-1 case, and by Jensen
(unpublished), building on Donder’s work, for the higher gaps. For a con-
struction of gap-1 and -2 morasses from simplified morasses see [38]. A Silver
machine construction of a gap-1 morass was given in [40].

Applications

Jensen’s original applications were to cardinal transfer theorems.

3.8 Definition. (κ, λ) −→ (θ, η) holds if for every structure whose universe
has size κ with a distinguished unary predicate with extension in the structure
of size λ, also has a model of size θ whose predicate has size η.

3.9 Theorem (Jensen) (The Gap-n+1 Cardinal Transfer Theorem). If there
is a gap-n morass at ω1 then (κ+(n+1), κ) −→ (ωn+1, ω).

Jensen also derived the following form of Prikry’s principle from gap-1
morasses, symbolically this is:

(
ω2

ω1

)

�−→
[
ℵ0

ℵ1

]

ℵ1

.

Interpreted this says that there is a partition of ω2×ω1 into ℵ1 many sets
{Iγ | γ < ω1} such that ∀A ⊆ [ω2]ℵ0∀B ⊆ [ω1]ℵ1∀γ < ω1(A × B) ∩ Iγ �= ∅.
(See [39] for more on this and some further generalisations.)

We state as a further example here, versions of the non-existence of free
subsets from gap-2 morasses. The notion of “free” here is as a kind of max-
imal independent set. We typically ask that for every means of associating
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ordinals with tuples we can find some large set which is free of associations.
Let Fr(ω3, 4, ω1) denote: “For every F : [ω3]4 −→ ω3 such that for every
quadruple a from ω3 satisfies F (a) /∈ a, there exists X a subset of ω3 of
cardinality ω1 with X ∩ F“[X]4 = ∅”.

3.10 Theorem (Jensen, unpublished). Suppose CH +“there exists a gap-2
morass”. Then ¬Fr(ω3, 4, ω1).

Set-theoretical applications of morasses are not legion. The reader may
consult [39] and [31] as a survey of early principles derivable from gap-1
morasses. A Morass with built in � forms a building block of the Strong Cod-
ing forcing constructed in [16]. For applications of gap-1 and global coarse
morasses to derive in L one and two cardinal versions of 2 sequences, Kurepa
trees without Aronszajn subtrees, and some negative partition relations, see
Donder [11].
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It has been observed for many years that computations with elementary
embeddings entail some purely algebraic features—as opposed to the log-
ical nature of the embeddings themselves. The key point is that the op-
eration of applying an embedding to another satisfies, when defined, the
self-distributivity law x(yz) = (xy)(xz). Using specific properties of the el-
ementary embeddings and their critical ordinals, hence assuming some large
cardinal hypotheses, Richard Laver established two purely algebraic results
about sets equipped with a self-distributive operation (LD-systems), namely
the decidability of the associated word problem in 1989, and the unbound-
edness of the periods in some finite LD-systems in 1993. The large cardinal
assumption was eliminated from the first result by the author in 1992 using
an argument that led to unexpected results about Artin braid groups; as
for the second of Laver’s results, no proof in ZF has been discovered so far,
and the only result known to date is that it cannot be proved in Primitive
Recursive Arithmetic.

1. Iterations of an Elementary Embedding

Our aim is to study the algebraic operation obtained by applying an elemen-
tary embedding to another one. For j, k : V ≺ M , we can apply j to any
set-restriction of k, and, in good cases, the images of these restrictions cohere
so as to form a new elementary embedding that we shall denote by j[k]. It
is then easy to see that the application operation so defined satisfies various
algebraic laws.

Convention: All elementary embeddings we consider here are supposed to
be distinct from the identity. An easy rank argument shows that every such
embedding moves some ordinal; in particular, the least ordinal moved by j
is called the critical ordinal of j, and denoted crit(j).

1.1. Kunen’s Bound and Axiom (I3)

If j is an elementary embedding of V into a proper subclass M , then j[j],
whenever it is defined, is an elementary embedding of M into a proper sub-
class M ′ of M , and it is not clear that j[j] can in turn be applied to j, whose
set-restrictions need not belong to M in general. So, if we wish the ap-
plication operation on elementary embeddings to be everywhere defined, we
should consider embeddings where the source and the target models coincide.
Here comes an obstruction.

1.1 Proposition (AC; Kunen [15]). There is no j : V ≺ V .

Proof. Assume j : V ≺ V . Let κ0 = crit(j), and, recursively, κn+1 = j(κn).
Let λ = supn κn. By standard arguments, each κn is an inaccessible cardinal,
so λ is a strong limit cardinal. Fix an injection in of P(κn) into λ. Then the
mapping X �→ (in(X ∩ κn))n∈ω defines an injection of P(λ) into λω. Using
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AC, we fix an enumeration (γξ, Xξ)ξ<ν of λ × [λ]λ, and then recursively
construct an injective sequence (sξ)ξ<ν in λω such that sξ belongs to [Xξ]ω:
this is possible because the cardinality of λ × [λ]λ equals that of λω. Let
f : λω → λ be defined by f(s) = γξ for s = sξ, and f(s) = 0 for s not
of the form sξ. Let X ∈ [λ]λ. Then, for each γ < λ, there exists a ξ < ν
satisfying (γ,X) = (γξ, Xξ). For this ξ, we have sξ ∈ [X]ω by hypothesis,
and f(sξ) = γξ. Hence the function f , which lies in Vλ+2, has the property
that the range of f�Xω is λ for every X in [λ]λ.

Let us consider j(f). We have j(λ) = supn κn+1 = λ, hence j(f) is a
function of λ into itself, and, as j is elementary, j(f) has the property that,
for every X in [λ]λ, the range of j(f)�Xω is λ. Now, let X be the set
{θ < λ | θ ∈ ran(j)}. For every s in Xω, we have s(n) ∈ ran(j) for every n,
hence s = j(s′) for some s′, and j(f)(s) = j(f)(j(s′)) = j(f(s′)) ∈ X. As
X is a proper subset of λ, the range of j(f)�Xω is not λ, and we have got a
contradiction. �

We are thus led to considering weaker assumptions, involving embeddings
that are defined on ranks rather than on the whole universe.

1.2 Definition (Gaifman, Solovay-Reinhardt-Kanamori [21]).

Axiom (I3): For some δ, there exists a j : Vδ ≺ Vδ.

Assume j : Vδ ≺ Vδ. Let κ0 = crit(j), and κn = jn(κ0). The proof of
Proposition 1.1 shows that, letting λ = supn κn, it is impossible (assuming
AC) that the function called f there belongs to the target model of j. The
function f belongs to Vλ+2, so δ � λ+2 is impossible, and the only remaining
possibilities for Axiom (I3) are δ = λ, and δ = λ + 1. The second possibility
subsumes the first:

1.3 Lemma. Assume j : Vδ+1 ≺ Vδ+1. Then we have j�Vδ : Vδ ≺ Vδ.

Proof. First, j(δ) < δ is impossible, so we necessarily have j(δ) = δ, and,
therefore, j�Vδ maps Vδ to itself. As for elementarity, an easy induction
shows that, for �a in Vδ and Φ a first-order formula, Vδ |= Φ(�a) is equivalent
to Vδ+1 |= ΦVδ(�a), and, therefore, Vδ |= Φ(�a) is equivalent to Vδ+1 |= ΦVδ(�a),
hence to Vδ+1 |= ΦVj(δ)(j(�a)), and finally to Vδ |= Φ(j(�a)). �

Thus, without loss of generality, we can restrict to the case j : Vλ ≺ Vλ in
the sequel, i.e., when using Axiom (I3), we can add the assumption that δ is
the supremum of the cardinals jn(crit(j)).

Before turning to the core of our study, let us observe that Axiom (I3) lies
very high in the hierarchy of large cardinals.

1.4 Proposition. Assume j : Vδ ≺ Vδ, with κ = crit(j). Then there exists a
normal ultrafilter on κ concentrating on cardinals that are n-huge for every n.
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Proof. As above, let κn = jn(κ). Let Un = {X ⊆ P(κn) | j“κn ∈ j(X)}.
Then Un is a κ-complete ultrafilter Un on P(κn), and, for every i < n, the
set {x ∈ P(κn) | ot(x ∩ κi+1) = κi} belongs to Un, since its image under j
is {x ∈ P(κn+1) | ot(x ∩ κi+2) = κi+1}, which contains j“κn as we have
j“κn ∩ κi+2 = j“κi+1. By [14, 24.8], this means that κ is n-huge.

Then we use a classical reflection argument, especially easy here. Let
U = {X ⊆ κ | κ ∈ j(X)}. Then U is a normal ultrafilter over κ. Let X0 be
the set of all cardinals below κ that are n-huge for every n. Then j(X0) is the
set of all cardinals below j(κ) that are n-huge for every n, which contains κ
as was seen above. So X0 belongs to U . �

1.2. Operations on Elementary Embeddings

For λ a limit ordinal, we denote by Eλ the family of all j : Vλ ≺ Vλ. In most
cases Eλ is empty, and Axiom (I3) asserts that at least one Eλ is nonempty.

No function f : Vλ → Vλ is an element of Vλ. However, we can approxi-
mate f by its restrictions f�Vγ with γ < λ, each of which belongs to Vλ. If
g is (another) function defined on Vλ, then g can be applied to each restric-
tion f�Vγ . If g happens to be an elementary embedding, the images g(f�Vγ)
form a coherent system, and, in this way, we can apply g to f .

1.5 Definition. For j, k : Vλ → Vλ, the application of j to k is defined by

j[k] =
⋃

γ<λj(k�Vγ).

This definition makes sense, as, by construction, k�Vγ belongs to Vk(γ)+3,
and therefore to Vλ.

1.6 Lemma. Assume j, k ∈ Eλ. Then j[k] belongs to Eλ, and we have
crit(j[k]) = j(crit(k)).

Proof. When γ ranges over λ, the various mappings k�Vγ are compatible. As
j is elementary, j(k�Vγ) is a partial mapping defined on Vj(γ), and the partial
mappings j(k�Vγ) and j(k�Vγ′ ) associated with different ordinals γ, γ′ agree
on Vj(γ) ∩ Vj(γ′). Hence j[k] is a mapping of Vλ into itself.

Let Φ(�x) be a first-order formula. For each γ in λ, we have

∀�x ∈ Vγ(Φ(�x) ⇐⇒ Φ((k�Vγ)(�x))),

hence, applying j,

∀�x ∈ Vj(γ)(Φ(�x) ⇐⇒ Φ(j(k�Vγ)(�x))),

so j[k] is an elementary embedding of Vλ into itself.
The equality crit(j[k]) = j(crit(k)) follows from the fact that k(crit(k)) >

crit(k) implies j[k](j(crit(k)) > j(crit(k)), while ∀γ < crit(k) (k(γ) = γ)
implies ∀γ < j(crit(k)) (j[k](γ) = γ). �
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Note that, for j, k in Eλ and γ < λ, the equality

j[k]�Vj(γ) = j(k�Vγ) (11.1)

is true by construction, as well as the formula

j[k](x) = jkj−1(x) (11.2)

whenever x belongs to the image of j.
Besides the application operation, composition is another binary opera-

tion on Eλ. We insist that application is not composition. As (11.2) shows,
application is a sort of conjugation with respect to composition.

Let us turn to the algebraic study of the application and composition oper-
ations. The former is neither commutative nor associative, but the following
algebraic relations are satisfied. As usual, idX denotes the identity map on
set X.

1.7 Lemma (Folklore). For j, k, � ∈ Eλ ∪ {idVλ
}, we have

j[k[�]] = j[k][j[�]], j◦k = j[k]◦j, (j◦k)[�] = j[k[�]], j[k◦�] = j[k]◦j[�]. (11.3)

Proof. Let γ < λ. Then ��Vγ belongs to Vβ for some β < λ. From the
definition, we have k[�]�Vk(γ) = (k�Vβ)(��Vγ). Applying j we get

j(k[�]�Vk(γ)) = j(k�Vβ)[j(��Vγ)].

By (11.1), the left factor is j[k[�]]�Vj(k(γ)), and j(k(γ)) = j[k](j(γ)) implies
that the right factor is j[k][j[�]]�Vj(k(γ)). As γ is arbitrary, we deduce j[k[�]] =
j[k][j[�]].

Let x ∈ Vλ. For γ sufficiently large, we have x ∈ dom(k�Vγ), hence

j(k(x)) = j((k�Vγ)(x)) = j(k�Vγ)(j(x)) = j[k](j(x)),

which establishes the equality j◦k = j[k]◦j. Applying the latter to x = ��Vγ ,
one easily deduces (j◦k)[�] = j[k[�]].

Finally, using the fact that j preserves composition, we obtain

j[k◦�]�Vj(γ) = j((k◦�)�Vγ) = j((k�V�(γ))◦(��Vγ))
= (j[k]�Vj�(γ))◦(j[�]�Vj(γ)) = (j[k]◦j[�])�Vj(γ),

for every γ, and hence j[k◦�] = j[k]◦j[�]. �

Also j[idVλ
] = idVλ

and idVλ
[j] = j hold for every j in Eλ ∪ {idVλ

}. In
order to fix the vocabulary for the sequel, we put the following definitions:

1.8 Definition.

(i) (S, ∗) is a left self-distributive system, or LD-system, if ∗ is a binary
operation on S satisfying

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z). (LD)
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(ii) (M, ∗, ·, 1) is a left self-distributive monoid, or LD-monoid, if (M, ·, 1)
is a monoid and ∗ is a binary operation on M satisfying

x · y = (x ∗ y) · x, (x · y) ∗ z = x ∗ (y ∗ z),
x ∗ (y · z) = (x ∗ y) · (x ∗ z), x ∗ 1 = 1. (11.4)

Observe that an LD-monoid is an LD-system and 1 ∗ x = x always holds,
as (11.4) implies x ∗ (y ∗ z) = (x · y) ∗ z = ((x ∗ y) · x) ∗ z = (x ∗ y) ∗ (x ∗ z),
and, similarly, 1 ∗ x = (1 ∗ x) · 1 = 1 · x = x. With these definitions (various
other names have been used in literature), we can restate Lemma 1.7 as

1.9 Proposition. Let λ be a limit ordinal. Then Eλ equipped with application
is an LD-system, and Eλ ∪ {idVλ

} equipped with application and composition
is an LD-monoid.

Before developing our study further, we conclude this section with an inde-
pendent result which we shall see in Sect. 3 leads to interesting consequences.

1.10 Proposition. Assume j : Vλ ≺ Vλ. Then we have j[j](α) � j(α) for
every ordinal α < λ.

Proof. Let β satisfy j(β) > α and ∀ξ < β (j(ξ) � α). As j is elementary,
we deduce j[j](j(β)) > j(α) and ∀ξ < j(β) (j[j](ξ) � j(α))—we can make
things rigorous by replacing the parameter j with some approximation of the
form j�Vγ with γ sufficiently large. As α < j(β) holds, we can take ξ = α in
the second formula, which gives j[j](α) � j(α). �

1.3. Iterations of an Elementary Embedding

We now turn to the specific study of the iterations of a fixed elementary
embedding j : Vλ ≺ Vλ, as developed by Laver. So we concentrate on the
countable subfamily of Eλ consisting of those embeddings that can be ob-
tained from j using application (or both application and composition).

1.11 Definition. For j ∈ Eλ, we denote by Iter(j) the sub-LD-system of Eλ

generated by j, and by Iter∗(j) the sub-LD-monoid of Eλ ∪ {idVλ
} generated

by j. The elements of Iter∗(j) are called the iterates of j, while the elements
of Iter(j) are called the pure iterates of j.

By definition, the pure iterates of j are those elementary embeddings that
can be obtained from j using the application operation repeatedly, so they
comprise j, j[j], j[j[j]], j[j][j], etc. As application is a non-associative opera-
tion, the iterates of j do not reduce to powers of j; however, even the notion
of a power has to be made precise. We shall use the following notation:

1.12 Definition. For j in Eλ—or, more generally, in any binary system—we
recursively define the nth right power j[n] of j and the nth left power j[n]

of j by j[1] = j[1] = j, j[n+1] = j[j[n]], and j[n+1] = j[n][j].
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For future use, let us mention some relations between the powers in an
arbitrary LD-system:

1.13 Lemma. The following relations are satisfied in every LD-system:

x[p+1] = x[q][x[p]] for 1 � q � p, (x[p])[q] = x[p+q−1] for 1 � p, q.
(11.5)

In the sequel, we investigate the possible quotients of the algebraic struc-
tures Iter(j) and Iter∗(j), i.e., we look for equivalence relations that are com-
patible with the involved algebraic operation(s). A simple idea would be to
concentrate on critical ordinals, or, more generally, on the values at particular
fixed ordinals, but this näıve approach is not relevant beyond the first levels.
Another idea would be to consider the restrictions of the embeddings to a
fixed rank, i.e., to consider equivalence relations of the form j�Vγ = j′�Vγ .
However, such relations are not compatible with the application operation in
general, and we are led to slightly different relations.

1.14 Definition (Laver). Assume j, j′ ∈ Eλ∪{idVλ
}. For γ a limit below λ,

we say that j and j′ are γ-equivalent, denoted j
γ
≡ j′, if, for every x in Vγ ,

we have j(x) ∩ Vγ = j′(x) ∩ Vγ .

By definition,
γ
≡ is an equivalence relation on Eλ∪{idVλ

}. Note that j
γ
≡ j′

implies j(x) ∩ Vγ = j′(x) ∩ Vγ for every x in Vλ—not only in Vγ—since, for
y ∈ Vβ with β < γ, the relation y ∈ j(x)∩Vγ is equivalent to y ∈ j(x∩Vβ)∩Vγ ,
and x ∩ Vβ belongs to Vβ+1, hence to Vγ since γ is limit.

We begin with easy observations.

1.15 Lemma. Assume j
γ≡ j′ and α < γ. Then we have either j(α) < γ,

whence j′(α) = j(α), or j(α) � γ, whence j′(α) � γ. So, in particular, we
have either crit(j) = crit(j′) < γ, or both crit(j) � γ and crit(j′) � γ.

Proof. Assume j′ γ≡ j and α, β < γ. Then, by definition, j(α) > β is equiva-
lent to j′(α) > β. �

1.16 Lemma. Assume j, k ∈ Eλ. Then j[k] and k are crit(j)-equivalent.

Proof. Let γ = crit(j). An induction on rank shows that j�Vγ is the identity
mapping. Then y ∈ k(x) is equivalent to j(y) ∈ j[k](j(x)), hence to y ∈
j[k](x) for x, y in Vγ . �

1.17 Proposition. For limit γ < λ, γ-equivalence is compatible with com-
position.

Proof. Assume j
γ
≡ j′ and k

γ
≡ k′. Let x, y ∈ Vγ , and y ∈ j(k(x)). As

γ is limit, we have x, y ∈ Vβ for some β < γ, so y ∈ j(k(x)) implies y ∈
j(k(x)∩Vβ)∩Vγ . By hypothesis, we have k(x)∩Vβ = k′(x)∩Vβ ∈ Vβ+1 ⊆ Vγ ,
hence

j′(k′(x) ∩ Vβ) ∩ Vγ = j(k′(x) ∩ Vβ) ∩ Vγ = j(k(x) ∩ Vβ) ∩ Vγ .
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We deduce y ∈ j′(k′(x)), hence j(k(x)) ∩ Vγ ⊆ j′(k′(x)) ∩ Vγ . By symmetry,
we obtain j(k(x))∩Vγ = j′(k′(x))∩Vγ , so j◦k and j′ ◦k′ are γ-equivalent. �

1.18 Lemma. Let j : Vλ ≺ Vλ. Then, for each γ satisfying crit(j) < γ < λ,
there exists a δ satisfying δ < γ � j(δ) < j(γ).

Proof. Let κ = crit(j). Let δ be the least ordinal satisfying γ � j(δ): since
γ � j(γ) is always true, δ exists, and we have δ � γ. Assume δ = γ. This
means that ξ < γ implies j(ξ) < γ, hence jn(ξ) < γ for each n. This
contradicts γ < λ and (by the remark after Lemma 1.3) λ = supn jn(κ). �

1.19 Proposition. Assume j
γ≡ j′ and k

δ≡ k′ with j(δ) � γ. Then we have
j[k]

γ
≡ j′[k′].

Proof. Assume first crit(j) � γ. By Lemma 1.15, we also have crit(j′) � γ.

Moreover, δ � γ holds, for δ < γ would imply j(δ) = δ < γ. Hence, k
δ≡ k′

implies k
γ≡ k′. Then, by Lemma 1.16, we find j[k]

γ≡ k
γ≡ k′ γ≡ j′[k′].

Assume now crit(j) < γ, and, therefore, crit(j′) = crit(j). Since k
δ≡ k′

implies k
δ′

≡ k′ for δ′ � δ, we may assume without loss of generality that δ is
minimal satisfying j(δ) � γ, which, by Lemma 1.18, implies γ > δ. Let j

∗
∩Vα

denote the set {(x, y) ∈ V 2
α | y ∈ j(x)}. By definition, j

α≡ j′ is equivalent to

j
∗
∩ Vα = j′ ∗

∩ Vα. We have

j[k]
∗
∩ Vγ = (j[k]

∗
∩ Vj(δ)) ∩ V 2

γ = j(k
∗
∩ Vδ) ∩ V 2

γ .

By construction, k
∗
∩ Vδ is a set of ordered pairs of elements of Vδ, hence an

element of Vγ . The hypotheses k
∗
∩ Vδ = k′ ∗

∩ Vδ and j(x) ∩ Vγ = j′(x) ∩ Vγ

for x ∈ Vγ imply

j[k]
∗
∩ Vγ = j(k

∗
∩ Vδ) ∩ Vγ = j′(k

∗
∩ Vδ) ∩ Vγ = j′(k′ ∗

∩ Vδ) ∩ Vγ = j′[k′]
∗
∩ Vγ ,

so j[k] and j′[k′] are γ-equivalent. �

Let j, k, � ∈ Eλ. Left self-distributivity gives j[k[�]] = j[k][j[�]], but these
embeddings need not be equal to j[k][�], unless j[�] = � holds. Now, by
Lemma 1.16, j[�] and � are crit(j)-equivalent, which implies that j[k[�]] and
j[k][�] are j[k](crit(j))-equivalent. Generalizing the argument, we obtain the
following technical lemma. The convention is that j[k][. . .] means (j[k])[. . .].

1.20 Lemma. Assume j, j1, . . . , jp ∈ Eλ, and let γ = crit(j).

(i) Assume j[j1[j2] . . . [j�]](γ) � γ′ for 1 � � � p− 1. Then we have

j[j1][j2] . . . [jp]
γ′

≡ j[j1[j2] . . . [jp]]. (11.6)
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(ii) Assume crit(j1[j2] . . . [j�]) < γ for 1 � � � p− 1 and
crit(j1[j2] . . . [jp]) � γ. Then we have

crit(j[j1][j2] . . . [jp]) = j(crit(j1[j2] . . . [jp])). (11.7)

Proof. (i) Use induction on p. For p = 1, (11.6) is an equality. Otherwise,

we have, by induction hypothesis, j[j1][j2] . . . [jp−1]
γ′

≡ j[j1[j2] . . . [jp−1]], and,
therefore,

j[j1][j2] . . . [jp−1][jp]
γ′

≡ j[j1[j2] . . . [jp−1]][jp]. (11.8)

Lemma 1.16 gives jp
γ
≡ j[jp], which implies

j[j1[j2] . . . [jp−1]][jp]
γ′

≡ j[j1[j2] . . . [jp−1]][j[jp]], (11.9)

since j[j1[j2] . . . [jp−1]](γ) � γ′ holds by hypothesis. The right factor of (11.9)
is also j[j1[j2] . . . [jp]] by left self-distributivity, and combining (11.8) and
(11.9) gives (11.6).

(ii) The case p = 1 is trivial. Assume p � 2, and let γ′ be the smallest of
j[j1](γ), j[j1[j2]](γ), . . . , j[j1[j2] . . . [jp−1]](γ). Applying (i), we find

j[j1][j2] . . . [jp]
γ′

≡ j[j1[j2] . . . [jp]]. (11.10)

Let q be minimal satisfying γ′ = j[j1[j2] . . . [jq]](γ), and j′ = j1[j2] . . . [jq].
Then we have γ′ = j[j′](γ). By hypothesis, we have crit(j′) < γ, so there
exists a δ satisfying δ < γ � j′(δ). From (11.10) we deduce

j(γ) � j(j′(δ)) = j[j′](j(δ)) = j[j′](δ) < j[j′](γ) = γ′.

Hence crit(j1[j2] . . . [jp]) � γ implies crit(j[j1[j2] . . . [jp]]) � j(γ) < γ′. There-
fore the right embedding in (11.10) has its critical ordinal below γ′, and, by
Lemma 1.15, so has the left-hand embedding, and the two critical ordinals
are equal. �

1.4. Finite Quotients

By Proposition 1.19, γ-equivalence is compatible with the application oper-
ation, so that taking quotients under

γ
≡ leads to a well-defined LD-system.

We shall describe this quotient LD-system completely when γ happens to be
the critical ordinal of some iteration of the investigated embedding.

By construction, for j : Vλ ≺ Vλ, the sets Iter(j) and Iter∗(j) consist of
countably many elementary embeddings, each of which except the identity
has a critical ordinal. So, we can associate with j the countable family of all
critical ordinals of iterates of j.

1.21 Definition. The ordinal critn(j) is defined to be the (n+1)th element
in the increasing enumeration of the critical ordinals of iterations of j.
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The formulas crit(j[k]) = j(crit(k)), crit(j◦k) = inf(crit(j), crit(k)) and
an obvious induction show that crit(i) � crit(j) holds for every iterate i
of j. Hence crit0(j) is always crit(j). We shall prove below the values
crit1(j) = j(crit(j)) and crit2(j) = j2(crit(j)). Things become complicated
subsequently. At this point, we do not know (yet) that the sequence of the
ordinals critn(j) exhaust all critical ordinals in Iter∗(j): it could happen that
some nontrivial iterate i of j has its critical ordinal beyond all critn(j)’s.

1.22 Theorem (Laver). Assume j : Vλ ≺ Vλ. Then critn(j)-equivalence is
a congruence on the LD-monoid Iter∗(j), and the quotient LD-monoid has
2n elements, namely the classes of j, j[2], . . . , j[2n], the latter also being the
class of the identity.

The proof requires several preliminary results.

1.23 Lemma. Assume that i1, i2, . . . , i2n are iterates of j. Then we have
crit(i1[i2] . . . [ip]) � critn(j) for some p with p � 2n.

Proof. We use induction on n. For n = 0, the result is the inequality
crit(i1) � crit(j), which we have seen holds for every iterate i1 of j. Oth-
erwise, we apply the induction hypothesis twice. First, we find q � 2n−1

satisfying
crit(i1[i2] . . . [iq]) � critn−1(j). (11.11)

If the inequality is strict, we have crit(i1[i2] . . . [iq]) � critn(j), and we are
done. So, we can assume from now on that (11.11) is an equality. By applying
the induction hypothesis again, we find r � 2n−1 satisfying

crit(iq+1[iq+2] . . . [iq+r]) � critn−1(j).

If r is taken to be minimal, we can apply Lemma 1.20(i) with p = r, j =
i1[i2] . . . [iq], j1 = iq+1, . . . , jp = iq+r, γ = critn−1(j), and γ′ = critn(j).
Indeed, with these notations, we have crit(j1[j2] . . . [js]) < γ for s < r, hence

crit(j[j1[j2] . . . [js]]) = j(crit(j1[j2] . . . [js])) = crit(j1[j2] . . . [js]) < γ,

and, therefore, j[j1[j2] . . . [js]](γ) > γ, which gives j[j1[j2] . . . [js]](γ) � γ′ by
definition. So we have

j[j1][j2] . . . [jp]
γ′

≡ j[j1[j2] . . . [jp]].

We have crit(j[j1[j2] . . . [jp]]) � j(γ) � γ′ = critn(j), so, by Lemma 1.15, we
deduce

crit(j[j1][j2] . . . [jp]) � critn(j)

i.e., crit(i1[i2] . . . [iq] . . . [iq+r]) � critn(j), as was expected. �

The main task is now to show that all the iterates of j can be approxi-
mated by left powers of j up to critn(j)-equivalence. Firstly, we approximate
arbitrary iterates by pure iterates.
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1.24 Lemma. Assume that n is a fixed integer, and i is an iterate of j.
Then there exists a pure iterate i′ of j that is critn(j)-equivalent to i.

Proof. Let γ = critn(j), and let A be the set of those iterates of j that
are γ-equivalent to some pure iterate of j. The set A contains j, and it
is obviously closed under application. So, in order to show that A is all
of Iter∗(j), it suffices to show that A is closed under composition, and, because
γ-equivalence is compatible with composition, it suffices to show that, if i1, i2
are pure iterates of j, then some pure iterate of j is γ-equivalent to i2◦i1. To
this end, we define recursively a sequence of pure iterates of j, say i3, i4,
. . . by the clause ip+2 = ip+1[ip]. Then we have

i3◦i2 = i2[i1]◦i2 = i2◦i1,

and, recursively, ip+1
◦ip = i2◦i1 for every p. We claim that crit(ip) � γ holds

for at least one of the values p = 2n or p = 2n + 1. If this is known, we find
i2◦i1 = ip◦ip−1 = ip[ip−1]◦ip

γ
≡ ip−1, and we are done.

In order to prove the claim, we separate the cases crit(i2) > crit(i1) and
crit(i2) � crit(i1). In this first case, we have

crit(i3) = i2(crit(i1)) = crit(i1) and crit(i4) = i3(crit(i2)) > crit(i2).

An immediate induction gives

crit(i1) = crit(i3) = crit(i5) = · · · , crit(i2) < crit(i4) < crit(i6) < · · · .

By definition, we have crit(i1) � crit0(j), and, therefore, crit(i2) � crit1(j),
and, inductively, crit(i2n) � γ, as was claimed.

Assume now crit(i2) � crit(i1). Similar computations give

crit(i1) < crit(i3) < crit(i5) < · · · , crit(i2) = crit(i4) = crit(i6) = · · · ,

and we find now crit(i2n+1) � γ. So the claim is established, and the proof
is complete. �

Let us e.g. consider i = j◦j. We are in the case “crit(i2) � crit(i1)”, and
we know that the pure iterate i2n+1 as above is a critn(j)-approximation
of i. For instance, we find i3 = j[2], i4 = j[3], i5 = j[3][j[2]] = j[4]

[2], so j◦j

and (j[4])[2] are crit2(j)-equivalent. It can be seen that the critical ordinal
of (j[4])[2], i.e., j[4](crit(j[4])), is larger than crit2(j), namely it is crit3(j), so
the previous equivalence is actually a crit3(j)-equivalence.

1.25 Proposition. Assume j : Vλ ≺ Vλ, i ∈ Iter∗(j), and n � 0. Then i is
critn(j)-equivalent to j[p] for some p with p � 2n.

Proof. By Lemma 1.24, we may assume that i is a pure iterate of j. The
idea is to iteratively divide by j on the right, i.e., we construct pure iterates
of j, say i0, i1, . . . such that i0 is i, and ip is critn(j)-equivalent to ip+1[j]
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for every p. So, i is critn(j)-equivalent to ip[j] . . . [j] (p times j) for every p.
We stop the process when we have either ip = j, in which case i is critn(j)-
equivalent to j[p+1], or p = 2n: in this case, we have obtained a sequence of
2n iterates of j, and Lemma 1.23 completes the proof.

Let us go into detail. In order to see that the construction is possible, let
us assume that ip has been obtained. If ip = j holds, we are done. Otherwise,
ip has the form i′

1[i
′
2[. . . [i

′
r[j]] . . .]], where i′

1, . . . , i′
r are some uniquely defined

pure iterates of j. Applying the identity j[k[�]] = (j◦k)[�] r − 2 times, we
find ip = (i′

1
◦ · · · ◦i′

r)[j], and we define ip+1 to be a pure iterate of j that is
critn(j)-equivalent to i′

1
◦ · · · ◦i′

r.
Assume that the construction continues for at least 2n steps, and let us

consider the 2n embeddings i2n [j], i2n [j][j], . . . , i2n [j][j] . . . [j] (2n times j).
By 1.23, there must be a p � 2n so that the critical ordinal of i2n [j][j] . . . [j]
(p times j) is at least critn(j). Let i′ be the latter elementary embed-
ding. Then i is critn(j)-equivalent to i2n [j][j] . . . [j] (2n times j), which is
also i′[j][j] . . . [j] (2n − p times j), and, therefore, i is critn(j)-equivalent to
id[j][j] . . . [j] (2n − p times j), i.e., to j[2n −p], and we are done as well. �

The previous argument is effective. Starting with an arbitrary iteration i
of j and a fixed level of approximation critn(j), we can find some left power
of j that is critn[j]-equivalent to i in a finite number of steps. However,
the computation becomes quickly intricate, and there is no uniform way to
predict how many steps are needed. For instance, let i = j[3], the simplest
iterate of j that is not a left power. We write i = (j◦j)[j], and have to
find an approximation of j◦j. Now, j◦j is crit3(j)-equivalent to j[3], and,
in this particular case, we obtain directly that j[3] is crit3(j)-equivalent to
j[3][j], i.e., to j[4]. If we look for crit4(j)-equivalence, the computation is much
more complicated. The results below will show that, if i is crit3(j)-equivalent
to j[4], then it is crit4(j)-equivalent either to j[4] or to j[12]. By determining
the critical ordinal of i[j][j][j][j], we could finally prove that j[3] is crit4(j)-
equivalent to j[12]. We shall see an easier alternative way for proving such
statements in Sect. 3.2 below.

1.26 Proposition. Assume j : Vλ ≺ Vλ. Then, for every p, we have
crit(j[p]) = critm(j), where m is the largest integer such that 2m divides p.

Proof. Let Hn be the conjunction of the following relations:

(i) crit(j[2n]) � critn(j),

(ii) p < 2n implies crit(j[p]) = crit(j[2m]) with m maximal such that 2m

divides p,

(iii) m < n implies crit(j[2m]) < crit(j[2n]).

We prove Hn using induction on n. First, H0 reduces to crit(j) = crit0(j).
Then, assume Hn and consider the embeddings j[2n+p] for 1 � p � 2n. By
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definition, we have j[2n+p] = j[2n][j] . . . [j] (p times j). Then Hn(ii) and (iii)
imply crit(j[s]) < crit(j[2n]) for s < 2n, while Hn(i) implies crit(j[2n]) �
critn(j). By Lemma 1.20(ii) applied with j = j[2n] and j1 = · · · = jp = j, we
have

crit(j[2n+p]) = j[2n](crit(j[p])).

For p < 2n, we deduce crit(j[2n+p]) = crit(j[p]) = critm(j) where m is the
largest integer such that 2m divides p, which is also the largest integer such
that 2m divides 2n + p, which is (ii) of Hn+1. For p = 2n, we obtain

crit(j[2n+1]) = j[2n](crit(j[2n]) > crit(j[2n]) = critn(j),

and we deduce crit(j[2n+1]) � critn+1(j), which is (i) ofHn+1, and crit(j[2n+1])
> crit(j[2n]), which is (iii) of Hn+1. Hence Hn is satisfied for each n.

Now, it follows from Proposition 1.25 that the critical ordinal of any iterate
of j is either equal to the critical ordinal of some left power of j, or is larger
than all ordinals critm(j). Since the sequence of all ordinals crit(j[2n]) is
increasing, the only possibility is crit(j[2n]) = critn(j). �

1.27 Lemma. The left powers j[p] and j[p′] are critn(j)-equivalent if and
only if p = p′ mod 2n holds.

Proof. We have crit(j[2n]) = critn(j), so j[2n] is critn(j)-equivalent to the
identity mapping, which by Proposition 1.19 inductively implies that j[p] and
j[2n+p] are critn(j)-equivalent for every p. Hence the condition of the lemma
is sufficient. On the other hand, we prove using induction on n � 0 that
1 � p < p′ � 2n implies that j[p] and j[p′] are not critn(j)-equivalent. The
result is vacuously true for n = 0. Otherwise, for p′ �= 2n−1 +p, the induction
hypothesis implies that j[p] and j[p′] are not critn−1(j)-equivalent, and a
fortiori they are not critn(j)-equivalent. Now, assume p′ = 2n−1 + p and j[p]

and j[p′] are critn(j)-equivalent. By applying Proposition 1.19 2n−1−p times,
we deduce that j[2n−1] and j[2n] are critn(j)-equivalent, which is impossible
as we have crit(j[2n−1]) < critn(j) and crit(j[2n]) � critn(j). �

We are now ready to complete the proof of Theorem 1.22.

Proof. The result is clear from Proposition 1.25 and Lemma 1.27. That j[2n]

and the identity mapping are critn(j)-equivalent follows from critn(j) being
the critical ordinal of j[2n]. �

1.5. The Laver-Steel Theorem

Assume j : Vλ ≺ Vλ. By Lemma 1.6, jn(crit(j)) is the critical ordinal
of j[n+1], which is also, by Lemma 1.13, j[n][j[n]]: so, in the sequence of right
powers j, j[2], j[3], . . . , every term is a left divisor of the next one. Kunen’s
bound asserts that the supremum of the critical ordinals in the previous se-
quence is λ. Actually, this property has nothing to do with the particular
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choice of the embeddings j[n], and it is an instance of a much stronger state-
ment, called the Laver-Steel theorem in the sequel, which is itself a special
case of a general result of John Steel [22] about the Mitchell ordering:

1.28 Theorem (Steel). Assume that j1, j2, . . . is a sequence in Eλ that is
increasing with respect to divisibility, i.e., for every n, we have jn+1 = jn[kn]
for some kn in Eλ. Then we have supn crit(jn) = λ.

Here we shall give a simple proof of this result due to Randall Dougherty.

1.29 Definition. Assume j ∈ Eλ, and γ < λ. We say that the ordinal α is
γ-representable by j if it can be expressed as j(f)(x) where f and x belong
to Vγ and f is a mapping with ordinal values. The set of all ordinals that
are γ-representable by j is denoted Sγ(j).

1.30 Lemma. Assume j′ = j[k] in Eλ, and let γ be an inaccessible cardinal
satisfying crit(j) < γ < λ. Then the order type of Sγ(j) is larger than the
order type of Sγ(j′).

Proof. The point is to construct an increasing mapping of Sγ(j′) into some
proper initial segment of Sγ(j). The idea is that Sγ(j′) is (more or less) the
image under j of some set Sδ(k) with δ < γ, which we can expect to be
smaller than Sγ(j) because δ < γ holds and γ is inaccessible.

By Lemma 1.18, there exists an ordinal δ satisfying δ < γ � j(δ). Let G be
the function that maps every pair (f, x) in V 2

δ such that f is a function with
ordinal values and x lies in the domain of k(f) to k(f)(x). By construction,
the image of G is the set Sδ(k). The cardinality of this set is at most that
of V 2

δ , hence it is strictly less than γ since γ is inaccessible. So the order
type of the set Sδ(k) is less than γ, and, by ordinal recursion, we construct
an order-preserving mapping H of Sδ(k) onto some ordinal β below γ. Let
us apply now j: the mapping j(H) is also order-preserving, and it maps
j(Sδ(k)), which is Sj(δ)(j′), onto j(β). By hypothesis, j(δ) � γ holds, so
Sj(δ)(j′) includes Sγ(j′). Let α be an ordinal in the latter set: by definition,
there exist f and x in Vγ with f a mapping with ordinal values and x an
element in the domain of j′(f) satisfying α = j′(f)(x), and we have

j(H)(α) = j(H)(j′(f)(x)) = j(H)(j(G)((f, x))) = j(H◦G)((f, x)). (11.12)

Now both H◦G and (f, x) are elements of Vγ . Thus (11.12) shows that
the ordinal j(H)(α) is γ-representable by j, and the mapping j(H) is an
order-preserving mapping of Sγ(j′) into Sγ(j). Moreover, the image of the
mapping H is, by definition, the ordinal β, so the image of j(H) is the
ordinal j(β), and, therefore, j(H) is an order-preserving mapping of Sγ(j′)
into {ξ ∈ Sγ(j) | ξ < j(β)}. Now we have j(β) = j(f)(0), where f is
the mapping {(0, β)}. Since β < γ holds, we deduce that j(β) is itself γ-
representable by j, and that the above set {ξ ∈ Sγ(j) | ξ < j(β)} is a proper
subset of Sγ(j). So the order type of Sγ(j′), which is that of {ξ ∈ Sγ(j) | ξ <
j(β)}, is strictly smaller than the order type of Sγ(j). �
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We can now prove the Laver-Steel theorem easily.

Proof. Assume for a contradiction that there exists an ordinal γ satisfying
γ < λ and γ > crit(jn) for every n. We may assume that γ is an inaccessible
cardinal: indeed, by Kunen’s bound, there exists an integer m such that
jm
1 (crit(j1)) � γ holds, and we know that jm

1 (crit(j1)) is inaccessible. Now
Lemma 1.30 applies to each pair (jn, jn+1), showing that the order types of
the sets Sγ(jn) make a decreasing sequence, which is impossible. �

1.31 Theorem (Laver). Assume j : Vλ ≺ Vλ.

(i) The ordinals critn(j) are cofinal in λ, i.e., there exists no θ with θ < λ
such that critn(j) < θ holds for every n.

(ii) For every iterate i of j, we have crit(i) = critm(j) for some integer m,
and, therefore, i is critm(j)-equivalent to the identity.

Proof. (i) By definition, every entry in the sequence j, j[2], j[3], . . . is a left
divisor of the next one; hence Theorem 1.28 implies that the critical ordinals
of j, j[2], . . . are cofinal in λ. By definition, these critical ordinals are exactly
the ordinals critn(j).

(ii) Proposition 1.25 implies that either crit(i) > critm(j) holds for every m,
or there exists m satisfying crit(i) = critm(j). By (i), the first case is impos-
sible. �

Observe that the point in the previous argument is really the Laver-Steel
theorem, because Proposition 1.25 or Lemma 1.23 alone do not preclude the
critical ordinal of some iterate i lying above all critm(j)’s.

It follows from the previous result that, for every m, the image under j of
the critical ordinal critm(j) is again an ordinal of the form critn(j). Indeed,
critm(j) is the critical ordinal of j[2m], and, therefore, j(critm(j)) is the critical
ordinal of j[j[2m]], hence the critical ordinal of some iterate of j and, therefore,
an ordinal of the form critn(j) for some finite n.

1.6. Counting the Critical Ordinals

As we already observed, the definition of an elementary embedding implies
that the critical ordinal of j[k] is the image under j of the critical ordinal
of k. Hence every embedding in Eλ induces an increasing injection on the
critical ordinals of Eλ. In particular, every iterate of an embedding j acts on
the critical ordinals of the iterates of j, which we have seen in the previous
section consists of an ω-indexed sequence (critn(j))n<ω. Let us introduce,
for j : Vλ ≺ Vλ, two mappings ĵ, j̃ : ω → ω by

ĵ(m) = p if and only if j(critm(j)) = critp(j),

and j̃(n) = ĵn(0). By definition, critj̃(n) is jn(crit0(j)), so, if we use κ for
crit(j) and κn for jn(κ), we simply have critj̃(n) = κn: thus j̃(n) is the number
of critical ordinals of iterates of j below κn.
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The aim of this section is to prove the following result:

1.32 Theorem (Dougherty [7]). For j : Vλ ≺ Vλ, the function j̃ grows faster
than any primitive recursive function.

For the rest of the section, we fix j : Vλ ≺ Vλ, and write γm for critm(j).
Thus ĵ is determined by γĵ(m) = j(γm) and j̃ by γj̃(n) = jn(γ0). We are going
to establish lower bounds for the values of the function j̃. The first values of
the function j̃ can be computed exactly by determining sequences of iterated
values for j[p]. We use the notation

i : � �→ θ0 �→ θ1 �→ · · ·

to mean that we have θ0 = crit(i), θ1 = i(θ0) (= crit(i[2])), etc. For instance,
by definition of j̃, we have

j : γ0 �→ γj̃(1) �→ γj̃(2) �→ γj̃(3) �→ · · · .

Now, for each sequence of the form

i : � �→ θ0 �→ θ1 �→ θ2 �→ · · · ,

we deduce for each elementary embedding j0 a new sequence

j0[i] : � �→ j0(θ0) �→ j0(θ1) �→ j0(θ2) �→ · · · .

Applying the previous principle to the above sequence with j0 = j, and using
j̃(1) = 1, we obtain the sequence

j[2] : � �→ γ1 �→ γj̃(2) �→ γj̃(3) �→ · · · .

Applying the same principle with j0 = j[2], we obtain

j[3] : � �→ γ0 �→ γj̃(2) �→ γj̃(3) �→ · · · .

Then γ2 = crit(j[4]) implies γ2 = j[3](γ0), so the previous sequence shows
that the latter ordinal is γj̃(2), i.e., we have proved γj̃(2) = γ2, and, therefore
we have ĵ(1) = 2. Similar (but more tricky) arguments give ĵ(2) = 4. Equiv-
alently, we have j̃(1) = 1, j̃(2) = 2, j̃(3) = 4, which means that the critical
ordinals of the right powers j, j[2], and j[3] are γ1, γ2, and γ4 respectively.

We turn now to the proof of Theorem 1.32. The basic argument is the
following simple observation.

1.33 Lemma. Assume that some iterate i of j satisfies i : γp �→ γq �→ γr.
Then we have r − q � q − p.

Proof. As the restriction of i to ordinals is increasing, γp < α < α′ < γq

implies γq < i(α) < i(α′) < γr. Moreover, if α is the critical ordinal of i1,
i(α) is that of i[i1], and, if i1 is an iterate of j, so is i[i1]. Hence the number
of critical ordinals of iterates of j between γq and γr, which is r− q− 1, is at
least the number of critical ordinals of iterates of j between γp and γq, which
is q − p− 1. �
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1.34 Definition. A sequence of ordinals (α0, . . . , αp) is said to be realizable
(with respect to j) if we have i : � �→ α0 �→ · · · �→ αp for some iterate i of j. We
say that the sequence (α0, . . . , αp) is a base for the sequence �θ = (θ0, . . . , θn)
if, for each m < n, the sequence (α0, . . . , αp, θm, θm+1) is realizable.

Observe that the existence of a base for a sequence �θ implies that �θ is
increasing, and that, if (a0, . . . , ap) is a base for �θ, so is every final subsequence
of the form (am, . . . , αp): if i admits the critical sequence � �→ α0 �→ · · · �→
θm �→ θm+1, then i[2] admits the critical sequence � �→ α1 �→ · · · �→ θm �→
θm+1.

1.35 Lemma. Assume that the sequence (θ0, θ1, . . .) admits a base. Then
θn � γ2n holds for every n.

Proof. Assume that (γp) is a base for (θ0, θ1, . . .). Define f by θn = γf(n).
Lemma 1.33 gives f(n + 1)− f(n) � f(n)− p for every n. As f(0) > p holds
by definition, we deduce f(n) � 2n + p inductively. �

For instance, the embedding j[2] leaves γ0 fixed maps γj̃(r) to γj̃(r+1) for
r � 1. So its (r − 1)-th power with respect to composition satisfies

(j[2])r−1 : � �→ γ1 �→ γj̃(r), γ2 �→ γj̃(r+1).

Applying these values to the critical sequence of j, we obtain

(j[2])r−1[j] : � �→ γ0 �→ γj̃(r) �→ γj̃(r+1).

Hence (γ0) is a base for the sequence (γj̃(1), γj̃(2), . . .). Lemma 1.35 gives
j̃(n) � 2n−1. In particular, we find j̃(4) � 8. This bound destroys any hope
of computing an exact value by applying the scheme used for the first values:
indeed this would entail computing values until at least j[255]. We shall see
below that the value of j̃(4) is actually much larger than 8.

In order to improve the previous results, we use the following trick to
expand the sequences admitting a base by inserting many intermediate new
critical ordinals.

1.36 Lemma. Assume (α0, . . . , αp, β, γ) is realizable, �θ is based on (β) and it
goes from γ to δ in n steps. Then there exists a sequence based on (α0, . . . , αp)
that goes from β to δ in 2n steps.

Proof. We use induction on n � 0. For n = 0, the sequence (β, γ) works, since
(α0, . . . , αp, β, γ) being realizable means that (β, γ) is based on (α0, . . . , αp).
For n > 0, let δ′ be the next to last term of �θ. The induction hypothesis gives
a sequence �τ ′ based on (α0, . . . , αp) that goes from γ to δ′ in 2n−1 steps. As
(δ′, δ) is based on (β), there exists an embedding i satisfying

i : � �→ β �→ δ′ �→ δ.
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We define the sequence �τ by extending �τ ′ with 2n−1 additional terms

τ2n−1+m = i(τ ′
m) for 1 � m � 2n−1.

By hypothesis, we have τ ′
2n−1 = δ′, hence τ2n = i(δ′) = δ. So �τ goes from β

to δ in 2n steps. Moreover, (α0, . . . , αp) is a base for �τ ′, so, for 0 � m < 2n−1,
there exists an i′

m satisfying

i′
m : � �→ α0 �→ · · · �→ αp �→ τ ′

m �→ τ ′
m+1.

As β is the critical ordinal of i and αp < β holds, this implies

i[i′
m] : � �→ α0 �→ · · · �→ αp �→ i(τ ′

m) �→ i(τ ′
m+1),

which shows that (α0, . . . , αp) is a base for �τ . Note that the case m = 0
works because τ ′

0 = β implies i(τ ′
0) = i(β) = δ′ = τ2n−1 , as is needed. �

By playing with the above construction one more time, we can obtain
still longer sequences. In order to specify them, we use an ad hoc iteration
of the exponential function, namely gp recursively defined by g0(n) = n,
gp+1(0) = 0, and gp+1(n) = gp+1(n − 1) + gp(2gp+1(n−1)). Thus, g1 is an
iterated exponential. Observe that gp(1) = 1 holds for every p.

1.37 Lemma. Assume (β0, . . . , βp+1, γ) is realizable, �θ is based on (βp, βp+1)
and it goes from γ to δ in n steps. Then there exists a sequence based
on (βp+1) that goes from γ to δ in gp+1(n) steps.

Proof. We use induction on p � 0, and, for each p, on n � 1. For n = 1,
the sequence (γ, δ) works, since, if i satisfies � �→ βp �→ βp+1 �→ γ �→ δ, then
i[2] satisfies � �→ βp+1 �→ γ �→ δ. Assume n � 2. Let δ′ be the next to
last term of �θ. By induction hypothesis, there exists a sequence �τ ′ based
on (βp+1) that goes from γ to δ′ in gp+1(n − 1) steps. As in Lemma 1.36,
we complete the sequence by appending new terms, but, before translating
it, we still fatten it one or two more times. First, we apply Lemma 1.36 to
construct a new sequence �τ ′ ′ based on (βp, βp+1) that goes from βp+1 to δ′ in
2gp+1(n−1) steps and is based on (βp−1, βp) for p �= 0 (resp. on (βp) for p = 0).
For p �= 0, we are in position for applying the current lemma with p−1 to the
sequence of �τ ′ ′. So we obtain a new sequence �τ ′ ′ ′ based on (αp), and going
from βp+1 to δ′ in gp(2gp+1(n−1)) steps. For p = 0, we simply take �τ ′ ′ ′ = �τ ′ ′:
as g0(N) = N holds, this remains consistent with our notations. Now we
make the translated copy: we choose i satisfying � �→ βp �→ βp+1 �→ δ′ �→ δ,
and complete �τ ′ with the new terms

τgp+1(n−1)+m = i(τ ′ ′ ′
m ) for 0 < m � gp(2gp+1(n−1)).

The sequence �τ has length gp+1(n−1)+gp(2gp+1(n−1)) = gp+1(n), and it goes
from γ to i(δ′), which is δ. It remains to verify the base condition for the
new terms. Now assume that i′ ′ ′

m satisfies � �→ βp �→ τ ′ ′ ′
m �→ τ ′ ′ ′

m+1. As in the
proof of Lemma 1.36, we see that i[i′ ′ ′

m] satisfies � �→ βp+1 �→ i(τ ′ ′ ′
m ) �→ i(τ ′ ′ ′

m+1),
which completes the proof, as i(τ ′ ′ ′

0 ) = δ′ guarantees continuity. �
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By combining Lemmas 1.36 and 1.37, we obtain:

1.38 Lemma. Assume (β0, . . . , βp+1, γ) is realizable, �θ is based on (βp, βp+1)
and it goes from γ to δ in n steps. Then there exists a sequence based on (β0)
that goes from β1 to δ in h1(h2(. . . (hp+1(n)) . . .)) steps, where hq(m) is de-
fined to be 2gq(m).

Proof. We use induction on p � 0. In every case, Lemma 1.37 constructs from
�θ a new sequence �θ′ based on (βp+1) going from βp+1 to δ in gp+1(n)+1 steps.
Then, Lemma 1.36 constructs from �θ′ a new sequence �θ′ ′ that goes from
(βp+1) to δ in 2gp+1(n)+1 = hp+1(n)+1 steps, a sequence based on (αp−1, αp)
for p �= 0, and on (αp) for p = 0. For p = 0, the sequence �θ′ ′ works. Otherwise,
we are in position for applying the induction hypothesis to �θ′ ′. �

We deduce the following lower bound for the function j̃.

1.39 Proposition. Assume j : Vλ ≺ Vλ. Then, for n � 3, we have

j̃(r) � 2h1(h2(...(hn−2(1))...)). (11.13)

Proof. By definition, (γj̃(n−1), γj̃(n)) is based on (γj̃(n−3), γj̃(n−2)), and the
auxiliary sequence (γ0, . . . , γj̃(n−2)) is realizable. Indeed, j satisfies

j : � �→ γj̃(0) �→ γj̃(1) �→ γj̃(2) �→ γj̃(3),

and, therefore, we have

j[n+1] : � �→ γj̃(n) �→ γj̃(n+1) �→ γj̃(n+2) �→ γj̃(n+3)

for every n. By applying Lemma 1.38, we find a new sequence based on (γ0)
that goes from γ1 to γj̃(n) in h1(h2(. . . (hn−2(1)) . . .)) steps. We conclude
using Lemma 1.38. �

We thus proved j̃(4) � 28 = 256, and j̃(5) � 2h1(h2(h3(1))) = 22g1(16)
. It

follows that j̃(5) is more than a tower of base 2 exponentials of height 17.
Let us recall that the Ackermann function fAck

p is defined recursively by
fAck
0 (n) = n + 1, fAck

p+1(0) = fAck
p (1), and fAck

p+1(n + 1) = fAck
p (fAck

p+1(n)). We
put fAck

ω (n) = fAck
n (n). Using the similarity between the definitions of fAck

p

and gp, it is easy to complete the proof of Theorem 1.32.

Proof. The function fAck
ω is known to grow faster than every primitive recur-

sive function, so it is enough to show 2h1(h2(...(hn−2(1))...)) � fAck
ω (n − 1) for

n � 5. First, we have gp(n + 3) > fAck
p (n) for all p, n. This is obvious for

p = 0. Otherwise, for n = 0, using gp(2) � 3, we find

gp(3) > gp−1(2gp(2)) > fAck
p−1(6) > fAck

p−1(1) = fAck
p (0).
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Then, for n > 0, we obtain

gp(n + 3) > gp−1(2gp(n+2)) > gp−1(fAck
p (n− 1) + 3)

> fAck
p−1(f

Ack
p (n− 1)) = fAck

p (n).

Finally, we have g2(n) = n + 2 for every n, and therefore

2h1(h2(...(hn+2(1))...)) = 2h1(h2(...(hn+1(2))...)) = 2h1(h2(...(hn(2n+3))...))

> gn(2n+3)) � gn(n + 3) > fAck
n (n),

hence 2h1(h2(...(hn+2(1))...)) � fAck
ω (n− 1). �

Let us finally mention without proof the following strengthening of the
lower bound for j̃(4):

1.40 Proposition (Dougherty). For j : Vλ ≺ Vλ, we have

j̃(4) � fAck
9 (fAck

8 (fAck
8 (254))).

In other words, there are at least the above huge number of critical ordinals
below κ4 in Iter(j).

2. The Word Problem for Self-Distributivity

The previous results about iterations of elementary embeddings have led
to several applications outside set theory. The first application deals with
free LD-systems and the word problem for the self-distributivity law (LD):
x(yz) = (xy)(xz). In 1989, Laver deduced from Lemma 1.20 that the LD-
system Iter(j) has a specific algebraic property, namely that left division has
no cycle in this LD-system, and he derived a solution for the word problem
for (LD). Here we shall describe these results, following the independent and
technically more simple approach of [4].

2.1. Iterated Left Division in LD-systems

For (S, ∗) a (non-associative) algebraic system, and x, y in S, we say that
x is a left divisor of y if y = x ∗ z holds for some z in S; we say that x is
an iterated left divisor of y, and stipulate x � y if, for some positive k, there
exist z1, . . . , zk satisfying y = (. . . ((x∗z1)∗z2) . . . )∗zk. So � is the transitive
closure of left divisibility. In the sequel, we shall be interested in LD-systems
where left division (or, equivalently, iterated left division) has no cycle.

We let Tn be the set of all terms constructed using the variables x1, . . . , xn

and a binary operator ∗, and T∞ for the union of all Tn’s. We denote by =LD

the congruence on T∞ generated by all pairs of the form (t1 ∗ (t2 ∗ t3)), (t1 ∗
t2) ∗ (t1 ∗ t3)). Then, by standard arguments, Tn/=LD is a free LD-system
with n generators, which we shall denote by Fn. The word problem for (LD)
is the question of algorithmically deciding the relation =LD.
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2.1 Theorem (Dehornoy [4]; also Laver [18] for an independent approach).
Assume that there exists at least one LD-system where left division has no
cycle.

(i) Iterated left division in a free LD-system with one generator is a linear
ordering.

(ii) The word problem for (LD) is decidable.

The rest of this subsection is an outline of the proof of this statement,
which can be skipped by a reader exclusively interested in set theory.

2.2 Definition. For t, t′ terms in T∞, we say that t′ is an LD-expansion of t
if we can go from t to t′ by applying finitely many transformations consisting
of replacing a subterm of the form t1 ∗ (t2 ∗ t3) with the corresponding term
(t1 ∗ t2) ∗ (t1 ∗ t3).

By definition, t′ being LD-equivalent to t means that we can transform
t to t′ by applying the law (LD) in either direction, i.e., from x ∗ (y ∗ z) to
(x ∗ y) ∗ (x ∗ z) or vice versa, while t′ being an LD-expansion of t means that
we transform t to t′ by applying (LD), but only in the expanding direction,
i.e., from x ∗ (y ∗ z) to (x ∗ y) ∗ (x ∗ z), but not in the converse, contracting
direction.

2.3 Definition. For t a term and k small enough, we denote by leftk(t)
the kth iterated left subterm of t: we have left0(t) = t for every t, and
leftk(t) = leftk−1(t1) for t = t1 ∗ t2 and k � 1. For t1, t2 in T∞, we say that
t1 �LD t2 is true if we have t′

1 = leftk(t′
2) for some k, t′

1, t′
2 satisfying k � 1,

t′
1 =LD t1, and t′

2 =LD t2.

By construction, saying that t1 �LD t2 is true in T1 is equivalent to saying
that the class of t1 in the free LD-system F1 is an iterated left divisor of the
class of t2. The core of the argument is:

2.4 Proposition. Let t1, t2 be one-variable terms in T1. Then at least one
of t1 �LD t2, t1 =LD t2, t2 �LD t1 holds.

2.5 Corollary. If (S, ∗) is an LD-system with one generator, then any two
elements of S are comparable with respect to iterated left division.

Proving Proposition 2.4 relies on three specific properties of left self-
distributivity. As in Sect. 1, we use the notation x[n] for the nth right power
of x.

2.6 Lemma.

(i) For every term t in T1, we have x[n+1] =LD t ∗ x[n] for n sufficiently
large.

(ii) Assume that leftn(t) is defined, and t′ is an LD-expansion of t. Then
leftn′

(t′) is an LD-expansion of leftn(t) for some n′ � n.
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(iii) Any two LD-equivalent terms admit a common LD-expansion.

We skip the purely algebraic proofs of these properties, and just explain
how to derive Proposition 2.4.

Proof. Let t1, t2 be arbitrary terms in T1. By Lemma 2.6(i), we have t1 ∗
x[n] =LD x[n+1] =LD t2 ∗ x[n] for n sufficiently large. Fix such a n. By
Lemma 2.6(iii), the terms t1∗x[n] and t2∗x[n] admit a common LD-expansion,
say t. By Lemma 2.6(ii), there exist nonnegative integers n1, n2 such that,
for i = 1, 2, the term leftni(t) is an LD-expansion of left(ti ∗ x[n]), i.e., of ti.
Thus we have t1 =LD leftn1(t), and t2 =LD leftn2(t). Three cases may occur:
for n1 > n2, leftn1(t) is an iterated left subterm of leftn2(t), and, therefore,
t1 �LD t2 holds; for n1 = n2, t1 and t2 both are LD-equivalent to leftn1(t),
and t1 =LD t2 is true; finally, for n1 < n2, leftn2(t) is an iterated left subterm
of leftn1(t), and, therefore, t2 �LD t1 holds. �

Finally, we can complete the proof of Theorem 2.1.

Proof. (i) Proposition 2.4 tells us that any two elements of the free LD-
system F1 are comparable with respect to the iterated left divisibility relation.
Assume that S is any LD-system. The universal property of free LD-systems
gives a homomorphism π of F1 into S. If (a1, . . . , an) is a cycle for left division
in F1, then (π(a1), . . . , π(an)) is a cycle for left division in S. So, if there
exists at least one LD-system S where left division has no cycle, the same is
true for F1, i.e., the iterated left divisibility relation of F1 is irreflexive. As
it is always transitive, it is a (strict) linear ordering.

(ii) Let us consider the case of one variable terms first. For t1, t2 in T1, we
can decide whether t1 =LD t2 is true as follows: we systematically enumerate
all pairs (t′

1, t
′
2) such that t′

1 is LD-equivalent to t1 and t′
2 is LD-equivalent

to t2. By Proposition 2.4, there will eventually appear some pair (t′
1, t

′
2) such

that either t′
1 and t′

2 are equal, or t′
1 is a proper iterated left subterm of t′

2, or
t′
2 is a proper iterated left subterm of t′

1. In the first case, we conclude that
t1 =LD t2 is true, in the other cases, we can conclude that t1 =LD t2 is false
whenever we know that t �LD t′ excludes t =LD t′, i.e., whenever we know
that left division has no cycle in F1.

The case of terms with several variables is not more difficult. For t in T∞,
let t† denote the term obtained from t by replacing all variables with x1. For
t1, t2 in Tn, we can decide whether t1 =LD t2 is true as follows. First we
compare t†

1 and t†
2 as above. If the latter terms are not LD-equivalent, then

t1 and t2 are not LD-equivalent either. Otherwise, we can find a common
LD-expansion t of t†

1 and t†
2. Then we consider the LD-expansion t′

1 of t1
obtained in the same way as t is obtained from t†

1, i.e., by applying (LD) at
the same successive positions, and, similarly, we consider t′

2 obtained from t2
as t is obtained from t†

2. Then, either t′
1 and t′

2 are equal, in which case we
conclude that t1 =LD t2 is true, or t′

1 and t′
2 have some variable clash, in which

case, using the techniques of Lemma 2.6(iii), we can conclude that t1 =LD t2
is false. �
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2.2. Using Elementary Embeddings

In the mid-1980’s, Laver showed the following:

2.7 Proposition (Laver). Left division in the LD-system Eλ has no cycle.

Proof. Assume that j1, . . . , jn is a cycle for left division in Eλ. Consider the
infinite periodic sequence j1, . . . , jn, j1, . . . , jn, j1, . . . . Theorem 1.28 applies,
and it asserts that the supremum of the critical ordinals in this sequence
is λ. But, on the other hand, there are only n different embeddings in the
sequence, and the supremum of finitely many ordinals below λ cannot be λ,
a contradiction. �

The original proof of the previous result in [18] did not use the Laver-Steel
theorem, but instead a direct computation based on Lemma 1.20.

Using the results of Sect. 2.1, we immediately deduce:

2.8 Theorem (Laver, 1989). Assume Axiom (I3). Then:

(i) Iterated left division in a free LD-system with one generator is a linear
ordering.

(ii) The word problem for (LD) is decidable.

Another application of Proposition 2.7 is a complete algebraic characteri-
zation of the LD-system made by the iterations of an elementary embedding.

2.9 Lemma (“Laver’s criterion”). A sufficient condition for an LD-system S
with one generator to be free is that left division in S has no cycle.

Proof. Assume that left division in S has no cycle. Let π be a surjective
homomorphism of F1 onto S, which exists by the universal property of F1.
Let x, y be distinct elements of F1. By Corollary 2.5, at least one of x � y,
y � x is true in F1, which implies that at least one of π(x) � π(y), π(y) � π(x)
is true in S. The hypothesis that left division has no cycle in S implies that,
in S, the relation a � b excludes a = b. So, here, we deduce that π(x) �= π(y)
is true in every case, which means that π is injective, and, therefore, it is an
isomorphism, i.e., S is free. �

We deduce the first part of the following result

2.10 Theorem (Laver). Assume j : Vλ ≺ Vλ. Then Iter(j) equipped with
the application operation is a free LD-system, and Iter∗(j) equipped with ap-
plication and composition is a free LD-monoid.

We skip the details for the LD-monoid structure, which are easy. The gen-
eral philosophy is that, in an LD-monoid, most of the nontrivial information
is concentrated in the self-distributive operation. In particular, if X is any
set and FX is the free LD-system based on X, then the free LD-monoid based
on X is the free monoid generated by FX , quotiented under the congruence
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generated by the pairs (x · y, (x ∗ y) · x). It easily follows that there exists a
realization of the free monoid based on X inside the free LD-system based
on X. So, in particular, every solution for the word problem for (LD) gives
a solution for the word problem of the laws that define LD-monoids.

2.3. Avoiding Elementary Embeddings

The situation created by Theorem 2.8 was strange, as one would expect no
link between large cardinals and such a simple combinatorial property as the
word problem for (LD). Therefore, finding an alternative proof not relying on
a large cardinal axiom—or proving that some set-theoretic axiom is needed
here—was a natural challenge.

2.11 Theorem (Dehornoy [5]). That left division in the free LD-system with
one generator has no cycle is a theorem of ZFC.

Outline of Proof. The argument of [5] consists in studying the law (LD) by
introducing a certain monoid GLD that captures its specific geometry. View-
ing terms as binary trees, one considers, for each possible address α of a
subterm, the partial operator Ωα on terms corresponding to applying (LD)
at position α in the expanding direction, i.e., expanding the subterm rooted
at the vertex specified by α. If GLD is the monoid generated by all oper-
ators Ω±1

α using composition, then two terms t, t′ are LD-equivalent if and
only if some element of GLD maps t to t′. Because the operators Ωα are partial
in an essential way, the monoid GLD is not a group. However, one can guess a
presentation of GLD and work with the group GLD admitting that presentation.
Then the key step is to construct a realization of the free LD-system with
one generator in some quotient of GLD, a construction that is reminiscent of
Henkin’s proof of the completeness theorem. The problem is to associate with
each term t in T1 a distinguished operator in GLD (or its copy in the group GLD)
in such a way that the obstruction to satisfying (LD) can be controlled. The
solution is given by Lemma 2.6(i): the latter asserts that, for each term t,
the term x[n+1] is LD-equivalent to t ∗ x[n] for n sufficiently large, so some
operator χt in GLD must map x[n+1] to t ∗ x[n], i.e., in some sense, construct
the term t. Moreover Lemma 2.6(i) gives an explicit recursive definition of χt

in terms of χt1 and χt2 when t is t1 ∗ t2. Translating this definition into GLD

yields a self-distributive operation on some quotient of GLD, and proving that
left division has no cycle in the LD-system so obtained is then easy—but
requires a number of verifications. �

2.12 Remark. A relevant geometry group can be constructed for every
algebraic law (or family of algebraic laws). When the self-distributivity law
is replaced with the associativity law, the corresponding group is Richard
Thompson’s group F [2]. So GLD is an analog of F .

Theorem 2.11 allows one to eliminate any set-theoretic assumption from
the statements of Theorem 2.8. Actually, it gives more. Indeed, the quotient
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of GLD appearing in the above proof turns out to be Artin’s braid group B∞,
and the results about GLD led to unexpected braid applications.

Artin’s braid group Bn admits many equivalent definitions. Usually, Bn is
introduced for 2 � n � ∞ as the group generated by elements σi, 1 � i < n,
subject to the relations

σiσj = σjσi for |i− j| � 2, σiσjσi = σjσiσj for |i− j| = 1. (11.14)

The connection with braid diagrams comes when σi is associated with an
n-strand diagram where the (i+1)st strand crosses over the ith strand; then
the relations in (11.14) correspond to ambient isotopy.

2.13 Theorem (Dehornoy [5]). For x, y in B∞, say that x < y holds if,
among all possible expressions of x−1y in terms of the σ±1

i , there is at least
one where the generator σi of minimal index i occurs only positively (i.e.,
no σ−1

i ). Then the relation < is a left-invariant linear ordering on B∞.

The result is a consequence of Theorem 2.11. Indeed, there exists a (par-
tial) action of the group Bn on the nth power of every left cancellative LD-
system, and one obtains a linear ordering on Bn by defining, for x, y in Bn

and �a in Fn
1 , the relation x <�a y to mean that �a·x is lexicographically smaller

than �a · y. One then checks that <�a does not depend on the choice of �a and
it coincides with the relation < of Theorem 2.13. In this way, one obtains
the previously unknown result that braid groups are orderable. A number
of alternative definitions of the braid order have been found subsequently,
in particular in terms of homeomorphisms of a punctured disk, and of hy-
perbolic geometry [6]. Various results have been derived, in particular new
efficient solutions for the word problem of Bn with possible cryptographic
applications.

The following result, first discovered by Laver (well-foundedness), was then
made more explicit by Serge Burckel (computation of the order type):

2.14 Theorem (Laver [20], Burckel [1]). For each n, the restriction of the
braid ordering to the braids that can be expressed without any σ−1

i is a well-
ordering of type ωωn−2

.

Returning to self-distributivity, we can mention as a last application a
simple solution to the word problem for (LD) involving the braid group B∞.
Indeed, translating the inductive proof of Lemma 2.6(i) to B∞ leads to the
explicit operation

x ∗ y = x sh(y)σ1sh(x)−1, (11.15)

where sh is the endomorphism that maps σi to σi+1 for every i. Laver’s
criterion Lemma 2.9 implies that every sub-LD-system of (B∞, ∗) with one
generator is free, i.e., that (B∞, ∗) is a torsion-free LD-system. Then, in order
to decide whether two terms on one variable are LD-equivalent, it suffices
to compare their evaluations in B∞ when x is mapped to 1 and (11.15) is
used. Note that, once (11.15) has been guessed, checking that it defines



762 Dehornoy / Elementary Embeddings and Algebra

a self-distributive operation on B∞ is easy, and, therefore, any argument
proving that left division in (B∞, ∗) has no cycle is sufficient for fulfilling
the assumptions of Theorem 2.1 without resorting to the rather convoluted
construction of GLD. Several such arguments have been given, in particular by
David Larue using automorphisms of a free group [16] and by Ivan Dynnikov
using laminations [6].

The developments sketched above have no connection with set theory. As
large cardinal axioms turned out to be unnecessary, one could argue that set
theory is not involved here, and deny that any of these developments can
be called an application of set theory. The author disagrees with such an
opinion. Had not set theory given the first hint that the algebraic properties
of LD-systems are a deep subject [17, 3], then it is not clear that anyone
would have tried to really understand the law (LD). The production of an
LD-system with acyclic division using large cardinals gave evidence that some
other example might be found in ZFC, and hastened its discovery. Without
set theory, it is likely that the braid order would not have been discovered, at
least as soon:1 could not this be accepted as a definition for an application
of set theory? It is tempting to compare the role of set theory here with the
role of physics when it gives evidence for some formulas that remain then to
be proved in a standard mathematical framework.

3. Periods in the Laver Tables

Here we describe another combinatorial application of the set theoretic results
of Sect. 1. This application involves some finite LD-systems discovered by
Laver in his study of iterations of elementary embeddings [19]. In contrast
to the results mentioned in Sect. 2, these results have not yet received any
ZF proof.

3.1. Finite LD-Systems

The results of Sect. 1.4 give, for each j : Vλ ≺ Vλ, an infinite family of finite
quotients of Iter(j), namely one with 2n elements for each n. The finite LD-
systems so obtained will be called the Laver tables. In this section, we show
how to construct the Laver tables directly, and list some of their properties.

Let us address the question of constructing a finite LD-system with one
generator. We start with an incomplete table on the elements 1, . . . , N , and
try to complete it by using the self-distributivity law. Here, we consider the
case when the first column is assumed to be cyclic, i.e., we have

a ∗ 1 = a + 1, for a = 1, . . . , N − 1, N ∗ 1 = 1. (11.16)

1 A posteriori, it became clear that the orderability of braid groups could have been
deduced from old work by Nielsen, but this was not noted until recently.
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3.1 Lemma.

(i) For every N , there exists a unique operation ∗ on {1, . . . , N} satisfying
(11.16) and, for all a, b,

a ∗ (b ∗ 1) = (a ∗ b) ∗ (a ∗ 1).

(ii) The following relations hold in the resulting system:

a ∗ b

⎧
⎪⎨

⎪⎩

= b for a = N ,
= a + 1 for b = 1, and for a ∗ (b− 1) = N ,
> a ∗ (b− 1) otherwise.

For a < N , there exists p � N − a and c1 = a + 1 < c2 < · · · < cp = N
such that, for every b, we have a ∗ b = ci with i = b (mod p), hence, in
particular, a ∗ b > a.

We denote by SN the system given by Lemma 3.1. At this point, the
question is whether SN is actually an LD-system: by construction, certain
occurrences of (LD) hold in the table, but this does not guarantee that the
law holds for all triples. Actually, it need not: for instance, the reader can
check that, in S5, one has 2 ∗ (2 ∗ 2) = 3 �= (2 ∗ 2) ∗ (2 ∗ 2) = 5.

3.2 Proposition.

(i) If N is not a power of 2, there exists no LD-system satisfying (11.16).

(ii) For each n, there exists a unique LD-system with domain {1, . . . , 2n}
that satisfies (11.16), namely the system S2n of Lemma 3.1.

The combinatorial proof relies on an intermediate result, namely that SN

is an LD-system if and only if the equality a ∗N = N is true for every a. It
is not hard to see that this is impossible when N is not a power of 2. On the
other hand, the verification of the property when N is a power of 2 relies on
the following connection between SN and SN ′ when N ′ is a multiple of N :

3.3 Lemma.

(i) Assume that S is an LD-system and g[N ′+1] = g holds in S. Then
mapping a to g[a] defines a homomorphism of SN ′ into S.

(ii) In particular, if SN is an LD-system and N divides N ′, then mapping
a to a mod N defines a homomorphism of SN ′ onto SN .

(Here a mod N denotes the unique integer equal to a modulo N lying in the
interval {1, . . . , N}.)

3.4 Definition. For n � 0, the nth Laver table, denoted An, is defined to
be the LD-system S2n , i.e., the unique LD-system with domain {1, 2, . . . , 2n}
that satisfies (11.16).
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The first Laver tables are

A0 1
1 1

A1 1 2
1 2 2
2 1 2

A2 1 2 3 4
1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

A3 1 2 3 4 5 6 7 8
1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

The reader can compute that the first row of A4 is 2, 12, 14, 16, 2, . . . , while
that of A5 is 2, 12, 14, 16, 28, 30, 32, 2, . . . .

By Lemma 3.1, every row in An is periodic and it comes in the proof of
Proposition 3.2 that the corresponding period is a power of 2. In the sequel,
we write on(a) for the number such that 2on(a) is the period of a in An,
i.e., the number of distinct values in the row of a. The examples above
show that the periods of 1 in A0, . . . , A5 are 1, 1, 2, 4, 4, and 8 respectively,
corresponding to the equalities o0(1) = 0, o1(1) = 0, o2(1) = 1, o3(1) = 2,
o4(1) = 2, o5(1) = 3. Observe that the above values are non-decreasing.

It is not hard to prove that, for each n, the unique generator of An is 1,
its unique idempotent is 2n, and we have 2n ∗n a = a and a ∗n 2n = 2n for
every a.

An important point is the existence of a close connection between the
tables An and An+1 for every n (we write ∗n for the multiplication in An):

3.5 Lemma.

(i) For each n, the mapping a �→ amod 2n is a surjective morphism of An+1

onto An.

(ii) For every n, and every a with 1 � a � 2n, there exists a number θn+1(a)
with 0 � θn+1(a) � 2on(a) and θn+1(2n) = 0 such that, for every b with
1 � b � 2n, we have

a ∗n+1 b = a ∗n+1 (2n + b) =

{
a ∗n b for b � θn+1(a),
a ∗n b + 2n for b > θn+1(a),

(2n + a) ∗n+1 b = (2n + a) ∗n+1 (2n + b) = a ∗n b + 2n.

For instance, the values of the mapping θ4 are

a 1 2 3 4 5 6 7 8
θ4(a) 1 1 2 4 2 2 1 0

.

We obtain in this way a short description of An: the above 8 values contain
all information needed for constructing the table of A4 (16 × 16 elements)
from that of A3.
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The LD-systems An play a fundamental role among finite LD-systems. In
particular, it is shown in [12] how every LD-system with one generator can be
obtained by various explicit operations (analogous to products) from a well-
defined unique table An. Let us mention that as an LD-system An admits the
presentation 〈g | g[m+1] = g〉 for every number m of the form 2n(2p+1), and
that the structure (An, ∗) can be enriched with a second binary operation so
as to become an LD-monoid:

3.6 Proposition. There exists a unique associative product on An that turns
(An, ∗, ·) into an LD-monoid, namely the operation defined by

a · b = (a ∗ (b + 1))− 1 for b < 2n, a · b = a for b = 2n. (11.17)

3.2. Using Elementary Embeddings

In order to establish a connection between the tables An of the previous
section and the finite quotients of Iter(j) described in Sect. 1.4, we shall use
the following characterization:

3.7 Lemma. Assume that S is an LD-system admitting a single generator g
satisfying g[2n+1] = g and g[a] �= g for a � 2n. Then S is isomorphic to An.

Proof. Assume that S is an LD-system generated by an element g satisfying
the above conditions. A double induction gives, for a, b � 2n, the equality
g[a] ∗g[b] = g[a∗b], where a∗ b refers to the product in An. So the set of all left
powers of g is closed under product, and S, which has exactly 2n elements,
is isomorphic to An. �

We immediately deduce from Theorem 1.22:

3.8 Proposition (Laver [19]). For j : Vλ ≺ Vλ, the quotient of Iter(j) under
critn(j)-equivalence is isomorphic to An.

Under the previous isomorphism, the element a of An is the image of the
class of the embedding j[a], and, in particular, 2n is the image of the class
of j[2n], which is also the class of the identity map.

By construction, if S is an LD-system, and a is an element of S, there
exists a well-defined evaluation for every term t in T1 when the variable x is
given the value a. We shall use t(1)An , or simply t(1), for the evaluation in An

of a term t(x) of T1 at x = 1, and t(j) for the evaluation of t(x) in Iter(j) at
x = j. With this notation, it should be clear that, for every term t(x), the
image of the critn(j)-equivalence class of t(j) in An under the isomorphism
of Proposition 3.8 is t(1)An .

The previous isomorphism can be used to obtain results about the iter-
ations of an elementary embedding. For instance, let us consider the ques-
tion of determining which left powers of j are crit4(j)-approximations of
j◦j and of j[3]. By looking at the table of the LD-monoid A4, we obtain
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A4 |= 1◦1 = 11, and A4 |= 1[3] = 12. We deduce that j◦j is crit4(j)-equivalent
to j[11] and j[3] is crit4(j)-equivalent to j[12].

The key to further results is the possibility of translating into the language
of the finite tables An the values of the critical ordinals associated with the
iterations of an elementary embedding.

3.9 Proposition. Assume j : Vλ ≺ Vλ. Then, for every term t and for
n � m � 0 and n � a � 1,

(i) crit(t(j)) � critn(j) is equivalent to An |= t(1) = 2n.

(ii) crit(t(j)) = critn(j) is equivalent to An+1 |= t(1) = 2n.

(iii) t(j)(critm(j)) = critn(j) is equivalent to An+1 |= t(1) ∗ 2m = 2n.

(iv) j[a](critm(j)) = critn(j) is equivalent having the period of a jump from
2m to 2m+1 between An and An+1.

Proof. (i) By definition, crit(t(j)) � critn(j) is equivalent to t(j) being
critn(j)-equivalent to the identity mapping, hence to the image of t(j) in An

being the image of the identity, which is 2n.
(ii) Assume crit(t(j)) = critn(j). Then we have crit(t(j)) � critn(j) and

crit(t(j)) �� critn+1(j), so, by (i), An |= t(1) = 2n and An+1 �|= t(1) = 2n+1.
Now An |= t(1) = 2n implies An+1 |= t(1) = 2n or 2n+1, so 2n is the only
possible value here. Conversely, An+1 |= t(1) = 2n implies An |= t(1) = 2n

and An+1 �|= t(1) = 2n+1, so, by (i), crit(t(j)) � critn(j) and crit(t(j)) ��
critn+1(j), hence crit(t(j)) = critn(j).

(iii) As critm(j) is the critical ordinal of j[2m], we have t(j)(critm(j)) =
crit(t(j)[j[2m]]). By (ii), crit(t(j)[j[2m]]) = critn(j) is equivalent to An+1 |=
t(1) ∗ 1[2m] = 2n. Now we have An+1 |= 1[2m] = 2m for n � m.

(iv) The image of j[a] is a both in An and An+1, hence (iii) tells us that
j[a](critm(j)) = critn(j) is equivalent to An+1 |= a ∗ 2m = 2n. If the latter
holds, the period p of a in An+1 is 2m+1: indeed, An+1 |= a ∗ 2m < 2n+1

implies p > 2m, while 2 × 2n = 2n+1 implies p � 2 × 2m. Conversely,
assume that the period of a is 2m in An and 2m+1 in An+1. We deduce
An |= a ∗ 2m = 2n and An+1 �|= a ∗ 2m = 2n+1, so the only possibility is
An+1 |= a ∗ 2m = 2n. �

For instance, we can check A3 |= 1[3] = 4, and A5 |= 1[4] = 16. Using
the dictionary, we deduce that the critical ordinal of j[3] is crit2(j), while the
critical ordinal of j[4] is crit4(j). Also, we find A4 |= 4 ∗ 4 = 8, which implies
that j[4] maps crit2(j) to crit3(j)—as can be established directly. Similarly,
we have A5 |= 1 ∗ 4 = 16, corresponding to j(crit2(j)) = crit4(j). As for (iv),
we see that the period of 1 jumps from 1 to 2 between A1 and A2, that
it jumps from 2 to 4 between A2 and A3, and that it jumps from 4 to 8
between A4 and A5. We deduce that, if j is an elementary embedding of Vλ

into itself, then j maps crit0(j) to crit1(j), crit1(j) to crit2(j), and crit2(j)
to crit4(j), i.e., we have κ2 = γ4 with the notations of Sect. 1.6. Similarly,
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the period of 3 jumps from 8 to 16 between A5 and A6: we deduce that j[3]
maps crit3(j) to crit5(j).

By Proposition 3.9(iii): ĵ(m) = n is equivalent to An+1 |= 1 ∗ 2m = 2n.
As the latter condition does not involve j, we deduce

3.10 Corollary. For j : Vλ ≺ Vλ, the mappings ĵ and j̃ do not depend on j.

In the previous examples, we used the connection between the iterates of
an elementary embedding and the tables An to deduce information about
elementary embeddings from explicit values in An. We can also use the
correspondence in the other direction, and deduce results about the tables An

from properties of the elementary embeddings.
Now, the existence of the function ĵ and, therefore, of its iterate j̃, which

we have seen is a direct consequence of the Laver-Steel theorem, translates
into the following asymptotic result about the periods in the tables An. We
recall that on(a) denotes the integer such that the period of a in An is 2on(a).

3.11 Proposition (Laver). Assume Axiom (I3). Then, for every a, the
period of a in An tends to infinity with n. More precisely, for j : Vλ ≺ Vλ,

on(a) � j̃(r) if and only if n � j̃(r + 1) (11.18)

holds for r � a. In particular, (11.18) holds for every r in the case a = 1.

Proof. Assume first a = 1. Then j maps critj̃(r)(j) to critj̃(r+1)(j) for every r.
Hence, by Proposition 3.9(iv), the period of 1 doubles from 2j̃(r) to 2j̃(r)+1

between Aj̃(r+1) and Aj̃(r+1)+1. So we have

oj̃(r+1)(1) = j̃(r) and oj̃(r+1)+1(1) = j̃(r) + 1,

which gives (11.18). Assume now a � 2. By Lemma 1.13, we have (j[a])[r] =
j[r+1] for r � a, so the critical ordinal of (j[a])[r] is critj̃(r)(j). Hence, for
r � a, the embedding j[a] maps critj̃(r)(j) to critj̃(r+1)(j), and the argument
is as for a = 1. �

We conclude with another result about the periods in the tables An.

3.12 Proposition (Laver). Assume Axiom (I3). Then, for every n, the
period of 2 in An is at least the period of 1.

Proof. Assume that the period of 1 in An is 2m. Let n′ be the largest integer
such that the period of 1 in An′ is 2m−1. By construction, the period of 1
jumps from 2m−1 to 2m between An′ and An′+1. Assume that j is a nontrivial
elementary embedding of a rank into itself. By Proposition 3.9(iv), j maps
critm(j) to critn′ (j). Now, by Proposition 1.10, j[j] maps critm(j) to some
ordinal of the form critn′ ′ (j) with n′ ′ � n′. This implies that the period of 2
jumps from 2m−1 to 2m between An′ ′ and An′ ′+1. By construction, we have
n′ ′ � n′ < n, hence the period of 2 in An is at least 2m. �
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3.3. Avoiding Elementary Embeddings

Once again, the situation of Propositions 3.11 and 3.12 is strange, as it is not
clear why any large cardinal hypothesis should be involved in the asymptotic
behavior of the periods in the finite LD-systems An. So we would either get
rid of the large cardinal hypothesis, or prove that it is necessary.

We shall mention partial results in both directions. In the direction of
eliminating the large cardinal assumption, i.e., of getting arithmetic proofs,
Dougherty and Aleš Drápal have proposed a scheme that essentially con-
sists in computing the rows of (sufficiently many) elements 2p − a in An

using induction on a, which amounts to constructing convenient families of
homomorphisms between the An’s. Here we shall mention statements corre-
sponding to the first two levels of the induction:

3.13 Theorem (Drápal [11]).

(i) For every d, and for 0 � m � 2d + 1, b �→ 22d

b defines an injective ho-
momorphism of Am into Am+2d ; it follows that, for 2d � n � 2d+1 + 1,
the row of 22d − 1 in An is given by

(22d

− 1) ∗n b = 22d

b.

(ii) For every d, and for 0 � m � 22d+1
, the mapping fd defined by fd :

2i �→ 2(i+1)2d − 2i2d

and fd(
∑

bi2i) =
∑

bifd(2i) defines an injective
homomorphism of Am into Am2d ; it follows that, for 0 � n � 22d+1+d

such that 2d divides n, the row of 22d − 2 in An is given by

(22d

− 2) ∗n b = fd(b).

So far, the steps a � 4 have been completed, but the complexity quickly
increases, and whether the full proof can be completed remains open.

3.4. Not Avoiding Elementary Embeddings?

We conclude with a result in the opposite direction:

3.14 Theorem (Dougherty-Jech [9]). It cannot proved in PRA (Primitive
Recursive Arithmetic) that the period of 1 in the table An goes to infinity
with n.

The idea is that enough of the computations of Sect. 1.6 can be performed
in PRA to guarantee that, if the period of 1 in An tends to infinity with n,
then some function growing faster than the Ackermann function provably
exists.

Assume j : Vλ ≺ Vλ. For every term t in T1, the elementary embedding t(j)
acts on the family {critn(j) | n ∈ ω}, and, as was done for j, we can associate
with t(j) an increasing injection t̃(j) : ω → ω by

t̃(j)(m) = n if and only if t(j)(critm(j)) = critn(j).
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If t and t′ are LD-equivalent terms, we have t(j) = t′(j), hence t̃(j) = t̃′(j),
so, for a in the free LD-system F1, we can define f j

a to be the common value
of t̃(j) for t representing a. We obtain in this way an F1-indexed family of
increasing injections of ω to itself, distinct from identity, and, by construction,
the equality

crit(f j
a∗b) = f j

a(crit(f j
b )) (11.19)

is satisfied for all a, b in F1, where we define crit(f) to be the least m satisfying
f(m) > m. The sequence (f j

a | a ∈ F1) is the trace of the action of j on
critical ordinals, and we shall see it captures enough of the combinatorics of
elementary embeddings to deduce the results of Sect. 1.6.

Let us try to construct directly, without elementary embedding, some
similar family of injections on ω satisfying (11.19). To this end, we can resort
to the Laver tables. Indeed, by Proposition 3.9, the condition t(j)(critm(j)) =
critn(j) in the definition of t̃(j) is equivalent to An+1 |= t(1) ∗ 2m = 2n. So
we are led to

3.15 Definition (PRA). For a in F1, we define fa to be the partial mapping
on ω such that fa(m) = n holds if, for some term t representing a, we have
An+1 |= t(1) ∗ 2m = 2n.

As An+1 is an LD-system, the value of t(1)∗2m computed in An+1 depends
on the LD-class of t only, so the previous definition is non-ambiguous. If there
exists a j : Vλ ≺ Vλ, then, for each a in F1, the mapping fa coincides with f j

a ,
and, therefore, each fa is a total increasing injection of ω to ω, distinct from
identity, and the fa’s satisfy the counterpart of (11.19). In particular, we can
state

3.16 Proposition (ZFC + I3). For each a in F1, the function fa is total.

Some of the previous results about the fa’s can be proved directly. Let us
define a partial increasing injection on ω to be an increasing function of ω
into itself whose domain is either ω, or a finite initial segment of ω. We shall
say that a partial increasing injection f is nontrivial if f(m) > m holds for
at least one m, and that m is the critical integer of f , denoted m = crit(f),
if we have f(n) = n for n < m, and f(m) �= m, i.e., either f(m) > m holds
or f(m) is not defined.

For f a partial increasing injection on ω, and m,n in ω, we write f(m) �̃ n
if either f(m) is defined and f(m) � n holds, or f(m) is not defined; we write
crit(f) �̃ m for ∀n < m (f(n) = n). Then f(m) = n is equivalent to the
conjunction of f(m) �̃ n and f(m) ��̃ n + 1, and crit(f) = m is equivalent to
the conjunction of crit(f) �̃ m and crit(f) ��̃ m + 1.

3.17 Lemma (PRA).

(i) For every p, we have crit(fx[2p]) = p.

(ii) For t representing a, and for n � m, fa(m) �̃ n is equivalent to An |=
t(1) ∗ 2m = 2n.
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(iii) The mapping fa is a partial increasing injection.

(iv) The relation crit(fa) �̃ n is equivalent to An |= t(1) = 2n.

(v) If crit(fb) and fa(crit(fb)) are defined, so is crit(fa∗b) and we have
crit(fa∗b) = fa(crit(fb)).

Proof. (i) First, fx[2p](m) = m is equivalent to Am+1 |= 1[2p] ∗ 2m = 2m by
definition. This holds for m < p, as we have Am+1 |= 1[2p] = 2m+1, and
Am+1 |= 2m+1 ∗ x = x for every x. On the other hand, Am+1 |= 1[2p] = 2m

holds, hence so does Am+1 |= 1[2p] ∗ 2m = 2m+1 �= 2m. So crit(fx[2p]) exists,
and it is p.

(ii) If fa(m) = p holds for some p � n, Ap+1 |= t(1) ∗ 2m = 2p+1, hence
An |= t(1) ∗ 2m = 2n by projecting. And fa(m) not being defined means
that there exists no p satisfying Ap+1 |= t(1) ∗ 2m < 2p+1: in other words
Ap+1 |= t(1) ∗ 2m = 2p+1 for p + 1 � m, and, in particular, for p + 1 = n.

(iii) Assume fa(m+1) = n+1. Then An+2 |= t(1)∗2m+1 = 2n+1 holds, i.e.,
t(1) has period 2m+2 at least in An+2. By projecting from An+2 to An+1, we
deduce that t(1) has period 2m+1 at least in An+1, hence An+1 |= t(1)∗2m �
2n. If the latter relation is an equality, we deduce fa(m) = n. Otherwise, by
projecting, we find some integer p < n for which Ap+1 |= t(1) ∗ 2m = 2p, and
we deduce fa(m) = p. In both cases, fa(m) exists, and its value is at most n.
This shows that the domain of fa is an initial segment of ω, and that fa is
increasing.

(iv) Assume crit(fa) �̃ n, i.e., fa(m) = m holds for m < n. We have
fa(n − 1) ��̃ n, hence An |= t(1) ∗ 2n−1 � 2n−1, whence An |= t(1) = 2n, as
An |= a ∗ 2n−1 = 2n holds for a < 2n. Conversely, assume An |= t(1) = 2n,
and m < n. By projecting from An to Am+1, we obtain Am+1 |= t(1) = 2m+1,
hence Am+1 |= t(1) ∗ 2m = 2m < 2m+1, which gives fa(m) ��̃ m + 1 by (ii).
As fa(m) �̃ m holds by (ii), we deduce fa(m) = m.

(v) Let a, b ∈ F1 be represented by t1 and t2 respectively. Assume first
fa(p) �̃ n and crit(fb) �̃ p. By (iv), the hypotheses are An |= t1(1)∗2p = 2n,
and Ap |= t2(1) = 2p. By projecting from An to Ap, we deduce that t2(1)An

is a multiple of 2p. Hence, the hypothesis An |= t1(1) ∗ 2p = 2n implies
An |= (t1 ∗ t2)(1) = t1(1) ∗ t2(1) = 2n, hence, by (iv), crit(fa∗n) �̃ n.

Assume now fa(p) ��̃ n + 1 and crit(fb) ��̃ p + 1. The hypotheses are
An+1 |= t1(1) ∗ 2p �= 2n+1, i.e., the period of t1(1) in An+1 is 2p+1 at least,
and Ap+1 |= t2(1) �= 2p+1, hence Ap+1 |= t2(1) � 2p. We cannot have
An+1 |= t2(1) � 2p+1 because, by projecting from An+1 to Ap+1, we would
deduce Ap+1 |= t2(1) = 2p+1, contradicting our hypothesis. Hence we have
An+1 |= t2(1) � 2p, and the hypothesis that the period of t1(1) in An+1 is
2p+1 at least implies An+1 |= t1(1) ∗ t2(1) � 2n, hence crit(fa∗b) ��̃ n + 1. So
the conjunction of fa(p) = n and crit(fb) = p implies crit(fa∗b) = n. �

The only point we have not proved so far is that the function fa be total.
Before going further, let us observe that the latter property is connected
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with the asymptotic behavior of the periods in the tables An, as well as with
several equivalent statements:

3.18 Proposition (PRA). The following statements are equivalent:

(i) For each a in F1, the function fa is total.

(ii) For every term t, the period of t(1) in An goes to infinity with n—so,
in particular, the period of every fixed a in An goes to infinity with n.

(iii) The period of 1 in An goes to infinity with n.

(iv) For every r, there exists an n satisfying An |= 1[r] < 2n.

(v) The subsystem of the inverse limit of all An’s generated by (1, 1, . . .) is
free.

Proof. Let t be an arbitrary term in T1, and a be its class in F1. Saying that
the period of t(1) in An goes to ∞ with n means that, for every m, there
exists n with An |= t(1)∗2m < 2n, i.e., fa(m) ��̃ n. If the function fa is total,
such an n certainly exists, so (i) implies (ii). Conversely, if (ii) is satisfied,
the existence of n satisfying fa(m) ��̃ n implies that fa(m) is defined, so (i)
and (ii) are equivalent, and they imply (iii), which is the special case t = x
of (ii).

Assume now (iii). By the previous argument, the mapping fx is total. If
fa and fb are total, then, by Lemma 3.17(v), crit(fb[n]) exists for every n,
and so does fa(crit(fb[n])), which is crit(f(a∗b)[n]). This proves that fa∗b(m)
exists for arbitrary large values of m, and this is enough to conclude that
fa∗b is total. So, inductively, we deduce that fa is total for every a, which
is (i).

Then, we prove that (ii) implies (iv) using induction on r � 1. The result is
obvious for r = 1. Let p be maximal satisfying Ap |= 1[r−1] = 2p, which exists
by induction hypothesis. By (ii), we have An |= 1 ∗ 2p < 2n for some n > p,
so the period of 1 in An is a multiple of 2p+1. By hypothesis, we have Ap+1 |=
1[r−1] = 2p, hence An |= 1[r−1] = 2p mod 2p+1, so 2p is the largest power of 2
that divides 1[r−1] computed in An. As the period of 1 in An is a multiple
of 2p+1, we obtain An �|= 1 ∗ 1[r−1] = 2n, so An |= 1[r] = 1 ∗ 1[r−1] < 2n.

Assume now (iv), and let t be an arbitrary term. By Lemma 2.6(i), there
exist q, r satisfying t[r] =LD x[q]. By (iv), An |= 1[q] = t(1)[r] < 2n for some n,
hence An |= t(1) < 2n, since every right power of 2n in An is 2n. Hence (iv)
implies (iii).

Assume (i), and let t, t1, . . . , tp be arbitrary terms. By (ii), we can find n
such that none of the terms t, t∗t1, (t∗t1)∗t2, . . . , (. . . (t∗t1) . . .)∗tp evaluated
at 1 in An is 2n: this is possible since An |= t(1) �= 2n implies Am |= t(1) �= 2m

for m � n. So we have

An |= t(1) < (t ∗ t1)(1) < ((t ∗ t1) ∗ t2)(1) < · · ·
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and, in particular, An |= t(1) �= (· · · (t ∗ t1)∗) · · · ∗ tp)(1). This implies that
left division in the sub-LD-system of the inverse limit of all An’s generated
by (1, 1, . . .) has no cycle, and, therefore, by Laver’s criterion, this LD-system
is free. Conversely, assume that (i) fails, i.e., there exists a p � 1 such that
An |= 1 ∗ 2p = 2n for every n. Let α denote the sequence (1, 1, . . .) in the
inverse limit. Then we have α[2p] = (1, 2, . . . , 2p, 2p, . . .) and

α ∗ α[2p+1] = (α ∗ α[2p]) ∗ (α ∗ α) = α ∗ α.

The sub-LD-system generated by α cannot be free, since g ∗ g = g ∗ g[2p+1]

does not hold in the free LD-system generated by g. So (v) is equivalent
to (i)–(iv). �

The status of the equivalent statements of Proposition 3.18 remains cur-
rently open. However, the results of Sect. 1.6 enable us to say more. We have
seen that the function j̃ associated with an elementary embedding j grows
faster than any primitive recursive function. In terms of the functions f j

a , we
have j̃(n) = (f j

x)n(0). As the functions f j
a and fa coincide when the former

exist, it is natural to look at the values fn
x (0). The point is that we can ob-

tain for this function the same lower bound as for its counterpart f j
x without

using any set theoretic hypothesis:

3.19 Proposition (PA). Assume that, for each a, the function fa is to-
tal. Then the function n �→ fn

a (0) grows faster than any primitive recursive
function.

Proof. We consider the proof of Proposition 1.32, and try to mimic it using fa

and critical integers instead of f j
a and critical ordinals. This is possible,

because the only properties used in Sect. 1.6 are the left self-distributivity
law and Relation (11.19) about critical ordinals. First, the counterpart of
Lemma 1.33 is true since every value of fa is an increasing injection and its
domain is an initial interval of ω. Then the definitions of a base and of a
realizable sequence can be translated without any change. Let us consider
Lemma 1.36. With our current notation, the point is to be able to deduce
from the hypothesis

fb : � �→ m0 �→ m1 �→ · · · �→ mp (11.20)

the conclusion

fa∗b : � �→ fa(m0) �→ fa(m1) �→ · · · �→ fa(mp). (11.21)

An easy induction on r gives the equality (fa)n(crit(fa)) = crit(fa[n+1]). Now
(11.20) can be restated as

crit(fb) = m0, crit(fb[2]) = m1, . . . , crit(fb[n+1]) = mn.

By applying fa and using Lemma 3.17(v), we obtain

crit(fa∗b) = fa(m0), . . . , crit(fa∗b[n+1]) = fa(mn).



Bibliography 773

By (LD), we have fa∗b[n] = f(a∗b)[n] , and therefore (11.20) implies (11.21).
So the proof of Lemma 1.36 goes through in the framework of the fa’s, and

so do those of the other results of Sect. 1.6. We deduce that, for n > 3, there
are at least 2h1(h2(...(hn−2(1))...)) critical integers below the number fn

x (0),
where hp are the fast growing function of Sect. 1.6, and, finally, we conclude
that the function n �→ fn

x (0) grows at least as fast as the Ackermann function.
�

It is then easy to complete the proof of Theorem 3.14:

Proof. By Proposition 3.18, proving that the period of 1 in An goes to infinity
with n is equivalent (in PRA) to proving that the functions fa are total. By
Proposition 3.19, such a proof would also give a proof of the existence of a
function growing faster than the Ackermann function. The latter function is
not primitive recursive, and, therefore, such a proof cannot exist in PRA. �

As the gap between PRA and Axiom (I3) is large, there remains space for
many developments here.

To conclude, let us observe that, in the proof of Proposition 3.19, the
hypothesis that the injections are total is not really used. Indeed, we establish
lower bounds for the values, and the precise result is an alternative: for each r,
either the value of fn

x (0) is not defined, or this value is at least some explicit
value. In particular, the result is local, and the lower bounds remain valid
for small values of r even if fn

x (0) is not defined for some large n. So, for
instance, we have seen in Sect. 1.6 that, for j : Vλ ≺ Vλ, we have j̃(4) � 256,
which, when translated into the language of An, means that the period of 1
in An is 16 for every n between 9 and 256 at least. The above argument
shows that this lower bound remains valid even if Axiom (I3) is not assumed.
The same result is true with the stronger inequality of Proposition 1.40, so
we obtain

3.20 Theorem (Dougherty). If it exists, the first integer n such that the
period of 1 in An reaches 32 is at least fAck

9 (fAck
8 (fAck

8 (254))).

We refer to [8, 10, 13] (and to unpublished work by Laver) for many more
computations about the critical ordinals of iterated elementary embeddings.
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1. Introduction

In this chapter we present a survey of the area of set theory in which iter-
ated forcing interacts with elementary embeddings. The original plan was to
concentrate on forcing constructions which preserve large cardinal axioms,
particularly reverse Easton iterations. However this plan proved rather re-
strictive, so we have also treated constructions such as Baumgartner’s con-
sistency proof for the Proper Forcing Axiom. The common theme of the
constructions which we present is that they involve extending elementary
embeddings. We have not treated the preservation of large cardinal axioms
by “Prikry-type” forcing, for example by Radin forcing or iterated Prikry
forcing. For this we refer the reader to Gitik’s chapter in this Handbook.

After some preliminaries, the bulk of this chapter consists of fairly short
sections, in each of which we introduce one or two technical ideas and give
one or more examples of the ideas in action. The constructions are generally
of increasing complexity as we proceed and have more techniques at our
disposal. Especially at the beginning, we have adopted a fairly leisurely and
discursive approach to the material. The impatient reader is encouraged to
jump ahead and refer back as necessary. At the end of this introduction there
is a brief description of the contents of each section.

Here is a brief review of our notation and conventions. We defer the
discussion of forcing to Sect. 5.

• P (X) is the power set of X. If X is a subset of a well-ordered set then
ot(X) is the order-type of X. Vα is the set of sets with rank less than
α. tc(X) is the transitive closure of X. Hθ is the set of x such that
tc({x}) has cardinality less than θ.

• For τ a term and M a model, τM or τM denotes the result of interpreting
the set-theoretic term τ in the model M , for example V M

α or 2ω
M . When

τM = τ ∩M we sometimes write “τ ∩M” instead of “τM”, especially
when τ is a term of the form “P (X)” or “Vα”.
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• f is a partial function f from X to Y (f : X � Y ) if and only if
f ⊆ X × Y and for every a ∈ X there is at most one b ∈ Y with
(a, b) ∈ f . f is a total function from X to Y (f : X → Y ) if and only if
for every a ∈ X there is exactly one b ∈ Y with (a, b) ∈ f . As usual we
write “f(a) = b” for “(a, b) ∈ f”. idX is the identity function on X.

• We use On for the class of ordinals, Card for the class of cardinals, Lim
for the class of limit ordinals, Reg for the class of regular cardinals and
Sing for the class of singular ordinals.

• If α is a limit ordinal then cf(α) is the cofinality of α. If δ is a regular
cardinal then Cof(δ) is the class of limit ordinals α such that cf(α) = δ.
Expressions like “Cof(<κ)” have the expected meaning.

• |X| is the cardinality of X.

• XY is the set of all functions from X to Y . If κ and λ are cardinals
then κλ = |λκ|.

• We will make the following abuse of notation. When M and N are
transitive models with M ⊆ N we will write “N |= βM ⊆ M” to
mean that every β-sequence from M which lies in N actually lies in M ,
even in situations where possibly M is not definable in N . A similar
convention applies when we write “N |= βOn ⊆M”.

• [X]λ is the set of subsets of X of cardinality λ. Expressions like [X]≤λ

have the obvious meaning. If κ is regular and κ ≤ λ then Pκλ = {a ∈
[λ]<κ : a∩ κ ∈ κ}; this is a departure from the more standard notation
in which the terms “Pκλ” and “[λ]<κ” are synonymous.

• A tree is a structure (T,<T ) where <T is a well-founded strict ordering
on T , and each element of T has a linearly ordered set of predecessors.
Tα is the set of elements of height α, T �α is the set of elements of height
less than α.

• A tree is normal if and only if it is nonempty, has a unique minimal
element, and has the properties that every element has two immediate
successors and that every element of limit height is determined uniquely
by the set of its predecessors in the tree. For κ regular a κ-tree is a
normal tree of height κ, in which every level has size less than κ.

• ωα is the αth infinite cardinal.

• Throughout we use “inaccessible” to mean “strongly inaccessible” and
“Mahlo” to mean “strongly Mahlo”.

• An ideal on X is a non-empty family of subsets of X which is downwards
closed and closed under finite unions; a filter on X is a non-empty
family of subsets of X which is upwards closed and closed under finite
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intersections. An ideal I is proper if X /∈ I, and a filter F is proper if
∅ /∈ F ; most of the ideals and filters appearing in this chapter will be
proper. If I is an ideal on X then {X \ A : A ∈ I} is a filter on X,
which is called the dual filter and will often be denoted by I∗; similarly
if F is a filter then F ∗ = {X \A : A ∈ F} is an ideal.

Ideals often arise in measure theory, where the class of measure zero
sets for a (complete) measure on X is an ideal. If I is an ideal on X
then we say that A ⊆ X is positive for I or I-positive iff A /∈ I, and we
often write I+ for the class of positive sets; we also sometimes say that
A is measure one for I if A ∈ I∗. Similarly if F is a filter we say A is
F -positive iff A /∈ F ∗, and is F -measure one iff A ∈ F .

• An ultrafilter on X is a maximal proper filter on X, or equivalently a
filter U such that for all A ⊆ X exactly one of the sets A,X \A is in U .
An ultrafilter is principal if and only if it is of the form {A ⊆ X : a ∈ A}
for some a ∈ X.

• If I is an ideal and λ is a cardinal, then I is λ-complete if and only
if I is closed under unions of length less than λ; similarly a filter F is
λ-complete if and only if F is closed under intersections of length less
than λ.

If κ is a regular cardinal then a measure on κ is a κ-complete non-
principal ultrafilter on κ. The measure U is normal if and only if it
is closed under diagonal intersections, that is for every sequence 〈Xi :
i < κ〉 with Xi ∈ U for all i < κ, the diagonal intersection {β :
∀α < β β ∈ Xα} of the sequence lies in U .

The prerequisites for reading this chapter are some familiarity with iter-
ated forcing and the formulation of large cardinal axioms in terms of elemen-
tary embeddings. Knowledge of the material in Baumgartner’s survey paper
on iterated forcing [6, Sects. 0, 1, 2 and 5] and Kanamori’s book on large
cardinals [43, Sects. 5, 22, 23, 24 and 26] should be more than sufficient.

I learned much of what I know about elementary embeddings and forcing
from Hugh Woodin, and would like to thank him for many patient expla-
nations. I have also profited greatly from conversations with Uri Abraham,
Arthur Apter, Jim Baumgartner, Matt Foreman, Sy Friedman, Moti Gitik,
Aki Kanamori, Menachem Magidor, Adrian Mathias and Saharon Shelah.

Several people have been kind enough to read drafts of this chapter and
give me their comments. Thanks in particular to Arthur Apter, Matt Fore-
man, Sy Friedman, Radek Honzik, Aki Kanamori, John Krueger, Peter Lums-
daine and Ernest Schimmerling; apologies to anyone whom I have omitted
from this list.

We conclude this introduction with the promised road map of the chapter.

• Section 2 discusses basic facts about elementary embeddings.
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• Section 3 describes how we approximate elementary embeddings by
ultrapowers and more generally by extenders, a special kind of limit
ultrapower.

• Section 4 reviews some basic large cardinal axioms and their formula-
tion in terms of elementary embeddings.

• Section 5 contains a discussion of the basics of forcing. Our conven-
tion (following Kunen [46]) is that a notion of forcing is a preordering
with a designated largest element; we discuss the relationship with the
other standard approaches to forcing. We review the basic closure, dis-
tributivity and chain condition properties and introduce some variants
(the Knaster property and strategic closure) which are important later.
We also introduce some basic forcing posets, Cohen forcing and the
standard cardinal collapsing posets.

• Section 6 defines four forcing posets which enable us to distinguish
different closure properties and will all play various roles later in the
chapter. These are the posets to add a Kurepa tree, a non-reflecting
stationary set, a square sequence and finally a club set disjoint from a
prescribed co-stationary set in ω1.

• Section 7 reviews iterated forcing, essentially following the approach
of Baumgartner’s survey [6]. We discuss the preservation of various
closure and chain conditions and the idea of a factor iteration.

• Section 8 describes how to build generic objects over sufficiently closed
inner models for sufficiently closed forcing posets. We apply this to
construct a variant form of Prikry forcing first isolated by Foreman
and Woodin in their work on the global failure of GCH [20].

• Section 9 proves a key lemma of Silver’s on lifting elementary embed-
dings to generic extensions, discusses the properties of the lifted em-
beddings and gives some easy applications.

• Section 10 discusses the key idea of a generic elementary embedding,
constructs some examples and applies them to a discussion of stationary
reflection at small cardinals.

• Section 11 describes Silver’s idea of iterating forcing with Easton sup-
ports. As a first application we sketch a simpler proof of a theorem by
Kunen and Paris [47], that under GCH a measurable cardinal κ may
carry κ++ normal measures.

• Section 12 introduces another key idea of Silver’s, that of a master
condition. As a first example of a master condition argument we give
something close to Silver’s original consistency proof for the failure of
GCH at a measurable cardinal, starting from the hypothesis that there
is a model of GCH in which some κ is κ++-supercompact.
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• Section 13 describes a technique, which is due to Magidor, for doing
without a master condition under some circumstances. As an example
we redo the failure of GCH at a measurable cardinal from the hypothesis
that there is a model of GCH in which some κ is κ+-supercompact.

• Section 14 describes how we may absorb κ-closed forcing posets into a
large enough κ-closed collapsing poset, so that the quotient is also κ-
closed. We then apply this to prove a theorem of Kunen [45] about sat-
urated ideals, a theorem of the author from joint work with Džamonja
and Shelah [13] about strong non-reflection, and Magidor’s theorem [55]
that consistently every stationary set in ωω+1 reflects.

• Section 15 discusses how to transfer generic filters between models of set
theory, and sketches an application to constructing generalized versions
of Prikry forcing.

• Section 16 shows that we may apply the ideas in this chapter in the
context of weak large cardinal axioms such as weak compactness, and
sketches a proof that GCH may first fail at a weakly compact cardinal.

• Section 17 proves two theorems of Jech, Magidor, Mitchell and Prikry
[41]. The first result is that ω1 may carry a precipitous ideal, the
second is that in fact the non-stationary ideal on ω1 may be precipi-
tous. The argument for the second result uses the absorption idea from
Sect. 14, and also involves iterating a natural forcing for shooting club
sets through stationary sets.

• Section 18 sketches the proof of Gitik’s result [23] that the precipitous-
ness of NSω2 is equi-consistent with a cardinal of Mitchell order two.

• Section 19 gives two more applications of iterated club shooting, Jech
and Woodin’s result [40] that NSκ�Reg can be κ+-saturated for a Mahlo
cardinal κ and Magidor’s result [55] that consistently every stationary
set of cofinality ω ordinals in ω2 may reflect at almost all points of
cofinality ω1.

• Section 20 discusses some variant collapsing posets which are often use-
ful, Kunen’s universal collapse [45] and the Silver collapse. We sketch
Kunen’s proof [45] that ω1 can carry an ω2-saturated ideal, starting
from the hypothesis that there is a huge cardinal.

• Section 21 sketches some results primarily due to Hamkins which put
limits on what we can achieve by reverse Easton forcing. As a sam-
ple application we sketch an easy case of Hamkins’ superdestructibility
theorem [32].

• Section 22 describes an idea of Laver’s for introducing a kind of univer-
sal generic object by forcing with a poset of terms. As an application we
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sketch an unpublished proof by Magidor [51] of his celebrated theorem
[52] that the least measurable cardinal can be strongly compact.

• Section 23 introduces the idea of analyzing iterations by term forcing.
As an example we introduce yet another collapsing poset and give a
version of Mitchell’s proof [57] that ω2 may have the tree property.

• Section 24 discusses how to build universal iterations using predic-
tion principles. We prove Laver’s theorem that supercompact cardinals
carry Laver diamonds, and use this to give Baumgartner’s proof for the
consistency of the Proper Forcing Axiom [15] and Laver’s proof that a
supercompact cardinal κ can be made indestructible under κ-directed
closed forcing [49].

• Section 25 introduces an idea due to Woodin for altering generic objects,
and then applies this to give Woodin’s consistency proof for the failure
of GCH at a measurable from an optimal assumption.

2. Elementary Embeddings

We will be concerned with elementary embeddings k : M −→ N where M
and N are transitive models of ZFC and k, M , and N are all classes of some
universe of set theory. It will not in general be the case that k or N are classes
of M or that N ⊆M . In particular we will be interested in the situation of a
“generic embedding” where j : V −→M ⊆ V [G] for V [G] a generic extension
of V , and j,M are defined in V [G].

This notion is straightforward if M and N are sets but one needs to be
a little careful when M and N are proper classes. We refer the reader to
Kanamori’s book [43, Sects. 5 and 19] for a careful discussion of the meta-
mathematical issues. From now on we will freely treat elementary embeddings
between proper classes as if those classes were sets, a procedure which can
be justified by the methods of [43]. We reserve the term “inner model” for a
transitive class model of ZFC which contains all the ordinals.

We start by recalling a few basic facts about elementary embeddings.

2.1 Proposition. Let M and N be transitive models of ZFC and let the
map k : M −→ N be elementary. Then

1. The pointwise image k“M is an elementary substructure of N , the
Mostowski collapse of the structure (k“M,∈) is M , and k is the in-
verse of the collapsing isomorphism from k“M to M .

2. k(α) ≥ α for all α ∈M ∩On.

3. If k�(β + 1) = idβ+1 and A ∈M with A ⊆ β, then k(A) = A.

Proof. Easy. �
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2.2 Proposition. Let M be a transitive model of ZFC, let x ∈ M and let
M |= “x ∈ Hλ+” where λ is an infinite M -cardinal. Then there is a set
A ⊆ λ such that A ∈ M and for any transitive model N of ZF, A ∈ N
implies that x ∈ N .

Proof. Let f ∈M be an injection from tc({x}) to λ, let G be Gödel’s pairing
function and let

A = {G(f(a), f(b)) : a, b ∈ tc({x}) and a ∈ b}.

If A ∈ N then N can compute x by forming the Mostowski collapse of the
well-founded extensional relation {(α, β) : G(α, β) ∈ A}, and then finding the
element of maximal rank in this set. �

We abbreviate the rather cumbersome assertion “A is a set of ordinals
such that {(γ, δ) : G(γ, δ) ∈ A} is a well-founded relation whose transitive
collapse is tc({x})” by “A codes x”. The assertions “A codes x” and “A
codes something” are both ΔZFC

1 and are thus absolute between transitive
models of ZFC.

2.3 Proposition. Let M and N be transitive models of ZFC and let the
map k : M −→ N be elementary. If k“(M ∩ On) is cofinal in N ∩ On then
exactly one of the following is true:

1. k = idM and M = N .

2. There exists a δ ∈M ∩On such that k(δ) > δ.

Proof. Suppose the second alternative fails, so that k�(M ∩ On) is the iden-
tity. Let x ∈ M and find a set of ordinals A ∈ M such that A codes x.
Then A = k(A) by Proposition 2.1, k(A) codes k(x) by elementarity, and so
k(x) = x. Since x was arbitrary, k = idM .

Since k = idM , M ∩ On = N ∩ On and V N
β = V N

k(β) = k(V M
β ) = V M

β for
all β ∈M ∩On. So M = N . �

From now on we will say that k : M −→ N is nontrivial if k �= idM .

2.4 Remark. It was crucial in Proposition 2.3 that k should map M ∩ On
cofinally into N ∩ On. For example the theory of sharps [43, Sect. 9] shows
that if 0# exists then Lω1 and Lω2 are models of ZFC and Lω1 ≺ Lω2 .

2.5 Remark. Let k : M −→ N be elementary, where M is an inner model
and N is transitive. Then N is an inner model, and the hypotheses of Propo-
sition 2.3 are satisfied.

If k : M −→ N is elementary then the least δ such that k(δ) > δ (if it
exists) is called the critical point of k and is denoted by crit(k). It is not
hard to see that crit(k) is a regular uncountable cardinal in M .

It is natural to ask how much agreement there must be between the models
M and N . The following proposition puts a lower bound on the level of
agreement.
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2.6 Proposition. If k : M −→ N is an elementary embedding between
transitive models of ZFC and crit(k) = δ, then HM

δ+ ⊆ N .

Proof. Let x ∈ HM
δ+ and let A ∈ M code x with A ⊆ δ. Then for α < δ we

have
α ∈ A ⇐⇒ k(α) ∈ k(A) ⇐⇒ α ∈ k(A),

so A = k(A) ∩ δ ∈ N . Therefore x ∈ N . �

In general we cannot say much more, as illustrated by the following two
examples. In Example 2.7 M = N , while in Example 2.8 M and N agree
only to the extent indicated by Proposition 2.6.

2.7 Example. Suppose that 0# exists. Then there is a nontrivial elementary
embedding k : L −→ L [43, Sect. 9].

2.8 Example. It is consistent (from large cardinals) that there exist inner
models M and N and an embedding k : M −→ N such that crit(k) = ωM

1 and
Vω+1 ∩M � Vω+1 ∩N . We will construct such an example in Theorem 10.2.

If the critical point is inaccessible in M we can say more:

2.9 Proposition. If k : M −→ N is an elementary embedding between
transitive models of ZFC, and crit(k) = δ where δ is inaccessible in M , then
Vδ ∩M = Vδ ∩N .

Proof. For α < δ, the set Vα ∩M is coded by a bounded subset of δ lying
in M . In particular it is fixed by k, so as α is also fixed by elementarity
Vα ∩M = Vα ∩N . �

In the theory of large cardinals we are most interested in embeddings of
the following type, where usually M will be an inner model.

2.10 Definition. An embedding k : M −→ N is definable if and only if k
and N are definable in M .

The analysis of these embeddings is due to Scott [61] and is summarized
in the following proposition.

2.11 Proposition. Let M and N be inner models and let k : M −→ N be a
nontrivial definable elementary embedding with crit(k) = δ. Let

U = {X ⊆ δ : X ∈M, δ ∈ k(X)}.

Then

1. U ∈M and M |= “U is a normal measure on δ”.

2. V M
δ+1 = V N

δ+1.

3. k�V M
δ = idV M

δ
.
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4. For all A ∈ V M
δ+1, A = k(A) ∩ V M

δ .

Proof. See [43, Sect. 5]. �

2.12 Remark. Neither of the embeddings from Examples 2.7 and 2.8 is
definable.

3. Ultrapowers and Extenders

It will be important for us to be able to describe embeddings between models
by ultrapowers and limit ultrapowers. We give a sketchy outline here and
refer the reader to [43, Sects. 19 and 26] for the details.

Let M be a transitive model of ZFC, let X ∈M and let U be an ultrafilter
on P (X)∩M . Then we may form Ult(M,U), the collection of U -equivalence
classes of functions f ∈ M with dom(f) = X. As usual we let [f ]U denote
the class of f , and for x ∈ M we let jU (x) = [fx]U where fx is the function
with domain X and constant value x. Ult(M,U) is made into a structure for
the language of set theory by defining

[f ]UE[g]U ⇐⇒ {x : f(x) ∈ g(x)} ∈ U,

and we make a mild abuse of notation by writing “Ult(M,U)” for the struc-
ture (Ult(M,U), E).

3.1 Remark. When M is an inner model [f ]U is typically a proper class,
which makes the definition of Ult(M,U) appear problematic. This can be
fixed by Scott’s trick in which [f ]U is redefined as the set of functions with
minimal rank which are equivalent to f modulo U . Similar remarks apply to
ultrapowers throughout this chapter.

Since M is a model of ZFC �Loś’s theorem holds, that is to say that for any
formula φ(x1, . . . , xn) and any functions F1, . . . , Fn ∈M with domain X,

Ult(M,U) |= φ([F1]U , . . . , [Fn]U )

if and only if
{x : M |= φ(F1(x), . . . , Fn(x))} ∈ U.

In particular jU is an elementary embedding from M to Ult(M,U). When
Ult(M,U) is well-founded we will identify it with its transitive collapse. The
following propositions are standard.

3.2 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC, let a ∈ N and let B ∈ M with a ∈ k(B). Let
Ea = {A ⊆ B : A ∈M,a ∈ k(A)}. Then

1. Ea is an ultrafilter on P (B)∩M . For notational convenience we define
Ma = Ult(M,Ea) and ja = jEa .
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2. If we define ka : Ma −→ N by ka([f ]Ea) = k(f)(a) then ka is a well-
defined elementary embedding and ka◦ja = k. ka and Ma do not depend
on the choice of B.

3. Ma is isomorphic via ka to Xa, where

Xa = {k(F )(a) : F ∈M, dom(F ) = B}.

4. Ma is well-founded and, when we identify it with its transitive collapse
ka, is the inverse of the transitive collapsing map on Xa.

5. If k is definable then Ea ∈M and ja is definable.

3.3 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC. Let a1 ∈ k(B1), a2 ∈ k(B2) and let E1, E2 be the
associated ultrafilters. Suppose that F : B2 −→ B1 is such that k(F )(a2) =
a1. Then F induces an elementary embedding

F ∗ : Ult(M,E1) −→ Ult(M,E2),

where F ∗([g]E1) = [g ◦ F ]E2 . Moreover jE2 = F ∗ ◦ jE1 .

3.4 Proposition. Let λ ∈ N ∩On be such that λ ≤ sup(k“(M ∩On)). For
each a ∈ [λ]<ω let μa be the least ordinal such that a ⊆ j(μa) and let

Ea = {A ⊆ [μa]|a| : A ∈M,a ∈ k(A)}.

Let Ma, ja, ka, and Xa be as in Proposition 3.2. If a, b ∈ [λ]<ω and a ⊆ b
then define

Fab(x) = {γ ∈ x : ∃γ∗ ∈ a ot(x ∩ γ) = ot(b ∩ γ∗)}

for x ∈ [μb]|b|. Then

1. Fab : [μb]|b| −→ [μa]|a| and k(Fab)(b) = a. We let jab denote the
embedding from Ma to Mb induced by Fab.

2. M0 = M , k0 = k, j0a = ja.

3. The system of structures Ma and embeddings jab is a directed system, so
has a direct limit M∞. There are elementary embeddings ja∞ : Ma −→
M∞ such that M∞ =

⋃
a ja∞[Ma] and jb∞ ◦ jab = ja∞.

4. There is an elementary embedding l : M∞ −→M such that l◦ja∞ = ka

for all a.

5. M∞ is isomorphic via l to X∞ =
⋃

a Xa, and l is the inverse of the
Mostowski collapsing map on X∞. In particular M∞ is well-founded.

6. If k is definable and M is an inner model then j0∞ is definable.
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If k : M −→ N is elementary where M and N are inner models then we
may make X∞ contain arbitrarily large initial segments of N by choosing
λ sufficiently large. M∞ is the transitive collapse of X∞, l is the inverse
of the collapsing map and l ◦ j0∞ = k. It follows that we may make j0∞
approximate k to any required degree of precision by a suitable choice of λ.

3.5 Definition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC with crit(k) = δ, and let λ ≤ sup(k“(M ∩On)). If

E = {Ea : a ∈ [λ]<ω}

where Ea is defined as above, then we call E the M -(δ, λ)-extender derived
from k.

It is possible [43, Sect. 26] to give an axiomatization of the properties
enjoyed by E as in Definition 3.5, thus arriving at the concept of an “M -
(δ, λ)-extender”. Given an M -(δ, λ)-extender E we can compute the limit
ultrapower of M by E to get a well-founded structure Ult(M,E) and an
embedding jE : M −→ Ult(M,E).

If E is the extender derived from k : M −→ N as in Proposition 3.4 then
in the notation of that proposition, Ult(M,E) = M∞ and jE = j0∞. If
E is an M -(δ, λ)-extender and E′ is the M -(δ, λ)-extender derived from the
ultrapower map jE : M −→ Ult(M,E) then E = E′.

When E is a V -(δ, λ)-extender lying in V we will just refer to E as a
“(δ, λ)-extender”.

3.6 Definition. An M -(δ, λ)-extender E is called short if all the measures
Ea concentrate on [δ]<ω, or equivalently if λ ≤ jE(δ).

We now make a couple of (non-standard) definitions which will give us
a convenient way of phrasing some results later. See for example Proposi-
tions 3.9 and 15.1.

3.7 Definition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC, and let μ be an ordinal. The embedding k has
width ≤ μ if and only if every element of N is of the form k(F )(a) for some
F ∈M , a ∈ N where M |= | dom(F )| ≤ μ.
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3.8 Definition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC, and let A ⊆ N . The embedding k is supported on
A if and only if every element of N is of the form k(F )(a) for some F ∈ M
and a ∈ A ∩ dom(k(F )).

The following easy proposition will be useful later.

3.9 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC with crit(k) = κ, and let

U = {X ⊆ κ : X ∈M,κ ∈ k(X)}.

Then k is the ultrapower map computed from M and U if and only if k is
supported on {κ}.

4. Large Cardinal Axioms

We briefly review some standard large cardinal axioms and their formulation
in terms of elementary embeddings and ultrapowers. Once again we refer the
reader to Kanamori’s book [43] for the details.

We start with the characterizations in terms of elementary embeddings.

• κ is measurable if and only if there is a definable j : V −→M such that
crit(j) = κ.

• κ is λ-strong if and only if there is a definable j : V −→ M such that
crit(j) = κ, j(κ) > λ and Vλ ⊆ M . κ is strong if and only if it is
λ-strong for all λ.

• κ is λ-supercompact if and only if there is a definable j : V −→M such
that crit(j) = κ, j(κ) > λ and λM ⊆M . κ is supercompact if and only
if it is λ-supercompact for all λ.

• κ is λ-strongly compact if and only if there is a definable j : V −→ M
such that crit(j) = κ, j(κ) > λ and there is a set X ∈ M such that
M |= |X| < j(κ) and j“λ ⊆ X. κ is strongly compact if and only if it
is λ-strongly compact for all λ.

• κ is huge with target λ if and only if there is a definable j : V −→ M
such that crit(j) = κ, j(κ) = λ and λM ⊆ M . κ is almost huge with
target λ if and only if there is a definable j : V −→ M such that
crit(j) = κ, j(κ) = λ and <λM ⊆M .

Each of these concepts can also be characterized using ultrafilters or ex-
tenders.

• κ is measurable if and only if there is a measure on κ (that is, a normal
κ-complete non-principal ultrafilter on κ).
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• Assuming GCH, κ is (κ + β)-strong if and only if there is a short
(κ, κ+β)-extender E such that Vκ+β ⊆ Ult(V,E).

• For λ ≥ κ, κ is λ-supercompact if and only if there is a normal, fine
and κ-complete ultrafilter on Pκλ. We will generally refer to such an
object as a supercompactness measure on Pκλ.

• For λ ≥ κ, κ is λ-strongly compact if and only if there is a fine and
κ-complete ultrafilter on Pκλ. We will generally refer to such an object
as a strong compactness measure on Pκλ.

• For λ ≥ κ, κ is huge with target λ if and only if there is a normal, fine
and κ-complete ultrafilter on Pκλ, where Pκλ is the set of X ⊆ λ with
order type κ. Almost-hugeness has a rather technical characterization
in terms of a direct limit system of supercompactness measures on Pκμ
for μ < λ.

4.1 Remark. If j : V −→M is a definable embedding such that crit(j) = κ
and j“λ ∈M , then {X ∈ Pκλ : j“λ ∈ j(X)} is a supercompactness measure.

4.2 Remark. Weak compactness may also be characterized in terms of ele-
mentary embeddings, we discuss this in Sect. 16.

For use later we record the definition of the Mitchell ordering � and a few
basic facts about it.

4.3 Definition. Let κ be a measurable cardinal and let U0 and U1 be mea-
sures on κ. Then U0 � U1 if and only if U0 ∈ Ult(V, U1).

The theory of the Mitchell ordering is developed in Mitchell’s first chapter
in this Handbook. The relation � is a strict well-founded partial ordering.
If U is a measure then o(U) is defined to be the height of U in �, and
the Mitchell order o(κ) of κ is defined to be the height of �. In the usual
canonical inner models for large cardinals, � is a linear ordering.

The following propositions collect some easy but useful facts about the
behavior of elementary embeddings.

4.4 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC, and let k have width ≤ μ. If M |= cf(α) > μ then
sup(k“α) = k(α).

If sup(k“α) = k(α) we will say that k is continuous at α.

4.5 Proposition. If U ∈ V is a countably complete ultrafilter on X, X
has cardinality κ and j : V −→ M is the associated ultrapower map then
|j(μ)| < (|μ|κ)+ for all ordinals μ.

4.6 Proposition. If E ∈ V is a short (κ, λ)-extender and j : V −→ M is
the associated ultrapower map then |j(μ)| < (λ× |μ|κ)+ for all ordinals μ.
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4.7 Proposition. Let M be an inner model of V . If λM ⊆ M then the
cardinals of V and M agree up to and including λ+. If GCH holds, κ is
inaccessible and Vκ+β ⊆M then the cardinals of V and M agree up to �β(κ).

The following example illustrates how these ideas can be used. There are
many similar calculations in later sections, where we will generally suppress
the details.

4.8 Example. Let GCH hold and let U be a supercompactness measure on
Pκκ

+, with j : V −→M the associated ultrapower map. Then

1. j is continuous at κ++ and κ+++.

2. κ++ < j(κ).

3. j(κ+++) = κ+++.

Proof. |Pκκ
+| = κ+, so by Proposition 4.4 j is continuous at κ++ and κ+++.

By the definition of a supercompactness measure κ+
M ⊆ M , and so by

Proposition 4.7 κ++ = κ++
M . By elementarity j(κ) is an M -inaccessible car-

dinal greater than κ, and so κ++ < j(κ).
For every η < κ+++, Proposition 4.5 and GCH imply that j(η) < κ+++.

Since j is continuous at κ+++ we have j(κ+++) = κ+++ as required. �

5. Forcing

We assume that the reader is familiar with forcing; in this section we establish
our forcing conventions and review some of the basic definitions and facts.
We will essentially follow the treatment of forcing in Kunen’s text [46]. Proofs
of all the facts that we mention in this section can be found in at least one
of the texts by Kunen [46] or Jech [39].

Our approach to forcing is based on posets with a largest element. We
justify this by the sociological observation that when a set theorist writes
down a new set of forcing conditions it is almost always of this form.

For technical reasons we sometimes work with preordered sets rather than
partially ordered sets; recall that a preordering is a transitive and reflexive
relation, and that if ≤ is a preordering of P we may form the quotient by the
equivalence relation

pE q ⇐⇒ p ≤ q ≤ p

to get a partially ordered set. We refer to this as the quotient poset.
A largest element in a preordered set P is an element b such that a ≤ b

for all a. A preordering may have many largest elements, which will all be
identified when we form the quotient poset.

A notion of forcing is officially a triple (P,≤P, 1P) where≤P is a preordering
of P and 1P is a largest element. A forcing poset is a notion of forcing where
≤P is a partial ordering; if P is a notion of forcing then the quotient poset
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is a forcing poset. If p, q are conditions in a notion of forcing P then p ≤ q
means that p is stronger than q.

5.1 Remark. It might seem more natural just to use forcing posets in our
discussion of forcing. However this would cause irritating problems when we
come to discuss iterated forcing; for example in a two-step iteration P ∗ Q̇

we may have p � q̇1 = q̇2, in which case the conditions (p, q̇1) and (p, q̇2) are
equivalent but not identical.

For p ∈ P we denote by P/p the subset {q ∈ P : q ≤ p} with the inherited
ordering. It is a standard fact that there is a bijection between P-generic
filters G with p ∈ G, and (P/p)-generic filters, in which G corresponds to
G ∩ (P/p). If p ∈ G then V [G] = V [G ∩ (P/p)].

We say P ⊆ Q is dense if every condition in Q has an extension in P. There
is a bijection between Q-generic filters G and P-generic filters, in which G
corresponds to G ∩ P and V [G] = V [G ∩ P].

If P is a notion of forcing then the class V P of P-names is defined recursively
so that σ is a P-name if and only if every element of σ has the form (τ, p) for
some P-name τ and condition p ∈ P.

We denote by iG(σ) the result of interpreting the name σ with respect to
the filter G, that is

iG(σ) = {iG(τ) : ∃p ∈ G (τ, p) ∈ σ}.

We let x̌ denote the standard forcing name for the ground model object x,
that is x̌ = {(y̌, 1P) : y ∈ x}. Ġ = {(p̌, p) : p ∈ P} is the standard name for
the generic filter.

A notion of forcing is non-trivial if and only if it is forced by every condition
that V [G] �= V , or equivalently that G /∈ V . The trivial forcing is the forcing
poset with just one element; we usually denote the trivial forcing by “{1}”.

It is easy to see that p � q̌ ∈ Ġ if and only if every extension of p is
compatible with q; we will say that a notion of forcing is separative when
p � q̌ ∈ Ġ ⇐⇒ p ≤ q. It is routine to check that if P is a separative notion
of forcing then the quotient forcing poset is also separative.

It is a standard fact that for any notion of forcing P there is a separative
forcing poset Q and an order and incompatibility preserving surjection h :
P → Q. The map h and forcing poset Q are unique up to isomorphism, Q is
called the separative quotient of P and forcing with Q is equivalent to forcing
with P.

If P is a separative forcing poset then the Boolean algebra ro(P) of regular
open subsets of P is complete, and P is isomorphic to a dense set in ro(P)\{0}.
It follows that there is a bijection between P-generic filters and ro(P)-generic
ultrafilters, so that forcing with the poset P is equivalent to forcing with the
complete Boolean algebra ro(P). We sometimes abuse notation and write
ro(P) for the regular open algebra of the separative quotient of a notion of
forcing P.
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In general when P and Q are notions of forcing we will say that they are
equivalent if and only if for every P-generic filter G there is a Q-generic filter
H with V [G] = V [H], and symmetrically for every Q-generic filter H there
is a P-generic filter G with V [H] = V [G]. It is routine to see that this can
be formulated in a first-order way which does not mention generic filters.

Complete Boolean algebras have the advantage that they allow a straight-
forward discussion of the relationship between different forcing extensions. If
P and Q are notions of forcing then forcing with P is equivalent to forcing
with Q if and only if ro(P) is isomorphic to ro(Q). For C a complete Boolean
algebra and G a C-generic ultrafilter over V , the models of ZFC intermedi-
ate between V and V [G] are precisely the models of form V [G ∩ B] for B a
complete subalgebra of C.

In particular when B is a complete subalgebra of C then ĠC∩B is a C-name
for a B-generic ultrafilter. Conversely for any complete B and C, a C-name
for a B-generic ultrafilter gives a complete embedding of B into C.

Since we are wedded to an approach to forcing via posets, it is helpful to
have some sufficient conditions which guarantee that a Q-generic extension
contains a P-generic one without mentioning the regular open algebras.

5.2 Definition. If P and Q are notions of forcing then a projection from Q

to P is a map π : Q → P such that π is order-preserving, π(1Q) = 1P, and for
all q ∈ Q and all p ≤ π(q) there is a q̄ ≤ q such that π(q̄) ≤ p.

The following facts are standard; see e.g. Abraham’s chapter in this Hand-
book.

1. If H is Q-generic over V then π“H generates a P-generic filter G.

2. Conversely if G is P-generic over V and we set

Q/G = {q ∈ Q : π(q) ∈ G},

with the partial ordering inherited from Q, then any H ⊆ Q/G which
is Q/G-generic over V [G] is Q-generic over V .

5.3 Remark. In general if Q and P are forcing posets such that forcing with
Q adds a generic object for P, then there is a projection from Q to the poset
of nonzero elements of ro(P).

5.4 Definition. If P and Q are notions of forcing then a complete embedding
from P to Q is a function i : P → Q such that i(1P) = 1Q, and

p1 ≤ p2 ⇐⇒ i(p1) ≤ i(p2)

for all p1 and p2 in P, and for every q ∈ Q there is a condition p ∈ P such
that i(p̄) is compatible with q for all p̄ ≤ p.

The following facts are standard [46]:
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1. If H is Q-generic over V then G = i−1“H is a P-generic filter.

2. Conversely if G is Q-generic over V and we set Q/G to be the set of
q ∈ Q which are compatible with all elements of i“G, any H which is
Q/G-generic over V [G] is P-generic over V .

5.5 Remark. In the context of projections or complete embeddings as above
Q/G may not be separative, even if P and Q both are.

5.6 Remark. We have overloaded the notation “Q/G”, defining it both in
the setting of a projection from Q to P and of a complete embedding from
P to Q. This is (we assert) harmless in the sense that if we have both a
projection π : Q → P and a complete embedding i : P → Q, and i ◦ π = idP,
then the two definitions of Q/G give equivalent notions of forcing.

We will make some use of the Maximum Principle: if P is a notion of
forcing and p ∈ P forces ∃x φ(x), then there is a term τ̇ ∈ V P such that
p � φ(τ̇). This needs the Axiom of Choice, but that presents no obstacle for
us.

When we say that P adds some kind of object or forces some statement
to hold, we mean that this is forced by every condition in P, or equivalently
it is forced by 1P. This is important because some natural notions of forcing
are highly inhomogeneous.

We will frequently use the standard forcing posets for adding subsets to a
regular cardinal κ, and for collapsing cardinals to have cardinality κ. Each
forcing poset consists of a family of partial functions ordered by reverse in-
clusion.

5.7 Definition. Let κ be a regular cardinal, and let λ be any ordinal.

1. (Cohen forcing) Add(κ, λ) is the set of all partial functions from κ× λ
to 2 of cardinality less than κ.

2. Col(κ, λ) is the set of all partial functions from κ to λ of cardinality
less than κ.

3. (The Levy collapse) Col(κ,<λ) is the set of all partial functions p from
κ× λ to λ such that

(a) |p| < κ.

(b) p(α, β) < β for all (α, β) ∈ dom(p).

5.8 Definition. Let P be a notion of forcing and let κ be an uncountable
cardinal. Then

1. P is κ-chain condition (κ-c.c.) if and only if P has no antichain of
size κ.
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2. P is κ-closed if and only if every decreasing sequence of conditions in P

with length less than κ has a lower bound.

3. P is (κ,∞)-distributive if and only if forcing with P adds no new <κ-
sequence of ordinals.

4. P is κ-directed closed if and only if every directed set of size less than
κ of conditions in P has a lower bound.

5.9 Remark. If P is separative, then P is (κ,∞)-distributive if and only if
every <κ-sequence of dense open subsets of P has a nonempty intersection.

The following fact is easy but crucial. See [39, 20.5] for a proof.

5.10 Fact (Easton’s Lemma). Let κ be a regular uncountable cardinal. Let
P be κ-c.c. and let Q be κ-closed. Then

1. �P×Q “κ̌ is a regular uncountable cardinal”.

2. �Q “P̌ is κ̌-c.c.”.

3. �P “Q̌ is (κ̌,∞)-distributive”.

It is sometimes useful to consider a stronger form of the κ-c.c. See Kunen
and Tall’s paper [48] for more information about the following property.

5.11 Definition. Let κ be an uncountable regular cardinal. A poset P

is κ-Knaster if and only if for every κ-sequence of conditions 〈pα : α < κ〉
there is a set X ⊆ κ unbounded such that 〈pα : α ∈ X〉 consists of pairwise
compatible conditions.

For example the standard Δ-system proof [46, Theorem 1.6] that the Co-
hen poset Add(κ, λ) is (2<κ)+-c.c. actually shows that Add(κ, λ) is (2<κ)+-
Knaster. The following easy fact shows that the Knaster property is in some
ways better behaved than the property of being κ-c.c. It is not in general the
case that the product of two κ-c.c. posets is κ-c.c.

5.12 Fact. Let κ be regular and let P, Q be two notions of forcing. Then

1. If P and Q are κ-Knaster then P×Q is κ-Knaster.

2. If P is κ-c.c. and Q is κ-Knaster then P×Q is κ-c.c.

5.13 Remark. In general the property of being κ-Knaster is stronger than
that of being κ-c.c. For example if T is an ω1-Suslin tree then (T,≥) is ω1-
c.c. but is not ω1-Knaster, by Fact 5.12 and the easy remark that T × T is
not ω1-c.c.

We will also need some properties intermediate between κ-closure and
(κ,∞)-distributivity, involving the idea of a game on a poset. This concept
was introduced by Jech [37] and studied by Foreman [18] and Gray [30] among
others.
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5.14 Definition. Let P be a notion of forcing and let α be an ordinal. We
define Gα(P), a two-player game of perfect information. Two players Odd
and Even take turns to play conditions from P for α many moves, with Odd
playing at odd stages and Even at even stages (including all limit stages).
Even must play 1P at move zero. Let pβ be the condition played at move β;
the player who played pβ loses immediately unless pβ ≤ pγ for all γ < β. If
neither player loses at any stage β < α, then player Even wins.

5.15 Definition. Let P be a notion of forcing and let κ be a regular cardinal.

1. P is <κ-strategically closed if and only if for all α < κ, player Even has
a winning strategy for Gα(P).

2. P is κ-strategically closed if and only if player Even has a winning
strategy for Gκ(P).

3. P is (κ+1)-strategically closed if and only if player Even has a winning
strategy for Gκ+1(P), where we note that it is player Even who must
make the final move.

5.16 Remark. More general forms of strategic closure have been studied
[18] and are sometimes useful, but this one is sufficient for us.

5.17 Remark. It is not difficult to see that the conclusions of Lemma 5.10
remain true when we weaken the hypothesis of κ-closure to κ-strategic clo-
sure. This strategic Easton lemma is part of the folklore.

6. Some Forcing Posets

It is easy to see that every κ-directed closed poset is κ-closed, every κ-
closed poset is κ-strategically closed, every κ-strategically closed poset is
<κ-strategically closed and every <κ-strategically closed poset is (κ,∞)-
distributive. The following examples illustrate that these concepts are dis-
tinct, and will all find some use later in this chapter.

The first example shows that κ-closure does not in general imply κ-directed
closure.

6.1 Example (Adding a Kurepa tree at an inaccessible cardinal). Recall
that if κ is inaccessible then a κ-Kurepa tree is a normal tree of height κ such
that

• |Tα| ≤ |α|+ ω for α < κ.

• T has at least κ+ cofinal branches.

Devlin’s book about constructibility [16] contains more information about
Kurepa trees, including a discussion of when such trees exist in L. We note
that if κ is ineffable (ineffability is a large cardinal axiom intermediate be-
tween weak compactness and measurability) then there is no κ-Kurepa tree,
and that in L there is such a tree for every non-ineffable inaccessible κ.
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6.2 Remark. It might have seemed more natural generalize the definition of
a Kurepa tree to inaccessible κ by dropping the first condition and requiring
only that it be a κ-tree with more than κ cofinal branches. But this would
be uninteresting because the complete binary tree of height κ is always such
a tree.

6.3 Remark. It is very easy to see that there is no κ-Kurepa tree for κ
measurable. For if T is such a tree and j : V −→ M is elementary with
critical point κ, then the map which takes each cofinal branch b to the unique
point of j(b) on level κ is one-to-one, so in M level κ of j(T ) has more than
κ points.

Given κ inaccessible we define a forcing poset P to add a κ-Kurepa tree.
Conditions are pairs (t, f) where

1. t is a normal tree of height β + 1 for some β < κ.

2. |tα| ≤ |α|+ ω for all α ≤ β.

3. f is a function with dom(f) ⊆ κ+, ran(f) = tβ and | dom(f)| ≤ |β|+ω.

Intuitively f(δ) is supposed to be the point in which branch δ meets tβ .
Accordingly we say that (u, g) ≤ (t, f) if and only if

1. t is an initial segment of u.

2. dom(f) ⊆ dom(g).

3. For all δ ∈ dom(f), f(δ) ≤u g(δ).

It is easy to see that P is κ-closed and κ+-c.c. and that P adds a κ-Kurepa
tree. We claim that P is not κ-directed closed. To see this, let {xα : α < 2ω}
enumerate ω2 and let S be the family of conditions (t, f) such that t = n2
for some finite n, f has domain a countable subset of 2ω and f(δ) = xδ�n
for all δ ∈ dom(f). S is directed and |S| = 2ω < κ. However S cannot have
a lower bound because, if (t, g) is a lower bound for S then t must have 2ω

points on level ω.

6.4 Remark. Similar arguments show that P has no dense κ-directed closed
dense subset, and is not κ-directed closed below any condition. We will see
in Theorem 24.12 that it is consistent for there to exist a measurable cardinal
κ whose measurability is preserved by any κ-directed closed forcing, while by
contrast forcing with the κ-closed poset P always destroys the measurability
of κ.

Our next example shows that in general κ-strategic closure is a weaker
property than κ-closure.
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6.5 Example (Adding a non-reflecting stationary set). Let κ = cf(κ) ≥ ω2.
We define a forcing poset P which aims to add a non-reflecting stationary set
of cofinality ω ordinals in κ, that is to say a stationary S ⊆ κ ∩Cof(ω) such
that S ∩ α is non-stationary for all α ∈ κ ∩ Cof(> ω). p ∈ P if and only if p
is a function such that

1. dom(p) < κ, ran(p) ⊆ 2.

2. If p(α) = 1, cf(α) = ω.

3. If β ≤ dom(p) and cf(β) > ω then there exists a set c ⊆ β club in β
such that ∀α ∈ c p(α) = 0.

It is easy to see that P is countably closed, and that it adds the character-
istic function of a stationary subset of κ. It is also easy to see that if we let
S be any stationary set of limit ordinals in ω1, let χS : ω1 → 2 be the charac-
teristic function of S, and define pα = χS�α for α < ω1, then 〈pα : α < ω1〉 is
a decreasing sequence of conditions in P with no lower bound and so P fails
to be ω2-closed.

We now claim that P is κ-strategically closed, which we will prove by
exhibiting a winning strategy for Even. At stage α Even will compute γα =
dom(

⋃
β<α pβ), and will then define pα by setting dom(pα) = γα+1, pα�γα =⋃

β<α pβ and pα(γα) = 0. This strategy succeeds because at every limit stage
β of uncountable cofinality the set {γα : α < β} is club in γβ , and Even has
ensured that pβ is 0 at every point of this club set.

The following example shows that in general the property of <κ-strategic
closure is weaker than that of κ-strategic closure. The forcing is due to
Jensen.

6.6 Example (Adding a square sequence). Let λ be an uncountable cardinal.
Recall that a �λ-sequence is a sequence 〈Cα : α ∈ λ+ ∩ Lim〉 such that for
all α

1. Cα is club in α.

2. ot(Cα) ≤ λ.

3. ∀β ∈ lim(Cα) Cα ∩ β = Cβ .

We define a forcing poset P to add such a sequence. Conditions are initial
segments of successor length of such a sequence and the ordering is extension.
More formally p ∈ P iff

• dom(p) = (β + 1) ∩ Lim for some β ∈ λ+ ∩ Lim.

• p(α) is club in α, ot(p(α)) ≤ λ for all α ∈ dom(p).

• If α ∈ dom(p) then ∀β ∈ lim p(α) p(α) ∩ β = p(β).
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If p, q ∈ P then q ≤ p if and only if p = q� dom(p).
It can be checked that P is <λ+-strategically closed, so that P preserves

cardinals up to λ+ and adds a �λ-sequence. The author’s joint paper with
Foreman and Magidor [14] has a detailed discussion of the poset P and several
variations.

We claim that P is not in general λ+-strategically closed. To see this we
observe that if player Even can win Gλ+(P), then the union of the sequence
of the moves in a winning play is actually a �λ-sequence. So if �λ fails then
P is not λ+-strategically closed. Ishiu and Yoshinobu [36] have observed that
the principle �λ is in fact equivalent to the λ+-strategic closure of P.

6.7 Remark. The difference between the last two examples is essentially that
“S is a stationary subset of κ” is a second-order statement in the structure
(Hκ, S) while “ �C is a �λ-sequence” is a first-order statement in the structure
(Hλ+ , �C). This difference was exploited in [9].

Our final example shows that in general (κ,∞)-distributivity is weaker
than <κ-strategic closure. This forcing is due to Baumgartner, Harrington
and Kleinberg [7].

6.8 Example (Killing a stationary subset of ω1). Let S ⊆ ω1 be stationary
and co-stationary. We define a forcing P to destroy the stationarity of S.
The conditions in P are the closed bounded subsets c of ω1 ordered by end-
extension such that c ∩ S = ∅.

We claim that P is (ω1,∞)-distributive. To see this let �D = 〈Dn : n < ω〉
be an ω-sequence of dense open sets and let c ∈ P. Fix θ some large regular
cardinal and <θ a well-ordering of Hθ. Find an elementary substructure
N ≺ (Hθ,∈, <θ) such that

1. c,P, S, �D ∈ N .

2. N is countable.

3. N ∩ ω1 /∈ S (this is possible because S is co-stationary).

Let δ = N ∩ ω1 and fix 〈δn : n < ω〉 an increasing and cofinal sequence in δ.
Now build a chain of conditions 〈cn : n < ω〉 as follows: c0 = c and cn+1 is
the <θ-least condition d such that d ≤ cn, d ∈ Dn and max(d) ≥ δn. An
easy induction shows that cn ∈ N , so in particular max(cn) ∈ N ∩ω1 = δ. It
follows that if c∞ =

⋃
n cn ∪ {δ} then c∞ ∈ P, and by construction c∞ ∈ Dn

for all n.
On the other hand P is not <ω1-strategically closed. To see this we show

that for any Q, if Even wins Gω+1(Q) then Q preserves stationary subsets
of ω1. Let σ be a winning strategy for Even in Gω+1(Q). Let T ⊆ ω1 be sta-
tionary. Let q �Q “Ċ is club in ω1” and let q,Q, T, Ċ, σ ∈ N ≺ (Hθ,∈, <θ),
where N is countable with δ = N ∩ ω1 ∈ T . Let 〈En : n < ω〉 enumerate the
dense subsets of Q which lie in N .

Now consider a run 〈qn : n ≤ ω〉 of Gω+1(Q) such that
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1. q0 = 1P and q1 = q.

2. Even plays according to σ.

3. For n > 0, q2n+1 is the <θ-least condition r such that r ≤ q2n and
r ∈ En−1.

It is easy to see that qn ∈ Q ∩ N for n < ω. The condition qω forces that
δ ∈ lim(Ċ), so qω � δ ∈ Ċ ∩ Ť and we have shown that the stationarity of T
is preserved.

6.9 Remark. The question of preservation of stationarity by forcing is one
to which we will return several times in this chapter. The argument of Exam-
ple 6.8 shows that for any ordinal λ of uncountable cofinality, any stationary
S ⊆ λ ∩ Cof(ω) and any (ω + 1)-strategically closed Q, forcing with Q pre-
serves the stationarity of S. The situation is more complex for uncountable
cofinalities, because if we build a structure N as in the last part of Exam-
ple 6.8 and then try to build a suitable chain of conditions in N , we may
in general wander out of N after ω steps. We will return to this topic in
Lemma 10.6 and the proof of Theorem 14.10.

It will be convenient to fix some notation for the kind of forcing poset
constructed in Example 6.8.

6.10 Definition. Let κ be a regular cardinal and let T be a stationary subset
of κ. Then CU(κ, T ) is the forcing poset whose conditions are closed bounded
subsets of T , ordered by end-extension.

The poset of Example 6.8 is CU(ω1, ω1\S). For κ > ω1 the poset CU(κ, T )
may not be well-behaved, in particular it may collapse cardinals; consider for
example the situation where κ = ω2 and T = ω2 ∩ Cof(ω1). See Sect. 18 for
a detailed discussion of this issue.

7. Iterated Forcing

In this section we review the definition of iterated forcing and some basic facts
about iterated forcing constructions. We will basically follow Baumgartner’s
survey paper [6] in our treatment of iterated forcing. Many readers may have
learned iterated forcing from the excellent account in Kunen’s book [46], and
for their benefit we point out that there is one rather significant difference
between the Baumgartner and Kunen treatments.

This involves the precise definition of a two-step iteration P ∗ Q̇ where P

is a notion of forcing and Q̇ is a P-name for a notion of forcing. In [46] the
elements of P ∗ Q̇ are all pairs (p, q̇) such that p ∈ P and Q̇ contains some
pair of the form (q̇, r); Baumgartner [6] adopts a more liberal definition in
which q̇ is chosen from some set X of P-names such that every P-name for
a member of Q̇ is forced to be equal to some name in X. This distinction
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makes for some (essentially trivial) differences in the theory, for example
it is possible with the definition from [46] that P is countably closed and
�P “Q̇ is countably closed” but P ∗ Q̇ is not countably closed.

In the interests of precision we make the following definition, which really
amounts to specifying the set of names X from the last paragraph.

7.1 Definition. Let P be a notion of forcing.

• A P-name ẋ is canonical iff there is no ẏ such that | tc(ẏ)| < | tc(ẋ)|
and �P ẋ = ẏ.

• If Q̇ is a P-name for a notion of forcing then P ∗ Q̇ is the set of all pairs
such that p ∈ P, �P q̇ ∈ Q̇ and q̇ is canonical.

The advantage of this convention will be that we get equality rather than
just isomorphism in statements like Lemma 12.10 below.

We recall the standard facts about two step iterations:

1. P ∗ Q̇ is ordered as follows: (p0, q̇0) ≤ (p1, q̇1) if and only if p0 ≤ p1 and
p0 � q̇0 ≤ q̇1.

2. There is a bijection between V -generic filters for P∗ Q̇ and pairs (G,H)
where G is V -generic for P, and H is V [G]-generic for iG(Q̇).

As we mentioned above we will follow the treatment of iterated forcing
from Baumgartner’s survey paper [6]. We give a brief review. We make the
convention that whenever we have a P-name Q̇ for a notion of forcing, 1̇Q

names the specified largest element of Q̇.
An iteration of length α is officially an object of the form

(〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉)

where for every β ≤ α

• Pβ is a notion of forcing whose elements are β-sequences.

• If p ∈ Pβ and γ < β then p�γ ∈ Pγ .

• If β < α then �Pβ
“Q̇β is a notion of forcing”.

• If p ∈ Pβ and γ < β, then p(γ) is a Pγ-name for an element of Q̇γ .

• If β < α then Pβ+1  Pβ ∗ Q̇β , via the map which takes h ∈ Pβ+1 to
(h�β, h(β)).

• If p, q ∈ Pβ then p ≤Pβ
q iff p�γ �Pγ p(γ) ≤

Q̇γ
q(γ) for all γ < β.

• 1Pβ
(γ) = 1̇Qγ for all γ < β.

• If p ∈ Pβ , γ < β and q ≤Pγ p�γ then q�p�[γ, β) ∈ Pβ .
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In a standard abuse of notation we will sometimes use “Pα” as a shorthand
for the iteration (〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉). We usually write “�β” for
“�Pβ

”.
The key points in the definition of iteration are that if Gα is Pα-generic

over V and β < α then

• Gβ =def {p�β : p ∈ Gα} is Pβ-generic over V .

• gβ =def {iGβ
(p(β)) : p ∈ Gα} is iGβ

(Q̇β)-generic over V [Gβ ].

7.2 Remark. It is sometimes useful to weaken the conditions in the defini-
tion of iteration and to admit as a forcing iteration any pair (�P, �Q) where

1. Pβ is a forcing poset whose conditions are β-sequences.

2. Q̇β is a Pβ-name for a forcing poset.

3. Pβ+1  Pβ ∗ Q̇β , via the map which takes h ∈ Pβ+1 to (h�β, h(β)).

4. The restriction map from Pβ to Pγ for γ < β is a projection.

Note that the “key properties” from the last paragraph will still be true in
this setting. An important example is Prikry iteration with Easton support
(see [22]) which are iterations in this more general sense.

7.3 Remark. Some arguments which we need to do subsequently work most
smoothly with forcing posets which are separative partial orderings. The
poset absorption argument of Sect. 14 is an example. In our definition of
iterated forcing Pα is just a notion of forcing. However it is routine to check
that if we form an iteration such that each factor Q̇i is forced to be a sepa-
rative partial ordering, then the quotient poset of Pα is separative. We will
sometimes blur the distinction between the preordering Pα and its associated
quotient partial ordering.

If p ∈ Pα then the support of p (supp(p)) is {β < α : p(β) �= 1̇Qβ
}.

Let λ be a limit ordinal and let an iteration of length λ be given. We
define the inverse limit lim

←−
�P�λ to be the set of sequences p of length λ such

that ∀α < λ p�α ∈ Pα. The direct limit lim
−→

�P�λ is the subset of the inverse

limit consisting of those p such that p(α) = 1̇Qα for all sufficiently large α.
The definition of a forcing iteration implies that if we have an iteration of
length greater than λ then

lim
−→

�P�λ ⊆ Pλ ⊆ lim
←−

�P�λ.

To specify a forcing iteration it will suffice to describe the names Q̇β and
to give a procedure for computing Pλ for λ limit. In many iterations the only
kinds of limit which are used are direct and inverse ones.
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7.4 Remark. Let κ be inaccessible, and suppose that we have an iteration
of length κ where Q̇β ∈ Vκ for all β < κ and a direct limit is taken at stage κ.
Then

• Pβ ⊆ Vκ for all β < κ.

• While it is not literally true that Pκ ⊆ Vκ, for every p ∈ Pκ there exist
β < κ and q ∈ Pβ such that p(α) = q(α) for α < β, p(α) = 1̇Qα for
β ≤ α < κ. We will often blur the distinction between Pκ and

⋃
α Pα,

which actually is a subset of Vκ.

7.5 Definition. If κ is regular then an iteration with <κ-support is an it-
eration in which direct limits are taken at limit stages of cofinality greater
than or equal to κ, and inverse limits are taken at limit stages of cofinality
less than κ. An iteration with Easton support is an iteration in which direct
limits are taken at regular limit stages and inverse limits are taken elsewhere.

As this terminology would suggest, the support of a condition in an iter-
ation with <κ-support has size less than κ. The support of a condition in
an Easton iteration is an Easton set, that is to say a set of ordinals which is
bounded in every regular cardinal.

The following are a few key facts about two-step iterations. Proofs are
given in [6, Sect. 2] for 1 and 2, while the proofs for 3 are easy variations of
the proof for 2.

7.6 Proposition. Let κ = cf(κ) > ω, let P be a notion of forcing and let
�P “ Q̇ is a notion of forcing”.

1. P ∗ Q̇ is κ-c.c. iff P is κ-c.c. and �P “ Q̇ is κ-c.c.”.

2. If P is κ-closed and �P “ Q̇ is κ-closed” then P ∗ Q̇ is κ-closed.

3. Let X be any of the properties “κ-directed closed”, “<κ-strategically
closed” or “κ-strategically closed”. If P is X and �P “ Q̇ is X” then
P ∗ Q̇ is X.

7.7 Proposition. Let κ be inaccessible and P ∈ Vκ. If �P Q̇ ∈ V̇κ then
P ∗ Q̇ ∈ Vκ, and if �P Q̇ ⊆ Vκ then P ∗ Q̇ ⊆ Vκ.

In general the preservation of chain condition in iterations is a very delicate
question. See [6, Sect. 4] and [62] to get an idea of the difficulties surrounding
preservation of the ω2-c.c. by countable support iterations. Fortunately we
can generally get away with some comparatively crude arguments.

The following fact is proved in [6, Sect. 2].

7.8 Proposition. Let α be limit and let Pα = lim
−→

�P�α. Let κ = cf(κ) > ω.
Suppose that
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• For every β < α, Pβ is κ-c.c.

• If cf(α) = κ then {γ < α : Pγ = lim
−→

�P�γ} is stationary in α.

Then Pα is κ-c.c.

The following fact is proved in [6, Sect. 2] for the case when X equals
“κ-closed”. The proofs for the other closure properties are similar.

7.9 Proposition. Let κ = cf(κ) > ω. Let X be any of the properties
“κ-closed”, “κ-directed closed”, “<κ-strategically closed” or “κ-strategically
closed”. Suppose that

• �β “ Q̇β is X” for β < α.

• All limits are direct or inverse, and inverse limits are taken at every
limit stage with cofinality less than κ.

Then Pα is X.

7.10 Remark. The moral of Proposition 7.8 is that one should take many di-
rect limits to preserve chain condition properties; the moral of Proposition 7.9
is that one should take many inverse limits to preserve closure properties.

We will also need to analyze the quotient of an iteration by some initial
segment. Once again we quote from [6, Sect. 5].

7.11 Proposition. If β < α then there exists a term Ṙβ,α ∈ V Pβ such that

1. �β “ Rβ,α is an iteration of length α− β”.

2. There is a dense subset of Pβ ∗ Ṙβ,α which is isomorphic to Pα.

The definition of the iteration Rβ,α is simple at successor stages; we trans-
late Q̇γ in the canonical way to a Pβ-name for an Rβ,γ-name for a notion of
forcing and force with that poset at stage γ − α. Limits are trickier because
while a direct limit in V still looks like a direct limit in V Pβ the same may
not be true in general of an inverse limit. We will usually write Pα/Gβ for
iGβ

(Ṙβ,α).
The following proposition is proved in [6, Sect. 5] for the case when X

equals “κ-closed”, and once again can be proved in a very similar way for the
other closure properties.

7.12 Proposition. Let κ = cf(κ) > ω. Let X be any of the properties
“κ-closed”, “κ-directed closed”, “<κ-strategically closed” or “κ-strategically
closed”. Let Pα be an iteration of length α in which all limits are inverse or
direct. Let β < α and suppose that

1. Pβ is such that every set of ordinals of size less than κ in V [Gβ ] is
covered by a set of size less than κ in V .
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2. For β ≤ γ < α, �γ “ Q̇γ is X”.

3. Inverse limits are taken at all limit γ such that β ≤ γ < α and
cf(γ) < κ.

Then �β “ Ṙβ,α is X”.

The following result is easily proved by the methods of [6, Sect. 2].

7.13 Proposition. Let κ be inaccessible and let Pκ be an iteration of length
κ such that

1. �α Q̇α ∈ Vκ for all α < κ.

2. A direct limit is taken at κ and on a stationary set of limit stages
below κ.

Then

• Pκ is κ-Knaster and has cardinality κ.

• If δ < κ then in V [Gδ] the quotient forcing Rδ,κ is a κ-Knaster and
has cardinality κ.

7.14 Remark. The hypothesis 2 of Proposition 7.13 will be satisfied if the
iteration is done with <λ-support for some λ < κ, and also if the iteration is
done with Easton support and κ is Mahlo.

8. Building Generic Objects

A crucial fact about forcing is that if M is a countable transitive model of
set theory and P ∈M is a notion of forcing, then there exist filters which are
P-generic over M . We give an easy generalization of this fact, which will be
used very frequently in the constructions to follow.

8.1 Proposition. Let M and N be two inner models with M ⊆ N and let
P ∈ M be a non-trivial notion of forcing. Let A be the set of A ∈ M such
that A is an antichain of P, and note that A ∈M .

Let p ∈ P and let λ be an N -cardinal. If

N |= “ P is λ-strategically closed and |A| ≤ λ”

then there is a set in N of N -cardinality 2λ of filters on P, each one of which
contains p and is generic over M .

Proof. We work in N . Let 〈Aα : α < λ〉 enumerate A. Let σ be a winning
strategy for player Even in the game Gλ(P/p).

We now build a binary tree 〈ps : s ∈ <λ2〉 of conditions in P/p such that

1. p〈〉 = p.
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2. If lh(s) is even, say lh(s) = 2α, then ps0 and ps1 are incompatible
and each of them refines some element of Aα.

3. If lh(s) = 2(1 + α), then ps is the response dictated by σ at move 2α
in the run of the game Gλ(P/p) where ps�(2+i) is played at move i for
i < 2α.

Then every branch generates a generic filter, and any two branches contain
incompatible elements so generate distinct filters. �

The following easy propositions will be useful in applications of Proposi-
tion 8.1.

8.2 Proposition. Let M and N be inner models of ZFC such that M ⊆ N .
Let N |= “κ is a regular uncountable cardinal”. Then N |= <κM ⊆ M if
and only if N |= <κOn ⊆M .

8.3 Proposition. Let M and N be inner models of ZFC such that M ⊆ N .
Let N |= “κ is a regular uncountable cardinal” and let N |= <κM ⊆M . Let
P ∈ M be a notion of forcing and let X be any of the properties “κ-directed
closed”, “κ-closed”, “κ-strategically closed” and “<κ-strategically closed”.

If M |= “ P is X” then N |= “ P is X”.

8.4 Proposition. Let M and N be inner models of ZFC with M ⊆ N and
let P ∈M be a notion of forcing.

1. If N |= <λM ⊆ M , N |= “ P is λ-c.c.” and G is P-generic over N
then N [G] |= <λM [G] ⊆M [G].

2. If Vλ ∩M = Vλ ∩N and

N |= “Every canonical P-name for a member of V NP

λ is in Vλ”

then Vλ ∩M [G] = Vλ ∩N [G].

We digress from our main theme to give a sample application of Proposi-
tion 8.1, namely, building a generalized version of Prikry forcing.

8.5 Lemma. Let κ be measurable with 2κ = κ+, and let U be a normal mea-
sure on κ. Let j : V −→ M = Ult(V, U) be the ultrapower map constructed
from U , and let Q = Col(κ++, <j(κ))M . Then there is a filter g ∈ V which
is Q-generic over M .

Proof. In M , Q is a forcing of size j(κ) which is j(κ)-c.c. Since j(κ) is mea-
surable in M it is surely inaccessible in M , and so

M |= “Q has j(κ) maximal antichains”.

By Proposition 4.5 V |= |j(κ)| = 2κ = κ+, so

V |= “Q has κ+ maximal antichains lying in M”.



8. Building Generic Objects 805

Clearly M |= “Q is κ++-closed”, and V |= κM ⊆ M . By Proposition 8.3
it follows that V |= “Q is κ+-closed”. Applying Proposition 8.1 we may
therefore construct g ∈ V which is Q-generic over M . �

The forcing we are about to describe is essentially a special case of the forc-
ing P

π from Foreman and Woodin’s paper on failure of GCH everywhere [20],
and is also implicitly present in Magidor’s work on failure of SCH [53]. We
learned this presentation from Woodin.

8.6 Example. Let κ be measurable with 2κ = κ+. Then there is a κ+-
c.c. poset P such that �P κ̌ = ω̇ω.

Sketch of Proof. Let U , Q and g be as in Lemma 8.5. Conditions in P have
the form (p0, κ1, p1, . . . , κn, pn, H) where

• The κi are inaccessible with κ1 < · · · < κn < κ.

• – p0 ∈ Col(ω2, <κ1).

– pi ∈ Col(κ++
i , <κi+1) for 0 < i < n.

– pn ∈ Col(κn, <κ).

• H is a function such that dom(H) ∈ U , H(α) ∈ Col(α++, <κ) for
α ∈ dom(H) and [H]U ∈ g.

We refer to n as the length of this condition.
Intuitively H constrains the possibilities for adding in new objects in the

same way as the measure one set constrains new points in Prikry forcing.
Formally (q0, λ1, q1, . . . , λm, qm, I) extends (p0, κ1, p1, . . . , κn, pn, H) iff

• m ≥ n.

• For every i ≤ n, λi = κi and qi extends pi.

• For every i with n < i ≤ m, λi ∈ dom(H) and qi ≤ H(λi).

• dom(I) ⊆ dom(H) and I(λ) extends H(λ) for every λ ∈ dom(I).

The second condition will be called a direct extension of the first if and only
if m = n.

It is easy to see that P is κ+-c.c. because any two elements in g are com-
patible. The poset P adds an increasing ω-sequence 〈κi : i < ω〉 cofinal in κ
(which is actually a Prikry-generic sequence for the measure U) and a se-
quence 〈gi : i < ω〉 where gi is Col(κ++

i , <κi+1)-generic over V .
The key lemma about P is that any statement in the forcing language

can be decided by a direct extension. This is proved by an argument very
similar to that for Prikry forcing. It can then be argued as in Magidor’s
paper [53] that below κ only the cardinals in the intervals (κ++

i , κi+1) have
collapsed. Thus P is a κ+-c.c. forcing poset which makes κ into the ωω of the
extension. �



806 Cummings / Iterated Forcing and Elementary Embeddings

9. Lifting Elementary Embeddings

A key idea in this chapter is that it is sometimes possible to take an elemen-
tary embedding of a model of set theory and extend it to an embedding of
some generic extension of that model. This idea goes back to Silver’s con-
sistency proof for the failure of GCH at a measurable, a proof which we will
outline in Sect. 12.

9.1 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC. Let P ∈M be a notion of forcing, let G be P-generic
over M and let H be k(P)-generic over N . The following are equivalent:

1. ∀p ∈ G k(p) ∈ H.

2. There exists an elementary embedding k+ : M [G] −→ N [H], such that
k+(G) = H and k+�M = k.

Proof. Clearly the second statement implies the first one. For the converse
let k“G ⊆ H and attempt to define k+ by

k+(iG(τ̇)) = iH(k(τ̇)).

To check that k+ is well-defined, let iG(σ̇) = iG(τ̇) and fix p ∈ G such
that p �M

P
σ̇ = τ̇ . Now by elementarity k(p) �N

k(P) k(σ̇) = k(τ̇), and since
k(p) ∈ H we have iH(k(σ̇)) = iH(k(τ̇)).

A similar proof shows that k+ is elementary. If x ∈ M and x̌ is the
standard P-name for x then k(x̌) is the standard k(P)-name for k(x) and
so k+(x) = k+(iG(x̌)) = iH(k(x̌)) = k(x). Similarly if Ġ is the standard
P-name for the P-generic filter then k(Ġ) is the standard k(P)-name for the
k(P)-generic filter, and so k+(G) = H. �

The following propositions give some useful structural information about
the lifted embedding k+. Recall that we defined the width and support of an
embedding in Definitions 3.7 and 3.8.

9.2 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC and let G, H, k+ : M [G] −→ N [H] be as in
Proposition 9.1. Then N ∩ ran(k+) = ran(k).

Proof. Let y ∈ N with y = k+(x) for some x ∈ M [G]. If α = 1 + rk(x)
then by elementarity y ∈ V N

k(α). Since k+ extends k and k is an elementary

embedding, k+(V M
α ) = k(V M

α ) = V N
k(α). So k+(x) ∈ k+(V M

α ), and since k+

is elementary x ∈ V M
α . So x ∈M and y = k+(x) = k(x), thus y ∈ ran(k). �

9.3 Proposition. Let k : M −→ N , G, H, k+ : M [G] −→ N [H] be as in
Proposition 9.1. If k has width ≤ μ then k+ has width ≤ μ. If k is supported
on A then k+ is supported on A.
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Proof. Suppose first that k has width ≤ μ. Let y ∈ N [H], so that y = iH(τ̇)
for some k(P)-name τ̇ ∈ N . By our assumptions about k, τ̇ = k(F )(a) where
F ∈ M , a ∈ N and M |= | dom(F )| ≤ μ. Without loss of generality we may
assume that F (x) is a P-name for all x ∈ dom(F ).

Now we define a function F ∗ ∈ M [G] by setting dom(F ∗) = dom(F ) and
F ∗(x) = iG(F (x)) for all x ∈ dom(F ). By elementarity

k+(F ∗)(a) = ik+(G)(k+(F )(a)) = iH(τ̇) = y.

Therefore k+ has width ≤ μ. The argument for the property “supported on
A” is very similar. �

In Sect. 4 we gave characterizations of various large cardinal axioms in
terms of definable elementary embeddings. When we apply Proposition 9.1
to a definable embedding it is likely that definability will be lost; the next
section gives an example of this phenomenon.

One of our major themes is forcing iterations which preserve large cardi-
nal axiom, so we would like to preserve definability when applying Proposi-
tion 9.1. This motivates the following proposition, where the key hypothesis
for getting a definable embedding is that we are choosing H ∈ V [G].

9.4 Proposition. Let κ < λ and let j : V −→ M be an elementary em-
bedding with critical point κ. Let P ∈ V be a notion of forcing, and let G
be P-generic over V . Let H be j(P)-generic over M with j“G ⊆ H, and let
j+ : V [G] −→M [H] be the unique embedding with j+�V = j and j+(G) = H.
Let H ∈ V [G].

1. If there is in V a short V -(κ, λ)-extender E such that j is the ultrapower
of V by E, then there is in V [G] a short V [G]-(κ, λ)-extender E∗ such
that j+ is the ultrapower of V [G] by E∗. Moreover Ea = E∗

a ∩V for all
a ∈ [λ]<ω.

2. If there is in V a supercompactness measure U on Pκλ such that j is
the ultrapower of V by U , then there is in V [G] a supercompactness
measure U ∗ on Pκλ such that j+ is the ultrapower of V [G] by U ∗.
Moreover U = U ∗ ∩ V .

In both cases j+ is definable.

Proof. Assume first that j is the ultrapower by some (κ, λ)-extender E. For
each a ∈ [λ]<ω let μa be minimal with a ⊆ j(μa). Arguing exactly as in the
proof of Proposition 9.3,

M [H] = {j+(F )(a) : a ∈ [λ]<ω, F ∈ V [G], dom(F ) = [μa]|a|}.

If we now let E∗ be the (κ, λ)-extender derived from j+ then it follows easily
from the equation above and Proposition 3.4 that Ult(V [G], E∗) = M [H] and
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jE∗ = j+. Since H ∈ V [G] we see that E∗ ∈ V [G] and so j+ is definable.
Finally if X ∈ V and X ⊆ [κ]|a| then j(X) = j+(X), so

X ∈ Ea ⇐⇒ a ∈ j(X) ⇐⇒ a ∈ j+(X) ⇐⇒ X ∈ E∗
a ,

that is to say Ea = E∗
a ∩ V .

The argument for j arising from a supercompactness measure is similar. �

9.5 Remark. Either clause of Proposition 9.4 can be used to argue that κ is
measurable in V [G]. By Remark 4.1 we may use the second clause to conclude
without further work that κ is λ-supercompact in V [G]; preservation of some
strength witnessed by E will need some argument about the resemblance
between V [G] and M [H].

In what follows we will see a number of ways of arranging that k“G ⊆ H.
We start by proving a classical result by Levy and Solovay (which implies in
particular that standard large cardinal hypotheses cannot resolve the Con-
tinuum Hypothesis).

9.6 Theorem (Levy and Solovay [50]). Let κ be measurable. Let |P| < κ
and let G be P-generic. Then κ is measurable in V [G].

Proof. Let U be a measure on κ and let j : V −→ M = Ult(M,U) be the
ultrapower map. Without loss of generality P ∈ Vκ, so that j�P = idP and
j(P) = P. In particular j“G = G, and since M ⊆ V and P ∈M we have that
G is P-generic over M . Now by Proposition 9.1 we may lift j to get a new
map j+ : V [G] −→ M [G]. By Proposition 9.4 j+ is definable in V [G]. j+

extends j and so crit(j+) = crit(j) = κ, and thus κ is measurable in V [G]. �

9.7 Remark. Usually when we lift an embedding we will denote the lifted
embedding by the same letter as the original one.

The Levy-Solovay result actually applies to most other popular large car-
dinal axioms, for example “κ is λ-strong” or “κ is λ-supercompact”.

9.8 Theorem. Let |P| < κ and let λ > κ. Then forcing with P preserves the
statements “κ is λ-strong” and “κ is λ-supercompact”.

Proof. Without loss of generality P ∈ Vκ. Let G be P-generic over V .
Suppose that κ is λ-strong. Let j : V −→M be such that crit(j) = κ and

Vλ ⊆ M . Build j+ : V [G] −→ M [G] as in Theorem 9.6. By Proposition 8.4
we see that V

V [G]
λ ⊆M [G]. By Proposition 9.4 j+ is definable in V [G]. Since

crit(j+) = κ, κ is λ-strong in V [G].
The argument for λ-supercompactness is analogous. �

9.9 Remark. Levy and Solovay also showed that small forcing cannot create
instances of measurability. We prove a generalization of this in Theorem 21.1.
In Theorem 14.6 a forcing poset of size κ makes a non-weakly compact car-
dinal κ measurable. See Sect. 21 for more discussion of these matters.
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10. Generic Embeddings

It is a common situation that in some generic extension V [G] we are able to
define an elementary embedding j : V −→M ⊆ V [G]. Such embeddings are
usually known as generic embeddings. Foreman’s chapter in this Handbook
contains a wealth of information about generic embeddings, e.g. about the
following situation.

10.1 Example. If I is an ω2-saturated ideal on ω1 and U is generic for the
poset of I-positive sets, then in V [U ] the ultrapower Ult(V, U) is well-founded
and we get a map j : V −→M ⊆ V [U ] with crit(j) = ω1 and j(ω1) = ω2.

We now honor a promise made in Sect. 2. The embedding that we describe
is a generic embedding with critical point ω1 and is added by a very simple
poset. See Theorems 14.6, 23.2 and 24.11 for some applications of generic
embeddings added by more elaborate posets.

10.2 Theorem. Let κ be measurable, let U be a normal measure on κ and
let j : V −→M = Ult(V, U) be the ultrapower map. Let P = Col(ω,<κ) and
let G be P-generic. There is a forcing poset Q ∈M such that

1. For any H a Q-generic filter over V [G], j can be lifted to an elementary
embedding jG : V [G] −→M [G ∗H].

2. If
UG = {X ∈ P (κ) ∩ V [G] : κ ∈ jG(X)},

then UG is a V [G]-κ-complete V [G]-normal V [G]-ultrafilter on κ. Also
M [G ∗H] = Ult(V [G], UG) and jG is the ultrapower map.

Proof. By elementarity j(P) = Col(ω,<j(κ)). Let Q be the set of finite
partial functions q from ω × (j(κ) \ κ) to j(κ) such that q(n, α) < α for all
(n, α) ∈ dom(p), ordered by reverse inclusion. Clearly the map which sends
p to (p�(ω×κ), p�(ω× (j(κ)\κ))) sets up an isomorphism in M between j(P)
and P×Q.

Now let H be Q-generic over V [G], so that by the Product Lemma G×H is
P×Q-generic over V . Let H∗ be the j(P)-generic object which is isomorphic
to G×H via the isomorphism from the last paragraph, that is

H∗ = {r ∈ j(P) : r�(ω × κ) ∈ G, r�(ω × (j(κ) \ κ)) ∈ H}.

If p ∈ G then dom(p) is a finite subset of ω × κ and p(n, α) < α < κ for
all (n, α) ∈ dom(p). It follows that dom(j(p)) = j(dom(p)) = dom(p), and
what is more, if p(n, α) = β then j(p)(n, α) = j(p(n, α)) = j(β) = β. So
p = j(p) ∈ H∗.

We now work in V [G ∗ H]. By Proposition 9.1 we can lift j to get
jG : V [G] −→ M [H∗] = M [G ∗ H]. It then follows from Proposition 3.9
M [G∗H] = Ult(V [G], UG) and jG is precisely the ultrapower embedding. Of
course UG does not exist in V [G]; it is only definable in the generic extension
V [G ∗H]. �
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10.3 Remark. This theorem provides an example of an elementary embed-
ding k : M1 −→ M2 with critical point ωM1

1 and P (ω) ∩M1 � P (ω) ∩M2.
This shows that Proposition 2.6 is sharp.

10.4 Remark. An important feature of the last proof was the product analy-
sis of j(P). In that proof we were careful to stress that G ×H and H∗ are
isomorphic rather than identical.

In what follows we will follow the standard practice and be more cavalier
about these issues. The cavalier way of writing the main point in the last
proof is to say “p ∈ G implies that j(p) = p ∈ G×H”.

Theorem 10.2 can be generalized in a way that is important for several
later results.

10.5 Theorem. Let κ be measurable, let U be a normal measure on κ and
let j : V −→M = Ult(V, U) be the ultrapower map. Let δ be an uncountable
regular cardinal less than κ. Let P = Col(δ,<κ) and let G be P-generic.
There is a δ-closed forcing poset Q ∈ M such that for any H a Q-generic
filter, j can be lifted to an elementary embedding jG : V [G] −→M [G ∗H].

The proof is just like that of Theorem 10.2. It will be useful later to know
that some reflection properties of the original measurable cardinal κ survive
in V P. We need a technical lemma on the preservation of stationary sets by
forcing.

10.6 Lemma. Let δ be regular with δ<η = δ for all regular η < δ, and let
S ⊆ δ+ ∩ Cof(<δ) be stationary. Then the stationarity of S is preserved by
δ-closed forcing.

Proof. Let P be δ-closed and let p ∈ P force that Ċ is a club set in δ+. Fix
η < δ such that S ∩ Cof(η) is stationary in δ+ and a large regular θ, then
build M ≺ (Hθ,∈) such that p,P, Ċ ∈ M , |M | = δ, M is closed under <η-
sequences and γ = M ∩ δ+ ∈ S ∩ Cof(η). Now build a decreasing sequence
pi for i < η of conditions in P ∩M , and a sequence γi of ordinals increasing
and cofinal in γ, such that pi+1 � γi ∈ Ċ. The construction is easy, using
elementarity at successor stages and the closure of M at limit stages. Since P

is δ-closed we may choose q a lower bound for the pi and then q � γ ∈ Ċ. �

10.7 Remark. In general it is not true for δ > ω1 and γ > δ that every
stationary subset of γ+ ∩ Cof(<δ) is preserved by δ-closed forcing, even if
we assume GCH. Shelah has given an incisive analysis of when we may ex-
pect stationarity to be preserved; the author’s survey paper [10] contains an
exposition of the resulting “I[λ] theory”.

10.8 Theorem (Baumgartner [5]). In the model V [G] of Theorem 10.5,
where κ = δ+, every stationary S ⊆ κ ∩ Cof(<δ) reflects to a point of cofi-
nality δ.
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Proof. Consider the generic embedding jG : V [G] −→ M [G ∗ H] where H
is generic for δ-closed forcing. We know that jG(S) ∩ κ = S, and since
M [G] ⊆ V [G] and V [G] |= κM [G] ⊆M [G] the set S is a stationary subset of
κ∩Cof(<δ) in M [G]. The conditions of Lemma 10.6 apply (in fact δ<δ = δ)
so S is stationary in M [G∗H], and so by the elementarity of jG the set S has
a stationary initial segment. Finally cf(κ) = δ in M [G ∗H] and jG(δ) = δ,
so stationarity reflects to an ordinal of cofinality δ. �

10.9 Remark. Actually the conclusion of Theorem 10.8 holds if κ is only
weakly compact, and this was the hypothesis used by Baumgartner. If κ is
supercompact and we force with Col(ω1, <κ), then Shelah [5] observed that
we get a model where for every regular λ > ω1 every stationary subset of
λ ∩ Cof(ω) reflects.

Shelah [63] has also shown that it is consistent that (roughly speaking)
“all stationary sets that can reflect do reflect”. This is tricky because of the
preservation problems alluded to in Remark 10.7.

10.10 Remark. The fact that we needed Lemma 10.6 to complete the proof
of Theorem 10.8 is an example of a very typical phenomenon in the theory of
generic embeddings, where we often need to know that the forcing which adds
the embedding is in some sense “mild”. See Theorem 23.2 for an example
where the needed preservation lemmas involve not adding cofinal branches
to trees.

11. Iteration with Easton Support

When defining an iterated forcing one of the key parameters is the type of
support which is to be used. Silver realized that iteration with Easton sup-
port (see Definition 7.5) is a very useful technique in doing iterations which
preserve large cardinal axioms. Easton [17] had already used Easton sets as
the supports in products of forcings defined in V ; the method of iteration with
Easton supports has often been called “reverse Easton”, “backwards Easton”
or “upwards Easton” to distinguish it from Easton’s product construction.

We give an example of forcing with Easton support which is due in a
slightly different form to Kunen and Paris [47]. The goal is to produce a
measurable cardinal κ with the maximum possible number of normal mea-
sures; if we assume GCH for simplicity, then the maximal possible number
of normal measures is 22κ

= κ++. Kunen’s work on iterated ultrapowers [44]
shows that if κ is measurable then in the canonical minimal model L[U ] in
which κ is measurable, κ carries exactly one normal measure.

The arguments of Levy and Solovay [50] show that if κ is measurable a
forcing of size less than κ cannot increase the number of normal measures
on κ. It follows that we need to force with a forcing poset of size at least κ.
The simplest such poset which does not obviously destroy the measurability
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of κ is Add(κ, 1), however it is not hard to see that if we force over L[U ] this
poset destroys the measurability of κ.

We will build an iterated forcing of size κ which adds subsets to many
cardinals less than κ. As we will see shortly, we need the initial segments
of the iteration to have a reasonable chain condition, and the final segments
to have a reasonable degree of closure. Silver realized that the right balance
between closure and chain condition could be achieved by doing an iteration
with Easton support. We will assume that GCH holds in V . Assuming GCH
is no burden because GCH is true in L[U ].

11.1 Theorem. Let κ be measurable and let GCH hold. Then there exists
P such that

1. |P| = κ.

2. P is κ-c.c.

3. GCH holds in V P.

4. κ is measurable in V P.

5. κ carries κ++ normal measures in V P.

The proof will occupy the rest of this subsection.
Let A ⊆ κ be the set of those α < κ such that α is the successor of a

singular cardinal. Let j : V −→M = Ult(V, U) be the ultrapower map. Since
M ⊆ V we see that κ is inaccessible in M , so that κ /∈ j(A) or equivalently
A /∈ U . In the iteration we will add subsets to cardinals lying in A. The
exact choice of A is irrelevant so long as it is a set of regular cardinals less
than κ and is a set of measure zero for U .

We will now let P = Pκ be an iteration of length κ with Easton support.
For α < κ we let Q̇α be a name for the trivial forcing unless α ∈ A, in which
case Q̇α names Add(α, 1)V Pα . By Proposition 7.13, if δ ≤ κ and δ is Mahlo
then Pδ is δ-c.c.

11.2 Lemma. Let δ ≤ κ be Mahlo and let λ = δ+ω+1. As in Proposition 7.11
let Ṙδ,κ name the canonical iteration of length κ− δ such that Pκ  Pδ ∗ Ṙδ,κ.
Then V [Gδ] |= “ Rδ,κ is λ-closed”.

Proof. If we fix δ ≤ κ a Mahlo cardinal then it follows from the chain con-
dition of Pδ that every set of ordinals of size less than δ in V [Gδ] is covered
by a set of size less than δ in V . λ = min(A \ δ) and the iteration is only
non-trivial at points of A, and so for all γ with δ ≤ γ < κ we see that
�γ “Q̇γ is λ-closed”. By Proposition 7.12, Rδ,κ is λ-closed in V [Gδ]. �

11.3 Remark. We already have enough information to see that all Mahlo
cardinals δ ≤ κ are preserved by P. A more delicate analysis as in Hamkins’
paper [31] shows that in fact this iteration preserves all cardinals and cofi-
nalities.
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11.4 Lemma. GCH holds in V [Gκ] above κ.

Proof. If λ ≥ κ and �P τ̇ ⊆ λ then the interpretation of τ̇ is determined by
{(p, α) : p � α̌ ∈ τ̇}. There are only 2κ×λ = λ+ possibilities for this set. �

11.5 Remark. With more care we can show that GCH holds everywhere.

We now need to compare j(P) with P. Elementarity implies that from the
point of view of M , j(P) is an Easton iteration of length j(κ), with Easton
support, in which we add a Cohen subset to each α ∈ j(A).

11.6 Lemma. j(P)κ = Pκ and j(P)κ+1 = Pκ ∗ {1}.

Proof. If α < κ then Pα ∈ Vκ and so j(P)α = j(P)j(α) = j(Pα) = Pα. κ
is inaccessible in M so a direct limit is taken at stage κ in the construction
of j(P). The direct limit construction is absolute so j(P)κ = Pκ. Finally
κ /∈ j(A) and so j(P)κ+1 = Pκ ∗ {1}. �

Let G be P-generic over V . Since M ⊆ V and P ∈M , G is P-generic over
M and M [G] ⊆ V [G].

11.7 Lemma. Let R = iG(Ṙκ,j(κ)).

V [G] |= “ R is κ+-closed and has κ+ maximal antichains lying in M [G]”.

Proof. By Lemma 11.2 applied in M to j(P), if λ = κ+ω+1
M [G] then

M [G] |= “R is λ-closed”.

Since P is κ-c.c. it follows from Proposition 8.4 that V [G] |= κM [G] ⊆M [G].
So V [G] |= “R is κ+-closed”.

P is κ-c.c. forcing poset with size κ, and in M we have j(P)  P ∗ Ṙ. It
follows from Proposition 7.13 that in M [G], R is j(κ)-c.c. forcing with size
j(κ), so if Z is the set of maximal antichains of R which lie in M [G] then
M [G] |= |Z| = j(κ).

V is a model of GCH and so V |= |j(κ)| = 2κ = κ+. Therefore

V [G] |= “R has κ+ maximal antichains lying in M [G]”.

�

From now on we work in V [G]. Applying Proposition 8.1 we construct
a sequence 〈Hα : α < κ++〉 of κ++ distinct R-generic filters over M [G]. For
each α the set G ∗Hα is P ∗ Ṙ-generic over M , and since P ∗ Ṙ is canonically
isomorphic to j(P) in M we will regard G∗Hα as a j(P)-generic filter over M .

11.8 Lemma. For all p ∈ G and all α < κ++, j(p) ∈ G ∗Hα.
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Proof. Pκ = lim
−→

�P�κ. Fix β < κ such that p(γ) = 1 for β ≤ γ < κ, and

observe that j(β) = β and so by elementarity j(p)(γ) = 1 for β ≤ γ < j(κ).
What is more p�β ∈ Vκ and so j(p)�β = j(p�β) = p�β. It follows that
j(p) ∈ G ∗Hα. �

Accordingly we can find κ++ extensions jα : V [G] −→ M [G ∗ Hα] with
jα�V = j and jα(G) = G ∗Hα. They are distinct because the filters Hα are
distinct. Hα ∈ V [G] and so by Proposition 9.4 jα is definable in V [G]. We
will be done if we can show that each jα is an ultrapower map computed
from some normal measure on κ in V [G].

11.9 Lemma. For every α, jα is the ultrapower of V [G] by Uα where

Uα = {X ⊆ κ : X ∈ V [G], κ ∈ jα(X)}.

Proof. j is the ultrapower of V by the normal measure U , so that by Propo-
sition 3.9 j is supported on {κ}. By Proposition 9.3 jα is also supported
on {κ}. By Proposition 3.9 again jα is the ultrapower of V [G] by Uα. �

12. Master Conditions

We are now in a position to give Silver’s proof that GCH can fail at a mea-
surable cardinal. We will need Silver’s idea of the master condition, which is
a technique for arranging the compatibility between generic filters required
to apply Proposition 9.1.

12.1 Definition. Let k : M −→ N be elementary and let P ∈M . A master
condition for k and P is a condition q ∈ k(P) such that for every dense set
D ⊆ P with D ∈ M , there is a condition p ∈ D such that q is compatible
with k(p).

Suppose that q is a master condition for k, and H is any N -generic filter
on Q with q ∈ H. It is routine to check that k−1“H generates an M -generic
filter G such that k“G ⊆ H, and so again Proposition 9.1 can be applied to
lift k. In general different choices of H will give different filters G.

12.2 Definition. Let k : M −→ N be elementary and let P ∈ M . A strong
master condition for k and P is a condition q ∈ k(P) such that for every dense
set D ⊆ P with D ∈M , there is a condition p ∈ D such that q ≤ k(p).

If q is a strong master condition then let G = {p ∈ P : q ≤ k(p)}. It is
routine to check that G is an M -generic filter, and that k−1“H = G for any
N -generic filter H on Q with q ∈ H. Under these circumstances we will often
say that q is a strong master condition for k and G.

12.3 Remark. A similar distinction occurs in the theory of proper forcing.
See Remarks 24.4 and 24.5 for more on this.
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12.4 Remark. Most of the master conditions which we build will be of the
strong persuasion.

For use later we record a remark on the connection between existence of
strong master conditions and distributivity.

12.5 Theorem. Let π : M −→ N be elementary, let P ∈ M , let G be P-
generic, and let q ∈ j(P) be such that q ≤ j“G. Then for every δ < crit(π),
M and M [G] have the same δ-sequences of ordinals.

Proof. Suppose not, and fix p ∈ G and τ̇ ∈ M such that p forces τ̇ to be
a new δ-sequence of ordinals. For each i < δ there is a condition pi ∈ G
such that pi determines τ̇(i). By elementarity π(pi) determines π(τ̇)(i) for
each i < π(δ) = δ, and so since q ≤ π(pi) we have that q determines π(τ̇)(i)
for all i < δ, that is, q forces that π(τ̇) is equal to some element of N ; but
q ≤ π(p) and by elementarity π(p) forces that π(τ̇) is a new sequence of
ordinals, contradiction. �

It is easy to see that if U is a normal measure on κ and 2κ ≥ κ+n then
{α < κ : 2α ≥ α+n} ∈ U . In the light of this remark and the result of the last
section, a natural strategy for producing a failure of GCH at a measurable is
to start with a model of GCH with a measurable κ, and to do an iteration of
length κ + 1 violating GCH on A ∪ {κ} for some suitably large A.

This strategy can be made to work but it is necessary to use a fairly strong
large cardinal assumption. We will give here a version of Silver’s original
proof, using the hypothesis that GCH holds and there is a cardinal κ which
is κ++-supercompact. In Sects. 13 and 25 we will see how to weaken this
large cardinal assumption.

12.6 Theorem. Let GCH hold and let κ be κ++-supercompact. Then there
is a forcing poset P such that

1. |P| = κ++.

2. P is κ+-c.c.

3. κ is measurable in V P.

4. 2κ = κ++ in V P.

Proof. Let U be a κ-complete normal fine ultrafilter on Pκκ
++, and define

j : V −→ M to be the associated ultrapower map. Arguing exactly as in
Example 4.8, we have

1. j(κ) > κ+++.

2. j(κ+4) = κ+4.
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Let A be the set of inaccessible cardinals less than κ. As in the last
section the exact choice of A is more or less irrelevant, so long as A is a set
of inaccessible cardinals and A ∈ U0, where U0 = {X ⊆ κ : κ ∈ j(X)}.

We now let P = Pκ+1 be the iteration of length κ+1 with Easton supports
in which Q̇α names Add(α, α++)V Pα if α ∈ A ∪ {κ}, and names the trivial
forcing otherwise. Let Gκ be Pκ-generic over V , let gκ be Qκ-generic over
V [G] and let Gκ+1 = Gκ ∗ gκ.

The next lemma is similar to Lemma 11.2 from the last section, the crucial
difference being that this time δ ∈ A and so the iteration P acts at stage δ.

12.7 Lemma. Let δ < κ be Mahlo. Then

1. Pδ is δ-c.c.

2. Pδ+1 is δ+-c.c.

3. If λ is the least inaccessible greater than δ then

V [Gδ+1] |= “ Rδ+1,κ is λ-closed”.

Proof. By Proposition 7.13 Pδ is δ-c.c. and has size δ. Then V [Gδ] |= δ<δ = δ,
and so �δ “Qδ is δ+-c.c.”. By Proposition 7.6 Pδ+1 is δ+-c.c.

Since A is a set of inaccessible cardinals we are guaranteed that Q̇α names
the trivial forcing for δ < α < λ. Every set of ordinals of size less than λ
in V [Gδ+1] is covered by a such a set in V , so by Proposition 7.12 Rδ+1,κ is
λ-closed in V [Gδ+1]. �

The next lemma follows by exactly the same argument as that for Lem-
ma 11.4 in the last section.

12.8 Lemma. Pκ is κ-c.c. with size κ, and GCH holds above κ in V Pκ .

The standard arguments counting names also give us

12.9 Lemma. P is κ+-c.c. with size κ++, and GCH holds above κ+ in V P.

We now need to analyze the iteration j(P).

12.10 Lemma. j(P)κ+1 = Pκ+1.

Proof. We can argue exactly as in Lemma 11.6 that j(P)κ = Pκ. By Propo-
sition 8.4 we see that V [G] |= κ++

M [G] ⊆M [G], so that

Add(κ, κ++)V [G] = Add(κ, κ++)M [G].

Every condition in Add(κ, κ++)V Pκ has a name which lies in Hκ+++ , and
Hκ+++ ⊆M so that j(P)κ+1 = Pκ+1. �
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12.11 Lemma. Let R = iGκ+1(Ṙκ+1,j(κ)). Then

V [Gκ+1] |= “ R is κ+++-closed”

and

V [Gκ+1] |= “ R has κ+++ maximal antichains lying in M [Gκ+1]”.

Proof. By Lemma 12.7 applied in M to j(Pκ), if λ is the least M -inaccessible
greater than κ then M [Gκ+1] |= “R is λ-closed”. Since P is κ+-c.c. it fol-
lows from Proposition 8.4 that V [Gκ+1] |= κ++

M [Gκ+1] ⊆ M [Gκ+1]. So
V [Gκ+1] |= “R is κ+++-closed”.

Pκ is κ-c.c. with size κ, and in M we have j(Pκ)  Pκ+1 ∗ Ṙ. It follows
from Proposition 7.13 that in M [Gκ+1], R is j(κ)-c.c. with size j(κ), so if Z
is the set of maximal antichains of R which lie in M [Gκ+1] then M [Gκ+1] |=
|Z| = j(κ).

By Proposition 4.5, V |= |j(κ)| = κ+++. So

V [Gκ+1] |= “R has κ+++ maximal antichains in M [Gκ+1]”.

�

Applying Proposition 8.1 we may find a filter H ∈ V [Gκ+1] such that H
is R-generic over M [Gκ+1]. Let Gj(κ) = Gκ+1 ∗ H, so that Gj(κ) is j(Pκ)-
generic over M . The argument of Lemma 11.8 shows that j“Gκ ⊆ Gj(κ), so
that by Proposition 9.1 we may lift j : V −→ M and obtain an elementary
embedding j : V [Gκ] −→M [Gj(κ)].

To finish the proof we need to construct a filter h ∈ V [Gκ+1] such that

1. h is Add(j(κ), j(κ++))M [Gj(κ)]-generic over M [Gj(κ)].

2. j“gκ ⊆ h.

The first of these conditions can be met using methods we have seen al-
ready, once we have done some counting arguments.

12.12 Lemma. V [Gκ+1] |= κ++
M [Gj(κ)] ⊆M [Gj(κ)].

Proof. Pκ+1 is κ+-c.c. and so V [Gκ+1] |= κ++
On ⊆ M [Gκ+1] by Proposi-

tion 8.4. M [Gκ+1] ⊆M [Gj(κ)] so V [Gκ+1] |= κ++
On ⊆M [Gj(κ)]. The result

follows by Proposition 8.2. �

12.13 Lemma. Let Q = Add(j(κ), j(κ++))M [Gj(κ)]. Then

V [Gκ+1] |= “ Q is κ+++-closed”

and

V [Gκ+1] |= “ Q has κ+++ maximal antichains in M [Gj(κ)]”.
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Proof. M [Gj(κ)] |= “Q is j(κ)-closed”, so by Proposition 8.3 it follows that
V [Gκ+1] |= “Q is κ+++-closed”.

Lemma 12.8 and an easy counting argument give that

V [Gκ] |= “Add(κ, κ++) has κ+++ maximal antichains”.

j : V [Gκ] −→M [Gj(κ)] is elementary and so

M [Gj(κ)] |= “Q has j(κ+++) maximal antichains”.

Since V |= |j(κ+++)| = κ+++,

V [Gκ+1] |= “Q has κ+++ maximal antichains in M [Gj(κ)]”

and we are done. �

We can now build h ∈ V [Gκ+1] which is suitably generic. To ensure that
j“gκ ⊆ h we use the “strong master condition” idea from Definition 12.2.

12.14 Lemma. There is a strong master condition for the elementary em-
bedding j : V [Gκ] −→M [Gj(κ)] and the generic object gκ.

Proof. If p ∈ gκ then p is a partial function from κ× κ++ to 2 with size less
than κ, so in particular j(p) = j“p. gκ ∈M [Gj(κ)] and j�(κ× κ++) ∈M , so
that j“gκ ∈ M [Gj(κ)]. Working in M [Gj(κ)] the cardinality of j“gκ is κ++,
j“gκ is a directed subset of Q and Q is j(κ)-directed closed; it follows that
we may find a condition r ∈ Q such that r ≤ j(p) for all p ∈ gκ. �

12.15 Remark. We can give an explicit description of an r with this prop-
erty; let dom(r) = κ × j“κ++ and r(α, j(β)) = j(F (α, β)) = F (α, β) where
F : κ× κ++ −→ 2 is given by F =

⋃
gκ.

We now use Proposition 8.1 to build h which is Q-generic over M [Gj(κ)]
with r ∈ h. Let Gj(κ)+1 = Gj(κ) ∗ h. Then by construction we have j“g ⊆ h,
so that we may lift j : V [Gκ] −→ M [Gj(κ)] to j : V [Gκ+1] −→ M [Gj(κ)+1].
Gj(κ)+1 ∈ V [Gκ+1] and so by Proposition 9.4 the elementary embedding
j : V [Gκ+1] −→ M [Gj(κ)+1] is definable in V [Gκ+1], that is to say it is
a definable embedding in the sense of Definition 2.10. It follows that κ is
measurable in V [Gκ+1]. �

12.16 Remark. By Proposition 9.4 and Remark 4.1, κ is actually κ++-
supercompact in V [Gκ+1].

12.17 Remark. If we had forced with Add(α, 1) instead of Add(α, α++) at
each stage in A ∪ {κ}, then we could have proved that the measurability of
κ was preserved assuming only that GCH holds and κ is measurable in the
ground model. Of course we would not have violated GCH this way, and
indeed it is known [59, 24] that to violate GCH at a measurable cardinal
requires the strength of a cardinal κ with Mitchell order κ++.
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13. A Technique of Magidor

In this section we describe a technique due to Magidor [54] for lifting ele-
mentary embeddings in situations where we do not have enough closure to
build a strong master condition. The trick will be to build an “increasingly
masterful” sequence of conditions into our final generic filter. As an example
we will redo the result from the last section from a weaker large cardinal
hypothesis.

We assume that GCH holds and that κ is κ+-supercompact, and we let
j : V −→M be the ultrapower map arising from some κ+-supercompactness
measure on Pκκ

+. As in Example 4.8 we see that

• κ++ = κ++
M < j(κ) < j(κ+) < j(κ++) < j(κ+++) = κ+++.

• j is continuous at κ++ and κ+++.

• j is discontinuous at every limit ordinal of cofinality κ+.

We now perform exactly the same forcing construction as in the last sec-
tion, namely, we perform an Easton support iteration of length κ + 1 in
which we add α++ Cohen subsets to every inaccessible α ≤ κ. We let Gκ be
Pκ-generic over V and gκ be Qκ-generic over V [Gκ].

As in Lemma 12.10 from the last section we see that j(P)κ+1 = Pκ+1. As
in the last section we let R = iGκ+1(Ṙκ+1,j(κ)), that is to say R is the forcing
that one would do over M [Gκ+1] to produce a j(Pκ)-generic object extending
Gκ+1.

Modifying the proof of Lemma 12.11 we see that

V [Gκ+1] |= “R is κ++-closed”

and

V [Gκ+1] |= “R has κ++ maximal antichains lying in M [Gκ+1]”.

By Proposition 8.1 we build a filter H ∈ V [Gκ+1] which is R-generic
over M [Gκ+1], and lift j : V −→ M to get j : V [Gκ] −→ M [Gj(κ)] where
Gj(κ) = Gκ ∗ gκ ∗H. We observe that V [Gκ+1] |= κ+

M [Gj(κ)] ⊆M [Gj(κ)].
As in the last section we may apply Proposition 8.1 to build h ∈ V [Gκ+1]

which is j(Qκ)-generic over M [Gj(κ)], and the remaining problem is to build
h is such a way that j“gκ ⊆ h. At this point we can no longer imitate the
proof of the last section because we no longer have enough closure.

We do some analysis of an antichain A of j(Qκ) with A ∈ M [Gj(κ)]. Let
A = j(F )(j“κ+) where F ∈ V [Gκ], dom(F ) = Pκκ

+, and without loss of
generality F (x) is a maximal antichain in Qκ for all x. Working in V [Gκ],
for each ζ < κ++ we let Xζ = Add(κ, ζ), so that Xζ ⊆ Qκ, |Xζ | = κ+,
and Qκ =

⋃
ζ Xζ . A routine argument in the style of the Löwenheim-Skolem

theorem shows that for each x there is a club subset Cx of κ++ such that for
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all α ∈ Cx ∩ Cof(κ+) the antichain F (x) ∩Xα is maximal in Xα. Let C be
the intersection of the Cx for x ∈ Pκκ

+, then C is club and for every α ∈
C ∩Cof(κ+) the antichain A is maximal in j(Xα) = Add(j(κ), j(α))M [Gj(κ)].

Now we work in V [Gκ+1] to build a suitable filter h. Define Q a partial
function from j(κ)× j“κ++ by setting Q to be the union of j(p) for p ∈ gκ.
It is routine to check that dom(Q) = κ × j“κ++, and while Q is not even
in M [Gj(κ)], for all ζ < κ++ the partial function qζ = Q�(j(κ) × j(ζ)) is in
j(Xζ) and is a strong master condition for j and gκ ∩Xζ .

Working in V [Gκ+1], we may enumerate all the maximal antichains of
j(Qκ) as 〈Ai : i < κ++〉. Using the analysis of such antichains given above
we choose an increasing sequence αi ∈ κ++ ∩Cof(κ+) such that Ai ∩ j(Xαi)
is maximal in j(Xαi) for all i < κ++. Now we build a decreasing sequence of
conditions ri ∈ j(Qκ) such that for each i < κ++

1. ri ∈ j(Xαi).

2. ri ≤ qαi .

3. ri extends some member of Ai.

The construction of ri goes as follows. We start by forming r =
⋃

j<i rj ,
where we note that the support of r is contained in j(κ)× supj<i j(αj). We
claim that r is compatible with qαi . To see this let (δ, j(γ)) be an arbitrary
point in the domain of qαi , that is, γ < αi and δ < κ. If γ < αj for some j
then since r ≤ rj ≤ qj we have

qαi(δ, j(γ)) = Q(δ, j(γ)) = r(δ, j(γ)),

while if γ ≥ αj for all j < i then (δ, j(γ)) /∈ dom(r).
So we may take the union r ∪ qαi to get a condition in j(Xαi) and since

Ai ∩ j(Xαi) is maximal in j(Xαi) we may choose ri ≤ r ∪ qαi so that ri ∈
j(Xαi) and ri extends some condition in Ai.

It is now easy to see that the sequence of ri generates a generic filter h
with h ⊇ j“g. We may then proceed as in the previous section to lift the
embedding to V [Gκ+1].

13.1 Remark. In fact κ is still κ+-supercompact in V [Gκ+1].

13.2 Remark. The forcing technique described here has many applications
in the theory of precipitous and saturated ideals. See Sects. 17 and 18, and
also Foreman’s chapter in this Handbook.

14. Absorption

In this section we discuss an idea which is used in many forcing constructions
(for example in building Solovay’s model in which every set is Lebesgue mea-
surable [65]) and is particularly useful for our purposes, namely, the idea of
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embedding a complex poset into a simple one. This is one area of the subject
where the presentation of forcing in terms of complete Boolean algebras is
very helpful.

The “simple posets” into which we typically absorb more complex ones
are the Cohen forcing Add(κ, λ) and the collapsing poset Col(κ, λ). We note
that for any regular κ the forcing Col(κ, κ) is equivalent to Add(κ, 1) so we
phrase our whole discussion in terms of the collapsing poset.

The following universal property of the collapsing poset is key:

14.1 Theorem. Let κ be regular. Let λ ≥ κ and let P be a separative forcing
poset such that P is κ-closed, |P| = λ, every condition in P has λ incompatible
extensions and P adds a surjection from κ to λ.

Then P is equivalent to the collapsing poset Col(κ, λ).

Notice that if λ > κ and λ is regular, then the demand that P adds a
surjection from κ to λ implies that for no p ∈ P can P/p be λ-c.c., and so the
demand that every condition should have λ incompatible extensions follows
from the other conditions.

Proof. Let ḟ name a surjective map from κ to Ġ, where Ġ names the generic
filter on P. We will build a dense subset of ro(P) \ {0} which is isomorphic
to Col(κ, λ). Let P

∗ be the canonical isomorphic copy of P in ro(P), so that
P

∗ is a dense κ-closed subset of ro(P) \ {0}.
We will build a family bs indexed by s ∈ Col(κ, λ) with the following

properties:

1. b0 = 1, and bs ∈ ro(P) \ {0} for all s.

2. For all s and t, t ≤ s implies that bt ≤ bs.

3. For all α < κ, {bs : dom(s) = α} is a maximal antichain.

4. For all s with dom(s) a successor ordinal, bs ∈ P
∗.

5. For all α < κ and s with domain α, bs determines ḟ�α.

6. For all s with dom(s) a limit ordinal μ, bs =
∧

i<μ bs�i.

We will construct {bs : dom(s) = α} by recursion on α. At successor stages
we construct {bsj : j < λ} to be a maximal antichain below bs, consisting
of conditions that lie in P

∗ and determine ḟ�(dom(s) + 1).
For limit μ we define (as we are compelled to) bs as the infimum of {bs�i :

i < μ} for all s with dom(s) = μ. By κ-closure of P, bs �= 0. Clearly
{bs : dom(s) = μ} is an antichain. To show it is maximal, it will suffice to
show that it meets every generic G. Let G be generic, and let s : μ → λ be
the unique function with bs�i ∈ G for all i < μ; by closure s ∈ V , so s is a
condition in Col(κ, λ) and by genericity bs ∈ G.

This completes the construction, and it remains to see that the set of all
bs is dense. Let p ∈ P, so that p forces p ∈ G, and find a condition q ≤ p and
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an ordinal i < κ such that q � ḟ(i) = p. The condition q is compatible with
bs for s such that dom(s) = i + 1. Now bs determines ḟ(i), so bs forces that
ḟ(i) = p, in particular bs � p ∈ G and so by separativity bs ≤ p. �

In particular a separative κ-closed forcing poset of cardinality κ is equiv-
alent to Add(κ, 1) and a separative forcing poset of size λ which makes λ
countable is equivalent to Col(ω, λ). Moreover if P is κ-closed then for a
sufficiently large μ we see that P × Col(κ, μ) is equivalent to Col(κ, μ); this
is the key point in Theorems 14.2 and 14.3.

Theorem 14.1 has the following corollaries. We separate the cases of
Col(ω,<κ) and Col(δ,<κ) for uncountable δ because (as detailed below) we
may say significantly more in the former case.

14.2 Theorem. Let κ be an inaccessible cardinal and let C = Col(ω,<κ).
Let P be a separative forcing poset with |P| < κ and let Q̇ be a P-name for a
separative forcing poset of size less than κ. Then

1. There is a complete embedding i : ro(P) → ro(C).

2. For any such i and any P-generic g, C/i(g) is equivalent in V [g] to
Col(ω,<κ).

3. Any such i may be extended to a complete j : ro(P ∗ Q̇) → ro(C).

In the general case we have:

14.3 Theorem. Let κ be an inaccessible cardinal, let δ < κ be regular and
let D = Col(δ,<κ). Let |P| < κ where P is a δ-closed separative forcing
poset, and let Q̇ be a P-name for a δ-closed separative forcing poset of size
less than κ. Then

1. There is a complete embedding i : ro(P) → ro(D) such that D/i(g) is
equivalent in V [g] to Col(δ,<κ).

2. Any such i may be extended to a complete j : ro(P ∗ Q̇) → ro(D) such
that D/i(g ∗ h) is equivalent in V [g ∗ h] to Col(δ,<κ).

Notice that Theorem 14.2 asserts that however we embed the small poset P

in the collapse Col(ω,<κ), the quotient forcing is Col(ω,<κ). Theorem 14.3
just asserts that there is some way of embedding the small δ-closed poset P

in the collapse Col(δ,<κ), so that the quotient forcing is Col(δ,<κ).
To underline the difference between these theorems we consider the fol-

lowing example, which implies that we can find an embedding of Add(ω1, 1)
into Add(ω1, 1) where the quotient is not countably closed or even proper.

14.4 Example. Let CH hold, let P = Add(ω1, 1). If F : ω1 → 2 is the
function added by P and S = {α : F (α) = 1} then we claim that S is
stationary in V [F ]. To see this let p force that Ċ is club and build a chain
of extensions p0 = p ≥ p1 ≥ p2 ≥ · · · so that pn+1 forces some ordinal
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αn > dom(pn) into Ċ. Then if p∗ =
⋃

pn and α∗ = supn αn we have that
dom(p∗) = α∗ and p∗ � α∗ ∈ Ċ, and may then extend to force that α∗ ∈ S.
A similar argument shows that Sc is also stationary.

Working in V [F ], we now let Q be the forcing from Example 6.8 to add a
club set D ⊆ Sc. We claim that P ∗ Q̇ has a countably closed dense subset
of size ω1, namely, the set of pairs (p, č) where dom(p) = max(c) + 1 and
p(α) = 0 for all α ∈ c: the proof is just like the proof that S is stationary
from the last paragraph. So now P ∗ Q is equivalent to Add(ω1, 1), while Q

destroys the stationarity of S so is not countably closed (or even proper).

Now we give some examples of the absorption idea in action. The first one
is due to Kunen [45]. Since there is a detailed account in Foreman’s chapter
in this Handbook we shall only sketch the result.

As motivation we recall some facts about saturated ideals, weakly compact
cardinals, and stationary reflection.

1. If κ is strongly inaccessible and carries a λ-saturated ideal for some
λ < κ then κ is measurable [45].

2. If κ is weakly compact and carries a κ-saturated ideal then κ is mea-
surable [45].

3. If κ is weakly compact then every stationary subset of κ reflects.

4. If V = L then for every regular κ, κ is weakly compact if and only if
every stationary subset of κ reflects [42].

5. If P× P is κ-c.c. and κ is measurable in V P then κ is measurable in V
(see Theorem 21.1).

In the model which we present there is an inaccessible cardinal κ which
carries a κ-saturated ideal and reflects stationary sets, and there is also a
κ-Suslin tree T (so in particular κ is not weakly compact). It follows that 1
and 2 above are close to optimal, and that in general the conclusion of 4
fails. The key property of the model will be that adding a branch through
the κ-Suslin tree T resurrects the measurability of κ so that 5 is also close to
optimal.

We will use a standard device due to Kunen [45] for manufacturing satu-
rated ideals.

14.5 Lemma. Let P be λ-c.c. and let U̇ be a P name for a V -ultrafilter on κ.
Let I be the set of those X ∈ P (κ) ∩ V such that �P κ \X ∈ U̇ . Then

1. I is a λ-saturated ideal.

2. If U̇ is forced to be V -κ-complete then I is κ-complete, and if U̇ is
forced to be V -normal then I is normal.
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Often we have a P-name for a generic embedding j : V −→ M ⊆ V [GP],
and U will be {X ∈ P (κ) ∩ V : κ ∈ j(X)}. This kind of induced ideal is
discussed at length in Foreman’s chapter in this Handbook.

We use a result by Kunen [45].

14.6 Fact. Let α be inaccessible. Then there is a forcing poset P0(α) such
that

1. P0(α) has cardinality α and adds an α-Suslin tree Tα.

2. If P1(α) ∈ V P0(α) is the forcing poset (Tα,≥Tα), then P0(α)∗ Ṗ1(α) has
a dense subset isomorphic to the Cohen poset Add(α, 1).

We assume that κ is measurable and GCH holds. We do an iteration with
Easton support of length κ+1. For α < κ we let Q̇α name the trivial forcing
unless α is inaccessible, in which case Q̇α names Add(α, 1)V Pα . We let Q̇κ

name P0(κ)V Pκ where P0(κ) is the forcing from Fact 14.6.
As usual, let Gκ be Pκ-generic over V and let gκ be Qκ-generic over V [Gκ].

14.7 Claim. In V [Gκ+1]:

• κ is not weakly compact.

• κ carries a normal κ-saturated ideal.

• κ reflects stationary sets.

Proof. Let T be the tree added by the P0(κ)-generic filter gκ. Since T is a
κ-Suslin tree in V [Gκ+1], κ is not weakly compact in V [Gκ+1].

Let H be generic over V [Gκ+1] for P1(κ), that is to say (T,≥T ). Since
T is a κ-Suslin tree, H is generic for κ-c.c. (κ,∞)-distributive forcing over
V [Gκ+1].

Since P0(κ) ∗ P1(κ) is isomorphic to Add(κ, 1), V [Gκ+1 ∗ H] is a model
obtained by forcing with Add(α, 1)V [Gα] at every inaccessible α ≤ κ. By Re-
mark 12.17 κ is measurable in V [Gκ+1∗H], and we may fix U ∈ V [Gκ+1 ∗H]
which is a normal measure on κ. Let U̇ be a P1(κ)-name for U .

Working in V [Gκ+1] we now define an ideal I on κ by

X ∈ I ⇐⇒ �P1(κ) κ \X ∈ U.

By Lemma 14.5 this is a normal κ-saturated ideal.
Finally let V [Gκ+1] |= “S is a stationary subset of κ”. κ-c.c. forcing pre-

serves the stationarity of stationary subsets of κ and so S is stationary in
V [Gκ+1 ∗H]. Measurable cardinals reflect stationary sets and so there is an
ordinal α < κ such that V [Gκ+1 ∗H] |= “S ∩ α is a stationary subset of α”.
It follows easily that

V [Gκ+1] |= “S ∩ α is a stationary subset of α”.

�
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As our second example we sketch a result from the author’s program of
joint work [13, 12] with Džamonja and Shelah on strong non-reflection. The
argument has the interesting feature that we are creating a strong master
condition by forcing.

14.8 Definition. Let κ < λ < μ be regular cardinals. Then the Strong Non
Reflection principle SNR(κ, λ, μ) is the assertion that there is a function F
from μ∩Cof(κ) to λ, such that for every δ ∈ μ∩Cof(λ) there is a set C club
in δ with F �(C ∩ Cof(κ)) strictly increasing.

It is easy to see that if F witnesses SNR(κ, λ, μ), S ⊆ μ ∩ Cof(κ) is
stationary and we use Fodor’s Lemma to find stationary T ⊆ S with F
constant on T , then T reflects at no point of cofinality λ. The next theorem
shows that this idea can be used to make fine distinctions between stationary
reflection principles. The hypothesis can be improved to the existence of a
weakly compact cardinal with a little more work.

14.9 Theorem. Suppose that it is consistent that there exists a measurable
cardinal. Then it is consistent that every stationary subset of ω3 ∩ Cof(ω)
reflects to a point of cofinality ω2, while at the same time every stationary
subset of ω3 ∩Cof(ω1) contains a stationary set which reflects at no point of
cofinality ω2.

Proof. We start with κ a measurable cardinal. Fix U a normal measure on κ
and let j : V −→M be the ultrapower map. We let P = Col(ω2, <κ). As we
saw in Theorem 10.8 in V P every stationary subset of ω3∩(Cof(ω)∪Cof(ω1))
reflects to a point of cofinality ω2.

Let Q be the natural poset to add a witness to SNR(ω1, ω2, ω3) by initial
segments. More precisely the elements of Q are partial functions f with
domain an initial segment of ω3 ∩ Cof(ω1) and the property that if α ≤
dom(f) and α ∈ Cof(ω2) then there is a set C club in α with f�(C∩Cof(ω1))
strictly increasing. The ordering is end-extension.

It is easy to see that Q is ω2-closed and that player II wins the strategic
closure game of length ω2 + 1; to see the second claim consider a strategy
where player II moves as follows: at every stage α ∈ ω2 ∩ Cof(ω1), player II
extends the existing function fα to fα+1 = fα ∪{dom(fα), α)}. In particular
Q adds no ω2-sequences and so preserves cardinals up to and including ω3.

We now make a suggestive false start. As usual we factor j(P) = P × R

where R is an ω2-closed forcing poset collapsing cardinals in the interval
[κ, j(κ)). If G is P-generic and g is Q-generic then by Theorem 14.3 we may
absorb P ∗ Q̇ into j(P) so that the quotient is ω2-closed, and so build an
embedding j : V [G] −→M [G ∗ g ∗h] where h is generic for ω2-closed forcing.

If F is the function added by g then F =
⋃

g =
⋃

j“g. It is natural to
try and use F as a strong master condition. Since cf(κ) = ω2 in M [G ∗ g ∗ h]
we need to know that F is increasing on a club set to see that F ∈ j(Q), but
this is not immediately clear.
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To resolve this problem we work in V [G ∗ g] and define a poset S as
follows: conditions in S are closed bounded subsets c of κ such that |c| ≤ ω1

and F �(c∩Cof(ω1)) is strictly increasing. It is easy to see that S is countably
closed in V [G ∗ g]. We claim that in V [G] there is a dense ω2-closed set of
conditions in Q ∗ Ṡ, consisting of those conditions (f, č) such that dom(f) =
(max(c)+1))∩Cof(ω1) and f is strictly increasing on c∩Cof(ω1). The proof
is routine.

We now force over V [G ∗ g] with S to obtain a club set C ⊆ κ such that
C has order type ω2 and F �(C ∩ Cof(ω1)) is increasing. Since Q ∗ Ṡ has
an ω2-closed dense set we may absorb G ∗ g ∗ C into j(P) with an ω2-closed
quotient and then lift to obtain j : V [G] −→ M [G ∗ g ∗ C ∗ h] where h is
generic for ω2-closed forcing. C serves as witness that F ∈ j(Q) so we may
force with j(Q)/F to obtain a generic g+ and then lift to get j : V [G ∗ g] −→
M [G ∗ g ∗ C ∗ h ∗ g+].

This elementary embedding exists in a generic extension of V [G ∗ g] by
countably closed forcing, so exactly as in Theorem 10.8 in V [G∗ g] every sta-
tionary set in κ ∩ Cof(ω) reflects to a point of cofinality ω2. By construction
we also have SNR(ω1, ω2, ω3) in V [G ∗ g] so we are done. �

As a third example we sketch Magidor’s proof that consistently every
stationary subset of ωω+1 reflects.

14.10 Theorem. If it is consistent that there exist ω supercompact cardinals
then it is consistent that every stationary subset of ωω+1 reflects.

Proof. We start by fixing an increasing sequence 〈κn : 0 < n < ω〉 of su-
percompact cardinals. We also fix jn : V −→ Mn witnessing that κn is
λ+-supercompact where λ = supn κn. We then define a full support iteration
of length ω by setting P1 = Q0 = Col(ω,<κ1), Qn = Col(κn, <κn+1)V Pn for
all n > 0, Pn+1 = Pn ∗Qn, Pω = lim

←
Pn.

Let Gω be Pω generic, let Gn be the Pn-generic filter induced by Gω and let
gn be the corresponding Qn-generic filter over V [Gn]. The following claims
are easy:

• κn = ωn, λ = ωω, and λ+ = ωω+1 in V [Gω].

• For every n, Pω/Gn is κn-directed-closed in V [Gn].

• For every n > 0 let us factor Gω as Gn−1 ∗ gn−1 ∗ Hn. Then jn can
be lifted to an elementary embedding jn : V [Gn−1] −→Mn[Gn−1], and
in V [Gn−1] we may embed Pω/Gn−1 into jn(Qn) so that the quotient
forcing is κn−1-closed.

It follows from this discussion that we may lift jn to an embedding with
domain V [Gω] in three steps:

1. Lift to jn : V [Gn−1] −→Mn[Gn−1].
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2. Lift to jn : V [Gn−1∗gn−1] −→Mn[Gn−1∗gn−1∗Hn∗In] = Mn[jn(Gn)]
where In is generic over V [Gω] for κn−1-closed forcing.

3. Use the closure of Mn to show that jn“Hn ∈Mn[jn(Gn)], and then use
the fact that jn(κn) > |Hn| and directedness to find a suitable strong
master condition r. Then force with jn(Pω/Gn)/r and lift once more
to jn : V [Gn ∗Hn] −→Mn[jn(Gn) ∗ jn(Hn)].

The key points are that

1. By forcing over V [Gω] with κn−1-closed forcing we have added a generic
embedding jn : V [Gω] −→Mn[jn(Gω)] with critical point κn.

2. jn“λ+ ∈Mn.

It remains to argue that in V [Gω] every stationary subset of λ+ reflects. By
the completeness of the club filter, every stationary set in λ+ has a stationary
subset of ordinals with a constant cofinality, so it will suffice to show that for
all n any stationary subset S of λ+ ∩ Cof(ωn) reflects.

We consider the generic embedding jn+2 : V [Gω] −→ Mn[jn(Gω)] con-
structed above. It is easy to see that if γ = sup jn“λ+ then γ < jn(λ+)
and j“S ∩ γ is stationary in Mn[Gω], because the map jn+2 is continuous at
points of cofinality κn. The only problem is to see that S (and hence j“S∩γ)
is still stationary in Mn[jn(Gω)], so it will certainly suffice to see that the
stationarity of S is preserved by any ωn+1-closed forcing.

Unfortunately it is not true in general [10] that κ+-closed forcing preserves
stationary subsets of μ∩Cof(κ) when μ is the successor of a singular cardinal.
We address this problem using an idea of Shelah to show that in our model
V [Gω] every stationary subset of ωω+1∩Cof(ωn) is preserved by ωn+1-closed
forcing.

We start by fixing in V for every β < λ+ a decomposition β =
⋃

i<ω bβ
i

where the bβ
i are disjoint and |bβ

i | ≤ κi. We define F (α, β) to be the unique
i < ω with α ∈ bβ

i . The key technical claim is that in V [Gω] any ordinal
ρ < λ+ with uncountable cofinality contains an unbounded homogeneous set
for F .

We fix such a ρ and let n be the unique integer such that in V we have
κn ≤ cf(ρ) < κn+1. We note that if σ =def sup(jn“ρ) then σ < j(ρ), and
so we may define in V an ultrafilter U =def {A ⊆ ρ : σ ∈ j(A)}. Clearly
ρ \ α ∈ U for all α < ρ, and U is κn-complete in V .

We now fix for each α ∈ ρ a U -large set Aα on which F (α,−) is constant.
In V [Gω] we have that cf(ρ) = κn, and we will build by recursion an increasing
and cofinal sequence 〈αi : i < κn〉 in ρ such that αj ∈ Aαi for i < j. This is
possible because 〈Aαi : i < j〉 is in V [Gn] so is covered by a subset Yj of U
which lies in V and has size less than κn; the intersection of Yj is in U , and
any element of this intersection will do as αj . It is then easy to thin out the
“tail homogeneous” sequence of αi to a cofinal homogeneous set.
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To finish we show the needed stationary preservation fact. We work in
V [Gω]. Let T ⊆ λ+ ∩ Cof(κn) be stationary, let Q be κn+1-closed, let Ċ be
Q-name for a club subset of λ+. We build N ≺ Hθ for some large θ such
that N contains all the relevant parameters, |N | = λ, all bounded subsets of
λ are in N and δ = N ∩ λ+ ∈ T . Fix A ⊆ δ a cofinal set of order type κn

and i ∈ ω so that A is i-homogeneous for F . We claim that all proper initial
segments of A lie in N : for if β ∈ A then A ∩ β ⊆ bβ

i , and since bβ
i ∈ N with

|bβ
i | ≤ κi and also P (κi) ⊆ N we see easily that A ∩ β ∈ N .
The endgame of the argument is now very similar to the proof of Lem-

ma 10.6. We enumerate the elements of A in increasing order as αi for i < κn.
We then build a decreasing sequence 〈qj : j < κn〉 of conditions in Q ∩ N ,
where qj is the least condition which both determines min(Ċ \ αj) and is
below qi for all i < j. We need to see that qj ∈ N for all j < κn; the key
point is that 〈qi : i < j〉 is definable from A ∩ αj , and so can be computed
in N . To finish we choose q a lower bound for 〈qi : i < κn〉, and observe that
q � α ∈ Ċ ∩ T . �

15. Transfer and Pullback

It is sometimes possible to transfer a generic filter over one model to another
model along an elementary embedding, and then to lift that elementary em-
bedding. The following proposition makes this precise

15.1 Proposition. Let k : M −→ N have width ≤ μ, and let P ∈ M be a
separative notion of forcing such that

M |= “ P is (μ+,∞)-distributive”.

Let G be P-generic over M and let H be the filter on k(P) which is generated
by k“G. Then H is k(P)-generic over N .

Proof. Let D ∈ N be a dense open subset of k(P). Let D = k(F )(a) for
some a ∈ N and some F ∈M such that M |= | dom(F )| ≤ μ; we may as well
assume that for every x ∈ dom(F ), F (x) is a dense open subset of P.

Now let E =
⋂

x∈dom(F ) F (x). By the distributivity assumption E is a
dense subset of P, and clearly E ∈M , so that E ∩G �= ∅. If p ∈ G ∩E then
k(p) ∈ k(F )(a) = D, so that H ∩D �= ∅ and so H is generic as claimed. �

15.2 Remark. Given the conclusion of the last proposition, it follows from
Proposition 9.1 that k can be lifted to get k+ : M [G] −→ N [H].

As an example of this proposition in action, we prove a result reminiscent
of Lemma 8.5.

15.3 Lemma. Let GCH hold. Let E be a (κ, κ++) extender and let the map
j : V −→ M = Ult(V,E) be the ultrapower. Let Q = Col(κ+++, <j(κ))M .
Then there is a filter g ∈ V which is Q-generic over M .
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Proof. Let U = {X ⊆ κ : κ ∈ j(X)} and let i : V −→ N = Ult(V, U). As
in Proposition 3.2 we may define an elementary embedding k : N −→M by
k([F ]U ) = j(F )(κ), and j = k ◦ i.

Let λ = κ++
N . It is easy to see that

M = {j(F )(a) : a ∈ [κ++]<ω, dom(F ) = [κ]|a|}
= {k(H)(a) : a ∈ [κ++]<ω, dom(H) = [λ]|a|}.

It follows that k is an embedding of width at most λ.
Now let Q0 = Col(λ+, <i(κ))N , and notice that k(Q0) = Q. By exactly

the same argument as in Lemma 8.5 there is g0 ∈ V which is Q0-generic
over N . By Proposition 15.1 k“g0 generates a filter g which is Q-generic
over M . �

15.4 Remark. This lemma can be used to construct posets along the lines
of the generalized Prikry forcing from Example 8.6, collapsing κ to become
for example ωω1 . See [8] and [27] for details.

15.5 Remark. See Sects. 22 and 25 for applications of Proposition 15.1 in
reverse Easton constructions.

Proposition 15.1 admits a kind of dual in which the traffic goes the other
way:

15.6 Proposition. Let k : M −→ N have critical point δ, let P ∈ M be a
notion of forcing such that

M |= “ P is δ-c.c.”.

Let H be k(P)-generic over N and let G = k−1“H. Then G is P-generic
over M .

Proof. Let A ∈ M be a maximal antichain of P. Then k(A) = k“A and it
is maximal in k(P), so k“A meets H and hence A meets G. It is routine to
check that G is a filter. �

16. Small Large Cardinals

One of the main themes of this chapter has been preservation of large cardinal
axioms in forcing extensions, using the characterization of those large cardinal
axioms in terms of elementary embeddings. It might seem that this method
can only work for large cardinal hypotheses at least as strong as the existence
of a measurable cardinal, because after all the critical point of any definable
j : V −→ M is always measurable (and even the existence of a generic
embedding j : V −→M ⊆ V [G] implies the existence of an inner model with
a measurable cardinal).
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However it turns out that we can get down to the level of weakly compact
cardinals by working with elementary embeddings whose domains are sets
which do not contain the full power set of the critical point. We record a
number of equivalent characterizations of weak compactness. The last one
(which is due to Hauser [34]) has the surprising feature that the target model
of the embedding contains the embedding itself, a fact which can be used to
good effect in master condition arguments [35, 34].

16.1 Theorem. The following are equivalent for an inaccessible cardinal κ:

1. κ is weakly compact.

2. κ is Π1
1-indescribable.

3. κ has the tree property.

4. For every transitive set M with |M | = κ, κ ∈ M and <κM ⊆ M
there is an elementary embedding j : M −→ N where N is transitive,
|N | = κ, <κN ⊆ N and crit(j) = κ.

5. For every transitive set M with |M | = κ, κ ∈ M and <κM ⊆ M
there is an elementary embedding j : M −→ N where N is transitive,
|N | = κ, <κN ⊆ N , crit(j) = κ and in addition j and M are both
elements of N .

Proof. The equivalence of the first four statements is standard [43]. So we
only show that the last one follows from weak compactness. Given M a
transitive set with |M | = κ ∈M and <κM ⊆M we find a transitive M̄ with
the same properties so that M ∈ M̄ . We fix in M̄ a well founded relation E
on κ so that (κ,E) collapses to (M,∈).

By weak compactness we may find an embedding j : M̄ −→ N̄ with critical
point κ such that |N̄ | = κ and <κN̄ ⊆ N̄ . Let N = j(M) and i = j�M so
that i : M −→ N is elementary. Since j(E) ∈ N̄ it is easy to see that M and
i are both in N̄ ; but by elementarity N is closed under κ-sequences in N̄ so
that M and i are in N . �

16.2 Example. We show that it is consistent for the first failure of GCH to
occur at a weakly compact cardinal. This needs a little work. For example if
V = L and we add κ++ Cohen subsets to a weakly compact cardinal κ then
this destroys the weak compactness of κ. The point is that for X ⊆ κ the
statement “X /∈ L” is Π1

1 in (Vκ,∈, X), so that if κ is weakly compact and
X /∈ L then by Π1

1-indescribability some initial segment of X is not in L.
We will assume that GCH holds in V and that κ is weakly compact.

We will force with Easton support to add α many Cohen subsets to each
inaccessible α < κ, and will then add κ++ many Cohen subsets to κ. Let Pκ

be the iteration up to κ and let Q = Add(κ, κ++)V Pκ . Let G be Pκ-generic
over V and let g be Q-generic over V [G].
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For the sake of variety we show that κ has the tree property in V [G ∗ g].
Let T ∈ V [G∗g] be a κ-tree. T is essentially a subset of κ, and so by the κ+-
c.c. there is in V a set X ⊆ κ++ with |X| = κ such that T ∈ V [G ∗ g0] where
g0 = g�(κ×X). Without loss of generality we may as well assume that X = κ.
So now T ∈ V [G∗g0], where g0 = g�(κ×κ) and g0 is Q0 = Add(κ, κ)-generic.

Working in V we fix a suitable transitive model M such that Ṫ ∈M , and
then choose j : M −→ N as in clause 5 of Theorem 16.1. We now proceed
to lift j. We need to be slightly careful about issues of closure. Our models
are less closed than in the context of measurable cardinals, but since they
are themselves small sets this is not a problem.

Since Pκ is κ-c.c. and V |= <κN ⊆ N , we have by Proposition 8.4 that
V [G] |= <κN [G] ⊆ N [G]. Q0 adds no <κ-sequences so by Proposition 8.2
V [G ∗ g0] |= <κN [G ∗ g0] ⊆ N [G ∗ g0]. Since |N [G ∗ g0]| = κ and the factor
iteration j(Pκ)/G ∗ g0 is <κ-closed in V [G ∗ g0], we may as usual build H ∈
V [G∗g0] suitably generic and lift to get j : M [G] −→ N [G∗g0 ∗H]. As usual
V [G ∗ g0] |= <κN [G ∗ g0 ∗H] ⊆ N [G ∗ g0 ∗H]. Finally since j�g0 = idg0 we
may use r =

⋃
g0 as a strong master condition, construct a suitable generic

filter for j(Q0)/R and lift the embedding onto M [G ∗ g0]. Since j(T )�κ = T ,
we may use any point on level κ of j(T ) to generate a cofinal branch of T
lying in V [G ∗ g0].

17. Precipitous Ideals I

In this section we prove some theorems about precipitous ideals due to Jech,
Magidor, Mitchell and Prikry [41]. As a warm-up we show it is consistent
that there exists a precipitous ideal (precipitousness is defined below) on ω1,
then we show that the non-stationary ideal on ω1 can be precipitous. The
hypothesis used is the existence of a measurable cardinal, which is known
[41] to be optimal.

The proof has several very interesting technical features including:

• The use of the universal properties of the Levy collapsing poset, an
idea which goes back to Solovay’s proof that every set of reals can be
measurable [65].

• The use of forcing to add simultaneously filters G and H such that an
embedding M −→ N lifts to an embedding M [G] −→ N [H].

• The use of an iterated club-shooting forcing to make the club filter ex-
hibit properties that are characteristic of filters derived from elementary
embeddings.

17.1. A Precipitous Ideal on ω1

We refer readers to Foreman’s chapter in this Handbook for the basic theory
of precipitous ideals. We recall that if I is an ideal on κ then we may force
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with the forcing poset P (κ)/I \ {0} (equivalence classes of I-positive sets
modulo I) to add a V -ultrafilter U such that U ∩ I = ∅. Working in V [U ] we
may then form Ult(V, U) using functions in V ordered modulo U . The ideal I
is said to be precipitous if and only if Ult(V, U) is forced to be well-founded.
We will follow a common practice and abuse notation by saying that the
ultrafilter U is “P (κ)/I-generic”.

The following fact is key for us: to show that an ideal I on a cardinal κ
is precipitous, it suffices to produce (typically by forcing) for every A /∈ I a
V -ultrafilter U on κ such that A ∈ U , U is P (κ)/I-generic, and Ult(V, U)
is well-founded. The point is that if I fails to be precipitous there is A /∈ I
which forces this, and for such an A no U as above can exist.

We will reuse an example from earlier in this chapter. Assume that κ
is measurable, and let j : V −→ M = Ult(V, U) be the ultrapower map
from a normal measure U on κ. Let P = Col(ω,<κ). Then as we saw in
Theorem 10.2:

1. j(P) is isomorphic to P×Q where Q is the poset which adds a surjection
from ω onto each ordinal in [κ, j(κ)) with finite conditions. We will
usually be careless and identify the posets j(P) and P×Q.

2. If G is P-generic over V and H is Q-generic over V [G] then G ∗ H is
j(P)-generic over V , and j“G ⊆ G ∗H, so in V [G ∗H] we can lift our
original j to jG : V [G] −→M [G ∗H] with jG(G) = G ∗H. So from the
point of view of V [G] the embedding jG is a generic embedding added
by forcing with Q.

3. Since M = {j(f)(κ) : f ∈ V } we have that

M [G ∗H] = {jG(f)(κ) : f ∈ V [G]},

so that M [G ∗H] is the ultrapower Ult(V [G], UG) where

UG = {X ∈ P (κ) ∩ V [G] : κ ∈ jG(X)} .

Here UG is a V [G]-normal V [G]-κ-complete V [G]-ultrafilter and jG is
the associated ultrapower map.

Foreman’s chapter in this Handbook gives a rather general framework for
defining precipitous ideals by way of generic elementary embeddings. In the
interests of being self-contained, we describe how this plays out in the setting
of the embedding from Theorem 10.2.

We caution the reader that the following arguments involve viewing the
universe V [G ∗ H] both as an extension of V by j(P) and an extension of
V [G] by Q. We are quietly identifying j(P)-names in V with Q-names in
V [G], resolving any possible confusion by making explicit which model we
are forcing over and with which poset.

Working in V [G] we define an ideal I on ω
V [G]
1 (= κ) by

I = {X ⊆ κ : �V [G]
Q

κ /∈ jG(X)}.
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Equivalently I consists of those sets which are forced by Q not to be in the
ultrafilter UG.

Working in V [G] we define a Boolean algebra homomorphism from P (κ)
to ro(Q) which maps X to the truth value [X ∈ U̇G]ro(Q). The kernel of this
map is exactly I so we may induce a map ι from P (κ)/I to ro(Q).

The key point is that, as we see in a moment, the range of ι is dense. From
this it follows that for any H which is Q-generic over V [G], the ultrafilter
UG is P (κ)/I-generic over V [G]; in fact it follows from the truth lemma that
X ∈ UG ⇐⇒ ι(X) ∈ H, so that in a very explicit way forcing with Q is
equivalent to forcing with P (κ)/I.

To establish that the range of ι is dense recall that Q is densely embedded
in ro(Q). Let q ∈ Q, so that q = j(F )(κ) where F ∈ V is a function
such that F (α) ∈ Col(ω, [α, κ)) for all α < κ. Working in V [G], define
X = {α : F (α) ∈ G}. Since jG extends j, q = jG(F )(κ) and so for any H we
have that

ι(X) ∈ H ⇐⇒ κ ∈ jG(X) ⇐⇒ q ∈ jG(G) ⇐⇒ q ∈ H.

It is an immediate conclusion that I must be precipitous. For if A /∈ I
then we may choose H inducing jG such that κ ∈ jG(A). Arguing as above
we get that UG is P (κ)/I-generic with A ∈ UG, so we are done.

It is interesting to note that the ideal I is precisely the ideal generated in
V [G] by the ideal dual to the ultrafilter U . It is immediate that I contains
this ideal, so we only need to prove that I is contained in this ideal.

Let p �V
P

Ẋ ∈ İ. We claim that if we define A = {α : p � α /∈ Ẋ} then
A ∈ U . For if not then we may define a function F on Ac such that F (α) ≤ p
and F (α) � α ∈ Ẋ. But then if we let q = j(F )(κ) and force to get G ∗H
containing q, we obtain a situation in which p ∈ G and yet κ ∈ jG(X), so
that X ∈ UG and we have a contradiction.

17.1 Remark. Really we have just worked through a very special case of
Foreman’s Duality Theorem. See Foreman’s chapter in this Handbook for
more on this subject.

17.2. Iterated Club Shooting

In Sect. 17.1 we produced a precipitous ideal I on ω1. It is not hard to see
that this ideal is not the non-stationary ideal. For example if in V we define
S = κ ∩ Cof(ω), then S is stationary in V [G] by the κ-c.c. of the collapsing
poset P. Since κ /∈ j(S) we see that �Q Š /∈ U̇G, so that S ∈ I.

To make the non-stationary ideal precipitous, we will iteratively shoot
clubs so as to destroy the stationarity of inconvenient sets such as the set S
from the last paragraph. The argument is somewhat technical so we give an
overview before launching into the details.



834 Cummings / Iterated Forcing and Elementary Embeddings

Overview

Working in V [G] we build a countable support iteration R of length κ+ (which
is the ω2 of V [G]). At each stage we shoot a club set through some stationary
subset of ω1. A key point will be that this iteration adds no ω-sequences of
ordinals; from this it will follow that

1. ω1 is preserved.

2. At each stage of the iteration R, the conditions in the club shooting
forcing used at that stage (which are closed and bounded subsets of ω1)
actually lie in the model V [G].

Recall from Sect. 17.1 that P = Col(ω,<κ), j(P) = P×Q, and for any H
which is Q-generic over V [G] we may lift j : V → M and get jG : V [G] →
M [G∗H]. It is the existence of these generic embeddings which is responsible
for the precipitousness of I in V [G].

For each α we will find an embedding of P ∗Rα into j(P), and we will use
this to produce generic embeddings jα : V [G ∗ gα] → M [G ∗ H ∗ hα] where
gα is Rα-generic and G ∗ gα is embedded into G ∗H. From these embeddings
jα we will define normal ideals Iα ∈ V [G ∗ gα] which are analogous to the
ideal I; the construction will be organized so that

1. Iα increases with α.

2. In the final model
⋃

α Iα is the non-stationary ideal.

To finish, we will use the embeddings jα to show that the non-stationary
ideal is precipitous. This argument, which is similar to but more complicated
than that of Sect. 17.1, appears as Lemma 17.3 below.

Details

Working in V [G] we construct by induction on α < κ+

1. A countable support iteration Rα.

2. An embedding iα : P ∗Rα → j(P) extending the identity embedding of
P into j(P). Our convention in what follows is that H is always some
Q-generic filter over V [G] and gα is always the Rα-generic filter induced
by H via the embedding iα.

3. A Q-name Ḋα for a strong master condition appropriate for the em-
bedding jG : V [G] → M [G ∗ H] and generic object gα; that is to say
Ḋα names a condition in j(Rα) which is a lower bound for j“gα.

4. A Q ∗ j(Rα)/Dα-name for jα : V [G ∗ gα] → M [G ∗H ∗ hα] extending
jG : V [G] →M [G ∗H].
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5. An Rα-name İα for a normal ideal on κ; this is defined as a master con-
dition ideal of the sort discussed in Foreman’s chapter of this Handbook;
to be more precise, it is defined to be the set of those X ⊆ κ in V [G ∗ gα]
such that it is forced over V [G ∗ gα] by j(P)/(G ∗ gα) ∗ j(Rα)/Dα that
κ /∈ jα(X).

6. An Rα-name Ṡα for a set in the filter dual to the ideal Iα.

We will maintain the hypotheses that

1. Rα adds no ω-sequences of ordinals and has the κ+-c.c.

2. For β < γ ≤ α

(a) iγ extends iβ (from which it follows that gγ extends gβ).

(b) It is forced over V [G] (by the appropriate forcing posets) that
Dγ�j(β) = Dβ , jγ�V [G ∗ gβ ] = jβ , and Iγ ∩ V [Gβ ] = Iβ .

3. The set of flat conditions is dense in Rα, where a condition r in Rα is
flat if

(a) For every η in the support of r, r(η) is a canonical Rη-name ďη for
some dη ∈ V [G], where dη is a closed and bounded subset of κ.

(b) There is an ordinal γ < κ such that γ = max(dη) for every η in
the support of p.

We will explain why some of the hypotheses are maintained and then give
the details of the construction. Since Dα is a strong master condition for Rα

it follows from Theorem 12.5 that forcing with Rα adds no ω-sequences of
ordinals. As we see shortly Dα is flat, and since Dα ≤ j“gα it follows from
elementarity that the set of flat conditions is dense. Standard Δ-system
arguments show that the set of flat conditions has the κ+-c.c. and so since
this set is dense Rα has the κ+-c.c. The remaining “coherence” hypotheses
will be satisfied by construction.

• At successor stages we take Rα+1  Rα ∗ CU(κ, Sα). For α limit, Rα

is constructed as the direct limit of 〈Rβ : β < α〉 if α has uncountable
cofinality and the inverse limit if α has countable cofinality.

• iα is defined using the universal properties of the Levy collapse as in
Theorem 14.2.

• Recall that jα exists in the extension of V [G ∗ gα] by the forcing poset
j(P)/(G ∗ gα) ∗ j(Rα)/Dα. Working in V [G ∗ gα] we define Iα to be
the ideal of those X ⊆ κ such that it is forced over V [G ∗ gα] by
j(P)/(G ∗ gα) ∗ j(Rα)/Dα that κ /∈ jα(X).
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• Let 〈Cη : η < α〉 be the sequence of club sets added by gα. We construct
Dα as follows: the support of Dα is j“α, and Dα(j(η)) is the canonical
j(Rη)-name for Cη ∪ {κ}.
Of course we need to check that Dα is a strong master condition. The
salient points are that

– Since α < κ+, j“α ∈M .

– Since κ+ < j(κ), j“α is countable in M [G ∗H]. In particular Dα

has countable support.

– If f ∈ gα then f ∈ V [G] and the support of f has size less than
crit(jG). Hence the support of jG(f) is j“ dom(f).

– For every β < α, Dβ = Dα�j(β) is a lower bound for j“gβ . In
particular it is immediate for α limit that Dα is a strong master
condition, so we may concentrate on the case when α = β + 1.
Recall that by induction Pβ adds no ω-sequences of ordinals. Let
r ∈ gα, then it follows from the distributivity of Pβ that we may
write r = r0

�r1 where r0 ∈ gβ and (without loss of generality)
r1 is the canonical name for Cβ ∩ (η + 1) where η ∈ Cβ . By
induction Dβ ≤ j(r0). By the distributivity of Pβ again, every
initial segment of Cβ is in V [G], and is fixed by jG. So Dβ(=
Dα�j(β)) forces that Dα(j(β)) is an end-extension of j(r1).
It only remains to check that Dβ forces that Cβ ∪ {κ} is a legit-
imate condition in jβ(CU(κ, Sβ)). But this is immediate because
Sβ was chosen to lie in the filter dual to Iβ .

• Dα is flat. This is straightforward: we have already checked that it is
a condition, and by construction each entry is a canonical name for a
closed set of ordinals with maximum element κ.

• jα is defined in the standard way as a lifting of jG : V [G] →M [G ∗H].
The fact that Dα is a strong master condition ensures the necessary
compatibility of generic filters.

• The sets Sα are chosen according to a suitable book-keeping scheme so
that after κ+ steps it is forced that every element of

⋃
α Iα has become

non-stationary.

17.2 Remark. The trick of using a dense subset of conditions which are
“flat” (in a suitable sense) is very often useful in situations when we are iter-
atively shooting clubs through stationary sets. It would have been tempting
to define Pα as the set of flat conditions with a suitable ordering, but this
raises problems of its own; in particular we would have needed to verify
that the flat poset is an iteration of club shooting forcing, which amounts to
showing that flat conditions are dense.
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In several subsequent arguments that involve iterated club shooting we
have cheated (in a harmless way) by just defining the set of flat conditions,
and leaving it to the reader to check that this set is dense in the corresponding
iteration. See in particular Lemma 17.3 and the results of Sects. 18 and 19.

Precipitousness

It remains to see that the non-stationary ideal is precipitous in V [G ∗ gκ+ ].
The argument runs parallel to that for the precipitous ideal in the preceding
section, but is harder because we now need a generic elementary embedding
with domain V [G ∗ gκ+ ]. The main technical difficulties are that

1. j“κ+ /∈ M , indeed it is cofinal in j(κ+), so that we cannot hope to
cover it by any countable set in M [G ∗ H]. So there is no chance of
building a strong master condition.

2. The method for doing without a strong master condition which we
described in Sect. 13 uses a reasonably large amount of closure but Pκ+

is not even countably closed.

3. Pκ+ is not sufficiently distributive to transfer a generic object as in
Sect. 15, nor does it obey a strong enough chain condition to pull back
a generic object as in Proposition 15.6.

Since we will use the same set of ideas again in Sect. 18 when we build a
model in which NSω2 is precipitous, we state a rather general lemma about
constructing precipitous ideals by iterated club-shooting. This is really just
an abstraction of an argument from [41]. In the applications which we are
making of this lemma the preparation forcing P will make κ into the successor
of some regular δ < κ.

17.3 Lemma. Suppose that κ is measurable and 2κ = κ+. Let U be a
normal measure on κ and let j : V −→M be the associated ultrapower map.
Let P be a κ-c.c. poset with P ⊆ Vκ. As usual P is completely embedded in
j(P), so that if G is P-generic and H is j(P)/G-generic then j : V −→ M
can be lifted to an elementary embedding jG : V [G] −→M [G ∗H].

Let 〈Q̇α : α ≤ κ+〉 be an P-name for a sequence of forcing posets such that
in V [G]

1. Qα is a complete subposet of Qβ for α ≤ β ≤ κ+.

2. Forcing with Qα adds no <κ-sequences of ordinals.

3. Qκ+ is κ+-c.c.

4. Every condition in Qα is a partial function q such that dom(q) ⊆ α,
| dom(q)| < κ and q(η) is a closed and bounded subset of κ for all
η ∈ dom(q).
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5. If g is a Qα-generic filter then
⋃

g is a sequence 〈Cβ : β < α〉 of club
subsets of κ.

Suppose further that there are sequences 〈iα : α < κ+〉 and 〈Ḋα : α < κ+〉
such that

1. iα is a complete embedding of P ∗ Q̇α into j(P), with i0 = id.

2. iβ extends iα for α ≤ β ≤ κ+.

3. Ḋα is a j(P)/P ∗ Q̇α-name for a condition Q ∈ jG(Qα) such that
dom(Q) = j“α, and for every η ∈ j“α Q(η) = Cη ∪ {κ}, where
〈Cβ : β < α〉 is the sequence of club subsets of κ added by Qα.

4. It is forced that Ḋβ extends Ḋα for α ≤ β ≤ κ+.

Let G be P-generic over V , and let H be j(P)/G-generic over V [G]. For
each α < κ+, let gα be the filter on Qα induced by iα and H (so that gα is
V [G]-generic).

For each ν < κ+ the hypotheses above imply that it is forced over V [G∗gν ]
by j(P)/G ∗ gν ∗ jG(Qν)/Dν that jG can be extended to a generic embedding
jν with domain V [G ∗ gν ]. Let Jν ∈ V [G ∗ gν ] be the ideal of those X ⊆ κ
such that it is forced that κ /∈ jν(X). Let g =

⋃
ν gν and J =

⋃
ν Jν .

Then

1. g is Qκ+-generic over V [G].

2. J is precipitous in V [G ∗ g].

17.4 Remark. In the intended applications, J will end up being the non-
stationary ideal. However it may be (as will be the case in Sect. 18) that this
is accomplished by a more sophisticated strategy than arranging that every
A ∈ J is disjoint from some Ci.

Proof. The induced filters gν are compatible in the sense that if ρ ≤ σ then
gρ = gσ ∩Qρ. It follows easily from the κ+-c.c that if we set g =

⋃
ρ gρ then

g is Qκ+ -generic. Let Dρ be the strong master condition computed from gρ.
We will construct K which is jG(Qκ+)-generic over M [G ∗ H], and is

compatible with g in the sense that jG“g ⊆ K. We do this as follows:
define Q

∗ to be the subset of jG(Qκ+) consisting of those F such that for
some μ < κ+ we have F ∈ jG(Qμ)/Dμ. Of course Q

∗ ⊆ M [G ∗ H], but
Q∗ /∈M [G ∗H] since its definition requires a knowledge of j�κ+.

We force to get K0 which is Q
∗-generic over V [G ∗ H]. Let K be the

upwards closure of K0 in jG(Qκ+), then we claim that K is jG(Qκ+)-generic
over M [G ∗H]. Let A ∈ M [G ∗H] be a maximal antichain in jG(Qκ+). We
will show that conditions extending some element of A are dense in Q

∗. Let
F ∈ Q

∗, and fix μ such that F ∈ jG(Qμ)/Dμ. By a familiar chain condition
argument we may fix a ρ > μ such that A is a maximal antichain in jG(Qρ).
Working in M [G ∗H] we first extend F to F ′ = F ∪Dρ ∈ jG(Qρ)/Dρ, and
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then extend F ′ to a condition F ′ ′ ∈ j(Qρ) which also extends some member
of A.

In the usual way we may now extend jG : V [G] −→ M [G ∗ H] to an
embedding j∗ : V [G ∗ g] −→ M [G ∗ H ∗ K]. From the point of view
of the model V [G ∗ g] this is a generic embedding added by forcing with
j(P)/(G ∗ g) ∗ Q

∗. It is routine to check that J is the ideal on κ induced by
this generic embedding; more explicitly for every X ∈ V [G ∗ g]

X ∈ J ⇐⇒ �V [G∗g]
j(P)/(G∗g)∗Q∗ κ /∈ j∗(X).

For any X /∈ J we may therefore force to obtain some embedding j∗ such
that κ ∈ j(X). To finish it will suffice to show that for any generic embedding
j∗ as above, if we define a V [G ∗ g]-ultrafilter U ∗ by

U ∗ = {Y : κ ∈ j∗(Y )}

then U ∗ is P (κ)/J-generic over V [G∗g] and gives a well-founded ultrapower.
Since as in the last section we have Ult(V [G ∗ g], U ∗) = M [G ∗H ∗K], the
well-foundedness is immediate.

The argument that U ∗ is P (κ)/J-generic is similar to that from the last
section but there are some extra subtleties. We note in particular that the
embedding j∗ is defined in a generic extension of V by j(P) ∗ Q

∗, but is a
lifting of j to a map from the extension of V by P ∗Qκ+ to the extension of
M by j(P) ∗ j(Qκ+).

Let Ȧ be a P ∗ Qκ+ -name for a maximal antichain of J-positive sets and
suppose towards a contradiction that some condition (P, Ḟ ) ∈ j(P)∗Q∗ forces
that for every B ∈ A, κ /∈ j∗(B). We will find a J-positive set T which has
J-small intersection with every B ∈ A, contradicting the maximality of A.

Since Q
∗ ⊆ j(Pκ+) we see that (P, Ḟ ) ∈ j(P ∗Qκ+), and so we may choose

in V a function R : κ → P ∗ Qκ+ such that j(R)(κ) = (P, Ḟ ). Let Ṫ name
the set {α : R(α) ∈ G ∗ g}; then it is easy to see that it is forced by j(P) ∗Q

∗

that for every B ∈ A, κ /∈ j∗(B ∩ T ); the key point is that by construction
κ ∈ j∗(T ) ⇐⇒ (P, F ) ∈ G ∗H ∗K.

We now force to get G ∗H which is j(P)-generic over V with P ∈ G ∗H,
and from this we obtain as usual a g which is Qκ+ -generic over V [G]. Moving
to V [G ∗ g] and using the fact that J is the ideal induced by j∗, we see that
B ∩ T ∈ J for all B ∈ A.

To finish the argument we show that T /∈ J . By forcing over V [G∗H] with
Q

∗/F we obtain an elementary embedding j∗ : V [G ∗ g] −→ M [G ∗H ∗K]
where (P, F ) ∈ G ∗H ∗K, so that κ ∈ j∗(T ) by the construction of R and
T . Since J is the ideal induced by j∗, T /∈ J and we are done. �

17.5 Remark. The technique used in this lemma is discussed in a more
general and abstract setting in Foreman’s chapter of this Handbook.
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18. Precipitous Ideals II

In this section we discuss some work of Moti Gitik in which he obtains various
results of the form “NSκ�Cof(μ) can be precipitous” from hypotheses which
are optimal or close to optimal. We will describe in some detail the proof of

18.1 Theorem (Gitik [23]). The precipitousness of NSω2 is equi-consistent
with the existence of a cardinal of Mitchell order two.

We will then give a much less detailed discussion of some of Gitik’s con-
sistency and equi-consistency results for cardinals greater than ω2, which use
many of the same ideas. Throughout this section, we will be using the general
machinery of Lemma 17.3 to construct precipitous ideals. We will focus on
the technical problems that need to be overcome to invoke this machinery,
and on their solutions.

18.2 Remark. As discussed in Foreman’s chapter in this Handbook, the
simplest known model [21] for the precipitousness of NSκ is obtained by
taking a Woodin cardinal δ > κ and forcing with Col(κ,<δ). The point here
is to use the optimal hypotheses, which turn out to be much weaker.

18.3 Remark. We note that NSω2 is precipitous if and only if both of the
restrictions NSω2�Cof(ω) and NSω2� Cof(ω1) are precipitous.

18.1. A Lower Bound

We start by sketching a proof of a lower bound for the strength of “NSω2

is precipitous”. Suppose for a contradiction that NSω2 is precipitous and
there is no inner model with a cardinal κ such that o(κ) = 2, and let K be
the core model for sequences of measures constructed by Mitchell [59]. Let
λ = ωV

2 and let F be the measure sequence of K. We recall the key facts
that K is definable and invariant under set forcing, and that any elementary
i : K −→ N ⊆ V is an iterated ultrapower of K by F .

By precipitousness of NSω2� Cof(ω1), we may force to get a V -ultrafilter
U which concentrates on ordinals of cofinality ω1 and has M = Ult(V, U)
well-founded. Let j : V −→M ⊆ V [U ] be the ultrapower map. By the usual
arguments crit(j) = λ = [id]U , P (λ)V ⊆ M , and cfM (λ) = ωM

1 = ωV
1 . Note

also that if A is an ω-club subset of λ in V , then the same is true of A in M .
Let i = j�K, then by the properties of K mentioned above we know that

i : K −→ K ′ = KM and i is an iterated ultrapower of K with critical point
λ. In particular λ is measurable in K, and so F(λ, 0) exists. By our initial
hypotheses λ is not measurable in K ′, and so in K the only measure on λ is
F(λ, 0). Note also that P (λ)K = P (λ)K′

.
Let C be the ω-club filter on λ as computed in V , let A ∈ F(λ, 0) and let

W be an arbitrary V -generic ultrafilter added by forcing with C-positive sets.
Then by precipitousness of NSω2� Cof(ω), we get an elementary embedding
jW : V −→ Ult(V,W ), and if iW = jW �K then iW is an iterated ultrapower
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of K with critical point λ; since in K the only measure on λ is F(λ, 0), we see
that κ ∈ jW (A), that is, A ∈W . Since it is forced that A ∈W , we have that
A ∈ C. So F(λ, 0) ⊆ C ∩K, and since the left hand side is a K-ultrafilter in
fact F(λ, 0) = C ∩K.

Now let D be the ω-club filter on λ as computed in M . This makes sense
because cfM (λ) = ω1. We know that C ⊆ D and P (λ)K = P (λ)K′

, so
easily F(λ, 0) = D ∩K ′. Since D is a countably complete filter in M we see
that M ′ = Ult(K ′,F(λ, 0)) is wellfounded and we get in M an elementary
embedding j′ : K ′ −→ M ′ with critical point λ; since K ′ = KM this is an
iteration of K ′, but that is impossible because λ is not measurable in K ′.

18.2. Precipitousness for NSω2� Cof(ω1)

We have established that if NSω2 is precipitous then there is an inner model
with a cardinal κ such that o(κ) = 2. We will prove that this is an equi-
consistency, but before we do that we warm up with a sketch of the easier
argument that starting from a measurable cardinal NSω2� Cof(ω1) can be
precipitous [41].

We have already introduced in Sect. 17 most of the ideas needed to show
that NSω2� Cof(ω1) can be precipitous. What is still missing is a discussion
of how we should shoot club sets through stationary subsets of ω2. The
arguments of Lemmas 18.5 and 18.6 are due to Stavi (see [3]).

As we saw in Sect. 6 if S is a stationary subset of ω1 then it is possible to
add a club set C with C ⊆ S, using a forcing poset which does not add any
ω-sequences of ordinals. Suppose now that instead S is a stationary subset
of ω2. In general we may not be able to shoot a club set through S without
collapsing cardinals, for example if S = ω2 ∩ Cof(ω1).

In a way the rather trivial example from the last paragraph is misleading.
If we aim to make NSω2� Cof(ω1) precipitous then we need to take a stationary
S ⊆ ω2 ∩ Cof(ω1) and add, without collapsing ω1 or ω2, a club subset C of
ω2 such that C ∩ Cof(ω1) ⊆ S. This is fairly easy.

We recall that CU(δ, A) is the forcing poset whose conditions are closed
bounded subsets of δ which are contained in A, ordered by end-extension. We
will need a technical lemma on the existence of countably closed structures.

18.4 Lemma. Let CH hold and let S ⊆ ω2 ∩ Cof(ω1) be stationary. Let θ
be a large regular cardinal and let x ∈ Hθ. Then there exists N ≺ Hθ such
that ω1 ∪ {x} ⊆ N , |N | = ω1, ωN ⊆ N and N ∩ ω2 ∈ S.

Proof. We build an increasing and continuous chain 〈Nj : j < ω2〉 such that
Nj ≺ Hθ, ω1 ∪ {x} ⊆ N0, |Nj | = ω1 and ωNj ⊆ Nj+1. Since ω1 ⊆ Nj we
see that Nj ∩ ω2 ∈ ω2, and so by continuity and the stationarity of S we
may choose j such that cf(j) = ω1 and Nj ∩ ω2 ∈ S; it is easy to see that
ωNj ⊆ Nj . �
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18.5 Lemma. Let CH hold, and let S ⊆ ω2 ∩ Cof(ω1) be stationary. Let
P = CU(ω2, (ω2 ∩ Cof(ω)) ∪ S). Then P is countably closed and adds no
ω1-sequences of ordinals.

Proof. Countable closure is immediate, so suppose that c forces that τ̇ is a
function from ω1 to On. By Lemma 18.4 we may find N ≺ Hθ for some
large θ so that N contains everything relevant, |N | = ω1, ωN ⊆ N , and
δ =def N ∩ ω2 lies in S. Now we build a decreasing chain of conditions
〈ci : i < ω1〉 so that ci ∈ N , ci+1 decides τ(i) and the sequence 〈δi : i < ω1〉
where δi =def max(ci) is cofinal in δ. If λ < ω1 is a limit stage there is
no problem because ωN ⊆ N , and we may safely choose δλ = supi<λ δi,
cλ =

⋃
i<λ ci ∪ {δλ}. To finish we choose d =

⋃
i<ω1

ci ∪ {δ}, which is legal
since δ ∈ S, and then d is a condition which refines c and determines τ̇ . �

An equivalent formulation would be that we are shooting an ω1-club set
through S by forcing with bounded ω1-closed subsets of S. Using the forcing
of Lemma 18.5 and the ideas of Sect. 17, it is now fairly straightforward to
show that starting with a measurable cardinal κ we may produce a model
where NSω2� Cof(ω1) is precipitous. We force first with Col(ω1, <κ) and
then iterate club shooting, absorb forcing posets and construct strong master
conditions more or less exactly as in Sect. 17.

If we are interested in the full ideal NSω2 then we need to shoot club sets
rather than ω1-club sets. This is more subtle; a little thought shows that
if S ⊆ ω2 and we wish to shoot a club set through S without adding ω1-
sequences, then there must be stationarily many α ∈ S ∩ Cof(ω1) such that
S ∩ α contains a closed cofinal set of order type ω1. The next result shows
that (at least under CH) this is the only obstacle.

18.6 Lemma. Let CH hold, and let S ⊆ ω2 be such that for stationarily
many α ∈ S ∩ Cof(ω1) there exists a set C ⊆ S ∩ α with C club in α. Let
P = CU(ω2, S). Then P adds no ω1-sequences of ordinals.

Proof. The proof is similar to that of Lemma 18.5. Let T be the stationary
set of α ∈ S∩Cof(ω1) such that there exists a set C ⊆ S∩α with C club in α.
Suppose that c forces that τ̇ is a function from ω1 to On. Build an elementary
N ≺ Hθ for some large θ so that N contains everything relevant, |N | = ω1,
ωN ⊆ N , and α =def N∩ω2 ∈ T . By hypothesis there is a set C ⊆ S∩α with
C club in α. We build a strictly decreasing chain of conditions 〈ci : i < ω1〉
so that ci ∈ N , ci+1 decides τ(i) and δi ∈ C where δi =def max(ci). To finish
we choose d =

⋃
i<ω1

ci ∪ {α}, so that d is a condition which refines c and
determines τ̇ . �

18.3. Outline of the Proof and Main Technical Issues

We will use measures U0 � U1 of Mitchell orders zero and one respectively.
We let B be the set of α < κ with o(α) = 1, so that B ∈ U1 and B /∈ U0. We
fix measures Wi for i ∈ B so that Wi is a measure of order zero on i (so in
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particular B ∩ i /∈Wi) and 〈Wi : i ∈ B〉 represents U0 in Ult(V, U1), or more
concretely for X ⊆ κ

X ∈ U0 ⇐⇒ {i : X ∩ i ∈Wi} ∈ U1.

The rough idea is this: we start with some preparation forcing which adds
no reals, makes κ into ω2, makes all inaccessible α lying in B into ordinals
of cofinality ω1, and makes all inaccessible α not lying in B into ordinals
of cofinality ω. We then iterate shooting club sets so that U0 extends to
the ω-club filter and U1 extends to the ω1-club filter. Roughly speaking U0

will be responsible for the precipitousness of NSω2� Cof(ω) and U1 will be
responsible for the precipitousness of NSω2� Cof(ω1).

There are several technical obstacles to be overcome.

• In the proof sketched above that NSω2� Cof(ω1) can be precipitous,
the forcing which is being iterated to shoot ω1-club subsets of ω2 is
countably closed. In particular it can be absorbed into any sufficiently
large countably closed collapsing poset. This means that the “prepa-
ration stage” of the preceding construction can be the simple forcing
Col(ω1, <κ). In the construction to follow we will be shooting club sub-
sets of ω2 in a way which destroys stationary subsets of ω2∩Cof(ω), so
that the forcing can not be embedded into any countably closed forcing
(or even any proper forcing). This is one reason why the preparation
stage for the construction to follow has to be more complicated.

• The measure U0 will be extended to become the ω-club filter. So we
need to shoot ω-club sets through (at least) all A ∈ U0, and we will
therefore need to shoot closed sets of order type ω1 through many initial
segments of A, in order to appeal to a suitable version of Lemma 18.6.
We need some way of organizing the construction so that all A ∈ U0

are anticipated.

Recall that if A ∈ U0 then there are many i ∈ B such that A ∩ i ∈Wi.
At many i ∈ B we will add a club subset of i which has order type ω1,
and is eventually contained in every member of Wi.

• To build the preparation forcing, we need some way of iterating forc-
ings which change cofinality without adding reals. This will require an
appeal to Shelah’s machinery of revised countable support iteration.

• In the arguments for the precipitousness of NSω1 and NSω2� Cof(ω1), we
iterated to shoot club sets through stationary sets which were measure
one for certain “master condition ideals” (in the sense of Foreman’s
chapter) arising along the way. In the current setting it is not clear
that we can do this in a distributive way, so we finesse the question and
shoot club sets through some more tractable sets, then argue that this
is enough.



844 Cummings / Iterated Forcing and Elementary Embeddings

To be a bit more precise, suppose that V [Gκ] is the result of the prepa-
ration stage. We will build a κ+-c.c. iteration Qκ+ , shooting club sets
through subsets of κ. At successor stages we will shoot club sets through
certain sets of inaccessibles from the ground model of the form X ∪ Y
where X ∈ U0, Y ∈ U1, X ⊆ κ \B and Y ⊆ B.

As the construction proceeds we will show, by induction on ν, that
the embeddings ji can be lifted onto the extension of V [Gκ] by Qν .
For limit ν we will write Qν as the union

⋃
α<κ Qα

ν of a continuous
sequence of subsets each of size less than κ. The existence of the lifted
embeddings implies that if Hν is Qν-generic over V [Gκ], then there are
many α < κ such that Hν∩Q

α
ν is Q

α
ν -generic over V [Gα]; we will ensure

that a club set is shot through each such set of “generic points”.

We then argue that using the club sets which are added in this process,
for each set in one of the relevant master condition ideals we may define
a club set which is disjoint from it. Below, at the end of Sect. 18.6, we
will work through a toy example which illustrates this central idea.

• In order to realize the idea of the last item, we need that the closed
sets of order type ω1 added to points of B during the preparation stage
have an additional property. Namely, if i ∈ B and c is the club set in i
which is added at stage i during the preparation, then we require that
for every β ∈ lim(c) the set c ∩ β must intersect every club subset of β
which lies in V [Gβ ].

• Let ji : V −→Mi be the ultrapower by Ui for i = 0, 1. We will need to
embed Pκ ∗ Qν into both j0(Pκ) and j1(Pκ). Naturally the iterations
j0(Pκ) and j1(Pκ) differ at stage κ; the forcing at stage κ will change
the cofinality of κ to the values ω and ω1 respectively.

18.4. Namba Forcing, RCS Iteration
and the S and I Conditions

Several important ingredients in the proof come from Shelah’s work [64] on
iterated forcing. The technical issue is that in the preparation stage we need
to iterate forcing posets which change cofinalities to ω and add no reals, in
such a way that the whole iteration adds no reals. A detailed discussion of
Shelah’s techniques would take us too far afield, so we content ourselves with
a very brief overview.

The preparation iteration will be done using Shelah’s Revised Countable
Support (RCS) technology. This is a version of countable support iteration in
which (very roughly speaking) we allow the supports of conditions used in the
iteration to be countable sets which are not in the ground model, but arise in
the course of the iteration: the point of doing this is to cope gracefully with
iteration stages δ such that cf(δ) > ω in V but the cofinality of δ is changed
to ω in the course of the iteration.
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For motivation, consider the case of Namba forcing. The conditions are
trees T ⊆ <ωω2 with a unique stem element stem(T ), such that every element
of T is comparable with stem(T ) and every element extending stem(T ) has ω2

immediate successors in T . Forcing with these conditions adds an ω-sequence
cofinal in ω2.

Namba [60] showed that under CH this forcing poset adds no reals; we
sketch an argument for this which is due to Shelah. Let ṙ be a name for
a real and let S be a condition. We first find a refinement T ≤ S such
that stem(T ) = stem(S), and T forces that ṙ(n) is determined by the first n
points of the generic branch. We then appeal to a partition theorem for trees
(proved from CH, by applying Borel determinacy to each of a family of ω1

“cut and choose” games played on T ) to find a refinement U ⊆ S such that
stem(U) = stem(S) and every branch through U determines the same real r,
so that U � ṙ = ř.

The decisive points for the arguments of the last paragraph were that
Namba forcing satisfies a version of the fusion lemma and that (under CH)
the ideal of bounded subsets of ω2 is (2ω)+-complete. Motivated by these
ideas Shelah formulated a technical condition on forcing posets known as the
S-condition, where S is some set of regular cardinals; this is an abstract form
of fusion, saying very roughly that a tree of conditions which has cofinally
many λ-branching points for each λ ∈ S can be fused. Shelah also showed
that under the right circumstances an RCS iteration of S-condition forcing
does not add reals. The variant of Namba forcing in which conditions are
subtrees of <ωω2 such that cofinally many points have ω2 successors satisfies
the S-condition for S = {ω2}.

An important ingredient in the proof we are describing that NSω2 can
be precipitous is a variant Nm′ of Namba forcing. Conditions in Nm′ are
subtrees T of <ωω3, such that for i ∈ {2, 3} there are cofinally many points
t ∈ T with {α : t�α ∈ T} an unbounded subset of ωi.

The salient facts about Nm′ are encapsulated in the following result. The
first fact in this list is quite hard, but the remaining ones follow easily.

18.7 Lemma. Let CH hold. Then

1. Nm′ satisfies Shelah’s S-condition for S = {ω2, ω3}, in particular it
adds no reals (and so preserves ω1).

2. Nm′ adds cofinal ω-sequences in ωV
2 and ωV

3 .

3. In the generic extension ωV
3 can be written as the union of ω many sets

which each lie in V and have V -cardinality ω1.

4. Assuming that 2ω2 = ω3 in V , in the generic extension by Nm′ there is
an ω-sequence 〈En〉 such that

(a) En ∈ V and V |= “En is a club subset of ω2” for each n < ω.
(b) For every E ∈ V such that V |= “E is a club subset of ω2” there

is an integer n such that En ⊆ E.
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5. Assuming that 2ω2 = ω3 in V , if R is any forcing poset of size ω2 which
adds no ω1-sequences then forcing with Nm′ adds a generic filter for the
poset R.

For use later we note that Gitik and Shelah defined a generalized version
of the S-condition known as the I-condition, where I is a family of ideals on
some set S of regular cardinals. The I-condition is just like the S-condition
except that the branching in the fusion trees now has to be positive cofi-
nally often with respect to every ideal in I. Gitik and Shelah extended the
iteration theorems for RCS iteration which we mentioned above to cover the
I-condition, subject to additional technical conditions.

18.5. The Preparation Iteration

We will start by forcing with an RCS iteration Pκ. Among the important
features of this forcing poset will be that

1. Pκ adds no reals.

2. For every inaccessible α ≤ κ,

(a) Pα is isomorphic to the direct limit of 〈Pβ : β < α}.
(b) Pα ⊆ Vα.

(c) Pα is α-c.c.

(d) Pα collapses α to become ω
V [Gα]
2 .

(e) After forcing with Pα+1, α is an ordinal of cardinality ω1, which
has cofinality ω for α /∈ B and cofinality ω1 for α ∈ B.

(f) For α ∈ B, V [Gα] and V [Gα+1] have the same ω-sequences of
ordinals.

18.8 Remark. It follows from the properties of Pκ we just listed that

1. All bounded subsets of κ in V [Gκ] appear in V [Gβ ] for some β < κ.

2. All elements of ωα which are in V [Gκ] already appear in V [Gα+1], and
if α ∈ B then such ω-sequences are actually in V [Gα].

As usual it suffices to define the poset which is used at each stage i of the
iteration.

• Case 1: If i is not inaccessible we force with Col(ω1, 2ω1)V [Gi].

• Case 2: If i is inaccessible and i /∈ B then we force with (Nm′)V [Gi]

(where we note that in V [Gi] we will have i = ω2 and i+ = ω3).
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• Case 3: If i is inaccessible and i ∈ B then we force with P
∗[Wi] defined

as follows: conditions are pairs (c, A) such that c is a countable closed
subset of (κ \B) ∩ i consisting of V -inaccessibles, A ⊆ (κ \B) ∩ i with
A ∈Wi, and for every β ∈ lim(c) the set c ∩ β meets every club subset
of β lying in the model V [Gβ ]. The condition (c′, A′) extends (c, A) if
and only if c′ end-extends c, A′ ⊆ A and c′ − c ⊆ A.

18.9 Remark. Let i fall under case 3, let g be a V [Gi]-generic subset of
P

∗[Wi] and let e =
⋃
{c : ∃A (c, A) ∈ g}. Then e is a club subset of i with

order type ω1, e is eventually contained in every element of Wi, and every
element of e falls under case 2.

18.10 Remark. The definition of P
∗[Wi] can be simplified by the observation

that (by the β-c.c.) every club subset of β in V [Gβ ] contains a club subset
of β in V .

A key technical point (which we are glossing over here) is that the poset
P

∗[Wi] satisfies a suitable version of Gitik and Shelah’s I-condition [28]. In
fact the argument we are describing was one of the main motivations for the
development of the I-condition. Once it is has been checked that Nm′ has
the S-condition and P

∗[Wi] satisfies the I-condition for suitable S and I, an
appeal to standard facts about RCS iterations lets us conclude that Pκ has
the properties listed above.

18.11 Lemma. If i ∈ B then forcing with P
∗[Wi] adds no ω-sequences of

ordinals to V [Gi].

Sketch of Proof. Take a Pi-name for a sequence 〈Dn : n < ω〉 ∈ V [Gi] of
dense open subsets of P

∗[Wi]. Working in V we fix an elementary chain
of models Mβ for β ∈ i such that Mβ ≺ (Hθ, . . .), M0 contains everything
relevant and Mβ ∩ i ∈ i. Now we choose an inaccessible β /∈ B such that
Mβ ∩ i = β and β ∈ A for every A ∈ Mβ ∩ Wi. Since Pβ is β-c.c. and
Pβ ⊆ Mβ , routine arguments as in the theory of proper forcing show that
Mβ [Gβ ] ≺ Hθ[Gκ] and Mβ [Gβ ] ∩ V = Mβ .

As we observed already β must fall under case 2 in the definition of the
preparation iteration Pκ, so that by Lemma 18.7 there is in V [Gi] an ω-
sequence 〈Em : m < ω〉 which “diagonalizes” the club subsets of β lying in
V [Gβ ]. We may now construct a sequence 〈(cn, An) : n < ω〉 of conditions
in P

∗[Wi] ∩Mβ [Gβ ] such that c2n+1 ∈ Dn and max(c2n+2) ∈ En. Let d =def⋃
n cn ∪ {β} and A∗ =

⋂
(Mβ ∩Wi), then (d,A∗) is a condition in P

∗[Wi]
which lies in the intersection of the Dn. �

18.6. A Warm-up for the Main Iteration

Throughout the discussion that follows we are working in V [Gκ], in particular
κ = ω2 and κ+ = ω3. We will eventually describe an iteration of length κ+

in which we shoot club sets through subsets of κ without adding bounded
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subsets of κ. Before we do that, for purposes of motivation we will describe
a much simpler three step iteration R0 ∗ Ṙ1 ∗ Ṙ2 of club-shooting forcing, and
sketch proofs of its salient properties which contain most of the ideas needed
for the full iteration.

To describe R0 we fix sets of inaccessibles X ∈ U0 and Y ∈ U1 such that
X ⊆ κ \B and Y ⊆ B. Let A = X ∪ Y and define R0 = CU(κ,A), the poset
of closed and bounded subsets of A ordered by end-extension.

18.12 Lemma. Forcing with R0 over V [Gκ] adds no ω1-sequences of ordi-
nals.

Proof. Working in V , let T = {β ∈ Y : X ∩ β ∈Wβ}. Then T ∈ U1, because
X ∈ U0 and U0 is represented by 〈Wi : i ∈ B〉 in Ult(V, U1). In particular
T is stationary in κ. The poset Pκ is κ-c.c. and so T is stationary in V [Gκ].
For each β ∈ T , the preparation forcing added a closed set of order type ω1

which is contained in X ∩ β, and we are done by Lemma 18.6. �

One of the key ideas in Gitik’s arguments is that of a “local master con-
dition”. We give a more precise formulation in a moment, but the rough
idea is to look at conditions which induce generic filters over a submodel of
the universe for subposets of a forcing poset. The idea is similar to that
of a strongly generic condition in proper forcing (see Remark 24.5) but the
relevant submodels here are the classes V [Gβ ] for β < κ. We will construct
our iterations so that there are many local master conditions; as we see at
the end of this section, this is vital when it comes to lifting the elementary
embeddings j0 and j1 in the required way.

The set T defined in the proof of Lemma 18.12 is stationary, so by the
usual reflection arguments the set of points where T reflects is a measure one
set for any normal measure. We let A′ = X ′ ∪ Y ′, where

X ′ = {β ∈ X : T ∩ β is stationary in β},
Y ′ = {β ∈ Y : T ∩ β is stationary in β}.

For β < κ we define R0,β to be the set of d ∈ R0 such that max(d) < β and
d ∈ V [Gβ ]. It is easy to see that R0 =

⋃
β<κ R0,β , and that

R0,γ =
⋃

β<γR0,β = R0 ∩ Vγ [Gγ ]

when γ is V -inaccessible.

18.13 Remark. By the usual conventions, for λ an uncountable regular
cardinal and X a set with |X| = λ, a filtration of X is an increasing and
continuous sequence 〈Xi : i < λ〉 such that Xi ⊆ X, X =

⋃
i Xi, and

|Xi| < λ. The key property is that given filtrations Xi, X
′
i we have Xj = X ′

j

for a club set of j.
Technically the sequence of posets R0,β is not a filtration of R0 because it

is only continuous at V -inaccessible points. Until the end of this section we
will abuse notation and refer to such sequences as filtrations.
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A local version of the argument of Lemma 18.12 shows immediately that

18.14 Lemma. For every β ∈ A′, forcing with R0,β over V [Gβ ] adds no
ω1-sequences of ordinals.

The next lemma can be seen as a more refined version of this result. Let
β ∈ A′. We will say that c ∈ R0 is a β-master condition for R0 if max(c) = β,
and {c ∩ (α + 1) : α ∈ β ∩ lim(c)} is a V [Gβ ]-generic subset of R0,β .

18.15 Lemma. For every β ∈ A′ and every d ∈ R0,β there is a β-master
condition c ≤ d with c ∈ V [Gβ+2].

Proof. In V [Gβ ] we have β = ω2 and (β+)V = ω3. By the previous lemma,
R0,β is (ω1,∞)-distributive in V [Gβ ]. We distinguish the cases β ∈ X ′ and
β ∈ Y ′.

β ∈ X ′: At stage β in the preparation forcing we forced with Nm′. So we
are done by an appeal to clause 5 of Lemma 18.7, and in fact we can build a
suitable c in V [Gβ+1].

β ∈ Y ′: Again R0,β is (ω1,∞)-distributive in V [Gβ ]. In V [Gβ+2] we have
cf(β) = cf(β+) = ω1; so if D is the set of dense open subsets of R0,β which lie
in V [Gβ ], working in V [Gβ+2] we may write D =

⋃
i<ω1

Di where Di ∈ V [Gβ ]
and V [Gβ ] |= |Di| = ω1.

We fix D ∈ V [Gβ+2] such that D is a club subset of β of order type ω1

and D ⊆ X ∩ β. Now we build a chain of conditions ci ∈ R0,β such that
max(ci) ∈ D and ci+1 ∈

⋂
Di for all i. Since V [Gβ+2] and V [Gβ ] have the

same ωβ, there is no problem at limit stages. As usual we may now set
c =

⋃
i ci ∪ {β} to finish. �

We now define R1. Let E be the generic club subset of κ added by R0.
Then R1 is the set of those closed bounded sets d such that d ⊆ E ∩A′, and
E ∩ (β + 1) is a β-master condition for every β ∈ d.

18.16 Remark. We remind the reader of the discussion of the “flat condition
trick” in Remark 17.2. We will be using that trick heavily in what follows.
In particular when we get to the main construction in Sect. 18.7 we will just
define the set of flat conditions and leave all the details to the reader.

We define a suitable concept of flatness for conditions in the two-step
iteration R =def R0 ∗ Ṙ1. The flat conditions are pairs (c, ď) where c ∈ R0,
c � ď ∈ R1 and max(c) = max(d). We define Rγ = R∩Vγ [Gγ ] for inaccessible
γ < κ.

18.17 Lemma. Forcing with R over V [Gκ] adds no ω1-sequences of ordinals,
and the set of flat conditions is dense in R.

Proof. Working in V we fix a Pκ-name Ḋ for an ω1-sequence of dense subsets
of R, where we may as well assume that Ḋ ⊆ Vκ. By routine arguments there
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is a club set F ⊆ κ in V such that for every inaccessible γ ∈ F , Ḋ ∩ Vγ is a
Pγ-name for a sequence of dense sets in Rγ .

Now we choose γ ∈ Y ′ such that F ∩X ′∩γ ∈Wγ . By the definition of the
preparation forcing there is a club set e ⊆ γ in V [Gγ+1] such that ot(e) = ω1,
e ⊆ F ∩X ′, and for every β ∈ lim(e) the set e∩ β meets every club subset of
β lying in V [Gβ ].

We will now work in V [Gκ]. Let r be an arbitrary condition in R; we will
show that r can be extended to a flat condition which lies in the intersection
of the dense sets Di for i < ω1, establishing both of our claims about R. We
will build a decreasing sequence of conditions (ci, ḋi) for i ≤ ω1, such that

1. r = (c0, ḋ0).

2. For every i < λ,

(a) (ci, ḋi) ∈ Rγ .

(b) The condition ci+1 determines ḋi, that is, ci+1 � ḋi = ďi for some
di ∈ V [Gκ].

(c) (ci+1, ḋi+1) ∈ Di.

(d) The condition ci+1 forces that max(ḋi+1) > max(ci).

(e) The ordinal βi =def max(ci) lies in the set e, and ci is a βi-master
condition.

3. The sequence 〈βi : i ≤ ω1〉 is increasing and continuous.

4. For every limit λ ≤ ω1, (cλ, ḋλ) is a flat condition.

The successor steps in this construction are easy by an appeal to Lem-
mas 18.14 and 18.15, and the fact we reflected the density of the dense sets
down to each βj .

The subtle point is that for a limit ordinal λ ≤ ω1 we are safe to set
βλ = supi<λ βi, cλ =

⋃
i<λ ci ∪ {βλ} and ḋλ equal to the canonical name for

dλ =
⋃

i<λ di ∪ {βλ}. The issue is to check that cλ is a βλ-master condition,
so we set β = βλ and fix a Pβ name Z ⊆ Vβ for a dense subset of R0,β . We
then find a club set CZ ⊆ β such that if α ∈ CZ is inaccessible then Z ∩ Vα

names a dense subset of R0,α. Now the key point is that β ∈ lim(e) so e ∩ β
meets CZ , and we have i < λ such that βi ∈ CZ . Let α = βi, then we are
done since ci is an α-master condition and it generates a filter which meets
the dense set named by Z ∩R0,α (which is an initial segment of the dense set
named by Z itself). �

We may now define the notion of a β-master condition for R and prove
analogues of Lemmas 18.15 and 18.17. To be a bit more explicit, we say
that (c, d) is a β-master condition for R if and only if it is flat, max(c) =
max(d) = β, and {(c ∩ (α + 1), d ∩ (α + 1)) : α ∈ d} is Rβ-generic over
V [Gβ ]. We define T ′, X ′ ′, Y ′ ′, A′ ′ from X ′ and Y ′ in just the same way that
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T,X ′, Y ′, A′ were defined from X and Y . Then the analogue of Lemma 18.15
says that if β ∈ A′ ′ any condition in Rβ extends to a β-master condition, and
there is a similar generalization of Lemma 18.17.

We now sketch the main ideas in the argument that we can make the
restriction of NSω2 to Cof(ω) precipitous. Similar arguments apply to the
restriction to Cof(ω1).

Applying the elementary embedding j0 to the result of Lemma 18.15, we
obtain the result that every condition in R0 can be extended in M0 to a κ-
master condition in j0(R0). Implicitly this defines an embedding of Pκ ∗ R0

into j0(Pκ), and a strong master condition suitable for lifting the elementary
embedding j0 to the extension by Pκ ∗R0. A similar argument applies to the
iteration R0 ∗ R1.

We now return to a point which we already mentioned in Sect. 18.3,
namely, that can achieve the same kind of effect as in the construction of
Sect. 17.2 by performing an iteration where every step is either like R0 or like
R1. To fix ideas let H0 be R0-generic over V [Gκ], and let a ∈ V [Gκ ∗H0] be
in the master condition ideal for j0. Explicitly this means that it is forced
that κ /∈ j+

0 (a) where j+
0 is the lifting of j0 onto V [Gκ ∗H0] described in the

preceding paragraph. We will show how to add an ω-club set disjoint from a.
Let ȧ be a Pκ ∗ Ṙ0-name for a and let (p, q) ∈ Gκ ∗ H0 force that ȧ is

in the master condition ideal. That is to say, (p, q) forces that “it is forced
that κ /∈ j+

0 (a)”. Analyzing the lifting construction and viewing p now as
a condition in j0(Pκ), p forces over M0 that for every κ-master condition
Q ≤ j0(q), Q forces that κ /∈ j0(ȧ).

Now let C be the set of α < κ such that

1. q ∈ R0,α.

2. p forces (over V for the forcing poset Pκ) that for every Q ≤ q which
is an α-master condition for R0, Q forces (over V [Gκ] for the forcing
poset R0) that α /∈ ȧ.

By �Loś’s theorem we see that C ∈ U0.
Define R2 to be similar to R0, adding a club contained in C ∪D for some

D ∈ U1. One can do an analysis of R0 ∗ R1 ∗ R2 which is similar to the
analyses of R0 and R0 ∗R1 given above. Let Ei be the club set added by Ri.
Then

• By the construction of R1, E0 ∩ (α + 1) is an α-master condition for
every α ∈ E1.

• By the construction of R2, for every α ∈ E2 ∩ Cof(ω) we have α ∈ C.

• So for every α ∈ E1 ∩ E2 ∩ Cof(ω), it follows from the definition of C
that α /∈ a.

We have argued that in the extension by R0 ∗ R1 ∗ R2 there is an ω-club
set disjoint from a. In the next subsection we will show how to iterate and
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achieve the same effect for every set which appears in some master condition
ideal during the course of the iteration.

18.7. The Main Iteration

Recall from the last section that we defined R0 from a set A = X∪Y and then
R1 from a set A′ ⊆ A, where β ∈ A′ if β ∈ A and there are stationarily many
γ < β such that X ∩γ ∈Wγ . The poset R0 shot a club set E through A, and
the poset R1 shot a club set through the set of points β ∈ E ∩ A′ such that
E ∩ β was R0,β-generic over V [Gβ ]. The main iteration, which we will only
describe in outline, can be viewed as iterating this kind of construction many
times for every possible A simultaneously. The main difficulty in defining
the iteration is that when we have iterated ν times and have obtained an
iteration Qν , we need to define a suitable notion of β-master condition for
Qν ; this requires choosing a filtration of Qν , and the filtrations for different
values of ν must fit together nicely.

The main iteration is defined from some parameters 〈Aν , iν , Cν : ν < κ+〉,
which are chosen in V . They must satisfy a long list of technical conditions,
most of which we are omitting. In particular

1. Aν is the union of sets of inaccessibles Xν ⊆ κ \ B and Yν ⊆ B, with
Xν ∈ U0 and Yν ∈ U1.

2. Every set of inaccessibles X ⊆ κ \ B with X ∈ U0 is enumerated as
Xν for some successor ν, and similarly every set of inaccessibles Y ⊆ B
with Y ∈ U1 is enumerated as Yν for some successor ν.

3. iν is a surjection from κ to ν, which is also injective for ν ≥ κ. Note
that for any normal measure on κ, the map which takes β < κ to the
order-type of iν“β represents ν in the ultrapower.

4. Cν is club in κ.

5. If κ ≤ ν1 < ν2, β ∈ Cν2 and ν1 ∈ iν2“β, then β ∈ Cν1 .

We define Xν,β = iν“β for β < κ, so that the Xν,β ’s form a filtration of ν.
We define by recursion posets Qν for ν < κ+, and for each Qν also a

filtration in which Qν is written as the union of subsets Qν,β for β < κ.

18.18 Remark. Once again the remarks about the “flat condition trick”
in Remark 17.2 are somewhat applicable. We are defining a sequence of
posets, whose conditions are comprised of closed bounded sets from the
ground model, and claiming that they can be considered as an iteration.
However in this instance it would be hard to write down a genuine iteration
and then identify our conditions as a dense subset. To give a complete ac-
count of the proof we would have to check that the sequence of posets Qν

can be considered as an iteration, but this is only one of many details that
we are omitting.
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Conditions in Qν are sequences of the form q = 〈qα : α ∈ Xν,β〉 where
(omitting one condition for the moment)

I. β ∈ Cν (we will denote this ordinal β by βq in what follows).

II. For successor α in the support of q, qα ∈ CU(κ,Aα).

III. For limit α in the support of q, qα ∈ CU(κ,Aα ∩ Cα).

IV. For limit α in the support of q, for every η ∈ qα,

(a) η ≤ βq.

(b) Xα,η ⊆ Xν,βq .

(c) η ∈ qτ for every τ ∈ Xα,η.

To qualify as a member of Qν a sequence q as above must satisfy a fifth
property (property V), whose description we defer until we have made a few
definitions.

Once we have defined Qν , we define Qν,β for β < κ to be the set of those
p ∈ Qν such that

1. p ∈ V [Gβ ].

2. βp < β.

3. For every τ in the support Xν,βp of p, pτ is bounded in β.

If q ∈ Qν , α is a limit ordinal in the support Xν,βq of q and β ∈ qα then
we define q�(α, β) = 〈qτ ∩ (β + 1) : τ ∈ Xα,β〉. Notice that by the conditions
we imposed on q we have that the support Xα,β of q�(α, β) is contained in
the support Xν,βq of q; also β ∈ qτ for all τ ∈ Xα,β .

The intuition here is that q�(α, β) is of the right general shape to be a β-
master condition for Qα. To be a bit more formal we say that r is a β-master
condition for Qα if

1. The support of r is Xα,β .

2. For every τ ∈ Xα,β , β = max(rτ ).

3. The set of conditions p ∈ Qα�β such that pτ is an initial segment of
rτ ∩ β for all τ is a V [Gβ ]-generic filter on Qα�β.

Now we can complete the description of Qν . Intuitively the following
condition says that at limit stages we are shooting clubs through certain sets
of “generic points”.

V. For every limit α in the support Xν,βq of q and every β ∈ qα, q�(α, β)
is a β-master condition for Qα.
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If p, q ∈ Qν then p ≤ν q iff βp ≥ βq and pα end-extends qα for all α ∈ Xν,βq .
The key lemmas are proved by similar means to those used in the last

section.

18.19 Lemma. For ν < μ < κ+, Qν is a complete subordering of Qμ.
Defining Qκ+ =

⋃
ν Qν , Qκ+ has the κ+-c.c.

The following lemma is the technical heart of the whole construction. The
proof (which we omit) is by a very intricate double induction on the pairs
(μ, β) with β ∈ Aμ ∩ Cμ, ordered lexicographically.

18.20 Lemma. If ν is limit, α ∈ Aν ∩ Cν , p ∈ Qν,α then there exists a
condition q = 〈qτ : τ ∈ Xν,α〉 ≤ν p in V [Gα+2] such that q is an α-master
condition for Qν .

The following is an easy corollary:

18.21 Lemma. Let ν < κ+ be limit and let α ∈ Aν ∩ Cν . Forcing over
V [Gα] with Qν,α adds no ω1-sequence of ordinals.

Let ji : V −→M be the ultrapower by the normal measure Ui, and observe
that since V |= κM ⊆M and Pκ, V [Gκ] |= κMi[Gκ] ⊆Mi[Gκ]. Observe also
that by normality κ ∈ j(Aν ∩ Cν) for all limit ν < κ+. Accordingly we see
that

18.22 Lemma. For every limit ν < κ+, in Mi[Gκ+1] there is a condition
q ∈ Qj(ν) such that q = 〈qτ : τ ∈ j“ν〉, q induces a j(Q)ν,κ-generic filter over
V [Gκ], and max(qτ ) = κ for every τ ∈ j“ν.

Each condition in Qν is an object of size less than κ. It follows easily that

18.23 Lemma. For every limit ν < κ+ and every α ∈ Aν ∩ Cν , there is an
isomorphism between Qν,α and j(Q)ν,α in Mi[Gκ].

18.24 Lemma. There exists an isomorphism between Qν and j(Q)ν,κ in
Mi[Gκ].

Putting these various pieces of information together, we get

18.25 Lemma. For every limit ν < κ+, there is a Qν-generic filter over
V [Gκ] in Mi[Gκ+1], which is induced by a condition as in Lemma 18.22.

18.8. Precipitousness of the Non-Stationary Ideal

We are now in precisely the situation of Lemma 17.3, so we have produced two
precipitous ideals I0 and I1, where Ia concentrates on points of cofinality ωa.
It remains to be seen that these are in fact restrictions of the non-stationary
ideal. We will show that the ideal I0 induced by the construction with j0
is the ω-nonstationary ideal, the argument for I1 is exactly the same. We
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worked through a simple case of the argument at the end of Sect. 18.6, the
idea here is very similar.

Let H be generic over V [Gκ] for Qκ+ . We work in V [Gκ ∗H]. We denote
by H�ν the Qν-generic object induced by H. Let tj be the club set added
by H at stage j.

Since I0 is a normal ideal concentrating on points of cofinality ω, I0 must
contain the ω-nonstationary ideal. The other direction is trickier, since we
did not explicitly shoot ω-club sets through every I0-large set.

18.26 Claim. I0 is contained in the ω-nonstationary ideal.

Proof. Suppose that a is in I0. Unwrapping the definition, this means that
at some stage ν we have that a ∈ V [Gκ ∗Hν ] and it is forced that κ /∈ j0,ν(a)
where j0,ν is the lifting of j0 to V [Gκ ∗Hν ].

We now fix ȧ a Pκ ∗Qν-name for a and a condition (p, q) ∈ Gκ ∗Hν forcing
(over M0 for Pκ ∗ Qν) that “it is forced (over M0[Ġκ][Ḣν ] by the forcing
poset (j0,ν(Pκ)/Ġκ ∗ Ḣν) ∗ j0,ν(Qν)/ṁν , where mν is the master condition)
that κ /∈ j0,ν(ȧ)”. Regarding p as a condition in j0(Pκ), p forces (over M0

for j0(Pκ)) that for every κ-master condition Q ≤ j0(q) for j0(Q)ν , Q forces
(over M0[Ġj0(κ)] for j0(Q)ν) that κ /∈ j0(ȧ).

Now we apply �Loś’s theorem to see that R ∈ U0, where R is the set of α
such that q ∈ Qν,α and p forces (over V for Pκ) that for every Q ≤ q with Q

an α-master condition for Qν , Q forces (over V [Ġκ] for Qν) that α /∈ ȧ.
Let η > ν be some limit stage. The construction of the forcing poset

implies that for all sufficiently large α ∈ tη, there is a condition Q ≤ q in H
which is an α-master condition for Qν . So for all sufficiently large α ∈ tη∩R,
α /∈ a.

In the construction we enumerated R as Xη̄ for some η̄. By definition
Aη̄ = Xη̄ ∪ Yη̄, and in V [Gκ] the preparation forcing arranged that all points
of Xη̄ have cofinality ω while all points of Yη̄ have cofinality ω1. At stage η̄
in the main iteration we added a club set tη̄ ⊆ Aη̄, so tη̄ ∩ Cof(ω) ⊆ R.

Combining these results, all sufficiently large α ∈ tη ∩ tη̄ ∩ Cof(ω) fail to
be in a. We conclude that a is ω-nonstationary in V [Gκ ∗H], as required. �

18.9. Successors of Larger Cardinals

Gitik [25, 26] has also obtained rather similar equi-consistency results for
regular cardinals κ > ω2. The idea is broadly the same, but the preparation
forcing is an iteration of Prikry-style forcing with Easton supports followed
by an iteration of Cohen forcing (for κ inaccessible) or a Lévy collapse (for
κ a successor cardinal). The main iteration is essentially the same.

We content ourselves with quoting some of the main results. When stating
the lower bounds we assume throughout that there is no inner model with a
cardinal λ such that o(λ) = λ++, and we let K be the Mitchell core model
for sequences of measures and F its measure sequence. Let �U be a coherent
sequence of measures. An ordinal α is an (ω, δ) repeat point over κ if and
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only if cf(α) = ω and for every A ∈
⋂
{U(κ, ζ) : α ≤ ζ < α + δ} there are

unboundedly many γ < α such that A ∈
⋂
{U(κ, ζ ′) : γ ≤ ζ ′ < γ + δ}.

The result for successors of regular cardinals greater than ω1 is exact.

18.27 Theorem (Gitik [26]). Let λ = cf(λ) < κ and suppose that GCH
holds and there is a measure sequence with an (ω, λ + 1)-repeat point over κ.
Then there is a generic extension in which GCH holds, cardinals up to and
including λ are preserved, κ = λ+ and NSκ is precipitous.

18.28 Theorem (Gitik [25]). Suppose that μ = cf(μ) > ω1, GCH holds and
NSκ is precipitous where κ = μ+. Then in K there is an (ω, μ + 1)-repeat
point over κ.

Interestingly enough, the proof uses only the precipitousness of the re-
strictions of NSκ to cofinality ω and cofinality μ. When κ is inaccessible the
strength of “NSκ is inaccessible” is bounded from above by an (ω, κ + 1)-
repeat and from below by an (ω,<κ)-repeat.

19. More on Iterated Club Shooting

In this section we give sketches of two more theorems obtained by iterated
club shooting. The first theorem is due to Jech and Woodin [40] and shows
that it is consistent for NSκ�Reg to be a κ+-saturated ideal. The second
is due to Magidor [55] and shows that it is consistent for every stationary
subset of ω2 ∩Cof(ω) to reflect at almost every point of ω2 ∩Cof(ω1). Apart
from their intrinsic interest we have included them because they illustrate
some new ideas: the theorem by Jech and Woodin involves embedding one
iteration in another “universal” iteration, while the theorem by Magidor gives
another example of shooting clubs to make a natural filter (defined in this
case via stationary reflection) become the club filter.

As some motivation for Theorem 19.1 we sketch a proof that if κ is weakly
compact then NSκ�Reg is not κ+-saturated. We start by recalling a classical
result of Solovay: if κ is a regular uncountable cardinal and S ⊆ κ is station-
ary then T = {α ∈ S : S ∩ α is non-stationary in α} is stationary (given a
club C look at the first place where lim(C) meets S). In particular T ∩ α is
non-stationary in α for every α ∈ T , in what follows we refer to stationary
sets which reflect at no point of themselves as thin.

We now consider an ordering on stationary subsets of inaccessible cardinals
investigated by Jech [38]. Given an inaccessible cardinal κ and stationary
subsets S, T ⊆ κ we write S < T when S ∩ α is stationary for almost every
α ∈ T (modulo the club filter). It is easy to check that < is well-founded,
and by the result of Solovay from the last paragraph < is irreflexive. If S < T
with S and T both thin, then clearly S ∩ T is non-stationary.

Assume now that κ is weakly compact. We will produce a <-increasing
sequence 〈Sα : α < κ+〉 of thin stationary sets of regular cardinals. Let S0 =
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κ ∩Reg. At stage α fix a surjection f from κ to α, and use Π1
1-indescribability

to show that

S = {δ : ∀γ < δ Sf(γ) ∩ δ is stationary in δ}

is stationary. Then choose Sα to be a thin stationary subset of this set S. If
β < α then Sβ ∩ δ is stationary for all large δ ∈ Sα, so Sβ < Sα. Since the
Sα for α < κ+ have pairwise non-stationary intersections, NSκ�Reg is not
κ+-saturated.

The proof we just gave shows essentially that if κ is κ+-Mahlo then
NSκ�Reg is not κ+-saturated. Jech and Woodin showed [40] that for any
α < κ+ we may have κ which is α-Mahlo with NSκ�Reg κ+-saturated, start-
ing from a measurable cardinal of Mitchell order α. This is known [38] to be
optimal.

19.1 Theorem. Let κ be measurable and let GCH hold. Then in a suitable
generic extension NSκ�Reg is κ+-saturated.

Proof. Let δ be inaccessible and let S ⊆ Reg ∩ δ. We define a forcing poset
CUReg(δ, S) = CU(δ, (Sing∩δ)∪S); to be more explicit conditions are closed
bounded subsets c of δ such that c ∩ Reg ⊆ S, ordered by end-extension.

It is easy to see that for every γ < δ the set of conditions c with max(c) > γ
is dense and γ-closed, so that CUReg(δ, S) forces that almost every regular
cardinal is in S while adding no <δ-sequences.

We now describe a kind of “universal” iteration of this forcing. To be more
precise we define by recursion Qα for α ≤ δ+ and Qα-names Ṡα for α < δ+

so that

1. f ∈ Qα if and only if

(a) f is a partial function on α.

(b) dom(f) has size less than δ, and f(β) is a closed bounded subset
of δ for all β ∈ dom(f).

(c) For all α ∈ dom(f), f�α �Qα f(α) ∩ Reg ⊆ Ṡα.

2. For conditions f, g ∈ Qα, f ≤ g if and only if dom(g) ⊆ dom(f) and
f(β) end-extends g(β) for all β ∈ dom(g).

3. (Universality) Every Qδ+ -name for a subset of δ is equivalent to Ṡα for
unboundedly many α < δ+.

For every α, Qα is δ+-c.c by an easy Δ-system argument. Also for all γ and
α the set of f ∈ Qα such that max(f(β)) > γ for all β ∈ dom(f) is dense and
γ-closed. The GCH assumption and the δ+-c.c make it possible to satisfy
universality.

19.2 Remark. We are cheating slightly, in the sense that we should really
verify that Qα is equivalent to an iteration of club-shooting forcing. See the
remarks on the “flat condition trick” in Sect. 17.
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19.3 Lemma. Let Q
∗
δ+ be built in a similar way from a sequence of names

Ṡ∗
α satisfying clauses 1 and 2 above. Then there is a complete embedding of

Q
∗
δ+ into Qδ+ .

Sketch of Proof. This is almost immediate if we use the flat conditions trick
to regard Qδ+ and Q∗

δ+ as dense sets in iterations of club shooting forcing.
We may also proceed quite explicitly by constructing for each α a complete
embedding iα of Qα into Q

∗
βα

for a suitable α < δ+. At successor stages we
use iα to identify the Q

∗
α-name Ṡ∗

α with a Qβα -name, use universality to find
γ > βα such that this name is Ṡγ , and then set βα+1 = γ + 1 and extend
to iα+1 : Q

∗
α+1 → Qγ+1 in the obvious way; at limits we just take a suitable

limit of the embeddings iα and check that everything works. �

We are now ready to build the model. We will do a reverse Easton iteration
of length κ + 1. For α < κ we let Q̇α = {0} unless α is inaccessible, in which
case we let Q̇α name some universal iteration as above for α.

We fix some normal measure U and let j : V −→ M be the associated
ultrapower map. Let Q̇ be the member of M represented by 〈Qα : α < κ〉.
Since κM [Gκ] ⊆M [Gκ], it is routine to check that Q is a universal iteration
in V [Gκ]; we let Ṡj be the set which is used at stage j.

The last step Qκ in our iteration will be a certain sub-iteration of Q. The
idea is to build a submodel V [G ∗ g0] of V [G ∗ g] (where g is Q-generic) and
an embedding j which is defined in V [G ∗ g] and has domain V [G ∗ g0], in
such a way that if S ∈ V [G ∗ g0] then � κ ∈ j(S) if and only if S contains
a club. A slightly subtle point is that as the construction proceeds we can
anticipate in V [Gκ] which of the names Ṡi are naming sets S of this type,
and pick out the sub-iteration Qκ so that we shoot a club through each one.

By the usual arguments Pκ ∗ Q is an initial segment of j(Pκ). If Gκ ∗ g
is Pκ ∗ Q-generic then as usual we may build in V [Gκ ∗ g] a M [Gκ ∗ g]-
generic filter H for the factor iteration j(Pκ)/G ∗ g, and then extend to get
j : V [Gκ] −→M [Gκ ∗ g ∗H].

Working in V [Gκ], we construct an increasing sequence 〈αi : i < κ+〉 of
ordinals, subiterations Q∗

i of Q and names for conditions ri ∈ j(Q∗
i ) as follows:

1. Q
∗
i is the subiteration of Q which adds a club subset Cj ⊆ κ with

Cj ∩ Reg ⊆ Sαj for each j < i.

2. ri is a j(Pκ)-name for a condition in j(Q∗
i ) which is a strong master

condition for j and the Q
∗
i -generic object gi.

3. αi is chosen least so that Sαi is a Q
∗
i -name and

�(j(Pκ)/(Pκ ∗Q∗
i ))∗(j(Q∗

i )/ri) κ ∈ j(Sαi).

4. The domain of ri is j“i, and if 〈Ck : k < i〉 is the sequence of club sets
added by Q

∗
i then r(j(k)) = Ck ∪ {κ}.
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The construction is very similar to that of Sect. 17.2 and we omit all details.
Let Qκ = Q

∗
κ+ and let g0 be Qκ-generic over V [Gκ]. By forcing over

V [Gκ ∗ g0] with Q/g0 we may obtain g which is Q-generic over V [G], and
working in V [G ∗ g] we may lift to get j : V [G] −→ M [G ∗ g ∗H] as above.
Using Magidor’s method from Sect. 13 and the sequence of partial strong
master conditions ri, we may build in V [G∗g] an M [G∗g ∗H]-generic filter I
on j(Qκ) with j“g0 ⊆ I and then lift to get j : V [G∗ g0] −→M [G∗ g ∗H ∗ I].

The construction guarantees that for any T ∈ V [G∗g0] with T ⊆ Reg ∩ κ,
T is non-stationary if and only if �Q/g0 κ /∈ j(T ). Since Q/g0 has the κ+-
c.c. it follows by Lemma 14.5 that NS�Reg is κ+-saturated. �

We now sketch Magidor’s result that consistently every stationary subset
of ω2 ∩Cof(ω) reflects almost everywhere in ω2 ∩Cof(ω1). The construction
is quite similar to that for the precipitousness of NSω1 ; we use this as the
pretext for omitting many details.

19.4 Remark. Magidor used the optimal hypothesis of weak compactness;
to simplify the exposition we use a measurable cardinal.

19.5 Theorem. If κ is measurable, then in some generic extension κ = ω2

and for every S ⊆ ω2 ∩ Cof(ω) there is a club set C such that S ∩ α is
stationary for all α ∈ C ∩ Cof(ω1).

Proof. Let P = Col(ω1, <κ) and let j : V −→ M be the ultrapower map
arising from some normal measure U on κ. The idea of the proof is that after
forcing with P every stationary set reflects stationarily often, and we may
then shoot club sets to arrange the desired result. Of course new stationary
sets will arise as we iterate so some care is required.

Much as in Sect. 17.2 we will work in V [G] where G is P-generic over V ,
and define Q which has the effect of iterating club-shooting with supports of
size ω1. We will be constructing certain strong master conditions as we go,
whose existence will imply by Theorem 12.5 that no ω1-sequences of ordinals
are added to V [G] by Q. This is why we can set things up so that the
conditions in Q are just functions in V [G].

Explicitly in V [G] we define by recursion Qα and Qα-names Ṡα such that

1. Ṡα is a Qα-name for a stationary subset of ω2 ∩ Cof(ω).

2. f ∈ Qα if and only if

(a) f is a partial function on α with | dom(f)| ≤ ω1.

(b) For all α ∈ dom(f), f(α) is a closed bounded subset of ω2 and
f�β forces that

f(β) ⊆ Cof(ω) ∪ {γ ∈ Cof(ω1) : Sβ ∩ γ is stationary in γ}.

Clearly Qα is countably closed and an easy Δ-system argument shows that
it is κ+-c.c.
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19.6 Remark. Once again we are cheating slightly in the definition of the
forcing by using only “flat” conditions. See the remarks on the “flat condition
trick” in Sect. 17.

Exactly as in Sect. 17.2 we will build embeddings iα of P ∗ Qα into j(P),
with the added wrinkle that we use Theorem 14.3 to ensure that the quotient
forcing for prolonging a P ∗Qα-generic to a j(P)-generic is countably closed.
As we see soon this is crucial for the success of the master condition argument.

At a stage α < κ+, if 〈Cβ : β < α〉 is the sequence of club sets added by
Qα, then we define rα as follows: dom(rα) = j“α, and rα(j(β)) = Cβ ∪ {κ}
for every β < α. We verify that rα is a strong master condition just as in
Sect. 17.2, the only sticky point is that since cf(κ) = ω1 after forcing with
j(P) we need to know that rβ forces that j(Sβ)∩κ is stationary. This is easy
because (by virtue of being a master condition) rβ forces that j(Sβ)∩κ = Sβ ,
and since we are in a countably closed extension of V [G ∗ gβ ] we see that the
stationarity of Sβ is preserved.

It is now easy to see that forcing with Qκ+ adds no ω1-sequences of ordinals
to V [G], so that κ is preserved. By the usual book-keeping we may arrange
that every Qκ+ -name for a stationary subset of κ∩Cof(ω) appears as Sα for
some α < κ+. If H is Qκ+ -generic over V [G] then V [G∗H] is as required. �

20. More on Collapses

We have seen many applications of the Levy collapse. In this section we
discuss two situations where the Levy collapse cannot be used, one involving
master conditions and the other involving absorbing “large” forcing posets
into a collapsing poset. We shall describe some more exotic collapsing posets
which can sometimes be used in these situations, namely, the Silver collapse
and Kunen’s universal collapse. We then show how these can be applied by
sketching Kunen’s consistency proof [45] for an ω2-saturated ideal on ω1.

We have seen many situations where we are given P = Col(δ,<κ) and
an elementary embedding j with critical point κ, and wish to lift j to the
extension by P. Here there is no master condition issue because j�P = idP

and P is just an initial segment of j(P).
But now consider the following situation: k : M −→ N has critical point

κ, P = Col(κ,<λ)M , G is P-generic over M and both G and k�λ are in N .
Certainly we may form in N a partial function Q =

⋃
k“G, where dom(Q) =

κ × k“λ; but if λ ≥ k(κ) then Q has the wrong shape to be a condition in
k(P).

To fix this we consider a cardinal collapsing poset due to Silver, which was
first used by him in the consistency proof for Chang’s Conjecture.

20.1 Definition. Let κ be inaccessible and let δ = cf(δ) < κ. The Silver
collapse S(δ,<κ) is the set of those partial functions f on δ × κ such that
dom(f) = α×X for some α < δ and some X ∈ [κ]δ, and f(β, γ) < γ for all
β < α and γ ∈ X. The ordering is extension.
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It is easy to see that S(δ,<κ) is δ-closed and κ-c.c.
Returning for a moment to the discussion preceding Definition 20.1, if we

let P = S(κ,<λ) where λ = k(κ) then it is possible to build a strong master
condition. We will use this shortly, but first we discuss another problem with
the Levy collapse.

Suppose that P = Col(ω,<κ) and that B is a complete subalgebra of ro(P).
Then as we saw in Theorem 14.2 we can embed B ∗ Ċ into P when Ċ names
an algebra of size less than κ. However there is no guarantee that this is
possible when Ċ has size κ, even if C is forced to have the κ-c.c.

Kunen [45] showed that it is possible to construct a poset with stronger
universal properties. We sketch a version of his construction. Let κ be an
inaccessible cardinal, and let U be a function which returns for each complete
Boolean algebra B of size less than κ a B-name U(B) for a κ-Knaster poset of
size κ. We aim to build a κ-c.c. poset P of size κ such that for every complete
subalgebra B of ro(P) with size less than κ, the inclusion embedding of B into
ro(P) extends to a complete embedding of B ∗ ro(U(B)) into ro(P).

To construct the universal collapse we build a finite support κ-c.c. iterated
forcing poset Pκ of length and cardinality κ, where each step Pα is κ-c.c. with
cardinality κ. At stage α we choose by some book-keeping scheme some Bα

which is a complete subalgebra of ro(Pα) with |Bα| < κ. Given an Bα-
generic filter g we may form in V [g] the product Pα/g × U(Bα), which is
κ-c.c. by Theorem 5.12. Back in V we see that Bα ∗ (Pα/ġ × U(Bα)) is
κ-c.c. and embeds both Pα and Bα ∗ U(Bα), and choose Pα+1 accordingly.
With appropriate book-keeping we may arrange that every small subalgebra
of ro(Pκ) has appeared as Bα for some α, giving the desired universal property
for Pκ. Preservation of κ-c.c. is easy since we are iterating with finite support.

20.2 Remark. The construction of the universal collapse is an example
of “iteration with amalgamation”, a technique which is frequently used in
forcing constructions to build saturated ideals. Note that in the construction
we amalgamated Pα and U(Bα) over Bα. The point in applications will
typically be that we can absorb an iteration P ∗ Q̇ into j(P) in a context
where P ∗ Q̇ is “large”.

20.3 Remark. Laver showed that it is sometimes possible to build λ-closed
collapsing posets with similar universal properties. Naturally one needs to
be a little more careful about the chain condition.

We are now ready to sketch Kunen’s consistency proof for an ω2-saturated
ideal on ω1. More details will be found in Foreman’s chapter in this Hand-
book.

20.4 Theorem. Let κ be a huge cardinal with target λ. Then in some generic
extension κ is ω1, λ = ω2 and there is an ω2-saturated ideal on ω1.

Proof. We fix an elementary embedding j : V −→ M such that crit(j) = κ,
j(κ) = λ, and λM ⊆ M . We start by constructing as above a κ-c.c. poset P
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of size κ such that for every subalgebra B of ro(P) with |B| < κ, the inclusion
embedding extends to an embedding of B ∗ ro(S(ωV B

1 , <κ)). For convenience
we assume (as we clearly may) that P ⊆ Vκ.

It is easy to see that after forcing with P, κ is the new ω1. Let G be generic
for P, let Q = S(κ,<λ)V [G] and let H be Q-generic over V [G].

We will show that there is a λ-saturated ideal on κ in V [G ∗H]. Working
in M we fix an embedding of ro(P ∗ Q) into ro(j(P)) extending the identity
embedding of ro(P). Since V [G ∗H] |= λM [G ∗H] ⊆M [G ∗H], we see that
j(P)/G ∗H is λ-c.c. in V [G ∗H]. Forcing with this poset over V [G ∗H], we
obtain an embedding j+ : V [G] −→ M [G ∗ H ∗ I] in V [G ∗ H ∗ I]. Since
Q is a Silver collapse, and H and j�λ are both in M , we may construct
a strong master condition r =

⋃
j“H ∈ j(Q) and force with j(Q)/r to

obtain a compatible generic object J and an embedding j++ : V [G ∗H] −→
M [G ∗H ∗ I ∗ J ].

Unfortunately this is not quite enough because the V [G ∗ H]-ultrafilter
U = {X ∈ P (κ)∩V [G ∗H] : κ ∈ j++(X)} lives in the extension by j(P)/G ∗
H ∗ j(Q)/r, which is not λ-c.c. in V [G ∗ H]. To fix this we note that in
V [G ∗H ∗ I] the V [G ∗H]-powerset of κ has size λ, and j+(Q) is λ-closed; so
we may build a decreasing sequence 〈ri : i < λ〉 with r0 = r deciding whether
κ ∈ j++(X) for all X ∈ P (κ)∩ V [G ∗H], and then let U0 = {X : ∃i ri � κ ∈
j++(X)}. Then U0 is a V [G ∗H]-ultrafilter which lives in V [G ∗H ∗ I], so
that we may derive a λ-saturated ideal by Lemma 14.5. �

20.5 Remark. A Woodin cardinal is all that is required to get the consis-
tency of an ω2-saturated ideal on ω1. The argument given here was gen-
eralized by Laver to get saturated ideals on larger cardinals. Magidor [54]
showed that the kind of argument given here can be done from an almost
huge cardinal.

21. Limiting Results

In this section we sketch some results which put limits on the effects which
we can achieve in reverse Easton constructions. We are not sure to whom
the following result should be attributed; it has a family resemblance to some
results by Kunen [45] on the question of whether an inaccessible cardinal λ
can carry a λ-saturated ideal.

21.1 Theorem. If P× P is κ-c.c. and P forces that κ is measurable then κ
is measurable.

Proof. Clearly κ is inaccessible in V . Let U̇ name a normal measure and
suppose that κ is not measurable in V . If A is a potential member of U̇ then
it can be split into two disjoint potential members of U̇ , otherwise we could
read off a measure on κ in V . Using this we build a binary tree of height κ
with root node κ such that the levels form increasingly fine partitions of κ
into fewer than κ many pieces. At successor steps every node is partitioned
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by its two immediate successors, and if a node is a potential member of U̇
then so are both of its immediate successors; at limit steps λ, every branch
through the binary tree of height λ which has been constructed so far is
continued by putting at level λ the intersection of the nodes on that branch.

Now let G be P-generic and realize U̇ as UG; then there is a unique branch
through the tree consisting of members of UG. Choosing for each A on the
branch a condition which forces the successor of A which is not in UG into
U̇ , we build an antichain of size κ in P, contradicting our assumption that
P× P has the κ-c.c. �

We now sketch some results of Hamkins [33]. The key technical result
is Theorem 21.3 which involves two notions of resemblance between inner
models of ZFC.

21.2 Definition. Let M and N be inner models of ZFC with M ⊆ N . Let
δ be a regular uncountable cardinal in N . Then

1. δ-covering holds between M and N if and only if for every set A ⊆ On
such that A ∈ N and N |= |A| < δ, there exists a set B ⊆ On such that
B ∈M , A ⊆ B and M |= |B| < δ.

2. δ-approximation holds between M and N if and only if for every A ⊆ On
with A ∈ N , if A∩a ∈M for all a ∈M with M |= |a| < δ, then A ∈M .

21.3 Theorem. Let V and V̄ be inner models with V ⊆ V̄ . Let j : V̄ −→ M̄
be a definable elementary embedding with crit(j) = κ, and let M =

⋃
j“V so

that j�V is an elementary embedding from V to M .
If there is a cardinal δ < κ regular in V̄ such that V̄ |= δM̄ ⊆ M̄ , and the

δ-covering and δ-approximation properties hold between V and V̄ , then

1. M = M̄ ∩ V , in particular V |= δM ⊆M .

2. j�A ∈ V for all A ∈ V .

Proof. Throughout the proof we work in V̄ . In particular all cardinalities
are computed in V̄ unless otherwise specified. By elementarity and the fact
that δ < κ, the δ-covering and δ-approximation properties hold between M
and M̄ .

We claim that every set of ordinals A with |A| < δ is contained in a set of
ordinals B ∈ V ∩M such that |B| ≤ δ. To see this we build (starting with A)
an increasing and continuous chain of length δ consisting of sets of size less
than δ, with even successor elements in V and odd successor elements in M .
If B is the union then by the approximation property B ∈ V ∩M .

Next we claim that for every set of ordinals A with |A| < δ, A ∈ V if
and only if A ∈ M . To see this find a set B ∈ V ∩M with A ⊆ B and
γ = ot(B) < δ+. Since γ < κ and κ is inaccessible in V , it follows from
Proposition 2.9 that P (γ) ∩M = P (γ) ∩ V .
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Now we claim that M = M̄ ∩ V . Let A ∈ M where by Proposition 2.2
we may assume that A is a set of ordinals. Clearly A ∈ M̄ . Let a ∈ V with
|a| < δ. Applying the preceding claim a ∈ M , hence A ∩ a ∈ M , hence by
another application of the preceding claim A∩ a ∈ V . By the approximation
property A ∈ V . Conversely let A ∈ M̄ ∩ V be a set of ordinals; arguing just
as before A ∩ a ∈M for all a ∈M with |a| < δ, so that A ∩ a ∈M .

To finish we show that j�A ∈ V for all sets of ordinals A ∈ V . By
approximation it will suffice to show that j�a ∈ V for all a ∈ V with a ⊆ A
and |a| < δ. Since ot(a) < κ we see that j“a = j(a) ∈M ⊆ V , and since j�a
is the order-isomorphism between a and j“a we have j�a ∈ V . �

21.4 Corollary. Under the hypotheses of Theorem 21.3, if V̄ is a set-generic
extension of V then j�V is definable in V . It is also easy to see that if j
witnesses the λ-supercompactness or λ-strongness of κ in V̄ then j�V will do
the same in V .

Of course the interest of Theorem 21.3 hinges on there being some ex-
amples of extensions with the covering and approximation properties. The
following result [33] shows that many extensions by reverse Easton iterations
have these properties.

21.5 Theorem. Let δ be a cardinal. Let P ∗ Q̇ be a forcing iteration where
|P| ≤ δ, P is non-trivial and P forces that Q̇ is (δ + 1)-strategically closed.
Then the δ+-covering and δ+-approximation properties hold between V and
the extension by P ∗ Q̇.

Proof. The covering is easy so we concentrate on the approximation. Let
G ∗H be a P ∗ Q̇-generic filter and let S : θ → 2 be such that S ∈ V [G ∗H]
and S�a ∈ V for all a ∈ V with |a| ≤ δ. By induction we may assume that
S�λ ∈ V for all λ < θ. Let Ṡ name S.

If cf(θ) ≤ δ then S ∈ V [G], so without loss of generality Ṡ is a P-name.
Consider the tree T of potential proper initial segments of Ṡ; it is easy to see
that there are at most δ many sequences t such that both t�0 and t�1 are
in T . So by specifying δ many bits in S we determine S, hence S ∈ V .

If cf(θ) > δ in V , we note that this remains true in V [G ∗ H]. So since
|G| ≤ δ, there is a condition p ∈ G such that for all i < θ there is a condition
q ∈ H so that (p, q) determines Ṡ�i. We may thus find a condition (p, q̇0) ∈
G ∗H forcing that Ṡ /∈ V̌ and that p has this property; so easily for all i and
all (p, q̇1) ≤ (p, q̇0) there is a condition (p, q̇2) ≤ (p, q̇1) determining Ṡ�i.

Using the non-triviality of P we can find a function h ∈ V [G] \ V such
that h : β → 2 for some β ≤ δ, where (by choosing β to be minimal) we may
also assume that h�j ∈ V for all j < β. Using the strategic closure of Q̇, the
choice of p and the fact that Ṡ is forced to be new we build 〈q̇t : t ∈ <β2〉
and 〈β̇t : t ∈ <β2〉 such that

1. For each t, q̇t is a P-name for a condition in Q, and β̇t is a P-name for
an element of <θ2 ∩ V .
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2. The sequences 〈q̇t : t ∈ <β2〉 and 〈β̇t : t ∈ <β2〉 lie in V .

3. It is forced by p that for any branch x of the tree <β2∩V , the sequence
〈qx�j : j < β〉 has a lower bound.

4. (p, qti) forces that β�
t i is an initial segment of S.

Now working in V [G] we choose a lower bound q for 〈qh�j : j < β〉. If we
force so that H contains q we obtain a situation in which h can be computed
from a proper initial segment of S, contradiction! �

As an example of these ideas in action we sketch an easy case of the
superdestructibility theorem of Hamkins [32]. A supercompact cardinal κ is
said to be Laver indestructible if it is supercompact in every extension by κ-
directed closed forcing; we show in Sect. 24 that any supercompact cardinal
can be made indestructible.

21.6 Corollary. Let κ be supercompact and let P = Add(ω, 1). Then κ is
not Laver indestructible after forcing with P.

Proof. Let g be P-generic, and let Q = Add(κ, 1)V [g]. Let G be Q-generic
over V [g ∗G]. we show that κ is not measurable in V [g ∗G].

Let V̄ = V [g∗G] and suppose that j : V̄ :−→ M̄ is the ultrapower by some
normal measure in V̄ . By Theorems 21.5 and 21.3 we have j�V : V −→ M
where M ⊆ V . Now easily M̄ = M [g ∗ j(G)], by the closure of ultrapowers
G ∈ M̄ , and by the closure of j(Q) we have G ∈M [g]. This is impossible as
M ⊆ V and G /∈ V [g]. �

22. Termspace Forcing

In this section we introduce a very useful idea due to Laver, that of the
term forcing or termspace forcing. The idea is roughly that given a two-step
iteration P ∗ Q̇ we can add by forcing over V a sort of “universal generic
object”, from which given any G which is P-generic over V we may compute
in a uniform way an H which is iG(Q̇)-generic over V [G].

Magidor [52] showed by iterated Prikry forcing that the least measurable
cardinal can be strongly compact. In unpublished work Magidor [51] gave
an alternative proof, using termspace forcing and an Easton iteration of the
forcing from Example 6.5. We outline the proof here, a more detailed account
is given in a joint paper by Apter and the author [4] which further exploits
these ideas.

22.1 Definition. Let P be a notion of forcing and let Q̇ be a P-name for
a notion of forcing. Then A(P, Q̇) is the notion of forcing whose underlying
set is the set of canonical P-terms for members of Q̇, with the ordering being
given by

σ̇ ≤A(P,Q̇) τ̇ ⇐⇒ �P σ̇ ≤
Q̇

τ̇ .
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22.2 Remark. Several notations for the termspace forcing are in use, for
example Q

∗ and Q
P. We follow Foreman’s paper [19] in using A(P, Q̇), em-

phasizing the importance of P.

The following proposition is the key to the applications of term forcing.

22.3 Proposition. Let G be P-generic over V and let H be A(P, Q̇)-generic
over V . Define I = {iG(τ̇) : τ̇ ∈ H}. Then I is an iG(Q̇)-generic filter over
V [G].

Proof. We begin by checking that I is a filter. If σ̇ and τ̇ are in H then there
is a term ρ̇ ∈ H such that �P ρ̇ ≤ σ̇, τ̇ . It follows that iG(ρ̇) ≤ iG(σ̇), iG(τ̇)
so that I is a directed set.

If iG(σ̇) ≤ iG(τ̇) with σ̇ ∈ H then we fix p ∈ G such that p �F Pσ̇ ≤ τ̇ .
Let ρ̇ be a name which is interpreted as τ̇ if p is in the generic filter and as
the trivial condition otherwise, so that p �F P ρ̇ = τ̇ and �P σ̇ ≤ ρ̇. Then
τ̇ ∈ H and so iG(ρ̇) = iG(τ̇) ∈ I. It follows that I is upwards closed, and so
is a filter.

Finally let D = iG(Ḋ) where Ḋ is forced to be a dense subset of Q̇. If
E = {σ̇ : �P σ̇ ∈ Ḋ} then by the Maximum Principle E is a dense subset
of A(P, Q̇). We find a term σ̇ ∈ E ∩H, and observe that iG(σ̇) ∈ D ∩ I. It
follows that I is iG(Q̇)-generic over V [G] as required. �

The next result is an easy application of the Maximum Principle.

22.4 Proposition. If it is forced by P that Q̇ is κ-strategically closed then
A(P,Q) is κ-strategically closed.

Foreman’s paper “More saturated ideals” [19] contains a wealth of other
structural results about A(P, Q̇). We quote some here.

22.5 Proposition. Let P be a poset and Q̇ a P-name for a poset.

1. If P is non-trivial and it is not forced that Q̇ is κ-c.c. then A(P, Q̇) is
not 2κ-c.c.

2. If κ is inaccessible, P is κ-c.c. and it is forced that Q is κ-c.c. then
A(P, Q̇) is κ-c.c.

3. If 〈Pi, Q̇i〉 is a forcing iteration with supports in an ideal I, then the
limit of the iteration can be completely embedded in the product of the
termspace posets A(Pi, Q̇i) taken with supports in I.

We will now use termspace forcing to give a proof (due to Magidor) that
the least measurable cardinal can be strongly compact. The idea of the proof
is to shoot a non-reflecting stationary set through each measurable cardinal
below a supercompact cardinal κ, and then argue that the strong compactness
of κ is preserved and no new measurable cardinals are created.

To get an embedding witnessing strong compactness we use the following
easy result.
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22.6 Proposition. Let j : V −→ M be an embedding with critical point κ,
and let λ ≥ κ be such that j“λ ∈ M and λ < j(κ). Let k : M −→ N be
any embedding with crit(k) ≥ κ and let X = k(j“λ). Then crit(k ◦ j) = κ,
X ∈ N , (k ◦ j)“λ ⊆ X and N |= ot(X) < k ◦ j(κ).

In particular, if k ◦ j is definable then k ◦ j witnesses that κ is λ-strongly
compact. If V [G] is a generic extension of V , and i : V [G] −→ M [H] is
an embedding definable in V [G] extending k ◦ j, then i witnesses that κ is
λ-strongly compact in V [G].

We now fix a ground model in which GCH holds, κ is supercompact,
and there is no measurable cardinal greater than κ. This last hypothesis
is a technical one which simplifies some later arguments; it entails no loss
of generality because we can truncate the universe at the least measurable
greater than κ if such a cardinal exists. Notice that since κ is supercompact
there are unboundedly many measurable cardinals less than κ.

Let A be the set of α < κ which are measurable in V . We will define an
iteration Pκ of length κ with Easton support, in which Q̇α names the trivial
forcing unless α ∈ A. If α ∈ A then Q̇α names the poset from Example 6.5
to add a non-reflecting stationary set to α, as defined in V [Gα]. It is clear
that this iteration will destroy the measurability of every α in A. We will
show that no new measurable cardinals are created.

Let Gκ be Pκ-generic over V and suppose for a contradiction that α < κ
and α is measurable in V [Gκ]. By construction α /∈ A, and if γ is the least
measurable greater than α then arguments as in Lemma 11.2 show that V [Gκ]
is an extension of V [Gα] by γ-strategically closed forcing. In particular α is
measurable in V [Gα], from which it easily follows that α must be a Mahlo
cardinal in V . Since α is Mahlo, by Proposition 7.13 Pα is α-Knaster. It
follows that Pα × Pα is α-c.c. By Theorem 21.1 α must be measurable in V ,
which is a contradiction as α /∈ A.

To finish, we show that κ is still strongly compact in V [Gκ]. We fix a
regular cardinal λ > κ and let j : V −→ M be the ultrapower of V by
a supercompactness measure on Pκλ. The argument of Example 4.8 shows
that V |= |j(κ)| = λ+.

By GCH λ ≥ 2κ and so κ is measurable in M , and we may find a measure
U on κ such that U ∈ M and U is minimal in the Mitchell ordering [58];
we let k : M −→ N be the ultrapower of M by U , so that in particular
N |= “κ is not measurable”. It is easy to see that κ /∈ k ◦ j(A).

Consider the iteration j(Pκ), which is an iteration defined in M in which
a non-reflecting stationary set is added to each α ∈ j(A). The cardinal κ
is measurable in M , so κ ∈ j(A) and j(P)κ adds a set at κ. There are
no measurable cardinals above κ in V and P (λ) ⊆ M , so if γ is the least
M -measurable cardinal greater than κ then γ > λ.

Notice that since we are aiming to show that κ is strongly compact (and
so a fortiori measurable) in V [Gκ] we cannot hope to find a Qκ-generic filter
over M [Gκ] in V [Gκ]. It is at this point that we use termspace forcing.
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Working in M we may factor j(Pκ) as Pκ ∗ Q̇ ∗ Ṙ, where Q̇ adds a non-
reflecting stationary subset of κ. Working in M [Gκ] we get a factorization of
the rest of the iteration as Q ∗ Ṙ.

22.7 Lemma. Ṙ is j(κ)-c.c. and γ-strategically closed in M [Gκ]Q.

Proof. It follows from Proposition 7.13 that R is j(κ)-c.c. The closure follows
from Proposition 7.12. �

22.8 Lemma. In M [Gκ], A(Q, Ṙ) is j(κ)-c.c. and λ+-strategically closed.

Proof. We work in the model M [Gκ]. The strategic closure follows by Propo-
sition 22.4.

For the chain condition, assume for a contradiction that 〈ṙα : α < j(κ)〉 is
an antichain in A(Q, Ṙ). If α < β then ṙα and ṙβ are incompatible, which
means that there is no term for a condition forced to refine both of them; by
the Maximum Principle this is equivalent to saying that ṙα and ṙβ are not
forced to be compatible in Ṙ.

For α < β we choose qαβ ∈ Q such that qαβ �M [Gκ]
Q

ṙα ⊥ ṙβ . j(κ) is
measurable in M and so by the Levy-Solovay Theorem [50] j(κ) is measurable
in M [Gκ]. By Rowbottom’s theorem we may therefore find a fixed q ∈ Q

and X ⊆ j(κ) unbounded such that qαβ = q for all α, β ∈ X. q forces that
{ṙα : α ∈ X} is an antichain of size j(κ) in R, contradicting Lemma 22.7. So
A(Q, Ṙ) is j(κ)-c.c. in M [Gκ]. �

Appealing to Proposition 8.1 we may now build H ∈ V [Gκ] which is
A(Q, Ṙ)-generic over M [Gκ].

We now consider the embedding k and the iteration k(Pκ). Since κ is not
a point at which this iteration adds a set, we may argue exactly as in Sect. 11
to build g ∈ M [Gκ] such that Gκ ∗ g is k(Pκ)-generic over N [Gκ], and may
lift to get k : M [Gκ] −→ N [Gκ ∗ g]. By similar arguments we may also build
h ∈M [Gκ] which is k(Q)-generic over N [Gκ ∗ g].

By Proposition 9.3 this lifted embedding has width ≤ κ, so by Proposi-
tion 15.1 we may transfer H along k to get H+ which is k(A(Q, Ṙ))-generic
over N [Gκ ∗ g]. If we let I = {ih(σ̇) : σ̇ ∈ H+} then I is k(R)-generic over
N [Gκ ∗ g ∗ h].

Putting everything together we get Gκ ∗ g ∗h ∗ I which is k ◦ j(Pκ)-generic
over N , and then as in Sect. 11 we may lift k ◦ j to get a map from V [Gκ]
to N [Gκ ∗ g ∗ H ∗ I]. This map is definable by Proposition 9.4, and so by
Proposition 22.6 we see that κ is λ-strongly compact in V [Gκ].

23. More on Termspace Forcing and Collapsing

In this section we show that the termspace forcing ideas of Sect. 22 may be
used to analyze iterations. We also introduce yet another cardinal collapsing
poset, this time one due to Mitchell [57].
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We give an outline of Mitchell’s model [57] in which there are no ω2-
Aronszajn trees. Our treatment of this material owes much to Abraham [2].
For simplicity we build the model using a measurable cardinal. Mitchell
actually used a weakly compact cardinal and this is known to be optimal
[57].

Throughout this section we assume that κ is measurable. We recall the
easy proof that κ has the tree property; let T be a κ-tree, let j : V −→ M
have critical point κ, then j(T )�κ is isomorphic to T and any point on level
κ of j(T ) gives us a branch through T .

We start by making an instructive false start. Let P = Col(ω1, <κ) and as
in Theorem 10.5 factor j(P) as P×Q. If G ∗H is j(P)-generic then we may
build as usual an embedding j : V [G] −→M [G ∗H]. If T ∈ V [G] is a κ-tree
then as above j(T )�κ is isomorphic to κ, so by choosing any point on level κ
we may determine a branch b of T .

It is well-known that CH implies there is a special ω2-Aronszajn tree, and
since V [G] is a model of CH and κ = ω2 there is a κ-Aronszajn tree in V [G].
This is not a contradiction to the argument of the previous paragraph; the
point is that j(T ) only exists in M [G∗H], so the branch b that we constructed
is a member of V [G ∗H] but not in general a member of V [G].

To put the problem more abstractly, we need to create a situation in which
a generic embedding with critical point ω2 is added by a poset which does
not add any branches through any ω2-Aronszajn tree. By the remarks made
above we also need the continuum to be at least ω2.

Before the main argument we need a technical fact about trees.

23.1 Lemma. Let 2ω = ω2 and let T be an ω2-Aronszajn tree. Let S and T

be forcing posets such that

1. T is countably closed forcing and collapses ω2.

2. S is ω1-Knaster in V T.

Then forcing with S× T does not add a cofinal branch of T .

Proof. Let GS × GT be S × T-generic. We claim first that T has no cofinal
branch in V [GT]. To see this suppose p ∈ T forces that ḃ is a cofinal branch,
and use the fact that b /∈ V to build a binary tree 〈ps : s ∈ <ω2〉 and increasing
〈αn : n < ω〉 such that p0 = p and for each n the conditions {ps : s ∈ n2}
decide where ḃ meets level αn in 2n different ways. Then let α = supn αn

and observe that level α must have at least 2ω elements, contradicting our
assumptions that T is an ω2-tree and 2ω = ω2.

Choose in V [GT] a sequence βj for j < ω1 which is cofinal in ωV
2 . Suppose

for a contradiction that some q ∈ S forces over V [GT] that ċ is cofinal in T ,
and then choose for each j a condition qj ≤ q deciding where the branch
ċ meets level βj . In V [GT] a subfamily of size ω1 of {qj} must be pairwise
compatible, but this implies that there is a cofinal branch in V [GT]. �
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23.2 Theorem. Let κ be measurable. Then in some ω1-preserving generic
extension, 2ω = ω2 = κ and κ has the tree property.

Proof. Let

P = Add(ω, κ), Pα = Add(ω, α), Rα = Add(ω1, 1)V Pα .

We define Q as follows; a condition is a pair (p, f) where p ∈ P, f is a
partial function on κ with countable support, and f(α) is a Pα-name for a
condition in Rα. (p2, f2) ≤ (p1, f1) iff p2 ≤ p1 in P, supp(f1) ⊆ supp(f2),
and p2�(ω × α) � f2(α) ≤ f1(α) for all α ∈ supp(f1).

It is easy to see that Q is κ-c.c. Since adding a Cohen subset of ω1 collapses
the continuum to ω1, it is also easy to see that Q collapses every α between
ω1 and κ. It may not be immediately clear that Q preserves ω1. This will
fall out from the product analysis of Q which we give below.

For any inaccessible δ < κ we may truncate the forcing at δ in the obvious
way, to get Q�δ which forces 2ω = ω2 = δ. We note that if Gδ is Q�δ-generic
then Q/Gδ is very similar to Q.

To analyze Q we define a variation of the sort of termspace forcing we
studied in Sect. 22. Let R be the set of g such that g is a function on κ with
countable support, and g(α) is Pα-name for an element of Rα. Order R by
setting r2 ≤ r1 if and only if supp(r1) ⊆ supp(r2), and � r2(α) ≤ r1(α) for
all α ∈ supp(r1). It is routine to check that the identity is a projection map
from P × R to Q. It follows that if G is Q-generic with projection g on the
first coordinate then we may view V [G] as a submodel of V [g×h] where g×h
is P×R-generic. By Easton’s Lemma all countable sequences from V [G] are
in V [g], so in particular ω1 is preserved.

We now finish the argument by showing there are no ω2-Aronszajn trees
in V [G]. To do this we start by noting that (morally speaking) Q ⊆ Vκ, so
that we may regard Q as an initial segment of j(Q) where j : V −→ M is
the ultrapower by some normal measure on κ. As usual we may then build
a generic embedding j : V [G] −→M [G ∗H] where H is j(Q)/G-generic.

Suppose for contradiction that T ∈ V [G] is a κ-tree. By the usual chain
condition arguments T ∈ M [G], and since j(T ) ∈ M [G ∗ H] we see that
forcing over M [G] with j(Q)/G has added a branch to the κ-Aronszajn tree
T . We observe that in M [G] we have that 2ω = κ = ω2. It is not hard to
see that j(Q)/G is susceptible exactly to the same kind of product analysis
as Q or j(Q), so that by Lemma 23.1 it is not possible for j(Q)/G to add a
branch through T . This concludes the proof. �

23.3 Remark. Abraham [2] showed that it is consistent for both ω2 and
ω3 to simultaneously have the tree property. Foreman and the author [11]
built a model where ωn has the tree property for 1 < n < ω. Magidor and
Shelah [56] showed that ωω+1 may have the tree property. Foreman and the
author [11] constructed a model where ωω is strong limit and ωω+2 has the
tree property.
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Mitchell also showed that if κ is Mahlo and we force with the poset Q of
Theorem 23.2, then in the extension there is no special ω2-Aronszajn tree.
By work of Jensen there is a special ω2-Aronszajn tree if and only if the
weak square principle �∗

ω1
holds, so in Mitchell’s model �∗

ω1
fails. We sketch

a proof (due to Mitchell) that an even weaker version of square fails in the
model; for more on the ideal I[λ] see [10].

Recall that I[ω2] is the (possibly improper) ideal of A ⊆ ω2 such that
there exist 〈xα : α < ω2〉 and a club set C ⊆ ω2, such that for every α ∈
C ∩A ∩Cof(ω1) there is a set d ⊆ α with d club in α, ot(d) = ω1, and every
proper initial segment of d appearing as xβ for some β < α. It is easy to see
that if �∗

ω1
then ω2 ∈ I[ω2].

23.4 Theorem. If κ is Mahlo and we force with Q as in Theorem 23.2 then
in the extension ω2 /∈ I[ω2].

Proof. Let G be Q-generic. An argument similar to that of Theorem 21.5
shows that if α < κ is inaccessible and X ∈ P (α)∩V [G] with X ∩β ∈ V [Gα]
for all β < α, then X ∈ V [Gα]. Suppose for contradiction that 〈xα : α < κ〉
and C witness in V [G] that ω2 /∈ I[ω2].

Then since β is Mahlo and Q is β-c.c. there is a V -inaccessible cardinal
β ∈ C such that 〈xα : α < β〉 ∈ V [Gβ ], and so there is in V [G] a club subset
d ⊆ β such that ot(d) = ω1 and every initial segment of d is in V [Gβ ]. By
the remarks of the last paragraph we have d ∈ V [Gβ ], which is impossible
because β = ω

V [Gβ ]
2 . �

24. Iterations with Prediction

In this section we look at some theorems proved using the powerful reflection
properties of supercompact cardinals. Both of the results we prove depend
on the following theorem of Laver [49] which may be viewed as a kind of
diamond principle.

24.1 Theorem. Let κ be a supercompact cardinal. Then there exists a func-
tion f : κ→ Vκ such that for all λ ≥ κ and all x ∈ Hλ+ there is a supercom-
pactness measure U on Pκλ such that jU (f)(κ) = x.

Proof. Fix a well-ordering ≺ of Vκ. We define f(α) by recursion on α. We
set f(α) = 0 unless there exists a cardinal λ with α ≤ λ < κ and x ∈ Hλ+ ,
such that for no supercompactness measure U on Pαλ does jU (f�α)(α) = x.
In this case we choose the minimal such λ and then the ≺-minimal such
x ∈ Hλ+ , and set f(α) = x.

Suppose for a contradiction that there exist λ ≥ κ and x ∈ Hλ+ such that
for no supercompactness measure U on Pκλ does jU (f)(κ) = x. Let ρ = 22λ

,
let W be a supercompactness measure on Pκρ, and let the ultrapower by W
be j : V −→ N = Ult(V,W ). Observe that Hλ+ ⊆ (Vj(κ))N .
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All supercompactness measures on Pκλ and all functions from Pκλ to Vκ

lie in N . It follows easily that

N |= “for no supercompactness measure U on Pκλ does jU (f)(κ) = x”.

Let μ be minimal such that for some y ∈ Hμ+ there is no supercompact-
ness measure U on Pκμ with jU (f)(κ) = y; clearly μ ≤ λ, so in particular
y ∈ (Vj(κ))N . Let y be j(≺)-minimal such y ∈ Hμ+ . By elementarity, the
definition of f , and the agreement between V and N we may conclude that
j(f)(κ) = y.

Now we define U = {X ⊆ Pκμ : j“μ ∈ j(X)} so that U is a supercom-
pactness measure on Pκμ. Let i : V −→ M = Ult(V, U) be the ultrapower
map, and observe that by Proposition 3.2 there is an elementary embedding
k : M −→ N given by k : [F ]U = j(F )(j“μ). We also have that k ◦ i = j.

We now analyze the embedding k. The definition of k gives easily that
j“V ⊆ ran(k) and j“μ ∈ ran(k). If X ⊆ μ then

X = {ot(γ ∩ j“μ) : γ ∈ j“μ ∩ j(X)},

so that X ∈ ran(k). It follows that Hμ+ ⊆ ran(k) and so in particular
k�Hμ+ = idHμ+ .

Since y ∈ Hμ+ , k(y) = y. We also know that k(κ) = κ and k ◦ i = j, so
k(i(f)(κ)) = j(f)(κ) = y. Contradiction!

It follows that for all λ ≥ κ and all x ∈ Hλ+ there is a supercompactness
measure U on Pκλ with jU (f)(κ) = x. �

24.2 Remark. Using extenders in the place of supercompactness measures
it is possible to prove a similar result for strong cardinals. See Gitik and
Shelah’s paper [29] for this result and some applications.

In this section we prove the consistency of the Proper Forcing Axiom (de-
fined below) and of the statement “the supercompactness of κ is indestruc-
tible under κ-directed closed forcing”. These statements have in common
that they involve a universal quantification over a proper class; they will
both be proved by doing a set forcing and using some reflection arguments.

In each of the two consistency proofs we will begin with a supercompact
cardinal κ. We fix a function f as in Theorem 24.1 (a Laver function) and use
this function as a guide in building an iteration of length κ which anticipates
a proper class of possibilities for what may happen at stage κ.

The details of the constructions are of course somewhat different, but they
each involve taking a generic object for some forcing we may do stage κ, and
copying it via some supercompactness embedding j to a filter on the image
of that forcing under j. In the argument for the Proper Forcing Axiom the
existence of this filter is reflected back to give a witness for the truth of the
axiom, while in the indestructibility theorem the filter is used to construct a
strong master condition and lift the embedding j.

We now give Baumgartner’s consistency proof [15] for the Proper Forcing
Axiom. We begin with a brief review of proper forcing.
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24.3 Definition. Let θ be regular with P ∈ Hθ. Let <θ be a well-ordering
of Hθ and let P ∈ N ≺ (Hθ,∈, <θ) where N is countable. p ∈ P is (N,P)-
generic if and only if for every maximal antichain A of P with A ∈ N , A∩N
is predense below p.

24.4 Remark. This notion is closely related to the ideas about lifting em-
beddings from Proposition 9.1. Let N̄ be the Mostowski collapse of N , let
π : N̄ −→ N be the inverse of the Mostowski collapse and let x̄ be the collapse
of x for x ∈ N .

Then it is easy to see that p is (N,P)-generic if and only if p forces that
Ḡ =def {p̄ : p ∈ G ∩N} is P̄-generic over N̄ ; that is, p is a master condition for
π in the sense of Definition 12.1. The definition of Ḡ implies that π“Ḡ ⊆ G.
Therefore if p is (N,P)-generic and p ∈ G for some G which is P-generic over
V , then π can be lifted to a map π+ : N̄ [Ḡ] −→ N [G] which is the inverse of
the Mostowski collapse map for N [G].

We note that for example in the Martin’s Maximum paper [21] (N,P)-
generic conditions are referred to as “(N,P)-master conditions”. We have
chosen to follow the conventions of Shelah’s book on proper forcing [64].

24.5 Remark. In the study of proper forcing it is often interesting to look
at conditions which are strongly (N,P)-generic, where (adopting the notation
of the last remark) a condition p ∈ P is strongly (N,P)-generic if and only
if gp =def {q̄ : q ∈ N ∩ P, p ≤ q} is P̄-generic over N̄ . Such a condition is
precisely a strong master condition for gp and π in the sense of Definition
12.2.

24.6 Definition. P is proper if and only if for all large θ, all countable N
with P ∈ N ≺ (Hθ,∈, <θ), and all p ∈ P ∩N there exists a condition q ≤ p
which is (N,P)-generic.

See Abraham’s chapter in this Handbook for an exposition of proper forc-
ing. The only fact about properness we will need is that a countable support
iteration of proper forcing is proper.

24.7 Definition. The Proper Forcing Axiom (PFA) is the statement: for
every proper P and every sequence 〈Dα : α < ω1〉 of dense subsets of P there
exists a filter F on P such that F ∩Dα �= ∅ for all α < ω1.

Before we prove the consistency of PFA we make a few remarks.

24.8 Remark. It would be hopeless to ask to meet ω2 sets in the statement
of PFA, because we could then apply the axiom to the proper forcing poset
Col(ω1, ω2) and produce a surjection from ω1 onto ω2.

24.9 Remark. The axiom PFA is known [66] to have a very high consistency
strength. One way of seeing this is that by work of Todorčević [67] PFA
implies the failure of �κ for κ singular, which implies in turn that the weak
covering lemma fails over any reasonable core model.
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24.10 Remark. In the consistency proof for MAω1 [6] the first step is to
observe that we only need to deal with forcing posets of size ω1. The point
is that the property of being c.c.c. is inherited by any completely embedded
subposet, and so to deal with ω1 dense subsets of an arbitrary P we may as
well work in some subposet Q of size ω1 in which all those dense sets remain
dense.

This is not so for proper forcing. Notice that by Example 6.6 we may force
�κ without changing Hκ+ , so that PFA cannot in general be “localised” to
a statement in Hκ+ for any κ.

24.11 Theorem. Let κ be supercompact. Then there is a forcing iteration
of length κ such that in V Pκ

1. PFA holds.

2. 2ω = κ = ω2.

Proof. Let f : κ −→ Vκ be a function as in Theorem 24.1. The poset Pκ

will be an inductively defined iteration of length κ with countable support,
with each Qα forced to be proper in V Pα . The name Q̇α will name the trivial
forcing unless f(α) is a Pα-name for a proper forcing poset, in which case
Qα = f(α).

By the Properness Iteration Theorem [1] the poset Pκ is proper, so pre-
serves ω1. By Proposition 7.13 Pκ is κ-c.c. with cardinality κ, so in particular
κ is preserved.

Now let Q̇ be the standard Pκ-name for Add(ω, 1). Let λ = 22κ

and find
a supercompactness measure U on Pκλ such that jU (f)(κ) = Q̇. Arguing as
in Lemma 11.6, jU (Pκ) is an iteration of length j(κ) in Ult(V, U) whose first
κ stages are exactly those of Pκ.

Ult(V, U) agrees that Q̇ is a Pκ-name for Add(ω, 1), so by the usual re-
flection argument there are unboundedly many α < κ such that f(α) is a
Pα-name for Add(ω, 1). Since Add(ω, 1) is proper, there are unboundedly
many α where Q̇α is a Pα-name for Add(ω, 1), so that in the course of the
iteration Pκ we add κ many subsets of ω. A very similar argument shows
that Qα = Col(ω1, α)V Pα for many α < κ, so that 2ω = κ = ω2 in V Pκ .

To finish the proof we need to show that PFA holds in V Pκ . Let G be
Pκ-generic over V , and let Q = iG(Q̇) where Q̇ is a Pκ-name for a proper
forcing poset. Find a cardinal λ such that Q̇ ∈ Hλ, let μ = 22λ

, and let
U be a supercompactness measure on Pκμ such that jU (f)(κ) = Q̇. Let
j : V −→M = Ult(V, U) be the ultrapower map.

By Proposition 8.4 we see that V [G] |= μM [G] ⊆ M [G], so in particular
�M

Pκ
“Q̇ is proper”. It follows that in the iteration j(Pκ), the forcing which

is used at stage κ is precisely Q̇.
Now let g be Q-generic over V [G]. Working in MPκ ∗Q̇ let Ṙ name the

canonical forcing such that j(Pκ)  Pκ ∗ Q̇ ∗ Ṙ, and let R = iG∗g(Ṙ). Let H
be R-generic over V [G ∗ g].
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Since Pκ is an iteration with countable support, the support of every con-
dition in G is bounded in κ. This implies that j“G ⊆ G ∗ g ∗H, and so we
may lift j to get a map jG : V [G] −→M [G ∗ g ∗H].

Now let �D = 〈Dα : α < ω1〉 be an ω1-sequence of dense subsets of Q, with
�D ∈ V [G]. Since g is generic over V [G], g∩Dα �= ∅ for each α. By the choice
of μ and U we know that j�Q̇ ∈ M , from which it follows by the definition
of jG in Proposition 9.1 that jG�Q ∈M [G ∗ g ∗H].

Now let F be the filter on jG(Q) generated by jG“g. By the arguments of
the last paragraph we see that F ∈M [G∗g∗H]. Since crit(jG) = crit(j) = κ,
we see that jG( �D) = 〈jG(Dα) : α < ω1〉. By genericity g ∩ Dα �= ∅ for all
α < ω1, and so by elementarity F ∩ jG(Dα) �= ∅ for all α < ω1.

It follows that

M [G ∗ g ∗H] |= “F meets every set in jG( �D)”.

By the elementarity of jG,

V [G] |= “∃f f meets every set in �D”.

It follows that V [G] is a model of PFA. �

We will prove the following theorem of Laver on making any supercompact
cardinal Laver indestructible.

24.12 Theorem (Laver [49]). Let κ be supercompact and let δ < κ. There
is a forcing iteration Pκ of length κ such that

1. κ is supercompact in V Pκ , and in any extension of V Pκ by κ-directed
closed forcing.

2. Pκ has cardinality κ, is κ-c.c. and is δ-directed closed.

24.13 Remark. The proof of Theorem 24.12 is similar in its outline to the
consistency proof for PFA. One significant difference is that we will leave
long gaps in the iteration in which nothing happens. This is natural when
we consider that

• κ is supposed to be supercompact in V Pκ .

• Pκ will have no effect above κ on cardinals, cofinalities and the contin-
uum function.

An easy reflection argument shows that there should be arbitrarily long in-
tervals (α, β) below κ in which V Pκ should resemble V .

Proof. Let f : κ −→ Vκ be a function as in Theorem 24.1. The poset Pκ will
be an iteration of length κ with Easton support, such that for each α

�α “Q̇α is α-directed closed”.

Q̇α will name the trivial forcing unless
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1. α ≥ δ.

2. f(α) is a pair (λ,Q) where Q is a Pα-name for an α-directed closed
forcing poset and λ is an ordinal.

3. For all β < α, if f(β) is an ordered pair whose first entry f(β)0 is an
ordinal, then f(β)0 < α.

In this case we let Qα = Q.
By Proposition 7.13 Pκ is κ-c.c. with cardinality κ, and by Proposition 7.9

Pκ is δ-directed closed.
Let G be Pκ-generic over V . We need to show that the supercompactness

of κ is indestructible; accordingly we fix Q ∈ V [G] such that

V [G] |= “Q is a κ-directed closed forcing poset”,

and a cardinal λ with λ ≥ κ, and we prove that κ is λ-supercompact in
V [G]Q. Notice that the trivial forcing is (trivially) κ-directed closed, so that
our proof will show in particular that κ is supercompact in V [G].

Let Q = iG(Q̇), where (increasing λ if necessary) we may as well assume
that Q̇ ∈ Hλ. Let μ = 22λ

. Let W be a supercompactness measure on Pκμ
such that jW (f)(κ) = (μ,Q). Let j = jW and N = Ult(V,W ).

Let g be Q-generic over V . Working in N let Ṙ be the standard name for
the iteration such that Pκ ∗ Q̇ ∗ Ṙ  j(Pκ), let R = iG∗g(Ṙ) and let H be
R-generic over V [G ∗ g].

Arguing exactly as in the consistency proof for PFA, we may lift j to
get jG : V [G] −→ N [G ∗ g ∗ H]. We may also argue exactly as before that
M [G] |= |Q| < λ, V [G∗g] |= μM [G∗g] ⊆M [G∗g] and jG�Q ∈M [G∗g ∗H].

We now need to lift jG to an embedding of V [G∗g], which we will do using
Silver’s master condition argument as in the proof of Theorem 12.6. By the
last paragraph jG“g ∈ M [G ∗ g ∗ H], and clearly jG“g is a directed set of
conditions in jG(Q). We recall that j(κ) > λ, M [G] |= |Q| < λ and by the
elementarity of jG

M [G ∗ g ∗H] |= “j(Q) is j(κ)-directed closed”.

It follows that there is a condition q ∈ jG(Q) such that ∀p ∈ g q ≤ j(p),
that is to say q is a strong master condition for g and jG. Let h be jG(Q)-
generic over V [G ∗ g ∗ G] with q ∈ h. We may lift jG as usual to get an
elementary embedding j++ : V [G ∗ g] −→M [G ∗ g ∗H ∗ h].

The argument is not finished at this point because j++ can only be defined
in V [G ∗ g ∗H ∗ h]. The final stage of the proof is to find an approximation
to j++ which can be defined in V [G ∗ g]. For notational simplicity let V ∗ =
V [G ∗ g] and M ∗ = M [G ∗ g ∗H ∗ h]. Let

U = {X ⊆ Pκλ : X ∈ V ∗, j“λ ∈ j++(X)}.
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As in Proposition 3.2 we may factor j++ as k ◦ jU where jU is the ultrapower
of V ∗ by U .

Recall that |Pκ ∗ Q̇| < λ. The definition of the iteration j(Pκ) and the fact
that j(f)(κ) = (μ, Q̇) together imply that in the iteration j(Pκ) we do trivial
forcing at every stage between κ and μ. It follows that

M [G ∗ g] |= “R ∗ j(Q̇) is μ-closed”.

Since V ∗ |= μM [G ∗ g] ⊆M [G ∗ g], V ∗ agrees that R ∗ j(Q̇) is μ-closed.
Now since V ∗ |= λ<κ < μ, the arguments of the last paragraph imply that

U ∈ V ∗. It is easy to check that

V ∗ |= “U is a supercompactness measure on Pκλ”.

This concludes the proof that κ is λ-supercompact in V [G ∗ g]. �

24.14 Remark. It is easy to see that if κ is measurable then there is no
κ-Kurepa tree. Since Example 6.1 shows that a κ-Kurepa tree can be added
by a κ-closed forcing poset for any inaccessible κ, it is not possible to improve
Laver’s result to cover all κ-closed forcing posets.

25. Altering Generic Objects

In this final section we introduce an idea due to Woodin, namely, that it is
sometimes possible to alter generic objects so as to enforce the compatibility
requirements of Proposition 9.1. Returning to the theme of failure of GCH
at a measurable cardinal, we will prove a result of Woodin which gets GCH
to fail at a measurable cardinal from the optimal large cardinal hypothesis.

25.1 Theorem. Let GCH hold and let j : V −→M be a definable embedding
such that crit(j) = κ, κM ⊆ M and κ++ = κ++

M . Then there is a generic
extension in which κ is measurable and GCH fails.

25.2 Remark. The hypotheses of Theorem 25.1 can easily be had from a
cardinal κ which is (κ + 2)-strong. Work of Gitik [24] shows that they can
be forced starting with a model of o(κ) = κ++, and by work of Mitchell [59]
this is optimal.

Proof of Theorem 25.1. By the arguments of Sect. 3, we may assume that
j = jV

E for some (κ, κ++)-extender E. We define U = {X : κ ∈ j(X)} and
form the ultrapower map i : V −→ N  Ult(V, U). We write j = k ◦ i where
k : N −→M is given by k([F ]) = j(F )(κ).

Let λ = κ++
N . Then λ < i(κ), since i(κ) is inaccessible in N . Since GCH

holds i(κ) < κ++. On the other hand k(λ) = κ++
M = κ++, so that crit(k) = λ.

It is also easy to see that k is an embedding of width ≤ λ.
As before we will let P = Pκ+1 be an iteration with Easton support, where

for α ≤ κ we let Qα = Add(α, α++)V [Gα] for α inaccessible and let it be the
trivial forcing otherwise.
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Let G be Pκ-generic over V and let g be Qκ-generic over V [G]. The
iterations P, i(P) and j(P) agree up to stage κ.

The following lemmas are easy.

25.3 Lemma. j(P)κ+1 = Pκ+1.

25.4 Lemma. i(P)κ+1 = Pκ ∗ Q̇∗
κ, where Q∗

κ = Add(κ, λ)V [Gκ].

Let g0 = g ∩ Q
∗
κ, then g0 is Q

∗
κ-generic over V [G] and also over N [G]. It

follows from Proposition 8.4 that V [G ∗ g0] |= κN [G ∗ g0] ⊆ N [G ∗ g0].
Let R0 = R

N
κ+1,i(κ) be the factor forcing to prolong G ∗ g0 to a generic

object for i(Pκ). By Proposition 8.1 we may build H0 ∈ V [G ∗ g0] which is
R0-generic over N [G ∗ g0].

Since crit(k) = λ it is easy to see that k“G = G, and we may lift k : N −→
M to get k : N [G] −→ M [G]. Since λ = κ++

N , if q ∈ Q
∗
κ then the support

of q is contained in κ × μ for some μ < λ, and so k(q) = q. It follows that
k“g0 = g0 ⊆ g, and so we may lift again to get k : N [G ∗ g0] −→M [G ∗ g].

Since N [G ∗ g0] |= “R0 is λ+-closed” and we bounded the width of k, we
may now appeal to Proposition 15.1 and transfer H0 along k. We obtain H
which is R-generic over M [G ∗ g], where R = RM

κ+1j(κ). We may then build a
commutative triangle

V [G] M [G ∗ g ∗H]

N [G ∗ g0 ∗H0]

�j

�
�

�
���

i

�
k

Let S0 = i(Qκ), that is, S0 = Add(i(κ), i(κ++))N [G∗g0∗H0].

25.5 Lemma. S0 is κ+-closed and κ++-Knaster in the model V [G ∗ g0].

Proof. The closure is easy because V [G ∗ g0] |= κN [G ∗ g0] ⊆ N [G ∗ g0].
Let 〈pα : α < κ++〉 be a sequence of conditions, and let pα = i(fα)(κ) where
fα : κ −→ Qκ, fα ∈ V [G]. An easy Δ-system argument shows that κ++ of
the functions fα are pointwise compatible, from which it follows that κ++ of
the conditions pα are compatible. �

25.6 Remark. A more delicate analysis shows that S0 is isomorphic to
Add(κ+, κ++)V [G∗g0].

25.7 Lemma. S0 is (κ+,∞)-distributive and κ++-c.c. in V [G ∗ g].

Proof. V [G ∗ g] is a generic extension of V [G ∗ g0] by a forcing isomorphic to
Qκ. The poset Qκ is κ+-c.c. in V [G ∗ g0] and so by Easton’s Lemma S0 is
(κ+,∞)-distributive in V [G ∗ g]. By Proposition 5.12 S0 ×Qκ is κ++-c.c. in
V [G ∗ g0] and so by Easton’s Lemma again S0 is κ++-c.c. in V [G ∗ g]. �
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Now we force over V [G ∗ g] with S0, and denote the generic object by f0.
By the last lemma forcing with S0 preserves cardinals. Since k has width
≤ λ, we may use Proposition 15.1 and transfer f0 to get f which is S-generic
over M [G ∗ g ∗H], where S = Add(j(κ), j(κ++)). The problem is now that
we wish to lift j, but it may not be the case that j“g ⊆ f .

There is no hope of using any of our previous methods for doing without
a master condition, since f0 is built by forcing (and even if we could build f0

in a suitably compatible way, this would not guarantee compatibility for f).
We adopt a different approach based on the observation that we only need
to adjust any given condition in f on a small set to make it agree with j“g.
We will work in V [G ∗ g ∗ f0] and construct a suitable f ∗, by altering each
element of f to conform with j and g.

To be precise let Q =
⋃

j“g, so that Q is a partial function from κ×j“κ++

to 2. Let p ∈ f , so that p = j(P )(a) for some a ∈ [κ++]<ω and some function
P : [κ]|a| → Qκ with P ∈ V [G]. If (γ, j(δ)) ∈ dom(p) then by elementarity
(γ, δ) ∈ domP (x) for at least one x ∈ [κ]|a|, so that there are at most κ
many points in the intersection of dom(Q) and dom(p). If we then define p∗

to be the result of altering p on dom(p)∩dom(Q) to agree with Q, then since
V [G ∗ g] |= κM [G ∗ g ∗ H] ⊆ M [G ∗ g ∗ H] we see that p∗ ∈ M [G ∗ g] and
hence p∗ ∈ j(Qκ).

It remains to see that f ∗ = {p∗ : p ∈ f} is j(Qκ)-generic over M [G∗g∗H].
To see this we work temporarily in V [G]. Let δ < κ and let D be dense in
Qκ. Let E be the set of those p ∈ D such that every q obtained by altering
p on a set of size δ is in D. An easy argument shows that E is also dense.
Returning to M [G ∗ g ∗H] and applying this remark with κ in place of δ, we
see that f ∗ meets every dense set in M [G ∗ g ∗H].

We may now lift to get j : V [G ∗ g] −→ M [G ∗ g ∗ H ∗ f ∗]. We are not
quite done because f ∗ only exists in the extension V [G ∗ g ∗ f0]. However
since f0 is generic for (κ,∞)-distributive forcing and j has width ≤ κ, we
may transfer f0 to get a suitable generic object h and finish by lifting to get
j : V [G ∗ g ∗ f0] −→M [G ∗ g ∗H ∗ f ∗ ∗ h]. �
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1. Introduction

This chapter covers the technique of generic elementary embeddings. These
embeddings are closely analogous to conventional large cardinal embeddings,
the difference being that they are definable in forcing extensions of V rather
than in V itself. The advantage of allowing the embeddings to be generic is
that the critical points of the embeddings can be quite small, even as small
as ω1. For this reason they have many consequences for accessible cardinals,
settling many classical questions of set theory.

In analogy to conventional large cardinals, two parameters help describe
the strength of a generic elementary embedding j : V → M : where j sends
ordinals and the closure properties of M . For generic embeddings we have a
third parameter: the nature of the forcing required to define j. This chapter
focuses on how the “three parameters” interact to determine the impact j
has on the universe.
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An Overview of the Chapter

In Sect. 2, we introduce the basic techniques of generic embeddings and
generic ultrapowers and describe briefly the relationship to ideals. Topics
include criteria for precipitousness, the disjointing property, normality, limi-
tations on closure, canonical functions, selectivity and use of generic embed-
dings for reflection. Starting with Sect. 2.3, unless otherwise specified, we
will assume that our ideals are countably complete.

Section 3 gives examples of relevant ideals and describes a distinction
between natural and induced ideals; the latter bear close resemblance to the
duals of conventional large cardinal ultrafilters that have been collapsed by
forcing. The nonstationary ideal (in its modern sense) is described along
with several lesser known natural ideals. The analogies between induced
ideals and proper forcing are explored via master condition ideals and the
idea of goodness. The relationship between self-genericity and saturation is
first introduced here and is exploited in later sections on the nonstationary
ideal on ω1 and towers.

In Sect. 4, we look more closely at the theory of generic ultrapowers.
Topics include presaturation, layered ideals, Rudin-Keisler projections, com-
putations of where ordinals go under generic embeddings, and the sizes of
sets of measure one. It is shown how to iterate embeddings coming from
ideals, and generic elementary embeddings arising from towers of ideals are
introduced.

In Sect. 5, we consider the consequences of “generic large cardinals”.
Generic large cardinals, taken together with their prototypical cousins, con-
ventional large cardinals, tend to give a coherent collection of answers to
many of the classical questions of set theory. There is one extremely impor-
tant counterexample: the assumption that the nonstationary ideal on ω1 is
ℵ2-saturated. Topics include CH, GCH and SCH, graph and partition theory,
Chang’s Conjecture and Jónsson cardinals, square, stationary set reflection,
Suslin and Kurepa trees, descriptive set theory, and non-regular ultrafilters.

In Sect. 6, we discuss limitations on generic large cardinal assumptions.
These results play a role analogous to the Kunen limitation on conventional
large cardinals. Because generic large cardinals have more parameters, the
limitations involve such issues as the nature of the forcing required for the
generic embeddings. Given the ubiquitous consequences of generic large car-
dinals, it is not surprising that this topic is more involved than with conven-
tional large cardinals.

Sections 7 and 8 deal with consistency results for generic large cardinals.
These are split as far as possible into consistency results for induced ideals
and consistency results for natural ideals. Forcing constructions are given
for ideals with strong properties in all three parameters. Special attention is
paid to results that show the consistency of properties that are either used
as hypotheses in Sect. 5 or that show that results in Sect. 6 are sharp. There
is a general theorem (the Duality Theorem) that describes how to compute
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the forcing necessary to construct an elementary embedding coming from
an induced ideal. This result allows one to control the third parameter in
consistency results. Various corollaries are drawn such as the indestructibility
of the generic supercompactness of ω1 under proper forcing. An attempt
is made to unify the treatment of various forcing techniques constructing
precipitous and saturated ideals. The section ends with a brief discussion of
methods for destroying precipitous and saturated ideals.

Section 8 deals with consistency results for natural ideals. Unfortunately,
due to time and space limitations, consistency results that are proved by
adding choice to determinacy models are not included, although some refer-
ences are given. Starting with large cardinals, consistency results for natural
ideals are shown in two ways. Both methods are explored in this section.
The first is to take an induced ideal and by some technique, such as shooting
closed unbounded sets, turning it into a natural ideal while preserving its
generic embedding. The second technique arose from [47] and uses inherent
properties of the natural ideal. The notions of goodness and self-genericity
are important for taking an existing natural ideal and making it have nice
properties. The section focuses on the two natural ideals for which good con-
sistency results are known: the nonstationary ideals and the club guessing
ideals. The section includes results from Martin’s Maximum and about �κ

and c.c.c.-destructible and indestructible ideals.

Section 9 gives a brief introduction to tower forcing. It discusses induced
towers, giving an example of a saturated tower. Then it goes on to natural
towers. The notion of catching an antichain is discussed and connections with
the forcing for making the nonstationary ideal on ω1 saturated are made, as
is the notion of self-genericity in this context. Woodin’s towers are shown to
be presaturated, and generalizations first considered by Douglas Burke are
discussed. Some applications are given and an example due to Burke of a
non-precipitous tower is given.

Section 10 deals with the consistency strength of generic ideal assumptions.
The most cogent results of this section are covered in the chapters of this
Handbook devoted to inner model theory. They exposit results that show
fine structural inner models with large cardinals exist, under various ideal
assumptions. For this reason, this section focuses on results that are of a
different flavor. These results state that the existence of generic embeddings
j with the property that the images of a very small finite number of sets
are determined independently of the generic object imply inner models with
very large (supercompact or huge) cardinals. Results are also quoted that
show that there is a strict hierarchy of consistency strength among the ideal
axioms involving the ωn’s.

Section 11 is a speculative discussion of the possibility of adopting gen-
eralized large cardinals along with conventional large cardinals as additional
axioms for mathematics.
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Apology and Acknowledgments

This chapter was first conceived as a 40-page introduction to the theory of
generic elementary embeddings. As I began to outline the chapter and look
at references it became clear that there was no general survey of the area in
the literature. At that moment the chapter began to grow.

There are several decisions that had to be made early on. My belief is
that long lists of theorems without indications of the ideas of the proofs are
not very useful. I have never been able to read such a “survey”. The first
decision was to try to include at least sketches of arguments for almost all of
the results.

Secondly, the existing literature included a lot of overlap and duplication
of ideas under different names, ad hoc arguments for special cases and the
use of generic embeddings in the middle of arguments for other theorems.
Rather than repeat many variations of the same argument, I decided to try
to isolate common lemmas that could be used repeatedly.

A corollary of the attempt to unify a lot of disparate literature was that
the logical structure of the chapter became tree-like. Most of the latter
sections depend on elements introduced in the earlier sections. Without the
background information in the first four sections, it is hard to motivate or
illuminate the deeper results in the later sections. For this reason alone, more
detail is given to the earlier sections. Moreover, reading the later sections
may require glancing back over definitions and results in the earlier parts of
the chapter.

The main aim of the chapter is to illustrate that there is a coherent the-
ory here, that there are unifying fundamental ideas that occur frequently
in many different contexts. These include master condition ideals, natural
and induced ideals, disjointing, self-genericity, the role of diagonal unions for
representing Boolean sums, good elementary substructures—the list is long.

The third decision was to try to organize the theory around a few basic
principles. These include the categorization of ideals as natural and induced
and the “three parameters” that determine a generic elementary embedding
j : V → M , which again are: where j sends ordinals, the closure properties
of M , and the nature of the forcing required to define j.

The three parameters provide a backbone for the chapter. There are sec-
tions and examples devoted to each of them, and a range of ideal-theoretic
properties, like the various saturation and normality properties, are explored
in terms of the three parameters.

Despite the attempt to give arguments in as much detail as space allows,
there are parts of the chapter that do little more than adumbrate results.
This reflects my ignorance and lack of energy. I have attempted to give
accurate references for results that the reader may want to learn on his or
her own. I apologize also to authors whose results were left out due to my
ignorance or sloth.

Given the problematic length of the chapter, several people have suggested
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that it be expanded to a stand-alone book. As this would require that near
complete arguments be given, I estimate such a book might need 800 to 900
pages. I will leave this for others.

Many people have been incredibly generous with their time and criticism.
I especially want to thank Aki Kanamori for his continuing support and en-
couragement. James Cummings, Joel Hamkins and Tetsuya Ishiu provided
ongoing corrections that were very useful. Ishiu was involved with the chap-
ter since its inception. Many other people, including David Aspero, Andrés
Caicedo, Neus Castells, Moti Gitik, Paul Larson, Rich Laver, Luis Pereira,
John Rapalino, Hugh Woodin and Martin Zeman gave me substantial com-
mentary and feedback.

I would also like to thank Menachem Magidor, Saharon Shelah and Hugh
Woodin for their help in understanding some of the topics in this chapter.
Magidor’s views on generic elementary embeddings influenced me a great
deal.

Some Conventions Used in the Chapter

In describing generic elementary embeddings, Boolean algebras of the form
P (Z)/I occur naturally as forcing notions. Moreover, via �Loś’s theorem,
the Boolean value of a forcing statement is frequently very easily computed
directly as a subset of Z. In this context the “Boolean valued” approach to
forcing has its advantages. In several places, an elementary familiarity with
Boolean algebras may be useful to the reader. To convert the language of
Boolean algebras to other approaches to forcing, one can very roughly say
that Σ translates to an infinite disjunction and

∏
translates into an infinite

conjunction. Rigorously, if B is a Boolean algebra, and A ⊆ B, then ΣA is the
least upper bound of A and

∏
A is the greatest lower bound. The obvious

De Morgan’s laws apply. If B is not complete, then ΣA and
∏

A need not
exist.

An effort was made to keep notation as conventional as possible. Although
ωα = ℵα, we try to use the former when regarding it as a set of ordinals and
the latter when appealing to its cardinality aspect. Some notation that may
not be standard include the use of “Cof(κ)” and “Cof(<κ)” for the classes of
ordinals of cofinality κ and less than κ respectively. To denote the cofinality
of a particular ordering (I,<) we write cf(I). If g : Z → A, we denote the
corresponding element of the ultrapower AZ/U as [g] or [g]U . If V Z/U ∼= M
and the isomorphism with M is understood from the context then we will
write [g]M for the image of [g] in M . If A is a structure with domain A that has
canonical Skolem functions and z ⊆ A we will write SkA(z) for the elementary
substructure of A generated by z. We will follow current practice by taking
H(θ) to stand for a structure in a countable language expanding 〈H(θ),∈,Δ〉
with domain the collection of sets of hereditary cardinality less than θ and
where Δ is a fixed-in-advance well-ordering of the domain. Unless otherwise
stated, the convention is that θ is a very large regular cardinal reflecting all
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relevant statements from the universe V . We use the abbreviation ot(X) for
the order type of X. We lapse into jargon from time to time; for example we
will write κ3 λ to mean that λ is substantially larger than κ. “Substantially
larger” will depend on context, but usually means that λ is a regular cardinal
at least (2κ)+. We will be sloppy in our notation in the following way: if τ̇ is
a P-term for an element of a generic extension V [G] we will write τ̇V [G] for
its realization by G. This is strictly speaking incorrect as the interpretation
of τ depends on G, rather than the model V [G]. Similarly we will often omit
the traditional ’̌s and ˙’s whenever the context makes them clear.

Throughout this chapter we will assume, without loss of generality, that all
of our partial orderings have the property that for all compatible conditions
p, q there is a greatest lower bound, which we will denote p ∧ q. We will say
that p ∧ q = 0 if p and q are not compatible.

If e : P → Q is an order-preserving map and G ⊆ P is generic, then
we can define a partial ordering Q/G by setting the domain of Q/G to be
{q ∈ Q : for all p ∈ G, q ∧ e(p) �= 0} and the ordering of Q/G to be ≤Q. An
order-preserving map e will be said to be a regular embedding iff e preserves
incompatibility and takes maximal antichains to maximal antichains.

Despite the fact that Q/G can be a strange non-separative partial ordering,
if e is a regular embedding it is always the case that:

Q ∼ P ∗Q/G.

We assume general familiarity with the combinatorial principles ♦ and �,
much discussed in the various Handbook chapters. We refer to the early
sections of Cummings’ chapter for basic definitions and notations for forcing
and (conventional) large cardinals. We will use the following partial order-
ings: Add(κ, λ) is the set of partial functions from κ × λ to 2 of cardinality
less than κ. This is the usual notion of forcing for adding λ Cohen subsets
of κ. We write Add(κ) for Add(κ, 1). Col(κ, λ) is the set of partial functions
from κ to λ of cardinality less than κ, the usual notion of forcing for collaps-
ing λ to κ. Col(κ,<λ) is the set of partial functions p from κ × λ to λ of
cardinality less that κ such that p(α, β) when defined is less than β. This
is the usual notion of forcing, the Levy collapse, for collapsing all cardinals
below λ to κ. A property is c.c.c.-destructible if it can be destroyed by a
c.c.c. forcing. We often regard large cardinal axioms as providing elementary
embeddings, with phrases like “supercompact embedding” and “almost huge
embedding” meaning the elementary embedding with the closure properties
associated with supercompact or almost huge cardinals.

2. Basic Facts

We begin with some classical algebraic definitions about Boolean algebras.
See, for example, Sikorski’s book [108] for more details. We recall that a
Boolean algebra is a structure B = 〈F,∧,∨,¬, 0, 1〉 that is isomorphic to a
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field of sets with the operations of ∪,∩ and complement, and with 0 denoting
∅ and 1 denoting the complement of the empty set. In such a structure we
can define an ordering by setting b ≤ c iff b ∧ c = b.

The class of Boolean algebras is an elementary class. A Boolean algebra
B will be called κ-complete iff for all sets A ⊆ F of size less than κ there
is an element of B, denoted ΣA, that is a least upper bound for all of the
elements of A. This is equivalent to the requirement that for all A ⊆ F of
cardinality less than κ there is a greatest lower bound ΠA for all elements
of A. Of course, ΣA and ΠA correspond to infinite unions and intersections
respectively. The significance of this for forcing is that ΣA � Ġ ∩A �= ∅.

A homomorphism between Boolean algebras B and C is a function from the
domain of B to the domain of C that preserves the operations ∧,∨,¬. A ho-
momorphism will be called κ-complete iff it preserves the infinitary operation
of ΣA for A ⊆ B having cardinality less than κ. A κ-complete homomorphism
preserves ΠA as well, for A ⊆ B of cardinality less than κ.

The Boolean algebra will be complete iff it is κ-complete for all κ. It
is a standard fact (see [63]) that if P is a separative partial ordering then
there is a complete Boolean algebra, which we denote by B(P), that has a
dense subset D ⊆ B(P) such that (D,≤B(P)) ∼= P. Moreover, for any partial
ordering P there is an equivalence relation ∼ such that the map p → [p]∼ is
order preserving, forcing with P is equivalent to forcing with P/∼ and, P/∼
is separative. In an abuse of notation we will write B(P) for B(P/∼).

2.1 Definition. Let B = 〈B,∧,∨,≤,¬, 0, 1〉 be a Boolean algebra. A non-
empty set I ⊆ B is an ideal on B if it is closed under finite joins and ≤. The
dual of an ideal I is Ĭ = {¬A : A ∈ I}. It is called a filter. If S ⊆ B we will
denote the ideal generated by S as S̄. An ideal is proper iff 1 /∈ I.

In most contexts the Boolean algebra B will be of the form P (Z) for some
set Z. In this case we will say that I is an ideal on Z.1 Clearly I is an ideal
on Z iff I is closed under finite unions and subsets. I is proper iff Z /∈ I.

A maximal proper ideal is called prime and its dual is an ultrafilter . We
will usually assume without further comment that our ideals and filters are
proper and, if B ⊆ P (Z), that the ideals contain all singletons of elements
from Z.

The ideal I is called κ-complete provided that it is closed under joins
(unions) of size less than κ. Ideals that are ω1-complete are also called
countably complete or σ-additive. For a proper ideal I the completeness of
I is the least cardinal κ such that there is a collection {Xα : α < κ} ⊆ I
such that

⋃
α<κ Xα /∈ I. The completeness of an ideal is easily seen to be a

regular cardinal. We will denote the completeness of the ideal I by comp(I).
If I is an ideal on Z and Y ⊆ Z we say that the ideal I (or its dual filter)

concentrates on Y iff Y ∈ Ĭ.

1 This is clearly an abuse of terminology, but follows standard practice. It might be better
to follow [69] and say that I is an ideal over Z.
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An ideal I on Z is uniform iff every subset of Z of cardinality smaller than
the cardinality of Z is in I.

Given an ideal I on Z we will be concerned with the Boolean algebra
P (Z)/I. Elements of this algebra are equivalence classes of subsets of Z
under the relation S ∼I T iff SΔT ∈ I and are denoted [S]I , the subscript
deleted when clear from the context. The usual operations of union and
intersection are well-defined modulo this equivalence relation and the result
is a Boolean algebra. It is a standard fact that if the ideal I is κ-complete
then the resulting Boolean algebra is κ-complete.

The collection of subsets of Z not in I are called the I-positive sets and
are denoted I+. If S ⊆ Z is in I+ we define I�S to be the ideal I ∩ P (S).
Depending on context, we occasionally want to view I�S as an ideal on Z.
In this context we define I�S to be the ideal I ∪ {Z \ S} generated by I and
the single set Z \ S. The rationalization for this ambiguity is the canonical
Boolean algebra isomorphism P (Z)/(I ∪ {Z \ S}) ∼= P (S)/(I ∩ P (S)). Note
that the completeness of I�S is at least as large as the completeness of I.

An ideal I is non-principal iff every singleton from Z is a member of I
and atomless iff P (Z)/I has no atoms. Being atomless is equivalent to the
property that every S ⊆ Z that is not in I contains at least two disjoint
subsets not in I. Clearly, if I is atomless it is non-principal. Further, if
[S] ∈ P (Z)/I is an atom, then I induces an ultrafilter on S in a natural way.

For the rest of this chapter, take “proper and non-principal” as part of the
definition of ideal or filter, unless otherwise indicated.

We will use the locution “I is nowhere ϕ” to mean that no I-positive
subset of Z has property ϕ. So, for example, an ideal is “nowhere prime”
means that there is no positive set S such that I�S is prime.

An important property of any Boolean algebra is its chain condition, or
equivalently, in a complete Boolean algebra, its antichain condition. Recall
that an antichain in a Boolean algebra is a collection of elements A such that
the meet of any pair of distinct elements of A is empty.

2.2 Definition. The saturation of an ideal I on Z, sat(I), is the least cardinal
κ such that every antichain A ⊆ P (Z)/I has cardinality less than κ. The
ideal I is said to be λ-saturated iff sat(I) ≤ λ.

It is a result of Tarski [117] that the saturation of a Boolean algebra is
always a regular cardinal.

2.1. The Generic Ultrapower

An important modern application of the theory of ideals is that of generic
ultrapowers. This technique was developed by Solovay [111] in order to show
that the existence of a real-valued measurable cardinal implies the existence
of an inner model with a measurable cardinal. The essence of this technique
was isolated in the definition of a precipitous ideal due to Jech and Prikry
[62, 64].
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The technique uses forcing to build an ultrafilter G over V and then take
the V -ultrapower by G. If we remove the zero element from P (Z)/I, then the
usual Boolean algebra partial ordering on P (Z)/I gives a separative partial
ordering that is appropriate for forcing. This can be defined explicitly by
setting [X]I ≤ [Y ]I iff X \ Y ∈ I. Call the resulting partial ordering B.

In general, in the context of forcing, we will be sloppy about distinguishing
between P (Z)/I and B. The reader also has the option of viewing this as
Boolean-valued forcing. An equivalent, pre-partial ordering has as elements
I+ under the ordering A ≤ B iff A \B ∈ I.

Forcing with B gives an ultrafilter G ⊆ B that is V -complete in the follow-
ing sense: if 〈Xj : j ∈ J〉 ⊆ P (Z)/I is a maximal antichain in V below some
element Y ∈ G, then there is a j with Xj ∈ G. If P (Z)/I is complete, this
is equivalent to the statement that whenever 〈Yj : j ∈ J〉 ∈ V and for all j,
Yj ∈ G then

∏
Yj ∈ G.

We can interpret G as an ultrafilter G′ on P (Z)V by taking all subsets
of Z that belong to an I equivalence class that belongs to G. The forcing
to produce G′ is equivalent to the forcing to produce G and we will not, in
general, distinguish between G and G′.

In V [G], we can use this ultrafilter to form the ultrapower of V by G
using functions from V . More formally: Let f, g : Z → V be elements of V .
Then {z ∈ Z : f(z) = g(z)} and {z ∈ Z : f(z) ∈ g(z)} lie in V and hence
are “G-measurable”. Define an equivalence relation of the collection of such
functions by setting f ∼ g iff {z ∈ Z : f(z) = g(z)} ∈ G. For equivalence
classes [f ], [g], we set [f ]E [g] iff {z ∈ Z : f(z) ∈ g(z)} ∈ G; E is “the
ultrapower of the ∈ relation”. It is easy to check that this is well-defined.

Let (V Z/G,E) denote the resulting class ultrapower. The “usual tricks”
are employed to deal with the fact that each equivalence class is a proper
class, exactly as in the case of measurable cardinals.

The appropriate version of �Loś’s Theorem is easily verified and as a con-
sequence, there is a canonical elementary embedding

j : V → V Z/G

that lies in V [G].
The next lemma is an important tool for computing generic ultrapowers:

2.3 Lemma. Suppose that I is an ideal on a set Z. Let G ⊆ P (Z)/I
be generic and j : V → V Z/G be the generic elementary embedding. Let
id : Z → Z be the identity function, given by id(z) = z for z ∈ Z. Then

1. for A ⊆ Z, A ∈ G iff [id]V
Z/G E j(A), where E is the ultrapower of the

∈ relation and

2. for all g : Z → V with g ∈ V , we have [g]V
Z/G = j(g)([id]V

Z/G).

The identity function thus plays a pivotal role. As we consider various
Z’s, id will continue to denote the corresponding identity function with the
Z implicit.

In some lucky cases V Z/G is well-founded:
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2.4 Definition (Jech-Prikry [64]). An ideal I on Z is precipitous iff for all
generic G ⊆ P (Z)/I, the ultrapower V Z/G is well-founded.

In the case where V Z/G is well-founded, we replace it by its transitive
collapse, M . Note that M ⊆ V [G]. In a slight abuse of notation we consider
j as an elementary embedding from V to M , j : V → M . Moreover, if
g : Z → V with g ∈ V we will denote the unique element of M corresponding
to g by [g]M .

Recall that if j : V →M ⊆ V [G] is elementary then the critical point of j,
denoted crit(j), is the least ordinal moved by j. A standard fact is that if M
and N are two well-founded models of ZFC that have the same ordinals and
j : M → N is an elementary embedding that does not move ordinals, then
M = N and j is the identity map.2

We now compute the critical point of j in terms of the completeness of
the ideal.

2.5 Proposition. Let I be a precipitous ideal on Z. Let G ⊆ P (Z)/I be
generic and j : V → M ⊆ V [G] the generic elementary embedding. Then j
is not the identity map and the critical point of j is the largest κ such that
there is an S ∈ G with the completeness of I�S equal to κ.

Proof. As we observed above, if S ⊆ T then comp(I�S) ≥ comp(I�T ).
Let G be generic. A simple density argument shows that there is a Y ∈ G,

and a sequence 〈Aα : α < γ〉 ⊆ I, where γ is the completeness of I�Y , such
that

⋃
α<γ Aα ∈ G. By the observation, this γ is the largest κ such that for

some S ∈ G, comp(I�S) = κ.
Let W =

⋃
α<γ Aα. Let F : Z → γ be defined by:

F (z) =

{
0 if z /∈W,

α if α is least such that z ∈ Aα.

Then, for each α < γ, {z ∈ Z : F (z) ≤ α} ⊆ (
⋃

β≤α Aβ ∪ Z \W ) ∈ I�W .
Hence, by �Loś’s Theorem, [F ]M > j(α) ≥ α. On the other hand for every
z ∈ Z, F (z) ∈ γ, and hence [F ] < j(γ). Thus the critical point of j exists
and is less than or equal to γ. We have shown that there is a set Y ∈ G such
that crit(j) ≤ comp(I�Y ). In particular, crit(j) ≤ sup{comp(I�Y ) : Y ∈ G}.

To finish, for all generic G there is an S ∈ G such that for some κ,
[S] � crit(j) = κ and for some function F : Z → V , with F ∈ V we
have [S] � [F ]M = κ. It suffices to show that comp(I�S) ≤ crit(j). For
each α < κ, consider Aα = {z ∈ S : F (z) < α}. Then Aα ∈ I�S, but⋃

α<κ Aα = S. Hence the completeness of I�S is less than or equal to κ.
Using the observation and the fact that S was arbitrary deciding F and κ,
we have shown that the crit(j) is at least as big as the completeness of I�S
for any S ∈ G. �
2 We include the case where M and N are proper classes.
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2.6 Corollary. Every precipitous ideal is countably complete.

We now describe a combinatorial criterion for an ideal to be precipitous
due to Jech and Prikry [64].

Let P be a partial ordering. A tree of maximal antichains is a sequence
〈An : n ∈ ω〉 of maximal antichains of P such that An+1 refines An. A branch
through a tree of maximal antichains is a decreasing sequence of conditions
〈pn : n ∈ ω〉 such that pn ∈ An.

In the case that P = (P (Z)/I) \ {[∅]} and An ⊆ P (Z) we will say that
〈An : n ∈ ω〉 is a tree of maximal antichains iff 〈A′

n : n ∈ ω〉 is a tree of
maximal antichains in P where A′

n = {[a] : a ∈ An}.
2.7 Proposition (Jech-Prikry [64]). Let I be an ideal. Then I is precipitous
iff for any I-positive set S and any sequence 〈An : n ∈ ω〉 with An ⊆ P (Z)
that forms a tree of maximal antichains below [S] there is a sequence 〈an :
n ∈ ω〉 such that:

1. an ∈ An,

2. 〈[an]I : n ∈ ω〉 is a branch through the tree,

3.
⋂

n an �= ∅.
Proof. Suppose that I is precipitous. Consider a tree of maximal antichains
〈An : n ∈ ω〉 below a condition [S]. Let j : V → M ⊆ V [G] be a generic
elementary embedding where M is transitive, M ∼= V Z/G and [S] ∈ G.
In M , consider the tree T of sequences

{(a0, . . . , an) : ai ∈ j(Ai), [id]M ∈ ai, [ai+1]j(I) ≤ [ai]j(I)}.
For each n, there is a unique a∗

n ∈ An such that [id]M ∈ j(a∗
n). Hence the

sequence 〈j(a∗
n) : n ∈ ω〉 is an infinite branch through j(T ) lying in V [G].

Since M is well-founded there is a branch through this tree in M . Hence
M |= “there is a sequence 〈an : n ∈ ω〉 with an ∈ j(An) and

⋂
n∈ω an �= ∅”.

By the elementarity of j we get such a sequence in V .
Suppose that I is not precipitous. Let [S] � “V I/G is ill-founded”. Choose

terms Ḟn such that [S] � Ḟn : Ž → V , [S] � Ḟn ∈ V and [S] � [Ḟn+1]E [Ḟn],
where E is the ultrapower of the ∈ relation.

Inductively build a tree of antichains An ⊆ P (Z) (with A−1 = {S}) such
that:

1. the collection {[a]I : a ∈ An+1} is a maximal antichain below [S] that
refines {[a]I : a ∈ An},

2. for all a ∈ An, there is an fn
a ∈ V such that [a]I � f̌n

a �a = Ḟn�a, and

3. if a ∈ An+1, b ∈ An and [a]I ≤I [b]I then a ⊆ b and for all z ∈ a,
fn+1

a (z) ∈ fn
b (z).

Then the sequence 〈An : n ∈ ω〉 has no branch with non-empty intersection;
for if b were a branch through the 〈An : n ∈ ω〉 and z ∈

⋂
b then 〈fn

a (z) :
a ∈ b ∩ An〉 is a descending ∈-sequence in V . �
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2.2. Game Characterization of Precipitousness

Let I be a proper countably complete ideal on a set Z. Consider the following
game: Players W and B alternate playing subsets:

W0 ⊇ B0 ⊇W1 ⊇ B1 · · ·

of Z that form a decreasing sequence of I-positive sets. Player B wins the
game iff

⋂
i∈ω Bi �= ∅.

Galvin, Jech and Magidor proved the following useful characterization of
precipitousness:

2.8 Theorem (Galvin et al. [50]). I is a precipitous ideal iff W does not
have a winning strategy.

2.3. Disjointing Property and Closure of Ultrapowers

An important tool in investigating the precipitousness of an ideal as well as
the closure of the generic ultrapower is the disjointing property and its weaker
relatives. We begin with an easy proposition:

2.9 Proposition. Let κ be a cardinal. Suppose that I is κ+-saturated and
κ-complete. Then every antichain in P (Z)/I has a pairwise disjoint system
of representatives.

Proof. Let A = 〈Aα : α < κ〉 be an antichain. For all α, let A′
α = Aα \⋃

β<α Aβ . Then A′
α ∼I Aα and the sequence 〈A′

α : α < κ〉 is pairwise
disjoint. �

2.10 Definition. An ideal I has the disjointing property iff every antichainA
in P (Z)/I has a pairwise disjoint system of representatives, i.e. {Sa : a ∈ A}
such that each Sa ∈ a and Sa ∩ Sb = ∅ for a �= b.

2.11 Example. If μ : P (κ) → [0, 1] is a measure witnessing that κ is real-
valued measurable and I is the ideal of null sets of μ, then I is ℵ1-saturated.
Hence I has the disjointing property. In this case we have ℵ1-completeness
and ℵ1-saturation, which is stronger than necessary to apply Proposition 2.9.

One of the main consequences of the disjointing property is embodied in
the following proposition, due to Solovay [111].

2.12 Proposition. Suppose that I has the disjointing property. Let B =
P (Z)/I and ḟ be a B-term whose realization in the generic extension is a
function from Z to V that lies in V . Then there is a g : Z → V with g ∈ V

such that for all generic G ⊆ B, [ḟ ]V
Z/G = [ǧ]V

Z/G.

The conclusion can be restated equivalently by saying that for all generic G,
V [G] |= {z : ḟ(z) = ǧ(z)} ∈ G.
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Proof. Choose a maximal antichain A such that for each a ∈ A there is a
function ga such that a � ḟ = ǧa. By the disjointing property we can find
a pairwise disjoint system of representatives {Sa : a ∈ A} of elements of A.
Define a function

g(z) =

{
ga(z) if z ∈ Sa for some a,

0 otherwise.

Then g is well-defined since the Sa’s are pairwise disjoint, and for each a ∈ A,
a � [ḟ ]V

Z/G = [ǧ]V
Z/G. Since A is a maximal antichain, we are done. �

2.13 Remark. The disjointing property is equivalent to the conclusion of
Proposition 2.12. For if we are given an antichain A = 〈Aα : α ∈ λ〉, we
can take ḟ to be the term for the function with constant value α where
Aα ∈ G. If we take g : Z → V such that 1 � [ḟ ]V

Z/G = [ǧ]V
Z/G, then

Aα =I {z ∈ Z : g(z) = α}.

The importance of the disjointing property is expressed by the following
proposition:

2.14 Proposition. Suppose that I is a countably complete ideal with the
disjointing property. Then

1. I is precipitous, and

2. if G ⊆ P (Z)/I is generic, j : V →M ⊆ V [G] is the generic ultrapower
and crit(j) = κ, then Mκ ∩ V [G] ⊆M .

Proof. To see that I is precipitous, we use Proposition 2.7. Let {An : n ∈ ω}
be a tree of maximal antichains below some S ∈ I+.

Using the disjointing property we can proceed by induction on n to refine
each element B of An to a B′ such that

1. B′ ⊆ B,

2. B′ ∼I B,

3. for each A ∈ An−1, B′ is either disjoint from A′ or included in A′, and

4. {B′ : B ∈ An} is pairwise disjoint.

We thus assume our original sequence of An’s have this property.
Since each An is a maximal antichain, every

⋃
An is in the dual of I�S.

Hence, by the countable completeness of I,
⋂

n

⋃
An is in the dual of I�S.

Let z ∈
⋂

n

⋃
An. Then for each n there is a unique B′

n in An such that
z ∈ B′

n. Then 〈B′
n : n ∈ ω〉 is a branch through the tree with z ∈

⋂
B′

n.
To establish the second part of the proposition, it suffices to see that if

S = 〈xα : α < κ〉 ⊆ M is a subset of M that lies in V [G], then S ∈ M .
Let Ṡ = 〈ẋα : α < κ〉 be a B-term for such an S. Let [Y ] ∈ G with
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[Y ] � crit(j) = κ. By Proposition 2.12, there is a k : Z → V such that k ∈ V
and [Y ] � [k]M = κ.

Again, by Proposition 2.12, we can find 〈gα : α < κ〉 with gα : Z → V

such that for all generic G, [gα]M = ẋ
V [G]
α . Define g : Z → V by setting

g(z) = 〈gα(z) : α < k(z)〉. Then [g]M = ṠV [G]. �

As an illustration of a technique, we now prove the following result due to
Tarski [117].

2.15 Theorem. Suppose that I is a κ-complete, κ+-saturated ideal on κ.
Then P (κ)/I is a complete Boolean algebra.

Proof. To establish completeness it suffices to show that for every antichain
A there is a least upper bound ΣA for A.

By the disjointing property, there is a function f : κ→ κ such that for all
generic G ⊆ P (κ)/I, if j : V → M ⊆ V [G] is the generic embedding then
[f ]M = κ. If A = {aα : α < κ} is an antichain, we choose representatives Aα

of aα. We can assume that Aα ∩ {β : f(β) ≤ α} = ∅. Define the “f -diagonal
union” to be A = {β : for some α < f(β), β ∈ Aα}.

We claim that the f -diagonal union is the Boolean sum ofA. It is clear that
A ≥I Aα, for all α < κ. Suppose that B ⊆ κ is above every Aα, but A\B /∈ I.
Let G be generic with A \ B ∈ G. Let j({Aα : α < κ}) = {Aj

α : α < j(κ)}.
Then [id]M ∈ j(A \ B). Hence M |= “there is an α < j(f)([id]M ) so that
[id]M ∈ Aj

α”. Since j(f)([id]M ) = κ, there is an α < κ, [id]M ∈ Aj
α. Hence

there is an α < κ such that Aα ∈ G. But B /∈ G and hence B �≥ Aα. �

The more general fact has an easier proof:

2.16 Theorem. Suppose that I ⊆ P (Z) is an ideal that has the disjointing
property. Then P (Z)/I is a complete Boolean algebra.

Proof. Let κ be the minimal cardinality of a set B ⊆ P (Z)/I for which ΣB
does not exist. Enumerating B as 〈bα : α < κ〉 and applying induction we can
replace each bα by aα = bα \ Σβ<αbβ . Then A = {aα : α < κ and aα = [A]
for an A /∈ I} is an antichain with ΣA = ΣB, if either sum exists.

Choose a C ⊆ P (Z)/I so that A∪C forms a maximal antichain. Choose a
pairwise disjoint system of representatives for elements of A ∪ C, {Aα : α <
κ} ∪ {Cδ : δ < γ}. Let A =

⋃
α<κ Aα. We claim that [A]I = ΣA.

If not, there is a set U such that Aα ⊆I U for all α < κ and such that
A \U /∈ I. Since A \U /∈ I there is either an α such that (A \U)∩Aα /∈ I or
a δ such that (A \ U) ∩ Cδ /∈ I. The former is impossible because Aα ⊆I U
and the latter is impossible since A ∩ Cδ = ∅ for all δ < γ. �

2.4. Normal Ideals

If we add more structure to Z, we can achieve the disjointing property by
a generalization of Proposition 2.9. If we assume that Z ⊆ P (X) for some
set X, we can define the notion of a normal ideal on Z.
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2.17 Definition. If A ⊆ P (X) for some set X and f : A → X, then f
is regressive iff for all a ∈ A, f(a) ∈ a. Let I be an ideal on Z, where
Z ⊆ P (X) for some set X.3 Then I is normal iff for every set A ∈ I+ and
every regressive function f : A→ X, there is an I-positive set B ⊆ A and an
x ∈ X such that for all a ∈ B, f(a) = x. An ideal is fine iff for every x ∈ X,
{z ∈ Z : x ∈ z} ∈ Ĭ.

We will give several examples of such ideals in the next section. “Most”
natural ideals are normal and fine. We will often relativize the notion of
normality to an inner model of set theory. For example, for such a model W
if X,Z ∈W and I is an ideal on Z, then we will say that I is W -normal iff for
all A ∈W ∩P (Z) not in I and all regressive functions f : A→ X lying in W ,
there is an I-positive set B ⊆ A on which f is constant. Note that if such a
B exists we can assume B ∈ W . Similarly, I will be said to be κ-complete
for W iff whenever β < κ and {Aα : α < β} ⊆ I and {Aα : α < β} ∈W , we
have

⋃
{Aα : α < β} ∈ I.

There is a closely related definition:

2.18 Definition. Let A = 〈Ax : x ∈ X〉 be a sequence of subsets of Z ⊆
P (X). Then the diagonal union of A, denoted 4A, is defined to be {z ∈ Z :
for some x ∈ z, z ∈ Ax}. The diagonal intersection of A, denoted ΔA, is
{z ∈ Z : for all x ∈ z, z ∈ Ax}.

The next proposition is standard:

2.19 Proposition. Let X be a set and I an ideal on Z ⊆ P (X). Then:

1. I is normal iff I is closed under diagonal unions iff the filter dual to I
is closed under diagonal intersections.

2. If κ ⊆ X and I is a normal, fine ideal, then I is κ-complete iff for each
α < κ, {z : α �⊆ z} ∈ I. Moreover, in this case {z : z ∩ κ /∈ κ + 1} ∈ I.

If I is a normal, fine, countably complete ideal on Z ⊆ P (X) and f :
X → X is a function then almost every z ∈ Z is closed under f . For if
there were a positive set A ⊆ Z of z that are not closed under f , then
we could define a regressive function g on A by setting g(z) = x for some
x ∈ z for which f(x) /∈ z. This function would have to be constant on an
I-positive subset B ⊆ A, say with value x0. Let y = f(x0). By fineness,
ŷ = {z : y ∈ z} ∈ Ĭ. Hence ŷ ∩B �= ∅, a contradiction.

Using the countable completeness of the ideal one can extend this to func-
tions of several variables and to countable collections of functions. Thus we
get:

2.20 Proposition. Suppose that I is a normal, fine, countably complete
ideal on Z ⊆ P (X) and {fi : i ∈ ω} is a countable sequence of functions
where fi : Xni → X. Then {z ∈ Z : for all i, z is closed under fi} ∈ Ĭ.
3 So I ⊆ P (Z) ⊆ P (P (X)).
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At first glance it may appear as though 4{ax : x ∈ X} depends on
the indexing of 〈ax : x ∈ X〉. However, modulo a normal ideal I any two
indexings give the same element of P (Z)/I. By Proposition 2.20 if f : X → X
is a bijection, then {z ∈ Z : z is closed under f, f −1} ∈ Ĭ. Hence:

2.21 Proposition. Let I be a normal, fine ideal on Z ⊆ P (X) and A =
〈ax : x ∈ X〉. Suppose that f : X → X is a bijection. Let D = {z : for some
x ∈ z, z ∈ af(x)}. Then [D]I = [4A]I .

Under the same assumptions on I, let 〈vx : x ∈ X〉 be a one-to-one
enumeration of the finite sequences of elements of X. By Proposition 2.20
{z ∈ Z : {vx : x ∈ z} is an enumeration of the finite sequences of elements
of z} belongs to Ĭ. If we have a collection of sets A = 〈A�x : �x ∈ X<ω〉 ⊆ I,
we can use the enumeration 〈vx : x ∈ X〉 to index A by elements of X. Since
for typical z the enumeration restricted to z gives all finite sequences from z,
we see that {z : for some �x ∈ z<ω, z ∈ A�x} ∈ I.

Thus, for example, if A = 〈Ax,y : x, y ∈ X〉 ⊆ I then the “diagonal
union”, {z : for some x, y ∈ z, z ∈ Ax,y}, belongs to I. Dually, the “diagonal
intersection” of a collection of sets {Cx,y : x, y ∈ X} ⊆ Ĭ defined as {z : for
all x, y ∈ z, z ∈ Cx,y} ∈ Ĭ.

In the interplay between the forcing and combinatorial properties of the
Boolean algebra it is very convenient to be able to compute Boolean sums.
For example, the Boolean value of an infinite disjunction is the sum of the
Boolean values of the disjuncts. For quotients by normal ideals, this has an
elegant formulation.

2.22 Proposition. Suppose that Z ⊆ P (X) and I is a normal, fine ideal
on Z. Suppose that A = {[ax] : x ∈ X} ⊆ P (Z)/I. Then

ΣA = [4{ax : x ∈ X}]I

in the Boolean algebra P (Z)/I.

Proof. Let [ax] ∈ A, then x̂ =def {z : x ∈ z} ∈ Ĭ, and ax∩ x̂ ⊆ 4{ax : x ∈ X}
so ax ≤I 4{ax : x ∈ X}. For the other direction, it suffices to show that
if b ≤I 4{ax : x ∈ X} and b is not in I, then there is an x ∈ X such that
b∩ax /∈ I. Without loss of generality we can assume that b ⊆ 4{ax : x ∈ X}.
For each z ∈ b there is an x(z) ∈ z such that z ∈ ax(z). So the map from b to
X defined by z �→ x(z) is regressive. Hence there is a positive set b′ ⊆ b and
a fixed x such that for all z ∈ b′, x(z) = x. But then b′ ⊆ ax as desired. �

Normal ideals frequently have the disjointing property.

2.23 Proposition. Suppose that Z ⊆ P (X) and I is a normal, fine ideal
on Z. Then:

1. I is |X|+-saturated implies that,

2. I has the disjointing property, which in turn implies that,
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3. I is |Z|+-saturated.

Proof. Assume that I is |X|+-saturated. Suppose that A ⊆ P (Z)/I is an
antichain. Then we can index a collection of representatives of elements of
A by elements of X, i.e. for some X ′ ⊆ X, A = {[Ax] : x ∈ X ′}. Since I is
fine, we can assume that for all x ∈ X ′ and all z ∈ Ax, x ∈ z.

For each pair x, y of distinct elements of X ′ there is a set Cx,y in Ĭ,
such that Ax ∩ Ay ∩ Cx,y = ∅. Let C = ΔCx,y. Then for all x, y ∈ X ′,
Ax ∩ Ay ∩ C = ∅. We get a sequence of disjoint representatives by taking
A′

x = Ax ∩ C.
The second implication is immediate. �

Thus we see:

2.24 Theorem. Suppose that I is a normal, fine |X|+-saturated ideal on
Z ⊆ P (X). Then P (Z)/I is a complete Boolean algebra. Given any set
A ⊆ P (Z)/I there is a subset B ⊆ A having cardinality at most |X| such
that ΣB = ΣA. The join of a collection of elements of P (Z)/I of size at
most |X| is given by its diagonal union and the meet is given by diagonal
intersection.

We remark that the completeness of the Boolean algebra P (Z)/I is quite
convenient. It implies that for each term τ in the forcing language and each
formula φ there is a set b ⊆ Z such that for all generic G ⊆ P (Z)/I we have
[b] ∈ G iff V [G] |= φ(τ). We will refer to the set b as the Boolean value of
φ(τ).

Normal, fine ideals that have the disjointing property have generic ultra-
powers with strong closure properties.

2.25 Theorem. Suppose that I is a normal, fine, precipitous4 ideal on
Z ⊆ P (X), where |X| = λ. Let G ⊆ P (Z)/I be generic, and M the generic
ultrapower of V by G. Then P (λ)∩V ⊆M . Further, if I has the disjointing
property, then Mλ ∩ V [G] ⊆M .

Proof. Note that without loss of generality X = λ. Consider the generic
embedding j : V →M .

2.26 Claim. Let I be a normal, fine ideal on Z ⊆ P (X).5 Let G be generic
for P (Z)/I and M = V Z/G. Then the identity function id : Z → Z repre-
sents the j-image of λ, which we denote by j“λ.

Proof. By fineness, for all α ∈ λ, {z : α ∈ z} ∈ Ĭ. Thus j“λ ⊆M [id]M . By
normality, together with a density argument, if f ∈ V and R = {z : f(z) ∈
z} ∈ I+ then the collection of W ⊆ Z such that f is constant on W is dense
below R. Hence if f ∈ V and [f ]M ∈M [id]M , there is a W ∈ G on which f
has some constant value α. Hence [f ]M = j(α). �
4 Using Proposition 2.34, we can weaken the assumption that I is precipitous to I being
countably complete.
5 In this claim we do not assume that I is precipitous.
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Suppose that A ⊆ λ. Since j is an elementary embedding, the function
fA(z) = A ∩ z represents j(A) ∩ j“λ. Hence, M contains both j“λ and
j(A) ∩ j“λ, from which M can easily decode A as the image of j(A) ∩ j“λ
under the canonical isomorphism between j“λ and λ, i.e. j−1.

Now suppose that I has the disjointing property. Let Ȧ = 〈ȧα : α < λ〉 be
a term for a λ-sequence of elements of M . By the disjointing property, there
is a sequence of functions G = 〈gα : α < λ〉 such that for all generic G ⊆ B,
[gα]M = ȧG

α . Denote j(G) by 〈j(g)α : α < j(λ)〉.
Define a function g : Z → V by setting g(z) = 〈gα(z) : α ∈ z〉. Then by

Lemma 2.3, [g]M = j(g)(j“λ) = 〈j(g)β(j“λ) : β ∈ j“λ〉. Hence the function
that sends α to j(gα)(j“λ) (for α < λ) lies in M and gives the realization of
the sequence ȦG. �

2.27 Remark. From Claim 2.26, it is easy to see that for α < λ, the function
f(z) = ot(z ∩ α) represents α in every transitive M ∼= V Z/G.

Weak Normality

We now discuss a variant of normality that is useful in considering non-regular
ultrafilters among other topics.

2.28 Definition. Suppose that I is an ideal on Z ⊆ P (λ). Then I is weakly
normal iff for any regressive function f : Z → λ there is an α < λ such that
{z ∈ Z : f(z) < α} ∈ Ĭ.

2.29 Proposition. Let λ be a regular cardinal. Suppose that I is a normal,
λ-saturated ideal on Z ⊆ P (λ). Then I is weakly normal.

Proof. Let f be a regressive function defined on Z. Then there is a maximal
antichain A ⊆ P (Z)/I such that for all a ∈ A, f is constant on a. By
saturation |A| < λ, and hence there is a β < λ such that f is bounded by β
on a set in Ĭ. �

2.5. More General Facts

We now establish a limitation on the closure of M , which is a standard fact
in the case of ordinary ultrapowers:

2.30 Proposition. Suppose that I is a proper non-principal ideal on Z ⊆
P (X). Let j : (V,∈) → (V Z/G,E) be the elementary embedding induced
by a generic G ⊆ P (Z)/I. Then there is no A ∈ V Z/G such that for all
a ∈ V Z/G, aE A iff a = j(β) for some β < (|Z|+)V .

Note that in the case that V Z/G is well-founded and M is the transitive
collapse this is saying that j“|Z|+ /∈M .

Proof. Suppose not. Let a � [f ]V
Z/G = A. Let L = {z ∈ a : |f(z)| > |Z|}

and S = {z ∈ a : |f(z)| ≤ |Z|}. Then |
⋃

z∈S f(z)| ≤ |Z|, so we can find an
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ordinal α ∈ |Z|+ such that α /∈
⋃

z∈S f(z). Let g : a → |Z|+ be defined so
that:

1. g(z) = α when z ∈ S, and

2. g is an injective function on L with g(z) ∈ f(z) for all z ∈ L.

This is possible since |f(z)| > |Z| for z ∈ L.
Suppose that S ∈ G. Then j(α) is not in the E relation with [f ]V

Z/G. If
L ∈ G, then [g]V

Z/G E [f ]V
Z/G, but [g]V

Z/G �= j(β) for any β ∈ |Z|+. �

The properties of the forcing used to create a generic elementary embed-
ding interact with the behavior of that embedding on the ordinals. We illus-
trate this by discussing continuity points of embeddings, where an ordinal δ
is called a continuity point of j iff sup(j“δ) = j(δ).

We borrow a fact from the study of Chang’s Conjecture:

2.31 Proposition. Suppose that j : W → W ′ is an elementary embedding
with critical point κ and that W and W ′ are models of a sufficiently large
fragment of ZFC. Then:

1. An ordinal δ is a continuity point of j iff cf(δ)W is a continuity point
of j,

2. every ordinal δ with W -cofinality less than κ is a continuity point of j,

3. if η < κ is regular, Cof(η)W ∩ λ = Cof(η)W ′ ∩ λ, and j“δ ∈W ′ for all
δ < λ then j“λ is η-closed, in particular,

4. if

(a) η < κ is regular,
(b) Z ⊆ P (λ) and I ∈W is a normal ideal on Z,
(c) W ′ ∼= WZ/G for a W -generic ultrafilter G ⊆ P (Z)/I and j is the

ultrapower embedding,
(d) Cof(η)W ∩ λ = Cof(η)W ′ ∩ λ, and
(e) (W ′)η ∩W [G] ⊆W ′,

then j“λ is η-closed in W [G].

Proof. Suppose that δ has cofinality η in W . Let 〈δi : i ∈ η〉 ∈ W be an
increasing cofinal sequence in δ. Since j(〈δi : i ∈ η〉) is an increasing cofinal
sequence in j(δ) of length j(η) the following are equivalent:

a. δ is a continuity point of j,

b. 〈j(δ)j(i) : i ∈ η〉 is cofinal in j(δ),

c. 〈j(i) : i ∈ η〉 is cofinal in j(η), and

d. η is a continuity point of j.
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If W |= cf(δ) = η and η < κ, then j�η is the identity map and hence
j(〈δi : i ∈ η〉) = 〈j(δ)i : i ∈ η〉. Hence 〈j(δ)i : i ∈ η〉 is cofinal in j(δ) and δ
is a continuity point.

Supposing the hypotheses of clause 3 we show that j“λ is η-closed. If
not, a counterexample is an ordinal α that is a limit point of j“λ, α /∈ j“λ
and W ′ |= cf(α) = η. Let δ be the least element of λ such that j(δ) > α.
Then j“δ ∪ P (δ)W ⊆ W ′ and, moreover, {j“δ} is cofinal in α. Hence if
μ = cf(δ)W , then cf(μ)W ′

= η. Since W and W ′ agree about which ordinals
have cofinality η, we must have μ = η. But then δ must be a continuity point
by clause 2, a contradiction.

Clause 4 is immediate from the other clauses, since it implies that cf(η) is
absolute between W ′ and W [G]. �

We have a converse to Proposition 2.31:

2.32 Proposition. Suppose that j : V →M ⊆ V [G] is a generic elementary
embedding with critical point κ, j“λ is η-closed (as a class of ordinals) in
V [G] and Mη ∩ V [G] ⊆ M . Then for all ordinals α < λ, V |= cf(α) = η iff
V [G] |= cf(α) = η.

Proof. Let μ be the least counterexample. Then μ must be a regular car-
dinal, since otherwise the cofinality of cf(μ)V is a smaller counterexample.
Thus M |= “j(μ) is regular”. But μ is a continuity point of j by the hy-
pothesis that j“λ is η-closed. Thus cf(j(μ))V [G] = cf(μ)V [G] = η. Hence
M |= “cf(j(μ)) = η” and so j(μ) = η. But η < μ, a contradiction. �

2.6. Canonical Functions

An important technical tool in studying normal ideals is the sequence of
canonical functions: a sequence of canonical representatives for the ordinals
less than λ+ in the generic ultrapower with respect to any countably complete
normal ideal I on Z ⊆ P (λ).

We define 〈fα : α < λ+〉 by induction on α. For α < λ, we let

fα(z) = ot(z ∩ α).

Suppose that we have defined fα′ for α′ < α. Let g : λ → α be a bijection.
Define

fα(z) = sup{fg(η)(z) + 1 : η ∈ z}.

If g1, g2 are two bijections between λ and α, then the collection of z such
that {g1(η) : η ∈ z} = {g2(η) : η ∈ z}6 belongs to the dual of any normal
ideal. As a consequence, modulo every normal ideal, the definition of fα is
independent of the choice of g.

6 Using Proposition 2.20 one can prove that this set is closed and unbounded, in the sense
of Example 3.2.
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2.33 Definition. The functions 〈fα : α < λ+〉 are called the canonical
functions for normal ideals on Z.

This definition is slightly misleading as the canonical functions are only
well-defined modulo the nonstationary ideal.

2.34 Proposition. Suppose that λ = |X|. Let I be a normal, fine, countably
complete ideal on Z ⊆ P (X). Let G be generic for P (Z)/I. Then the well-
founded part of the ordinals in V Z/G includes (λ+)V and for each α ∈ λ+,
[fα]G = α.

Proof. Without loss of generality we can assume that X = λ. As in
Claim 2.26, we see that if i : V → V Z/G is the generic embedding, then
[id]G = i“λ. Hence V Z/G is a model of ZFC with a well-founded set of order
type λ. This implies that the ordinals of V Z/G are well-founded up to λ. To
see that the well-founded part of V Z/G includes λ+ we need to look more
closely.

Let 〈fα : α < λ+〉 be a sequence of canonical functions. Then:

1. for α < α′, {z ∈ P (λ) : fα(z) < fα′ (z)} ∈ Ĭ,

2. for any normal, countably complete ideal I and α < λ+, if h(z) < fα(z)
for all z in a set A ∈ I+, then there is a dense collection of B ⊆I A
such that there is an α(B) < α with h(z) = fα(B)(z) for all z ∈ B.

Hence for a generic G, {[fα]G : α < λ+} form a well-ordered initial segment
of the V Z/G ordinals that has order type λ+. �

A fact slightly stronger than Proposition 2.34 is true: if N ⊆ V and I is
a fine ideal on P (λ)N that lies in V that is normal and countably complete
for sequences of sets that lie in N , then for all generic G ⊆ P (λ)N/I and all
α < (λ+)N , [fα]G = α.

The next example is well-known.

2.35 Example. Let M be a well-founded model of V = L and suppose that
G ⊆ (P (ω1)/NSω1)

M is generic over M . Let N be the generic ultrapower
of M by G. By Proposition 2.34, N is well-founded to ωM

2 . Moreover, if
α = ωM

1 , N |= “α is countable”. Hence there is an x ∈ N such that N |= “x
is the least countable ordinal such that there is a subset of ω constructed at
stage x that codes a bijection between α and ω”. Clearly x must be bigger
than the first ωM

2 many ordinals of N .
Define f : ω1 → ω1 in M , by setting f(α) to be the least β such that

there is a subset of ω in LM
β+1 that codes a bijection between α and ω. Then

x = [f ]G > [fδ]G for any canonical function fδ, where δ < ωM
2 . Since G is

arbitrary we see that for all δ < ωM
2 , {α : f(α) > fδ(α)} contains a closed

unbounded set.

The consistency strength of having the canonical functions from ω1 to
ω1 bound every function from ω1 to ω1 is exactly an inaccessible limit of
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measurable cardinals: Larson and Shelah [81] showed that from a model with
an inaccessible limit of measurable cardinals one can force a model of CH such
that every function from ω1 to ω1 is bounded by a canonical function. Deiser
and Donder [20] showed that if every function is bounded by a canonical
function, then ω2 is an inaccessible limit of measurable cardinals in an inner
model of set theory.

2.7. Selectivity

The following definition comes from Baumgartner, Taylor and Wagon [9],
where the notions of selective, P - and Q-ideals are explored in detail. In
particular they showed that if 2ω1 = ω2 and the nonstationary ideal on ω1 is
ℵ2-saturated, then an ideal on a cardinal κ is selective iff it is isomorphic to
a normal ideal on κ. One direction of this is shown below.

2.36 Definition. Let I be an ideal on κ. Then I is selective iff whenever
f : κ→ V is a function that is not constant on any I-positive set, then there
is a set A′ ∈ Ĭ such that f is one-to-one on A′.

2.37 Lemma. Suppose that j : N → M is an elementary embedding with
critical point δ, where M is a model of ZF− (ZF minus Power Set) that is
well-founded to δ + 1. Suppose that f ∈ N is a function with domain A ⊆ δ
such that δ ∈ j(A). Then either:

1. there is an c ∈ N such that δ ∈ j({α : f(α) = c}), or

2. there is an A′ ⊆ A with A′ ∈ N such that δ ∈ j(A′) and f is one-to-one
on A′.

Moreover, if I is a normal ideal on a cardinal κ, then I is selective.

Proof. Define g : A → A by setting g(α) = min{β : f(β) = f(α)}. Then
g ∈ N . Let A′ = {α : g(α) = α}. If δ /∈ j(A′), let β = j(g)(δ). Then
β < δ and c = f(β) belongs to N . Moreover j(f)(δ) = j(f)(β) = j(c), and
so δ ∈ j({α : f(α) = c}).

Suppose that I is a normal ideal on κ. Given an f : κ → V , define g and
A′ as in the previous paragraph. If A′ /∈ Ĭ, then g is a regressive function on
the I-positive set κ \A′. By normality, g is constant on an I-positive set. �

The notions in [9] have not been explored on normal, fine ideals on Z ⊆
P (X) other than κ-complete ideals on Z = κ. In particular, the analogue
of Lemma 2.37 is not immediately clear. We ask the general question: what
one can say about P -, Q- and selective ideals on [λ]<κ or [λ]κ?

2.8. Ideals and Reflection

The utility of ideals lies largely in their ability to capture many of the reflec-
tion properties of large cardinals, with the additional advantage that they
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can “live” on relatively small sets such as ω1 or R. This will be a recurring
theme in this chapter; we mention here only the basic idea for deducing such
reflection.

Let I be an ideal and j : V → V Z/G be the canonical elementary embed-
ding. We can view the generic ultrapower V Z/G as having an ideal element,
namely the element i = [id]G, where again id : Z → Z is the identity func-
tion. This element is handy in relating the elementary embedding j to the
ultrapower. For example, Lemma 2.3 shows that [f ] = j(f)(i) and that for
every Y ⊆ Z, Y ∈ G iff i E j(Y ), where again E is the ultrapower of the ∈
relation in the possibly ill-founded generic ultrapower.

As a consequence of �Loś’s Theorem, the properties of the ideal element i
are reflected to the sets that the ideal I concentrates on. Explicitly, suppose
that φ(x, y) is a formula in the language of set theory, and X ⊆ Z is such
that [X]I � “V Z/G |= φ(i, j(ǎ))”; then for almost every z ∈ X, V |= φ(z, a).

Hence, for example, if A ∈ P (Z)/I forces that i ∈ [j(λ)]<j(κ), the ideal
I�A can be taken to be an ideal on [λ]<κ. Similarly if A � i ∈ [j(λ)]j(κ), then
I�A can be taken to be an ideal on [λ]κ.

To put this in better focus, suppose that I is a normal, fine, κ-complete
precipitous ideal on a cardinal κ. Then the ideal element represents κ in the
generic ultrapower. If the ideal concentrates on ordinals α that are regular
cardinals, then κ is regular in M . Otherwise, by normality, there will be a
set Y ∈ G consisting of ordinals of a fixed cofinality γ < κ. Then j(γ) = γ
and hence M |= cf(κ) = γ.

As another example of this technique, suppose that Z = [λ]<κ and I is a
normal, fine, precipitous ideal on Z. We know that i represents j“λ in M . If
η < λ, μ < κ and I concentrates on {z : ot(z ∩ η) = μ}, then we know that
M |= ot(i∩ j(η)) = j(μ). Since i = j“λ, the order type of i∩ j(η) is η. Hence
j(μ) = η. Similar remarks can be made using inequalities. For example, if I
concentrates on the collection of z where the order type of z ∩ η is less than
μ, then j(μ) > η.

We now illustrate this by giving a reflection argument that we will use
later:

2.38 Lemma. Suppose that I is a normal, fine, precipitous ideal on [λ]<κ.
Let G ⊆ P ([λ]<κ)/I be generic.

1. Let μ and ν be less than κ and A be the collection of z ∈ [λ]<κ such
that

(a) z ∩ κ ∈ κ,

(b) |z| = |z ∩ κ|,
(c) cf(z ∩ κ) = μ, and

(d) cf(sup(z)) = ν.

If A ∈ G then in M , μ and ν are regular cardinals, |λ| = |κ|, cf(κ) = μ
and cf(λ) = ν.
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2. Let κ = ρ+ and B be the collection of z ∈ [λ]<κ such that

(a) z ∩ κ ∈ κ,

(b) |z| = |z ∩ κ|, and

(c) cf(z ∩ κ) = cf(sup(z)) �= cf(ρ).

If B ∈ G, then in M , ρ and cf(ρ) are preserved and |λ| = |κ| = ρ,
cf(λ) = cf(κ) and cf(λ) �= cf(ρ).

Moreover, were I to be λ+-saturated, then we can draw the same conclusions
about V [G] as we did about M .

Proof. Let j : V →M be the generic ultrapower. By Theorem 2.25, j“λ ∈M ,
P (λ)V ⊆ M and if I is λ+-saturated, Mλ ∩ V [G] ⊆ M . Hence all cardi-
nals and cofinalities below κ are preserved between V and M . Moreover,
[id]M = j“λ.

We can now see that the critical point of j is κ. To see that it is at least
κ we note that for each β < κ, {z : β ∈ z} ∈ G. Hence, by assumption,
{z : β + 1 ⊆ z} ∈ G. By the elementarity of j, j(β + 1) ⊆ j“λ. But then the
critical point of j must be at least j(β + 1) which is greater than or equal
to β + 1. If the critical point of j is bigger than κ, then κ + 1 ⊆ j“λ. Since
j�(κ + 1) is the identity, {z : κ + 1 ⊆ z} ∈ G. But this contradicts the
assumption that {z : z ∩ κ ∈ κ} ∈ G.

If A ∈ G, using �Loś’s Theorem we see that in M , cf(j“λ∩j(κ)) = μ. Since
j“λ ∩ j(κ) = κ, cf(κ) = μ. Finally, another application of �Loś’s Theorem
implies that cf(sup(j“λ)) = ν. Since cf(sup(j“λ)) = cf(λ), cf(λ) = ν.

If B ∈ G, |j“λ| = |j“λ∩ j(κ)| = |κ|. Since κ = ρ+ in V and is moved by j,
we must have |κ|M = ρ. On the other hand cf(λ)M = cf(j“λ)M �= cf(ρ).

If I is λ+-saturated, then the closure of M implies that these statements
also hold in V [G]. �

From examining in detail the order properties of the sets in a typical
element of the generic ultrapower, one can generally get a complete picture
of where j sends cardinals. The variations on this technique are myriad, and
will be explored further in Sects. 5 and 6.

3. Examples

In this section we give examples of ideals. These ideals fall into roughly two
categories: the ideals that have an intrinsic definition (such as the nonsta-
tionary ideal, or the ideal of null sets for Lebesgue measure) and those ideals
that are defined extrinsically in terms of an elementary embedding. We will
refer to the former as “natural” ideals, the latter as “induced” ideals.

Our main concern in this chapter is with ideals that give rise to generic
elementary embeddings into transitive models. These ideals will always be
the induced ideals from their own embeddings. Thus, if a “natural” ideal gives
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rise to a well-founded ultrapower, it is also an “induced” ideal. Another way
induced ideals frequently arise is as remnants of large cardinal embeddings
that can be generically extended even after the associated large cardinal has
been modified by forcing.

Various induced ideals’ existence is often posited as non-constructive exis-
tence principles, similar in spirit to the supposition of the existence of large
cardinal ultrafilters. These ideals can function in two ways, as existence prin-
ciples in their own right and as intermediaries in relative consistency results.

3.1. Natural Ideals

We begin by describing several natural ideals.

3.1 Example. Let κ be a regular cardinal. The collection of subsets of κ
that have cardinality less than κ forms a κ-complete ideal on κ called the
bounded ideal or the ideal of bounded sets. Jech and Prikry [64] showed that
this ideal is never precipitous.

Similarly, if λ ≥ κ then there is a smallest κ-complete, fine ideal on [λ]<κ,
namely Iκλ = {X ⊆ [λ]<κ : for some a ∈ [λ]<κ, X ∩ {b : a ⊆ b} = ∅}.
Matsubara and Shioya showed that Iκλ is never precipitous. We show here
that the bounded ideal on κ is not precipitous, but postpone the second
assertion to Sect. 6, Corollary 6.30.

Let I be the bounded ideal, and let G ⊆ P (κ)/I be generic. A density
argument shows that in V [G] there is a sequence 〈Yn : n ∈ ω〉 ⊆ G such that
if fn : Yn → κ is the unique order-preserving bijection between Yn and κ,
then for all α ∈ Yn+1, fn+1(α) < fn(α). But then, the sequence [fn]V

Z/G is
an infinite decreasing sequence of ordinals in V Z/G.

The Closed Unbounded Filter and the Nonstationary Ideal

We now discuss the nonstationary ideal. This ideal is covered in some depth
in Jech’s chapter in this Handbook. The definition given here was used
implicitly by Shelah since the early 1980’s, appeared in [47] and was exploited
dramatically by Woodin in 1989 in his work on stationary towers.

3.2 Example. We fix a base set X, and define an ideal on Z = P (X).
By an algebra on X we will mean a structure A = 〈X, fn〉n∈ω where each
fn : Xk → X, for some k.7 For notational purposes, and without loss of
generality, we will usually assume that fn is an n-ary function. For such an
algebra A, we let CA be the collection of all z ⊆ X that are closed under
all of the functions fn. Following [47] such CA will be called strongly closed
unbounded and the filter generated by the collection of all CA will be called
the strongly closed unbounded filter on P (X).

7 In the sequel, we will refer to structures B in an arbitrary countable language as algebras,
when strictly speaking, we are referring to an algebra of Skolem functions for B.
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Using Skolem functions this filter can also be generated by taking as a
typical generating set the collection of all elementary substructures of an
arbitrary structure A in a countable language with universe X. This is some-
times a more convenient definition.

The strongly nonstationary ideal on P (X) is the ideal dual to the strongly
closed unbounded filter. Positive sets for this ideal are called weakly station-
ary sets.

We now show that this filter is quite well-behaved and provides a nice gen-
eralization of the classical closed unbounded filter. Moreover its restriction
to various weakly stationary sets yields exactly the classical filter.

If F : [λ]<ω → λ we let CF = {x ∈ P (λ) : x is closed under F}. We note
that for every algebra A on λ there is a function F such that CF ⊆ CA and
vice versa.

3.3 Lemma. The filter F of strongly closed unbounded sets is normal and
fine.

Proof. The proof of this theorem is an illustration of a standard trick.
First, the collection of generating sets is clearly closed under countable in-

tersection: a countable collection of algebras can be merged into a single alge-
bra. If F were not normal then there would be a weakly stationary set A and
a regressive function g : A → X such that for all x ∈ X, {z ∈ A : g(z) = x}
is not weakly stationary. This means that for all x ∈ X we can associate
an algebra Ax = 〈X, fx

n 〉n∈ω such that no z ∈ A that is closed under the
functions of Ax has g(z) = x. Define an algebra A = 〈X, fn〉n∈ω, by setting
fn(x, x0, . . . , xn−2) = fx

n−1(x0, . . . , xn−2). Now suppose that z ∈ A is closed
under all of the functions fn. Then for all x ∈ z, z is closed under all of
the fx

n . In particular, if g(z) = x we have that z is closed under the functions
of Ax. This is a contradiction.

Fineness is trivial, for if x ∈ X, then any algebra containing the constant
function with value x gives a set in the filter, all of whose elements contain x.

�

We now discuss the relationship between the definition of the strongly
closed unbounded filter and the more customary definitions of the filters of
closed unbounded sets. First, it is clear that this notion is distinct: by the
downward Löwenheim-Skolem theorem, every strongly closed unbounded set
contains countable sets. However when we restrict this filter to standard sets
we recover the various definitions of closed unbounded set. We now look at
some examples where this is true.

The most common objects called the closed unbounded filter and the non-
stationary ideal are defined on regular cardinals κ and are κ-complete. We
want to see that these are given by the strongly closed unbounded filter
restricted to a weakly stationary set. To do this we consider a regular cardi-
nal κ, not as a collection of ordinals, but as a collection of subsets of κ.
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3.4 Example. Let X = κ where κ is a regular cardinal. Then K = {z ⊆ κ :
z ∩ κ ∈ κ} is a weakly stationary set that is canonically isomorphic with κ
via the identity map. Moreover, an elementary substructure argument shows
that the filter of strongly closed sets restricted to K gives the usual closed
unbounded filter on κ.

3.5 Example. Jech [61] generalized the notion of closed unbounded filter
from a filter on a regular cardinal κ to a filter on the base set [λ]<κ for
regular κ.8 A generating set for this filter is a set C that is:

1. closed in the sense that C is closed under unions of chains of length
less than κ, and

2. unbounded in the sense that for all y ⊆ λ having cardinality less than
κ, there is an x ∈ C such that y ⊆ x.

The first clause is equivalent to the statement that C is closed under directed
unions of size less than κ. The second clause states that C ∩ [λ]<κ is cofinal
in the structure 〈[λ]<κ,⊆〉.

Before we prove the next theorem, we discuss a fundamental Skolemization
trick used in the proof of that theorem and in many other contexts such as
the study of projections of ideals. The trick is used where we have sets
X ⊆ Y and a structure A with domain Y in a countable language. By
adding countably many functions to the type of A we can assume that A

is fully Skolemized, and that the functions mentioned in the type of A are
closed under all possible compositions.

List the functions mentioned in A as 〈fn : n ∈ ω〉 where fn : Y kn → Y .
Fix an element x0 ∈ X. Define gn : Xkn → X by

gn(�x) =

{
fn(�x ) if fn(�x ) ∈ X,

x0 otherwise.

Using the fact that the fn’s are closed under compositions, if we take a
set B ⊆ X that is closed under all of the gn’s and has x0 ∈ B, then
SkA(B) ∩X = B.

The following theorem of Kueker [76] is fundamental:

3.6 Theorem. Suppose that D ⊆ [λ]<κ is closed unbounded in the sense
of Jech. Then there is a function FD : λ<ω → λ such that {z : z ∩
κ ∈ κ and z is closed under the function FD} ⊆ D.

Proof (Sketch). Fix ρ 5 λ. Let B = 〈H(ρ),∈,Δρ, D〉, where Δρ is a well-
ordering of H(ρ). Suppose that N ≺ B has cardinality less than κ and
N ∩ κ ∈ κ. We observe that:

8 For more on this filter see Jech’s chapter in this Handbook.
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1. N ∩D is directed,

2. for all α ∈ N ∩ λ there is a y ∈ D ∩N with α ∈ y, and

3. since N ∩ κ ∈ κ, if x ∈ N ∩ [λ]<κ, then x ⊆ N ∩ λ.

Hence N ∩ λ =
⋃

(N ∩ D). Since D is closed under directed unions, N ∩ λ
belongs to D. By the Skolemization trick we can find an F : λ<ω → λ such
that if A ⊆ λ is closed under F and A′ is the Skolem hull of A in B, then
A = A′ ∩ λ. Then F satisfies the conclusion of the theorem. �

The next lemma appears in [47].

3.7 Lemma. The filter of closed unbounded sets in the sense of Jech is
the filter on [λ]<κ generated by the strongly closed unbounded filter and {x :
x ∩ κ ∈ κ}.
Proof. Clearly {z ⊆ λ : z ∩ κ ∈ κ} is closed and unbounded in Jech’s sense.
Moreover, given a function F : λ<ω → λ, CF is closed and unbounded in the
sense of Jech. Hence every set in the filter generated by the strongly closed
unbounded filter and {x : x ∩ κ ∈ κ} is in the closed unbounded filter in the
sense of Jech.

For the other direction, if D is closed unbounded in the sense of Jech we
consider FD as in Kueker’s theorem. Then CF ⊆ D and belongs to the filter
generated by the strongly closed unbounded filter and {N : N ∩ κ ∈ κ}. �

From this lemma we see that the strongly closed unbounded filter on [λ]<κ

is distinct from the Jech closed unbounded filter exactly when {z ∈ [λ]<κ :
z ∩ κ /∈ κ} is weakly stationary. Thus if κ = ω1 the two filters coincide.

As noted earlier if κ > ω1, the filters differ for trivial cardinality reasons,
most prominently because the collection of countable subsets of λ is weakly
stationary. To rule out such cardinality reasons for the difference we can take
κ = ρ+ > ω1 and look at those elements of [λ]<κ of cardinality ρ. This is a
closed unbounded set in the sense of Jech, and it makes sense to discuss the
strongly closed unbounded filter restricted to this set, which we call T .

The two filters differ on T iff for all algebras A on λ, there is an ele-
mentary substructure z ≺ A such that z has cardinality ρ, but ρ �⊆ z. By
the Skolemization trick, this can be equivalently rephrased as stating that
{z ∈ [ρ+]<ρ+

: ρ � z} is weakly stationary.
We now digress to define Chang’s Conjecture properties. We will use

the following notation: (κn, . . . , κ0) →→ (λn, . . . , λ0) is the statement that
every structure A = 〈κn; fi, Rj , ck〉i,j,k∈ω in a countable language has an
elementary substructure B of cardinality λn such that for all i, |B∩κi| = λi.
The same notation with “λi” replaced by “<λi” for some of the i’s changes
the cardinality requirement to |B ∩ κi| < λi. Statements of this form are
called Chang’s Conjectures.

The classical Chang’s Conjecture is the statement (ℵ2,ℵ1) →→ (ℵ1,ℵ0). It
is easily seen to be equivalent to the statement that

{z ∈ [ω2]<ω2 : |z| = ω1 and z ∩ ω2 /∈ ω2}
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is weakly stationary. In particular Chang’s Conjecture is equivalent to the
statement that the strongly closed unbounded filter on [ω2]<ω2 differs from
the Jech closed unbounded filter. It was pointed out in [47] that by fixing
the parameters κ, λ, one can describe every instance of Chang’s Conjecture
by asking that the appropriate set be weakly stationary.

Closely related to Chang’s Conjecture are Jónsson cardinals. A cardinal
κ is said to be Jónsson iff every structure A with domain κ in a countable
language has a proper elementary substructure of cardinality κ. A counterex-
ample to κ being Jónsson is called a Jónsson algebra.9

Jónsson cardinals are also relevant to the discussion of the difference be-
tween weak stationarity and Jech stationarity. For simplicity we take ρ = ℵω.
Since ℵω is a limit cardinal, {z : z ∈ [ℵω+1]<ℵω+1 : |z| = ℵω and ℵω � z}
is weakly stationary iff {z : z ∈ [ℵω]ℵω , z �= ℵω} is weakly stationary. The
latter statement is just a rephrasing of the statement that ℵω is Jónsson.

Summarizing: each difference between the strongly closed unbounded filter
restricted to T and the Jech closed unbounded filter is an instance of a form of
Chang’s Conjecture or of ρ being Jónsson. All instances of Chang’s Conjec-
ture imply the existence of an inner model with a Rowbottom cardinal (and
many instances are considerably stronger10). Thus, if there is a difference be-
tween the two filters restricted to T , then at least mild large cardinals exist.

The next example of a natural filter expands on this:

3.8 Example. Suppose that (κn, . . . , κ0) →→ (λn, . . . , λ0) holds. Then the
strongly closed unbounded filter restricted to {z ⊆ κn : for all i, |z ∩ κi| =
λi} is called the Chang filter and the dual ideal, the Chang ideal.

In many cases we can assume that the Chang ideal has the maximal degree
of completeness. We now discuss this situation. The following proposition
appears in [32] and is an application of ideas of Shelah.

3.9 Proposition. Let κn > κn−1 > · · · > κ0 and λn > λn−1 > · · · > λ0 be
regular cardinals. Suppose that either:

1. GCH holds, or

2. there are at most countably many cardinals between λ0 and κn,

and that (κn, . . . , κ1, κ0) →→ (λn, . . . , λ1, <λ0). Let X ⊇ κn be a set. Then
the nonstationary ideal restricted to Z =def {z ∈ P (X) : |z∩κi| = λi for i > 0,
|z ∩ κ0| < λ0 and z ∩ λ0 ∈ λ0} is a proper, λ0-complete, normal, fine ideal.

For any regular λ and set X ⊇ λ it is not difficult to check that the
strongly nonstationary ideal restricted to {z ⊆ X : z ∩ λ ∈ λ} is λ-complete.
Hence the issue in Proposition 3.9 is whether or not the ideal is proper. To
show that the ideal is proper, one must show that if B is a structure with
9 No ℵn can be Jónsson for finite n. It is a prominent open problem whether ℵω can be
Jónsson.
10 See Sect. 10 for more details.
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domain X, then there is an elementary substructure z of B with the property
that |z ∩ κi| = λi for i > 0, |z ∩ κ0| < λ0 and z ∩ λ0 ∈ λ0.

We content ourselves here to showing a lemma that easily implies Propo-
sition 3.9 in the case that there are only finitely many cardinals between λ0

and κn.

3.10 Lemma. Let λ ≤ κ 3 θ be cardinals with λ and θ regular and with
cf(κ) ≥ λ. Let A be a structure expanding 〈H(θ),∈,Δ, {κ, λ}〉 and N0 ≺ A.
Let N1 = SkA(N0 ∪ sup(N0 ∩ λ)). Then

sup(N1 ∩ κ) = sup(N0 ∩ κ).

Proof. Let τ be a Skolem function for A. Since we are considering the inter-
section of N1 with κ, without loss of generality we can assume that

τ : H(θ)× λ→ κ.

We must show that for each a ∈ N0 and δ ∈ sup(N0 ∩ λ) there is a β ∈ N0

with β ≥ τ(a, δ).
Fix such an a ∈ N0 and δ. Choose a γ ∈ N0 ∩ λ with δ < γ. Let

β = sup{τ(a, α) : α < γ}.

Then β is definable in N0 and is clearly at least τ(a, δ), as required. �

Proof of Proposition 3.9. We now explain how to prove Proposition 3.9 us-
ing Lemma 3.10 in the case that κn = λ+l

0 for some l ∈ ω. We are given a
structure B with domain X and we assume that Chang’s Conjecture holds.
We must find a suitable z ≺ B. Let θ 5 supX, and take A to expand
〈H(θ),∈,Δ, {κn, κn−1, . . . , κ0, λn, λn−1, . . . , λ0},B〉. By the Chang’s Con-
jecture assumption we can find an N0 ≺ A such that |N0| = |N0 ∩ κn| = λn;
for all 1 ≤ i ≤ n, |N0 ∩ κi| = λi; and |N0 ∩ κ0| < λ0.

Let N1 = SkA(N0 ∪ sup(N0∩λ0)). By Lemma 3.10, N1∩λ0 = sup(N0∩λ0)
and for all 0 ≤ j < ω, sup(N1 ∩ λ+j

0 ) = sup(N0 ∩ λ+j
0 ). From this one sees

inductively that for 0 ≤ j < ω, |N1 ∩ λ+j
0 | = |N0 ∩ λ+j

0 |. In particular,
|N1 ∩ κi| = |N0 ∩ κi| for 0 ≤ i ≤ n.

Let z = N1 ∩X. Since B is definable in A, we must have z ≺ B. Since
z ∩ κi = N1 ∩ κi, the proposition follows. �

There is a converse to Proposition 3.9:

3.11 Proposition. Let κn > κn−1 > · · · > κ0 and λn > λn−1 > · · · > λ0 be
regular cardinals and X ⊇ κn. If there is a proper, normal, fine, countably
complete ideal concentrating on Z =def {z ∈ P (X) : |z ∩ κi| = λi for i > 0,
|z ∩ κ0| < λ0 and z ∩ λ0 ∈ λ0}, then (κn, . . . , κ1, κ0) →→ (λn, . . . , λ1, <λ0).

Proof. This follows easily from the fact that if F : [X]<ω → X and I is
normal, fine and countably complete, then {z : z is closed under F} belongs
to Ĭ. �



3. Examples 917

We will denote the nonstationary ideal concentrating on z’s with |z∩κi| =
λi by CC(�κ,�λ). Note that the ideal CC((κ, λ, μ), (κ′, λ′, μ′)) projects11 to the
ideal CC((λ, μ), (λ′, μ′)) via the map z �→ z ∩ λ. We can also define an ideal
CC((κ, λ), (κ′, <λ′)) by restricting the nonstationary ideal to those N where
|N ∩ κ| = κ′ and |N ∩ λ| < λ′ and N ∩ λ′ ∈ λ′. By Proposition 3.9, we see
that this ideal is λ′-complete. If λ′ = μ+ then CC((κ, λ), (κ′, <λ′)) is equal
to CC((κ, λ), (κ′, μ)) restricted to those z such that μ ⊆ z.

Stipulation. These examples help illustrate the idea that the ideal of
strongly nonstationary sets is a generalization of several particular notions of
the “nonstationary ideal”. By restricting the strongly nonstationary ideal to
particular weakly stationary sets we recover the particular ideals. We will
use this as a rationalization to drop the adjective “strongly”, and
refer to this ideal as “the ideal of nonstationary sets” and its dual
filter as the “filter of closed unbounded sets”. When the underlying
set X is clear from the context, we will denote the nonstationary ideal by
simply NS and this ideal restricted to a (weakly) stationary set Y ⊆ P (X)
by NS�Y or NSY . In particular, for regular uncountable cardinals κ, NSκ

will denote the usual ideal of nonstationary subsets of κ.

The closed unbounded filter is the minimal normal and fine filter:

3.12 Lemma. Suppose that I is a normal, fine, countably complete ideal on
a set Z ⊆ P (X). If A ⊆ Z is nonstationary, then A ∈ I.

Proof. Suppose that A = 〈X, fn〉n∈ω is an algebra witnessing the nonstation-
arity of A, and suppose that A �∈ I. Then no element of A is closed under
every function from A. Hence for each z ∈ A, there is a function fn and
{x0, . . . , xn−1} ⊆ z such that the point fn(x0, . . . , xn−1) �∈ z. For each z ∈ A
choose such a (x0, . . . , xn−1). By the normality and countable completeness
of I, there is an I-positive set B ⊆ A such that n and (x0, . . . , xn−1) are
constant for all z ∈ B. Let x = fn(x0, . . . , xn−1). Then by fineness, there is
a z ∈ B such that x ∈ z, a contradiction. �

In Sect. 4.4 we show how to condition the nonstationary ideal on an ideal
on a smaller set, while preserving properties similar to Lemma 3.12.12

Natural Ideals on P (R)

The next two examples of ideals are quite well-known:

3.13 Example. The ideal of null sets for a countably additive measure on
the unit interval. This ideal becomes precipitous if the measure is defined
on all subsets of the unit interval. In this case the ideal is ℵ1-saturated and
countably complete, hence has the disjointing property.
11 The definition of a projection is officially given by Definition 4.17.
12 The conditional nonstationary ideals are analogous to the ideals arising from conditional
probability functions analysis.
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This example is not totally misrepresentative; a consequence of the Hahn-
Banach theorem is that if I is an ideal on Z then there is a finitely additive
probability measure μ : P (Z) → [0, 1], such that I is the ideal of sets of
μ-measure zero. Inspired by this remark, in the sequel we will use phrases
such as “almost all” and “almost every”, and “in a set of measure one” to
refer to sets in Ĭ. So for example, “almost every element of X . . . ” means
that “there is a set C ∈ Ĭ such that for all z ∈ C ∩X . . .”.

3.14 Example. The ideal of meager subsets of the unit interval.

It is not known if either the ideal of Lebesgue null sets or the ideal of
meager sets can be precipitous. However Komjáth [73] has shown that it is
consistent, relative to a measurable cardinal, that there is a non-meager set
A ⊆ R such that P (A)/{meager sets} is c.c.c. It follows that the ideal of
meager subsets of A forms a precipitous ideal on P (A). We give a sketch of
Komjáth’s argument in Sect. 8.

I[λ] and Related Ideals

We now describe several interesting examples due to Shelah. The first is the
ideal I[λ]. This example is particularly interesting on successors of singular
cardinals. Doing justice to the significance of this ideal is beyond the scope
of this chapter. The author notes that the exposition here is not as thorough
as the treatment of these ideals given by Shelah.13

3.15 Example. Let λ be a regular cardinal. Let θ be a regular cardinal
“much larger” than λ and Δ a well-ordering of H(θ). A generating set for
the ideal I[λ] is determined by a structure A in a countable language that
expands the structure 〈H(θ),∈,Δ〉.

An ordinal α is approachable with respect to A iff SkA(α) ∩ λ = α and
there is a sequence 〈αi : i ∈ cf(α)〉 that is cofinal in α and is such that for all
j < cf(α), 〈αi : i < j〉 ∈ SkA(α).

The set SA determined by A is the collection of ordinals α such that either
SkA(α) ∩ λ �= α or α is approachable with respect to A. We let I[λ] be the
ideal generated by all of the SA’s.

Clearly this ideal includes the ideal of bounded subsets of λ. Moreover
we get an equivalent definition if we allow the structures A to vary over
expansions of H(θ) that have languages of size less than λ.

Since λ is regular, we can merge any small collection 〈Aδ : δ < η < λ〉
of structures in various languages of cardinality less than λ into a single
structure A, in a language of cardinality less than λ. An ordinal α > η that
is approachable with respect to some Aδ remains approachable with respect
to A. Thus we can argue that the ideal I[λ] is λ-complete.

13 See Shelah’s book [105], and his many related papers, for extensive information. An
exposition of these results is given in Eisworth’s chapter in this Handbook.



3. Examples 919

Arguments similar to those given in Lemma 3.3 can be extended to show
that the ideal I[λ] is normal and extends the nonstationary ideal on λ.

This ideal may fail to be proper however. For example, if there is a square
sequence 〈Cα : α < λ〉 of length λ then the collection of ordinals that are
approachable with respect to the algebra A = 〈H(θ),∈,Δ, 〈Cα : α < λ〉〉 is
closed unbounded. Hence the ideal I[λ] is not a proper ideal.

To see this, suppose that we have a typical α and we assume that Cα

is closed and unbounded in α and has order type less than α. Using the
coherence of the square sequence, we see that every initial segment of Cα is in
SkA(α). If γ = ot(Cα) then SkA(α) contains a closed unbounded subsequence
D ⊆ γ that has order type the cofinality of α. Copying D over inside Cα,
we get a sequence cofinal in α and of order type the cofinality of α such that
every initial segment is in SkA(α).

Similar arguments show for example, that if GCH holds and κ is regular
then I[κ+] is not proper.

Shelah has shown that if μ+ < λ and μ is regular, then there is always a
stationary set of approachable ordinals of cofinality μ. Moreover, if λ<λ = λ,
I[λ] is the nonstationary ideal restricted to a single stationary set that con-
tains ordinals of all cofinalities less than λ. As a consequence, we can view the
approachable ordinals as being a canonical stationary set. This stationary
set is closed unbounded just in case the ideal is not a proper ideal.

It is consistent that the approachable ordinals constitute a co-stationary
set. To make this happen at μ+, where μ is regular, one collapses a weakly
compact cardinal greater than μ to be the successor of μ in the manner of
Mitchell’s model [96] for no Aronszajn trees on μ+. This result is presented
in Cummings’ chapter in this Handbook. At the successor of a singular
cardinal larger than a supercompact, the approachable ordinals are always
co-stationary. To arrange a model where the approachable ordinals are co-
stationary in ℵω+1, one Levy collapses a supercompact cardinal to be ℵ2.14

An important property of I[λ] is the following:

3.16 Theorem (Foreman and Magidor [42]). Let κ < λ be regular cardinals
such that κ<κ = κ. Let S ⊆ λ ∩ Cof(κ) be a stationary set. Then the
following are equivalent:

1. For all <κ+-closed partial orderings P and for all generic G ⊆ P,
V [G] |= S ⊆ λ is stationary.

2. There is a set T ∈ I[λ] such that S ∩ T is stationary.

We remind the reader that a set N of regular cardinality κ is internally
approachable of length κ iff there is a sequence 〈Nα : α < κ〉 such that:

1. |Nα| < κ,

2. for all α < β < κ, Nα ⊆ Nβ ⊆ N ,

14 See [43] for further information and references.
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3. for all β < κ, 〈Nα : α < β〉 ∈ N , and

4. N =
⋃

α<κ Nα.

Another natural ideal discovered by Shelah is closely related to I[λ].

3.17 Example. Let λ > κ be regular cardinals. We define the ideal Id(λ, κ).
Fix a large regular θ 5 λ. Id(λ, κ) will be generated by sets SA as A ranges
over expansions of 〈H(θ),∈,Δ〉 in a countable language. Given such a struc-
ture, we define SA to be the collection of δ such that there is no internally
approachable N ≺ A of cardinality and length κ with sup(N ∩ λ) = δ.

Familiar arguments show that Id(λ, κ) is a proper, normal ideal on λ. The
ideal Id(λ, κ) is orthogonal to the ideal I[λ]�Cof(κ) in the following sense:

3.18 Lemma (Shelah). If S1 ∈ I[λ]�Cof(κ) and S2 ∈ Id(λ, κ) then S1 ∩ S2

is nonstationary.

See [43] for a proof of this lemma.

Club Guessing Ideals

We now turn to the class of guessing ideals. We exhibit some samples, the club
guessing ideals. Here, as elsewhere, we use ⊆∗ to mean eventual inclusion.

3.19 Example. Let κ > μ be regular cardinals and S ⊆ κ ∩ Cof(μ). Let
〈Cα : α ∈ S〉 be a sequence such that Cα is unbounded in α. We define two
filters, the club guessing filter and the tail club guessing filter on S.

For D ⊆ κ closed unbounded, let G(D) = {α ∈ S : Cα ⊆ D} and
E(D) = {α ∈ S : Cα ⊆∗ D}.

1. The club guessing filter on S is the filter generated by the sets {G(D) :
D is closed unbounded} together with the closed unbounded sets.

2. The tail club guessing filter on S is the filter generated by the sets
{E(D) : D is closed unbounded} together with the closed unbounded
sets.

The sequence 〈Cα : α ∈ S〉 is club guessing iff the club guessing filter on
S is a proper filter, and tail club guessing iff the tail club guessing filter on
S is a proper filter.

The next lemma was observed by Ishiu; the third clause was proved earlier
in Shelah’s work [105]:

3.20 Lemma. Let 〈Cα : α ∈ S〉 be a club guessing sequence. Then:

1. The smallest normal filter containing the club guessing filter is not
proper.
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2. The club guessing filter is incompressible.15

3. The tail club guessing filter is normal.

It was shown by Ishiu [59] that if one collapses a Woodin cardinal to be
the successor of a regular cardinal μ, then every tail club guessing filter is
precipitous. Foreman and Komjáth [40] showed that it is consistent relative
to an almost huge cardinal to have a club guessing filter on any given regular
cardinal μ be μ+-saturated.

Example 3.19 can easily be generalized: If F is a filter on a regular cardinal
κ and 〈Cα : α ∈ κ〉 is any sequence, we can define a new filter G generated
by sets of the form:

G(A) = {α < κ : Cα ⊆∗ A ∩ α}

for A ∈ F . If F is normal, then G is normal. If F is a normal filter and
〈Cα〉 is a diamond sequence that guesses on positive sets for F , then the
corresponding filter G is proper.

Ideals of Sets Without Guessing Sequences

A different kind of ideal is given by the non-diamond ideal.

3.21 Example. Let κ be a regular cardinal. Recall that for A ⊆ κ,
〈Sα : α ∈ A〉 is a ♦(A)-sequence iff for any X ⊆ κ, {α ∈ A : X ∩ α = Sα} is
stationary in κ, and ♦κ is the assertion that there is a ♦(κ) sequence. Let
I be the collection of sets A ⊆ κ such that there is no diamond sequence
defined on A. Explicitly, A ∈ I iff there is no 〈Sα : α ∈ A〉 that is a ♦(A)
sequence. I is called the non-diamond ideal.

Let 〈 , 〉 : κ × κ → κ be a bijective pairing function and 〈Sα : α ∈ B〉 be
a ♦(B) sequence. Suppose that B = 4〈Bγ : γ < κ〉. Define 〈Sβ

α : α ∈ Bβ〉
by Sβ

α = {γ < α : 〈β, γ〉 ∈ Sα}. Then it is easy to see that there is a β such
that 〈Sβ

α : α ∈ Bβ〉 is a ♦(Bβ) sequence. This establishes that this ideal is
normal and κ-complete.

For the next proposition we need ♦κ to see that the non-diamond ideal is
proper.

3.22 Proposition (Abraham-Magidor). Suppose that κ is a regular cardinal
and ♦κ. Then the non-diamond ideal on κ is nowhere κ+-saturated.

Proof. We show that if there is an almost disjoint family of subsets of κ that
has size λ, then below any positive set there is an antichain of size λ. Fix a
bijective pairing function 〈 , 〉 : κ× κ→ κ.

15 This means that there is a minimal non-constant function f : κ → κ with respect to
the club guessing filter.
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If A is a positive set, then ♦(A) holds. Let 〈Sα : α ∈ A〉 be a ♦(A)
sequence. For Y ⊆ κ define SY

α = z iff z ⊆ α is such that Sα is the image of
(Y ∩ α) × z under the map 〈 , 〉. Let AY = {α : SY

α is defined}. We claim
that for all Y ⊆ κ, 〈SY

α : α ∈ AY 〉 is a ♦(Aγ) sequence.
Let X ⊆ κ. Let X ′ be the image of Y ×X under 〈 , 〉. Then the set of α

such that the 〈 , 〉-image of (Y ∩α)× (X ∩α) is X ′ ∩α is closed unbounded.
Choose an α where this holds and where Sα = X ′ ∩ α. Then SY

α is defined
and SY

α = X ∩ α.
To finish the non-saturation argument note that if Y ∩ Y ′ has cardinality

less than κ, then AY ∩ AY ′ is nonstationary. Hence taking a large almost
disjoint family of Y ’s yields a large antichain in the non-diamond ideal. �

There is another example of a natural normal ideal, the non-weak diamond
ideal.

Recall that weak diamond at λ is the statement that for all F : 2<λ →
2 there is a g : λ → 2 such that for all f : λ → 2, the collection {α :
g(α) = F (f�α)} is stationary in λ. The idea is that g is guessing information
about F . Devlin and Shelah [22] showed that weak diamond holds at a
successor cardinal λ = κ+ iff 2κ < 2λ.

3.23 Example. Let λ be a regular cardinal. Let F : 2<λ → 2. We can define
an ideal IF by putting S ∈ IF iff for all g : λ→ 2 there is an f : λ→ 2 such
that {α ∈ S : g(α) = F (f�α)} is nonstationary. The union of the ideals IF

can be verified to be a λ-complete ideal, which we call the non-weak diamond
ideal . The ideal consists of those sets on which weak diamond fails. Thus it
is a proper ideal just in case weak diamond holds at λ.

3.24 Theorem (Devlin-Shelah [22]). Let λ be a regular uncountable cardinal.
Then the non-weak diamond ideal is a normal λ-complete ideal.

Proof. We will verify the normality of the ideal. The proof of λ-completeness
is similar, but easier. Suppose that 〈Sα : α < λ〉 is a sequence of sets in
the non-weak diamond ideal. We need to see that S =def 4α<λSα is in the
non-weak diamond ideal. Fix 〈Fα : α < λ〉 such that Fα witnesses that Sα is
small.

Let 〈 , 〉 : λ × λ → λ be a pairing function. We will work on the closed
unbounded collection C of ξ such that 〈 , 〉 : ξ × ξ → ξ is a bijection. For
γ : ξ → 2 we let γα(β) = γ(〈α, β〉). We define a function F as follows:
for ξ ∈ 4Sα ∩ C, let α < ξ be the least ordinal such that ξ ∈ Sα. Define
F (γ) = Fα(γα).

Suppose now that there is a g such that for all f : λ → 2, there are
stationarily many ξ ∈ S such that g(ξ) = F (f�ξ). Fix such a g. Then for each
α < λ there is an fα such that the collection of ξ ∈ Sα with g(ξ) = Fα(fα�ξ)
is nonstationary. Define f : λ → λ by setting f(〈α, β〉) = fα(β). Note that
for this f, (f�ξ)α = fα�ξ.

Since there are stationarily many ξ ∈ S with g(ξ) = F (f�ξ), there is an α
such that for stationarily many ξ ∈ Sα \

⋃
α′<α Sα′ we have g(ξ) = F (f�ξ).
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But then for these ξ,

g(ξ) = F (f�ξ) = Fα((f�ξ)α) = Fα(fα�ξ)

a contradiction. �

Shelah has generalized the non-weak diamond ideal to the analogous ideal
for colorings into n colors for n ∈ ω. Surprisingly, it is not true in general
that the ideals are identical for different finite numbers of colors. We refer
the reader to [26] and [103] for further information.

Uniformization Ideals

Barney considered closely related ideals, the uniformization ideals. We de-
scribe his work on such ideals on ω1. Let S ⊆ ω1 be a set of limit ordinals.
We consider a ladder system on S to be a sequence of functions ηδ for δ ∈ S
where ηδ is an increasing and cofinal map from ω into δ. An α-coloring of
the ladder system is a sequence of functions 〈cδ : δ ∈ S〉 where cδ : ω → α.
If f : ω → ω, then an f -coloring is an ω-coloring such that for all δ ∈ S and
n ∈ ω, cδ(n) ∈ f(n). A monochromatic α-coloring is an α-coloring with the
property that each cδ is a constant function.

An α-coloring is uniformized if there is an h : ω1 → α such that for all
δ ∈ S and all but finitely many n, h(ηδ(n)) = cδ(n).

We let Unifα be the collection of sets S such that there is a ladder system
on S such that every α-coloring 〈cδ : δ ∈ S〉 of the ladder system can be
uniformized. The sets mUnifα,Uniff are defined similarly for monochromatic
colorings and f -colorings.

Shelah showed that weak diamond on a set S implies that for every ladder
system on S, there is a monochromatic 2-coloring that is not uniformizable.
Hence mUnif2 is a subset of the weak diamond ideal, which is denoted WD2

in what follows to emphasize 2-colorings.
Barney proved:

3.25 Proposition (Barney). For α ∈ ω + 1 and f : ω → ω, the sets
Unifα, mUnifα, and Uniff are normal, countably complete ideals. More-
over:

Unifω ⊆ Uniff ⊆ Unifn ⊆ Unif2 ⊆ mUnif2 ⊆ WD2.

Unlike the case for the weak diamond ideal, it is not possible to separate
the uniformization ideals for finitely many colors or even f -colorings:

3.26 Proposition (Barney). Let f : ω → ω \ {0, 1}. Then Unif2 = Uniff .

However this is all one can prove:

3.27 Theorem (Barney). There is a partial ordering P such that in V P,

WD2 �= mUnif2 �= Unif2 �= Unifω,

i.e. all of the inclusions are proper.
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Weakly Compact and Ineffable Ideals

There is a family of natural ideals definable on large cardinals, such as in-
effable cardinals. We give two examples here, one is the weakly compact
filter.

Recall that κ is weakly compact iff for all Π1
1 formulas, φ(x, y), a ∈ Vκ,

and A ⊆ Vκ, if Vκ |= φ(A, a), then there is a stationary set of α < κ such
that Vα |= φ(A ∩ Vα, a).

3.28 Example. Suppose that κ is weakly compact. The weakly compact
filter on κ is generated by sets of the form R = {α : Vα |= φ(A ∩ Vα, a)},
where A ⊆ Vκ, a ∈ Vκ, φ is a Π1

1 formula and Vκ |= φ(A, a). This filter is
proper, normal and κ-complete. The weakly compact ideal is the dual ideal
to the weakly compact filter.

We show in Proposition 6.4 that the weakly compact filter on a weakly
compact cardinal κ is not κ-saturated. A. Hellsten, in unpublished work, has
shown that it is consistent that there be weakly compact cardinal κ such that
the weakly compact ideal on κ is κ+-saturated.

A variant on the weakly compact ideal is the ineffable ideal.

3.29 Example. Let κ be an ineffable cardinal. Then for all sequences �A =
〈Aα : α < κ〉 with Aα ⊆ α, there is a stationary set S �A such that for α < β
both in S �A, Aα = Aβ ∩ α. Then the collection of S �A generate a normal
κ-complete filter on κ.

As far as the author knows the properties of the generic ultrapowers by
this filter have not been investigated.

3.2. Induced Ideals

Most induced ideals arise as special cases of the following observation:

3.30 Example. Let X,Z be sets with Z ⊆ P (X). Let Q be a partial
ordering such that for all H ⊆ Q that are generic, the Q-term U̇ denotes
a V -normal, fine, V -κ-complete filter on P (Z)V . Then in V , we can define
an ideal I by setting A ∈ I iff every condition in Q forces that A is in the
dual of U̇ . This ideal is easily seen to be normal, fine and κ-complete in V .
Moreover for all generic H ⊆ Q, U̇V [H] ⊇ Ĭ. If Q is κ-c.c. then the Boolean
algebra P (Z)/I is κ-c.c.

The example is a special case of a more general fact: If B is a Boolean
algebra and U̇ is a term for an ultrafilter on B in a κ-c.c. forcing extension P

and we let I be the ideal of elements of b such that 1 �P b /∈ U̇ , then B/I is
κ-c.c.

In slightly more generality we can see:

3.31 Lemma. Let X,Z be sets with Z ⊆ P (X). Suppose that P is a κ-
c.c. partial ordering and J̇ is a P term for a κ-saturated ideal on P (Z)V P

.
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Define an ideal I in V by setting A ∈ I iff ‖A ∈ J̇+‖P = 0. Then I is a
κ-saturated ideal on P (Z). Moreover if V P |= “J̇ is normal and fine”, then
I is a normal and fine ideal.

We note that the statement ‖A ∈ J̇+‖P = 0 is equivalent to ‖A ∈ J̇‖P = 1.
In certain circumstances this version is easier to work with.

In many situations the filter U is an ultrafilter associated with an elemen-
tary embedding that is defined in the extension V [H]:

3.32 Definition. Let M and N be models of a sufficient amount of set
theory16 with i ∈ N and Z ∈M . If j : M → N is an elementary embedding
and i ∈ j(Z) then i generates an ultrafilter U(j, i) on P (Z)M . Namely, for
A ⊆ Z

A ∈ U(j, i) iff i ∈ j(A).

In our previous language, the element i is functioning as an “ideal element”.
This ultrafilter can be used to induce ideals in various ways. We begin with a
typical example that follows immediately in one direction from Lemma 3.31
applied to U(j, κ) and in the other by taking a generic ultrapower.

3.33 Example. The following are equivalent:

1. There is an elementary embedding j : V →M ⊆ V [G] defined in V [G]
such that:

(a) crit(j) = κ, and

(b) G ⊆ P is V -generic where P is κ+-c.c.

2. There is a normal, fine, κ-complete, κ+-saturated ideal on P (κ).

The next example is very general.

3.34 Example. Suppose that N expands 〈H(λ),∈,Δ〉 where Δ is a well-
ordering of H(λ). Suppose that M is the transitive collapse of an elementary
substructure of N and j is the inverse of the collapsing map. Then the M -
ultrafilter U(j, i) induces a filter (and hence an ideal) on P (Z)V . If the critical
point of j is α, then this filter is M -α-complete. If κ < α and M<κ ⊆ M ,
then this filter is κ-complete.

This example was used very fruitfully in the case i = crit(j) by Baumgart-
ner, Hajnal and Todorčević [7].

Continuing with an elementary embedding j : M → N :

3.35 Definition. Suppose that P is a partial ordering in M . A condition
m ∈ j(P) is called a master condition (or an M -generic condition) iff for all
dense subsets D of P with D ∈ M and all q ≤ m belonging to j(P) there is
a p ∈ D such that j(p) is compatible with q.

16 ZF−, ZF minus Power Set, is more than enough.
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If there is a master condition for j and H ⊆ j(P) is a filter, we define a
filter G ⊆ P by setting p ∈ G iff j(p) ∈ H.17 If H is sufficiently generic then
G is generic over M and the elementary embedding j can be extended to an
elementary embedding

ĵ : M [G] → N [H].

This idea comes up in several contexts: If Q is a partial ordering and
λ is a regular cardinal much bigger than |Q|, let N = 〈H(λ),∈,Δ,Q〉 and
M be the transitive collapse of a countable elementary substructure and P

be the collapse of Q. Let j be the inverse of the collapse map. Then the
notion of a master condition coincides exactly with the notion of a generic
condition in the sense of proper forcing. The properness of Q is equivalent
to the statement:

For all such M and all p ∈ P there is an m ≤ j(p) such that for all
generic H ⊆ Q, with m ∈ H, if G = j−1(H) then G is M generic
and j extends to an elementary embedding

ĵ : M [G] → H(λ)[H].

Semiproperness can be formulated similarly. The link between properness,
semiproperness and ideals is not a coincidence [47].

The next example is the usual way that strong ideals are manufactured
from the remnants of a large cardinal using master conditions and a forcing
construction.

3.36 Example. Suppose that j : V →M is a large cardinal embedding such
that j“X ∈M . Let Z ⊆ P (X) be such that j“X ∈ j(Z). Suppose that P ∈ V
is a partial ordering and m ∈ j(P) is a master condition. Then forcing over
V with j(P) below m we get a generic H ⊆ j(P) such that G = j−1(H) ⊆ P

is generic over V . Then j can be extended to an elementary embedding
ĵ : V [G] →M [H].

In V [G] we define an ideal on Z by setting A ∈ I iff whenever H ⊆ j(P) is
generic and extends j“G ∪ {m} we have A /∈ U(ĵ, j“X). This ideal is called
the master condition ideal. If we let Q be the partial ordering consisting of
those conditions in j(P)/j“G that are below m, we have:

A ∈ I iff ‖A ∈ U(ĵ, j“X)‖Q = 0.

Thus we are in the context of Example 3.30.

In Example 7.7 we will see that if we collapse a supercompact cardinal
to be ω1 then every proper forcing in V [G] of cardinality κ gives rise to a
precipitous master condition ideal on [λ]<ω1 for every λ > 2κ.

17 We will abuse notation and write j−1(H) for this G.
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General Induced Ideals

We now summarize this discussion by describing the general situation in
which induced ideals arise.

3.37 Example. Let H ⊆ Q be generic and suppose that in V [H] there is an
elementary embedding j : V → M ⊆ V [H], where M is transitive. Let i be
a Q-name for an element of M and Z a set such that ‖i ∈ j(Z)‖Q = 1. Then
in V we can define an ideal I ⊆ P (Z) by setting A ∈ I iff every condition in
Q forces A �∈ U(j, i). For all generic H ⊆ Q the ultrafilter U(j, i) extends Ĭ.

3.38 Proposition. Assume the hypotheses of Example 3.37. Suppose that
for all V -generic G ⊆ Q, V [G] |= i = j“X. Then the ideal I is a normal,
fine, countably complete ideal on Z = P (X).

3.39 Definition. We will call any elementary embedding j that is definable
in a forcing extension of V a generic elementary embedding. We will call the
ideal defined in Example 3.37 the ideal induced by j and i.18 If I is an ideal
induced by a generic elementary embedding we will call I pre-precipitous.

The dual of every pre-precipitous ideal can be extended to an ultrafilter
lying in a generic extension that has a well-founded ultrapower.

There are examples of partial orderings Q and generic G ⊆ Q where U(j, i)
is not generic for the partial ordering P (Z)/I. In these examples, the pre-
precipitous ideal I is not precipitous. This is discussed in Sect. 7.3.

Burke [12] showed that if I is any countably complete ideal on a set Z and
there is a Woodin cardinal δ > |Z|,19 then there is a partial ordering P which
produces an ultrafilter U on P (Z) such that V Z/U is well-founded, Ĭ ⊆ U and
if j : V → N ∼= V Z/U is the canonical embedding, then crit(j) = comp(I).
A small improvement of his argument actually shows that every countably
complete ideal is pre-precipitous. We show this in Proposition 9.44.

3.40 Proposition. Suppose that I is an ideal on a set Z. Then the following
are equivalent:

1. I is precipitous.

2. There is a partial ordering P such that for all generic G ⊆ P there is a
j : V →M ⊆ V [G] and a P-term i such that:

(a) I is the ideal induced by j and i, and

(b) U(j, i) is generic for P (Z)/I.

Proof. Suppose that I is precipitous. Let P = P (Z)/I, j : V → M the
generic ultrapower embedding and i a term for [id]M .

18 Usually, Q is implicit in the definition of j.
19 Woodin cardinals occur prominently in several Handbook chapters. We defer the actual
definition to Definition 9.22 where we use it for the first time.
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For the other direction, note that the map ι : P (Z) → B(P) defined by
setting

ι(A) = ‖A ∈ U(j, i)‖
has kernel I. Hence we can view ι : P (Z)/I → B(P). The hypothesis (b)
implies that ι is a regular embedding. By factoring B(P) as P (Z)/I∗B(P)/ι“U
we see that whenever U ⊆ P (Z)/I is generic there is a generic G ⊆ P such
that U(j, i)V [G] = U .

Let U be generic for P (Z)/I. We need to see that the ultrapower V Z/U
is well-founded. Let G ⊆ P be such that U(j, i) = U . Then there is a
commuting diagram:

V

V Z/U(j, i) M

�
��� j′ �

�
���

j

�
k

where j′ is the ultrapower map and k is defined by setting

k(f) = j(f)(i).

Since M is well-founded we see that V Z/U(j, i) is well-founded. �

3.41 Remark. Any large cardinal embedding is a generic elementary em-
bedding, as we can take Q to be the trivial partial ordering. The ultrafilters
used to define standard large cardinal axioms are of the form U(j, i) and
hence their duals are “induced ideals” from the trivial partial ordering.

Goodness and Self-Genericity

A very powerful situation can arise when a natural ideal is simultaneously an
induced ideal. For this to happen we need a criterion for genericity, which we
give in the “reflected” form. Attempts to make natural ideals be induced20

use the idea of self-genericity, to be defined below. The next example sets
the stage for this important definition.

3.42 Example. Suppose that J is a countably complete ideal on a set Z∗ ⊆
P (X). Let θ be a regular cardinal much larger than the cardinality of Z∗, and
suppose that M ′ ≺ 〈H(θ),∈,Δ, J, Z∗, . . .〉. Let M be the transitive collapse
of M ′ and j : M → H(θ) be the inverse of the collapse map. Suppose that
Z = j−1(Z∗) and I = j−1(J). Letting i = M ′ ∩ X, if i ∈ Z∗ we can build
the M -ultrafilter U(j, i) ⊆ P (Z).

We want to consider the ultrafilter U(j, i) and its associated ideal both in
the situation of extension via an elementary embedding j : V → M and in
the situation of reflection via taking elementary submodels. For this reason
we give the definition of “goodness” in a way that highlights the role of j.
20 E.g. by making them precipitous.
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3.43 Definition. The model M ′ is good iff

M ′ ∩X ∈
⋂
{j(A) : A ⊆ Z and A ∈ Ĭ}.

We can say this another way: taking i = M ′ ∩ X the goodness of M ′

is equivalent to U(j, i) ⊇ Ĭ. Proposition 3.44 shows that goodness is also
equivalent to the condition that M ′ ∩X ∈

⋂
{B : B ∈ J̆ and B ∈M ′}. This

latter condition is sometimes easier to verify in practice.
The point of the definition is that it describes what happens in every

generic ultrapower. Let I be a normal, fine ideal I on Z ⊆ P (μ) for some
μ 3 θ. Let j : V → N ∼= V Z/G ⊆ V [G] be the ultrapower map coming
from a generic G ⊂ P (Z)/I. Then M ′ =def j“H(θ) is a good elementary
substructure of j(H(θ)) for the ideal J = j(I).

The next proposition shows that most z ∈ Z∗ generate good elementary
substructures of H(θ).

3.44 Proposition. Let A be an algebra expanding 〈H(θ),∈,Δ, J, Z∗, . . .〉 and
suppose that J is a normal, fine, countably complete ideal. Then:

1. There is a set C ∈ J̆ such that for all z ∈ C if M ′ = SkA(z), then M ′

is good.

2. If M ′ is good, then {j(A) : A ∈ U(j, i)} ⊇ J̆ ∩M ′, where i = M ′ ∩X.

Proof. We can assume that A has a complete set of Skolem functions. By
normality there is a set D ∈ J̆ such that for all z ∈ D, SkA(z) ∩ X = z.
Suppose that there is a J-positive set B of counterexamples z. Using the
countable completeness of J , we can assume that there is a particular Skolem
function f such that for all z ∈ B there is an a ∈ [z]<ω such that f(a) is a
set in J̆ and z /∈ f(a). Applying normality again, we can assume that there
is a fixed a such that for all z ∈ B, a ⊆ z and z /∈ f(a). But this contradicts
B ∈ J+.

For the second assertion, suppose that M ′ is good. By definition, J̆∩M ′ =
{j(A) : A ∈ Ĭ} and since M ′ is good, M ′ ∩X ∈

⋂
{j(A) : A ∈ Ĭ} =

⋂
{B :

B ∈ J̆ ∩ M ′}. Thus M ′ ∩ X belongs to every set in J̆ ∩ M ′ and hence
J̆ ∩M ′ ⊆ {j(A) : A ∈ U(j, i)}. �

3.45 Definition. If U(j,M ′ ∩X) is generic over M for P (Z)/I, we say that
M ′ is self-generic.

This idea first appeared in [47]. Note that a good M ′ is self-generic iff for
every A ⊆ P (Z∗) that is a maximal antichain in P (Z∗)/J and lies in M ′,
there is an a ∈ A ∩M ′ such that M ′ ∩X ∈ a.21 Equivalently, if A ⊆ P (Z)
belongs to M and is an M -maximal antichain in P (Z)/I there is an a ∈ A
such that M ′ ∩X ∈ j(a).

21 See Definition 8.19 and Proposition 8.20 in Sect. 8.
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A guiding idea for making various nonstationary ideals have some degree
of saturation, presaturation or precipitousness is to use devices such as semi-
properness to create some degree of self-genericity. The next lemma shows
that goodness and self-genericity give a condition equivalent to saturation.

3.46 Lemma. Let Z∗ ⊆ P (X) for some set X and J be a normal, fine,
countably complete ideal on P (Z∗). Suppose that A is an algebra expanding
〈H(θ),∈,Δ, J, Z∗, . . .〉.

1. If the ideal J is the nonstationary ideal on P (X) restricted to a sta-
tionary set Z∗, then every M ′ ≺ A with M ′ ∩X ∈ Z∗ is good.

2. If the ideal J is normal, fine and |X|+-saturated, then every good
M ′ ≺ A is self-generic.

3. Suppose that every good M ′ ≺ A is self-generic and |Z∗| ≤ |X|. Then
J is |X|+-saturated.

Note that in most interesting cases |Z∗| = |X| and in these cases, the third
assertion is an exact converse to the second.

Proof. If C ∈ Ĭ, then C ∈ M and C is closed and unbounded. Let B ∈ M
be an algebra on j−1(X) such that every elementary substructure of B is
in C. Since M ′ ∩ X is an elementary substructure of j(B), we see that
M ′ ∩X ∈ j(C).

To establish the second assertion, suppose that A ⊆ P (Z) is a maximal
antichain relative to I. Since I is |X|+-saturated, A has cardinality at most
|X| and we can let C = 4A. Then C is in Ĭ. Hence, by elementarity,
j(A) is a maximal antichain in P (Z∗)/J and j(C) ∈ J̆ . Since M ′ is good,
M ′ ∩X ∈ j(C). By the definition of diagonal union, this implies that there
is an a′ ∈ j(A)∩M ′ such that M ′ ∩X ∈ a′. Letting a = j−1(a′), we see that
a ∈ U(j,M ′ ∩X) ∩ A. Thus U(j,M ′ ∩X) has non-empty intersection with
every maximal antichain in P (Z)/I that lies in M and hence U(j,M ′ ∩X)
is generic for P (Z)/I.

To establish the third assertion, indirectly assume that A is a maximal
antichain in P (Z∗)/J of size at least |X|+. We can assume without loss of
generality that A is definable in A. Let C ∈ J̆ be such that for all z ∈ C,
SkA(z) is good and SkA(z) ∩X = z. Let B = {a ∈ A : for some z ∈ C, a ∈
SkA(z)}. Note that B has cardinality at most |X| · |Z∗| = |X|. Hence we will
be done if we can show that B ⊇ A.

If not, let a ∈ A\B. For each b ∈ B choose a Db ∈ J̆ such that Db∩b∩a = ∅.
Let D = Δb∈BDb, and z ∈ (a ∩ C ∩D). Since SkA(z) is self-generic there is
a c ∈ A ∩ SkA(z) such that z ∈ c. Since z ∈ C we have that c ∈ B. Since
c ∈ z, z ∈ Dc. But then z ∈ Dc ∩ c ∩ a, a contradiction. �

A special case of the example above may be illustrative.
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3.47 Example. Suppose that the nonstationary ideal on ω1 is ℵ2-saturated.
Let θ be a large regular cardinal, and M ′ ≺ 〈H(θ),∈,Δ, . . .〉 be a countable
elementary substructure. Let δ = M ′ ∩ ω1. Then U(j, δ), the critical point
ultrafilter, is generic over M , the transitive collapse of M ′, for the partial
ordering P (ω1)/NSω1 as computed in M . Moreover, the ultrapower of M by
U(j, δ) is isomorphic to SkH(θ)(M ′ ∪ {δ}).

Conversely, if λ ≥ (2ω1)+ and there is a closed unbounded set C ⊆
[H(λ)]<ω1 such that every M ∈ C is self-generic, then NSω1 is ℵ2-saturated.

Example 3.47 foreshadows techniques from [47] that played an important
role in work of Woodin.

4. A Closer Look

In this section we explore further the various properties an ideal can have.
These include various saturation properties, both strengthening and weaken-
ing conventional saturation. Some of these are preserved under projection, an
operation that is closely related to factoring the generic ultrapower through
smaller generic ultrapowers. We will touch on towers of ideals, mostly in
relation to ideals on fixed sets.

4.1. A Structural Property of Saturated Ideals

We begin with some theorems that give some insight into the structure of
saturated ideals. These theorems are due to Baumgartner, Taylor and Wagon
[8] in the case that the ideal is κ-complete. We present the first theorem in
slightly greater generality.

4.1 Theorem. Let κ be a regular cardinal. Suppose that I ⊆ P (P (κ)) is
a normal, fine, countably complete, κ+-saturated ideal. If I is contained in
J ⊆ P (P (κ)) where J is a normal countably complete ideal, then there is an
I-positive set A such that:

J = I�A.

In particular, J is saturated.22

Proof. Let γ ≤ κ and 〈Bα : α < γ〉 be a maximal I-antichain of elements
of J . Let B = 4Bα. We claim that J is the ideal generated by I and B.

Since J is normal, B ∈ J . Hence I ∪ {B} ⊆ J . Suppose that there
is a set C ∈ J not in the ideal generated by I ∪ {B}. Then C \ B /∈ I.
Replacing C by C \ B we can assume that C ∩ Bα ∈ I for all α < γ. This
shows that 〈Bα : α < γ〉 is not a maximal I-antichain of elements of J ,
a contradiction. �
22 We remind the reader that I�A can be viewed both as I ∩ P (A) and as the ideal
generated by I ∪ {P (κ) \ A}. See Sect. 2 for a discussion of this.
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In the rarer situation where the ideal I is κ-complete and κ-saturated,
normality is not needed:

4.2 Theorem. Let κ be a regular cardinal. Suppose that I is a κ-complete,
κ-saturated ideal on a set Z. If J ⊇ I is a κ-complete ideal extending I, then
there is a set A ∈ I+ such that J = I�A.

Proof. Let 〈Aα : α < β〉 be a maximal antichain in I+ of elements of J . Then
β < κ, so [

⋃
α<β Aα]I = Σα<β [Aα] in P (X)/I. Hence J = I�(Z \ A), where

A =
⋃

α<β Aα. �

4.2. Saturation Properties

We now enumerate a hierarchy of saturation properties of ideals. Many of
these properties were explored in papers by Baumgartner and Taylor [5, 6],
although we have modified the terminology very slightly. The saturation
properties of ideals are in direct correspondence to the chain condition prop-
erties of arbitrary partial orderings, for obvious reasons. Let B = P (Z)/I.23

We define some properties that B may have; we will say that an ideal I or a
tower of ideals T has a property iff the corresponding partial ordering B has
the property.

The partial ordering B is:

• κ-dense iff B has a dense subset of cardinality κ,

• (κ, λ)-centered iff B =
⋃

α<κ Fα, where each Fα is a λ-complete filter
on B. I is κ-centered iff I is (κ,ℵ0)-centered,

• (κ, η, λ)-saturated iff every subset A of B having cardinality κ contains
a subset B of cardinality η such that the meet (intersection) of any λ
elements of B is non-zero, and

• κ-linked iff B =
⋃

α<κ Fα, where the intersection of any two elements
of Fα is not in I.

These properties are listed in roughly descending order of strength, pro-
vided that the parameters are set correctly. For example, if I is κ-dense then
I is (κ, λ)-centered for all λ. Hence P (Z) can be written as a union of κ many
filters that are comp(I)-complete. Similarly, if I is (κ, λ)-centered, then I is
(κ+, κ+, γ)-saturated for all γ < λ. We leave it to the reader to explore the
possibilities. These ideal properties were defined or used variously in [123,
83, 35, 126].

Taylor showed:

4.3 Theorem (Taylor [119, 120]). The following are equivalent:

1. There is a countably complete, ℵ1-dense ideal on ω1.
23 As usual we will be sloppy in not carefully distinguishing between the Boolean algebra
P (Z)/I and the partial ordering 〈P (Z)/I, ⊆I 〉, with the 0 element removed.
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2. (Ulam’s Problem for normal ideals) There is a collection I of countably
complete, normal ideals on ω1 with |I| = ℵ1 such that for all A ⊆ ω1,
there is an I ∈ I, A ∈ I ∪ Ĭ.

Moreover, both properties fail if MAω1 holds.

We now give a characterization of κ-dense ideals due to Shelah [102] in the
particular case that an ideal on κ is normal and κ-complete. The equivalence
of properties 1 and 2 is also implicit in Taylor [119]. Note the analogy between
the third part of the characterization and (μ+, μ+, μ)-saturation.

4.4 Theorem. Let I be a normal, fine, countably complete ideal on Z ⊆
P (X) and suppose that κ ≤ |X| is a regular cardinal. Then the following are
equivalent:

1. P (Z)/I has a dense set of size ≤ κ.

2. There are normal, fine, countably complete ideals 〈Ji : i < κ〉 such that
I ⊆ Ji for each i and every set in I+ belongs to

⋃
i J̆i.

If in addition 2κ = κ+, these are also equivalent to:

3. Whenever {Al : l ∈ κ+} is a collection of I-positive sets there is a set
L ⊆ κ+ of cardinality κ+ such that the diagonal intersection of any
L′ ⊆ L of size κ is I-positive.

Proof. That property 1 implies property 2 is immediate.
Assume property 2, towards showing property 1. Then P (Z)/I is κ+-c.c.

For each i, let {Aβ : β ∈ γ} ⊆ J̆i be maximal and strictly I-decreasing. Then
|γ| ≤ κ. Hence Ai =def Δβ∈γAβ ∈ J̆i and is the I-minimal element of J̆i,
i.e. Ji = I�Ai. Since every element of I+ belongs to some J̆i, {[Ai]I : i < κ}
is a dense subset of P (Z)/I.

Assume property 2, towards showing property 3. If we are given a sequence
{Al : l ∈ κ+} of I-positive sets, then there must be some j such that L =def

{l : Al ∈ J̆j} has cardinality κ+. Since Jj is normal, property 3 follows.
Assume property 3 and 2κ = κ+, and towards showing property 1, that I

does not have a dense set of size ≤ κ. Then we can build a sequence of sets
〈Aα : α < κ+〉 such that:

1. if D ∈ [κ+]κ, and Δα∈DAα �= ∅, then there is a β < κ+ such that
Aβ = Δα∈DAα, and

2. for α < β, Aα �I Aβ+1.

Using property 3, we can find an unbounded set L ⊆ κ+ of successor ordinals
such that for all D ∈ [L]κ, Δα∈DAα �=I ∅. For β < κ+, let Bβ = ΔL∩βAα.
By the κ+-saturation of I there is a β such that for all β′ > β, Bβ =I Bβ′ .
Suppose that Bβ = Aγ . Choose an α ∈ L \ (γ + 1). Then Bβ ⊆I Aα, since
Bβ =I Bα+1, but Aγ �I Aα, a contradiction. �
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The next few properties are weaker than saturation.

4.5 Definition. An ideal I, with corresponding B = P (Z)/I, is:

• κ-preserving iff the forcing B preserves the cardinal κ,

• cardinal preserving iff B preserves all cardinals greater than or equal to
|Z|+ and below the completeness of I,

• κ-presaturated iff I is precipitous and κ-preserving,

• presaturated iff |Z| = κ and B is κ+-presaturated, and

• weakly (λ, κ)-saturated iff for any γ < λ and any collection of antichains
{Aα : α < γ} in B there is a dense collection of Y ∈ B such that for all
α < γ, |{b ∈ Aα : Y ∧ b �= 0}| < κ.

The first and last properties are abstract properties of the partial order-
ing B, and do not depend on B being of the form P (Z)/I. Indeed, the
following is a forcing exercise:

4.6 Proposition. Suppose that γ < κ are regular cardinals and P is a partial
ordering of size less than or equal to κ. Then the following are equivalent:

1. P is weakly (γ+, κ)-saturated.

2. If G ⊆ P is generic, then cf(κ) > γ in V [G].

Proof. To see that weak saturation implies that cf(κ) > γ, suppose that
b � “ḟ is a term for a cofinal function from γ into κ”. Let Aα be a maximal
antichain below b deciding ˙f(α). Let c ≤ b be such that for all α < γ, |{a ∈
Aα : c ∧ a �= 0}| < κ. Let ξ = supα<γ{β : there is an a ∈ Aα such that c ∧
a �= 0 and a � ḟ(α) = β}. Then c � “for all α, f(α) < ξ”, a contradiction.

Now suppose that 〈Aα : α < γ〉 is a sequence of maximal antichains and
b ∈ P. Enumerate Aα as {aβ

α : β < |Aα|}. Define a term ḟ for a function by
setting ‖ḟ(α) = β‖ = aβ

α. Let c ≤ b be such that for some ξ < κ, c � “ḟ is
bounded by ξ”. Then for all α, |{β : c ∧ aβ

α �= 0}| ≤ |ξ| < κ. �

4.7 Lemma. Suppose that P is a partial ordering and κ is regular. Let ρ < κ
be the least cardinal such that there are maximal antichains 〈Aα : α < ρ〉 such
that the collection of Y such that for all α < ρ, |{b ∈ Aα : Y ∧ b �= 0}| < κ is
not dense. Then ρ is a regular cardinal.

Proof. Suppose not. Let η = cf(ρ) and 〈ρi : i ∈ η〉 be a cofinal sequence in ρ.
For each i ∈ η we can define a maximal antichain Bi such that for all Y ∈ Bi

and all α < ρi, |{b ∈ Aα : Y ∧ b �= 0}| < κ. Since η < ρ, we can find a dense
collection D of Y such that for each i ∈ η, |{c ∈ Bi : Y ∧ c �= 0}| < κ.

Let Y ∈ D, and α < ρ. Let Ci = {c ∈ Bi : Y ∧c �= 0}. Let μ = supi∈η |Ci|.
For each c ∈ Ci let Ac = {b ∈ Aα : b∧c �= 0}. Let γ = supc∈Ci,i<η |Ac|. Then
{b ∈ Aα : Y ∧ b �= 0} has cardinality at most μ× γ < κ, a contradiction. �
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With some favorable cardinal arithmetic, Baumgartner and Taylor [6]
showed that these properties are equivalent. Most of the results in this sub-
section are an elaboration of theorems from that paper.

4.8 Proposition. Assume GCH and that I is a normal, fine, countably
complete ideal on Z ⊆ P (κ) with |Z| ≤ κ. Let λ be regular cardinal less than
or equal to κ. Then the following are equivalent:

1. For all generic G ⊆ P (Z)/I, V [G] |= cf(κ+) > λ.

2. I is weakly (λ+, κ+)-saturated.

3. If {Aα : α < λ} is a collection of maximal antichains in P (Z)/I, then
there is a dense collection of Y in P (Z)/I, such that for each α there is
a pairwise disjoint collection of representatives for Aα�Y = {b ∈ Aα :
Y ∩ b /∈ I}.

4. I is precipitous and for all generic G ⊆ P (Z)/I if j : V → M ⊆
V [G] is the generic elementary embedding, then M |= cf(κ+) > λ and
Mλ ∩ V [G] ⊆M .

We note that the only part of the following proof that uses GCH is the
implication that property 1 implies property 2. Weaker assumptions than
GCH suffice for proving 2, for example the assumption that 2κ < κ+ω and
that for all n ∈ ω, cf(κ+n)V [G] > λ. We leave this to the reader. See
[18] for some sufficient conditions involving pcf theory. We do point out
that the argument given below can be easily generalized without any GCH
assumption under the hypothesis that I is a normal, fine, countably complete,
κ+ω-saturated ideal on Z ⊆ P (κ) with |Z| ≤ κ that preserves every cardinal
κ+n for n ≥ 1.

Proof. To see the proposition, assume property 1 and fix maximal antichains
〈Aα : α < λ〉. Then each Aα has cardinality less than or equal to κ+.
Enumerate Aα as 〈aα

β : β < γα〉 in a one-to-one way so that γα ≤ κ+. Define
a function f : λ → κ+ lying in V [G] for generic G ⊆ P (Z)/I, by setting
f(α) = β iff G ∩ Aα = {aα

β}. Then, since κ+ has cofinality greater than
λ in V [G], there is a set Y ⊆ Z such that [Y ] � sup(f“λ) = η. Then for
all α, sup{β : Y ∩ aα

β /∈ I} ≤ η. Hence we have verified that I is weakly
(λ+, κ+)-saturated.

Now suppose that I is weakly (λ+, κ+)-saturated, i.e. property 2. Then
arguments similar to Proposition 2.23 show that if |{b ∈ Aα : b∩Y /∈ I}| ≤ κ,
then we can choose a system of disjoint representatives for {b ∩ Y : b ∈
Aα and b ∩ Y /∈ I}. Hence given a collection of antichains 〈Aα : α < λ〉,
there is a dense collection of Y ∈ P (Z)/I such that for all α < λ there is a
disjoint system of representatives for {b ∩ Y : b ∈ Aα and b ∩ Y /∈ I}.

As in the proof that the disjointing property implies precipitousness (see
Proposition 2.14), this immediately gives that I is precipitous. Moreover,
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it shows that the analogue of Proposition 2.12 holds: given P (Z)/I terms
{ḟα : α < λ} for functions in V with domain Z, there is a dense collection
D ⊆ P (Z)/I such that for each Y ∈ D there is a sequence of functions
{gα : α < λ} that lies in V such that [Y ] � [ḟα]M = [ǧα]M . Using normality,
this suffices to argue the closure of the ultrapower as in Proposition 2.14.

Finally, it is easy to check that property 4 implies property 1. �

To summarize we get the following corollaries:

4.9 Corollary. Assume GCH and that I is a normal, fine, countably com-
plete ideal on Z ⊆ P (κ) with |Z| = κ such that P (Z)/I preserves κ+. Then
I is precipitous. If G ⊆ P (Z)/I is generic and j : V → M is the generic
embedding then Mκ ∩ V [G] ⊆M .24

4.10 Corollary. In addition to the hypotheses of Proposition 4.8, assume
that I is λ++-complete and weakly (λ+, κ+)-saturated. Then every cardinal
and cofinality less than λ+ is preserved.

We now show a small generalization of a theorem Solovay proved about
c.c.c. ideals:

4.11 Proposition. If I is a countably complete ideal on P (κ) such that
P (κ)/I is a proper partial ordering, then I is weakly (ℵ1,ℵ1)-saturated. Thus,
I is precipitous and the corresponding generic ultrapower is closed under ω-
sequences.

Proof. Suppose that P (κ)/I is a proper partial ordering. Let {An : n ∈ ω} be
a collection of maximal antichains and S ∈ I+. Let N ≺ H(θ) be countable
with I, κ, {An : n ∈ ω} ∈ N and T a generic condition for N . Then {a ∈
An : a ∩ T /∈ I} ⊆ N and hence is countable. Since I is countably complete
we can disjointify the An’s below T , and proceed as in Proposition 4.8. �

The saturation properties of the ideals often greatly restrict the possible
partial orderings that can arise as the quotient P (Z)/I. An extreme example
is:

4.12 Example. Suppose that I is a countably complete, ℵ1-dense ideal.
Then P (Z)/I is a complete Boolean algebra that collapses ω1 and has a
dense set of size ℵ1. Hence it is isomorphic to the complete Boolean algebra
generated by Col(ω, ω1).

We note that Balcar and Franek showed that if I is an ideal on ω1 that
is nowhere precipitous and B(P (ω1)/I) has a dense set of size ω2, then
B(P (ω1)/I) ∼= B(Col(ω, ω2)).

24 Note that we do not assume that the critical point of j is κ.
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4.3. Layered Ideals

The quotient algebras of certain saturated ideals are organized enough to
allow powerful inductive constructions of ultrafilters. (See e.g. [48, 36] and
Sects. 5.9 and 7.4.) The main notion is that of a layered ideal.

4.13 Definition. Let I be a normal, fine, κ-complete ideal on κ. Then I is
layered iff B(P (κ)/I) =

⋃
α<κ+ Bα where:

1. each Bα is a Boolean subalgebra of B(P (κ)/I) with |Bα| = κ,

2. if α < β then Bα ⊆ Bβ ,

3. for limit β, Bβ =
⋃

α<β Bα, and

4. for stationarily many α ∈ κ+ ∩ Cof(κ), Bα is a regular subalgebra of
B(P (κ)/I).

A sequence 〈Bα : α < κ+〉 is called a filtration if it satisfies clauses 1 to 3 in
the definition. A filtration that also satisfies clause 4 is a layering sequence.

4.14 Remark (Shelah). If I is a layered ideal on κ then I is κ+-saturated.

Proof. Suppose that A ⊆ B(P (κ)/I) is a maximal antichain. Then for a
closed unbounded set of α < κ+, A ∩ Bα is a maximal antichain in Bα. For
such an α where Bα is a regular subalgebra of B, we must have A ∩ Bα

maximal in B. In particular, A ∩ Bα = A and hence |A| ≤ κ. �

4.15 Definition. A layered ideal I is strongly layered iff there is a layering
sequence 〈Bα : α < κ+〉 such that there is a closed unbounded set C ⊆ κ+

such that for all α ∈ C ∩ Cof(κ), Bα is a regular subalgebra of B.

If 〈Bα : α < κ+〉 witnesses strong layering then we can pass to a subse-
quence with the property that for all α ∈ Cof(κ), Bα is a regular subalgebra
of B.

It is well-known that if A ⊆ κ+ ∩ Cof(κ) is stationary, then there is a
partial ordering P that adds a closed unbounded set C ⊆ κ+ to V with
C ∩ Cof(κ) ⊆ A in such a way that P adds no new κ-sequences to V . As a
consequence, if I is a layered ideal on κ and A is the stationary subset wit-
nessing clause 4 of the definition of “layered”, we can add a closed unbounded
subset of A without changing P (κ). In the resulting extension I is strongly
layered. Thus it is a consequence of the following theorem that if we have
κ<κ = κ, and a layered ideal I on κ, there is a (κ+,∞)-distributive forcing
extension in which I is κ-centered. The following is a result of Shelah.

4.16 Theorem (Shelah [102]). If I is a strongly layered ideal on κ and
κ<κ = κ then I is κ-centered.

We prove this theorem for the case CH and κ = ω1. After the proof we
briefly discuss how to extend the theorem to arbitrary κ.
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Proof. We begin with a review of the elementary theory of Boolean algebras.
Suppose that B and C are complete Boolean algebras, P is dense in B and Q

is dense in C. If there is a regular embedding i of P into Q then there is a
complete embedding ι : B → C extending i. In this case we can define a map
πι : C → B by setting π(c) =

∏
{b : ι(b) ≥ c}. Then π ◦ ι = id and ι ◦ π ≥ id.

Moreover, if b ∈ B and b ≤ π(c) then ι(b) ∧ c �= 0. The map π will be called
a projection of C to B.

Suppose now that we have complete embeddings ι0 : B → C and ι1 : C → D
where B, C,D are all complete Boolean algebras. Then it is easy to check that
if π0 and π1 are the projections associated with ι0 and ι1, then π0 ◦ π1 is the
projection associated with ι1 ◦ ι0.

If i : P → Q is a regular embedding, then for q ∈ Q we define the
“preprojection”

ppP(q) = {p ∈ P : p ≤ π(q)}.

For p ∈ P, ppP(i(p)) = {r ∈ P : r ≤ p} and for all q ∈ Q,
∑B(P)ppP(q) = π(q).

If we have a further regular embedding j : Q → R, then for all r ∈ R:
∑B(P)

⋃
{ppP(q) : q ∈ ppQ(r)} = πi ◦ πj(r).

Inductively, given a sequence of Boolean algebras {Bα : α ∈ {α0, . . . , αn}}
indexed by an increasing sequence of ordinals αi and a commuting system of
regular embeddings ια,α′ : Bα → Bα′ for α < α′ and b ∈ Bαn , we can define
pp�α(b) to be

⋃{
ppα0

(q1) : q1 ∈
⋃{

ppα1
(q2) : . . .

qn−2 ∈
⋃
{ppαn−2

(qn−1) : qn−1 ∈ ppαn−1
(b)}

}
. . .

}
.

Then
∑

pp�α(b) = πα0(b) and if �α′ is a subsequence of �α then pp�α(b) ⊆
pp�α′ (b).

Let B = P (ω1)/I and let 〈Bα : α ∈ ω2〉 be a filtration such that for all
α ∈ Cof(ω1), Bα is a regular subalgebra of B. Fix a large regular cardinal θ
and b ∈ B, let

Ab = 〈H(θ),∈ Δ,B, 〈Bα : α ∈ ω2〉, ḃ〉,

where ḃAb = b.

Claim. For each well-founded countable model N ≡ Ab there is a filter UN

on BN , with ḃN ∈ UN such that for all decreasing sequences �α ∈ [(Cof(ω1)∩
ω2)N ]<ω and all d ∈ UN , there is a c ∈ pp�α(d) ∩ UN .

To see this, we build UN by finite approximations. We can assume that
N is transitive. Enumerate (Cof(ω1) ∩ ω2)N as 〈βn : n ∈ ω〉. Using the
remarks above about preprojections, inductively build an increasing sequence
of finitely generated filters so that at stage n, the filter is generated by a
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set {di : i < i(n)} containing ḃN with the property that for all decreasing
sequences �α chosen from {βk : k < n} and all i, there is a j such that
dj ∈ pp�α(di).

We now describe the centering of B. Let 〈Nγ : γ ∈ ω1〉 enumerate the
transitive countable N that for some b ∈ B, N is elementarily equivalent
to Ab. These are the transitive countable models satisfying the hypothesis of
the claim. Each Nγ and its associated UNγ will act as a template for a filter
Fγ on B. The collection of filters witnessing the centering is 〈Fγ : γ ∈ ω1〉.

For b ∈ B, let Nb = SkAb(∅). Clearly Nb satisfies the hypothesis of the
claim. We let Fγ be the filter generated by those b for which Nb

∼= Nγ .
Since the transitive collapse of each Nb is among the Nγ ’s, each b belongs to
some Fγ . We must see that Fγ is a proper filter.

Fix a particular γ. We will be done if we can show that if b0, . . . , bn−1 ∈
Fγ then

∏
i<n bi �= 0. Fix such a collection {b0, . . . , bn−1}. For notational

simplicity, write Nbi as Ni.
We look at how the traces of the Ni’s on ω2 fit together. Note that any

two Ni’s have the same intersection with ω1, namely ω
Nγ

1 . For i, j < n,
Ni ∩ Nj ∩ ω2 is an initial segment of Ni ∩ ω2. After this common initial
segment they are disjoint below ω2 and thus Nj divides Ni into intervals that
contain no elements of Nj .

If β ∈ Nj ∩ ω2 \ Ni ∩ ω2 and there is an α ∈ Ni ∩ ω2 that is bigger than
β then the least such α is a limit ordinal of uncountable cofinality and there
are unboundedly many ordinals of cofinality ω1 in Ni∩α. If d ∈ Ni∩Bα then
there is a δ ∈ Ni∩Cof(ω1) such that d ∈ Ni∩Bδ. Furthermore, if d ∈ ppα(c)
for some c ∈ B ∩Ni, then d ∈ ppβ(c) for all δ ≤ β ≤ α.

When we have three or more Ni’s the picture is a bit more complicated as
the initial segments of Ni∩ω2 coming from the intersections with Nj and Nk

can differ. With this in mind we define the stem of Ni to be those ordinals
α in Ni ∩ ω2 with the property that for all j �= i, every β ∈ Nj ∩ α belongs
to Ni. We will take the stem of a collection of Ni’s to be the longest stem
among the stems of the Ni’s in the collection.

Let πi : Ni
∼= Nγ be the transitive collapse. Let Ui be the πi inverse image

of UNγ . Then Ui ⊆ Ni and satisfies the conclusion of the claim. Because
Ni ∩ Nj ∩ ω2 is an initial segment of Ni ∩ ω2 and Nj ∩ ω2, the transitive
collapses of Ni and Nj agree on Bα for all α in Ni ∩ Nj ∩ ω2. Hence, if
d ∈ Ni ∩Nj ∩ B, then d ∈ Ui iff d ∈ Uj .

For i ≤ n, define decreasing sequences of ordinals �αi = αi
0, α

i
1, . . . and

elements ci
m ∈ Bαi

m
such that:

1. ci
o = bi and αi

0 is equal to the least α ∈ Cof(ω1) such that bi ∈ Bα,

2. both αi
j and ci

j belong to Ni and αi
j is the least ordinal α of uncountable

cofinality such that ci
j ∈ Bα,

3. the last ordinal on each sequence belongs to the stem of a collection of
Ni’s,
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4. ci
m+1 ∈ ppαi

m+1
(ci

m) ∩ Ui (and hence inductively, we see that ci
m ∈

ppαi
0,αi

1,...,αi
m

(bi) ∩ Ui for all αi
m), and

5. if i �= j and αi
k > αj

k′ with αj
k′ /∈ Ni, then there is an l such that

ci
l ∈ ppβ(ci

k) where β is the least element of Ni ∩ ω2 above αj
k′ .

We note that ci
l ∈ ppδ(ci

k) for some δ ∈ ω2 ∩ β. This δ < αj
k′ and hence

ci
l ∈ ppαj

k′
(ci

k).
These sequences are built by induction simultaneously for all i with exactly

one �αi being extended at each step of the induction. At the inductive step,
one considers the greatest αj

k′ for which there is an αi
k for which the clause 5

does not hold (if such a bad αj
k′ exists). We can assume inductively that k

is the length of the sequence �αi defined so far. Let β be the least ordinal in
Ni above αj

k′ . Let ci
k+1 be an element of ppβ(ci

k)∩Ui. Let αi
k+1 be the least

ρ ∈ Cof(ω1) ∩ ω2 such that ci
k+1 ∈ Bρ.

If there is no bad αj
k′ at some step in the induction, we claim that among

the least elements of the sequences �αj there is at most one that is not in
the stem. Otherwise we would have αi

k > αj
k′ such that αi

k and αj
k′ are the

least elements of �αi and �αj respectively and neither one is in the stem of the
system. Then αj

k′ /∈ Ni, and hence there is an αi
k for which the clause 5 does

not hold for αj
k′ ; i.e. αj

k′ is bad.
The induction continues until either all of the least elements of the se-

quences �αi belong to the stem, or until there are no counterexamples to
item 5. If the latter case holds and αi

k is the only last element not in the
stem, we let β be the least element of Ni above the stem, ci

k+1 ∈ ppβ(ci
k)∩Ui,

and αi
k+1 the least ordinal ρ of cofinality ω1 such that ci

k+1 ∈ Bρ.

Claim. For all ordinals ρ in
⋃

i �α
i, if {d0, . . . , dl} are the elements {ci

m}i,m

of B that belong to Bα for α in ρ + 1 ∩
⋃

i �α
i, then

∏
dj �= 0.

The claim suffices, since we can take ρ = max
⋃

�α, and see that
∏

bi �= 0,
finishing the proof.

We establish the claim by induction on ρ ∈
⋃

i �α
i. Let ρ be the greatest

ordinal in
⋃

i �α
i that lies in the stem of the system of Ni’s and suppose that

ρ ∈ Nk. Then πk agrees with each of the other πi’s on the stem of Ni. In
particular, if {d0, . . . , dl} are the elements of B associated with ordinals in
the stems of all of the Ni’s then {d0, . . . , dl} ⊆ Uk. Thus

∏
i≤l di �= 0.

Suppose that we succeed with the induction to ρ and {d0, . . . , dl} the
elements of B associated with the ordinals in ρ + 1 ∩

⋃
i �α

i. Let α be the
least element of

⋃
i �α

i greater than ρ and let c be the element of B associated
with α. Suppose that α = αi

k ∈ Ni. Then αi
k+1 and ci

k+1 are built in one
of two ways corresponding to whether they are the result of a bad αj

k′ or
not. The first possibility is that αi

k is the least element of
⋃

i �αi not in the
stem. If β is the least element of Ni above the stem, then ci

k+1 ∈ Bβ . But∏
i≤l di ≤ ci

k+1 ∈ ppβ(ci
k). Hence

∏
i≤l di ∩ ci

k �= 0.
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The other way that αi
k+1 can be constructed is as a result of a bad αj

k′ ∈
{d0, . . . , dl}. In this case if β is the least element of Ni above αj

k′ then
ci
k+1 ∈ ppβ(ci

k). Thus, as in the other case
∏

i≤l di ≤ ci
k+1 ∈ ppβ(ci

k) and so
∏

i≤l di ∩ ci
k �= 0. �

We now describe the modifications necessary for κ > ω1. By replacing
countable structures N with structures N ′ of cardinality less than κ with
N ′ ∩κ ∈ κ, most of the proof above goes through without change. The main
problem is the construction of the filters UN . To remedy this problem, in
the Claim we use structures N with the property that N =

⋃
n∈ω Nn where

Nn ∈ Nn+1 and |Nn| < κ and Nn ∩ κ an initial segment of Nn+1 ∩ κ.
We may assume without loss of generality that for each α ∈ Cof(κ), Bα is

closed under sums of size less than κ. In particular, if N ≺ Ab is the union of
an increasing sequence Nn with Nn ∈ Nn+1, Nn∩κ ∈ κ, and �α is a decreasing
sequence in Cof(κ) ∩ Nl with c ∈ B ∩ Nl, then c�α,n =

∑
(pp�α(c) ∩ Nn)

exists in Nl for all n < l. One can then check that for N ≡ Ab, the set
{b�α,n : �α ∈ Nl ∩Cof(κ)N , n < l} generates a filter UN that makes the rest of
the argument work.

4.4. Projections

We now investigate ideals under the Rudin-Keisler ordering. We establish
an important result of Burke stating that any ideal is the projection of the
nonstationary ideal restricted to a stationary set. Our priority is to see which
of the properties listed above are preserved under projections, rather than
the structure of the Rudin-Keisler ordering itself. The latter topic has been
explored extensively in [9].

4.17 Definition. Let π : Z → Z ′ and I be an ideal on Z. Then the projection
of I to Z ′ is the ideal I ′ defined by setting B ∈ I ′ iff π−1(B) ∈ I. It is easy
to check that if I is κ-complete then its projection I ′ is also κ-complete.

Let 〈A,<A〉 be a linearly ordered set. Given a collection of sets 〈Za :
a ∈ A〉 and a commuting sequence of functions πa,a′ : Za → Za′ for a′ <A a,
the sequence of ideals 〈Ia : a ∈ A〉 is a tower iff for all a′ < a, Ia′ is the
projection of Ia by the function πa,a′ .

We consider some standard examples:

4.18 Example. Let κ < λ′ < λ be cardinals, with κ regular. Define the
function π : [λ]<κ → [λ′]<κ by setting π(z) = z ∩ λ′. Then a normal,
fine, γ-complete ideal I on [λ]<κ projects to a normal, fine, γ-complete ideal
on [λ′]<κ.

The ideal of nonstationary sets on [λ]<κ projects to the ideal of nonsta-
tionary sets on [λ′]<κ (see [47]). Hence the nonstationary ideals form a tower
of ideals. More can be said (see [42]): the nonstationary ideals restricted
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to {x : x ∩ On is ω-closed} form a tower, as do the nonstationary ideals
restricted to the internally approachable sets. It is not true in general that
if S ⊆ [λ]<κ is a stationary set and λ′ < λ then the projection of the nonsta-
tionary ideal to [λ′]<κ is the nonstationary ideal on the projection of S to λ′.
Corollary 4.21 below shows that this is false in the most dramatic way.

Example 4.18 is not special to [λ]<κ. If λ > λ′ define π : P (λ) → P (λ′)
by setting π(z) = z ∩λ′. Then π projects the nonstationary ideal on P (λ) to
the nonstationary ideal on P (λ′).

Going in the other direction, ideals on sets Z ⊆ P (X) naturally give ideals
on sets P (X ′) for X ′ ⊇ X:

4.19 Definition. Suppose that J is a normal, fine, κ-complete ideal on Z ⊆
P (X) and suppose that X ′ ⊇ X. Then the conditional closed unbounded filter
on P (X ′) relative to J is defined to be the smallest normal, fine, κ-complete
filter on P (X ′) projecting to J̆ by the map π(N) = N∩X. The nonstationary
ideal conditioned on J is the dual of the conditional closed unbounded filter.

The terminology “conditional” is taken in analogy with probability theory,
where one conditions one σ-algebra on another and takes the ideals of null
sets.

For sufficiently large θ relative to |Z|, we can characterize conditional
closed unbounded filters25 which take a particularly simple form.

4.20 Proposition. Suppose that J is a normal, fine, κ-complete filter on
Z ⊆ P (X) and that θ is a regular cardinal with J, P (Z) ∈ H(θ). Then
the conditional closed unbounded filter on H(θ) relative to J is the closed
unbounded filter on H(θ) restricted to

{N ≺ H(θ) : N ∩X ∈ Z and N is good for J}.

Proof. Without loss of generality we can assume that κ ⊆ X. Since J is
normal, fine and κ-complete, we can assume that for all z ∈ Z, z ∩κ ∈ κ+1.

Let I be the closed unbounded filter restricted to {N ≺ H(θ) : N ∩X ∈
Z and N is good for J}. By Proposition 3.44, I is a proper ideal. Clearly I
is normal and fine. Since it concentrates on those N such that N ∩X ∈ Z it
is κ-complete. We need to see that it projects to J .

Suppose that A ⊆ H(θ) is positive with respect to I. Let D ∈ J̆ . Then
{N ⊆ H(θ) : D ∈ N} ∈ Ĭ and for every good N ∈ A with D ∈ N we have
N ∩X ∈ D. Hence π“A ∈ J+.

For the other direction, let B ∈ J+ and A an algebra on H(θ). Then by
Proposition 3.44, for J-almost all z ∈ B, SkA(z) is good. In particular, there
is a z ∈ B such that SkA(z)∩X = z and SkA(z) is good. Hence π−1(B) ∈ I+.
This shows that I is a normal ideal that projects to J .

Suppose that I ′ is a normal ideal projecting to J . Then a normality
argument easily shows for all A, the collection of those N that are good and
are elementary substructures of A belongs to the dual of I ′. Hence I ⊆ I ′. �
25 See Lemma 3.12 for the basic result on unconditional club filters.
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We draw the following corollary due to Burke [11], using somewhat differ-
ent methods.

4.21 Corollary. Suppose that I is a normal, fine ideal on a stationary set
Z ⊆ P (X). Then for all Y ⊇ X with |Y | ≥ 2Z , there is a stationary set
Z ′ ⊆ P (Y ) such that I is the projection of the nonstationary ideal on Y
restricted to Z ′.

Note that Proposition 4.20 allows us to characterize the conditional closed
unbounded filter on arbitrary sets P (X ′) for X ′ ⊇ X as the projection
to P (X ′) of the conditional closed unbounded filter on some H(θ) with θ
large and regular. Thus the conditional closed unbounded filter exists on all
X ′ ⊇ X.

We now explore projections in terms of generic elementary embeddings.
The following proposition is an exercise in standard large cardinal techniques.

4.22 Proposition. Suppose that I is an ideal on a set Z and π : Z → Z ′

yields a projection of I to an ideal I ′. If j : V → M = V Z/G is the
ultrapower embedding given by a generic G ⊆ P (Z)/I,26 i is the ideal element
[id]M and i′ = j(π)(i) then I ′ is the ideal induced by j and the ideal element i′.
Moreover if M ′ is the ultrapower V Z′

/U(j, i′), then the map k : M ′ → M
defined by k(f) = j(f)(i′) is a well-defined elementary embedding making the
following diagram commute:

V

M ′ ∼= V Z′
/U(j, i′) M

����� j′
������

j

�
k

In particular, if M is well-founded then M ′ is.

We note that Proposition 4.22 should not be interpreted as claiming that
I ′ is precipitous. This is false in general, as shown by Theorem 7.8. The
next example shows that we can often find normal ideals as projections of
precipitous ideals.

4.23 Example. Suppose that I is a precipitous ideal on Z ⊆ P (X). Let
X ′ ⊆ X. Suppose that for all generic G ⊆ P (Z)/I, if j : V → M is
the associated generic embedding, then j“X ′ ∈ M . Then there is a dense
collection of Y ⊆ Z such that I�Y projects to a normal ideal on P (X ′). In
particular, if κ is the critical point of j for all generic G, then densely often
I projects to a normal, κ-complete ideal on κ.

Proof. To see this, suppose that [Y ] � “[f ] represents j“X ′”. Then f is
incompressible in the sense of [111], namely if g is any function with domain Y
such that for all z ∈ Y , g(z) ∈ f(z) then g is constant on an I-positive subset

26 For this proposition we do not assume that V Z/G is well-founded.
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of Y . Define a projection map from I�Y to a normal ideal on P (X ′) by setting
π(z) = f(z) for z ∈ Y . Let J be the projection of I to Z ′ = P (X ′). It is easy
to check that W ∈ J iff there is no Y ′ ⊆ Y such that [Y ′] � j“X ′ ∈ j(W ).
Since f is incompressible, the ideal J is normal. �

Note that this example shows that if I is a κ-complete precipitous ideal
on κ, then for a dense set of [Y ] ∈ P (κ)/I, there is a projection of I�Y to a
normal κ-complete ideal on κ.

Given a projection map π : Z → Z ′ and ideals I and I ′ such that I ′ is
the projection of I, we can consider the Boolean algebras B = P (Z)/I and
B′ = P (Z ′)/I ′. The map ι : B′ → B given by ι([Y ′]) = [π−1(Y ′)] is a well-
defined Boolean algebra homomorphism. In particular, ι sends antichains to
antichains. We thus can make the following observation:

4.24 Remark. Suppose that π : Z → Z ′, I is an ideal on Z that is λ-
saturated and I ′ is the projection of I to an ideal on Z ′. Then I ′ is λ-
saturated.

The function ι is not necessarily a regular embedding. However the next
proposition gives a criterion for when it is.

4.25 Proposition. Suppose that X ′ ⊆ X, Z ⊆ P (X), Z ′ = {z∩X ′ : z ∈ Z}
and π : Z → Z ′ is defined by π(z) = z ∩ X ′. Let I be a normal, fine,
countably complete ideal on Z and I ′ be the projection of I to Z ′. If I ′ is
|X ′|+-saturated then ι is a regular embedding.

Proof. Let {ax : x ∈ X} be a maximal antichain in P (Z ′)/I ′. Then
4x∈Xax ∈ Ĭ ′. Since ι(4x∈Xax) = 4x∈Xι(ax) we see that 4x∈Xι(ax) ∈ Ĭ.
Hence {ι(ax) : x ∈ X} is a maximal antichain in P (Z)/I. �

It is easy to check that the properties of (κ, λ)-centeredness, (κ, η, λ)-
saturation, κ-linkedness and κ-saturation are all preserved under projections.
(See [111, 6].) As a consequence, the existence of an ideal I with one of
these properties implies that the projection of I to a normal ideal on the
completeness of I inherits that property. So, for example, the existence of
a κ-complete, κ+-saturated ideal on κ implies the existence of a normal,
κ-complete, κ+-saturated ideal on κ.

Following [35] we give a sample of these types of arguments:

4.26 Lemma. Suppose that X ′ ⊆ X, Z ⊆ P (X), Z ′ = {z ∩X ′ : z ∈ Z} and
π : Z → Z ′ is defined by π(z) = z ∩X ′. Let I be a normal, fine, countably
complete ideal on Z and I ′ be the projection of I to Z ′. Let μ ≤ |X ′|. Then
if I is μ-dense, so is I ′.

Proof. Define Π : P (Z) → P (Z ′) by setting Π(A) = {π(z) : z ∈ A}. Let
D ⊆ P (Z)/I be a dense set of size μ. Choose representatives 〈Ad : d ∈ D〉
with Ad ⊆ Z and [Ad]I = d. For each C ∈ Ĭ, let bd

C = Z ′ \Π(C ∩Ad).
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By the μ+-saturation of I ′, we can find 〈bd
Cα

: α < μ〉 such that

4α<μb
d
Cα
⊇I′ bd

C

for all C ∈ Ĭ. Let Cd = Δα<μCα. Then for all C ∈ Ĭ, Π(Cd ∩Ad) ∩ bd
C ∈ I ′.

Let
E = {[Π(Cd ∩Ad)]I′ : d ∈ D}.

We claim that E is dense in P (Z ′)/I ′. Choose an arbitrary B ∈ P (Z ′)/I ′.
Then there is a d such that Ad \ {z : π(z) ∈ B} ∈ I. Choose a C such that
Π(Ad ∩ C) ⊆ B. Then Π(Cd ∩Ad) ⊆I′ Π(C ∩Ad) ⊆ B. �

We give a sample corollary:

4.27 Corollary. Suppose that there is a countably complete, uniform, ℵ1-
dense ideal on ωn. Then there is a weakly normal, countably complete, uni-
form, ℵ1-dense ideal on ωn.

Not all of the desirable properties of ideals are preserved under projec-
tions. Laver [85] showed that if the existence of a supercompact cardinal is
consistent then it is consistent to have a precipitous ideal on [ω2]<ω1 such
that its canonical projection to a normal ideal on ω1 is not precipitous. This
is Theorem 7.8 in Sect. 7.

Gitik, in recent unpublished work, gave an example of a precipitous ideal
on ω1 such that the canonical projection to a normal ideal on ω1 is not
precipitous.

By Laver’s example, we know that precipitous ideals are not closed under
projection. As far as the author knows it is open whether presaturated ideals
are closed under projection, even in the presence of GCH.

4.5. Where the Ordinals Go

In this section we give some examples of techniques for determining where
the ordinals are sent by generic elementary embeddings. These examples are
chosen to be representative and are easy to generalize to handle any particular
situation.

4.28 Proposition. Let κ be a successor cardinal, n ∈ ω and I be a uniform
κ-complete, κ+-saturated ideal on a set Z ⊆ P (κ+n) that has cardinality at
least κ+n. Suppose that either:

1. Z has cardinality κ+n, or

2. I is normal and fine.

Let j : V → M be a generic embedding induced by the ultrapower of V by
a generic G ⊆ P (Z)/I. Then the critical point of j is κ and for all i ≤ n,
j(κ+i) = κ+i+1.
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Proof. Let λ = crit(j).
Suppose that |Z| = κ+n. Then there are functions 〈fα : α < κ+n+1〉 such

that fα : Z → Z and for all α < β, |{z ∈ Z : fα(z) ≥ fβ(z)}| < κ+n. Hence
j(κ+n) ≥ (κ+n+1)V so λ ≤ κ+n.

Suppose now that I is normal and fine. Define f(z) to be the least element
of κ+n \ z and let id : Z → Z be the identity map. Then j(κ+n) > [f ] /∈
[id]M = j“κ+n. Hence λ ≤ κ+n < j(κ+n). Moreover, P (κ+n)V ⊆ M , so
j(κ+n) ≥ κ+n+1.

In either case, λ = κ+i for some i ≤ n and j(κ+n) ≥ κ+n+1. If λ = κ+i for
some i > 0, then we have j(λ) = (κ+i)M , but j(λ) > λ and this is impossible
without collapsing some cardinal greater than or equal to κ+. Hence λ = κ
and j(λ) = (κ+)V . Counting cardinals shows that j(κ+i) = κ+i+1. �

4.29 Example. Suppose that I is a normal, κ-complete, κ+-saturated ideal
on a successor cardinal κ. Let j : V → M be a generic embedding induced
by the ultrapower of V by a generic G ⊆ P (κ)/I. Then:

1. j(κ) = κ+,

2. j(κ+) ∈ ((κ+)V , (κ+2)V ), j“κ+ is cofinal in j(κ)+,

3. for all i ∈ [2, ω], j(κ+i) = (κ+i)V , and

4. there is a <κ-closed and unbounded subset of κ+i lying in V consisting
of ordinals α such that for all generic G, j(α) = α.

Proof. Since κ is the critical point of j and κ is a successor cardinal, if
j(κ) > κ+, the forcing would collapse κ+, a contradiction. Since P (κ)V ⊆M ,
j(κ) ≥ κ+ and hence j(κ) = κ+.

Let f : κ→ κ+. Then the range of f is bounded by some ordinal α < κ+,
and hence [f ]M < j(α). Thus j“κ+ is cofinal in j(κ+). Since κ+2 is preserved
by the forcing, we see that j(κ+) ≤ (κ+2)V . But in V [G] the cofinality of
j(κ+) is equal to the cofinality of (κ+)V , and hence j(κ+) must lie between
κ+ and κ+2. Since κ+2 is preserved, j(κ+) < (κ+2)V .

Since j(κ+2) ≥ (κ+2)V we must have j(κ+2) = (κ+2)V . Similarly we must
have j(κ+n) = κ+n.

For each n > 2 and each ordinal α < κ+n there is a γ(α) < κ+n such
that j(α) < γ(α) for all generic G. Let α∗ be a closure point of the function
α �→ γ(α) having cofinality less than κ. Let 〈αξ : ξ ∈ δ〉 be increasing and
cofinal in α∗, where δ < κ. Then

α∗ ≤ j(α∗) = sup{j(αξ) : ξ ∈ δ} = α∗.

Thus the set of closure points that have cofinality less than κ in V is a <κ-
closed unbounded set F ⊆ κ+n with F ∈ V consisting of ordinals that are
fixed by every embedding j. �
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4.30 Example. Let κ be a successor cardinal. Suppose that I is a normal,
fine, κ-complete, κ+-saturated ideal on Z ⊆ P (κ+n). Let j : V → M be
a generic embedding induced by taking the ultrapower of V by a generic
G ⊆ P (Z)/I. Then:

1. for all i ≤ n, j(κ+i) = κ+i+1, and

2. I concentrates on the collection of x ∈ P (κ+n) such that for all i ≤ n−1,
ot(x ∩ κ+i+1) = κ+i.

If |Z| = κ+n, then

3. j“κ+n+1 is cofinal in j(κ+n+1).

For all i > n + 1,

4. j(κ+i) = κ+i, and

5. there is a <κ-closed unbounded subset of κ+i lying in V consisting of
ordinals α such that for all generic G, j(α) = α.

Remark. The hypothesis that |Z| = κ+n is redundant as we shall see later in
Corollary 4.43, as such an I always concentrates on a set Z with |Z| = κ+n.

Proof. Note that the critical point of j is κ by Proposition 4.28. Since Mκ+n∩
V [G] ⊆ M , we know that j(κ) ≥ κ+ and can show inductively that for all
i ≤ n, j(κ+i) ≥ κ+i+1. Since κ+i+1 is preserved by the forcing, we must have
j(κ+i) = κ+i+1.

By the remarks in Sect. 2.8, we see that I concentrates on the collection
of x ∈ P (κ+n) such that for all i ≤ n− 1, ot(x ∩ κ+i+1) = κ+i.

Suppose that |Z| = κ+n and argue as before: Suppose that f : Z → κ+n+1.
Then f is bounded by a constant function. Hence j“κ+n+1 is cofinal in
j(κ+n+1). Since j(κ+n+1) > κ+n+1 we see that j(κ+n+1) is singular in V [G].
Since cardinals are not collapsed, j(κ+n+1) < κ+n+2.

The rest of the example is exactly parallel to the previous one. �

The next example is slightly different but uses similar ideas:

4.31 Example. Suppose that I is a normal, fine, κ-complete ideal on Z ⊆
[κ+n]<κ that is κ+n+1-saturated. Suppose that 2|Z| = κ+n+1. Let j : V →
M be the generic embedding induced by the ultrapower of V by a generic
G ⊆ P (Z)/I, then:

1. κ is the critical point of j,

2. j(κ) = κ+n+1, and

3. for all i ≥ n + 2, κ+i is a fixed point of j.

Without normality we can still get results:
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4.32 Example. Suppose that κ is a successor cardinal and I is a uniform, κ-
complete, κ+-saturated ideal on κ+n. Let j : V →M be a generic embedding
induced by the ultrapower of V by a generic G ⊆ P (Z)/I, then for all
0 ≤ i ≤ n− 1,

1. j(κ+i) = κ+i+1,

2. j(κ+n) ≤ κ+n+1, and

3. for all i ≥ 2, j(κ+n+i) = (κ+n+i)V .

4.6. A Discussion of Large Sets

In earlier lemmas we have frequently had the hypothesis that an ideal I
concentrates on some set Z ⊆ P (X) with |Z| ≤ |X|. With one important
exception, in every case we consider one can simply prove that |Z| ≤ |X|. In
many cases there are closed unbounded sets of small cardinality, as shown by
Baumgartner [4].

The exceptional case is when we are dealing with closed unbounded sets
relative to the countable subsets of a cardinal κ ≥ ω2. In Corollary 6.16 we
see that every closed unbounded subset of [κ]ω has cardinality κℵ0 . The more
typical situations are covered in this section.

We begin by discussing the situation with precipitous ideals before pro-
ceeding to saturated ideals where the situation is much simpler. First some
prerequisites:

4.33 Definition. For K a collection of regular cardinals, define the charac-
teristic function of a set X on K, χK

X : K → On, by setting:

χK
X(κ) = sup(X ∩ κ).

We will say that X is weakly ω1-uniform on K if for all κ ∈ K, cf(X∩κ) > ω.

The following lemma is standard and easy to prove (see e.g. [18]).

4.34 Lemma. Suppose that K is a collection of regular cardinals between μ
and ρ for some cardinals μ, ρ with μ regular. Then there is a closed unbounded
set of C ⊆ {z ∈ P (ρ) : z ∩ μ ∈ μ} such that for all z1, z2 ∈ C if:

1. z1, z2 both are weakly ω1-uniform on K, and

2. χK
z1

= χK
z2

,

then z1 = z2. Thus, if ρ = μ+n for some n ∈ ω and I is a normal, fine,
countably complete ideal concentrating on {z : z ∩ μ ∈ μ and for all 0 ≤ i ≤ n,
cf(z ∩ μ+i) > ω}, then there is a set A ∈ Ĭ that is canonically well-ordered
by the n + 1-tuple (z ∩ μ, z ∩ μ+, . . . , z ∩ μ+n). In particular, |A| = ρ.

We will use the following result from [42] (Theorem 2.15):
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4.35 Theorem. Suppose that κ < λ < μ are three consecutive cardinals.
Then there is a closed unbounded set C ⊆ P (μ) such that for all z ∈ C if
|z| = λ and |z ∩ λ| = κ, then cf(z ∩ λ) = cf(κ).

We see as a corollary:

4.36 Lemma. If κ is regular, uncountable, and (κ+n, κ+) →→ (κ+n−1, κ),
then:

1. (κ+n, κ+n−1, . . . , κ+) →→ (κ+n−1, κ+n−2, . . . , κ),

2. there is a closed unbounded set of z ∈ [κ+n]κ
+n−1

such that if
|z∩κ+| = κ then z is weakly ω1-uniform on the interval K = [κ+, κ+n],
and

3. there is a closed unbounded C ⊆ κ+n such that for all z1, z2 ∈ C ∩
[κ+n]κ

+n−1
if:

(a) κ ⊆ z1 ∩ z2,

(b) |z1 ∩ κ+| = |z2 ∩ κ+| = κ, and

(c) χK
z1

= χK
z2

,

then z1 = z2.

In particular, each z ∈ C ∩ [κ+n]κ
+n−1

with κ ⊆ z is determined by the finite
sequence of ordinals sup(z ∩ κ+i), 1 ≤ i ≤ n.

As a corollary we immediately see:

4.37 Theorem. Suppose that κ is a regular uncountable cardinal and I is
a normal, fine, κ+-complete ideal on [κ+n]κ

+n−1
. Then there is a set Z ⊆

[κ+n]κ
+n−1

such that Z ∈ Ĭ and |Z| = κ+n.

Proof. We note that if I is a proper ideal then (κ+n, κ+) →→ (κ+n−1, κ),
since any normal, fine ideal extends the nonstationary ideal. For 1 ≤ i ≤ n,
let Ai = {z : z ∩ κ+i ∈ κ+i}. Then by Proposition 2.19,

⋃
1≤i≤n Ai ∈ Ĭ

and for all B ⊆ Ai with B ∈ I+, comp(I�B) = κ+i. Applying Lemma 4.36,
we see that on each Ai almost every z is determined by the finite sequence
of ordinals {sup(z ∩ κ+i), sup(z ∩ κ+i+1), sup(z ∩ κ+i+2) . . .}. Hence almost
every element z ∈ [κ+n]κ

+n−1
is determined by a finite sequence of ordinals

less than κ+n. �

4.38 Remark. Suppose that n > 0 is an integer and I is a normal, fine,
countably complete ideal on Z ⊆ P (κ+n) where κ is a regular cardinal. If
{z : z � κ} ∈ Ĭ then for all i ≥ 1, {z : |z ∩ κ+i| < κ+i} ∈ Ĭ. For otherwise,
κ+i would be a Jónsson cardinal, but no successor of a regular cardinal is
Jónsson [122, 124]. Similar remarks are true for κ a singular cardinal, not
the limit of measurable cardinals [105].
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It is often useful to know when an ideal concentrates on sets of ordinals
that are μ-closed.

4.39 Proposition. Let μ ≤ λ. Suppose that P is a partial ordering such that
for all generic G ⊆ P, j : V →M ⊆ V [G] is a generic elementary embedding
with critical point κ with M j(μ) ∩ V [G] ⊆ M . Suppose that j“λ ∈ M . Then
the following are equivalent:

1. For all generic G ⊆ P, j“λ is j(μ)-closed in V [G].

2. The ideal induced by j,P, and j“λ concentrates on {z : z ⊆ λ and z is
μ-closed}.

Moreover, if μ < κ then these are also equivalent to

3. For all cardinals ρ < λ, cf(ρ)V = μ iff for all generic G ⊆ P,
cf(ρ)V [G] = μ.

Proof. That the first two clauses are equivalent is an easy consequence of
remarks in Sect. 2.8 and the fact that M j(μ) ∩ V [G] ⊆M .

The equivalence between clause 1 and clause 3 follows from Proposi-
tions 2.32 and 2.31. �

4.40 Corollary. Let μ ≤ κ ≤ λ. Suppose that P is a partial ordering
such that for all generic G ⊆ P, j : V → M ⊆ V [G] is a generic elemen-
tary embedding with critical point κ with M<μ ∩ V [G] ⊆ M . Suppose that
j“λ ∈M . Then the following are equivalent:

1. For all generic G ⊆ P, j“λ is <μ-closed in V [G].

2. The ideal induced by j,P, j“λ concentrates on {z : z ⊆ λ and z is
<μ-closed}.

3. For all cardinals ρ < λ, cf(ρ)V ≥ μ iff for all generic G ⊆ P,
cf(ρ)V [G] ≥ μ.

4.41 Proposition (Baumgartner [4]). Suppose that

N ≺ 〈H(κ+n),∈,Δ, fi, . . .〉

with N ∩ κ ∈ κ. Suppose that η /∈ {cf(N ∩ κ), cf(N ∩ κ+), . . . , cf(N ∩ κ+n)}.
Then N ∩On is η-closed.

Proof. Let 〈ξi : i < η〉 be an increasing sequence of ordinals in N . Let
ψ ∈ N be the least element above each ξi. Such a ψ exists by the cofinality
assumptions. Let ν = cf(ψ). Then ν < ψ, ν ∈ N , and N |= ν = cf(ψ).
Hence, η = cf(N ∩ ψ) = cf(N ∩ ν). Since ν is regular, we must have either
ν < N ∩ κ or ν = κ+i some i. The latter cannot happen by the cofinality
assumptions. Hence ν < N ∩ κ, and so η = ν. Thus ψ = sup{ξi : i < η} as
desired. �
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From this we can deduce the following result:

4.42 Theorem. Suppose that κ is a regular cardinal and I is a normal,
fine, κ-complete, κ+n-saturated ideal on Z ⊆ P (κ+n) and there is an infinite
cardinal λ < κ such that for all 0 ≤ i ≤ n, {z : cf(z ∩ κ+i) �= λ} ∈ Ĭ. Then
there is an A ∈ Ĭ such that the function z �→ sup(z) is one-to-one on A.

Proof. By normality we can assume that for all z ∈ Z, if N is the Skolem
hull of z in H(κ+n), then N ∩ κ+n = z. Hence by Proposition 4.41, we can
assume that every z in Z is λ-closed.

Partition the ordinals in κ+n of cofinality λ into κ+n disjoint stationary
sets, {Sα : α ∈ κ+n}.

Let G ⊆ P (Z)/(I�Z) be generic and j : V → M ⊆ V [G] be the generic
elementary embedding. Then crit(j) ≥ κ. Let Sj

δ be the δth member of
j({Sα : α ∈ κ+n}). We claim that in M for all α < j(κ+n):

Sj
α ∩ sup(j“κ+n) is stationary iff α ∈ j“κ+n.

By the κ+n-c.c., the forcing P (Z)/(I�Z) preserves stationary subsets of
κ+n. By Proposition 4.39, we see that j“κ+n is j(λ)-closed. Since λ < κ,
j(λ) = λ. Thus in V [G], λ is a cardinal and j“κ+n is λ-closed.

For β ∈ κ+n, Sβ ⊆ (κ+n)V is still stationary in V [G], so j“Sβ is stationary
in sup(j“κ+n). Since j“Sβ ⊆ Sj

j(β) we have shown one direction of the result.

Suppose that Sj
δ is stationary in sup(j“κ+n). Since j“κ+n is λ-closed,

there is a γ such that j(γ) ∈ Sj
δ ∩ j“κ+n. But γ ∈ Sα for a unique α, so

j(α) = δ, as required.
By reflection, {N ∈ Z : α ∈ N iff Sα ∩ sup(N) is stationary} ∈ Ĭ. Hence

there is a measure one subset of Z on which the supremum function is one-
to-one. �

4.43 Corollary. Under the assumptions of the theorem, there is a set Z ∈ Ĭ
such that |Z| = κ+n.

4.44 Corollary. Suppose that κ is a regular cardinal and I is a normal, fine,
κ-complete, κ+n-saturated ideal on Z ⊆ P (κ+n), and either:

1. κ > ω1 is a successor cardinal and I is κ+-saturated, or

2. κ > ωn+1.

Then there is a finite partition P of an A ∈ Ĭ such that the supremum function
is one-to-one on each element of P .

Proof. If the first hypothesis holds then by Proposition 4.28, we see that for
all 0 < i ≤ n, κ+i is preserved, and ot(z ∩ κ+i) = κ+i−1 for almost every
z ∈ Z. Since κ > ω1, we see that at least one of λ = ω or λ = ω1 satisfies
the hypothesis of Theorem 4.42. Hence there is a set A ∈ Ĭ on which the
supremum function is one-to-one.



952 Foreman / Ideals and Generic Elementary Embeddings

If κ > ωn, then we can divide Z into {Ai : 0 ≤ i ≤ n} where
⋃

Ai ∈ Ĭ and
for all z ∈ Ai we have ℵi /∈ {cf(z ∩ κ), cf(z ∩ κ+), . . . , cf(z ∩ κ+n−1), cf(z)}.
We can then apply Theorem 4.42 to each I�Ai separately. �

4.45 Proposition. Suppose that κ is an uncountable regular cardinal and
δ ≥ κ is a cardinal. Let I be a normal, fine, κ-complete ideal on Z ⊆ P (δ)
such that P (Z)/I contains a dense countably closed set. Then there is a set
Z ∈ Ĭ such that the function z �→ sup(z) is one-to-one.

Proof. If P (Z)/I contains a countably closed dense set, then

1. Mω ∩ V [G] ⊆M ,

2. cf(α)V = ω iff cf(α)V [G] = ω, and

3. j“δ is ω-closed.

Taking λ = ω we can follow the proof Theorem 4.42. �

The hypotheses of the previous theorem typically hold for induced ideals
with critical point at least ω2 that arise from collapsing large cardinals.

So far we have not addressed the issue of ideals whose associated elemen-
tary embedding has critical point ω1. By Corollary 6.16, the analogue to the
previous proposition cannot hold for ideals that are not ℵ2-complete. We
must content ourselves to note that by Theorem 5.9 if there is a countably
complete ℵ1-dense ideal on ω2 then CH holds. In particular:

4.46 Proposition. Suppose that I is a normal, fine, countably complete,
ℵ1-dense ideal on P (ωn), then there is a set Z ∈ Ĭ that has cardinality ℵn.

Proof. By Example 4.30, I concentrates on [ωn]ωn−1 . By Theorems 5.9
and 5.10, GCH holds below ωn. In particular, [ωn]ωn−1 has cardinality ωn. �

4.7. Iterating Ideals

We now give a brief discussion of the theory of iterations of embeddings
induced by ideals.27 The theory is highly analogous to that of iterating large
cardinal embeddings discovered by Gaifman [49] and Kunen [77]; however,
one has to take into account the forcing. We will discuss the case where
we are iterating the embeddings coming from a single ideal. The reader can
generalize this to more complicated situations, such as generic iteration trees.

For the rest of this discussion, let I be a precipitous ideal on a set Z lying
in a transitive model M of a sufficiently strong subtheory of ZFC. We do not
assume that M contains all of the ordinals. A generic iteration of M by I
is a triple

{〈Mα : α ≤ μ〉, 〈jα,α′ : α < α′ ≤ μ〉, 〈Gα : α < μ〉}

with the following properties:
27 Iterations of generic embeddings were first used in [35].
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1. jα,α′ : Mα → Mα′ is an elementary embedding for all α < α′ ≤ μ and
the family of embeddings commutes,

2. M0 = M ,

3. Gα is generic for j0,α(P (Z)/I) over Mα,

4. Mα+1 is the generic ultrapower of Mα by Gα and jα,α+1 is the canonical
embedding from the ultrapower, and

5. for α′ a limit ordinal, Mα′ is the direct limit of the Mα for α < α′.

An obvious question is whether generic iterations yield well-founded mod-
els. Since the ideal I is precipitous, its images are precipitous in the appro-
priate models. Hence Mα+1 is well-founded provided that Mα is.

The following theorem of Woodin extends work of Gaifman [49] and Solo-
vay (see [35]):

4.47 Theorem (Woodin [126]). Suppose that

{〈Mα : α ≤ μ〉, 〈jα,α′ : α < α′ ≤ μ〉, 〈Gα : α < μ〉}

is a generic iteration and μ < On ∩M . Then Mμ is well-founded.

Proof. We outline the proof of the theorem. The first step is to show that if
there is an ill-founded generic iteration of M then there is one in a generic
extension of M . To see this we note that if there is an ill-founded iteration
of M of length μ, then in V Col(ω,22μ

) all of the data required to define this
information is countable. Hence in MCol(ω,22μ

) there is a tree whose ill-
foundedness is equivalent to the existence of an ill-founded generic iteration
of M . Hence the existence of such an iteration is absolute between V and
MCol(ω,22μ

), and the first step is accomplished.28

The second step is to use a variation of Gaifman’s arguments about iterated
ultrapowers: In M , let μ be the smallest ordinal such that there is a generic
iteration of length μ lying in a forcing extension of M that is ill-founded. Let
η be the least ordinal such that there is a some generic iteration of length μ
such that j0,μ(η) is above a decreasing infinite sequence of “ordinals” in Mμ.

Arguments similar to the argument of the first step show that η, μ have
absolute definitions; i.e. M correctly defines η and μ.

Consider an ill-founded generic iteration of length μ witnessing the def-
initions of η and μ. Then μ is a limit ordinal, so for some α < μ, there
is an ordinal η′ < j0,α(η) such that jα,μ(η′) is above an infinite decreasing
sequence of Mμ-ordinals. Let η′ be the least such.

But again, we can argue that Mα correctly identifies η′ as the least ordinal
above an infinite decreasing sequence of “ordinals” in the shortest ill-founded
generic iteration beginning at Mα. However, η′ < η, contradicting the ele-
mentarity of j0,α. �
28 Note that we have used the fact that the length of the iteration is less than the supremum
of the ordinals of M .
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4.8. Generic Ultrapowers by Towers

The concept of a tower of ideals was given in Definition 4.17. We now explore
generic ultrapowers by towers of ideals.

Suppose that 〈U,<U 〉 is a linearly ordered set and we have a tower of ideals
T = 〈Ia : a ∈ U〉 on sets 〈Za : a ∈ U〉 via projections 〈πa,a′ : a′ <U a〉. Let
Ba = P (Za)/Ia. For a′ <U a we get a well-defined embedding ia′,a : Ba′ → Ba

given by the formula, ia′,a([A′]Ia′ ) = [{z ∈ Za : πa,a′ (z) ∈ A′}]Ia . We can
form the direct limit of the system of Boolean algebras 〈Ba, ia′,a〉 and call it
B∞(T ).

By a slight modification of Proposition 4.22, we see that a generic G ⊆
B∞(T ) yields ultrafilters Ga ⊆ Ba and if Na is the ultrapower V Za/Ga and
ja : V → Na is the canonical embedding then there are embeddings ka′,a :
Na′ → Na (a′ <U a) such that the following commutes:

V

Na′ Na

�
��

ja′ �
��

ja

�
ka′ ,a

We will call N∞ = lim
→
〈Na, ka′,a : a′ <U a〉 the generic ultrapower of V by

the tower .
In concrete terms, we usually have Zα ⊆ P (α) for some collection U of

ordinals α and πα,α′ (z) = z ∩α′. We can define a partial ordering PT whose
domain is a quotient of

⋃
α∈U P (Zα) by an equivalence relation. For α′ < α

and A′ ∈ P (Zα′ ) and A ∈ P (Zα) we set A′ ∼ A iff ια′,α([A′]Iα′ ) = [A]Iα and
[A′] ≤ [A] iff ια′,α(A′) ⊆Iα A.

Viewing PT as the direct limit of the partial orderings P (Zα)/Iα, the non-
zero elements of B∞(T ) can be identified with elements of PT . With δ =
sup(U), B∞(T ) can also be described as equivalence classes of those subsets
a ⊆ P (δ) such that for some α ∈ U and all z, z′ ∈ P (δ), if z ∩ α = z′ ∩ α,
then z ∈ a iff z′ ∈ a. The ordinal α can be viewed as a support of a. If a is
a subset of P (δ) with support α then for any β > α, we can identify a with
[{z ∩ β : z ∈ a}]Iβ

and consider its class in P (Zβ)/Iβ . If a, b ⊆ P (δ) have
supports less than δ we can consider any β that is a support of both a and
b and set a ≤∞ b iff [a]Iβ

≤ [b]Iβ
. The ordering ≤∞ is well-defined since the

ideals form a tower, and B∞(T ) is isomorphic to the separative quotient of
the resulting partial ordering.

4.48 Remark. We note that we will often write formulas like “N ∈ S”,
where S ⊆ P (α) but N is not a subset of α. This will be interpreted as
“N ∩ α ∈ S”. Thus in the context of towers, we view sets S ⊆ P (α) as
subsets of P (β) for β > α.

We can check the following lemma using the proof of Lemma 2.22:
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4.49 Lemma. Suppose that δ is a limit cardinal, U ⊆ δ is unbounded and
〈Iα ⊆ P (P (α)) : α ∈ U〉 is a tower of normal ideals. If A ⊆ P (P (α)) for
some α ∈ U then ΣA = 4A in B∞(T ).

For notational simplicity we will use the partial ordering PT (defined
above) instead of B∞(T ). For most towers the index set U will be a col-
lection of ordinals and for α ∈ U , Iα will be an ideal on P (α). In this case we
will call sup(U) the height of the tower T and it will usually be denoted δ.
Burke [11] proved the following result as a generalization of Corollary 4.21:

4.50 Proposition. Suppose that T is a tower of normal ideals of height δ,
which is an inaccessible cardinal. Then there is a stationary set S ⊆ P (δ)
such that for all α ∈ U , Iα is the projection to P (α) of the nonstationary
ideal on P (δ) restricted to S.

4.51 Definition. The tower T is said to be precipitous iff for all generic
G ⊆ PT , the direct limit N∞ of the ultrapowers Nα is well-founded.

The combinatorial criterion for precipitousness of towers takes a slightly
different form than that as would be given by forcing with individual ideals.
The analogue of Proposition 2.7 in the context of towers of ideals is:

4.52 Proposition. Let T be a tower of ideals. Then T is precipitous iff
whenever [X] ∈ PT and An ⊆

⋃
a∈U P (Za) for n ∈ ω form a tree of maximal

antichains in PT below [X], there are 〈an : n ∈ ω〉 and s : ω → U such that:

1. an ∈ An ∩ P (Zs(n)),

2. 〈[an]Is(n) : n ∈ ω〉 is a branch through the tree, and

3. there is a sequence zn ∈ Zs(n) with πs(n+1),s(n)(zn+1) = zn and zn ∈ an.

In the concrete case where U is a set of ordinals, Zα ⊆ P (α) and πα,α′ (z) =
z ∩ α′, the conditions of Proposition 4.52 can be stated by taking s(n) to be
the support of an and demanding that there is a set N such that for all n,
N ∩ P (s(n)) ∈ an.

Burke proved the game theoretic version of precipitousness for towers cor-
responding to Theorem 2.8:

4.53 Theorem (Burke [11]). Let T be a tower of ideals on P (α) for α ∈ U
such that for α′ < α, πα,α′ (z) = z ∩ α′. Then the following are equivalent:

1. T is precipitous.

2. Player I does not have a winning strategy in the following game: I and
II alternately play sets pn ∈

⋃
α∈U P (α) such that:

(a) if pn ∈ P (α) then [pn]Iα ∈ PT , and

(b) p0 ≥PT p1 ≥PT p2 ≥PT . . . , pn, . . . .
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II wins iff there is an a ⊆ sup(U) such that a ∩ supp(pn) ∈ pn for
every n.

Somewhat surprisingly, in fairly general circumstances, towers of ideals
automatically have the disjointing property:

4.54 Theorem (Burke [11]). Suppose that T is a tower of ideals of height δ
where δ is inaccessible. Then for all antichains A ⊆ PT there is a pairwise
disjoint collection of sets B ⊆

⋃
α∈U P (α) such that each b ∈ B has support

less than δ and for all a ∈ A there is a b ∈ B with [b]Isupp(b) = a in PT .

Proof (Sketch). Enumerate A as 〈ai : i < γ ≤ δ〉. Build B = 〈bi : i < γ〉 by
induction so that [bi]PT = ai, bi ⊆ P (si) for some si ∈ U . If we have built
〈bj : j < i〉, we construct bi by choosing an si ∈ U larger than sup{sj : j < i}
and larger than supp(ai). Let a be a representative of [ai] in P (supp(ai))
and bi = {z ⊆ P (si) : b ∩ supp(ai) ∈ a and sup{sj : j < i} ∈ bi}. �

Unfortunately the disjointing property for towers of ideals is not as useful
as for individual ideals: In Sect. 9 we give examples due to Burke of towers
of ideals of inaccessible height that are not precipitous.

The property analogous to the disjointing property for individual ideals
is the bounded disjointing property, i.e. that given any antichain A ⊆ PT
there is a pairwise disjoint collection B of representatives for members of
A such that sup{supp(b) : b ∈ B} < δ. This is equivalent to the tower
T being δ-saturated, a fairly rare occurrence in our current state of knowl-
edge. However, being able to locally disjointify a collection of antichains with
representatives of bounded support follows from weak saturation properties
and yields closure of the generic ultrapower. This is the usual situation for
presaturated towers. The following is the analogue of Proposition 4.8 in the
context of towers, and can be proved similarly:

4.55 Proposition. Suppose that T = 〈Iα : α ∈ U〉 is a tower of normal, fine
ideals with height δ, δ is inaccessible and PT is weakly (ℵ1, δ)-saturated. Then
T is precipitous. Further, if PT is weakly (η+, δ)-saturated (ω ≤ η < δ), and
G ⊆ PT is generic then Nη

∞ ∩ V [G] ⊆ N∞.

Proof (Sketch). Suppose that T is weakly (ℵ1, δ)-saturated. Let 〈An : n ∈ ω〉
be a tree of maximal antichains and [S] ∈ T a condition. By the weak
saturation we can find a [T ] ≤PT [S] such that for each n, κn =def |{a ∈ An :
[a∩T ] ∈ PT }| < δ. Since δ is inaccessible we can find an α < δ such that for
all n and all a ∈ An, if a is compatible with [T ] then the support of a is an
ordinal less than α. Moreover, by increasing α slightly we can assume that
α is regular and κn < α.

By the normality of Iα, we can disjointify a ∈ An by choosing subsets of
each a that have support α. Call the resulting antichains A′

n. By shrinking
still further we can assume that the A′

n still form a tree of antichains. Since
A′

n is an Iα maximal antichain below [T ],

T =Iα

⋂
n

⋃
A′

n.
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If z ∈ T ∩
⋂

n

⋃
A′

n then z determines a branch through A′ and hence a
branch through A. Let an ∈ An be the element of An given by z. Let s(n)
be the support of an and zn = z ∩ s(n). Applying Proposition 4.52, we see
that T is precipitous.

If PT is weakly (η+, δ)-saturated, and 〈Aα : α ∈ η〉 is a sequence of
maximal antichains, then densely often in PT we can find a [T ] such that for
all α, Aα can be disjointified below [T ]. It follows that if we are given a set
{Ḟα : α < η} of terms for elements of N∞ then there is a dense collection of
[T ] for which we can find a sequence of functions {fα : α < η} such that the
domain of each fα is Zsupp(T ) and

[T ] � [Ḟα]N∞ = [fα]N∞ .

Let β ∈ U be bigger than max(supp(T ), η) and let : Zβ → V be defined by
setting

g(z) = {fα(z ∩ supp(T )) : α ∈ z ∩ η}.
Then [g]N∞ = {[Ḟα]N∞ : α ∈ η}. �

Tracking where ordinals go in ultrapowers by towers is highly analogous
to the situation when forcing with individual ideals. One can easily verify:

4.56 Proposition. Let T be a precipitous tower of normal and fine ideals
of height δ. Let ρ and λ < δ, G ⊆ PT be generic and j : V → M be the
canonical generic embedding determined by G. Then:

1. if {z : z ∩ ρ ∈ ρ} ∈ G, then crit(j) = ρ,

2. if each Iα is λ-complete, then crit(j) ≥ λ,

3. if {z : ot(z ∩ λ) = ρ} ∈ G, then j(ρ) = λ, and

4. if {z : ot(z ∩ λ) < ρ} ∈ G, then j(ρ) > λ.

From Propositions 4.56 and 4.55, we can get most of the information about
the “three parameters” determining the strength of a generic embedding. For
example, if T is a tower of height δ and:

1. for all α, Iα concentrates on [α]<ρ and is ρ-complete, and

2. the tower PT is weakly (ρ, δ)-saturated,

then the critical point of j is ρ, j(ρ) = δ and M is closed under <ρ-sequences
from V [G].

If in addition, ρ = μ+ in V , then all of the ordinals less than δ have
cardinality μ in V [G]. Hence closure under <ρ sequences from V [G] implies
closure under <δ sequences from V [G].

There is an intimate relationship between towers of ideals and ideals on a
single set in a generic extension of the universe. For example, suppose that T
is a tower of μ-complete ideals on 〈P (λα) : α ∈ U〉 and sup{λα | α ∈ U} = δ,
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where δ is an inaccessible cardinal. Then in V Col(μ,<δ), each ideal Iα becomes
isomorphic to an ideal on P (μ) and these ideals cohere in the obvious way.
Unfortunately, the normal closure of the union of the ideals may fail to remain
proper.

However there are circumstances where the limit ideal on μ can be shown
to be proper. This occurs, for example, in the stationary tower of ideals
restricted to the internally approachable sets. The resulting limit ideal is the
nonstationary ideal on μ in the extension. An example of this is given in
Proposition 9.4.

These topics are discussed at length in Sect. 9.

5. Consequences of Generic Large Cardinals

In this section we discuss various consequences of the existence of strong
ideals. Indeed these consequences are so ubiquitous and striking that ideal
axioms have been proposed as candidates for axioms for set theory. We
discuss this in Sect. 11.

In our current state of knowledge, ideal assumptions divide into two mu-
tually contradictory collections. One can loosely be termed “generic large
cardinals”.29 These are the axioms that can be stated in terms of the “three
parameters” that determine a generic elementary embedding j : V → M ,
which again are: where j sends ordinals, the closure properties of M , and the
nature of the forcing required to define j. The consequences of generic large
cardinals affect virtually all of set theory and settle many of the classical prob-
lems of set theory. These ideal properties are easily seen to be rather straight-
forward generalizations of conventional large cardinal axioms, suitably mod-
ified so that they can “live” on relatively small cardinalities such as ω1.

The second collection of ideal assumptions has just one essential element
that we know of: the assumption that the nonstationary ideal on ω1 is ℵ2-
saturated. In the presence of a measurable cardinal, this assumption implies
that the Continuum Hypothesis fails in a particularly dramatic way, and that
L(R) is quite close to the universe, in a precise way. This assumption fits
well with the Pmax theory of Woodin.30

At the moment the author has no strongly compelling reason to prefer the
former collection of results over the latter. One could hope perhaps, that
there is some happy reconciliation such as was devised between the Axiom
of Choice and the Axiom of Determinacy.

5.1. Using Reflection

We illustrate the use of reflection in the context of saturated ideals with two
simple examples.
29 As this chapter went to the publishers, Woodin showed that there were more incom-
patible pairs of generic large cardinal axioms.
30 See P. Larson’s chapter in this Handbook for more information.
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5.1 Theorem. Suppose that there is a partial ordering P such that for all
generic G ⊆ P there is an elementary embedding j : V → M such that for
some n ∈ ω:

1. j(ωn−1) = ωn,

2. j“ωn ∈M , and

3. P is ℵ1-centered.

Then:

1. If G is a graph on ωk with 1 < k ≤ n and G has chromatic number ωk′

with 1 < k′ ≤ k, then G has an induced subgraph of cardinality ωk−1

and chromatic number ωk′ −1, and

2. if G is a group (resp. Abelian group) of cardinality ωk with 1 ≤ k ≤ n
and every subgroup of G of cardinality less than ωk is free31 (resp. free
Abelian), then G =

⋃
α<ω1

Gα where Gα is free (free Abelian).

For a given graph or group G, we can draw the same conclusions as Theo-
rem 5.1 if we weaken the assumptions to asking that the critical point of j is
ω1 and the forcing for producing j is of the form P∗Q where P is ℵ1-centered
and Q is |G|V -closed in V P. An example of this type of result is the next
theorem whose hypotheses are shown consistent in Theorem 7.70.

5.2 Theorem. Suppose that there is a partial ordering of the form P ∗ Q

such that if G ∗ H ⊆ P ∗ Q is generic, then in V [G ∗ H] there is a generic
elementary embedding j : V →M such that:

1. crit(j) = ω1,

2. j“ω2 ∈M , and

3. P is ℵ1-centered and Q is <(ω2)V -closed in V [G].

Then

1. If G is a graph on ω2 with chromatic number ω2 then G has a subgraph
of size ℵ1 and chromatic number ω1, and

2. if G is a group of cardinality ℵ2 and every subgroup of cardinality ℵ1

is free, then G =
⋃

α<ω1
Gα, where each Gα is a free group.

Proof of Theorem 5.1. Let j : V →M ⊆ V [H] be the elementary embedding
associated with a generic H ⊆ P. Since P is ℵ1-centered, P preserves all
cardinals above ω1, and hence the critical point of j must be ω1. It follows
that for all 0 < k < n, j(ωk) = ωV

k+1. The assumption that j“ωn ∈M implies
that P (ωn)V ⊆M .

31 I.e. G an almost free group.
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Let P =
⋃

α<ω1
Fα where Fα is a filter on P. Suppose that G is a graph

on ωk of chromatic number ωk′ . Then G is isomorphic to the graph on j“G
induced by j(G) on j“ωk and j“G has cardinality ωM

k−1. By elementarity, it
suffices to show that j“G has chromatic number ωk′ −1 in M .

If this fails then there is a coloring C : j“G → κ lying in M where κ <
ωM

k′ −1 = ωV
k′ . For each g ∈ G choose a pg ∈ P such that pg � Ċ(j(g)) = α

for some α < κ. In V , define C ′ : G → κ × ω1 by setting C ′(g) = (α, β)
where pg ∈ Fβ and pg � Ċ(j(g)) = α. Then this is a coloring of G into
|κ× ω1| < ωk′ colors, a contradiction.

Now suppose that G is a group of cardinality ωk such that every subgroup
of cardinality ωk−1 is free. Then j“G is a subgroup of G of cardinality ωM

k−1,
and hence G is free in M . Let Ȧ be a term for a free generating set for G.
In V , for α < ω1, let Gα be the subgroup of G generated by {g : for some
p ∈ Fα, p � g ∈ A}. �

Results of the type of 2 are clearly general for many algebraic objects
where there is a suitable notion of freeness.

5.2. Chang’s Conjectures, Jónsson Cardinals and Square

We begin with a simple remark [35]:

5.3 Proposition. Let j : V →M be a generic elementary embedding.

1. If A is a structure on a cardinal λ, then j“λ ≺ j(A).

2. If λ′ < λ is a cardinal, and

(a) j“λ ∈M ,

(b) j(κ) = ot(j“λ), and

(c) j(κ′) = ot(j“λ′),

then (λ, λ′) →→ (κ, κ′).

Proof. Let A be an algebra on a cardinal λ. We can assume that A is fully
Skolemized. Let f be a Skolem function and �α ∈ [j“λ]<ω. Then there is a �β

such that j(�β) = �α. Let β∗ = f(�β) and α∗ = j(β∗). Then α∗ = j(f)(�α) and
α∗ ∈ j“λ. Thus j“λ is closed under the Skolem functions of j(A).

For the second assertion, we see that M |= ot(j“λ) = j(κ), and ot(j“λ ∩
j(λ′)) = j(κ′). Thus we know that M |= “there is an elementary substructure
of j(A) of type (j(κ), j(κ′))”. The result now follows from the elementarity
of j. �

We saw in Proposition 3.9, that (λ, λ′) →→ (κ, κ′) is equivalent to the
existence of a proper, normal, fine, countably complete ideal on P (λ) con-
centrating on {z : ot(z) = κ and ot(z ∩ λ′) = κ′}, namely the Chang ideal.
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A sort of converse of Proposition 5.3 is true: If there is a Woodin cardinal
μ above λ and (λ, λ′) →→ (κ, κ′), then in V Col(λ,<μ), the Chang ideal is
precipitous (Theorem 8.37). This was shown in [47] when μ is a supercompact
cardinal. The version of the theorem with the optimal hypothesis stated here
was published in [58].

Since Chang’s Conjecture principles and square principles are antithetical
combinatorial properties, we get the next corollary. This result and more
general versions appear in [37].

5.4 Corollary. Let μ < κ be cardinals and κ < ℵμ+ . Suppose that there is a
proper, normal, fine ideal on [κ+]μ

+
that concentrates on {x : ot(x∩κ) = μ}.

Then �κ(Cof(≤μ)) fails. Hence:
If there is a generic elementary embedding j : V →M such that

1. j“κ+ ∈M , and

2. j(μ) = ot(j“κ),

then �κ(Cof(≤μ)) fails.

By adjusting the cardinals involved in Chang’s Conjecture we get many
consequences, as we shall prove later. For example, if κ is regular and
(κ+, κ) →→ (κ,<κ), then there are no Kurepa trees on κ. Hence, for ex-
ample, if there is a generic elementary embedding j : V → M such that
j(ω1) = ω2 and j“ω2 ∈M , then there are no Kurepa trees on ω1.

Chang’s Conjecture also has GCH consequences: If (λ+2, λ) →→ (κ+2, κ)
and 2κ = κ+, then 2λ = λ+.

It is also possible to see that Jónsson cardinals exist assuming the appro-
priate generic elementary embeddings:

5.5 Proposition. Suppose that there is a generic elementary embedding j :
V →M such that:

1. crit(j) < κ,

2. j“κ ∈M , and

3. j(κ) = κ,

then κ is Jónsson.

Again, this is almost an equivalence: If μ > κ is Woodin then κ is Jónsson
iff V Col(κ+,<μ) |= “there is a proper, normal, fine, precipitous ideal on [κ+]<κ+

concentrating on {z : |z ∩ κ| = κ and κ � z}”. This follows from Theo-
rem 8.37.

If we have an elementary embedding j : V → M we define the sequence
of cardinals by setting κ0 = crit(j) and κn+1 = j(κn), and finally κω =
sup{κn : n ∈ ω}. To see that κω is Jónsson, formally less than the previous
proposition is required:
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5.6 Theorem. Suppose that 〈κi : i ∈ ω〉 is an increasing sequence of un-
countable cardinals with supremum κω. Suppose that there is a sequence of
normal, fine, countably complete ideals In on P ([κn+1]κn) such that the In’s
form a precipitous tower T of ideals.32 Then κω is Jónsson.

Proof. Suppose that A is a structure with domain κω. By Skolemizing we can
assume that if An is the structure with domain κn determined by restrict-
ing the functions of A to κn, and B ⊆ κn is the domain of an elementary
substructure of An, then SkA(B) ∩ κn = B.

Let S be the tree of finite sequences (z0, z1, . . . , zn) such that:

1. zi ∈ [κi+1]κi ,

2. zi+1 ∩ κi+1 = zi, and

3. zi ≺ Ai+1

ordered by extension. It suffices to see that S is an ill-founded tree.
Let G ⊆ PT be generic for the tower of ideals and j : V → N∞ be the

generic ultrapower of V by the tower. We claim that j(S) is ill-founded in
N∞. Since N∞ is well-founded, by absoluteness, it suffices to show that j(S)
is ill-founded in V [G]. But this is immediate since the sequence 〈j“κi+1 :
i ∈ ω〉 is a branch through j(S). �

5.3. Ideals and GCH

In this section we consider the consequences strong ideals can have on the
Generalized Continuum Hypothesis, deferring the case of the nonstationary
ideal on ω1 to its own subsection.

We begin with an easy example of an axiom that implies instances of GCH:

5.7 Proposition. Suppose that there is a generic elementary embedding j :
V →M with critical point κ+ in a (κ,∞)-distributive forcing extension of V .
Then κ<κ = κ holds.

Since it is easy to see the consistency of the statement there is a normal
ℵ2-complete ideal I on ω2 such that P (ω2)/I has a dense countably closed
subset, it is interesting to note the following corollary:

5.8 Corollary. Suppose that there is an ideal I on a set Z that has com-
pleteness ω2 such that P (Z)/I has a dense countably closed subset. Then CH
holds.

Proof of Proposition 5.7. Let �r = 〈rα : α < κ<κ〉 be a one-to-one enumera-
tion of [κ]<κ. If κ<κ > κ, then j(�r) �= �r and hence there is an element of [κ]<κ

in M that is not in V . This contradicts the distributivity of the forcing. �

We note that the axiom stating that “ωn is generically supercompact by
<ωn-closed forcing” implies the hypothesis of Example 5.7 and hence that
ω<ωn

n = ωn.
32 See Definition 4.51.
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Woodin’s Theorem Showing CH Holds

Perhaps the first clue that ℵ1-dense ideals can have an affect on the value
of 2ℵ0 was Taylor’s Theorem 4.3, which showed that if there is a countably
complete, ℵ1-dense ideal on ω1 then MAω1 fails.

In [35], the author showed that strong ideal axioms implied GCH. In later
work the author showed that if there is a generic elementary embedding
j : V →M ⊆ V [G] where G ⊆ P is generic and:

1. j(ω1) = ω2,

2. j“ω2 ∈M , and

3. P = Col(ω, ω1),

then the Continuum Hypothesis holds. Woodin improved both of these by
showing that the existence of an ℵ1-dense ideal on ω2 implies the Continuum
Hypothesis.

5.9 Theorem (Woodin). Suppose that there is a uniform, countably complete
ℵ1-dense ideal on ω2. Then the Continuum Hypothesis holds.

Proof (Sketch). We will use the forthcoming Lemma 6.23, essentially due to
Gitik and Shelah. That lemma is shown in its appropriate context in Sect. 6.6,
where it serves as the main ingredient for the proof of Theorem 6.22 there.
Woodin made the appropriate modifications in the lemma so that it now
serves also to prove the present theorem. The thrust of the proof is that
Lemma 6.23 shows that four hypotheses I–IV cannot jointly hold, yet the
existence of the dense ideal together with the failure of CH implies that these
hypotheses simultaneously hold after all.

Since I has the disjointing property, it is precipitous and if G ⊆ P (ω2)/I
is generic and j : V → M ⊆ V [G] is the generic ultrapower then Mω ∩
V [G] ⊆M .

In V , we can define an ideal I ′ by setting X ∈ I ′ iff 1 �P (ω2)/I ω1 /∈
j(X). Then I ′ is the induced ideal from the ultrafilter U(j, ωV

1 ). By the
results in Sect. 4, I ′ is a projection of I and there is a natural embedding ι
from P (ω1)/I ′ to P (ω2)/I sending [X] to the Boolean value ‖ω1 ∈ j(X)‖ in
the complete Boolean algebra P (ω2)/I. Moreover, I ′ is ℵ1-dense and ι is a
complete embedding. For generic G ⊆ P (ω2)/I the ultrafilter U = U(j, ωV

1 )
is generic for P (ω1)/I ′.

Form the ultrapower V ω1/U , and let N be its transitive collapse, and
i : V → N be the canonical embedding. Then Nω ∩ V [U ] ⊆ N . Let k be the
natural factor map from this ultrapower to M given by k([f ]) = j(f)(ω1).
Then j = k ◦ i:

V

N M

�
��
i �

��
j

�
k
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As in Examples 4.28 and 4.29:

1. ωN
1 = ωV

2 = ωM
1 ,

2. (ω2)V [G] = (ω2)V [U ] = ωV
3 ,

3. sup(i“ωV
2 ) is cofinal in i(ωV

2 ),

4. i(ωV
2 ) < ωV

3 ,

5. ωN
3 = i(ωV

3 ) = ωV
3 and there is a set C ⊆ ω3 in V that is ω-closed in V

and for all α ∈ C, i(α) = α,

6. j(ωV
2 ) = ωV

3 , and

7. crit(k) = ωN
2 .

In particular, the cardinal successor of the ordinal ωN
2 computed in N is

the same as the cardinal successor of ωN
2 computed in V [U ].

We now assume the Continuum Hypothesis fails, and derive a contradic-
tion. Let �x = 〈xα : α < 2ℵ0〉 be a one-to-one enumeration of the real numbers
in V . Then i(�x) is an enumeration of all of the real numbers in V [U ] and has
length at least ωN

2 = crit(k). Hence k(i(�x)) �= i(�x) and the range of k(i(�x))
differs from the range of i(�x). Since the diagram commutes, k(i(�x)) = j(�x)
is an enumeration of the reals in M . Since M has all of the reals of V [G], we
see that the collection of real numbers in V [U ] is different from the collection
of real numbers in V [G]. Hence the embedding ι : P (ω1)/I ′ → P (ω2)/I does
not map onto a dense set: V [U ] is a proper subclass of V [G].

The relationship between forcing with P (ω1)/I ′ and P (ω2)/I is easy to
describe. Since both are ℵ1-dense, each forcing is equivalent to forcing with
Col(ω, ω1). If we first force with P (ω1)/I ′, then P (ω2)/I has a countable
dense set. Hence the quotient forcing from the embedding ι is equivalent to
Cohen forcing.33 If U ⊆ P (ω1)/I ′ is generic, then one can force over V [U ]
with Cohen forcing to produce a generic real s. In V [U ][s] we can recover
G,M and k.

This is the main idea of the proof: by adding a Cohen real to V [U ] we can
force the existence of a non-trivial generic embedding with domain N . Were
N = V [U ] this would give an immediate contradiction to Theorem 6.22. The
heart of this theorem is arguing that N is close enough to V [U ] to derive a
similar contradiction.

We now verify the hypotheses I–IV that Lemma 6.23 shows are impossible.
We will follow the notation given there. We take the model W = V [U ], and
the N in the lemma to be the N that is isomorphic to V ω1/U . That N is
closed under ω-sequences from V [U ] is immediate from Proposition 2.14. Let
κ = ωN

2 . Then (κ+)N = (κ+)W = ωV
3 .

33 See the forcing fact mentioned in Sect. 1.
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Let J ∈ V [U ] be the ideal on P (κ)N induced by κ and k. Then J is normal
and κ-complete for functions that lie in N . Since the forcing producing s is
c.c.c., Example 3.30 shows that P (κ)N/J is c.c.c. in V [U ].

If A ⊆ P (κ)N/J is a maximal antichain lying in V [U ], then A is countable
and hence there is a disjoint collection R ⊆ P (κ)N of representatives of A
that lies in V [U ]. Since N is ω-closed R belongs to N and

⋃
R ∈ J̆ . Hence

there is a unique element A of R such that κ ∈ k(A). From this we conclude
that H = {[A] : κ ∈ k(A)} ⊆ P (κ)N/J is generic over W .

Thus the forcing P (κ)N/J is a regular subalgebra of the Boolean algebra
for adding a single Cohen real. Since every subalgebra of the Cohen algebra
is again a Cohen algebra, we see that P (κ)N/J has a countable dense subset
in W .

Let H ⊆ P (κ)N/J be generic over W . Then we can do further forcing
to produce s, G, M and k so that H = {[A] : κ ∈ k(A)}. Hence there is
an elementary embedding of Nκ/H into M . In particular, Nκ/H is well-
founded. Let N ′ be the transitive collapse of Nκ/H, i′ be the ultrapower
embedding of N into N ′ and k′ : N ′ → M by k′([f ]N

′
) = k(f)(κ). Then we

get a commutative diagram of elementary embeddings:

V

N M

N ′

�
��
i �

��
j

�
k

�
��

i′

�
��k′

The next claim finishes our reduction to Lemma 6.23, by establishing Hy-
pothesis IV. To each generic H ⊆ P (κ)N/J we can canonically associate a
Cohen real r = r(H) such that W [H] = W [r], and vice versa. In the no-
tation of the hypotheses for Lemma 6.23, 〈rξ : ξ < κ〉 ∈ N is a one-to-one
sequence such that for all generic H ⊆ P (κ)/J , k′(〈rξ : ξ < κ〉)(κ) = r.
We let k′(〈rξ : ξ < κ〉) = 〈rk′

ξ : ξ < k′(κ)〉. A sequence of Cohen terms
〈sα : α < κ+〉 ∈ W is chosen so that 1 �W sξ = rk′

ξ for all ξ < κ+. To each
Cohen term t we canonically associate a Borel function T : ωω → ωω in the
usual way. Since sα and sβ represent distinct reals, {x : Sα(x) = Sβ(x)} is
meager.

Let X ∈ V [U ] be a set of Borel functions with |X| = ω
V [U ]
1 . Then for any

unbounded set Y ⊆ ω3 in V [U ], there is an α ∈ Y such that for all T ∈ X,
{x : T (x) = Sα(x)} is meager. For otherwise, there would be T ∈ X and
a B ⊆ Y of cardinality ωV

3 such that for all α ∈ B, {x : T (x) = Sα(x)} is
non-meager. Hence there would be a single p ∈ ω<ω and α < β ∈ B such
that {x ∈ [p] : Sβ(x) = Sα(x) = T (x)} is comeager in [p] a contradiction.

Claim. There is a sequence of Cohen terms 〈tα : α < ωV
3 〉 ∈ N such that:

(a) for a cofinal set of α < ωN
3 , 1 � tα = sα, and
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(b) for all α < β < ωN
3 , {x : Tα(x) = Tβ(x)} is meager.

We are viewing Cohen terms for real numbers as hereditarily countable
objects, so that each sα ∈ N . Working in V , for each α < ω3 let fα : ω1 →
H(ω1) be such that 1 �P (ω1)/I′ [fα]N = sα. Define

F : ω3 × ω1 → H(ω1)

by setting F (α, ξ) = fα(ξ).
In N , define a sequence of Cohen terms 〈tα : α < ωV

3 〉 by induction. Let
t0 = s0. Suppose that we have defined 〈tα : α < α0〉.

Let Y be the set of fixed points of i below ω3. By the previous paragraphs
there is a β ∈ Y \ α0 such that Sβ disagrees with each Tα on a comeager
set. Since β is a fixed point of i, i(F )(β, ωV

1 ) = sβ . Hence the Borel function
associated with i(F )(β, ωV

1 ) disagrees with each of the Tα on a comeager set.
Let β0 be the least ordinal β ≥ α0 such that i(F )(β, ωV

1 ) has this property
and tα0 = i(F )(β0, ω

V
1 ). Clearly for α < β < ωV

3 , {x : Tα(x) = Tβ(x)} is
meager.

It remains to see that {α : tα = sα} is cofinal in ωV
3 . Suppose that this

fails. Let η be a fixed point of i. If sη is not on the sequence 〈tα : α < ω3〉,
then there is a β < η such that Sη agrees with Tβ on a non-meager set. Since
the set Y of fixed points of i is V [U ]-stationary, we can find a stationary set
Z ⊆ Y and a fixed β such that for α ∈ Z, Sα agrees with Tβ on a non-meager
set. In particular, we can find a fixed p ∈ ω<ω and α0 < α1 ∈ Z such that
both Sα0 and Sα1 agree with Tβ on a comeager subset of [p]. But this means
that Sα0 and Sα1 agree on a non-meager set, a contradiction.

We have now verified the hypotheses I–IV that Lemma 6.23 (proved in
Sect. 6) shows are impossible. �

We now describe how to use ideal assumptions to transfer CH to GCH.
The first theorem of this sort was due to Jech and Prikry [64], who showed
that if CH holds and there is an ℵ2-saturated ideal on ω1, then 2ℵ1 = ℵ2.
The more general version of this theorem appears in Foreman [35]:

5.10 Theorem. Assume that 2κ = κ+. Suppose that either:

1. (λ+2, λ) →→ (κ+2, κ), or

2. there is an elementary embedding j : V → M ⊆ V [G] where G ⊆ P is
generic such that

(a) j(κ+) = λ,

(b) j“λ ∈M , and

(c) P is λ+-c.c.

Then 2λ = λ+.
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Proof. Assume the first hypothesis and suppose that 〈xα : α < λ+2〉 is a
sequence of distinct subsets of λ. Then there is an elementary substructure
A of 〈H(θ),∈, 〈xα : α < λ+2〉〉 such that the order type of A intersected
with λ+2 is κ+2 and the intersection of A with λ has cardinality κ. Then
〈xα : α ∈ A ∩ λ+2〉 is a sequence of κ+2 distinct subsets of λ ∩ A. Hence
2κ ≥ κ+2, a contradiction.

Let j be the embedding from the second hypothesis. If I is the ideal
induced by j and j“λ, then I is a normal, fine, countably complete, λ+-
saturated ideal on [λ]κ

+
. We can assume that j comes from an ultrapower of

V by a generic G ⊆ P ([λ]κ
+
)/I. From this assumption, we can conclude that

Mλ∩V [G] ⊆M . Since M |= |P (λ)| = λ+ we must have V [G] |= |P (λ)| = λ+.
Since all cardinals greater than or equal to λ+ are preserved we see that
2λ = λ+ in V . �

Moreover, since all Chang’s Conjectures are consequences of the appropri-
ate ideal hypothesis, we can formulate other axioms that “transfer” instances
of GCH. For example, (λ+2, λ) →→ (κ+2, κ) and 2κ = κ+ implies 2λ = λ+.
Hence:

5.11 Proposition (Foreman [35]). Suppose that there is a pre-precipitous
ideal on [λ+]κ

+
concentrating on [λ]κ. Then 2κ = κ+ implies 2λ = λ+.

Abe’s Results on SCH

Abe [1] found another way of deducing instances of GCH and the Singular
Cardinals Hypothesis (SCH) from ideal assumptions.34 These arguments
follow Solovay’s proof of SCH above a supercompact cardinal, weakening
Solovay’s assumption of the existence of a normal ultrafilter on [λ]<κ to the
existence of a weakly normal ideal on [λ]<κ. The first theorem deals with
regular cardinals and implicitly SCH by considering the successor of a singular
cardinal.

5.12 Theorem. If λ is regular and there is a weakly normal, fine, κ-complete
ideal I on [λ]<κ. Then λ<κ = λ · 2<κ.

5.13 Corollary. Suppose that λ is regular and there is a normal, fine, κ-
complete, λ-saturated ideal on [λ]<κ. Then λ<κ = λ · 2<κ.

Proof of Theorem 5.12. Let U be the dual of I and D be the projection of U
to a filter on λ via the map z �→ sup(z). Then D is a uniform, weakly normal,
κ-complete filter on λ concentrating on ordinals of cofinality less than κ.

For ordinals α ∈ λ ∩ Cof(<κ), let Aα ⊆ α be a cofinal subset of α of
order type the cofinality of α. Define an increasing continuous sequence of
ordinals 〈ηξ : ξ < λ〉 by induction by letting η0 = 0, and ηξ+1 the least

34 Informally speaking, SCH asserts that 2λ for a singular λ is the least possibility given
by cardinal arithmetic and the powers of smaller regular cardinals. It is much discussed in
various chapters of this Handbook.
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ordinal such that {α : Aα ∩ [ηξ, ηξ+1) �= ∅} ∈ D. (Such an ηξ+1 exists by the
weak normality of D.)

Let Mα = {ξ < λ : Aα ∩ [ηξ, ηξ+1) �= ∅}. Then Mα ∈ [λ]<κ and for each ξ,
{α : ξ ∈ Mα} ∈ D. Hence, by the κ-completeness for all z ∈ [λ]<κ there is
an α with z ⊆Mα. In particular, [λ]<κ =

⋃
α<λ P (Mα). �

Abe gets two more results directly addressing the case of singular cardinals:

5.14 Theorem. Suppose that λ is a singular cardinal and there is a weakly
normal, fine, κ-complete ideal on [λ]<κ. Then

1. if cf(λ) < κ, then λ<κ = λ+ · 2<κ, and

2. if cf(λ) = κ, then λ<κ = λ · 2<κ.

The Value of Θ

We now turn to more subtle ideas about the continuum. Let M be a model
of ZF but not necessarily the Axiom of Choice. We define ΘM to be the
supremum of all ordinals α for which there is a surjection f : R

M → α with
f ∈ M . If M is a model of the Axiom of Choice, then ΘM = (c+)M , where
c = 2ℵ0 . In [42] the following analogue of the Continuum Hypothesis was
considered:

5.15 Definition. The Constructive Continuum Hypothesis is the assertion
that ΘL(R) ≤ ω2.

Thus the Constructive Continuum Hypothesis asserts that it is not possible
to effectively construct a counterexample to the Continuum Hypothesis in
L(R). If there are measurable cardinals, then ΘL(R) has cofinality ω and
consequently is either strictly larger than ω2 or strictly smaller than ω2.

In Sect. 5.11, we will prove Woodin’s theorem that it is a consequence of
the statement “the nonstationary ideal on ω1 is ℵ2-saturated and there is a
measurable cardinal”, that δ∼

1
2 = ω2. Since δ∼

1
2 is much smaller than ΘL(R) this

shows that there is a constructive/effective counterexample to the Continuum
Hypothesis. However, we work in the other direction for the moment.

5.16 Definition. A partial ordering P is reasonable iff for all ordinals α and
all V -generic G ⊆ P, ([α]<ω1)V is stationary in V [G].

It is easy to verify many standard classes of partial orderings are rea-
sonable. For example, any proper partial ordering is reasonable and any
ℵω-c.c. partial ordering that preserves all cardinals is reasonable [42].

5.17 Lemma. Suppose that I is an ℵn-complete, ℵω-saturated, cardinal pre-
serving ideal on ωn. If there is a set A ∈ I[ωn] with A ⊆ Cof(ωn−1) and
A ∈ Ĭ, then P (ωn)/I is reasonable.
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Proof. We must see that if α is an ordinal, G ⊆ P (ωn)/I is generic, and
A ∈ V [G] is a structure in a countable language with domain α, then there is
a countable set z ∈ V such that z ≺ A.35 We can assume that α is cardinal
in V .

Using the downward Löwenheim-Skolem theorem, it is easy to verify the
following general result due to Abraham:

Fact. Suppose that V ⊆W are models of set theory and α ∈ On with (α+)V

a cardinal in W . If V ∩ [α]<ω1 is stationary in W then so is V ∩ [α+]<ω1 .

Abraham’s fact together with the hypothesis that I is cardinal preserving
implies that for all β ≤ ωn−1, ([β]<ω)V remains stationary after forcing with
P (ωn)/I.

By a theorem of Tarski [117] the saturation of a Boolean algebra is always
a regular cardinal. Hence P (ωn)/I is ℵk-c.c. for some k ∈ ω. This implies
that if G ⊆ P (ωn)/I is generic and A ∈ V [G] is a structure with domain
some λ ≥ ωk, then there is a set N ∈ V with |N |V = ℵk such that N ≺ A.
Since ωk is ω+j

n for some finite j, the lemma is reduced to seeing that if ρ is
ωV

n , then ([ρ]<ω1)V is stationary in V [G].
Let 〈fγ : γ ∈ [ωn−1, ωn]V 〉 ∈ V such that for each γ ∈ [ωn−1, ωn]V ,

fγ : ωV
n−1 → γ is a bijection. Let A be an expansion of a large H(θ) witnessing

that A ∈ I[ωn].
Let G ⊆ P (A)/I be generic and j : V → M ⊆ V [G] be the generic

elementary embedding. Let B ∈ V [G] be a structure in a countable language
with domain ρ. We must find a countable z ⊆ ρ lying in V such that z ≺ B.

For all γ < ρ, Skj(A)(γ) ∩ ρ<ρ = SkA(γ) ∩ ρ<ρ. Hence, Skj(A)(ρ) ∩ ρ<ρ =
SkA(ρ) ∩ ρ<ρ ⊆ V . Since A ∈ G, there is a sequence 〈ρi : i ∈ ωn−1〉 ∈ V [G]
cofinal in ρ such that every initial segment 〈ρi : i ∈ j〉 ∈ Skj(A)(ρ). In
particular, we see that for j ∈ ωn−1, 〈ρi : i ∈ j〉 is in V .36

Let Xj =
⋃

i<j fρi“j. Then each Xj ∈ V and in V [G] the sequence
〈Xj : j < ωn−1〉 is an increasing, continuous sequence of sets of cardinality
less than ωn−1 whose union is ρ. In particular, there is a j such that Xj is
an elementary substructure of B.

Since ([Xj ]<ω1)V is stationary in P (Xj)V [G], there is a z ∈ ([Xj ]<ω1)V

such that z ≺ B. �

A somewhat easier argument shows:

5.18 Lemma. Suppose that P (ωn)/I is ℵn+1-saturated, where I is the non-
stationary ideal on ωn restricted to the ordinals of cofinality ωn−1. Then
P (ωn)/I is reasonable.

Foreman and Magidor established the following result [42, Theorem 3.4]:

35 More precisely, z is the domain of an elementary substructure of A.
36 This is where we use the hypothesis that I concentrates on a set in I[ωn].
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5.19 Theorem. Suppose that ∼ is a κ-weakly homogeneously Suslin equiva-
lence relation, and P is a reasonable partial ordering of cardinality less than κ.
Suppose that there is a τ ∈ V [G] ∩ ωω such that for all f ∈ V ∩ ωω, τ �∼ f .
Then in V , there is a perfect set of ∼ inequivalent elements of ωω.

Suppose that f : ωω → ρ is a function in L(R), where ρ ∈ On. Then f in-
duces an equivalence relation on ωω defined by setting x ∼f y iff f(x) = f(y).
Given a sufficient number of conventional large cardinals, this equivalence re-
lation is κ-weakly homogeneously Suslin for some measurable cardinal κ.

Suppose that ∼ is a κ-weakly homogeneously Suslin equivalence relation
on ωω with at least ℵn classes. Enumerate the classes as 〈[xα] : α < γ〉. Let
I be a precipitous ideal on ωn. Let G ⊆ P (ωn)/I be generic, and j : V →
M ⊆ V [G] be the generic elementary embedding. Then one can show that
the ωnth equivalence class on the sequence j(〈[xα] : α < γ〉) is a new class
for ∼.

As a corollary we get the following results:

5.20 Theorem. Suppose that any of the following hypotheses (together with
conventional large cardinal hypotheses):

1. there is an ℵn-complete, cardinal preserving ideal I on ωn that is ℵω-
saturated with an element A ∈ I[ωn] ∩ I+, or

2. the nonstationary ideal on ωn restricted to cofinality ωn−1 is ℵn+1-
saturated, or

3. there is an ℵ1-complete ideal I on ωn such that the forcing P (ωn)/I is
proper.

Then ΘL(R) < ωn.

There are a host of other possible hypotheses that work as well as 1–3 in
Theorem 5.20.

Woodin used this result to prove the following:

5.21 Theorem. Suppose that there is an ℵ2-saturated, uniform ideal I on
ω2 and sufficiently many conventional large cardinals. Then ΘL(R) < ω2.

Proof. Let ∼ be a weakly homogeneous equivalence relation with at least ω2

classes. We show that there is a perfect set of ∼ inequivalent reals.
As in the proof of Theorem 5.9, there is a normal, ℵ2-saturated ideal I ′

on ω1 defined by setting X ∈ I ′ iff 1 �P (ω2)/I ω1 /∈ j(X), where j : V → M
is the elementary embedding induced by a generic ultrafilter for P (ω2)/I.
Moreover, I ′ is a projection of I and P (ω1)/I ′ is regularly embedded in
P (ω2)/I. Let G ⊆ P (ω2)/I be generic and U be the projection to a generic
object for P (ω1)/I. We note that G is in a c.c.c. extension of V [U ], since
ωV

2 = ω
V [U ]
1 . In particular, the forcing creating G over V [U ] is reasonable.

We argue that it adds a new ∼V [U ] equivalence class.
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If i : V → N is the generic elementary embedding induced by I ′ and the
ultrapower by U then there is an elementary embedding k : N →M making
the following diagram commute:

V

N M

�
��
i �

��
j

�
k

Again, as in Theorem 5.9, the critical point of k is ωN
2 . Let 〈[xα] : α < γ〉 ∈ N

be an enumeration of the ∼N equivalence classes. Since N ∩ R = V [U ] ∩ R,
and ∼ is weakly homogeneous, we see that this is also an enumeration of the
∼V [U ] equivalence classes.

Moreover, the ωN
2 element of k(〈[xα] : α < γ〉) is a new ∼ equivalence

class. Hence we can apply Theorem 5.19, to see that there is a perfect set of
inequivalent reals. �

5.4. Stationary Set Reflection

Generic embeddings imply the same stationary set reflection as the corre-
sponding large cardinal embedding, provided that the forcing preserves sta-
tionarity. One example of this phenomenon is the following proposition:

5.22 Proposition. Suppose that there is a generic elementary embedding
with critical point κ+ in a <κ-closed forcing extension of V . Then if S ⊆
κ+ ∩ Cof(<κ) is stationary, there is a γ < κ+ such that S ∩ γ is stationary.

Proof. Let j : V → M ⊆ V [G] have critical point κ+. Since κ<κ ∩ V =
κ<κ ∩ V [G] we must have V |= κ<κ = κ. It follows that <κ-closed forcing
preserves stationary subsets S ⊆ κ+ ∩ Cof(<κ). Consequently, if S is a sta-
tionary subset of κ+ consisting of ordinals of cofinality less than κ, S remains
stationary in V [G].

Since, j(S) ∩ κ+ = S, we know that M |= “there is a γ < j(κ) such that
j(S) ∩ γ is stationary”. By the elementarity of j, this holds in V . �

Note that the hypothesis of Proposition 5.22 holds if there is a normal,
κ+-complete ideal I on κ+ such that P (κ+)/I has a dense <κ-closed subset.

Since proper forcing preserves stationary sets of ordinals of cofinality ω,
the proof of Proposition 5.22 gives the following observation:

5.23 Proposition. Suppose that j : V → M is an elementary embedding
with critical point κ in a generic extension of V by proper forcing. Suppose
that P ⊆ κ with ‖κ ∈ j(P )‖ �= 0 and S ⊆ κ∩Cof(ω) is stationary, then there
is an α ∈ P such that S ∩ α is stationary.

It follows from Proposition 5.23 that if I is a normal κ-complete ideal on
κ such that P (κ)/I is proper, then for every stationary set S ⊆ κ ∩ Cof(ω)
and every P ∈ I+, there is an α ∈ P such that S ∩ α is stationary.
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The interested reader can easily formulate other generic embedding as-
sumptions that yield every ordinal reflection property at successor of regular
cardinals.

An interesting assumption at a successor of a singular cardinal is:

5.24 Theorem. Suppose that there are partial orderings 〈Pn : n ∈ ω〉 such
that Pn is <ωn-closed and whenever G ⊆ Pn there is a generic elementary
embedding j : V → M with critical point ωn such that j(ωn) > ℵω+1 and
j“ℵω+1 ∈ M . Suppose further that ℵω+1 ∈ I[ℵω+1]. Then every stationary
subset of ℵω+1 reflects to an ordinal α.

5.25 Corollary. Suppose that for all n there is a normal, fine, countably
complete ideal In ⊆ [ℵω+1]<ωn such that P ([ℵω+1]<ωn)/I is <ωn-closed and
ℵω+1 ∈ I[ℵω+1]. Then every stationary subset of ℵω+1 reflects.

Magidor showed that the hypothesis of this theorem is consistent relative
to large cardinal assumptions in [91]; see Cummings’ or Eisworth’s chapter
in this Handbook for a proof of this fact.

Proof. Suppose that S ⊆ ℵω+1 is stationary. Then there is a stationary
subset of S consisting of ordinals of a fixed cofinality ωn. We assume that S
has this property. Let m > n and suppose that jm is the generic embedding
with critical point ωm, arising from a generic object G ⊆ Pm.

By Theorem 3.16, S is still stationary in V [G]. Let γ = sup(j“ℵω+1).
Since j“ℵω+1 is ℵn-closed unbounded in γ, we see that j“S is stationary
in γ. Since j“S ⊆ j(S),

M |= j(S) ∩ γ is stationary in γ.

By elementarity, V |= there is a δ, S ∩ δ is stationary in δ. �

A. Sharon has proved that if every stationary subset of ωn∩Cof(ω) reflects,
then I[ℵω+1]�Cof(ωn) contains a closed unbounded set. The proof extends to
show that if there is a normal, ℵn-complete ideal I on ωn such that P (ωn)/I
contains a dense set that is <ωn−1-closed, then I[ℵω+1]�Cof(ωn) contains
a club. In particular, the hypothesis of Corollary 5.25 can be weakened to
the assumption that the ideals In exist and that I[ℵω+1]�Cof(ω1) contains a
relative club.

One can also prove the following with analogous techniques:

5.26 Theorem. Suppose that there is a normal, fine, ℵ2-complete ideal I on
Z = [λ]<ω2 such that P (Z)/I is a proper forcing. Then for every countable
collection of stationary subsets {Si : i ∈ ω} of Pω1(λ), there is an X of
cardinality ω1 with ω1 ⊆ X such that for all i, Si ∩Pω1(X) is stationary and
for all regular γ, cf(X ∩ γ) = ω1.

Note that the hypotheses of the theorem hold if P (Z)/I has a dense count-
ably closed subset. Foreman and Todorčević [45] showed that the type of
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reflection in the conclusion of this theorem implies the Singular Cardinals
Hypothesis.

Burke and Matsubara have shown that hypothesis on the closure of the
quotient algebra can be replaced with chain conditions, even for non-normal
ideals. Strengthening standard results about strongly compact cardinals they
showed:

5.27 Theorem (Burke-Matsubara [13]). Suppose that κ < λ are uncountable
regular cardinals and there is a fine, κ-complete, λ-saturated ideal on [λ]<κ.
Then every stationary subset of λ ∩ Cof(<κ) reflects.

Proof. Let I be a λ-saturated, fine, κ-complete ideal on [λ]<κ. Define an
ideal I ′ on λ by putting A ∈ I ′ iff {z ∈ [λ]<κ : sup(z) ∈ A} ∈ I. Then I ′ is a
uniform λ-saturated, κ-complete ideal on λ. We show that the existence of
such an I ′ implies the desired reflection.

Let A ⊆ λ ∩ Cof(<κ) be stationary. Suppose that A does not reflect.
Without loss of generality we can assume that there is a fixed η < κ such that
A ⊆ λ ∩ Cof(η). For each α ∈ A choose an increasing sequence 〈αi : i ∈ η〉
cofinal in α.37

Using the fact that for each limit point β ∈ λ there is a closed unbounded
set Cβ ⊆ β disjoint from A, one can show by induction that for all β ∈ λ
there is an fβ : β ∩A→ η such that for δ, ρ ∈ A ∩ β

{ρi : i > fβ(ρ)} ∩ {δi : i > fβ(δ)} = ∅.

Force with P (λ)/I ′ to get a generic G. Then for each δ ∈ A, there is an
X ∈ G and an i(δ) such that for all β ∈ X, fβ(δ) = i(δ). But then for all
ρ, δ ∈ A

{ρi : i > i(ρ)} ∩ {δi : i > i(δ)} = ∅.

This contradicts the fact that A is stationary in V [G]. �

5.5. Suslin and Kurepa Trees

The author noticed that if there is a normal, fine, countably complete ℵ1-
dense ideal on [ω2]ω1 then there is a Suslin tree on ω1. To see this note that
Shelah showed that if c is Cohen generic over V then there is a Suslin tree
on ω1 in V [c]. View P ([ω2]ω1)/I as the Boolean completion of Col(ω, ω1).
Let G ⊆ Col(ω, ω1) be generic. Then we can write G ∼ G0 ∗ G1, where G0

is V -generic for Col(ω, ω1) and G1 is Cohen generic over V [G0]. Hence by
Shelah’s theorem there is a Suslin tree T in V [G]. Let j : V → M ⊆ V [G]
be the generic embedding induced by G. By the closure of M , we must have
that T ∈ M and is a Suslin tree in M . Since ω

V [G]
1 = ωV

2 = j(ωV
1 ) we can

apply elementarity to see that there is a Suslin tree on ω1 in V .
Woodin [126] proved:

37 I.e. a ladder system.
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5.28 Theorem. Suppose that there is a countably complete, ℵ1-dense ideal
on ω1. Then there is a Suslin tree on ω1.

Proof. Since the canonical projection of an ℵ1-dense ideal to a normal ideal
is also ℵ1-dense, we can assume we start with a normal ℵ1-dense ideal I. Let
G ⊆ P (ω1)/I be generic. By Example 4.12 we can consider G to be a generic
subset of Col(ω, ω1), i.e. a surjective function from ω → ω1.

Suppose now that Z = ω1, and j : V → M is the generic elementary
embedding. Then G ∈ M and we can choose a function f : ω1 → ωω

1 such
that the empty condition forces that [f ]M = G. We can assume that for all
limit ordinals α, f(α) : ω → α is a surjection.

We construct a tree T and show that it is Suslin. The elements of T at
level α will be the ordinals [αω, (α + 1)ω). We will denote level α by (T )α.

At successor stages α = β +1 we arbitrarily assign successors to each γ at
level β so that each γ has countably many successors.

At a limit stage α we will have defined a countable tree (T )<α and we
must decide which branches through (T )<α we extend to level α. Given a
γ ∈ (T )<α and f(α) we have an attempt at a branch bγ through (T )<α

defined as follows:

1. Let b0(γ) = γ.

2. Suppose that bn(γ) is defined and k is the least natural number such
that f(α)(k) = bn(γ). Let l be the least element of ω greater than k
such that bn(γ) <T f(α)(l), and bn+1(γ) = f(α)(l).

Let bγ = 〈bn(γ) : n ∈ ω〉.

Case 1. For all γ ∈ (T )<α, bγ is a branch through (T )<α that is cofinal in α.

In this case we put a δ ∈ (α + 1)ω above each bγ .

Case 2. Otherwise.

In this case we arbitrarily choose a countable collection of branches through
(T )<α that are cofinal in α and such that every γ ∈ (T )<α belongs to one of
them.

We claim that this defines a Suslin tree on ω1. The following suffices:

Claim. Let A be a maximal antichain in T . Then there is an α < ω1 such
that Case 1 holds, and for every γ ∈ (T )<α there is an element a ∈ A and an
n such that a < bn(γ).

To see the claim, fix an antichain A and let j : V → M be the generic
elementary embedding induced by a generic G ⊆ Col(ω, ω1). Note that j(A)∩
ω1 = A, j(T ) ∩ ω1 = T and j(f)(ωV

1 ) = G. An easy density argument yields
that from the point of view of M , ωV

1 is in Case 1 and that for all γ ∈ (ω1)V

there is an n and an a ∈ A such that a <j(T ) bn(γ). Reflecting this to V
finishes the proof of the claim. �
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This theorem easily generalizes to show:

5.29 Theorem. Suppose that there is a κ+-complete, normal ideal I on
P (κ+) so that there is a dense subset of P (κ+)/I isomorphic to Col(κ, κ+).
Then there is a Suslin tree on κ+.

Recall that a Kurepa tree on κ is a normal tree T on κ such that each
level has cardinality less than κ but T has at least κ+ branches.

We have a couple of ways of showing that there are no Kurepa trees:

5.30 Theorem. Suppose that (κ+, κ) →→ (κ,<κ). Then there is no Kurepa
tree on κ.

Proof. Let θ 5 κ and T be a Kurepa tree on κ. Let 〈bα : α < κ+〉 enumerate
distinct branches through T of length κ. Let A ≺ 〈H(θ),∈,Δ, T 〉 be such
that |A ∩ κ+| = κ and |A ∩ κ| < κ.

Let δ = sup(A∩κ). For α �= β with α and β ∈ A∩κ+, there is a γ ∈ A∩κ
such that bα and bβ differ at level γ. Hence bα and bβ differ at level δ. But
this means that level δ must have cardinality at least κ, a contradiction. �

5.31 Theorem. Suppose that κ = μ+ is a successor cardinal and there is an
elementary embedding j : V →M ⊆ V [G] where G ⊆ P is generic where:

1. crit(j) = κ, and

2. P is κ+-c.c.

Then there is no Kurepa tree on κ.

Proof. Let j : V → M ⊆ V [G] be the generic elementary embedding of V
to M . Since κ is a successor cardinal, j(κ) = κ+. Suppose that T is a
Kurepa tree on κ. Let 〈bα : α < κ+〉 enumerate distinct branches of length
κ through T .

Then for all α, j(bα) ∩ κ = bα and there is a point τα ∈ j(T ) at level κ
that belongs to the branch j(bα). This τα lies above every element of bα.
In particular, for α �= β, τα �= τβ . Hence there are at least (κ+)V points
at level κ in j(T ). Since M |= j(T ) is Kurepa, V [G] |= |(κ+)V | = μ,
a contradiction. �

5.6. Partition Properties

In this section we discuss the use of ideals for proving partition properties.38

We remind the readers of some definitions:
Let κ be a cardinal, γ and 〈κν : ν < γ〉 be ordinals. Then κ→ (κν)r

γ iff for
every function f : [κ]r → γ there is a ν < γ and a set X ⊆ κ of order type κν

38 We refer the reader to the chapter by Hajnal and Larson in this Handbook for an
extensive discussion of partition relations.
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such that f has constant value ν on [X]r. The set X is called homogeneous
for f . If all of the κν ’s are constantly λ then κ→ (λ)r

γ .
Baumgartner, Hajnal and Todorčević in [7] showed how to use ideal theory

effectively to simplify classical proofs of partition theorems and to prove
new strong partition theorems. We will content ourselves to mention two
applications of the theory and relations to generic elementary embeddings.

As noted in Sect. 4, for a κ-complete ideal I ⊆ P (κ), the following prop-
erties are decreasing in strength:

1. I is prime.39

2. I is κ-dense.

3. I is (κ+, κ+, κ)-saturated.

These various properties yield decreasing amounts of partition strength.

5.32 Definition. Let κ be a measurable cardinal. Then Ω(κ) is the least
ordinal greater than κ that is a uniform indiscernible for bounded subsets
of κ.40

We note that Ω(κ) is a very large ordinal; for example, LΩ(κ) |= ZFC.
Thus Ω(κ) is closed under primitive recursive set functions, and much more.

The following theorems use the theory of ideals developed by Baumgart-
ner, Hajnal and Todorčević [7] along with assumptions about ideals that use
generic embeddings:

5.33 Theorem (Foreman-Hajnal [39]). Suppose that κ carries a κ-complete
prime ideal. Then for all ρ < Ω(κ) and m ∈ ω,

κ+ → (ρ)2m.

Weaker hypotheses give weaker conclusions:

5.34 Theorem (Foreman-Hajnal [39]). Suppose that there is a κ-complete
κ-dense ideal on κ and κ<κ = κ. Then:

κ+ → (κ2 + 1, α)22 for all α < κ+.

Laver and later Kanamori independently showed:

5.35 Theorem (Kanamori [68]). Suppose that κ<κ = κ and there is a
(κ+, κ+, κ)-saturated ideal on κ. Then:

κ+ → (κ×2 + 1, α)22 for all α < κ+.

39 I.e. κ is measurable.
40 For each α < κ and a ⊆ α, the measurability of κ implies that there is a closed
unbounded class of indiscernibles Ca for the structure 〈L[a], ∈, a, ξ〉ξ≤α. (One proceeds
here in direct analogy to the development of the canonical indiscernibles for L and the
theory 0#.) Then Ω(κ) is the least member of

⋂
{Ca : a ⊆ α for some α < κ}. For a

broader, combinatorial definition of Ω(κ) see Definition 5.6 of the Hajnal-Larson chapter
in this Handbook.
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As usual with strong ideal axioms, the advantage of Theorems 5.34 and 5.35
is that the existence of these strong ideals is consistent at small cardinals such
as ω1. For example, a corollary of Theorem 5.33 is that it is consistent that
ω2 → (ω2

1 + 1, α)2 for all α < ω2.
To illustrate how strong ideal assumptions could be relevant we outline the

proof of the following theorem of Laver, dealing with the partition property:
(
ω2

ω1

)

→
(
ω1

ω1

)

ω

which says that whenever f : ω2×ω1 → ω there are uncountable sets A ⊆ ω1

and B ⊆ ω2 such that f is constant on A×B.41

5.36 Theorem (Laver [83]). Assume CH and that there is a normal, count-
ably complete (ℵ2,ℵ2,ℵ0)-saturated ideal I on ω1. Then:

(
ω2

ω1

)

→
(
ω1

ω1

)

ω

.

Proof. Fix an f : ω1 × ω2 → ω. For each k < ω and β < ω2, let fk(β) =
{α ∈ ω1 : f(α, β) = k}. Then there is a set O of size ℵ2 and a k ∈ ω such
that for all β ∈ O, fk(β) ∈ I+. By the saturation we can find a set S ⊆ O
of size ℵ2 such that for all countable sets S′ ⊆ S, |

⋂
β∈S′ fk(β)| = ω1. Let

〈ρη : η < ω2〉 enumerate S in order.
Let θ be a large regular cardinal, N ≺ 〈H(θ),∈,Δ, f, I, S, . . .〉 be an ele-

mentary substructure of cardinality ℵ1 with Nω ⊆ N and ξ = N ∩ ω2.
We build sequences of ordinals 〈αi : i ∈ ω1〉 and 〈βi : i ∈ ω1〉 with the

αi’s countable and the βi’s from S ∩N by induction on i. At stage j we will
assume the following:

1. for all i < j, αi ∈ fk(ρξ), and

2. for all i and i′ less than j, αi′ ∈ fk(βi).

Having defined 〈αi : i < j〉 and 〈βi : i < j〉 satisfying these induc-
tive hypotheses, we need to define βj and αj . By our assumptions on S,
|
⋂

i<j fk(βi) ∩ fk(ρξ)| = ω1. Choose αj > supi<j αi in this intersection.
We can then reflect the statement “{αi : i ≤ j} ⊆ fk(ρξ)” to find a ρξ′ >
supi<j βi with ξ′ ∈ N satisfying “{αi : i ≤ j} ⊆ fk(ρξ′ )”. Let βj = ρξ′ . �

The next theorem has nothing directly to do with ideals:

5.37 Theorem (Hajnal-Juhasz). Suppose that G ⊆ Add(ω, ω1) is generic
for the partial ordering adding ω1 Cohen reals. Then:

V [G] |=
(
ω2

ω1

)

�→
(

ω
ω1

)

2

.

41 Variants of this partition property appearing elsewhere in this chapter have the expected
analogous meaning.
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Proof. View G : ω1 → 2. Let 〈Aα : α < ω2〉 be a sequence of elements
of [ω1]ω1 such that for all α �= β, |Aα ∩ Aβ | ≤ ℵ0. For each α ∈ ω2 let
〈ρα

i : i ∈ ω1〉 enumerate Aα in increasing order.
Define a function f : ω1 × ω2 → 2 by f(γ, α) = j iff G(ρα

γ ) = j. We claim
that for all countably infinite sets S ⊆ ω2 there is a tail of γ < ω1 such that
there are α, β ∈ S, f(γ, α) �= f(γ, β). Indeed, suppose that S is a countably
infinite set. Choose a γ0 such that for all γ > γ0 and all α, β ∈ S we have
ρα

γ �= ρβ
γ . Since G is generic we can find α, β ∈ S such that G(ρα

γ ) �= G(ρβ
γ ),

as desired. �

As Woodin pointed out, it follows from these results that the following
three properties are collectively inconsistent:

1. CH,

2. there is a normal, fine, countably complete, ℵ1-dense ideal on [ω2]ω1 ,
and

3. there is a normal, fine, countably complete ideal on [ω2]ω1 with quotient
algebra Col(ω, ω1) ∗Add(ω, ωV

2 ).

Since Woodin’s argument only used the positive partition property to de-
duce his inconsistency, property 2 can be replaced by the assumption that
there is an (ℵ2,ℵ2,ℵ0)-saturated ideal on ω1.

5.38 Corollary. The following are inconsistent with each other:

1. There is a normal (ℵ2,ℵ2,ℵ0)-saturated ideal on ω1.

2. There is a normal, fine, countably complete ideal on [ω2]ω1 such that
P ([ω2]ω1)/I has a dense subset isomorphic to Col(ω, ω1) ∗Add(ω, ωV

2 ).

Proof. The first ideal assumption implies CH and that there is an (ℵ2,ℵ2,ℵ0)-
saturated ideal on ω1. Hence

(
ω2
ω1

)
�→

(
ω1
ω1

)

ω
. Assume the second ideal exists.

Let G ⊆ Col(ω, ω1) ∗ Add(ω, ωV
2 ) be generic and j : V → M be the generic

embedding associated with G. Then G ∈ M . Write G = G0 ∗ G1 where
G0 ⊆ Col(ω, ω1) and G1 ⊆ Add(ω, ωV

2 ). Then G0 and G1 are both in M .
Let f be the example built from G1 in V [G0 ∗G1] that shows

(
ω2
ω1

)
�→

(
ω
ω1

)

<ω
.

Since the construction of f is sufficiently absolute relative to a subset of
ωM

1 coding an almost disjoint sequence of sets we see that f ∈ M . By the
elementarity of j, V |=

(
ω2
ω1

)
�→

(
ω
ω1

)

2
. �

5.39 Remark. It is easy to see from Theorem 7.14 that if I is a normal,
fine, ℵ1-dense ideal on [ω2]ω1 in V and G ⊆ Add(ω, ω1) is V -generic then in
V [G], P ([ω2]ω1)/I has a dense subset isomorphic to Col(ω, ω1) ∗Add(ω, ωV

2 ).
Hence if it is consistent that there is an ℵ1-dense ideal on [ω2]ω1 , then there
are two consistent ideal properties that are mutually inconsistent.
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In Sect. 7, Example 7.25 shows that it is consistent that CH holds and
there is an inaccessible cardinal λ and a normal, fine, countably complete
ideal I ⊆ [λ]ω1 such that

P ([λ]ω1)/I ∼= B(Col(ω,<λ)).

The argument for Corollary 5.38, works equally well to show that such an
ideal implies

(
ω2

ω1

)

�→
(

ω
ω1

)

2

.

By Theorem 7.40, we see that it is consistent that CH holds and there is
an (ℵ2,ℵ2,ℵ0)-saturated ideal. Hence, assuming the consistency of a huge
cardinal, we see that there are two individually consistent, but mutually
inconsistent ideal assumptions.

5.7. The Normal Moore Space Conjecture and Variants

In this section we describe how to prove the Normal Moore Space Conjecture
and related properties from generic large cardinals.42 The generic embed-
dings posited here stand in stark contrast to the other axioms in that they
imply that the continuum is larger than the first weakly Mahlo cardinal. We
note that their statements can be distinguished from other generic large car-
dinal postulations in that the “three parameters” directly refer to the value
of 2ℵ0 . They thus “settle” CH in a somewhat circular way.

5.40 Definition. We give the basic definitions:

1. A development of a topological space (X, τ) is a collection {Un : n ∈ ω}
of open coverings such that for every x ∈ X and every open neighbor-
hood O of x, there is an n such that:

⋃
{U ∈ Un : x ∈ U} ⊆ O.

2. A Moore Space is a regular space with a development.

We note that if (X, τ) is metrizable, then it has a development. If a space
(X, τ) has a development then every point in X has a countable neighborhood
base. “Developments” are an attempt to capture the difference between
metrizability and first countability.

The Normal Moore Space Conjecture [97] is the following statement:

Every normal Moore space is metrizable.

42 The author would like to thank Alan Dow for helpful correspondence and certification
of the results in this section.
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The question of metrizability was reduced to a set-theoretic context by work
of Bing [10] who showed that collectionwise normal Moore spaces are metriz-
able. Thus the conjecture follows if normal implies collectionwise normal.
This was just the beginning: the apparently innocuous statement of the Nor-
mal Moore Space Conjecture involves a considerable amount of set theory.
For example, assuming MAω1 , Silver [116] showed that the Normal Moore
Space Conjecture is false. Fleissner [29] showed that it failed assuming the
Continuum Hypothesis and proved [28] that the Normal Moore Space Con-
jecture implies that there are inner models with measurable cardinals. In the
positive direction, work of Kunen; Nyikos [98]; and Dow, Tall, and Weiss [25]
and others have shown it is true after forcing over of models of ZFC that
have supercompact cardinals.43

Given that the proofs rely on computing the quotient algebra of a generic
elementary embedding, it is not surprising that it is possible to make an ax-
iomatic statement that suffices to prove the Normal Moore Space Conjecture
and its more sophisticated variants.

The following result is a simple codification of the reflection results neces-
sary to prove the Normal Moore Space Conjecture in a generic extension of
V by Cohen or random reals.

5.41 Theorem. Suppose that for all λ ≥ 2ℵ0 there is a 2ℵ0-complete, normal,
fine ideal I ⊆ [λ]<2ℵ0 such that P ([λ]<2ℵ0 )/I is either the Boolean algebra
for adding Cohen reals or random reals. Then:

1. Every normal space of character less than 2ℵ0 is collectionwise normal.
In particular the Normal Moore Space Conjecture is true.

2. (Balogh) Every normal, locally compact space is collectionwise normal.

5.8. Consequences in Descriptive Set Theory

As we have seen, assumptions about the existence of generic elementary
embeddings prove many combinatorial properties that are relevant to fine
structure and the core model theory. For example, the existence of generic
embeddings constructed in sufficiently closed forcing extensions imply that
every stationary subset of a successor of a singular cardinal reflects. (Theo-
rems 5.22 and 5.24.) Thus, using core model theory Projective Determinacy
holds.

Woodin has shown that the existence of a countably complete, ℵ1-dense
ideal on ω1 implies that the Axiom of Determinacy (AD) holds in L(R).
Ketchersid showed that stronger ideal axioms imply AD+, a stronger form
of the axiom due to Woodin, holds in an inner model containing the real
numbers with Θ relatively large. We are content here to show a very easy
result from [35], one that foreshadowed later, much more impressive results.44

43 Theorem 2(1) of [25].
44 Even before this result, Magidor [90] also had results showing that ideal axioms gave

the Lebesgue measurability of Σ1
4-sets.
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5.42 Theorem. If there is a normal, fine, 2ℵ0-dense ideal I on [(2ℵ0)+]ω1

or on [2ℵ0 ]<ω1 , then the following are true in L(R):

1. Every set of reals is Lebesgue measurable, completely Ramsey and has
the property of Baire.

2. The partition relation ω → (ω)ω.

Woodin showed, somewhat earlier:

5.43 Theorem. If CH holds and there is a countably complete, ℵ1-dense
ideal on ω1, then every set of reals in L(R) is Lebesgue measurable, has the
property of Baire and L(R) |= ω → (ω)ω.

Proof. Both theorems have essentially the same proof: In either case, by forc-
ing with Col(ω, 2ℵ0), we get a generic object G and an elementary embedding
j : V → M ⊆ V [G], where Mω ∩ V [G] ⊆ M and |R|V = ω. In each case
j : L(R)V → L(R)V [G]. Let φ(x, y1, . . . , yn, z1, . . . , zm) define a set of real
numbers in L(R)V by

A = {r : φL(R)(r, a1, . . . , an, α1, . . . , αm)}

where a1, . . . , an ∈ R and α1, . . . , αm ∈ On. Then j(A) is the set of reals
defined in L(R)V [G] by φ, the a’s and j(α1), . . . , j(αm). Hence j(A) is a set
that is definable in L(R)V [G] using reals in V . Since G is the result of forcing
with a Levy collapse, j(A) must be Lebesgue measurable (see Solovay [110]).
By elementarity, A must be measurable.

The results for the property of Baire and the partition property follow the
same outline. �

5.9. Connections with Non-Regular Ultrafilters

Early investigations into ultraproducts [15] were concerned with the coarsest
possible property: their cardinality. In this section we focus on ultraproducts
of structures whose domains have cardinality ℵ0 and ℵ1. The generalizations
to structures with larger domains are straightforward. The main result of the
section are Theorems 5.47 and 5.51, which for κ ∈ {ω1, ω2} give the existence
of an ultrafilter F on κ such that |ωκ/F | = ℵ1.

If U is a countably complete ultrafilter, then ωκ/U has cardinality ℵ0. On
the other hand, for countably incomplete ultrafilters the “obvious” cardinality
of an ultrapower ωκ/U is 2κ. It became a prominent question whether the
“obvious” cardinality was always obtained [72, 15].

We begin with a simple result:

5.44 Proposition. Suppose that U is an ultrafilter on a cardinal κ that is
not countably complete. Then |ωκ/U | ≥ 2ℵ0 .
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Proof. Let 〈Xn : n ∈ ω〉 be a partition of κ into sets that are not in U . For
α ∈ κ let n(α) be such that α ∈ Xn(α). For A ⊆ ω, let 〈mi : i ∈ ω〉 enumerate
A in increasing order, and 〈pi : i ∈ ω〉 enumerate the prime numbers. Define
a function fA : κ→ ω by setting fA(α) =

∏
mi<n(α) p

mi
i .

We claim that if A �= B, then [fA] �= [fB]. For if A �= B, we can find an
n ∈ AΔB. For all α ∈

⋃
n′ ≥n Xn′ , fA(α) �= fB(α). �

The following is the negation of a standard condition that implies maximal
cardinalities for ultrapowers.

5.45 Definition. An ultrafilter U on Z is (μ, γ)-non-regular iff whenever
〈Xα : α < γ〉 ⊆ U , there is an S ⊆ γ with |S| = μ and

⋂
α∈S Xα �= ∅.

Any fine ultrafilter on [κ]<ω is easily seen to be (ω, κ)-regular. Hence for
each cardinal κ, there is a regular ultrafilter on P (κ). If U is an (ω, κ)-regular
ultrafilter on a set Z of size κ, then ωZ/U has cardinality 2κ [15].

Duals of ideals with nice quotient algebras turn out to be filters that can be
extended to highly non-regular ultrafilters. The first example of a theorem of
this type is due to Magidor. We shall see in Theorem 7.43 that the hypotheses
of the next theorem are consistent.

5.46 Theorem (Magidor [89]). Assume GCH. Suppose that I is a normal,
fine, countably complete, ℵ3-saturated, ℵ3-dense ideal on [ω3]ω1 , and let F
be any ultrafilter on [ω3]ω1 extending Ĭ. Then |ω[ω3]

ω1
/F | = ℵ3, and even

|ω[ω3]
ω1

1 /F | = ℵ3.

Note that since GCH implies that |[ω3]ω1 | = ℵ3, the result yields an ultra-
filter F ′ ⊆ P (ω3) such that ωω3

1 /F ′ has cardinality ℵ3.

Proof. Let Z = [ω3]ω1 . We show the stronger fact that the reduced product
ωZ/I has cardinality ℵ3.

Since there is a canonical bijection between functions f : [ω3]ω1 → ω
(modulo I) and partitions 〈An : n ∈ ω〉 of P (Z)/I, it suffices to count
partitions. Let D = {dα : α < ω3} ⊆ P (Z)/I be a dense set of size ℵ3. By
the ℵ3-c.c., P (Z)/I is a complete Boolean algebra, and for each A ∈ P (Z)/I
there is a β < ω3 and a set B ⊆ β such that A = 4α∈Bdα. Hence for
all partitions 〈An : n ∈ ω〉, there is a β < ω3 and sets Bn ⊆ β such that
for all n, An = 4Bndα. Hence the cardinality of the set of partitions is
ℵ3 × (2ℵ2)ℵ0 = ℵ3.

To see the stronger claim that ωZ
1 /I has cardinality ℵ3 we show that there

is a cofinal subset of ωZ
1 /I that has cardinality ℵ3. This suffices, since if

f ∈ ωZ
1 , the previous results show |

∏
z∈Z f(z)/I| = ℵ3.

For α ∈ ω3 let
fα : {z : α ∈ z} → ω1

by setting fα(z) = γ iff α is the γth element of z. Clearly if α < β then
{z : fα(z) < fβ(z)} ∈ Ĭ. Let g : Z → ω1 be arbitrary. Define h by setting
h(z) = γ where γ is the g(z)th element of z. Then h is a regressive function
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and hence we can find a maximal antichain of I-positive sets on which h
is constant. By the ℵ3-saturation of I, there is an α bigger than all of
these constant values. The function fα dominates g on each element of the
antichain and hence on a set in Ĭ . �

Magidor proved a quite delicate result that if I is a normal, fine, countably
complete, ℵ3-dense, ℵ3-saturated ideal on [ω3]ω1 in V , and G ⊆ Col(ω, ω1)
is generic, then in V [G] any ultrafilter F extending Ĭ satisfies |ωω2/F | = ℵ2.
This consistency result is improved by Theorem 5.51.

The first result getting an ultrapower of ω to have cardinality ω1 is due to
Laver [84]:

5.47 Theorem. Suppose that ♦ω1 holds and there is a countably complete,
ℵ1-dense ideal on ω1. Then there is an (ω, ω1)-non-regular ultrafilter D such
that |ωω1/D| = ℵ1.

Laver’s construction yielded the stronger property that there is an ℵ1-
generated ultrafilter over the ℵ1-dense ideal. Woodin later eliminated the
diamond assumption for getting an ℵ1-generated ultrafilter although CH is
needed to get the small ultrapower. Laver’s result was improved by Kanamori
to:

5.48 Theorem (Kanamori [67]). Assume that there is an ℵ1-dense ideal I
on ω1 and ♦ω1 . Suppose that D is any non-principal ultrafilter on ω, and
f : ω1 → ω is a map such that f −1({n}) ∈ I+ for all n ∈ ω. Then there is
an ℵ1-generated ultrafilter U over ω1 extending I∗ such that f∗(U) = D.

Kanamori showed that for regular λ, there is a weakly normal ultrafilter
U on λ+ concentrating on Cof(λ) iff there is a (λ, λ+) non-regular ultrafilter
on λ+.

In [48], it was shown that:

5.49 Theorem. Suppose that there is a layered ideal I on κ = λ+ and ♦κ.
Then there is a (κ+,∞)-distributive partial ordering P that adds a weakly
normal ultrafilter on κ extending Ĭ.

Since a saturated ideal on κ concentrates on Cof(λ) this result yields a
fully non-regular ultrafilter. For ultrafilters with small ultrapower, a strongly
layered ideal can be used:

5.50 Theorem (Foreman et al. [48]). Suppose that ♦ω1 and there is a strongly
layered ideal I on ω1. Then there is an (ω2,∞)-distributive forcing adding
an ultrafilter D ⊇ Ĭ such that |ωω1/D| = ℵ1.

As remarked before Theorem 4.16, it is easy to force a strongly layered
ideal from a layered ideal.
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Fully Non-Regular Ultrafilters on ω2

In this section we consider some ideal properties shown to be consistent in
Sect. 7.

Corollary 7.66 says: if κ is regular, κ<κ = κ and there is a very strongly
layered ideal I on κ+, �κ+ and ♦κ+(Cof(κ)), then for all uniform ideals J
on κ, there is a uniform ideal K on κ+ such that:

P (κ+)/K ∼= P (κ)/J.

Furthermore, the degree of completeness of K equals the degree of complete-
ness of J , and if J is κ+-saturated then K is weakly normal.

By Theorem 7.63, the hypotheses of Corollary 7.66 are consistent with
κ = ω1 and the existence of an ℵ1-dense ideal on ω1. Moreover, in unpub-
lished work, the author showed that the � assumption is not necessary.

Thus the hypotheses of the following theorem are consistent:

5.51 Theorem. Assume GCH. Suppose that ω1 carries a countably complete
uniform, ℵ1-dense ideal on ω1, and there is a very strongly layered ideal
on ω2. Then there is an ultrafilter F on ω2 such that |ωω2/F | = ℵ1 and
|ωω2

1 /F | = ℵ2.

Proof (Sketch). By Corollary 7.66, we can start with a uniform, countably
complete, ℵ1-dense ideal I on ω2. Woodin’s proof of Laver’s ♦ω1 result gives
in ZFC that if B is a Boolean algebra with a dense subset D of size ℵ1, then
there is an ultrafilter F̃ ⊆ B such that for any A ⊆ D with

∨
A = 1 then there

is a countable B ⊆ A such that
∨

B ∈ F̃ . Suppose that B = P (ω2)/I has a
dense set D of size ℵ1 and F̃ is such an ultrafilter. Let F be the ultrafilter on
ω2 induced by F̃ over Ĭ. Suppose that f : ω2 → ω is an arbitrary function.
Let An be those elements of D below f −1({n}). Then there is a countable
collection B ⊆

⋃
n An such that

∨
B ∈ F̃ . Choose disjoint representatives

{bm : m ∈ ω} for the elements of B. Define g :
⋃

B → ω, by setting g(α) = n
iff α ∈ bm and bm ⊆ An. Then g ≡ f (mod F̃ ). Since there are only ℵ1 many
such g’s (mod F̃ ) we see that ωω2/F has cardinality ℵ1.

It is a general fact that if |λκ/U | = δ then |(λ+)κ/U | ≤ δ+. We know that
|ωω2

1 | ≥ ℵ2 and hence ω2 ≤ |ωω2
1 /F | ≤ ℵ2. �

Taking μ = ω1 in the model of Theorem 7.63, Corollary 7.66 shows that
there is a uniform, weakly normal, countably complete ideal K on ω2 such
that P (ω2)/K has a dense subset of size ℵ1. Thus we get the following
corollary:

5.52 Corollary. Suppose that there are almost huge embeddings j0, j1 with
critical points κ0, κ1 respectively such that j0(κ0) = κ1. Then there is a
forcing extension in which GCH holds and there is an ultrafilter F on ω2

such that |ωω2/F | = ℵ1 and |ωω2
1 /F | = ℵ2.

Layered ideals on ω2 also give the following generalization of Theorem 5.48:
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5.53 Theorem. Suppose ♦ω2(Cof(ω1)) and that there is a very strongly
layered ideal I on ω2. Then for all functions f : ω2 → ω1 which are not
bounded in ω1 on a set in Ĭ there is a uniform, weakly normal, countably
complete ideal K on ω2 such that:

1. P (ω2)/K ∼= P (ω1)/{countable sets}, and

2. for all g : ω2 → ω1 there is a h : ω1 → ω1 with g ≡K h ◦ f .

Kanamori [67] calls the function f in the theorem a finest partition relative
to K. We note the following corollary:

5.54 Corollary. Under the hypotheses of Theorem 5.53 together with the
assumption that 2ω1 = ω2, there is a uniform, countably complete ideal K on
ω2 such that if F is any ultrafilter extending K̆ then

|ωω2
1 /F | = ℵ2.

For cardinals κ > ω2, the cardinality of ultrapowers ωκ/F is remains a
mystery for the most part. For more information on non-regular ultrafilters
we refer the reader to [119, 71, 67].

5.10. Graphs and Chromatic Numbers

Erdős and Hajnal defined the following graph in the early 1960’s:

G(κ, λ) = 〈{f |f : κ→ λ},⊥〉,
where f ⊥ g iff |{α : f(α) = g(α)}| < κ. This graph is of interest partly
because Erdős and Hajnal showed that if G is a graph of cardinality ω2

such that each subgraph has countable chromatic number, then G can be
embedded into G(ω2, ω) as a subgraph.45

In particular, they showed that CH implies that G(ω2, ω) has uncountable
chromatic number and asked whether this graph could have chromatic num-
ber ℵ1. It is immediate that if there is a uniform ultrafilter F on ω2 such
that ωω2/F has cardinality ω1, then G(ω2, ω) has chromatic number ℵ1. To
see this one colors an element of G(ω2, ω) by the member of the ultrapower
it determines. Connected elements of G(ω2, ω) are functions that eventually
differ and hence are in different classes of the ultrapower by any uniform
ultrafilter.

In particular, we get:

5.55 Theorem (Foreman [36]). Assume GCH and that there is a uniform,
countably complete, ℵ1-dense ideal on ω2. Then the Erdős-Hajnal graph has
chromatic number ω1.

5.56 Corollary. Assume GCH and that there is a uniform countably com-
plete, ℵ1-dense ideal on ω2. If G is a graph of cardinality ω2 and chromatic
number ω2, then G has an induced subgraph of cardinality ω1 and chromatic
number ω1.
45 The image of G is not necessarily an induced subgraph.
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5.11. The Nonstationary Ideal on ω1

We now will consider the family of assumptions around the statement “the
nonstationary ideal on ω1 is ℵ2-saturated”. This statement seems singular
in that there are no known analogues at other cardinals. For example, the
assertion that the nonstationary ideal on ω2 is ℵ3-saturated is inconsistent.46

Weakening this a bit, one can imagine that the nonstationary ideal on ω2 re-
stricted to the collection of ordinals of cofinality ω1 is ℵ3-saturated. However
this assumption implies that ΘL(R) < ω2 and this is inconsistent with the
assumption that the nonstationary ideal on ω1 is ℵ2-saturated.

We discuss this further in Sect. 8.2 (after Theorem 8.8) and again in
Sect. 11.

Our first result is due to Shelah. Recall that Devlin and Shelah [22] showed
that 2ℵ0 < 2ℵ1 is equivalent to the following weak diamond property:47

For all F : 2<ω1 → 2 there is a function g : ω1 → 2 such that for
all f : ω1 → 2 the set {α : g(α) = F (f�α)} is stationary.

5.57 Theorem (Shelah [102]). Suppose that weak diamond holds. Then the
nonstationary ideal on ω1 is not ℵ1-dense.

Proof. Let 〈Aα : α < ω1〉 be a collection of stationary sets such that {[Aα]I :
α < ω1} is dense in P (ω1)/I where I is the nonstationary ideal on ω1. Given
a function f : δ → 2 define F (f) as follows:

F (f) =

{
1 if δ /∈

⋃
{Aα : f(α) = 1},

0 if δ ∈
⋃
{Aα : f(α) = 1}.

Suppose that g is as in the definition of weak diamond. Let B = {α :
g(α) = 1}. Then B must be stationary. Let f : ω1 → 2 be defined by setting
f(α) = 1 iff Aα ⊆I B. Then [4{Aα : f(α) = 1}]I = [B]I . Let C be a closed
and unbounded set such that C ∩ 4{Aα : f(α) = 1} = C ∩ {β : for some
α < β, β ∈ Aα and f(α) = 1} = C ∩B.

Suppose now that δ ∈ C and F (f�δ) = g(δ). Then F (f�δ) = 1 iff δ /∈
C ∩4{Aα : f(α) = 1} iff δ /∈ B iff g(δ) = 0, a contradiction. �

5.58 Corollary. Suppose that the nonstationary ideal on ω1 is ℵ1-dense.
Then 2ℵ0 = 2ℵ1 ; in particular, CH fails.

We now show Woodin’s remarkable theorem that δ∼
1
2 = ω2 if the nonsta-

tionary ideal on ω1 is saturated and there is a measurable cardinal.
We need some facts about indiscernibles. For general information we direct

the reader to [63]. Suppose that N is a countable, transitive structure in a
countable language that satisfies ZFC and has Skolem functions. Suppose
further that 〈in : i ∈ ω〉 ⊆ OnN is a sequence of indiscernibles for N such that

46 See Corollary 6.11.
47 See Example 3.23.
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N = SkN (〈in : n ∈ ω〉). Let Γ(〈in : n ∈ ω〉) be the theory of 〈N, 〈in : n ∈ ω〉〉.
Suppose that γ ≥ ω is an ordinal and define N ′ to be the stretch of N
by adding γ indiscernibles to N . This is the Ehrenfeucht-Mostowski model
constructed by adding new constant symbols 〈cα : α < γ〉 to our language
and using Γ as a “blueprint”. If Γ is “remarkable”, then every such N ′ is
well-founded and we identify it with its transitive collapse. In this case N is
an initial segment of N ′.

The following lemma is standard:

5.59 Lemma. Suppose that A is a transitive structure of cardinality κ, where
κ is a measurable cardinal. Let U be a normal ultrafilter on κ and suppose
that X ∈ U is a set of indiscernibles for A. Let {jn : n ∈ ω} ⊆ X and N
be the transitive model isomorphic to SkA({jn : n ∈ ω}). Then the theory
〈N, 〈jn : n ∈ ω〉〉 is remarkable.

We say that N is remarkable if it is generated by indiscernibles over a
remarkable blueprint. We will use remarkable structures for iterations:

5.60 Lemma. Suppose that N is a remarkable structure and I ∈ N is a
precipitous ideal on a set Z ∈ N . Let μ be any ordinal.48 Then any generic
iteration of N by I of length μ is well-founded.

Proof. Let γ > μ be an ordinal. Let N ′ be the stretch of N by adding γ
indiscernibles. Let

{〈Nα : α ≤ μ〉, 〈jα,α′ : α < α′ ≤ μ〉, 〈Gα : α < μ〉}

be a generic iteration of N . Then one shows by induction on δ that there is
an iteration

{
〈N ′

α : α ≤ δ〉, 〈j′
α,α′ : α < α′ ≤ δ〉, 〈G′

α : α < δ〉
}

with the properties that for all α < α′ ≤ δ:

1. N ′
0 = N ′,

2. Nα is an initial segment of N ′
α,

3. j′
α,α′ �Nα = jα,α′ ,

4. for all w ∈ N , j′
0,δ(w) = j0,δ(w), and

5. G′
α = Gα for all α < δ.

By Theorem 4.47, we see that N ′
μ is well-founded. Since Nμ is an initial

segment of N ′
μ we see that Nμ is well-founded. �

48 We note that μ > OnN is allowed.
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We now fake some descriptive set theory:

5.61 Lemma. Let δ be a countable ordinal. Suppose that N is countable
and N |= ZFC + “I is a precipitous ideal”. Then R = {x : x is a linear
ordering coding OnM where M is the result of a generic iteration of N by I
of length δ} is a Σ1

1 set.

Proof. We first remark that the statement “M0 is a code for a generic ul-
trapower of M1 by G” is Σ1

1 in reals coding M0 and M1 and G. Fix real
numbers Ñ , δ̃ coding N and δ.

We then see that x ∈ R iff ∃〈Ni : i < δ̃〉, 〈ji,i′ : i < i′ ∈ δ̃〉, 〈Gi : i ∈ δ̃〉,
M such that:

1. N0 = N ,

2. for all i, Ni+1 is the generic ultrapower of Ni by Gi and ji,i+1 is the
canonical ultrapower embedding of Ni to Ni+1,

3. for all i < i′, ji,i′ : Ni → Ni′ and the ji,i′ ’s commute,

4. for limit i′, Ni = lim
→
〈Ni : i < i′〉 by the embeddings 〈ji,k : i < k < i′〉,

5. the maps ji,i′ are the canonical maps into the direct limit,

6. M = lim
→
〈Ni : i ∈ δ〉 by the maps 〈ji,i′ : i < i′ < δ〉, and

7. x is isomorphic to OnM .

�

We get the following immediate corollaries:

5.62 Corollary. Let δ be a countable ordinal. Suppose that N is countable
and N |= ZFC + “I is a precipitous ideal” and every countable generic iter-
ation of N by I is well-founded. Then for every δ < ω1 there is a β(δ) < ω1

such that the order type of the ordinals in a generic iteration of N of length
δ is less than β(δ).

Proof. Since N is iterable, the set R above is a Σ1
1 subset of WO, the set of

reals coding well-orderings, and hence bounded. �

5.63 Corollary. Suppose that V ⊆ W are transitive models of ZFC, and
N ∈ V is countable and N |= ZFC + “I is a precipitous ideal”. Suppose
that V |= δ, γ are countable ordinals. Then the statement “there is a generic
iteration M of N of length δ where the order type of OnM = γ” is absolute
between V and W .

We now apply these ideas to prove:

5.64 Theorem (Woodin [126]). Suppose that the nonstationary ideal on ω1

is ℵ2-saturated and there is a measurable cardinal. Then δ∼
1
2 = ω2.



6. Some Limitations 989

As a coarse consequence of the hypotheses of Theorem 5.64, ΘL(R) > ω2

and CH fails.

Proof. We will use the characterization:

δ∼
1
2 = sup{(κ+)L(x) : x ∈ R}

where κ = ωV
1 .

Let α < ω2 be an ordinal. We will find a real number we will call Ñ
such that (κ+)L(Ñ) ≥ α. Let A = 〈H(μ),∈,Δ, α〉, where μ is a measurable
cardinal. Let I be a remarkable set of indiscernibles for A, and N be the
model SkA({in : n ∈ ω}), where {in : n ∈ ω} are the first ω elements of I.
By Lemma 5.60, we see that any generic iteration of N by the nonstationary
ideal on ω1 is well-founded.

Let N0 be the transitive collapse of N and j0 : N0 → A be the inverse of
the collapse map.

Claim. There is an iteration 〈Nγ : γ ≤ ω1〉 of N0 of length ω1 such that
OnNω1 > α.

Proof of Claim. Inductively define models Nγ and embeddings jγ : Nγ → A.
Suppose that we are given Nγ , jγ . By Example 3.47, if Mγ is the image of
Nγ under jγ , and δγ = Mγ ∩ω1, then U(jγ , δγ) is generic over Nγ . Let Nγ+1

be the transitive collapse of the ultrapower of Nγ by G = U(jγ , δγ). Define
jγ+1 : Nγ+1 → A by jγ+1([f ]G) = jγ(f)(δγ). At limit stages γ we take direct
limits of the Nη with the jη for η < γ.

It is easy to check inductively that Mγ+1 = SkA(Mγ∪{δγ}). In particular,
Mω1 ⊇ ω1. Since Mω1 ≺ A, α ⊆Mω1 and hence the order type of OnMω1 > α,
and hence the order type of OnNω1 > α. This establishes the claim. �

Let Ñ be a real number coding N . We show that (κ+)L(Ñ) > α, where
κ = ωV

1 . Let G be generic for Col(ω, κ) over L(Ñ). Apply Corollary 5.62
in L(Ñ)[G] with δ = κ, to see that there is a β(κ) < ω

L(Ñ)[G]
1 such that all

iterations of N of length κ in L(Ñ)[G] have ordinals bounded by β(κ). By
Corollary 5.63, and the previous claim we see that α < β(κ) < ω

L(Ñ)[G]
1 .

Since G is generic for Col(ω, κ), ω
L(Ñ)[G]
1 = (κ+)L(Ñ), so α < (κ+)L(Ñ), as

desired. �

6. Some Limitations

In this section we discuss some limitations on the types of ideals that can
exist. These limitations affect all three of the parameters determining the
nature of the generic embeddings:

• where the cardinals go,
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• the closure of the ultrapower (in particular, the saturation of the ideal),
and

• the nature of the quotient algebra of the ideal.

We note that Burke found a limitation on the closure of the generic ultrapower
when forcing with a tower of ideals that appears in a different section as
Proposition 9.48.

6.1. Soft Limitations

For this section we let j : V → M be a generic elementary embedding and
let κ be the critical point of j. The following facts are straightforward:

6.1 Proposition. κ is regular in V . If 2λ < κ and Mλ ∩ V [G] ⊆ M then
P (λ) ∩ V [G] = P (λ) ∩ V .

Note however the last conclusion cannot be strengthened to say that V λ∩
V [G] ⊆ V . In Sect. 9, there are examples of stationary tower forcings that
induce elementary embeddings with critical point ℵω+1 (and GCH holds).
Hence the forcing adds new ω-sequences to ℵω even though the critical point
of the generic embedding is above 2ℵ0 .

6.2 Proposition. Suppose that λ < δ are cardinals such that:

1. η<λ < κ for all cardinals η < κ,

2. δ<λ > δ, and

3. P (δ+)V ⊆M .

Then j(κ) �= δ+.

From Proposition 6.2 we see, for example, that CH implies that there is
no normal, fine, precipitous ideal on [ℵω+1]ω2 . We see this by setting κ = ω2,
λ = ω1 and δ = ℵω.

A weak version of the next result was proved by Ulam [123] using Ulam
matrices and improved by Baumgartner, Taylor and Wagon [8].

6.3 Proposition. Suppose that κ is not a weakly Mahlo cardinal of high
degree. Then there is no κ-saturated ideal I on any set Z that has complete-
ness κ.

Proof. To see this note that if j : V → M is the generic embedding from a
κ-complete, κ-saturated ideal on Z, then:

1. crit(j) = κ,

2. Mκ ∩ V [G] ⊆M , and

3. κ is regular in M .
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If κ = δ+ in V then M |= δ+ = j(κ) > κ and hence κ is not a cardinal in
M , contradicting κ-saturation. Thus κ must be a regular limit cardinal. Let
C be a closed unbounded set in κ. Then j(C) is unbounded in κ and hence
M |= κ ∈ j(C). Thus by reflection, C contains a regular cardinal and so κ
is Mahlo. Clearly this argument can be used to show that κ is also highly
Mahlo. �

We note that one ingredient in the proof is the fact that if j : V → M is
a generic elementary embedding in V [G] with critical point κ where κ is a
successor cardinal in V , then κ is not a cardinal in M .

Recall the definition of the weakly compact filter from Example 3.28. From
Proposition 6.1 we can easily see:

6.4 Proposition. Let κ be a weakly compact cardinal. Then the weakly
compact filter on κ is not κ-saturated.

Proof. Toward a contradiction, assume that κ is the least weakly compact
cardinal where the weakly compact ideal is κ-saturated.

Let F be the weakly compact filter, and I be the dual ideal. Let G ⊆
P (κ)/I be generic and j : V → M be the generic embedding. Since I is
κ-saturated and κ-complete, Mκ ∩ V [G] ⊆M .

We first claim that the forcing P (κ)/I is (κ,∞)-distributive. Since the
critical point of j is κ, j�Vκ is the identity. Since κ is inaccessible and M is
closed under κ-sequences from V [G], this implies that P (κ)/I adds no new
bounded subsets of κ.

If P (κ)/I is not (κ,∞) distributive, let τ be a term for a new function
from γ into V for some γ < κ. Let 〈Aα : α < γ〉 be a sequence of maximal
antichains such that each p ∈ Aα decides the value of τ(α). Then each Aα has
cardinality less than κ. Let μ = sup{|Aα| : α < γ}. In V choose a sequence
of injections iα : Aα → μ. If G is generic, then the sequence 〈G∩Aα : α < γ〉
determines τ . However the sequence 〈iα(G ∩ Aα) : α < γ〉 is a bounded
sequence in κ, hence it lies in V . But then the sequence 〈G ∩ Aα : α < γ〉,
and hence τ also lie in V , a contradiction.

We now claim that there is a new subset of κ in V [G]. If not, then
P (κ)V [G] = P (κ)V = P (κ)M . Hence, κ is weakly compact in M and has the
same weakly compact filter.

Since κ is weakly compact the product of two κ-c.c. partial orderings is
still a κ-c.c. partial ordering. So P (κ)/I ×P (κ)/I is κ-c.c. Hence I is still κ-
saturated in M . But M |= “j(κ) is the least weakly compact cardinal where
the weakly compact filter is saturated”, a contradiction.

Thus P (κ)/I is κ-c.c., (κ,∞)-distributive and adds a new subset to κ. Let
τ̇ be a term for a new subset of κ. Let B be the complete Boolean subalgebra
generated by {‖α ∈ τ‖ : α < κ}. Then B is a Suslin algebra, contradicting
the weak compactness of κ. �

In recent unpublished work Hellsten has shown that it is consistent for the
weakly compact ideal on a weakly compact cardinal κ to be κ+-saturated.
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6.2. The “Kunen Argument”

Let j : V → M be an elementary embedding and let κ0 = crit(j), κn+1 =
j(κn) and κω = supn κn. Then j(κω) = κω and for all α < crit(j), j(κ+α

ω ) =
(κ+α

ω )M .
Kunen [78] showed that it is inconsistent for there to be a V -definable ele-

mentary embedding j : V →M such that Vκω+1 ⊆M or even an elementary
embedding j : Vκω+2 → Vκω+2. Kunen’s proof uses the construction of an
“ω-Jónsson algebra” on κω due to Hajnal and Erdős [27].

As such, Kunen’s argument does not immediately generalize to the case
where j is not definable in V . For example, if P is the partial ordering
producing a generic embedding j, then P might destroy ω-Jónsson algebras.
Nonetheless, his general technique is quite relevant.

We begin by reminding the reader of a basic definition. An algebra on a
cardinal λ with no proper elementary substructure of cardinality λ is called a
Jónsson algebra. A cardinal λ is called Jónsson if there is no Jónsson algebra
on λ. Equivalently, every algebra on λ has a proper elementary substructure
of cardinality λ.

At the heart of the Kunen technique is the result shown in Sect. 5 that if
A is an algebra on a cardinal λ then j“λ ≺ j(A). In particular, if we have an
elementary embedding j and a cardinal λ > crit(j) such that j(λ) = λ and
j“λ ∈M , then λ must be a Jónsson cardinal in V . Since results of Woodin,
Tryba [122] and others have shown that the successors of regular cardinals
are not Jónsson we immediately see the following results:

6.5 Theorem. Let κ be a successor of a regular cardinal. Then there is no
normal, fine, precipitous ideal on [κ]κ.

Proof. Note that if I is a non-trivial normal, fine, precipitous ideal on [κ]κ,
then for I-almost every z ∈ [κ]κ, there is an α ∈ κ\ z. By normality, for each
I-positive set A ⊆ [κ]κ there is a β < κ and an I-positive B ⊆ A such that
for all z ∈ B there is a γ ∈ β \ z.

Hence if j : V → M is the generic embedding from the ideal I then the
critical point of j must be less than κ. Since I concentrates on [κ]κ, κ is a
fixed point of j. Moreover, by normality and fineness, j“κ ∈ M . Thus κ is
Jónsson, a contradiction. �

The next corollary follows immediately from the existence of a Jónsson
algebra on j“κ+2

ω .

6.6 Corollary. There is no generic elementary embedding j : V → M such
that j“κ+2

ω ∈M and (κ+2
ω )M = (κ+2

ω )V .

Shelah [105] has shown that many successors of singular cardinals carry
Jónsson algebras. In particular this is true for all successors of singulars below
the first inaccessible cardinal.49 As a result, Kunen’s theorem follows for all
49 Actually, much further.



6. Some Limitations 993

elementary embeddings whose critical point lies below the first inaccessible
cardinal.

6.7 Proposition. Suppose that κω is below the first inaccessible cardinal.
Then there is no elementary embedding j : V →M such that:

• (κ+
ω )V = (κ+

ω )M , and

• j“(κ+
ω )V ∈M .

In particular, there is no normal, fine, precipitous ideal on [ℵω+1]ℵω+1 .

Of course there are finer versions of this theorem ruling out elementary
embeddings of Vκω+2 into Mκω+2 when M contains j“(κ+

ω )V .
Zapletal [130] pointed out that the techniques used in Shelah’s theorem

about Jónsson algebras on successors of singular cardinals (pcf theory) can
be used to directly show Kunen’s theorem that there can be no j : V → M
with Vκω+1 ⊆M . We briefly review the definitions:

6.8 Definition. Let a be a set of regular cardinals, and I an ideal on a.
We consider the reduced product

∏
a/I as a partial ordering, by giving each

κ ∈ a the ordering of “∈”. A <I -increasing sequence 〈fα : α < ν〉 is a scale
in

∏
a/I iff for all g ∈

∏
a there is an α such that g <I fα.

Shelah [105] showed that for all singular cardinals λ there is a cofinal
set a ⊆ λ of regular cardinals such that there is a scale 〈fα : α < λ+〉 in∏

a/{bounded sets in λ}.
Using this fact we can give Zapletal’s proof of Kunen’s theorem:
Let a ⊆ κω be a cofinal set of regular cardinals on which there is a scale

〈fα : α < κ+
ω 〉. By thinning out if necessary, we can assume that there is at

most one element of a between each κn and κn+1 and the least element of a
is above κ0. In particular, j(a) = j“a. Suppose that j : V →M is such that
j“κω ∈M . Then we can verify the following claims:

1. j(κ+
ω ) = κ+

ω and j“κ+
ω is cofinal in κ+

ω .

2. M |= “j(〈fα : α < κ+
ω 〉) is a scale in

∏
j(a)” and hence for all g ∈∏

j(a) ∩M there is an α < κ+
ω such that g <bounded j(fα).

3. For each μ ∈ a, we have j“μ is bounded in j(μ).

4. For each α, μ ∈ a we have j(fα)(j(μ)) ∈ j“μ.

5. Let g ∈
∏

j(a) be defined as g(j(μ)) = sup(j“μ). Then every function
in 〈j(f)α : α ∈ κ+

ω 〉 is bounded everywhere by g. Note that g ∈ M by
the assumption on M .

6. This contradicts clause 2.

Several people, including the author, Burke and Matsubara noted that
Zapletal’s proof gives information about generic elementary embeddings too:
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6.9 Theorem. Let λ be a singular cardinal. Then there is no λ-saturated
normal, fine ideal on [λ]λ. In particular, there is no normal, fine, countably
complete, ℵn-saturated ideal on [ℵω]ℵω .

Proof. We follow the same steps as Zapletal’s argument: the first two items
follow for identical reasons. The third item must be slightly modified. By the
closure of M , we know that every j(μ) for μ ∈ a is a cardinal in V . Since the
ideal is λ-saturated there is a tail of μ ∈ j(a) that remain regular cardinals
in V [G]. Since μ < j(μ), j“μ must be bounded in j(μ). The rest of the proof
is the same. �

Burke and Matsubara improved this result to eliminate the assumption of
normality. The author noted that the proof above works assuming only λ+-
saturation: If I is λ+-saturated, then it has the disjointing property. Hence,
if j : V → M is the generic embedding, Mλ ∩ V [G] ⊆ M . In particular, for
all μ ∈ a, j(μ) is regular in V [G], so j“μ is bounded in μ and the proof works
as before.

We end this subsection by remarking that the requirement on M that it
share some cardinal structure with V is necessary. The various stationary
tower forcings that yield elementary embeddings with many fixed points give
examples of elementary embeddings with j : V →M where M contains j“α
for many α much bigger than κω.

6.3. Saturated Ideals and Cofinalities

We now state two theorems that are of use in showing that various ideals
cannot be saturated.

6.10 Theorem (Shelah [103]). Let V ⊆W be two models of set theory with
the same ordinals and suppose that

V |= κ is a regular cardinal and λ = κ+.

If λ is a cardinal in W then

W |= cf(κ) = cf(|κ|).

We note that the hypotheses of this theorem are satisfied if W is a λ-
c.c. forcing extension of V .

For the reader’s convenience (and because the proof is so nice) we give the
proof of Shelah’s theorem.

Proof of Theorem 6.10. Working in V , let 〈Aα : α < κ+〉 be a sequence
of subsets of κ such that the intersection of any pair has cardinality less
than κ. Then for all γ < κ+, there is a function fγ : γ → κ such that
〈Aα \ fγ(α) : α < γ〉 is a pairwise disjoint sequence of sets.

If κ is a cardinal in W then there is nothing to show. Otherwise suppose
that W |=“μ = |κ| and cf(κ) �= cf(μ)”. Let f ∈ W be a bijection between μ
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and κ. Then for all α < λ there is a δα < μ such that f“δα is unbounded
in Aα. Since λ is a cardinal in W there is a set Y ⊆ λ lying in W having
cardinality λ such that for all α, β ∈ Y we have δα = δβ . Let the common
value be δ. Choose a γ ∈ λ such that Y ∩ γ has ordertype at least μ. Then
W |=“〈f −1(Aα \fγ(α))∩ δ : α ∈ Y ∩γ〉 is a sequence of μ disjoint non-empty
subsets of δ”. This contradicts the fact that μ is a cardinal in W . �

Shelah’s theorem gives an immediate corollary for saturated ideals:

6.11 Corollary. Suppose that I is a κ-complete, κ+-presaturated ideal on
κ = μ+. Then {δ : cf(δ) = cf(μ)} ∈ Ĭ.

Proof. Consider the generic embedding j : V → M . The critical point of
j is κ and Mκ ∩ V [G] ⊆ M . Hence V [G] |= |κ| = μ. From Theorem 6.10
it follows that V [G] |= cf(κ) = cf(μ). The corollary now follows from the
results of Sect. 1.5. �

In particular, this shows that the nonstationary ideal can never be κ+-
saturated or even presaturated on any successor cardinal larger than ω1.
Theorem 6.10 leaves open the possibility that the nonstationary ideal on ω2

can be saturated when restricted to the ordinals of cofinality ω1. As of this
writing this is open, although there are closely related results in Sect. 7.

Shelah and Matsubara established a formally similar result for ideals whose
quotient is proper in the sense of “proper forcing”:

6.12 Proposition (Matsubara and Shelah [94]). Suppose that Z ⊆ P (X)
and I is a normal, fine, κ-complete ideal on Z such that P (Z)/I is proper.
If ρ < κ is regular, then {z : z ∩ κ ∈ Cof(<ρ) ∩ κ} ∈ I.

Proof. If this fails, then there is a regular δ with δ+ < κ such that T = {z :
z∩κ ∈ Cof(δ)} ∈ I+. Partition κ∩Cof(ω) into stationary sets 〈Sα : α < δ+〉.
Each α of the form z ∩ κ for z ∈ T has cofinality δ. Hence there is a closed
unbounded set C ⊆ α of order type δ. In particular, there is a γ(α) such
that Sγ(α) ∩ α is not stationary.

By the κ-completeness of the ideal there is a γ∗ < δ+ and a positive set T ′

such that for all z ∈ T ′, γ(z∩κ) = γ∗. Letting P = {z∩κ : z ∈ T ′} we see that
for all α ∈ P , Sγ∗ ∩α is nonstationary. This contradicts Proposition 5.23. �

Cummings generalized Theorem 6.10 to singular cardinals:

6.13 Theorem (Cummings [16]). Let V ⊆ W be two transitive models of
ZFC with the same ordinals and suppose that V |= λ = κ+. Suppose further
that for all V -stationary sets S ⊆ λ, W |= “S is stationary”. Then:

W |= cf(κ) = cf(|κ|).

Again the hypotheses of this theorem are satisfied if W is a λ-c.c. forcing
extension of V .

For general regular κ, Gitik and Shelah were able to prove:
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6.14 Theorem (Gitik-Shelah [56]). If κ is a regular cardinal then for all
regular cardinals δ with δ+ < κ, the nonstationary ideal on κ restricted to
points of cofinality δ is not κ+-saturated.

If κ is the successor of a regular cardinal, this already follows from Corol-
lary 6.11. Hence the substance of this theorem is when:

1. κ = μ+ where μ is singular, or

2. κ is weakly inaccessible.

Proof (Sketch). Towards a contradiction, assume that the nonstationary ideal
on κ restricted to points of cofinality δ is κ+-saturated.

• We take as a fact that for all stationary sets S ⊆ κ ∩ Cof(δ) there is a
club guessing sequence consisting of points of high cofinality. Precisely:
there is a sequence of sets 〈Sα : α ∈ S〉 for all α ∈ S:

1. Sα ⊆ α ∩ Cof(>δ), and

2. Sα unbounded in α

such that for all closed unbounded sets C ⊆ κ the set {α : Sα ⊆ C} is
stationary in κ.

• We claim that the saturation of the ideal implies that for all S and club
guessing sequences 〈Sα : α ∈ S〉, there is a stationary S∗ ⊆ S such that
〈Sα : α ∈ S∗〉 is a strong club guessing sequence on S∗. This means
that:

1. Sα is unbounded in α, and

2. for all closed unbounded sets C ⊆ κ,

{α : a tail of Sα is a subset of C}

is closed unbounded relative to S∗.

For if this failed, for each T ⊆ S there would be a closed unbounded set
C(T ) such that T ∗ =def {α : a tail of Sα is a contained in C(T )} would
be stationary and co-stationary in T . We inductively define a sequence
〈〈Tβ , Cβ〉 : β < κ+〉. Set T0 = S and C0 = C(S). Suppose that we have
defined Cβ . Let Tβ = {α ∈ S : Sα is eventually included in Cβ}. Given
Tβ , let Cβ+1 ⊆ Cβ ∩C(Tβ) be any closed and unbounded set. At limit
β choose Cβ so that it is eventually included in 〈Cβ′ : β′ < β〉. Then:

1. 〈Cβ : β < κ+〉 is a sequence of closed unbounded sets so that
β′ < β implies Cβ is eventually included in Cβ′ ,

2. Tβ+1 is a stationary and co-stationary subset of Tβ , and

3. 〈Tβ : β < κ+〉 is a decreasing sequence of stationary sets.
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But then {Tβ \ Tβ+1 : β < κ+〉 is an antichain with respect to NSκ,
contradicting the κ+ saturation assumption.

• Again by the saturation of the ideal, we can find a pairwise disjoint
collection of such S∗ whose union contains a closed unbounded set in κ.
Gluing together the guessing sets yields a strong club guessing sequence
〈Sα : α ∈ κ ∩ Cof(δ)〉 on κ ∩ Cof(δ).

Since our original Sα’s consisted of points of large cofinality, the se-
quence continues to have the additional property that for all α,

Sα ⊆ α ∩ Cof(>δ).

Shelah and Gitik called a strong club guessing sequence with this prop-
erty ♦∗

club(κ, δ).

• ♦∗
club(κ, δ) is inconsistent with ZFC. To see this in the case where δ > ω,

build a decreasing sequence of closed unbounded subsets of κ, 〈En :
n < ω〉. Let E0 be the set of ordinals below κ which are limits of ordinals
of cofinality bigger than δ. Suppose that we have defined En. Let En+1

be a closed unbounded set witnessing ♦∗
club(κ, θ) for the collection of

limit points of En. Without loss of generality assume that En+1 is a
subset of the limit points of En.

Let E =
⋂

En. Let η be the least point of E of cofinality δ. Then for all
n ∈ ω the limit points of En contain a tail of Sη, and δ has uncountable
cofinality. Hence E contains a tail of Sη. Let β ∈ E ∩ Sη. Then β has
cofinality greater then δ and is a limit point of every En. Hence E ∩ β
is closed unbounded in β. But then there is a γ ∈ E ∩ β of cofinality δ,
contradicting the minimality of η.

The case where δ = ω is similar, except that one builds a sequence of
En’s with length ω1.

�

In contrast to this, Foreman and Komjáth [40] jointly established a general
result that when κ = ω2 or κ = ℵω+1 shows that it is consistent for:

1. NSκ�S is κ+ saturated for a stationary S ⊆ κ, and

2. strong club guessing at κ.

This is Theorem 8.14, which is outlined in Sect. 8.2. The resolution of the
apparent contradiction between Theorem 8.14 and the proof of Theorem 6.14,
is that the cofinality of the ordinals in the strong club guessing sequence in
the model for Theorem 8.14 is small. Hence ♦∗

club(κ, δ) fails.
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6.4. Closed Unbounded Subsets of [κ]ω

In this section we present a theorem from [5] that says that every closed
unbounded relative to [κ]ω is large. This stands in marked contrast to the
results of Sect. 4.6, where we saw that for exponents other than ω and normal
ideals there were usually sets of measure one of small cardinality.50

As a corollary of the theorem, we see that [κ]ω can be split into a large
collection of disjoint stationary sets. In particular, the nonstationary ideal
on [κ]ω cannot be 2ℵ0 -saturated for any regular κ ≥ ω2.

Since the partial ordering for adding Cohen reals is c.c.c., it does not make
a stationary subset of [κ]ω into a nonstationary set. Thus, we see that it is
consistent that there be stationary subsets of [ω2]ω of size ℵ2 even with 2ℵ0

arbitrarily large.

6.15 Theorem (Baumgartner-Taylor [5]). Let κ ≥ ω2 be regular. Suppose
that C is a closed unbounded subset of P (κ). Then there is a countable subset
R ⊆ κ such that |C ∩ [R]ω| = 2ℵ0 .

Proof. For α ∈ κ∩Cof(ω) choose an increasing cofinal sequence �α = {α(n) :
n ∈ ω}.

Without loss of generality we can assume that there is a function f :
κ<ω → κ such that C is the collection of z ⊆ κ closed under f . For a
set z ⊆ κ, let Skf (z) be the closure of z under f . We can assume that if
α ∈ Skf (z) then �α ⊆ Skf (z).

Let Z be the collection of α < κ of cofinality ω that are closed under f .
For �ξ ∈ [κ]<ω, let P�ξ = {α ∈ Z : �ξ ⊆ �α}.

We note that if T ⊆ P�ξ is stationary, then there are unboundedly many
η < κ such that T ∩P�ξη is stationary. For if there were a bound, then each
α ∈ T above the bound has some n where α(n) is above the bound. For
stationarily many α in T , we have the same n, and by a regressive function
argument, the same α(n). But this shows that P�ξα(n) ∩ T is stationary, a
contradiction.

Define by induction a sequence 〈〈Zs, ξs〉 : s ∈ 2<ω〉 such that for all s ∈ 2<ω

and i ∈ {0, 1}:

1. Zs is a stationary subset of P〈ξs�j :j≤length(s)〉,

2. Zsi ⊆ Zs,

3. For all α ∈ Zsi, the ordinal ξs(1−i) /∈ Skf (�α).

We first show that these conditions imply that if h and g are distinct
elements of 2ω, then Skf ({ξh�j : j ∈ ω}) is different than Skf ({ξg�j : j ∈ ω}).
Letting R = Skf ({ξs : s ∈ 2<ω}), this establishes the theorem.

50 Assuming the consistency of large cardinals, Baumgartner [4] showed that it is consis-
tent that there is a closed unbounded set whose intersection with [κ]ω1 has cardinality less
than κω1 .
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Let h and g be different elements of 2ω. Consider the least n such that
h(n) �= g(n). Then ξh�n+1 ∈ Skf ({ξh�j : j ∈ ω}). On the other hand,
if ξh�n+1 ∈ Skf ({ξg�j : j ∈ ω}), then there would be a finite m ≥ n + 1
such that ξh�n+1 ∈ Skf ({ξg�j : j ∈ m}). If we let α ∈ Z〈ξg�j :j∈m〉, then
α ∈ Z〈ξg�j :j∈n+1〉 and ξh�n+1 ∈ Skf (�α), contradicting clause 3.

We are reduced to defining the sequence 〈〈Zs, ξs〉 : s ∈ 2<ω〉 satisfying
clauses 1–3. Suppose that we have defined Zs and ξs�j for j ≤ length(s). Let
�ξ be the sequence 〈ξs�j : j ≤ length(s)〉. Let K ⊆ κ be unbounded so that
for all η ∈ K, P�ξη ∩ Zs is stationary. Let K ′ be the first ω1 many elements
of K.

For each α ∈ Zs, there is an η(α) ∈ K ′ such that η(α) /∈ Skf (�α). Hence
we can find an unbounded set K1 ⊆ K and a fixed η0 such that for all ζ ∈ K1

the set of α in P�ξζ ∩ Zs with η(α) = η0 is stationary.
Repeating this argument we can find an η1 ∈ K1 such that the collection

Z0 of α ∈ Zs ∩ P�ξη0
such that η1 /∈ Skf (�α) is stationary.

Let Zs0 = Z0, Zs1 = {α ∈ Zs ∩ P�ξη1
: η0 /∈ Skf (�α)}, ξs0 = η0, and

ξs1 = η1. �

6.16 Corollary. Let κ ≥ ω2 be a cardinal. Every closed unbounded subset
relative to [κ]ω has cardinality κℵ0 .

Proof. Let C be a closed unbounded subset of P (κ). Define a map f :
[κ]ω → C, by sending x ∈ [κ]ω to a countable z ∈ C such that x ⊆ z.
The map f is at most 2ℵ0 -to-one. Hence κℵ0 = 2ℵ0 × |C ∩ [κ]ω|. Since
|C ∩ [κ]ω| ≥ 2ℵ0 , we see that |C ∩ [κ]ω| = κℵ0 . �

We can now see

6.17 Corollary. Suppose that ω2 ≤ κ ≤ 2ℵ0 . Then there is a collection of
2ℵ0 disjoint stationary subsets of [κ]ω.

Proof. Let 〈(Aα, fα) : α < 2ω〉 be an enumeration of the pairs 〈(A, f)〉 such
that A ∈ [κ]ω, f : A<ω → A, and there are 2ℵ0 distinct subsets of A closed
under f . We inductively build continuum many pairwise disjoint sets 〈Sβ :
β < 2ℵ0〉 such for all β and α, Sβ contains some subset of Aα closed under fα.
By Theorem 6.15, this suffices. �

6.5. Uniform Ideals on Ordinals

Our attention has been focused on normal ideals on Z ⊆ P (X), where we
can always take X to be a cardinal λ. We frequently use the ordering on λ
for reflection arguments using �Loś’s Theorem. In many situations it might be
convenient to give up normality in order that X have a well-ordering whose
length is not a cardinal and have I uniform in the sense of order type rather
than cardinality; e.g. all subsets of X of small order type belong to I. The
next result says that this is not possible for κ-complete, κ+-saturated ideals.
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6.18 Theorem (Foreman-Hajnal [39]). Let κ be a successor cardinal. Sup-
pose that I is a κ-complete, κ+-saturated ideal on an ordinal γ having cardi-
nality κ such that I is uniform in the sense that if a ⊆ γ has order type less
than γ, then a ∈ I. Then γ = κ.

Proof. The Milner-Rado Paradox says that every ordinal less than κ+ can be
written as a countable union of subsets of order type less than κω.51 Hence
if γ carries a countably complete, uniform ideal, then γ < κω. Since γ must
be indecomposable, we know γ = κn for some n. Let I be an ideal satisfying
the hypothesis of the theorem.

We view the ordinal κn as a product of n copies of κ and show that there
is a function of the first coordinate in the product which bounds the other
coordinates on a set of positive measure for the ideal I. This will contradict
the uniformity of I. To reduce to one coordinate we must take some Rudin-
Keisler reductions of the usual ultrapower.

Let φ : (γ,∈) → 〈κ× κ× · · · × κ,<lex〉 be an isomorphism between γ and
the product of n copies of κ, where <lex is the left-to-right lexicographical
ordering. The fact that I is uniform implies that if A ⊆ γ and A /∈ I then
φ[A] contains a κ-splitting tree isomorphic to the n-fold product of κ’s. Via
the isomorphism φ we can regard I as a κ-complete, κ+ saturated ideal on
{(α0, . . . , αn−1) : αi ∈ κ} containing all sets that do not have such a tree.
For the rest of this proof we will write κn for this n-fold product of κ.

Suppose that κ = μ+. Let G ⊆ P (κn)/I be generic, and j : V → M ⊆
V [G] be the generic ultrapower. As usual Mκ ∩ V [G] ⊆ M and [a]I ∈ G
iff [id]M ∈ j(a), where id : κn → V is the identity function. Let [id]M =
(α̃0, α̃1, . . . , α̃n−1).

We define:
H1 = {A ⊆ κ : A× κn−1 ∈ G}.

It is easy to verify that H1 = {A ⊆ κ : α̃0 ∈ j(A)}. Thus H1 is an ultrafilter
and we can construct an ultrapower V κ/H1. Define:

k1 : V κ/H1 →M

by setting k1([f ]) = j(f)(α̃0). Then k1 is well-defined and elementary. Hence
V κ/H1 is well-founded and we replace it by its transitive collapse N1 and
reconstrue k1 to have domain N1.

Denote the ultrapower embedding from V to N1 by j1. One can check
easily that j = k1 ◦ j1, and that the critical point of j1 is κ. Moreover,
j1(κ) = (μ+)N1 and P (κ)V ⊆ N1, so j1(κ) = (κ+)V = j(κ). Thus the critical
point of k1 must be greater than the κ+ of V .

Let i : κ→ V be such that [i]N1 = κ. Define

H0 = {A ⊆ κ : i−1(A) ∈ H1}.

51 Ordinal exponentiation.
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Then H0 = {A ⊆ κ : κ ∈ j1(A)}. Repeating the analysis we did for H1 we
see that the ultrapower V κ/H0 is well-founded and if N0 is the transitive col-
lapse, there is an elementary embedding k0 : N0 → N1 given by k0([f ]N0) =
j1(f)(κ). Moreover if j0 is the ultrapower embedding j0 : V → N0, then the
critical point of j0 is κ and the critical point of k0 is bigger than (κ+)V , and
finally j1 = k0 ◦ j0.

V M

N0 N1

�j

�
j0

�
�
���

j1

�
k0

�
k1

Since j(κ) = κ+, we know that max{α̃0, α̃1, . . . , α̃n−1} < κ+. By the κ+

saturation of I, there is an η < κ+ such that

‖max{α̃0, α̃1, . . . , α̃n−1} < η‖P (κn)/I = 1.

Let f : κ → κ be in V such that [f ]N0 = η. Since the critical points of k0

and k1 are both greater than the κ+ of V , k1 ◦ k0(η) = k0(η) = η. Hence,
j0(f)(κ) = η and thus j(f)(j(i)(α̃0)) = η.

Let B = {(α0, α1, . . . , αn−1) : max{α0, . . . , αn−1} < f(i(α0))}. Then
B ∈ G, since max{α̃0, α̃1, . . . , α̃n−1} < η = j(f)(j(i)(α̃0)). But this is a
contradiction, since B does not contain a tree isomorphic to κn and hence
B ∈ I. �

6.6. Restrictions on the Quotient Algebra

In this section we discuss theorems of Gitik and Shelah about the nature of
the quotient algebra of an ideal.

If κ is a successor cardinal then a precipitous κ-complete ideal on κ yields
an embedding that has critical point κ. As remarked after Proposition 6.3 this
implies that the forcing arising from I must collapse κ. On the other hand,
as we shall see in Sect. 7, if κ is a measurable cardinal, η < κ and P is an η-
c.c. forcing, then in V P there is a κ-complete, η-c.c. ideal on κ. In particular,
adding at least κ Cohen or random reals to a model where κ is measurable
gives a highly saturated ideal whose quotient algebra is isomorphic to the
algebra for adding more Cohen or random reals.

The question arises, can this algebra actually have small cardinality rather
than just small chain condition? More succinctly: What are the possible
densities of P (κ)/I if I is a κ-complete ideal on κ?

This question was asked classically by Ulam [123] in the context of deter-
mining the smallest size of a collection of countably complete measures such
that every subset of the real numbers is measurable with respect to one of
the measures. The question is clearly natural for cardinals such as ℵ1,ℵ2, as
well as 2ℵ0 .
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Ulam showed that there is no measure that measures every subset of ω1;
i.e. ω1 is not measurable. Alaoglu and Erdős showed that for every countable
collection of measures on ℵ1 there is a set that is not measurable by one of the
measures. Ulam asked whether there could be a collection of ω1 countably
complete measures such that every subset of ω1 is measurable with respect
to one of them. If the ideals corresponding to the measures are normal, then
Taylor showed (Theorem 4.3) that this is equivalent to the existence of a
countably complete, ℵ1-dense ideal.

The next theorem gives a characterization of ideals with very small density
in terms of a version of Ulam’s property:

6.19 Theorem (Taylor [119]). Let δ < κ be regular cardinals. Suppose that
〈μα : α < δ〉 is a collection of <κ-additive 0-1 measures over Z such that
every subset of Z that is not measure zero with respect to all of them is
measure one with respect to one of them. Let I be the κ-complete ideal of
subsets of Z that have measure zero with respect to each μα. Then P (Z)/I
has a dense set of size δ.

Proof. Note that the second assertion easily implies the first. For if {dα :
α ∈ δ} is a collection of subsets of Z such that every subset of Z not in I
contains some dα modulo I, then the measures associated to I�dα measure
every subset of Z in the prescribed manner.

For the other direction, suppose that 〈μα : α ∈ δ〉 is a sequence of measures
such that every subset of Z not measure zero with respect to all of them is
measure one with respect to one of them. Let Iα be the ideal of sets of
measure zero for μα and I =

⋂
Iα. We claim that P (Z)/I has a dense set of

size δ.
Clearly P (Z)/I has the δ+-c.c. For if 〈Aγ : γ ∈ δ+〉 were an antichain,

then we would have to have a γ, a β and an α such that Aγ and Aβ both are
measure one for μα. But then Aγ ∩Aβ /∈ Iα ⊇ I.

Thus for a fixed α, any strictly I-decreasing chain of μα-measure one sets
has length less than δ+. Using the additivity of μα, for each α we can find a
dα that is measure one for μα such that for any a that is measure one for μα,
dα ≤I a. Then if a ∈ I+ is arbitrary, there is an α such that a has measure
one for μα. Hence dα ≤I a. Thus {dα : α ∈ δ} is a dense set in P (Z)/I.52 �

We note that the converse of Theorem 6.19 is easy: if there is a dense set of
size δ, then there is a collection of measures satisfying the hypothesis. Thus
we have an equivalence to the existence of an ideal with quotient containing
a countable dense set.

Since any complete Boolean algebra with a countable dense set is isomor-
phic to the Boolean algebra for adding a single Cohen real, the question
becomes whether there is a κ-complete, uniform ideal on a set Z such that
adding a Cohen real adds a generic object for P (Z)/I.

52 Alternatively, we could apply Theorem 4.2, to find sets dα such that each Iα = I�dα

and the {[dα]I : α ∈ δ} would be dense.



6. Some Limitations 1003

If |Z| is a measurable cardinal and Ĭ is the dual of a |Z|-complete ultrafilter
on |Z| then |P (Z)/I| = 2. To rule out this trivial case we require our ideal
to be nowhere prime, i.e. there is no A ∈ I+ such that Ĭ�A is an ultrafilter
on A.

Tarski showed in a 1962 paper [118] that:

6.20 Theorem. There is no cardinal λ > 2ℵ0 that carries a nowhere prime,
countably complete, uniform, ℵ0-dense ideal.

Krawczyk and Pelc [74] found an extension of this theorem to sets of size
continuum:

6.21 Theorem. The continuum does not carry a countably complete uniform
ℵ0-dense ideal.

Finally Gitik and Shelah [55] finished the problem by showing:

6.22 Theorem. There is no countably complete, ℵ0-dense, nowhere prime
ideal on any set Z.

Proof. The proof will use two standard facts about Cohen forcing. Let r be
V -generic for the Cohen forcing Add(ω). Then:

1. r /∈
⋃
{M : M is a meager set belonging to V }.

2. If A ⊆ ωω is not meager in V , then A is not meager in V [r].

We now describe a complicated scenario that allows us to state a lemma
useful for proving both Theorem 6.22 and Theorem 5.9. The argument prov-
ing the lemma is essentially due to Gitik and Shelah, although Woodin saw its
relevance to Theorem 5.9 and modified it appropriately. We adapt Woodin’s
approach to formulate a lemma that works for both theorems. We will give
the assumptions forming the hypotheses of the lemma Roman numerals.

I. There are class models N ⊆W of ZFC with N closed under ω-sequences
from W .

II. κ is an N -regular cardinal and (κ+)N = (κ+)W .

III. There is an ideal J ∈W on P (κ)N such that

(a) J is normal and κ-complete with respect to sequences lying in N .

(b) P (κ)N/J has a countable dense set in W and hence is forcing
equivalent to Add(ω), the partial ordering for adding a single Co-
hen real. We will view Add(ω) as the tree 〈ω<ω,⊇〉.

(c) If H ⊆ P (κ)N/J is W -generic, then Nκ/H is well-founded.

Assume for the moment that I–III hold. Let D ⊆ P (κ)N/J be countable
and dense with D ∈ W . Since N is closed under ω-sequences, we can find a
collection 〈Ap : p ∈ ω<ω〉 ∈ N such that:
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1. Api ⊆ Ap ⊆ κ,

2. Api ∩Apj = ∅ for i �= j, and

3. {[Ap]J : p ∈ ω<ω} is dense in P (κ)N/J .

We redefine D to be equal to {[Ap]J : p ∈ ω<ω}.
The collection of sets 〈Ap : p ∈ ω<ω〉 determines a canonical bijection

between W -generic ultrafilters H ⊆ P (κ)N/J and W -generic reals r ⊆
Add(ω, 1). We will write r(H) for the Cohen real associated with H, and if r
is a Cohen real we will write H(r) for the associated ultrafilter on P (κ)N/J .

Let H ⊆ P (κ)N/J be generic over W . Let i′ : N → N ′ ∼= Nκ/H be the
ultrapower map, where N ′ is a transitive model. By the N -normality of J ,
if id : κ→ κ is the identity map then [id]N

′
= κ.

If τ is a P (κ)N/J term in W for an element of N ′, then we can find a
maximal antichainA ⊆ D and a collection of functions {fa : a ∈ A} ⊆ N such
that a � [fa]N

′
= τ . Since A ⊆ D, if a = [Ap]J and b = [Aq]J are distinct

elements of A, then Ap ∩Aq = ∅. Since N is ω-closed, {Ap : [Ap]J ∈ A} and
{f[Ap] : [Ap]J ∈ A} both belong to N . Define f =

⋃
[Ap]∈A f[Ap]�Ap. Then

1 � [f ]H = τ . Hence to each W -term τ for an element of N ′ we can associate
a function f in N that represents it in N ′, no matter which generic object is
chosen. A similar argument shows that (N ′)ω ∩W [H] ⊆ N ′.

Since J is κ-complete in N and N is closed under ω-sequences

B =
⋂

n∈ω

⋃
|p|=n Ap ∈ J̆ .

For ξ ∈ B, let rξ : ω → ω be the unique function such that ξ ∈
⋂

n∈ω Arξ�n.
Then the sequence 〈rξ : ξ ∈ B〉 ∈ N and for all W -generic H,

i′(〈rξ : ξ ∈ B〉)(κ) = r(H).

Each rξ ∈ N but r(H) /∈ N . Hence {ξ : there is an η < ξ, rξ = rη} ∈ J . By
thinning slightly we can assume that 〈rξ : ξ ∈ B〉 is one-to-one. Modifying
the sequence again on a set of measure zero we can assume that

1. 〈rξ : ξ < κ〉 ∈ N is one-to-one,

2. Ap = {ξ : rξ ∈ [p]}, and

3. 1 � i′(〈rξ : ξ < κ〉)(κ) = r(H).

Suppose that i′(〈rξ : ξ < κ〉) = 〈ri′

ξ : ξ < i′(κ)〉. Then each ri′

ξ ∈ W [r(H)]
and hence there is an Add(ω)-term sξ in W such that 1 � sξ = ri′

ξ . Since
a Cohen term is a countable object, sξ ∈ N . Moreover, any Cohen term
t ∈ N for an element of ωω can be canonically viewed as a Borel function
T : ωω → ωω that is coded in N . Our final assumption is:
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IV. There is a sequence of Cohen terms 〈tα : α < κ+〉 ∈ N such that:

(a) {α : 1 � tα = sα} is unbounded in κ+, and

(b) for all α < β < κ+, {x : Tα(x) = Tβ(x)} is meager.

6.23 Lemma. Hypotheses I, II, III, and IV are jointly inconsistent.

We begin by reducing Theorem 6.22 to Lemma 6.23. Let N = W = V .
Let I be a countably complete ℵ0-dense, nowhere prime ideal on any set Z.
Force with P (Z)/I and consider the resulting generic elementary embedding
j : V → N ′. Let κ be the critical point of j. If J is the ideal induced
by using κ as the “ideal point” (as in Example 3.37), then J is a uniform,
normal, κ-complete ideal, and the countable dense set in P (Z)/I projects
to a countable dense set in P (κ)/J . Thus we can assume without loss of
generality that we have a J that is a uniform, normal, κ-complete ideal on a
regular cardinal κ and that P (κ)/J has a countable dense set.

Let 〈tα : α < κ+〉 = 〈sα : α < κ+〉. We know that 1 � tα �= tβ for
α �= β. Hence {x : Tα(x) �= Tβ(x)} is meager and 〈tα : α < κ+〉 satisfy the
hypotheses of the lemma.

We now sketch a proof of the lemma.

Proof (Sketch). Let H be generic for P (κ)N/J , r = r(H) and i′ : N → N ′

the generic ultrapower embedding with N ′ transitive.
Here are the main points of the proof.

1. For sets of reals that belong to N , meagerness is absolute between N
and W .

2. We will make the harmless simplifying assumption that if 1 �Add(ω)

t
V [r]
α = s

V [r]
α then sα = tα.

3. Every Borel set in W has a code that lies in N . If c is a Borel code
then i′(c) = c. We claim that for each A ∈ J̆ the set {rξ : ξ ∈ A}
is non-meager inside each basic open interval [p]. For otherwise, there
would be a meager set X coded in N with {rξ : ξ ∈ Ap∩A} ⊆ X. If we
take H with [Ap]J ∈ H we would see that r ∈ i′(X), a contradiction.

4. Since Cohen forcing preserves non-meagerness, for A ∈ J̆ and p ∈
ω<ω, {rξ : ξ ∈ A} ∩ [p] is non-meager in N ′. Since i′(A) ∩ κ = A
we can use i′ and reflection to see that there is a ξ0 < κ such that
{rξ : ξ ∈ ξ0 ∩A} is non-meager inside each basic open interval [p].

5. If �f = 〈fα : α < κ+〉 is a sequence of canonical functions representing
the ordinals less than κ+ in the ultrapower53 then �f ∈ N . Let 〈ri′

ξ :
ξ < i′(κ)〉 = i′(〈rξ : ξ < κ〉). For α < κ+ the function gα(ξ) = rfα(ξ)

represents ri′

α .
53 As in Proposition 2.34.
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6. For α < κ+, let Aα = {ξ : Tα(rξ) = gα(ξ)}. Then the sequence 〈Aα :
α < κ+〉 is definable from the sequences 〈Tα : α < κ+〉, 〈rξ : ξ < κ〉
and 〈fα : α < κ+〉. Hence 〈Aα : α < κ+〉 ∈ N .

7. If α < κ+ with tα = sα then ri′

α = Tα(ri′

κ ) = i′(gα)(κ). Hence, Aα ∈ J̆ .

8. Working in N , let ξ(α) be the least ξ < κ such that

(a) ξ is closed under fα, and

(b) {rξ : ξ ∈ Aα ∩ ξ(α)} is not meager in any interval [p],

if such a ξ exists and 0 otherwise. By clauses 4 and 7 if tα = sα then
ξ(α) is non-zero.

9. In W , there is a set E ⊆ {α : tα = sα} with size κ+ and a non-zero
ξ∗ < κ such that for all α ∈ E, ξ(α) = ξ∗. Let F be the collection of
α < κ+ such that ξ(α) = ξ∗. Then F ∈ N and E ⊆ F so |F | = κ+.

10. For α ∈ F , {rξ : ξ < ξ∗ and Tα(rξ) = rη for some η < ξ∗} is non-
meager in any interval [p]. Note that i′ fixes the sequence 〈rξ : ξ < ξ∗〉.

11. Let α∗ ∈ i′(F ) with α∗ /∈ (i′)“κ+. Let 〈ti′

α : α < i′(κ+)〉 be the sequence
i′(〈tα : α < κ+〉). Consider the function T i′

α∗ in N ′ corresponding to ti
′

α∗ .
Then N ′ |= {rξ : ξ < ξ∗ and T i′

α∗ (rξ) = rη for some η < ξ∗} is non-
meager in any interval [p]. Since N ′ is closed under ω-sequences from
W [r], this is true in W [r] as well.

12. Since Cohen forcing is countable, there is a condition p, a non-meager
set B ⊆ {rξ : ξ < ξ∗} and a function w : B → {rξ : ξ < ξ∗}, such that
p �W w = T i′

α∗ �B.

13. Let τ ∈ N be a Cohen term for the function T i′

α∗ . Working in W , we
can view τ as a Borel function T : ωω×ωω → ωω such that for a generic
r and all x ∈ ωω ∩ N [r], T (r, x) = T i′

α∗ (x). Then p �W T i′

α∗ (rη) = rξ

iff W |= {y : T (y, rη) = rξ} is comeager in the interval [p]. Since T
is coded in N and comeagerness is absolute between N and W we can
find a non-meager set B ⊆ {rξ : ξ < ξ∗} and a function w that lies in
N such that p �W w = T i′

α∗ �B.

14. Note that i′(B) = B and i′(w) = w. Consider φ(η, γ,B,w) saying:

∃α(η < α < γ ∧ w = Tα�B).

Let γ be the least ordinal such that i(γ) > α∗ and η < γ be arbitrary.
Then N ′ |= φ(i′(η), i′(γ), i′(B), i′(w)). Using α∗ we can reflect twice to
find α < β < γ such that Tα�B = Tβ�B = w. Since B is non-meager
this contradicts condition IV.

�
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Gitik and Shelah’s results extend to show that if I is a nowhere prime ideal
on a set X then the completeness of I is less than or equal to the density of I.
Moreover, there are many forcing notions that are not possible as quotients
of κ-complete ideals. These include:

• Any forcing P that has a filtration 〈Pα〉 into forcings of size less than
κ that are neatly embedded in P ,54

• random real forcing,

• Cohen ∗ random forcing,

• Hechler forcing,

• Miller forcing,

• Sacks forcing.

6.7. Yet Another Result of Kunen

From the Gitik-Shelah limitations on ℵ0-dense ideals, one sees that the
strongest consistent ideal property on a cardinal below the first measurable
cardinal is that an ideal be ℵ1-dense. Kunen showed the following result
which put a limitation on when countably complete ideals can even be ℵ2-
saturated.

6.24 Proposition. There is no uniform, countably complete, ℵ2-saturated
ideal on any cardinal between ℵω and ℵω1 .

We can generalize Kunen’s result as follows (see [31] for a complete dis-
cussion):

6.25 Definition. Let κ be a regular cardinal. Define Cκ to be the smallest
class of ordinals such that:55

1. κ ⊆ Cκ,

2. if α, β ∈ Cκ and β+α ≥ κ+ω then β+α ∈ Cκ, and

3. if β ∈ Cκ and β ≥ κ, then every cardinal in the interval [β, β+κ) belongs
to Cκ.

An easy induction shows that for all κ, [κ, κ+ω)∩ Cκ = ∅. The next result
generalizes Kunen’s proposition:

6.26 Proposition. Let κ be a successor cardinal. Suppose that λ is a regular
cardinal in Cκ. Then there is no κ-complete, κ+-saturated uniform ideal on λ.

54 An example of such a forcing is the partial ordering for adding κ Cohen reals.
55 Here we will use β+α to mean the αth cardinal successor of β.
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In the section on consistency results we will see that this theorem is sharp
at the upper end of the interval, and that there is some evidence that it is
sharp at the lower end.

Proof. As in the examples in Sect. 4.5, we see that if I is a uniform ideal on
λ and j : V →M ⊆ V [G] is the generic elementary embedding coming from
G ⊆ P (λ)/I, then j(λ) > λ.

6.27 Claim. Suppose that α is an ordinal in Cκ. Then for all κ-complete,
κ+-saturated ideals I on a set Z and all generic G ⊆ P (Z)/I, α is fixed by
the generic elementary embedding determined by G.

Proof. We show that the collection of fixed points of such an embedding j are
closed under clauses 1–3 of Definition 6.25 of Cκ. Let G ⊆ P (Z)/I be generic
and j : V →M ∼= V Z/G be the associated embedding, with M transitive.

Clause 1 is immediate since the ideal is κ-complete.
For clause 2: we remark that every cardinal of V [G] is a cardinal of M . In

particular, since the only cardinal collapsed by forcing with P (Z)/I is (κ+)V

we know that for all α, β with β+α ≥ κ+ω,

(β+α)M ≤ (β+α)V .

Suppose that α, β are fixed points of j and β+α ≥ κ+ω. Then,

(β+α)V ≤ j(β+α) = (j(β)+j(α))M = (β+α)M ≤ (β+α)V .

For clause 3, note that if β ≥ κ+ω is a fixed point of j then every cardinal
in the interval [β, κ+β) is of the form β+α for a fixed point α. Clause 3 then
follows from the fact that [κ, κ+ω) ∩ Cκ = ∅. �

Proposition 6.26 now follows from the fact that j(λ) > λ and Claim 6.27.
�

6.8. The Matsubara-Shioya Theorem

Example 3.1 showed that the ideal of bounded sets on a regular cardinal κ
is never precipitous. Matsubara and Shioya’s theorem shows the analogous
result for the minimal fine ideal on [λ]<κ where κ is a regular uncountable
cardinal. The result is a corollary of an elegant general theorem that was
discovered amazingly late in the study of ideals. The contents of this section
are very similar to their paper [95].

6.28 Definition. Let I be a countably complete ideal on a set Z such that
P (Z)/I is non-atomic. Let

• π(I) be the cardinality of the smallest I-positive set, and

• γ(I) be the smallest cardinality of a set that generates I by taking finite
unions and subsets.
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It is an unpublished observation of Johnson that:

1. ω ≤ π(I) ≤ γ(I), and

2. if π(I) = γ(I), then every I-positive set contains an I-positive set of
cardinality π(I).

To see the first clause, choose a set G ⊆ I of cardinality γ(I) closed under
finite unions that generates I. Then we can find a set T = {zA : A ∈ G} such
that for all A ∈ G, z ∈ Z \ A. Then T /∈ I, since otherwise there would be
an A ∈ G such that T ⊆ A.

To see the second clause, fix an I-positive set S. Repeat the previous
argument with respect to a generating family G′ for I�S that has cardinality
less than or equal to γ(I). We get an I-positive T ⊆ S of cardinality less than
or equal to |G′|. Since π(I) ≤ |T | ≤ γ(I) and π(I) = γ(I), we see |T | = π(I).

6.29 Theorem (Matsubara-Shioya [95]). If π(I) = γ(I) then I is nowhere
precipitous.

We defer the proof of Theorem 6.29 until we state and prove some signifi-
cant corollaries.

Recall from Example 3.1 the bounded ideal on [λ]<κ, Iκλ. We can also
describe Iκλ as the smallest κ-complete, fine ideal on P (λ).

6.30 Corollary. Let κ ≤ λ and κ regular and uncountable. Then Iκλ is not
precipitous.

The corollary follows from Theorem 6.29 by observing that π(Iκλ) =
γ(Iκλ) because they are both equal to the smallest cardinality of a subset
A of [λ]<κ such that every element of [λ]<κ is covered by a set in A.

Note as well that π(Iκλ) has cofinality at least κ. Otherwise, let A be a
covering subset of [λ]<κ of cardinality π(Iκλ). Write A =

⋃
α<ν Aα where:

1. |Aα| < |Aα′ | < π(Iκλ) for α < α′,

2. each Aα is not a covering set, and

3. ν < κ.

Then there is an aα ∈ [λ]<κ such that there is no element b ∈ Aα with
aα ⊆ b. Since ν < κ, the cardinality of a =

⋃
α<ν aα is less than κ and a is

not covered by any element of A, a contradiction.
Let the nonstationary ideal on λ restricted to [λ]<κ be denoted NSκλ.

Using the definition from Example 3.2 it is easy to verify that γ(NSκλ) ≤ 2λ.
Moreover, any positive set for NSκλ is positive for Iκλ, and hence π(Iκλ) ≤

π(NSκλ). Thus if λ is singular of cofinality less than κ and 2λ = λ+ the last
three of the following inequalities are actually equalities:

λ < π(Iκλ) ≤ π(NSκλ) ≤ γ(NSκλ) ≤ 2λ.

Thus we have:
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6.31 Corollary. Suppose that cf(λ) < κ and 2λ = λ+. Then NSκλ is
nowhere precipitous. In particular, if GCH holds then for all n, NSℵn ℵω is
nowhere precipitous.

Matsubara and Shioya draw several other corollaries including:

6.32 Corollary.

1. If 2<κ < λ<κ = 2λ then NSκλ is nowhere precipitous.

2. If sup{cf(
∏

a/U) : a ∈ [λ]<κ is a collection of regular cardinals greater
than κ, and U is an ultrafilter on a} = 2λ, then NSκλ is nowhere
precipitous.

3. If 2ℵ0 < ℵℵ0
ω then NSℵn ℵω is nowhere precipitous.

Proof of Theorem 6.29. First note that it suffices to prove the following:

Claim. Let κ = π(I) = γ(I). For all I-positive sets X and one-to-one
functions f : X → κ there is an I-positive set Y ⊆ X and a one-to-one
function g : Y → κ such that for all y ∈ Y , g(y) < f(y).

To see that the claim suffices, we suppose that I�A is precipitous. We use
the claim to build maximal antichains An ⊆ P (Z)/(I�A) such that:

• An+1 refines An,

• for each a ∈ An we have a one-to-one function fa : a→ κ, and

• if a ∈ An+1, b ∈ An and a ⊆ b, then for all y ∈ a, fa(y) < fb(y).

Then each sequence of functions 〈fa : a ∈ An〉 determines a term for a
function Fn ∈ V Z such that for all n, 1 � [Fn+1]Ṁ < [Fn]Ṁ , where Ṁ is a
term for the transitive model isomorphic to V Z/G.

To see the claim: enumerate a generating set for I as 〈Jα : α < κ〉 and
inductively choose a yα ∈ X \ (Jα ∪ f −1(α + 1) ∪ {yβ : β < α}). Let
Y = {yα : α < κ} and g(yα) = α. �

Matsubara and Shelah were able to extend Theorem 6.29 to show:

6.33 Theorem (Matsubara-Shelah [94]). If λ is a strong singular limit car-
dinal and κ < λ is regular, then NSκλ is nowhere precipitous.

The proof fixes a continuous cofinal sequence 〈λα : α ∈ cf(λ)〉 and uses
pcf theory to reduce the issue to those λα with cf(λα) < κ. It then uses the
proof of Theorem 6.29 to deal with these cardinals individually.
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6.9. The Nonstationary Ideal on [λ]<κ

In the previous section we saw that GCH implies that the nonstationary ideal
on [λ]<κ is not precipitous in many cases, such as [ℵω]<ωn . In this section
we describe a result saying that the nonstationary ideal is never saturated
unless κ = λ = ω1.

This problem was studied by Burke and Matsubara [14] who made sub-
stantial progress on it. The cases they left open were finished by Foreman
and Magidor in [44].

6.34 Theorem. Let κ be a regular cardinal. The nonstationary ideal on
[λ]<κ is not λ+-saturated unless κ = λ = ω1.

We note that the statement that the nonstationary ideal on ω1
56 is ℵ2-

saturated has a complicated history; see Sect. 8.
Theorem 6.34 is not a local statement. Gitik proved:

6.35 Theorem (Gitik [52]). Suppose that there is a supercompact cardinal κ.
Then there is a generic extension in which κ remains inaccessible and there
is a set S ⊆ {z ∈ [κ+]<κ : ot(z) = ot(z ∩ κ)+} such that the nonstationary
ideal restricted to S is κ+-saturated.57

This was later improved by Krueger [75] to show that it is possible to have
NS�{z ∈ [κ+]<κ : ot(z) = ot(z ∩ κ)+} be κ+-saturated.

Proof of Theorem 6.34. The proof splits into several cases depending on the
properties of κ and λ. We discuss the proof in some of the cases and refer
the reader to [44] for a complete proof.

Note that if κ = λ then there is a stationary subset S of [λ]<κ such that
NS�S = NSλ. For κ = λ �= ω1, Theorem 6.14 implies that NSκλ is not
λ+-saturated. Hence we can assume that λ > κ.

Case 1. λ is a regular cardinal, and κ is a successor cardinal.

Suppose that κ = μ+ for some cardinal μ. Let η = cf(μ). We claim
that the nonstationary ideal on λ restricted to points of cofinality η is not
λ+-saturated.

We can see this from various theorems depending on what type of cardinal
λ is. If λ is either the successor of a singular cardinal or weakly inaccessible
we use Theorem 6.14. If λ is a successor of a regular cardinal then we use
Corollary 6.11.

Let {Tα : α < λ+} be an antichain in P (λ)/(NS� Cof(η)). Let Sα = {N ∈
[λ]<κ : sup(N) ∈ Tα}. Then each Sα is stationary and {Sα : α < λ+} forms
an antichain in P ([λ]<κ)/NSκλ.

Case 2. κ = ω1 and λ > ω1.

56 Or equivalently, the nonstationary ideal on [ω1]<ω1 .
57 An alternate proof was given by Shioya [107].
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Significant progress was made in this case by Donder and Matet as well
as Shelah who showed the following ♦-principle under various cardinal arith-
metic assumptions. The diamond principle was later shown to hold in ZFC
by Shelah [106] using techniques similar to those in [44].

6.36 Definition. If λ > ω1 is a cardinal and S ⊆ [λ]<ω1 is stationary, then
♦ω1,λ(S) asserts the existence of a sequence 〈sa : a ∈ [λ]<ω1〉 such that for
all A ⊆ λ the set {a ∈ S : sa = A ∩ a} is stationary in [λ]<ω1 .

This principle immediately implies that the nonstationary ideal on [λ]<ω1

is not 2λ-saturated.
The original proof for the case of κ = ω1 is due to Foreman and Magidor

[44] who developed the theory of mutually stationary sets:

6.37 Definition. Let K be a set of regular cardinals, and S = 〈Sκ : κ ∈ K〉
be a sequence of sets such that Sκ ⊆ κ. Then the sequence S is called
mutually stationary iff for all algebras A on sup(K), there is an elementary
substructure N ≺ A such that for all κ ∈ K ∩N , sup(N ∩ κ) ∈ Sκ.

Note that if the sequence S is mutually stationary, then in particular, each
Sκ is stationary.

See [44] for the following facts:

1. Mutually stationary sequences remain mutually stationary under finite
variations.58

2. If K is a collection of measurable cardinals then every sequence of
stationary sets is mutually stationary.

3. (Welch) If f : ω → ω is a function that is not eventually constant
and Sn = ωn ∩Cof(ωf(n)) defines a mutually stationary sequence, then
there is an inner model with a measurable cardinal. A weak converse
has been proved by Liu and Shelah [87].

4. In L for all k > 0, there is a sequence of stationary sets S = 〈Sn : n > k〉
such that Sn ⊆ ωn ∩ Cof(ωk) is stationary but the sequence S is not
mutually stationary.

5. In ZFC, if S = 〈Sκ : κ ∈ K〉 is a sequence of stationary sets such that
each Sκ ⊆ κ ∩ Cof(ω), then S is mutually stationary.

We use property 5, to settle case 2. If λ is regular, then case 2 follows
from the first case.

If λ is singular, then we choose a cofinal sequence 〈λα : α < cf(λ)〉 such
that each λα is regular. By a theorem of Solovay (see [63]) we can partition
λα ∩ Cof(ω) into λα disjoint stationary sets {Sα

β : β < λα}.
By property 5, for each function f ∈

∏
λα, the sequence Sf = 〈Sα

f(α) :
α < cf(λ)〉 is mutually stationary.
58 Subject to a mild cofinality restriction.
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In particular, for each f ∈
∏

λα if we let

Tf = {N : for all α ∈ N, sup(N ∩ λα) ∈ Sα
f(α)},

then each Tf is stationary and for f �= g, Tf ∩ Tg is not stationary. Since
there are at least λ+ such f , we get an antichain of cardinality λ+.

Case 3. cf(λ) ≥ κ and κ is a successor cardinal, or κ is weakly inaccessible
and cf(λ) > κ.

In this case Burke and Matsubara used Cummings’ theorem (Theorem 6.13)
to show that the nonstationary ideal on [λ]<κ is not saturated. For if it
were, then forcing with P = P ([λ]<κ)/NSκλ would preserve stationary sub-
sets of λ+. Hence by Cummings’ theorem, if G ⊆ P is generic then V [G]
satisfies “cf(λ) = cf(|λ|)”. Hence the generic ultrapower M must satisfy
“cf(λ) = cf(|λ|)” as well.

The following lemma is standard (see [4]):

6.38 Lemma. Let κ and λ be cardinals with κ regular.

1. Suppose that cf(λ) > κ, and μ, ν are regular cardinals less than κ. Let
S1 be the collection of x in [λ]<κ such that:

(a) x ∩ κ ∈ κ,

(b) |x| = |x ∩ κ|,
(c) cf(x ∩ κ) = μ, and

(d) cf(sup(x)) = ν.

Then S1 is stationary.

2. Suppose that κ = ρ+ ≥ ω2 and cf(λ) ≥ cf(ρ). Let S2 be the set of x in
[λ]<κ such that:

(a) x ∩ κ ∈ κ,

(b) |x| = |x ∩ κ|, and

(c) cf(x ∩ κ) = cf(sup(x)) �= cf(ρ).

Then S2 is stationary.

Assuming the lemma we get an immediate contradiction to Cummings’
theorem. If κ is a successor cardinal, we force with P ([λ]<κ)/NSκλ below S2.
By Lemma 2.38, we see that in V [G], |λ| = ρ, but cf(λ) �= cf(ρ), a contradic-
tion.

If κ is weakly inaccessible and cf(λ) > κ, then forcing below S1 yields
a model V [G] satisfying “|λ| = κ” but cf(λ) �= cf(κ), again contradicting
Cummings’ theorem.

Case 4. cf(λ) < κ.
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In this case Burke and Matsubara showed that the nonstationary ideal on
[λ]<κ is not λ+-saturated, but it is shown in [44] that even more is true: the
nonstationary ideal on [λ]<κ is not even λ++-saturated.

By appealing to the Gitik-Shelah theorem one sees that there is a large
antichain of stationary sets of approachable ordinals in λ+ (see [43]). Via
Shelah’s pcf theory, such a set in the antichain can be used to code a station-
ary set in [λ]<κ through comparisons of characteristic functions and elements
of a scale.

Case 5. κ is weakly inaccessible and cf(λ) = κ.

This case is handled with an argument combining Shelah’s “trichotomy”
theorem in pcf theory with generic ultrapowers. �

7. Consistency Results

In this section we discuss some consistency results for ideals. It is a trivial,
but significant observation that classical large cardinals are special cases of
ideal axioms; namely they are typically equivalent to the existence of normal,
fine, prime ideals, or systems of such. One of the main techniques for proving
consistency results is to take prime ideals on large cardinals and transform
them, via forcing, into ideals on more accessible sets.

Most of these results rely on rather technical arguments involving iterated
forcing and master conditions. As a result we will do no more than outline
the deeper results. The reader is referred to Cummings’ chapter in this
Handbook for information about backwards Easton forcing. It is beyond the
scope of this chapter to attempt to describe the intricate lore of constructing
master conditions.

Trivial Master Conditions

We will use the following lemma which describes the situation where no
master condition is needed:

7.1 Lemma. Suppose that j : V → M ⊆ V [G] is a generic elementary
embedding with critical point κ, where G ⊆ Q is generic. Let P ∈ V be a
κ-c.c. partial ordering. Then for all M -generic Ĥ ⊆ j(P) the filter H = {p :
j(p) ∈ Ĥ} ⊆ P is V -generic.

If H ⊆ P is V -generic then one can force over V [H] to produce a V [G]-
generic Ĥ ⊆ j(P) such that j extends to an elementary embedding

ĵ : V [H] →M [Ĥ] ⊆ V [G ∗ Ĥ].

Proof. Let Ĥ be generic over M . For all maximal antichains A ⊆ P lying in
V , we know that |A| < κ. Hence j(A) = j“A. Since Ĥ ∩ j(A) �= ∅ there is a
p ∈ A with j(p) ∈ Ĥ. Hence H ∩ A �= ∅, and so H is generic.
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The proof shows that in V [G] the map j�P sends V -maximal antichains
A ⊆ P to M -maximal antichains j(A) ⊆ j(P). Hence if we force over V [G]
to get a generic H, then there is a further forcing R to get a V [G] generic
Ĥ ⊆ j(P) with j“H ⊆ Ĥ. This can be summarized by the formula:

Q ∗ j(P) ∼ (Q ∗ P) ∗ R.

Since both P and Q lie in V , the product lemma tells us that Q∗P ∼ Q×P ∼
P ∗ Q. Rearranging the terms, we see that if H ⊆ P is generic, then forcing
over V [H] with Q ∗R produces both G and Ĥ with the property that for all
p ∈ P, p ∈ H iff j(p) ∈ Ĥ.

Define a map ĵ by setting ĵ(τV [H]) = j(τ)M [Ĥ]. That ĵ is well-defined and
elementary follows from the fact that j“H ⊆ Ĥ. �

The Basic Idea

We here avail ourselves of the notation and discussion in Sect. 3, referring to
ideal elements, master conditions, U(j, i) and induced ideals, and so forth.
For most of the results in this section we will be in the situation described by
Example 3.37. We suggest the reader reread that example before proceeding.

Let Q be a partial order. We extend our notation slightly to write Q/H
for an arbitrary subset H ⊆ Q to mean the structure with domain {q ∈ Q :
for all h ∈ H, q is compatible with h}, and the relation ≤Q. For p ∈ Q we
write Q/p for Q/{p}.

Hence if j : V →M is elementary, P ∈ V and G ⊆ P, then the conditions in
j(P)/j“G that are compatible with a condition m will be written j(P)/(j“G∪
{m}). If H ⊆ Q is a finite set, then forcing with the ordering Q/H is
equivalent to forcing with {q ∈ Q : for all h ∈ H, q ≤Q h}.

If m ∈ j(P) is a master condition and Ĝ ⊆ j(P)/m is V -generic, then
{p : j(p) ∈ Ĝ} ⊆ P is V -generic. Hence there is a p ∈ P such that the
restriction of j to P/p is a regular embedding from P/p to j(P)/{p,m}.

A typical construction in this section will start with an elementary em-
bedding j : V → M that has critical point κ and choose an ideal object
i ∈ M . We will force with a partial ordering P and find a master condi-
tion m ∈ j(P)/j“G where G ⊆ P is generic. If Ĝ ⊆ j(P)/(j“G ∪ {m})
is generic then we can extend j to ĵ : V [G] → M [Ĝ]. If Z is such that
m �j(P)/j“G i ∈ j(Z) then, as in Example 3.37 applied to the partial order-
ing consisting of the collection of conditions in j(P)/j“G that lie below m,
we get an ideal I ⊆ P (Z) that depends on ĵ, i and m for its definition.

Let B be the completion of j(P)/(j“G ∪ {m}). Then we get an order and
antichain preserving embedding:

ι : P (Z)/I → B

defined by setting ι([X]) = ‖i ∈ j(X)‖.
As a consequence, if B has the γ-c.c. then I is γ-saturated. Moreover if ι

maps P (Z)/I onto a dense subset of B or simply takes maximal antichains to
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maximal antichains, then the canonical ultrafilter U(ĵ, i) defined by setting
X ∈ U(ĵ, i) iff i ∈ ĵ(X) is generic for the partial ordering P (Z)/I.

Let k : V Z/U(ĵ, i) → M be defined by setting k([g]) = j(g)(i). Since the
diagram:

V

V Z/U(ĵ, i) M

�
���

�
�
���

ĵ

�
k

commutes, we see that V Z/U(ĵ, i) is well-founded. If ι takes maximal an-
tichains to maximal antichains, the ultrafilter U(ĵ, i) is generic for P (Z)/I.
Hence there is a condition A ∈ P (Z)/I that forces “if U ⊆ P (Z)/I is generic
then V Z/U is well-founded”. Thus I�A is precipitous.

If we know that the range of ι is dense in B then forcing with P (Z)/I is
the same as forcing with j(P)/(j“G ∪ {m}). In this case we have an exact
description of the quotient algebra of the ideal. In Sect. 7.4 we give a general
method for computing the quotient algebras P (Z)/I.

7.2 Remark. We note the close connection with proper forcing ideas. The
notion of a “generic” condition in proper forcing is exactly the same as what
we are calling a “master condition”. The difference in context is that proper
forcing deals with the specific case that κ = ω1 and the elementary embedding
involved comes from reflection, rather than extension.59 Corollary 7.18 also
illustrates the connection.

The next example gives the simplest mechanism for getting saturated
ideals.

7.3 Example. Let κ be measurable and j : V → M be the elementary
embedding induced by an ultrapower by a κ-complete ultrafilter U on κ. If
P is the partial ordering for adding Cohen or random reals, then P has the
c.c.c., and hence the empty condition is a master condition. By the remarks
above the ideal induced by j using κ as the ideal element is precipitous and
has the c.c.c. In particular, it has the disjointing property.

Solovay [111] proved that adding κ random reals to a measurable cardinal
makes κ real-valued measurable, i.e. there is a countably complete probability
measure defined on all subsets of κ. In this model κ = 2ℵ0 , and the ideal of
null sets for the measure is c.c.c. and hence precipitous.

Note that this example generalizes quite easily to get generically super-
compact, and huge elementary embeddings. Namely, if j is λ-supercompact
(or huge, with j(κ) = λ) then we choose the ideal element to be j“λ and Z to
be either [λ]<κ (or [λ]κ) and argue in exactly the same way to get a normal,
fine, countably complete c.c.c. ideal on [λ]<κ (or [λ]κ).

59 See the discussion around Definition 3.43.
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7.1. Precipitous Ideals on Accessible Cardinals

Let κ be a measurable cardinal. Let j : V → M be the ultrapower of V by
a κ-complete ultrafilter U on κ. Let P = Col(ω,<κ). Let G ⊆ P be generic.
Since P is κ-c.c., if H ⊆ j(P)/G is an arbitrary generic filter, then j can be
extended to ĵ : V [G] → M [H]. Hence we can take the empty condition in
j(P)/j“G to be a master condition and, working in V [G], define an ideal I as
above using ĵ and i = κ as the ideal element. Then in V [G], I is a precipitous
ideal on ω1. More generally:

7.4 Theorem. Suppose that κ is a measurable cardinal. If ν < κ is a regular
cardinal and G ⊆ Col(ν,<κ) is generic, then there is a precipitous ideal on
ν+ in V [G].

As a corollary we get the following theorem:

7.5 Corollary (Jech et al. [65]). Suppose that it is consistent that there is
a measurable cardinal. Then it is consistent that there is a precipitous ideal
on ω1.

Proof of Theorem 7.4. We show that the map ι maps (P (κ)/I)V [G] to a dense
subset of j(P)/G. This suffices, since it shows that the ultrafilter U(ĵ, κ)
is generic for the forcing P (κ)/I and as we argued above, the ultrapower
V κ/U(ĵ, κ) embeds into M and hence is well-founded.

Let p ∈ j(P)/G. Then there is a function f : κ → P lying in V such that
ĵ(f)(κ) = p.

Working in V [G], let X = {α : f(α) ∈ G}. Then X ∈ U(ĵ, i) iff κ ∈ ĵ(X)
iff ĵ(f)(κ) ∈ H. But j(f)(κ) = p. Hence ι(X) = p, and we have established
the theorem. �

With some extra work one can show that the ideal I defined in the proof
of Theorem 7.4 is exactly the ideal generated in V [G] by the dual of U .

The argument above is an example of a more general phenomenon explored
in the Duality Theorem and a special case, Proposition 7.13. The latter
immediately implies:

7.6 Theorem (Laver60). Let κ be a measurable cardinal, and ν < κ be
regular. If G ⊆ Col(ν,<κ) is generic, then in V [G] there is a κ-complete,
normal, precipitous ideal I such that P (κ)/I has a <ν-closed dense subset.

The main point of the argument above is that the set Z and the ideal
element i generating the ideal are chosen to be the same as those for the
original large cardinal embedding. Thus with minor variations, one can check
that if I is a master condition ideal generated by an ideal element j“λ over an
ultrapower of V by a ultrafilter on [λ]<κ, then I is precipitous and P ([λ]<κ)/I
is isomorphic to the quotient forcing for j(P)/(j“G ∪ {m}).
60 It is remarked in [50] that this was proved independently by Galvin, Jech and Magidor.
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The following example, discovered independently by Laver and the author,
and used fruitfully by Laver in [85], partially illustrates the close connection
between ideals and proper forcing.

7.7 Example. Let κ be supercompact, and let G ⊆ Col(ω,<κ) be generic.
Let λ > κ be a regular cardinal and j : V → M be a λ-supercompact
embedding. Then for all generic H ⊆ Col(ω, j(κ) \ κ) there is an elementary
embedding ĵ : V [G] →M [G,H].

Let P be a proper partial ordering in V [G], and suppose that we take
λ ≥ (2|P|)+. Then in M [G,H]:

1. j(P) is proper, and

2. j“H(λ) is countable.

So by properness, in M [G,H], there is a “generic” condition m for j“H(λ).
From the point of view of V [G] the condition m is a master condition for
the forcing P with respect to the embedding j. If G∗ ⊆ P is generic and
compatible with m, then in V [G∗G∗] there is a precipitous ideal I on [λ]<κ =
Z such that the quotient algebra P (Z)/I is isomorphic to Col(ω, j(κ) \ κ) ∗
j(P)/(j“G∗ ∪ {m}).

In particular, if there is a single condition m in j(P) below every element
of j“G∗ then the quotient algebra is isomorphic to the Levy collapse followed
by forcing with j(P) below m.

7.2. Strong Master Conditions

In this section we briefly describe the construction of non-trivial master condi-
tions. This topic is covered in depth in Cummings’ chapter in the Handbook.
The first use of this technique was due to Silver who showed that it was
consistent for GCH to fail at a measurable cardinal, provided the existence
of a supercompact cardinal is consistent.

In a typical situation, we are given an elementary embedding j : V → M
that is closed under λ-sequences for some cardinal λ ≥ κ. We will force with
a partial ordering of the form P ∗Q where P is κ-c.c. and |Q| ≤ λ. The result
will be a generic filter of the form G ∗H ⊆ P ∗Q. To extend the embedding
j we must find a generic Ĝ ∗ Ĥ ⊆ j(P ∗ Q) such that for all (p, q̇) ∈ P ∗ Q,
(p, q̇) ∈ G ∗H iff (j(p), j(q̇)) ∈ Ĝ ∗ Ĥ.

Since P has the κ-c.c. this is automatic for p ∈ P and G, Ĝ. If one can
arrange that the generic object H ⊆ Q lies in M [Ĝ], then it is frequently
possible to construct a condition m such that for all q̇ ∈ H, M [Ĝ] |= m ≤ j(q̇).
Such an m is called a strong master condition. Forcing with j(Q̂) below m
then gives an Ĥ with the requisite properties.

H can often be constructed in V j(P) because P is a sufficiently strong
Levy collapse that Q is embedded in j(P)/G. If j(Q) is <λ+-directed-closed
then in M [G] the desired condition m is defined by taking a condition below⋃

j“H.
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There are examples when
⋃

j“H is a condition in j(Q) even without <λ+-
closure due to the geometry of the conditions in Q. This is the reason for
forcing with the Silver collapse, rather than the Levy collapse in many models
given below.

7.3. Precipitousness is not Preserved Under Projections

In this subsection we outline a result of Laver that illustrates two interesting
points: that not every master condition ideal is precipitous and that projec-
tion maps do not preserve the property of being precipitous. Gitik has very
recently given an example of a precipitous ideal on a regular cardinal whose
canonical projection to a normal ideal is not precipitous.

7.8 Theorem (Laver). Suppose that it is consistent that there to be a super-
compact cardinal. Then it is consistent that:

1. There is a master condition ideal on ω1 that is not precipitous.

2. There is a precipitous ideal on [ω2]<ω1 whose projection to ω1 is not
precipitous.

Proof (Sketch). A basic building block for Laver’s partial construction is a
version of Heckler forcing. It is a partial ordering D designed to add a
generic function f : ω1 → ω1 that dominates every ground model function.
Conditions in D are ordered pairs (g, s) where g : ω1 → ω1 and s is a
countable approximation to f . The ordering on D is given by taking (g, s)
to be stronger than (h, t) iff g eventually dominates h and s ⊇ t. Assuming
the CH, this partial ordering is ℵ2-c.c. and countably closed.

Let j : V → M be a λ-supercompact embedding where κ = crit(j) and
λ = κ+. Let

P = Col(ω,<κ) ∗
ctbl sppt∏

α<λ

Dα,

where each Dα is a copy of the partial ordering D defined in V Col(ω,<κ) and
the product is taken with countable supports. It is routine to check that P

has cardinality λ, is λ-c.c. and belongs to M .

• There is a regular embedding e : P → Col(ω,<j(κ)) that lies in M
such that the restriction of e to Col(ω,<κ) is the identity map. If
Ĝ ⊆ Col(ω,<j(κ)) is generic over V then in M , we can build a V -
generic object G∗H ⊆ Col(ω,<κ)∗

∏ctbl sppt
α<λ Dα. In the model V [G∗H]

we note that κ = ω1 and λ = ω2.

• By the κ-c.c. of Col(ω,<κ) there is an extension of j to j1 : V [G]
→ M [Ĝ], and by the supercompactness of j, j1“H ∈ M [Ĝ]. Since
j1“H is countable, we can form the master condition m =

⋃
j1“H∈

j1(
∏ctbl sppt

α<λ Dα). Forcing with j1(
∏ctbl sppt

α<λ Dα) below m we get an Ĥ

and an elementary embedding ĵ : V [G ∗H] →M [Ĝ ∗ Ĥ].
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• Arguing as in the discussion before Remark 7.261 the ideal J on [ω2]<ω1

induced by ĵ and j“λ is precipitous in the model V [G ∗ H]. We now
show that the projection of this ideal to ω1 is not precipitous. Note
that the projected ideal I on ω1 is the ideal induced by j and i = ω1.

• Let fα be the generic function determined by Dα. To show that this
ideal is not precipitous it suffices to show that for all α < ω2 and all
I-positive sets X, there is an I-positive set Y ⊆ X and a β < ω2 such
that fβ(δ) is less than fα(δ) for all δ ∈ Y . This allows one to construct
terms for a decreasing sequence of functions in the generic ultrapower.

• For this latter statement, it suffices to show that for all X ∈ I+, and
all fα, there is a condition q ∈ j(

∏ctbl sppt
α<λ Dα) below m and a β such

that q forces that κ ∈ ĵ(X) and ĵ(fα)(κ) > ĵ(fβ)(κ).

• Note that each X ⊆ ω1 in V [G ∗H] is in V [G ∗ (H ∩
∏ctbl sppt

A Dα)] for
some A ⊆ (ω2)V [G∗H] of cardinality ω

V [G∗H]
1 . Without loss of generality

we can assume that A = ω
V [G∗H]
1 = κ.

• All of the conditions involved in deciding ‖κ ∈ j(X)‖ are in the product
of the first j(κ) coordinates. Hence, if β /∈ ω1, then we can extend the
condition m to an m1 that decides j(fβ)(κ) to be any value that is
above sup{j(g)(κ) : g ∈ κκ ∩ V [G]}, without affecting the truth value
of ‖κ ∈ j(X)‖.

• Thus we will be done if we can show that for all sets X ∈ I+ and all
α < κ+ and all θ < j(κ) there is an extension q of m belonging to
j(
∏ctbl sppt

α<λ Dα) such that q forces κ ∈ j(X) and j(fα)(κ) ≥ θ.

The latter point uses a delicate reflection argument to show that any such
bound θ can be taken to be of the form j(g)(κ) for some function g ∈ κκ∩V ,
and “works” relative to an auxiliary embedding jκ also determined by a func-
tion with domain κ that lies in the ground model. The two embeddings j
and jκ then can be simultaneously extended, but the function j(fα) eventu-
ally dominates g, yielding a contradiction. The reader is referred to [85] for
details. �

7.4. Computing Quotient Algebras and Preserving
Strong Ideals under Generic Extensions

Many generic embeddings are constructed by taking standard large cardinal
embeddings and modifying them by forcing. Since the nature of the forcing
is one of the three parameters of the strength of a generic embedding, charac-
terizing it is a fundamental problem. Indeed most consistency results about

61 Or applying Proposition 7.13.
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ideals explicitly refer to properties, such as saturation, of the quotient alge-
bras P (Z)/I. Thus it is desirable to have a general method for computing
exactly what the quotient algebra is.

Such a general method must necessarily be abstract. Formulating it re-
quires a balance between retaining its generality and keeping it concrete
enough for actual use in consistency arguments. Three results of this type
are given here. Proposition 7.13 is the most concrete and easy to use. It
covers many common cases, but does not directly apply in several important
arguments. In the author’s view, the Duality Theorem (Theorem 7.14) gives
the best balance. It is completely general in the case that master conditions
exist, is easy to use and has many standard theorems as consequences. The-
orem 7.30 and the discussion that follows it give completely general results.
At the moment, they have only been applied in fairly exotic situations.

A related topic of current interest is the preservation of various axioms
under generic extensions. In the context of generalized large cardinals this
can be viewed as calculating the quotient algebra of a generic embedding after
forcing. Hence the Duality Theorem has corollaries about the preservation
properties of ideals under fairly general circumstances. As corollaries we
deduce theorems of Kakuda [66], Baumgartner-Taylor [6], and Laver [83].

We only give a brief tour of the known results. The proofs appear in [30].

Preservation of Normality and a Warm-Up Theorem

We start with some basic remarks about ideals in generic extensions. Let P

be a partial ordering and J an ideal on Z for some Z ⊆ P (X). If H ⊆ P

is generic we will denote the ideal generated by J in V [H] by J̄ . Thus for
W ⊆ Z and W ∈ V [H] we have W ∈ J̄ iff there is a Y ∈ J such that W ⊆ Y .
Note that with this definition it is a triviality that J̄ ∩ P (Z)V = J . For
shorthand, if P and H are clear from context we will denote P (Z)V [H] by
P (Z).

The next observation is standard:

7.9 Proposition. Suppose that J is a κ-complete ideal on Z and P is a
κ-c.c. partial ordering. Then for all generic H ⊆ P, J̄ is a κ-complete ideal
in V [H]. Moreover, if J is also normal then J̄ is normal in V [H].

Prior to a discussion of calculating quotients of the closure of an ideal
after forcing, there is the more basic question about whether the closure
remains normal. The next result is a general criterion for the preservation of
normality of an ideal J under a generic extension. Note the close resemblance
to definitions used in proper forcing.

7.10 Lemma. Suppose that J is a normal, fine, κ-complete ideal on Z ⊆
P (X), P is a |X|+-c.c. partial ordering and θ is a regular cardinal sufficiently
large so that X,Z,P ∈ H(θ). Let H ⊆ P be generic. Then for L ∈ P (Z)V [H],
the following are equivalent:
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1. J̄�L is normal, fine and κ-complete.

2. For all algebras A ∈ V [H] on H(θ)V , {z ∈ Z : H is generic over
SkA(z)} is in the dual of J̄�L.62

3. For all algebras A ∈ V on H(θ)V , {z ∈ Z : H is generic over SkA(z)}
is in the dual of J̄�L.

In the case that we have an ideal J on a set Z ⊆ P (X) and a partial order-
ing P that is not |X|+-c.c. Lemma 7.10 can be applied to the nonstationary
ideal I on H(γ) conditioned63 on J for some γ such that P is γ+-c.c. After
forcing with P, the projection of Ī is J̄ . Thus the question of preservation of
the normality of J can be reduced to the question of the preservation of the
normality of the conditional nonstationary ideal. In this way, Lemma 7.10
gives an almost complete answer to the question of preservation of normality
under forcing.

The following example shows that Lemma 7.10 has content.

7.11 Example. Let U be a supercompact ultrafilter on [κ+]<κ. Let J = Ŭ
Then J is a 2-saturated, normal, fine ideal on [κ+]<κ = Z ⊆ P (X), where
X = κ+. Let P = Col(κ, κ+). Then |P| ≤ |X|. Let H ⊆ P be generic.
Then in V [H], J̄ is κ-complete. However, {x : |x ∩ κ| < |x|} ∈ U , but
{x : |x∩ κ| = |x|} ∈ Ĭ for all normal, fine, κ-complete ideals I on Z in V [H].
Hence J̄ is not normal in V [H].

The next proposition partially describes when forcing with P preserves
maximal antichains in P (Z)/J , an approximation to characterizing the forc-
ing P (Z)V P

/J̄ .

7.12 Proposition. Suppose that J is a normal, fine, countably complete
ideal on Z ⊆ P (X) and P is a partial ordering such that 1 � J̄ is normal.
Suppose that either:

1. J is |X|+-saturated in V , or

2. |P| ≤ |X|.

Then if A ⊆ P (Z)/J is a maximal antichain in V , then A ⊆ P (Z)V [H]/J̄

is a maximal antichain in V [H]. In particular, if J̄ is precipitous in V [H],
then J is precipitous in V .

Note that this proposition does not say that in V P, the identity map from
P (Z)/J to P (Z)V P

/J̄ is a regular embedding (see Corollary 7.26).
Here is a warm-up for the full Duality Theorem. The warm-up is often

easier to apply, though much less general:
62 Recall that H is generic over N ≺ H(θ) iff for all maximal antichains A ∈ N, H ∩ A ∩
N �= ∅.
63 See Definition 4.19.
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7.13 Proposition. Suppose that Q is a partial ordering, and Z ⊆ P (X) is
such that for all generic H ⊆ Q there is a V -normal, V -κ-complete ultrafilter
U on P (Z)V belonging to V [H] such that:

1. V Z/U is well-founded, and

2. there are functions h,Q, {fq : q ∈ Q} in V such that for all generic
H ⊆ Q, if M is the transitive collapse of V Z/U , then [Q]M = Q,
[h]M = H and for all q ∈ Q, [fq]M = q.

In V , let J = {A ⊆ Z : ‖A ∈ U̇‖Q = 0}. Then J is normal, fine, κ-complete
and precipitous and B(P (Z)/J) ∼= B(Q).

The isomorphism defined in Proposition 7.13 maps [X] ∈ P (Z)/J to ‖X ∈
U̇‖Q. To see that this maps onto a dense set, let q ∈ Q. Then A = {z : fq(z) ∈
h(z)} gets sent to q.

When Master Conditions Exist

For the rest of the subsection we will have a precipitous ideal J on Z for
some set Z and a partial ordering P. As usual we will consider a generic
G ⊆ P (Z)/J and the associated elementary embedding j : V → V Z/G ∼=
M ⊆ V [G], where M is transitive. We explicitly include the case where J is
a prime ideal.64

We are interested in calculating the quotient algebra of the ideal J̄ after
forcing with P provided that it still yields a generic elementary embedding.
In most situations this is equivalent to the existence of a master condition m.
We now make that equivalence explicit. For the general situation we refer
the reader to Theorem 7.30 and the remarks after it.

We will consider the partial ordering j(P) in M and force with it over V [G]
to get an Ĥ. If m �V [G]

j(P) j−1(Ĥ) ⊆ P is generic, then there is a condition
q ∈ P such that q �V

P
“j“H ∪ {m} can be generically extended to a generic

Ĥ ⊆ j(P)”. Then j is a regular embedding from P/q to j(P)/(m ∧ j(q)).
Replacing the original P by the conditions in P below q we can see that
j : P → j(P)/m is a regular embedding in V [G].

Summarizing: if P is a partial ordering in V such that for all generic
G × H ⊆ P (Z)/J × P there is a V [G]-generic Ĥ such that the embedding
j : V → M ⊆ V [G] induced by the ultrapower can be extended to an
embedding:

ĵ : V [H] →M [Ĥ ]

64 This is the situation where j is a conventional large cardinal embedding. In this case
the “generic” G is trivial.
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then there is a condition ṁ ∈ j(P) such that

id× j̇ : P (Z)/J × P → P (Z)/J ∗ j(P)/m,

is a regular embedding.65

This is exactly the main hypothesis of the next theorem, which is due to
the author, and says that forcing with P ∗ P (Z)/J̄ is equivalent to forcing
with P (Z)/J ∗ j(P).

The Duality Theorem and Its Consequences

7.14 Theorem (The Duality Theorem; Foreman [30]). Suppose that there
is a condition ṁ ∈ j(P) such that the embedding

id× j̇ : P (Z)/J × P → P (Z)/J ∗ j(P)/m

is a regular embedding. Then there are conditions p ∈ P (Z)/J ∗ j(P) and
q ∈ P ∗ P (Z)/J̄ such that:

(P ∗ P (Z)/J̄)/q ∼ (P (Z)/J ∗ j(P))/p.

7.15 Remark. We can make the Duality Theorem more explicit. Under the
hypotheses of the Duality Theorem, if [A] ∈ P (Z)/J is such that [A] �P (Z)/J

m = [f ] and M ∈ V P is defined as {z ∈ A : f(z) ∈ H} (where H ⊆ P is the
generic object), then there is a canonical isomorphism ι witnessing:

B(P ∗ P (Z)/(J̄�M)) ∼= B(P (Z)/(J�A) ∗ j(P)/m).

We now reduce several other theorems to the duality theorem:

7.16 Corollary. Suppose that J is a precipitous ideal on Z ⊆ P (X) and P

is a partial ordering satisfying the hypotheses of Theorem 7.14. Then for all
generic H ⊆ P there is a set M such that J̄�M is precipitous.

Proof. For V [H]-generic Ḡ ⊆ P (Z)/(J̄�M), we get a generic object G∗Ĥ for
P (Z)/J ∗ j(P) such that j“H ⊆ Ĥ. Hence there is an elementary embedding
ĵ : V [H] →M [Ĥ]. Moreover Ḡ = {A ⊆ Z : A ∈ V [H] and [id]M ∈ ĵ(A)}. In
particular, the ultrapower V Z/Ḡ (taken in V [H], using functions from V [H])
is well-founded for all generic Ḡ. Hence J̄ is precipitous. �

A special case of this is the following result that was discovered indepen-
dently by Magidor:

7.17 Corollary (Kakuda’s Theorem [66]). Suppose that P is a κ-c.c. par-
tial ordering on κ and that J is a κ-complete precipitous ideal. Then J̄ is
precipitous in V P.

65 It is important that Ĥ is V [G]-generic. Without this requirement we cannot argue that
m exists.
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Proof. This follows immediately, since the condition 1 ∈ j(P) works for m.
Hence in the theorem, we need only consider A = Z. Moreover, from the
definition of M we see that in this case M = Z. �

From Kakuda’s Theorem one easily sees that collapsing a large cardinal
κ to be a successor cardinal using κ-c.c. forcing yields precipitous ideals;
in particular, Theorem 7.4 follows. Moreover, collapsing a λ-supercompact
cardinal to μ+ yields a precipitous ideal on [λ]<μ+

, collapsing a huge cardinal
κ to μ+ yields the existence of a precipitous ideal on [λ]μ

+
for some λ and so

on. The next corollary implies that the property:

For all sufficiently large λ there is a precipitous ideal on [λ]<ω1

is indestructible by proper forcing (compare with Example 7.7).

7.18 Corollary. Suppose that I is a normal, fine, precipitous ideal on [λ]<ω1

for some λ, and P is a proper partial ordering with 2|P| ≤ λ. Then there is a
dense collection of sets A ∈ P ([λ]<ω1)/I such that I�A precipitous in V P.

Proof. We claim that I�A and P satisfy the hypotheses of the theorem for
a dense collection of A. Without loss of generality we can take I to be on
[X]<ω1 , where X is a transitive set with P (P) ⊆ X. Let G ⊆ P ([X]<ω1)/I
be generic, and j : V →M be the generic elementary embedding.

Let θ be a large regular cardinal. We can assume that for each z ∈ [X]<ω1

and all conditions p ∈ SkH(θ)(z) there is a condition m stronger than p

that is SkH(θ)(z)-generic. Thus in M , there is a condition m ∈ j(P) that is
SkH(j(θ))(j“X)-generic. Then m �M“for all dense sets D ∈ SkH(j(θ))(j“X),
there is a p ∈ SkH(j(θ))(j“X) ∩ D ∩ Ĥ”, where Ĥ is the canonical term for
the generic object for j(P) in M . Hence m �V [G] “{p ∈ P : j(p) ∈ Ĥ} is
V -generic”.

Let A ∈ P ([X]<ω1)/I, f : [X]<ω1 → P be such that A � [f ]M = m. Then
A and P satisfy the hypotheses of the theorem. �

The next example shows that it is not a theorem of ZFC that precipitous
ideals are preserved under <κ-directed closed forcing.

7.19 Example. Let U be a κ-complete, normal ultrafilter on κ. Force over
the model L[U ] with the partial ordering Add(κ) to get a generic G. Then in
V = L[U ][G], the ideal generated by the dual of U is no longer precipitous.
For if it were and we took the generic elementary embedding j : V → M ⊆
V [H] then M |= P (κ) ⊆ L[j(U)]. But by the standard theory of L[U ],
L[j(U)] is an iterate of L[U ], and hence P (κ)L[j(U)] = P (κ)L[U ]. But G ∈M ,
and G /∈ L[U ] a contradiction.

Another immediate consequence of Theorem 7.14 is:

7.20 Corollary. Suppose that J is an |X|+-saturated ideal on Z ⊆ P (X)
and P is a partial ordering satisfying the hypotheses of Theorem 7.14. Let
A, f,M be as in Remark 7.15. Then J̄�M is |X|+-saturated in V P iff j(P)/m
is |X|+-c.c. in V [G] for all generic G ⊆ P (Z)/J .
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The next corollary is immediate from the previous one, since we do not
need m (hence A or M).

7.21 Corollary (Baumgartner-Taylor [6] and Laver independently). Suppose
that J is a κ-complete, κ+-saturated ideal on κ and P is κ-c.c. Then J̄ is
|κ|+-c.c. in V P iff j(P) is κ+-c.c. in V [G] for all generic G ⊆ P (κ)/J .

We give an example of a c.c.c.-destructible saturated ideal on ω1 in the
discussion of Theorem 8.52 and show in Theorem 8.46 that the nonstationary
ideal on ω1 can be a c.c.c.-indestructible ℵ2-saturated ideal.

Another consequence is a generalization of a classical result of Solovay
[111] which also follows easily from the Duality Theorem.

7.22 Corollary. Let λ, δ < κ be regular and γ ≤ |X|+. Suppose that J is a
normal, fine, weakly (λ, γ)-saturated, κ-complete ideal on Z ⊆ P (X). Let P

be a partial ordering and H ⊆ P be generic. If P is λ-c.c. then in V [H], J̄ is
weakly (λ, γ)-saturated and sat(J̄)V [H] ≤ max{λ, sat(J)V }.

In particular, if P is δ-c.c. and J is a η-saturated ideal on κ with η ≤ κ+,
J remains η-saturated in V [H].

Proof. Since P is κ-c.c. the hypotheses of Theorem 7.14 are automatically
satisfied. Hence P ∗ P (Z)/J̄ ∼ P (Z)/J ∗ j(P). Let G ⊆ P (Z)/J be generic
and j : V → M be the generic ultrapower. Then M is closed under λ-
sequences and j(λ) = λ. Hence j(P) is λ-c.c. in V [G]. From this we conclude
that P ∗P (Z)/J̄ is weakly (λ, γ)-saturated and has the max{λ, sat(J)V }-c.c.
It follows abstractly that P (Z)/J̄ has the same properties in V [H] for a
generic H ⊆ P. �

The next examples illustrate how the Duality Theorem can be used to
calculate quotients of large cardinal ideals after doing some forcing. Many
lengthy calculations of quotient algebras such as those that appear in [48]
and [41] are also made quite easy by the Duality Theorem.

7.23 Example (Laver). Suppose that κ is a measurable cardinal and U a
normal ultrafilter on κ. Let H ⊆ Col(μ,<κ) be generic. Then in V [H],
P (κ)/Ŭ contains a dense set isomorphic to Col(μ,<j(κ)). In particular, the
quotient has a <μ-closed dense subset.

Proof. Take J = Ŭ and P = Col(μ,<κ) in the theorem. Note that P (κ)/J
is the trivial, two-element Boolean algebra.

Since P is κ-c.c. we can take m to be the trivial condition and hence A =
M = κ. By the theorem, in V [H], B(P (Z)/J̄) ∼= B(j(P)/H). Since j(P) =
Col(μ,<j(κ)) and j�Col(μ,<κ) is the identity, we see that B(j(P)/H) ∼=
B(Col(μ,<j(κ) \ κ)). �

7.24 Example. Let I be a normal, countably complete, ℵ1-dense ideal on ω1.
Let P be the partial ordering Add(ω, ω1) for adding ω1 Cohen subsets of ω
with finite conditions. Then in V P, P (ω1)/Ī is isomorphic to the partial
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ordering that collapses ω1 with finite conditions and then adds ω2 Cohen
subsets of ω with finite conditions.

Proof. To see this we apply duality. Note that Add(ω, ω1) ∗ P (ω1)/Ī is iso-
morphic to the quotient of P (ω1)/I ∗Add(ω, ωV

2 ) ∼ Col(ω, ω1)∗Add(ω1, ω
V
2 ).

If H adds ω1 Cohen reals then, by duality the ordering P (ω1)/Ī is isomor-
phic to the quotient of Col(ω, ω1) ∗ Add(ω, ω1)/H which is isomorphic to
Col(ω, ω1) ∗Add(ω, ω1). �

The next example plays an unfortunate role in the discussion of generalized
large cardinals as axioms for set theory, as we shall see in Sect. 11.2. It
follows immediately since j(Col(ω,<κ)) = Col(ω,<λ) and Col(ω,<λ)/G ∼
Col(ω,<λ):

7.25 Example. Suppose that j : V →M is a huge embedding with critical
point κ and j(κ) = λ. Let I be the dual of the huge ultrafilter on [λ]κ and
G ⊆ Col(ω,<κ) be generic. Then in V [G], λ is inaccessible and:

P ([λ]κ)/I ∼= B(Col(ω,<λ)).

Understanding the Embeddings: Master Conditions Must Exist

Suppose that J is a normal, fine ideal on Z ⊆ P (X), and J̄ is precipitous in
V [G]. One can ask:

Suppose that ĵ is a generic elementary embedding coming from
a V [H]-generic Ḡ ⊆ P (Z)V [H]/J̄ . How close is ĵ to a generic
elementary embedding j arising from a V -generic G ⊆ P (Z)/J?

One answer is given by the following corollary:

7.26 Corollary. Suppose that

id× j̇ : P (Z)/J × P → P (Z)/J ∗ j(P)/m

is a regular embedding. Then there is a J-positive set A ∈ V and a J̄-positive
set L ∈ V P such that

id : P× P (Z)/(J�A) → P ∗ P (Z)/(J̄�L)

sending (p,A) �→ (p, Ǎ) is a regular embedding. Moreover, if Ḡ ⊆ P (Z)/J̄
is V [H]-generic and G is the V -generic ultrafilter induced by id, and ĵ :
V [H] → M [Ĥ] and j : V → M are the two generic ultrapower embeddings
then j and ĵ agree on V .

Since there are many examples of consistency results that rely on extend-
ing generic elementary embeddings, it is interesting to understand if this
can be done using methods besides constructing master conditions. Unfor-
tunately the full force of the Duality Theorem requires master conditions.
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Indeed Corollary 7.26 is a near equivalence: the conclusions almost imply
the existence of a master condition. From the proof of the duality theorem
we can derive more information that yields an exact converse.

7.27 Remark. Under the hypotheses of the Duality Theorem, if H ∗ Ḡ ⊆
B(P ∗ P (Z)/(J̄�M)) is generic, then:

1. comp(J�A)V = comp(J̄�M)V [H],

2. for all f : Z → V with f ∈ V [H] there is a g ∈ V such that [f ]Ḡ = [g]Ḡ,
and

3. the isomorphism

ι : B(P ∗ P (Z)/(J̄�M)) ∼= B(P (Z)/(J�A) ∗ j(P)/m)

is such that if G ⊆ P (Z)/(J�A) is generic, G∗ = ι−1(G) and ī is the
induced isomorphism from

{B(P ∗ P (Z)/(J̄�M))}/G∗ ∼= {B(P (Z)/(J�A) ∗ j(P)/m)}/G,

then ῑ�P = j�P and is a regular embedding from P to j(P)/m in V [G].

Master conditions must exist if we assume properties 1–3:

7.28 Proposition. Suppose that P is a partial ordering, J is a precipitous
ideal on Z and there are A ∈ P (Z), f : Z → P and M ∈ P (Z)V P

such that
1–3 of Remark 7.27 hold with m = [f ]M .
Then

id× j̇ : P (Z)/J × P → P (Z)/J ∗ j(P)/m

is a regular embedding.

When the forcing P preserves the saturation of J , we can succinctly state
a converse to the Duality Theorem.

7.29 Theorem. Let J be a normal, fine, precipitous ideal on Z ⊆ P (X) and
P a partial ordering. Suppose that:

1. J̄�M is normal and |X|+-saturated in V P,

2. for all generic H ∗ Ḡ ⊆ P ∗ P (Z)/(J̄�M) and all f : Z → V in V [H]
there is a g : Z → P in V such that [h]Ḡ = [g]Ḡ,

3. the identity mapping:

P× P (Z)/J → P ∗ P (Z)/(J̄�M)

is a regular embedding, and

4. for all generic G ⊆ P (Z)/J , j(P) is |X|+-saturated in V [G].

Then there is a condition ṁ ∈ j(P) such that the mapping:

id× j̇ : P (Z)/J × P → P (Z)/J ∗ j(P)/m

is a regular embedding.
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Generalizations of the Duality Theorem Without Master
Conditions

In later sections it will be convenient to use a generalization of the Duality
Theorem. We state a version here (and an even more general version in the
remarks following it).

7.30 Theorem. Let J be a precipitous ideal on a set Z and P be a partial
ordering. Let Ḟ be a P (Z)/J-term for a filter on j(P). Suppose that:

1. id× j̇ : P (Z)/J × P → P (Z)/J ∗ j(P)/Ḟ is a regular embedding,

2. Ḟ is generated by 〈ṁα : α < γ〉,

3. A ∈ J+ is such that for each α, A � [fα]M = ṁα, and

4. A �P (Z)/J if Ĥ ⊆ j(P)/Ḟ is V [G]-generic, then Ĥ ⊆ j(P) is generic
over M .66

Let H ⊆ P be generic and JF ∈ V [H] be the ideal generated over J̄ by the
sets Mα = {z ∈ A : fα(z) /∈ H}. Then there is a canonical isomorphism ι
witnessing:

B(P ∗ P (Z)/JF ) ∼= B(P (Z)/(J�A) ∗ j(P)/F).

We can weaken our assumptions of the generalized duality theorem further.
Suppose that:

1. Ḟ is a P (Z)/J-term for a filter on j(P) generated by a collection of
terms T ,

2. id× j̇ : P (Z)/J × P → P (Z)/J ∗ j(P)/Ḟ is a regular embedding, and

3. if Ĥ ⊆ j(P)/Ḟ is generic then Ĥ ⊆ j(P) is generic over M .

Then if H ⊆ P is generic, there is a minimal ideal JF ∈ V [H] such that for
all A ∈ J+, τ ∈ T if A � fτ

A = τ , then {z ∈ A : fτ
A(z) /∈ H} ∈ JF . For this

ideal, there is a canonical isomorphism ι witnessing:

B(P ∗ P (Z)/JF ) ∼= B(P (Z)/(J�A) ∗ j(P)/F).

7.5. Pseudo-Generic Towers

In this section we discuss a technique for showing strong properties of an
ideal closely related to a master condition ideal.

In the typical situation where this technique is used, we have a large
cardinal embedding j : V → M and Mλ ⊆ M . We will force over V to get

66 Where G ⊆ P (Z)/J is the canonical term for the V -generic filter.
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G ∗H ⊆ P ∗Q and Ĝ ∗ Ĥ ⊆ j(P ∗Q) and extend the embedding to a

ĵ : V [G ∗H] →M [Ĝ ∗ Ĥ ].

If j(P) is λ-c.c. then M [Ĝ] is closed under λ-sequences from V [Ĝ]. Suppose
now that j(Q) is <λ-closed over M [Ĝ]. Then, working in V [Ĝ], for all sets
Z ∈ V [G ∗H] such that |P (Z)V [G∗H]| ≤ λ and all ultrafilters U(ĵ, i) induced
by ĵ on Z we can build a tower of conditions T ⊆ j(Q) such that for all
X ∈ P (Z)V [G∗H], there is a p ∈ T such that p ‖ “i ∈ ĵ(X)”.

In V [Ĝ] we define an ultrafilter Ũ on P (Z)V [G∗H] by setting X ∈ Ũ iff
there is a p ∈ T such that p � i ∈ ĵ(X). Then Ũ is closed under intersections
of <κ-sequences that lie in V [G ∗H].

We can phrase this as building the tower T to be generic for some collection
D of dense sets in j(Q). Such a tower is called pseudo-generic.

This is particularly interesting in the case where i = η ∈ On or i = j“μ
for some ordinal μ. In either of these cases, we can arrange that the tower
meets a larger collection of dense sets so that Ũ is closed under diagonal
intersections of sequences of sets that lie in V [G ∗H].

Pseudo-generic tower arguments can be formalized with the following re-
sult:

7.31 Lemma (Kunen [79]). Assume that κ<κ = κ. Suppose that P is a
<κ-closed partial ordering and φ is formula in the language of set theory
supplemented by an n-ary predicate symbol X. Suppose that a1, . . . , an ∈
H(κ) and there is a condition p ∈ P such that:

p � ∃X ⊆ H(κ)n, 〈H(κ),∈, X〉 |= φ(X, a1, . . . , an).

Then ∃X ⊆ H(κ), 〈H(κ),∈, X〉 |= φ(X, a1, . . . , an).

The proof of this lemma builds a pseudo-generic tower deciding longer and
longer initial segments of X for enough dense sets. The cardinal arithmetic
assumption guarantees that the list of dense sets to be met is not too large.

7.6. A κ-Saturated Ideal on an Inaccessible Cardinal κ

In this section we prove the following theorem of Kunen:

7.32 Theorem (Kunen [79]). Let κ be a measurable cardinal. Then there is
a partial ordering P such that for all generic G ⊆ P, V [G] |= κ is inaccessible
but not weakly compact and there is a κ-complete, κ-saturated ideal on κ.

Proof. We begin with some preliminaries:
Let λ be a regular cardinal and T be the collections of sets (t, <t) with

the following properties:

1. t ⊆ λ× λ, |t| < λ and <t is a tree ordering on t such that the αth level
of <t is t ∩ (λ× {α}),
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2. the tree has a “top level”, i.e. there is a maximal α ∈ λ such that
t ∩ (λ× {α}) �= ∅,

3. every node in the tree at level ν is below at least two nodes at level
ν + 1 and some node at the top level of the tree, and

4. for all σ, τ ∈ t in the same level of <t there is an automorphism of
(t, <t) sending σ to τ .

For conditions s, t ∈ T we define t ≤T s iff t ⊇ s and <t is an end extension
of <s and every automorphism of s extends to an automorphism of t. Then
T is ω-closed and <λ-strategically closed. Further, forcing with T adds a
λ-Suslin tree T to V .

The following lemma is crucial for Kunen’s theorem and is of independent
interest:

7.33 Lemma. Suppose that λ<λ = λ and let R = T ∗ T. Then forcing with
R is equivalent to forcing with Add(λ).

Proof. The Boolean algebra B(Add(λ)) can be characterized as the unique
complete Boolean algebra with a dense <λ-closed subset of cardinality λ.
Hence it suffices to show that T ∗ T is <λ-closed and λ-dense.

Let Q be the partial ordering consisting of pairs (p, b) where p ∈ T and b
is a branch through the tree of p that includes a node on the top level of p.
We let (q, c) ≤ (p, b) iff q ≤T p and c extends b.

A few moments’ thought shows that Q is <λ-closed and λ-dense, so it
suffices to see that forcing with Q is equivalent to forcing with T ∗ T.

Let G ⊆ Q be generic. Then the sequence of first coordinates of conditions
in G is a generic filter H for T , and the sequence of second coordinates is a
branch through T of length λ. Since any λ-branch through a λ-Suslin tree is
generic, forcing with Q yields a generic object for T ∗ T.

The set of conditions D of the form (p, b̌) ∈ T ∗ T, where b ∈ V and b has
an element on the top level of the tree given by p, is dense in T ∗ T and we
have seen that the identity embedding from D into Q is a regular embedding.
Since these conditions are dense in Q, the two forcings are equivalent. �

Let κ be a measurable cardinal and j : V →M be the elementary embed-
ding from a normal ultrafilter on κ. Let P be an iteration of length κ with
Easton supports that adds a generic object for Add(α) at stage α for every
inaccessible α and does nothing at other stages. Then P is κ-c.c. Let G be
generic for P and H ⊆ Add(κ)V [G] be generic.

We claim that κ is measurable in V [G∗H]. Note that j(P) = P∗Add(κ)∗R,
where R is <(2κ)+-closed. In particular, it is possible to extend G ∗H to a
V -generic object G ∗ H ∗ K ⊆ j(P). Thus in M we can define the master
condition m =

⋃
j“H and extend j to a ĵ : V [G ∗ H] → M [Ĝ ∗ Ĥ], where

Ĥ ⊆ Add(j(κ)) is generic.
By the closure of R, the ultrafilter U(ĵ, κ) ∈ V [G ∗ H], and hence κ is

measurable in V [G ∗H].
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By Lemma 7.33, we can split H ∼ H0 ∗H1, where V [G ∗H0] has a Suslin
tree T on κ and H1 is generic for this tree.

The final model is V ′ = V [G ∗H0]. In this model we can force with the
Suslin tree T to make κ measurable. If μ̇ is a term for a normal ultrafilter
on κ, then I = {X ⊆ κ : ‖X /∈ μ̇‖ = 1} is a normal, κ-saturated ideal on κ.
This establishes Kunen’s theorem. �

7.34 Remark. An application of Proposition 7.13 shows that if I is the
ideal defined at the end of the previous proof, then forcing with P (κ)/I is
equivalent to forcing with the Suslin tree T.

Kunen’s result extends to ideals on [λ]<κ as follows: Let κ be a supercom-
pact cardinal and let f : κ→ κ be a function such that for all λ > κ there is an
elementary embedding j : V →M that is λ-supercompact and j(f)(κ) > λ.67

To get a κ-saturated ideal on [λ]<κ, start with a 2λ-supercompact elemen-
tary embedding j with j(f)(κ) > 2λ. Modify the previous iteration by only
forcing at inaccessibles α that are closed under the function f .

Using the notation above, the partial ordering R is <(2λ)+-closed, and
hence the induced ultrafilter U(ĵ, j“λ) on Z = ([λ]<κ)V [G∗H] lies in V [G∗H].
The rest of the argument is identical.

7.7. Basic Kunen Technique: κ+-Saturated Ideals

We saw in Sect. 6 that it was impossible to have a κ-saturated, κ-complete
ideal on a successor cardinal κ. In this subsection we describe Kunen’s tech-
nique for producing an ℵ2-saturated ideal on ω1.

This technique and its many variations has proved to be the main tool for
producing saturated ideals on accessible cardinals, with one notable exception
detailed in Sect. 8.

The basic idea behind Kunen’s argument is to start with a huge embedding
j : V → M with critical point κ and j(κ) = λ and collapse κ to be ℵ1 and
λ to be ℵ2 by a two stage forcing P ∗ S. In order to find an induced ideal,
we must be able to extend the embedding j in the resulting model. A basic
obstacle arises in that the generic object for S has cardinality λ which is ℵ1 is
M j(P). But S can be at most countably closed and so the master conditions
do not need to exist by virtue of the closure alone.68 In addition to closure,
Kunen used the “shape” of the conditions in a partial ordering invented by
Silver to show that a master condition exists.

7.35 Definition. Let κ < λ be regular cardinals and λ inaccessible. The
Silver Collapse of λ to be κ+ is the collection of functions p with domain
included in κ× λ that map into λ and satisfy:

67 Such a function always exists, see e.g. [82].
68 In Sect. 7.11 we will see a method of Magidor for circumventing this problem.
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1. | dom(p)| ≤ κ and there is an η < κ such that the domain of p is a
subset of η × λ, and

2. for all (α, β) ∈ dom(p), p(α, β) < β.

The ordering on the conditions in the Silver Collapse is reverse inclusion.

For inaccessible λ, we will denote the Silver collapse of λ to be κ+ by
S(κ, λ). It is easily checked that it is λ-c.c., <κ-closed and makes every
ordinal between κ and λ have cardinality κ.

7.36 Theorem (Kunen [79]). Suppose that j : V →M is a huge embedding
with critical point κ and j(κ) = λ. Then there is a κ-c.c. partial ordering
P such that if G ∗ H ⊆ P ∗ S(κ, λ) is generic then V [G ∗ H] satisfies the
statements κ = ω1, λ = ω2 and there is an ℵ2-saturated ideal on ω1.

Proof. Kunen’s proof starts by building a “highly saturated” κ-c.c. partial
ordering P ⊆ Vκ.69 Since there are many variations on Kunen’s actual con-
struction, we begin by describing the cogent properties that allow it to be
generalized. At the end of the discussion we will give a specific example of
this type of construction.

The saturation property desired of P is that if Q is a regular subordering
of P of inaccessible cardinality α < κ, then there is a regular embedding
i : Q ∗ S(α, κ) → P extending the identity mapping of Q into P.

Suppose that we have succeeded in constructing such a P. We let G ⊆ P be
generic over V . By the κ-c.c. of P we can find a Ĝ ⊆ j(P) that is V [G]-generic
and an extension of j to a j1 : V [G] → M [Ĝ]. Moreover, M [Ĝ]λ ∩ V [Ĝ] ⊆
M [Ĝ].

Note that j�P is the identity mapping, since P ⊆ Vκ. By the κ-c.c. of P,
j is a regular embedding, and hence P is a regular subordering of j(P). Using
the definition of j(P), there is a regular embedding i extending j of P∗S(κ, λ)
into j(P). In M [Ĝ] we have a generic object H ⊆ S(κ, λ) over V [G]. Our
final model is V [G ∗H].

We want to extend the embedding j. Let m =
⋃

j“H. We claim that m ∈
S(λ, j(λ))M [Ĝ]. Note that m has the right cardinality, namely λ. Moreover,
if p ∈ H, then there is an ordinal η < κ such that the domain of p is a subset
of η×λ. Hence the domain of j1(p) is a subset of η× j(λ). Thus we see that
the domain of m is a subset of κ × j(λ) and so m has the right shape. It is
now easy to verify that m is a condition in S(λ, j(λ))M [Ĝ]. Forcing below m
in the partial ordering S(λ, j(λ)) we get a generic Ĥ and an extension of j to
a ĵ : V [G ∗H] →M [Ĝ ∗ Ĥ].

We are now ready to apply the technique of pseudo-generic towers to find
an ultrafilter Ũ on P (κ)V [G∗H] in V [Ĝ] mimicking the properties of U(ĵ, κ).
In particular the ultrafilter Ũ is normal and κ-complete for sequences of sets
that lie in V [G ∗H].
69 This is a different sense of saturation than “chain condition”, related to the model-
theoretic idea of saturation.



1034 Foreman / Ideals and Generic Elementary Embeddings

Working in V [G ∗ H], let I be the collection of X ⊆ κ such that ‖X ∈
Ũ‖j(P)/(G∗H) = 0. Then I is normal and κ-complete and since j(P)/G ∗H is
λ = κ+-c.c. the ideal is κ+-saturated.

We now give an explicit example of such a construction. P will be an
iteration-with-amalgamation of length κ with finite supports. To get the
construction of P started take P0 = Col(ω,<κ). At a typical α, Pα will
have been defined. There will be a a regular subordering Qα of Pα having
cardinality less than or equal to α. Then Pα+1 is:

Pα+1 = Pα ∗ S
Qα(α, κ)

where this is defined to consist of pairs (p, τ) where p ∈ Pα and τ is a Qα

term for an element of S(α, κ)V Qα . Since Qα is a regular subordering of Pα,
the partial ordering S(α, κ)V Qα has a canonical realization in V Pα and the
ordering on Pα+1 is defined accordingly.70

To finish the description, we take a sequence 〈Qα : α < κ〉 to be a sequence
of partial orderings dovetailed so that every regular subordering of any Pβ

for β < κ occurs as Qα for cofinally many α < κ. �

Laver remarked that instead of finite supports, Kunen’s construction works
with countable or Easton supports. In particular, if you start Kunen’s con-
struction with Col(ω1, <κ) and iterate with countable supports you can get
an ℵ3-saturated ideal on ω2.

Hence, as a corollary of Kunen’s techniques, we get:

7.37 Corollary (Laver using [79]). Suppose that μ is a regular cardinal less
than a huge cardinal κ. Then there is a μ-directed closed partial ordering P

such that for all generic G ⊆ P,

V [G] |= there is a μ+2-saturated ideal on μ+.

As remarked by the author in [48], this proof combined with Proposi-
tion 7.13 gives more:

7.38 Corollary. Suppose that μ is a regular cardinal less than a huge cardi-
nal κ. Then there is a partial ordering P such that for all generic G ⊆ P,

V [G] |= there is a layered ideal on μ+.

Proof. The partial ordering P = Pκ in Kunen’s proof is κ-c.c. and P ⊆ Vκ.
Hence j : P → j(P) is a regular embedding and M |= j(P) ∩ Vκ is a regular
subordering of j(P).

By elementarity we see that there is a stationary R ⊆ κ such that for all
α ∈ R, P∩ Vα is a regular subordering of Vκ and P∩ Vα has the α-c.c. Since
M is closed under <λ-sequences we see that for all α ∈ j(R), j(P) ∩ Vα is a
regular subordering of j(P) and has the α-c.c.
70 An alternate description of Pα+1 is Qα ∗ (Pα/Qα × S(α, κ)).
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Standard arguments then show that if i is the canonical embedding from
P ∗S(κ, λ) into j(P) given in the Kunen construction and G ∗H ⊆ P ∗S(κ, λ)
is generic, then V [G ∗H] |=

for α ∈ j(R), (j(P)/G ∗H) ∩ Vα is a regular subordering of j(P)/G ∗H.

Let 〈Bα : α < λ〉 be an increasing, continuous sequence of Boolean subal-
gebras of B(j(P)/G ∗H). Then there is a closed unbounded set C of α, for
all α ∈ C, (j(P)/G ∗H)∩ Vα is dense in Bα. In particular, for α ∈ C ∩ j(R),
Bα is a regular subalgebra of B.

Applying Proposition 7.13 to Kunen’s ideal I, we see that P (κ)/I is iso-
morphic to B, and hence I is a layered ideal. �

Kunen pointed out that these models also satisfy various Chang’s Conjec-
tures: Using the notation of the proof of Kunen’s theorem and assuming we
are doing Laver’s variation, let

ĵ : V [G ∗H] →M [Ĝ ∗ Ĥ]

be the generic embedding. Suppose further that V [G ∗H] |= κ = μ+. Let A

be a structure in a countable language whose domain is κ+ = λ. Then j“λ is
the domain of an elementary substructure of j(A), and M [Ĝ ∗ Ĥ] |= |j“λ| =
μ+ and |j“λ ∩ j(κ)| = μ. By the elementarity of j,

V [G ∗H] |= there is an elementary substructure of A of type (μ+, μ).

To summarize, we see that in a model built by the Kunen technique
(μ+2, μ+) →→ (μ+, μ) holds:

7.39 Corollary. Suppose that μ is a regular cardinal less than a huge car-
dinal κ. Then for all finite n > 0 there is a partial ordering Pn such that for
all generic G ⊆ Pn,

V [G] |= (ℵn+1,ℵn) →→ (ℵn,ℵn−1).

7.8. (ℵ2,ℵ2,ℵ0)-Saturated Ideals

In this section we outline Laver’s result giving the consistency of the existence
of (ℵ2,ℵ2,ℵ0)-saturated ideals. Though Woodin constructed an ideal with
stronger saturation properties from an almost huge cardinal (Theorem 7.60),
Laver’s construction retains certain advantages. The primary one is that it
does not require passing to an inner model to find an ideal satisfying the
desired conditions.

Laver modified the Silver collapse still further to give the “Eastonized”
version. Define a set X ⊆ σ ∈ On to be δ-Easton iff for all regular ρ between
δ and σ, |X ∩ ρ| < ρ. Let L(δ, σ) be the subset of

∏
α<σ Col(δ, α) consisting

of those p such that the support of p is a δ-Easton subset of σ and there is
a ξ < δ such that for all α ∈ supp(p), p(α) ⊆ ξ × α. Explicitly, p ∈ L(δ, σ)
iff p is a partial function from σ × δ to σ such that for all α, ζ we have
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p(α, ζ) < α, {α : there is a ζ, (α, ζ) ∈ dom(p)} is δ-Easton and for some
ξ < δ, dom(p) ⊆ σ × ξ.71

The ordering of L(δ, σ) is inclusion. It is routine to check that this partial
ordering is <δ-closed, is σ-c.c. for σ Mahlo and collapses σ to be δ+. If
p ∈ L(δ, σ) and α < σ we let p�α denote the condition p ∩ (α× δ × α).

7.40 Theorem (Laver [83]). Suppose that there is a huge cardinal κ and
μ < κ is regular. Then there is a forcing extension in which κ = μ+ and
there is a normal κ-complete ideal I on κ that is (κ+, κ+, μ)-saturated.

Proof. Let j : V →M be the embedding with critical point κ and j(κ) = λ.
Following the general Kunen outline we build an iteration-with-amalgama-
tion P of length κ with μ-Easton supports.72 Let P0 = L(μ, κ). At stage α, if
Vα∩Pα is a regular subordering of Pα, then we let Pα+1 = Pα ∗L

Pα ∩Vα(α, κ).
As in the Kunen construction, the αth coordinate in an element of Pα+1 is
a Pα ∩ Vα-term for an element of L(α, κ). Otherwise Pα+1 = Pα ∗ 1, where 1
is the trivial partial ordering. We note that at each stage in the iteration we
are forcing with terms that lie in some V Q, where |Q| < κ.73

The main point of this version of the construction is that P has a partic-
ularly strong chain condition property. At each stage of the forcing we are
using terms from an extension of V by a small forcing. Hence we see that
for all X ∈ [P]κ there are arbitrarily large β < κ and Y ∈ [X]κ such that the
following strong chain condition property holds:

1. The collection {supp(p) : p ∈ Y } forms a Δ-system with kernel con-
tained in β,

2. if α ∈ β and Pα+1 �= Pα ∗ 1, then 1 �Pα ∩Vα {p(α) : p ∈ Y } forms a
Δ-system with kernel contained in β × β × β, and

3. if p, q ∈ Y and α < β then 1 �Pα ∩Vα p(α)�β = q(α)�β.

If β is regular and Y is a collection of conditions that satisfy 1–3, then for
any Z ∈ [Y ]<β there is a q ∈ P such that for all p ∈ Z:

• q ≤ p,

• for α < β, q(α)�β = p(α)�β, and

• for α ≥ β in the support of q there is a unique p ∈ Z, q(α) = p(α).

Since P is κ-c.c. and j�P is the identity map, P is a regular subordering of
j(P). By the interpretation of the construction in M , P ∗L(κ, λ) is regularly
embedded into j(P) via a canonical map i that is the identity on P and sends

71 This description is analogous to the description of the Silver collapse with the domains
of the conditions “turned sideways” from the domains given in Definition 7.35.
72 These are supports S with the property that for all regular α > μ, |S ∩ α| < α.
73 We are viewing conditions in an iteration to be partial functions defined on their sup-
ports. Thus P ⊆ Vκ and j(P) ∩ Vκ = P.
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terms in L(κ, λ) to the κth-coordinate of j(P). If Ĝ ⊆ j(P) is generic, i gives
a V -generic G ∗ H ⊆ P ∗ L(κ, λ). Then m =

⋃
j“H ∈ Lj(P)(λ, j(λ)), and

if Ĥ is generic with m ∈ Ĥ we can extend j to ĵ : V [G ∗ H] → M [Ĝ ∗ Ĥ].
Moreover in this model κ = μ+, and λ = κ+.

Using a pseudo-generic tower argument, in V [Ĝ], we can build a V [G∗H]-
normal and κ-complete ultrafilter U on P (κ)V [G∗H]. As usual we can define a
normal κ-complete ideal I in V [G ∗H] by setting A ∈ I iff
‖A ∈ U‖j(P)/G∗H = 0. It is this ideal I that we claim is (κ+, κ+, μ)-saturated.

If not, let (r, l) ∈ P ∗ L(κ, λ) and 〈τα : α < λ〉 be a sequence of P ∗
L(κ, λ)-terms such that (r, l) � “〈τα : α < λ〉 is a counterexample to (λ, λ, μ)
saturation”. Then we can find a sequence of conditions 〈pα : α < λ〉 ∈ j(P)
such that pα ≤ i(r, l) and pα �j(P) τα ∈ U .

Since j is a huge embedding, j(P) has the strong chain condition property
mentioned above in V . Applying the strong chain condition we get a Y ⊆ [λ]λ

and a β ≥ κ satisfying 1–3. We can find an r0 ∈ P such that for all γ < κ,
α ∈ Y , pα(γ)�κ = r0(γ). Moreover, r0 �L(κ,λ) |{α ∈ Y : pα(κ) ∈ H}| = λ.
Let Y ′ = {α ∈ Y : pα(κ) ∈ H}. We claim that {τV [G∗H]

α : α ∈ Y ′} is the
witness to (λ, λ, μ)-saturation.

Let (r1, l1) ≤ (r0, l) be such that (r1, l1) �P∗L(κ,λ) Z ∈ [Y ′]μ. Then Z ∈
V [G]. In V , we can find a collection Z ′ ∈ [Y ]<κ such that r1 � Z ⊆ Z ′

and for all α ∈ Z ′, r1 �P “l1 and pα(κ) are compatible”. By 1–3 there is a
q ∈ j(P) such that:

• for γ < κ, q(γ)�κ = r1(γ),

• q(κ) ≤ l1, and

• for all α ∈ Z ′, q ≤ pα.

Then r1 �j(P) “q(κ) ∈ L(κ, λ) and q(κ) ≤ l1”. Thus, (r1, q(κ)) �P∗L(κ,λ) q ∈
j(P)/G∗H. But for all α ∈ Z ′, q �j(P) τα ∈ U and thus q �j(P)

⋂
α∈Z′ τα ∈ U .

Hence, V [G ∗H] |=
⋂

α∈Z τα /∈ I. �

7.9. Chang Ideals with Simple Quotients I

The Kunen technique also allows “skipping cardinals”. This useful variant is
a component of many proofs. Fix a regular cardinal μ < κ and a successor
ordinal γ < κ. We follow the outline of the Kunen proof. We begin by
constructing a partial ordering P. This partial ordering will be a κ-stage
iteration with <μ-supports. The first stage of P is Col(μ,<κ). For regular
suborderings Q of P that have cardinality α < κ we arrange that there is a
regular embedding i : Q∗S(α+γ , κ) → P extending the identity mapping of Q

into P. The result is that P is a κ-c.c. partial ordering that collapses κ to μ+.
The final forcing is P ∗ S(κ+γ , λ). This forcing makes κ = μ+ and λ =

κ+γ+1. As in the original Kunen construction, if G ∗ H ⊆ P ∗ S(κ+γ , λ) is
generic then there is a generic Ĝ ∗ Ĥ such that the huge embedding j can be
extended to ĵ : V [G ∗H] →M [Ĝ ∗ Ĥ ].
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If we assume that the original embedding j : V →M is somewhat stronger
than a huge cardinal, namely that Mλ+γ ⊆M , then the Kunen argument for
Chang’s Conjecture gives more; it shows that for all δ ≤ γ,

(μ+1+γ+1+γ , μ1+γ+1+δ, μ+1+γ+1, μ+1+γ) →→ (μ+1+γ , μ+1+δ, μ+, μ)

holds in this model. Taking γ = n and μ = ωk, one gets the following:

7.41 Corollary. Suppose that there is an elementary embedding j : V →M
with critical point κ such that M j(κ)+n ⊆M . Then for each k ∈ ω there is a
forcing extension in which

(ℵ2n+k+2,ℵn+k+1) →→ (ℵn+k+1,ℵk).

Taking γ = ω + 1, δ = ω and μ = ω one sees:

7.42 Corollary. Suppose that there is an elementary embedding j : V →M
with critical point κ such that M j(κ)+ω+1 ⊆ M . Then there is a forcing
extension in which

(ℵω+ω+1,ℵω+ω) →→ (ℵω+1,ℵω).

Using arguments very similar to Proposition 3.9, we see that in a model
W where (ℵω+ω+1,ℵω+ω) →→ (ℵω+1,ℵω), every algebra A on ℵω+ω+1 has
an elementary substructure B of size ℵω+1 with ℵω ⊆ B. Starting from this
property, Levinski, Magidor and Shelah in [86] showed that if G ⊆ Col(ω,ℵω)
is generic over W , then in the resulting model (ℵω+1,ℵω) →→ (ℵ1,ℵ0).

We note that the “skipping cardinals” technique is very flexible. It is no
longer necessary to force with the Silver collapse, as the geometry of the
conditions is no longer relevant. Indeed any κ+γ-closed forcing, such as the
Levy collapse, works.

Also, there is no need to fix γ. We can use a function f : κ→ κ and force
with S(α+f(α), κ) in the construction of P. For the final model we force with
P ∗ S(κj(f)(κ), λ). The partial ordering P need not have fixed supports, but
can have Easton or many other types of support.

ℵ3-Dense Ideals on ω3

Magidor [89] showed how to use the skipping cardinals technique to get ideals
with simple quotients on sets of the form [λ]κ where there is a gap between
λ and κ.

We start with a model of GCH and a huge embedding j and skip γ car-
dinals, so that our forcing is P ∗ S(κ+γ , λ). Let G ∗ H ⊆ P ∗ S(κ+γ , λ) be
generic and Ĝ ⊆ j(P) be generic extending i“G ∗ H, where i is the regular
embedding of P ∗ S(κ+γ , λ) into j(P).

By GCH, |P ([λ]κ)V [G∗H]| = λ+ in V [Ĝ]. Since j(S(κ+γ , λ)) is λ+-closed,
in V [Ĝ] we can build a pseudo-generic tower T ⊆ j(S(κ+γ , λ)) such that for
all A ∈ P ([λ]κ)V [G∗H] there is a q ∈ T deciding the statement j“λ ∈ j(A),
and for each regressive function f : [λ]κ → λ that lies in V there is a q ∈ T
deciding the value of j(f)(j“λ).
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Let Ũ ∈ V [Ĝ] be the ultrafilter on P ([λ]κ)V [G∗H] defined by setting A ∈ Ũ
iff there is a q ∈ T such that q � j“λ ∈ j(A). Then Ũ is V [G∗H] κ-complete,
fine and normal for functions that lie in V [G ∗H]. Working in V [G ∗H], let
I be the collection of X ⊆ [λ]κ such that ‖X ∈ Ũ‖j(P)/(G∗H) = 0. Applying
Proposition 7.13, we conclude that in V [G ∗H],

B(P ([λ]κ)/I) ∼= B(P).

In particular, P ([λ]κ)/I has a dense set of size λ.
From this we conclude:

7.43 Theorem (Magidor [89]). Suppose that μ < κ are regular, κ is huge,
and GCH holds. Let γ < κ be a successor ordinal. Then there is a forcing
extension in which κ = μ+, λ = κ+γ+1 and there is a normal, fine, κ-
complete, λ-dense, λ-saturated ideal on [λ]κ.

Magidor’s original paper only claimed that the ideal is λ-centered; however
the slight additional strength stated is immediate from Proposition 7.13.

This theorem is most striking when μ and γ are small:

7.44 Corollary. Suppose that there is a huge cardinal and GCH holds. Then
there is a forcing extension in which there is a normal, fine, countably com-
plete, ℵ3-dense, ℵ3-saturated ideal on [ω3]ω1 .

In particular, by projecting to ω3 one sees that it is consistent that there
is a countably complete, uniform ℵ3-dense ideal on ω3.

The author notes that a similar projection argument also shows that in
Magidor’s model, if we make κ = ω1, λ = ω3 as in the previous corollary,
then in the resulting model we get a normal, fine, countably complete, ℵ3-
saturated ideal on [ω2]<ω1 . Similar results hold for general κ and γ.

7.10. Higher Chang’s Conjectures and ℵω Jónsson

In this section we continue the discussion begun in Sect. 5.2. The Kunen
technique of extending generic elementary embeddings comes tantalizingly
close to showing the consistency of ℵω being Jónsson. Recall the definition
in Sect. 5.2 of the critical sequence 〈κn : n ∈ ω〉. By the result of Sect. 5.2,
if there is a normal, fine, countably complete ideal on [κω]κω , then κω is
Jónsson. It is natural to attempt to try to force the existence of such an
ideal on ℵω with the κn’s being a subsequence of the ωn’s.

Indeed it suffices to start with an elementary embedding j : V →M such
that Vκω ⊆M , and force to make the κn’s a subsequence of the ωn’s in such a
way that the embedding j can be extended generically. To date this program
has limited success:

7.45 Theorem (Foreman [33]). Suppose that j : V →M is a 2-huge embed-
ding and 1 ≤ n0 < n1 < n2 are elements of ω such that n2 − n1 ≥ n1 − n0.
Then there is a forcing extension P ∗ R ∗ S such that:
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1. P ∗ R ∗ S is <ωn0−1-closed and κ2-c.c.,

2. S is <κ+n2−n1−1
1 -closed in V P∗R,

3. In V P∗R∗S, κi = ωni , and

4. If G∗H ∗K ⊆ P∗R∗S is generic then there are Ĝ∗Ĥ ∗K̂ ⊆ j(P∗R∗S)
such that j can be extended to a

ĵ : V [G ∗H ∗K] →M [Ĝ ∗ Ĥ ∗ K̂].

From this we get the following corollaries:

7.46 Corollary. Suppose that having a 2-huge cardinal is consistent. Then
for 1 ≤ n0 < n1 < n2 such that n2 − n1 ≥ n1 − n0 it is consistent that

(ℵn2 ,ℵn1 ,ℵn0) →→ (ℵn1 ,ℵn0 ,ℵn0−1).

Using a standard pseudo-generic tower argument:

7.47 Corollary. Suppose that having a 2-huge cardinal is consistent. Then
for 1 ≤ n it is consistent that [ωn+1]ωn carries a normal, fine, ℵn-complete,
ℵn+2-saturated ideal.

The proof of Theorem 7.45 is a quite complicated adaptation of the Kunen
technique and beyond the scope of this chapter. An attempt to extend Theo-
rem 7.45 to 3-huge cardinals and beyond runs into serious technical difficulties
known as “ghost coordinates”. This approach has not been successful to date.

7.11. The Magidor Variation

In this section we present a development of Kunen’s technique invented by
Magidor. The method allows one to use the Kunen partial ordering at an
almost huge cardinal κ to produce saturated ideals. Indeed Magidor’s method
of avoiding the use of master conditions allows the Kunen partial ordering to
be simplified. The Levy collapse can be substituted for the Silver collapse, as
the function of the Silver collapse was to allow the construction of a master
condition. What is lost, however, is the fact that Chang’s Conjecture holds
in the resulting extensions.

We will use elaborations of Magidor’s techniques in Sect. 8.2 where we
present forcing constructions making various natural ideals saturated. We
present here a version from [40] that we will use for the more demanding
situations in Sect. 8.2.

Frequently, given j : V →M , a partial ordering P and a V -generic G ⊆ P,
we will want to extend j to an elementary embedding ĵ : V [G] → M [H].
Magidor realized that it is only necessary that H be M -generic, rather than
fully V -generic. In some situations this allows us to extend j without having
a master condition.



7. Consistency Results 1041

The embedding j : B(P) → BM (j(P)) is a Boolean homomorphism. The
embedding j can be extended iff there is an M -generic H such that j“G ⊆ H.
Translating this into the language of Boolean algebras, this is saying that H
is disjoint from the ideal I = {q ∈ BM (j(P)) : there is a p ∈ j“G such that
p ∧ q = 0}. We can force over V with the partial ordering BM (j(P))/I, and
hope that it yields an H ⊆ BM (j(P)) that is M -generic. The next lemma is
Remark 20 from [40] and gives a sufficient criterion for this to happen.

7.48 Lemma. Let λ be a regular cardinal. Let M ⊆ V be a model of set
theory such that M<λ ⊆ M . Suppose that P ∈ M is a <λ-closed partial
ordering and that F ⊆ P is a <λ-closed filter with dual I such that every
dense set D ⊆ P lying in M is dense in P/I. Then P/I is a <λ-closed
partial ordering such that forcing with P/I adds an M -generic filter H for P

such that F ⊆ H.

A corollary of this is the following:

7.49 Corollary. Let λ be a regular cardinal with λ<λ = λ. Let M ⊆ V be
a model of set theory such that M<λ ⊆ M . Suppose that |η| = λ but M |=
“η is an inaccessible cardinal”. Suppose that F ∈ V is a filter on Col(λ,<η)
generated by a decreasing sequence of conditions 〈mα : α < λ〉 such that for
all β < η there is an mα such that

F�Col(λ,<β) = {p ∈ Col(λ,<β) : mα ≤Col(λ,<η) p}.

Let I be the ideal dual to F . Then forcing with Col(λ,<η)/I adds an M -
generic object H to Col(λ,<η) with F ⊆ H. Moreover, in V , Col(λ,<η)/I
is isomorphic to Add(λ).

This corollary works for any partial ordering Q ∈M of cardinality λ in V
such that in V , there is a filtration 〈Qα : α < λ〉 of Q and a V -stationary
collection of α such that Qα is a regular subordering of Q. In particular, it
also applies to the Silver collapse S(λ, η).

The following fact about almost huge cardinals is standard. It is proved
in [40] among other places:

7.50 Lemma. Suppose that κ is an almost huge cardinal. Then there is an
almost huge embedding j : V → M with critical point κ, j(κ) = λ, j“λ is
cofinal in j(λ) and |j(λ)| = λ. Moreover, if λ is the least such, then λ is not
Mahlo.

We now can outline:

7.51 Theorem (Magidor). Suppose that κ is an almost huge cardinal and
μ < κ is regular. Then there is a forcing extension in which κ = μ+ and
there is a κ-complete, κ+-saturated ideal on κ.

Proof. We assume that j satisfies the conclusion of Lemma 7.50. Let P be the
partial ordering constructed by Kunen, and Q be the Silver collapse S(κ, λ)
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to make λ into κ+, as constructed in V P. Let G∗H ⊆ P∗Q be generic. As in
the Kunen construction, P∗Q is regularly embedded into j(P) by a canonical
map i that is the identity on P and there is a generic Ĝ ⊆ j(P) extending
i“(G ∗H). By the κ-c.c., we see that j can be extended to ĵ : V [G] →M [Ĝ].
Moreover, M [Ĝ] is closed under <λ-sequences from V [Ĝ].

For α < λ, let mα =
⋃
{j(q) : q ∈ H ∩ S(κ, α)} and F be the filter

generated by {mα : α ∈ λ}. Applying Corollary 7.49 (for the Silver collapse,
as in the remarks following the corollary), we see that we can force with
S(λ, j(λ))M/I over V to get an M -generic filter Ĥ extending F .

Since Ĥ ⊇ F , we can extend j to ĵ : V [G ∗ H] → M [Ĝ ∗ Ĥ]. The rest
of the argument goes as before: S(λ, j(λ))M/I is <λ-closed, and hence a
pseudo-generic tower argument gives us a V [G ∗ H]-ultrafilter on κ that is
κ-complete, and normal for sequences that lie in V [G ∗ H]. This ultrafilter
lies in V [Ĝ], which is a κ-c.c. extension of V [G ∗ H]. By Example 3.30, we
are done. �

7.52 Remark. As in the Kunen construction, the ideal in Magidor’s model
can be seen to be layered; this is an immediate corollary of Proposition 7.13.

There are several advantages to Magidor’s variation. In the Kunen con-
struction, the use of the Silver collapse was important: the conditions had to
have the right “shape” for the union of j“H to be an element of j(Q). The
Magidor variation does not use

⋃
j“H as a condition; it extends the filter

generated by j“H. For this one only needs the <λ-closure of the conditions.
Any <κ-closed partial ordering that collapses λ to κ+ and has cardinality λ
works. In particular, one can do a similar construction where Q = Col(κ,<λ).

If we work a bit harder, we can see that in the Kunen/Magidor situation, it
is not necessary to force beyond j(P) to extend the elementary embedding j.
Since |j(λ)| = λ, the cardinality of S

M [Ĝ](λ, j(λ)) is λ in V [Ĝ] and M [Ĝ] has
λ-many dense subsets of SM [Ĝ](λ, j(λ)). Since SM [Ĝ](λ, j(λ)) is <λ-closed in
V [Ĝ] there is an M [Ĝ]-generic filter Ĥ ⊆ SM [Ĝ](λ, j(λ)) lying in V [Ĝ]. Using
Lemma 7.48, this filter can be built to extend j“H. Hence in V [Ĝ] there is a
generic elementary embedding ĵ : V [G ∗H] →M [Ĝ ∗ Ĥ ].

7.12. More Saturated Ideals

Is it consistent to have a κ+-saturated ideal if κ is the successor of a singular
cardinal? Can every regular cardinal κ carry a κ+-saturated ideal? Can there
be a model where

for all n > m > 0, (ℵn,ℵn−1) →→ (ℵm,ℵm−1)?

These questions were answered in the paper [34]. We briefly outline the
construction that answers these questions.
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Let’s now analyze key points of Kunen’s construction, with the intention
of isolating the essential elements. The main goal of the original construction
is to have P∗S(κ, λ) sit as a regular subordering of j(P). In the construction,
the family of Silver collapses could be replaced by any family Q = {Q(α, β)}
of uniformly definable partial orderings indexed by ordinals α, β such that
Q(α, β) ⊆ Vβ . Then the construction could be arrange so that P ∗Q(κ, λ) is
regularly embedded into j(P).

In our original description of the construction, we diagonalized over all
small regular suborderings Q of P to make sure that Q ∗ S(α, κ) is regularly
embedded into P. As we saw in the Laver construction, this is not necessary.
Since P is j(P)∩Vκ, we need only consider Q’s of the form P∩Vα. Thus at a
typical stage α in the iteration, we force with Q

V P∩Vα (α, κ) just in case Pα∩Vα

is a regular subordering of Pα. This gives us a partial ordering P that is
definable in the parameter κ. Reflecting the definition, we get another family
of partial orderings P(α) for many α < κ. Provided that partial orderings in
Q are not too exotic, it is easy to verify that P(α) = P ∩ Vα for most α.

Summarizing, if one is given a family Q, the construction produces another
family of partial orderings P(α) such that for most α < β,

• P(α) is α-c.c. and makes α into a cardinal such as ω1 or ω2,

• P(α) is naturally included in P(β) and is a regular subordering, and

• there is a regular embedding of P(α) ∗Q(α, β) into P(β) extending the
inclusion of P(α) into P(β).

Since the construction is “top down” there is no problem iterating it for
finitely many cardinals. For example, to do a construction like this for three
cardinals one would start with two huge embeddings j0 and j1 with the
property that κ0 = crit(j0) and j0(κ0) = κ1, where κ1 = crit(j1). We let
κ2 = j1(κ1).

We can define a family of partial orderings Q(α, β) by doing the Kunen
construction with α-closed partial orderings as in the construction showing
Corollary 7.37. The inductive construction yields a definable family of partial
orderings Q(α, β) defined such that Q(κ0, κ2) has Q(κ0, κ1) ∗ S(κ1, κ2) as a
regular subordering. Let {P(α)} be the partial orderings anticipating the
family of Q(α, β)’s.

If we force with P(κ0) ∗ Q(κ0, κ1) ∗ S(κ1, κ2), then we get a model where
(ℵ3,ℵ2) →→ (ℵ2,ℵ1), (ℵ2,ℵ1) →→ (ℵ1,ℵ0) and there are saturated ideals on
both ω1 and ω2.

For a fixed m, similar methods using the Silver collapse at the top and
working downwards give the consistency of the statement that:

• for all positive n < m there is an ℵn+1-saturated ideal on ωn, and

• (ℵn+1,ℵn) →→ (ℵn,ℵn−1).
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It requires a new idea to prove the analogous results for an infinite interval of
cardinals. This was done in [34], where the author showed how to uniformly
construct a family of partial orderings R(�α) for finite increasing sequences of
Mahlo cardinals74 �α such that:

• R(α, β) ⊆ Vβ , R(α, β) is <α-closed, β-c.c. and collapses β to be the
successor of α,

• if �α = (α0, . . . , αn) and β > αn, then R(�α�β) = R(�α) ∗ R(αn, β),

• if �α0 and �α1 are increasing sequences of Mahlo cardinals and β is a
Mahlo cardinal where max �α0 < β < min �α1, then there is a natural
embedding of R(�α�

0 β��α1) into R(�α�
0 �α1) and these embeddings com-

mute in the obvious sense, and

• R has the type of “geometry” that allows master conditions to exist.

If we are given a huge embedding jn : V →Mn with critical point κn and
jn(κn) = κn+1 and a finite increasing sequence of Mahlo cardinals �α below
κn, then there is a natural embedding:

in : R(�α, κn) ∗ R(κn, κn+1) → R(�α, κn+1) = j(R(�α, κn)).

Thus if Ĝ ⊆ R(�α, κn+1) is generic then it induces a generic G ∗ H ⊆
R(�α, κn) ∗ R(κn, κn+1), and there is an m ∈ R(κn+1, jn(κn+1)) such that

M [Ĝ] |= for all p ∈ H, m ≤ jn(p).

In particular, it is possible to extend the elementary embedding jn to a

ĵn : V [G ∗H] →M [Ĝ ∗ Ĥ].

This allows us to apply the pseudo-generic tower arguments to conclude
that in V [G ∗H], there is a κn-complete, κ+

n -saturated ideal on κn and if the
largest element of �α is αn, then (κn+1, κn) →→ (κn, αn).

We need to see that the various R(κn, κn+1) do not destroy the effects of
R(κm, κm+1) for m < n. For this the following lemma was first proved in
[34]. It is proved using a pseudo-generic tower argument.

7.53 Lemma. Suppose that P is a <κ-closed partial ordering and κ > λ ≥
κ′ > λ′. Let G ⊆ P be generic. Then

• if (κ, λ) →→ (κ′, λ′) then V [G] |= (κ, λ) →→ (κ′, λ′), and

• if there is a λ-complete, λ+-saturated ideal on λ then V [G] |= “there is
a λ-complete, λ+-saturated ideal on λ”.

74 For these purposes, we include ω as a Mahlo cardinal.
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Suppose now that we are given a sequence of huge embeddings 〈jn : n ∈ ω〉
where the critical point of jn is κn and jn(κn) = κn+1. We have argued
that if we take a generic Gn ⊆ R(ω, κ0, κ1, . . . , κn+1) then in V [Gn] there
is a saturated ideal on ωn+1 and (ℵn+2,ℵn+1) →→ (ℵn+1,ℵn). If we force
with the inverse limit over n ∈ ω of the R(ω, κ0, κ1, . . . , κn+1) we will have
the conclusion that for all n ∈ ω there is a saturated ideal on ωn+1 and
(ℵn+2,ℵn+1) →→ (ℵn+1,ℵn).

What remains is to outline the construction of the R’s. An important tool
for this is the termspace partial ordering. This stratagem is due to Laver and
was exploited most fruitfully by Abraham [2].

7.54 Definition. Let P be a partial ordering and Q be a P-term for a partial
ordering. The termspace partial ordering Q

∗ is defined to be the partial
ordering whose domain consists of all P-terms for elements of Q, with the
ordering that σ ≤Q∗ τ iff 1 �P σ ≤ τ .

We can take the domain of Q
∗ to be a set, since there are only a set of

equivalence classes of elements of Q with respect to the relation σ ∼ τ iff
1 �P σ = τ . Note also that the termspace partial ordering depends on both
P and Q. It is denoted here by A(P,Q).

One must prove some basic facts about the termspace partial ordering
such as:

1. (Laver) The identity map defines a projection from P×Q
∗ to P ∗Q.

2. (Abraham) If 1 � “Q is <λ-closed”, then Q
∗ is <λ-closed.

3. (Foreman) A(P, A(Q,R)) ∼= A(P ∗Q,R) canonically.

4. (Foreman) A(P,
∏

n∈ω Qn) ∼=
∏

n∈ω A(P,Qn) canonically.

For regular α < β we define the partial orderings R(α, β) by induction on
inaccessible β simultaneously in all generic extensions of V . Suppose that we
have defined R(α, β) for all pairs α < β which lie below λ. We now define
R(α, λ).

• If λ is the first inaccessible above α, let R(α, λ) = S(α, λ).

• Otherwise, by induction on n ∈ ω we define partial orderings Sn(α, λ).
We will define this in the ground model. The same definition, relativized
appropriately, will allow us to define a partial ordering Sn(α, λ)R(γ,α)

in a generic extension of V by a partial ordering of the form R(γ, α).

For n = 0, S0(α, λ) = S(α, λ).

Assume that we have defined Sn(δ, λ) in every extension of V of the
form R(γ, δ) for α < δ < λ and δ inaccessible. Then we let Sn+1(α, λ)
be the product with supports of size α of all the partial orderings
A(R(α, δ), Sn(δ, λ)) as δ ranges over Mahlo cardinals in the interval
between α and λ.
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We let R(α, λ) =
∏

n∈ω Sn(α, λ).
The main point of this construction is the following: if the identity map-

ping of R(α, δ) into R(α, λ) is a regular embedding, then for each n, A(R(α, δ),
Sn(δ, λ)) is a factor in Sn+1(α, λ). Hence, there is an embedding of R(α, δ)×∏

n∈ω A(R(α, δ), Sn(δ, λ)) into R(α, λ) =
∏

n∈ω Sn(α, λ) that extends the
identity mapping on R(α, δ). By property 4 above, we see that R(α, δ) ×
A(R(α, δ),

∏
n∈ω Sn(δ, λ)) is canonically embedded in R(α, λ), and hence by

property 1 above we see that R(α, δ) ∗ R(δ, λ) is canonically embedded in
R(α, λ).

We now discuss the chain conditions satisfied by the R(α, β)’s. Let α < β
be Mahlo cardinals, and P be an α-c.c. partial ordering. Then one can check
that A(P, S(α, β)) is isomorphic to a subcollection of the order-preserving
maps from P to S(α, β) ordered by setting f ≤ g iff there is a dense set D ⊆ P

such that for all p ∈ D, f(p) ≤ g(p). In particular, the chain condition of
A(P, S(α, β)) is less than or equal to the chain condition of the product of
|P|-copies of S(α, β) ordered coordinatewise. Though the details are quite
technical this is the basis for the argument showing:

7.55 Lemma. For all regular β and all Mahlo λ, R(β, λ) is λ-c.c. and has
cardinality λ.

We have outlined the proof of the following theorem:

7.56 Theorem. Suppose that 〈jn : n ∈ ω〉 is a sequence of huge embeddings
and the critical point of jn is κn and jn(κn) = κn+1. Then there is a partial
ordering P such that for all generic G ⊆ P, V [G] satisfies:

1. for all n ∈ ω there is an ℵn+1-complete, ℵn+2-saturated ideal on ωn+1,
and

2. for all n ∈ ω, (ℵn+2,ℵn+1) →→ (ℵn+1,ℵn).

What about the consistency of a κ+-saturated ideal if κ is the successor
of a singular cardinal? This is also answered in [34]. From the machinery we
have developed this is not difficult.

Suppose that κ is an indestructibly supercompact cardinal75 and that there
is a huge cardinal μ above κ. We can do the Kunen construction to collapse
μ to be κ+ and arrange that there is a μ+-saturated ideal I on μ. Then κ
is still supercompact so we can follow this by forcing to make κ singular, or
even ℵω.

As long as the forcing making κ singular is κ-centered, Corollary 7.21
implies that the ideal I remains μ+-saturated. Typically, Prikry-type forcings
are κ centered even when mixed with collapsing to make κ into ℵω.76

75 That is, κ is supercompact and remains so after any forcing extension via a <κ-directed
closed forcing. Laver [82] showed how to make a supercompact cardinal indestructible, and
his construction is given in Cummings’s chapter in this Handbook. See also Definition 11.4.
76 For example, one can use the “projected” version of Magidor forcing collapsing κ to be
ℵω is κ-centered (see [88, 46]).
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We have outlined the argument that if we first force the existence of a
supercompact κ such that κ+ carries a κ+2-saturated ideal, and then collapse
κ to be ℵω in the usual way, the resulting model W satisfies the sentence:

ℵω+1 carries an ℵω+2-saturated ideal.

This outline is very general. For example, if κ is supercompact and the
nonstationary ideal on μ = κ+ restricted to a particular stationary set is
saturated,77 then after making κ = ℵω in the standard way, the nonstationary
ideal on μ restricted to that stationary set is still saturated, and μ = ℵω+1.

Life is not quite so simple if one wants to have all cardinals less than or
equal to ℵω+1 carry a saturated ideal. We now outline the proof that this is
possible and even:

7.57 Theorem (Foreman [34]). Suppose that there is a huge cardinal. Then
there is a model of ZFC + “for all regular cardinals κ there is a κ-complete,
κ+-saturated ideal on κ”.

Here is a brief outline of the proof of this theorem. We start with a
model of GCH with a λ-supercompact cardinal κ that has some additional
properties. If j : V → M is the λ-supercompact embedding, we will assume
that there is a set X ⊆ κ such that:

1. κ ∈ j(X),

2. for α < β belonging to X there is an almost huge embedding jα,β that
has critical point α and jα,β(α) = β, and

3. λ is bigger than the first 5 elements of j(X) above κ.

The existence of such a pair κ and λ follows from the assumption of a huge
cardinal.

To get the necessary anticipation properties we modify the partial order-
ings R(α, β) defined in the proof of Theorem 7.56 so that if α < α′ are limit
elements of X, then R(α, α1)∗R(α1, α2)∗R(α2, α3)∗R(α3, α4)∗(Col(α4, α

′)×
R(α′, α′

1)) is canonically embedded into R(α, α1) ∗ R(α1, α2) ∗ R(α2, α3) ∗
R(α3, α

′
1). This involves essentially the same technique as before.

As is common in “singular cardinals” type constructions, we do a prepara-
tory forcing before we change any cofinalities. For α ∈ X, denote the next
four elements of X as α1, α2, α3 and α4. The preparatory forcing in this proof
is an Easton iteration of length κ + 1 where, at a limit stage α of X that
lies in X, we will collapse α1, . . . , α4 using the partial ordering of the form
R(α, α1)∗R(α1, α2)∗R(α2, α3)∗R(α3, α4). So, if I is the iteration, then I has
Easton supports and Iα+1 = Iα∗(R(α, α1)∗R(α1, α2)∗R(α2, α3)∗R(α3, α4)).
At κ we force with R(κ, κ1) ∗ R(κ1, κ2) ∗ R(κ2, κ3) ∗ R(κ3, κ4). Standard ar-
guments show that after forcing with I, κ remains 222κ

-supercompact.
77 Section 8 establishes the consistency of this.
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We use the variant definition of the R’s for the preparatory forcing. This
is used to establish the following:

7.58 Lemma. If V1 is the resulting model after the preparatory forcing, and
α < α′ are limit elements of X and G ⊆ Col(α4, α

′) is generic over V1,
then in V1[G], α′

1 is the successor of α4 and α4 carries an α4-complete, α+
4 -

saturated ideal.

This takes care of the local problem of producing saturated ideals on suc-
cessor of regular cardinals. In V1, all limit points α of X have the property
that for i ∈ {1, 2, 3}, αi = α+i carries a saturated ideal.

A forcing extension of V1 yields our next model V2, which has the proper-
ties that:

1. all cardinals below κ and above some fixed κ0 are elements of X, and

2. all successor cardinals between κ0 and κ are of the form αi for some
1 ≤ i ≤ 4.

The final model is V2[g] where g ⊆ Col(ω, κ0) is generic. The generic
collapse g makes all of the remaining regular cardinals below the first inac-
cessible be of the form αi for some α ∈ X and 1 ≤ i ≤ 4, while preserving
the saturation of the ideals on all of the cardinals above κ0. If δ is the first
inaccessible cardinal in the final model V2[g] and W is the collection of sets
in V2[g] of rank less than δ, then W is a model of “every regular cardinal
carries a saturated ideal”.

The crux of the issue is the forcing to produce V2 from V1. This follows
the general outline of [46], which in turn, adapted Magidor’s techniques of
[88] to work with Radin forcing.

There are two relevant partial orderings P and Pπ for producing V2 from V1.
The model V2 is the result of forcing with P

π over V1. The first partial
ordering P uses a supercompact Radin forcing to add a closed unbounded
set through {z ∈ [κ+3]<κ : z ∩ κ ∈ X}. It also uses Levy collapses to make
the successor cardinals of V2 be successors of elements of X. This forcing
preserves the fact that κ is a highly Mahlo cardinal.

Since P adds a closed unbounded set C in [κ+3]<κ, if α ∈ X is a limit
point of Cπ = {z ∩ κ : z ∈ C}, then P adds a closed unbounded set through
(α+)V of order type the same as the order type of Cπ ∩ α.

There will be a projection map from π : P → P
π. The forcing P

π adds
the Radin-generic closed unbounded subset Cπ ⊆ X ∩ κ, while collapsing
cardinals. The following are some of the properties of P

π:

1. If κ0 is the first point in Cπ, then between κ0 and κ, every limit cardinal
α is an element of C and C ∩ α is Radin generic for a Radin forcing
involving α.

2. If α < β are successive points of Cπ, then the forcing P
π factors as

Pπ
α × Col(α4, β) × Pπ

>β , where Pπ
α is α-centered, and Pπ

>β adds no new
β-sequences.
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From the factoring we see that for all α ∈ X that lie on the Radin sequence,
we have preserved the saturated ideals on α1, α2 and α3. Each successor
element of X on the Radin sequence is collapsed. So to complete the picture
we must see that α4 carries a saturated ideal.

This follows from our remarks about the preparatory forcing. The factor-
ing properties of P

π imply that the subsets of β1 in the final model are those
in the model after forcing over V1 to with P

π
α × Col(α4, β). The forcing P

π
α

is α-centered, so it suffices to see that there is a saturated ideal on α4 in the
model produced over V ′ by forcing with Col(α4, β). This is the content of
the lemma mentioned in the beginning of the proof.

3. P and P
π have the relevant Prikry type properties.

4. GCH holds in V P
π

.

These properties ensure that every regular cardinal α less than the first
inaccessible cardinal carries an α+-saturated ideal. We remark that using
the techniques of [41] it is easy to verify that the ideals produced in [34] are
more than just α+-saturated—they are α-centered.

We note that a novel element in the proof of Theorem 7.57 is that the
successor points on the Radin sequence are collapsed by the forcing. This
makes no difference in the proofs of the relevant Prikry properties, as was
pointed out by Woodin.

7.13. Forbidden Intervals

Proposition 6.26 showed that for each successor cardinal κ there is a proper
class Cκ consisting of intervals I of cardinals such that no regular cardinal λ
in I can carry a uniform κ-complete, κ+-saturated ideal on λ. Each of these
intervals was of the form [γ, δ) where δ had cofinality κ. We now state a
consistency result appearing in [31] that shows that the limitations given by
these intervals is sharp at the upper ends of each interval.

7.59 Theorem. Suppose that there is a huge cardinal and GCH holds. Then
there is a partial ordering P and an α such that in V P

α :

1. ZFC holds,

2. every regular uncountable cardinal ξ carries a normal, ξ-centered ideal
on ξ, and

3. if λ is a singular cardinal of cofinality ξ, then for all ideals I on ξ there
is a uniform ideal J on λ+ such that

(a) P (ξ)/I ∼= P (λ+)/J ,

(b) the completeness of I is equal to the completeness of J , and

(c) if I is normal, then J is weakly normal.
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After this section was written, Magidor showed that ℵω1 can carry a uni-
form, countably complete, ℵ2-saturated ideal, a case not covered by Theo-
rem 7.59.

The conclusions of Theorem 7.59 hold in the model constructed in the
proof of Theorem 7.57. We indicate some of the elements one needs to see
this.

Let κ0 < α < δ be a singular cardinal of cofinality ξ in V [Gπ] and I a
uniform ideal ξ. To construct an ideal J on the successor of α with quotient
isomorphic P (ξ)/I, we force with a sufficiently large part of P/P

π to get a
G which projects to Gπ, in which P (ξ+)V [Gπ ] = P (ξ+)V [G] and which makes
cf(α+) = ξ. In V [G], we choose a closed unbounded subset 〈δi : i < ξ〉 of
(α+)V =def η of order type ξ and “copy” the ideal onto η. The resulting ideal
J̄ in V [G] has the same completeness as I, and the map ι : P (δ)/J̄ → P (ξ)/I
defined by ι(A) = {i : δi ∈ A} defines an isomorphism.

Looking carefully at the forcing used to produce G in V [Gπ] we see that it is
sufficiently homogeneous so that J =def (P (δ)V [Gπ ]∩ J̄) and the isomorphism
ι both lie in V [Gπ]. In particular, we see that J has the same degree of
completeness as I does and is weakly normal, if I is normal.

7.14. Dense Ideals on ω1

In the late 1970’s Woodin showed that it is consistent to have a countably
complete, ℵ1-dense ideal on ω1, assuming the consistency of ZF + ADR +
“Θ is regular”. Later Woodin [124] improved this result showing, assuming
the consistency of an almost huge cardinal, that the following is consistent:
For all ℵ2-c.c. partial orderings P that collapse ℵ1 and have cardinality at
most ω2, there is a countably complete ideal I on ω1 such that P (ω1)/I has
a dense set isomorphic to P.

We present here a special case of this result: that it is consistent to have
an ℵ1-dense ideal on ω1.

7.60 Theorem. Let j be an almost huge embedding with critical point κ0 and
j(κ0) = κ1. Let C0 ⊆ Col(ω,<κ0) be generic over V. Let R0 = P (ω)∩V [C0]
and V1 = V (R0) ⊆ V [C0]. Let Q = Add(ω1)∗Q

′ be a κ1-c.c. partial ordering
in V1 that is countably closed, has cardinality κ1, and collapses κ1 to be ω2.
Then for all V1-generic G ⊆ Q, V1[G] |= ZFC + ♦ω1 + “There is a normal
ℵ1-dense ideal J on ω1”.

We will use a forcing fact:

7.61 Lemma. Let V ⊆W be models of ZFC. Suppose that:

1. κ is an inaccessible cardinal in V ,

2. κ = ωW
1 , and

3. if r ∈ RW , then there is a partial ordering Q ∈ V with |Q| < κ and a
V -generic H ⊆ Q belonging to W such that r ∈ V [H].
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Then there is a partial ordering C in W such that if U ⊆ C is W -generic there
is a V -generic object H ⊆ Col(ω,<κ) lying in W [U ] such that R

V [H] = R
W .

Moreover, if Hα ⊆ Col(ω,<α) is generic over V and belongs to W , then H
can be taken to extend Hα.

Proof (Sketch). Let C be the partial ordering in W whose domain consists of
V -generic filters Hα ⊆ Col(ω,<α) for some α < κ. If Hα and Hβ are elements
of C, then Hα is a stronger condition than Hβ iff α > β and Hα ⊇ Hβ .

If H∗ is generic for C over W , then H =
⋃

H∗ is generic over V for
Col(ω,<κ) and every real in W belongs to V [H]. �

Proof of Theorem 7.60. Let R0 = P (ω) ∩ V [C0]. Since Add(ω1) adds a well-
ordering of R in a canonical way, we see that any generic G ⊆ Q can be
decomposed into G0 ∗G1, and V1[G0] |= ZFC.

Let G ⊆ Q be V [C0]-generic. Let C ⊆ Col(ω, ω1) be V [C0, G]-generic and
R1 = P (ω) ∩ V1[G ∗ C].

We let W be the model V1[G0] and construct the partial ordering C ∈W
as in Lemma 7.61. In V1[G ∗ C], the cardinality of P (C)W is countable,
so we can build a W -generic object for C. This in turn yields a V -generic
C ′

0 ⊆ Col(ω,<κ0) belonging to V1[G ∗C] such that R
V [C0] = R

V [C′
0]. We can

now apply Lemma 7.61 in V1[G ∗ C] to force a V -generic C1 ⊆ Col(ω,<κ1)
such that R

V [C1] = R
V1[G,C] and C1 extends C ′

0.
Since Col(ω,<κ0) is κ0-c.c., j can be extended to a

ĵ : V [C ′
0] →M [C1].

The restriction of ĵ to V (R0) is an elementary embedding from V (R0) to
M(R1). If τ is a V -term for an element of V (R0) then ĵ(τV (R0)) = τM(R1).
Hence the restriction of ĵ to V (R0) can be defined in V1[G∗C] independently
of C ′

0 and C1.78

We work in V1[G ∗C]. For κ0 < α < κ1, let mα = ĵ“(G ∩ Vα). Then each
mα is in M(R1). Let 〈xα : α < κ1〉 be an enumeration of the V1-terms for
elements of P (κ0) ∩ V1[G] such that for a closed unbounded set of α and all
β < α ∈ κ1, xβ ∈ V1[G∩Vα]. Note that for β < κ1, 〈xα : α < β〉 is in M(R1).
Let � be a well-ordering of ĵ(Q′) in M(R1)j(Add(ω1)). Define a descending
sequence 〈pα : α < κ1〉 ⊆ ĵ(Q) such that:

1. for each α and γ, if xα ∈ V1[G ∩ Vγ ], then pα+1 ∩Mĵ(γ) decides ‖κ0 ∈
ĵ(xα)‖,

2. if pα ∈ Vĵ(γ), then pα is compatible with mγ , and

3. if pα+1 = qα
0 ∗ qα

1 ∈ Add(ω1) ∗Q′ then qα
0 � “qα

1 is the �-least element
of Q

′ so that pα+1 < pα and pα+1 has qα
0 as its first coordinate and

satisfies 1 and 2”.
78 The generic C′

0 and C1 are used to show that the embedding is elementary, not to define
the embedding.
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Using 3, and the fact that 〈qα
0 : α < β〉 ∈ M(R1), one can check that for

all β < κ1 the sequence 〈pα : α < β〉 ∈M(R1).
The sequence 〈pα : α < κ1〉 induces an ultrafilter U on P (κ0)∩V1[G] that

is κ0-complete for sequences that lie in V1[G] and belongs to V1[G∗C]. Define
an ideal J in V1[G] by putting x ∈ J iff ‖x ∈ U‖ = 0, where the Boolean
value is taken in B(Col(ω, ω1)). Equivalently, x ∈ J̆ iff ‖there is an α, pα �
κ0 ∈ ĵ(x)‖ = 1.

To see that J is a normal ideal, let 〈xβ : β < κ0〉 ∈ V1[G] be a sequence of
elements of J̆ . Then for all β, ‖for some α, pα � κ0 ∈ ĵ(xβ)‖ = 1. Since in
V1[G ∗ C],

1. cf(κ1) > κ0,

2. 〈pα : α ∈ κ1〉 is a descending sequence, and

3. the forcing yielding V1[G ∗ C] is κ1-c.c.,

we see that ‖for some α, pα � κ0 ∈
⋂
{ĵ(xβ) : β < κ0}‖ = 1. Hence ‖for some

α, pα � κ0 ∈ ĵ(Δ{xβ})‖ = 1. Thus J̆ is closed under diagonal intersections,
so J is normal.

A similar argument shows that the map x �→ ‖x ∈ U‖ induces a Boolean
algebra monomorphism from P (κ0)/J to B(Col(ω, ω1)). Hence, J is ℵ2-
saturated. Since J is normal, this map is a regular embedding and thus
P (κ0)/J is isomorphic to a regular subalgebra of B(Col(ω, ω1)) that col-
lapses ω1. Thus J is an ℵ1-dense ideal. �

7.15. The Lower End

Proposition 6.26 showed that for successor cardinal κ there is a proper class of
forbidden intervals that contain no cardinals λ with κ-complete, κ+-saturated
ideals. This generalized a result of Kunen for κ = ω1. Theorem 7.59 showed
that the cardinal bounds at the upper ends of the forbidden intervals are
sharp. At the other ends of the intervals, the situation is much less clear.

We state a theorem which implies the consistency of an ℵ1-dense, count-
ably complete, uniform ideal on ω2. This is the best result known at this
time. We outline the proof of this consistency result. The whole proof is in
Foreman [36]. The proof has two parts: the first part is an unexciting, but
original, application of the Woodin and Kunen techniques to get ideals on
consecutive cardinals. The second part is a method for transferring ideals
from κ to κ+.79

We begin with a definition, one that gives a slight strengthening of the
notion of “strongly layered ideal”.

79 On the other hand, the transfer result in the second part is completely general. The
obstacle to getting ℵ1-dense ideals on ωn for n > 2 is in generalizing the “unexciting” first
part.
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7.62 Definition. A normal κ+-complete ideal I on κ+ is very strongly lay-
ered iff

P (κ+)/I =
⋃
{Bα : α < κ+2}

where:

1. the sequence 〈Bα : α < κ+2〉 is increasing and continuous, and for all
α, |Bα| = κ+. In other words 〈Bα : α < κ+2〉 is a filtration,

2. there is a dense set D ⊆ P (κ+)/I that is closed under descending <κ-
sequences and finite non-zero meets (i.e. if {d1, . . . , dn} are in D and∧

di �= 0 then
∧

di ∈ D),

3. if α ∈ κ+2 and cf(α) = κ+ or α is a successor ordinal, then Bα is a
regular subalgebra of P (κ+)/I. Further, there is a commuting family
of projection maps {πα : α ∈ κ+2 ∩ (Cof(κ+) ∪ Succ)} such that πα :
D → (D ∩ Bα), πα�(D ∩ Bα) is the identity, and for α < β we have
πα ◦ πβ = πα, and

4. there is a dense set D′
0 ⊆ D ∩ B0 such that (D′

0,≤I) is isomorphic to
Col(κ, κ+).

Essentially any model with a layered ideal can be turned into a model
with a very strongly layered ideal by forcing a closed unbounded set through
the appropriate stationary set. The “very” part of the definition holds in all
models with strongly layered ideals known to the author.

The first step in the consistency result is to prove the following:

7.63 Theorem. Let j0 and j1 be almost huge embeddings with critical points
κ0 and κ1 respectively. Suppose that j0(κ0) = κ1 and that κ2 = j1(κ1) is
Mahlo. Let μ < κ0 be regular. Then there is a partial ordering P such that
there is a definable subclass W of V P satisfying:

1. κ0 = μ+,

2. ZFC + GCH + ♦μ+ + ♦μ+2(Cof(μ+)) + �μ+2 ,

3. there is an μ+-dense ideal J on μ+, and

4. there is a very strongly layered ideal I on μ+2.

7.64 Remark. It is not known how to get a successor cardinal κ with a κ-
dense ideal on κ and very strongly layered ideals on κ+ and κ+2. The weaker
property that there are three successor consecutive cardinals with strongly
layered ideals is also open.

The next theorem is the heart of the consistency result:
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7.65 Theorem (Foreman [36]). Let κ be a regular cardinal with κ<κ = κ.
Suppose there is a very strongly layered ideal I on κ+, �κ+ , and ♦κ+(Cof(κ)).
Then there is a κ-complete uniform ideal K ⊇ I on κ+ such that

P (κ+)/K ∼= P (κ)/{bounded sets}.

From this one sees:

7.66 Corollary. Suppose that κ is regular, κ<κ = κ and there is a very
strongly layered ideal I on κ+, �κ+ and ♦κ+(Cof(κ)). Then for all uniform
ideals J on κ, there is a uniform ideal K on κ+ such that:

P (κ+)/K ∼= P (κ)/J.

Furthermore, the degree of completeness of K equals the degree of complete-
ness of J , and if J is κ+-saturated then K is weakly normal.

This corollary shows that in the model built in Theorem 7.63 with μ = ω,
there is a weakly normal, countably complete, uniform ℵ1-dense ideal on ω2.
Since the hypotheses of Theorem 7.65 hold in a model where every ℵ2-c.c., ω1-
collapsing Boolean algebra of cardinality at most ω2 is realized as a quotient
of an ideal on ω1, we see that every such Boolean algebra is realized as a
quotient of a weakly normal, countably complete, uniform ideal on ω2.

7.67 Remark. There can be no analogue of Corollary 7.66 for normal fine
ideals on [κ+]κ, because of Remark 5.39. If there were, there would simulta-
neously be an ℵ1-dense ideal on [ω2]ω1 and an ideal on [ω2]ω1 with quotient
isomorphic to B(Col(ω,<ω2))—an impossibility.

We now outline the first step in the proof of Theorem 7.65. This step is
easier to describe than the main construction in [36].

The main idea of Theorem 7.65 is to build a surjective homomorphism
h : P (κ+)/I → P (κ)/{bounded sets}. The ideal K will be the kernel of h,
which we must verify is κ-complete. It follows that

P (κ+)/K ∼= P (κ)/{bounded sets}.

Fix a strongly layered ideal I, and witnesses Bα, D, πα, . . . to the strong
layering. Let Dα = D ∩Bα.

Given a subset of κ+ we need to “measure” it by a subset of κ. Any
function f : κ → D measures each set x ⊆ κ+ by yielding the set Ax =
{i : f(i) ⊆I x}. Unfortunately this measurement may be ambiguous in that
typically κ+ \Ax �= Aκ+\x (modulo bounded sets). This failure is equivalent
to the statement that it is not the case that for all sufficiently large i, either
f(i) ⊆I x or f(i) ⊆I κ+ \ x.

It is hopeless to unambiguously measure every subset of κ+ with a single
function f . Hence we need a family of functions. Furthermore, the mea-
surements these functions make must agree with each other. This is the
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motivation for the first three clauses of the following definition. The last
clause is a coding device to make the homomorphism surjective. In what
follows we will use ≤ to mean ⊆I .

We will construct a matrix of functions:80

F = {fδ
γ : γ < κ+, δ ∈ κ+2 ∩ (Cof(κ+) ∪ Succ)}

such that for each δ, γ,

fδ
γ : κ→ Dδ.

The family of functions F will satisfy the following four properties:

1. Horizontal Coherence: For γ < γ′, for all but less than κ many i,
fδ

γ (i) ≥ fδ
γ′ (i).

2. Vertical Coherence: For δ < δ′ there is an unbounded set of γ < κ+

such that for all but less than κ many i, fδ
γ (i) = πδ(fδ′

γ (i)).

3. Genericity: For each x ⊆ κ+, with x ∈ Bδ there is a γ < κ+ such that
for all but less than κ many i, either fδ

γ (i) ≤ x or fδ
γ (i) ∧ x =I 0.

Let D′
0 ⊆ D0 be dense with D′

0
∼= Col(κ, κ+). If f0

γ takes
values in D′

0, then by using this isomorphism we can assume
that for all i, f0

γ (i) ∈ Col(κ, κ+).

4. Coding: Fix an enumeration P (κ) = {yη : η < κ+}. For each η < κ+,
there is a γη such that for all i, f0

γη
(i) ∈ D′

0, and γη ∈ ran(f0
γη

(i)).
Further, letting βη(i) be the least β such that f0

γη
(i)(β) = γη, then

yη = {i : βη(i) is a limit ordinal}.

7.68 Remark. The purpose of the vertical coherence condition is to show
that the homomorphism h defined in Claim 7.69 below is well-defined. It can
be weakened to the following statement:

Weak Vertical Coherence: For all δ < δ′ and all γ′ there is a γ > γ′ such
that for sufficiently large i, fδ

γ (i) ≤ πδ(f δ′

γ′ (i)).

7.69 Claim. If there is a set of functions F satisfying the conditions 1–4,
there is a surjective homomorphism h : P (κ+)/I → P (κ)/{bounded sets}
with a κ-complete kernel.

Proof. Given the set of functions F and an x ⊆ κ+, we look at the least δ
such that x ∈ Bδ. By genericity there is a γ < κ+ such that for sufficiently
large i, fδ

γ (i) ⊆I x or f δ
γ (i) ∩ x =I 0. Let Ax = {i : fδ

γ (i) ⊆I x}.
We claim that for all δ′ > δ and all sufficiently large γ′ (depending on δ′),

Ax = {i : f δ′

γ′ (i) ⊆I x} modulo bounded sets. Namely, fix a δ′ and choose

80 Here, Succ denotes the class of successor ordinals.
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a γ′ > γ where for sufficiently large i, fδ
γ′ (i) = πδ(fδ′

γ′ (i)). Since x ∈ Bδ

and πδ is a projection map, f δ′

γ′ (i) ⊆I x iff πδ(fδ′

γ′ (i)) ⊆I x. Since γ′ > γ

for all but less than κ many i, fδ
γ′ (i) ⊆I x iff f δ

γ (i) ⊆I x and similarly for
κ+ \ x. Hence for sufficiently large i, fδ

γ′ (i) ⊆I x or f δ
γ′ (i) ⊆I κ+ \ x, and

Ax = {i : fδ
γ′ (i) ⊆I x} = {i : f δ′

γ′ (i) ⊆I x}.
Define a function h : P (κ+) → P (κ)/{bounded sets} by setting h(x) =

[Ax]. Then h is well-defined by the remarks in the previous paragraph. To see
that h is a homomorphism, it suffices to show that h preserves complements
and intersections. Clearly, for all δ, γ and all x, y,

{i : fδ
γ (i) ⊆I x ∩ y} = {i : fδ

γ (i) ⊆ x} ∩ {i : fδ
γ (i) ⊆ y}.

Hence h(x ∩ y) = h(x) ∩ h(y). Let x ⊆ κ+. Choose sufficiently large δ, γ
such that h(x) = {i : fδ

γ (i) ⊆ x} and for all sufficiently large i, fδ
γ (i) ⊆ x or

fδ
γ (i) ∩ x =I 0. Then

h(κ+ \ x) = {i : f δ
γ (i) ⊆I κ+ \ x} = {i : f δ

γ (i) ∩ x =I 0} = κ \ h(x).

To see that h is surjective, fix some [yη] ∈ P (κ). By the coding condition 4
on F , there is a γη such that for all i, f0

γη
(i) ∈ D′

0, γη ∈ ran(f0
γη

(i)) and
yη = {i : the least β with f0

γη
(i)(β) = γη is a limit ordinal}. Since a generic

ultrafilter for P (κ+)/I canonically induces a generic ultrafilter on D′
0, we

have a canonical term Ġ0 for a generic object for Col(κ, κ+).
Let x = ‖the least β with Ġ0(β) = γη is a limit‖ where the Boolean

value is taken in the forcing P (κ+)/I. Then x ∈ Bδ, for some δ. Hence
h(x) = [{i : fδ

γ (i) ⊆I x}] for all sufficiently large γ.
By the coding condition 4, for all i, f0

γη
(i) ∈ Col(κ, κ+) and γη is in the

range of f0
γη

(i). Hence f0
γη

(i) ⊆I x iff the least β with f0
γη

(i)(β) = γη is a
limit. Otherwise, f0

γη
(i) ⊆I κ+ \ x.

Hence, by the coding condition, for γ ≥ γη and sufficiently large i, f0
γ (i) ⊆I

x or f0
γ (i) ⊆I κ+ \ x. Hence we see that for all sufficiently large γ ≥ γη,

fδ
γ (i) ⊆I x iff f0

γ (i) ⊆I x, and h(x) = [{i : f0
γη

(i) ⊆I x}].
But f0

γη
(i) ⊆I x iff i ∈ yη, by the coding condition. Hence, h(x) = [yη],

and we have shown that h is surjective.
Let K be the kernel of h. To see that K is κ-complete, let η∗ < κ and {Xη :

η ∈ η∗} ⊆ K. Then for all δ, γ and all η, {i : fδ
γ (i) ⊆I Xη} ={bounded sets} 0.

Let δ, γ be so large that for all η ∈ η∗ and sufficiently large i, fδ
γ (i) ⊆I Xη or

fδ
γ (i) ∩Xη =I 0 and that h(

⋃
Xη) = {i : f δ

γ (i) ⊆I

⋃
Xη}. Then h(

⋃
Xη) =

⋃
{i : fδ

γ (i) ⊆I Xη} and so has size less than κ. Hence,
⋃

Xη ∈ K. �

The heart of Theorem 7.65 is the construction of the matrix of functions F .
This uses the powerful ♦ techniques forged by Shelah in his papers Models
with second-order properties I–V (see e.g. [101]). Though the published proof
[36] uses square, it is not necessary for the construction.
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7.16. Chang-Type Ideals with Simple Quotients II

In this section we see how the technique of the previous section can be used
to produce an ideal I on [ω2]ω1 that is normal and fine, and is such that
forcing with P ([ω2]ω1)/I is equivalent to forcing with an ℵ1-centered partial
ordering P followed by an <ℵV

2 -closed partial ordering; moreover, GCH holds
in the model with this ideal. A pseudo-generic tower argument shows that
this implies the existence of an ℵ1-centered ideal on ω1.

Donder [23] pointed out that if there is an ℵ1-centered ideal on ω1 and
CH holds, then one can force an example of a c.c.c.-destructible ℵ2-saturated
ideal on ω1. This follows because there is a well-known forcing for adding
�ω1 without adding new subsets of ω1. The relationship between square and
c.c.c.-destructibility is discussed in Sect. 8.6.

7.70 Theorem. Suppose that there is a huge cardinal κ and μ < κ is regular.
Then there is a partial ordering Q such that for all generic G ⊆ Q, V [G]
satisfies GCH and the statement: There is a normal fine ideal I on [μ+2]μ

+
,

a μ+-centered partial ordering P and an R ∈ V P that is <(μ+2)V -closed in
V P such that:

B(P ([μ+2]μ
+
)/I) ∼= B(P ∗ R).

We also refer the reader to Theorem 5.2 for some consequences of the
existence of such an ideal in combinatorics and algebra.

Proof. We now briefly outline the argument for Theorem 7.70. We will use
the Kunen technique to build partial orderings P(α) and R(α, β) such that
both are definable from Mahlo α, β and:

1. P(α) ⊆ Vα, R(α, β) ⊆ Vβ and P(α) is α-c.c. and <μ-closed, and R(α, β)
is <α-closed and β-c.c.

2. P(α) collapses α to be μ+ and R(α, β) collapses β to be α+.

3. For α < β, if the identity map from P(α) maps to P(β) and is a regular
embedding, then P(α)∗R(α, β) is regularly embedded in P(β) by a map
iα,β extending the identity.

4. Moreover if G ⊆ P(α) ∗ R(α, β) is generic then in V [G], the quotient
forcing P(β)/iα,β“G is α-centered.

5. R(α, β) has the right “shape” for the existence of master conditions.

Most of the properties on the list above are familiar, the new one being 4.
The conditions on the list guarantee that if j : V →M is a huge embedding

with critical point κ, j(κ) = λ and one forces with P(κ) ∗ R(κ, λ) to get a G
then one can generically extend the huge embedding to a ĵ : V [G] → M [Ĝ].
The ideal I will be the ideal induced by ĵ and the ideal element j“λ. The
ideal has the correct quotient, since P(λ)∗R(λ, j(λ))/G is κ-centered followed
by <λ-closed forcing. �
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The centering argument from [41] can be seen to work in the model dis-
cussed in Sect. 7.12. In particular, the construction in Theorem 7.57 gives
the stronger statement:

7.71 Theorem. Suppose that there is a huge cardinal. Then there is a model
of ZFC + “For all regular cardinals κ there is a κ-complete, κ-centered ideal
on κ”.

7.17. Destroying Precipitous and Saturated Ideals

We now consider the possibility of completely ridding the universe of ideals
with nice embedding properties. Since the existence of generic elementary
embeddings implies the existence of inner models with large cardinals, if one
starts with a small enough model (such as L) there are no ideals with nice
properties. Even this is not completely understood, as it is not known if there
are precipitous ideals on successor cardinals in L[E] models.

Here is what is known about forcing over an arbitrary model V to get rid
of precipitous and saturated ideals.

Baumgartner [3] described a partial ordering D for adding a closed un-
bounded subset of ω1 with finite conditions. Elements of D can be viewed
as finite collections of disjoint intervals of countable ordinals that are open
at the lower end and closed at the upper end. Extension is by taking a big-
ger collection of intervals. These intervals approximate the complement of
a closed unbounded set D ⊆ ω1 in the extension. The following facts were
shown by Baumgartner:

1. D adds a closed unbounded subset of ω1 that does not include any
closed unbounded set in V , and

2. D is proper and hence preserves ω1.

The following result appears in [6] as Theorem 3.5:

7.72 Theorem (Baumgartner-Taylor [6]). Suppose that G ⊆ D is generic
over V . Then in V [G] there are no ℵ2-saturated ideals on ω1.

Assuming GCH, there are analogues of Baumgartner’s forcing for each
successor cardinal μ+. These involve forcing with approximations to the
complement of the generic closed unbounded set that have size < μ and satisfy
some continuity conditions. The Baumgartner-Taylor argument generalizes
directly to show that after forcing over a model of GCH with a forcing of this
type, there are no μ+2-saturated ideals on μ+.

The situation for precipitous ideals is less satisfactory. In [47], the following
theorem is shown:

7.73 Theorem. For all κ with κ<κ = κ, there is a forcing Q that is <κ-
closed, κ+-c.c such that if I is a normal ideal in V then its normal closure
in V Q is not precipitous.
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By Theorem 7.73 it is consistent with a supercompact cardinal that the
nonstationary ideal on ω1 is not precipitous, but it is not known how to build
a model with a supercompact cardinal where there is no precipitous ideal
on ω1. The results of the next section show that the nonstationary ideal on
ω1 is always a pre-precipitous ideal if one assumes the existence of Woodin
cardinals.

8. Consistency Results for Natural Ideals

In this section we discuss methods of creating models where various natural
ideals yield well-founded generic ultrapowers. These results fall into three
categories. The first type are situations where one starts with an induced
ideal with strong properties and forces that ideal to be a natural ideal while
maintaining the properties of the generic embedding. One way to do this is
to shoot closed unbounded sets through sets in the dual of the ideal.

The second type of result begins with a natural ideal and manipulates
its antichain structure in such a way so as to make the generic ultrapower
have strong properties. A typical method for making an ideal saturated is to
iterate collapsing the size of each maximal antichain, while maintaining its
maximality.

The third method for making natural ideals have strong properties was
pioneered by Steel and Van Wesep [115]. This technique starts with a model
of ZF together with some determinacy hypothesis and forces to add choice
to construct a model where the NSω1 is ℵ2-saturated.

8.1. Forcing over Determinacy Models

The first construction of a model of ZFC where NSω1 is ℵ2-saturated was
done by Steel and Van Wesep. Their technique was extremely original in
that it started with an inherently choiceless model of V = L(R) and added
a well-ordering of the real numbers. If NSω1 is dual to an ultrafilter in the
original model, then one can hope that the forcing for adding Choice is mild
enough to preserve its saturation. Their theorem is:

8.1 Theorem (Steel-Van Wesep [115]). Suppose that V is a model of ZF +
ADR + “Θ is regular”. Then there is a forcing extension of ZFC in which
NSω1 is ℵ2-saturated.

Woodin improved their result by weakening the hypothesis to the assump-
tion AD + V = L(R). Later work of Woodin showed that even the following
is possible:

8.2 Theorem (Woodin [126]). Suppose that V is a model of AD + V =
L(R). Then there is a forcing extension in which NSω1 is ℵ1-dense.

Note that Shelah’s Corollary 5.58 implies 2ℵ0 = 2ℵ1 in this model. In
contrast, Woodin was able to show from similar determinacy hypotheses that



1060 Foreman / Ideals and Generic Elementary Embeddings

it is consistent to have CH together with the statement “there is a dense set
D ⊆ P (ω1)/NSω1 such that for all S ∈ D, P (S)/NSω1 is ℵ1-dense”.

Using Pmax and Qmax techniques, Woodin was able to show many related
consistency results. For example, he showed the consistency of strong club
guessing together with NSω1 being ℵ2-saturated. Woodin’s Pmax techniques
are covered in detail in his book [126], as well as in Larson’s chapter in this
Handbook.

These results have the peculiar feature that it is not clear from the method
that every model of ZFC can be included in a model in which NSω1 has strong
saturation properties.

8.2. Making Induced Ideals Natural

These constructions are based on various types of forcing that transform sets
in an induced ideal into members of a given natural ideal. For example,
in the case of the nonstationary ideal, these partial orderings shoot closed
unbounded sets through stationary sets S in the dual of the induced ideal.
These make the complement of S nonstationary in the generic extension. For
other natural ideals the constructions use other mechanisms, such as forcing
sets in the ideals to be meager or adding strong club guessing sequences on
sets in the dual filter.

The general outline of this type of argument is to start with a generic
elementary embedding j0 : V0 → M0 and let I be the induced ideal from
U(j0, i) for some i. A forcing construction is carried out that makes elements
of Ĭ belong to the dual of the natural ideal. Care must be taken to make sure
that the generic embedding j can be extended during the forcing construction.
The ability to extend the embedding j implies that the critical point of j
remains a regular cardinal after the forcing.

A complication to this outline is that if jα is the generic embedding after
α stages of the iteration, then the induced ideal Iα for U(jα, i) may properly
contain the initial ideal I. Thus the construction involves:

1. A “nice” initial ideal I = I0.

2. An iteration 〈(Rα, Q̇α) : α < λ〉 such that in V Rα
0 , the original embed-

ding j can be generically extended to an embedding jα from V Rα
0 to

M
j(Rα)/mα

0 where mα is a master condition. Moreover, for α < β we
have mβ ≤ mα and jα ⊆ jβ .

3. An sequence of ideals 〈Iα : α < λ〉 where Iα is the induced ideal for
U(jα, i). Since the jα’s cohere and the mα’s get stronger with α, we
have Iα ⊆ Iβ for α < β.

4. For every element S that belongs to some Iα for an α < λ there is a β
so that Qβ puts S into the natural ideal.

5. I∞ =def

⋃
α<λ Iα is the natural ideal in V Rλ

0 .
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The final model will be V Rλ
0 . Typically j∞ =def lim

→
jα gives a generic

embedding from V Rλ
0 to M

j(Rλ)
0 and the induced ideal from U(j∞, i) is I∞.

By the last clause 5, I∞ is the natural ideal.
If the original ideal I has nice properties, e.g. that I is saturated or that

I is precipitous and the embedding j was the generic ultrapower of I, then
I∞ can be shown to retain some of these properties.

The Null and Meager Ideals

We first deal with two relatively easy examples, the null ideal and the meager
ideal. That the ideal of null sets of a measure can be precipitous follows from
the next result due to Solovay [111].

8.3 Theorem. Suppose that κ is measurable. Then there is a forcing exten-
sion in which there is a countably additive μ : P ([0, 1])→ [0, 1].

Since the ideal of μ-null subsets of the reals is necessarily c.c.c. and ℵ1-
complete, it is an example of a precipitous ideal. Later work of Kunen showed
that this ideal can be taken to extend the ideal of Lebesgue null subsets of
the real line. Dow remarked that the ideal of Lebesgue null subsets of the
unit interval can never be c.c.c. since there is an uncountable pairwise disjoint
collection of sets of outer measure one.

As far as the author knows it is an open question whether it is consistent
for the ideal of Lebesgue null subsets of [0, 1] to be a precipitous ideal on
P ([0, 1]).

The analogous result for the meager ideal is open; however, Komjáth
showed the following:

8.4 Theorem (Komjáth [73]). Suppose that there is a measurable cardinal.
Then there is a forcing extension in which there is a non-meager set A ⊆ R

such that P (A)/{meager sets} is c.c.c.

Proof. We sketch the proof. Let κ be measurable and U a normal ultrafilter
on κ. The idea is to make Ŭ into the meager ideal restricted to a non-meager
set. More explicitly, one first adds a sequence of Cohen reals 〈sα : α < κ〉
and then forces that S ⊆ {sα : α < κ} is meager iff there is an Y ∈ Ŭ such
that S ⊆ {sα : α ∈ Y }.

We start by describing a forcing for making a particular set meager. Fix
a set S ⊆ ωω. We let PS be the collection of conditions

p = 〈{s0, . . . , sn}, c, {U i
j : i, j ∈ F}〉

where:

1. U i
j are basic open sets in ωω and F is a finite subset of ω,

2. n ∈ ω and {s0, . . . , sn} ⊆ S,
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3. c : {s0, . . . , sn} → F , and

4. sm /∈
⋃

j∈F U
c(sm)
j .

For conditions p, q ∈ PS we say that q is stronger than p if q can be built
from p by adding elements of S to {s0, . . . , sn}, extending c and expanding
the collection of U i

j to a larger collection {U i
j : i, j ∈ F ′ ⊇ F}.

PS is ℵ1-Knaster81 and, as is well-known for such partial orderings, ar-
bitrary products of partial orderings of the form PS with finite support are
c.c.c. Moreover, if H is generic for PS and {U i

j : i, j ∈ ω} are the basic open
sets appearing in the conditions in H, then for each i,

⋃
j U i

j is open dense
and S ∩

⋂
i

⋃
j U i

j = ∅
Komjáth’s model is built by starting with a κ-complete, normal ultrafilter

U on a measurable cardinal κ and adding κ Cohen reals A = 〈sα : α < κ〉.
The second step is to force with the finite support product P =

∏
S∈I PS ,

where S ∈ I iff S ⊆ A and {α : sα ∈ S} ∈ Ŭ .
Fix G∗H generic for Add(ω, κ)∗P. Since the two step forcing Add(ω, κ)∗P

is c.c.c. it follows from Kakuda’s theorem (Corollary 7.17) that Ŭ remains
a precipitous ideal on P (κ) in V [G ∗H].82 We will be done if we can show
that in V [G ∗H], for all Y ⊆ A, Y is meager iff {α : sα ∈ Y } ∈ Ŭ .

One direction of this is clear. If {α : sα ∈ T} ∈ Ŭ , then there is an
Y ∈ V ∩ Ŭ such that {α : sα ∈ T} ⊆ Y . If S = {sα : α ∈ Y } then PS is a
factor of the forcing and hence S is meager.

Suppose now that T ⊆ A is meager. We show that there is a countable
collection C ⊆ I, such that T ⊆

⋃
C. This suffices, since Ŭ is countably

complete in V [G ∗H] and {α : sα ∈ T} ⊆
⋃

S∈C{α : sα ∈ S}.
In V [G ∗H] there is a sequence of basic open sets 〈Oi

j : i, j ∈ ω〉 such that
in V [G ∗H], for all i,

⋃
j Oi

j is dense and T ∩
⋂

i

⋃
j Oi

j = ∅. Since the forcing
Add(ω, κ) ∗ P is c.c.c. there is an α0 < κ and a countable subset C ⊆ I such
that 〈Oi

j : i, j ∈ ω〉 belongs to

V
[{

sα : α ∈
(
α0 ∪

⋃
C
)}][

H ∩
∏

S∈C PS

]
.

If T is not a subset of
⋃

C modulo bounded sets, then we can find a β > α0

such that aβ ∈ T \
⋃

C. But then aβ is generic over the above model and
hence belongs to

⋂
i

⋃
j Oi

j , a contradiction. �

Nonstationary Ideals

The nonstationary ideals on general Z ⊆ P (λ) are somewhat mysterious. We
show in Theorem 8.37 that they can be made precipitous by collapsing a large
cardinal to be λ+. Not much is known about their saturation properties, with

81 That is, any uncountable set of conditions has an uncountable subset of pairwise com-
patible conditions.
82 We can say more: by Theorem 7.14, the quotient P (A)/{meager sets} is c.c.c.
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one notable exception: Gitik was able to give an example of a model with a
large cardinal κ such that the nonstationary ideal on a stationary subset of
[κ+]<κ is κ+-saturated.83

We turn to the nonstationary ideals on cardinals. In these arguments we
shoot closed unbounded sets through sets in the dual of the induced ideal.
The partial ordering usually used can be described as follows. If S is a
stationary subset of a regular cardinal κ, then PS consists of closed bounded
subsets of S, ordered by end extension.

Forcing with this partial ordering can be disastrous, not only collapsing κ
but many other cardinals as well. Equally problematic, if C is a collection of
stationary sets, then the iterated forcing given by the partial orderings PS for
S ∈ C can collapse cardinals even if each individual PS is well-behaved. What
prevents the situation from being hopeless in the cases we are interested in is
the fact that the collection C forms a filter that has a nice generic ultrapower.

Two examples of arguments of this form are in Cummings’ chapter in this
Handbook. One is the following theorem:

8.5 Theorem (Magidor; see [65]). Suppose that κ is a measurable cardinal.
Then there is a forcing extension in which κ = ω1 and NSω1 is precipitous.

The situation for creating the precipitousness of nonstationary ideals on
arbitrary regular cardinals is simple, provided there are sufficiently many
large cardinals in the universe. Theorem 8.37 shows that if μ is regular and
κ > μ is supercompact, then NSμ is precipitous in V Col(μ,<κ).

Though the large cardinal hypothesis required in the proof of Theorem 8.37
can be reduced to a Woodin cardinal, that assumption is far from optimal.
The following theorems of Gitik [51, 54, 53] give exact equiconsistency results:

8.6 Theorem. The statement “NSω2 is precipitous” is equiconsistent with
the existence of a measurable cardinal of Mitchell order 2.

More generally:

8.7 Theorem. If μ > ω1, then CH + “NSμ+ is precipitous” is equiconsistent
with μ+ being an (ω, μ + 1)-repeat point for the normal ultrafilters on μ+ in
the core model K.

8.8 Theorem. The property “κ is an inaccessible cardinal and NSκ is pre-
cipitous” is equiconsistent with κ having an (ω, κ + 1)-repeat point for the
normal ultrafilters on κ in the core model K.

See Cummings’ chapter in this Handbook particularly for Theorem 8.6.
The saturation of NSω1 is a very special situation that is dealt with by ma-

nipulating the antichain structure of P (ω1)/NSω1 . This is covered in Sect. 8.3.
It is not known how to make NSω1 saturated by making an induced ideal be-
come the nonstationary ideal. This may be related to the problem of whether
CH + “NSω1 is ℵ2-saturated” is consistent with ZFC.
83 See Theorem 6.35.
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The saturation of nonstationary ideals on cardinals greater than ω1 is
even more mysterious. If κ is the successor of a singular cardinal or is weakly
inaccessible then Theorem 6.14 implies that for all regular δ < κ, the ideal
NSκ� Cof(δ) is not κ+-saturated.

At successors of regular cardinals above ω1 essentially nothing is known.
Corollary 6.11 shows that if I is a κ+-saturated ideal on a successor cardinal
κ = μ+ then {α < μ+ : cf(α) = cf(μ)} ∈ Ĭ, so the best one can hope for is
that NSκ restricted to Cof(μ) is κ+-saturated. A prominent open problem is
whether it is consistent with ZFC to have NSω2 restricted to Cof(ω1) to be
ℵ3-saturated.

In the positive direction, Woodin has proved the strongest known consis-
tency result about the saturation of the nonstationary ideals on cardinals at
least ω2:

8.9 Theorem (Woodin). Suppose that μ is a regular cardinal and κ > μ
is almost huge. Then there is a forcing extension by a <μ-closed partial
ordering that satisfies “there is a stationary set S ⊆ μ+ such that NSμ+�S is
μ+2-saturated”. If GCH holds in the ground model, then GCH holds in the
extension.

From Woodin’s theorem, one can argue as in [34] that it is consistent
for the successor κ of a supercompact cardinal μ to have a stationary set
S ⊆ κ such that NSκ�S is κ+-saturated. As described in the discussion
of Theorem 7.57 [34], it is then possible to collapse μ to be e.g. ℵω while
preserving the saturation of the nonstationary ideal restricted to S. As a
corollary we get:

8.10 Corollary. Suppose that μ is a supercompact cardinal and κ > μ is
an almost huge cardinal. Then there is a forcing extension that satisfies
GCH + “there is a stationary subset S of ℵω+1 such that the nonstationary
ideal on ℵω+1 restricted to S is ℵω+2-saturated”.

8.11 Remark. As proved in Theorem 5.64, if NSω1 is ℵ2-saturated and
there is a measurable cardinal, then CH fails in a concrete way. It remains a
prominent open problem whether it is consistent to have CH together with
NSω1 being ℵ2-saturated.

Since measurable cardinals seem to be an accepted extension of ZFC, this
problem does not seem relevant to settling CH, but a solution to it would
certainly require new and interesting techniques.

We now give a sketch of a proof of Woodin’s theorem. Woodin’s original
proof has not been published. We outline a subroutine that was used in the
proof of Theorem 8.14 and was heavily influenced by Woodin’s ideas. We
assume the reader is familiar with the Kunen proof of the consistency of an
ℵ2-saturated ideal on ω1 and the Magidor variation of that proof. These
appear in Sects. 7.7 and 7.11.
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Proof. The proof of Woodin’s theorem follows the general outline given at
the beginning of Sect. 8 for transforming an induced ideal into a natural
ideal. One starts with an almost huge embedding j : V → M with critical
point κ. From the general theory of large cardinals, we can assume that
j(κ) = λ where λ is not Mahlo and that j“λ is cofinal in j(λ). Let I be the
V -inaccessibles below κ. Then j(I) is NSλ from the point of view of V .

The first forcing uses the Magidor variation on Kunen’s theorem described
in Sect. 7.11. This produces a partial ordering of the form P∗Col(κ,<λ) such
that for each generic G ∗H ⊆ P ∗Col(κ,<λ) there are M -generic Ĝ ∗ Ĥ such
that j can be extended to a generic

j0 : V [G ∗H] →M [Ĝ ∗ Ĥ].

The partial ordering P is <μ-closed, κ-c.c. and collapses κ to be μ+.84

Let I0 be the induced ideal from U(j0, κ). Then I0 is κ+-saturated. The
rest of the forcing is an iteration R of length λ with supports of size less
than κ.

For each α < λ we will have a master condition mα ∈ Rα guaranteeing
that j can be extended to

jα : V P∗Col(κ,<λ)∗Rα →M j(P∗Col(κ,<λ)∗Rα)/mα .

The ideal Iα will be the induced ideal from U(jα, κ). The partial ordering
R adds closed unbounded sets in such a way that the final ideal I∞ is the
nonstationary ideal restricted to the set I of V -inaccessibles.

There are two issues in constructing R. The first is making sure that there
are master conditions mα so that the intermediate generic embeddings jα

can be constructed. The second is making sure that the partial orderings
j(Rα) are sufficiently closed that the pseudo-generic tower argument can
be used to recover an ultrafilter over V P∗Col(κ,<λ)∗R in a λ-c.c. extension of
V P∗Col(κ,<λ)∗R.

The first issue is straightforward. Suppose inductively that we have defined
mα and S is a stationary set lying in Ĭα ∩ V P∗Col(κ,<λ)∗Rα . We will shoot a
closed unbounded set through S ∪ (κ \ I). This makes S closed unbounded
relative to I. Since S ∈ Ĭα, for all generic extensions of j to jα, we know
that κ ∈ jα(S). If C ⊆ PS∪(κ\ I) is generic over V P∗Col(κ,<λ)∗Rα and lies in
M j(P∗Col(κ,<λ)∗Rα)/mα , then r = C ∪ {κ} is a condition in jα(PS∪(κ\ I)) that
lies below j(c) for each c ∈ C. If we let Rα+1 = Rα ∗ PS∪(κ\ I), then we can
define a master condition for Rα+1 by setting mα+1 = m�

α r.
To summarize, if we iterate shooting closed unbounded sets 〈Cα : α < λ〉

through sets in the duals of each ideal and each initial segment of 〈Cα :
α < λ〉 belongs to M j(P)∗Col(λ,<j(λ)), we can construct a sequence of master
conditions 〈mα : α < λ〉. The j(ξ)th coordinate of mα will be Cξ ∪ {κ},
where Cξ is the closed unbounded coming from the ξth forcing in R.85

84 In the notation of the outline given in Sect. 8.2, V0 = V [G ∗ H] and M0 = M [Ĝ ∗ Ĥ].
85 Very similar arguments are given in Cummings’ chapter in this Handbook in the proof
of the consistency of “NSω1 is precipitous”.
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The second issue is more subtle. Woodin’s method relies on the very
clever observation that if PS is the partial ordering for shooting a closed
unbounded subset through S with initial segments and S ⊆ κ contains a
closed unbounded set then there is a dense subset of PS that is <κ-closed. In
particular, assuming κ<κ = κ, forcing with PS is equivalent to forcing with
the partial ordering for adding a Cohen subset of κ.

To illustrate the relevance of this observation, let’s consider R0, the first
partial ordering for adding a closed unbounded set. R0 is defined in V [G∗H].
A stationary set S0 ∈ Ĭ is chosen. R0 is defined to be PS0∪(κ\ I). Then j(R0)
is Pj(S0)∪(λ\j(I)) as defined in M [Ĝ ∗ Ĥ]. However, from the point of view
of V , λ \ j(I) is closed unbounded. Hence from the point of view of V [Ĝ] the
forcing (Col(λ,<j(λ)) ∗ Pj(S0)∪(λ\j(I)))M is <λ-closed. This is sufficient for
a pseudo-generic tower argument.

We can now give a summary of Woodin’s argument. The partial ordering
used will be of the form P ∗ Col(κ,<λ) ∗ R, where R is an iteration with
<κ-supports for shooting closed unbounded sets through stationary sets.

The Magidor variation of Kunen’s theorem (Sect. 7.11) gives an ideal I0

that is saturated in V P∗Col(κ,<λ) and concentrates on the set I of ordinals
that were inaccessible cardinals in V . Generic elementary embeddings, ideals
and master conditions 〈jα, Iα,mα : α < λ〉 are defined inductively, with j0
being the extension of the original almost huge embedding in the Magidor
variation.

The αth stage of R is of the form PSα ∪(κ\ I). Since all of the forcings
are of this form, for each α < λ the partial ordering j(Col(κ,<λ) ∗ Rα)
is <λ-closed over V [Ĝ] and hence in V [Ĝ] it is possible to find filters Ĥ ∗
�Cj

α ⊆ j(Col(κ,<λ) ∗ Rα) that are sufficiently generic over M to extend the
embeddings to jα, build U(jα, i), and determine the ideal Iα. Every set in⋃

α<λ Ĭα occurs on the sequence 〈Sα : α < λ〉.
The final model will be V [G ∗H ∗ �C] where G ∗H ∗ �C ⊆ P ∗Col(κ,<λ) ∗R

is V -generic. By the pseudo-genericity arguments, there is an ultrafilter U
that is κ-complete and normal for V [G ∗H ∗ �C]-sequences that lies in V [Ĝ]
where Ĝ ⊆ j(P). Since Ĝ lies in a λ-c.c. forcing extension of V [G ∗ H ∗ �C]
and λ = κ+ we see that the induced ideal from U is κ+-c.c. On the other
hand the induced ideal for U is

⋃
α<λ Iα which has been forced to be the

ideal NS�I. �

8.12 Remark. One can apply Theorem 7.30 to see that Woodin’s construc-
tion and the Foreman-Komjáth construction below actually yield κ-centered
ideals on κ = μ+.

Club Guessing Ideals

Recall the following definitions from Example 3.19: Let κ > μ be regular
cardinals and S ⊆ κ ∩ Cof(μ). Let 〈Cα : α ∈ S〉 be a sequence such that Cα
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is unbounded in α. We define two filters, the club guessing filter and the tail
club guessing filter on S.

Let D ⊆ κ be closed unbounded. Let G(D) = {α ∈ S : Cα ⊆ D} and
E(D) = {α ∈ S : Cα ⊆∗ D}.

1. The club guessing filter on S is the filter generated by the sets {G(D) :
D is closed unbounded} together with the filter of closed unbounded
sets.

2. The tail club guessing filter on S is the filter generated by the sets
{E(D) : D is closed unbounded} together with the filter of closed un-
bounded sets.

The sequence 〈Cα : α ∈ S〉 is club guessing iff the club guessing filter on S
is a proper filter, and tail club guessing iff the tail club guessing filter on S
is a proper filter. A sequence 〈Cα : α ∈ S〉 is strong club guessing iff the tail
club guessing filter is the nonstationary ideal restricted to S.86

Club guessing sequences and their associated filters play a vital role in
singular cardinal combinatorics and other subjects. They are an interesting
class of natural filters and the possible generic embeddings associated with
club guessing filters are only beginning to be understood.

Woodin was able to show, using a Pmax variation:

8.13 Theorem. Assume ADL(R). Then there is a forcing extension of L(R)
in which NSω1 is ℵ2-saturated and there is a strong club guessing sequence
〈Cα : α < ω1〉.

Independently of this, Foreman and Komjáth were able to extend the
Woodin techniques of Theorem 8.9 to show:

8.14 Theorem (Foreman-Komjáth [40]). Suppose that κ is an almost huge
cardinal and μ < κ is regular. Then there is a partial ordering P such that
in V P the following hold:

1. κ = μ+,

2. there is a stationary set S ⊆ κ such that NSκ�S is κ+-saturated, and

3. there is a strong club guessing sequence 〈xα : α < κ〉.

8.15 Corollary. Assuming the hypotheses of Theorem 8.14, there is a forcing
extension in which κ = μ+ and there is a sequence 〈xα : α ∈ S〉 for a
stationary S ⊆ κ such that the tail club guessing filter on μ+ determined by
〈xα : α ∈ S〉 is μ+2-saturated.

8.16 Corollary. Let α be an ordinal. Assume that there is an almost huge
cardinal κ bigger than a supercompact cardinal μ > α. Then there is a generic
extension of V in which κ = ℵα+1, there is a stationary subset S of κ on
86 The concept of a strong club guessing sequence appears in the proof of Theorem 6.14.
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which NSκ is κ+-saturated and strong club guessing holds. In particular,
there is a club guessing sequence 〈xβ : β ∈ S〉 such that the tail club guessing
ideal determined by sequence is κ+-saturated.

Corollary 8.16 stands in strange counterpoint to the use of ♦∗
club in The-

orem 6.14 of Gitik and Shelah. A contradiction appears narrowly avoided
by noting that the ordinals in the elements xα of the guessing sequence have
small cofinality.

In fact we can prove a slightly stronger theorem than Theorem 8.14.
A slight variant of the proof shows that it is consistent to have NSκ�S be
κ+-saturated, a strong club guessing sequence defined on S and a ♦+(κ \S)-
sequence.

In [40] the following forcing is defined that adds a strong club guessing
sequence on a stationary set S:

8.17 Definition. Let κ be a regular cardinal and S ⊆ κ be stationary.
Let CG(S) be the iteration of length 2κ with <κ-supports of the following
components:

1. We let CG(S)0 be the collection of sequences 〈xα : α ∈ S ∩ (β + 1)〉 for
some β < κ, where each xα is closed and unbounded in α. The ordering
of CG(S)0 is by end extension.

2. We use a bookkeeping system that at stage γ will choose an appropriate
closed unbounded set Cγ ⊆ κ with Cγ ∈ V C G(S)γ and we will let Sγ =
{α : xα ⊆∗ Cγ or α /∈ S}. Then CG(S)γ+1 = CG(S)γ ∗ PSγ where PSγ

is the partial ordering for shooting a closed unbounded set through Sγ .

3. We arrange our bookkeeping so that every closed unbounded set in
V C G(S) appears as some Cγ for some γ < 2κ.

Assuming that κ<κ = κ, the partial orderings CG(S)γ are κ+-c.c. and
hence that it is possible to achieve the third clause in the definition of CG(S).
Moreover, there is a dense set of flat conditions that form a <κ-closed subset
of CG(S).

In the proof of Theorem 8.14, the iteration used in CG(S) is interdigitated
with the iteration used in the Woodin construction and with yet another
partial ordering, the partial ordering for adding a “fast club” set:

The following partial ordering appeared in Jensen’s proof of the consis-
tency of CH + Suslin’s Hypothesis (see [21]):

8.18 Definition. Let μ > ω be a regular cardinal. Define FC(μ) to be the
partial ordering consisting of pairs, (s, C) where s is a closed bounded subset
of μ and C is a closed unbounded subset of μ. We will say that a condition
(s, C) is stronger than a condition (t,D) iff

1. s is an end extension of t,

2. C ⊆ D, and

3. s \ t ⊆ D.
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If we assume that μ<μ = μ, then this partial ordering is μ+-c.c. and <μ-
closed. If G ⊆ FC(μ) is generic and E =

⋃
{s : for some C, (s, C) ∈ G}

then E is a closed unbounded subset of μ. A simple density argument shows
that if C ∈ V is a closed unbounded subset of μ then there is a condition
(t,D) ∈ G with D ⊆ C. In particular, E \ sup(t) ⊆ D.

We now have the ingredients to describe the construction in Theorem 8.14
informally:

Proof. We start with an almost huge embedding j : V → M with critical
point κ and j(κ) = λ where λ is not Mahlo in V . The forcing will have three
parts P∗Q∗R. The partial ordering P will make κ = μ+, Q will make λ = κ+

and R will be a “termspace” forcing, that will ultimately be isomorphic to
adding Cohen subsets to λ. Since R does not add subsets of κ, the ideals
built during the construction will be on subalgebras of P (κ)V P∗Q

.
We will initially use the Magidor variation of the Kunen construction and

build a model V0 where κ = μ+ and there is a saturated ideal I0 on the set of
V -inaccessible cardinals I ⊆ κ induced by a generic elementary embedding ĵ.
We then begin an iteration that shoots closed unbounded sets through the
sets of measure one for Ĭ0 relative to the V -inaccessible cardinals. The result
will be an increasing series of saturated ideals Iα for α < λ. We dovetail
adding closed unbounded sets to make sure that these ideals all eventually
end up being NSκ restricted to the old inaccessible cardinals. This iteration
will be a subiteration of Q.

We have three tasks:

1. making strong club guessing hold on κ \ I,

2. shooting the closed unbounded sets to make the induced saturated ideal
the nonstationary ideal, and

3. making strong club guessing hold on I.

These are accomplished in three different ways. The first two are the result
of the comingling of the forcing for adding a strong club guessing sequence
on κ\I, and the forcing for making the sets that appear in the ideals Iα non-
stationary. This describes a partial ordering Q that creates a club guessing
sequence on κ \ I and makes the nonstationary ideal restricted to the V -
inaccessible cardinals saturated. As is crucial, Woodin’s observation is used
to see that j(Q), which iterates shooting closed unbounded sets through
M -stationary subsets relative to the V -nonstationary set of M -inaccessible
cardinals j(I)), is <λ-closed.

The third task uses a completely different technique: during the construc-
tion of the first phase P of the partial ordering we will frequently be adding
fast closed sets cα to α over the model V Pα ∩Vα . The strong club guessing
sequence on I will be 〈cα : α ∈ I〉.

This plan assumes that the inductive construction of the ideals Iα works.
The ideals Iα are defined inductively after P is defined, and hence the Qα
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are defined after P is defined. The definition uses the fact that we extend
the elementary embeddings to jα : V P∗Qα → M j(P∗Qα)/mα . To extend the
embeddings we must have P∗Qα regularly embedded into j(P). This presents
a problem because we do not have a definable way of anticipating in advance
what the inductive construction of Qα is.

To build P, we must then do at least two things. First, we need to find
a universal way of anticipating a large class of iterations that include many
coordinates that shoot closed unbounded sets through α in V Pα ∩Vα . Second,
we need to add a closed unbounded subset cα of α that is “fast” over any of
these iterations.

This involves axiomatizing the type of iterations we will anticipate. In
the terminology of [40], these are the “α-acceptable, canonically μ-closed
iterations with V -limits”. These iterations are shown to have the property of
near properness, an iterable condition on partial orderings. We then define a
partial ordering that is universal for this type of iteration:

Let μ < α be regular cardinals. Let B(μ, α, γ) be the partial ordering:
∏

γ-copies
bounded height

<α-supports

Col(μ, α),

the product partial ordering on γ copies of Col(μ, α) with <α supports re-
stricted to those elements p of the product such that there is a β < μ for all
ξ ∈ supp(p), dom(p(ξ)) ⊆ β.

This partial ordering is universal in the sense that if μ < α are regular
cardinals and Q is a V -limit iteration of canonically μ-closed, α-acceptable
partial orderings that has length γ, then there is a regular embedding:

Q → B(μ, α, γ).

The partial ordering P is then defined inductively as a <μ support iteration
with:

Pα+1 = Pα ∗ (Col(α,<κ) ∗ B(μ, α, κ) ∗ FC(μ))W

where W = V Pα ∩Vα .
Note that since α has cofinality μ in WCol(α,<κ)∗B(μ,α,κ) and W and

WCol(α,<κ)∗B(μ,α,κ) have the same <μ-sequences, the partial ordering FC(μ)W

adds a closed unbounded subset of α that is eventually included in every
closed unbounded subset of α that lies in WCol(α,<κ)∗B(μ,α,κ).

Then at stage κ,

j(P)κ+1 = j(Pκ) ∗ (Col(κ, j(κ)) ∗ B(μ, κ, λ), ∗FC(μ))V P

.

The fast closed subset of κ added at this stage is eventually inside every
closed unbounded subset of κ in the final model V P∗Q∗R. Hence by reflection
the fast closed sets added to α at stage α for α in I will be a club guessing
sequence.
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It turns out that the iteration Q described above has a dense set isomorphic
to a V -limit of canonically μ-closed, κ-acceptable partial orderings, no matter
how the sequence of ideals Iα eventuate. Hence by the universality, we see

P ∗Q → j(P).

We now face the final obstacle. The partial ordering j(Q) is <λ-closed,
so we can attempt pseudo-generic tower arguments in j(Q). However, the
inductive definition of the ideals Iα depend on which tower one chooses, and
the towers must be collectively generic.

To illustrate why this is a problem, consider a simple case: To define the
ideal I2 we have to build pseudo-generic towers to the first two coordinates
of j(Q). To build I3 we need to build a third tower on the third coordinate
of j(Q). However this tower needs to be pseudo-generic over the decisions
made by first two towers, which may not be possible if the first two towers
were chosen badly. Even more problematic, at a limit stage δ the sequence
of pseudo-generic towers built for iterations of length less than α must be
pseudo-generic at α.

In this construction the partial ordering R is a termspace partial ordering
that provides actual M j(P)-generic objects for the iterations j(Q)α, that allow
the embeddings jα : V P∗Qα → M j(P)∗j(Q)j(α)/mα to be extended and cohere
sufficiently to give the definitions of the ideals Iα. The interaction of R

with the other partial orderings and the manner in which it provides generic
objects for j(Q)j(α) is beyond the scope of this survey. �

8.3. Making Natural Ideals Have Well-Founded
Ultrapowers

In this section we briefly summarize some of the results originating from
[47]. We start by giving some criteria for a natural ideal to have interesting
generic ultrapowers. These involve the notion of “good” structure as given
by Definition 3.43.

8.19 Definition. Let I be an ideal on a set Z ⊆ P (X) and A = {aα :
α < γ} ⊆ P (Z) be a maximal antichain relative to I.87 Suppose that θ is a
regular cardinal bigger than 2Z , and N ≺ H(θ) a good structure for I with
I, Z,A ∈ N . Then N catches an index for (or just catches) A iff for some
α ∈ N , N ∩X ∈ aα.

Note that the goodness of N implies that it can catch at most one index
for A. “Catching an index” is the first step towards being “self-generic” in
the sense of Definition 3.45:

8.20 Proposition. If N is good then the following are equivalent:

1. N catches an index for every antichain that belongs to N .
87 Precisely, {[aα]I : α < γ} is a maximal antichain in P (Z)/I.
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2. N is self-generic.

If every good N catches an index for each maximal antichain that belongs to
N and |Z| ≤ |X|, then I is |X|+-saturated.

Proof. Note that N catches an index for A iff there is an a ∈ A ∩ N with
N ∩ X ∈ a. Let j : N̄ → N be the inverse of the transitive collapse map
of N . From the definition, N catches an index for every antichain belonging
to N iff for all antichains A ∈ N ,

A ∩ U(j,N ∩X) ∩N �= ∅.

This latter statement is equivalent to the N̄ -genericity of U(j,N ∩ X) for
(P (Z)/I)N̄ .

The final sentence is a restatement of part 3 of Lemma 3.46. �

The method for making natural ideals be precipitous or have saturation
properties is to create situations where there is a stationary set of good N
that catch many antichains.

The next proposition gives a criterion for precipitousness in these terms.

8.21 Proposition. Let Z ⊆ P (X) and I ⊆ P (Z) be an ideal. Suppose that
for all S ∈ I+, and all sequences 〈An : n ∈ ω〉 of maximal antichains below
[S]I there is an

N ≺ 〈H((2|Z|)+),∈,Δ, I, Z,X, 〈An : n ∈ ω〉〉,

such that:

1. N ∩X ∈ S, and

2. for all n, N catches an index for the antichain An.

Then I is precipitous.

Proof. First note that N is good, since this is part of the definition of catching
an index for an antichain. We use Proposition 2.7. Let 〈An : n ∈ ω〉 be a
tree of maximal antichains below S. Since N is good, there is a a unique
element an of An ∩N for which N ∩ Z ∈ an. Since An+1 refines An, either
an+1 ⊆I an or an+1 ∩ an =I ∅. Since N is good, we must have an+1 ⊆I an.
Thus the sequence 〈an : n ∈ ω〉 forms a branch through the tree of antichains
and N ∩X ∈

⋂
n∈ω an. �

8.22 Definition. Let S ⊆ H(θ) be a stationary set. Then S reflects to a
set of size μ iff there is a set Y ⊆ H(θ) with μ ⊆ Y and |Y | = μ such that
S ∩ P (Y ) is stationary.
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If I is a normal, fine, countably complete ideal on Z ⊆ P (μ), Y is a
set of cardinality μ and S ⊆ P (Y ), then S corresponds canonically to an
element [S̄]I of P (Z)/I. Namely, if one fixes a bijection f : μ → Y , then
S̄ = {z ∈ Z : f“z ∈ S}. By the normality of I, [S̄]I is independent of the
choice of f . Hence it is well-defined to say that S is I-positive iff [S̄]I �= 0.

We can generalize Definition 8.22 as follows:

8.23 Definition. Let I be a normal, fine, countably complete ideal on Z ⊆
P (μ), and S ⊆ H(θ). Then S reflects to a set in I+ iff there is a set Y ⊆ H(θ)
with μ ⊆ Y and |Y | = μ such that S ∩ P (Y ) is I-positive.

In this language, “S reflects to a set of size μ” is equivalent to saying that
S reflects to a positive set with respect to the nonstationary ideal on P (μ).

In certain circumstances the next proposition yields presaturated ideals.

8.24 Proposition. Let Z ⊆ P (μ), γ ≤ μ and I be a normal, fine, countably
complete uniform ideal on Z. Suppose that for all sequences 〈Aα ⊆ P (Z) :
α < γ〉 of maximal antichains relative to I and S0 ∈ I+, if T is the set of
N ≺ 〈H((2|Z|)+),∈,Δ, {I, S0}, 〈Aα : α ∈ γ〉〉 such that:

1. N ∩ μ ∈ S0, and

2. for all α ∈ N ∩ γ, N has an index for the antichain Aα,

then T reflects to a set in I+. Then I is weakly (γ+, μ+)-saturated.88

Proof. Suppose that Y is a set of size μ with μ ⊆ Y such that T ∩ P (Y ) is
in I+. Let f : μ → Y be a bijection. The set of M ∈ P (Y ) such that M is
closed under f and f −1 is closed and unbounded. Let T ′ be the collection
of N ∈ T ∩ P (Y ) that are closed under f and f −1 such that f −1(N) ∈ Z.
Then [T̄ ]I = [T̄ ′]I . Letting S = {N ∩ μ : N ∈ T ′} we see that S = T̄ ′.

Since S ∈ I+ and |Y | = μ it suffices to show that for each α < γ, {a ∩ S :
a ∩ S /∈ I and a ∈ Aα ∩ Y } is a maximal antichain below S.

Modulo closed unbounded sets, 4(Aα ∩ Y ) ∩ S is the collection of z ∈ S
such that there is a δ ∈ z such that z ∈ f(δ) and f(δ) ∈ Aα. But this
collection is a closed unbounded set relative to S. For if z ∈ S and α ∈ z,
then N = f“z ∈ T . Hence N catches Aα. Thus there is a δ ∈ z such that
z ∈ f(δ) and f(δ) ∈ Aα.

Hence, for a closed unbounded set of z, if z ∈ S then z ∈ 4(Aα∩Y ). This
implies that S ≤I 4(Aα ∩ Y ). By Theorem 2.24, 4(Aα ∩ Y ) is the Boolean
sum of Aα ∩ Y in P (Z)/I. Hence {a ∩ S : a ∩ S /∈ I and a ∈ Aα ∩ Y } is a
maximal antichain below S. �

Catching Antichains Using Reflection

We now introduce a technique for modifying an existing natural ideal to
make it precipitous. We will follow the original route to these results from
88 Weak saturation is defined in Definition 4.5.
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[47] which use reflection and a supercompact.89 Woodin [126] discovered how
to modify these arguments to work from a Woodin cardinal. His arguments
do not use stationary set reflection.

8.25 Lemma. Suppose that θ 5 μ are regular cardinals and I is a normal
and fine ideal on Z ⊆ P (μ). Suppose that R ⊆ P (H(θ)) is a stationary set
of good structures such that the projection to P (μ) of any relatively closed
unbounded subset of R belongs to Ĭ and every stationary subset of R reflects
to a set in I+. Then for each maximal antichain A ⊆ P (Z)/I and each
expansion A of 〈H(θ),∈,Δ〉 there is a closed unbounded set C of N ≺ A such
that if:

(a) N ∈ C ∩R, and

(b) A ∈ N ,

then there is an N ′ ≺ A such that:

(A) N ′ ∈ R,

(B) N ′ ∩ μ = N ∩ μ,

(C) N ≺ N ′ ≺ A, and

(D) N ′ catches A.

Proof. Suppose not. Then there is a stationary set B of N ≺ A such that:

(a) B ⊆ R,

(b) A ∈ N for all N ∈ B,

and such that whenever N ′ ≺ A is such that

(A) N ′ ∈ R,

(B) N ′ ∩ μ = N ∩ μ, and

(C) N ≺ N ′

then N ′ does not catch A.
Let Y ⊆ H(θ) with μ ⊆ Y and |Y | = μ such that B ∩ P (Y ) is I-positive.

Let f : μ→ Y be a bijection, and S = {z : f“z ∩ μ = z and f“z ∈ T}. Then
S is I-positive, so there is an b ∈ A such that S ∩ b is in I+.

The collection of M ∈ R such that M ≺ A and b, f ∈ M is closed un-
bounded relative to R. Thus we can find an N ′ ≺ A in R with b, f ∈ N ′

and N ′ ∩ μ ∈ S ∩ b. Let N = f“N ′ ∩ μ. Then N ∈ B, N ∩ μ = N ′ ∩ μ and
N ≺ N ′, a contradiction. �
89 Matsubara [93] showed how to interpolate ideal assumptions to get similar results; his
arguments use a result similar to Theorem 5.26 that he discovered independently to prove
the reflection properties needed to catch antichains.
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Reflecting Stationary Sets

The following definition gives a name for a standard idea:

8.26 Definition. Let X be a set, and Z ⊆ P (X) be stationary. Then Z
is μ-robust iff for all stationary subsets S ⊆ Z and all <μ-closed partial
orderings P, S is stationary in V P.

Abstract forcing arguments easily show that Z is μ-robust iff every sta-
tionary subset of Z is preserved under forcing with Col(μ, |Z|).

We now give some examples of robust stationary sets.

8.27 Example. Let X = μ be a cardinal and Z = μ. Since <μ-closed
forcing does not destroy stationary subsets of μ, Z is λ-robust for all λ ≥ μ.

Our next example illustrates the point of robustness. We recall the follow-
ing definition from [42]. Let N ⊆ H(λ). Then N is internally approachable
(or IA) of length β iff there is a sequence 〈Nα : α < β〉 such that:

1. N =
⋃

α<β Nα,

2. Nα ⊆ Nβ for α < β, and

3. for all β′ < β, 〈Nα : α < β′〉 ∈ N .

Given an N ≺ 〈H(λ),∈,Δ〉, any two approaching sequences have the same
cofinality. If this cofinality is γ we will say that N ∈ IA(Cof(γ)).

8.28 Example. Let μ be a regular cardinal and let Z = {z ∈ [H(λ)]<μ :
z ∩ μ ∈ μ and z is internally approachable}. Then Z is a maximal μ-robust
subset of {z ∈ [H(λ)]<μ : z ∩ μ ∈ μ}.

This follows from Lemma 2.5 of [42] where it is shown that IA is μ-robust
and for all sets S ⊆ [H(λ)]<μ ∩ {N : N ∩ μ ∈ μ} and all V -generic G ⊆
Col(μ,H(λ)),

V [G] |= [S]NS = [S ∩ IA]NS.

We now present a slight generalization of Example 8.28 that covers Chang’s
Conjecture and clarifies the results in [47] slightly:

8.29 Definition. Suppose that N ≺ H(θ) with |N | < μ. Then N is μ-
weakly approachable iff there is an increasing continuous sequence 〈Nα : α <
sup(N ∩ μ)〉 such that:

1. |Nα| < μ for all α,

2. N ⊆
⋃

α∈N ∩μ Nα, and

3. for all β ∈ N ∩ μ, 〈Nα : α ∈ β〉 ∈ N .
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If N ∈ [H(θ)]<μ and N ∩ μ ∈ μ, then N is μ-weakly approachable iff
N is internally approachable. It is a standard fact (see [47]) that if θ > η,
N ≺ H(θ) is internally approachable, η ∈ N , and a ∈ η, then SkH(θ)(N∪{a})
is also internally approachable. The following generalization is shown using
the same technique:

8.30 Proposition. Suppose that θ is a regular uncountable cardinal and
μ < θ. Let N ≺ 〈H(θ),∈,Δ〉 be a μ-weakly approachable structure and a ∈ y

for some y ∈ N . Then SkH(θ)(N ∪ {a}) is μ-weakly approachable.

Proof (Sketch). The structure 〈H(θ) ∈,Δ〉 has definable Skolem functions.
Fix an internally approachable structure N ≺ H(θ) and let 〈Nα : α ∈ γ〉 be
a witness to approachability. For each x ∈ N the restriction of each of those
Skolem functions to x is a member of N . For each α, let N ∗

α be the closure of
Nα ∪ {a} under all functions from H(θ) to H(θ) that belong to Nα+1. Then
the sequence 〈N ∗

α : α ∈ γ〉 witnesses the fact that SkH(θ)(N ∪ {a}) is weakly
approachable. �

Weak approachability is intimately tied to robustness. We now describe
the relationship.

8.31 Proposition. Let μ and θ be regular cardinals with θ > 2μ. Then
any stationary collection S ⊆ P (H(θ)) of μ-weakly approachable structures
is μ-robust.

Proof. Let S be a stationary subset of the μ-weakly approachable subsets of
H(θ) and κ be a cardinal. Suppose that p ∈ Col(μ, κ) forces that S is not
stationary in V [G], where G ⊆ Col(μ, κ) is generic. Let λ 5 max{|S|, κ} be
a regular cardinal and Ḟ be a Col(μ, κ)-term for a function from H[θ]<ω to
H(θ) such that p � {N ∈ [H(θ)]<μ : N is closed under Ḟ} ∩ S = ∅. Since S
is stationary there is an N ≺ 〈H(λ),∈,Δ, S, κ, p, Ḟ 〉 with |N | < μ such that
N ∩H(θ) ∈ S. Let 〈Nα : α ∈ sup(N ∩ μ)〉 witness the weak approachability
of N ∩H(θ).

Since β ∈ N implies that 〈Nα : α ∈ β〉 ∈ N , one sees that there is a
decreasing sequence of conditions 〈pα : α ∈ sup(N ∩ μ)〉 below p such that

1. for all β ∈ N ∩ μ, 〈pα : α < β〉 ∈ N , and

2. if x ∈ Nα ∩ [H(θ)]<ω and α < β, then there is a y such that pβ �
Ḟ (x) = y.

Since |N | < μ, we see that q =
⋃

α∈N ∩μ pα ∈ Col(μ, κ). However q �
“N ∩H(θ) is closed under Ḟ”, a contradiction. �

We can generalize Lemma 2.5 of [42] with the following remark:

8.32 Remark. Let S ⊆ [H(θ)]<μ. If G ⊆ Col(μ, |H(θ)|) is generic, then
in V [G] there is a closed unbounded set C ⊆ P (H(θ)V ) such that S ∩ C ⊆
{N : N is μ-weakly approachable in V }. In particular, in V [G], [S]NS =
[S ∩ {weakly approachable structures}]NS.
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Proof. View G as a function from μ to H(θ)V and let Nα = G“α. Let
C = {N : N ≺ 〈H(θ)V ,∈,Δ, G〉}. Then for N ∈ C ∩ ([H(θ)]<μ)V , the
sequence 〈Nα : α ∈ sup(N ∩μ)〉 witnesses that N is weakly approachable. �

We note that if |H(μ)| = μ and A is an algebra expanding the structure
〈H(μ),∈,Δ〉, then H(μ) is a union of a continuously increasing sequence of
structures 〈Nα : α < μ〉 such that

1. |Nα| < μ,

2. for β < β′, 〈Nα : α < β〉 ∈ Nβ′ , and

3. Nα ≺ A.

If M ≺ 〈H(μ),∈,Δ, 〈Nα : α < μ〉〉 has cardinality less than μ, then M is
μ-weakly approachable. Hence, the μ-weakly approachable structures form a
closed unbounded set in [H(μ)]<μ.

Using this and the usual arguments that show that the nonstationary ideals
restricted to IA form a tower we see:

8.33 Proposition. Suppose that μ ≤ θ < θ′ are regular. Then

1. The nonstationary ideal on [H(θ′)]<μ restricted to the μ-weakly ap-
proachable structures projects to the nonstationary ideal on [H(θ)]<μ

restricted to the μ-weakly approachable structures.

2. If |H(μ)| = μ, then the μ-weakly approachable structures form a closed
unbounded set in [H(μ)]<μ.

8.34 Example (Foreman et al. [47]). Suppose that (μ, ρ) →→ (μ′, ρ′). Then
for all θ ≥ μ, W = {N ≺ H(θ) : |N ∩ μ| = μ′ and |N ∩ ρ| = ρ′ and N
is μ-weakly approachable} is stationary. Moreover, if |H(μ)| = μ then the
projection of NS�W to an ideal on P (H(μ)) is the Chang ideal on {N ≺
H(μ) : |N | = μ′ and |N ∩ ρ| = ρ′}.

Our use of the notion of robustness is the following lemma.

8.35 Lemma. Suppose that κ is a supercompact cardinal. Let μ < κ be
regular. Let G ⊆ Col(μ,<κ) be generic. In V[G], if R ⊆ P (H(θ)) is a μ-
robust stationary set and S ⊆ R is stationary, then S reflects to a set of
size μ.

Proof. Let j : V → M be a |H(θ)|-supercompact embedding. Then for all
generic G ⊆ Col(μ,<κ), there is a generic H ⊆ Col(μ,<j(κ)) such that j can
be extended to a

ĵ : V [G] →M [H].

By robustness, ĵ(S) ∩ P (ĵ“H(θ)) is stationary in V [H] and M [H] |=
|ĵ“H(θ)| = μ. Hence M [H] |=“there is an Y ⊆ H(j(θ)) with μ ⊆ Y and
|Y | = μ such that ĵ(S) ∩ P (Y ) is stationary in P (Y )”. Hence the statement
holds in V [G] by elementarity. �
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Catching Your Tail

We now describe a typical “catch-your-tail” argument. Catching your tail
allows one to change “there is a club set of N” in antichain catching lem-
mas (such as Lemma 8.25) to “for every N”. The hypotheses of the next
lemma are those of Lemma 8.25, with R being the μ-weakly approachable
sets and I being the nonstationary ideal. The improvement on the conclusion
of Lemma 8.25 is that instead of saying that there is a closed unbounded set
of structures that can be expanded to catch a fixed maximal antichain A,
we find a B such that for every elementary substructure N ≺ B and every
maximal antichain A in N , N can be so extended to catch A.

8.36 Lemma. Let:

1. θ 5 μ be regular cardinals,

2. R be the set of μ-weakly approachable subsets of H(θ),

3. A be a structure expanding 〈H(θ),∈,Δ〉,

4. Z be the set of μ-weakly approachable subsets of H(μ), and

5. I be NS�Z.

Suppose that every stationary subset of R reflects to a stationary set of size μ.
Then there is a structure B with domain H(θ) expanding 〈H(θ),∈,Δ, μ,R〉
and A such that for every N ≺ B with N ∈ R and for every maximal
antichain A ⊆ P (Z)/I with A ∈ N there is an N ′ ∈ R with

(A) N ′ ∩ μ = N ∩ μ,

(B) N ≺ N ′ ≺ B, and

(C) N ′ catches an index for A.

Proof. Let θ′ 5 θ and A∗ = 〈H(θ′),∈,Δ,A, {θ, Z, μ,R, I}〉. Let 〈fi : i ∈ ω〉
be a complete set of Skolem functions for A∗ closed under composition, where
each fi is definable in A∗. Let B be the expansion of A and 〈H(θ),∈,Δ, μ,R〉
built by adding function symbols for 〈gi : i ∈ ω〉 where the gi’s are the fi’s
restricted to H(θ). Then any elementary substructure N of B is of the form
N ∗ ∩H(θ) for some N ∗ ≺ A∗.

Suppose now that N ≺ B belongs to R and that A ∈ N is a maximal
antichain. Let N ∗ be the Skolem hull of N in A∗. Since A ∈ N ∗ and A is
definable in A∗, if C is the closed unbounded set given in the conclusion of
Lemma 8.25 applied to A and A, then C ∈ N ∗. In particular, N ∈ C.

Hence we can find an M ∈ R with N ≺ M ≺ A, M ∩ μ = N ∩ μ and M
catches an index for A.

Suppose that a is the index caught by M . Let N ′ = SkA(N ∪ {a}). Then
N ≺ N ′ ≺ M and N ∩ μ = N ′ ∩ μ. Hence N ′ catches an index for A. By
Proposition 8.30, N ′ is weakly approachable.
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It remains to see that N ′ ≺ B. Every element of SkB(N ∪ {a}) is of
the form gi(�x, a) for some �x ∈ [N ]<ω. Fixing �x, we can view gi(�x, ·) as a
function h from A to H(θ). Since this function is definable in B from �x and
N ≺ B it must belong to N . In particular, h(a) ∈ SkA(N ∪{a}) = N ′. Thus
gi(�x, a) ∈ N ′, as desired. �

We note that Lemma 8.36 can be reformulated equivalently by having a
closed unbounded set D play the role of the structure A. In this alternate
version there is a closed unbounded set D ⊆ H(θ) replacing A in the third
clause of the lemma. The conclusion is that there is a structure B such that
for every weakly approachable structure N ≺ B in D and every maximal
antichain A ∈ N there is a weakly approachable N ′ ≺ B belonging to D that
catches A and has the same intersection with μ that N does.

This conclusion can be further reformulated combinatorially by saying for
all closed unbounded sets D there is a closed unbounded set C ⊆ D for all
weakly approachable N ∈ C and all maximal antichains A ∈ N there is a
weakly approachable elementary extension N ′ ∈ C catching A that lies in C.
This combinatorial version is close to what is necessary for stationary tower
arguments.

The Nonstationary Ideal is Precipitous

Since all N ≺ H(θ) are good for the nonstationary ideal, we immediately
deduce:

8.37 Theorem (Foreman et al. [47]). Suppose that κ is a supercompact car-
dinal and μ < κ is regular. Suppose that G ⊆ Col(μ,<κ) is generic. Then in
V [G] the nonstationary ideal restricted to [μ]<μ is precipitous. In particular:

1. NS�μ is precipitous.

2. NS�[μ]<δ is precipitous for all uncountable regular cardinals δ.

3. If (μ, ρ) →→ (μ′, ρ′) in V for cardinals ρ, μ′, ρ′ then in V [G], the Chang
ideal CC((μ, ρ), (μ′, ρ′)) is precipitous.

4. If μ = η+, where η is a Jónsson cardinal then NS�{N ∈ [H(μ)]<μ :
|N ∩ η| = η and η � N} is precipitous.

Proof. Let G ⊆ Col(μ,<κ) be generic. We work in V [G]. Note that |H(μ)| =
μ in V [G] so we work with [H(μ)]<μ.

Let R be the collection of μ-robust subsets of H((2μ)+). Then by Propo-
sition 8.33 the nonstationary ideal on R projects to the nonstationary ideal
on [H(μ)]<μ.

We use Proposition 8.21. Let 〈An : n ∈ ω〉 be a tree of antichains. Choose
N0 ≺ H(θ) such that N0 ∈ R and 〈An : n ∈ ω〉 ∈ N0. Applying Lemma 8.36,
we see that we can build a chain 〈Nn : n ∈ ω〉 of elementary substructures of
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H((2μ)+) such that Nn+1 catches An and Nn ∈ R and Nn ∩ μ = Nn+1 ∩ μ.
Let N =

⋃
n Nn. Then N ∩ μ belongs to the projection of R to μ, is good

and catches an index for each antichain An. �

Saturation of the Nonstationary Ideal

Suppose that κ is supercompact and G ⊆ Col(ω1, <κ) is generic. We work
in V [G], noting that there, for all λ ≥ ω1, every stationary subset of [λ]<ω1

reflects to a set of size ℵ1.
Let 〈An : n ∈ ω〉 be a collection of maximal antichains in P (ω1)/NSω1 and

fix a θ 5 ω1. We follow the arguments of Theorem 8.37. Since every count-
able N ≺ 〈H(θ),∈,Δ〉 is internally approachable, if A is an expansion of
〈H(θ),∈,Δ, 〈An : n ∈ ω〉〉 and N ≺ A then there is a countable N ′ ≺ A

catching every An. Hence the collection S of countable M ≺ 〈H(θ),∈,
Δ〉 that catch every An is stationary. But then S reflects to a set of size ℵ1.
Hence by Proposition 8.24, we see that P (ω1)/NSω1 is weakly (ℵ1,ℵ2)-sat-
urated. In particular, it is presaturated. We have shown:

8.38 Corollary. Suppose that κ is supercompact and G ⊆ Col(ω1, <κ) is
generic. Then in V [G], CH holds and NSω1 is presaturated.

If we want to have NSω1 ℵ2-saturated, then we need to do more than
collapse a large cardinal to be ω2. We must control the size of maximal
antichains.

The most näıve approach would be to take a large maximal antichain
A = 〈aα : α < γ〉 with γ ≥ ω2 in P (ω1)/NSω1 and collapse γ to have
cardinality ω1. The problem with this approach is that A no longer is a
maximal antichain after the collapse.

We can make antichains persistently maximal by the following trick. Sup-
pose that A ⊆ P (ω1)/NSω1 is any antichain of size at most ℵ1, and S is 4A.
If we force with the partial ordering PS for adding a closed unbounded set
inside S to get a generic G, then in V [G],A is a maximal antichain. Moreover
A remains a maximal antichain in any model W ⊇ V [G] with ωW

1 = ω
V [G]
1 .

This suggests a strategy of reducing the size of antichains A = 〈aα : α < γ〉
by shooting closed unbounded sets through the diagonal union of the first ω1

elements of A, 〈aα : α < ω1〉, and iterating this forcing for all antichains. The
problem with this approach, as is typical for iterations that destroy stationary
sets, is that ω1 is collapsed by the iteration.

The solution is to combine the two approaches into a single forcing:

8.39 Definition (Foreman et al. [47]). Suppose that A = 〈aα : α < γ〉 is
a maximal antichain in P (ω1)/NSω1 . The antichain sealing forcing for A is
Col(ω1, γ) ∗ PT where T is the diagonal union of A in V Col(ω1,γ).

Iterating this forcing does not, in general, preserve ω1. However, it is still
relatively gentle to V :
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8.40 Lemma. Suppose that S ⊆ ω1 is a stationary set. Then for all maximal
antichains A ⊆ P (ω1)/NSω1 , the antichain sealing forcing for A preserves
the stationarity of S.

Proof. Let P be the antichain sealing forcing. Suppose that a P-term Ċ for a
closed unbounded subset of ω1 and (p, q) ∈ P are such that (p, q) � Ċ∩S = ∅.
Let a ∈ A be such that a ∩ S is stationary. Let θ 5 ω1 and N ≺ 〈H(θ),∈,
Δ,A, {p, a, S, Ċ}〉 be a countable set such that δ =def N ∩ω1 ∈ a∩S. Choose
a descending sequence 〈(pi, qi) : i ∈ ω〉 ⊆ P ∩ N below (p, q) such that for
all dense sets D ⊆ P with D ∈ N there is an i such that (pi, qi) ∈ D. Then
m = (

⋃
i∈ω pi,

⋃
i∈ω qi ∪ {δ}) ∈ P and is stronger than each (pi, qi). Hence m

is N generic and forces that δ is a limit point of Ċ, a contradiction. �

There are models where preserving stationary sets is equivalent to being
semiproper:

8.41 Theorem (Foreman et al. [47]). Suppose that P is a κ-c.c. partial order-
ing that preserves stationary subsets of ω1 and collapses κ to be ω2. Suppose
that there is a λ-supercompact embedding j : V → M with critical point κ
such that j(P) ∼ P∗Col(ω1, λ)∗R, where R preserves stationary subsets of ω1

in V P∗Col(ω1,λ). Then for all generic G ⊆ P, and partial orderings Q ∈ V [G]:

If Q preserves stationary subsets of ω1 and 22|Q|
<λ, then Q is semiproper.

Proof (Sketch). Suppose that G ⊆ P is generic and Q preserves stationary
subsets of ω1. If Q is not semiproper, then there is a “bad” stationary set
B ⊆ [H((22|Q|

)+)]<ω1 and a fixed condition p ∈ Q such that for all N ∈ B,
p ∈ N and if H ⊆ Q is generic with p ∈ H, then N [H] ∩ ω1 �= N ∩ ω1.

Let λ = |H((22|Q|
)+)|. Choose a λ-supercompact embedding j : V → M

such that j(P) ∼ P ∗ Col(ω1, λ) ∗ R, where R preserves stationary subsets
of ω1. Let G ∗H0 ∗H1 ⊆ P ∗ Col(ω1, λ) ∗ R be a generic object extending G
and ĵ : V [G] →M [G ∗H0 ∗H1] be an elementary embedding extending j.

Since Col(ω1, λ) is <ω1-closed, it preserves the stationarity of B. Let
h : ω1 → H((22|Q|

)+) be a bijection lying in M [G ∗ H0], and B′ ⊆ ω1 be
{α : h“α ∈ B, h“α ∩ α = α}. Then B′ is stationary in V [G ∗H0] and so in
V [G ∗H0 ∗H1].

Let H2 ⊆ j(Q) be generic over M [G ∗H0 ∗H1] with j(p) ∈ H2. Let N ′ be
a countable elementary substructure of

〈H((22j(|Q|)
)+)M [G∗H0∗H1],∈,Δ, j(Q),Q, h, j�H((22|Q|

)+), H2〉

such that δ =def N ′ ∩ω1 ∈ B′. Let N0 = h“δ. Then N0 = N ′ ∩H((22|Q|
)+)V

and N0 ∈ B. Let N = j(N0). Then N = j“N0 ⊆ N ′ and N ∈ j(B). But
N [H2] ⊆ N ′, so δ ⊆ N ∩ ω1 ⊆ N [H2] ∩ ω1 ⊆ N ′ ∩ ω1 = δ. Hence N ∈ j(B)
and N ∩ω1 = N [H2]∩ω1, a contradiction to the definition of j(B) in M . �
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If P satisfies the hypotheses of Theorem 8.41, then in V P every antichain
sealing forcing is semiproper. An elementary chain argument shows that
when this is the case, the partial ordering

Col(ω1, 2ω1) ∗
∏

A∈V
<ω1-supports

PTA

is also semiproper, where the product is taken over all V -maximal antichain
A ⊆ P (ω1)V /NSω1 and PTA is the partial ordering for shooting a closed
unbounded set through 4A.

The Equivalence of “Semiproper” with “Stationary Set
Preserving” in the Case of Antichain Sealing Forcing

Since an important special case of Theorem 8.41 is when Q is the antichain
sealing forcing, we discuss the proof in this special case. Assume that P

satisfies the hypotheses of the theorem.
Let G ⊆ P be generic and Q = Col(ω1, γ) ∗ PT be the antichain sealing

forcing for A. We show that Q is semiproper in V [G]. Let θ = (22|Q|
)+.

The argument for Lemma 8.40 shows that if N ′ ≺ 〈H(θ),∈,Δ,A〉 catches
A, and (p, q) ∈ N ′ ∩ Q there is a generic condition m ≤ (p, q) for N ′. If
N ≺ N ′ and N ∩ ω1 = N ′ ∩ ω1 then m is a semigeneric condition for N .

Thus to see that Q is semiproper it suffices to show that for each A there
is a closed unbounded set C relative to [H(θ)]<ω1 of N ≺ A with A ∈ N such
that there is an N ′ ≺ A:

(A) N ′ ∩ ω1 = N ∩ ω1,

(B) N ≺ N ′, and

(C) N ′ catches A.

If this fails then there is a structure A with domain H(θ) and a bad
stationary set B ⊆ [H(θ)]<ω1 such that for all N ∈ B, we have A ∈ N and
whenever N ′ ≺ A is such that

(A) N ′ ∩ ω1 = N ∩ ω1, and

(B) N ≺ N ′,

then

(C) N ′ does not catch A.

By the hypotheses of the theorem we can find a |H(θ)|-supercompact em-
bedding j : V → M such that j(P) ∼ P ∗ Col(ω1, λ) ∗ R, where R preserves
stationary subsets of ω1. Let G∗H0 ∗H1 ⊆ P∗Col(ω1, λ)∗R be a generic ob-
ject extending G and ĵ : V [G] →M [G∗H0∗H1] be an elementary embedding
extending j.
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Since Col(ω1, |H(θ)|) is <ω1-closed, it preserves the stationarity of B. Let
h : ω1 → H(θ) be a bijection lying in M [G ∗ H0], and B′ ⊆ ω1 be {α :
h“α ∈ B, h“α ∩ α = α}. Then B′ is stationary in V [G ∗ H0 ∗ H1]. Hence
there is a b ∈ j(A) such that B′ is compatible with b.

Let N ′ ≺ j(A) be such that

1. N ′ ∩ ω1 ∈ b ∩B′, and

2. {j�H(θ), h, b} ⊆ N ′.

Let N0 = h“δ, where δ = N ′ ∩ ω1. Then N0 ∈ B and N0 = N ′ ∩H(θ)V . Let
N = j(N0). Then N = j“N0 and N ∈ j(B).

Thus in M [G ∗H0 ∗H1], N belongs to the bad set j(B). But:

(A) N ′ ∩ ω1 = N ∩ ω1,

(B) N ≺ N ′, and

(C) N ′ catches j(A),

which is a contradiction.
We now outline the argument from [47] that one can force NSω1 to be

ℵ2-saturated, provided one starts with a model with a supercompact cardi-
nal. The actual argument given there was more ambitious: it showed that
Martin’s Maximum90 is consistent. The iteration given here is specific to the
nonstationary ideal.

Define a semiproper iteration P = Pκ of length κ with revised count-
able supports that, at a typical limit stage α, seals a maximal antichain
Aα ⊆ P (ω1)/NSω1 lying in V Pα provided that every antichain sealing forcing
lying in V Pα is semiproper. There are several mechanisms for choosing Aα

that work. We can use a “Laver function” f ,91 and force with f(α) if f(α)
is a maximal antichain in V Pα . Equally well, we can generically choose a
maximal antichain Aα. Alternately we could simultaneously seal all maxi-
mal antichains A ⊆ P (ω1)/NSω1 lying in V Pα with the forcing described after
Theorem 8.41. In the original proof a Laver function was used.

If there is a maximal antichain which for which the sealing forcing is not
semiproper, then at stage α the iteration P forces with ColPα(ω1, (22ω2 )+).
Then P is κ-c.c., semiproper and collapses κ to be ω2.

If Q is an antichain sealing forcing in V P, then Q is semiproper. For oth-
erwise, P would satisfy the hypotheses of Theorem 8.41. But the conclusion
of the theorem says that “semiproper” and “stationary set preserving” are
equivalent, a contradiction.

By reflection, there are many α such that every antichain sealing forcing at
stage α is semiproper. Whichever diagonalization method we used to choose

90 See Theorem 8.48.
91 That is, a “universal” function available at supercompacts that anticipates all possibil-
ities; see Laver [82].
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the forcing at stage α, this iteration has the property that if A is a maximal
antichain in V P then for some α < κ,

Aα = {z ⊆ ω1 : z ∈ V Pα and z ∈ Aα}

lies in V Pα and is a maximal antichain in (P (ω1)/NSω1)
Pα and is sealed at

stage α. Thus A = Aα. Since |Aα| = ω1 in V P, we see that the NSω1 is
ℵ2-saturated.

We have outlined a proof of the following theorem:

8.42 Theorem. Suppose that κ is a supercompact cardinal, then there is a
κ-c.c. semiproper forcing that makes NSω1 ℵ2-saturated.

Unlike iterations for creating general forcing axioms, the antichain sealing
forcing does not require a “guessing function”, and hence with some modi-
fications to the proof, the large cardinal hypothesis of Theorem 8.42 can be
reduced to a Woodin cardinal (see [126]).

Because of the Woodin result Theorem 5.64, we cannot hope that the
forcing for making NSω1 ℵ2-saturated preserves the Continuum Hypothesis.
However, we can do something only slightly weaker:

8.43 Definition (Foreman et al. [47]). Let S ⊆ ω1 be stationary and A ⊆
P (ω1)/NSω1�S a maximal antichain. The antichain sealing forcing relative
to S is the partial ordering Col(ω1, |A|) ∗ PT where T is the union of ω1 \ S
and the diagonal union of A in V Col(ω1,|A|).

If G∗H ⊆ Col(ω1, |A|)∗PT is generic over V , thenA is a maximal antichain
in P (ω1)/(NSω1�S) in any model W ⊇ V [G ∗ H] such that ωV

1 = ω
V [G∗H]
1 .

Let S0 be a co-stationary set and S = ω1 \ S0. Then the antichain sealing
forcing relative to S0 has a property discovered by Shelah [103] known as
S-closure where S = ω1 \ S0. If P is a partial ordering with this property
then P does not add new ω-sequences to V . Moreover, S-closure is preserved
under iterations with countable supports.

Hence if we define an iteration with countable supports up to a supercom-
pact cardinal by alternately using the antichain sealing forcing relative to a
stationary and co-stationary set S0 and collapsing ω2 we construct a model
as above in which CH holds and NSω1�S0 is ℵ2-saturated.

The remarkable thing about this iteration is that it contains Col(ω1, <κ)
as a regular subalgebra. In particular, by Lemma 3.31, we see that if we
collapse a supercompact cardinal to be ω2 using countably closed forcing
then there is an ℵ2-saturated ideal on ω1.

We summarize:

8.44 Theorem (Foreman et al. [47]). Suppose that κ is a supercompact
cardinal. Then:

1. If S is a stationary and co-stationary set there is a semiproper forcing
that does not add new ω-sequences and makes NSω1�S ℵ2-saturated. In
particular, if CH holds in V then it holds in the extension.
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2. In V Col(ω1,<κ), there is an ℵ2-saturated ideal on ω1.

We note that Todorčević [121] later explicitly described the saturated ideal
in the second clause above. As with the full nonstationary ideal, modifications
of the argument give the same results assuming only that κ is a Woodin
cardinal [104].

Recently Ishiu [59, 60] was able to adapt these techniques to show:

8.45 Theorem. Let κ be a Woodin cardinal. Then:

1. If μ < κ is regular and C = 〈Cα : α ∈ S〉 is a club guessing sequence on
a stationary set S ⊆ μ, and G ⊆ Col(μ,<κ) is generic, then in V [G]
the club guessing ideal associated with C is precipitous.

2. There is a κ-c.c. partial ordering P such that if G ⊆ P is generic then:

(a) V and V [G] have the same ω1,

(b) in V [G], κ is ω2, CH holds, and

(c) there is a club guessing sequence C = 〈Cα : α ∈ ω1〉 such that the
club guessing ideal associated with C is ℵ2-saturated. Moreover this
ideal is not the nonstationary ideal restricted to a stationary set.

For this theorem, Ishiu studied towers of ideals that are analogous to the
stationary tower, suitably adapted to club guessing situations.

8.4. Martin’s Maximum and Related Topics

The results of this section appear in [47]. We begin with an examination
of some properties that NSω1 has when it is ℵ2-saturated. The first result
shows that an appropriate version of Chang’s Conjecture implies that the
nonstationary ideal is c.c.c.-indestructible. This version of Chang’s Conjec-
ture is simpler than one given in [6] for preservation of saturated ideals and
implies the other version in the special case of the nonstationary ideal. In
Sect. 8.6, we give a method of Donder for producing c.c.c.-destructible sat-
urated ideals on ω1, and discuss a theorem of Shelah that shows that NSω1

can be c.c.c.-destructible.

8.46 Theorem. Suppose that for all structures A = 〈ω2, fi, Rj , ck〉i,j,k∈ω and
all stationary sets T ⊆ ω1 there is a B ≺ A with |B| = ω1 and B ∩ ω1 ∈ T .
If NSω1 is ℵ2-saturated and P is a c.c.c. partial ordering then NSω1 is ℵ2-
saturated in V P.

Proof. By Corollary 7.21, it suffices to show that for all generic G ⊆ P (ω1)/
NSω1 , if j : V → M is the generic ultrapower then j(P) is ℵV

2 -c.c. in V [G].
If this fails there is a stationary T ⊆ ω1 and a collection of functions 〈fα :
α < ωV

2 〉 such that fα : ω1 → P and for all α, β the set Cα,β = {δ : δ /∈ T or
fα(δ) is incompatible with fβ(δ)} is closed unbounded.

Let θ be sufficiently large and B ≺ 〈H(θ),∈,Δ, T,P, 〈fα〉〉 be such that
|B| = ω1 and B ∩ ω1 =def δ ∈ T . Then for all distinct α and β in B ∩ ω2,
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Cα,β ∈ B, and hence δ ∈ Cα,β . But then {fα(δ) : α ∈ B ∩ ω2} is an
uncountable antichain in P, a contradiction. �

Under MA, if NSω1 is ℵ2-saturated, it yields minimal degrees of reals in
forcing extensions.

8.47 Theorem. Suppose that Martin’s Axiom holds and CH fails. Let I be
an ℵ2-saturated ideal on ω1 and G ⊆ P (ω1)/I be generic. Suppose that r is
a real in V [G] that does not belong to V . Then V [r] = V [G].

Proof. Let j : V → M be the generic ultrapower. Then r ∈ M , so there is
a function f : ω1 → 2ω lying in V such that [f ]M = r. By Lemma 2.37, we
can assume that f is one-to-one.

Fix a recursive enumeration 〈σn : n ∈ ω〉 of 2<ω. For s ∈ 2ω, let Seq(s) =
{n : for some k, s�k = σn}. A standard application of MA shows for all
X ⊆ ω1, there is a set aX ⊆ ω such that for all α ∈ ω1,

α ∈ X iff |aX ∩ Seq(f(α))| < ω.

Then X ∈ G iff Seq(r) ∩ aX is finite. Hence from r we can recover G. �

We note that we only use MAω1 and that this method of proof works
equally well to show in ZFC + MAω1 that Namba forcing with stationary
branching trees yields a minimal degree.

When the Steel-Van Wesep proof of the consistency of ZFC + “NSω1 is ℵ2-
saturated” first appeared, it was not known that large cardinals implied AD
(or ADR), and hence it was not known that ZFC + “NSω1 is ℵ2-saturated”
was consistent relative to large cardinals. The original proof of the consis-
tency of ZFC + “NSω1 is ℵ2-saturated” from large cardinals went by proving
the consistency of Martin’s Maximum. Martin’s Maximum is a provably
strongest forcing axiom and has the following statement:

Suppose that P is a partial ordering with the property that every
stationary S ⊆ ω1 remains stationary after forcing with P. Let
D = 〈Dα : α ∈ ω1〉 be a sequence of dense subsets of P. Then
there is a filter F ⊆ P such that for all α, F ∩Dα �= ∅.

We now show:

8.48 Theorem. Suppose that Martin’s Maximum holds. Then NSω1 is ℵ2-
saturated.

Proof. Let A = 〈aα : α < γ〉 be a maximal antichain in P (ω1)/NSω1 . Let P

be the antichain sealing forcing for A.92 Then by Lemma 8.40, P preserves
stationary subsets of ω1.

Recall that P is Col(ω1, γ)∗PT , where PT is the partial ordering for shoot-
ing a closed unbounded set through T = 4GA. A dense collection of the
92 See Definition 8.39.
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conditions are of the form (p, q), where p ∈ Col(ω1, γ) and q is a closed
bounded subset of ω1. Let Dα be the dense collection of conditions with α
in the domain of p and sup(q) > α.

Let F ⊆ P be a filter such that F ∩Dα �= ∅ for all α. Set G =
⋃
{p : for

some q, (p, q) ∈ F}, and C =
⋃
{q : for some p, (p, q) ∈ F}. Then C is a closed

unbounded subset of ω1 inside 4{aG(α) : α ∈ ω1}. Hence {aG(α) : α ∈ ω1} is
a maximal antichain and so |γ| ≤ ω1. �

Since c.c.c. forcing preserves stationary subsets of ω1, Martin’s Maximum
implies MAω1 . Moreover, Martin’s Maximum implies Strong Chang’s Con-
jecture in a form even stronger than the hypothesis of Theorem 8.46 (see
[47]). Hence we get the following corollary.

8.49 Corollary. Suppose that Martin’s Maximum holds. Then NSω1 is c.c.c.
indestructibly ℵ2-saturated and any real added by forcing with P (ω1)/NSω1 is
a minimal degree over V .

8.5. Shelah’s Results on Ulam’s Problem

Shelah showed that many of the properties of the Kunen-style saturated ideals
can hold for NSω1 , from significantly weaker hypotheses. In doing so he gave
a consistency proof for Ulam’s Problem for ω1

93 from an assumption much
weaker than a huge cardinal. His remarkable theorems from [104] are:

8.50 Theorem. Suppose that there is a regular cardinal κ with stationarily
many supercompact cardinals below κ. Then there is a forcing extension which
preserves ω1 and κ, and:

1. 2ℵ0 = 2ℵ1 = ω2 = κ,

2. P (ω1)/NSω1 is (ℵ1,ℵ1)-centered, and

3. P (ω1)/NSω1
∼= B(Col(ω, ω1) ∗Add(ω, ωV

2 )).

In particular, NSω1 is strongly layered.

Note that the statement that P (ω1)/NSω1 is (ℵ1,ℵ1)-centered is equivalent
to the property that there is a collection of countably complete filters 〈Fα :
α < ω1〉 such that for every non-stationary set X ⊆ ω1 there is an α with
X ∈ Fα. This implies a positive solution to Ulam’s problem for ω1.

Shelah was able to get similar results holding with CH for the NSω1 re-
stricted to an arbitrary stationary, co-stationary subset of ω1:

8.51 Theorem. Suppose that there is a regular cardinal κ such that there are
stationarily many supercompact cardinals below κ and S ⊆ ω1 is stationary
and co-stationary. Then there is a partial ordering that does not add real
numbers, preserves κ and forces:
93 Ulam’s problem was introduced in Sect. 6.6. At ω1 it asks whether it is consistent
for there to be a collection I = {Iα : α ∈ ω1} of countably complete ideals such that

P (ω1) =
⋃

α∈ω1
(Iα ∪ Ĭα).



1088 Foreman / Ideals and Generic Elementary Embeddings

1. 2ℵ0 = ω1, 2ℵ1 = ω2,

2. P (ω1)/NSω1�S is ℵ1-centered, and

3. P (ω1)/NSω1�S ∼= B(Col(ω, ω1) ∗Add(ω, ωV
2 )).

8.6. Saturated Ideals and Square

An important tool for distinguishing between elementary embeddings is their
tolerance for square and square-like properties. For example, it is a classi-
cal result that square is incompatible with supercompact cardinals. It is
not difficult to give similar proofs that square is inconsistent with Chang’s
Conjectures.94 This leads to the question of the consistency of square with
saturated ideals.

The combinatorial properties of square often make it easier to force other
properties. For example, Jensen showed that �ω1 implies the existence of a
c.c.c. forcing for adding a Kurepa tree on ω1.

The first results showing the consistency of square with a saturated ideal
is due to Donder.

8.52 Proposition (Donder). If there is a countably complete, ℵ1-dense ideal
on ω1, then there is a forcing extension in which there is an ℵ1-dense ideal
on ω1 and �ω1 holds. Moreover, if CH holds in the ground model then it
holds the extension with �ω1.

Donder’s proposition follows from the fact that one can add �ω1 with a
forcing that adds no subsets of ω1. As remarked earlier in Sect. 7.16, this
also shows that if there is an ℵ1-centered ideal on ω1 then it remains centered
after forcing square in this manner.

Donder further pointed out that if I is an ℵ2-saturated ideal on ω1, and
�ω1 holds, then, by Jensen’s result and Theorem 5.31, I is c.c.c.-destructible.
Hence the existence of an ℵ1-dense ideal implies that one can force the exis-
tence of a c.c.c.-destructible ℵ2-saturated ideal on ω1 in a generic extension.

Historically, these remarks were made around the time that Woodin con-
structed an ℵ1-dense ideal on ω1 by forcing over models of determinacy.
Forcing over a model with large cardinals to get a c.c.c-destructible satu-
rated ideal on ω1 was first done with Theorem 7.70.

In Theorems 8.50 and 8.51, published in 1987, Shelah showed that it is
consistent to have NSω1 ℵ1-centered. This immediately gives the following
result:

8.53 Theorem (Shelah [104]). Suppose that there is a regular cardinal κ
with stationarily many supercompact cardinals below κ. Then:

1. There is a forcing extension in which NSω1 ℵ1-centered and �ω1 holds.

94 E.g. Corollary 5.4.
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2. There is a forcing extension in which there is a stationary set S such
that NSω1�S is ℵ1-centered and �ω1 and CH holds.

In particular, in these models the saturation of NSω1 is c.c.c.-destructible.

Later, several people, including Foreman/Magidor and Velickovic gave con-
structions from a supercompact cardinal along the lines of the Martin’s Max-
imum construction of models in which NSω1 is ℵ2-saturated, and �ω1 holds.
More recently, Woodin has deduced the consistency of the existence of an
ℵ1-dense ideal on ω1 and the failure of CH from the consistency of ADL(R).
This gives a consistency result for a saturated ideal on ω1 with �ω1 from
weaker assumptions, but at the cost of the failure of CH.

On larger cardinals, the model for Theorem 7.71, combined with the dis-
tributive version of the partial ordering for adding square, answers the anal-
ogous questions:

8.54 Theorem. Suppose that there is an almost huge cardinal κ and μ < κ
is regular. Then there is a forcing extension in which there is a μ+-centered,
μ+-complete ideal on μ+ and �μ+ .

We note that Chang’s Conjecture is preserved by c.c.c. forcing and is
inconsistent with the existence of a Kurepa tree.

9. Tower Forcing

In Sect. 4.8, we discussed generic ultrapowers of V associated with forcing
with towers of ideals.95 It was discovered in [47] that if one collapses a
supercompact cardinal κ to be ω2, then there is an ℵ2-saturated ideal I
on ω1. If we let P be Col(ω,<κ) ∗P (ω1)/I, then forcing with P to get H ∗G
yields a generic elementary embedding j′ : V [H] → M ′ for some transitive
M ′ isomorphic to V [H]ω1/G. Restricting j′ to V we get a transitive M
and an elementary embedding j : V → M . Skipping the intermediate step,
forcing with P yields a generic elementary embedding j : V →M where:

1. M is transitive,

2. j(ω1) = κ, and

3. Mω ∩ V [H] ⊆M .

Thus we see that large cardinals imply the existence of generic elementary
embeddings with small critical points such as ω1.

Woodin greatly expanded the technology of [47] by showing that large
cardinals imply the existence of many precipitous and presaturated towers of
ideals. This first appeared in [125]. The tower forcings have proven extremely
useful in that they yield generic elementary embeddings with small critical
95 The definition of a tower of ideals is given in Definition 4.17.
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points and their properties can be established directly from large cardinals.
They act as a bridge between large cardinals and descriptive set theory which
is concerned with definable properties of small sets.

In this section we prove basic facts about certain examples of towers that
have nice ultrapowers. The subject of tower forcings and their consequences
is well explored in the books of Woodin [126] and Larson [80], so we barely
scratch the surface of the theory. As with single ideals the study splits into
two closely related types of towers, induced and natural. We give a brief
discussion of induced towers and then focus on a particular type of natural
tower, the stationary towers. The latter have proved most useful for appli-
cations and have a better developed theory.

Recall that if X and Y have the same cardinality and f : X → Y is a bi-
jection, then f induces a one-to-one correspondence between ideals on X and
ideals on Y . Moreover, for normal ideals this correspondence is independent
of the choice of f .96 For this reason, if γ = |H(α)|, and we are forcing with
towers of ideals of height δ > γ, it makes no essential difference whether we
view the tower as consisting of ideals on sets of the form P (γ) or P (H(α)).
Woodin uses sets of the form Vα as his base sets. Depending on context
we will use the most convenient version. We note that for inaccessible α,
Vα = H(α) and |H(α)| = α.

Throughout this section we will be assuming:

δ is a strong limit cardinal, U ⊆ δ is an unbounded set of cardinals
and T = 〈Iα ⊆ PP (H(α)) : α ∈ U〉 is a tower of normal, fine,
countably complete ideals.

We will call δ = sup(U) the height of the tower. For α < δ we let α∗ be
the least element of U greater than 22α

. For all of our towers we get an
equivalent forcing partial order if we restrict to a cofinal subset of U . For
this reason we can assume that α∗ is the least element of U above α. We will
use the notation of Sect. 4.8. In particular, we will write PT for the forcing
associated with a tower T .

If we have conditions b, c ∈ PT with β = supp(b) < γ = supp(c), then
there is a canonical meet of b and c in PT . This is given by {z : z ∩H(β) ∈ b
and z ∩H(γ) ∈ c}. In an abuse of notation we will denote this by b ∩ c.

If α ≤ sup(U), we define Tα = T �α =def 〈Iβ : β ∈ U ∩ α〉.

9.1 Definition. We will say that a tower T of inaccessible height δ is presat-
urated iff forcing with PT preserves the statement “δ is a regular cardinal”.

9.2 Proposition. Suppose that T is a presaturated tower of inaccessible
height δ. Then T is precipitous. If G ⊆ PT is generic and j : V →M is the
generic ultrapower with M transitive, then M<δ ∩ V [G] ⊆M .

Proof. By Proposition 4.55, it suffices to show that if 〈Aα : α < γ〉 is a
sequence of maximal antichains of length γ < δ, then there is a dense set of
96 In the language of [18], the correspondence is “natural structure”.
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conditions S ∈ PT such that for all α < γ, |{a ∈ Aα : a is compatible with
S}| < δ.

Define a term for a function ḟ : γ → δ by setting ḟ(α) to be the least β
such that β is the support of a condition a ∈ Aα ∩ G. Since δ is regular in
V [G], there is a dense set D ⊆ PT for all S ∈ D there is a ρ < δ such that
S � “ḟ is bounded by ρ”. If S ∈ D then for all α, |{a ∈ Aα : S is compatible
with S}| ≤ 22|H(ρ)|

. �

Using this proposition and Proposition 4.56, we can now describe some
typical tower behavior:

9.3 Example. Suppose that

1. ρ ≥ ω1 is a successor cardinal,

2. each Iα is ρ-complete and concentrates on [H(α)]<ρ, and

3. PT is weakly (ρ, δ)-saturated.97

Then T is presaturated. If j : V → M ⊆ V [G] is the elementary embedding
arising from a generic G ⊆ PT then crit(j) = ρ, j(ρ) = δ and M<δ ∩ V [G] ⊆
M .

9.1. Induced Towers

This section summarizes some of the results of [42].
Let μ be regular and δ > μ be an inaccessible cardinal. Suppose that Q

is a partial ordering collapsing δ to be μ+. Let μ < γ < δ with γ a cardinal.
If G ⊆ Q is generic and f : μ → H(γ) is a bijection in V [G], then for each
S ⊆ [H(γ)]<μ we can define S ⊆ μ by setting S = {β : f“β ∈ S}. Modulo
NSμ, S is independent of the choice of the bijection f and {β : f“β ∩ μ = β}
is closed and unbounded. In V [G], the map S �→ S is ⊆ order-preserving.

Let I be a normal ideal on μ in V Q. For γ < δ, define an ideal Iγ ⊆
P ([H(γ)]<μ) by putting S ∈ Iγ iff ‖S /∈ I‖Q = 0. Then Iγ is a normal ideal.

Define ι′
γ : P ([H(γ)]<μ) → B(Q)∗P (μ)/I by letting ι′

γ(S) = 〈‖S̄ �∈ I‖, [S]〉.
Then ι′

γ has kernel Iγ and hence induces a well-defined order and antichain
preserving map ιγ : P ([H(γ)]<μ)/Iγ → B(Q) ∗ P (μ)/I.98

If γ < γ′ then the restriction of ι′
γ′ to P ([H(γ)]<μ) is ι′

γ . Hence T =
〈Iγ : γ < δ〉 is a tower of ideals. The direct limit of the ιγ ’s gives an order
and antichain preserving map from PT into B(Q) ∗ P (μ)/I. Hence if I is
δ-saturated, then PT has the δ-c.c.

If Q is <μ-closed then Q adds a generic object to Col(μ, |H(γ)|) for each
γ < δ. If S ⊆ [H(γ)]<μ and S is I-positive then S is stationary in μ. By our
remarks on robustness around Example 8.32 we see that S∩IA is positive and
S is equivalent to S ∩ IA modulo Iγ . Moreover Iγ extends the nonstationary

97 The definition is given in the discussion before Proposition 4.6.
98 A similar situation is discussed in the paragraphs before Proposition 4.25.
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ideal on [H(γ)]<μ�IA. If I is the nonstationary ideal on μ (respectively, the
nonstationary ideal on μ restricted to cofinality ρ < μ) then Iγ is exactly the
nonstationary ideal on [H(γ)]<μ ∩ IA (respectively the nonstationary ideal
on [H(γ)]<μ ∩ IA(Cof(ρ))).

We have outlined:

9.4 Proposition. Let μ be regular and δ > μ be inaccessible. Suppose that
Q is <μ-closed, δ-c.c. and V Q |= δ = μ+. If there is a μ-complete, μ+-
saturated ideal on μ in V Q, then there is a tower T of normal, μ-complete
ideals 〈Iγ : γ < δ〉 on 〈[H(γ)]<μ ∩ IA : γ < δ〉 such that PT has the δ-chain
condition.

From this we get the following corollaries:

9.5 Corollary. Suppose that ρ is a regular cardinal and μ > ρ is an almost
huge cardinal. Then there is a <ρ-closed, μ-c.c. partial ordering P such that
in V P:

1. μ = ρ+, and

2. there is an inaccessible cardinal δ and a tower of normal, fine, μ-
complete ideals T = 〈Iγ : γ < δ〉 such that Iγ concentrates on [H(γ)]<μ∩
IA and PT has the δ-chain condition.

Proof. Let j : V →M be an almost huge embedding with critical point μ and
j(μ) = δ. The partial ordering P is the first stage of the Magidor variation
on the Kunen construction described in Sect. 7.11. That construction builds
a partial ordering P ∗Q such that:

1. P is <ρ-closed and μ-c.c.,

2. Q is <μ-closed and δ-c.c.,99 and

3. V P∗Q |= δ = μ+ and there is a μ+-saturated ideal on μ.

Hence we can apply Proposition 9.4 to conclude that in V P there is a tower
T as desired. �

From Proposition 9.4 and Theorem 8.44, we also see:

9.6 Corollary. Suppose that δ is a supercompact cardinal. Then there is
a δ-saturated tower 〈Iγ : γ < δ〉 of normal, countably complete ideals on
〈[H(γ)]<ω1 : γ < δ〉.

Since the hypothesis of Theorem 8.44 can be weakened to the assumption
that δ is a Woodin cardinal the conclusions of Corollary 9.6 follow if we
simply assume that δ is Woodin.

We can get information about the stationary tower T on 〈[H(γ)]<ω1 :
γ < δ〉 as well (see Theorem 4.9 of [42]). In this case the maps ιγ yield a
regular embedding from PT into B(Q ∗ P (ω1)/NSω1).
99 In fact Q can be taken to be Col(μ, < δ).
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9.7 Theorem. Let δ be an inaccessible cardinal, Q = Col(ω1, <δ), and sup-
pose that V Q |= NSω1 is presaturated. Let T be the tower of nonstationary
ideals restricted to [H(γ)]<ω1 for γ < δ. Then PT is a regular subalgebra of
Q ∗ P (ω1)/NSω1 .

In particular, by Example 9.3, forcing with PT preserves δ, the generic
ultrapower is well-founded and is closed under ω-sequences from V [G].

Woodin proved much more general results as we see in Sect. 9.3.

9.2. General Techniques

Woodin used the ideas of catching antichains to show that towers of natural
ideals have nice generic ultrapowers. We now explore this technology but
only sketch the proofs. The books of Woodin [126] and Larson [80] are excel-
lent definitive references containing complete proofs and many applications.
The notation and terminology adopted in this section is somewhat different
than Woodin’s in order to place it in the context of the rest of this chapter.
Standard terminology is found in the two books.

Good Structures

In this subsection we discuss good structures. The antichain catching ideas
from [47] are crucial for showing that certain towers have nice properties.
For these arguments to work they require good structures. Most of the the-
ory of stationary tower forcing can be developed for arbitrary towers under
assumptions about the existence of good structures. If each ideal Iα has
the form NS�Zα for some stationary set Zα, the goodness of a structure
N ≺ H((22δ

)+) is equivalent to having N ∩ H(α) ∈ Zα for all α ∈ N .100

Those readers who are only interested in stationary towers can simplify some
arguments by taking this as the definition of goodness.

9.8 Definition. Let N be a set. Then N is good for α iff α ∈ N and for
all C ∈ Ĭα ∩ N we have that N ∩ H(α) ∈ C. We will say that N is a good
structure iff for all α ∈ N ∩ U , N is good for α.

Note that if α < β, N ∩ H(2β) ≺ H(2β), α ∈ N and N is good for β,
then N is good for α. Proposition 3.44 implies that for each α, Iα-almost all
z generate structures that are good for α. Under mild assumptions, we can
show that good structures exist.

9.9 Proposition. Let T = 〈Iα : α ∈ U〉 be a tower of normal, fine, countably
complete ideals with height δ. Suppose that there is a normal, fine, countably
complete ideal J on P (H(δ)) such that for all α ∈ U , the projection of J to
an ideal on P (H(α)) is Iα. Then for all θ ≥ δ+ and all Skolemized structures
A expanding 〈H(θ),∈ Δ, J, T 〉 there is a set C ∈ J̆ for all z ∈ C:

100 See Lemma 3.46.
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1. SkA(z) ∩ Vδ = z, and

2. SkA(z) is good.

Proof. Same as Proposition 3.44. �

Catching Antichains

The antichain catching arguments used in [47] were informally referred to
as “catching an index for an antichain”. Woodin formalized this by calling
the method “capturing an antichain”. We will slightly abuse terminology by
frequently using the word “antichain” for a collection of subsets of P (H(α))
for α ∈ U whose Iα equivalence classes represent an antichain in PT .

9.10 Definition. Let A be a collection of subsets of P (H(α)) for α ∈ U that
form an antichain in PT . A structure N captures A below α iff N is good for
α and there is an a ∈ N ∩A such that supp(a) < α and N ∩H(supp(a)) ∈ a.

The next two results play the role of Proposition 8.24 for towers.

9.11 Lemma. Let A be a maximal antichain. Suppose that α < δ and
[S] ∈ PT . If S ⊆ {z ∈ H(δ) : z captures A below α}, then {b ∈ A : b is
compatible with [S]} ⊆ {b : supp(b) < α}.

Proof. By Lemma 4.49,

[4{b ∈ A : supp(b) < α}] = Σ{[b] : b ∈ A and supp(b) < α}.

Since the right hand side is less than or equal to Σ{[b] : supp(b) < α} and
S ⊆ 4{b ∈ A : supp(b) < α} we see the lemma. �

From this we easily deduce:

9.12 Proposition. Let ρ ≤ δ. Suppose that for all γ < ρ and all sequences
of maximal antichains 〈Aα : α < γ〉 there is a dense set of S ∈ PT with an η
(depending on S) between γ and δ such that if N ∈ S and α ∈ γ ∩ N , then
N captures Aα below η. Then PT is weakly (ρ, δ)-saturated.

9.13 Definition. Let T be a tower of height δ. LetA be a maximal antichain
in PT . Then T can capture A at α iff

1. A ∩ PTα is a maximal antichain in PTα , and

2. whenever:

(a) γ is between α and δ, σ < α and A is a structure in a countable
language expanding 〈H(γ∗),∈,Δ〉,

there is a closed unbounded set of N ≺ A such that if:

(b) N is good for γ,
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(c) {A ∩ PTα , Tα} ⊆ N , and

(d) N ∗ ≺ N has cardinality less than α

then there is an N ′ ≺ A such that

(A) N ′ is good for γ,

(B) N ′ ∩H(σ) = N ∩H(σ),

(C) N ∗ ≺ N ′, and

(D) N ′ captures A below α.

We will say that T captures antichains iff for all maximal antichains A
there is a stationary set of α < δ such that T can capture A at α.

In all of the arguments we give it suffices to have an unbounded rather
than stationary set of α such that T captures A at α. Woodin called the
property of capturing antichains at α “semiproper at α”. The tower T is
typically not semiproper in the sense of the forcing property, so we have
shifted terminology in this chapter.

9.14 Remark. If Iα is of the form NS�Zα, then any N ∈ Zα with N ≺
〈H(α∗),∈,Δ, Iα〉 is good for α. If T = 〈NS�Zα : α ∈ U〉 is a tower, then for
α < γ in U there is a closed unbounded set C such that for all z ∈ C ∩ Zα

there is an N ≺ 〈H(γ∗),∈,Δ, Iγ〉 with N ∩H(γ) ∈ Zγ and N ∩H(α) = z.
This N is necessarily good for γ.

Thus for towers of this form we can modify Definition 9.13 by taking A

to be a structure with domain H(α∗) and in clause (b) replace “N is good
for γ” by “N ∈ Zα∗ ”.

Catching Your Tail

Next we describe a “catch-your-tail” argument in this context. The point of
catching your tail is to turn the quantifier “there is a closed unbounded set of
N” in the definition of antichain catching into the quantifier “for every N”.
This trick is quite familiar in the context of proper forcing.

In a situation where we want to catch antichains, our data will be:

1. a tower T ,

2. a maximal antichain A in PT that T can capture at α,

3. a γ between α and δ,

4. a structure A in a countable language expanding 〈H(γ∗),∈,Δ〉,101 and

5. the closed unbounded set C posited in clause 2 of Definition 9.13.
101 Equivalently, we could be given a closed unbounded subset of H(γ∗). This discussion
parallels the simpler Lemma 8.36.
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Let λ be a regular cardinal greater than 2γ∗
. Suppose that we are given

an arbitrary M ≺ 〈H(λ),∈,Δ〉 such that {α, γ,A, Tα,A∩PTα} ⊆M and M
is good for γ. Let N = M ∩H(γ∗). Then N ≺ A and N is good for γ. We
note that M has definable Skolem functions.

Let M ∗ ≺ M have cardinality less than α with {α, γ, Tα,A ∩ PTα} ⊆ M ∗

Letting N ∗ = M ∗∩H(γ∗), we see that if f(x, y0, . . . , yn) is a definable Skolem
function, and a ∈ M ∗, then the restricted Skolem function g : [H(γ)]n+1 →
H(γ∗) defined by setting:

g(a1, . . . , an) =

{
f(a, a1, . . . , an) if f(a, a1, . . . , an) ∈ H(γ∗),
0 otherwise,

belongs to N ∗.
Applying Definition 9.13 we can find an N ′ ≺ A that is good for γ, N ∗ ≺

N ′, N ′ has the same intersection with H(σ) as N does, and N ′ captures A
below α.

Now let M ′ be the Skolem hull of (N ′ ∩ H(γ)) ∪ M ∗ in 〈H(λ),∈,Δ〉.
Since each restricted Skolem function of H(λ) belongs to N ′, we see that
M ′ ∩H(γ) = N ′ ∩H(γ) and M ′ ∩H(γ∗) ⊆ N ′. In particular:

(A′) M ′ is good for γ,

(B′) M ′ ∩H(σ) = N ∩H(σ),

(C′) M ∗ ≺M ′, and

(D′) M ′ captures A below α.

Hence we see that by passing from γ∗ to λ we can change the quantifier
“there is a closed unbounded set of N ≺ A” in Definition 9.13 to “for all suf-
ficiently large λ and all M ≺ 〈H(λ),∈,Δ〉 with {α, γ,A, Tα,A ∩ PTα} ⊆M”.

By using standard Skolemization arguments this shows that given the
structure A in Definition 9.13, we can find an expansion A′ such that for
every N ≺ A′ satisfying (b), (c) and (d) there is an N” ≺ A′ satisfying
(A)–(D).

Using Antichain Catching

9.15 Theorem. Suppose that T is a tower that captures antichains. Then
T is precipitous.102

Proof. We verify the conditions of Proposition 4.52. Suppose that 〈An :
n ∈ ω〉 is a tree of maximal antichains below a condition [X] ∈ PT . Fix
an increasing sequence of ordinals αn such that T can capture An at αn.
Let γ ∈ U \ supn αn and λ > 2γ∗

. Let N0 ≺ 〈H(λ),∈,Δ〉 be such that
{〈An : n ∈ ω〉, 〈αn : n ∈ ω〉, T } ⊆ N0 and N0 is good for γ.

By the remarks on catching your tail, we can build a sequence of structures
〈Ni : i ∈ ω〉 such that:
102 This is the tower analogue of Theorem 8.37.
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1. Ni ≺ 〈H(λ),∈,Δ〉 and is good for γ,

2. {〈An : n ∈ ω〉, 〈αn : n ∈ ω〉, T } ∈ Ni,

3. Ni+1 captures Ai below αi+1, and

4. Ni ∩H(αi) = Ni+1 ∩H(αi).

Then zi = Ni ∩H(αi) witnesses the hypothesis of Proposition 4.52. �

We now want to be able to extend this technique to be able to catch
antichains in a transfinite sequence. This is not possible in general:

9.16 Example (Foreman and Magidor [42]). Let δ be Woodin. For regular
α < δ let Zα be the collection of N ∈ [H(α)]<ω2 that are internally approach-
able by a sequence of length ω1. Then 〈NS�Zα : α is regular and α < δ〉 forms
a precipitous tower. Further, if this tower is presaturated then ΘL(R) < ω2.

Thus, by Woodin’s Theorem 5.64 if NSω1 is ℵ2-saturated, then this tower
is not presaturated.

To build transfinite sequences that catch antichains we need to be able to
continue past limit stages. The obstacle in the previous example is that after
catching ω many antichains, a model is no longer internally approachable.
An extra hypothesis that works is given by the following definition that is
idiosyncratic to this chapter.

9.17 Definition. Let ρ < δ and δ inaccessible. A tower T = 〈Iα : α ∈ U〉 of
height δ will be called ρ-complete iff for all γ < ρ and all increasing sequences
〈αi : i < γ + 1〉 of elements of U and all regular λ5 αγ and all u ∈ H(λ), if:

1. 〈Ni : i ∈ γ〉 is a sequence of elementary substructures of 〈H(λ),∈,Δ, u〉
with

{〈αi : i < γ + 1〉, 〈Iα : α ∈ U ∩ (αγ + 1)〉} ⊆ Nj

for all j < γ,

2. Ni good for αγ , and

3. Ni ∩H(αi) = Nj ∩H(αi) for i < j < γ,

then there is an Nγ ≺ 〈H(λ),∈,Δ, u〉 with {〈αi : i < γ + 1〉, 〈Iα : α ∈
U ∩ (αγ + 1)〉} ⊆ Nγ that is good for αγ and for all i < γ, Nγ ∩ H(αi) =
Nαi ∩H(αi).

When each Iα = NS�Zα, we will say that the sequence of stationary sets
〈Zα : α ∈ U〉 is ρ-complete.

By using the catch-your-tail arguments of the previous section, we see
that this is equivalent to the statement that any structure A0 with domain
H((2αγ )+) can be expanded to a structure A so that any sequence of elemen-
tary substructures 〈Ni : i < γ〉 with:



1098 Foreman / Ideals and Generic Elementary Embeddings

1. {〈αi : i < γ + 1〉, 〈Iα : α ∈ U ∩ (αγ + 1)〉} ⊆ Nj for all j < γ,

2. Ni good for αγ , and

3. Ni ∩H(αi) = Nj ∩H(αi) for i < j < γ

has a limiting structure Nγ ≺ A containing {〈αi : i < γ + 1}, 〈Iα : α ∈
U ∩ (αγ + 1)〉} that is good for αγ and such that for all i < γ, Nγ ∩H(αi) =
Nαi ∩H(αi).

9.18 Example. Let δ be inaccessible, κ < δ regular and Zα = [H(α)]<κ.
Then the tower 〈NS�Zα : α < δ〉 is κ-complete.

The next example appears in [42] and its significance is discussed in Ex-
ample 9.36.

9.19 Example. Suppose that δ is inaccessible, and μ and κ > μ+ are regular
cardinals less than δ. For regular α < δ let Zα = {N ∈ [H(α)]<κ : N ∩ α is
≤μ-closed}. Then 〈NS�Zα : α is regular and α < δ〉 is a κ-complete tower of
ideals.

The main point of the proof of Example 9.19 is to show that if α < β
are two regular cardinals bigger than 2κ and A0 is a structure in a countable
language with domain H(β) then there is an expansion of A0 to a fully
Skolemized structure A in a countable language such that if:

1. z ⊆ H(α),

2. z ∩ α is ≤μ-closed, and

3. SkA(z) ∩H(α) = z

then SkA(z) ∩ β is ≤μ-closed.

9.20 Theorem. Let T = 〈Iα : α ∈ U〉 be a tower of normal, fine, countably
complete ideals of inaccessible height δ. Suppose that:

1. T captures antichains, and

2. T is ρ-complete.

Then T is weakly (ρ, δ)-saturated.

Proof. We verify the conditions of Proposition 9.12. Let γ < ρ, 〈Ai : i < γ〉
be a sequence of maximal antichains in T and [X] ∈ PT . We need to find
an S ∈ PT below [X] and an η such that if N ∈ S and i ∈ γ ∩ N , then N
captures Ai below η.

Fix an increasing sequence 〈αi : i < γ〉 drawn from U \max{γ, supp(X)}
such that T can capture Ai at αi. Let αγ ∈ U be much larger than the
supremum of the 〈αi : i < γ〉, and λ a sufficiently large regular cardinal
below δ to witness γ+-completeness.
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We let η = αγ . Indirectly assume that there is no S ∈ I+
η below [X] as

desired. Then there is a C ∈ Ĭη such that if N ∈ C ∩ X then there is an
i ∈ γ ∩ N such that N does not capture Ai below αi. Hence it suffices to
show that there is an N ≺ H(λ) that is good for αγ such that C ∈ N and
for all i ∈ N ∩ γ, N captures Ai below αi.

Let N0 ≺ 〈H(λ),∈,Δ〉 be such that

1. {〈αi : i < γ + 1〉, 〈Ai : i < γ〉, C, 〈Iα : α ∈ U ∩ (αγ + 1)〉} ⊆ N0,

2. N is good for αγ .

Using completeness at limit stages and antichain capturing at successor
stages, build a sequence of structures 〈Ni : i ∈ γ + 1〉 such that:

1. Ni ≺ 〈H(λ),∈,Δ〉 and

{〈αi : i < γ + 1〉, 〈Ai : i < γ〉, C, 〈Iα : α ∈ U ∩ (αγ + 1)〉} ⊆ Ni,

2. Ni is good for αγ ,

3. if i < j < γ, Ni ∩H(αi) = Nj ∩H(αi), and

4. if i ∈ Ni, then Ni+1 captures Ai below αi.

Letting N = Nγ we get the desired contradiction. �

9.3. Natural Towers

Just as for single ideals there are many examples of natural towers. The
only type of natural tower whose generic embeddings have been explored
extensively are given by the following definition.

9.21 Definition. The tower T = 〈Iα : α ∈ U〉 will be called a stationary
tower iff there is a sequence of stationary sets 〈Zα ⊆ P (H(α)) : α ∈ U〉 such
that Iα = NS�Zα.

We note that the requirement that 〈NS�Zα : α ∈ U〉 forms a tower is some-
times hard to verify as illustrated in Example 9.19. Moreover, Burke’s Corol-
lary 4.21 shows that for sufficiently large α2 any normal ideal on
P (H(α1)) is the projection of the nonstationary ideal restricted to a sta-
tionary subset of P (H(α2)). In particular, if α1 is supercompact we can find
Z2 such that the projection of NS�Z2 to P (H(α1)) is a prime ideal dual to a
supercompact ultrafilter!

Methods for Proving Antichain Capturing

We now examine the methods for showing that various towers catch an-
tichains. All of the arguments take the same basic form used to prove Theo-
rem 8.41 in the paper [47]. To verify semiproperness in the context of forcing
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and antichain catching in the context of an ideal or a tower of ideals, we have
a model N and a σ and want to add some ordinals to N without changing
N ∩ H(σ). In the case of semiproperness, σ = ω1. In the case of towers,
σ is an ordinal above the support of some elements of antichains N already
captures.

In Theorem 9.46, we give Burke’s examples of towers that are not precip-
itous. Burke’s methods of proof do not restrict the height of the tower in
any way. For example, the non-precipitous towers can have supercompact
height. In light of Theorem 9.15, Burke’s towers cannot capture antichains.
However, with a sufficient large cardinal hypothesis every stationary tower
forcing does capture antichains.

All of the antichain catching arguments follow the same pattern. By Re-
mark 9.14, we can simplify the definition of antichain catching by working
with structures A on H(α∗) and replace “good for γ” with “N ∈ Zα∗ ”. We
will assume that T cannot capture an antichain A and use our large cardinal
hypothesis to create a situation with a cardinal α such that:

1. A ∩ PTα is a maximal antichain in PTα , and

2. there are:

(a) a σ < α and a structure A expanding 〈H(α∗),∈,Δ〉103

and a “bad” stationary set B of N ≺ A such that

(b) B ⊆ Zα∗ ,

(c) {Tα,A ∩ PTα} ∈ N for all N ∈ B, and

(d) each N ∈ B has an N ∗ ≺ N of cardinality less than α

such that whenever N ′ ≺ A is such that

(A) N ′ ∈ Zα∗ ,

(B) N ∩H(σ) = N ′ ∩H(σ), and

(C) N ∗ ≺ N ′

then

(D) N ′ does not capture A below α.

The cardinal α is chosen so that there is an appropriately strong j :
V → M with critical point α. Then j(A) is a maximal antichain up to
j(α). The set B determines a condition in the forcing j(PT ) and hence is
compatible with some b ∈ j(A) that can be taken to have support bigger
than α∗. A structure N ′ ≺ j(A) is considered with

103 We are using Remark 9.14.
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1. N ′ ∩H(supp(b)) ∈ b ∩B,

2. b ∈ N ′, and

3. N ′ ∈ j(Zα∗ ).

Such an N ′ captures j(A).
The strength of the embedding is used to see that we can find an N ′

with properties 1–3 that is sufficiently closed and belongs to M . Depending
on Zα∗ , this is done in at least two different ways. For simple sequences
〈Zα : α ∈ U〉, as in what we call “Woodin’s towers” below, all that is required
is that b ∩B is stationary in V . For this, δ being a Woodin cardinal suffices
to generate the required embeddings j. When the sequence of Zα’s is more
complicated, as in the towers considered by Burke [11], we need the fact that
j witnesses some degree of supercompactness.

Next we will have N0 = N ′ ∩H(α∗) and N = j(N0). Since N0 ∈ B, there
are witnesses N ∗ and σ. By elementarity j(N ∗) and j(σ) are witnesses to N
being in j(B).

Since j(σ) = σ, N ∩ H(σ) = N0 ∩ H(σ) = N ′ ∩ H(σ). Since |N ∗| < α,
j(N ∗) = j“N ∗. We use the closure of N ′ to argue that j(N ∗) ⊆ N ′. This
will be done different ways in different contexts.

Arguing in M , we can now reach our desired contradiction by noting that
N ′ ≺ j(A) and:

(A) N ′ ∈ j(Zα∗ ),

(B) N ∩H(σ) = N ′ ∩H(σ),

(C) j(N ∗) ≺ N ′, and

(D) N ′ captures j(A) below j(α).

We give the explicit arguments in the next two sections.

Woodin’s Towers

Woodin’s investigation and application of tower forcing focused on cases
where the Zα were of a simple form such as [H(α)]<κ or P (H(α)). The
towers considered in [42], while concentrating on Zα whose definitions are
not as simple, are also amenable to arguments of the style of this section.

Notation. Woodin introduced the following notation, which has become
standard for towers:

1. when each Zα = P (H(α)), the tower is called P<δ, and

2. when each Zα = [H(α)]<ω1 , the tower is called Q<δ.

We will use the following definition of a Woodin cardinal:
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9.22 Definition. Let δ be a cardinal. Then δ is Woodin iff for every A ⊆ Vδ

and all functions f : δ → δ there is an α < δ closed under f and an elementary
embedding j : V →M with M transitive such that:

1. crit(j) = α and M is closed under <α-sequences,

2. j(f)(α) = f(α), Vf(α) ⊆M , and

3. j(A) ∩ Vf(α) = A ∩ Vf(α).

9.23 Theorem (Woodin). Let δ be a Woodin cardinal and T the stationary
tower 〈NS�Zα : α ∈ δ〉 where either:

1. for all α, Zα = P (H(α)), or

2. for all α, Zα = [H(α)]<κ for some regular uncountable cardinal κ < δ.

Then T captures antichains.

Proof. Suppose that the theorem fails. Let A be a counterexample. Then
there is a closed unbounded set D ⊆ δ such that for all α ∈ D, T cannot
capture A at α. If our tower is of the form Zα = [H(α)]<κ we can take the
least element of D to be above κ. We can assume without loss of generality
that for all α ∈ D,

1. A ∩ PTα is a maximal antichain in PTα , and

2. there are

(a) a σ < α and a structure Aα expanding 〈H(α∗),∈,Δ〉

and a “bad” stationary set Bα of N ≺ Aα such that

(b) Bα ⊆ Zα∗ ,

(c) {Tα,A ∩ PTα} ∈ N for all N ∈ Bα, and

(d) each N ∈ Bα has an N ∗ ≺ N of cardinality less than α

such that if N ′ ≺ Aα is such that

(A) N ′ ∈ Zα∗ ,

(B) N ∩H(σ) = N ′ ∩H(σ), and

(C) N ∗ ≺ N ′

then

(D) N ′ does not capture A below α.

Define a function f by setting f(α) to be the least element of D above α
if α /∈ D. For each α ∈ D, let f(α) be some regular β sufficiently large so
that:
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1. β is above the next inaccessible element of D above α, and

2. there is a b ∈ A ∩ Vf(α) such that b ∩Bα is stationary.

Since δ is Woodin, we can find an α < δ and an elementary embedding
j : V →M with critical point α such that α ∈ D, Vf(α) ⊆M , j(A)∩Vf(α) =
A ∩ Vf(α), j(T ) ∩ Vf(α) = T ∩ Vf(α) and M is closed under <α-sequences.

Choose a b ∈ A ∩ Vf(α) so that b ∩Bα is stationary in V . We can do this
since stationarity is absolute between V and M for bounded subsets of Vf(α).
We can assume that supp(b) > α∗ and b ⊆ Zsupp(b). Arguing in V , let B

be a structure in a countable language expanding j(Aα) containing constant
symbols for j�H(α∗), Aα and b. Since b ∩ Bα is stationary in V , there is a
z ⊆ H(supp(b)) belonging to b ∩Bα such that

SkB(z) ∩H(supp(b)) = z.

Let N0 = z ∩H(α∗) and N = j(N0). Since N0 ∈ Bα, there are witnesses
N ∗ and σ. By elementarity j(N ∗) and j(σ) are witnesses to N being in j(Bα).
Since |N ∗| < α, j(N ∗) = j“N ∗ ∈ M . Since SkB(z) is closed under j�H(α∗)
and N ∗ ⊆ z we see that j(N ∗) ⊆ SkB(z). Since j(σ) = σ, N ∩ H(σ) =
N0 ∩H(σ) = z ∩H(σ).

Let N ′ = Skj(Aα)(z ∪ j(N ∗) ∪ {b}). Then N ′ ⊆ SkB(z). Since z, j(N ∗),
b and j(Aα) belong to M we see that N ′ ∈M . Hence

1. N ′ ∩ supp(b) = z ∈ b ∩Bα,

2. b ∈ N ′, and

3. N ′ ∈ j(Zα∗ ).104

By 1–3, N ′ captures j(A).
Arguing in M , we can now reach our desired contradiction by noting that

N ′ ≺ j(Aα) and:

(A) N ′ ∈ j(Zα∗ ),

(B) N ∩H(σ) = N ′ ∩H(σ),

(C) j(N ∗) ≺ N ′, and

(D) N ′ captures j(A) below j(α).

�

9.24 Corollary. Let δ be a Woodin cardinal. Then the stationary tower
forcing is presaturated if either:

1. Zα = P (H(α)) for all α, or

2. for some successor κ < δ, Zα = [H(α)]<κ for all α.

104 This is automatic in the case of the Woodin’s towers, but not for arbitrary stationary
towers.
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Proof. If Zα = P (H(α)) then the sequence 〈Zα〉 is δ-complete. Hence PT is
weakly (δ, δ)-saturated.

Suppose that κ = μ+. If Zα = [H(α)]<κ, then the sequence 〈Zα〉 is <κ-
complete, and hence weakly (κ, δ)-saturated. Let G ⊆ PT be generic and
j : V →M be the generic embedding associated with G. As in Example 9.3,
j(κ) ≥ δ. This implies that V [G] |= |δ| ≤ μ+. By weak saturation, V [G] |=
|δ| ≥ μ+ and hence δ is a regular a cardinal in V [G]. �

Burke’s Towers

In [11], Burke considered stationary towers T = 〈NS�Zα : α ∈ U ⊆ δ〉 that
were arbitrary save for the restriction that U contained all sufficiently large
regular cardinals below δ.

The arguments in his paper yield the somewhat more general result that
we prove below. The hypotheses that we impose on the tower to ensure
that it captures antichains is that there is a function f that bounds the map
sending α to α∗ that is sufficiently absolute and that δ is a supercompact
cardinal.

9.25 Theorem (Burke [11]). Let δ be a supercompact cardinal and T =
〈NS�Zα : α ∈ U〉 be an arbitrary stationary tower of height δ. Suppose that
there is a Σ2 formula φ(x, x′, �y) and �p ∈ H(δ) such that if we set

f(α) = α′ iff φV (α, α′, �p )

then f : On → On and f�δ bounds the map sending α to α∗, the least element
of U above α.105

Then T captures antichains.

Proof. A simple class pigeon-hole argument together with the assumption
that φ exists yields the following property: There are δ∗ > 2δ and a stationary
Zδ∗ ⊆ P (H(δ∗)) such that for unboundedly many λ ∈ On there is a λ-
supercompact embedding j : V →M such that:

1. δ∗ is the least element of j(U) above δ, and

2. if we write j(〈Zα : α ∈ U〉) = 〈Zj
α : α ∈ j(U)〉, then Zj

δ∗ = Zδ∗ .

Let A be a maximal antichain in PT . We show that for every (2δ∗
)+-

supercompact embedding j : V → M satisfying 1 and 2, j(T ) can catch
j(A) at δ. Using a reflection argument we see this implies that there are
stationarily many α < δ such that T captures A at α.

Indirectly assume that A and j are a counterexample. Since j(A)�δ = A,
and j(T )δ = T we see that
105 Given an arbitrary stationary tower T = 〈NS�Zα : α ∈ U 〉, we can interpolate ideals to

make another tower T ′ with a U ′ bounded by the function α �→ (22α
)+ such that forcing

with PT is equivalent to forcing with PT ′ . The resulting tower T ′ does not necessarily
satisfy the hypotheses of Theorem 9.25, since it may not be a stationary tower.
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1. j(A) ∩ j(T )δ is a maximal antichain in Pj(T )δ
and

2. there are

(a) a σ < α and a structure A expanding 〈H(δ∗),∈,Δ〉

and a “bad” stationary set B of N ≺ A such that

(b) B ⊆ Zδ∗ ,
(c) {Tδ,A ∩ PTδ

} ∈ N for all N ∈ B, and
(d) each N ∈ B has an N ∗ ≺ N of cardinality less than δ

such that if N ′ ≺ A is such that

(A) N ′ ∈ Zδ∗ ,
(B) N ∩H(σ) = N ′ ∩H(σ), and
(C) N ∗ ≺ N ′

then

(D) N ′ does not capture j(A) below δ.

We note that we can rephrase condition (D) equivalently as:

(E) There is no a ∈ N ′ ∩ A with N ′ ∩H(supp(a)) ∈ a.

Let b ∈ j(A) be a condition in M such that M |= b ∩B is stationary. We
can assume that supp(b) > δ∗ and b ⊆ Zsupp(b). In M , choose an N ′ such
that

1. N ′ ∩ supp(b) ∈ B ∩ b,

2. N ′ ≺ j(A) with {j�H(δ∗), B, b,A, T } ⊆ N ′, and

3. N ′ ∈ j(Zδ∗ ).

Then b ∈ N ′ and N ′ ∩ supp(b) ∈ b.
Let N0 = N ′∩H(δ∗), and N = j(N0). Let σ < δ and N ∗ witness N0 ∈ B.

Then j(σ) and j(N ∗) witness N ∈ j(B).
Since |N ∗| < δ and j(N ∗) = j“N ∗, and moreover j(σ) = σ. Since N ′

is closed under j�H(δ∗) and N ∗ ⊆ N ′ we see that j“N ∗ ⊆ N ′. Moreover,
N ∩H(σ) = N0 ∩H(σ) = N ′ ∩H(σ).

We have shown that N ′ ≺ j(A) and:

(A) N ′ ∈ j(Zδ∗ ),

(B) N ∩H(σ) = N ′ ∩H(σ),

(C) j(N ∗) ≺ N ′, and

(E) There is an a ∈ N ′ ∩ j(A) with N ′ ∩H(supp(a)) ∈ a.

This contradicts N ∈ j(B) with witnesses j(N ∗) and j(σ). �
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We now compare the proofs of Woodin’s theorem and Burke’s theorem.
In Woodin’s proof the strength of the embedding j is used to see that b∩Bα

is stationary in V . This gives the existence of z and hence of an N ′ =
SkA(z ∪ j(N ∗) ∪ {b}) with N ′ ∩H(supp(b)) = z. For simple sequences 〈Zα〉,
N ′ is automatically a member of j(Zα∗ ).

In Burke’s situation this may not hold. To find an N ′ ∈ j(Zα∗ ), one either
needs j(Zα∗ ) to be stationary in V or else have j�H(α∗) ∈M . For arbitrary
sequences, the former possibility requires j to have a degree of hugeness. The
latter requires only supercompactness. Hence Burke’s hypothesis.

We remark on the use of the function f bounding the growth of U . Without
the existence of such a function we cannot focus on particular δ∗ and Zδ∗ .
Unless we fix these in advance, among other problems, we cannot necessarily
assume that j�H(δ∗) ∈ M . The assumption that f exists can be avoided at
the cost of assuming that δ is a cardinal larger than a supercompact, as the
next theorem shows.

In Burke’s paper he asks the whether general stationary tower forcing cap-
tures antichains. Woodin proved that with sufficient large cardinal strength,
it does. He used the following cardinal:

9.26 Definition. Let δ be a cardinal. Then δ is a Woodinized supercompact
cardinal iff for every A ⊆ Vδ and all functions f : δ → δ there is an α < δ
closed under f and an elementary embedding j : V → M with M transitive
such that:

1. crit(j) = α and M is closed under |Vj(f)(α)|-sequences,

2. j(f)(α) = f(α), and

3. j(A) ∩ Vf(α) = A ∩ Vf(α).

9.27 Remark. The definition can be equivalently reformulated to simply
demand that for all f : δ → δ there is an α < δ closed under f and a
j : V → M with critical point α such that M is closed under |Vj(f)(α)|-
sequences.

These cardinals stand in the same relation to supercompact cardinals as
Woodin cardinals stand to hypermeasurable cardinals. Standard large car-
dinal techniques can be used to check that every almost huge cardinal is a
Woodinized supercompact cardinal and has many Woodinized supercompact
cardinals below it. Moreover, if δ is a Woodinized supercompact cardinal
then there is a stationary set of κ < δ such that

(Vδ,∈) |= κ is supercompact.

9.28 Theorem. Suppose that δ is a Woodinized supercompact cardinal and
T is a stationary tower of height δ. Then T captures antichains.

Proof. Suppose that T = 〈NS�Zα : α ∈ U〉 is a stationary tower of height δ.
Let A be an antichain that cannot be caught stationarily often. As in the
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proof of antichain catching for the Woodin towers, we let D ⊆ δ be a closed
unbounded set such that for α ∈ D there are Bα ⊆ Zα∗ and Aα showing
that A cannot be caught at α. As before we can assume that for all α ∈ D,
A∩PTα is a maximal antichain in A∩PTα . We again define a function f by
setting f(α) to be the least element of D above α if α /∈ D; for each α ∈ D,
f(α) is some regular β sufficiently large so that:

1. β is above the next inaccessible element of D above α∗, and

2. there is a b ∈ A ∩ Vf(α) such that b ∩Bα is stationary.

Since δ is Woodinized supercompact, we can find an α ∈ D and a j :
V →M with critical point α such that:

1. α∗ is the least element of j(U) above α,

2. if we write j(〈Zα : α ∈ U〉) = 〈Zj
α : α ∈ j(U)〉, then Zj

α∗ = Zα∗ , and

3. M is closed under 22α∗
sequences.

The proof now follows the proof of Theorem 9.25, with α playing the
role of δ. The strength of the embedding is used to find N ′ closed under
j�H((2α∗

)+). �

9.4. Self-Genericity for Towers

The definition of self-genericity for individual ideals (Definition 3.45) gener-
alizes easily in the context of towers.

9.29 Definition. Let T be a tower of height δ and θ > 2δ a regular cardinal.
Let M ′ ≺ 〈H(θ),∈,Δ, T 〉 be good, M be the transitive collapse of M ′, T M

the image in M of T and j the inverse of the transitive collapse map. Then
M ′ is self-generic iff

⋃
α∈δ∩ran(j) U(j,M ′ ∩H(α)) is generic over M for PM

T .

As in Proposition 8.20, M ′ is self-generic iff M ′ captures an index for
every maximal antichain A ∈M ′ below some α < δ.

We remind the reader that if T is a tower and λ < δ is a strong limit
cardinal with U∩λ unbounded in λ, then we can consider the tower Tλ = T �λ,
consisting of 〈Iα : α ∈ U∩λ〉. The next proposition gives a sufficient condition
for PTλ

to be a regular subalgebra of PT . It says that if the collection of N
that are self-generic for Tλ is a condition in T , then below that condition PTλ

is a regular subalgebra of PT .

9.30 Proposition. Let α ∈ U be at least (2λ)+. Let S be the collection of
N such that:

1. N ≺ 〈H(α),∈,Δ, Tλ, . . .〉, and

2. for all maximal antichains A ⊆ PTλ
, if A ∈ N then N captures A

below λ.
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If S ∈ I+
α , then there is a condition R ∈ PTλ

such that PTλ
/R is a regular

subalgebra of PT /(S ∩R).

Proof. Let G ⊆ PT /S be generic and j : V → V Z/G be the canonical em-
bedding. The proof of the easy part of Proposition 2.34 shows that V Z/G
is well-founded at least up to δ, so we replace it by an isomorphic struc-
ture M that is transitive to rank δ. Then j“H(λ) is self-generic. Hence⋃

α∈δ∩ran(j) U(j, j“H(α)) is generic for PTλ
over H(λ∗)V . Let R ∈ PTλ

force
that the generic object for PTλ

can be extended to a generic G ⊆ PT /S.
Then PTλ

/R is a regular subalgebra of PT /(S ∩R). �

This proposition generalizes easily to a criterion for one tower to be em-
bedded in a different tower.

9.31 Proposition. Let T1, T2 be towers of height δ1 < δ2. Suppose that
there is a condition B ∈ T2 that is a subset of {N ⊆ H(θ) : N is self-generic
for T1} for some θ ≥ (2δ1)+. Then there is a condition R ∈ PT1 such that
PT1/R is a regular subalgebra of PT2/B ∩R.

Proof. Let G ⊆ PT2 be generic with B ∈ G. Then j“H(θ) is self-generic
for T1. In particular, G ∩ PT1 is generic over V for PT1 . �

In analogy with Lemma 3.46 for individual ideals we see the following
proposition.

9.32 Proposition. Suppose that T is a tower of inaccessible height δ. Then
the following are equivalent:

1. PT is δ-c.c., and

2. there is a closed unbounded set D ⊆ δ for all α ∈ D

{N : N is self-generic for PTα} ∈ Ĭα∗ .

Woodin showed the following for P<δ and Q<δ:

9.33 Proposition. Suppose that δ1 < δ2 are Woodin cardinals, and either:

1. R1 = P<δ1 and R2 = P<δ2 , or

2. R1 = Q<δ1 and R2 is either P<δ2 or Q<δ2 .

Then there is an b ∈ R2 such that R1 is a regular subalgebra of R2/b.

Proof (Sketch). Let S be the set described in Proposition 9.31, and b = S if
R1 = P<δ1 and {N ∈ S : |N | = ω} if R1 = Q<δ1 . We need to see that b is
stationary. This is shown by fixing an arbitrary structure A on H((2δ1)+)
and building a chain 〈Ni〉 of elementary substructures of A together with
an increasing sequence of cardinals 〈αi〉. The lengths of the sequences are
determined by what R1 is. The sequences will have the properties that:
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1. i < j implies Nj ∩H(αi) = Ni ∩H(αi),

2. if A is a maximal antichain in R1 that belongs to SkA(
⋃

i(Ni ∩H(αi)))
then there is an i such that Ni+1 captures A below αi.

Then SkA(
⋃

i(Ni ∩H(αi))) is an elementary substructure of A that belongs
to S. �

Proposition 9.33 can be reformulated in a general context by the use of
Definition 9.17. For example using the same technique as the previous sketch,
one can show:

9.34 Proposition. Let ρ ≤ δ1 < δ2 regular cardinals with δ1 and δ2 inac-
cessible. Let T = 〈Iα : α ∈ U〉 be a tower of height δ2 and A ∈ PT be a
condition with support at least δ∗

1 . Let S be the tower of height δ1 determined
by projecting Isupp(A)�A to a sequence of ideals on H(α) for α < δ1. Suppose
that

1. T /A is ρ-complete,

2. if J is the projection of Isupp(A)�A to an ideal on H(δ1), then J con-
centrates on [H(δ1)]<ρ+

, and

3. S captures antichains.

Then there is a condition B ∈ T such that S is a regular subalgebra of T /B.

9.5. Examples of Stationary Tower Forcing

We now consider some examples of stationary tower forcing. Our goal is to
give the reader a glimpse of the possibilities inherent in the forcing without
exploring the many applications. This is done in the excellent books by
Woodin [126] and Larson [80].

9.35 Example (Woodin). Let δ be Woodin and μ < δ be a regular uncount-
able cardinal. For μ ≤ α < δ, let Zα = [H(α)]<μ and T = 〈NS�Zα : α < δ〉.
Then forcing with PT yields a generic embedding j : V →M with M<δ ⊆M .
If η is an ordinal less than δ and {z : z ∩ μ ∈ μ} and {z : cf(z ∩ η) = ρ} are
in the generic object G, then the critical point of j is μ and in both V [G]
and M , the cofinality of η is j(ρ).

In particular, if there are Woodin cardinals then there is a partial ordering
that changes the cofinality of ℵV

ω+1 to ℵn, while preserving all cardinals less
than ℵω. Closely related to this is:

9.36 Example (Foreman and Magidor [42]). Let δ be supercompact and
ρ, μ and κ be regular with μ+ ≤ ρ < κ < δ. Let η < δ and 〈Zα : κ ≤ α < δ〉



1110 Foreman / Ideals and Generic Elementary Embeddings

be a sequence of stationary sets determining a stationary tower, with Zα a
subset of

{z ∈ [H(α)]<κ : z ∩ κ ∈ κ, z ∩ α is <μ+-closed and cf(z ∩ η) = ρ}.

Then in V [G], the critical point of j is κ, the cofinality of η is ρ and for all
ordinals ξ, if cf(ξ)V [G] ≤ μ then cf(ξ)V [G] = cf(ξ)V .

If Zα = {z ∈ [H(α)]<κ : z∩κ ∈ κ, z∩α is <μ+-closed and cf(z∩η) = ρ},
then a Woodin cardinal suffices to draw the same conclusion.

Specializing this example by taking κ = η = ℵω+1, μ = ℵ16, and ρ = ℵ17

and assuming the existence of Woodin cardinals we see that there are partial
orderings that force ℵω+1 to have cofinality ℵ17 but preserve all cardinals
below ℵω and the V -cofinality of any cardinal whose cofinality in V [G] is
below ℵ17.

If a tower preserves cofinalities then the possible fixed points of its generic
embedding are restricted. The next result appears in [42], as Proposition 1.5:

9.37 Proposition. Suppose that P is δ-presaturated with δ regular, j :
V →M is definable in V P, M is well-founded and M<δ ⊆M . Suppose that
α < δ is a regular cardinal bigger than the critical point of j and j(α) = α.
Then j“α is not ω-closed.

Proof. If j“α is ω-closed, for ordinals below α forcing with P preserves the
properties of having cofinality ω and of having cofinality bigger than ω.106

Let 〈Sγ : γ < α〉 ∈ V be a partition of α ∩ Cof(ω) into stationary sets. Each
set on the sequence j(〈Sγ : γ < α〉) is a stationary subset of α in V [G] since
M<δ ⊆M . Let f : α∩Cof(ω)→ α be given by f(η) = γ iff η ∈ Sγ . Consider
j“α. Then j“α is closed under j(f). Since j“α is ω-closed, j“α intersects
each set on the list j(〈Sγ : γ < α〉). Since j“α is closed under f , we must
have j“α = α. But this contradicts α > crit(j). �

9.38 Corollary. Suppose that T is a presaturated tower of height δ such that
if G ⊆ PT is generic then δ ∩ Cof(ω)V = δ ∩ Cof(ω)V [G]. Let j : V →M be
the generic embedding from T . Then j has no fixed points whose V -cofinality
is between crit(j) and δ.

The next couple of examples illustrate that if one is willing to change some
cardinals to cofinality ω one can have fixed points within the strength of a
generic elementary embedding. Note that this is not possible with conven-
tional large cardinal embeddings.107

9.39 Example. Let δ be a Woodin cardinal, G ⊆ P<δ be generic and j :
V →M be the generic elementary embedding. Then in V [G]:

106 See Proposition 2.32.
107 The “Kunen Contradiction” implies that if j : V → M is a large cardinal embedding
and λ is a fixed point of j above the critical point of j, then P (λ) �⊆ M .
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1. j(δ) = δ,

2. δ is a regular cardinal and there are unboundedly many measurable
μ < δ with j(μ) = μ, and

3. for unboundedly many measurable μ ∈ δ there is a γ < μ and x ⊆ γ
such that Vμ ⊆ L[x].

Proof. We first show that the collection of measurable fixed points of j is
unbounded in δ. Let β < μ < δ where μ is measurable and suppose that
S ⊆ P (H(β)) is a stationary set. Standard indiscernibility arguments show
that there is a stationary set T ⊆ P (H(μ+)) such that T ≤P<δ

S, and for
all N ∈ T there is an expansion A of H(μ+) in a countable language and an
unbounded set of indiscernibles I ⊆ μ such that N = SkA((N ∩H(β))∪ I)}.

In analogy to Remark 2.27, the function f : P (H(μ+)) → On given by
f(z) = ot(z ∩ μ) represents μ in every generic ultrapower produced by the
tower T . Since for all N ∈ T , f(N) = μ we see that T � μ = j(μ). Hence the
condition T forces in P<δ that μ is a measurable fixed point of the generic
embedding j.

We have shown that for every S ∈ P<δ and β < δ there is a T ≤P<δ
S

and a μ > β such that T forces that μ is a fixed point of j. Hence, the set of
fixed points of j is cofinal in δ.

To see that δ is a fixed point, suppose that [f ]M is an ordinal less than
j(δ) in M . Then f is a function from some P (H(α)) into δ, where α < δ.
Since |P (H(α))| < δ and δ is inaccessible, f is bounded in δ by some fixed
point of j, call it μ. Thus [f ]M < j(μ) = μ < δ, and we see that δ is a fixed
point of j.

Since j(δ) = δ, δ is regular in M . Since P<δ is presaturated, M is closed
under <δ-sequences, so δ is regular in V [G].

We sketch the last claim. The condition T forces that there is an expansion
B of j(H(μ+)) and an unbounded set J ⊆ μ such that:

1. j“H(μ+) = SkB(j“H(β) ∪ J), and

2. J is a set of B indiscernibles over j“H(β).

Let γ = |H(β)| and x ⊆ γ code the structure SkB(j“H(β)) together with the
“blueprint” of the indiscernibles J . Then L[x] can reconstruct a structure
isomorphic to H(μ+)V , and hence Vμ. �

9.40 Remark. The only role of γ is clause 3 of Example 9.39 is to work
below the condition S. If we start below the trivial condition then we can
take x ⊆ ω. Thus we can force to keep any given μ < δ measurable and code
Vμ by a real.

Stationary tower forcings typically add sequences 〈γi : i ∈ ω〉 that are V -
generic for Prikry forcing through a measurable cardinal μ < δ. To see this
we use an indiscernible argument similar to the one in the previous example.
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Let S ⊆ P (H(β)) be stationary for some β < δ. Let μ > β be measurable.
We show that the collection of M ∗ ≺ H((22μ

)+) such that M ∩ H(β) ∈ S
and there is a sequence 〈γi : i ∈ ω〉 in V that is Prikry generic over M ∗ is
stationary.

Let A be any structure expanding 〈H((2δ)+),∈,Δ, F, {β}〉, where F is a
normal ultrafilter on some μ > β. It suffices to find an M ≺ A such that
M ∩H(β) ∈ S and a Prikry sequence through F over M . Let N ≺ A with
N ∩ H(β) ∈ S. Choose γ1 ∈

⋂
(F ∩ N). If N1 = SkA(N ∪ {γ1}) then

N1 ∩ H(μ) end extends N ∩ H(μ). This process can be repeated to build
sequences 〈Ni : i ∈ ω〉 and 〈γi : i ∈ ω〉 such that Ni ≺ A and Ni+1 ∩H end
extends Ni ∩ H(μ). If we let M =

⋃
Ni then M ≺ A and 〈γi : i ∈ ω〉 is a

Prikry sequence through F over M . Moreover M ∩H(β) = N ∩H(β) ∈ S.
We have sketched:

9.41 Example. Suppose that PT is a stationary tower given by 〈Zα : α < δ〉
where δ is Woodin and either each Zα = P (H(α)) or there is an η ≥ ω1 so
that each Zα is of the form [H(α)]<η. Then for each S ∈ PT , we can find
arbitrarily large measurable μ < δ for which there are T ≤PT S such that
T ⊆ {N ≺ H((22μ

)+) : there is a sequence 〈γi : i ∈ ω〉 Prikry generic over
N for a ultrafilter F on μ}. This T forces that PT adds a Prikry generic
sequence over V through a ultrafilter on μ. Thus PT adds Prikry generic
sequences to a cofinal set of cardinals below δ.

We remark that this same technique can add “longer” Prikry sequences
to μ.

Woodin proved the following theorem about “Σ2 resurrection”:

9.42 Theorem (Woodin; see [80]). Suppose that there is a proper class of
Woodin cardinals. Then for all Σ2 formulas φ(�x), all �a ∈ V , and all partial
orderings P there is a partial ordering Q ∈ V P such that:

φV (�a ) implies φP∗Q(�a).

We illustrate this theorem by giving a special case that shows that if there
is a huge cardinal and a proper class of Woodin cardinals then after any
forcing P one can do a further forcing Q to restore a huge cardinal to the
universe.

9.43 Example. Suppose that j : V →M is a huge embedding with critical
point κ and j(κ) = λ. Suppose that P is a partial ordering and there is a
Woodin cardinal bigger than both λ and |P|. Then in V P there is a partial
ordering Q such that

V P∗Q |= there is a huge cardinal.

Proof. Fix a Woodin cardinal δ > max(|P|, λ). We first argue that if H ⊆ P is
generic then we can find a partial ordering Q ∈ V [H] such that for all V [H]-
generic H ′ ⊆ Q, there is a V -generic G ⊆ P<δ such that V [H ∗H ′] = V [G].
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Let μ = |P|. We force with the Woodin tower P<δ below the condition
S = {z : |z ∩ H(22μ

)| = ℵ0} to get a generic object G. This collapses
|22μ | to be countable. Hence for each condition p ∈ P there is a V -generic
object H ⊆ P with p ∈ H that belongs to V [G]. Applying standard forcing
arguments we see that there is a regular embedding

e : P → B(P<δ/S).

The forcing fact highlighted in the introduction shows that for each generic
H ⊆ P there is a partial ordering Q ∈ V [H] such that

P<δ/S ∼ P ∗Q.

To see that this Q works, it suffices to show that for all generic G ⊆ P<δ,
there is a huge cardinal in V [G]. We showed in Example 9.39 that in V [G]
there is a generic elementary embedding k : V → M where M<δ ⊆ M and
k(δ) = δ. In particular, M is a model of “there is a huge embedding j′ with
critical point κ′ and j′(κ′) < δ”. Since this huge embedding comes from a
normal, fine, ultrafilter U on [λ′]κ

′
, and P ([λ′]κ

′
)M = P ([λ′]κ

′
)V [G], we see

that κ′ is huge in V [G]. �

The next result is a very small improvement of a result of Burke’s in his
[12]:

9.44 Proposition. Suppose that I is a countably complete ideal on a set Z
and suppose that δ > |Z| is a Woodin cardinal. Then I is pre-precipitous.108

Proof. We need to see that there is a partial ordering P and a P-term i and
an elementary embedding j : V → M definable in V P such that A ∈ I iff
‖i ∈ j(A)‖ = 0.

We first show Burke’s result that using P<δ we can force the existence of
an ultrafilter U ⊇ Ĭ such that V Z/U is well-founded. For some α > 22|Z|

let S = {z ⊂ H(α) : |z ∩ 22|Z| | is countable}. Let G ⊆ P<δ be generic with
S ∈ G. If j : V →M ⊆ V [G] is the generic ultrapower, then

⋂
A∈Ĭj(A) ∈ j(Ĭ).

In particular,
⋂

A∈Ĭ j(A) �= ∅. If we choose i ∈
⋂

A∈Ĭ j(A) then U(j, i) ⊇ Ĭ

and V Z/U(j, i) is well-founded.
To see the full result, we apply Burke’s technique to the ideals I�B for

each B ∈ I+. Choose a maximal antichain A ⊂ P<δ of size at least 2|Z|.
Partition A into non-empty sets 〈AB : B ∈ I+〉. Burke’s technique gives us
a collection of terms iT for T ∈ A such that if T ∈ AB , then

T � iT ∈
⋃

A∈Ĭj(A) ∩ j(B).

Let i be a term such that for all T ∈ A, T � i = iT . Then B ∈ I iff
‖i ∈ j(B)‖ = 0. �
108 The definition of pre-precipitous is given in Definition 3.39.
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9.6. A Tower that is not Precipitous

In this subsection we present an example due to Burke [11], of a tower that
has height a supercompact cardinal and is not precipitous. This stands in
contrast to Theorems 9.25 and 9.28.

The example in Burke’s paper uses a hypothesis that is a consequence of a
supercompact cardinal and Schimmerling showed holds in some inner models
of the form L[E]:

9.45 Definition. Let ∗(κ, δ) be the statement that κ is a regular cardinal,
δ > κ is an inaccessible cardinal and there is an increasing sequence of tran-
sitive models of ZFC, 〈Nξ : ξ < λ〉 that belongs to Vδ such that for all x ∈ Vδ

there is an a ≺ Vδ with x ∈ a, |a| < κ, and a ∩ κ ∈ κ and for some ξ < λ the
transitive collapse of a is a rank initial segment of Nξ.

9.46 Theorem (Burke [11]). Suppose that ∗(κ, δ). Then there is a tower of
height δ with critical point κ that is not precipitous.

Burke noted that if κ is supercompact and δ > κ is inaccessible then the
sequence of length one 〈Vκ〉 is a witness to ∗(κ, δ). Hence he deduces:

9.47 Corollary. Suppose that κ is supercompact and δ > κ is inaccessible.
Then there is a tower of height δ and critical point κ that is not precipitous.

We start with two preliminary results.

9.48 Proposition. Suppose that T is a precipitous tower of height δ where
δ is an inaccessible cardinal, G ⊆ PT is generic and j : V → M is the
associated elementary embedding. If j(δ) > δ, then PT is not in M .

Proof. If the proposition fails then we may assume that for all G ⊆ PT ,
j(δ) > δ and PT ∈ M . Let N = L(Vδ, T ). Then N may not be a model of
AC, but PT belongs to N as do all functions into Vδ with support below δ.

Fix G ⊆ PT generic over V , and let j : V → M be the elementary
embedding coming from the ultrapower map. Let δ∗ = j(δ). Then G is also
generic over N . If jG is the generic ultrapower constructed over N using G,
we have jG(δ) ≥ δ∗. As this can be expressed in the forcing language, there
is a p ∈ PT such that N |= p �PT jG(δ) ≥ δ̌∗.

Let [f ]M = δ and [g]M = T . Without loss of generality we can assume
that:

1. supp(f) = supp(g) = α for some α < δ, and

2. for all a ∈ H(α), f(a) < δ and g(a) is a tower of height f(a) that
belongs to L(Vf(a), g(a)).

Since δ is inaccessible, |H(f(α))f(a)| < δ for all a ∈ H(α). If Ga ⊆
Pg(a) is generic over L(Vf(a), g(a)), then |jGa(f(a))| ≤ |H(f(α))f(a)|. Hence
L(Vf(a), g(a)) |=“for all generic Ga ⊆ Pg(a), jGa(f(a)) < δ̌”.
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Passing to M , and using the fact that N = L(V[f ]M , [g]M ) we see that
N |=“for all generic G, jG(δ) < δ̌∗”. This contradicts the existence of the
condition p. �

9.49 Lemma. Suppose that δ is an inaccessible cardinal, U is an unbounded
subset of δ and 〈Zα ⊆ P (H(α)) : α ∈ U〉 is a sequence of stationary sets
such that for α < β ∈ U , NS�Zβ projects to a superset of NS�Zα. Then there
is a tower T = 〈Iα : α ∈ U〉 such that for all α ∈ U , Zα ∈ Ĭα.

Proof. Let Iα,β be the projection of NS�Zβ to P (H(α)). Then the Iα,β

increase with β and hence stabilize in a proper ideal at some β(α) < δ. Then
Iα = Iα,β(α) is the desired sequence. �

We now prove Theorem 9.46.

Proof. Assume ∗(κ, δ) and let 〈Nξ : ξ < λ〉 be a witness. To follow Burke’s
proof closely, it is easier to work with Vα’s instead of H(α)’s. Since δ is
inaccessible, there is a closed unbounded set of α ∈ δ where Vα = H(α), so
this is primarily a notational distinction.

For α a limit ordinal between κ and δ, let Zα = {a ⊆ Vα : |a| < κ, a∩κ ∈ κ
and there is a ξ < λ such that the transitive collapse of a is a rank initial
segment of Nξ}.

We claim that:

1. each Zα is stationary, and

2. for α < β the projection of NS�Zβ to α is a superset of NS�Zα.

To see that Zα is stationary, fix an algebra A with domain Vα. Apply
∗(κ, δ) with x = A, to find an a ≺ Vδ with x ∈ a and a ξ such that the
transitive collapse of a is a rank initial segment of Nξ. Then a ∩ Vα ≺ A.
Further, the transitive collapse of a ∩ Vα is a rank initial segment of the
transitive collapse of a and hence of Nξ.

To see the second claim, it suffices to show that the projection of the
closed unbounded filter on Vβ restricted to Zβ is a superset of the closed
unbounded filter on Vα restricted to Zα. Fix an algebra A on Vα. Let B

be any fully Skolemized structure expanding (Vβ ,∈, δ) containing a constant
symbol whose interpretation is A. Then any elementary substructure b ≺ B

has b ∩ Vα ≺ A. For b ≺ B with transitive collapse a rank initial segment
of Nξ, we know that the transitive collapse of b ∩ Vα is also a rank initial
segment of Nξ. Thus the projection to Vα of those b ∈ Zβ that are elementary
substructures of B is contained in the collection of elementary substructures
of A that belong to Zα.

By Lemma 9.49 we can find a tower T = 〈Iα : α ∈ U〉 such that for all
α ∈ U , Zα ∈ Ĭα.

Indirectly assume that PT is precipitous. Let G ⊆ PT be generic, and
let j : V → M ⊆ V [G] be the generic ultrapower. Note that j(κ) ≥ δ,
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so in particular, j(δ) > δ. We establish our contradiction by showing that
T ∈ M and hence PT ∈ M . Since T is definable in Vδ from the sequence
〈Nξ : ξ < λ〉, this is equivalent to showing that Vδ ∈M .

Let α ∈ U . Since Zα ∈ Ĭα, we know that the transitive collapse of j“Vα

is a rank initial segment of some element of j(〈Nξ : ξ < λ〉). Denote j(〈Nξ :
ξ < λ〉) by 〈N j

ξ : ξ < j(λ)〉. Let ξ(α) be the least ordinal such that Vα is a
rank initial segment of N j

ξ(α) and γ = sup{ξ(α) + 1 : α < δ}. Note that the

map α �→ ξ(α) is monotone. In M , let R = {x : rank(x) < δ and x ∈ N j
ξ for

some ξ < γ}.
We claim that R = Vδ. Clearly Vδ ⊆ R. Suppose that x ∈ R. Let β < δ

be a limit ordinal such that x has rank less than β and ξ < γ be such that
x ∈ N j

ξ . Since the sequence 〈N j
ξ : ξ < j(λ)〉 is increasing and ξ < γ, we can

assume that ξ = ξ(β′) for some β′ ≥ β. Since Vβ′ is a rank initial segment of
N j

ξ , we see that x ∈ Vβ . �

10. Consistency Strength of Ideal Assumptions

In this section we describe some progress towards clarifying the relationships
between generic ultrapowers and conventional large cardinals. We begin with
a brief survey of the results showing that generic embeddings yield fine struc-
tural inner models. Relevant information on these results can be found in the
chapters by Mitchell, by Schindler and Zeman, and by Steel in this Hand-
book and in the papers referenced in the text. We shall confine ourselves to
telegraphic remarks here. It is important to note as well that there are direct
equiconsistency results between ideal assumptions and determinacy hypothe-
ses. For example, Woodin showed that 2ℵ0 = ω2 + “NSω1 is ℵ1-dense” is
equiconsistent with AD + V = L(R). This type of result is beyond the scope
of this chapter.

Some new results that show the existence of very large cardinals are pre-
sented. The underlying point of the new results is that knowing the image of
just a few sets by the generic ultrapower embedding is sufficient to show that
there is a conventional large cardinal in an inner model whose embedding
agrees with the generic ultrapower embedding. The proofs of the new results
in this section can be found in the forthcoming paper [32].

Throughout this section we will use the notation πN to be the unique
isomorphism between an extensional set N and its transitive collapse.

10.1. Fine Structural Inner Models

We begin by describing conventional theorems using core model theory to
build inner models with large cardinals from generic embedding assumptions.
As we will see, the gap between the lower bounds on consistency strength
provided by core model theory and the upper bounds given by forcing are,
in many cases, quite large.
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Early work of Kunen was used by Jech and Prikry (see [65]) to show
that if U is the dual of a normal, precipitous ideal on some cardinal κ then
L[U ] |= U is a normal ultrafilter on κ. In particular, this gave one direction
of the equiconsistency between real-valued measurable cardinals and (two-
valued) measurable cardinals.109

As pointed out earlier, in Theorems 8.6, 8.7 and 8.8, work of Gitik [53, 54]
showed that having NSω2 be precipitous is equiconsistent with the existence
of a measurable cardinal of Mitchell order 2. More generally, if μ > ω1 then
CH + “NSμ+ is precipitous” is equiconsistent with μ+ being an (ω, μ + 1)
repeat point for the normal ultrafilters on μ+ in the core model K. The prop-
erty “κ is an inaccessible cardinal and NSκ is precipitous” is equiconsistent
with κ having an (ω, κ+1)-repeat point for the normal ultrafilters on κ in K.

For saturated ideals, the situation is less clear. Steel [114] showed that if
there is a presaturated ideal on a cardinal κ and a measurable cardinal μ > κ,
then there is an inner model with a Woodin cardinal.

Steel also showed that if there is a homogeneous presaturated ideal on ω1

and CH holds, then Projective Determinacy holds. Hence, for all n ∈ ω there
is an inner model with n Woodin cardinals. This result was superseded by
Woodin who showed that CH was not necessary and was able to get inner
models with ω-many Woodin cardinals. This is an exact equiconsistency
result, as the Steel-Van Wesep ideal (Theorem 8.1) is homogeneous.

Steel and Zoble showed that the assumption “NSω1 is ℵ2-saturated and
every pair of stationary subsets of ω2 ∩ Cof(ω) simultaneously reflect” im-
plies ADL(R), with the consequent inner model implications. We note that
the Steel-Zoble hypotheses follows from many standard propositions such as
Martin’s Maximum. Somewhat weaker versions of these results appear in
Zoble’s thesis [131].

We note that for saturated or cardinal preserving ideals above ω1, there is
an enormous gap between the known lower bounds (some number of Woodin
cardinals) and the known upper bounds (almost huge cardinals).

There is a similar situation for Chang’s Conjecture type properties. The
classical Chang’s Conjecture (ℵ2,ℵ1) →→ (ℵ1,ℵ0) is equiconsistent with the
existence of an ω1-Erdős cardinal, as shown by results of Silver, Baum-
gartner, Donder and Levinski, among others [70, 24]. For the property
(ℵn+2,ℵn+1) →→ (ℵn+1,ℵn) with n > 0, the known upper bound on con-
sistency strength is a huge cardinal. A lower bound with n = 1 and CH was
given by Schindler [99, 100] as a κ with Mitchell order κ+ω. For n ∈ [2, ω)
with 2ℵn−1 = ℵn, Schindler showed that there is an inner model with a strong
cardinal. Without the assumptions on cardinal arithmetic, Jensen showed 0-
sword exists.

For “gap two” Chang Conjectures the distance between the known lower
and upper bounds is even greater, as the best known upper bound is a 2-huge
cardinal [33].

109 The consistency result was proved previously by Solovay [111].
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10.2. Getting Very Large Cardinals from Ideal
Hypotheses

In this section we discuss various non-standard ways of getting inner models
with very large cardinals.

Constructing from Stationary Sets and the Nonstationary Ideal

We begin by illustrating how to construct models with arbitrarily large car-
dinals by constructing relative to the nonstationary ideal.

Recall the following theorem of Burke (Corollary 4.21):

Theorem. Suppose that I is a normal, fine, countably complete ideal on a
stationary set Z ⊆ P (X). Then for all Y with |Y | ≥ 2X , there is a stationary
set A ⊆ P (Y ) such that I is the projection of the nonstationary ideal on Y
restricted to A.

Suppose that X = λ and Y = λ′ for cardinals λ, λ′. An examination of
the argument for Burke’s theorem yields the following observation: If Ĭ is an
ultrafilter and U is a normal, fine ultrafilter on P (λ′) projecting to Ĭ, then
A ∈ U . Hence, if U is (say) a supercompact ultrafilter, we can take A to be
canonically well-ordered.

The A produced in Burke’s theorem can be taken to have many of the
properties typical to sets in Ĭ. Arguments from [42] show that if there is a
set of measure one C for I such that every element z ∈ C is ω-closed as a set
of ordinals, then we can find an A such that every N ∈ A is ω-closed as a set
of ordinals. Moreover, if I concentrates on sets of size less than κ (resp. equal
to κ or greater than κ etc.), then Z can be taken to concentrate on sets of
size less than κ (resp. equal to κ or greater than κ).

Many large cardinal properties of a cardinal κ can be defined in terms of
the existence of certain kinds of ultrafilters U on a subset of P (λ) for λ ≥ κ.
In attempting to construct a canonical inner model theory for such cardinals,
a major obstacle is finding a suitable set of measure one to build into the
model. Typically, doing simple relative constructibility one finds that L[U ]
is a very small model and the method fails. Alternatively, one can simply
“throw in” a set of measure one A ∈ U , making sure that A is canonically
well-ordered. A theorem of Solovay [112] says that if U is a supercompact or
strongly compact ultrafilter then A can be taken so that distinct elements of
A have different suprema. The cost of the second approach is that the model
seems in no way canonical.

Let A ⊆ [λ]<κ be a set such that the function sup : A → λ is one-to-one.
For β in the range of the sup function, let aβ ∈ A be such that sup(aβ) = β.
Define A∗ ⊆ λ× λ by setting (α, β) ∈ A∗ iff α ∈ aβ . Then A ∈ L[A∗].

From Burke’s theorem we get:

10.1 Corollary. Suppose that κ is [2λ]<κ-supercompact. Then there is a
stationary set A ⊆ [2λ]<κ such that L[NS�[2λ]<κ, A∗] is a model of ZFC +
“κ is λ-supercompact”.
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We note that there are many stationary sets A that work for Corollary 10.1.
One possible definition of such an A is:

{x ∈ [H((2λ)+)]<κ : x ∩ κ ∈ κ and tc(x) ⊆ H(λx)},

where λx is the order type of λ ∩ x and tc(x) is the transitive closure of x.
Moreover, using arguments similar to Theorem 1.3 of [42], one sees that

if U is a supercompact ultrafilter on [λ]<κ then there is always a stationary
set A of good structures in H((2λ)+) such that the sup function is one-
to-one on A. Hence, the assumption of Corollary 10.1 can be reduced to
λ-supercompactness. Indeed one sees:

10.2 Corollary. Let κ < λ be regular cardinals. Then κ is λ-supercompact
iff there is a stationary set A ⊆ [2λ]<κ such that the supremum function
is one-to-one on A and L[NS�[2λ]<κ, A∗] is a model of ZFC + “κ is λ-
supercompact”.

There is nothing particularly remarkable about supercompact cardinals in
the previous arguments. It generalizes easily to essentially any type of very
large cardinal such as huge cardinals, n-huge cardinals or towers of n-huge
cardinals. In the case of the huge cardinal, to see that the Axiom of Choice
holds in the inner model, we note that if U is a huge ultrafilter on [λ]κ, then
there is a set A ∈ U such that the map z �→ (z∩κ, sup(z∩λ)) is a one-to-one
map into κ× λ.110 Similar tricks for generalizations to larger cardinals such
as n-huge cardinals.

Decisive Ideals

Next we give a definition that seems to adequately distinguish between ideals
that arise as induced ideals in models built after collapsing large cardinals by
forcing and the natural ideals whose generic embeddings are not the traces
of large cardinal embeddings in inner models.

10.3 Definition. Let Z ⊆ P (X) and J be an ideal on Z. Let X ′ ⊆ X and
I be the projection of J to an ideal on P (X ′) via the map π(z) = z ∩ X ′.
Then J decides I iff there is a set A ∈ Ĭ and a well-ordering W of A and sets
A′, W ′, O′ and I ′ such that for all generic G ⊆ P (Z)/J ,

1. an initial segment of the ordinals of V Z/G is well-founded and isomor-
phic to (|A′|+)V , and

2. if j : V → M is the canonical elementary embedding determined by
replacing the ultrapower V Z/G by an isomorphic model M transitive
up to |A′|+, then

j(A) = A′, j(W ) = W ′, j“|A| = O′, I ′ = j(I) ∩ P (A′)V .

110 There is even a large set such that the supremum function is one-to-one. This is not
necessarily true in the examples we consider later in this section, so we mention the weaker
property now.
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We will say that J is decisive if J decides itself.111

Some of the hypotheses in Definition 10.3 are easily satisfied. For example,
if J is normal and fine, and |X| ≥ |A′|+, then the first clause is automatically
satisfied. Moreover, if A has a ΔZF−

1 well-ordering in H(|A|+) then W and
W ′ automatically exist. Often A has a simple well-ordering given by the
properties of the characteristic function of its members.

10.4 Remark. For most induced ideals J produced by collapsing a large
cardinal and extending the large cardinal embedding, it is routine to check
decisiveness.

The definition can easily be extended to arbitrary generic embeddings,
rather than just generic ultrapowers V Z/G: If j : V → M is a generic
elementary embedding defined in a forcing extension V P we can ask that M
be well-founded up to |A′|+ and that the sets A,A′,W ′, O′, I ′ exist in the
inner model M . In this case we say that P decides I.

10.5 Theorem. Let μ ≤ λ be cardinals. Let π : P (λ) → P (μ) be defined
by π(z) = z ∩ μ. Suppose that J is a normal, fine ideal on a set Z ⊆ P (λ)
that decides a countably complete ideal I ⊆ P (Z ′) for some Z ′ ⊆ P (μ).
Suppose that A,W witness the fact that J decides I and W well-orders A as
〈aβ : β < γ < |A|+〉. Let A∗ = {(α, β) : α ∈ aβ} ⊆ μ× μ. Then either:

L[A∗, I] |= Ĭ is an ultrafilter on A

or for some generic G ⊆ P (Z)/J

L[j(A∗), j(I)] |= j(Ĭ) is an ultrafilter on j(A).112

We can replace clause 1 in the definition of “decisive” by the demand that
“if a = |j(A)|M and b = (a+)M , then M is well-founded up to b”. This
change in the hypothesis yields the stronger conclusion that L[A∗, I] |= Ĭ is
an ultrafilter.

10.6 Corollary. Suppose that I is a normal, fine, κ-complete decisive ideal
on λ with witnesses A, W . Then:

1. If α < κ and A ⊆ [κ+α]<κ, then there is an inner model of V with a
cardinal μ that is μ+α-supercompact.

2. If A ⊆ [λ]κ, then there is an inner model of V with a huge cardinal.

3. If A ⊆ {z : ot(z) = λ1 and ot(z ∩ λ1) = κ}, then there is an inner
model of V with a 2-huge cardinal.

111 I.e. if we take π to be the identity map and I = J .
112 The two alternatives are not equivalent because M is not necessarily well-founded.
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Moreover if I is precipitous then:

4. If A ⊆ [λ]<κ, then κ is λ-supercompact in an inner model of V .

5. If A ⊆ [λ]κ, then κ is huge in an inner model.

6. If A ⊆ {z : ot(z) = λ1 and ot(z ∩ λ1) = κ}, then κ is 2-huge in an
inner model.

In particular, the following are equiconsistent:

a. for n < m ∈ ω there is normal, fine, decisive ideal on [ωm]ωn ,

b. there is a huge cardinal,

as are:

a. for n < m ∈ ω there is normal, fine, decisive ideal on [ωm]<ωn ,

b. there is a κ+(m−n)-supercompact cardinal κ.

Note that there are obvious analogous corollaries for n-huge cardinals.
In unpublished work, starting from a measurable cardinal, Gitik has given

an example of an indecisive κ-complete precipitous ideal on a cardinal κ.
Another example of a nowhere decisive ideal is the following.

Start in a model with a Woodin cardinal. Collapse the first Ramsey car-
dinal to be ω2 so that (ℵ2,ℵ1) →→ (ℵ1,ℵ0). Now collapse a Woodin cardinal
to be ω3. Then Theorem 8.37 shows that the Chang ideal on [ω2]ω1 is pre-
cipitous. Were it decisive it would give an inner model with a huge cardinal.
However, if the model we start in is the minimal inner model with one Woodin
cardinal this is impossible.

Chang’s Conjecture and Huge Cardinals

In this section we will use Proposition 3.9 and the definitions of the Chang
ideals.

Recall that Lemma 4.34 implies that if κ > μ and there are finitely many
cardinals between κ and μ then any ideal I concentrating on {N ∈ P (κ) :
N ∩ μ ∈ μ and for all cardinals λ with μ ≤ λ ≤ κ we have cf(N ∩ λ) > ω},
has a canonically well-ordered set A ∈ Ĭ of cardinality κ. Thus any Chang
ideal involving cardinals at least as big as ω1 has a canonically well-ordered
set of measure one. Hence clause 2 of the hypotheses of the next theorem
is satisfied by most Chang ideals. The clause 1 implies that |N ∩ κ1| =
κ0 and hence clause 1 is a version of the Chang’s Conjecture (κ1, κ0) →→
(κ0, <κ0). Clauses 3 and 4 are condensation properties that hold in huge
type embeddings.

10.7 Theorem. Suppose that κ2 > κ1 > κ0 are cardinals and there is a
regular θ and a stationary set S ⊆ P (H(θ)) and sets A ⊆ [κ1]κ0 , A′ ⊆ [κ2]κ1 ,
O′, I ′ such that for all N ∈ S:



1122 Foreman / Ideals and Generic Elementary Embeddings

1. N ∩ κ0 ∈ κ0 and N ∩ κ1 ∈ A,

2. A,A′ ∈ N and πN (A′) = A, and the map z �→ (z ∩ κ0, sup(z)) is
one-to-one on A,

3. O′ ∈ N and N ∩ κ1 = πN (O′), and

4. I ′ ∈ N and πN (I ′) = (CC((κ1, κ0), (κ0, <κ0))�A) ∩N .

Then there is an inner model with a huge cardinal.

Theorem 10.7 is proved using a decisive elementary embedding that has
critical point κ0 and j(κ0) = κ1 and κ2 = j(κ1). Since the ideal I =
CC((κ1, κ0), (κ0, <κ0)) is a definable ideal, we have the fact that j(I) =
CC((κ2, κ1), (κ1, < κ1))M . If we assume the principle (κ2, κ1, κ0) →→ (κ1, κ0,
<κ0) then the Chang ideals CC((κ2, κ1), (κ1, <κ1)) and CC((κ1, κ0),
(κ0, <κ0) are both proper.

With this remark in mind we note that we can replace clause 4 of Theo-
rem 10.7 with the property that all N ∈ S be correct, which we define to be
the following condensation property:

10.8 Definition. Let

N ≺ 〈H(θ),∈, {κ2, κ1, κ0},Δ, {A,A′}〉

be a structure such that ot(N ∩ κ2) = κ1, ot(N ∩ κ1) = κ0, and |N ∩ κ0| <
κ0. We will say that N is correct for CC((κ1, κ0), (κ0, <κ0))�A iff whenever
πN : N → N̄ is the transitive collapse map, we have

πN (CC((κ2, κ1), (κ1, <κ1))�A′) = (CC((κ1, κ0), (κ0, <κ0))�A) ∩ N̄ .

To make these results concrete we give a corollary. By choosing n = 0, the
corollary provides a consistent statement about H(ω4) that gives an inner
model with a huge cardinal:

10.9 Corollary. Suppose that n ∈ ω and there are A ⊆ [ωn+2]ωn+1 , A′ ⊆
[ωn+3]ωn+2 , and O′ ∈ [ωn+3]ωn+2 , such that for all structures A expanding the
structure 〈H(ωn+4),∈,Δ, {A,A′}〉 there is an N ≺ A:

1. |N ∩ ωi+1| = ωi for i = n, n + 1, n + 2, ωn ⊆ N , and N ∩ ωn+2 ∈ A,

2. πN (A′) = A,

3. The map z �→ (z ∩ ωn+1, sup(z)) is one-to-one on A,

4. O′ ∈ N and N ∩ ωn+2 = πN (O′), and

5. N is correct for CC((ωn+2, ωn+1), (ωn+1, <ωn+1))�A.

Then there is an inner model with a huge cardinal.
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Note that if n ≥ 1 in the previous two corollaries, then Lemma 4.34 gives
a canonically well-ordered set A of measure one for the Chang ideal. This
set is the collection of N ∩ ωn+4 where N ≺ H(ωn+4) is a Chang elementary
substructure that has uniform cofinality bigger than ω. The issue in satisfying
the hypotheses becomes determining where that set goes.

The following theorem gives a partial converse to Corollary 10.9:

10.10 Theorem. If there is a 2-huge cardinal, then there is a generic ex-
tension satisfying GCH and the hypotheses of Corollary 10.9.

A Martin’s Maximum Result

It is a standard fact that if κ is supercompact, λ > κ is regular, and 〈Sα :
α < λ〉 is a partition of λ∩Cof(ω) then for all supercompact measures U on
[λ]<κ, the collection of z ∈ [λ]<κ such that

z ∩ κ ∈ κ and for all α ∈ λ, α ∈ z iff Sα ∩ sup(z) is stationary in sup(z)

belongs to U .
Assuming that |H(λ)| = λ we can index the partition of λ ∩ Cof(ω) by

elements of H(λ), 〈Sx : x ∈ H(λ)〉, and hence we can state that for all
supercompact measures U on [H(λ)]<κ, the collection of z ∈ [H(λ)]<κ such
that:

z ∩ κ ∈ κ and for all x ∈ H(λ), x ∈ z iff Sx ∩ sup(z) is stationary in sup(z)

belongs to U .
By our earlier results, if κ is supercompact we can take a stationary subset

of [2λ]<κ with this property and construct from it with the nonstationary
ideal as a predicate to get a model where κ is λ-supercompact. We note that
the next theorem is a variation of Theorem 10 of [47].

10.11 Theorem. Assume Martin’s Maximum. Suppose that λ ≥ ω2 and
H ⊆ H(λ) has cardinality λ and λ ⊆ H. Let 〈Sx : x ∈ H〉 be a partition of
λ ∩ Cof(ω). Then there is a stationary subset A ⊆ [H]<ω2 such that for all
N ∈ A:

x ∈ N iff Sx is stationary in sup(N ∩ λ).

Let κ be a supercompact cardinal and suppose that P is some standard
iteration for creating a model V [H] that satisfies Martin’s Maximum. Using
the techniques of Corollary 10.1, we can see that there is a set A ∈ U where
U is a supercompact filter on 2λ, such that in V [H], L[NS�[2λ]<ω2 , A] |=
ω

V [H]
2 is λ-supercompact. This might be construed as evidence that a set

A of the form produced in Theorem 10.11 could be used to construct an
inner model with a supercompact cardinal. Concretely, assuming Martin’s
Maximum one can ask whether there is a set A ⊆ H(ω4) such that the model
L[A,NS�[ω4]ω2 ] |= ZFC + “κ is κ+-supercompact”, where κ = ωV

2 ?
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10.3. Consistency Hierarchies Among Ideals

While it is not known how the consistency strength of saturated n-huge ideals
compares to the hierarchies of consistency strength of conventional large car-
dinals, one can prove that they form a hierarchy of consistency strength
among themselves. We give a sample result from [35] (Theorem 15).

10.12 Theorem. Suppose that κ is a successor of a regular cardinal, κ ≥ ω2

and there is a κ-complete, κ+-saturated (resp. κ-centered, or κ-dense) ideal
on [κ+n+1]κ

+n

for some n ∈ ω. There is a transitive set model N of ZFC
such that κ+n ⊆ N and N |= “there is a κ-complete, κ+-saturated (resp.
κ-centered, or κ-dense) ideal on [κ+n]κ

+n−1
.”

Note that this is a consistency strength hierarchy along one of the three
axes determining a generic large cardinal, namely the closure of the generic
ultrapower M . It is not known how to find hierarchies that involve different
axes. For example the following is a typical open question along these lines:

Suppose that there is an ℵ3-complete, normal, fine, precipitous
ideal on [ω5]ω4 concentrating on the collection of z such that the
order type of z ∩ ω4 is ω3. Is it consistent that there is an ℵ4-
saturated ideal on ω3?

11. Ideals as Axioms

In this section we discuss extending ZFC by asserting the existence of generic
elementary embeddings. The attempt is to put the discussion in the context
of current ideas about methods for evaluating axiom systems. This neces-
sitates terse and incomplete summaries of these ideas. The author wrote a
more complete version of this section in [38], but the mathematical situation
has changed somewhat since that article was published.

To be explicit from the outset of the discussion, in the collection of axioms
that derive from combinatorial assumptions on ideals, there is an anomaly
that does not fit the general pattern: the assertion that NSω1 is ℵ2-saturated.
This assumption, combined with the assertion of conventional large cardinals,
implies CH fails and that P (ω1) is very close to L(R). This situation, and
deep elaborations of the situation, are discussed extensively in Woodin’s work
[127–129].113

One might speculate that the assumption NSω1 is ℵ2-saturated is less
analogous to conventional large cardinals than are the “generalized large
cardinal” assumptions described in the next section that are derived from
the “three parameters”.114 Some slight support for this view comes from the

113 See also Dehornoy’s discussion [19] of Woodin’s work.
114 It is not known to the author how to state the saturation of the nonstationary ideal
on ω1 in a non-circular way using the three parameters.
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fact that it is not known if it is possible that NSω1 be ℵ2-saturated and also
be the induced ideal from a conventional large cardinal.115

It also seems worthwhile pointing out again explicitly that there are no
known generalizations of the assumption that NSω1 is ℵ2-saturated to other
cardinals. By Corollary 6.11, it is inconsistent that NSω2 be ℵ3-saturated. If
one assumes that “NSω2 restricted to Cof(ω1) is ℵ3-saturated” (an assump-
tion not known to be consistent relative to large cardinals) then Theorem 5.20
implies that ΘL(R) < ω2, and hence NSω1 is not ℵ2-saturated. Thus the nat-
ural generalizations of “NSω1 is ℵ2-saturated” appear to be either outright
inconsistent or inconsistent with the assumption itself.

11.1. Generalized Large Cardinals

As has been heralded throughout this chapter, generic elementary embed-
dings are rather straightforward generalizations of large cardinals. We now
focus and elaborate on the connections.

In [113], essentially all conventional large cardinal assumptions116 are
shown to be equivalent to the assertion of the existence of definable ele-
mentary embeddings j : N →M , where N and M are transitive classes. The
strength of these assertions is determined by two parameters, or axes:

W: Where j sends the ordinals.

Cl: How big N and M are.

Typically, the more one asserts about what j does to the ordinals and
the larger N and M are, the stronger the axiom. A remarkable feature of
this collection is a form of convexity: asserting the existence of one such j
with suitable parameters does not contradict the assertion of other j’s that
have strengthened the parameters along a fixed given axis.117 Moreover, by
suitable strengthening along the axis, the axioms form a hierarchy both in
outright strength and in consistency strength.

Generic large cardinals are straightforward generalizations of large cardi-
nals in that they assert the existence of elementary embeddings of N to M ;
however, these elementary embeddings are only required to exist in generic
extensions of the universe V . As such they introduce a third parameter of
potential strength: the nature of the forcing. Thus the three parameters are
now:

W: Where j sends the ordinals.

Cl: How big N and M are.

F: The nature of the forcing.

115 Explicitly: It is not known how to force over an arbitrary model containing a con-
ventional large cardinal, such as a huge cardinal, and make the nonstationary ideal on ω1

both be ℵ2-saturated and be the induced ideal from the large cardinal embedding.
116 In consistency strength there is a cofinal collection of large cardinals of this form.
117 Subject of course to the Kunen limitations.
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As an informal working definition, we take a “generalized large cardinal
axiom” to mean an axiom whose statement posits an elementary embedding
or system of elementary embeddings by specifying where ordinals go, the
closure of N and M , and the isomorphism type of the Boolean algebra used
to force the generic embedding.118

By adjusting the parameters “W”, “Cl” and “F”, one gets a cofinal set
of generalized large cardinal axioms. These are often studied by fixing one
of the parameters and taking the “level set” determined by that parameter.
For example, one studies ℵ1-dense ideals on:

ω1, ω2, [ω2]ω1 , . . . .

In Sect. 6, we showed that one cannot adjust these parameters arbitrarily:
there are limitations analogous to the “Kunen contradiction” for large cardi-
nals, as well as limitations on the additional parameter of which forcing can
yield elementary embeddings with a given amount of closure.

11.2. Flies in the Ointment

The assertion of a collection Σ of axioms has as a meta-assumption the as-
sertion that Σ is consistent.

Conventional large cardinal axioms have a well-ordered spine that give a
cofinal collection of assumptions that are believed to be consistent. Since
this collection of axioms is linearly ordered, a finite set of axioms that are
individually consistent are mutually consistent. This is not the case with
generalized large cardinals, due to the additional axis “F”.

Most, although not all, consistency results for generalized large cardinal
properties show the consistency of an ideal with a particular property on
a particular cardinal. Since the generalized large cardinals are not linearly
ordered in strength this leaves open the possibility of mutual inconsistency.

This possibility is unfortunately realized,119 though examples of this type
are remarkably rare at the time of writing.120 The only example known
involves the partition relation

(
ω2

ω1

)

→
(

ω
ω1

)

2

.

Namely, as discussed in Remark 5.39, if there is a huge cardinal then there
is a forcing extension in which there is an (ℵ2,ℵ2,ℵ0)-saturated ideal [83]
and another one in which there is an ideal [λ]ω1 with quotient isomorphic to

118 This mechanism appears to define away the anomaly of NSω1 .
119 See Corollary 5.38.
120 As this chapter went to press Woodin discovered more mutually inconsistent general-
ized large cardinal axioms. At this very moment, it is not known if there is a mutually
inconsistent pair of axioms that are the result of varying the parameters along just one of
the axes “W”, “Cl” or “F”.
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Col(ω,<λ). The former implies the partition relation and the latter implies
its failure.

This same example shows that some particularly attractive sounding ax-
ioms are inconsistent. For example, it is not consistent to have the assump-
tion:

For all ℵ2-c.c. Boolean algebras B of cardinality less than or equal
to 2ω2 that collapse ω1, there is a normal fine ideal I on [ω2]ω1

such that P ([ω2]ω1)/I ∼= B.

While the counterexample to mutual consistency is certainly very trou-
bling, it may not be fatal to the program of looking to generalized large
cardinals for true extensions of ZFC. The general “picture” given by the ax-
ioms is remarkably coherent; conventional large cardinals actually imply the
existence of generalized large cardinal embeddings with small critical points
and the “mutual inconsistency phenomenon” seems rare. At the moment
the question “which generalized large cardinals are true” seems to be nar-
rower, more focussed and less arbitrary than the broader question “which
combinatorial and cardinal arithmetic statements are true”.

It is also a possibility, albeit somewhat unlikely in the author’s opinion,
that the axiom “there is a countably complete, normal, fine, ℵ1-dense ideal
on [ω2]ω1” is inconsistent.121 The axiom collection “for all n ∈ ω \ {0} there
is a countably complete, normal, fine ℵ1-dense ideal on [ωn+1]ωn” together
with the assertions that the ωn’s are generically supercompact answer many
classical set theoretic questions. While this or any particular theory may
be inconsistent, it does not negate the more general point that generalized
large cardinals provide a well-motivated and systematic framework for the
development of new axioms that are effective in settling classical indepen-
dent questions. This framework fits well into traditional Gödelian ideas of
axiom development: reflection and generalization. In the author’s opinion,
the question is not whether generalized large cardinals are relevant, but which
generalized large cardinal axioms are true.

Defining the boundaries of the region of consistency for generalized large
cardinals is likely to be a topic of research for some time. The two facets
of this research consist in proving relative consistency results for generalized
large cardinals from conventional large cardinal axioms and further exploring
limitations on what axioms one can consistently assert.

It is certain that there are imaginative versions of these axioms that
still have not been considered; moreover these will have interesting and far-
reaching consequences. In the course of exploring the possibilities for these
axioms it is inconceivable that there will not be more limitations discovered
on what generic large cardinals can exist. This should not be viewed as a dis-
aster. Indeed it can be argued that the axiomaticians are being too cautious
if they rarely consider axioms that turn out to be inconsistent.

121 This property is not known to be consistent relative to conventional large cardinals.
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11.3. First-Order Statements in the Language of ZFC

A boundary condition for extending the axioms of ZFC is that the exten-
sions be able to be expressed in a language compatible with the first-order
language expressing ZFC. This condition is imposed for the same epistemi-
cally convenient reasons that first-order logic is used to state the axioms of
ZFC.

A priori, a statement of the form “there is an elementary embedding j :
V →M , . . . ” is not a statement in the first-order language of ZFC. It asserts
the existence of a proper class, it appears to require truth predicates and so
forth. As generalized large cardinals appear to assert as well the existence of
virtual sets in a proper extension of the universe, the situation appears even
more critical.

In [113] for example, this obstacle was overcome for conventional large car-
dinals by finding first-order statements in the language of set theory that were
provably equivalent by metamathematical methods to the intended second-
order axiom. For example, the assertion that κ is supercompact is equivalent
to the assertion that for all λ ≥ κ there is a normal, fine, κ-complete ultrafilter
on [λ]<κ.

The language of ideals, together with the mechanics of forcing provide
the same kind of vehicle for stating generalized large cardinal axioms in the
language of set theory. Assuming the existence of a proper class of Woodin
cardinals, Burke’s Proposition 9.44 shows that every countably complete ideal
is pre-precipitous. More directly: the existence of an elementary embedding
j : V → M ⊆ V [G] where G ⊆ P is generic and j“λ ∈ M is easily seen to
be equivalent to the existence of a P-term for an ultrafilter U̇ ⊆ P (P (λ))V

that is normal for regressive functions in V and fine and is such that there is
no descending ω-sequence of U -equivalence classes of functions from V . The
idea of an induced ideal allows us to restate this combinatorially as a normal,
fine, precipitous ideal I on P (λ) such that the quotient algebra P (P (λ))/I
inherits some of the properties of the original partial ordering P. Finally,
moving along the “F” axis in the direction of greater strength, the saturation
properties of ideals play exactly the same role for generalized large cardinals
as ultrafilters do for conventional large cardinals.

11.4. Some Examples of Axioms

In this subsection we name some examples of axioms. Many of the axioms
have strong consequences but have not, as yet, been shown to be consistent
from conventional large cardinals.

11.1 Definition. A cardinal κ = μ+ is minimally generically n-huge iff there
is a normal, fine, κ-complete ideal I such that P ([κ+n]κ

+n−1
)/I has a dense

set isomorphic to Col(μ, κ).
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The “n-huge” is there because if j : V →M ⊆ V [G] is the generic embed-
ding, then M jn(κ) ∩ V [G] ⊆ M . The quotient algebra Col(μ, κ) is in many
ways the simplest quotient, hence “minimal”.122

11.2 Definition. A successor cardinal κ = μ+, where μ is regular, is gener-
ically supercompact iff for all λ > κ, and all generic G ⊆ Col(μ, λ), there is a
generic elementary embedding j : V →M ⊆ V [G] with critical point κ such
that j(κ) > λ, j“λ ∈M , and λ > sup(j“λ).

Again the name comes from the closure of the embedding and the quotient
algebra is asked to be simple.

11.3 Definition. The Axiom of Resemblance is the statement that for all
regular κ < λ, n ∈ ω, there is a generic elementary embedding j : V → M
such that j(κ+i) = λ+i for all i < n and j“κ+n ∈M .

This axiom suggests that the regular cardinals are in some weak sense,
indiscernible. It suffices to show many instances of Chang’s Conjecture and
thus, to transfer instances of GCH from cardinal to cardinal.

The author would be remiss if he did not mention the particularly inter-
esting, if slightly technical axiom “indestructible generic supercompactness”.
This axiom was discussed by Cummings in [17]:

11.4 Definition. Let μ be a regular cardinal and κ = μ+. Then κ is in-
destructibly generically supercompact iff for all <κ-directed closed partial or-
derings R and all generic G ⊆ R, regular λ > κ, there is a R̃ ∈ V [G] that is
μ-closed such that if H ⊆ R̃ is V [G] generic, then there is a

j : V [G] →M ⊆ V [G ∗H]

with:

1. crit(j) = κ,

2. j(κ) > λ,

3. j“λ ∈M ,

4. sup(j“λ) < j(λ), and

5. M |= cf(λ) = μ.

This axiom holds when an indestructible supercompact cardinal123 is col-
lapsed to be the successor of μ. It plays an important role in the interplay
between generalized large cardinal axioms and combinatorial properties of
successors of singular cardinals.
122 As this article went to press, Woodin showed that it is inconsistent to have ω1 mini-
mally generically 3-huge, and simultaneously for ω3 to be minimally generically 1-huge.
123 That is, κ is supercompact and remains so after any forcing extension via a <κ-directed
closed forcing. Laver [82] showed how to make a supercompact cardinal indestructible, and
his construction is given in Cummings’s chapter in this Handbook. We applied this concept
after Theorem 8.42.
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11.5. Coherence of Theories, Hierarchies of Strength
and Predictions

The coherence and predictive value of axioms has been considered relevant
to the evaluation of axioms by several commentators, notably Gödel [57] and
Martin [92].

Predictions

The notion of prediction used here requires some explication.124 Given a
sequence of axiom systems Σ0 ⊆ Σ1 ⊆ Σ2 · · · , the predictive capacity of the
sequence can mean at least two things:

A. There are consequences σ of Σi are that are proved first (temporally)
by some Σj with j > i, or perhaps have significantly easier proofs in
Σj than in Σi.

B. There is mathematical structure uncovered in the study of Σj that has
analogues in the theory Σi for i < j.

While these are necessarily vague and perhaps artificial formulations, some
observations can be made. The most trivial remark is that the collections of
axioms systems we are studying are often not linearly ordered by inclusion.
For coherent collections of axiom systems, the theories do form a directed
system. For the purposes of calibration of strength, it seems to this author
that it suffices to have a directed collection of axiom systems that has a
linearly ordered cofinal subcollection.

A more difficult problem is that both of these criteria are sociological in
nature; the order of discovery of consequences structure depends heavily on
human events that can proceed in arbitrary and capricious ways. This is
particularly evident if, as is usually in axiomatic discussions, the theories Σi

with small i have a much longer history of historical study than the Σj for
large j. Concrete examples of this are when Σ0 may be the theory of Peano
Arithmetic, second-order number theory, or ZFC.

Perhaps the most challenging problem is weighing the significance of pur-
ported examples of “predictions”. It is clearly possible to create artificial
“predictions” by concocting consequences of Σ0 that no previous investigator
would have bothered to look at. A type of prediction with perhaps more
weight is that many families of axioms, including generalized large cardinals,
are determined by varying parameters in a fixed conceptual framework. The
axioms with larger/stronger parameters can then be said to “predict” in some
sense the axioms with smaller/weaker parameters.

A less artificial kind of prediction is when Σi+1 “predicts” the consistency
of Σi. Indeed the linearity of the consistency hierarchy for conventional large

124 The exposition given here is due the author. This terse account does not reflect the
views of Martin or Gödel.
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cardinals has often been held to be one of its main attributes, particularly in
regard to the calibration of strength of properties independent of ZFC.

In the case of generalized large cardinals, issues of consistency strength
are largely open, except for the weakest of the cardinals. There are however
examples of these hierarchies among the stronger axioms. A notable example
of this is Theorem 10.12, where it is shown that the consistency of generi-
cally n-huge cardinals follows from the existence of generically (n + 1)-huge
cardinals. The author suspects that many more such results can be proved
with sufficient effort and attention.

We now turn to “predictions” in the more commonly used meaning. An
oft-cited example of such a “prediction” made by large cardinals involves the
structural feature of the subsets of the real numbers known as the Wadge
hierarchy. This hierarchy of complexity of sets of real numbers was first
shown to have the correct structure using large cardinals [92]. This correctly
predicted the analogous structure for Borel sets of reals, which is a theorem
of ZFC.

There are such examples in the realm of generalized large cardinals as
well. The first proof of Silver’s theorem that “if GCH holds below ℵω1 then
it holds at ℵω1” was given by Magidor, under the assumption that there was
a precipitous ideal on ω1.125 Indeed the proof assuming the existence of a
precipitous ideal is so short and elegant we give it here:

Let α = ωV
1 , κ = ℵV

ω1
. Let I be a precipitous ideal on ω1.

Then |P (ω1)| < ℵω so forcing with P (ω1)/I preserves all cardinals
above ℵω. Let G be generic, and j : V → M ⊆ V [G] be the
generic elementary embedding.

For all f ∈ (κω1)V , j(f)�α ∈ M . Hence V [G] |= |κα|M ≥
|κα|V . Since V [G] |= α < ω1 and κ < ℵω1 , we know V [G] |=
|κα|V ≤ κ+. Since (κ+)V [G] = (κ+)V we must have V |= |κα| ≤ κ+.

This example appears to satisfy the criterion for a Gödel-style prediction:
the result was proved first under the assumption of the existence of a precip-
itous ideal on ω1, and then in ZFC. The proof, assuming the existence of a
precipitous ideal is elegant and much shorter than the ZFC proof.

An example that carries perhaps less weight as it is internal to the theory
of generalized large cardinals is the postulate that there is a normal, fine,
ℵn-complete, ℵω-saturated ideal on [ℵω]ℵω . In [35] there is an argument of
Woodin that the existence of such an ideal implies 2ℵ0 ≥ ωn. Indeed, if ω1 is
generically n-huge with quotient Col(ω, ω1), then there can be no such ideal.

125 The author relates this anecdote from personal interaction with Magidor, who stated
that this proof preceded Silver’s [109] by several weeks. Other contemporary accounts
state that the initial assumption was the existence of a non-regular ultrafilter on ω1 rather
than a precipitous ideal. Indeed the key combinatorial element was a result of Kanamori
that there is a “least” function f : ω1 → ω1 relative to a non-regular ultrafilter; i.e.
a non-regular ultrafilter is incompressible. Silver credits Kanamori and Magidor in his
paper.
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Viewing this as a prediction, it can be argued that Theorem 6.9,126 which
shows in ZFC that there are no such ideals, is confirmation of the prediction.

The author points out that there are numerous cases in this chapter where
he was able to show consequences of rather strong ideal axioms127 that
Woodin was later able to show from weaker assumptions. These are also
“predictions”, though not of ZFC results. Indeed Theorem 5.42, a very early
result showing that all sets in L(R) are Lebesgue measurable, preceded the
result that “CH together with the existence of an ℵ1-dense ideal on ω1 implies
ADL(R)” by more than 10 years.

Gradations of Consequence

A more subtle type coherence comes in the form of gradations of consequence.
This idea is that among a coherent family of axioms indexed by a parameter,
stronger axioms should prove genuinely stronger natural consequences. This
is a strange kind of “prediction”, but it has the advantage that it is not
related to accidents of mathematical history. Here are some examples from
generalized large cardinals.

In Example 5.7, it is shown that if there is an ℵ2-complete ideal I on ω2

such that P (ω2)/I has a dense countably closed subset, then CH holds. In
a universe with ambient large cardinals, Theorem 5.20 shows that an ℵ2-
complete ideal I on ω2 that has the weaker property that it concentrates on
the approachable ordinals and that P (ω2)/I is reasonable, has the weaker
consequence that ΘL(R) < ω2.

In Theorem 5.9, Woodin showed that if there is a uniform, countably
complete ℵ1-dense ideal on ω2, then CH holds. It follows from Theorem 7.14
that if you add at least ω2 Cohen reals to a model where there is an ℵ1-dense
ideal on ω2, one gets a model with an ℵ2-saturated ideal on ω2. Since CH
fails in the resulting model, the axiom that there is an ℵ1-dense ideal on ω2

is strictly stronger than the axiom that there is an ℵ2-saturated ideal on ω2.
Theorem 5.21 shows that the weaker axiom still proves a vestige of CH. It
shows that if there is a uniform, countably complete, ℵ2-saturated ideal on
ω2, then Θ < ω2. Thus a weaker axiom has a weaker consequence.

Another example of “gradation of consequences” has to do with partition
properties. In Sect. 5.6, it is shown that as one passes from normal, κ-
complete

1. prime,

2. κ-dense,

3. (κ+, κ+, κ)-saturated

ideals, one gets the partition properties:

126 Proved several years later.
127 Such as CH or the existence of Suslin trees from ℵ1-dense ideals on [ω2]ω1 .
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1. κ+ → (ρ)2m for all ρ < Ω(κ),

2. κ+ → (κ2 + 1)22,

3. κ+ → (κ× 2 + 1)22,

respectively. While these results have not been shown to be optimal, they
nonetheless exhibit the kind of coherence expected from genuine axiom sys-
tems.

Methodological Predictions

We mention very briefly yet another possible type of “prediction”. The use
of “prediction” by Gödel or Martin usually is taken as a prediction of results;
e.g. a number-theoretic fact proved using infinitary tools that is verified by
a proof in Peano Arithmetic. One can also see predictions in light of meth-
ods developed using strong assumptions that can be specialized and applied
with weaker assumptions. The fact that the strong assumptions suggested
methods that were fruitful in weaker theory could be construed as a kind of
inductive evidence for the stronger theory. The Axiom of Determinacy has
this type of flavor: it can be specialized to L(R), or (in ZFC) to Borel sets.

This type of “prediction” has occurred in more subtle ways with generic
elementary embeddings. In [35] it was first shown that the existence of an ℵ1-
dense ideal on [ω2]ω1 implies that every set in L(R) is Lebesgue measurable,
has the property of Baire and the partition property holds in L(R). Later
work [47] showed that supercompact large cardinals imply the existence of
generic large cardinals sufficiently strong to show the same consequences.
Woodin later showed that the existence of sufficiently many Woodin cardinals
suffices to show the existence of the generic embeddings needed to prove the
same results.

This may be interpreted as follows: the method of generic elementary
embeddings can be adapted from their use with the very strong assumption
of the existence of an ℵ1-dense ideal on [ω2]ω1 , to more standard contexts of
conventional large cardinals and still have some of the same consequences.

Thus: from generic large cardinals one shows certain consequences; these
consequences can then be shown to follow from conventional large cardinals
using the vehicle of generic large cardinals.

11.6. A Final Relevant Issue

Many authors who propose axioms claim that their axioms are, in some
sense, “maximality principles”. Unlike other heuristics for the development
of axioms (such as reflection, or elementary embedding principles) the notion
of a “maximality principle” does not seem sufficiently precise to allow general
agreement on what qualifies. For some, CH limits how many reals there are.
For others, the failure of CH limits what subsets of ω1 exist.
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The situation is complicated by the existence of models M and N satisfying
ZFC such that:

1. M and N have the same cardinals,

2. M and N have the same real numbers,

3. CH holds in M and fails in N .

Of course, M and N differ on P (ω1).
A very weak related concept might be the following: φ is not limiting if any

model containing sufficiently large cardinals has a forcing extension in which
φ is true. Ideas like this have been informally discussed in set theory for some
time. Indeed Woodin’s work on the Ω-conjecture deals, in part, with exactly
these issues. The author conjectures that most generalized large cardinal
axioms are not limiting.

11.7. Conclusion

Generalized large cardinal axioms form a natural family of assumptions that
are very similar in nature to conventional large cardinals. There are problem-
atic aspects to this generalization due to examples of mutually contradictory
ideal assumptions. Nonetheless, even among the contradictory examples,
there is a general picture that settles most important examples of indepen-
dent statements in set theory.

The arguments involving intuitive or aesthetic judgments and prediction
or confirmation that have been advanced for large cardinals seem to apply
as well to generalized large cardinals; there does not seem to be an abstract
conceptual basis to distinguish between the narrower family of axioms and
its generalization. Indeed large cardinals128 imply the existence of generic
elementary embeddings with small critical points such as ω1.

The theory is currently immature and it is expected that there will be
many surprises before the story is completely told. The author speculates
that this avenue is likely to eventually provide reasonable solutions to many
of the puzzles of independence in set theory.

12. Open Questions

Some open problems are given in this section. They are organized roughly
in the order that material is presented in the paper, rather than in any or-
der of significance. They range from technical questions that the author was
curious about to questions that may be fundamental set theoretic problems.
None of the problems are guaranteed to be hard or deep. The theory is so
underdeveloped that virtually all theorems contain hypotheses whose neces-
sity has not been validated by appropriate examples. The emphasis has been
128 Via the mechanism of stationary tower forcing.
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on enumerating novel problems rather than restating well-known problems
such as the question of the consistency of the property: “ℵω is Jonsson”. The
reader can thus be trusted to create his or her own problems.

1. What is the consistency strength of “Every function f : ωn → ωn

is bounded by a canonical function modulo the (strongly) nonstation-
ary ideal on P (ωn)”? What if we only require that every function is
bounded by the nonstationary ideal restricted to ωn? The nonstation-
ary ideal restricted to ωn ∩ Cof(ωn−1)?

2. Is there an example of a Z ⊆ P (X) and a normal, fine, countably
complete ideal on Z that is |Z|+-saturated, but not |X|+-saturated?

3. What can one say about P -, Q-, and selective ideals on [λ]<κ or [λ]κ?
(See Proposition 2.7.)

4. In spite of the close ties with the nonstationary ideal, proper forcing and
Hungarian combinatorics, almost nothing is known about the various
Chang’s Conjectures. The most basic consistency results are open, for
example, it is not known if it is consistent that (ℵ4,ℵ1) →→ (ℵ3,ℵ0).
Assuming that 2ℵ0 < ℵω, Silver showed that the cardinal ℵω is Jónsson
iff there is an infinite subsequence 〈κn : n ∈ ω〉 of the ℵn’s such that
the infinitary Chang conjecture of the form (. . . , κn, κn−1, . . . , κ1) →
→ (. . . , κn−1, κn−2, . . . , κ0) holds. It is not known how to get such a
sequence of length 4.

5. Essentially equivalent questions are whether there can be countably
complete, normal, fine, precipitous ideals on [ωn]ωm . The positive sets
for such ideals determine instances of Chang’s Conjecture.

6. Is it consistent that there is a normal, fine, countably complete ideal on
[ℵω+1]ωn for n ≥ 2? The existence of such an ideal is equivalent to the
statement that (ℵω+1,ℵω) →→ (ℵn,ℵn−1). Cummings has made some
progress on this problem in a negative direction.

7. Are any global Chang’s Conjecture type properties consistent? For
example is it consistent that for all successor μ and all regular κ < μ
one has (μ+, μ) →→ (κ+, κ)?

8. Is every κ-complete, cardinal preserving ideal on a regular cardinal κ
precipitous? One could also consider a generalization of this to normal,
fine, countably complete ideals on κ. (Note that this is known under
GCH and various other assumptions.)

9. Does the existence of a precipitous ideal on ω1 imply the existence of a
normal precipitous ideal on ω1? For arbitrary κ? For ideals on P (X)?

10. As noted in the text there are very interesting consequences when a
natural ideal has nice generic embeddings. For most natural ideals, the
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possible generic ultrapower properties have not been explored. We note
here just some of the possible questions.

Can I be precipitous when I is:

(a) The ideal of null sets for Lebesgue measure and Z = P (R)?

(b) The ideal of meager sets and Z = P (R)?

(c) I[λ] for a regular cardinal λ ≥ ω2?

(d) Id(λ, κ) (see Example 3.17)?

(e) the weak diamond ideal on ω1?

(f) any of the uniformization ideals?

Some of these ideals are known not to be saturated, but others are
not. However, other results are possible. For example, the algebra
P (R)/{null sets} is never saturated. It seems possible that it could be
densely often c.c.c. Similar possibilities exist for the meager ideal. The
saturation possibilities of the weak diamond and uniformization ideals
are not known.

11. The author conjectures that for all normal, ℵ2-complete, ℵ3-saturated
ideals J on ω2:

(a) Id(ω2, ω1) ⊆ J , and

(b) I[ω2] � J for such a J .

In particular, there is a set in I[ω2] ∩ J̆ . These remarks are not in-
tended to be special to ω2: suppose that I is a normal, κ-complete,
κ+-saturated ideal on κ. Is there a set A ∈ I[κ] that belongs to Ĭ?

12. Another conjecture in the same spirit is that a normal, fine, ideal I on
P (Z) with Z ⊆ H(θ) that is |Z|+-saturated and comp(I) = ω2 must
concentrate on IA(Cof(ω1)).129 This may be the correct generalization
of Shelah’s theorem that a saturated ideal on ω2 must concentrate on
Cof(ω1). In this problem ω2 can be replaced by any μ+ and ω1 by μ
for any regular cardinal μ.

13. Suppose that J is an ideal on Z ⊆ P (κ+(n+1)), and I is the projected
ideal on the projection of Z to Z ′ ⊆ P (κ+n). Suppose that the canon-
ical homomorphism from P (Z ′)/I to P (Z)/J is a regular embedding.
Is I κ+(n+1)-saturated?

14. Is “presaturation” closed under projections?

15. Can there be countably complete, ℵ1-dense, uniform ideals on ωn for
n > 2? What are the possible quotient algebras of uniform, countably
complete ideals on ωn?

129 IA(Cof(ω1)) is the class of internally approachable structures of cofinality ω1.
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16. Is it consistent that there is a uniform ultrafilter on ω3 such that ωω3/U
has cardinality ω3? Is it consistent that there is a uniform ultrafilter U
on ℵω+1 such that ωℵω+1/U has cardinality ℵω+1? Give a characteri-
zation of the possible cardinalities of ultrapowers.

17. Using the techniques of [36], the previous question could be answered
by showing that sufficiently long sequences of consecutive cardinals can
carry very strongly layered ideals. A typical question here is whether it
is consistent to have an ℵ1-dense ideal on ω1 and strongly layered ideals
on ω2 and ω3. A closely related question is whether it is consistent to
have three consecutive cardinals carry very strongly layered ideals.

18. Can there be a cardinal κ = μ+ ≥ ω2 such that the nonstationary
ideal on κ restricted to Cof(μ) is κ+-saturated? Is it consistent for the
nonstationary ideal on ω2 restricted to Cof(ω1) to be ℵ3-saturated?

19. Is there a large cardinal axiom such that forcing over an arbitrary model
of that axiom makes an induced ideal be the nonstationary ideal on ω1

and simultaneously ℵ2-saturated in the generic extension?

20. Conjecture: If every ωn carries a very strongly layered ideal, then ℵω

is Jónsson.

21. Is it consistent for there to be a countably complete, normal, fine, ℵ1-
dense ideal on [ω2]ω1? [ωn]ωn−1? These questions are particularly rele-
vant as these ideal properties are a “fly in the ointment” for generalized
large cardinal axioms.

22. Find other hierarchies of consistency strength among ideal axioms simi-
lar to those described in Theorem 10.12. What are the relations among
the various “axes” of the three parameters?

As a sample of this kind of problem one might ask: from the assumption
that there is an ℵ3-complete, normal, fine precipitous ideal on [ω5]ω4

concentrating on the collection of z such that the order type of z ∩ ω4

is ω3, can one show that it is consistent that there is an ℵ4-saturated
ideal on ω3?

23. Given an example of a model of set theory with an ideal I on P (Z)
with Z ⊆ P (X), and a set Y with |Y | > |Z| such that the closed
unbounded filter on PP (Y ) conditioned on I is not the nonstationary
ideal restricted to a single set.

24. Which ideal assumptions imply the existence of Suslin trees on ω2?

25. We note that if I is a normal, κ-complete, κ+-saturated ideal on κ, then
there is no ♦(I) sequence (i.e. a ♦-sequence that guesses every subset
of κ on an I-positive set). However, the following is open: Does CH
together with the existence a normal, countably complete, ℵ1-dense,
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ideal on ω1 imply ♦ω1? Is there an ideal assumption on ω2 that implies
♦ω2(Cof(ω1))? Does the existence of a normal, fine, countably complete
ℵ1-dense ideal on [ω2]ω1 imply ♦ω1?

26. Give a direct proof of ADL(R) from ideal hypotheses.

27. Does the existence of an ℵ2-complete, ℵ2-dense ideal on ω3 imply that
2ω1 = ω2?

28. Does some generic supercompactness property of all of the ωn’s imply
that ℵω+1 ∈ I[ℵω+1]? (or even just full stationary set reflection?)

29. (From [55]) Can there be a non-trivial generic elementary embedding
in a forcing extension by a Boolean algebra that is countably generated
and proper?

30. (From [55]) Can there be a κ complete ideal on κ, that whose quotient
is isomorphic to a forcing of size κ and is α-c.c. for some α < κ?

31. Can there be a normal ℵ2-complete ideal I ⊆ P (ω2) that is ℵ3-saturated
in every ℵ2-c.c. forcing extension? Other κ?

32. Can there be a normal, fine, κ-complete, κ-saturated ideal on [λ]κ for
a non-huge κ? For a non-measurable κ?

33. Can the weakly compact filter on a cardinal κ be κ+-saturated?

34. Recall the definition of the “forbidden intervals” Cκ (see Definition 6.25).
Is there a model of set theory such that for all regular uncountable car-
dinals κ and all λ /∈ Cκ, there is a κ-complete, uniform, κ+-saturated
ideal on λ? (See Proposition 6.26 and Theorem 7.59.)

35. While the nonstationary ideal on [λ]<κ cannot be λ+-saturated, the
local saturation properties are relatively unexplored, the results of Gitik
and Krueger being the only positive consistency results.

36. There are many open problems about mutually stationary sequences of
sets. Probably the easiest to state is: Is there a mutually stationary
sequence of sets 〈Sn ⊆ ωn : n ∈ ω \k〉 such that whenever Sn = T 0

n ∪T 1
n

with T 0
n and T 1

n disjoint, either 〈T 0
n : n ∈ ω \ k〉 or 〈T 1

n : n ∈ ω \ k〉 is
not mutually stationary?

37. Explore the properties of natural towers different from the usual sta-
tionary towers. Typical problems might be: give an example of a model
with an inaccessible cardinal δ such that a stationary tower of height
δ concentrating on IA(Cof(ω1)) is presaturated. Give an example of a
tower generated by club guessing ideals that is presaturated.

38. Is it consistent to have CH and NSω1 is ℵ2-saturated?
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39. (Woodin) Does the existence of a countably complete ℵ1-dense ideal
on ω1 imply that the continuum is less than ω3? (If so, combined with
Corollary 5.58, it shows that if NSω1 is ℵ1-dense then 2ℵ0 = ω2.) Does
the existence of an ℵ1-dense ideal on ω1 and the failure of CH imply
that δ∼

1
2 > ω2?

40. Is it consistent with large cardinals that ΘL(R) > ω3?

41. Generalize Theorem 7.72. Is it true in ZFC that there is a forcing Q

such that for all generic G ⊆ Q, there is no saturated ideal on ω3?
ℵω+1?

42. (Jech) Suppose that there is a supercompact cardinal. Is there a pre-
cipitous ideal on ω1? Any successor cardinal?

43. Is it true in an “L[E] model” model for some large cardinal that there
is a precipitous ideal on a successor cardinal?

44. Suppose that J is an ideal on Z ⊆ P (X), that P is a |X|+-c.c. partial
ordering, and that J̄ is a |X|+-saturated, normal, fine ideal in V P. Is
it true that there are A ∈ J+ and L ∈ J̄+ such that

id : P× P (Z)/(J�A) → P ∗ P (Z)/(J̄�L)

is a regular embedding? Note that J̄ is precipitous.

45. Assume Martin’s Maximum. Is there a set A ⊆ ω4 such that the model
L[A,NS�[ω4]ω2 ] |= κ is κ+-supercompact, where κ = ωV

2 ?

46. Is it consistent to have the stationary tower forcing up to an inaccessible
concentrating on IA(Cof(>ω1)) presaturated? (This is shown consis-
tent from quite exotic large cardinal assumptions in [42]. The example
given in Proposition 9.4 of an induced saturated tower concentrates on
IA(Cof(>ω)).)

47. Is there a cardinal δ so large that it implies there are two presaturated
towers T0, and T1 such that:

(a) If ji is the elementary embedding induced by Ti, then crit(j0) = ω4

and crit(j1) = ω3.

(b) The forcing for T0 can be regularly embedded into the forcing for
T1?

If there is such a cardinal, then Theorem 3.14 of [42] implies that
ΘL(R) < ω3. Weaker conditions for ΘL(R) < ω3 exist as well [42].

48. Is there a cardinal δ so large that it implies there is an inaccessible κ
and two towers T0, T1 yielding generic objects G0, G1 and embeddings
j0, j1 with the property that:
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(a) j0(ω1) = j1(ω1) = κ,

(b) Every real in V [Gi] is generic over V by a forcing of size less than κ,
and

(c) j0(ω3) �= j1(ω3)?

If so, again ΘL(R) < ω3.
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1. Introduction

Cardinal arithmetic is the study of rules and properties of arithmetic op-
erations mainly on infinite cardinal numbers. Since sums and products are
trivial in the sense that

m + n = m · n = max{m,n}

holds for infinite cardinals, cardinal arithmetic refers mainly to exponenti-
ation mn. If M is a set of cardinality m and [M ]n is the collection of all
subsets of M of cardinality n, then mn is equal to the cardinality of [M ]n.
Thus exponentiation is intimately connected with the power set operation
and hence lies at the heart of set theory. Classical and basic properties of
cardinal arithmetic can be found, for example, in the Levy [12] and Jech
[8] textbooks (the latter contains more advanced material). The aim of this
introduction is to mention some elementary results and to put our chapter in
its context—not to give a historical introduction to the subject of cardinal
arithmetic, for which the reader is referred to these textbooks, to [7], and to
[9] for a more general perspective.

A theorem of Zermelo generalizing a result of J. König says that if 〈κi |
i ∈ I〉 and 〈λi | i ∈ I〉 are sequences of cardinals such that κi < λi holds for
every i ∈ I, then

∑
i∈Iκi <

∏
i∈Iλi.

A theorem of Bukovský and of Hechler says that if μ is a singular cardinal
and the values 2γ for cardinals γ < μ stabilize, then 2μ = 2γ0 , where γ0 < μ
is such that 2γ0 = 2γ for all γ0 ≤ γ < μ.

Building on earlier results (of Hausdorff, Tarski, Bernstein and others)
Bukovský (1965) and Jech show how cardinal exponentiation can be com-
puted from the gimel function (which takes κ to κcf(κ)). Applications of
Solovay and Easton of the forcing method of Cohen (1963) show that for
regular cardinals κ there is no restriction on 2κ except that which follows
from the Zermelo-König theorem, namely that cf(2κ) > κ (see [8, Chap. 3]
for details). Thus the question about the possible values of κcf(κ) is most
interesting from our point of view when κ is a singular cardinal. It was
evident that it is much harder to apply the forcing method to singular car-
dinals. Involving large cardinals, work of Prikry and of Silver showed that it
is possible for a strong limit singular cardinal μ to satisfy 2μ > μ+ in some
generic extension. Using large cardinals Magidor proved the consistency of
ℵω being the first cardinal κ for which 2κ > κ+ holds. For a long time it
was believed that large cardinal and more complex applications of the forcing
method should yield greater flexibility for values of the power set of singular
cardinals. A first indication that there are possible limitations was the the-
orem of Silver (1974): If κ is a singular cardinal with uncountable cofinality
and if 2δ = δ+ for all cardinals δ < κ, then 2κ = κ+. This result paved the
way for further investigations by Galvin and Hajnal (1975). A representative
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result of their work is the following: If ℵδ is a strong limit singular cardinal
with uncountable cofinality, then

2ℵδ < ℵ(|δ|cf(δ))+ .

For example, if ℵω1 is a strong limit cardinal, then

2ℵω1 < ℵ(2ℵ1 )+ .

The method of proof of these results relied in an essential way on the as-
sumption that cf(δ) > ℵ0. Shelah (1978) was able to prove similar results for
singular cardinals with countable cofinality. For example, if ℵω is a strong
limit cardinal, then

2ℵω < ℵ(2ℵ0 )+ . (14.1)
In a series of papers culminating in his book [15], Shelah developed a

powerful theory with many applications, pcf theory, which changed our view
of cardinal arithmetic. A remarkable result of this theory is the following. If
ℵω is a strong limit cardinal then

2ℵω < ℵω4 . (14.2)

If 2ℵ0 ≤ ℵ2, then (14.1) is a better bound than (14.2), but in general, since
(2ℵ0)+ can be arbitrarily high, ω4 seems to be a firmer bound.

The major definition in pcf theory is the set pcf(A) of possible cofinalities
defined for every set A of regular cardinals, as the collection of all cofinalities
of ultraproducts

∏
A/D with ultrafilters D over A. This basic and rather

simple definition appears in many places and is the basis of a very fruitful
investigation. It is a basic definition also in the sense that while the power
set can be easily changed by forcing, it is very hard to change pcf(A).

Our aim in this chapter is to give a self-contained development of pcf theory
and to present some of its important applications to cardinal arithmetic.
Unless stated otherwise, all theorems and results in this chapter are due to
Shelah.

The fullest development of pcf theory is in Shelah’s book [15], and the
interested reader can access newer articles (and the survey paper “Analytical
Guide”) in the archive maintained at Rutgers University.

In addition to this material, we have profited from expository papers
(Burke-Magidor [2], Jech [7], and unpublished notes by Hajnal), and in par-
ticular a recently published book [6] which is very detailed, complete and
carefully written.

The authors thank Maxim R. Burke, Matt Foreman, Stefan Geschke, Peter
Komjáth, John Krueger, Klaas Pieter Hart, Donald Monk, and Martin Weese
for valuable corrections and improvements of earlier versions.

2. Elementary Definitions

An ideal over a set A is a collection I ⊆ P(A) such that (1) I is closed under
subsets, that is, X ∈ I and Y ⊆ X implies Y ∈ I, and (2) I is closed under
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finite unions, that is, X1, X2 ∈ I imply X1 ∪X2 ∈ I (and thus the union of
any finite sequence of members of I is in I). If A �∈ I, then I is said to be
proper. We do not require that ideals be proper (see the definition of J<λ in
Sect. 3.1).

The dual notion, that of a filter, is also used in this chapter. A collection
F ⊆ P(A) is a filter over A if (1) F is closed under supersets, that is, X ∈ F
and X ⊆ Y ⊆ A imply Y ∈ F , and (2) F is closed under finite intersections.
However, usually a filter is proper, that is ∅ �∈ F .

If I is an ideal over A, then I∗ = {X ⊆ A | A \X ∈ I} is its dual filter.
Sets belonging to an ideal are intuitively “small” or “null”, whereas those of a
filter are “big” or “of measure one”. If I is an ideal over A, then subsets of A
not in I are called “positive”, and the collection of positive sets is denoted I+.

I+ = {X ⊆ A | X �∈ I}.

On denotes the class of ordinals and Reg denotes the class of regular
cardinals.

We shall deal in this section with functions from a fixed, infinite set A
into the ordinals. The class of these ordinal functions is denoted OnA. If
f, g ∈ OnA, then f ≤ g means that f(a) ≤ g(a) for all a ∈ A, and similarly
f < g means that f(a) < g(a) for all a ∈ A (this is called the everywhere
dominance ordering).

If F ⊆ OnA is a set, then the supremum function h = supF is defined on
A by

h(a) = sup{f(a) | f ∈ F}.

If f, g ∈ OnA, then we define

<(f, g) = {a ∈ A | f(a) < g(a)},

and similarly
≤(f, g) = {a ∈ A | f(a) ≤ g(a)}.

and
=(f, g) = {a ∈ A | f(a) = g(a)}.

If I is an ideal over A, then we define a relation ≤I over OnA by

f ≤I g iff {a ∈ A | g(a) < f(a)} ∈ I.

In general, for any relation R on the ordinals, we define RI over OnA by

f RI g iff {a ∈ A | ¬(f(a) R g(a))} ∈ I.

That is, the set of exceptions to the relation is null. In this way <I and =I

are defined over OnA. We remark that ≤I is weaker than “<I or =I”. Note
that ≤I is a quasi-ordering, and that <I is irreflexive (if I is a proper ideal)
and transitive.
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The notations X ⊆I Y and X =I Y are also used for subsets X,Y ⊆ A,
with the obvious meaning. For example, X ⊆I Y iff X \ Y ∈ I.

For a filter F over A, the dual definitions f <F g, f ≤F g etc. will be
used as well. For example, f <F g means that {a ∈ A | f(a) < g(a)} ∈ F . If
F is the dual of an ideal I, then <F and <I are the same relation of course.

Products of Sets

Suppose that A is an index set and S = 〈S(a) | a ∈ A〉 is a sequence of
non-empty sets of ordinals. Then the product, denoted

∏
S or

∏
a∈A S(a),

is defined as

∏
S = {f | f ∈ OnA and ∀a ∈ A f(a) ∈ Sa}.

In particular, if h : A → On is any ordinal function defined on A, then
∏

h
(or

∏
a∈A h(a)) denotes the set of all ordinal functions f defined on A such

that f(a) ∈ h(a) for all a ∈ A.
If A is a set of cardinals, then

∏
A (or

∏
a∈A a) denotes the set of all

ordinal functions f defined on A such that f(a) ∈ a for all a ∈ A. That is,∏
A is

∏
h where h(a) = a is the identity function on A.

For an ideal I over A, the relations <I , ≤I , and =I are defined on
∏

h,
and the reduced product

∏
h/I consisting of all =I equivalence classes is

obtained. If g ∈ OnA, then we may write (somewhat informally) g ∈
∏

h/I
rather than [g] ∈

∏
h/I, that is

∏
h/I is considered as a class of functions

rather than equivalence classes.
For a filter F over A, the reduced product

∏
h/F is defined in a similar

way.
A sequence of functions f = 〈fξ | ξ < λ〉 in

∏
A is said to be <I-increasing

if ξ1 < ξ2 implies that fξ1 <I fξ2 . For typographical reasons we also say
that f is I-increasing, or “increasing modulo I” instead of <I -increasing.
A sequence is a function, and if fξ denotes a value of that function then the
sequence itself is denoted f , not f̄ or F .

Partial Orderings

We say that (P,≤P ) is a quasi-ordering iff ≤P is a reflexive and transitive
relation on P . A strict partial ordering is a transitive and irreflexive relation
<P on P . In this chapter we consider both the quasi-ordering ≤I and the
strict partial ordering <I , defined on ordinal-valued functions. A typical
example is P =

∏
h with the orderings <I and ≤I where h ∈ OnA is such

that h(a) > 0 is a limit ordinal for every a ∈ A. Thus every function in P
is <I bounded by another function there (for every f ∈

∏
h, f <I f + 1,

where f +1 is the function taking a to f(a)+1). So our setting is a structure
(P,<P ,≤P ) where <P is a strict partial ordering, and ≤P is a quasi-ordering.
The following properties of (P,<P ,≤P ) are obvious for our typical example:
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P1. a <P b or a = b implies a ≤P b, but this implication is not necessarily
reversible.

P2. If a <P b ≤P c or a ≤P b <P c, then a <P c.

P3. There is no <P maximal member: for every p ∈ P there exists some
p′ ∈ P with p <P p′.

The following definitions apply whenever P is a set or a class, <P is a strict
partial ordering, and ≤P a quasi-ordering on P .

A collection B ⊆ P is said to be cofinal in P iff for all x ∈ P there is some
y ∈ B with x ≤P y. B is <P -cofinal if ∀x ∈ P∃y ∈ B(x <P y). If B is cofinal
and p ∈ P , then we can first find p′ ∈ P such that p <P p′ (by property P3
above) and then find y ∈ B such that p′ ≤P y. Then p <P y. Thus we can
replace ≤P with <P in the definition of “cofinal”. The cofinality, cf(P,≤P ),
of the partial ordering is the smallest cardinality of a cofinal subset. (Again
cf(P,<P ) is similarly defined and these two cardinals are equal if properties
P1–P3 above hold.) This cardinal need not be regular, if the ordering is not
total (linear). We say that (P,<P ) has “true” cofinality if it has a totally
ordered subset B ⊆ P that is cofinal. In this case the cofinality of B itself,
and hence of P , is a regular cardinal. Observe that if (P,<P ) has a linear
cofinal subset whose order-type is a regular cardinal λ, then λ is the cofinality
of P (because no cofinal subset of P is of smaller cardinality, even if non-linear
subsets are considered). When (P,<P ) has true cofinality, we write

tcf(P,<P ) = λ

(or just tcf(P ) = λ with the <P understood) to express both the fact that
a totally ordered cofinal set exists, and that λ is the minimal cardinality of
such a cofinal set.

In cases (when P3 above is not assumed) that (P,≤P ) has a greatest
element, then the cofinality of P is defined to be 1 and its true cofinality
is also 1, but since we assume that there are no <P maximal elements the
cofinality and true cofinality (when it exists) are always infinite cardinals.

The following observation was made by Pouzet. For any infinite cardinal λ,
tcf(P,<P ) = λ if and only if the following conditions hold:

1. (P,<P ) has a cofinal set of size λ.

2. (P,<P ) is λ-directed: any set X ⊆ P of size < λ has an upper bound
in (P,<P ).

It follows that if tcf(P,<P ) = λ and G ⊆ P is any cofinal subset, then
tcf(G) = λ as well.

A sequence 〈pξ | ξ < λ〉 of members of P is defined to be persistently
cofinal iff

∀h ∈ P ∃ξ0 < λ ∀ξ (ξ0 ≤ ξ < λ =⇒ h <P pξ). (14.3)
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Clearly every <P -increasing and cofinal sequence is persistently cofinal. If
〈pξ | ξ < λ〉 is persistently cofinal and pξ ≤P p′

ξ for every ξ < λ, then
〈p′

ξ | ξ < λ〉 is persistently cofinal as well.
If (P,≤P ) is a quasi-ordering and X ⊆ P , then an upper bound of X is

some a ∈ P such that x ≤P a for all x ∈ X. If a is an upper bound of X
and a ≤P a′ for every upper bound a′ ∈ P of X, then we say that a is a least
upper bound of X. We say that an upper bound a of X is a minimal upper
bound if there is no upper bound a′ of X such that a′ ≤P a ∧ ¬(a ≤P a′).

Suppose that (P,<P ,≤P ) is as above and X ⊆ P is such that for every
x ∈ X there is an x′ ∈ X with x <P x′ (for example X is an increasing
sequence in <P ). Then a ∈ P is an exact upper bound of X iff

1. a is a least upper bound of X, and

2. X is cofinal in {p ∈ P | p <P a}. Namely p <P a implies ∃x ∈ X
(p ≤P x).

Exercises are natural places to stop and think, but it is not an absolute
requirement to solve them on first encounter. In fact, they often become easy
with later material.

2.1 Exercise. Let λ > |A| be a regular cardinal, and f = 〈fξ | ξ < λ〉 an
increasing sequence of functions in OnA in the < ordering (of everywhere
dominance). Then f has an exact upper bound h and cf(h(a)) = λ for every
a ∈ A. In fact sup f is the required upper bound.

We repeat the definitions given above, for (OnA, <I ,≤I) where I is
a proper ideal over A. So, if F ⊆ OnA then

h ∈ OnA is an upper bound of F iff f ≤I h for every f ∈ F.

A function h is a least upper bound of F if it is an upper bound and h ≤I h′

for every upper bound h′ ∈ OnA of F . Here, the notions of least upper bound
and minimal upper bound coincide.

If h ∈ OnA and h(a) = 0 for some a ∈ A, then
∏

h = ∅. So, to avoid
triviality h(a) > 0 is assumed for all a ∈ A, whenever the expression

∏
h is

used. Hence if I is an ideal over A then every g ∈ OnA such that g <I h is =I

equivalent to some function in
∏

h. In fact, we shall usually consider reduced
products

∏
h/I for functions h such that h(a) > 0 is always a limit ordinal,

and hence every function in
∏

h is <-bounded (everywhere dominated) by
some function in

∏
h.

Suppose that F is a (non-empty) set of functions in OnA such that for
every f ∈ F there exists some f ′ ∈ F with f <I f ′. Then h ∈ OnA is an
exact upper bound of F if h is a least upper bound of F and for every g <I h
there is some f ∈ F with g <I f (namely F is cofinal in the lower <I cone
determined by h). Actually it is not necessary to require that h is a least
upper bound of F since this follows from the assumptions that h is an upper
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bound of F and F is cofinal in
∏

h/I. Thus if F ⊆
∏

h/I then h is an exact
upper bound of F iff F is cofinal in

∏
h/I.

If h is an exact upper bound of F and A0 ∈ I+ then h�A0 is an exact
upper bound of 〈f�A0 | f ∈ F 〉 with respect to the proper ideal I ∩ P(A0).

If h is an exact upper bound of F with respect to some ideal I over A and
J ⊇ I is a larger ideal over A, then h is an exact upper bound of F modulo
J as well.

The definition of “true cofinality” of a reduced product is so important for
pcf theory that we restate it for this case.

2.2 Definition. We say that tcf(
∏

h/I) = λ iff λ is a regular cardinal and
there exists a <I -increasing sequence f = 〈fξ | ξ < λ〉 in

∏
h that is cofinal

in
∏

h/I.

Projections

We shall often encounter the following situation.

1. A is a non-empty set of indices, and S = 〈S(a) | a ∈ A〉 is a sequence of
sets of ordinals. The sup of S function is defined on A by taking a ∈ A
to supS(a).

2. An ordinal function f ∈ OnA is given that is bounded by the sup of S,
namely f(a) < supS(a) for every a ∈ A.

Then we define the projection of f onto
∏

S, denoted proj(f, S), as the
function f+ ∈

∏
S defined by

f+(a) = min(S(a) \ f(a)).

So f+(a) = f(a) in case f(a) ∈ S(a), and otherwise f+(a) is the least ordinal
in S(a) above f(a). (There is such an ordinal by our assumption.) It is clear
that f+ is the least function in

∏
S that bounds f , and that f1 ≤ f2 implies

f+
1 ≤ f+

2 .
We shall apply projections in the presence of an ideal I over A. If f ∈

OnA is any function, not necessarily bounded by sup of S, we define f+ =
proj(f, S) as follows. For a ∈ A such that f(a) < supS(a), we define f+(a) =
min(S(a)\f(a)) as before, and for a ∈ A such that f(a) ≥ supS(a) we define
f+(a) = 0. Clearly, f1 =I f2 implies that f+

1 =I f+
2 . It follows, in case

f <I supS, that f+ is the ≤I -least function in
∏

a∈A S(a) that ≤I -bounds
f , up to =I equivalence.

Given an ideal I over a set A and an ordinal function h ∈ OnA, we are
interested in the existence and value of the true cofinality of

∏
h/I. Our first

step is to reduce this question to ultraproducts of regular cardinals, and we
can proceed as follows. Choose for every a ∈ A a cofinal set S(a) ⊆ h(a)
of order-type cf(h(a)). By our assumption that h(a) > 0 is always a limit,
non-zero ordinal, the order-type of S(a) is a regular infinite cardinal. Then
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the collections
∏

h and
∏

a∈A S(a) are cofinally equivalent. That is for every
f ∈

∏
h there is a g ∈

∏
S with f ≤ g (namely it projection), and vice versa.

Next,
∏

a∈A S(a) is isomorphic to
∏

a∈A |S(a)| =
∏

a∈A cf(h(a)). This
is also the case when an ideal I over A is introduced and the relation ≤I

is considered. Then
∏

h/I has the same cofinality and true cofinality as∏
a∈A cf(h(a))/I. Hence it suffices to consider reduced products

∏
a∈A k(a)/I

of functions k such that k(a) are infinite regular cardinals. As the following
lemma shows, in some cases we may even take k to be one-to-one. Recall
that Reg denotes the class of regular cardinals.

2.3 Lemma. Suppose that c : A → Reg is a function and B = {c(a) | a ∈
A} is its range. Suppose I is any ideal over A, and J is its Rudin-Keisler
projection on B defined by

X ∈ J iff X ⊆ B and c−1X ∈ I,

where c−1X = {a ∈ A | c(a) ∈ X}. Then there is an order-preserving
isomorphism h :

∏
B/J →

∏
a∈A c(a)/I defined by h([e]J) = [e◦c]I for every

e ∈
∏

B. If |A| < minB, then

tcf
(∏

B/J
)

= tcf
(∏

a∈Ac(a)/I
)

(14.4)

in the sense that existence of the true cofinality for one of
∏

B/J and
∏

c/I
implies existence for the other poset as well, and these cofinalities are equal.

Proof. For every e ∈
∏

B define ē ∈
∏

c by ē(a) = e(c(a)). That is, ē = e◦c.
Then e1 =J e2 iff ē1 =I ē2, and e1 <J e2 iff ē1 <I ē2. Thus h([e]J) = ē/I
induces an isomorphism from

∏
B/J into

∏
c/I. Hence tcf(

∏
B/J) is the

same as the true cofinality of

G =
{
h([e]J) | e ∈

∏
B
}

in <I . If |A| < minB, then G will be shown to be cofinal in
∏

c/I and this
implies (14.4). (In general, if G is any cofinal subset of a partial ordering
(P,<P ), then G and P have the same true cofinality.)

Now G is cofinal in
∏

c/I, because any g ∈
∏

c is bounded by f̄ where
f ∈

∏
B is defined by

f(b) = sup{g(a) | a ∈ A and c(a) = b}.

The fact that |A| < b is used here to deduce that this supremum is below the
regular cardinal b ∈ B, and hence that f ∈

∏
B. Since f̄/I ∈ G, G is cofinal

in
∏

c. �

To see how this lemma is applied, suppose that λ is a regular cardinal and
f = 〈fξ | ξ < λ〉 is a <I increasing sequence of functions fξ ∈ OnA. Then (as
we have said) h ∈ OnA is an exact upper bound of f iff f is cofinal in

∏
h/I.

In this case it follows that tcf(
∏

h/I) = λ and hence that the true cofinality
of

∏
a∈A cf(h(a)) is λ. Let B = {cf(h(a)) | a ∈ A} be the set of cofinalities

of the range of h. The preceding lemma shows that λ is the true cofinality of
a reduced product of B, if |A| < cf(h(a)) for every a ∈ A.
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2.1. Existence of Exact Upper Bounds

An important piece of pcf theory is the determination of conditions that
ensure the existence of exact upper bounds. Recall that an exact upper bound
of a <I -increasing sequence 〈fξ | ξ < λ〉 of functions in OnA is a function
g ∈ OnA that bounds every fξ in the ≤I relation and satisfies the additional
requirement that if d <I g then d <I fξ for some ξ < λ. The following and
Definition 2.8 are central in our presentation of pcf theory.

2.4 Definition (Strongly increasing). Suppose that I is an ideal over A and
f = 〈fξ | ξ ∈ L〉 is a <I -increasing sequence of functions fξ ∈ OnA, where L
is a set of ordinals. Then f is said to be strongly increasing if there are sets
Zξ ∈ I, for ξ ∈ L, such that whenever ξ1 < ξ2 are in L

a ∈ A \ (Zξ1 ∪ Zξ2) =⇒ fξ1(a) < fξ2(a).

2.5 Exercise. An even stronger property would be to require that there are
sets Zξ ∈ I for ξ ∈ L such that whenever ξ1 < ξ2

a ∈ A \ Zξ2 → fξ1(a) < fξ2(a).

Prove that a sequence f = 〈fξ | ξ ∈ L〉 satisfies this stronger property iff
for every ξ ∈ L

sup{fα + 1 | α ∈ L ∩ ξ} ≤I fξ. (14.5)

(Recall that f + 1 is the function that takes x to f(x) + 1.)

2.6 Exercise. Let I be an ideal over A, λ > |A| be a regular cardinal, and
f = 〈fξ | ξ < λ〉 be a <I increasing sequence of functions in OnA. Then the
following conditions are equivalent:

1. f contains a strongly increasing subsequence of length λ.

2. f has an exact upper bound h such that cf(h(a)) = λ for (I-almost) all
a ∈ A.

3. f is cofinally equivalent to some < (i.e. everywhere) increasing sequence
of length λ.

Hint. If f (or a subsequence) is strongly increasing, let Zξ ∈ I be the null
sets associated with fξ and define

h(a) = sup{fξ(a) | a �∈ Zξ}.

Prove that h is an exact upper bound as required to prove that 1 implies 2.
Since |A| < λ, it is obvious that 2 implies 3. (For every a ∈ A choose a

cofinal subset of h(a) of order-type λ, and let dξ be the “flat” function which
assigns to dξ(a) the ξth point in the h(a) cofinal subset.)

To prove that 3 implies 1, use the following lemma.
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2.7 Lemma (The Sandwich Argument). Suppose that d = 〈dξ | ξ ∈ λ〉 is
strongly increasing and fξ ∈ OnA is such that

dξ <I fξ ≤I dξ+1 for every ξ ∈ λ.

Then 〈fξ | ξ ∈ λ〉 is also strongly increasing.

Proof. Let Zξ ∈ I be the sets that affirm that the sequence d is strongly in-
creasing. For every fξ, sandwiched between dξ and dξ+1, there exists a Wξ ∈ I
such that

dξ(a) < fξ(a) ≤ dξ+1(a) for all a ∈ A \Wξ.

Define Zξ = Wξ ∪ Zξ ∪ Zξ+1. Then Zξ ∈ I, and if ξ1 < ξ2 then for every
a ∈ A \ (Zξ1 ∪ Zξ2)

fξ1(a) ≤ dξ1+1(a) ≤ dξ2(a) < fξ2(a).

�

2.8 Definition. Suppose that I is an ideal over a set A, λ is a regular
cardinal, and f = 〈fξ | ξ ∈ λ〉 is a <I -increasing sequence of functions
fξ ∈ OnA. For any regular cardinal κ such that κ ≤ λ the following crucial
property of κ (and f etc.) is denoted (∗)κ:

(∗)κ Whenever X ⊆ λ is unbounded, then for some X0 ⊆ X of order-type κ,
〈fξ | ξ ∈ X0〉 is strongly increasing.

Thus (∗)κ is a kind of partition relation, saying that any unbounded subse-
quence 〈fξ | ξ ∈ X〉 contains a strongly increasing subsequence of length κ.
Clearly (∗)κ implies (∗)κ′ for all regular κ′ < κ.

2.9 Exercise.

1. Assume κ < λ. Prove that (∗)κ holds iff the set of ordinals δ ∈ λ with
cf(δ) = κ and such that 〈fξ | ξ ∈ X0〉 is strongly increasing for some
unbounded set X0 ⊆ δ is stationary in λ.

2. Use the Erdős-Rado Theorem (2κ)+ → (κ+)2κ to prove that if λ ≥
(2|A|)+ and f is a <I increasing sequence of functions as above, of
length λ, then (∗)|A|+ holds.

Hint for 2. For i < j, if there exists some a ∈ A such that fi(a) > fj(a),
then define c(i, j) = a for such an a. Otherwise define c(i, j) = −1. The
homogeneous set must be of color −1, and (∗)|A|+ can be derived by taking
a subsequence.

We shall give (in Lemma 2.19) conditions that ensure property (∗)κ (with-
out any assumptions on 2κ), but meanwhile the following lemma and theorem
explain the main use of (∗)κ.
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2.10 Definition (Bounding projection). Suppose that I is an ideal over A,
λ is a regular cardinal, and f = 〈fξ | ξ < λ〉 is a <I -increasing sequence of
functions in OnA. Let κ ≤ λ be any regular cardinal. We say that f has
the bounding projection property for κ if whenever S = 〈S(a) | a ∈ A〉 with
S(a) ⊆ On and |S(a)| < κ is such that the sequence f is <I -bounded by the
function sup of S, then there exists a ξ < λ such that f+

ξ = proj(fξ, 〈S(a) |
a ∈ A〉) is an upper bound of f in the <I relation. (Recall that sup of S(a) =
supS(a) for all a ∈ A.)

2.11 Exercise.

1. If f = 〈fξ | ξ < λ〉 has the bounding projection property for κ and
f ′ = 〈f ′

ξ | ξ < λ〉 is such that f ′
ξ =I fξ for every ξ, then f ′ too has the

bounding projection property for κ.

2. A seemingly weaker property results if we require that the sup of S map
<-bounds (i.e. everywhere) each fξ. Prove that these two definitions
are equivalent.

2.12 Lemma (The Bounding Projection Lemma). Suppose that I is an ideal
over A, λ > |A| is a regular cardinal, and f = 〈fξ | ξ < λ〉 is a <I-increasing
sequence satisfying (∗)κ for a regular cardinal κ such that |A| < κ ≤ λ. Then
f satisfies the bounding projection property for κ.

Later on, we shall see that (∗)κ is, in fact, equivalent to the bounding
projection property for κ (see Theorem 2.15 for an exact formulation).

Proof. Suppose that the lemma is false and S is a counter-example, and we
shall obtain a contradiction. By changing each fξ on an I set, we do not spoil
the (∗)κ property, and we may assume that fξ(a) < supS(a) for all a ∈ A.
Then define

f+
ξ = proj(fξ, 〈S(a) | a ∈ A〉).

Since f+
ξ is not a <I -upper bound, there exists a ξ′ < λ such that≤(f+

ξ , fξ′ ) ∈
I+. That is, f+

ξ (a) ≤ fξ′ (a) for an I-positive set of a. Hence <(f+
ξ , fξ′ ′ ) ∈ I+

for every ξ′ ′ above ξ′. This enables the definition of an unbounded set X ⊆ λ
such that

if ξ, ξ′ ∈ X and ξ < ξ′ then <(f+
ξ , fξ′ ) ∈ I+.

Since (∗)κ holds, there exists a set X0 ⊆ X of order-type κ such that 〈fξ |
ξ ∈ X0〉 is strongly increasing. Let Zξ ∈ I for ξ ∈ X0 be as in the definition
of strong increase (2.4).

For every ξ ∈ X0 let ξ′ = min(X0 \ (ξ + 1)) be the successor of ξ in X0,
and pick

aξ ∈ <(f+
ξ , fξ′ ) \ (Zξ ∪ Zξ′ ).

As κ > |A|, we may find a single a ∈ A such that a = aξ for a subset X1 of
X0 of cardinality κ. Now for ξ1 < ξ2 in X1

f+
ξ1

(a) < fξ′
1
(a) ≤ fξ2(a) ≤ f+

ξ2
(a).
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(The first inequality is a consequence of aξ1 ∈ <(f+
ξ1

, fξ′
1
), the second follows

from ξ′
1 ≤ ξ2 and the fact that

a = aξ1 = aξ2 ∈ A \ (Zξ′
1
∪ Zξ2),

and the third inequality is obvious from the definition of f+
ξ2

.)
But now f+

ξ (a) ∈ S(a) turns out to be strictly increasing with ξ ∈ X1,
which is absurd since |S(a)| < κ. �

2.13 Theorem (Exact Upper Bounds). Suppose that I is an ideal over A,
λ > |A|+ is a regular cardinal, and f = 〈fξ | ξ ∈ λ〉 is a <I-increasing
sequence of functions in OnA that satisfies the bounding projection property
for |A|+. Then f has an exact upper bound.

Proof. Assume the |A|+ bounding projection property for a sequence f that
is <I -increasing of length a regular cardinal λ > |A|+. We shall prove first
that there exists a minimal upper bound to f , and then prove that this bound
is necessarily an exact upper bound. Seeking a contradiction, suppose that f
has no minimal upper bound. So for every h ∈ OnA, if h is an upper bound
to the sequence f then it is not a minimal upper bound, and there is another
upper bound h′ ∈ OnA to f such that h′ ≤ h and <(h′, h) ∈ I+.

We shall define by induction on α < |A|+ a sequence Sα = 〈Sα(a) | a ∈ A〉
of sets of ordinals satisfying |Sα(a)| ≤ |A|, and such that:

1. The sequence of functions f is bounded by the map a �→ supSα(a). So,
the projections can always be defined.

2. The sets Sα(a) are increasing with α: if α < β then Sα(a) ⊆ Sβ(a) for
every a ∈ A. For a limit ordinal δ, Sδ(a) =

⋃
α<δ Sα(a).

To define S0, we pick a function h0 that bounds f and define S0(a) =
{h0(a)}.

Suppose that Sα = 〈Sα(a) | a ∈ A〉 has been defined. Since the bounding
projection property for |A|+ holds and the cardinality of Sα(a) is ≤ |A|, there
exists some ξ = ξ(α) < λ such that hα = proj(fξ, S

α) is an upper bound of f .
It follows for every ξ′ satisfying ξ ≤ ξ′ < λ that hα =I proj(fξ′ , Sα).

Since hα is not a minimal upper bound, there exists an upper bound u to
the sequence f such that u ≤ hα and

<(u, hα) ∈ I+.

Define Sα+1(a) = Sα(a) ∪ {u(a)}. Then proj(fξ, S
α+1) =I u for all ξ(α) ≤

ξ < λ.
Now let ξ < λ be a fixed ordinal greater than every ξ(α) for α < |A|+

(recall that λ is a regular cardinal above |A|+). Consider the functions Hα =
proj(fξ, S

α) for α < |A|+. Since fξ is above fξ(α), Hα =I hα. Thus <
(Hα+1, Hα) ∈ I+. Since α1 < α2 < |A|+ implies that Sα1(a) ⊆ Sα2(a) for
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all a ∈ A, the sequence of projections 〈Hα | α < |A|+〉 thus obtained satisfies
the following property:

If α1 < α2 < |A|+, then Hα2 ≤ Hα1 and <(Hα2 , Hα1) ∈ I+.

Yet this is impossible and leads immediately to a contradiction. For every
α < |A|+ pick some a ∈ A such that Hα+1(a) < Hα(a). Then the same fixed
a ∈ A is picked for an unbounded set of indices α ∈ |A|+. Yet as the functions
Hα are ≤-decreasing, this yields an infinite strictly descending sequence of
ordinals! �

Now that the existence of a minimal upper-bound is established, the fol-
lowing lemma concludes the theorem.

2.14 Lemma. Suppose that I is an ideal over A, λ is a regular cardinal, and
f = 〈fξ | ξ ∈ λ〉 is a <I-increasing sequence of functions in OnA that satisfies
the bounding projection property for κ = 3. Let h be a minimal upper bound
of f . Then h is an exact upper bound.

Proof. Assume that f satisfies the bounding projection property for 3, and
h is a minimal upper bound of f . Suppose that g ∈ OnA is such that g <I h.
We must find fξ in the sequence f with g <I fξ. For simplicity, and without
loss of generality, we can assume that g(a) < h(a) for all a ∈ A.

Define S(a) = {g(a), h(a)} for every a ∈ A. The bounding projection
property implies the existence of ξ < λ for which f+

ξ = proj(fξ, 〈S(a) |
a ∈ A〉) is an upper bound of the sequence f . We shall prove that g <I fξ

as required. Observe that
f+

ξ =I h (14.6)

or else f+
ξ (a) = g(a) < h(a) for an I-positive set of a’s in A. But then f+

ξ is
an upper-bound of f that is smaller than the minimal upper bound h on an
I-positive set of indices, and this is impossible. Hence (14.6). Yet, for every a
such that f+

ξ (a) = h(a), g(a) < fξ(a) follows from the fact that g(a) ∈ S(a).
Thus g <I fξ. This proves the lemma. �

The Bounding Projection Lemma 2.12 and the Exact Upper Bounds The-
orem 2.13 show together that a <I -increasing sequence of length a regular
cardinal λ > |A|+ and which satisfies (∗)|A|+ has necessarily an exact upper
bound h. As we shall see in the following theorem it can be deduced that

∀a ∈ A cf(h(a)) ≥ |A|+.

2.15 Theorem. Suppose that I is an ideal over A, λ > |A|+ is a regular
cardinal, and f = 〈fξ | ξ ∈ λ〉 is a <I-increasing sequence of functions in
OnA. Then for every regular cardinal κ such that |A|+ ≤ κ ≤ λ the following
are equivalent.

1. (∗)κ holds for f .

2. f satisfies the bounding projection property for κ.
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3. The sequence f has an exact upper bound g for which

{a ∈ A | cf(g(a)) < κ} ∈ I.

Proof. Let κ be a regular cardinal such that |A|+ ≤ κ ≤ λ. Implication
1 =⇒ 2 was proved in Lemma 2.12, and so we next establish 2 =⇒ 3.

Since f satisfies the bounding projection property for some cardinal that is
≥ |A|+, it satisfies the bounding projection property for |A|+. Theorem 2.13
above implies that f has an exact upper bound g. This exact upper bound is
determined up to =I , and we may assume that g(a) is never 0 or a successor
ordinal (recall that the sequence f is <I -increasing).

Suppose that P = {a ∈ A | cf(g(a)) < κ} ∈ I+, in contradiction
to 3. Choose, for every a ∈ P , S(a) ⊆ g(a) cofinal in g(a) and such that
order-type(S(a)) < κ. For a ∈ A \ P define S(a) = {g(a)}. Then the bound-
ing projection property for κ gives some ξ < λ such that the projection

f+
ξ = proj(fξ, 〈S(a) | a ∈ A〉)

is an upper bound of f in
∏

a∈A S(a). But this is impossible since f+
ξ �P <

g�P (everywhere on P ) is in contradiction to our assumption that g is the
≤I -minimal upper bound of f .

We now proceed with 3 =⇒ 1. Suppose that g is an exact upper bound
for f such that cf(g(a)) ≥ κ for all a ∈ A (change g on a null set if necessary).
Choose S(a) ⊆ g(a) cofinal in g(a), closed, and with order-type cf(g(a)). So
order-type(S(a)) ≥ κ. We prove that (∗)κ holds. Assuming that X ⊆ λ is
unbounded, we shall find X0 ⊆ X of order-type κ over which f is strongly
increasing. For this we intend to define by induction on α < κ a function
hα ∈

∏
a∈A S(a) =

∏
S and an index ξ(α) ∈ X such that

1. hα <I fξ(α) <I hα+1.

2. The sequence 〈hα | α < κ〉 is < increasing (increasing everywhere).
And hence it is certainly strongly increasing.

Then the Sandwich Argument (Lemma 2.7) will show that {fξ(α) | α < κ} is
strongly increasing.

The functions hα are defined as follows.

1. h0 ∈
∏

a∈A S(a) is any function.

2. If δ < κ is a limit ordinal, then define

hδ = sup{hα | α < δ}.

That is
hδ(a) =

⋃
{hα(a) | α < δ}

for every a ∈ A. Since each S(a) has regular order-type ≥ κ, and as
δ < κ, clearly hδ ∈

∏
a∈A S(a).
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3. If hα ∈
∏

a∈A S(a) is defined then it is bounded by g (since S(a) ⊆ g(a))
and hence (as g is an exact upper bound) hα <I fξ for some ξ ∈ X,
which we denote ξ(α). Now let f+

ξ(α) = proj(fξ(α), S) be the projection
function, and define hα+1 ∈

∏
S so that hα+1 > sup{hα, f+

ξ(α)}.

Thus hα+1 > hα and since fξ(α) ≤I f+
ξ(α) we have

hα <I fξ(α) <I hα+1, for every α. (14.7)

Hence
X0 = {ξ(α) | α ∈ κ} ⊆ X

is an increasing enumeration, and it is an evidence for (∗)κ (by the Sandwich
Argument (Lemma 2.7) and since 〈hα | α < κ〉 is strongly increasing). �

We shall give in Lemma 2.19 below a useful condition on f from which
(∗)κ follows. But first we need a combinatorial theorem.

2.16 Definition. If S ⊆ λ is a stationary set, then a club guessing sequence
is a sequence 〈Cδ | δ ∈ S〉, where each Cδ ⊆ δ is closed unbounded in δ, such
that for every closed unbounded D ⊆ λ there exists some δ ∈ S with Cδ ⊆ D.

We shall use the notation Sλ
κ = {δ ∈ λ | cf(δ) = κ}. Clearly for regular

infinite cardinals κ < λ, Sλ
κ is stationary in λ.

2.17 Theorem (Club Guessing). For every regular cardinal κ, if λ is a car-
dinal such that cf(λ) ≥ κ++, then any stationary set S ⊆ Sλ

κ has a club-
guessing sequence 〈Cδ | δ ∈ S〉 (such that Cδ ⊆ δ is closed unbounded of
order-type κ).

Proof. We shall prove this for uncountable κ’s, though the theorem holds for
κ = ℵ0 as well.

Let S ⊆ Sλ
κ be any stationary set. Fix a sequence C = 〈Cδ | δ ∈ S〉 such

that Cδ ⊆ δ is closed unbounded of order type κ, for every δ ∈ S. If E ⊆ λ
is any closed unbounded set, define

C|E = 〈Cδ ∩ E | δ ∈ S ∩ E′〉.

Here E′ = {δ ∈ E | E∩δ is unbounded in δ} is the set of accumulation points
of E. Clearly E′ ⊆ E is closed unbounded. The sequence C|E is defined on
S ∩ E′ in order to ensure that Cδ ∩ E is closed unbounded in δ.

We claim that for some closed unbounded set E ⊆ λ, C|E is club-guessing.
(The theorem demands a sequence defined on every δ ∈ S, but this is triv-
ially obtained once a guessing sequence is defined on a closed unbounded set
intersected with S.)

To prove this claim, assume that it is false, and for every closed unbounded
set E ⊆ λ there is some closed unbounded set DE ⊆ λ not guessed by C|E.
That is, for every δ ∈ S ∩ E′

Cδ ∩ E �⊆ DE .



2. Elementary Definitions 1165

So we can define a decreasing (under inclusion) sequence of closed unbounded
sets Eα ⊆ λ for α < κ+ by induction on α as follows.

1. E0 = λ.

2. If γ < κ+ is a limit ordinal, and Eα for α < γ are already defined, let
Eγ =

⋂
{Eα | α < γ}. Clearly Eγ ⊆ λ is closed unbounded.

3. If Eα is defined, then Eα+1 = (Eα∩DEα)′. So for every δ ∈ S ∩Eα+1,
Cδ ∩ Eα �⊆ Eα+1.

Let E =
⋂
{Eα | α < κ+}. Again E ⊆ λ is closed unbounded because

cf(λ) > κ+.
Now we get the contradiction. Take any δ ∈ S ∩ E. There exists some

α < κ+ such that Cδ ∩ E = Cδ ∩ Eα (since the sets Eα are decreasing in ⊆
and Cδ has cardinality κ). So Cδ ∩ Eα = Cδ ∩ Eα′

for every α′ > α, and in
particular for α′ = α + 1. But as δ ∈ S ∩ Eα+1, Cδ ∩ Eα �⊆ Eα+1. �

2.18 Exercise.

1. Club guessing is a relative of the diamond principle which gives much
stronger guessing properties. For example, prove that ♦+

ω2
implies a

sequence 〈Cδ | δ ∈ Sω2
ω1
〉 with Cδ closed unbounded in δ such that, for

every closed unbounded set E ⊆ ω2, there exists a closed unbounded
set D ⊆ ω2 such that for every δ ∈ Sω2

ω1
∩ D, Cδ is almost contained

in E (i.e. except a bounded set). Prove that it is not possible to have
full guessing at a closed unbounded set. That is, it is not possible to
require that Cδ ⊆ E for every δ ∈ Sω2

ω1
∩D.

2. Prove the club-guessing theorem for κ = ℵ0 as well.

Hint. For S ⊆ Sλ
ℵ0

fix C = 〈Cδ | δ ∈ S〉 where each Cδ is an ω-sequence
unbounded in δ. For every closed unbounded set E ⊆ λ define the “gluing to
E” sequence C|E = 〈C∗

δ | δ ∈ S ∩ E∗〉 by

C∗
δ (n) = max(E ∩ (Cδ(n) + 1)).

Try to prove that for some club E ⊆ λ, C|E is club guessing. Have enough
patience for ω1 trials.

Club guessing is used in the following lemma which produces sequences
that satisfy (∗)κ.

2.19 Lemma. Suppose that

1. I is a proper ideal over A.

2. κ and λ are regular cardinals such that κ++ < λ.

3. f = 〈fξ | ξ < λ〉 is a sequence of length λ of functions in OnA that is
<I-increasing and satisfies the following requirement: For every δ < λ
with cf(δ) = κ++, there is a closed unbounded set Eδ ⊆ δ such that for
some δ′ ≥ δ in λ
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sup{fα | α ∈ Eδ} <I fδ′ . (14.8)

Then (∗)κ holds for f .

Proof. Let S = Sκ++

κ be the stationary subset of κ++ consisting of all ordinals
with cofinality κ. Fix a club-guessing sequence on S: 〈Cα | α ∈ S〉. So for
every α ∈ S, Cα ⊆ α is closed unbounded, of order-type κ, and for every
closed unbounded set C ⊆ κ++ there is a δ ∈ S such that Cδ ⊆ C.

Now let U ⊆ λ be an unbounded set, and we shall find an X0 ⊆ U of
order-type κ such that 〈fξ | ξ ∈ X0〉 is strongly increasing. For this we
first define an increasing and continuous sequence 〈ξ(i) | i < κ++〉 ⊆ λ of
order-type κ++ by the following recursive procedure.

We start with an arbitrary ξ(0). For i limit, ξ(i) = sup{ξ(k) | k < i}.
Suppose for some i < κ++ that {ξ(k) | k ≤ i} has been defined.
For every α ∈ S define

hα = sup{fξ(k) | k ≤ i ∧ k ∈ Cα}. (14.9)

Then ask: is there an ordinal σ > ξ(i) below λ such that hα <I fσ? If the
answer is positive, let σα be the least such σ < λ, and, if negative, let σα be
ξ(i) + 1.

Since λ > κ++ is regular, we can define

ξ(i + 1) > sup{σα | α ∈ S} with ξ(i + 1) ∈ U.

It follows, in case the answer for hα is positive, that

hα <I fξ(i+1).

Finally D = {ξ(k) | k ∈ κ++} is closed and has order-type κ++. Let
δ = supD. Then D is closed unbounded in δ < λ, and cf(δ) = κ++. By
assumption there is a closed unbounded set Eδ ⊆ δ such that (14.8) holds.
Thus for some fδ′

sup{fξ | ξ ∈ Eδ} <I fδ′ . (14.10)

Observe that D ∩ Eδ is closed unbounded in δ, and thus C = {i ∈ κ++ |
ξ(i) ∈ Eδ} is closed unbounded. Hence for some α ∈ S, Cα ⊆ C. So (14.10)
implies that

sup{fξ(i) | i ∈ Cα} <I fδ′ . (14.11)

Let Nα ⊆ Cα be the set of non-accumulation points of Cα, that is those
i ∈ Cα for which Cα ∩ i is bounded in i. We shall prove that {fξ(i) | i ∈ Nα}
is strongly increasing. Since ξ(i + 1) ∈ U for every i, the sandwich argument
(2.7) gives a strongly increasing subsequence of {fα | α ∈ U} of order-type κ.

Claim. For every i < j both in Cα

sup{fξ(k) | k ≤ i ∧ k ∈ Cα} <I fξ(j). (14.12)
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Proof of Claim. Recall how fξ(i+1) was defined. We considered (14.9) and
asked if hα is <I dominated by some fσ. The answer was positive, since fδ′

is such a bound. Hence the claim and the lemma follow. �

2.20 Exercise. Let κ and λ be regular cardinals with κ++ < λ, and let F be
any function with dom(F ) ⊆ [λ]<κ and such that F (X) ∈ λ for X ∈ dom(F ).
Suppose that for every δ ∈ Sλ

κ++ there exists a closed unbounded set Eδ ⊆ δ
such that [Eδ]<κ ⊆ dom(F ). Then the following set S is stationary: the set
of all ordinal α ∈ Sλ

κ for which there exists a closed unbounded set D ⊆ α
with the property that, for any a < b both in D, F ({d ∈ D | d ≤ a}) < b.

A typical application of Lemma 2.19 is the following.

2.21 Theorem. Suppose that I is a proper ideal over a set of regular car-
dinals A, and λ is a regular cardinal such that

∏
A/I is λ-directed. If

〈gξ | ξ < λ〉 is any sequence in
∏

A, then there exists a <I-increasing se-
quence f = 〈fξ | ξ < λ〉 of length λ in

∏
A/I, such that gξ < fξ+1 for every

ξ < λ and (∗)κ holds for f for every regular cardinal κ such that κ++ < λ
and {a ∈ A | a ≤ κ++} ∈ I. Hence if κ = |A|+ is such a cardinal, then by
Theorem 2.15 and the fact that (∗)κ holds, we have an exact upper bound g
to the sequence f so that {a ∈ A | cf(g(a)) < κ} ∈ I.

Proof. We shall define a <I -increasing sequence 〈fξ | ξ < λ〉 in
∏

A/I as
follows. At successor stages, if fξ is defined, let fξ+1 be any function in

∏
A

that <-extends fξ and gξ.

1. At limit stages δ < λ there are two cases. In the first cf(δ) = κ++

where κ is regular and {a ∈ A | a ≤ κ++} ∈ I. Then fix some Eδ ⊆ δ
closed unbounded and of order-type cf(δ), and define

fδ = sup{fi | i ∈ Eδ}.

Then fδ(a) < a when a > κ++, and thus fδ ∈
∏

A/I since {a ∈ A |
a ≤ κ++} ∈ I.

2. If δ < λ, but case 1 above does not hold, let fδ ∈
∏

A be any ≤I upper
bound of 〈fξ | ξ < δ〉 guaranteed by the λ-directedness assumption.

Now Lemma 2.19 implies that (∗)κ holds for every regular cardinal κ of
the required form. �

In the following, we shall apply Lemma 2.19 (or rather its consequence
Theorem 2.21 above) and obtain an important representation of successors
of singular cardinals with uncountable cofinality. But first we introduce a no-
tation.

2.22 Notation. Let X be a set of cardinals, then

X(+) = {α+ | α ∈ X}

denotes the set of successors of cardinals in X.
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2.23 Theorem (Representation of μ+ as True Cofinality). Suppose that μ
is a singular cardinal with uncountable cofinality. Then there exists a closed
unbounded set C ⊆ μ such that

μ+ = tcf
(∏

C(+)/Jbd
)

where Jbd is the ideal of bounded subsets of C(+).

Proof. Let C0 ⊆ μ be any closed unbounded set of limit cardinals such that
|C0| = cf(μ) and all cardinals in C0 are above cf(μ). Clearly all cardinals
in C0 that are limit points of C0 are singular cardinals, and hence we can
assume that C0 consists only of singular cardinals.

Observe that
∏

C
(+)
0 /Jbd is μ-directed, and in fact is μ+-directed since

μ is a singular cardinal. Indeed, suppose that F ⊆
∏

C
(+)
0 has cardinality

< μ and define h(a) by h(a) = sup{f(a) | f ∈ F} for every a ∈ C
(+)
0 above

|F | (so that h(a) ∈ a), and h(a) is arbitrarily defined on smaller a’s. This
proves that every subset of

∏
C

(+)
0 of cardinality < μ is bounded in <Jbd .

But then it follows that subsets of
∏

C
(+)
0 of cardinality μ are also bounded:

decompose any such subset F =
⋃

α<cf(μ) Fα where each Fα has cardinality
< μ, then bound each Fα, and finally bound the sequence of bounds.

Thus
∏

C
(+)
0 /Jbd is μ+-directed and we may construct a Jbd increasing

sequence f = 〈fξ | ξ < μ+〉 in
∏

C
(+)
0 such that (∗)κ holds for every regular

cardinal κ < μ (apply Theorem 2.21 in its simpler form in which there is no
need to extend a given sequence g).

Theorem 2.15 implies that f has an exact upper bound h : C
(+)
0 → On

such that
{a ∈ C

(+)
0 | cf(h(a)) < κ} ∈ Jbd (14.13)

for every regular κ < μ. We may assume that h(a) ≤ a for every a ∈ C
(+)
0 ,

since the identity function is clearly an upper bound to f .

2.24 Claim. The set {α ∈ C0 | h(α+) = α+} contains a closed unbounded
set.

Proof of Claim. Suppose toward a contradiction that for some stationary set
S ⊆ C0, h(α+) < α+ for every α ∈ S. Since all cardinals of C0 are singular,
cf(h(α+)) < α for every α ∈ S. Hence (by Fodor’s theorem) cf(h(α+)) is
bounded by some κ < μ on a stationary subset of α in S. But this is in
contradiction to (14.13) above.

Thus we have proved the existence of a closed unbounded set C ⊆ C0 such
that h(α+) = α+ for every α ∈ C. We claim that μ+ = tcf(

∏
C(+)/Jbd).

But this is clear since h�C(+), which is the identity function, is an exact
upper bound to the sequence 〈fξ�C(+) | ξ < μ+〉 which is Jbd increasing and
of length μ+. This ends the proof of the claim and Theorem 2.23. �

A somewhat stronger form of this theorem is in Exercise 4.17.
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2.25 Exercise. Prove the following representation theorem for μ+ in case
cf(μ) = ℵ0.

2.26 Theorem. If μ is a singular cardinal of countable cofinality then for
some unbounded set D ⊆ μ (of order-type ω) of regular cardinals

μ+ = tcf
(∏

D/Jbd
)

where Jbd is the ideal of bounded subsets of D. For example, there exists a set
B ⊆ {ℵn | n < ω} such that tcf(

∏
B/Jbd) = ℵω+1.

Hint. Let C0 be any ω sequence converging to μ, consisting of regular cardi-
nals. Repeat the proof above and define D = {cf(h(a)) | a ∈ C0}. Then use
Lemma 2.3.

The theory of exact upper bounds, which is the basis of pcf theory, can
be developed in various ways. For example [10] presents Shelah’s Trichotomy
Theorem, and extends it to further analyze the set of flat points. Suitably
interpreted, Theorem 2.15 is equivalent to Theorem 18 of [10]. The following
exercise establishes the connection between the trichotomy and the bounding
projection property.

2.27 Exercise (The Trichotomy Theorem). Suppose that λ > |A|+ is a reg-
ular cardinal, and f = 〈fξ | ξ < λ〉 is a <I increasing sequence. Consider the
following properties of f and a regular cardinal κ such that |A| < κ ≤ λ:

Badκ There are sets of ordinals S(a) for a ∈ A such that |S(a)| < κ and
sup of S <I -dominates f , and there is an ultrafilter D over A, extending
the dual of I, such that for every α < λ, f+

α <D fβ for some β < λ
(where f+

α = proj(fα, S)).

Ugly There exists a function g ∈ OnA such that, forming tα = {a ∈ A |
g(a) < fα(a)}, the sequence 〈tα | α < λ〉 which we know to be ⊆I

increasing does not stabilize modulo I. That is, for every α there is
some β > α in λ such that tβ \ tα ∈ I+.

Goodκ There exists an exact upper bound g to the sequence f such that
cf(g(a)) ≥ κ for every a ∈ A.

Prove that the bounding projection property for κ is equivalent to ¬Badκ ∧
¬Ugly. Hence the Trichotomy Theorem which says that if neither Badκ nor
Ugly, then Goodκ.

2.28 Exercise ([15] Lemma 0.D, Chap. V). If λ is a regular cardinal with
∀μ < λ μ|A| < λ and fα ∈ OnA for α < λ, then for some unbounded E ⊆ λ,
for all α < β both in E, fα ≤ fβ and {a ∈ A | fα(a) = fβ(a)} does not
depend on α, β in E.

Hence, if I is an ideal over A and fα <I fβ for all α < β, then (∗)λ holds.
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Hint. For a ∈ A fix some γa > sup{fα(a) | α ∈ λ}. For α < λ, a ∈ A,
define sα(a) = {fβ(a) | β < α} ∪ {γa}. Define gα = proj(fα, sα). Let
T = {δ < λ | cf(δ) = |A|+}. For α ∈ T there exists a μα < α such that
gα = proj(fα, sμα). By Fodor’s theorem we may assume μ = μα is fixed on a
stationary set T ′ ⊆ T . Moreover, since sμ has cardinality |μ| and |μ||A| < λ,
we may assume that gα = g is fixed for α ∈ T

′ ′ ⊆ T ′, stationary.

2.2. Application: Silver’s Theorem

One form of Silver’s Theorem says that if κ is a singular cardinal of uncount-
able cofinality such that 2δ = δ+ for a stationary set of δ’s in κ, then 2κ = κ+.
A slightly more general form is the following

2.29 Theorem (Silver [18]). Let κ be a singular cardinal with uncountable
cofinality: ℵ0 < cf(κ) < κ. Suppose that there exists a stationary set of
cardinals S ⊆ κ such that, for every δ ∈ S, δcf(κ) = δ+. Then

κcf(κ) = κ+

as well.

Proof. Assume that S ⊆ κ, of order-type cf(κ), is a stationary set of cardinals
such that for every δ ∈ S

δcf(κ) = δ+.

We have established the existence of a closed unbounded subset C ⊆ κ with
κ+ = tcf(

∏
C(+)/Jbd). So, by taking S ∩ C for S, we may conclude that∏

S(+)/Jbd has true cofinality κ+ and let f = 〈fξ | ξ ∈ κ+〉 be Jbd increasing
and cofinal there.

Since λcf(κ) = λ+ for all λ ∈ S, there exists an encoding of all pairs 〈λ,X〉
where X ∈ [λ]cf(κ) by ordinals in λ+. Hence we can encode each X ∈ [κ]cf(κ)

by a function hX ∈
∏

S(+), where hX(λ+) gives the code of X ∩ λ. Thus,
if X �= Y then hX and hY are eventually disjoint. Since each hX is Jbd

dominated by some fξ for ξ ∈ κ+, the following lemma concludes the proof
of our theorem.

2.30 Lemma. For every function g ∈
∏

S(+), the collection

F = {X ∈ [κ]cf(κ) | hX <Jbd g}

has cardinality ≤ κ.

Proof. Suppose that, on the contrary, |F | ≥ κ+. For each δ ∈ S fix an
enumeration of g(δ+) ∈ δ+ that has order-type ≤ δ. Using this enumeration,
hX(δ+) is “viewed” as an ordinal in δ, denoted kX(δ) whenever hX(δ+) <
g(δ+). Thus for every X ∈ F , hX is translated into a pressing down function
defined on a final segment of S.

By Fodor’s theorem, for some stationary set SX ⊆ S, kX is bounded on SX ,
say by δX < κ. Now the number of subsets of S is bounded by 2cf(κ) < κ, and
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hence there exists a subset F0 ⊆ F of cardinality κ+, a fixed stationary set S0,
and a fixed cardinal δ0 ∈ S such that SX = S0 and δX = δ0 for every X in F0.
Moreover the translation function taking δ ∈ S0 to that ordinal in δ0 that
indirectly encodes X ∩ δ can also be assumed to be independent of X ∈ F0,
since there are at most δ

cf(κ)
0 = δ+

0 such functions. Yet this is absurd because
the translation function of hX completely determines X =

⋃
{X∩δ | δ ∈ S0}.

This is a contradiction which proves the lemma and the theorem. �

2.31 Exercise. Show that the following form of Silver’s Theorem is equiva-
lent to Theorem 2.29 (cf. [8]). Let κ be a singular cardinal with uncountable
cofinality: ℵ0 < cf(κ) < κ. Suppose that λcf(κ) < κ for all λ < κ, and
there exists a stationary set of cardinals S ⊆ κ such that, for every δ ∈ S,
δcf(δ) = δ+. Then

κcf(κ) = κ+

as well.

2.32 Exercise. The proof given by Baumgartner and Prikry (in [1]) to Sil-
ver’s Theorem simplifies the original proof, and is actually simpler than the
proof given here which serves to illustrate some of the pcf concepts. In ad-
dition the Baumgartner-Prikry proof relies on very elementary notions. The
following exercises describes that proof. Assume that κ is a singular cardinal
with uncountable cofinality.

1. If S ⊆ κ is a stationary set such that δcf(κ) = δ+ for δ ∈ S, define on∏
S(+) a relation R by f R g iff {α ∈ S | f(α+) < g(α+)} is stationary.

Prove that for every g the cardinality of R−1g = {X ∈ κcf(κ) | hX R g}
is ≤ κ.

2. Prove that for every f, g ∈
∏

S(+) that are eventually different either
f R g or g R f . Take any collection Xi ∈ [κ]cf(κ), i < κ+, of dif-
ferent subsets and consider H =

⋃
i∈κ+ R−1hXi . If κcf(κ) > κ+ there

must be some g �∈ H, and hence hXi R g for every i < κ+. This is
a contradiction.

2.3. Application: A Covering Theorem

In this subsection V denotes the universe of all sets, and U a transitive
subclass containing all ordinals and satisfying the axioms of ZFC. (See, for
example, Levy [12] for the meaning of statements concerning classes.) If X
and Y are sets of ordinals in V and U (respectively) and X ⊆ Y , then we
say that Y covers X.

The countable covering property of U (or between U and V ) is the state-
ment that any countable set of ordinals X is covered by some countable set
of ordinals Y in U (that is, Y is in U , and Y is countable in V ). Similarly,
for any cardinal κ, the ≤ κ covering property is that any set of cardinals X
of cardinality ≤ κ is covered by some set in U that has cardinality ≤ κ in V .
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If the ≤ κ covering property holds for every cardinal κ, then we say that
the full covering property holds for U : every set of ordinals X is covered by
some set Y in U such that X and Y are equinumerous in V . The following
theorem gives conditions by which the full covering property can be deduced
from the countable covering property.

2.33 Theorem (Magidor). Suppose U is a transitive class containing all
ordinals and satisfying all the ZFC axioms. Moreover, assume that

1. GCH holds in U ,

2. U and the universe V have the same cardinals, and moreover every
regular cardinal in U remains regular in V .

Then the countable covering property for U implies the full covering property.

Proof. Observe first that if U and V have the same regular cardinals, they
have the same cardinals and cfU (κ) = cfV (κ) for every ordinal. Also, for
every set X ∈ U , |X|U = |X|V . We prove by induction on λ ∈ On that every
X ⊆ λ is covered by some Y in U of the same V cardinality. Of course if
X is bounded in λ then the inductive assumption applies, and hence we can
consider only sets that are unbounded in λ.

If λ is not a cardinal, let |λ| be its cardinality. So |λ| < λ < λ+ in U as well
since V and U have the same cardinals. Since λ and |λ| are equinumerous
in U , the inductive assumption for |λ| implies that any subset of λ can be
covered by a set in U of the same cardinality.

So we assume that λ is a cardinal. If it is a regular cardinal, then any
unbounded X ⊆ λ is covered by λ itself. Hence we are left with the case that
λ is a singular cardinal, in V and hence in U since both universes have the
same regular/singular predicate. Again, if X ⊆ λ has cardinality λ then λ
itself is a covering as required, and hence we may assume that |X| < λ.

Assume first that cf(λ) = ω. Then cfU (λ) = ω as well. Suppose that an
unbounded set X ⊆ λ of cardinality < λ is given. Take in U an increasing
cofinal in λ sequence 〈λi | i ∈ ω〉. Since 2<λ = λ is assumed in U , there exists
in U an enumeration of length λ of all bounded subsets of λ of cardinality
≤ |X|. Now consider the sequence X ∩ λi, i ∈ ω (where X is the set to be
covered) and cover first each X ∩ λi by some Yi ∈ U with |Yi| = |X ∩ λi|.
Then define αi ∈ λ to be the ordinal that encodes Yi in U , and form the
countable set A = {αi | i ∈ ω} of ordinals that encode X. This countable
set A can be covered by some countable set A′ in U , and we can define in U
a cover

Y =
⋃
{E ⊆ λi | E is encoded by some ordinal in A′ and |E| ≤ |X|}.

Clearly X ⊆ Y and |Y | = |X|.
Finally suppose that λ is a singular cardinal with uncountable cofinality,

and it is here that the theory developed so far is employed. Since V and U
have the same regular cardinals, cfU (λ) = cf(λ).
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We work for a while in U and apply the Representation Theorem 2.23 to λ.
In fact, we must analyze the proof and use the construction rather than the
theorem. Recall that we took an arbitrary closed unbounded set C0 ⊆ λ
consisting of singular cardinals such that |C0| = cf(λ) < minC0. Then we
constructed a Jbd increasing sequence f = 〈fξ | ξ < λ+〉 in

∏
C

(+)
0 such that

for all limit ordinals δ < λ+ a closed unbounded set Eδ ⊆ δ was chosen with
|Eδ| = cf(δ) < λ and then

fδ =Jbd sup{fi | i ∈ Eδ}

was defined. All of this is done in U , but now we pass to V and deduce
that (∗)κ holds for every regular κ < λ (by Lemma 2.19). Hence f has an
exact upper bound h such that {a ∈ C

(+)
0 | cf(h(a)) < κ} ∈ Jbd for every

κ < λ. Now the argument of Claim 2.24 applies, and there exists (in V )
a closed unbounded set C ⊆ C0 such that {fξ�C(+) | ξ < λ+} is cofinal in∏

C(+)/Jbd.
We continue now the proof that any set X ⊆ λ of cardinality λ0 < λ can

be covered in U by a set of the same cardinality. Since X is unbounded in λ,
λ0 ≥ cf(λ). For every α ∈ C0 cover X ∩ α by some Yα ∈ U (a subset of α)
of cardinality ≤ λ0. We assume in U an enumeration of length α+ of all
subsets of α of size ≤ λ0. There is an index < α+ that encodes Yα in U .
The function d taking α+ ∈ C

(+)
0 to that coding ordinal is defined in V and

is bounded by some fξ ∈ U . Namely d�C(+) <Jbd fξ�C(+). In U , choose for
every α ∈ C0 a function gα : fξ(α+) → α that is one-to-one. Then in V look
at the values gα(d(α+)) < α, and find a stationary set S ⊆ C on which these
values are bounded, say by κ. The set {gα(d(α)) | α ∈ S} ⊆ κ can be covered
by some set Y in U that has the same cardinality (namely cf(λ)). Now look
in U at the set

⋃
α∈C0

g−1
α Y . Every index in g−1

α Y represents a subset of α
of cardinality ≤ λ0, and hence this yields a cover of X of cardinality λ0. �

2.34 Exercise. There is actually no need to start with countable covering in
order to deduce covering for all higher cardinals. The following generalization
is left as an exercise.

2.35 Theorem. Assume as in Theorem 2.33 that U ⊆ V have the same
regular cardinals, and GCH holds in U . Let λ0 be any cardinal such that
every countable set of ordinals is covered by some set in U of cardinality
≤ λ0. Then any set of ordinals X is covered by some set in U of cardinality
|X|+ λ0.

3. Basic Properties of the pcf Function

For any set A of regular uncountable cardinals define

pcf(A) = {λ | for some ultrafilter U over A, λ = cf(
∏

A/U)}.

Some easily verifiable properties:
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1. If λ = tcf(
∏

A/F ) for some filter F over A, then λ ∈ pcf(A). (For any
ultrafilter U that extends F , λ = tcf(

∏
A/U).)

2. A ⊆ pcf(A). For every a ∈ A we can take the principal ultrafilter over
A concentrating on {a}.

3. A ⊆ B implies pcf(A) ⊆ pcf(B). Because every ultrafilter D over A can
be extended to D′ over B, and the ultraproducts

∏
A/D and

∏
B/D′

are the same.

4. For any sets A and B, pcf(A ∪ B) = pcf(A) ∪ pcf(B). Indeed, if
λ ∈ pcf(A ∪ B), and D is an ultrafilter over A ∪ B with ultraproduct
of cofinality λ, then either A ∈ D or B ∈ D (or both) and hence
λ ∈ pcf(A) or λ ∈ pcf(B). For the other direction use the previous
item.

We say that A is an interval of regular cardinals if for some cardinals
α < β, A is the set of all regular cardinals κ such that α ≤ κ < β. This
term is slightly misleading because one may misinterpret it as saying that all
cardinals between α and β are regular.

3.1 Theorem (The “No Holes” Argument). Assume that A is an interval
of regular cardinals satisfying |A| < minA, and λ is a regular cardinal with
supA < λ. Let I be a proper ideal over A such that

∏
A/I is λ-directed.

Then λ ∈ pcf(A).

Proof. We may assume that every proper initial segment of A is in I (or else
substitute for A its first initial segment that is not in I). It now follows that
A is infinite and unbounded (without a maximum).

Theorem 2.21 gives an <I -increasing sequence f = 〈fξ | ξ ∈ λ〉 in
∏

A/I
that satisfies (∗)κ for every regular cardinal κ in A (and thus for smaller
cardinals of course). In particular (∗)|A|+ holds, and f has an exact upper
bound h ∈ OnA such that

{a ∈ A | cf(h(a)) < κ} ∈ I (14.14)

for every κ ∈ A (this by Theorem 2.15). Since the identity function id : A→
A taking a to a is clearly an upper bound of f , h(a) ≤ a for I-almost all
a ∈ A. Yet (14.14) implies that

{a ∈ A | cf(h(a)) < minA} ∈ I,

and hence we have min(A) ≤ cf(h(a)) ≤ a for I-almost all a ∈ A. Changing
h on a null set, we may assume for simplicity that this holds for every a ∈ A,
namely that

cf(h(a)) ∈ A for all a ∈ A

(as A is an interval of regular cardinals). Since the sequence f has length λ,∏
h/I has true cofinality λ. Consequently

∏
a∈A cf(h(a))/I has true cofi-

nality λ as well. Since |A| < minA, Lemma 2.3 gives a proper ideal J on
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B = {cf(h(a)) | a ∈ A} ⊆ A, such that
∏

B/J has true cofinality λ as
well. So λ ∈ pcf(A). We note in addition that J is the Rudin-Keisler projec-
tion obtained via cf ◦ h, and hence (14.14) implies for every κ < supA that
B ∩ κ ∈ J . �

Upon examination of the proof, the reader will notice that the following
slightly stronger formulation of the theorem can be obtained. In this formu-
lation the requirement that A is an interval is relaxed.

3.2 Theorem. Assume that A is a set of regular cardinals such that |A| <
minA, and λ is a regular cardinal such that supA < λ. Suppose that I is a
proper ideal over A containing all proper initial segments of A and such that∏

A/I is λ-directed. Then λ ∈ pcf(A′) for some set A′ of regular cardinals
such that

1. A′ ⊆ [minA, supA), and A′ is cofinal in supA.

2. |A′| ≤ |A|.

In fact, λ is the true cofinality of
∏

A′/J for an ideal J over A′ that contains
all bounded subsets of A′.

Proof. Follow the previous proof and let A′ be the set {cf(h(a)) | a ∈ A}. �

3.3 Notation. The property |A| < minA assumed for the set of regular
cardinals appearing in the theorem is so pervasive in the pcf theory that it
ought to be given a name. Following [6] we say that a set of regular cardinals
A is progressive if |A| < minA.

3.1. The Ideal J<λ

Let A be a set of regular cardinals. For any cardinal λ define

J<λ[A] = {X ⊆ A | pcf(X) ⊆ λ}.

In plain words, X ∈ J<λ[A] iff for every ultrafilter D over A such that X ∈ D,
cf(

∏
A/D) < λ. That is, X “forces” the cofinalities of its ultraproducts to

be below λ.
Clearly J<λ[A] is an ideal over A, but it is not necessarily a proper ideal

since A ∈ J<λ[A] is possible. However, if λ ∈ pcf(A), then J<λ[A] is proper
(A �∈ J<λ[A], or else pcf(A) ⊆ λ shows that λ �∈ pcf(A)). When the identity
of A is obvious from the context, we write J<λ instead of J<λ[A]. Note that
if A ⊆ B then J<λ[A] = J<λ[B] ∩ P(A).

Let J ∗
<λ[A] be the dual filter over A. Then

J ∗
<λ[A] =

⋂{
D | D is an ultrafilter and cf(

∏
A/D) ≥ λ

}
.

3.4 Theorem (λ-directedness). Suppose that A is a progressive set of regular
cardinals. Then for every cardinal λ,

∏
A/J<λ[A] is λ-directed: any set of

fewer than λ functions is bounded in
∏

A/J<λ[A].
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Proof. The theorem holds trivially if A ∈ J<λ[A], since |
∏

A/J<λ| = 1 in this
case. So we assume that J<λ is a proper ideal over A. Let κ0 = minA be the
first cardinal of A, and κ1, κ2 be the second, third etc. cardinals of A. The case
λ ≤ κn for n finite is quite obvious: if λ = κn then J<λ = P({κ0, . . . , κn−1})
and for every family F ⊆

∏
A of cardinality < λ, supF ∈

∏
A, because

(supF )(a) =
⋃
{f(a) | f ∈ F} < a, since |F | < λ ≤ a for every a �∈

{κ0, . . . , κn−1}). So we can certainly assume that λ > κn for all n ∈ ω, and
hence that {κn} ∈ J<λ.

Since any null subset of A can be removed without changing the structure
of

∏
A/J<λ, we may assume that |A|+, |A|++, |A|+3 �∈ A. That is we can

assume that
|A|+3 < minA < λ.

We shall prove by induction on λ0 < λ that
∏

A/J<λ is λ+
0 -directed: for

every F = {fi | i ∈ λ0} ⊆
∏

A a family of functions of cardinality λ0, F has
an upper bound in

∏
A/J<λ. The case λ0 < minA is obvious as we saw.

So let F = {fi | i ∈ λ0} ⊆
∏

A be a subset of
∏

A where λ0 < λ and
assume that

∏
A/J<λ is λ0-directed. Our aim is to bound F in

∏
A/J<λ.

In case λ0 is singular, we take 〈αi | i < cf(λ0)〉 increasing and cofinal in
λ0, and obtain gi ∈

∏
A for every i < cf(λ0) that bounds {fξ | ξ < αi}. Then

we apply the inductive assumption again to the sequence {gi | i < cf(λ0)},
and obtain a bound to F .

Thus λ0 is assumed to be a regular cardinal above |A|+3. We shall replace
F by a <J<λ

-increasing sequence that satisfies (∗)κ for κ = |A|+. That
is, using Theorem 2.21 we define a <J<λ

-increasing sequence 〈f ′
ξ | ξ < λ0〉

satisfying (∗)κ and such that fi ≤ f ′
i .

Hence we can assume that the sequence f = 〈fi | i < λ0〉 that we want
to dominate satisfies (∗)|A|+ and thus has an exact upper bound g ∈ OnA in
<J<λ[A] (by Theorem 2.15).

Since the identity function taking a ∈ A to a is an upper bound of our
sequence f , we may assume that g(a) ≤ a for all a ∈ A (by possibly changing
g on a null set). We intend to prove that B = {a ∈ A | g(a) = a} ∈ J<λ[A],
and thus that g =J<λ

g′ for some g′ ∈
∏

A which will show that g bounds f
in

∏
A/J<λ[A].

Assume toward a contradiction that B �∈ J<λ[A]. Then (by definition of
J<λ) there is an ultrafilter D over A such that B ∈ D and cf(

∏
A/D) ≥ λ.

Clearly D∩J<λ = ∅, or else cf(
∏

A/D) < λ. The sequence f of length λ0 < λ
is necessarily bounded in

∏
A/D and we let h ∈

∏
A/D be such a bound. So

h(a) < g(a) for every a ∈ B (since g(a) = a for a ∈ B). Hence (by definition
of an exact upper bound) there is some fi in f such that h�B <J<λ[A] fi�B.
But this would imply h <D fi, which contradicts the definition of h as an
upper bound. �

3.5 Corollary. Suppose that A is a progressive set of regular cardinals. Then
for every ultrafilter D over A

cf
(∏

A/D
)
< λ iff J<λ[A] ∩D �= ∅.
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Hence cf(
∏

A/D) = λ iff J<λ+ ∩ D �= ∅ and J<λ ∩ D = ∅. Namely,
cf(

∏
A/D) = λ iff λ+ is the first cardinal μ such that J<μ ∩D �= ∅.

Proof. If J<λ[A]∩D �= ∅ and X ∈ J<λ[A]∩D, then by definition of X ∈ J<λ

cf
(∏

A/D
)
< λ.

On the other hand, if J<λ ∩ D = ∅, then the above theorem stating that∏
A/J<λ is λ-directed gives that

∏
A/D is λ-directed as well. Thus

cf(
∏

A/D) <λ is impossible in this case. The additional conclusion of the
corollary is easily derived. �

This corollary allows us to investigate the relationship between J<λ[A]
and J<λ+ [A]. By definition X ∈ J<λ+ [A] iff X ⊆ A and for every ultrafilter
D over A containing X, cf(

∏
A/D) ≤ λ. For this reason, J<λ+ [A] is also

denoted J≤λ[A].
If λ �∈ pcf(A), for example when λ is singular, then J<λ = J≤λ. However, if

λ ∈ pcf(A) then J<λ⊂J≤λ (where ⊂ is the strict inclusion relation). Indeed,
if D is an ultrafilter over A such that cf(

∏
A/D) = λ, then by Corollary 3.5

applied to λ+, J≤λ ∩ D �= ∅, and certainly J<λ ∩ D = ∅. This argument
shows that there is a one-to-one mapping from pcf(A) into P(A). Namely
choosing Xλ ∈ J≤λ \ J<λ for every λ ∈ pcf(A). Thus we have the following
theorem which is not evident from the definition of pcf.

3.6 Theorem. If A is a progressive set of regular cardinals, then

| pcf(A)| ≤ |P(A)|.

Another consequence of Theorem 3.4 is that max pcf(A) exists.

3.7 Corollary (max pcf). If A is a progressive set of regular cardinals, then
the set pcf(A) contains a maximal cardinal.

Proof. Observe that if λ1 < λ2 are cardinals, then J<λ1 [A] ⊆ J<λ2 [A]. Define

I =
⋃
{J<λ[A] | λ ∈ pcf(A)}.

For every λ ∈ pcf(A) J<λ[A] is a proper ideal on A, and hence I (being the
union of a chain of proper ideals) is also a proper ideal.

Since I is a proper ideal it can be extended to a maximal proper ideal,
and we let E be any ultrafilter over A and disjoint to I. Let μ = cf(

∏
A/E).

Since E is disjoint to I, it is disjoint to every J<λ[A] for λ ∈ pcf(A), and
hence cf(

∏
A/E) ≥ λ by the previous corollary. That is μ = cf(

∏
A/E) =

max pcf(A). As an important consequence we note that μ = sup pcf(A) =
max pcf(A) is a regular cardinal (since it is in pcf(A)). �

3.8 Exercise. If λ is a limit cardinal then

J<λ[A] =
⋃

θ<λJ<θ[A].
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Another way of writing this statement is that for every cardinal λ (not nec-
essarily limit)

J<λ[A] =
⋃

θ<λJ<θ+ [A] =
⋃

θ<λJ≤θ[A].

The no holes argument has the following consequence.

3.9 Theorem. Suppose that A is a progressive interval of regular cardinals.
Then pcf(A) is again an interval of regular cardinals.

Proof. We may assume that A is infinite, as the finite case is clear. We may
also assume that A has no last cardinal (and deduce the general theorem in
a short argument). Let λ0 = max pcf(A). We must show that every regular
cardinal in the interval [minA, λ0] is in pcf(A). Say μ = supA. Since μ �∈ A
(A has no maximum), μ is a singular cardinal (because A is progressive).
Since A ⊆ pcf(A) and A is an interval of regular cardinals, the substantial
part of the proof is in showing that any regular cardinal in (μ, λ0] is in pcf(A).
But if λ is a regular cardinal and μ < λ ≤ λ0, then J<λ is a proper ideal
(since λ ≤ max pcf(A)). By Theorem 3.4,

∏
A/J<λ is λ-directed. Hence

Theorem 3.1 applies, and λ ∈ pcf(A). �

We can get some information even when A is not progressive.

3.10 Definition. Suppose that A is a set of regular cardinals and κ < minA
is a cardinal. We define

pcfκ(A) =
⋃
{pcf(X) | X ⊆ A and |X| = κ}.

That is, pcfκ(A) is the collection of all cofinalities of ultraproducts of A over
ultrafilters that concentrate on subsets of A of power κ (or less).

Similarly to the previous theorem stating that pcf(A) of a progressive
interval A is again an interval of regular cardinals, we have the following.

3.11 Theorem. If A is an interval of regular cardinals, and κ < minA, then
pcfκ(A) is an interval of regular cardinals.

Proof. Define λ0 = sup pcfκ(A), and let λ be a regular cardinal such that
minA < λ < λ0. Then for some X ⊆ A such that |X| = κ, λ ≤ max pcf(X).
Hence J<λ[X] is proper, and we may assume that every initial segment of X
is in J<λ. As X is progressive,

∏
X/J<λ is λ-directed, Theorem 3.2 can be

applied, and it yields that λ ∈ pcf(X ′) for some X ′ ⊆ A of cardinality ≤ |X|.
Thus λ ∈ pcfκ(A). �

Yet another consequence of the λ-directedness of
∏

A/J<λ is the following

3.12 Theorem. Suppose that A is a progressive set of regular cardinals and
B ⊆ pcf(A) is also progressive. Then

pcf(B) ⊆ pcf(A).

Hence if pcf(A) is progressive, then pcf(pcf(A)) = pcf(A).
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Proof. Suppose that μ ∈ pcf(B), and let E be an ultrafilter over B such that

μ = cf
(∏

b∈Bb/E
)
. (14.15)

For every b ∈ B fix an ultrafilter Db over A such that

b = cf
(∏

A/Db

)
.

Define an ultrafilter D over A by

X ∈ D iff {b ∈ B | X ∈ Db} ∈ E. (14.16)

We shall prove that μ = cf(
∏

A/D), and hence that μ ∈ pcf(A).
Consider (14.15). If, for every b ∈ B, (b′, <b′ ) is an ordering that has true

cofinality b, then μ = cf(
∏

b∈B b′/E) as well. Hence

μ = cf
(∏

b∈B

(∏
A/Db

)
/E

)
. (14.17)

It remains to implement this iterated ultraproduct as an ultraproduct of A
over D. For this aim consider the Cartesian product B×A and the ultrafilter
P defined on B ×A by

H ∈ P iff {b ∈ B | {a ∈ A | 〈b, a〉 ∈ H} ∈ Db} ∈ E.

For any pair 〈b, a〉 let r(〈b, a〉) = a be its right projection. The reader
should prove the following isomorphism

3.13 Claim.
∏

〈b,a〉∈B×A r(〈b, a〉)/P ∼=
∏

b∈B(
∏

A/Db)/E.

Thus μ (an arbitrary cardinal in pcf(B)) is the cofinality of the ultra-
product

∏
〈b,a〉∈B×A r(〈b, a〉)/P . But the projection map r : B × A → A,

shows that the ultrafilter D defined in (14.16) is the Rudin-Keisler projec-
tion of P , and we are almost in the situation of Lemma 2.3, which concludes
that μ = cf(

∏
A/D). However Lemma 2.3 cannot be used verbatim because

|B × A| < minA is not assumed. All we know is that |B| < minB. Recall
(Lemma 2.3) that we had a map from

∏
A into

∏
〈b,a〉∈B×A r(〈b, a〉) carrying

h ∈
∏

A to h̄ ∈
∏

〈b,a〉∈B×A r(〈b, a〉) defined by

h̄(〈b, a〉) = h(a).

We have proved that this map induces an isomorphism denoted L of
∏

A/D
into

∏
〈b,a〉∈B×A r(〈b, a〉), but the problem is to prove that the image of L is

cofinal there. Let λ = minB. We have assumed that |B| < λ, and we shall
use the fact that the reduced product modulo J<λ[A] is λ-directed as follows.
Given any g ∈

∏
〈b,a〉∈B×A r(〈b, a〉) define for every b ∈ B the map gb ∈

∏
A

by
gb(a) = g(b, a).
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Then {gb | b ∈ B} is bounded in
∏

A/J<λ[A] by some function h ∈
∏

A, and
we thus have that gb <J<λ[A] h for every b ∈ B. Hence

gb <Db
h

since J<λ ∩ Db = ∅ (because cf(
∏

A/Db) = b and λ ≤ b). So g <P h̄ is
concluded. �

4. Generators for J<λ

A very useful property of the J<λ ideals is that for every cardinal λ ∈ pcf(A)
there is a set Bλ ⊆ A such that

J<λ+ [A] = J<λ[A] + Bλ

which means that the ideal J<λ+ [A] is generated by the sets in J<λ[A] ∪ {Bλ}.
That is, for every X ⊆ A, X ∈ J<λ+ iff X \ Bλ ∈ J<λ. So Bλ is a maximal
set in J≤λ[A] in the sense that if Bλ ⊆ C ∈ J≤λ then C \ Bλ ∈ J<λ. The
property that J≤λ[A] is generated from J<λ[A] by the addition of a single set
is called normality.

Normality of λ ∈ pcf(A) is obtained by means of a universal sequence
for λ, and these sequences are studied first.

4.1 Definition. Suppose that λ ∈ pcf(A). A sequence f = 〈fξ | ξ < λ〉
of functions in

∏
A, increasing in <J<λ

, is a universal sequence for λ if and
only if for every ultrafilter D over A such that λ = cf(

∏
A/D), f is cofinal

in
∏

A/D.

4.2 Theorem (Universally Cofinal Sequences). Suppose that A is a progres-
sive set of regular cardinals. Then every λ ∈ pcf(A) has a universal sequence.

Proof. The proof is obvious in the case λ = minA. (The functions fξ defined
by fξ(a) = ξ will do.) Therefore we shall assume that |A|+ < minA < λ.

Suppose that there is no universal sequence for λ. This means that for
every <J<λ

-increasing sequence f = 〈fξ | ξ < λ〉 there is an ultrafilter D over
A such that cf(

∏
A/D) = λ but f is bounded in

∏
A/D.

The proof is typical in that it makes |A|+ steps and obtains a contradiction
from the continuous failure at every step.

So for each α < |A|+ we shall define a <J<λ
-increasing sequence fα =

〈fα
ξ | ξ < λ〉 in

∏
A, and assume that no fα is universal. The definition is

by recursion on α < |A|+ and the fact that
∏

A/J<λ is λ-directed is used in
this construction.

If we visualize the functions fα
ξ as lying on a matrix 〈ξ, α〉 ∈ λ × |A|+,

then in each column α the functions fα
ξ are <J<λ

increasing with ξ, and in
each row ξ the functions fα

ξ are ≤ increasing with α.
To begin with f0 = 〈f0

ξ | ξ < λ〉 is an arbitrary <J<λ
-increasing sequence

in
∏

A/J<λ of length λ.
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At limit stages δ < |A|+ we define f δ = 〈fδ
ξ | ξ < λ〉 by induction on ξ < λ

so that for every ξ < λ

1. fδ
i <J<λ

f δ
ξ for i < ξ.

2. sup{fα
ξ | α < δ} ≤ fδ

ξ .

Suppose now that fα is defined. Since it is not universal, there exists an
ultrafilter Dα over A such that

1. cf(
∏

A/Dα) = λ, and

2. the sequence fα is bounded in <Dα .

So we can choose an fα+1
0 that bounds the sequence fα in <Dα . The sequence

fα+1
i for 0 < i < λ is defined recursively by requiring that

1. fα+1 is <J<λ
-increasing and cofinal in

∏
A/Dα, and

2. fα+1
i ≥ fα

i (everywhere) for every i < λ.

To sum up, we have constructed <J<λ
-increasing sequences fα, each of

length λ, and ultrafilters Dα over A, for α < |A|+ so that:

1. for every i < λ, 〈fα
i | α < |A|+〉 is increasing in ≤ (i.e. for α1 < α2 <

|A|+, fα1
i (a) ≤ fα2

i (a) for every a).

2. fα = 〈fα
ξ | ξ < λ〉 is bounded in

∏
A/Dα by fα+1

0 .

3. fα+1 is cofinal in
∏

A/Dα.

Now let h = sup{fα
0 | α < |A|+}. Then h ∈

∏
A, because |A|+ < minA.

Find for every α < |A|+ an index iα < λ such that h <Dα fα+1
iα

. This is
possible since fα+1 is cofinal in

∏
A/Dα. Now pick an ordinal i < λ such

that i > iα for every α < |A|+. This is possible since λ > |A|+ is regular. So
h <Dα fα+1

i for every α < |A|+.
Define

Aα = ≤(h, fα
i ).

The sets Aα ⊆ A are increasing with α, that is Aα ⊆ Aβ for α < β < |A|+
(since fα

i ≤ fβ
i ).

The contradiction is obtained when we show that Aα ⊂ Aα+1 (strict inclu-
sion) for every α < |A|+ (and contrast this with Aα ⊆ A). For this, observe
the following two statements.

1. Aα �∈ Dα, because fα
i <Dα fα+1

0 ≤ h.

2. Aα+1 ∈ Dα, because h <Dα fα+1
i .

�
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If λ ∈ pcf(A) and D is an ultrafilter over A such that cf(
∏

A/D) = λ,
then A ∩ (λ + 1) ∈ D because otherwise {a ∈ A | a > λ} ∈ D and then
cf(

∏
A/D) > λ. Thus, if 〈fξ | ξ ∈ λ〉 is a universal sequence for λ, we may

assume that fξ(a) = ξ for all a ∈ A \ λ.

4.3 Exercise. If λ = max pcf(A), then any universal sequence for λ is cofinal
in

∏
A/J<λ.

Universal sequences can be used to prove the following

4.4 Theorem. For every progressive set A of regular cardinals,

cf
(∏

A,<
)

= max pcf(A).

Hence cf(
∏

A,<) is a regular cardinal.

Proof. The partial ordering < in this theorem refers to the everywhere dom-
inance relation on

∏
A. The required equality is obtained by first proving ≥

and then ≤.
Suppose that λ = max pcf(A), and D is an ultrafilter over A such that

λ = cf(
∏

A/D). Then <D extends < on
∏

A. That is, for f, g ∈
∏

A, f < g
implies f <D g. This shows that any cofinal set in (

∏
A,<) is also cofinal in

(
∏

A,<D), and hence that cf(
∏

A,<) ≥ cf(
∏

A,<D) = λ.
Now we must exhibit a cofinal subset of (

∏
A,<) of cardinality λ in order

to conclude the proof.
Fix for every μ ∈ pcf(A) a universal sequence fμ = 〈fμ

i | i < μ〉 for μ. Let
F be the set of all functions of the form

sup{fμ1
i1

, fμ2
i2

, . . . , fμn

in
}

where μ1, μ2, . . . , μn is a finite sequence of cardinals in pcf(A) (with possi-
ble repetitions) and ik < μk are arbitrary indices. (Recall the definition of
sup{g1, . . . , gn}: at every a ∈ A it returns max{g1(a), . . . , gn(a)}). Clearly
|F | = λ.

4.5 Claim. F is cofinal in (
∏

A,<).

Proof of Claim. Let g ∈
∏

A be any function there. Consider the following
collection of subsets of A:

I = {>(f, g) | f ∈ F}.

(Recall that >(f, g) = {a ∈ A | f(a) > g(a)}.) This collection is closed under
unions, that is

>(f1, g) ∪>(f2, g) = >(sup{f1, f2}, g).

If A ∈ I, namely if >(f, g) = A for some f ∈ F , then evidently g < f as
required. But otherwise we obtain a contradiction by extending I to a proper
maximal ideal J , and considering μ = cf(

∏
A/J). Then fμ, the universal

sequence for μ, is cofinal in
∏

A/J , and at the same time it is ≤J bounded
by g since f ≤I g for all f ∈ F . Yet this is obviously impossible, and thus
the theorem is proved. �
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If f ′ = 〈f ′
ξ | ξ < λ〉 is universal sequence for λ, and if f = 〈fξ | ξ < λ〉 is

another sequence in
∏

A, <J<λ
-increasing and dominating f ′ (for all ξ′ < λ

there is a ξ < λ such that f ′
ξ′ ≤J<λ

fξ) then clearly f is also universal for λ.
Hence we can use Theorem 2.21 and deduce the following

4.6 Lemma. Suppose that A is a progressive set of regular cardinals, and
λ ∈ pcf(A). Let μ be the least ordinal such that A ∩ μ �∈ J<λ[A]. Then there
is a universal sequence for λ that satisfies (∗)κ with respect to J<λ[A] for
every regular cardinal κ such that κ < μ, and in particular for κ = |A|+.

Proof. Observe first that μ ≤ λ + 1. (Let D be an ultrafilter over A such
that λ = cf(

∏
A/D). Then A ∩ (λ + 1) ∈ D, or else {a ∈ A | a > λ} ∈ D

and then cf(
∏

A/D) > λ. Thus λ ∈ pcf(A ∩ (λ + 1)).) Observe also that
μ = λ is impossible, since λ is regular and A ∩ λ is necessarily bounded in
λ as |A| < minA ≤ λ. The case μ = λ + 1 is rather trivial: λ ∈ A and
J<λ[A] = P(A ∩ λ). In this case the functions defined by fξ(a) = ξ for all
a ∈ A \ λ are as required (and (∗)λ holds). So we assume that μ < λ and
A ∩ μ is unbounded in μ.

Let 〈f ′

ξ | ξ < λ〉 be any universal sequence for λ. Theorem 2.21 can be
applied to this sequence and to I = J<λ. This gives a sequence fξ ∈

∏
A

that dominates f
′

ξ and that satisfies (∗)κ for every regular cardinal κ such
that κ++ < λ and {a ∈ A | a ≤ κ++} ∈ I. Thus (∗)κ holds for every regular
κ < μ. �

We intend to prove next the existence of a generating set for J<λ+ . For
this we need first the following characterization of generators for J<λ+ .

4.7 Lemma. Suppose that A is a progressive set of regular cardinals and
B ⊆ A. Then

J<λ+ [A] = J<λ[A] + B (14.18)

if and only if
B ∈ J<λ+ [A] and (14.19)

If D is any ultrafilter over A with cf(
∏

A/D) = λ

then B ∈ D. (14.20)

Proof. Assume first that (14.18) holds. Then (14.19) is obvious. We prove
(14.20). If D is any ultrafilter over A with cf(

∏
A/D) = λ, then D ∩

J<λ+ [A] �= ∅, and if X ∈ D ∩ J<λ+ [A] is any set in the intersection then
(14.18) implies that X \B ∈ J<λ[A]. Since D ∩ J<λ = ∅, B ∈ D follows.

Now assume that (14.19) and (14.20) hold, and we prove that J<λ+ [A] =
J<λ[A] + B.

Since B ∈ J<λ+ [A], J<λ+ [A] ⊇ J<λ[A] + B.
To prove J<λ+ [A] ⊆ J<λ[A] + B assume X ∈ J<λ+ [A] and prove that

X \B ∈ J<λ as follows. Let D be any ultrafilter over A such that X \B ∈ D.
Since X ∈ J<λ+ , cf(

∏
A/D) < λ+. But cf(

∏
A/D) = λ is impossible as

B �∈ D and we assume (14.20). Hence cf(
∏

A/D) < λ. �
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4.8 Theorem (Normality). If A is a progressive set of regular cardinals,
then every cardinal λ ∈ pcf(A) is normal: there exists a set Bλ ⊆ A such
that

J<λ+ [A] = J<λ[A] + Bλ.

Proof. By Lemma 4.6, there exists a universal sequence f = 〈fξ | ξ < λ〉 for
λ that satisfies (∗)|A|+ . Hence f has an exact upper bound h in OnA /J<λ.
Since the identity function is an upper bound of f , we can assume that
h(a) ≤ a for every a ∈ A. Now define

B = {a ∈ A | h(a) = a}.

We are going to prove that B satisfies the two properties (14.19) and (14.20)
which concludes the theorem and shows that B is a generator for J<λ+ . We
first prove that B ∈ J<λ+ [A]. If D is any ultrafilter over A containing B then

cf
(∏

A/D
)
≤ λ (14.21)

is deduced in two steps. If D ∩ J<λ �= ∅, then the strict inequality of (14.21)
holds by definition of J<λ. But if D ∩ J<λ = ∅, then h remains the exact
upper bound of the <D increasing sequence f in <D (just because D extends
the dual filter of J<λ). So cf(

∏
h/D) = λ. As h is =D equivalent to the

identity function over A,
∏

A/D has cofinality λ.
To prove (14.20), suppose that D is an ultrafilter over A and

cf(
∏

A/D) = λ. If B �∈ D then {a ∈ A | h(a) < a} ∈ D, and thus [h]D
(the =D-equivalence class of h) is in

∏
A/D. Yet D ∩ J<λ[A] = ∅ (or else

cf(
∏

A/D) < λ), and this implies that fξ <D h for every ξ < λ (because
fξ <J<λ

h). So f is not cofinal in
∏

A/D, in contradiction to f being a
universal sequence for λ. �

The generator set Bλ is not uniquely determined, but if B1 and B2 are two
generators (they both satisfy 14.18), then the symmetric difference B1 $B2

is in J<λ[A]. So generators are uniquely determined modulo J<λ, and we can
use a “generic” notation.

4.9 Notation. For a progressive set of regular cardinals A and for any
cardinal λ ∈ pcf(A), Bλ[A] denotes a subset B ⊆ A such that (14.19) and
(14.20) hold, or equivalently

J<λ+ [A] = J<λ[A] + B. (14.22)

We also use the expression “B is a Bλ[A] set” if (14.22) holds for B. We
often write Bλ instead of Bλ[A], when the identity of A is obvious.

The sequence 〈Bλ[A] | λ ∈ pcf(A)〉 is called a “generating sequence”
for A, because the ideal J<λ is generated by the collection {Bλ0 | λ0 < λ}
(see Corollary 4.12). It is convenient to write Bλ = ∅ when λ �∈ pcf(A).

The following conclusion will be needed later on.
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4.10 Lemma. Suppose that A is a progressive set of regular cardinals. If
A0 ⊆ A and λ ∈ pcf(A0), then Bλ[A0] =J<λ[A0] A0 ∩ Bλ[A]. (This justifies
our inclination to write Bλ instead of Bλ[A0].)

Proof. We prove (14.19) and (14.20) for A0 ∩ Bλ[A]. Clearly A0 ∩ Bλ[A] ∈
J≤λ[A0]. If D0 is any ultrafilter over A0 such that cf(

∏
A0/D0) = λ, then

A0 ∩ Bλ[A] ∈ D0 can be argued as followed. Assume A0 \ Bλ[A] ∈ D0, and
extend D0 to an ultrafilter over A, still denoted D0. Then cf(

∏
A/D0) = λ

and Bλ[A] �∈ D0 is in contradiction to (14.20). �

For a progressive set A with λ = max pcf(A) and B a Bλ[A] set, we have
by (14.20) that

A \B ∈ J<λ (14.23)

since A ∈ J<λ+ [A]. Hence we can take Bmax pcf(A) = A.
We will conclude that the ideal J<λ[A] is (finitely) generated by the sets

{Bμ[A] | μ < λ} using the following “compactness” theorem, which says that
any set X ∈ J<λ is covered by a finite collection of Bμ’s for μ < λ.

4.11 Theorem (Compactness). Suppose that A is a progressive set of regular
cardinals and 〈Bλ | λ ∈ pcf(A)〉 is a generating sequence for A. Then for
any X ⊆ A

X ⊆ Bλ1 ∪Bλ2 ∪ · · · ∪Bλn

for some finite set {λ1, . . . , λn} ⊆ pcf(X).

Proof. This can be proved by induction on λ = max pcf(X), since X \Bλ ∈
J<λ and so max pcf(X \Bλ) < λ. �

4.12 Corollary. If A is a progressive set of regular cardinals, then for every
cardinal λ and every set X ⊆ A, X ∈ J<λ[A] iff X is included in a finite
union of sets from {Bλ′ | λ′ < λ}.

Observe that λ �∈ pcf(A \Bλ[A]). For let D0 be any ultrafilter over A0 =
A\Bλ[A]. Extend D0 to an ultrafilter D over A. Since

∏
A0/D0 is isomorphic

to
∏

A/D, it suffices to prove that cf(
∏

A/D) �= λ. But since A0 is disjoint
to Bλ[A], Bλ[A] �∈ D. So (14.20) implies this, and we have obtained the
following result. A set B ∈ J<λ+ [A] is a Bλ set if and only if λ �∈ pcf(A \B).

If λ ∈ pcf(A) and f = 〈fξ | ξ < λ〉 is a universal sequence for λ, then
the definition of Bλ[A] = {a ∈ A | h(a) = a}, where h is an exact upper
bound of f , shows that 〈fξ�Bλ | ξ < λ〉 is cofinal in

∏
Bλ/J<λ. This result is

sufficiently interesting to be isolated as a theorem (and we give a somewhat
different proof).

4.13 Theorem. If A is a progressive set of regular cardinals and λ ∈ pcf(A),
then for some set B ⊆ A we have tcf(

∏
B/J<λ[B]) = λ. In fact, any uni-

versal sequence for λ is cofinal in
∏

Bλ/J<λ and thus shows that

tcf
(∏

Bλ/J<λ

)
= λ. (14.24)
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Proof. We know that there exists a universal sequence for λ and that there
exists a generating set Bλ. We will prove that any universal sequence f =
〈fξ | ξ < λ〉 for λ is cofinal in

∏
Bλ/J<λ. That is, if h ∈

∏
Bλ is any function

then
≤(fξ�Bλ, h) ∈ J<λ for some ξ < λ.

Otherwise the sets ≤(fξ�Bλ, h) are positive and decreasing with ξ < λ (mod
J<λ). Hence there is a filter over Bλ containing them all and extending
the dual filter of J<λ[Bλ]. Extending this filter to an ultrafilter D over A,
D∩J<λ[A] = ∅ and the ultraproduct

∏
A/D has cofinality λ (as Bλ ∈ D and

D∩J<λ = ∅). In this ultrapower h bounds all functions in f , in contradiction
to the assumption that f is universally cofinal. Thus the restriction to Bλ[A]
of any universal sequence for λ is cofinal in

∏
Bλ/J<λ. �

In particular, (14.24) shows (again) that λ = max pcf(Bλ) whenever
λ ∈ pcf(A). We have, more generally, the following characterization.

4.14 Lemma. The following are equivalent for every filter F over a progres-
sive set of regular cardinals A and for every cardinal λ.

1. tcf(
∏

A/F ) = λ.

2. Bλ ∈ F , and F contains the dual filter of J<λ[A].

3. cf(
∏

A/D) = λ for every ultrafilter D that extends F .

In particular we get for every ultrafilter D that

cf
(∏

A/D
)

= λ iff Bλ ∈ D and D ∩ J<λ = ∅. (14.25)

Equivalently,

cf
(∏

A/D
)

= λ iff λ is the least cardinal such that Bλ ∈ D. (14.26)

Proof. Fix a filter F and a cardinal λ. 1 =⇒ 3 is obvious. Assume 3 and
we prove 2. Since cf(

∏
A/D) = λ for every ultrafilter D that extends F ,

Bλ ∈ D for every such ultrafilter (by (14.20)). Hence Bλ ∈ F . It is clear
that F contains the dual filter of J<λ, or else an extension of F can be found
that intersects J<λ and thus has an ultraproduct with cofinality below λ.

Assume now 2, and then the fact already proved that tcf(
∏

Bλ/J<λ) = λ
shows that tcf(

∏
A/F ) = λ (as

∏
A/F and

∏
Bλ/F are isomorphic, since

Bλ ∈ F ).
In particular, if D is an ultrafilter over A, then D ∩ J<λ = ∅ iff the dual

filter of J<λ is contained in D. So the equivalence of 1 and 2 of the lemma
establishes (14.25). �

4.15 Exercise.

1. If D is an ultrafilter over a progressive set A, and λ is the least cardinal
such that Bλ ∈ D, then λ = cf(

∏
A/D).
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2. Suppose that A is a progressive set of regular cardinals and E = pcf(A)
is also progressive. Then

pcf(Bλ[A]) =J<λ[E] Bλ[pcf(A)].

(Use Theorem 3.12.)

4.16 Exercise. If A is a progressive set of regular cardinals, then for every
cardinal λ, λ = max pcf(A) iff λ = tcf(

∏
A/J<λ) iff λ = cf(

∏
A/J<λ).

In Theorem 2.23 we have proved for μ, a singular cardinal with uncount-
able cofinality, that μ+ = tcf(

∏
C(+)/Jbd) for some closed unbounded set of

cardinals C ⊆ μ. Since J<μ = J<μ+ ⊆ Jbd, an apparently stronger claim is
obtained by asserting tcf(

∏
C(+)/J<μ[C(+)]) = μ+.

4.17 Exercise (The Representation Theorem). If μ is a singular cardinal
with uncountable cofinality, then for some closed unbounded set of cardinals
C ⊆ μ, tcf(

∏
C(+)/J<μ[C(+)]) = μ+. Thus μ+ = max pcf(C(+)).

Hint. Let C0 ⊆ μ be a closed unbounded set of limit cardinals such that
μ+ = tcf(

∏
C

(+)
0 /Jbd). Then define C ⊆ C0 so that C(+) = Bμ+ [C(+)

0 ].
Prove that C0 \ C is bounded in μ. Then use Theorem 4.13.

4.18 Exercise. For any filter F over a progressive set A of regular cardinals,
define

pcfF (A) =
{
cf
(∏

A/D
)
| D an ultrafilter over A that extends F

}
.

1. Prove that max pcfF (A) exists.

Hint. Look at the minimal λ such that F ∩ J≤λ �= ∅.

2. Deduce that cf(
∏

A/F ) = max pcfF (A), so that the cofinality of this
partial ordering is a regular cardinal.

3. If B ⊆ pcfF (A) is progressive, then pcf(B) ⊆ pcfF (A).

4. Suppose that A is a progressive interval of regular cardinals, and let F
be the filter of co-bounded subsets of A (X ∈ F iff A \X is bounded
in A). Then pcfF (A) is an interval of regular cardinals.

5. The Cofinality of [μ]κ

Some of the most important applications of pcf theory will be described
in this section. For example, we will prove that ℵℵ0

ω < ℵ(2ℵ0 )+ . For this
result we investigate obedient universal sequences and their relationship with
characteristic functions of elementary substructures. Some of the theorems
about obedient sequences proved and used in this section will be applied
in the following section to “elevated” sequences. These sequences are not
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obedient, but they share enough properties with the obedient sequences to
enable uniform proofs. This explains our desire to deal here with the shared
properties (14.32) and (14.33) rather than with obedient sequences.

As usual, A is a progressive set of regular cardinals. Recall how Bλ[A]
was obtained. First a universal sequence 〈fξ | ξ < λ〉 for λ was defined
which satisfied (∗)|A|+ , then an exact upper bound h was constructed, and
finally the set Bλ = {a ∈ A | h(a) = a} was shown to generate J<λ+ [A] over
J<λ[A]. Once this is done, we have greater flexibility in tuning-up Bλ by
using elementary substructures, and we therefore say first a few words about
these structures.

5.1. Elementary Substructures

Elementary substructures are extensively used in pcf theory and its applica-
tions, and in this section we study some basic properties of their characteristic
functions.

Let Ψ be a “sufficiently large” cardinal, and HΨ be the ∈-structure whose
universe is the collection HΨ of all sets hereditarily of cardinality less than
Ψ (which means having transitive closure of size < Ψ). The expression “suf-
ficiently large” depends on the context and means that Ψ is regular and is
sufficiently large to include in HΨ all sets that were discussed so far. We also
add to the structure HΨ a well-ordering <∗ of its universe. We shall seldom
mention <∗ explicitly, but it allows us to assume that the objects we talk
about are uniquely determined.

For the rest of this section κ denotes a regular cardinal such that |A| <
κ < minA.

5.1 Definition. An increasing and continuous chain of length λ of elemen-
tary substructures of HΨ is a sequence 〈Mi | i < λ〉 such that

1. Each Mi is an elementary substructure of HΨ,

2. i1 < i2 < λ implies that Mi1 ⊆Mi2 , and

3. for every limit ordinal δ < λ, Mδ =
⋃

i<δ Mi (this is continuity).

We say in this chapter that an elementary substructure M ≺ HΨ is “κ-
presentable” if and only if M =

⋃
i<κ Mi where 〈Mi | i < κ〉 is an increasing

and continuous chain of length κ such that

1. M has cardinality κ and κ + 1 ⊆M .

2. For every i < κ, Mi ∈Mi+1. (Thus Mi ∈Mj for i < j.)

We do not make any assumption on the cardinality of Mi for i < κ, which
may be κ or smaller than κ.
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In order to define a κ-presentable elementary substructure define, recur-
sively, the approaching structures Mα, and observe that each Mα (and even
the sequence 〈Mα | α ≤ β〉) is an element of HΨ and thus can be incorporated
in Mβ+1 ≺ HΨ.

We shall use the following observation. Let M̄α denote the ordinal closure
of Mα ∩ On. That is γ ∈ M̄α iff γ ∈ Mα ∩ On or γ is a limit of ordinals in
Mα. Since Mα ∈Mα+1 and Mα ⊆Mα+1, M̄α ∈Mα+1, and M̄α ⊆Mα+1.

For any structure N , we let ChN be the “characteristic function” of N .
That is, the function defined on any regular cardinal μ such that ‖N‖ < μ
by

ChN (μ) = sup(N ∩ μ).

Then ChN (μ) ∈ μ since μ is regular and N is of smaller cardinality.
A very useful fact that we are going to prove is that if M is κ-presentable,

then for cardinals κ ≤ λ < μ, M ∩ μ can be reconstructed from M ∩ λ and
the characteristic function of M restricted to the successor cardinals in the
interval (λ, μ]. We shall use the following form of this fact.

5.2 Theorem. Suppose that M and N are elementary substructures of HΨ.
Let κ < μ be any cardinals (κ is always regular uncountable).

1. If M ∩ κ ⊆ N ∩ κ, and, for every successor cardinal α+ ∈M ∩ μ + 1,

sup(M ∩ α+) = sup(M ∩N ∩ α+), (14.27)

then M ∩ μ ⊆ N ∩ μ.

2. Therefore, if M and N are both κ-presentable and for every successor
cardinal α+ ∈ μ + 1

sup(M ∩ α+) = sup(N ∩ α+), (14.28)

then M ∩ μ = N ∩ μ.

Proof. This is a bootstrapping argument. We prove by induction on δ, a car-
dinal in the interval [κ, μ], that M ∩ δ ⊆ N ∩ δ. For δ = κ this is an assump-
tion. If δ is a limit cardinal, then M ∩ δ ⊆ N ∩ δ is an immediate application
of the inductive assumption that M ∩ δ′ ⊆ N ∩ δ′ for every cardinal δ′ in the
interval [κ, δ). Assume now that M ∩ δ ⊆ N ∩ δ, and we shall argue for
M ∩ δ+ ⊆ N ∩ δ+. If δ+ �∈ M , then M contains no ordinals from the inter-
val [δ, δ+] and the claim is obvious. So assume that δ+ ∈ M . (And hence
δ+ ∈ N since [δ, δ+] ∩ N �= ∅.) Let γ = sup(M ∩ δ+) = sup(M ∩ N ∩ δ+).
Now if α ∈ M ∩ γ, then there exists some β ∈ M ∩N ∩ γ such that α < β.
Consider the structure (HΨ,∈, <∗) of which M and N are elementary sub-
structures, and pick an injection f : β → δ that is minimal with respect to
the well-ordering <∗ of HΨ. Then f ∈ M ∩ N because f is definable from
the parameter β. Since α ∈ M , f(α) ∈ M , and hence f(α) ∈ N . But then,
applying f −1 in N , we get α ∈ N . Thus M ∩ β ⊆ N ∩ β.
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For the second part of the theorem, let M =
⋃

ξ<κ Mξ and N =
⋃

ξ<κ Nξ

be presentations for M and N . Observe that M ∩ κ = N ∩ κ = κ. Let
α+ be any successor cardinal in the interval (κ, μ]. We assume that γ =
ChM (α+) = ChN (α+). We claim that there is a subset of M ∩N that
is closed and unbounded in γ. Indeed, the approaching substructures Mξ

provide a closed unbounded sequence 〈sup(Mξ ∩α+) | ξ ∈ κ〉 which is cofinal
in γ. Likewise, N contains a closed unbounded sequence of order-type κ
cofinal in γ. The intersection of these closed unbounded sets is as required.
Hence sup(M ∩ α+) = sup(N ∩ α+) = sup(M ∩N ∩ α+) holds and M ∩ μ =
N ∩ μ is obtained by the first part of the theorem. �

Recall that a sequence of functions in
∏

A is universal for λ if it is J<λ

increasing and cofinal in
∏

A/D whenever cf(
∏

A/D) = λ. Recall also (14.3)
that a sequence 〈pξ | ξ < λ〉 of members of a partial ordering (P,<P ) is
persistently cofinal iff every member of P is dominated by all members of the
sequence with a sufficiently large index.

5.3 Definition. We say that a sequence 〈fξ | ξ < λ〉 of functions in
∏

A is
persistently cofinal for λ if their restrictions to Bλ form a persistently cofinal
sequence in

∏
Bλ/J<λ. Namely if for every h ∈

∏
A there exists a ξ0 < λ

such that
h�Bλ <J<λ

fξ�Bλ

for all ξ0 ≤ ξ < λ (where Bλ = Bλ[A]).

For example, if 〈fξ | ξ < λ〉 is universal for λ then it is persistently
cofinal (see Theorem 4.13), and if the functions Fξ are such that fξ ≤J<λ

Fξ

for all ξ < λ, then 〈Fξ | ξ < λ〉 is also persistently cofinal, although it is
not necessarily J<λ increasing. Clearly, an arbitrary λ sequence in

∏
A is

universal for λ iff it is J<λ increasing and persistently cofinal.
A basic observation which is used later to define the transitive generators

is the following.

5.4 Lemma. Suppose that the progressive set A and the cardinal λ ∈ pcf(A)
belong to an elementary substructure N ≺ HΨ so that N =

⋃
α<κ Nα where

|A| < κ < minA is a regular cardinal, |N | = κ, κ+ 1 ⊆ N , and 〈Nα | α < κ〉
is an increasing chain of elementary substructures of HΨ. If a sequence of
functions f = 〈fξ | ξ < λ〉 ∈ N , with fξ ∈

∏
A, is persistently cofinal for λ,

then for every ξ ≥ sup(N ∩ λ)

≤(ChN , fξ) = {a ∈ A | ChN (a) ≤ fξ(a)} is a Bλ[A] set. (14.29)

Proof. We first make some preliminary observations. Since κ < minA, we
have that ChN �A ∈

∏
A. Since A, λ ∈ N =

⋃
α<κ Nα, we may as well assume

that A, λ, f ∈ N0 (or else re-enumerate the structures). Since |A| < κ and
κ ⊆ N , A ⊆ N and we can assume that A ⊆ N0. Since Ψ is sufficiently large,
all the pcf theory involved in defining Bλ[A] etc. can be done in HΨ and
hence in N0. We may assume again that a generating set B = Bλ[A] is in
N0. Suppose that ξ ≥ sup(N ∩ λ). To prove (14.29) we need two inclusions:
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1. ChN �B ≤J<λ
fξ�B, which shows that B ⊆J<λ

≤(ChN , fξ).

2. ≤(ChN , fξ) ∩ (A \B) ∈ J<λ, which shows that ≤(ChN , fξ) ⊆J<λ
B.

We prove 1. For every a ∈ A, if fξ(a) < ChN (a) then there exists an
index α = α(a) < κ such that fξ(a) < ChNα(a). Since |A| < κ there exists a
single index α < κ such that, for every a ∈ A, fξ(a) < ChN (a) implies that
fξ(a) < ChNα(a). Hence for every a ∈ A

fξ(a) < ChN (a) iff fξ(a) < ChNα(a). (14.30)

But the sequence f is persistently cofinal in
∏

B/J<λ, and hence h�B <J<λ

fξ�B for every h ∈ N ∩
∏

A, because ξ ≥ sup(N ∩ λ). In particular, for
h = ChNα ∈ N , we get

ChNα �B ≤J<λ
fξ�B (in fact <J<λ

).

That is, {b ∈ B | fξ(b) < ChNα(b)} ∈ J<λ. Hence, by (14.30), {b ∈ B |
fξ(b) < ChN (b)} ∈ J<λ. Thus

ChN �B ≤J<λ
fξ�B.

This proves 1.
Now we prove 2. That is

{a ∈ A \B | ChN (a) ≤ fξ(a)} ∈ J<λ. (14.31)

As λ �∈ pcf(A \ B), J<λ[A \ B] = J<λ+ [A \ B] and hence
∏

(A \ B)/J<λ is
λ+-directed, and f (with functions restricted to A \B) has an upper bound.
Since f ∈ N , we have this upper bound in N . Let h ∈ N ∩

∏
(A \ B) be an

upper bound in <J<λ
of the sequence f restricted to A \B. Then

fξ�(A \B) <J<λ
h < ChN �(A \B).

But this is exactly (14.31). �

5.2. Minimally Obedient Sequences

Suppose that δ is a limit ordinal and f = 〈fξ | ξ < δ〉 is a sequence of functions
fξ ∈

∏
A, where A is a set of regular cardinals and |A| < cf(δ) < minA holds.

For every closed unbounded set E ⊆ δ of order-type cf(δ) let

hE = sup{fξ | ξ ∈ E}.

That is, hE(a) = sup{fξ(a) | ξ ∈ E}. Since cf(δ) < minA, hE ∈
∏

A. We
say that hE is the “supremum along E of the sequence f”. Observe that if
E1 ⊆ E2 then hE1 ≤ hE2 . The following lemma says that among all functions
obtained as suprema along closed unbounded subsets of δ there is a minimal
one in the ≤ ordering.
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5.5 Lemma. Let δ and f be as above (so |A| < cf(δ) < minA and f is
a sequence of length δ of functions in

∏
A). There is a closed unbounded set

C ⊆ δ of order-type cf(δ) such that

hC(a) ≤ hE(a)

for every a ∈ A and E ⊆ δ closed and unbounded of order-type cf(δ).

Proof. Assume that there is no such closed unbounded set C ⊆ δ as required.
We construct a decreasing sequence 〈Eα | α < |A|+〉 of closed unbounded
subsets of δ of order-type cf(δ) such that for every α < |A|+, hEα �≤ hEα+1 .
(Since |A| < cf(δ), at limit stages of the construction we may take the inter-
section of the clubs so far constructed.) Then find a single a ∈ A such that
hEα(a) > hEα+1(a) for an unbounded set of indices α. Yet this is obviously
impossible. �

In applications of this lemma, an ideal J over A is assumed and the se-
quence 〈fξ | ξ < δ〉 is <J -increasing. In that case, the minimal function
fC = sup{fξ | ξ ∈ C} ≤-bounds each fξ, for ξ ∈ C, and hence ≤J -bounds all
fξ’s for ξ < δ. This function fC is called “minimal club-obedient bound of
〈fξ | ξ < δ〉”.

5.6 Definition (Minimally obedient universal sequence). Suppose that λ is
in pcf(A) and f = 〈fξ | ξ < λ〉 is a universal sequence for λ. Let κ be a
fixed regular cardinal such that |A| < κ < minA. We say that f is minimally
obedient (at cofinality κ) if for every δ < λ such that cf(δ) = κ, fδ is the
minimal club-obedient bound of 〈fξ | ξ < δ〉.

The universal sequence f is said to be minimally obedient if |A|+ < minA
and it is minimally obedient for every regular κ such that |A| < κ < minA.

Suppose that |A|+ < minA and λ ∈ pcf(A). In order to arrange a min-
imally obedient universal sequence for λ, start with an arbitrary universal
sequence 〈f0

ξ | ξ < λ〉 and define the functions fξ by induction on ξ < λ such
that:

1. f0 = f0
0 , and fξ+1 is such that

max{fξ, f
0
ξ } < fξ+1.

2. At limit stages δ < λ with cf(δ) = κ and such that |A| < κ < minA let
fδ be the minimal club-obedient bound of 〈fξ | ξ < δ〉.

3. At limit stages δ < λ with cf(δ) not of that form use the fact that∏
A/J<λ is λ-directed to define fδ as a <J<λ

bound of 〈fξ | ξ < δ〉.

Minimally obedient sequences will be used in conjunction with κ-presentable
elementary substructures.



5. The Cofinality of [μ]κ 1193

5.7 Lemma. Let A be a progressive set of regular cardinals, and κ be a reg-
ular cardinal such that |A| < κ < minA. Suppose that

1. λ ∈ pcf(A),

2. f = 〈fξ | ξ < λ〉 is a minimally obedient at cofinality κ, universal
sequence for λ, and

3. N ≺ HΨ (for Ψ sufficiently large) is an elementary, κ-presentable sub-
structure of HΨ such that λ, f,A ∈ N . (So A ⊆ N .)

Let N̄ denote the ordinal closure of N ∩On, that is, the set of ordinals that
are in N or that are limit of ordinals in N . Then for every γ ∈ (N̄ ∩ λ) \N
there is a closed unbounded set C ⊆ γ ∩N (of order-type κ) such that fγ =
sup{fξ | ξ ∈ C} and thus

fγ(a) ∈ N̄ ∩ a for every a ∈ A.

In particular, for γ = ChN (λ), γ ∈ N̄ \ N , and fγ = sup{fξ | ξ ∈ C} for
a closed unbounded set C ⊆ N ∩ γ such that

1. each fξ is in N , and

2. for every h ∈ N ∩
∏

A

h�Bλ[A] <J<λ
fξ�Bλ[A]

for some ξ ∈ C.

Proof. Since N is κ-presentable, N =
⋃

α<κ Nα is the union of an increasing
and continuous chain such that Nα ∈ Nα+1. It follows for every γ ∈ N̄ , that
either γ ∈ N or cf(γ) = κ. Indeed, if γ ∈ N̄ \ N , then γ is a limit point of
ordinals in N and yet γ is not a limit point of ordinals in any Nα (or else
γ ∈ N̄α ⊆ N). Hence sup(Nα ∩ γ) < γ and

E = {sup(Nα ∩ γ) | α < κ}

is closed unbounded in γ and of order-type κ. Thus cf(γ) = κ. Observe
that E ⊆ N , because Nα ∈ N implies that N̄α ⊆ N and in particular
sup(Nα ∩ γ) ∈ N .

Now take γ ∈ (N̄∩λ)\N and consider fγ(a) for a ∈ A. Since cf(γ) = κ, fγ

is the minimal club-obedient bound of 〈fξ | ξ < γ〉, and there is thus a closed
unbounded set C ⊆ γ such that fγ = fC . It follows from the minimality of
fC that fC = fC∩E and we may thus assume at the outset that C ⊆ N . So
fγ = fC = sup{fξ | ξ ∈ C} is the supremum of a set of functions that are all
in N . (As C ⊆ N implies that fξ ∈ N for ξ ∈ C.) This shows that fγ(a) ∈ N̄
for every a ∈ A.

In particular, if γ = ChN (λ), then γ < λ because κ < λ and N has
cardinality κ. So γ ∈ N̄ \N . Item 2 is a consequence of the fact that f is a
universal sequence (see Theorem 4.13) and that C is unbounded in N ∩λ. �
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The conclusions of Lemmas 5.4 and 5.7 will be given names (14.32) and
(14.33) so that we can easily refer to these properties in the future. Let A be
a progressive set of regular cardinals and suppose that κ is a regular cardinal
such that |A| < κ < minA. Suppose that λ ∈ pcf(A), and f = 〈fξ | ξ ∈ λ〉 is
a sequence of functions in

∏
A. We shall refer to the following two properties

of a κ-presentable N ≺ HΨ and a sequence f = 〈fξ | ξ < λ〉 such that f ∈ N .

If γ = ChN (λ), then

{a ∈ A | ChN (a) ≤ fγ(a)}

is a Bλ[A] set.

(14.32)

If γ = ChN (λ), then

1. fγ ≤ ChN .

2. For every h ∈ N ∩
∏

A there exists some d ∈
N ∩

∏
A such that

h�B <J<λ
d�B and d ≤ fγ ,

where B = Bλ[A].

(14.33)

We have seen that any persistently cofinal sequence for λ satisfies (14.32)
(this is Lemma 5.4), and that any minimally obedient universal sequence
satisfies (14.33) as well (by Lemma 5.7).

Suppose that f is a sequence of length λ and N ≺ HΨ is κ-presentable
and such that f ∈ N (so A, λ ∈ N). Suppose that both (14.32) and (14.33)
hold. If γ = ChN (λ), then fγ ≤ ChN by (14.33), and hence

{a ∈ A | ChN (a) = fγ(a)} (14.34)

is a Bλ[A] set by (14.32). We shall use this observation in the following.

5.8 Lemma. Suppose that A is a progressive set of regular cardinals and κ
is a regular cardinal such that |A| < κ < minA. Suppose that λ0 ∈ pcf(A)
and fλ0 = 〈fλ0

ξ | ξ < λ0〉 is a sequence of functions in
∏

A. Let N ≺ HΨ

be a κ-presentable elementary substructure (Ψ is a sufficiently large cardinal)
such that A, λ0, f

λ0 ∈ N . Suppose that N and fλ0 ∈ N satisfy properties
(14.32) and (14.33) for λ = λ0. Put γ0 = ChN (λ0) and define

bλ0 = {a ∈ A | ChN (a) = fλ0
γ0

(a)}.

Then the following hold.
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1. bλ0 is a Bλ0 [A] set, namely

J≤λ0 [A] = J<λ0 [A] + bλ0 .

2. There exists a set b′
λ0
⊆ bλ0 such that

(a) b′
λ0
∈ N .

(b) bλ0 \ b′
λ0
∈ J<λ0 [A] (hence b′

λ0
is also a Bλ0 set).

Proof. Note that since fλ0
γ0
≤ ChN , bλ0 = {a ∈ A | ChN (a) ≤ fλ0

γ0
(a)}. We

have already observed in the paragraph preceding the lemma that 1 holds.
We prove 2. As the definition of bλ0 involves N and fλ0

γ0
, we do not expect

that bλ0 ∈ N . However we shall find an inner approximation b′
λ0

of bλ0 that
lies in N . If a ∈ A and fλ0

γ0
(a) < ChN (a), then there exists some α < κ such

that fλ0
γ0

(a) < ChNα(a) (because N =
⋃

α<κ Nα). Since |A| < κ, there is
a sufficiently large α < κ such that

fλ0
γ0

(a) < ChN (a) iff fλ0
γ0

(a) < ChNα(a)

holds for every a ∈ A. Or equivalently (by negating both sides)

a ∈ bλ0 iff ChNα(a) ≤ fλ0
γ0

(a).

That is, we have replaced the parameter N with Nα in the definition of bλ0 ,
but γ0 is still a parameter not in N .

Since fλ0 satisfies (14.33), there exists (for h = ChNα) some function
d ∈ N such that

1. ChNα �Bλ0 <J<λ0
d�Bλ0 and

2. d ≤ fλ0
γ0

.

Define
b′
λ0

= {a ∈ A | ChNα(a) ≤ d(a)}.

Now all parameters are in N and clearly b′
λ0
∈ N . Property 1 above implies

that for almost all a ∈ Bλ0 , ChNα(a) < d(a) (i.e. except on a J<λ0 set).
Hence Bλ0 ⊆J<λ0

b′
λ0

. Property 2 implies that b′
λ0
⊆ bλ0 . �

Suppose that for every λ ∈ pcf(A) we attach a certain Bλ[A] set b∗
λ.

Then the Compactness Theorem 4.11 gives a finite set λ0, . . . , λn−1 of pcf(A)
cardinals such that A = b∗

λ0
∪ · · · ∪ b∗

λn−1
. Now let N ≺ HΨ be such that

A ∈ N and assume that the sets b∗
λ are chosen in N for each λ ∈ pcf(A)∩N .

Then the covering cardinals λ0, . . . , λn−1 can be found in N , even when the
map λ �→ b∗

λ is not in N . To prove that, we define a descending sequence of
cardinals λ0 > · · · > λi by induction on i, starting with λ0 = max pcf(A), so
that the following two conditions hold.
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1. λi ∈ N .

2. If Ak = A \ (b∗
0 ∪ · · · ∪ b∗

k−1) �= ∅, then λk = max pcf(Ak).

Since b∗
0, . . . , b

∗
k−1 are in N , Ak ∈ N as well, and hence λk ∈ N (whenever

Ak �= ∅ and λk is defined). It follows from Lemmas 4.14 and 4.10 that
λ0 > λ1 > · · · > λk. Hence, for some k, Ak = ∅, and then A = b∗

0∪· · ·∪ b∗
k−1.

Here is a main result saying that the number of characteristic functions
ChN �A is bounded by max pcf(A).

5.9 Corollary. Suppose that A is a progressive set of regular cardinals, κ
is a regular cardinal such that |A| < κ < minA, and N with A ∈ N is
a κ-presentable elementary substructure N ≺ HΨ and containing, for every
λ ∈ N ∩pcf(A), a sequence fλ = 〈fλ

ξ | ξ < λ〉 that satisfies properties (14.32)
and (14.33). Then there are cardinals λ0 > λ1 > · · · > λn in N ∩ pcf(A)
such that

ChN �A = sup{fλ0
γ0

, . . . , fλn
γn
}, (14.35)

where γi = ChN (λi).

Proof. We employ Lemma 5.8, which assigns Bλ[A] sets, b′
λ ∈ N , for every

λ ∈ pcf(A) ∩N , so that

b′
λ ⊆ {a ∈ A | ChN (a) = fλ

ChN (λ)(a)}. (14.36)

By the inductive covering procedure explained above, for some λ0, . . . , λn−1

in pcf(A) ∩N
A = b′

λ0
∪ · · · ∪ b′

λn−1
.

Since property (14.33) ensures that fλ
ChN (λ) ≤ ChN , (14.36) implies that

(14.35) holds. �

Application: The Cofinality of ([μ]κ,⊆)

For cardinals κ ≤ μ, let [μ]κ denote the collection of all subsets of μ of size κ.
Under the inclusion relation ⊆ this collection is a partial ordering, and we
denote its cofinality by cf([μ]κ,⊆). Likewise, [μ]<κ is the collection of all
subsets of μ of cardinality less than κ. For example, if μ is a regular cardinal
then the collection of all proper initial segments of μ is cofinal in [μ]<μ.

One reason for the importance of studying cf([μ]κ,⊆) is the relationship

|[μ]κ| = cf([μ]κ,⊆) · 2κ (14.37)

and its applications to cardinal arithmetic (which we shall see). The proof of
(14.37) is quite simple. Suppose that cf([μ]κ,⊆) = λ and let Y = {Yi ∈ [μ]κ |
i < λ} be cofinal. A one-to-one map from [μ]κ to Y × 2κ can be defined as
follows. For every E ∈ [μ]κ find some E ⊆ Yi. Since Yi has cardinality κ, E
is isomorphic to some subset S of κ, and then we map E to 〈Yi, S〉.

We record some relatively simple facts about cofinalities of [μ]κ.
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5.10 Lemma. For any cardinal μ:

1. If κ1 < κ2 then

cf([μ]κ1 ,⊆) ≤ cf([μ]κ2 ,⊆) · cf([κ2]κ1 ,⊆).

2. If μ1 < μ2 then cf([μ1]κ,⊆) ≤ cf([μ2]κ,⊆).

3. Suppose that κ ≤ μ and E ⊆ [μ]κ is cofinal. Then there exists a cofinal
set in ([μ+]κ,⊆) of cardinality |E| · μ+.

Proof. We prove the third item. For every μ ≤ γ < μ+ let fγ be a bijection
from γ to μ. Then the collection of all sets of the form f −1

γ X, where X ∈ E,
is cofinal and of cardinality |E| · μ+. �

A consequence (which can be proved by induction) is that for every n < ω,
cf([ℵn]ℵ0 ,⊆) = ℵn.

The first application of pcf theory to the subset cofinality question is the
following:

5.11 Theorem. Suppose that μ is a singular cardinal, and κ < μ is an
infinite cardinal such that the interval A of regular cardinals in (κ, μ) has
size ≤ κ. Then

cf([μ]κ,⊆) = max pcf(A).

Proof. Let μ and κ be as in the theorem. Define

A = {γ | γ is a regular cardinal and κ < γ < μ}.

We assume that |A| ≤ κ, so that A is a progressive interval of regular
cardinals. To prove the theorem, we first prove the easier inequality ≥.
Let {Xi | i ∈ I} ⊆ [μ]κ be cofinal and of cardinality cf([μ]κ,⊆). Define
hi = ChXi �A. That is, hi(a) = sup(Xi ∩ a) for a ∈ A. Then {hi | i ∈ I} is
cofinal in (

∏
A,<). (Since for every f ∈

∏
A the range of f is a subset of μ

of size ≤ |A| ≤ κ, and is hence covered by some Xi. So f ≤ hi.) But we know
that the cofinality of (

∏
A,<) is max pcf(A), and hence |I| ≥ max pcf(A).

Now we prove the ≤ inequality. We assume first that |A| < κ and prove
the ≤ inequality for this case. Then we can obtain the |A| = κ case by
applying the first case to κ+ (instead of κ) and using

cf([μ]κ,⊆) ≤ cf([μ]κ
+
,⊆) · κ+.

So assume that |A| < κ (and hence κ is uncountable). We plan to present
a cofinal subset of [μ]κ of cardinality max pcf(A). Fix for every ρ ∈ pcf(A)
a minimally obedient (at cofinality κ) universal sequence for ρ, and let f =
{fρ | ρ ∈ pcf(A)} be the resulting array of sequences. In fact, we let f be the
minimal such array in the well-ordering <∗ of HΨ, so that f ∈ M for every
M ≺ HΨ such that A ∈M . LetM be the collection of all substructures M ≺
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HΨ that are κ-presentable and such that A ∈M (so A ⊆M). We know that
(14.32) and (14.33) hold. Consider the collection F = {M ∩ μ | M ∈ M}.
This collection is clearly cofinal in [μ]κ, since for any set X ∈ [μ]κ a structure
M ∈ M can be defined so that X ⊆ M (or even X ∈ M). We shall prove
that |F | ≤ max pcf(A). We know (by Corollary 5.9) that for every M ∈ M,
ChM �A is the supremum of a finite number of functions taken from the array
{fρ | ρ ∈ pcf(A)}, which contains max pcf(A) functions. Hence it suffices
to prove that whenever M,N ∈ M are such that ChM �A = ChN �A, then
M ∩ μ = N ∩ μ. But this is exactly Theorem 5.2. �

The theorem just proved (Theorem 5.11) has important consequences for
cardinal arithmetic which we shall explore now. Look, for example, at μ =
ℵω, κ = ℵ0, and A = {ℵn | 1 < n < ω}. Then

cf([ℵω]ℵ0 ,⊆) = max pcf(A).

So ℵℵ0
ω = (max pcf(A)) + 2ℵ0 . If ℵω is a strong limit cardinal then [ℵω]ω

has cardinality 2ℵω , and this cardinal turns out to be regular since it is
max pcf(A). Similarly, for every n < ω, cf([ℵω,⊆]ℵn ,⊆) = max pcf(A).
Hence

cf([ℵω]ℵn ,⊆) = cf([ℵω]ℵm ,⊆)

for every n,m < ω.
Since A is an interval of regular cardinals, pcf(A) is also an interval of

regular cardinals (Theorem 3.9) containing all regular cardinals from ℵ2 to
max pcf(A). Hence if we write max pcf(A) = ℵα, then |α| = | pcf(A)| follows.
Yet | pcf(A)| ≤ 2ℵ0 (Theorem 3.6). Thus cf([ℵω]ℵ0 ,⊆) = ℵα for an α <
(2ℵ0)+. Thus we have proved the following theorem.

5.12 Theorem. cf([ℵω]ℵ0 ,⊆) < ℵ(2ℵ0 )+ .

An immediate conclusion is

5.13 Theorem. ℵℵ0
ω < ℵ(2ℵ0 )+ .

Proof. If 2ℵ0 > ℵω (equality is impossible by Zermelo-König theorem) then
ℵℵ0

ω = 2ℵ0 , and then 2ℵ0 ≤ ℵ2ℵ0 implies the theorem as a triviality. So we
assume that 2ℵ0 < ℵω.

Suppose that ℵα = cf([ℵω]ℵ0 ,⊆). We have proved in the preceding the-
orem that α < (2ℵ0)+. Let {Xi | i < ℵα} ⊆ [ℵω]ℵ0 be cofinal. So
[ℵω]ℵ0 ⊆

⋃
{P(Xi) | i < ℵα}. Hence |[ℵω]ℵ0 | ≤ 2ℵ0 · ℵα = ℵα < ℵ(2ℵ0 )+ . �

We want to generalize this theorem to arbitrary singular cardinals ℵδ such
that δ < ℵδ. A straightforward generalization gives the following which we
leave as an exercise: If δ is a limit ordinal such that δ < ℵδ, then

cf([ℵδ]|δ|,⊆) < ℵ(2|δ|)+
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and hence
ℵ|δ|

δ < ℵ(2|δ|)+ .

We shall describe now a tighter bound: ℵcf(δ)
δ < ℵ(|δ|cf(δ))+ .

As in the proof for bounding ℵℵ0
ω , which consists in first evaluating the

cofinality of ([ℵω]ℵ0 ,⊆), here too we first investigate cardinalities of covering
sets. For cardinals μ ≥ τ a cover for [μ]<τ is a collection C of subsets of μ
such that for every X ∈ [μ]<τ there exists a Y ∈ C with X ⊆ Y . For cardinals
μ ≥ θ ≥ τ , cov(μ, θ, τ) is the least cardinality of a cover for [μ]<τ consisting
of sets taken from [μ]<θ. So cov(μ, θ, τ) measures how many sets, each of
cardinality < θ, are needed to cover every subset of μ of cardinality < τ . For
example, cf([μ]κ,⊆) = cov(μ, κ+, κ+). We shall prove the following.

5.14 Theorem. Suppose that μ is a singular cardinal, and κ < μ a regular
cardinal. Let A be the set of all regular cardinals in the interval [κ++, μ). If
|A| ≤ κ, then

cov(μ, κ+, cf(μ)+) = sup pcfcf(μ)(A).

(See Definition 3.10 for pcfcf(μ)(A).)

Before proving this theorem, let’s see how it can be employed.

5.15 Corollary. Suppose that δ is a limit ordinal such that δ < ℵδ. Then

cov(ℵδ, |δ|+, cf(δ)+) < ℵ(|δ|cf(δ))+

and hence
ℵcf(δ)

δ < ℵ(|δ|cf(δ))+ .

Proof. Suppose that δ is a limit ordinal such that δ < ℵδ. Let μ = ℵδ, and
κ = |δ|+. Define A as the set of all regular cardinals in the interval (κ++, μ].
So |A| ≤ |δ|. By Theorem 5.14, there exists a collection {Xi | i ∈ I}, where
Xi ∈ [μ]κ and |I| = sup pcfcf(μ)(A), such that for every Z ∈ [ℵδ]cf(μ), Z ⊆ Xi

for some i ∈ I. Yet, by Theorem 3.11, pcfcf(μ)(A) is also an interval of
regular cardinals, containing all regular cardinals in the interval [κ++,ℵα)
where ℵα = sup pcfcf(μ)(A). Now | pcfcf(μ)(A)| ≤ |[A]cf(μ)| · 2cf(μ) ≤ |δ|cf(μ).
It follows (see the proof in the following paragraph) that α < (|δ|cf(μ))+. That
is, |I| < ℵ(|δ|cf(δ))+ (as cf(μ) = cf(δ)). Hence |[ℵδ]cf(δ)| < κcf(δ) · ℵ(|δ|cf(δ))+ .

Thus ℵcf(δ)
δ < ℵ(|δ|cf(δ))+ as required.

We prove that α < (|δ|cf(μ))+. Since δ < |δ|+ ≤ (|δ|cf(μ))+, it follows
that the interval (ℵδ,ℵ(|δ|cf(μ))+) contains (|δ|cf(μ))+ regular cardinals. But
the interval of regular cardinals in (ℵδ,ℵα) is included in pcfcf(μ)(A) and
contains ≤ |δ|cf(μ) regular cardinals. Hence α < (|δ|cf(μ))+. �

Proof of Theorem 5.14. Let κ < μ and |A| ≤ κ be as in the theorem. Since
A is cofinal in μ and |A| ≤ κ, cf(μ) ≤ κ. Let ρ = cf(μ) be the cofinality of μ.
We shall prove that cov(μ, κ+, ρ+) = sup pcfρ(A).



1200 Abraham and Magidor / Cardinal Arithmetic

For the ≥ inequality, we must prove that cov(μ, κ+, ρ+) ≥ λ for every
λ ∈ pcfρ(A). That is, if A0 ⊆ A is of cardinality ρ we want to prove that
cov(μ, κ+, ρ+) ≥ max pcf(A0). So let {Xi | i ∈ I} be a covering of [μ]cf(μ)

with sets Xi of cardinality ≤ κ. For each Xi define hi = ChXi �A0. Then
{hi | i ∈ I} is cofinal in (

∏
A0, <), and hence |I| ≥ max pcf(A0).

For the ≤ inequality, we must provide a covering set for cov(μ, κ+, ρ+) of
cardinality sup pcfρ(A).

For every λ ∈ pcfρ(A), λ ∈ pcf(A) as well, and we fix a minimally obedient
at cofinality ρ+ sequence fλ = 〈fλ

ξ | ξ < λ〉 of functions in
∏

A that is
universal for λ.

For every α < μ such that cf(α) = ρ+, let Eα ⊆ α be a closed unbounded
subset of α of order-type ρ+.

Define F as the collection of all functions of the form sup{fλ1
α1

, . . . , fλn
αn
}

where λi ∈ pcfρ(A) and αi < λi. Clearly F has cardinality sup pcfρ(A). For
f ∈ F let

E(f) =
⋃
{Ef(a) | a ∈ A and cf(f(a)) = ρ+}.

Then the cardinality of E(f) is at most κ+. Let

K(f) = Skolem(E(f) ∪ κ+) ≺ HΨ

be the Skolem hull (closure) of E(f) ∪ κ+. We remind the reader that the
structure HΨ includes a class well-ordering <∗ of all sets, and hence there is
a countable set of Skolem functions for HΨ so that X ≺ HΨ iff X is closed
under all of these Skolem functions. The cardinality of K(f) is κ+.

Clearly K = {K(f) | f ∈ F} has cardinality ≤ sup pcfρ(A). Our aim now
is to show that

K covers [μ]cf(μ).

Since cf([κ+]κ,⊆) = κ+, this yields that

cov(μ, κ+, cf(μ)+) = sup pcfcf(μ)(A).

Let Z ⊆ μ be of size ρ = cf(μ). Define 〈Mi | i < ρ+〉 an increasing and
continuous chain of elementary substructures Mi ≺ HΨ, each of cardinality ρ,
such that A,Z ∈ M0, Mi ∈ Mi+1, and Z ⊆ M0. Let M =

⋃
i<ρ+ Mi be the

resulting ρ+-presentable structure.
For every a ∈ A ∩M (and in fact for every a ∈ A), ChM (a) has cofinal-

ity ρ+. Indeed 〈ChMi(a) | i < ρ+〉 is increasing, continuous and with limit
ChM (a). There is another closed unbounded sequence in ChM (a) which in-
terests us, namely EChM (a), and we consider the intersection of these two
closed unbounded sets. So there exists a closed unbounded set Da ⊆ ρ+ such
that for every i ∈ Da

ChMi(a) ∈ EChM (a). (14.38)

For every i < ρ+, Mi has cardinality ρ and hence D(i) =
⋂
{Da | a ∈

A ∩Mi} is closed unbounded in ρ+. Form the diagonal intersection D =
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{j ∈ ρ+ | ∀i < j(j ∈ D(i))}. Fix any j0 ∈ D′ (a limit point of D). For every
a ∈ A ∩Mj0 there exists some j1 < j0 such that a ∈ A ∩Mj1 . If j1 < i ≤ j0
and i ∈ D, then i ∈ D(j1) and hence i ∈ Da. So ChMi(a) ∈ EChM (a). Thus
〈ChMi(a) | j1 < i < j0 ∧ i ∈ D〉 is a sequence of ordinals in Mj0 ∩ EChM (a)

that tends to ChMj0
(a) (whenever j0 ∈ D′ and a ∈ A ∩Mj0).

Define A0 = A∩Mj0 . Then A0 ∈ [A]cf(μ), and A0 ∈M . We plan to apply
Corollary 5.9 to A0, ρ

+ and M (substituting A, κ, and N there). For every
λ ∈ pcf(A0), λ ∈ pcfcf(μ)(A) and the sequence 〈fλ

ξ �A0 | ξ < λ〉 is, in M ,
universal for λ and minimally obedient at ρ+. Hence, by Corollary 5.9,

ChM �A0 = f�A0 for some f ∈ F . (14.39)

Since Z ⊆Mj0 , the following proves that Z ⊆ K(f).

Claim. Mj0 ∩ μ ⊆ K(f).

By Lemma 5.2, this is a consequence of the following

5.16 Lemma. For every successor cardinal σ+ ∈Mj0 ∩ μ

sup(Mj0 ∩ σ+) = sup(Mj0 ∩K(f) ∩ σ+).

Proof. Assume that σ+ ∈ Mj0 ∩ μ. If σ+ ≤ κ+, then κ+ ⊆ K(f) implies
the lemma immediately. So assume that σ+ > κ+, and hence that σ+ ∈
A ∩Mj0 = A0. Now (14.39) implies that ChM (σ+) = f(σ+) = α. Hence
cf(α) = ρ+ and Eα ⊆ E(f) ⊆ K(f). The sequence 〈ChMi(σ

+) | j1 < i <
j0∧ i ∈ D〉 is unbounded in ChMj0

(σ+), as we have observed above, and thus
shows that the lemma is correct. �

This completes the proof of Theorem 5.14. �

5.17 Exercise.

1. Let μ, κ, and A be as in Theorem 5.14. Suppose that |A| ≤ κ. Prove
that

cov(μ, κ+,ℵ1) = sup pcfℵ0
(A).

Conclude that if δ < ℵδ is a limit ordinal, then

ℵℵ0
δ < ℵ(|δ|ℵ0 )+ .

Hint. By induction on μ.

2. Suppose that δ is a limit ordinal such that for every cardinal μ < δ
μℵ0 < δ. Then ℵδ satisfies the same property, namely for every μ < ℵδ,
μℵ0 < ℵδ.

Hint. Without loss of generality, δ < ℵδ. Prove that μℵ0 < ℵδ by
induction on μ < ℵδ.
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6. Elevations and Transitive Generators

Given a progressive set A of regular cardinals, we have proved the existence
of generating sets Bλ = Bλ[A]. Suppose that N is such that A ⊆ N ⊆ pcf(A)
and B = 〈Bλ | λ ∈ N〉 is a generating sequence (defined only for λ in N).
Then B is said to be smooth (or transitive) if for every λ ∈ N and θ ∈ Bλ,
Bθ ⊆ Bλ.

This definition is trivial when Bθ = {θ} (that is when θ �∈ pcf(A ∩ θ)).
However, we shall be interested in A’s for which θ ∈ pcf(A ∩ θ) is possible
for θ ∈ A. The reason for considering subsets N of pcf(A) in this definition,
rather than the whole pcf(A) (which would be most desirable) is that we only
know how to prove the existence of smooth sequences for sets N of cardinality
minA.

Our aim is to obtain transitive generators; they will be useful in prov-
ing, for example, that for every progressive interval of regular cardinals A,
| pcf(A)| < |A|+4. However, there is still some material to cover beforehand.

Fix a progressive set A of regular cardinals and let κ be a regular cardinal
such that |A| < κ < minA. For every λ ∈ pcf(A) let fλ = 〈fλ

ξ | ξ < λ〉 be
a universal sequence for λ which is minimally obedient (at cofinality κ). It
is convenient to assume that for a ∈ A \ λ, fλ

ξ (a) = ξ. The elevation of the
array 〈fλ | λ ∈ pcf(A)〉 is another array 〈Fλ | λ ∈ pcf(A)〉 of persistently
cofinal sequences defined below, and which will be shown to satisfy properties
(14.32) and (14.33).

For every finite, decreasing sequence λ0 > λ1 > · · · > λn of cardinals such
that λ0 ∈ pcf(A) and λi+1 ∈ A ∩ λi for i < n, and for every ordinal γ0 ∈ λ0,
define a sequence γ1 ∈ λ1, . . . , γn ∈ λn by

γi+1 = fλi
γi

(λi+1). (14.40)

So γ1 = fλ0
γ0

(λ1), γ2 = fλ1
γ1

(λ2), etc. until γn = f
λn−1
γn−1 (λn). Now define the

elevation function Elλ0,...,λn on λ0 by

Elλ0,...,λn(γ0) = γn.

We say that the last value obtained, γn, is reached from fλ0
γ0

via the descend-
ing sequence λ0 > λ1 > · · · > λn.

Fix a cardinal λ0 ∈ pcf(A). We want to define the elevated sequence Fλ0 ,
first on A ∩ λ0. Given any λ ∈ A ∩ λ0, let Fλ0,λ be the set of all finite,
descending sequences 〈λ0 > λ1 > · · · > λn〉 leading from λ0 to λn = λ, such
that λi for i > 0 are all in A. For every γ0 ∈ λ0 we ask whether there is
a maximal value among

{Elλ0,...,λn(γ0) | 〈λ0, . . . , λn〉 ∈ Fλ0,λ}.

If this set contains a maximum, let Fλ0
γ0

(λ) be that maximum, and otherwise
put Fλ0

γ0
(λ) = fλ0

γ0
(λ). In case λ ∈ A and λ ≥ λ0, define Fλ0

γ0
(λ) = γ0. So

Fλ0 = 〈Fλ0
γ | γ < λ0〉 with Fλ0

γ ∈
∏

A is defined.
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The elevated array 〈Fλ0 | λ0 ∈ pcf(A)〉 thus defined will give the required
transitive generating sequence. Observe first that

fλ0
γ ≤ Fλ0

γ for every γ < λ0.

This is so because Elλ0,λ(γ0) = fλ0
γ0

(λ) for every λ ∈ A ∩ λ0; so that this
original value is among the values considered for maximum. Hence

Fλ0 is persistently cofinal for λ0.

This shows that Lemma 5.4 can be applied and property (14.32) holds when-
ever Fλ ∈ N (and N is κ-presentable).

Another observation concerns any κ-presentable elementary substructure
N ≺ HΨ such that A, 〈fλ | λ ∈ pcf(A)〉 ∈ N . Being definable, the elevated
array is also in N . Even though each fλ is assumed to be minimally obedient,
the elevated sequence Fλ is not anymore club-obedient. We have however
the following consequence of Lemma 5.7.

6.1 Lemma. If λ0 ∈ pcf(A) ∩ N and γ0 = ChN (λ0), then for every λ ∈
A ∩ λ0, Fλ0

γ0
(λ) ∈ N̄ ∩ λ (where N̄ is the ordinal closure of N). Thus the

elevated sequence Fλ0 satisfies (14.33). Namely,

1. Fλ0
γ0

(λ) ≤ ChN (λ) for every λ ∈ A, and

2. for every h ∈ N ∩
∏

A there exists some d ∈ N ∩
∏

A such that

h�B <J<λ0
d�B and d ≤ Fλ0

γ0

where B = Bλ0 [A].

Proof. Observe first that A ⊆ N , λ ∈ N , and Fλ0,λ ⊆ N . Consider any
〈λ0, . . . , λn〉 ∈ Fλ0,λ and the ordinals γi defined by (14.40). It follows from
Lemma 5.7 that γi ∈ N̄ . If γi ∈ N then obviously γi+1 = fλi

γi
(λi+1) ∈ N .

If, however, γi ∈ N̄ \ N , then Lemma 5.7 yields that fλi
γi

(a) ∈ N̄ for every
a ∈ A, and in particular γi+1 ∈ N̄ . Thus Elλ0,...,λn(γ0) ∈ N̄ and hence
Fλ0

γ0
(λ) ∈ N̄ ∩ λ.

Thus (14.33)(1) holds for Fλ0 . Since fλ0 ≤ Fλ0 , where fλ0 is universal
and minimally obedient at κ, (14.33)(2) holds as well. �

6.2 Lemma. Let A, f , and N be as in the previous lemma. Suppose that
λ0 ∈ pcf(A) ∩N , γ0 = ChN (λ0) and λ ∈ A ∩ λ0.

1. If for some descending sequence λ0 > · · · > λn = λ in Fλ0,λ

Elλ0,...,λn(γ0) = ChN (λ).

Then ChN (λ) is the maximal value in {Elλ̄(γ0) | λ̄ ∈ Fλ0,λ} and hence

ChN (λ) = Fλ0
γ0

(λ).
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2. Suppose that
Fλ0

γ0
(λ) = γ.

For any a ∈ A ∩ λ, if
Fλ

γ (a) = ChN (a),

then
Fλ0

γ0
(a) = ChN (a)

as well.

Proof. Item 1 says that if some descending sequence leading from λ0 to λ
reaches ChN (λ), then no sequence reaches a higher value. But this is clear
from Lemma 6.1 since ChN (λ) is the maximal possible value.

Item 2 uses item 1. It says that if γ can be reached from fλ0
γ0

by a finite
descending sequence leading to λ, and if there is another sequence leading
from λ to a, so that ChN (a) can be reached from fλ

γ , then ChN (a) can be
reached already from fλ0

γ0
via the concatenation of these descending sequences

(and no higher value can be reached—by 1). �

Now we can get our transitive generating sequence.

6.3 Theorem (Transitive Generators). Suppose that A is a progressive set
of regular cardinals, and |A| < κ < minA is a regular cardinal. Let 〈fλ |
λ ∈ pcf(A)〉 be an array of minimally obedient (at cofinality κ) universal
sequences. Let N ≺ HΨ be an elementary substructure that is κ-presentable
and such that A, 〈fλ | λ ∈ pcf(A)〉 ∈ N . Let 〈Fλ | λ ∈ pcf(A)〉 be the derived
elevated array. For every λ0 ∈ pcf(A) ∩N put γ0 = ChN (λ0) and define

bλ0 = {a ∈ A | ChN (a) = Fλ0
γ0

(a)}.

then the following hold:

1. Every bλ0 is a Bλ0 [A] set, namely

J≤λ0 [A] = J<λ0 [A] + bλ0 .

2. There exists sets b′
λ0
⊆ bλ0 , for λ0 ∈ pcf(A) ∩N , such that

(a) bλ0 \ b′
λ0
∈ J<λ0 [A].

(b) b′
λ0
∈ N (but the sequence 〈b′

λ0
| λ0 ∈ pcf(A) ∩N〉 is not claimed

to be in N).

3. The collection 〈bλ | λ ∈ pcf(A) ∩N〉 is transitive; which means that if
λ1 ∈ bλ then bλ1 ⊆ bλ.
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Proof. The elevated sequence Fλ0 satisfies properties (14.32) (because it is
persistently cofinal) and (14.33) (as shown in Lemma 6.1). Thus items 1
and 2 of our lemma follow from Lemma 5.8. Observe that bλ0 ⊆ λ0 +1, since
Bλ0 ∈ J<λ+

0
.

Transitivity (item 3) relies on Lemma 6.2. Suppose that λ0 ∈ pcf(A) ∩N
and λ1 ∈ bλ0 . This means

ChN (λ1) = Fλ0
γ0

(λ1)

where γ0 = ChN (λ0). Say ChN (λ1) = γ1. We have to show that bλ1 ⊂ bλ0

in this case. So assume that a ∈ bλ1 . This means

ChN (a) = Fλ1
γ1

(a).

Now Lemma 6.2(2) applies and yields

Fλ0
γ0

(a) = ChN (a)

which gives a ∈ bλ0 . �

Localization

Localization is the following property of the pcf function which will be proved
in this subsection.

If A is a progressive set of regular cardinals and B ⊆ pcf(A) is
also progressive, then for every λ ∈ pcf(B) there exists a B0 ⊆ B
such that |B0| ≤ |A| and λ ∈ pcf(B0).

The localization property implies that there exists no B ⊆ pcf(A) with |B| =
|A|+ and such that b > max pcf(B ∩ b) for every b ∈ B. For indeed if there
were such a B it would be progressive, and if we define λ = max pcf(B), then
λ is not in the pcf of any proper initial segment of B. In fact, λ > max pcf(B0)
for any proper initial segment B0 of B. It is this conclusion, the simplest
case of localization, which is proved first.

6.4 Theorem. Assume that A is a progressive set of regular cardinals. Then
there is no set B ⊆ pcf(A) such that |B| = |A|+, and, for every b ∈ B,
b > max pcf(B ∩ b).

Proof. Assume on the contrary that A is as in the theorem and yet, for some
B ⊆ pcf(A) of cardinality |A|+, b > max pcf(B ∩ b) for every b ∈ B. Since
A is progressive |A| < minA, and in case |A|+ ∈ A we may remove the
first cardinal of A and assume that |A|+ < minA. The set E = A ∪ B of
cardinality |A|+ thus satisfies |E| < minE and the Transitive Generators
Theorem 6.3 can be applied to E.

Find a κ-presentable elementary substructure, N ≺ HΨ, that contains A
and B where κ = |E|. Let 〈bλ | λ ∈ pcf(E) ∩ N〉 be the set of transitive
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generators (subsets of E) as guaranteed by Theorem 6.3. Let b′
λ ∈ N be such

that b′
λ ⊆ bλ and bλ \ b′

λ ∈ J<λ.
Since |A| < |B| we can find an initial segment B0 ⊆ B of cardinality |A|

such that if an arbitrary a ∈ A is in some bβ , β ∈ B, then it is already in
some bβ with β ∈ B0. Namely

∀a ∈ A[(∃β ∈ B)a ∈ bβ =⇒ (∃β ∈ B0)a ∈ bβ ]. (14.41)

Let β0 = min(B \B0). So B0 = B ∩ β0 and B0 ∈ N .

Claim. There exists a finite descending sequence of cardinals λ0 > · · · > λn

in N ∩ pcf(B0) such that

B0 ⊆ bλ0 ∪ · · · ∪ bλn . (14.42)

Proof. In fact we shall find a finite sequence λ0, . . . , λn ∈ N ∩ pcf(B0) such
that B0 ⊆ b′

λ0
∪· · ·∪ b′

λn
. The proof is the same as that of Theorem 4.11, but

one must be a little bit more careful to ensure that the pcf index-cardinals
are in N .

So let λ0 = max pcf(B0). Clearly λ0 ∈ N and hence b′
λ0
∈ N . So B1 =

B0 \b′
λ0
∈ N , and λ1 = max pcf(B1) ∈ N ∩λ0. Next define B2 = B1 \b′

λ1
etc.

The point is that we have Bi ∈ N since b′
λi−1

∈ N , and we must stop with
Bn+1 = ∅ after a finite number of steps since λ0 > λ1 > · · · . Since b′

λi
⊆ bλi ,

(14.42) holds. �

The following claim will bring the desired contradiction and thus prove
the theorem. Recall that β0 = min(B \ B0) and thus β0 > max pcf(B0) ≥
λ0, . . . , λn. Since β0 ∈ pcf(A), β0 ∈ pcf(bβ0 ∩ A) (or else β0 ∈ pcf(A \ bβ0)
which is impossible by Lemma 4.14). Yet the following inclusion shows that
this is impossible.

6.5 Claim. bβ0 ∩A ⊆ bλ0 ∪ · · · ∪ bλn .

Proof. Consider any cardinal a ∈ bβ0 ∩A. Then

a ∈ bβ

for some β ∈ B0 (by 14.41). As B0 ⊆ bλ0 ∪ · · · ∪ bλn , β ∈ bλi for some
0 ≤ i ≤ n. But transitivity implies

bβ ⊆ bλi

and hence
a ∈ bλi

as required. This claim shows that max pcf(bβ0 ∩ A) < β0, and yet β0 ∈
pcf(bβ0 ∩A) which is a contradiction! �

Thus Theorem 6.4 is proved. �
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Now we pass to the general case and prove the localization theorem.

6.6 Theorem (Localization). Suppose that A is a progressive set of regular
cardinals. If B ⊆ pcf(A) is also progressive, then for every λ ∈ pcf(B) there
exists a B0 ⊆ B with |B0| ≤ |A| and such that λ ∈ pcf(B0).

Proof. We prove by induction on λ that for every A and B as in the theorem
the conclusion holds for λ. Replacing B with Bλ[B], we may assume that
λ = max pcf(B).

6.7 Claim. We may assume that the set λ ∩ pcf(B) has no maximal cardinal.

Proof. Suppose on the contrary the existence of some λ0 = max(λ ∩ pcf(B)).
It is easy to remove λ0 by defining

B1 = B \Bλ0 [B].

Then λ ∈ pcf(B1) still holds since Bλ0 ∈ J<λ. We can now replace B with
B1, and repeat, if necessary, this procedure a finite number of times until the
claim holds (for some Bk which is renamed B). �

We shall find now a set C ⊆ λ ∩ pcf(B) of cardinality ≤ |A| such that
λ ∈ pcf(C). Such C is necessarily progressive. Together with the inductive
hypothesis this will conclude the proof; because for every γ ∈ C we can pick
B(γ) ⊆ B of cardinality ≤ |A| and such that γ ∈ pcf B(γ), and then define
B0 =

⋃
γ∈C B(γ). Since C ⊆ pcf(B0), λ ∈ pcf(B0) will then follow from

λ ∈ pcf(C) (by Theorem 3.12). So the following is the last piece of the proof.

6.8 Claim. There exists a set C ⊆ λ∩ pcf(B) of cardinality ≤ |A| and such
that λ ∈ pcf(C).

Proof. Assume no such C exists. We shall construct a sequence 〈γi | i ∈ |A|+〉
of cardinals in pcf(B) such that

γi > max pcf{γj | j < i}.

This will contradict Theorem 6.4.
So suppose that C = {γj | j < i} have been defined. Then

λ > max pcf(C).

Indeed λ = max pcf(C) is impossible by our assumption that no such C
exists, and λ < max pcf(C) is impossible since pcf(C) ⊆ pcf(B) and λ =
max pcf(B). We can find now γi ∈ pcf(B) above max pcf(C) (recall that
pcf(B) has no maximum below λ). �

The proof of the theorem is complete. �
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7. Size Limitation on pcf of Intervals

This relatively short section is devoted to a theorem which occupies a central
place in pcf theory and to a famous application:

ℵℵ0
ω < max{(2ℵ0)+,ℵω4}.

The reader will notice that many of the ingredients developed so far appear
in its proof. We know that for any A progressive set of regular cardinals the
cardinality of pcf(A) does not exceed 2|A|, and it is an open question whether
| pcf(A)| ≤ |A| or not. At present the following theorem with its enigmatic
appearance of the number four is the best result.

7.1 Theorem. Let A be an interval of regular cardinals such that |A| <
minA. Then

| pcf(A)| < |A|+4.

Proof. Suppose that A is as in the theorem a progressive interval of regular
cardinals, but | pcf(A)| ≥ |A|+4. Say |A| = ρ. The following proof provides
a sequence B of length ρ+ of cardinals in pcf(A) such that each cardinal
b ∈ B is above max pcf(B ∩ b). This, of course, will be in contradiction to
Theorem 6.4.

Let S = Sρ+3

ρ+ be the set of ordinals in ρ+3 that have cofinality ρ+. Choose
a club guessing sequence 〈Ck | k ∈ S〉. So for every closed unbounded set
E ⊆ ρ+3 there exists some k ∈ S such that Ck ⊆ E.

Consider the cardinal supA, and let σ be that ordinal such that ℵσ =
supA. Since pcf(A) is an interval of regular cardinals (by Theorem 3.9), and
since we assume that pcf(A) has cardinality at least ρ+4, any regular cardinal
in {ℵσ+α | α < ρ+4} is in pcf(A).

We intend to define a closed set D ⊆ ρ+4 of order-type ρ+3, D = {αi |
i < ρ+3}, and the impossible sequence of length ρ+, B, will be a subset of
{ℵ+

σ+α | α ∈ D}. The definition of the ordinal αi is by induction on i < ρ+3.

1. For i = 0, α0 = 0.

2. If i < ρ+3 is a limit ordinal, then αi = sup{αj | j < i}.

3. Suppose that {αj | j ≤ i} has been defined for some i < ρ+3, and
we shall define αi+1. Consider i + 1 ⊂ ρ+3 as an isomorphic copy of
{αj | j ≤ i}. For every k ∈ S look at the set Ck ∩ (i + 1) and define
the set of cardinals ek = {ℵσ+αj | j ∈ Ck ∩ (i + 1)}. Then the set
of successors e

(+)
k = {γ+ | γ ∈ ek} is a set of regular cardinals, and

we ask whether max pcf(e(+)
k ) < ℵσ+ρ+4 or not. There are ρ+3 such

questions, and therefore we can define αi+1 < ρ+4 so that αi < αi+1

and the following holds. For every k ∈ S, if max pcf(e(+)
k ) < ℵσ+ρ+4 ,

then max pcf(e(+)
k ) < ℵσ+αi+1 .
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So D = {αi | i < ρ+3} is defined. Let δ = supD. Then μ = ℵσ+δ is
a singular cardinal of uncountable cofinality (that is, of cofinality ρ+3). The
Representation Theorem (Exercise 4.17) can be applied now. So there exists
a closed unbounded set C ⊆ D such that

μ+ = max pcf({ℵ+
σ+α | α ∈ C}). (14.43)

The closed unbounded set D is isomorphic to ρ+3, and C is transformed
under this isomorphism to a closed unbounded set E ⊆ ρ+3. That is

E = {i ∈ ρ+3 | αi ∈ C}.

By the club-guessing property, there exists a k ∈ S such that Ck ⊆ E. If
C ′

k denotes the non-accumulation points of Ck, we claim that B = {ℵ+
σ+αj

|
j ∈ C ′

k} has the (impossible) property excluded by Theorem 6.4. Since the
order-type of Ck is ρ+, that of C ′

k is also ρ+. It suffices to prove for every
i ∈ Ck that

max pcf({ℵ+
σ+αj

| j ∈ Ck ∩ (i + 1)}) < ℵσ+αi+1 . (14.44)

Consider the definition of αi+1. The set ek = {ℵσ+αj | j ∈ Ck ∩ (i + 1)}
was defined, and since e

(+)
k ⊆ {ℵ+

σ+α | α ∈ C}, (14.43) implies that
max pcf(e(+)

k ) ≤ μ+. So the answer to the question for ek was “yes”, and as
a result (14.44) holds. �

This theorem leads to surprising applications. Consider for example A =
{ℵn | n ∈ ω}. Then cf([ℵω]ℵ0 ,⊆) = max pcf(A) by Theorem 5.11. But
pcf(A) is an interval of regular cardinals of size < ℵ4. Hence if we write
max pcf(A) = ℵα, then α < ω4. Thus

cf([ℵω]ℵ0 ,⊆) < ℵω4 .

This result holds even if 2ℵ0 is larger than ℵω4 . It follows now immediately
that if 2ℵ0 < ℵω then ℵℵ0

ω < ℵω4 . Shelah emphasizes that the former result
(concerning the cofinality of [ℵω]ℵ0) is more basic, and hence one should ask
questions concerning cofinalities rather than cardinalities, if one wants to get
(absolute) answers.

Generalizing this, we have:

7.2 Theorem. If ℵδ is a singular cardinal such that δ < ℵδ then

cf([ℵδ]|δ|,⊆) < ℵ(|δ|+4).

Proof. Write |δ| = κ. Then κ < ℵδ and if A is the interval of regular cardinals
in (κ,ℵδ) then |A| ≤ |δ| = κ and A is a progressive set. Theorem 5.11 applies
with μ = ℵδ and it yields

cf([ℵδ]κ,⊆) = max pcf(A).

But A is an interval of regular cardinals, and hence | pcf(A)| < |A|+4, by
Theorem 7.1. This implies that max pcf(A) < ℵδ+(|A|+4) ≤ ℵ|δ|+4 . Hence
cf([ℵδ]κ,⊆) < ℵ(|δ|+4). �
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We are now able to deduce the following application to cardinal arithmetic.

7.3 Theorem. Suppose that δ is a limit ordinal and |δ|cf(δ) < ℵδ. Then

ℵcf(δ)
δ < ℵ(|δ|+4).

Proof. Since |δ|cf(δ) < ℵδ, δ < ℵδ. It follows from the cofinality theorem
above that

ℵcf(δ)
δ ≤ |δ|cf(δ) · cf([ℵδ]|δ|,⊆) < ℵδ · ℵ(|δ|+4). (14.45)

�

8. Revised GCH

The Generalized Continuum Hypothesis (GCH) saying that 2κ = κ+ for
every (infinite) cardinal κ is readily seen to be equivalent to the statement
that for every two regular cardinals κ < λ we have λκ = λ. In [17] Shelah
considers a “revised power set” operation λ[κ] defined as follows:

λ[κ] = min
{
|P| | P ⊆ [λ]≤κ and ∀u ∈ [λ]κ∃P0 ⊆ P

(
|P0| < κ ∧ u =

⋃
P0

)}
.

An inductive proof shows that GCH is equivalent to the statement that for
all regular cardinals κ < λ, λ[κ] = λ. The “revised” GCH theorem says that
for “many” pairs of regular cardinals we have λ[κ] = λ.

8.1 Theorem (Shelah’s Revised GCH). If θ is a strong limit uncountable
cardinal, then for every λ ≥ θ, for some κ0 < θ, for every κ0 ≤ κ < θ

λ[κ] = λ.

The proof that we give here is adopted from a later article [14] of Shelah,
and it relies on two notions that we have to investigate first, pcfσ-com(A) and
TD(f).

8.2 Definition. Let λ > θ ≥ σ = cf(σ) be cardinals.

1. We say that P ⊆ [λ]≤θ is a (<σ)-base for [λ]≤θ if every u ∈ [λ]≤θ is
the union of fewer than σ members of P . That is, for some P0 ⊆ P ,
|P0| < σ, and u =

⋃
P0.

2. We define λ[σ,θ] = min{|P| | P ⊆ [λ]≤θ is a (<σ)-base for [λ]≤θ}.
Another notation for λ[σ,θ] is λ[σ,≤θ]. We have λ[σ] = λ[σ,σ]. In a similar
fashion define λ[σ,<θ]. It is the minimal cardinality of a set P ⊆ [λ]<θ

so that every u ∈ [λ]<θ is a union of fewer than σ members of P .

3. We say that P ⊆ [λ]θ is (<σ)-cofinal in [λ]θ if every u ∈ [λ]θ is included
in the union of fewer than σ members of P . That is, for some P0 ⊆ P ,
|P0| < σ, and u ⊆

⋃
P0.
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4. We define λ〈σ,θ〉 = min{|P| | P ⊆ [λ]θ is (<σ)-cofinal in [λ]θ}. Define
λ〈σ〉 = λ〈σ,σ〉.

For a regular infinite cardinal σ and a set A of regular cardinals define

pcfσ-com(A) =
{
tcf

(∏
A/F

)
| F is a σ-complete filter

over A and tcf
(∏

A/F
)

exists
}
. (14.46)

(A filter is σ-complete if it is closed under the intersections of less than σ
members of the filter.)

Clearly, A ⊆ pcfσ-com(A) ⊆ pcf(A).
Define Jσ-com

<λ [A] ⊆ P(A) by the formula X ∈ Jσ-com
<λ [A] iff X ⊆ A

and whenever F is a σ-complete filter over A with X ∈ F and such that
tcf(

∏
A/F ) exists, then tcf(

∏
A/F ) < λ. Equivalently,

Jσ-com
<λ [A] = {X ⊆ A | pcfσ-com(X) ⊆ λ}.

Clearly, J<λ[A] ⊆ Jσ-com
<λ [A].

8.3 Lemma. Jσ-com
<λ [A] is a σ-complete ideal.

Proof. Suppose that Xi ∈ Jσ-com
<λ [A] for every i < σ∗ where σ∗ < σ. We

prove that X =
⋃

i<σ∗ Xi ∈ Jσ-com
<λ [A]. So let F be a σ-complete filter over

A containing X and such that tcf(
∏

A/F ) = τ exists. We must show that
τ < λ. Assume that F is proper (the cofinality of a reduced product by a
improper filter is 1). For every i < σ∗ consider the filter F + Xi (defined
as the collection of all subsets of A that contain a set of the form A ∩ Xi

for A ∈ F ). If for some i < σ∗, Fi = F + Xi is proper, then it is a σ-
complete filter containing Xi and such that tcf(

∏
A/Fi) = τ (extending the

filter F will not change the cofinality of the existing reduced product). But
as Xi ∈ Jσ-com

<λ [A], we get τ < λ.
If, for every i < σ∗, F + Xi is improper, then X \ Xi ∈ F . Hence the

intersection of these sets which is the empty set is in F , and thus F is im-
proper. �

8.4 Lemma. Suppose that A is a progressive set of regular cardinals and
λ = max pcf(A). Then X ∈ Jσ-com

<λ [A] iff X is a union of fewer than σ
members of J<λ[A]. That is, Jσ-com

<λ [A] is the σ-completion of J<λ[A].

Proof. Let J be the σ-completion of J<λ[A]. It is the collection of all sets
that are union of fewer than σ members of J<λ[A]. By the previous lemma,
Jσ-com

<λ [A] is σ-complete, and hence it contains J . It remains to prove that
Jσ-com

<λ [A] ⊆ J . So no assumptions on A were needed in this direction.
Assume for a contradiction that X ∈ Jσ-com

<λ [A] \ J . Then J + (A \ X),
the ideal generated by J and A \ X, is proper. It is easily seen to be a σ-
complete ideal. Let F be the dual filter of that ideal. Then F is σ-complete
and X ∈ F . Hence the cofinality of

∏
A/F is smaller than λ.
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Since λ = max pcf(A), there are fζ for ζ < λ that are increasing and
cofinal in

∏
A/J<λ[A] (Exercise 4.3, or Theorem 4.13). But this sequence is

also increasing and cofinal in
∏

A/F , and this is an obvious contradiction. �

We now strengthen the lemma by removing the assumption that λ =
max pcf(A).

8.5 Theorem. Let A be a progressive set of regular cardinals, and σ a regular
cardinal. Then Jσ-com

<λ [A] is the σ-completion of J<λ[A].

Proof. We prove by induction on μ that for every progressive set A of regular
cardinals with μ = max pcf(A), for all cardinals λ and σ (regular), Jσ-com

<λ [A]
is the σ-completion of J<λ[A].

We know already that J<λ[A] ⊆ Jσ-com
<λ [A] and that Jσ-com

<λ [A] is σ-com-
plete. It remains to prove that any X ∈ Jσ-com

<λ [A] is a union of fewer than σ
sets from J<λ[A]. If μ < λ then X ∈ J<λ[A] and this case is uninteresting.
In case λ ≤ μ, X ∈ Jσ-com

<μ [A]. So by the previous lemma, X is a union of
less than σ sets from J<μ[A]. But the inductive assumption can be applied
to each one of these sets, and the lemma follows since σ is regular. �

Another characterization of the ideal Jσ-com
<λ [A] is provided by the follow-

ing theorem dealing with the cofinality of product of cardinals under the <
relation: f < g iff for every a ∈ dom(f), f(a) < g(a).

We know (Theorem 4.4) that X ∈ J<λ[A] iff cf(
∏

X) < λ. For a similar
characterization of Jσ-com

<λ [A] we need the following definition. Let σ be a
regular cardinal and X a set of regular cardinals. If F ⊆

∏
X, we say that F

is (<σ)-cofinal iff for every f ∈
∏

X there is a set F0 ⊆ F with |F0| < σ and
such that f < supF0. In other words, the functions formed by taking the
supremum of fewer than σ functions from F form a cofinal set in

∏
X. The

(<σ)-cofinality of
∏

X is the smallest cardinality of a (<σ)-cofinal subset.
It makes sense to assume that σ ≤ minX when inquiring about the (<σ)-
cofinality of X.

8.6 Theorem. Suppose that A is a progressive set of regular cardinals, σ ≤
minA is a regular cardinal, and σ ≤ cf(λ). Define

J =
{
B ⊆ A | B = ∅ or

∏
B has (<σ)-cofinality < λ

}
.

Then J = Jσ-com
<λ [A].

Proof. We first prove that J ⊆ Jσ-com
<λ [A]. Suppose B ∈ J and let D be

a σ-complete filter over A containing B and such that tcf(
∏

A/D) exists and
is equal to λ′ ≥ λ. This will lead to a contradiction, thereby proving that
B ∈ Jσ-com

<λ [A]. Since tcf(
∏

A/D) = λ′, λ′ is a regular cardinal and there
is an increasing sequence S in

∏
A/D of length λ′ that is cofinal in

∏
A/D.

By definition of B ∈ J , there is a set F ⊆
∏

B of cardinality < λ that is
(<σ)-cofinal. For every f ∈ F there is a function s ∈ S such that f <D s
(f is defined on B and s on A, but as B ∈ D, this makes sense). Since λ′
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is regular and bigger than |F|, there is a single s ∈ S such that f <D s for
every f ∈ F . Since F is (<σ)-cofinal, s <D supF0 for some F0 ⊆ F of size
< σ. But as D is σ-complete, and f <D s for every f ∈ F0, supF0 ≤D s as
well. This is a contradiction, and thus J ⊆ Jσ-com

<λ [A].
Clearly J<λ[A] ⊆ J (by Theorem 4.4). If we prove that J is σ-complete

then Jσ-com
<λ [A] ⊆ J follows from the previous theorem.

So let σ∗ < σ and Xi ∈ J for i < σ∗ be given. We shall prove that
X =

⋃
i<σ∗ Xi ∈ J . For every i < σ∗ we have a (<σ)-cofinal set Pi ⊆

∏
Xi of

cardinality < λ. Then P =
⋃

i<σ∗ Pi has cardinality < λ because σ ≤ cf(λ).
The domain of each function in Pi is Xi, but we can extend it arbitrarily
on X and then P can be considered as a subset of

∏
X. Clearly P is (<σ)-

cofinal. �

We shall apply this theorem to Jσ-com
≤λ [A] rather than Jσ-com

<λ [A]. That is,
replacing λ with λ+ in the theorem, we get the following corollary in which
σ ≤ cf λ is no longer required.

8.7 Corollary. Suppose that A is a progressive set of regular cardinals, σ ≤
minA is a regular cardinal, and σ ≤ λ. Define

J =
{
B ⊆ A | B = ∅ or

∏
B has (<σ)-cofinality ≤ λ

}
.

Then J = Jσ-com
≤λ [A].

8.8 Theorem. Suppose that:

1. λ > θ > σ > ℵ0 are given, where θ and σ are regular cardinals, and
2<θ ≤ λ.

2. For every A ⊆ Reg ∩ λ \ θ, if |A| < θ then A ∈ Jσ-com
≤λ [A].

Then λ = λ[σ,<θ].

Proof. Fix χ sufficiently large, and let M ≺ Hχ be an elementary substruc-
ture of cardinality λ and such that λ + 1 ⊆M . We shall prove the following
claim which yields the theorem:

M ∩ [λ]<θ is a (< σ)-base for [λ]<θ.

For this, we need the following lemma.

8.9 Lemma. With the same assumptions of the theorem and on M , let
g : κ → λ and f : κ → λ + 1 be given with κ < θ, f ∈ M , and such that
∀a ∈ κ g(a) ≤ f(a). Then there is a collection Φ ⊆ M of functions from κ
to λ such that the following hold:

1. |Φ| < σ.

2. For every p ∈ Φ, g ≤ p ≤ f (that is, for all a ∈ κ, g(a) ≤ p(a) ≤ f(a)).
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3. For every a ∈ κ, if g(a) < f(a), then for some p ∈ Φ g(a) ≤ p(a) <
f(a).

Proof. Think of f as an “approximation from above” in M to the function g
(which is not in M , or else the theorem is trivial). The set Φ is not required
to be a member of M , and each function of Φ (if different from f) is a
better approximation that lies in M . For each a ∈ κ, if f(a) is not the best
approximation, then Φ contains a function that gets a better value at a.

Fix in M a sequence 〈Cδ | δ ≤ λ, δ ∈ limλ〉 such that Cδ ⊆ δ is unbounded
in δ and of order-type cf(δ).

Define the following subsets of κ:

E0 = {a < κ | g(a) = f(a)}
E1 = {a < κ | g(a) < f(a), f(a) is a successor ordinal}
E2 = {a < κ | g(a) < f(a), f(a) is a limit and cf(f(a)) < θ}
E3 = κ \ (E0 ∪ E1 ∪ E2).

Since 2<θ ≤ λ, any bounded subset of θ is in M . So each E� is in M . We
define h on κ as follows. For a ∈ E0, h(a) = f(a). For a ∈ E1, h(a)+1 = f(a).
For a ∈ κ \ (E0 ∪ E1), h(a) = minCf(a) \ g(a).

Obviously h�E0 ∪ E1 ∈M . We prove that h�E2 ∈M as well. By definition
h�E2 is a function in

∏
δ∈E2

Cf(δ). But θ is regular, and since |E2| < θ and
cf(f(δ)) < θ, there is a bound below θ on the values of {cf(f(a)) | a ∈ E2},
and hence |

∏
δ∈E2

Cf(δ)| ≤ 2<θ ≤ λ.
So

∏
δ∈E2

Cf(δ) ⊆M , and hence h�E2 ∈M .
There is no reason to assume that h�E3 is in M , but we shall find a set Φ

of size < σ as required by the lemma. Define A = {cf(f(a)) | a ∈ E3}. Then
A ⊆ λ + 1 \ θ is a set of regular cardinals of size ≤ κ, and so A ∈ Jσ-com

≤λ [A].
There is by Corollary 8.7 a family F of size ≤ λ that is (<σ)-cofinal in

∏
A.

Since A ∈ M we can have F ∈ M and F ⊆ M . Since κ < minA and
A ⊆ Reg, F yields a family of functions, F ′ ⊆

∏
δ∈E3

Cf(δ) = P that is
(<σ)-cofinal in P . As h�E3 ∈ P , there is a set F0 ⊆ F ′ of size < σ such that
h�E3 < supF0. If e ∈ F0, then e(δ) < f(δ) but e(δ) < g(δ) is possible. So
we correct each e ∈ F0 and define:

e′(δ) =

{
e(δ) if g(δ) ≤ e(δ),
f(δ) otherwise.

Then e′ ∈M because e, f ∈M and every subset of κ is in M . The collection
{h�(E0 ∪E1 ∪E2)�e′ | e ∈ F0} is as required, and the lemma is proved. �

We continue now with the proof of the theorem. So let u ∈ [λ]<θ be given
and we shall find a subset of M ∩ [λ]<θ of cardinality < σ whose union is u.
Let κ = |u| < θ be the cardinality of u and take an enumeration g : κ → u.
We shall define by induction on n ∈ ω a set Φn of functions from κ to λ such
that the following holds.



8. Revised GCH 1215

1. Let f0 : κ→ λ + 1 be defined by f0(a) = λ. Then Φ0 = {f0}.

2. For every n, Φn ⊆M and |Φn| < σ. If f ∈ Φn then g ≤ f .

3. For every f ∈ Φn and a ∈ κ such that g(a) < f(a) there exists a p ∈
Φn+1 such that g(a) ≤ p(a) < f(a).

This is easily obtained by the lemma.
Let Φ =

⋃
n<ω Φn. Then |Φ| < σ. For any f ∈ Φ, the set

E(f) = {f(a) | a ∈ κ and f(a) = g(a)}

is in M (because f is, and any subset of κ). We have u =
⋃
{E(f) | f ∈ Φ}

because if x ∈ u then x = g(a) for some a ∈ κ, and g(a) < f0(a). There
exists a sequence fn ∈ Φn so that if g(a) < fn(a) then fn+1(a) < fn(a). And
necessarily for some n g(a) = fn(a). So a ∈ E(fn). This ends the proof of
Theorem 8.8. �

The following corollary shows that the theorem above can also be applied
when cf(θ) < σ.

8.10 Corollary. Suppose that:

1. λ > θ > σ = cf(σ) > ℵ0 are given, where cf(θ) < σ and 2<θ ≤ λ.

2. For every A ⊆ Reg ∩ λ + 1 \ θ, if |A| < θ then A ∈ Jσ-com
≤λ [A].

Then λ = λ[σ,≤θ].

Proof. Fix a sequence 〈θi | i < cf(θ)〉 of regular cardinals that is cofinal in
θ and such that σ < θi for all i. We claim for every i < cf(θ) that the
assumptions of Theorem 8.8 hold for λ > θi > σ, and hence λ = λ[σ,<θi]

follows. But this clearly implies that λ = λ[σ,≤θ].
For the claim, we must prove that if θ′ < θ is regular then for every

A ⊆ Reg ∩ λ + 1 \ θ′, if |A| < θ′ then A ∈ Jσ-com
≤λ [A]. Suppose for a con-

tradiction that this is not the case, and for some σ-complete filter D over
A ⊂ Reg ∩ λ + 1 \ θ′ we have tcf(

∏
A/D) = λ0 > λ. We may assume that

A ⊆ θ, that is, we may assume that A ∩ θ ∈ D, or else A \ θ is not D-null
and then it can be added to D without changing the true cofinality of the
reduced product, which contradicts the assumptions of the theorem.

If for every i < cf(θ) A \ θi ∈ D, then by the σ-completeness of D and the
fact that cf(θ) < σ, we get a contradiction. So for some i A ∩ θi is not D-null.
But then D′ = D + A ∩ θi is σ-complete and it follows that the true cofinality
of

∏
A/D′ remains λ0. Yet this is impossible since (θi)|A∩θi | ≤ 2<θ ≤ λ. �
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8.1. TD(f)

Let J be an ideal over a cardinal κ. We recall some definitions. The collection
of J-positive sets is denoted J+. The corresponding dual filter is denoted J ∗.
If R is a relation, if f and g are functions defined on κ, then we define
f RJ g if and only if {i ∈ κ | f(i) R g(i)} ∈ J∗. We also write f RJ+ g for
{i ∈ κ | f(i) R g(i)} /∈ J . That is, f(i) R g(i) occurs positively.

Thus f �=J g means that {i ∈ κ | f(i) = g(i)} ∈ J , and f =J+ g means
that ¬f �=J g.

Let κ be a cardinal and D a filter over κ. Consider the <D ordering on
Onκ. For f ∈ Onκ,

∏
i<κ f(i) is denoted

∏
f , and

∏
i<κ f(i)/D is denoted∏

f/D. (We consider only functions f such that f(i) > 0 for i ∈ κ.)
For F ⊆

∏
f , we say that F is a set of pairwise “D-different” functions,

if for every distinct f1, f2 ∈ F we have f1 �=D f2. For any f ∈ Onκ, define

TD(f) = sup
{
|F| | F ⊆

∏
f is a set of pairwise D-different functions

}
.

(Shelah investigated several different definitions, and this cardinal is denoted
T 0

D in [14].)

8.11 Theorem. Suppose that D is a filter over κ, f ∈ Onκ and TD(f) = λ.
If 2κ < λ then the supremum in the definition of TD(f) is attained. In
fact, if 2κ < λ and F ⊆

∏
f is any maximal family of pairwise D-different

functions, then |F| = λ.

Proof. Suppose on the contrary that F ⊆
∏

f is maximal but |F| < λ. Let
G ⊆

∏
f be a collection of pairwise D-different functions such that

|G| > |F|+ 2κ. (14.47)

For every g ∈ G we can find f = f(g) ∈ F such that X(g) = {i ∈ κ | f(i) =
g(i)} is not D-null. As (14.47), there are two distinct functions g1 and g2 in
G such that f(g1) = f(g2) and X(g1) = X(g2). But this implies that g1 and
g2 agree on a non-null set which is a contradiction to the assumption that
the functions in G are pairwise D-different. �

An obvious observation which turns out to be crucial is the following.

8.12 Lemma. If tcf(
∏

f/D) exists, then TD(f) ≥ tcf(
∏

f/D).

Proof. If tcf(
∏

f/D) = λ, then there exists a <D increasing sequence of
length λ, and hence a set of cardinality λ of pairwise D-different functions. �

Assume now that σ is a regular uncountable cardinal, and D is a σ-
complete filter over κ. Then

∏
f/D is well-founded. This is used in the

following.

8.13 Lemma. Suppose that σ is a regular uncountable cardinal and D is a
σ-complete filter over κ. Suppose f ∈ Onκ and TD(f) ≥ λ where 2κ < λ.
Then for some g ≤D f we have TD(g) = λ.
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Proof. Let g ≤D f be minimal in the ≤D ordering such that TD(g) ≥ λ.
Suppose for a contradiction that TD(g) > λ. There is a set {fα | α < λ+} of
pairwise D-different functions in

∏
g. For α < λ+ define

uα = {β < λ+ | fβ <D fα}.

If, for some α, |uα| ≥ λ, then uα proves that TD(fα) ≥ λ in contradiction to
the minimality of g. Hence |uα| < λ for every α < λ+.

But now we can apply the Free Mapping theorem of Hajnal and obtain
F ⊆ λ+, of cardinality λ+ such that α �∈ uβ (and β �∈ uα) for every α �= β
in F . (The argument in short is the following. First, we can find λ0 < λ
such that |uα| = λ0 for unboundedly many α < λ+. Re-enumerating, we
may assume |uα| = λ0 for every α. On those α < λ+ with cofinality λ+

0 we
bound uα ∩ α in α, and use Fodor’s lemma.)

Hence there are fα ∈ Onκ for α < (2κ)+ such that fα �≤D fβ whenever
α �= β. But this is impossible in view of the Erdős-Rado partition theorem
(2κ)+ → (κ+)2κ. Indeed, for α < β < κ+ define h(α, β) as some i < κ
such that fβ(i) < fα(i). Then h has no infinite homogeneous set, which
contradicts the theorem. Thus TD(g) = λ.

Observe that since 2κ < λ, L = {a ∈ κ | g(a) ∈ lim} is not null in D, and
hence we may assume without loss of generality that it is in D. (Or else let
h <D g be such that g(a) = h(a) + 1 for every a �∈ L, and h(a) = g(a) on L.
Let fα, for α < λ, exemplify TD(g) = λ. By minimality of g, there are λ
functions fα that are equal to h on a positive subset of κ \ L. Since 2κ < λ,
two such functions are equal on a positive set, which is impossible.) �

The following is one of the two main arguments used in the proof of the
revised GCH theorem.

8.14 Theorem. Assume that λ > θ ≥ σ = cf(σ) > κ are cardinals such
that:

1. θκ = θ.

2. If τ < σ then τκ < σ.

3. J is an ideal on κ.

4. There is a sequence λ̄ = 〈λi | i < κ〉, λi < λ, such that

(a) TJ (λ̄) = λ,

(b) λ
〈σ,θ〉
i = λi for every i < κ.

Then λ〈σ,θ〉 = λ. (If we also assume 2θ ≤ λ, then evidently λ[σ,θ] = λ.)

Proof. In the proof, we actually weaken the requirement TJ (λ̄) = λ to the
following conjunction.

1. There are fα ∈
∏

i<κ λi, for α < λ, such that α �= β −→ fα �=J fβ .
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2. There are gα ∈
∏

i<κ λi, for α < λ, such that for every f ∈
∏

i<κ λi

there exists α < κ with f =J+ gα.

Fix a sequence of pairwise D-different functions fα ∈
∏

i<κ λi, for α < λ,
as in 1 above.

For every i < κ we assume λ
〈σ,θ〉
i = λi, so there exists a family Pi ⊆ [λi]θ

of cardinality λi that is (<σ)-cofinal in [λi]θ.
Since |Pi| = λi,

∏
i∈κ Pi is isomorphic to

∏
i<κ λi. So there is (by 2 above)

a family {gα | α < λ} ⊆
∏

i∈κ Pi such that for every g ∈
∏

i∈κ Pi there is
α < λ with g =J+ gα.

For every g ∈
∏

i∈κ Pi and A ∈ J+, let g |̀A be the restriction of g to A,
and

∏
g�A is

∏
i∈A g(i). We define

F(g |̀A) = {ζ ∈ λ | ∀i ∈ A fζ(i) ∈ g(i)}.

In other words, F(g�A) is the set of ζ ∈ λ such that fζ�A ∈
∏

g�A.
Observe that if A ⊆ B ⊆ κ, then F(g�A) ⊇ F(g�B).

8.15 Claim. For every g ∈
∏

i∈κ Pi and A ∈ J+, |F(g�A)| ≤ θ.

Since g(i) ∈ Pi ⊆ [λi]θ, |
∏

i∈A g(i)| ≤ θκ = θ. So, if |F(g�A)| > θ, we
would have ζ �= ζ ′ in λ with fζ�A = fζ′ �A. But as A ∈ J+, this contradicts
fζ �=J fζ′ and proves the claim.

8.16 Claim. Every u ∈ [λ]θ is included in a union of fewer than σ sets of
the form F(gα�A). That is, the collection F = {F(gα�A) | α < λ,A ∈ J+}
is (<σ)-cofinal in [λ]θ.

Observe first that as |F| ≤ λ · 2κ = λ, this claim proves the theorem.
Given u ∈ [λ]θ define for every i < κ

ui = {fα(i) | α ∈ u}.

Then ui ∈ [λi]≤θ and hence there is a Pu
i ⊆ Pi with |Pu

i | < σ and such that
ui ⊆

⋃
Pu

i . Since σ is regular, some τ < σ bounds all the cardinals σi = |Pu
i |,

and, as τκ < σ, we have that |
∏

i∈κ σi| < σ. So

G =
∏

i∈κP
u
i

is a subset of
∏

i∈κ Pi of size < σ. The following two lemmas finish the proof
of our claim.

8.17 Lemma. u ⊆
⋃
{F(g) | g ∈ G}.

Proof. If ζ ∈ u then fζ(i) ∈ ui for every i ∈ κ. Thus fζ(i) ∈
⋃
Pu

i for every
i < κ, and we can find g ∈ G such that fζ(i) ∈ g(i) for all i < κ. Namely,
ζ ∈ F(g) as required. �

8.18 Lemma. For every g ∈ G there is an α < λ and A ∈ J+ such that
F(g) ⊆ F(gα�A). Thus as |G| < σ, u is contained in the union of fewer than
σ sets of the form F(gα�A).
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Proof. For every g ∈ G there is some α < λ such that g =J+ gα. That is, for
some A ∈ J+, g�A = gα�A. We already observed that F(g) ⊆ F(g�A), and
hence the lemma follows. So Theorem 8.14 is proved. �

We shall use a variant of Theorem 8.14 in which the assumption θκ = θ is
replaced with the assumption that θ is a strong limit cardinal with cf(θ) < σ.

8.19 Corollary. Assume that λ > θ > σ = cf(σ) > κ are cardinals such
that:

1. θ is a strong limit cardinal and cf(θ) < σ.

2. If τ < σ then τκ < σ.

3. J is an ideal on κ.

4. There is a sequence λ̄ = 〈λi | i < κ〉, λi < λ, such that

(a) TJ (λ̄) = λ,

(b) λ
〈σ,θ〉
i = λi for every i < κ.

Then λ〈σ,θ〉 = λ.

Proof. Fix a cofinal in θ sequence 〈θε | ε < cf(θ)〉 such that θκ
ε = θε and

σ < θε for every ε. (Start with any cofinal sequence, and replace θε with
(θε)κ if necessary.)

Consider any ε < cf(θ). Observe that for every i < κ we have λi =
λ

[σ,θε]
i . This follows immediately from the assumptions that θ is a strong

limit cardinal with cf(θ) < σ, and such that λi = λ
〈σ,θ〉
i . Hence Theorem 8.14

is applicable (with θε in the role of θ) and λ = λ〈σ,θε 〉. Since this holds for
every ε < cf(θ), we get λ = λ〈σ,θ〉. �

8.2. Proof of the Revised GCH

We prove the following form of the revised GCH.

8.20 Theorem. If θ is a strong limit singular cardinal, then for every λ ≥ θ,
for some σ < θ,

λ = λ[σ,θ].

Proof. Let σ0 = (cf θ)+.
The theorem is proved by induction on λ. For λ = θ, λ = λ[σ0,θ], and

the family of all bounded subsets of θ is an evidence for this equality. (Any
subset of θ is a union of cf(θ) bounded subsets.)

We note for clarification that the induction can easily proceed in case
cf(λ) �= cf(θ), and so we may assume that cf(λ) = cf(θ). However, we shall
not make any use of this in the following proof.
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Case 1: For every A ⊆ Reg∩λ \ θ, if |A| < θ then A ∈ Jσ0-com
≤λ [A].

In this case the inductive assumption is dispensable and Corollary 8.10
yields immediately that λ = λ[σ0,≤θ].

Case 2: Not Case 1.

For some A ⊆ Reg∩λ \ θ with |A| < θ, A �∈ Jσ0-com
≤λ [A].

Hence there is a σ0-complete filter D over A, where |A| = κ < θ, such
that tcf(

∏
A/D) > λ. Say f : κ → A enumerates A. By Lemma 8.12,

TD(f) ≥ tcf(
∏

A/D) > λ. By Lemma 8.13, there exists a g ≤ f defined
over κ so that TD(g) = λ.

We claim that {i < κ | g(i) ≥ θ} ∈ D. If not, then {i < κ | g(i) < θ} is
D-positive. But since cf(θ) < σ0 and D is σ0-complete, there is a θ′ < θ
so that X = {i < κ | g(i) < θ′} is D-positive. Hence TD(g�X) = λ.
But this is impossible since θ is strong limit and (θ′)κ < θ.

So we can assume now that for every i < κ, g(i) ≥ θ. Hence by the
inductive assumption there is a σ(i) < θ such that

g(i) = g(i)[σ(i),θ]. (14.48)

Since cf(θ) < σ0 and D is σ0-complete, there is σ, such that κ, σ0 <
σ < θ and {i < κ | σ(i) < σ} is D-positive. For notational simplicity
we assume that σ(i) < σ for all i < κ. Take σ1 = (σκ)+. Now apply
Corollary 8.19 to λ > θ > σ1 > κ. This yields λ〈σ1,θ〉 = λ, but since θ
is a strong limit cardinal with cf(θ) < σ1 we obtain λ[σ1,θ] = λ.

�

We note that Theorem 8.1 did not make the assumption that θ is a singular
cardinal, but Theorem 8.20 did. To see how Theorem 8.1 can be derived
from Theorem 8.20, we argue as follows in case θ is a regular uncountable
strong limit cardinal. There is a stationary set S ⊆ θ of strong limit singular
cardinals. So if λ ≥ θ, then Theorem 8.20 applies to each θ′ ∈ S, and
λ = λ[σ(θ′),θ′] follows for some σ(θ′) < θ′. By Fodor’s theorem, there is a
fixed σ < θ such that σ = σ(θ′) for a stationary set of cardinals θ′ ∈ S. This
gives λ = λ[σ,<θ]. So obviously for every σ ≤ κ < θ, we get λ = λ[κ].

8.3. Applications of the Revised GCH

Two applications are given here, the first to the existence of diamond se-
quences and the second to cellularity of Boolean algebras. Both use the
following immediate corollary of the revised GCH theorem.

If α ≥ �ω then for some regular uncountable σ < �ω there
is a collection Pα ⊆ [α]σ where |Pα| = |α| and such that for
each x ∈ [α]σ, for some p ∈ Pα, p ⊆ x. (14.49)
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To begin this section we recall that for a stationary set S ⊆ λ+, ♦−
λ+(S)

is the following diamond statement: there is a sequence 〈Sα | α ∈ S〉 where
Sα ⊆ P(α), |Sα| ≤ λ, and for every A ⊆ λ+, {α ∈ S | A ∩ α ∈ Sα} is a
stationary set. If |Sα| = 1, that is essentially Sα ⊆ α, then the sequence is
the usual diamond sequence on S, and the resulting statement is the classical
diamond ♦λ+(S). An intriguing theorem of Kunen’s (see [11]) states that
♦−

λ+(S) is equivalent to ♦λ+(S). (Somewhat more generally, this holds for an
arbitrary regular cardinal μ not necessarily a successor cardinal, where ♦−

μ (S)
is the diamond statement obtained by restricting Sα to have cardinality not
greater than that of α.) When S = λ+, we write ♦−

λ+ instead of ♦−
λ+(S) etc.

A beautiful argument of Gregory [4] proves that if 2λ = λ+ and λℵ0 = λ,
then ♦−

λ+(Sλ+

ω ) where Sλ+

ω is the stationary set of ordinals in λ+ of cofinal-
ity ω. (There are stronger formulations, but this suffices to demonstrate the
application we have in mind.) To prove this theorem, let {Xi | i < λ+} be
an enumeration of all bounded subsets of λ+. For every α < λ+ define Sα as
the collection of all subsets of α that are formed by taking countable unions
of sets from {Xi | i < α}. Since |α|ℵ0 ≤ λ, |Sα| ≤ λ. Now, if A ⊆ λ+ is
given, then the set, C, of α < λ+ for which ∀ζ < α ∃i < α (A ∩ ζ = Xi) is
closed unbounded in λ+. If α ∈ C and cf(α) = ω then A∩α ∈ Sα. Applying
Kunen’s theorem, we can obtain ♦λ+(Sλ+

ω ).
The revised GCH enables in many cases a stronger theorem in which λℵ0 =

λ is not required.

8.21 Theorem. If λ ≥ �ω and 2λ = λ+, then ♦−
λ+ holds. (Hence ♦λ+ is

in fact equivalent to 2λ = λ+ for every λ ≥ �ω.)

Proof. As before, let {Xi | i < λ+} enumerate all bounded subsets of λ+.
�ω is the first strong limit cardinal, and the revised GCH theorem applies
to λ ≥ �ω. So there is a σ < �ω such that (14.49) holds for some family
P ⊆ [λ]σ.

For every α in the interval [λ, λ+), |α| = λ and hence P can be transformed
into a family Pα ⊆ [α]σ such that (14.49) holds (same σ for all α’s). Now we
define Sα as the collection of all subsets of α obtained as unions of the form⋃
{Xi | i ∈ B} where B ∈ Pα. So |Sα| ≤ λ.
The argument to prove that 〈Si | i < λ+〉 is a diamond sequence is now

familiar. Let A ⊆ λ+ be any set. There is a closed unbounded C ⊆ λ+ as
before so that for α ∈ C and ζ < α there is i < α such that A∩ ζ = Xi. Now
pick any α ∈ C such that cf(α) = σ. Pick an increasing sequence 〈αε | ε < σ〉
cofinal in α, and for each ε < κ find i(ε) < α such that A∩αε = Xi(ε). Define
u = {i(ε) | ε < σ}. Observe that if K ⊆ σ is any unbounded subset of σ
then

⋃
{Xi(ε) | ε ∈ K} = A ∩ α. For some B ∈ Pα, i(ε) ∈ B for unboundedly

many ε < σ. Hence A ∩ α =
⋃
{Xi | i ∈ B} ∈ Sα. �

This kind of result about sufficiently large λ was first seen in this context.
Very recently, Shelah [13] has, through a short and ingenious proof having
aspects of club guessing, improved the result by weakening the hypothesis
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λ ≥ �ω to λ ≥ ℵ1. It had been well known that CH + ¬♦ω1 is consistent
by a result of Jensen. Thus, a long story has come to a surprising yet fitting
conclusion, that except for the single and focal case λ = ω, ♦λ+ is actually
equivalent to just the cardinal hypothesis 2λ = λ+.

We now begin the second application.

8.22 Definition. A subset X of a Boolean algebra is μ-linked iff there is
a function h : X → μ such that x ∧ y �= 0B whenever h(x) = h(y).

Our aim is to prove the following theorem from [16]. (For background and
motivation and additional results consult [16] and [5].)

8.23 Theorem. Assume that μ = μ<�ω . If B is a c.c.c. Boolean algebra of
cardinality ≤ 2μ, then B is μ-linked.

The proof which follows is an example of an induction that relies on the
revised GCH. Since B satisfies the countable chain condition, its completion
has cardinality ≤ |B|ℵ0 ≤ 2μ, and so we can assume that B is a complete
Boolean algebra (and when we prove that it is μ-linked then the original
algebra which is embedded in its completion is also μ-linked).

We prove by induction on λ, a cardinal such that μ ≤ λ ≤ 2μ, that any
subset of B of cardinality λ is μ-linked. This is obvious for λ = μ, or when
cf(λ) ≤ μ (and the inductive claim holds for smaller cardinals), and so we
may assume that cf(λ) > μ. There are several ingredients in the proof of this
theorem, and so it is postponed until the required preparations are made.

8.24 Definition. Let C be a Boolean algebra, and D ⊆ C a subalgebra.
For any x ∈ C let Fx = {d ∈ D | x ≤ d} be the filter generated by x. For
a cardinal θ the following property is denoted (∗∗)θ (for the pair D and C):

(∗∗)θ For every x ∈ C there is an F ⊆ Fx of cardinality ≤ θ such that
for every b ∈ Fx there is an a ∈ F such that a ≤ b.

In other words, Fx is generated by a subset of cardinality ≤ θ.

8.25 Lemma. Let θ, μ, and κ be cardinals such that θ, μ ≤ κ. Suppose
that C is a Boolean algebra with a decomposition C =

⋃
α<κ Cα, where the

sequence of Boolean subalgebras Cα is increasing and continuous (for limit δ,
Cδ =

⋃
i<δ Ci). Assume the following:

1. C0 = ∅.

2. Each Cα is μ-linked.

3. Property (∗∗)θ holds for each of the pairs Cα, C.

Let χ be a sufficiently large cardinal and consider the structure Hχ (with
some well ordering of its universe, and with C and its decomposition as con-
stants). Suppose that M1 and M2 are two elementary substructures of Hχ

that are isomorphic with an isomorphism g : M1 → M2 that is the identity
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on κ ∩M1 ∩M2. Suppose in addition that θ ⊆M1 ∩M2, and that M1 ∩ μ =
M2 ∩ μ.

Then for every non-zero x ∈M1 ∩ C,

x ∧ g(x) �= 0C .

Proof. The rank of an element c ∈ C is the least ordinal τ such that c ∈ Cτ .
Since C0 = ∅, the rank of c is a successor ordinal (below κ) such that c ∈
Cα+1 \Cα. Take x ∈M1 of minimal rank α + 1 such that x∧ g(x) = 0C and
we shall obtain a contradiction.

Case 1. α ∈ M1 ∩M2. So g(α) = α. Let h : Cα+1 → μ be the least
function (in the well-ordering of Hχ) given by the assumption that Cα+1

is μ-linked. So h ∈ M1 ∩ M2, and since h is definable from α we have
g(h) = h (as g(α) = α). Say h(x) = η ∈ μ. As M1 ∩ μ = M2 ∩ μ, we have
g(h(x)) = g(η) = η. But g(h(x)) = g(h)(g(x)) = h(g(x)). So h(g(x)) = η,
and hence h(x) = h(g(x)) which implies that x and g(x) have non-zero meet
in C.

Case 2. α ∈M1 \M2, and hence α �= g(α) and g(α) ∈M2 \M1. Suppose
that g(α) < α (case g(α) > α is symmetric). Say g(x) = y, and g(α) = β.
Then β + 1 is the rank of y. Let α1 ≤ α be the least ordinal in M1 that is
strictly above β. Since β + 1 ≤ α1,

y ∈ Cα1 .

Let Fx ⊆ Cα1 be the filter generated by x. Property (∗∗)θ of the pair Cα1

and C implies the existence of F ⊆ Fx of cardinality ≤ θ that generates Fx.
As x and y are disjoint, the complement, −y, of y is in Fx (since it is in Cα1)
and hence there is an a ∈ F that is disjoint from y. Since α1 and x are in
M1, we have Fx and F in M1 as well. But as θ is included in M1, F ⊆ M1

and hence a ∈M1 follows. The rank of a is α2 + 1 ≤ α1. The minimality of
α1 implies that α2 < β (equality is impossible because β is not in M1). But
now we can apply a similar argument to Fy (for the pair Cβ , C) and discover
b ∈ Cβ ∩M2 that is disjoint to a. Say u ∈ M1 is such that g(u) = b. Then
u ∈ Cα and hence x0 = u ∧ a is in Cα. Since b ∈ Fy, u ∈ Fx, and hence x0

is in Fx too. In particular, x0 �= 0C . But g(x0) = b ∧ g(a) and x0 is disjoint
to b ∧ g(a) because already a is disjoint to b. So x0 is disjoint to g(x0), in
contradiction to the minimality of the rank of x. �

Here is a lemma which is an immediate consequence of the Engelking-
Karlowicz theorem [3]; we state it for reference and will return to its proof
later on.

8.26 Lemma. If μθ = μ then there is a map τ : [2μ]θ → μ such that if
τ(M1) = τ(M2) then M1 and M2 have the same order-type (as subsets of
the ordinal 2μ) and the order isomorphism g : M1 → M2 is the identity on
M1 ∩M2.
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8.27 Corollary. Suppose that θ < μ < κ ≤ 2μ are cardinals such that
μθ = μ. Let C be a Boolean algebra of cardinality ≤ 2μ, and suppose that
C =

⋃
α<κ Cα where the Cα form an increasing and continuous sequence of

subalgebras such that: C0 = ∅, each Cα is μ-linked, and (∗∗)θ holds for each
pair Cα, C. Then C is μ-linked.

Proof. Let χ be sufficiently large and Hχ be the structure of sets of cardinality
hereditarily less than χ, with a well-ordering of the universe and C as a
constant. For every a ∈ C find M(a) ≺ Hχ of cardinality θ and such that
θ ⊆M(a). With each M = M(a) we associate the following three parameters.

1. M ∩ μ ∈ [μ]θ. So there are μ such parameters.

2. τ(M ∩ 2μ), where τ : [2μ]θ → μ is the map from the lemma above.

3. The isomorphism type of M(a) (with a as a parameter). Since 2θ ≤ μ
there are ≤ μ such types.

The map taking a ∈ C to the three parameters associated with M(a)
proves that C is μ-linked. For if M(a) and M(b) have the same parameters
then a ∧ b �= 0C by the following argument. Let g : M(a) → M(b) be
the isomorphism given by item 3. Then g(a) = b, and we plan to apply
Lemma 8.25. This is possible because (1) τ(M(a) ∩ 2μ) = τ(M(b) ∩ 2μ)
implies that g is the identity on 2μ ∩M(a) ∩M(b), (2) θ ⊆ M(a) ∩M(b)
by assumption, and (3) M(a) ∩ μ = M(b) ∩ μ because this is the first of the
three parameters. �

We continue the inductive proof of Theorem 8.23. Recall that λ ≤ 2μ, B
is a complete c.c.c. Boolean algebra of cardinality ≤ 2μ, and every subset of
B of cardinality < λ is μ-linked. Our aim is to prove that any X ⊆ B of
cardinality λ is μ-linked. We intend to use Corollary 8.27, and we must find
a C ⊆ B with X ⊆ C and such that the premises of Corollary 8.27 hold.

For every α such that �ω ≤ α < λ we have a regular uncountable cardinal
σ(α) < �ω and a family Pα ⊆ [α]σ(α) such that (14.49) holds. Since cf(λ) �= ω
(in fact cf(λ) > μ) there is an unbounded set E ⊆ λ such that for some fixed
σ we have σ = σ(α) for every α ∈ E. The symbols E and σ retain this
meaning throughout the proof. We define θ = 2<σ.

8.28 Lemma. Let χ > 2μ be sufficiently large. Suppose that δ is an ordinal
and 〈Mi ≺ Hχ | i < δ〉 is such that:

1. cf(δ) > σ.

2. B,E ∈M0 and �ω ⊆M0.

3. Mi ⊆Mj for i < j and Mi ∈Mi+1.

4. |Mi| < λ, and Mi ∩ λ ∈ λ.
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Then for M =
⋃

i<δ Mi and B0 = B ∩ M , (∗∗)2<σ holds for the pair B0

and B.

Proof. Given x ∈ B consider Fx ⊆ B0, the filter of members of B0 that
are greater than x. We want to find a F ⊆ Fx of cardinality ≤ θ = 2<σ

that generates Fx. We choose aζ ∈ Fx for ζ < σ by the following inductive
procedure. Suppose that Aζ = {aε | ε < ζ} is already chosen. Let Gζ =
{∧Z | Z ⊆ Aζ and Z ∈ M}. So Gζ is the collection of all elements of B
that can be formed by taking meets of subsets of Aζ that happen to be in
M . Clearly Aζ ⊆ Gζ ⊆ Fx. Since |Aζ | < σ, |Gζ | ≤ 2<σ. If there exists
a ∈ Fx not covering any b ∈ Gζ , then let aζ be such a. If there is no such a,
then the procedure stops and F = Gζ is as required. We shall prove that the
construction cannot proceed for every ζ < σ. Suppose it does, and consider
A = {aζ | ζ < σ}. Since cf(δ) > σ there is an i < δ with A ⊆ Mi. As
|Mi| < λ there is, already in Mi+1 an ordinal α ∈ E such that |Mi| < α.
So α + 1 ⊆ Mi+1 and hence also Pα ⊆ Mi+1 (where Pα ⊆ [α]σ satisfies
(14.49)). Viewing the universe of Mi as a copy of an ordinal < α, the set A
is a subset of α of cardinality σ, and we have some p ∈ Pα such that p ⊆ A.
Since �ω ⊂ Mi+1, each subset of p is also in Mi+1. It follows that for every
aζ ∈ p, Aζ ∩ p ∈M and hence aζ �≥ ∧(Aζ ∩ p). Thus ∧(Aζ ∩ p)− aζ �= 0B

is a sequence of σ pairwise disjoint members of B, which contradicts the
c.c.c. since σ is uncountable. �

We can complete now the proof of Theorem 8.23. We are assuming that
λ ≤ 2μ, cf(λ) > μ, μ<�ω = μ, and every subset of B of cardinality smaller
than λ is μ-linked. A set X ⊆ B of cardinality λ is given, which we want
to show is μ-linked. Pick χ sufficiently large and define Mi ≺ Hχ, for i <
cf(λ) = κ, such that

1. Mi is increasing and continuous with i. |Mi| < λ, λ ∩Mi ∈ λ, and
Mi ∈Mi+1.

2. B,X ∈M0, μ + 1 ⊆M0, �ω ⊆M0, and X ⊆M =
⋃

i<κ Mi.

We shall prove that B ∩ M is μ-linked, and hence that X is μ-linked.
For any set R of ordinals, let nacc(R) denotes those α ∈ R that are not
accumulation points of R (for some β < α R ∩ (β, α) = ∅).

Let R ⊆ κ be a closed unbounded set such that every α ∈ nacc(R) is
a limit ordinal with cf(α) > σ. Then, for δ ∈ nacc(R), Lemma 8.28 applies
to the sequence 〈Mi | i < δ〉 and hence the pair B ∩Mδ, B satisfies (∗∗)θ

(θ = 2<σ). But, then it follows that (∗∗)θ holds for every δ ∈ R for the pair
B ∩Mδ, B. Because if cf(δ) > σ then the lemma applies, and if cf(δ) ≤ σ
then δ is a limit of ≤ σ non-accumulation points of R, and hence (∗∗)θ holds
for B ∩Mδ by accumulating ≤ σ sets, each of cardinality ≤ θ.

Now let 〈ρi | i < κ〉 be an increasing and continuous enumeration of R,
and define Ci = B ∩Mρi , C = B ∩M . Then Corollary 8.27 applies with
θ = 2<σ and yields that B ∩M is μ-linked. This proves Theorem 8.23.
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For completeness we review the theorem of Engelking and Karlowicz that
was used in the proof.

8.29 Theorem (Engelking and Karlowicz [3]). Assume that θ and μ are
cardinals such that μθ = μ. Then there are functions fξ : 2μ → μ, for ξ < μ,
such that if A ⊆ 2μ, |A| ≤ θ, and f : A→ μ, then there is a ξ < μ such that
f ⊆ fξ.

Proof. It is convenient for the proof to see 2μ as the set of functions from μ
to 2. A “template” is a triple (D,S, F ) where D ∈ [μ]θ, S ⊆ 2D and |S| ≤ θ
(S is a set of functions from D to 2), and F : S → μ. The number of possible
templates is μ.

For any template T = (D,S, F ) we define fT on 2μ. If α ∈ 2μ and
α�D ∈ S, then we define fT (α) = F (α�D) (if α�D �∈ S then fT (α) is any
value).

Given any A ⊆ 2μ, |A| ≤ θ, and f : A → μ, find D ∈ [μ]θ such that
α1�D �= α2�D whenever α1 �= α2 are in A. S = {a�D | a ∈ A}. For every
s ∈ S there is a unique a ∈ A such that s = a�D and we define F (s) = f(a).
Then f ⊆ fT . �

We can prove now Lemma 8.26. Clearly the map assigning to each X ∈
[2μ]θ its order-type (in θ+) ensures that two sets are isomorphic if they have
the same value. The problem is to ensure that two isomorphic sets have an
isomorphism that is the identity on their intersection. Given X ∈ [2μ]θ, let
fX be the collapsing map which assigns to each x ∈ X the order-type of x∩X.
Then there is some ξ < μ such that fX ⊆ fξ (by the Engelking-Karlowicz
theorem). Let’s color X with ξ (say the first one). Now if X and Y in [2μ]θ

have the same order-type and the same color ξ, then the isomorphism of X
onto Y is the identity on X ∩Y since it is equal to g−1

2 ◦ g1 where g1 = fξ�X
and g2 = fξ�Y .
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1. Introduction

1.1. Three Problems

The regular cardinals are divided into three classes—those that are them-
selves successors of regular cardinals, those that are limit cardinals, and
those that are successors of singular cardinals. This chapter is concerned
with the peculiar nature of the cardinals in the last of these classes, a nature
that combines aspects of the other two classes in surprising ways, and whose
investigation involves almost all the tools of modern set theory.

Our chapter begins with a brief discussion of three examples, chosen to
illustrate some of the difficulties encountered when working with successors
of singular cardinals. In each case, we consider a question concerning regular
cardinals whose solution is quite easy to obtain for each ℵn (n < ω) but
whose resolution at ℵω+1 touches on much deeper issues. This shows us how
the strange nature of successors of singular cardinals makes itself felt at the
first place possible.

The Cofinality of [ωω+1]ℵ0

Our first example involves the cofinality of [ωω+1]ℵ0—the collection of all
countable subsets of ωω+1. Recall that the cofinality of [κ]ℵ0 is defined to be
the minimum cardinality of a family C ⊆ [κ]ℵ0 with the property that every
countable subset of κ is covered by a member of C. The cofinality of [ω1]ℵ0

is trivially equal to ℵ1 (let C be the collection of initial segments of ω1), and
a simple induction establishes that the cofinality of [ωn]ℵ0 is ℵn for n < ω.
This leads us to the natural question: What can be said about the cofinality
of [ωω+1]ℵ0?

We see immediately that our induction will not work, and the reason why
is clear—the answer depends on the cofinality of [ωω]ℵ0 , and this is something
that ZFC does not decide. Problems concerning cardinal arithmetic in the
neighborhood of a singular cardinal are beyond the scope of this chapter—for
more information, we refer to the reader to the chapter by Gitik [38] and that
by Abraham and Magidor [1] in this Handbook.

Reflection of Stationary Sets

Our next example is a problem considered in Jech’s chapter [49] in this Hand-
book which will be treated at length in our chapter—the problem of station-
ary reflection. Let us recall the relevant definitions.
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1.1 Definition. Suppose that λ is an uncountable regular cardinal, and let
S be a stationary subset of λ.

1. Given α < λ, say that S reflects at α if α has uncountable cofinality
and S ∩ α is a stationary subset of α.

2. S reflects if there is some α < λ such that S reflects at α.

3. If S ⊆ λ is stationary, then Refl(S) means that every stationary subset
of S reflects.

1.2 Definition. If κ < λ are regular cardinals, then we define

Sλ
κ := {δ < λ : cf(δ) = κ}.

Variations of this notation (along the lines of Sλ
≤κ) should be given the obvious

interpretation.

If κ is a regular cardinal, then every ordinal less than κ+ has a closed
unbounded subset consisting of ordinals of cofinality less than κ. This implies
immediately that Sκ+

κ does not reflect, so successors of regular cardinals (in
particular, the cardinals ℵn for n < ω) always have non-reflecting stationary
subsets. However, this simple argument says nothing about ℵω+1 (or other
successors of singular cardinals) and so we are led at once to the question of
whether or not ℵω+1 has a non-reflecting stationary subset.

The answer to this question is a typical one. If the universe is sufficiently
“L-like”, then an argument of Jensen establishes that Refl(ℵω+1) fails. On
the other hand, granted the existence of infinitely many supercompact car-
dinals (which of course, implies that the universe is far from being “L-like”),
a construction of Magidor [62] provides a model in which every stationary
subset of ℵω+1 reflects.

Is ℵω+1 a Jónsson cardinal?

The last problem we consider in this introductory section is motivated by
a question from the partition calculus, in particular, on whether or not a
very weak version of Ramsey’s Theorem can hold for colorings of the finite
subsets of a given cardinal.

1.3 Definition. A cardinal λ is a Jónsson cardinal if for every function
F : [λ]<ω → λ, there is a set H ⊆ λ of size λ such that the range of F �[H]<ω

is a proper subset of λ.

Note that if we consider the function f : [ω]<ω → ω given by

f(s) = |s|,

we see that ℵ0 is certainly not a Jónsson cardinal, and next claim establishes
that none of the cardinals ℵn for n < ω are either.
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1.4 Claim. If κ is not a Jónsson cardinal, then neither is κ+.

Proof. Assume κ is not a Jónsson cardinal, and let F : [κ]<ω → κ attest to
this fact. Given an ordinal α with κ ≤ α < κ+, we may combine F together
with a bijection between α and κ to build a function

Fα : [α]<ω → α

with the property that for any A ⊆ α of cardinality κ and any β < α, there
is an s ∈ [A]<ω such that Fα(s) = β.

Define a function G : [κ+]<ω → κ+ by pasting together the functions Fα

in a straightforward way—given α0 < · · · < αn < κ+, define

G({α0, . . . , αn}) :=

{
0 if αn < κ, and
Fαn({α0, . . . , αn−1}) if κ ≤ αn < κ+.

We claim now that the function G shows that κ+ is not a Jónsson cardinal.
To see this, suppose that A ⊆ κ+ has cardinality κ+ and let an ordinal β < κ+

be given. We produce an s ∈ [A]<ω such that G(s) = β as follows:
First, locate an α ∈ A such that β < α and |A ∩ α| = κ; it is clear that

such an α exists and α ≥ κ. Using the salient property of Fα, we can choose
t ∈ [A ∩ α]<ω such that Fα(t) = β. If we define s := t ∪ {α}, then x ∈ [A]<ω

and the definition of G implies G(s) = β, as required. �

The situation at ℵω+1 seems to require a different idea, however, because
the question of whether ℵω can be a Jónsson cardinal is still unresolved. If
there is a Jónsson cardinal, then 0# exists by an argument of Kunen. (See
Sect. 18 of [51]. It was known much earlier that Jónsson cardinals imply
V �= L [54].) Thus, if V = L we know that ℵω+1 is not a Jónsson cardinal
for the simple reason that there are no Jónsson cardinals at all. On the
other hand, a theorem of Rowbottom [72] establishes that Ramsey cardinals
are Jónsson cardinals. Thus Jónsson cardinals are consistent relative to the
existence of moderately-sized large cardinals and so we cannot get a cheap
answer regarding ℵω+1.

We will discuss this question in more detail in the final section of this chap-
ter, but we point out that in the particular case of ℵω+1, Shelah’s pcf the-
ory provides us with an answer—ℵω+1 is not a Jónsson cardinal (see Theo-
rem 5.7), but his methods do not generalize to arbitrary successors of singular
cardinals. In particular, the question of whether or not it is possible for the
successor of a singular cardinal to be a Jónsson cardinal is still open, and
this is still an active area of research in set theory.

One can summarize the situation in all three of the preceding examples
quite succinctly—if the universe is sufficiently “L-like”, then successors of
singular cardinals behave much like successors of regular cardinals, but in the
presence of sufficiently large cardinals, one can sometimes find quite different
behavior. As we shall see, these opposing forces are typified by the non-
reflection implicit in �-sequences and the abundant reflection supplied by
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large cardinals, and their interplay gives this area of set theory its special
character.

1.2. Conventions and Notation

Elementary Submodels

Elementary submodels will be one of our main tools. Our conventions are
standard—we assume χ is some ambient regular cardinal much larger than
any cardinals under discussion, and by H(χ) we mean the collection of all
sets whose transitive closure has cardinality less than χ. It is well known
that 〈H(χ),∈〉 is a model of all axioms of ZFC except perhaps for the power
set axiom; for all intents and purposes we can pretend that all relevant set
theory is done inside of H(χ). The book [46] contains a gentle development
of elementary submodels of H(χ) in the context of cardinal arithmetic and
pcf theory.

Throughout this chapter, A will denote some expansion of the structure
〈H(χ),∈, <χ〉 by at most countably many functions, constants, and rela-
tions. Note that we will indulge in a bit of sloppiness by sometimes referring
to elementary submodels of H(χ), and sometimes referring to elementary
submodels of A—both phrases are used to mean exactly the same thing.
The symbol <χ denotes some fixed well-ordering of H(χ); we include such a
well-ordering in our structure because it gives us canonical Skolem functions.
In more detail, for each formula ϕ(v0, . . . , vn) of the language of A, we can
define an n-ary function fϕ with domain H(χ) by letting fϕ(x1, . . . , xn) be
the <χ-least x ∈ H(χ) such that A |= ϕ[x, x1, . . . , xn] if such an x exists,
and setting fϕ(x1, . . . , xn) = 0 otherwise. We obtain the set of Skolem terms
for A by closing the collection of Skolem functions under composition. The
following definition establishes our notational convention.

1.5 Definition. Let B ⊆ H(χ). Then SkA(B) denotes the Skolem hull of B
in the structure A. More precisely,

SkA(B) = {τ(b0, . . . , bn) : τ a Skolem term for A, and b0, . . . , bn ∈ B}.

The Tarski criterion tells us that SkA(B) is an elementary substructure
of A, and it is the smallest such structure containing every element of B. The
following technical lemma (due to Baumgartner [6]) captures a fact about
Skolem hulls that is incredibly useful in our context.

1.6 Lemma. Assume that M ≺ A and let θ ∈M be a cardinal. If we define
N = SkA(M ∪ θ), then for all regular cardinals σ ∈M \ θ+,

sup(M ∩ σ) = sup(N ∩ σ).

Proof. Suppose that α ∈ N ∩ σ; we must produce a β > α in M ∩ σ. Since
α ∈ N , there is a Skolem term τ and parameters α0, . . . , αi, β0, . . . , βj such
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that α = τ(α0, . . . , αi, β0, . . . , βj), where each α� is less than θ and each β�

is an element of M \ θ. We define a function F with domain [θ]i+1 by

F (x0, . . . , xi) =

{
τ(x0, . . . , xi, β0, . . . , βk) if this is an ordinal less than σ

0 otherwise.

The function F is an element of M as it is definable from parameters in M
and so β := sup(ran(F )) is in M as well. Since σ is a regular cardinal, it is
clear that β < σ. Now α ∈ ran(F ) and therefore α < β as required. �

We will also make great use of sequences of elementary submodels, and
the concept captured by the following definition (first explicitly formulated
in [36]) will have a prominent role.

1.7 Definition. Let γ be a limit ordinal, and let A be as above. An internally
approachable (IA) chain of substructures of A of length γ is a continuous
and increasing sequence of elementary substructures of A such that 〈Mj :
j ≤ i〉 ∈Mi+1 for all i < γ.

We remark that in circumstances of the preceding definition that for j <
i < γ we have i ⊆ Mi and Mj ∈ Mi. The following definition isolates one
class of IA chains that appears in almost every section of this work. The
terminology goes back to Shelah’s original investigations in [83].

1.8 Definition. Let λ be a regular cardinal. A λ-approximating sequence
is an IA chain of substructures 〈Mi : i < λ〉 of length λ such that λ ∈ M0,
and for each α < λ we have |Mα| < λ and Mα ∩ λ is an initial segment of λ.
A λ-approximating sequence is said to be over x if x ∈

⋃
α<λ Mα.

The following proposition is simple to prove, but it captures another prop-
erty of elementary submodels that is used in almost every part of this chapter.

1.9 Proposition. Let λ be a cardinal, and suppose that M is an elementary
submodel of H(χ) for which M ∩ λ is an initial segment of λ. If A ∈ M
satisfies |A| < λ, then A ⊆M .

Proof. Since A ∈ M , so is the cardinality of A. Since |A| < λ and M ∩ λ is
an initial segment of λ, it follows that |A| ⊆M . The model M must contain
a bijection b mapping |A| onto A. Given a ∈ A, there is an α < |A| such that
a = b(α). Since both b and α are in M , we conclude that a is as well. �

For a typical example of how the above proposition is used, consider the
case where λ = μ+ for μ a strong limit singular cardinal. If A ∈ M is of
cardinality less than μ, then it follows that every subset of A is also in M .
This sort of argument is used without comment throughout the sequel, so it
seemed worthwhile to call the reader’s attention to it here in the beginning.
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λ-Filtration Sequences

Suppose now that λ = μ+, where μ is a singular cardinal. Many combinato-
rial arguments make use of the fact that every α < λ is the union of cf(μ)
sets of size less than μ. The following definition gives us a systematic way of
speaking of this.

1.10 Definition. Suppose that λ = μ+ for μ singular. A matrix

b̄ = 〈bα,i : α < λ, i < cf(μ)〉

of subsets of λ is a λ-filtration sequence if for each α < λ,

1. bα,i ⊆ α,

2. the sequence 〈bα,i : i < cf(μ)〉 is continuous and increasing, and

3. α =
⋃

i<cf(μ) bα,i.

We note that with each λ-filtration sequence b̄ we may associate a natural
coloring of the pairs from λ, namely

d(β, α) = min{i < cf(μ) : β ∈ bα,i}.

On the other hand, if we are given a function d : [λ]2 → cf(μ), then we can
construct a λ-filtration sequence by defining

bα,i = {β < α : d(β, α) < i}

It is straightforward to build λ-filtration sequences that satisfy additional
requirements. For example, if we fix an increasing sequence of regular car-
dinals 〈μi : i < cf(μ)〉 cofinal in μ, then an easy inductive argument lets us
define a λ-filtration sequence with the additional properties that

|bα,i| ≤ μi,

and
β ∈ bα,i =⇒ bβ,i ⊆ bα,i.

pcf Theory

Our notation concerning pcf theory is fairly consistent with that presented in
the chapter by Abraham and Magidor [1] in this Handbook. We take a mo-
ment to recall the most important definitions and establish our conventions.

1.11 Definition. Let (P,≤) be a partially ordered set, and let θ be a car-
dinal. We say that (P,≤) is θ-directed if every subset A ⊆ P of cardinality
less than θ has an upper bound, that is, there is a p ∈ P such that q ≤ p for
all q ∈ A. The cofinality of (P,≤) (denoted cf(P ) when ≤ is understood) is
the least cardinal θ for which there is a family A ⊆ P of cardinality θ such
that for all p ∈ P , there is a q ∈ A such that p ≤ q.
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1.12 Definition. Let I be an ideal on some index set X, and let R be some
relation on the class of ordinals On. Given functions f and g mapping X to
On, we define

fRIg ⇐⇒ {x ∈ X : ¬(f(x)Rg(x))} ∈ I. (15.1)

In particular, we have

f <I g ⇐⇒ {x ∈ X : g(x) ≤ f(x)} ∈ I, (15.2)

and
f ≤I g ⇐⇒ {x ∈ X : g(x) < f(x)} ∈ I. (15.3)

Note that in general “f ≤I g” is not the same as “either f <I g or f =I g”,
but the equivalence holds if I is a maximal ideal.

In some situations, we will work with the filter dual to the ideal I, so for
example if D is an ultrafilter on X we may say <D instead of <I for I the
ideal dual to D.

It is quite natural to consider least upper bounds in this context, and the
following definition translates this concept into our framework.

1.13 Definition. A function f is a ≤I-least upper bound for 〈fi : i < α〉 if

1. f is a <I -upper bound for 〈fi : i < α〉, and

2. if {x ∈ X : g(x) < f(x)} /∈ I, then there is an i < α such that
{x ∈ X : g(x) < fi(x)} /∈ I.

There is also a strengthening of “least upper bound” that is a crucial
ingredient in many proofs.

1.14 Definition. A <I -increasing sequence of functions 〈fi : i < α〉 has
a <I-exact upper bound (or <I-eub) if there is a function f ∈XOn such that

1. f is a <I -upper bound for 〈fi : i < α〉, and

2. for all g <I f , there is an i for which g <I fi.

If there is no opportunity for confusion, we may omit explicitly mentioning
the order <I .

In general a given sequence need not have an exact upper bound, but if
one exists then it is unique up to equivalence modulo the ideal I. We also
remark that a <I -exact upper bound is also a <I -least upper bound, but the
converse is not true in general.

1.15 Definition. Let I be an ideal on κ, and let 〈μi : i < κ〉 be an increasing
sequence of regular cardinals. We say that (

∏
i<κ μi, <I) has true cofinality θ,

or
tcf

(∏
i<κμi, <I

)
= θ
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if θ is regular and there is a <I -increasing sequence 〈fα : α < θ〉 in
∏

i<cf(μ) μi

such that (
∀g ∈

∏
i<κμi

)
(∃α < θ)[g <I fα].

Note that not every structure of the form (
∏

i<κ μi, <I) has a true cofi-
nality, but this problem disappears if I is dual to an ultrafilter.

Of course, it is only a cosmetic change to move from products of the form∏
i<κ μi to products of the form

∏
A for A a set of regular cardinals. This

small change in emphasis moves us into pcf theory.

1.16 Definition. A set A of regular cardinals is progressive if |A| < min(A).
If A is a progressive set of regular cardinals, then pcf(A) is the set of all
cardinals θ for which there is an ultrafilter D on A such that

cf
(∏

A/D
)

= θ.

If λ is a cardinal and A is a progressive set of regular cardinals, then J<λ[A]
is the collection of all B ⊆ A such that

cf
(∏

A/D
)
< λ for every ultrafilter D on A containing B.

The name progressive comes originally from [46], and seems well on its
way to standard usage.

1.17 Fact. Let A be a progressive set of regular cardinals.

1. J<λ[A] is an ideal (not necessarily proper) on A.

2. pcf(A) has a maximal element, max pcf(A). It is the least λ such that
A ∈ J<λ+ [A].

3. If λ ∈ pcf(A), then there is a single set Bλ[A] ⊆ A (called a generator
for λ) such that

J<λ+ [A] = J<λ[A] + Bλ[A],

that is, the ideal J<λ+ [A] is generated by J<λ[A] together with the set
Bλ[A]. The set Bλ[A] is unique modulo the ideal J<λ[A].

4. If λ ∈ pcf(A), then

tcf
(∏

Bλ[A], <J<λ[A]

)
= λ.

In particular, tcf(
∏

Bλ[A], <J<λ[A]) is defined. Of course, the same
statement holds if we replace Bλ[A] by any member of J<λ+ [A]\J<λ[A].

The preceding gathers together several results of Shelah, and it encapsu-
lates most of what we will be using from pcf theory. The chapter [1] is a
good reference for these results, and [46, 55, 10], and [89] provide a selection
of external sources for the material.
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One topic not covered in [1] is the pseudopower pp(μ) of a singular cardi-
nal. A few of the theorems we prove later are most naturally stated in terms
of the pseudopower function, so we recall the definition. Readers interested
in a more comprehensive study of pseudopowers should consult [46, Chap. 9]
for the preliminaries, and [89] for an exhaustive analysis.

1.18 Definition. Suppose that μ is a singular cardinal, and let PP(μ) be
the set of all cardinals of the form cf(

∏
A/D), where A is a set of regular

cardinals cofinal in μ of order-type cf(μ) and D is an ultrafilter on A disjoint
to the ideal Jbd[A] of bounded subsets of A. We define the pseudopower of μ
(denoted pp(μ)) by the formula

pp(μ) = sup(PP(μ)). (15.4)

Our use of pp(μ) is limited in that we are almost exclusively concerned
with the statement pp(μ) = μ+ and its negation. With this in mind, it
seems reasonable to include the following proposition, which is really just
a restatement of the definitions involved.

1.19 Proposition. Let μ be a singular cardinal. Then the following state-
ments are equivalent:

1. pp(μ) > μ+.

2. There is an increasing sequence �μ = 〈μi : i < cf(μ)〉 of regular cardinals
with limit μ for which

(∏
i<cf(μ)μi, <

∗) is μ++-directed,

where <∗ abbreviates <I for I the ideal of bounded subsets of cf(μ).

Proof. Assume pp(μ) > μ+. Let θ be the least cardinal greater than μ+ for
which there are A and D as in Definition 1.18 with cf(

∏
A/D) = θ. Since

θ is in pcf(A), we know that there is a generator B = Bθ[A] corresponding
to θ. Since B ∈ D, it must be the case that B is an unbounded subset of A,
and we also know

tcf
(∏

B/J<θ[A]
)

= θ.

It follows that (
∏

B,<J<θ [A]) is θ-directed, hence μ++-directed. If B0 is
a subset of B in J<θ[A], then B0 must be bounded in B—otherwise, any
ultrafilter on B0 disjoint to the ideal of bounded sets would contradict the
choice of θ. Thus, it follows that

(∏
B,<Jbd[B]

)
is μ++-directed.

If we enumerate B as 〈μi : i < cf(μ)〉, then
(∏

i<cf(μ)μi, <
∗) is μ++-directed,

as required.
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For the other direction, we note that A = {μi : i < cf(μ)} is a set of
cardinals as in Definition 1.18. If D is any ultrafilter on A disjoint to the
ideal of bounded sets, then clearly

cf
(∏

A/D
)
≥ μ+,

but since
∏

A/Jbd[A] is μ++-directed and Jbd[A] ∩D = ∅, we know

cf
(∏

A/D
)
�= μ+.

Since cf(
∏

A/D) ∈ PP(μ), we conclude pp(μ) > μ+. �

Large Cardinals

Large cardinals make several appearances in this chapter. Our notation is
consistent with that of Kanamori’s book [53]. We assume that the reader
is familiar with the definitions of the most common large cardinals (Mahlo,
measurable, supercompact, etc.), as well as with the idea of an elementary
embedding. However, there are many equivalent characterizations of some of
the cardinals, so we will take a moment to fix the definitions which we shall
use.

1.20 Definition.

1. A cardinal κ is strongly compact if for any set S, every κ-complete filter
over S can be extended to a κ-complete ultrafilter over S.

2. A cardinal κ is γ-supercompact (for γ ≥ κ) if there is an elementary
embedding j : V →M such that

(a) crit(j) = κ,

(b) γ < j(κ), and

(c) M is closed under sequences of length ≤ γ.

We will refer to an embedding j with the above properties as a γ-
supercompact embedding.

3. A cardinal κ is supercompact if it is γ-supercompact for all γ ≥ κ.

In most cases, we use only a few basic properties of γ-supercompact embed-
dings. In particular, if we have reason to use a γ-supercompact embedding
j : V → M (with κ = crit(j)), then our primary concern tends to be the
function j � γ and the ordinal

ρ := sup{j(α) : α < γ}.

We note that ρ is an ordinal of cofinality cf(γ), and that {j(α) : α < γ} is
a <κ-closed unbounded subset of η. Furthermore, since M is closed under
sequences of length ≤ γ, the set {j(α) : α < γ} is an element of M .
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It is well-known that strongly compact cardinals can be characterized in
many different ways (see [53, Sect. 22] or [51, Chap. 20]). In particular, they
can be characterized in terms of elementary embeddings in such a way that it
becomes clear that a supercompact cardinal must be strongly compact. The
following result taken from [95] gives the characterization.

1.21 Proposition. A cardinal κ is strongly compact if and only if for every
γ ≥ κ there is an elementary embedding j : V →M such that

1. crit(j) = κ,

2. γ < j(κ), and

3. for every X ⊆ M with |X| ≤ γ, there is a Y ∈ M such that X ⊆ Y
and M |= |Y | < j(κ).

If we require the above only for a specific γ ≥ κ, then κ is said to be γ-strongly
compact.

Forcing

In order to keep our chapter to manageable length, we have chosen to keep
our use of forcing to a minimum; in the few places we do use it, our notation
is standard, that is, as one finds in [51] or [59]. We follow the convention
that p ≤ q means “p extends q”.

By far the most important notion of forcing we use is the Levy collapse,
so we take a moment to collect notation.

1.22 Definition. Col(κ, λ) is the cardinal collapse to make λ have cardi-
nality κ, i.e. a condition is a partial function from κ into λ with domain of
cardinality less than κ, and p ≤ q if and only if q ⊆ p. Col(κ,<λ) is the Levy
collapse to make all cardinals in [κ, λ) have cardinality κ. Here a condition
p is a partial function from λ× κ into λ with | dom(p)| < κ, p(0, i) = 0, and
p(α, i) < α for α �= ∅.

Remarks

Finally, I am going to drop the authorial “we” for the remainder of the
introduction so that I can comment a bit on the chapter. There were of course
two major decisions to make—what should be the scope of the chapter, and
for whom should it be written.

The first of these questions was by far the most difficult for me to answer
because the assigned topic touches every aspect of set theory. The second
question was easier—I decided early on that I would attempt to write the
type of survey that I wish had been available when I first started learning
about the topic.

The chapter consists of five major divisions, of which the first is taken up
with introductory material. The second division is an exposition of Magidor’s
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proof of the consistency of Refl(ℵω+1); I chose this as my starting point
because stationary reflection is a major theme in the chapter, and his proof
can be used to motivate the idea of approachability and I[λ].

The next division deals extensively with I[λ] and some of its applications.
The section is quite long, and deliberately so, because much of the mate-
rial covered is scattered through papers of Shelah going back almost three
decades. I thought it worthwhile to gather it together in a single place since
the lack of such a resource caused considerable aggravation when I was first
learning the material. Most of the material in that section is based on notes I
took in the Jerusalem Logic Seminar during lectures by Shelah in the summer
of 1998 [90].

The fourth division of the paper is primarily based on more recent work
of Cummings, Foreman, and Magidor. In contrast to the I[λ] material, most
of the results in this portion of the paper have appeared in papers where
the exposition is masterful—in particular, the papers [36, 16], and [65] are
highly recommended. In addition, Cummings has recently written a survey
on the same subject [14]—we have benefited immensely from his paper, and
in several places we reference his paper for proofs that we have not included
in the current chapter.

The final major division of the paper concerns Jónsson cardinals and club
guessing, and is for the most part independent of the other parts of the
chapter. I chose to include this material for the same reason I devoted so
much time to the development of I[λ]—it is a very interesting topic, but the
basic results are scattered through several difficult papers and in Shelah’s
book [89].

In summary, the chapter could easily have been three times as long as it
is, and I reluctantly left out much that is interesting. It is my hope that
the level of exposition is sufficient that any set-theorist with a casual interest
in the topic can catch a glimpse of the major ideas, and that those people
interested in “really learning” the material will receive enough background
and guidance for a comfortable transition to current literature.

Finally, a few words of thanks are in order. I would like to thank Matt
Foreman and James Cummings for patiently answering my queries as I wrote
the chapter. Thanks are due as well to Aki Kanamori and an anonymous
referee for many helpful remarks, while Andres Caicedo read through the
entire chapter carefully and did yeoman’s work rooting out misstatements
and typographical errors. The chapter is a much stronger work thanks to
their contributions.

2. On Stationary Reflection

We now turn to the question of stationary reflection, mentioned briefly in the
first subsection of the introduction. First, we use stationary reflection as a
lens to study an important phenomenon in set theory—the tension between
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�-like principles and large cardinals. We then briefly investigate indecompos-
able ultrafilters and their influence on stationary reflection before plunging
into Magidor’s proof [62] that Refl(ℵω+1) is consistent relative to the exis-
tence of infinitely many supercompact cardinals. This proof occupies the last
three subsections of this part of the chapter, and some of the issues that arise
therein will lead us to topics considered in later sections.

2.1. Squares and Supercompact Cardinals

In the first part of the introduction, we pointed out that it is quite easy to
see that Refl(κ+) fails whenever κ is a regular cardinal. In particular, if κ is
regular then the set Sκ+

κ is a stationary subset of κ+ that does not reflect.
On the other hand, Refl(κ) holds if κ is weakly compact—this is an easy
corollary to the Hanf-Scott characterization [45] of weakly compact cardi-
nals as precisely the Π1

1-indescribable cardinals. Jech’s chapter [49] in this
Handbook contains further discussion and references for stationary reflection
in the context of successors of regular cardinals and “small” large cardinals.
None of this, however, sheds any light on how successors of singular cardinals
behave with respect to stationary reflection, and it is to this subject we now
turn. Our treatment begins with the � principle of Jensen [52].

We affirm some notation for the chapter: For a set X of ordinals, ot(X)
denotes its order-type; acc(X) denotes the set of accumulation (i.e. limit)
points of X other than sup(X); and nacc(X) denotes X \ acc(X).

2.1 Definition. Let κ be an uncountable cardinal. A �κ-sequence is a se-
quence 〈Cα : α < κ+〉 such that for all α < κ+,

1. Cα is closed and unbounded in α,

2. ot(Cα) ≤ κ, and

3. if β is a limit point of Cα, then Cβ = Cα ∩ β.

�κ is the assertion that there is such a sequence.

It is not difficult to prove that �κ is equivalent to the prima facie stronger
principle in which condition (2) is replaced by

cf(α) < κ =⇒ ot(Cα) < κ. (15.5)

Given a �κ-sequence 〈Cα : α < κ+〉, we can construct a �κ-sequence satis-
fying (15.5) by fixing a closed unbounded subset C of κ of order-type cf(κ),
and replacing each Cα with

{β ∈ Cα : ot(Cα ∩ β) ∈ C}

whenever ot(Cα) is in acc(C) ∪ {κ}.
Jensen [52] proved that �κ holds for all κ in the constructible universe L.

Note as well that �κ is quite persistent—if �κ holds for some cardinal in a
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model of set theory W , then it will continue to hold in any extension of W
in which κ and κ+ are preserved. These two facts lead us to the following
well-known corollary of Jensen’s Covering Lemma.

2.2 Theorem. If 0# does not exist, then �μ holds for all singular cardi-
nals μ.

Proof. Let μ be a singular cardinal in V , and assume 0# does not exist. It
suffices to prove that (μ+)L = μ+, as a �μ-sequence from L will then serve
to witness that �μ continues to hold in V .

Suppose that θ = (μ+)L, and assume by way of contradiction that θ < μ+.
It must be the case that |θ| = μ and hence cf(θ) < μ. Now let X be a cofinal
subset of θ of cardinality cf(θ). By the Covering Lemma, there is a set Y ∈ L
such that X ⊆ Y and |Y | ≤ |X| + ℵ1 < μ = |θ|. But since the set Y is
cofinal in θ and θ is regular in L, it must be the case that |Y | = |θ|, and we
have a contradiction. Thus, (μ+)L = μ+ and consequently �μ must hold as
well. �

The failure of �μ for singular μ is not an easy thing to arrange—we have
just seen that it necessarily involves large cardinals, and further research has
shown that the large cardinals needed are quite large indeed:

2.3 Theorem (Steel [96]). If there is a singular strong limit cardinal μ for
which �μ fails, L(R) determinacy holds and hence there is an inner model
with infinitely many Woodin cardinals.

We cannot hope to treat the relationship between squares and inner models
of set theory in this chapter, but we do point out that this is a reason why
large cardinals are always in the background when one considers successors
of singular cardinals. We send a reader looking for more information on this
topic to the chapters by Welch and by Schimmerling in this Handbook. We
now leave inner models and turn to combinatorial consequences of �κ.

A �κ-sequence is a prototypical example of a “non-compact” object of
size κ+—if 〈Cα : α < κ+〉 is such a sequence, then there is no closed un-
bounded C ⊆ κ+ such that C ∩ α = Cα for all α ∈ acc(C). Much of the
strength of �κ lies in the fact that it is useful for constructing other non-
compact objects of size κ+. In particular, non-reflecting stationary sets are
a natural example of such objects, and the following well-known argument
(credited to Magidor in [5] and to Jensen in [51]) shows us that they are quite
abundant in the presence of squares.

2.4 Theorem. Suppose that �κ holds for a given uncountable cardinal κ.
Then Refl(S) fails for every stationary S ⊆ κ+.

Proof. Let S be a stationary subset of κ+, and suppose that 〈Cα : α < κ+〉
is a �κ-sequence. For each limit ordinal α < κ+, let f(α) = ot(Cα). Clearly
this is a regressive function on S \ κ + 1, and so we can find a stationary
T ⊆ S on which f is constant.
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For α < κ+ of uncountable cofinality and β ∈ acc(Cα), we have

f(β) = ot(Cβ) = ot(Cα ∩ β).

Thus the function f is one-to-one on acc(Cα), hence |T ∩ acc(Cα)| ≤ 1. This
immediately implies that T ∩ α is not stationary in α and therefore T is
a non-reflecting stationary subset of S. �

This is only one example of the ways in which a �κ-sequence can be used
to construct non-compact objects of size κ+. Jensen’s original paper [52]
uses such sequences together with the Generalized Continuum Hypothesis
to construct κ+-Souslin trees for every uncountable κ. Devlin’s book [19]
contains a nice exposition of this result, and Todorčević’s chapter [98] in this
Handbook contains other examples of applications of square in combinatorial
set theory.

In light of Theorem 2.4 and Theorem 2.3, it is natural to ask about the
effect that large cardinals have on the problem of stationary reflection. We
begin with an argument of Solovay that forms part of the background for
Magidor’s paper [62].

2.5 Theorem. Suppose that κ is a supercompact cardinal, and λ > κ is
regular. Then Refl(S) holds for every stationary subset of Sλ

<κ.

Proof. Let S ⊆ Sλ
<κ, and let j be a λ-supercompact embedding with critical

point κ. Let ρ = sup{j(α) : α < λ}, and note that since

M |= cf(ρ) = λ < ρ and j(λ) is regular,

it follows that ρ < j(λ).
Thus, if we can show

M |= j(S) ∩ ρ is stationary in ρ (15.6)

then the elementarity of j allows us to conclude that S ∩ α is stationary in
α for some α < λ. We actually achieve a bit more than (15.6); we show that
j(S) ∩ ρ is a stationary subset of ρ even in the larger universe V .

Let C ⊆ ρ be closed and unbounded, and consider D := j−1[C]. Since
κ = crit(j), it follows easily that D is <κ-club in λ. Since S is a stationary
subset of Sλ

<κ, we can find ξ ∈ D ∩ S. Clearly j(ξ) ∈ j(S) ∩ C, so (15.6)
follows. �

A few remarks are in order here. First, we note that the above proof only
serves to prove that S reflects at an ordinal θ whose cofinality is less than κ.
This result is sharp, as we shall see later in Corollary 4.9.

Second, we note that essentially the same proof shows us that given a se-
quence 〈Si : i < ε〉 such that ε < κ and each Si is a stationary subset of Sλ

<κ,
there is an ordinal θ ∈ Sλ

<κ with Si ∩ θ stationary for all i < ε.
Finally, we have the following corollary (also due to Solovay) which gives

us our first examples of singular cardinals μ for which Refl(μ+) holds.
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2.6 Corollary. Let μ be a singular limit of supercompact cardinals. Then
every stationary subset of μ+ reflects.

Proof. Since μ is singular, any stationary subset of μ+ contains a stationary
subset of some fixed cofinality θ < μ. There is a supercompact cardinal κ
with θ < κ < μ+ and the result follows immediately from Theorem 2.5. �

2.2. Reflection and Indecomposable Ultrafilters

The paper [95] credits Gregory with the observation that the conclusion of
Theorem 2.5 still holds even if κ is only strongly compact. This is fairly easy
to see—essentially the same proof works because of Proposition 1.21. How-
ever, the proof given in [95] applies in many more situations, as it establishes
a relationship between stationary reflection and indecomposable ultrafilters.
In this subsection we examine this line of reasoning.

The following definition is due to Keisler, though Prikry’s [71] seems to be
the first place where it appears in the literature.

2.7 Definition. Let U be a uniform ultrafilter on a set A, and let τ be
a cardinal. We say that U is τ -decomposable if there is a sequence 〈Ai : i < τ〉
of sets such that

A =
⋃

i<τAi

but
⋃

i∈BAi /∈ U for each B ∈ [τ ]<τ .

We say that U is τ -indecomposable if it is not τ -decomposable. The ultrafil-
ter U is indecomposable if it is τ -indecomposable for all τ with ℵ0 < τ < |A|.

Indecomposability can be viewed as a weak form of completeness. This is
made clear by the following elementary proposition from [71], which connects
indecomposability of filters with the closely related notion of descendingly
complete filters first studied in [11, 60], and [71].

2.8 Proposition. If τ is a regular cardinal and U is a uniform ultrafilter on
some cardinal κ, then U is τ -indecomposable if and only if U is closed under
decreasing intersections of length τ .

The reason we bring up this topic is that there is a connection between
indecomposable ultrafilters and stationary reflection, and the following the-
orem of Silver and Prikry [71] makes this clear.

2.9 Theorem. If κ < λ are regular cardinals and there is a uniform κ-
indecomposable ultrafilter on λ, then Refl(Sλ

κ) holds.

Before we give the proof, we point out a couple of corollaries illustrating
how strongly compact cardinals serve just as well as supercompact cardinals
with regard to the reflection results presented in the previous subsection.
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2.10 Corollary. Suppose that κ is strongly compact. Then Refl(Sλ
θ ) holds

for all regular cardinals θ and λ with θ < κ < λ.

Proof. This is easy given our previous work. Since κ is strongly compact,
there is a uniform κ-complete ultrafilter on λ. Such an ultrafilter is trivially θ-
indecomposable for θ < κ, and so we apply Theorem 2.9 to get the conclusion.

�

2.11 Corollary. Let μ be a singular cardinal that is a limit of compact
cardinals. Then every stationary subset of μ+ reflects.

To prove Theorem 2.9, we rely on an argument attributed by the authors
of [95] to an anonymous referee.

2.12 Lemma. Suppose that S is a non-reflecting (not necessarily stationary)
subset of Sλ

κ for some regular κ < λ, and that for each δ ∈ S, Aδ is a cofinal
subset of δ of order-type κ. Then for each α < λ, there is a regressive
function Fα with domain S ∩α such that the family {Aδ \Fα(δ) : δ ∈ S ∩α}
is disjoint. In plain terms, for each α < λ the family {Aδ : δ ∈ S ∩ α} can
be made pairwise disjoint by removing a bounded set from each Aδ.

Proof. The proof is by induction on α, with the cases where α = 0 or α = β+1
for β /∈ S being straightforward.

If α is a limit ordinal, then we choose a closed unbounded C ⊆ α disjoint
to S. Thus, every δ ∈ S ∩ α will fall into an interval of the form (γ, ε) where
γ and ε are consecutive members of C. It is straightforward to check that if
we define

Fα(δ) = max{Fε(δ), γ},
then everything works as it should.

The only other troublesome case is when α = δ + 1 for some δ ∈ S. In
this case, we use the fact that Aδ has order-type κ, as this means that for
γ ∈ S ∩ δ, the set Aγ ∩Aδ is bounded below γ. So we may define

Fα(γ) = max{Fδ(γ), sup(Aδ ∩Aγ)}

for γ ∈ S ∩ δ, and let Fα(δ) = 0. �

The preceding lemma has some importance in general topology, for it is
a crucial ingredient in Fleissner’s proof [29, 30] of the necessity of large car-
dinals in Nyikos’ celebrated result [70] (assuming the existence of a strongly
compact cardinal) that consistently all normal Moore spaces are metrizable.

In the next lemma, we show that uniform κ-indecomposable ultrafilters
allow us to patch together the functions Fα from the previous lemma in
order to obtain a single function that works simultaneously for all Aδ.

2.13 Lemma. Let κ < λ be regular cardinals, and assume U is a uniform
κ-indecomposable ultrafilter on λ. If we are given a family {Aα : α < λ}
of sets, each of order-type κ, with the property that for each β < λ there is
a function Fβ with domain β such that
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1. Fβ(α) is a proper initial segment of Aα, and

2. the family {Aα \ Fβ(α) : α < β} is disjoint,

then in fact there is a function F with domain λ such that

1. F (α) is a proper initial segment of Aα, and

2. the family {Aα \ F (α) : α < λ} is disjoint.

Proof. Fix α < λ. For each ε < κ, let Bα
ε consist of all those β < λ for which

Fβ(α) is contained in the first epsilon elements of Aα, that is,

Bα
ε := {β < λ : ot(Fβ(α)) < ε}.

Since the sequence 〈Bα
ε : ε < κ〉 is increasing with union λ \ α, the κ-in-

decomposability of U tells us there is an ε(α) < κ such that

Bα
ε(α) ∈ U .

Now let us define F (α) to be the first ε(α) elements of Aα. We claim that
the collection {Aα : \F (α) : α < λ} is pairwise disjoint.

To see this, suppose that α < γ < λ. Both of the sets Bα
ε(α) and Bγ

ε(γ) are
in U , so we can find β in their intersection. By the definition of Fβ , we know

(Aα \ Fβ(α)) ∩ (Aγ \ Fβ(γ)) = ∅,

and since Fβ(α) ⊆ F (α) and Fβ(γ) ⊆ F (γ), the result follows. �

We are now ready to give the proof of Theorem 2.9.

Proof of Theorem 2.9. Let U be a uniform κ-indecomposable ultrafilter on
λ, and assume by way of contradiction that S is a non-reflecting stationary
subset of Sλ

κ . For each δ ∈ S, we choose a cofinal Aδ of order-type κ, and
note that by Lemma 2.12, the family {Aδ : δ ∈ S} satisfies the assumptions
of Lemma 2.13. Since S is stationary, the function provided by Lemma 2.13
must be constant on some stationary T ⊆ S, say with value β. We can
assume that β < min(T ), and so the sets of the form Aδ \ β for δ ∈ T are
non-empty and pairwise disjoint. However, Aδ is a subset of δ, and so any
choice function for this collection contradicts Fodor’s Theorem. �

Theorem 2.9 shows us that the existence of indecomposable uniform ultra-
filters at the successor of a singular cardinal has high consistency strength,
for such ultrafilters are incompatible with �. However, Ben-David and Magi-
dor [7] were able to produce a model in which ℵω+1 carries a uniform inde-
composable ultrafilter by starting with a supercompact cardinal.

2.14 Theorem (Ben-David and Magidor [7]). Let V be a model of ZFC with
a cardinal κ that is κ+-supercompact. Then there is a forcing extension V ′

of V such that
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1. V ′ |= κ = ℵω and κ+ = ℵω+1, and

2. in V ′, ℵω+1 carries an indecomposable ultrafilter.

In particular, in their model every stationary subset of ℵω+1 made up of
ordinals of uncountable cofinality must reflect. This “near miss” brings us to
Magidor’s construction of a model in which every stationary subset of ℵω+1

reflects.

2.3. Reflection at ℵω+1—Introduction

2.15 Theorem (Magidor [62]). If the existence of infinitely many super-
compact cardinals is consistent, then it is consistent to assume that every
stationary subset of ℵω+1 reflects.

Let 〈κn : n < ω〉 be an increasing sequence of supercompact cardinals.
Define μ = supn<ω κn and λ = μ+. Corollary 2.6 tells us that every station-
ary subset of λ reflects, and our strategy to transfer this down to ℵω+1 is a
natural one—we define a notion of forcing P so that in the generic extension
V [Gω], κn becomes ℵn+1, μ becomes ℵω, and λ becomes ℵω+1.

This is done in a straightforward fashion, with the iteration 〈Pn, Q̇n :
n < ω〉 defined by setting

P0 = Col(ω,<κ0)

and
V Pn |= Q̇n = Col(κn, <κn+1).

We let Pω be the inverse limit of this iteration.
Each κn is inaccessible so it follows easily that Pn satisfies the κn-chain

condition. Note as well that for each n, we can factor Pω as Pn ∗P
n where P

n

is κn-closed. Thus, every sequence of ordinals of length less than κn added by
forcing with Pω must lie in the initial generic extension obtained by forcing
with Pn. From this, we conclude that after forcing with Pω, each κn has been
collapsed to ℵn+1, μ has become ℵω, and λ has become ℵω+1.

The supercompactness of each κn survives in a vestigial way—in the ter-
minology of [31], each κn is generically supercompact. We give a more precise
description of this below.

Let G ⊆ Pω be generic, and let θ be a regular cardinal larger than κn.
In V [G], there is an ℵn-closed notion of forcing R such that if H is a V [G]-
generic subset of R, then in the extension V [G ∗ H] there is an elementary
embedding j : V [G] →M ⊆ V [G ∗H] (for some transitive M) satisfying

1. crit(j) = κn,

2. j � θ ∈M , and

3. j(κn) > θ.
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Thus, in a sense the ℵn-closed forcing R resurrects the θ-supercompactness
of κn and the corresponding elementary embedding is called a generic el-
ementary embedding. Rather than digressing into the topic of forcing and
large cardinals, we will use the preceding fact as a so-called black box. We
refer the reader to Magidor’s original paper [62] or Cummings’ [13] for more
details.

We proceed by trying to imitate the proof of Theorem 2.5 using a generic
elementary embedding instead of an honest-to-goodness one. In V [G], sup-
pose that S is a stationary subset of λ = ℵω+1 consisting of ordinals of cofi-
nality ℵn for some n < ω. By the generic supercompactness of ℵn+2 = κn+1,
there is an ℵn+1-closed notion of forcing R such that, letting H ⊆ R be
V [G]-generic, in the model V [G][H] we can find a transitive M and elemen-
tary j : V [G] →M satisfying

• crit(j) = κn+1 = ℵn+2,

• j �λ ∈M , and

• j(κn+1) > λ.

Just as in the proof of Theorem 2.5, one can argue

ρ := sup{j(α) : α < λ} < j(λ), (15.7)

but we run into a problem trying to show

M |= j(S) ∩ ρ is stationary in ρ. (15.8)

The difficulty arises because we need to know that S remains stationary in
V [G∗H]. The question of whether this must be so will occupy us in the next
subsection.

2.4. κ+-closed Forcing and Stationary Subsets of Sλ
κ

Our investigations in the preceding subsection have led us to the following
question:

Suppose that κ < λ are regular cardinals, and let S be a station-
ary subset of Sλ

κ , and let P be a κ+-closed notion of forcing. Is
the stationarity of S preserved when forcing with P?

If λ = κ+, then the answer is an easy “yes”—a simple argument estab-
lishes that λ-closed forcing preserves all stationary subsets of λ. Thus, for
example, ℵ1-closed forcing preserves the stationary of subsets of ℵ1. How-
ever, in this case, a little more work establishes a much stronger result due
to Baumgartner [5].

2.16 Proposition. Let λ be an uncountable regular cardinal, and let P be
an ℵ1-closed notion of forcing. Then every stationary subset of Sλ

ℵ0
remains

stationary in the P-generic extension.
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Proof. Suppose that P is ℵ1-closed, and suppose that S ⊆ Sλ
ℵ0

is stationary.
Let Ċ be a P-name such that

V P |= Ċ is a closed unbounded subset of λ.

We show that the set of conditions in P which force S ∩ Ċ to be non-empty
is dense in P. Toward this end, let p ∈ P be arbitrary.

Since S is stationary, we can find a model M ≺ H(χ) containing everything
relevant such that M ∩λ is some ordinal δ ∈ S. Let 〈αn : n < ω〉 be increasing
and cofinal in δ. By induction on n < ω, we choose a sequence 〈pn : n < ω〉
as follows:

Let p0 = p. Given pn, let pn+1 be the <χ-least extension of pn in P that
decides a value for min(Ċ \ αn), say

pn+1 � min(Ċ \ αn) = δn (15.9)

for some δn < λ.
Note that pn+1 is definable in H(χ) from pn and parameters in M . Thus

an easy induction shows that each pn is an element of M , and it follows that
each δn is in M as well. The sequence 〈δn : n < ω〉 is non-decreasing, and
the range is cofinal in δ. Since P is ℵ1-closed, the sequence 〈pn : n < ω〉 has
a lower bound q, and q forces δ to be an accumulation point of Ċ, hence

q � δ ∈ S ∩ Ċ, (15.10)

as required. �

Now what goes wrong when we replace Sλ
ℵ0

with Sλ
κ for κ uncountable?

Suppose that S is a stationary subset of Sλ
κ (with κ an uncountable regular

cardinal) and let P be a κ+-closed notion of forcing. Suppose that Ċ is a P-
name for a closed unbounded subset of λ, and let p be a condition in P. We
can certainly find M ≺ H(χ) containing everything relevant such that M ∩λ
is some ordinal δ ∈ S. We can also fix an increasing sequence 〈aα : α < κ〉
cofinal in δ. Just as before, we define a decreasing sequence of conditions
〈pα : α < κ〉 so that p0 = p and

pα+1 � min(Ċ \ aα) = δα (15.11)

for some δα < λ. The problem arises in that we cannot guarantee that
δ = sup{δα : α < κ}—in the earlier construction we were always assured that
δn < δ because pn+1 ∈ M . In our current situation, this need not happen.
Consider what happens at stage ω—in order to keep the construction going
inside M , we need to know that 〈pα : α < ω〉 ∈ M , and we do not know
this unless it happens that 〈aα : α < ω〉 ∈ M . In order for our proof to
generalize, we need to be able to choose the sequence 〈aα : α < κ〉 in such
a way that every initial segment lies in M . This will be possible under mild
cardinal arithmetic assumptions—for example, in certain circumstances we
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can arrange for M to be closed under sequences of length less than κ—but
it need not happen in general. We will deal with the question of when such
a sequence 〈aα : α < κ〉 exists a bit later on, but for now we will be content
with the following ad hoc definitions and theorem implicit in [83]:

2.17 Definition. Let κ < λ be regular cardinals, and let S be a stationary
subset of Sλ

κ .

1. We say that S is κ+-closed indestructible if for every κ+-closed notion
of forcing P,

V P |= S is a stationary subset of λ. (15.12)

2. S is said to satisfy the κ+-closed indestructibility condition if for every
x ∈ H(χ), there are M ≺ H(χ), δ ∈ S, and cofinal A ⊆ δ such that

• x ∈M ,

• M ∩ λ = δ,

• ot(A) = cf(δ) = κ, and

• every initial segment of A is in M .

2.18 Theorem. Let κ and λ be regular cardinals, with κ+ < λ. A stationary
S ⊆ Sλ

κ satisfies the κ+-closed indestructibility condition if and only if S is
κ+-closed indestructible.

Proof. If S satisfies the κ+-closed indestructibility condition, then the argu-
ment that S is actually κ+-closed indestructible is a simple modification of
that given in Proposition 2.16. We leave this to the reader, and concentrate
on the other direction. Our first step is an easy lemma.

2.19 Lemma. Let κ < λ be regular. A stationary S ⊆ Sλ
κ satisfies the κ+-

indestructibility condition if and only if it satisfies the weaker version where
instead of ot(A) = κ we demand only that ot(A) < δ.

Proof. Note that the only difference between the two conditions is that we
have weakened the demands on A ⊆ δ. Suppose that we are given M , δ, and
A = 〈aα : α < ot(A)〉 satisfying the weaker requirements.

Since ot(A) < δ, it follows that ot(A) ∈ M . Since cf(ot(A)) = κ, we can
find an increasing function f : κ → ot(A) in M with range cofinal in ot(A).
Clearly 〈af(α) : α < κ〉 is cofinal in δ and of order-type κ. To finish, note that
every initial segment of 〈af(α) : α < κ〉 is in M because each such segment is
definable from f and an initial segment of A. �

To finish the proof of Theorem 2.18, we assume that S ⊆ Sλ
κ does not

satisfy the κ+-indestructibility condition and we show that there is a κ+-
closed notion of forcing P that destroys the stationarity of S.

By assumption, there is a large regular χ and an x ∈ H(χ) so that when-
ever M ≺ H(χ) is chosen with x ∈M and M ∩λ = δ ∈ S, there is no cofinal
A ⊆ δ of order-type κ with every initial segment of A in M .
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Temporarily assume that λ = λ<λ, and let Ā = 〈Aα : α < λ〉 enumerate
[λ]<λ so that every set in [λ]<λ appears unboundedly often.

A forcing condition p is an increasing continuous function such that

• dom(p) is an initial segment of κ+,

• ran(p) ⊆ λ \ κ+, and

• for all α ∈ nacc(dom(p)), {p(β) : β < α} = Ap(α).

A condition q extends p if and only if p is an initial segment of q.
It should be clear that P is κ+-closed. An easy density argument estab-

lishes that forcing with P adjoins a function f : κ+ → λ with range cofinal
in λ. Since P is κ+-closed, we can conclude that in the generic extension λ
is an ordinal of cofinality κ+.

Let G be a generic subset of P, and step into the model V [G]. As mentioned
before, the generic object is essentially an increasing function f : κ+ → λ.
Let us define C := acc(ran(f)), and let Ċ be a P-name for C. It is clear

V P |= Ċ is closed and unbounded in λ. (15.13)

Back in the ground model, let E ⊆ λ consist of all δ < λ for which there is
an M ≺ H(χ) with {x, λ,P, Ċ, S, Ā} ∈ M and M ∩ λ = δ. Since E contains
a closed unbounded subset of λ, it suffices to prove

V [G] |= S ∩ E ∩ Ċ = ∅. (15.14)

If this fails, then we can find a condition p ∈ P and ordinal δ < λ such
that

p� δ ∈ S ∩ Ċ ∩ E. (15.15)

Since δ must actually be an element of S ∩ E, in the ground model we can
find a model M ≺ H(χ) confirming δ’s membership in E.

Since p forces δ to be in Ċ, there must be a θ ≤ dom(p) such that B :=
{p(α) : α < θ} is cofinal in δ—otherwise, we could extend p to a condition
forcing that δ is not in Ċ. Since θ < κ+, we certainly know ot(B) < δ. For
α < θ, we have p(α) < δ hence p(α) ∈ M . Since Ā ∈ M , we conclude that
Ap(α) ∈ M . But Ap(α) = B ∩ α, and thus every initial segment of B lies in
the model M . This contradicts our assumption that S does not satisfy the
κ+-closed indestructibility condition.

Our requirement that λ = λ<λ in the above discussion is not an obstacle,
as we can first force with the λ-closed notion of forcing Col(λ, λ<λ), and in
this extension define P as above. The composition of these two notions of
forcing will destroy the stationarity of S. �

The following lemma gives us a slightly more general condition guarantee-
ing that a stationary set satisfies the κ+-indestructibility criterion, at least
in the presence of some cardinal arithmetic considerations. We will make use
of this in the next subsection.
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2.20 Lemma. Suppose that κ < λ are regular cardinals with λ = μ+ for
a strong limit singular μ. A stationary S ⊆ Sλ

κ satisfies the κ+-indestructibil-
ity condition if and only if for every x ∈ H(χ), there are M ≺ H(χ), δ ∈ S,
and cofinal A ⊆ δ such that

• x ∈M ,

• M ∩ λ = δ,

• ot(A) < δ, and

• every initial segment of A is covered by a set in M ∩ [λ]<μ.

Proof. Let M , δ, and A be as above. Without loss of generality, each of μ,
κ, and λ is in M , and so μ ⊆ M . Given β < δ, our hypotheses give us a
set B ∈ M ∩ [λ]<μ such that A ∩ β ⊆ B. We assume μ is a strong limit,
so 2|B| < μ. In M , there is a function f mapping 2|B| onto the power set
of B, and since 2|B| ⊆ M , it follows that P(B) ⊆ M as well. In particular,
A ∩ β ∈M . �

As a final remark, we note that the restriction to κ+ < λ in the results
of this subsection is reasonable, as λ-closed forcing preserves all stationary
subsets of λ. This said, we return now to Magidor’s proof.

2.5. Reflection at ℵω+1—Conclusion

Our goal is this subsection is to finish the proof that in the model from
Sect. 2.3, every stationary subset of ℵω+1 reflects. The main point is to
verify that in V [Gω], every stationary subset of ℵω+1 satisfies the appropriate
version of the indestructibility condition from Definition 2.17.

Recall that in the ground model we are given the following:

• 〈κn : n < ω〉 is an increasing sequence of supercompact cardinals

• μ = supn<ω κn, and

• λ = μ+.

Our notion of forcing Pω collapses each κn to ℵn+1, makes μ = ℵω, and makes
λ = ℵω+1. We had no occasion to mention it before, but it is clear that ℵω

is a strong limit cardinal in the generic extension—this is important for us
because we will be using Lemma 2.20.

Goal: In the model V [Gω], if S is a stationary subset of S
ℵω+1

ℵn
then S satisfies

the ℵn+1-indestructibility condition.

We will reach our goal in a roundabout fashion. Back in the ground model,
let us fix a λ-filtration system 〈bα,i : α < λ, i < ω〉 with |bα,i| ≤ κi. Let d be
the associated coloring of [λ]2, that is,

d(β, α) = least i such that β ∈ bα,i
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It is clear that d : [λ]2 → ω, and the following lemma of Shelah establishes
a crucial property of d in V [Gω].

2.21 Proposition. In V [Gω], if δ ∈ λ \ μ is a limit ordinal of uncountable
cofinality, then there is an unbounded Hδ ⊆ δ of order-type cf(δ) that is
homogeneous for the coloring d.

Proof. Suppose that in V [Gω], δ < ℵω+1 has uncountable cofinality and
|δ| = ℵω. Back in the ground model, there is an n < ω such that

V |= κn ≤ cf(δ) < κn+1. (15.16)

Since κn is supercompact, there is a κn-complete ultrafilter U on δ containing
all co-bounded subsets of δ. In particular, U is countably complete so that
for each β < δ, there is a unique i(β) < ω such that

Bβ := {α ∈ (β, δ) : d(β, α) = i(β)} ∈ U . (15.17)

2.22 Claim. In V [Gω], if 〈βζ : ζ < ξ〉 is a sequence of ordinals less than δ
of length less than κn, then

⋂
ζ<ξ Bβζ

contains a set from U .

Proof. Note that this is not automatic—in V [Gω] the filter generated by U
need not be κn-complete. We note, however, that 〈βζ : ζ < ξ〉 already lies
in the Pn-generic extension V [Gn], and hence the sequence 〈Bβζ

: ζ < ξ〉 is
in V [Gn] as well. Since Pn satisfies the κn-chain condition, it follows that in
V [Gn] the filter on δ generated by U is still κn-complete and the conclusion
is immediate. �

We are now ready to construct the required Hδ in V [Gω]. We define
a sequence 〈βξ : ξ < κn〉 by induction on ξ. To start, let β0 < δ be arbitrary.
Given 〈βζ : ζ < ξ〉, define

βξ := least member of
⋂

ζ<ξBβζ
greater than αξ. (15.18)

Note that
⋂

ζ<ξ Bβζ
contains a set from U by Claim 2.22, and so a suitable

βξ can always be defined.
It is clear that 〈βξ : ξ < κn〉 is cofinal in δ, and the sequence is constructed

so that for ζ < ξ < κn the value of d(βζ , βξ) depends only on βζ . Since
κn = ℵn+1 is uncountable, there is an unbounded Hδ ⊆ {βξ : ξ < κn} such
that d �[Hδ]2 is constant, and the proof of Proposition 2.21 is complete. �

Our next task is to relate Proposition 2.21 to the problem of preserving
stationary sets in forcing conditions. Suppose that n < ω is given, and let
S ⊆ S

ℵω+1
ℵn

be stationary. If n = 0, then S automatically remains stationary
in an ℵ1-closed forcing extension, so assume n > 0. In V [Gω], let x ∈ H(χ)
be given and fix a model M ≺ H(χ)V [Gω] such that
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• {x, S, 〈bα,i : i < ω, α < λ〉} ∈M , and

• M ∩ λ = δ ∈ S.

By Proposition 2.21, there is an unbounded H ⊆ δ of order-type cf(δ) homo-
geneous for the coloring c, say c �[H]2 is constant with value i. Given β ∈ H,
it follows that

H ∩ β ⊆ bβ,i. (15.19)

Now bβ,i ∈M ∩ [ℵω+1]<ℵω , and since ℵω is a strong limit cardinal in V [Gω],
we apply Lemma 2.20 and conclude that S satisfies the ℵn+1-closed inde-
structibility condition. By our comments at the end of Sect. 2.3, it follows
that in V [Gω] every stationary subset of ℵω+1 reflects.

3. On I[λ]

The goal of this section is to re-examine issues surrounding the somewhat ad
hoc notion of the “κ+-closed indestructibility condition” (Definition 2.17).
The investigation will lead us to several important concepts, with I[λ] and
approachability being the most prominent. We will develop the theory of I[λ]
in some detail in order to demonstrate its importance for combinatorial set
theory. All unattributed results in this section are due to Shelah, although
in some cases the theorems as stated may only be implicit in his work.

Let us begin our discussion by recalling the definition of the κ+-closed
indestructibility condition. Let κ < λ be regular, and let χ be a sufficiently
large regular cardinal. A stationary S ⊆ Sλ

κ satisfies the κ+-closed indestruc-
tibility condition if and only if for any x ∈ H(χ), there is a model M ≺ H(χ)
such that

• x ∈M ,

• M ∩ λ is an ordinal δ ∈ S, and

• there is a cofinal A ⊆ δ of order-type κ, all of whose initial segments
lie in M .

One way to look at this is that the set A is built from initial segments that
are simpler (in some vague way) than δ. If it happens that λ = λ<λ, then
we can give a precise meaning to “simpler”, as illustrated by the following
proposition.

3.1 Proposition. Assume λ = λ<λ, and fix an enumeration ā of [λ]<λ in
order-type λ. A set S ⊆ Sλ

κ satisfies the κ+-indestructibility condition if and
only if there are stationarily many δ ∈ S for which there is a cofinal Aδ ⊆ δ
of order-type κ with every initial segment of Aδ enumerated prior to stage δ.

Proof. First, assume that S satisfies the indestructibility condition. Let χ be
a sufficiently large regular cardinal, and suppose that we are given x ∈ H(χ)
and a closed unbounded C ⊆ λ. By Definition 2.17, we know there is a model
M ≺ H(χ) such that
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• {x, ā, C} ∈M ,

• M ∩ λ = δ ∈ S, and

• there is a cofinal A ⊆ δ of order-type κ with every initial segment lying
in M .

Since C ∈M , we know δ ∈ S∩C. Since ā ∈M and M ∩λ = δ, we know that
〈aα : α < δ〉 enumerates M ∩ [λ]<λ. In particular, since every initial segment
of A lies in M ∩ [λ]<λ, we have that each such initial segment is enumerated
by ā before stage δ.

For the other direction, assume we are given a sufficiently large regular χ
and x ∈ H(χ). Let 〈Mα : α < λ〉 be a λ-approximating sequence over
{x, κ, S, ā}. The set of δ with Mδ ∩λ = δ is closed and unbounded, so we can
find such δ ∈ S for which a suitable Aδ exists. Since every initial segment
of Aδ is enumerated by ā before stage δ, it follows immediately that every
initial segment of Aδ lies in Mδ, as required. �

Note that if λ = μ+ for μ singular, κ < λ is regular, and λ = λ<λ,
then there is a set S ⊆ Sλ

κ such that a set T ⊆ Sλ
κ satisfies the κ+-closed

indestructibility condition if and only if T ∩ S is stationary. Why? Simply
fix an enumeration 〈aα : α < λ〉 of [λ]<λ and let S be the set of all δ ∈ Sλ

κ

for which there is a cofinal Aδ ⊆ δ of order-type κ with every initial segment
of Aδ enumerated before stage δ. In addition, the set S is unique modulo
the nonstationary ideal, because if 〈bα : α < λ〉 is any other enumeration of
[λ]<λ then the set of δ for which {aα : α < δ} = {bα : α < δ} is closed and
unbounded in λ.

We will not make use of the above observation, but we shall be looking at
similar results throughout this section.

3.1. The Ideal I[λ]

The ideas introduced in the preceding discussion still make sense even without
the assumption that λ = λ<λ—all that is required is a suitable enumeration ā.

3.2 Definition. Let ā = 〈aα : α < λ〉 be a sequence of bounded subsets of λ.
A limit ordinal δ < λ is said to be approachable with respect to the sequence
ā if there is an unbounded A ⊆ δ of order-type cf(δ) such that every initial
segment of A is enumerated by ā before stage δ, that is,

{A ∩ β : β < δ} ⊆ {aβ : β < δ}. (15.20)

Now comes the surprising part—the concept isolated in the preceding defi-
nition turns out to be incredibly useful in combinatorial set theory, and most
of our time in the current section will be spent supporting this thesis. Our
first task is to take Definition 3.2 and use it to define an ideal of subsets of λ.
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3.3 Definition. A set S ⊆ λ is in I[λ] if and only if there is a sequence
ā = 〈aα : α < λ〉 of bounded subsets of λ and a closed unbounded C ⊆ λ
such that every δ ∈ S ∩ C is singular and approachable with respect to the
sequence ā.

With the preceding definition, we have isolated the most important con-
cept in this section of the chapter. Our first task is to prove that I[λ] is in
fact an ideal of subsets of λ.

3.4 Proposition. For λ a regular cardinal, the collection I[λ] is a (possibly
improper) normal ideal on λ.

Proof. We verify that I[λ] is closed under diagonal unions; the rest of the
proof is quite trivial. Suppose that we are given a sequence 〈Si : i < λ〉 of
elements of I[λ]. For each i < λ, there are a corresponding enumeration āi

and closed unbounded Ei witnessing Si ∈ I[λ]. Using a pairing function, we
can fold all of the enumerations āi = 〈ai

α : α < λ〉 into a single enumeration
ā = 〈aα : α < λ〉 for which there is a closed unbounded E∗ ⊆ λ such that for
δ ∈ E∗ and i < δ, we have

{ai
α : α < δ} ⊆ {aβ : β < δ}. (15.21)

Let E := E∗ ∩ $i<λEi. We claim that ā and E serve as witnesses to the
membership of S := 4i<λSi in I[λ].

Suppose now that δ ∈ E ∩ S. By the definition of diagonal union, there
is an i < δ such that δ ∈ Si. By definition of diagonal intersection, we know
that δ ∈ Ei as well. Thus, there is an unbounded A ⊆ δ of order-type cf(δ)
such that every initial segment of A is enumerated by āi before stage δ. Since
δ ∈ E∗, we know that every initial segment of A is enumerated by ā before
stage δ as well, and the proof is finished. �

It is not true that I[λ] must be a proper ideal on λ. In fact, we shall
see that the assumption that I[λ] is not a proper ideal is a combinatorial
statement of some power. Before dealing with such matters, we will invest
a little time in deriving some equivalent formulations of the ideal I[λ]. We
begin with an observation that will be used throughout this section.

3.5 Definition. Let M = 〈Mi : i < λ〉 be a λ-approximating sequence. We
define S[M] to be the set of δ < λ such that δ is singular, Mδ ∩ λ = δ,
and there is a cofinal a ⊆ δ of order-type cf(δ) with the property that every
(proper) initial segment of a is in Mδ.

3.6 Theorem. I[λ] is the ideal on λ generated by the nonstationary sets
together with all sets of the form S[M] with M a λ-approximating sequence.

Proof. It is not difficult to prove that S[M] is in I[λ]—if we enumerate [λ]<λ ∩⋃
i<λ Mi as ā = 〈aα : α < λ〉 and let E be the closed unbounded set of δ < λ

for which δ = Mδ ∩ λ and 〈aα : α < δ〉 enumerates Mδ ∩ [λ]<λ, then each
δ ∈ S[M] ∩ E is approachable with respect to ā.
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Conversely, suppose that S ∈ I[λ] and M is a λ-approximating sequence
over S. We claim S[M] contains almost all members of S. To see this,
note that M0 will contain an enumeration ā = 〈aα : α < λ〉 and a closed
unbounded C ⊆ λ such that each element of S ∩ C is approachable with
respect to ā. We claim now that any δ ∈ S satisfying Mδ ∩ λ = δ must be in
S[M]. This is quite easy, as any such δ must be in C as well, and aα ∈ Mδ

for each α < δ. �

We remark that the above proof establishes something slightly stronger
than what is claimed in the theorem—a minor adjustment shows us that a
set S is in I[λ] if and only if there is a λ-approximating sequence M with
S \ S[M] nonstationary.

Theorem 3.6 is the characterization of I[λ] that we tend to use in the
sequel, but the following characterization due to Shelah [88] is also of interest
because of its similarity to square sequences.

3.7 Theorem (Shelah [88]). Let λ be a regular cardinal. Then the following
two conditions are equivalent for a set S ⊆ λ:

1. S ∈ I[λ].

2. There is a sequence 〈Cα : α < λ〉 and a closed unbounded E ⊆ λ such
that

(a) Cα is a closed (but not necessarily unbounded) subset of α,

(b) if β ∈ nacc(Cα) then Cβ = Cα ∩ β, and

(c) if δ ∈ E ∩ S then δ is singular, and Cδ is a closed unbounded
subset of δ of order-type cf(δ).

Proof. The proof that (2) implies (1) is by far the easier direction, so we
dispose of it first. Assume that S satisfies (2), and let M = 〈Mα : α < λ〉 be
a λ-approximating sequence over {S, C̄, E}. We claim that if δ ∈ S ∩ E and
Mδ ∩ λ = δ, then Cδ will attest to δ’s membership in S[M].

The proof is elementary, but it is worthwhile to pursue it in order to further
understand the relationship between I[λ] and squares. Given such a δ, we
need to verify that each (proper) initial segment of Cδ lies in Mδ, so fix ζ < δ.
Let β be the least member of Cδ greater than ζ (so β ∈ nacc(Cδ)). Then
Cβ = Cδ ∩ β hence Cδ ∩ β ∈ Mδ. We are almost done—if it happens that
Cδ ∩ β is not Cδ ∩ ζ, then it can only be because ζ ∈ Cδ. But then

Cδ ∩ ζ = Cδ ∩ β \ {ζ} ∈Mδ (15.22)

as required. Since S \ S[M] is nonstationary, we conclude S ∈ I[λ].
The journey from (1) to (2) will also make use of λ-approximating se-

quences. Suppose that S ∈ I[λ], and let M = 〈Mα : α < λ〉 be a fixed
λ-approximating sequence with S ∈ M0. It suffices to define a sequence
〈Aα : α < λ〉 with the following properties:
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• Aα ⊆ α, and if Aα �= ∅ then Aα consists entirely of successor ordinals,

• if β ∈ Aα, then Aβ = Aα ∩ β, and

• if δ ∈ S[M], then Aδ is unbounded in δ of order-type cf(δ).

If we can accomplish this, then letting Cα equal the closure of Aα in α gives
us a sequence 〈Cα : α < λ〉 with all the requisite properties. The following
ad hoc definition isolates a key aspect of the construction.

3.8 Definition. A set x ∈ [λ]<λ is said to be an M-candidate if for all ζ ∈ x,
there is an α < λ such that x ∩ ζ ∈Mα, and, letting

αζ := least α < κ with x ∩ ζ ∈Mα,

the sequence 〈αζ : ζ ∈ x〉 is strictly increasing.

For each α < λ, let us define

Pα := Mα ∩ P(α),

and
δα := Mα ∩ λ.

Given α < λ, fix a function Fα mapping Pα× δα in a one-to-one manner into
the set of successor ordinals between δα and δα+1. Note that this is always
possible because Mα ∈ Mα+1 and hence δα+1 is much larger than δα. We
construct the sequence 〈Aα : α < λ〉 using the following recipe:

Case 1. α a successor ordinal.
If α ∈ M0, then define Aα = ∅. Otherwise, there is a unique i < λ such

that δi < α < δi+1. We now ask the following question:

Is there a candidate x ∈ Mi and a regular cardinal β < min(x)
such that α = Fi(x, β) and |x| ≤ β?

If no such x and β exist, then we set Aα = ∅. If on the other hand we do
find such x and β, then they must be unique and so we can define

Aα = {Fαζ
(x ∩ ζ, β) : ζ ∈ x}, (15.23)

where αζ is as in Definition 3.8 for our particular x.
Case 2. α is a limit ordinal.
If Mα∩λ is not equal to α, we let Aα = ∅. Otherwise, we ask the question:

Is there a candidate x ∈ Mα+1 with x cofinal in α such that
ot(x) = cf(α) < min(x)?

If no such x exists, we define Aα = ∅. Otherwise, we choose such an x and
define

Aα = {Fαζ
(x ∩ ζ, cf(α)) : ζ ∈ x}. (15.24)
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It is worth remarking that the set Aα will be cofinal in α of order-type cf(α),
as the fact that x is a candidate from Mα+1 implies αζ < α for all ζ ∈ x. We
use this remark in the proof of Claim 3.10.

The rest of the proof consists in verifying that the sequence 〈Aα : α < λ〉
we constructed above has all the required properties.

3.9 Claim. If α < λ and γ ∈ Aα then Aγ = Aα ∩ γ.

Proof. Our assumptions imply Aα �= ∅, and so there exist a candidate x and
a regular cardinal β such that β < min(x), |x| ≤ β, and

Aα = {Fαζ
(x ∩ ζ, β) : ζ ∈ x}.

Now fix ζ∗ ∈ x such that

γ = Fαζ∗ (x ∩ ζ∗, β).

The ordinal γ is a successor ordinal, and thus Aγ is defined by the procedure
outlined in the first case in the construction. Clearly γ cannot be in M0, and
when we ask the question associated with Case 1, the answer is “yes” with
x ∩ ζ∗ and β serving as the unique witnesses. Thus,

Aγ = {Fαζ
(x ∩ ζ) : ζ ∈ x ∩ ζ∗} = Aα ∩ δαζ∗ = Aα ∩ γ,

as required. �

3.10 Claim. If δ ∈ S[M], then Aδ is cofinal in δ with order-type cf(δ).

Proof. We note that this follows easily provided we can establish that the
answer to the question asked in Case 2 is “yes”, as the set Aδ produced will
have the required properties.

From the definition of S[M], it follows that δ is singular and there is
a cofinal a ⊆ δ of order-type cf(δ) with the property that every initial segment
of a is in Mδ. The proof of this claim consists of an argument that a can
be “thinned out” so that it becomes a candidate of the required sort. The
problem is that we cannot just throw away elements of a willy-nilly because
we need to preserve that fact that all proper initial segments are in Mδ. The
argument given below is not difficult, but we include it for completeness.

We start by noting that we are allowed to throw away initial segments
of a—closure properties of elementary submodels (and the fact that each
Mi ∩ λ is an initial segment of λ) tells us that the resulting tail of a has the
property that all initial segments lie in Mδ. Thus without loss of generality
ot(a) < min(a).

Let κ = ot(a) = cf(δ); we define an increasing sequence of elements of a by
the following recursion:
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Construction

Given 〈xj : j < i〉, we ask if 〈xj : j < i〉 is in Mδ. If not, the construction
terminates; if so, we define

αi = least γ < δ such that 〈xj : j < i〉 ∈Mγ (15.25)

and define
xi = least element of a that is not in Mαi . (15.26)

We claim that our construction will not terminate until stage κ. To see this,
suppose by way of contradiction that it terminates at stage i < κ. Since κ
is regular, there is a ζ ∈ a such that {xj : j < i} ⊆ a ∩ ζ. Furthermore,
sup{αj : j < i} < δ. Thus we can find a γ < δ such that Mγ contains ζ,
a ∩ ζ, and sup{αj : j < i}. Now we can reconstruct 〈xj : j < i〉 inside of the
model Mγ , so 〈xj : j < i〉 ∈ Mδ and we have contradicted the fact that our
construction was forced to terminate at stage i. Note that since a is cofinal
in δ, we will always be able to find an xi as in (15.26).

Clearly the sequence 〈xi : i < κ〉 is increasing and cofinal in a. Further-
more, the above argument shows that every initial segment of 〈xi : i < κ〉
lies in Mδ. Taken with (15.26), this means that

x := {xi : i < κ} is a candidate. (15.27)

To finish the proof of Claim 3.10, we note that the construction of x can be
carried out inside the model Mδ+1, so without loss of generality x itself is in
Mδ+1. Thus, the answer to the question asked in Case 2 of the construction of
〈Aα : α < λ〉 is “yes”, and therefore Aδ is cofinal in δ of order-type cf(δ). �

This completes the proof of Theorem 3.7. �

We close this section with one more characterization of I[λ], this time due
to Foreman and Magidor. This characterization will be used in Sect. 3.6
when we show that scales exist.

3.11 Theorem. Let M = 〈Mi : i < λ〉 be a λ-approximating sequence over
S. Then δ ∈ S[M] if and only if we can find an IA chain 〈Nα : α < cf(δ)〉
with |Nα| < cf(δ) for each α < cf(δ), and, letting N =

⋃
α<cf(δ) Nα, such

that

1. sup(N ∩ λ) = δ,

2. Mi ∈ N for unboundedly many i < δ, and

3. N ⊆Mδ.

Proof. Let 〈δi : i < cf(δ)〉 be a sequence affirming that δ is a member S[M].
By thinning out this sequence along the lines of what we did in the proof of
Claim 3.10, we may assume

〈δj : j ≤ i〉 ∈Mδi+1 .
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Let xi = 〈Mδj : j ≤ i〉 and note that xi ∈Mδi+1 . We define

Ni = SkA({xj : j < i}).

Ni can be computed in Mδi+1 from the parameter Mδi , and so

〈Nj : j ≤ i〉 ∈ Ni+1.

The rest follows easily as well. �

3.2. The Approachability Property

In this section, we turn our attention to applications of the ideal I[λ]. For
simplicity, we restrict ourselves to the situation of λ = μ+ for μ a singular
cardinal. Our investigation begins with isolating the following combinatorial
principle:

3.12 Definition. Let μ be a singular cardinal. We say that the Approacha-
bility Property holds at μ (abbreviated by APμ) if the ideal I[μ+] is improper,
that is, if μ+ itself is a member of I[μ+].

The ideal I[λ] is normal, so clearly APμ holds if and only if I[λ] contains
a closed unbounded subset of λ.

3.13 Theorem. For singular μ, APμ follows from �μ.

Proof. Let λ = μ+, let C̄ = 〈Cα : α < λ〉 be a �μ-sequence, and let M =
〈Mi : i < λ〉 be a λ-approximating sequence over C̄. We show that S[M]
contains the closed unbounded set of all δ < λ for which Mδ ∩ λ = δ.

Suppose now that Mδ ∩ λ = δ. Then Cδ is a closed unbounded subset of
δ, ot(Cδ) < δ, and

α ∈ acc(Cδ) =⇒ Cα = Cδ ∩ α.

If α < δ, then Cα is an element of Mδ; from this, it follows easily that every
initial segment of Cδ must be in Mδ. This is not quite enough to conclude
that δ ∈ S[M] because it need not be the case that ot(Cδ) = cf(δ), but if
this happens an argument like that of Lemma 2.19 will yield a set A with the
properties necessary to witness δ’s membership in S[M]. �

An examination of Theorem 3.7 gives us a good idea of the relationship
between �μ and APμ. If α is a limit point of Cδ and we are dealing with a
�μ-sequence, then we know Cδ ∩ α = Cα, but in the case of APμ, we need
to know the next element of Cδ beyond α in order to determine Cδ ∩ α—if
β = min(Cδ \ α + 1), then

Cβ = (Cδ ∩ α) ∪ {α}.

This is reminiscent of the difference between ♦ and CH—both of these axioms
involve enumerations, but the stronger axiom has a bit of “promptness” built
into it.
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3.14 Definition. Let μ be a singular cardinal. An APμ-sequence is a se-
quence C̄ = 〈Cα : α < μ+〉 such that

1. Cα is a closed (not necessarily unbounded) subset of α,

2. |Cα| < μ, and

3. for a closed unbounded set of δ < μ+,

(a) Cδ is a closed unbounded subset of δ,

(b) ot(Cδ) = cf(δ), and

(c) for all β < δ, Cβ ∩ δ ∈ {Cα : α < δ}.

The reader may find the above definition a little surprising because on
the face of it we have weakened considerably the conclusion of Theorem 3.7.
However, it is not hard to prove that APμ holds if and only if there is an
APμ-sequence, and the above definition has the advantage of being already
ensconced in the literature.

We turn now to the task of demonstrating the utility of APμ, at least in the
case where μ is a strong limit singular cardinal. For the example we have in
mind, it is useful to recast APμ as a statement about elementary submodels
of H(χ). The following definition from [4] gives us the terminology needed
to state the result.

3.15 Definition. Let τ be a regular cardinal, and let M be an elementary
submodel of H(χ) for some sufficiently large regular χ.

1. M is τ -closed if [M ]<τ ⊆M .

2. M is weakly τ -closed if for every I ∈ [M ]τ , there exists a J ∈ [I]τ such
that [J ]<τ ⊆M .

The following theorem is a reformulation of one of the main results of [4],
but the argument we use has appeared several times in the literature (see
Remark 13.11 of Todorčević’s chapter [98] in this Handbook).

3.16 Theorem. Let λ = μ+ for μ a strong limit singular cardinal. Then
APμ holds if and only if for every x ∈ H(χ), there is a λ-approximating
sequence M = 〈Mα : α < λ〉 over x such that Mδ is weakly τ -closed for all
regular cardinals τ < μ and for all δ < λ satisfying Mδ ∩ λ = δ.

Proof. Let C̄ = 〈Cα : α < λ〉 and E be as in the definition of APμ. Set
κ = cf(μ), and let 〈μi : i < κ〉 be an increasing sequence of regular cardinals,
cofinal in μ, such that 2μi < μi+1.

We build a matrix 〈M i
α : α < λ, i < κ〉 of elementary submodels of H(χ)

such that (letting Mα :=
⋃

i<κ M i
α)

1. 〈Mα : α < λ〉 is a λ-approximating sequence over {x, C̄, E},

2. |M i
α| = μi,
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3. M i
α ⊆M j

α for i < j,

4. μi+1 ∪ P(M i
α+1) ⊆M i+1

α+1, and

5. for each i, P(
⋃

β∈Cα
M i

β) ⊆Mα+1.

The construction is straightforward; we note with regard to condition (5)
that ∣

∣P
(
P
⋃

β∈Cα
M i

β

)∣
∣ ≤ 2|Cα |+μi < μ,

and so P(
⋃

β∈Cα
M i

β) can be “swallowed” by M j
α+1 for some j < κ.

Now assume τ = cf(τ) < μ. We show first that if α = β + 1, then Mα is
weakly τ -closed. Assume A ⊆ Mα is of cardinality τ . If τ = κ, then every
member of [A]<τ is a subset of M i

α+1 for some i < κ, and therefore

[A]<τ ⊆Mα+1

by (4). If on the other hand τ �= κ, then there is an i < κ such that

|A ∩M i
α+1| = τ,

and then
[A ∩M i

α+1]
<τ ⊆M i+1

α+1 ⊆Mα+1,

again by (4).
Now suppose that δ = Mδ ∩ λ, and let A ∈ [Mδ]τ . If cf(δ) �= τ then there

is an α < δ such that
|A ∩Mα+1| = τ

and we can then take advantage of the fact that Mα+1 is weakly τ -closed.
Thus we may assume that τ = cf(δ). If τ = cf(δ) = κ, then [A]<τ ⊆ Mδ as
any bounded subset of A is a subset of M i

δ for some i < κ. Thus, our one
remaining case is when τ = cf(δ) �= κ.

Since Mδ =
⋃

i<κ

⋃
α∈Cδ

M i
α, there is an i < κ for which

B := A ∩
⋃

α∈Cδ
M i

α

has cardinality τ . We will finish the proof by showing that [B]<τ ⊆ Mδ. To
see this, suppose that K ∈ [B]<τ . Since ot(Cδ) = cf(δ) = τ , there is an
α ∈ Cδ such that

K ⊆
⋃

β∈Cδ ∩αM i
β .

Since δ ∈ E, there is a γ < δ such that Cδ ∩ α = Cγ . But condition (5) of
our construction guarantees that K ∈ Mγ+1 ⊆ Mδ. This finishes the proof
that Mδ is weakly τ -closed whenever τ is a regular cardinal less than μ and
Mδ ∩ λ = δ.

The other direction of the theorem is easily established—if M is any λ-
approximating sequence satisfying the assumptions given, then S[M] contains
the closed unbounded set of δ for which Mδ ∩ λ = δ. �
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The application we give here of APμ is reminiscent of Lemma 2.13—we
obtain the same conclusion from different hypotheses. Again, the following
theorem is taken from [4].

3.17 Theorem. Let λ = μ+ for μ a singular strong limit cardinal, and
assume APμ holds. Suppose that for some σ < μ we are given a family

A = 〈Aα : α < λ〉

of sets from [λ]σ
+

satisfying the following two conditions:

1. For all β < λ, there is a function Fβ : β → [λ]σ such that

〈Aα \ Fβ(α) : α < β〉 is disjoint. (15.28)

2. For all Z ∈ [λ]σ, |{α < λ : Z ⊆ Aα}| ≤ μ.

Then there exists a function F : λ→ [λ]σ such that

〈Aα \ F (α) : α < λ〉 is disjoint. (15.29)

Proof. By Theorem 3.16, there is a λ-approximating sequence M = 〈Mα :
α < λ〉 over A with the property that Mδ is weakly τ -closed for all regular
τ < μ whenever Mδ ∩ λ = δ.

We claim that if Mδ ∩ λ = δ and α ≥ δ, then it must be the case that

|Aα ∩ δ| ≤ σ. (15.30)

To see this, suppose that it fails for δ and α. Clearly we may choose J ⊆
Aα ∩ δ of cardinality σ+. Since Mδ is weakly σ+-closed, we may assume
that [J ]σ ⊆ Mδ. Therefore, there is a set Z ∈ Mδ of cardinality σ such that
Z ⊆ Aα.

Since α ≥ δ, it follows that for each β ∈Mδ ∩ λ, we know

H(χ) |= (∃γ > β)[Z ⊆ Aγ ],

hence
Mδ |= (∃γ > β)[Z ⊆ Aγ ].

The preceding holds for all β ∈Mδ ∩ λ, and so

Mδ |= (∀β < λ)(∃γ > β)[Z ⊆ Aγ ].

Another application of elementarity tells us

H(χ) |= (∀β < λ)(∃γ > β)[Z ⊆ Aγ ],

and this contradicts the second assumption we made about A.
Now let 〈δi : i < λ〉 enumerate the closed unbounded set E of δ for which

Mδ is weakly σ+-closed. We define the function F : λ→ [λ]σ by induction.
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We begin by defining F � δ0 by

F (α) = Fδ0(α),

where Fδ0 is the function from (15.28) for β = δ0. Next, given i < λ, we
assume that F � δi has already been defined. If δi ≤ α < δi+1, we define

F (α) = Fδi+1(α) ∪ (Aα ∩ δi).

Note that F (α) has cardinality σ, and since E is closed unbounded in λ, our
recipe defines F (α) for each α < λ.

Does F work? All that remains to be shown is that

(Aα \ F (α)) ∩ (Aβ \ F (β)) = ∅ (15.31)

for α < β < λ. If there is an i such that δi ≤ α < β < δi+1, then (15.31)
holds because

Aγ \ F (γ) ⊆ Aγ \ Fδi(γ)

for all γ < δi. Otherwise, there is an i such that α < δi ≤ β. In this case,
note that Aα ⊆ Mδi because Mδi ∩ λ = δi, Aα ∈ Mδi , and |Aα| = σ+ < μ.
Thus, (15.31) holds

Aα ∩Aβ \ F (β) = ∅.

�

The reader may wonder if it is necessary for the family A to satisfy con-
dition (2) in order for the conclusion to hold. To see that it cannot simply
be dropped, let us assume that μ is a singular cardinal for which �μ (and
hence APμ) holds. Given σ < μ, we can apply Theorem 2.4 to find a non-
reflecting stationary S ⊆ μ+ consisting of ordinals of cofinality σ+. If for
each δ ∈ S we choose a cofinal Aδ of order-type σ+, then by Lemma 2.12 the
family A = 〈Aδ : δ ∈ S〉 satisfies the first assumption of Theorem 3.17, but
clearly the conclusion of Theorem 3.17 cannot hold just as in the proof of
Theorem 2.9. These issues are studied in much greater detail in [4], as well
as in joint work of Hajnal, Juhász, and Shelah [44, 43].

3.3. The Extent of I[λ]

This section is dedicated to analyzing the extent of the ideal I[λ]. In partic-
ular, we show that the ideal I[λ] is quite large—it contains many stationary
sets. In the other direction, we show that although I[λ] contains stationary
sets, if cf(μ) < κ < μ for some supercompact cardinal κ then APμ fails.

3.18 Theorem. Suppose that κ+ < σ < λ for regular cardinals κ, σ, and λ.
There is a set S ⊆ Sλ

κ in I[λ] such that S ∩ θ is stationary in θ for stationarily
many θ ∈ Sλ

σ . In particular, I[λ] contains a stationary subset of Sλ
κ .
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Proof. Since κ+ < σ, one of the basic results of club guessing (see Theo-
rem 2.17 and Exercise 2.18 in the chapter [1]) tells us that there is a sequence
C̄ = 〈Cη : η ∈ Sσ

κ 〉 such that

• Cη is club in η of order-type κ, and

• for every club E ⊆ σ, the set of η ∈ Sσ
κ with Cη ⊆ E is stationary.

Let M = 〈Mi : i < λ〉 be a λ-approximating sequence over {κ, σ, C̄}, and
let S = S[M] ∩ Sλ

κ . We know that S is in I[λ], so we need to prove that the
set of θ ∈ Sλ

σ for which S ∩ θ is stationary in θ is stationary.
Assume by way of contradiction that this is not true. We can then build

an IA chain N = 〈Ni : i < σ〉 of elementary submodels of H(χ) such that

• |Ni| = σ,

• {κ, σ, S, C̄,M} ∈ N0, and

• S ∩ θ is nonstationary in θ := supi<σ(Ni ∩ λ).

Let θi = sup(Ni ∩ λ) for i < σ. The sequence 〈θi : i < σ〉 is increasing,
continuous, and 〈θj : j ≤ i〉 ∈ Ni+1 for all i < σ.

Inside the model Mθ+1, we fix a strictly increasing a continuous function
g mapping σ onto a closed unbounded subset of θ. Since σ is uncountable,
we know the set

E := {i < σ : g(i) = θi}
is closed and unbounded in σ. Our goal is to prove that θη ∈ S[M] for all
η ∈ Sσ

κ with Cη ⊆ E. Since the set of such η is a stationary subset of σ, this
contradicts the assumption that S ∩ θ is a nonstationary subset of θ.

Thus, let η < σ be such that Cη ⊆ E and for each ζ < θ let gζ denote the
function g �(Cη ∩ ζ). It suffices to prove that gζ is in Mθη for all ζ < η, as
the range of g �Cη will then witness that θη is a member of S[M].

Given ζ < θη, we know that gζ is in Mθ+1 and thus the statement

(∃α < λ)[gζ ∈Mα] (15.32)

holds in H(χ).
The function gζ is definable from ζ, Cη, and a proper initial segment

of 〈Ni : i < θη〉, and so there must be an i0 < θη with gζ ∈ Ni0 . Now
M ∈ Ni0 , and hence the statement (15.32) must hold in Ni0 as well because
of elementarity.

In particular, gζ must be in Mα for some α ∈ Ni0 ∩ λ. But clearly such
an α satisfies

α < sup(Ni0 ∩ λ) < θη,

and therefore gζ is in Mθη too, as required. �

3.19 Corollary. If λ = μ+ for μ singular and κ < μ is a regular cardinal,
then I[λ] contains a stationary subset of Sλ

κ .



1268 Eisworth / Successors of Singular Cardinals

Why do we restrict to successors of singular cardinals in the preceding
corollary? The answer is that much more is known in the case where λ = κ+

for κ regular. Later in the chapter (see Corollary 4.6), we show that if κ is
regular, then Sκ+

<κ ∈ I[κ+]. Mitchell [69] has announced that it is consistent
that no stationary subset of Sℵ2

ℵ1
is in I[ℵ2]. (His argument is outlined in the

paper [68].)
We have seen that I[λ] contains many large sets, but the next result of

Shelah [83] shows that supercompact cardinals impose limits on how big I[λ]
can be.

3.20 Theorem. If κ is a supercompact cardinal, the APμ fails for all sin-
gular cardinals μ with cf(μ) < κ < μ.

Proof. Assume by way of contradiction that APμ holds, and let C̄ and E
be as in Definition 3.12. By a classical result of Solovay [94], we know that
θ<κ = θ for all regular θ > κ.

This means that we can enumerate [λ]<κ in a one-to-one fashion as x̄ =
〈xα : α < λ〉. Moreover, it follows that θ<κ ≤ θ + κ < μ for all regular θ < μ
and so there is a function F : λ→ λ with the property that for all α < λ,

γ ≤ α =⇒ [Cγ ]<κ ⊆ {xβ : β < F (α)}. (15.33)

Let j : V →M be a λ-supercompact embedding with κ = crit(j). Define

j(C̄) = 〈Cj
α : α < j(λ)〉,

j(x̄) = 〈xj
α : α < j(λ)〉, and

ρ = sup{j(α) : α < λ}.

The set {j(α) : α < λ} is a <κ-closed subset of ρ, and since Cj
ρ is a club

subset of ρ, it follows that

D := {α < λ : j(α) ∈ Cj
ρ}

is a <κ-closed unbounded subset of λ. Choose δ < λ for which |D ∩ δ| = μ.
Since j(C̄) is a APj(μ) sequence in M , there is a γ < ρ such that

Cj
ρ ∩ j(δ) = Cj

γ ,

and we can find ε < λ such that γ < j(ε). Finally, let us define

A = [j“(D ∩ δ)]<κ ⊆ [Cj
ρ ∩ j(δ)]<κ = [Cj

γ ]<κ.

By the definition of F , we know

x ∈ A =⇒ x = xj
ξ for some ξ < j(F )(j(ε)) = j(F (ε)). (15.34)

However, every element x of A is also of the form j(y) for some y ∈ [D∩δ]<κ

and therefore there is a unique ζ < λ such that

x = j(xζ) = xj
j(ζ). (15.35)
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From (15.34), an application of elementarity allows us to conclude that the ζ
from (15.35) must be less than F (ε). Thus, there is a one-to-one mapping
from A to F (ε) given by

x �→ the unique ζ < F (ε) with x = j(xζ).

This is a contradiction, as |A| = μ<κ = λ, while F (ε) < λ. �

The above argument can easily be modified to prove that if κ is supercom-
pact and cf(μ) < κ < μ, there is a singular θ < κ with cf(θ) = cf(μ) such
that Sμ+

θ+ /∈ I[μ+].

3.4. Weak Approachability and APℵω

What about the situation at ℵω+1? Can we (assuming the existence of large
cardinals) force the failure of APℵω? The answer is affirmative, and even
though the proof is not difficult (we give it at the end of the next section), it
will give us an opportunity to re-connect I[λ] with some of the ideas used in
the proof of Theorem 2.15. The reader may recall that we utilized λ-filtration
sequences in order to establish that certain stationary sets were indestructible
by nice forcings. Our goal in this section is to deepen our understanding of
this connection. The results in this section are all due to Shelah, and most
are formulations of ideas and results from [83] and [90].

3.21 Definition. Let λ = μ+ for μ singular, and let ā = 〈aα : α < λ〉 be
a sequence of elements of [λ]<μ. A limit ordinal δ < λ is said to be weakly
approachable with respect to the sequence ā if there is an unbounded A ⊆ δ
of order-type cf(δ) such that every initial segment of A is covered by aβ for
some β < δ, that is, if α < δ then there is a β < δ such that A ∩ α ⊆ aβ .

The use of the adverb weakly should not be surprising, as the above is
really a weakening of Definition 3.2. There is a slight discrepancy between
the two definitions, as Definition 3.2 uses enumerations of elements of [λ]<λ

instead of [λ]<μ, but this difference is irrelevant to the question of deciding
whether an ordinal is approachable or not, because the initial segments that
must appear in the enumeration in Definition 3.2 are all of size less than μ.

3.22 Definition. Assume λ = μ+ for μ singular. A set S ⊆ λ is in I[λ;μ]
if and only if there is a sequence ā = 〈aα : α < λ〉 of elements of [λ]<μ and
a closed unbounded C ⊆ λ such that every δ ∈ S ∩C is singular and weakly
approachable with respect to the sequence ā.

The proof that I[λ;μ] is a normal ideal is no different from the correspond-
ing proof for I[λ]. In fact, the ideals are quite closely related—it should be
clear that I[λ] ⊆ I[λ;μ], while the following proposition tells us that in many
situations the ideals actually coincide (compare with Lemma 2.20, for exam-
ple).
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3.23 Proposition. Suppose that λ = μ+ where μ is a strong limit singular
cardinal. Then I[λ] = I[λ;μ].

Proof. It is clear that I[λ] ⊆ I[λ;μ], so assume S ∈ I[λ;μ] with ā and E the
corresponding parameters. Let M = 〈Mα : α < λ〉 be a λ-approximating
sequence over {ā, E}; we show that any δ ∈ S satisfying Mδ ∩λ = δ is in fact
in S[M]. Since I[λ] is a normal ideal and S[M] ∈ I[λ], this suffices.

Given such a δ, there exists a cofinal A ⊆ δ of order-type cf(δ) such that
every initial segment of A is covered by aα for some α < δ. So fix β < δ, and
fix α < δ such that

A ∩ β ⊆ aα.

Since α < δ and ā ∈ Mδ, it follows that both aα and P(aα) are in Mδ.
Since |aα| < μ and μ is a strong limit, we know |P(aα)| < μ as well. Since
Mδ ∩ λ = δ, we conclude

P(aα) ⊆Mδ,

and therefore A ∩ β ∈Mδ. Thus, δ ∈ S[M] as required. �

We now bring in yet another notion of approachability—this one is tied to
colorings associated with certain λ-filtration sequences, and we have already
seen it in disguise in Sect. 2.5. The following notation is due to Shelah [83].

3.24 Definition. Let λ = μ+ for μ singular. A function d : [λ]2 → cf(μ) is
said to be normal if

i < cf(μ) =⇒ sup
α<λ

|{β < α : d(β, α) < i}| < μ. (15.36)

The function d is transitive if

α < β < γ < λ =⇒ d(α, γ) ≤ max{d(α, β), d(β, γ)}. (15.37)

We note here that a normal transitive coloring d : [μ+]2 → cf(μ) is es-
sentially a λ-filtration sequence b̄ = 〈bα,i : α < λ, i < cf(μ)〉 with nice
properties—if we define

bα,i = {β < α : d(β, α) ≤ i},

then the normality condition on d corresponds to

sup{|bα,i| : α < λ} < μ for all i < cf(μ), (15.38)

while transitivity translates as

β ∈ bα,i =⇒ bβ,i ⊆ bα,i. (15.39)

As noted after Definition 1.10, it is straightforward to build such λ-filtra-
tion sequences, and hence there are plenty of normal transitive colorings
defined on λ.
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3.25 Definition. Suppose that d : [μ+]2 → cf(μ) is a normal transitive func-
tion, where μ is a singular cardinal. A limit ordinal δ < μ+ is d-approachable
if there is a cofinal A ⊆ δ such that for every α ∈ A,

sup{d(β, α) : β ∈ A ∩ α} < cf(μ).

3.26 Proposition. Let μ and d be as in the preceding definition, and suppose
that δ < μ+.

1. If cf(δ) ≤ cf(μ), then δ is d-approachable.

2. If δ is d-approachable and cf(δ) > cf(μ), then there is a cofinal H ⊆ δ
of order-type cf(δ) such that

| ran d �[H]2| < cf(μ).

Proof. The first statement is obvious from cardinality considerations. For
the second statement, let A ⊆ δ be as in the definition of d-approachability.
Without loss of generality, ot(A) = cf(δ), as shrinking A causes no harm.
For α ∈ A, let

iα = sup{d(β, α) : β ∈ A ∩ α}.

Our choice of A implies iα < cf(μ). Since cf(μ) �= cf(δ), there is an i < cf(μ)
for which

H := {α ∈ A : iα ≤ i}

is unbounded in δ. Clearly H has the required properties. �

3.27 Corollary. Let d and μ be as in the previous proposition. An ordinal
δ < μ+ is d-approachable if and only if cf(δ) ≤ cf(μ) or there is a cofinal
H ⊆ δ of order-type cf(δ) and i < cf(μ) such that

β < α in H =⇒ d(β, α) ≤ i.

The next theorem establishes the connection between the two concepts we
have been considering in this section.

3.28 Theorem. Let λ = μ+ for μ singular. Then the following two condi-
tions are equivalent for a set S ⊆ λ:

1. S ∈ I[λ;μ].

2. There is a normal transitive d : [λ]2 → cf(μ) and a closed unbounded
E∗ ⊆ λ such that all δ ∈ E∗ ∩ S are d-approachable.

Proof. Assume first that condition (2) holds for S, as witnessed by d and E∗.
Any ordinal α < λ has a unique representation as γ + i where γ is divisible
by cf(μ) and i < cf(μ). With this in mind, we define

aγ+i = {β < γ : d(β, γ + j) ≤ i for some j ≤ i}, (15.40)
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where γ is divisible by cf(μ) and i < cf(μ). Note that the normality condition
on d guarantees that |aα| < μ for all α, and so our construction generates an
enumeration ā = 〈aα : α < λ〉 of sets from [λ]<μ. Now let E be the closed and
unbounded subset of E∗ made up of those elements that are limits of ordinals
divisible by cf(μ). We claim that any δ ∈ E ∩S is weakly approachable with
respect to ā.

Given δ ∈ E ∩ S, we know that δ is d-approachable, so there is a cofinal
A ⊆ δ of order-type cf(δ) such that for all α ∈ A,

sup{d(β, α) : β ∈ A ∩ α} < cf(μ).

Any unbounded subset of A also enjoys this property, so without loss of
generality if β < α in A, then there is an ordinal γ such that

• β < γ ≤ α, and

• γ is divisible by cf(μ).

Given α ∈ A, there is a unique ordinal γ such that

• γ is divisible by cf(μ), and

• α = γ + j for some j < cf(μ).

Furthermore, we know

• A ∩ α ⊆ γ, and

• iα := sup{d(β, α) : β ∈ A ∩ α} < cf(μ).

If we define i = iα + j (so γ + i < δ) then it is straightforward to verify

A ∩ α ⊆ aγ+i,

and we are done.
Now what about the other direction? Assume that there is a closed un-

bounded E and an enumeration ā = 〈aα : α < λ〉 of elements of [λ]<μ such
that each δ ∈ E ∩ S is weakly approachable with respect to ā.

Let 〈μi : i < cf(μ)〉 be an increasing sequence of regular cardinals cofinal
in μ. A straightforward construction will give us a λ-filtration system b̄ such
that

• |bα,i| ≤ μi

• β ∈ bα,i =⇒ bβ,i ⊆ bα,i, and

• |aα| ≤ μi =⇒ aα ∩ α ⊆ bα,i.
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Let d be the coloring

d(β, α) = min{i : β ∈ bα,i}; (15.41)

it is easily check that d is normal and transitive.
Let us assume that δ is weakly approachable with respect to ā, as shown

by the set A ⊆ δ. Let 〈αε : ε < cf(δ)〉 be the increasing enumeration of A.
By our assumption on A, for each ε < cf(δ) there is a βε < δ such that

{αξ : ξ < ε} ⊆ aβε ∩ βε.

By thinning out A as necessary, we may assume that for all ε < cf(δ),

sup{αξ : ξ < ε} < βε < αε.

By Corollary 3.27, we may assume cf(δ) > cf(μ). Thus, for some i < cf(μ),
the set

B := {ε < cf(δ) : d(βε, αε) ≤ i and |aβε | < μi}

is unbounded in cf(δ).
Next we define H := {βε : ε ∈ B}. Note that the set H is cofinal in δ, and

if ε1 < ε2 are in B, then βε1 < αε1 < βε2 . This implies

d(βε1 , βε2) ≤ max{d(βε1 , αε1), d(αε1 , βε2)} ≤ i,

and so δ is d-approachable. �

Using this characterization of I[λ;μ], we can quickly deduce some corol-
laries concerning I[λ].

3.29 Corollary. If λ = μ+ for μ a strong limit singular cardinal, then
Sλ

≤cf(μ) ∈ I[λ].

Proof. This is immediate, since it is clear from Theorem 3.28 that Sλ
≤cf(μ) is

in I[λ;μ]. �

3.30 Corollary. APℵω holds in the model from Theorem 2.15. In particular,
APℵω does not imply �ℵω , nor does it imply the existence of a non-reflecting
stationary subset of ℵω+1.

Proof. This follows from Proposition 2.21, as without loss of generality, the
λ-filtration system used in the proof satisfies the requirements necessary for
the coloring d to be normal and transitive. �

We shall see later (Corollary 3.41 in the next subsection) that Refl(ℵω+1)
implies APℵω , so the above corollary is not simply an artifact of Magidor’s
construction.
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3.5. The Structure of I[λ]

In the introduction to this part of the chapter, we pointed out that in certain
circumstances the question of whether or not a stationary set satisfies the
κ+-indestructibility condition can be reduced to checking whether it has sta-
tionary intersection with a certain special subset of Sλ

κ . The result we prove
next can be viewed as a version of this phenomenon—the ideal I[λ] very often
has a simple structure. As in the last subsection, all results presented here
are due to Shelah.

3.31 Theorem. If κ < λ are uncountable regular cardinals with 2<κ < λ,
then I[λ] �Sλ

κ is generated over the nonstationary ideal by a single set, that
is, there is a set Aλ

κ ⊆ Sλ
κ such that S ⊆ Sλ

κ is in I[λ] if and only if S \ Aλ
κ

is nonstationary.

Proof. Let M be a λ-approximating sequence with κ ∈ M0. Note that if
there is a generator as in the conclusion of the theorem, then there is such a
generator in M0. A simple argument then shows that this set must be equal
to S[M]∩Sλ

κ modulo the nonstationary ideal. Thus, it makes sense to define

Aλ
κ := S[M] ∩ Sλ

κ ,

and work to show that S ∩Aλ
κ �= ∅ for every S ⊆ Sλ

κ in I[λ].
Let N = 〈Nα : α < λ〉 be a λ-approximating sequence over {κ, S,M}, and

choose δ ∈ S such that Nδ ∩ λ = δ. Since S ∈ N0, it follows that δ ∈ S[N];
our goal is to prove that δ ∈ S[M] as well.

Let c be a closed unbounded subset of δ with ot(c) = κ such that every
proper initial segment of c is in Nδ. Let 〈αε : ε < κ〉 be the increasing
enumeration of c, and in the model Mδ+1, let 〈βε : ε < κ〉 enumerate another
closed unbounded subset of δ.

Since κ has uncountable cofinality, the set

e := {ε < κ : αε = βε}

is closed unbounded in κ. Furthermore, since 2<κ < λ and M0 ∩ λ is an
initial segment of λ, we know that every bounded subset of e is in M0. By
the choice of {βε : ε < κ}, it follows that for any ζ < κ the set {βε : ε ∈ e∩ ζ}
is in Mδ+1; our goal is to show that in fact it is in Mδ—this is enough to
prove that δ ∈ Aλ

κ.
To do this, note that {αε : ε ∈ e ∩ ζ} is in Nδ, as it is definable from an

initial segment of c and an initial segment of e. Thus

{βε : ε ∈ e ∩ ζ} = {αε : ε ∈ e ∩ ζ} ∈ Nδ ∩Mδ+1. (15.42)

However, we know that M ∈ Nδ and Nδ ∩ λ = δ. From this it follows

Nδ ∩
⋃

i<λMi = Mδ. (15.43)

Together (15.42) and (15.43) tell us that {βε : ε ∈ e∩ ζ} is in Mδ, and so the
set {βε : ε ∈ e} puts δ into Aλ

κ. �
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3.32 Corollary. If λ = μ+ for μ strong limit singular, then I[λ] contains a
maximal set modulo the nonstationary ideal.

We call this maximal set (should it exist) the set of approachable points
of λ. In general, the sets Aλ

κ from Theorem 3.31 are unique modulo the
nonstationary ideal, so we refer to Aλ

κ as the set of approachable points of
cofinality κ. In some of Shelah’s work, Aλ

κ is called the good set of cofinality κ,
but the adjective good will be reserved for a related concept that we shall
explore later.

Our goal for the rest of this section is to prove another theorem relating
I[λ] to colorings of pairs from λ, and then to derive several results illuminating
the connection between I[λ] and the problem of stationary reflection.

3.33 Theorem. Suppose that κ < λ are regular cardinals with 2<κ < λ,
and let d : [λ]2 → θ for some θ < κ. If M is a λ-approximating sequence
over {θ, κ, d}, then for every δ in S[M] ∩ Sλ

κ , there exists a cofinal H ⊆ δ of
order-type κ homogeneous for d.

Proof. If δ ∈ S[M] ∩ Sλ
κ , then we can find a set a = {αi : i < κ} cofinal in δ

such that {ai : i < ζ} ∈ Mδ for all ζ < κ. By induction on i < κ, we define
objects εi and fi as follows:

1. ε0 = α0,

2. fi : i→ θ is given by fi(j) = d(εj , δ),

3. we ask if there is an ordinal α greater than αi and εj for all j < i such
that d(εj , α) = fi(j) for all j < i. If the answer is yes, then εi is the
least such α; otherwise, the construction terminates.

The above construction generates an increasing sequence {εi : i < i∗} for
some i∗ ≤ κ. For any i < i∗, the sequence {εj : j ≤ i} is definable from
the parameters {αj : j < i}, d, and fi. The first of these is in Mδ by our
choice of {αi : i < κ}, while fi ∈ Mδ as well because 2<κ < λ. Thus, every
proper initial segment of {εi : i < i∗} lies in Mδ. From this, we conclude that
i∗ = κ—this is because at every stage of our construction, the answer to the
question posed in (3) above is “yes”, as demonstrated by the ordinal δ. The
rest of the proof is standard—let f : κ→ θ be defined by

f(i) = d(εi, δ).

Since θ < κ and κ is regular, there is a single ζ such that {i < κ : f(i) = ζ}
is unbounded in κ. It is routine to check that

Hδ := {εi : f(i) = η}

has all the required properties. �
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The next definition is natural in light of the preceding theorem.

3.34 Definition. Suppose that d : [λ]2 → θ for some θ and λ. We define
S(d) to be the set of those δ < λ that have a cofinal subset Hδ of order-type
cf(δ) homogeneous for d.

3.35 Corollary. Suppose that λ = μ+ for μ strong limit singular, and let d
be a normal transitive coloring. Then S(d) ∪ Sλ

≤cf(μ) generates I[λ] over the
nonstationary ideal.

Proof. By Corollary 3.29 and Theorem 3.33. �

3.36 Corollary. If κ < λ are regular cardinals with 2<κ < λ and d is
a function from [λ]2 to θ for some θ < κ, then S(d) includes Aλ

κ modulo the
nonstationary ideal.

We now return once more to the topic of stationary reflection, and investi-
gate the extent to which the structure of I[λ] limits the patterns of reflection
that can arise. Our first step is the following result of Shelah [83, 90].

3.37 Theorem. Suppose that σ < τ < λ are regular cardinals with 2<σ < τ ,
and let d : [λ]2 → θ for some θ < σ. If 〈δi : i < τ〉 is a strictly increasing
and continuous sequence of ordinals with supremum δ < λ, then

{δi : i ∈ Aτ
σ} \ S(d) is nonstationary. (15.44)

Proof. Note that Aτ
σ exists because 2<σ < τ , so (15.44) makes sense. Define

d∗ : [τ ]2 → θ by
d∗(i, j) = d(δi, δj).

We apply Corollary 3.36 to σ, τ , and d∗ and conclude that Aτ
σ \ S(d∗) is

a nonstationary subset of τ . Note as well that if i ∈ S(d∗) then δi ∈ S(d)
because of the way d∗ was defined, so (15.44) follows. �

Our intent is to mine Theorem 3.37 for more information concerning the
connection between I[λ] and the problem of stationary reflection. For the
time being, let us assume the following:

• λ = μ+ for μ a strong limit singular cardinal,

• d : [λ]2 → θ for some θ < μ, and

• S∗(d) := λ \ S(d) is stationary.

This situation occurs if APμ fails, for example. In the remainder of this
section, we show that the above assumptions have strong implications for
stationary reflection. We begin with a easy result.

3.38 Proposition. S∗(d) cannot reflect outside of itself.
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Proof. Suppose that δ ∈ S(d), and let H be a cofinal subset of δ homogeneous
for the coloring d. Then any α < δ with α = sup(H ∩ α) is also in S(d),
and so S(d) contains a closed unbounded subset of δ. The result now follows
immediately. �

The next theorem illustrates that there are connections between I[λ] and
I[τ ] for certain regular τ < μ. In the statement of the theorem, S∗

σ(d) denotes
S∗(d) ∩ Sλ

σ .

3.39 Theorem. Let σ < τ be regular cardinals below μ with 2<σ < τ . If
S∗

σ(d) ∩ δ is stationary in δ for some δ ∈ Sλ
τ , then Sτ

σ /∈ I[τ ].

Proof. If Sτ
σ ∈ I[τ ], then Corollary 3.36 implies that S(d) contains a closed

unbounded subset of δ relative to the ordinals of cofinality σ. This is impos-
sible if S∗

σ(d) ∩ δ is stationary in δ. �

The following lemma tells us that cardinal arithmetic assumptions have
some influence on the structure of I[λ]. We state the result in terms of τ
because we will apply it in conjunction with Theorem 3.39.

3.40 Lemma. Let σ < τ be regular cardinals such that ε<σ < τ for all ε < τ .
Then Sτ

σ ∈ I[τ ].

Proof. Let M = 〈Mα : α < τ〉 be a τ -approximating sequence. We know
that Mα ∩ τ is an initial segment of τ for each α < τ . Since |Mα|<σ < τ for
each α, it follows (since Mα ∈Mα+1) that

[Mα]<σ ⊆Mα+1. (15.45)

Now suppose that δ ∈ Sτ
σ satisfies δ = Mδ ∩ λ, and let A ⊆ δ be any cofinal

set of order-type σ. Each initial segment of A is in [Mα]<σ for some α < σ.
Since δ is a limit ordinal, it follows from (15.45) that each initial segment
of A is in Mδ and therefore δ ∈ S[M]. Since I[τ ] is a normal ideal and
S[M] ∈ I[τ ], we conclude that Sτ

σ ∈ I[τ ] as well. �

We are now in a position to deduce a somewhat unexpected corollary of
Theorem 3.39. This is a reformulation of one of the main theorems in [83],
and it shows that the fact that APℵω holds in the model of Theorem 2.15 is
no accident.

3.41 Corollary. If ℵω is a strong limit and APℵω fails, then Refl(ℵω+1)
fails as well.

Proof. Assume ℵω is a strong limit and APℵω fails. Let d : [ℵω+1]2 → ω be
a normal transitive function, and let S∗(d) = ℵω+1 \ S(d). Since APℵω fails,
we know that S∗(d) is stationary and hence there is an n < ω for which the
set S of ordinals in S∗(d) of cofinality ℵn+1 is stationary. Note that

2ℵn ≤ σ < ℵω =⇒ σℵn = σ<ℵn+1 = σ, (15.46)
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and so an application of Theorem 3.39 tells us that S cannot reflect in any
cofinality greater than 2ℵn .

Now we claim that S has a non-reflecting stationary subset. To see this,
fix k < ω such that 2ℵn = ℵn+k and consider the sequence of sets defined by

S0 = S,

Si+1 = {δ < ℵω+1 : Si ∩ δ is stationary in δ}.

Standard arguments tell us that

δ ∈ Si =⇒ cf(δ) ≥ ℵn+1+i, (15.47)

and that Si+1 ⊆ Si for i ≥ 1 (though S1 need not be a subset of S0).
We know that S does not reflect in an ordinal of cofinality greater than

ℵn+k and therefore Sk is empty. Let i∗ be the first natural number less than
k for which Si∗+1 is nonstationary. The set Si∗ is therefore a stationary set
that does not reflect stationarily often. By removing a nonstationary set from
Si∗ , we can obtain a stationary T ⊆ Si∗ that does not reflect at all. Thus
Refl(ℵω+1) fails. �

Shelah’s paper [87] uses similar arguments to establish the following curi-
ous result which shows that supercompact cardinals actually impose a limit
on the amount of stationary reflection present.

3.42 Theorem (Shelah [87]). If GCH holds and κ is a κ+ω+1-supercompact
cardinal, then there are singular cardinals ζ < η < κ of countable cofinality
for which Refl(Sη+

ζ+ ) fails.

The bulk of [87] is devoted to showing that the large cardinal assumption
in the preceding theorem is sharp.

3.43 Theorem (Shelah [87]). If the universe contains “sufficiently many”
supercompact cardinals, then in some forcing extension there is a κ which is
κ+ω-supercompact, GCH holds, and Refl(Sτ

σ) holds for every regular σ and τ
with σ+ < τ .

We close this section with yet another application of the S(d) characteri-
zation of I[λ]—we sketch a proof that consistently APℵω fails.

3.44 Theorem. ¬APℵω is consistent relative to the existence of a super-
compact cardinal.

Proof. Let κ be a supercompact cardinal, and assume that GCH holds. Set
μ = κ+ω and λ = μ+, and let d : [λ]2 → ω be a normal transitive function. We
know from Theorem 3.20 that there is a cardinal θ < κ for which Sλ

θ /∈ I[λ].
Since μ is a strong limit cardinal, it follows that

Aλ
θ = S(d) ∩ Sλ

θ (15.48)
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modulo the nonstationary ideal, and B := Sλ
θ \ S(d) is stationary.

Our model of ¬APℵω is obtained as a two-step iteration P ∗ Q̇, where P =
Col(ℵ0, <θ) makes all cardinals less than θ countable using finite conditions,
and

V P |= Q̇ = Col(ℵ1, κ),

so forcing with Q̇ collapses κ to ℵ1 using countable conditions.
The iteration P ∗ Q̇ preserves the stationarity of subsets of λ using a chain

condition argument analogous to the standard argument that ℵ1-chain con-
dition forcings preserve stationary subsets of ω1. Also, after forcing with
P ∗ Q̇ the cardinal θ becomes ℵ1, while μ becomes ℵω and λ becomes ℵω+1.
The function d is still normal and transitive after the forcing, so it suffices
to prove that our forcing cannot change the truth-value of “δ ∈ S(d)” for
δ ∈ Sλ

θ .
We show this first for P—the relevant property of P that we need is that

among any θ conditions, there is a pairwise compatible subfamily of size θ.
Why does this suffice? It is clear that if δ ∈ S(d) in the ground model, then
δ remains in S(d) in the extension, so assume δ ∈ Sλ

θ and

p� “δ ∈ S(d)”.

What this means is that δ has a cofinal d-homogeneous set H of order-type
θ in V P; we claim that such a set must exist already in the ground model.
Without loss of generality, there is a specific n < ω and a P-name Ḣ such
that

p� “Ḣ is a cofinal subset of δ and d �[Ḣ]2 is constant with value n”.

Let 〈δα : α < θ〉 be an increasing sequence with limit δ. For each α < θ, we
can find a condition pα ≤ p and an ordinal βα < δ such that

pα � “βα is the least element of Ḣ above δα”.

There is a set I ⊆ θ of size θ with the property that pα and pγ are compatible
whenever α < γ in I. It is clear that δα < βα and so {βα : α ∈ I} is cofinal
in δ; by thinning out I we can assume that the sequence 〈βα : α ∈ I〉 is
increasing as well. Given α < γ in I, there is a condition q extending both
pα and pγ . Since q extends p as well, it must be the case that

q � “d(βα, βγ) = n”,

but then d(βα, βγ) = n in the ground model as well. Thus, {βα : α ∈ I} puts
δ into S(d) in the ground model.

We leave the corresponding argument for Q̇ to the reader—the property
that one uses is

V P |= Q̇ is ℵ1-closed.
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Thus, if G is a generic subset of P ∗ Q̇, it follows that

V [G] |= S
ℵω+1

ℵ1
/∈ I[ℵω+1],

and hence APℵω fails. �

The proof of the preceding theorem furnishes us with a model in which ℵω

is a strong limit and
S

ℵω+1
ℵ1

/∈ I[ℵω+1];

it does not generalize to get us a model where, for example, S
ℵω+1

ℵ2
fails

to be in I[ℵω+1]. The question of whether or not I[ℵω+1] must contain a
closed unbounded set relative to the ordinals of cofinality ℵ2 is a major open
question in this area. Foreman’s survey [32] contains more information on
this, as well as many other related open questions.

3.6. An Application—the Existence of Scales

We come now to another extremely important tool for investigating successors
of singular cardinals, namely scales. The importance of scales in this context
was noticed very early by Shelah in his investigations of Jónsson cardinals.
For example, the paper [82] dates to 1978.

3.45 Definition. Let μ be a singular cardinal. A scale of length β for μ is
a triple (�μ, �f, I) where

1. �μ = 〈μi : i < cf(μ)〉 is an increasing sequence of regular cardinals such
that supi<cf(μ) μi = μ.

2. I is an ideal on cf(μ).

3. �f = 〈fα : α < β〉 is a sequence of functions such that

(a) fα ∈
∏

i<cf(μ) μi.

(b) If γ < δ < β then fγ <I fβ .

(c) If f ∈
∏

i<cf(μ) μi then there is an α < β such that f <I fα.

The preceding is just a special case of notions studied in pcf theory—the
statement “(�μ, �f, I) is a scale of length β for μ” says exactly the same thing
as

�f witnesses tcf
(∏

i<cf(μ)μi, <I

)
= β.

In this chapter, we will concern ourself almost exclusively with a special
case of the previous definition—scales of length μ+ where I is the ideal of
bounded sets.
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3.46 Definition. Let μ be a singular cardinal. A scale for μ is a pair (�μ, �f)
such that (�μ, �f, Jbd) is a scale of length μ+ for μ, where Jbd denotes the
ideal of bounded subsets of cf(μ). Just as in Proposition 1.19, we let <∗

stand for <Jbd .

Our goal in this subsection is to prove the fundamental result of Shelah
that scales exist for every singular cardinal μ. Before showing this, our plan
is to investigate how some of the concepts isolated in the presentation of
the theory of exact upper bounds as presented in Sect. 2.1 of Abraham and
Magidor’s chapter [1] in this Handbook simplify in the context of scales. In
particular, we will look closely at their notion of strongly increasing sequences
and (∗)κ:

3.47 Definition (Definition 2.4 in [1]). Suppose that I is an ideal over A,
L is a set of ordinals, and �f = 〈fξ : ξ ∈ L〉 is a sequence of functions with
fξ : A → On. We say that �f is strongly increasing if for each ξ ∈ L, there is
a set Zξ ∈ I such that for ξ1 < ξ2 in L,

a ∈ A \ (Zξ1 ∪ Zξ2) =⇒ fξ1(a) < fξ2(a).

In the context of interest to us, we shall see that strongly increasing se-
quences have a much simpler description.

3.48 Definition. Let μ be a singular cardinal, and suppose that we are
given a pair (�μ, �f) such that �μ = 〈μi : i < cf(μ)〉 is an increasing sequence
of regular cardinals with limit μ, and �f = 〈fα : α < γ〉 is a <∗-increasing
sequence of functions in

∏
i<cf(μ) μi. An ordinal δ < γ is said to be good for

�f (or simply good if �f is clear from context) if cf(δ) > cf(μ), and there is
a cofinal A ⊆ δ of order-type cf(δ) and an i∗ < cf(μ) such that

fβ(i) < fα(i) for β < α in A and i > i∗.

Note that if δ < γ is of cofinality less than cf(μ), then a set A as in the
above definition automatically exists. This helps to explain why we restrict
ourselves to considering only δ with cf(δ) > cf(μ). Also, one can define good
points for <I -increasing sequences where I is not necessarily the ideal of
bounded subsets of I—the equivalent formulations of goodness exhibited in
Theorem 3.50 below show us how to formulate this.

Our aim is to explore the relationship between good points and strongly
increasing sequences. Before we undertake this investigation, we need the
following definition.

3.49 Definition. Suppose that 〈fi : i < γ〉 and 〈gj : j < δ〉 are two <∗-
increasing sequences of limit length. We say that they are cofinally interleaved
if every function in one sequence is <∗ some function in the other sequence.
Equivalently,

h <∗ fi for some i < γ ⇐⇒ h <∗ gj for some j < δ.
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3.50 Theorem. Let μ be a singular cardinal, and let �μ = 〈μi : i < cf(μ)〉 be
an increasing sequence of regular cardinals cofinal in μ. Furthermore, assume
that �f = 〈fα : α < γ〉 is a <∗-increasing sequence of functions in

∏
i<cf(μ) μi.

Then the following statements are equivalent for an ordinal δ < γ of cofinality
greater than cf(μ).

1. δ is good for �f .

2. 〈fα : α < δ〉 has an exact upper bound h such that cf(h(i)) = cf(δ) for
all i < cf(μ).

3. 〈fα : α < δ〉 is cofinally interleaved with an increasing sequence 〈hξ :
ξ < cf(δ)〉.

4. If X is a cofinal subset of δ, then there is a set X0 ⊆ X, cofinal in δ
of order-type cf(δ), such that 〈fα : α ∈ X0〉 is strongly increasing.

Proof. (1) → (2). Let A ⊆ δ be cofinal of order-type cf(δ) and suppose that
i∗ < cf(μ) satisfies

fβ(i) < fα(i) for β < α in A and i∗ < i < cf(μ).

Define

h(i) =

{
δ if i ≤ i∗,

sup{fα(i) : α ∈ A} otherwise.

Clearly cf(h(i)) = cf(δ) for all i < cf(μ), and h is an upper bound for
〈fα : α < δ〉. Why is it an exact upper bound?

It suffices to prove that if g < h, then g <∗ fα for some α. Given such a g,
for each i > i∗ we define

α(i) = least α ∈ A such that g(i) < fα(i)(i).

Since cf(δ) > cf(μ), we know

α∗ := sup
i<cf(μ)

α(i) < δ,

and clearly g <∗ fα∗ . We remark that (2) explains why good points are
sometimes referred to as flat points in the literature.

(2) → (3). Suppose that h is as in (2). For each i < cf(μ), let 〈ei(ξ) : ξ <
cf(δ)〉 be the increasing enumeration of a cofinal subset of h(i). For ξ < cf(δ),
define

hξ(i) = ei(ξ).

Clearly the sequence 〈hξ : ξ < cf(δ)〉 is increasing, and hξ(i) < h(i) for all
ξ < cf(δ) and i < cf(μ). We claim that 〈fα : α < δ〉 and 〈hξ : ξ < cf(δ)〉 are
cofinally interleaved.
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Given ξ < cf(δ), we know there is an α < δ with hξ <∗ fα because h is an
exact upper bound of 〈fα : α < δ〉.

Given α < δ, we know there is an iα < cf(μ) such that fα(i) < h(i) for
i > iα. Thus, for each i > iα there is a ξ(α, i) < cf(δ) such that

fα(i) < ei(ξ(α, i)).

Since cf(δ) > cf(μ), it follows that

ξα := sup{ξ(α, i) : iα < i < cf(μ)} < cf(δ).

For i > iα, we have

fα(i) < ei(ξ(α, i)) ≤ ei(ξα) = hξα(i)

and so fα <∗ hξα , and we have finished the proof that the two sequences are
cofinally interleaved.

(3) → (4). Assume 〈fα : α < δ〉 is cofinally interleaved with the increasing
sequence 〈hξ : ξ < cf(δ)〉. Since X is cofinal in δ, then clearly 〈fα : α ∈ X〉
is cofinally interleaved with 〈hξ : ξ < cf(δ)〉 as well. Thus we can choose
sequences 〈α(ζ) : ζ < cf(δ)〉 and 〈ξ(ζ) : ζ < cf(δ)〉 increasing to δ and cf(δ)
respectively such that {α(ζ) : ζ < cf(δ)} ⊆ X, and for each ξ < cf(δ),

fα(η) <∗ hξ(ζ) <∗ fα(ζ) for all η < ζ.

For each ζ < cf(δ), there is an i(ζ) such that

hξ(ζ)(i) < fα(ζ)(i) < hξ(ζ+1)(i) for all i > i(ζ).

Since cf(δ) > cf(μ), we can find an unbounded A ⊆ δ and i∗ < cf(μ) such
that i(ζ) = i∗ for all ζ ∈ A. In particular, for η < ζ in A and i > i∗, we have

fα(η)(i) < hξ(η+1)(i) ≤ hξ(ζ)(i) < fα(ζ)(i).

If we let X0 = {α(ζ) : ζ ∈ A} then clearly 〈fα : α ∈ X0〉 is strongly increasing.
(4) → (1). Suppose that X0 is a cofinal subset of δ of order-type cf(δ)

such that 〈fα : α ∈ X0〉 is strongly increasing. For each α ∈ X0, there is
a corresponding set Zα bounded below cf(μ); we note that without loss of
generality Zα = [0, iα] for some iα < cf(μ). Again, since cf(δ) > cf(μ) there
is an unbounded A ⊆ X0 and i∗ < cf(μ) such that iα = i∗ for all α ∈ A.
From the definition of strongly increasing, it follows that

fβ(i) < fα(i) for β < α in A and i > i∗.

Thus δ is good for �f . �

The preceding theorem allows us to characterize when <∗-increasing se-
quences have nice exact upper bounds.
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3.51 Theorem. Let μ be a singular cardinal, and suppose that 〈μi : i <

cf(μ)〉 is an increasing sequence of regular cardinals with limit μ. Let �f =
〈fi : i < μ+〉 be a <∗-increasing sequence of functions in

∏
i<cf(μ) μi, and

suppose that cf(μ) < κ = cf(κ) < μ. Then the following two statements are
equivalent:

1. �f has an exact upper bound h such that

|{i < cf(μ) : cf(h(i)) < κ}| < cf(μ).

2. The set {δ ∈ Sμ+

κ : δ is good for �f} is stationary.

Proof. The key here is the concept denoted (∗)κ in the chapter of Abra-
ham and Magidor (see [1, Definition 2.8]) in this Handbook. We recall the
definition:

3.52 Definition. Suppose that I is an ideal over a set A, λ is a regular
cardinal > |A|, and �f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions
mapping A to On. If |A| < κ ≤ λ, then (∗)κ denotes the following statement:

(∗)κ
Whenever X ⊆ λ is unbounded, then for some X0 ⊆ X of
order-type κ, 〈fξ : ξ ∈ X0〉 is strongly increasing.

In Theorem 2.13 of [1], it is shown (among other things) that statement (1)
of the current theorem is equivalent to (∗)κ; we will show that our statement
(2) is equivalent to (∗)κ.

Suppose that (∗)κ holds, where κ is a regular cardinal such that cf(μ) <

κ < μ. Let S be the set of δ ∈ Sμ+

κ for which there is a cofinal X0 ⊆ δ of
order-type κ with 〈fξ : ξ ∈ X0〉 strongly increasing. Clearly (∗)κ implies that
S must be stationary, and (2) follows from Theorem 3.50.

Conversely, suppose that (2) holds and X is a cofinal subset of μ+. Our as-
sumptions imply that there is a good δ of cofinality κ for which
δ = sup(X ∩ δ). We apply Theorem 3.50 once more to find X0 ⊆ X ∩ δ
with the required properties. �

Now at last we are in a position to prove Shelah’s theorem (Theorem 1.5
from Chap. II of [89]) that scales exist for every singular cardinal.

3.53 Theorem. If μ is singular, then there exists a scale for μ.

Proof. Let λ = μ+ for μ singular, and let 〈μi : i < cf(μ)〉 be a strictly
increasing sequence of regular cardinals cofinal in μ with cf(μ) < μ0. Let I
be the ideal of bounded subsets of cf(μ); we shall consider the structure

B =
∏

i<cf(μ)μi

ordered by <I . It is quite easy to see that (B, <I) is λ-directed, that is, if we
are given a family F ⊆ B of size ≤ μ, then there is a single function f ∈ B

that is above (in the sense of <I) all members of F .
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Let 〈Mα : α < λ〉 be a λ-approximating sequence over B, and for each
α < λ let gα be the <χ-least function in B that dominates Mα ∩B. (Recall
that <χ is the well-ordering of H(χ) built into the ambient structure A.)
Note that gα ∈Mα+1, and the sequence 〈gα : α < λ〉 is <I -increasing.

3.54 Claim. The sequence 〈gα : α < λ〉 has an exact upper bound g with the
property that for each regular κ < μ,

{i < cf(μ) : cf(g(i)) < κ} is bounded below μ.

Proof of Claim. Given a regular cardinal κ < μ, we know that Sλ
κ has a

stationary subset in I[λ]. In fact, we know that there is a stationary S ⊆ Sλ
κ

with the property that for each δ ∈ S, there is an IA chain of submodels
〈Ni : i < κ〉 such that

• |Nξ| < κ,

• Nξ ⊆Mδ for all ξ < κ, and

• Mα ∈ N for unboundedly many α < δ, where N :=
⋃

ξ<κ Nξ.

(This follows from Theorem 3.11.) Assume now that cf(μ) < κ and fix such
a δ and sequence 〈Ni : i < κ〉.

For ξ < κ and i < cf(μ), we define

hξ(i) := sup(Nξ ∩ μi),

and
h(i) := sup(N ∩ μi).

For each i < cf(μ), the sequence 〈hξ(i) : ξ < κ〉 is increasing with limit h(i),
and it follows easily that h is an exact upper bound for 〈hξ : ξ < κ〉.

We claim now that h is an exact upper bound for 〈gα : α < δ〉. Note that
h is an upper bound for 〈gα : α < δ〉 because N contains Mα for cofinally
many α < δ. If f <I h then f <I hξ for some ξ. But hξ ∈ N ⊆ Mδ hence
hξ ∈Mα for some α < δ. It follows that

f <I hξ <I gα,

and hence h is an exact upper bound for the sequence 〈gα : α < δ〉.
We conclude that the sequence 〈gα : α < λ〉 has stationarily many good

points of cofinality κ for each regular κ < μ greater than cf(μ). The conclu-
sion of the claim follows from Theorem 3.51. �

To recap, we have constructed a <∗-increasing sequence 〈gα : α < μ+〉 in∏
i<cf(μ) μi with an exact upper bound g such that for all κ < μ,

|{i < cf(μ) : cf(g(i)) < κ}| < cf(μ). (15.49)

By making inessential modifications to g and each gα, we may assume that
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• cf(μ) < cf(g(i)) for all i < cf(μ), and

• gα(i) < g(i) for all α < μ+ and i < cf(μ).

Let B be the set of cardinals of the form cf(g(i)) for some i < cf(μ). The
set B is cofinal in μ of order-type cf(μ) by (15.49). Let �θ = 〈θξ : ξ < cf(μ)〉
enumerate B in increasing order, and for ξ < cf(μ) let

Bξ := {i < cf(μ) : cf(g(i)) = θξ}.

Our goal is to construct a <∗-increasing sequence �f = 〈fα : α < μ+〉 in
∏

ξ<cf(μ) θξ so that (�θ, �f) is a scale for μ+. To do this, we use the fact that
there is a natural mapping

Φ :
∏

i<cf(μ)g(i)→
∏

ξ<cf(μ)θξ

defined as follows:
For each i < cf(μ), let 〈ei(ε) : ε < cf(g(i))〉 be the increasing enumeration

of a cofinal subset of g(i). For h ∈
∏

i<cf(μ) g(i), we define

Φ[h](ξ) = the least ε < θξ such that h(i) ≤ ei(ε) for all i ∈ Bξ.

Note that Φ[h] ∈
∏

ξ<cf(μ) θξ, and clearly

h ≤∗ h′ =⇒ Φ[h] ≤∗ Φ[h′].

Thus, 〈Φ[gα] : α < μ+〉 is a ≤∗-increasing sequence in
∏

ξ<cf(μ) θξ.
We claim now that if h is in

∏
ξ<cf(μ) θξ, then there is an α such that

h ≤∗ Φ[gα]. Given such an h, define h′ ∈
∏

i<cf(μ) g(i) by

h′(i) = ei(h(ξ)) for the unique ξ < cf(μ) with i ∈ Bξ.

Clearly h′ ∈
∏

i<cf(μ) g(i) and furthermore Φ[h′] = h. Since g is an exact
upper bound for the gα’s, there is an α < μ+ with h′ ≤∗ gα and so

h = Φ[h′] ≤∗ Φ(gα).

As an immediate corollary, it follows that for all h ∈
∏

ξ<cf(μ) θξ there is

a γ < μ+ such that h <∗ Φ[gγ ] (and not just h ≤∗ Φ[gγ ]). Now we define �f
in the obvious manner:

Given 〈fβ : β < α〉, we let fα = Φ[gγ ] where γ < μ+ is the least ordi-
nal greater than or equal to α such that fβ <∗ Φ[gγ ] for all β < α. The
verification that (�θ, �f) is a scale for μ+ is now routine. �

We remark that in the above context, if S ∈ I[λ] is a stationary set of
ordinals of cofinality larger than cf(μ), then the preceding construction gives
us a scale that is good at almost every point of S. In fact, much more is
true—given such an S ∈ I[λ] and any scale (�μ, �f) for μ, a similar argument
establishes that almost every point of S is good for �f .
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3.55 Theorem (Cummings, Foreman, and Magidor [17]). Let λ = μ+ where
μ is singular, and suppose that (�μ, �f) is a scale for μ. If S ∈ I[λ], then almost
all points of S with cofinality greater than cf(μ) are good for �f .

The above theorem can be summarized by the statement “approachable
points are good”. With regard to the converse, we mention that Gitik and
Sharon [39] have constructed a model in which ℵω2+1 carries a scale for which
all points are good, but APℵω2 fails. We discuss this model more at the end
of Sect. 4.7. Whether this can happen at ℵω is still open, but the following
result of Cummings, Foreman, and Magidor [17] gives some information.

3.56 Theorem. If �ℵn holds for all finite n, then in ℵω+1 all good points
of cofinality greater than ℵ1 are approachable.

4. Applications of Scales and Weak Squares

4.1. Weakenings of �—Part I

If one views a �μ-sequence as a sequence of sets endowed with strong global
coherence properties, then two natural means of weakening this combinatorial
principle become apparent—one might require the coherence properties to
hold only some of the time, or one might weaken the amount of coherence
required. Both of these ideas are important and we look at them in this
subsection and the next.

4.1 Definition. Suppose that λ is a regular cardinal and η is an ordinal.
We say that a set S ⊆ λ carries a partial square as a subset of λ if there is
a sequence 〈Cδ : δ ∈ S〉 and an ordinal η < λ such that

1. Cδ is a closed and unbounded subset of Cδ for all limit δ ∈ S,

2. ot(Cδ) < η, and

3. if γ ∈ acc(Cα) ∩ acc(Cβ), then Cα ∩ γ = Cβ ∩ γ.

We suppress reference to λ if λ is clear from context. We call the sequence
〈Cα : α < λ〉 a partial square for S, and if we wish to emphasize the value of
η then we say S carries a partial square type-bounded by η. If S is a subset
of Sλ

κ for some κ < λ, then it is standard practice to require η = κ + 1.

Note that if S carries a partial square, then it is straightforward to extend
the partial square sequence to the set

S+ := S ∪
⋃

δ∈S acc(Cδ). (15.50)

We note as well that if a set S ⊆ Sλ
κ carries a partial square, then S can be

written as a union of fewer than λ sets, each of which carries a partial square
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type-bounded by κ + 1. This means that in practice, the demand of the last
sentence from Definition 4.1 is not a serious one.

For λ = μ+, it is clear that �μ holds if and only if λ carries a partial
square sequence type-bounded by μ + 1. On the other hand, if S ⊆ λ carries
a partial square, then an argument similar to that of Theorem 3.13 shows
that S is in I[λ]. The following theorem shows us that a result analogous to
Theorem 2.4 holds in the presence of partial squares.

4.2 Theorem. Suppose that S ⊆ λ carries a partial square. Then every
stationary T ⊆ λ has a stationary subset T ∗ which does not reflect at any
ordinal in S.

Proof. Let 〈Cδ : δ ∈ S〉 be a partial square on S, type-bounded by some
η < λ. By the comments after Definition 4.1, we may assume

δ ∈ S =⇒ acc(Cδ) ⊆ S.

This implies that S ∩ δ contains a closed unbounded subset of δ for all δ ∈ S
of uncountable cofinality.

Let T be a stationary subset of λ. If T \ S is stationary then the remarks
in the preceding paragraph imply that T \ S cannot reflect at an ordinal in
S and we are done.

If on the other hand T \S is nonstationary, then without loss of generality
T ⊆ S \ η. Just as in the proof of Theorem 2.4, there is a stationary T ∗ ⊆ T
and an ordinal ξ < η such that ot(Cα) = ξ for all α ∈ T ∗. If δ ∈ S has
uncountable cofinality, then T ∗ ∩ acc(Cδ) has at most one element and so
T ∗ ∩ δ is not stationary in δ. �

The next theorem is due to Shelah [87], and it gives us information about
I[λ] in the case where λ is the successor of a regular cardinal.

4.3 Theorem. If τ < σ are regular cardinals, then Sσ+

τ can be written as
the union of σ sets, each of which carries a partial square.

Proof. As usual, let χ be a sufficiently large regular cardinal, and let A be
the structure 〈H(χ),∈, <χ). Given α ∈ Sσ+

τ and ζ < σ, we define

M(α, ζ) = SkA({α} ∪ ζ).

For each α ∈ Sσ+

τ there is a least ζ = ζ(α) ≥ τ such that

• M(α, ζ) ∩ σ is an initial segment of σ, and

• cf(M(α, ζ) ∩ σ) > ℵ0,

and we define
Nα := M(α, ζ(α)).

4.4 Claim. Nα ∩ α is an ω-closed unbounded subset of α.
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Proof. We know Nα ∩α is unbounded in α since cf(α) = τ ≤ ζ(α) ⊆ Nα and
α ∈ Nα. Thus, we need only prove that Nα ∩ α is ω-closed.

Let x be a countable subset of Nα∩α, and assume by way of contradiction
that β := supx /∈ Nα. Note that this assumption implies that β is an ordinal
of countable cofinality strictly less than α, so we can define

γ := min(Nα ∩ α \ β).

Since γ ∈ Nα, it follows that β < γ, and Nα ∩γ is bounded below γ. Note as
well that cf(γ) = σ, for if it were less than σ, then Nα would contain every
member of a cofinal subset of γ because cf(γ) would be in an element of Nα

and Nα ∩ σ is an initial segment of σ.
Since both σ and γ are in Nα, we can find an increasing continuous function

f : σ → γ in Nα whose range is unbounded in γ. If we step outside of Nα, we
see that f �Nα ∩ σ is an increasing function from Nα ∩ σ to a cofinal subset
of β. This gives a contradiction, as Nα ∩ σ has uncountable cofinality, while
the cofinality of β is countable. �

For each α ∈ Sσ+

τ , let Dα be the closure of Nα ∩ α in α. Given ρ and ε
less than σ, we define

S(ρ, ε) := {α ∈ Sσ+

τ : Nα ∩ σ = ρ and ot(Dα) = ε}.

We claim that 〈Dα : α ∈ S(ρ, ε)〉 is a partial square sequence on S(ρ, ε), and
the following claim suffices.

4.5 Claim. If α and β are in S(ρ, ε), then

γ ∈ acc(Dα) ∩ acc(Dβ) =⇒ Dα ∩ γ = Dβ ∩ γ. (15.51)

Proof. Assume first that γ is of countable cofinality. Then by Claim 4.4, γ
is an element of both Nα and Nβ . We know |γ| ≤ σ, and since Nα ∩ σ =
Nβ ∩ σ = ρ, it follows that Nα ∩ γ = Nβ ∩ γ.

If cf(γ) > ℵ0, then γ is a limit of ordinals from acc(Dα) ∩ acc(Dβ) of
countable cofinality, and so the result follows by the previous paragraph. �

Since Sσ+

τ =
⋃

ρ,ε<σ S(ρ, ε), the proof of the theorem is complete. �

The preceding theorem has the following corollary, which was promised
back in Sect. 3.3.

4.6 Corollary. If σ is a regular cardinal, then Sσ+

<σ ∈ I[σ+].

Proof. We know that Sσ+

<σ is the union of σ sets each carrying a partial square.
By the remarks preceding Theorem 4.2, each of these sets is in I[σ+], and
now the result follows immediately because I[σ+] is a normal ideal. �

The following theorem due to Džamonja and Shelah [21] serves as the
counterpart to Theorem 4.3 at the successor of a singular cardinal.
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4.7 Theorem. Suppose that μ is singular, λ = μ+, and κ < μ is an un-
countable cardinal such that cf([μ]κ,⊆) = μ. Then the set Sλ

≤κ is the union
of μ sets, each of which carries a partial square type-bounded by κ+.

There are many open questions concerning the notion of partial square. In
particular, the question of whether Sλ

κ has a stationary subset which carries
a partial square is still open in many cases—for example, if λ is inaccessible,
or λ = μ+ for μ singular with cf(μ) ≤ κ (see [91, Question 5.9]). We shall see
in Sect. 4.3 that these matters are related to an open problem involving ♦,
while Foreman and Todorčević [35] have investigated some consequences of
the conjecture that for all successor λ, the set Sλ

ℵ1
contains a stationary subset

on which there is a partial square.
We close this subsection with a discussion of partial squares above a super-

compact cardinal κ. Foreman and Magidor [34] used ideas of Baumgartner
to establish the following theorem:

4.8 Theorem. If κ is supercompact, then there is a forcing extension which
preserves the supercompactness of κ and in which, letting λ denote κ+ω+1,
we have

Sλ
≥κ carries a partial square type-bounded by κ+ω. (15.52)

The preceding theorem tells us that the reflection result from Theorem 2.5
is sharp, for we have the following corollary.

4.9 Corollary. Let κ is a supercompact cardinal for which (15.52) holds,
and let S be a stationary subset of λ = κ+ω+1. Then Refl(S) holds if and
only if S ∩ Sλ

≥κ is nonstationary.

Proof. If S∩Sλ
≥κ is nonstationary, then Refl(S) holds by way of Theorem 2.5.

If S ∩Sλ
≥κ is stationary, then we can find a regular σ such that κ < σ < κ+ω

and T := S ∩ Sλ
σ is stationary. By Theorem 4.2, T has a stationary subset

T ∗ that does not reflect in any ordinal of cofinality κ or greater. But Sλ
σ

only reflects in ordinals of cofinality greater than σ, and therefore T ∗ cannot
reflect at all. �

4.2. Weakenings of �—Part II

In this subsection, we examine yet another way to weaken �κ—we reduce
the amount of coherence required by the sequence. We begin with the classic
definition (due to Jensen [52]) of weak square.

4.10 Definition. Let κ be a cardinal. A �∗
κ-sequence or weak square se-

quence for κ is a sequence 〈Cα : α < κ+〉 such that

1. Cα is a family of closed unbounded subsets of α,

2. |Cα| ≤ κ,
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3. C ∈ Cα =⇒ ot(Cα) ≤ κ, and

4. C ∩ β ∈ Cβ for C ∈ Cα and β ∈ acc(C).

�∗
κ is the assertion that there is such a sequence.

An elementary argument establishes that �∗
κ follows if κ<κ = κ, so weak

square is of greatest interest in the case of singular cardinals. Before we get
to some applications, we make a few remarks on the structure of weak square
sequences.

First, note that for α < κ+ we have

cf(α) < κ =⇒ ot(C) < κ for all C ∈ Cα. (15.53)

This follows from the simple fact that such an α has no closed unbounded
subset of order-type κ.

Next, we may assume the �∗
κ sequence has the property that each Cα

contains a set of order-type cf(α). To arrange this, we choose for each limit
ε < κ a closed unbounded Dε ⊆ ε of order-type cf(ε). For each C in Cα,
check if the order-type of C is in acc(Dε) ∪ {ε}. If so, then add the set
{β ∈ C : ot(Cβ) ∈ Dε} to Cα. It is straightforward to verify that this
modification does the job.

The preceding observation helps us situate �∗
κ in the hierarchy of combi-

natorial principles we have been studying. It is clear that �κ implies �∗
κ,

and the following easy proposition shows us that �∗
κ implies APκ.

4.11 Proposition. If �∗
κ holds, then so does APκ.

Proof. Let C̄ be a �∗
κ sequence such that Cα contains a set of order-type

cf(α) for each limit α < κ+. Let M = 〈Mi : i < κ+〉 be a κ+-approximating
sequence over C̄. If δ < κ+ satisfies δ = Mδ ∩ κ+, then any set in Cδ of
order-type cf(δ) establishes that δ is in S[M]. Thus, S[M] contains a closed
unbounded set and therefore APκ holds. �

None of the implications in the chain �κ =⇒ �∗
κ =⇒ APκ can be reversed.

The model of Ben-David and Magidor [7] mentioned in Theorem 2.14 provides
a model in which �∗

ℵω
holds and �ℵω fails. (Apter and Henle [3] have obtained

similar results starting from a κ+-strongly compact cardinal instead of a κ+-
supercompact cardinal.) On the other hand, an argument outlined in [34,
Sect. 5] yields a model in which APℵω holds and �∗

ℵω
fails.

It turns out that weak square is compatible with strong forms of station-
ary reflection. For example, we have the following theorem of Cummings,
Foreman, and Magidor [16]:

4.12 Theorem. If the existence of infinitely many supercompact cardinals
is consistent, then there is a model of ZFC in which �∗

ℵω
holds, and

For 1 ≤ m ≤ n < ω, if 〈Si : i < ℵm〉 is a sequence of stationary
subsets of {α < ℵω+1 : cf(α) < ℵm}, then there is an ordinal
δ < ℵω+1 of cofinality ℵn such that the Si all reflect at δ.
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In the above model, it is clear that �ℵω must fail. Ben-David and Shelah [8]
claimed to construct a model of �∗

ℵω
in which Refl(ℵω+1) holds, but more

recent work of Cummings, Foreman, and Magidor has demonstrated that
the purported proof cannot be completed along the lines indicated, as weak
square is incompatible with certain forms of generic supercompactness. We
refer the reader to [18, Sect. 10] for the actual statement of this result.

Finally, we point out that even though weak square is compatible with sta-
tionary reflection, it is still a powerful principle for constructing non-compact
objects. This can be seen in the following result of Jensen, which we state
without proof. Section 5 of Cummings’ paper [14] contains a very nice proof
taken from unpublished notes of Magidor [63] concerning Todorčević’s pa-
per [97].

4.13 Theorem. If κ is a cardinal, then �∗
κ is equivalent to the existence of

a special κ+-Aronszajn tree.

Proof. See [14, Sect. 5]. �

We turn our attention now to the gap between �κ and �∗
κ. In the course

of investigating the core model for one Woodin cardinal, Schimmerling [74]
isolated a spectrum of combinatorial principles that form a natural hierarchy
between �κ and �∗

κ.

4.14 Definition. Let σ ≤ κ be cardinals. (We assume κ is infinite, but σ is
allowed to be finite.) A �σ

κ-sequence is a sequence 〈Cα : α < κ+〉 such that

1. Cα is a family of closed unbounded subsets of α,

2. 1 ≤ |Cα| ≤ σ,

3. C ∈ Cα =⇒ ot(C) ≤ κ, and

4. for all C ∈ Cα,
β ∈ acc(C) =⇒ C ∩ β ∈ Cβ .

�σ
κ is the assertion that there is such a sequence. One should give �<σ

κ

the obvious meaning along the lines above.

It follows immediately that �1
κ = �κ, �κ

κ = �∗
κ, and

�σ
κ ⇒ �τ

κ if 1 ≤ σ ≤ τ ≤ κ.

Note that the requirement that σ ≤ κ is natural, as the principle �κ+

κ is
true in ZFC—for each α < κ+ choose a closed unbounded Cα ⊆ α of order-
type cf(α), and then define Cα = {Cβ ∩α : α ≤ β < κ+}. This combinatorial
principle is more commonly known as silly square.

Before continuing our investigation into these principles, it is natural to
ask if there are non-trivial implications between them. The following theorem
from [16] gives a satisfactory answer.
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4.15 Theorem. Let κ be supercompact, and suppose that 2(κ+ω) = κ+ω+1.
Let μ and ν be two cardinals (one or both can be finite) such that

1 ≤ μ < ν < ℵω.

Then there is a generic extension in which

1. all cardinals ≤ ν are preserved,

2. ℵω = κ+ω
V ,

3. �ν
ℵω

holds, and

4. �μ
ℵω

fails.

With regard to applications of these principles, we restrict attention to
their impact on stationary reflection, and a reader seeking more information
concerning these principles and their relation to core models is referred to
[73, 75, 77, 78], and [15].

We begin our discussion of stationary reflection with two results of Schim-
merling.

4.16 Proposition. If κ<σ = κ and �<σ
κ holds, then every stationary subset

S of κ+ has a stationary subset that does not reflect at ordinals of cofinality
σ or greater.

Proof. Suppose that C̄ is a �<σ
κ -sequence, and define

F (α) = {ot(C) : C ∈ Cα}

for limit ordinals α < κ+. Since κ<σ = κ, we note that F has only κ possible
values. Thus, given a stationary set S ⊆ κ+, there must be a stationary
T ⊆ S on which F is constant, say with value X.

If cf(α) ≥ σ and C ∈ Cα, then for each β ∈ T ∩ acc(C) we know the
order-type of C ∩β is in X. This means that acc(C)∩T is bounded below α
and therefore T ∩ α is not stationary in α. �

As a quick corollary, we see that �<ω
κ implies that Refl(S) fails for all

stationary subsets S of κ+. Another modification of the argument yields the
following proposition at successors of singular cardinals.

4.17 Proposition. Suppose that μ is singular and �< cf(μ)
μ holds. Then for

every stationary subset S of μ+, there is a stationary T ⊆ S and a β < μ
such that T does not reflect at ordinals of cofinality > β.

Proof. Let C̄ be a �< cf(μ)
μ -sequence, and define F : μ+ → μ by

F (α) = sup ({ot(C) : C ∈ Cα}) .
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If S ⊆ μ+ is stationary, then there is a stationary T ⊆ S for which F �T is
constant, say with value β < μ. If cf(γ) > β and C ∈ Cγ , then

β < cf(γ) ≤ ot(C)

so for all sufficiently large δ ∈ acc(C) we have F (δ) > β and hence δ /∈ T . �

The preceding result of Schimmerling is sharp, as Cummings, Foreman,
and Magidor have shown [16, Sect. 10] that it is consistent for a strengthening
of �ω

ℵω
to hold simultaneously with the statement “every stationary subset

of ℵω+1 reflects in all sufficiently large cofinalities”.
With regard to simultaneous reflection, we have the following result of

Cummings, Foreman, and Magidor [16].

4.18 Theorem. Let μ be a singular cardinal, and assume �σ
μ holds for some

σ < μ. Given a stationary set T ⊆ μ+, we can find a sequence 〈Si : i < cf(μ)〉
of stationary subsets of T that do not reflect simultaneously in any ordinal of
cofinality greater than cf(μ).

This theorem follows from results presented later in the chapter—see The-
orem 4.66. Note that by Theorem 4.12, the conclusion of Theorem 4.18 does
not follow from �∗

μ. The following theorem, again taken from [16], shows
that the conclusion of the preceding theorem cannot be strengthened to rule
out simultaneous reflection of fewer than cf(μ) sets.

4.19 Theorem. If the existence of infinitely many supercompact cardinals
is consistent, then there is a model of ZFC in which �ω

ℵω
holds, and

For every finite sequence 〈Si : i < n〉 of stationary subsets of
ℵω+1, there is an M < ω such that for each m ≥ M there is an
ordinal δ of cofinality ℵm such that all Si reflect at δ.

The next theorem of Cummings and Schimmerling [15] shows us that �∗
ℵω

cannot be strengthened to �<ℵω

ℵω
in Theorem 4.12.

4.20 Theorem. If μ is a singular strong limit cardinal for which �<μ
μ holds,

and T is a stationary subset of μ+, then there is a sequence of stationary sets
〈Si : i < cf(μ)〉 and a cardinal θ < μ such that

1. Si ⊆ T ∩ Sμ+

<θ , and

2. the sets Si do not simultaneously reflect at any ordinal of cofinality θ
or greater.

We will give a proof of this theorem because it fits in nicely with other
proofs in this subsection, but we need the following easy observation.

4.21 Lemma. Let μ be a singular cardinal and σ ≤ μ+. If �<σ
μ holds, then

there is a �<σ
μ -sequence 〈Dα : α < μ+〉 with the property that all elements of

each Dα are of order-type less than μ.
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Proof. Let D be a closed unbounded subset of μ of order-type cf(μ), and let
〈Cα : α < μ+〉 be a �<σ

μ -sequence. If C ∈ Cδ, then ot(C) ≤ μ and we define
a set C∗ ⊆ C according to the following cases:

• If ot(C) ∈ acc(D) ∪ {μ}, then C∗ = {δ ∈ C : ot(C ∩ δ) ∈ D}.

• Otherwise, set C∗ = {δ ∈ C : max(ot(C) ∩ acc(D))}.

If we define Dα to be the collection {C∗ : C ∈ Cα}, then it is routine to verify
that this sequence has the required properties. �

In contrast to the situation with weak square, we cannot guarantee that
each Dα will contain a set of order-type cf(α). It is shown in [16, Sect. 5]
that these “improved” sequences exert slightly more influence on stationary
reflection than their unimproved versions.

Proof of Theorem 4.20. Let C be a �<μ
μ -sequence satisfying the conclusion

of the preceding lemma, and let 〈μi : i < cf(μ)〉 be an increasing sequence
of regular cardinals cofinal in μ. Given a stationary T ⊆ μ+, we can pass to
a stationary T ∗ ⊆ T such that for some σ and τ ,

δ ∈ T ∗ =⇒ |Cδ| = σ and cf(δ) = τ. (15.54)

Next, let us suppose that α < μ+ and j < cf(μ), and define

A(α, j) = {ot(C) : C ∈ Cα} ∩ μj . (15.55)

For each j, there are at most 2μj < μ possible values for A(α, j), and thus
we can find a stationary Sj ⊆ T and a set Aj such that

α ∈ Sj =⇒ A(α, j) = Aj . (15.56)

Assume now that the sets 〈Sj : j < cf(μ)〉 reflect simultaneously at an
ordinal δ, and choose C ∈ Cδ.

Since ot(C) < μ, there is a j < cf(μ) with ot(C) < μj . If β < γ are
members of acc(C) ∩ Sj , then ot(C ∩ β) and ot(C ∩ γ) are distinct elements
of Aj . Since |Aj | < μi, it follows that | acc(C) ∩ Sj | < μi and therefore
cf(δ) < μi. �

We close this subsection with commentary on the compatibility of these
combinatorial principles with large cardinals. Burke and Kanamori have ob-
served (see [73]) that if κ is μ+-strongly compact then �< cf(μ)

μ must fail (even
if cf(μ) ≥ κ). On the other hand, Cummings, Foreman, and Magidor [16,
Sect. 9] demonstrate that �cf(μ)

μ can consistently hold if κ is supercompact
and κ ≤ cf(μ) < μ. This line of research is also continued in the paper [2] of
Apter and Cummings.
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4.3. On ♦
Our goal in this section is to combine ideas from the previous two sections
in order to investigate Jensen’s axiom ♦ at successors of singular cardinals.
We begin by recalling the following classical definitions:

4.22 Definition. Let κ be an infinite cardinal, and let S be a stationary
subset of κ+. We say that ♦(S) holds if there is a sequence 〈Sα : α ∈ S〉 such
that for all X ⊆ κ+, there are stationarily many α ∈ S for which

X ∩ α = Sα.

We say that ♦∗(S) holds if there is a sequence 〈Sα : α ∈ S〉 such that Sα is
a family of at most κ subsets of α, and for all X ⊆ κ+, the set of α for which
X ∩α ∈ Sα contains the restriction to S of a closed unbounded subset of κ+.

It is true that ♦∗(S) implies ♦(T ) for all stationary T ⊆ S, but this is not
immediately obvious. The way to see this is through the following classical
result, which we state without proof:

4.23 Proposition. Let κ be an infinite cardinal, and let S ⊆ κ+ be station-
ary. Then ♦(S) holds if and only if there is a sequence 〈Sα : α ∈ S〉 such that
such that Sα is a family of at most κ subsets of α, and whenever X ⊆ κ+,
the set {α ∈ S : X ∩ α ∈ Sα} is stationary in κ+.

Proof. See Lemma III.3.4 and Lemma IV.2.6 of [19]. �

It is a well-known result of Jensen that ♦(ω1) is independent of ZFC +
CH (see [20]). For cardinals above ℵ1, the situation is different. Gregory [41]
was the first to note this—he showed that ♦∗(Sκ+

σ ) holds if 2κ = κ+ and
κσ = κ. Thus, we have instances of ♦ following from simple cardinal arith-
metic assumptions. The question of particular interest to us in this subsection
arises from the following related result of Shelah [83].

4.24 Theorem. Assume μ is a strong limit singular cardinal with 2μ = μ+.
Then ♦∗({δ < μ+ : cf(δ) �= cf(μ)}) holds.

Proof. To simplify our notation a bit, let λ denote μ+, and let S denote
{δ < λ : cf(δ) �= cf(μ)}. Fix a λ-filtration sequence 〈bα,i : i < cf(μ), α < λ〉,
and let 〈Aα : α < λ〉 enumerate [λ]<λ in such a way that each set in [λ]<λ

appears unboundedly often.
Given δ ∈ S and i < cf(μ), we define

Sδ,i =
{⋃

α∈IAα : I ⊆ bδ,i

}

and
Sδ :=

⋃
i<cf(μ)Sδ,i.
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Since μ is a strong limit cardinal, we know that |Sδ| ≤ μ for each δ ∈ S. Now
suppose that A ⊆ λ; we produce a closed unbounded C ⊆ λ such that

δ ∈ C ∩ S =⇒ A ∩ δ ∈ Sδ. (15.57)

For α < λ, let f(α) be the least β > α such that A ∩ α = Aβ . Let C ⊆ λ
be the closed unbounded set of ordinals that are closed under f ; we will show
that (15.57) holds for this choice of C.

Give δ ∈ C ∩ S, let 〈δj : j < cf(δ)〉 be an increasing sequence cofinal in δ
such that f(δj) < δj+1. Since cf(μ) �= cf(δ), there is some i∗ < cf(μ) such
that

|bδ,i∗ ∩ {f(δj) : j < cf(δ)}| = cf(δ).

Let us define
J := {j < cf(δ) : f(δj) ∈ bδ,i∗}

and
I := {f(δj) : j ∈ J}.

Since J is unbounded in cf(δ) and A ∩ δj = Af(δj), it follows that

A ∩ δ =
⋃

i∈IAα.

Since I ⊆ bδ,i∗ , it follows that A ∩ δ ∈ Sδ as required. �

Given Theorem 4.24, it is natural to ask if ♦(Sμ+

cf(μ)) follows if μ is a strong
limit singular cardinal for which 2μ = μ+. This question is still very much
open, but we can use ideas of the sort we have been considering in this chapter
to give sufficient conditions for this to hold.

4.25 Definition. Suppose that λ = μ+ for μ singular. A set S ⊆ λ is said
to be diamond-friendly if there is a sequence 〈Cα : α < λ〉 such that

1. Cα is a family of ≤μ closed unbounded subsets of α, and

2. there is a closed unbounded E ⊆ λ such that for δ ∈ E ∩ S, there is
a closed unbounded Cδ ⊆ δ of order-type cf(δ) such that

α ∈ acc(Cδ) =⇒ Cδ ∩ α ∈ Cα.

If one were to write down a definition analogous to Definition 4.1 for
what it means for a set to carry a weak square, one might very well end
up with something like the above. We have stayed away from this notation,
though, as Džamonja and Shelah have already utilized it in [21] for a related
concept. We leave the proof of the following proposition as an easy exercise
for the reader—the proposition establishes a connection between diamond-
friendliness and the various weak forms of square we have been considering.
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4.26 Proposition. Let λ = μ+ for some singular cardinal μ.

1. If S ⊆ λ is diamond-friendly, then S ∈ I[λ].

2. If S ⊆ λ carries a partial square, then S is diamond-friendly.

3. If �∗
μ holds, then every subset of λ is diamond-friendly.

We come now to the main theorem of this subsection, the proof of which is
a substantial reworking of Shelah’s original proof from [85]. Before we state
the theorem, we introduce some notation.

4.27 Definition. Let κ be an infinite cardinal.

1. A potential ♦-sequence for κ+ is a sequence S̄ = 〈Sα : α < κ+〉 such
that each Sα is a collection of at most κ subsets of α.

2. If S̄ is a potential ♦-sequence for κ+ and X ⊆ κ+, then we define

TrapS̄ (X) = {α < κ+ : X ∩ α ∈ Sα}. (15.58)

If κ+ and S̄ are clear from context, then we may suppress explicit reference
to them in the notation.

4.28 Theorem. Let μ be a strong limit singular cardinal with 2μ = μ+. If
{δ < μ+ : cf(δ) > cf(μ)} contains a diamond-friendly stationary subset S,
then there is a potential ♦-sequence S̄ such that for any X ⊆ μ+, there is a
closed unbounded E ⊆ μ+ with the property that

δ ∈ E ∩ S =⇒ TrapS̄ (X) contains a closed unbounded subset of δ.
(15.59)

Proof. Let λ denote μ+. We are going to need several auxiliary objects, so
we present them as a list:

• 〈μi : i < cf(μ)〉 is an increasing sequence of regular cardinals cofinal in
μ.

• Ā = 〈Ai : i < λ〉 enumerates [λ]<λ.

• C̄ = 〈Cα : α < λ〉 attests to the diamond-friendliness of S.

• ē = 〈eα : α < λ〉 is a sequence of one-to-one functions such that eα

maps α into μ.

• M is a λ-approximating sequence over {Ā, C̄, ē}.

• S̄ = 〈Sα : α < λ〉 is defined by Sα := Mα+1 ∩ P(α).

Given X ⊆ λ, we choose N to be a λ-approximating sequence over {X,M}
and let E∗ denote the closed unbounded subset of λ consisting of those δ for
which Nδ ∩ λ = δ. If δ ∈ E∗, then Mδ ∩ λ = δ and therefore Mδ and Nδ

contain the same bounded subsets of λ.
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We now work to prove that (15.59) holds for this choice of E. To do
this, we fix δ ∈ S ∩ E. The proof consists in defining a certain closed and
unbounded C ⊆ δ, and then verifying that this C is contained in TrapS̄ (X).

Note that since C̄ is in M0, we can apply the diamond-friendliness of S to
find a closed unbounded Cδ ⊆ δ of order-type cf(δ) such that

α ∈ acc(Cδ) =⇒ Cδ ∩ α ∈ Cα.

Let 〈δζ : ζ < cf δ〉 be the increasing enumeration of Cδ ∩ E∗.
For ζ < cf δ, we know X ∩ δζ ∈ Nδζ+1. Since δζ +1 ≤ δζ+1 and δζ+1 ∈ E∗,

it follows that
X ∩ δζ ∈Mδζ+1 .

This means
X ∩ δζ = Aβζ

for some βζ < δζ+1.
In the model Mδζ+1+1, we have available the function eδζ+1 : δζ+1 → μ,

and so we can define

i(ζ) := least i < cf(μ) such that eδζ+1(βζ) ≤ μi.

Since cf(μ) < cf(δ), it follows that there is a single i∗ < cf(μ) such that

D := {ζ < cf(δ) : i(ζ) ≤ i∗}

is unbounded in cf(δ). Finally, we define

C := {δζ : ζ = sup(D ∩ ζ)}.

The set C just constructed is closed and unbounded in δ, so the following
claim will finish the proof.

4.29 Claim. C ⊆ TrapS̄ (X).

Proof. Given α ∈ C, we must prove that X ∩ α is in Sα. In light of the
definition of Sα, this reduces to showing that X∩α is in the model Mα+1. We
do this by demonstrating that X ∩ α is definable from parameters available
in Mα+1.

By definition, our α is of the form δζ∗ for some ζ∗ ∈ acc(D). In light of
this, it suffices to prove that the sequence 〈X ∩ δζ : ζ ∈ D∩ ζ∗〉 is an element
of Mα+1.

By the definition of “diamond-friendly”, we know that Cδ ∩α is in Mα+1,
and since |Cδ ∩ α| < cf(δ) < μ, it follows that Mα+1 contains every subset
of Cδ ∩ α as well as every increasing enumeration of such a set. Thus, we
conclude that Mα+1 contains the sequence 〈δζ : ζ < ζ∗〉.

Similarly, Mα+1 contains D ∩ ζ∗, as well as every function from D ∩ ζ∗

to μi∗ . This tells us that the sequence

s := 〈eδζ+1(βζ) : ζ ∈ D ∩ ζ∗〉
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must be in Mα+1.
It follows that the sequence 〈βζ : ζ ∈ D ∩ ζ∗〉 is in Mα+1 as it is definable

from s and the sequence ē. Since Ā ∈M0, we conclude

〈Aβζ
: ζ ∈ D ∩ ζ∗〉 ∈Mα+1,

which finishes the proof as Aβζ
= X ∩ δζ . �

This claim establishes that TrapS̄ (X) contains a closed unbounded subset
of δ for all δ ∈ S ∩ E, and the theorem is proved. �

We get the following as an immediate corollary.

4.30 Corollary. Let μ be a strong limit singular cardinal with 2μ = μ+.
If �∗

μ holds, then ♦(S) holds for every stationary S ⊆ μ+ that reflects sta-
tionarily often in ordinals of cofinality greater than cf(μ). In particular, the
hypotheses imply ♦(Sμ+

cf(μ)).

The following theorem of Shelah [85] gives a consistency result about the
failure of ♦ in the situation we have been considering.

4.31 Theorem (see Conclusion 10 of [85]). Suppose that μ is a singular
strong limit cardinal with 2μ = μ+, and S is a non-reflecting stationary
subset of {δ < μ+ : cf(δ) = cf(μ)}. Then there is a notion of forcing P such
that

1. P adds no new sequences of length less than μ,

2. P satisfies the μ+-chain condition,

3. P preserves the stationarity of S, and

4. V P |= ¬♦(S).

Note that the above consistency result does not require large cardinals;
in light of Corollary 4.30, it is not surprising that the techniques used to
obtain the model of Theorem 4.31 cannot make ♦ fail on a stationary set
that reflects stationarily often. It is also clear that ZFC still has things to say
about this problem, for the following theorem of Shelah [93] shows us that
non-trivial consequences of ♦(Sμ+

cf(μ)) follow from instances of the Generalized
Continuum Hypothesis.

4.32 Theorem. Assume λ = μ+, where μ is a strong limit singular cardinal.
Further assume that 2μ = λ, and S ⊆ λ is a stationary subset of Sλ

cf(μ). Then
we can find a family {Aδ : δ ∈ S} such that each Aδ is cofinal in δ of order-
type cf(μ), and, letting 〈αδ,i : i < cf(μ)〉 enumerate Aδ in increasing order,
we have that for every function f with domain λ and range a bounded subset
of μ,

{δ ∈ S : f(αδ,2i) = f(αδ,2i+1) for all i < cf(μ)} is stationary.
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Finally, we remark the Shelah has very recently established an important
result on the existence of diamonds. Using pcf theory, he had actually shown
the following equivalence:

4.33 Theorem. If �ω ≤ κ, then ♦(κ+) holds if and only if 2κ = κ+.

For a proof see Theorem 8.21 of the chapter of Abraham and Magidor
in this Handbook. In his recent [80], Shelah used club guessing ideas in an
ingenious, short proof to show that the �ω can be replaced by ω1, specifically:

4.34 Theorem (Shelah [80]). If ω1 ≤ κ, then 2κ = κ+ implies that ♦(S)
holds for any stationary S ⊆ {δ < κ+ | cf(δ) �= cf(κ)}.

Hence, ♦κ is actually equivalent to 2κ = κ+ for all κ ≥ ω1. This is
optimal in light of the well-known independence result for ♦(ω1) of Jensen,
and moreover, the cofinality restriction of the theorem is optimal in light
of Theorem 4.31. However, Theorem 4.24 is still germane because of the
stronger conclusion of ♦∗; ♦∗(κ+) fails if a Cohen subset of κ+ is added, and
so one each easily get the consistency of ♦(κ+) + ¬♦∗(κ+).

4.4. Very Weak Square

The purpose of this brief subsection is to establish a connection between the
ideas we have been considering and some combinatorial principles discussed
in Todorčević’s chapter [98] in this Handbook. If μ is singular, then we have
seen how the landscape between �μ and APμ is filled by a natural hierarchy
of square-like principles. In this section, we take a look at combinatorial
principles even weaker than APμ (in fact, so weak that some of them are
consistent with supercompact cardinals) that are still strong enough to have
important consequences.

To set the stage, let λ = μ+ for a singular cardinal μ. In our investigation
of I[λ], we saw that this ideal is the normal ideal generated by sets of the
form S[M] for M a λ-approximating sequence. Recall that S[M] is defined
to be the set of δ < λ such that

• Mδ ∩ λ = δ, and

• there is a cofinal a ⊆ δ of order-type cf(δ) with the property that every
initial segment of a is Mδ.

In non-specific terms, the ordinal δ is “singularized” by a set a that is in
some sense “captured by Mδ”. If we vary the meaning of “captured by Mδ”,
we end up with a family of combinatorial principles related to I[λ] and APμ.

For example, let us consider the following definition.

4.35 Definition. Suppose that λ = μ+ for some singular cardinal μ, and let
M = 〈Mα : α < λ〉 be a λ-approximating sequence. Let SVWS[M] be the set
of all δ < λ such that
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1. Mδ ∩ λ = δ, and

2. there is a cofinal a ⊆ δ of order-type cf(δ) such that all bounded count-
able subsets of a are elements of Mδ.

Some remarks are in order here. First, the designation “VWS” stands
for very weak square, for reasons which will be made clear below. Second,
if cf(δ) > ℵ0 and δ ∈ SVWS[M], then it must be the case that (cf δ)ℵ0 ≤ μ
because |Mδ| = μ. Thus, the preceding definition will be of most interest
when μ is countably closed, that is, when τ ℵ0 < μ for all τ < μ.

Assume now that μ is a countably closed singular cardinal. The sets of the
form SVWS[M] generate a normal ideal on λ, which we denote by IVWS[λ].
The following proposition captures some of its basic properties.

4.36 Proposition. Let λ = μ+ for μ a countably closed singular cardinal.

1. Sλ
ℵ0
∈ IVWS[λ].

2. If S ⊆ Sλ
ℵ1

, then S ∈ I[λ] ⇐⇒ S ∈ IVWS[λ].

3. I[λ] ⊆ IVWS[λ].

4. If μ has uncountable cofinality, then λ ∈ IVWS[λ].

Proof. All are easy. For (4), notice that since μ<μ = μ, if 〈Mα : α < λ〉
is a λ-approximation sequence and δ has uncountable cofinality, then any
countable subset of Mδ ∩ λ is in Mδ. �

The next proposition gives us a characterization of IVWS[λ] that does not
require the language of elementary submodels. The result is easy, and taken
from [23].

4.37 Proposition. Let λ = μ+ for μ a countably closed singular cardinal.
A set S ⊆ λ is in IVWS[λ] if and only if there is a sequence 〈Aα : α < λ〉
such that Aα ⊆ α and for some closed unbounded E ⊆ λ, if δ ∈ E ∩ S then

1. Aδ is cofinal in δ of order-type cf(δ), and

2. if cf(δ) > ℵ0 then [Aδ]ℵ0 ⊆ {Aα : α < δ}.

Proof. See [23, Claim 2.8]. �

Now we have seen that for singular cardinals μ, the combinatorial principle
APμ has strength. Since APμ is just the statement that I[μ+] is an improper
ideal, it is natural to use IVWS[μ+] in such a fashion as well. This is a fruitful
idea, and it leads us to the very weak square principle studied previously by
Foreman and Magidor [34].

4.38 Definition. Let λ = μ+ for a countably closed singular cardinal μ.
A sequence 〈Aα : α < μ+〉 is a very weak square sequence for μ if there is a
closed unbounded E ⊆ μ+ such that for all α ∈ E of uncountable cofinality,
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1. Aα is unbounded in α, and

2. [Aα]ℵ0 ⊆ {Aβ : β < α}.

We say that very weak square holds at μ (denoted VWSμ) if there is a very
weak square sequence for μ.

The reader may note that the sets Aα are not required to be closed. This is
quite important, and the change gives rise to a combinatorial principle known
as not-so-very-weak square studied briefly by Foreman and Magidor in [34].
The paper [34] contains several applications of the very weak square principle.
We limit ourselves to the following characterization of VWSμ, which recalls
the characterization of APμ given in Theorem 3.16. The proof is similar, and
we remark that such arguments have been used many times in the literature,
going back to work of Jensen and Silver in [52].

4.39 Theorem. Let μ be a countably closed of countable cofinality, and let
λ = μ+. Then VWSμ holds if and only if for every x ∈ H(χ), there is
a λ-approximating sequence M = 〈Mα : α < λ〉 over x with the property
that if we are given δ satisfying Mδ ∩ λ = δ and a set A ⊆ Mδ satisfying
ℵ0 < |A| = cf |A| < μ, then there is B ⊆ A such that

1. |B| = |A|, and

2. [B]ℵ0 ⊆Mδ.

Proof. We mirror the proof of Theorem 3.16. Let Ā = 〈Aα : α < λ〉 be a very
weak square sequence for λ, with E the associated closed unbounded set. Let
〈μi : i < ω〉 be an increasing sequence of regular cardinals with limit μ such
that μℵ0

i < μi+1.
Now build a matrix 〈M i

α : α < λ, i < ω〉 of elementary submodels of H(χ)
such that (letting Mα :=

⋃
i<ω M i

α)

1. 〈Mα : α < λ〉 is a λ-approximating sequence over {x, C̄, E},

2. |M i
α| = μi,

3. M i
α ⊆M j

α for i < j,

4. μi+1 ∪ [M i
α+1]

ℵ0 ⊆M i+1
α+1, and

5. if Cα is countable, then for each i < ω,

[⋃
β∈Cα

M i
β

]ℵ0 ⊆Mα+1. (15.60)

Now let τ be an uncountable regular cardinal below μ and suppose that A is
in [Mα]τ for some α < λ. There are three cases that arise.

Case 1. α a successor ordinal.
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In this case, we fix an i < ω for which B := A∩M i
α has cardinality τ . Our

construction then guarantees that every countable subset of B is in M i+1
α ,

which is a subset of Mα.
Case 2. α a limit ordinal with cf(α) �= τ .
For such an α, there must be a β < α for which A∩Mβ+1 has cardinality τ .

The argument for Case 1 then gives us B ∈ [A]τ with [B]ℵ0 ⊆Mα.
Case 3. α a limit ordinal of cofinality τ .
In this situation, we know Mα =

⋃
i<ω

⋃
γ∈Cα

M i
γ , and so there is an i < ω

for which the set
B := A ∩

⋃
γ∈Cα

M i
γ

has cardinality τ .
If K is a countable subset of B, then there is a countable J ⊆ Cα with

K ⊆
⋃

γ∈JM i
γ .

Since α ∈ E, we know that J appears as Cβ for some β < α. But then

K ⊆
⋃

γ∈Cβ
M i

γ ⊆Mβ+1 ⊆Mα.

Thus, B is a subset of A of cardinality τ with [B]ℵ0 ⊆Mα, as required.
For the converse, let M be a λ-approximating sequence with the proper-

ties claimed. We show that SVWS[M] contains the closed unbounded set of
ordinals δ with δ = Mδ ∩ λ. Clearly we may assume cf(δ) is uncountable,
so let A ⊆ δ be cofinal of order-type cf(δ). Then our choice of M gives us a
cofinal B ⊆ A, all of whose countable subsets are in Mδ. Thus, δ ∈ SVWS[M]
and VWSμ holds. �

We will not pursue combinatorial applications of VWSμ here. We remark
that VWSμ is equivalent to the existence of a Jensen matrix (see [98, Defi-
nition 11.14]) in many situations—one can find a proof of this in [34]; it is
similar to the proof of the preceding theorem. Todorčević demonstrates the
relationship between Jensen matrices and cofinal Kurepa families; the reader
is referred to his chapter [98] (in particular, Sect. 11) in this Handbook for
more information.

With regard to the relationship between VWSμ and APμ, we mention the
following theorem of Foreman and Magidor [34]:

4.40 Theorem. Suppose that GCH holds and κ is a supercompact cardinal.
Then there is a class forcing extension of V that preserves cardinals and
cofinalities in which VWSμ holds for all singular μ and where κ remains
supercompact.

Thus, through successive weakenings, we have finally arrived at versions
of square that are compatible with supercompact cardinals. Oddly enough,
even though modifications of Foreman and Magidor’s argument proves that
very weak square is consistent even with huge cardinals, the principle not-so-
very-weak square mentioned earlier necessarily fails at the successor of a limit
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of infinitely many supercompact cardinals. Thus, the two principles are not
equivalent. We will not pursue this, but the proof appears in [34]. Returning
to the topic at hand, we note the following corollary of the preceding theorem.

4.41 Corollary. If κ is supercompact, then it is consistent that VWSκ+ω

holds even though APκ+ω necessarily fails.

The situation at ℵω is a bit strange, though, for Shelah has shown that
under GCH, the two principles are equivalent at ℵω. The following theorem
from [23] gives a tighter formulation.

4.42 Theorem. Let λ = μ+ for μ a singular strong limit cardinal of count-
able cofinality. If κ < μ is countably closed, then I[λ] �Sλ

κ = IVWS �Sλ
κ .

Proof. By the third statement in Proposition 4.36, we need only take an
S ⊆ Sλ

κ in IVWS[λ] and prove it is in I[λ]. By way of Proposition 4.37, we
fix a sequence Ā = 〈Aα : α < λ〉 and closed unbounded E ⊆ λ such that for
δ ∈ E ∩ S, we have

1. Aδ is cofinal in δ with ot(Aδ) = κ, and

2. [Aδ]ℵ0 ⊆ {Aα : α < δ}.

By thinning out Aδ if necessary, we may assume as well that

3. for δ ∈ E ∩ S, if α ∈ Aδ then [Aδ ∩ α]ℵ0 ⊆ {Aγ : γ < α}.

Notice that the above makes use of the facts that κ is countably closed and
Aδ need not be a closed subset of δ.

Let 〈μn : n < ω〉 be an increasing sequence of regular cardinals cofinal in μ.
An easy induction lets us define a λ-filtration sequence b̄ = 〈bα,n : n < ω〉
with |bα,n| ≤ μn, and such that for all α < λ

β ∈ bα,n =⇒ bβ,n ⊆ bα,n (15.61)

and
|Aα| = ℵ0 =⇒ Aα ⊆ bα,0. (15.62)

Let M be a λ-approximating sequence over {Ā, S, E, B̄}. We will show that
S ⊆ S[M].

With this in mind, suppose that δ ∈ S satisfies δ = Mδ ∩ λ. Since E is
in M0, it is clear that δ must be in E as well. Our goal is to establish that
every initial segment of Aδ is in the model Mδ. As a first step toward this,
we claim the following:

α ∈ Aδ =⇒ Aδ ∩ α ⊆ bα,n for some n < ω. (15.63)

Assume by way of contradiction that (15.63) fails. Then for each i < ω
we can choose an ordinal βi such that

βi ∈ (Aδ ∩ α) \ bα,i. (15.64)
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Since δ ∈ E ∩ S, by condition (3) above, there is an ordinal γ < α with
{βi : i < ω} = Aγ .

Choose n such that γ ∈ bα,n. By (15.61), we know bγ,n ⊆ bα,n. But

{βi : i < ω} = Aγ ⊆ bγ,0 ⊆ bγ,n ⊆ bα,n,

and this contradicts (15.64) for the choice n = i. Therefore, (15.63) must
hold.

Now suppose that α ∈ Aδ. Choose an n < ω such that Aδ ∩ α ∈ bα,n.
The set bα,n is in Mδ and of cardinality at most μn. Since μ is a strong
limit cardinal, it follows that every subset of bα,n is in Mδ. In particular,
Aδ ∩ α ∈Mδ and the proof is finished. �

4.43 Corollary. If GCH holds, then I[ℵω+1] = IVWS[ℵω+1].

Proof. By assumption, S
ℵω+1

ℵ0
lies in both ideals. By the second claim in

Proposition 4.36, the ideals are the same when restricted to ordinals of co-
finality ℵ1. Under GCH, the cardinals ℵn for 1 < n < ω are all countably
closed, and so the preceding theorem applies. It follows easily now that the
ideals coincide. �

4.5. NPT and Good Scales

This section deals with yet another failure of compactness of interest in com-
binatorial set theory.

4.44 Definition.

1. If A is a family of non-empty sets, then a transversal for A is a one-to-
one choice function on A.

2. A family A of non-empty sets is said to be κ-free if every subfamily of
cardinality less than κ has a transversal. We say that A is free if the
entire family has a transversal.

3. PT(κ, θ) means that every κ-free family A = 〈Aα : α < κ〉 with each
Aα of size less than θ is free.

4. NPT(κ, θ) denotes the negation of PT(κ, θ).

We begin with an easy application of the compactness theorem for propo-
sitional logic.

4.45 Proposition. An ω-free family of finite sets is free. Thus, PT(κ,ℵ0)
holds for any infinite κ.

Proof. Suppose that {Aα : α < κ} is an ω-free family of finite sets, and fix
an enumeration of each Aα. For each α < κ and i < |Aα|, we let pα,i be
a propositional variable and consider the theory consisting of the following
propositional sentences:
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1.
∨

i<|Aα | pα,i for each α < κ,

2. pα,i → ¬pα,j for each α < κ and i �= j, and

3. pα,i → ¬pβ,j whenever α �= β and the ith element of Aα is the jth
element of Aβ .

Any valuation v satisfying this theory gives rise to a transversal F for the
family {Aα : α < κ}—for each α < κ it follows from (1) and (2) that there
is a unique i < |Aα| with v(pα,i) = 1, and so we can define a function F by
the rule

F (α) = the ith element of Aα for the unique i with v(pα,i) = 1.

Since our valuation satisfies the sentences from (3), it follows that F is one-
to-one.

With the preceding interpretation in mind, it is clear that our collection
of formulas is finitely satisfiable because the family {Aα : α < κ} is ω-free.
An application of the compactness theorem for propositional logic gives us a
valuation satisfying the entire theory, and therefore the family has a transver-
sal. �

In the other direction, we show that instances of NPT arise from non-
reflecting stationary sets.

4.46 Proposition. Let κ < λ be regular cardinals. If Refl(Sλ
κ) fails, then

NPT(λ, κ+) holds.

Proof. Let κ < λ be regular cardinals, and assume that there is a non-
reflecting stationary set S ⊆ Sλ

κ . For each δ ∈ S, let Aδ be a cofinal subset
of δ of order-type κ. The family {Aδ : δ ∈ S} is λ-free by Lemma 2.12, but
the existence of a transversal would contradict Fodor’s Theorem. �

As a corollary, we see that NPT(κ+, κ+) holds for all regular κ. The fol-
lowing theorem of Milner and Shelah [67] shows that non-reflecting stationary
sets can be used to lift examples of NPT to larger cardinals.

4.47 Theorem. Let θ < κ < λ be regular cardinals. If NPT(κ, θ) holds and
there is a non-reflecting stationary S ⊆ Sλ

κ , then NPT(λ, θ) holds as well.

Proof. Let A = {Aγ : γ < κ} be an instance of NPT(κ, θ). For each α ∈ S
we choose an increasing function eα : κ → α with range cofinal in α. Given
α ∈ S and γ < κ, we define

Bα,γ = ({α} ×Aγ) ∪ {eα(γ)}.

We claim that the family

B = {Bα,γ : α ∈ S, γ < κ}
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will witness NPT(λ, θ).
First, we show that B does not have a transversal. Suppose by way of

contradiction that the family B has a transversal F . Since A does not have
a transversal, it follows that for each α ∈ S there must be a γα < κ with

F (α, γα) = eα(γα).

An application of Fodor’s Theorem gives us a stationary T ⊆ S and γ∗ < κ
such that eα(γα) = γ∗ for all α ∈ T , and this means that our F cannot be
one-to-one.

To finish the proof, we must prove that the family B is λ-free. It suffices
to prove that for each α < λ, the family {Bβ,γ : β ∈ S ∩ α, γ < κ} has
a transversal.

By Lemma 2.12, we can find for each β ∈ S ∩ α an ordinal ηβ < κ so that
all sets of the form {eβ(γ) : ηβ < γ < κ} for β ∈ S ∩ α are disjoint. We then
choose F (β, γ) so that

F (β, γ) = eβ(γ) for ηβ < γ < κ

and such that

〈F (β, γ) : γ ≤ ηβ〉 is a transversal for {β} × {Aγ : γ ≤ ηβ}.

There are no problems in doing this, and evidently this gives the desired
transversal. �

4.48 Corollary. NPT(ℵn,ℵ1) holds for 1 ≤ n < ω.

Proof. We see that NPT(ℵ1,ℵ1) holds by way of Proposition 4.46, and a triv-
ial induction argument using Theorem 4.47 lifts this to NPT(ℵn,ℵ1) for
1 ≤ n < ω. �

The following corollary will be superseded by results later in the subsec-
tion, but we record it for later use.

4.49 Corollary. If Refl(ℵω+1) fails, then NPT(ℵω+1,ℵ1) holds.

Proof. If Refl(ℵω+1) fails, then Refl(Sℵω+1
ℵn

) must fail for some n < ω. The
conclusion follows from the preceding corollary and Theorem 4.47. �

For the rest of this subsection we focus our attention on NPT(κ, θ) for the
special case θ = ℵ1. Such questions are of particular interest, because She-
lah [81] has shown that NPT(κ,ℵ1) is equivalent to the existence of a κ-free
Abelian group (that is, all subgroups of cardinality less than κ are free) of
size κ that is not itself free. It is still an open problem whether the “Abelian”
can be dropped in the preceding result—it is known that NPT(κ,ℵ1) implies
the existence of a κ-free non-free group of cardinality κ, but whether the
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reverse implication holds is still unsolved. We refer the reader to the intro-
duction of [65] for a much more extensive discussion of such matters and how
they fit into a much more general setting.

The following result of Shelah settles our question for the case of singular
cardinals. The result is a special case of his theorem on singular compact-
ness [81].

4.50 Theorem. PT(κ,ℵ1) holds for every singular κ.

Proof. We refer the reader to [14, Sect. 12] for a nice proof of this result. �

Thus, the behavior of ℵω stands in contrast to that of ℵn for 1 ≤ n < ω. At
successors of singular cardinals the situation is much more delicate. Magidor
and Shelah [65] have shown that NPT(ℵω·n+1,ℵ1) holds for each n < ω,
while PT(ℵω2+1,ℵ1) is consistent relative to large cardinals. Their arguments
make use of the combinatorics of scales, and though a presentation of the
consistency of PT(ℵω2+1,ℵ1) is beyond the scope of the paper, we will develop
the techniques needed to see the relationship between scales and transversals.
The following definition is the key to unlocking this connection.

4.51 Definition. Let μ be a singular cardinal. A scale (�μ, �f) is good if every
ordinal α of cofinality greater than cf(μ) is a good point for �f , that is, if
α < μ+ satisfies cf(α) > cf(μ), there is an unbounded A ⊆ α and i < cf(μ)
such that the sequence 〈fβ(j) : β ∈ A〉 is strictly increasing for all j > i.

The following easy proposition shows that good scales follow from the
Approachability Property.

4.52 Proposition. Let μ be a singular cardinal. If APμ holds, then all
scales (�μ, �f) for μ are good.

Proof. Suppose that (�μ, �f) is a scale for μ, and let M be a λ-approximating
sequence over (�μ, �f). Given δ ∈ S[M] with cofinality greater than cf(μ), the
proof of Claim 3.54 shows that δ is a good point for �f . We have assumed APμ,
and therefore S[M] contains a closed unbounded E ⊆ μ+. If we enumerate
E as 〈αi : i < μ+〉 and define gi = fαi , then it is not hard to show that �g is
a good scale. �

We now move on to the application of goodness to questions about NPT.
The following theorem is due to Magidor and Shelah [65], though our pre-
sentation is based on that in Cummings’ survey [14].

4.53 Theorem. If μ is a singular cardinal of countable cofinality and there
is a good scale (�μ, �f) for μ, then NPT(μ+,ℵ1).

Proof. Let S denote the set Sμ+

ℵ1
, and for each α ∈ S, define

Aα = {(m, fα(m)) : m < ω}.

The following lemma captures a key property of the family {Aα : α ∈ S}.
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4.54 Lemma. For every α < μ+, we can choose objects Bβ and Dβ for
β ∈ S ∩ α such that

1. Bβ is a cofinite subset of Aβ,

2. Dβ is a closed unbounded subset of β, and

3. {Bβ ×Dβ : β ∈ S ∩ α} is a disjoint family of sets.

Before given the proof, we show that the lemma implies NPT(μ+,ℵ1).
We start by choosing, for each α ∈ S, a closed unbounded Eα ⊆ α of
order-type ω1. By Lemma 4.54, the collection {Aα × Eα : α ∈ S} is an
instance of NPT(μ+,ℵ2), but we need to work harder to obtain a witness for
NPT(μ+,ℵ1).

To do this, choose for each limit δ < ω1 a cofinal set Cδ of order-type ω.
Let 〈eα(γ) : γ < ω1〉 be the increasing enumeration of Eα. Finally, for α ∈ S
and limit δ < ω1, we define

Bα,δ = (Cδ × {α}) ∪ (Aα × {eα(δ)})

and set
B = {Bα,δ : α ∈ S, δ countable limit}.

4.55 Claim. The collection B is an instance of NPT(μ+,ℵ1).

Proof. It is clear that each Bα,δ is countable. To see that there is no transver-
sal for B, assume by way of contradiction that F is a one-to-one choice func-
tion for the collection.

For a fixed α ∈ S, Fodor’s Theorem implies that F (α, δ) is of the form
(x, eα(δ)) for almost all δ, and therefore we can find a countable limit ordi-
nal δα such that

F (α, δα) = (xα, eα(δα))

for some xα ∈ Aα. There are only μ possibilities for xα, and therefore we
can find a stationary S∗ ⊆ S and a single x∗ ∈ ω × μ such that

α ∈ S∗ =⇒ xα = x∗.

Since eα(δα) < α, another application of Fodor’s Theorem contradicts our
assumption that F is one-to-one. Thus, there can be no transversal for the
family B.

To see that B is μ+-free, it suffices to show for each α < μ+ that a transver-
sal exists for the collection

{Bβ,δ : β ∈ S ∩ α and δ < ω1 is a limit}. (15.65)

With this end in mind, let us fix an α < λ and work toward defining
a transversal F for the collection (15.65). Given β ∈ S ∩ α, the set of
δ < ω1 with eβ(δ) /∈ Dβ is nonstationary. An appeal to Lemma 2.12 gives us
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a transversal Gβ for the collection {Cδ : eβ(δ) /∈ Dβ}, and we define F (β, δ)
for such δ by

F (β, δ) = (Gβ(δ), β).

It remains to define F (β, δ) for those δ with eβ(δ) ∈ Dβ . This is done by
choosing xβ ∈ Bβ and defining

F (β, δ) = (xβ , eβ(δ)).

In either case, F (β, δ) is an element of Bβ,δ, and the proof that F is one-to-
one is straightforward. �

We now turn our attention to the heart of the matter—the proof of
Lemma 4.54.

Proof of Lemma 4.54. We prove by induction on α < μ+ that for any δ < α
we can find Bβ and Dβ for β ∈ S ∩ (δ, α] such that

1. Bβ is a cofinite subset of Aβ ,

2. Dβ is closed and unbounded in β,

3. {Bβ ×Dβ : β ∈ S ∩ (δ, α]} is a disjoint family, and

4. Dβ ∩ δ = ∅.

If we do this, then Lemma 4.54 follows immediately. It is worth pointing out
that in general,

(B×D)∩(B∗×D∗) = ∅ ⇐⇒ either B∩B∗ = ∅ or D∩D∗ = ∅. (15.66)

We will use the above observation implicitly in the proof.
Case 1. α is a successor.
Since α /∈ S, the result follows from the induction hypothesis applied to

the predecessor of α.
Case 2. cf(α) = ℵ0.
Given δ < α, let 〈εn : n < ω〉 enumerate a cofinal ω-sequence in α with

ε0 = δ. For each n, we apply our induction hypothesis to the ordinals εn <
εn+1. This gives us Bβ and Dβ for each β ∈ S∩(εn, εn+1] with the additional
property that Dβ ∩ εn = ∅, and from this it follows that the entire family
{Bβ ×Dβ : β ∈ S ∩ (δ, α]} is disjoint.

Case 3. cf(α) = ℵ1.
Given δ < α, we proceed very much as in the previous case with the added

complication that Bα and Dα must also be defined. Notice as well that it
suffices to prove the result for the case where δ is a successor ordinal, so we
may assume that δ /∈ S.

Let Dα be a closed unbounded subset of α of order-type ω1 chosen so
that min(Dα) = δ and Dα ∩ S = ∅. Let 〈εi : i < ω1〉 be the increasing
enumeration of Dα.
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Given i < ω1, we apply our induction hypothesis to the ordinals εi <
εi+1 to obtain Bβ and Dβ for all β ∈ S ∩ (εi, εi+1]. Since removing an
initial segment of Dβ causes no harm, we may assume that Dβ is completely
contained in the interval (εi, εi+1). In particular, Dβ ∩Dα = ∅.

Since Dα ∩ S = ∅, the preceding paragraph defines Bβ and Dβ for all
β ∈ S ∩ (δ, α), and the family {Bβ ×Dβ : β ∈ S ∩ (δ, α)} is disjoint. We have
arranged things so that Dα∩Dβ = ∅ for all β ∈ S∩ (δ, α), and so if we define
Bα to be Aα, we have what we need.

Case 4. cf(α) > ℵ1.
This is the interesting case, for it is here that the goodness of our scale

becomes important. In order to remove a bit of clutter, we omit reference to
the ordinal δ (that is, we give the proof for δ = 0) as the obvious modifications
give the result in full generality.

We begin by recalling that α is a good point for our scale, and therefore we
can find a cofinal A ⊆ α and an i∗ < ω with the property that the sequence
〈fβ(i) : β ∈ A〉 is strictly increasing for all i > i∗.

Define C to be the set of β < α with sup(A ∩ β) = β. We say that
β ∈ S ∩ α is of Type I if β is not in acc(S), while members of S ∩ acc(C) are
said to be of Type II.

The choice of Bβ and Cβ for β of Type I is along the lines of what was
done in previous cases—if ε < γ are consecutive elements of C, then our
induction hypothesis gives us Bβ and Dβ for all β ∈ S ∩ (ε, γ]. Since we are
free to discard initial segments of Dβ , we can also assume that Dβ is entirely
contained in the interval (ε, γ).

The preceding paragraph defines Bβ and Dβ for all β of Type I, and it
does so in such a fashion that Dβ ∩ C = ∅ for all β of Type I. We now turn
our attention to the β of Type II.

For each β ∈ S ∩ acc(C), let Dβ := C ∩ β. This guarantees that Dβ and
Dβ∗ are disjoint whenever β is of Type II and β∗ is of Type I. We now show
that it is possible to choose Bβ for each β of Type II in such a way that
each Bβ is a cofinite subset of Aβ , and the family {Bβ : β ∈ S ∩ acc(C)} is
disjoint.

Thus, let β be a fixed ordinal of Type II. Recall that i∗ < ω has the prop-
erty that for each i > i∗, the sequence 〈fη(i) : η ∈ A〉 is strictly increasing.
Since β ∈ S, we know cf(β) = ω1 and thus there exists an mβ < ω and
a cofinal E ⊆ A ∩ β such that

fη(i) < fβ(i) for i > mβ and η ∈ E.

By the choice of A, this means that

fη(i) < fβ(i) for all η ∈ A ∩ β and i > max{i∗,mβ}.

Let ε(β) be the least member of A above β, and choose

n(β) > max{i∗,mβ}
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so large that
fβ(i) < fε(β)(i) for all i > n(β).

Finally, we define
Bβ := {(m, fβ(m)) : m > n(β)}.

Note that Bβ is a cofinite subset of Aβ , and the following claim shows us
that this choice of Bβ has the desired property.

4.56 Claim. The family {Bβ : β ∈ S ∩ acc(C)} is disjoint.

Proof. By way of contradiction, assume that β < β∗ are two elements of
S ∩ acc(C) for which Bβ ∩ Bβ∗ �= ∅. A point in this intersection must have
the form (m, η) for some m > max{n(β), n(β∗)} with

η = fβ(m) = fβ∗ (m). (15.67)

Because ε(β) is in A ∩ β∗, it follows that

fβ(m) < fε(β)(m) < fβ∗ (m). (15.68)

The statements (15.67) and (15.68) are contradictory, therefore Bβ and Bβ∗

are disjoint. �

Thus, we have defined Bβ and Dβ for all β ∈ S ∩ α in the case where
cf(α) > ℵ1. Using our observation (15.66), it is straightforward to verify
that {Bβ ×Dβ : β ∈ S ∩ α} is a disjoint collection. �

This completes the proof of Lemma 4.54, and Theorem 4.53. �

4.57 Corollary. APμ implies NPT(μ+,ℵ1) for singular μ of countable cofi-
nality.

We are in a position to deduce the following corollary (essentially a re-
statement of one of the main results of [83]), but we shall soon see that the
strong limit assumption is unnecessary.

4.58 Corollary. If ℵω is a strong limit, then NPT(ℵω+1,ℵ1) holds.

Proof. Since ℵω is assume to be a strong limit, Corollary 3.41 implies that
either APℵω holds or Refl(ℵω+1) fails. In the former case, the result fol-
lows from Corollary 4.57, while in the latter case, the result follows from
Corollary 4.49. �

Our attention now focuses on a result of Magidor and Shelah [65] stating
that NPT(ℵω+1,ℵ1) always holds, whether or not ℵω is a strong limit. This
will give us the opportunity to delve a bit more deeply into the structure of
scales, and the key result we use is Shelah’s Trichotomy Theorem.

4.59 Theorem (Shelah’s Trichotomy Theorem). Let I be an ideal on the
set A, and let 〈fα : α < δ〉 be a <I-increasing sequence with cf(δ) > |A|+.
Then exactly one of the following possibilities holds:
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1. There is an exact upper bound h such that cf(h(x)) > |A| for all x ∈ A.

2. There is an ultrafilter U on A disjoint to I, and for each x ∈ A a set
Sx of cardinality at most |A| such that some subfamily of

∏
x∈A Sx is

cofinally interleaved with 〈fα : α < δ〉 modulo U .

3. There is a function h such that the sequence

〈{x ∈ A : fα(x) < h(x)} : α < δ〉

is not eventually constant modulo I.

The preceding theorem is central in some presentations of the theory of ex-
act upper bounds, for example, that found in Kojman [55, 56]. In Shelah [89],
it appears as Claim 1.2 on page 41, while in Abraham and Magidor [1], one
finds it as Exercise 2.27. One sometimes sees the three alternatives presented
under the names good, bad, and ugly; we have stayed away from this because
“good” conflicts with the notion of “good point” (they are related, but not
the same thing), and even in [65] the adjective “good” is used for yet another
related concept.

We will not prove the Trichotomy Theorem, but we do make a couple
of observations before moving on to the proof of NPT(ℵω+1,ℵ1). First, we
remark that in the situation of the Trichotomy Theorem, if cf(δ) > 2|A| then
the first alternative necessarily holds by cardinality considerations. Second, if
the second (respectively, third) alternative holds for the sequence 〈fα : α < δ〉
then there is a closed unbounded C ⊆ δ such that the second (respectively,
third) alternative holds for all initial segments 〈fα : α < ε〉 of our sequence
where ε is in C and cf(ε) > |A|.

We now turn our attention to the special case of scales for ℵω. To simplify
our notation a bit, we note that for such scales it makes sense to speak
of a pair (A, �f) where A ⊆ ω instead of (�μ, �f), that is, we view �f as a
<∗-increasing sequence of functions in

∏
n∈A ℵn instead of re-indexing and

dealing with a sequence 〈μi : i < ω〉.

4.60 Lemma. Let (A, �f) be a scale for ℵω, and let δ < ℵω+1 be an ordinal
of uncountable cofinality for which the sequence 〈fα : α < δ〉 has an exact
upper bound g with cf(g(n)) > ℵ0 for all n ∈ A (that is, the first alternative
of the Trichotomy Theorem holds at δ). Then δ is a good point for �f .

Proof. By Theorem 3.50, it suffices to prove that cf(g(n)) = cf(δ) for all
sufficiently large n ∈ A. Assume by way of contradiction that this fails, so
cf(g(n)) �= cf(δ) for unboundedly many n ∈ A. We split into two cases:

Case 1. cf(δ) < cf(g(n)) for unboundedly many n ∈ A.
Let B ⊆ A be the set of n for which cf(δ) < cf(g(n)). Let 〈e(ε) : ε < cf(δ)〉

enumerate an unbounded subset of δ. Since cf(δ) > ℵ0, we may assume that
there is a fixed n∗ such that

fe(ε)(n) < g(n) for all ε < cf(δ) and n ∈ A \ n∗.
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Now define h ∈
∏

n∈A ℵn by

h(n) =

{
sup{fe(ε)(n) : ε < cf(δ)} if n ∈ B \ n∗, and
0 otherwise.

It is clear that h < g, so there must exist an ε < cf(δ) with h <∗ fe(ε).
Clearly this is absurd.

Case 2. ℵ0 < cf(g(n)) < cf(δ) for unboundedly many n ∈ A.
Let B be the set of n ∈ A for which ℵ0 < cf(g(n)) < cf(δ). There are

only finitely many infinite cardinals below cf(δ), and so by thinning out B,
we may assume that there is a regular cardinal κ < cf(δ) such that

ℵ0 < cf(g(n)) = κ < cf(δ)

for all n ∈ B.
For each n ∈ B, we let 〈en(ε) : ε < κ〉 be the increasing enumeration of

a cofinal subset of g(n) and define gε ∈
∏

n∈B ℵn by

gε(n) = en(ε).

The sequence 〈gε : ε < κ〉 is increasing, and cofinally interleaved with 〈fα �B :
α < δ〉. This is impossible, because cf(δ) �= κ. �

We remark that it is possible for an exact upper bound to exist at a non-
good point in a scale (we will see this phenomenon in the proof of Theo-
rem 4.63 below), so the first alternative in the Trichotomy Theorem is not
the same as “goodness” in general.

The following corollary translates some of our prior observations into the
situation at hand.

4.61 Corollary. Let (A, �f) be a scale for ℵω.

1. If 2ℵ0 < ℵω, then all ordinals δ < ℵω+1 with cf(δ) > 2ℵ0 are good.

2. Let S be the set of good points for �f of cofinality ℵ1. If δ is not good
and cf(δ) > ℵ1, then S ∩ δ is a nonstationary subset of δ.

Proof. The first part follows because as we noted above, the first alternative of
the Trichotomy must hold for the sequence 〈fα : α < δ〉, and by Lemma 4.60
this means that δ is a good point for the scale. The second statement of the
corollary is just a reformulation of one of the observations made after the
statement of Theorem 4.59 in light of the information given by Lemma 4.60.

�

We now come to the promised result of Magidor and Shelah [65] that lets
us drop the strong limit condition from the statement of Corollary 4.58.

4.62 Theorem. NPT(ℵω+1,ℵ1) holds.
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Proof. Let (A, �f) be a scale for ℵω. The construction is essentially the same
as that given in the proof of Theorem 4.53, so we will only outline the required
changes. (A full proof of a much more general theorem can be found in the
first section of [65].)

The first change is to replace S
ℵω+1

ℵ1
by the set S of good points for �f of

cofinality ℵ1. The proof of Lemma 4.54 goes through for this choice of S, but
now the fourth case (where cf(α) > ℵ1) splits into two subcases, depending
on whether or not α is a good point for the scale.

If α is good, then the same proof works. If α is not good, then by an appeal
to Corollary 4.61 we find a closed unbounded C ⊆ α such that C ∩ S = ∅,
and an argument as in the second and third cases of Theorem 4.53 completes
the proof. �

We finish this section by investigating situations where no good scales ex-
ist. Since APμ implies that all scales for μ are good, it is clear that large
cardinals must be involved. It should be no surprise by now that super-
compact cardinals are the place to look, and we have the following result of
Shelah [89].

4.63 Theorem. Suppose that κ is supercompact and μ is a singular cardinal
such that cf(μ) < κ < μ. Then there is no good scale for μ.

Proof. Let (�μ, �f) be a scale for μ, and let j : V →M be a μ+-supercompact
embedding with crit(j) = κ. Let

j(�μ) = 〈μj
i : i < cf(μ)〉,

and
j(�f) = 〈f j

α : α < j(μ+)〉.

We know that (j(�μ), j(�f)) is a scale for j(μ).
As usual, let ρ = sup{j(α) : α < μ+} (which is less than j(μ+)). We claim

that ρ is not a good point for j(�f); we do this by proving that the sequence
〈f j

α : α < ρ〉 has an exact upper bound g with the property that cf(g(i)) = μi

for all i < cf(μ). Since exact upper bounds are (modulo the ideal) unique, it
follows from Theorem 3.50 that ρ is not a good point for j(�f).

It is clear that if we define

g(i) = sup{j(ε) : ε < μi},

then g is an upper bound for 〈f j
α : α < ρ〉; we claim that g is indeed an exact

upper bound for 〈f j
α : α < ρ〉.

Given h <∗ g in
∏

i<cf(μ) j(μi), we can find h′ ∈
∏

i<cf(μ) μi such that

h <∗ j(h′). Since (�μ, �f) is a scale, there is an α < μ+ such that h′ <∗ fα,
hence

h <∗ j(fα) = f j
j(α).



4. Applications of Scales and Weak Squares 1317

Since j(α) < ρ, we are done.
To finish the proof, we apply the elementarity of j to conclude that (�μ, �f)

is not a good scale. �

We note that essentially the same proof we gave for the consistency of
¬APℵω yields the consistency of there being no good scales for ℵω—a reader
seeking more details can find them in Sect. 18 of Cummings’ survey [14].
Magidor [64] has shown that Martin’s Maximum implies that no scale for
ℵω is good (again, [14] contains a proof), while Foreman and Magidor [34]
give a proof that there is no good scale for ℵω if the model-theoretic transfer
principle

(ℵω+1,ℵω) � (ℵ1,ℵ0)

holds. This version of Chang’s Conjecture was proved consistent by Levinski,
Magidor, and Shelah—see [61].

4.6. Varieties of Nice Scales

The previous section illustrated that for a singular cardinal μ, the existence of
a “well-behaved” scale can function as a construction principle along the lines
of �μ or APμ. We continue with this theme in the current section by con-
sidering scales with even stronger properties and analyzing the consequences
of their existence. We begin with a strengthening of goodness studied by
Cummings, Foreman, and Magidor in [16].

4.64 Definition. Let (�μ, �f) be a scale for the singular cardinal μ. We say
(�μ, �f) is a very good scale for μ if for each α < μ+ with cf(α) > cf(μ), there
are a closed unbounded C ⊆ α and i < cf(μ) such that

fβ(j) < fγ(j) for all β < γ in C and all j > i. (15.69)

We let VGSμ abbreviate the statement that a very good scale for μ exists.

It is clear that a very good scale is also good, and the next few results
(taken from [16]) show us that very good scales fit into the hierarchy of
combinatorial principles we have been considering in this chapter.

4.65 Theorem. Suppose that μ is singular and �σ
μ holds for some σ < μ.

Then VGSμ holds.

Proof. Let (�μ, �f) be any scale for μ, and let 〈Cα : α < μ+〉 be a �σ
μ sequence

with the property that all members of each Cα are of order-type less than μ
(see Lemma 4.21). We also assume without loss of generality that σ is less
than μ0, the first cardinal in the sequence �μ.

Build a sequence �g = 〈gα : α < μ+〉 of functions in
∏

i<cf(μ) μi according
to the following recipe:

g0 = f0,

gα+1(i) = max{fα+1(i), gα(i)}.
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For α limit, we choose gα ∈
∏

i<cf(μ) μi such that

1. fα < gα,

2. gγ <∗ gα for all γ < α, and

3. gα(i) > sup
(
{supβ∈C gβ(i) : C ∈ Cα, |C| < μi}

)
.

There are no obstacles in the above construction, and clearly (�μ,�g) is a scale
for μ. Given a limit ordinal α < μ+ such that cf(α) > cf(μ), we can choose
C ∈ Cα and i < cf(μ) such that |C| < μi. If j ≥ i and β < γ in C, then
C ∩ β ∈ Cβ , γ ∈ C ∩ β, and |C ∩ β| < μj . This means gγ(j) < gβ(j), as
required. �

4.66 Theorem. Suppose that μ is singular, and VGSμ holds. Then for every
stationary S ⊆ μ+, there is a sequence 〈Si : i < cf(μ)〉 of stationary subsets
of S with the property that for all δ < μ+ of cofinality greater than cf(μ),

|{i < cf(μ) : Si ∩ δ is stationary in δ}| < cf(μ).

Proof. Let (�μ, �f) be a very good scale for μ, and let S ⊆ μ+ be stationary.
For each i < cf(μ), we can find γi < μi and a stationary Si ⊆ S such that

α ∈ Si =⇒ fα(i) = γi. (15.70)

By way of contradiction, suppose that we can find an ordinal δ < μ+

such that cf(δ) > cf(μ) and Si ∩ δ is stationary in δ for unboundedly many
i < cf(μ). Since �f is a very good scale, there is a closed unbounded C ⊆ δ
and an i < cf(μ) such that fα(j) < fβ(j) for all α < β in C and all j > i.

If we choose j > i with Sj ∩ δ stationary in δ, then we can find α < β
in C ∩ Sj . By choice of C and i, it must be the case that fα(j) < fβ(j).
On the other hand, the choice of Sj implies fα(j) = fβ(j), and so we have
a contradiction. �

The preceding two theorems now yield the proof of Theorem 4.18, which
states that the conclusion of Theorem 4.66 follows if �σ

μ holds for some σ < μ.
Before leaving the topic of very good scales, we mention two corollaries of
the preceding theorem.

4.67 Corollary. If VGSℵω holds, then there is a family {Sn : n < ω} of
stationary subsets of ℵω+1 with the property that no infinite subfamily can
reflect simultaneously.

4.68 Corollary. VGSℵω does not follow from �∗
ℵω

.

Proof. This follows from Corollary 4.67 and Theorem 4.12. �
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We mention that question of whether VGSμ follows from �<μ
μ is still open.

The result of Cummings in Theorem 4.20 shows us that �<μ
μ has similar

consequences with regard to stationary reflection.
We have seen that for singular μ, APμ implies the existence of good scales,

while �σ
μ for some σ < μ implies the existence of very good scales. Taken

together with Corollary 4.68, these facts suggest the question of whether one
can formulate a weaker version of VGSμ that will be a consequence of �∗

μ,
yet strong enough to have interesting consequences. Again the paper [16]
provides us with a satisfying answer.

4.69 Definition. A scale (�μ, �f) for a singular cardinal μ is better if for every
α < μ+ with cf(α) > cf(μ), there is a closed unbounded C ⊆ α such that

1. ot(C) = cf(α), and

2. for all β ∈ C, there is an i < cf(μ) such that fγ(j) < fβ(j) for all j > i
and γ ∈ C ∩ β.

We note that ordinals α < μ+ with cf(α) ≤ cf(μ) automatically enjoy the
“betterness” property of the preceding definition—we will need this fact in
the proof of Theorem 4.72 given below.

As noted by the authors of [16], better scales can be constructed from
weak square.

4.70 Theorem. Let μ be a singular cardinal. If �∗
μ holds, then there is

a better scale for μ.

Proof. Let 〈Cα : α < μ+〉 be a �∗
μ sequence with the property that each Cα

contains a set of order-type cf(α). Given a scale (�μ,�g) for μ, we construct
a new scale (�μ, �f) by induction on α < μ+:

Case 1. α = 0.
In this case, we simply define f0 to be g0.
Case 2. α is a successor.
In this case, we define fβ+1 = gγ where γ is chosen so large that fβ <∗ gγ .
Case 3. α is a limit.
If α is a limit ordinal, then for each C ∈ Cα we define a function fC by

fC(i) =

{
supγ∈C fγ(i) if ot(C) < μi,

0 otherwise.
(15.71)

We let fα = gγ for γ < μ+ so large that

• fC <∗ gγ for all C ∈ Cα, and

• fβ <∗ gγ for all β < α.

This is possible because
∏

i<cf(μ) μi is μ+-directed under <∗ and |Cα| ≤ μ.

The above construction produces a <∗-increasing sequence �f , and clearly
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(�μ, �f) is a scale for μ. It remains to verify that (�μ, �f) is a better scale.
Given δ < μ with cf(δ) > cf(μ), we fix a C ∈ Cδ with ot(C) < μ. If

α ∈ acc(C), then C ∩ α ∈ Cα and by our construction, we have

fC∩α <∗ fα.

Since μi > ot(C ∩ α) for all sufficiently large i < cf(μ), there is an i < cf(μ)
such that

fC∩α(j) = sup
γ∈C∩α

fγ(j) for all j > i.

Now let D be any closed unbounded subset of acc(C) with ot(D) = cf(δ); it
follows easily that for all α ∈ D there is an i < cf(μ) such that fβ(j) < fα(j)
whenever β ∈ C ∩ α and j > i. �

We now turn to the topic of the utility of better scales as a construction
principle. The following concept (studied first by Shelah in [84]) will help us
give show that better scales are indeed quite useful objects.

4.71 Definition. Let κ be a cardinal. A sequence 〈Aα : α < κ+〉 is an ADS-
sequence for κ if each Aα is a unbounded subset of κ, and for every β < κ+

there is a function Fβ : β → κ such that the sets 〈Aα \ Fβ(α) : α < β〉 are
pairwise disjoint. We say that ADSκ holds if there is an ADS-sequence for κ.

The designation ADS stands for “almost disjoint sets”. Note as well that
such sequences always exist if κ is regular, as any collection of κ+ almost
disjoint subsets of κ gives rise to an ADS-sequence for κ. On the other
hand, if μ is singular and 〈Aα : α < μ+〉 is an ADSμ-sequence, then we get
an example of NPT(μ+, (cf μ)+) by choosing for each α < μ+ an unbounded
subset of Aα of order-type cf(μ). It follows that ADSμ does not automatically
hold in the case of singular μ, but the following result from [16] shows that
the existence of a better scale for μ is strong enough to imply that it does.

4.72 Theorem. If there is a better scale for μ, then ADSμ holds.

Proof. Let (�μ, �f) be a better scale. Without loss of generality, we assume
cf(μ) < μ0 and

sup
j<i

μj < fα(i) for all α < μ+ and i < cf(μ). (15.72)

We claim that 〈ran(fα) : α < μ+〉 is an ADS-sequence for μ. To see this, we
first prove the following statement by induction on α < μ+:

⊕α
There is function Fα : α → cf(μ) such that if γ < β < α
and i > max{Fα(γ), Fα(β)}, then fγ(i) < fβ(i).

Once we have this, it is not difficult to finish the proof. To see this, fix
α < μ+ and let Fα be a function as in ⊕α. For β < α, define

Bβ := {fβ(i) : i > Fα(β)}.
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If γ < β < α and x ∈ Bγ ∩Bβ , then

x = fγ(i) = fβ(j)

for some i > Fα(γ) and j > Fα(β). Because of condition (15.72), it must be
the case that i = j and therefore

i ≥ max{Fα(γ), Fα(β)}.

This gives us a contradiction, as ⊕α implies

fγ(i) < fβ(i),

so we conclude that 〈Bβ : β < α〉 is a disjoint family.
The proof of ⊕α is by induction on α, with the case α = 0 being trivial.
Case 1. α = β + 1.
Let Fβ : β → cf(μ) witness ⊕β . We define Fα(β) to be 0, and for γ < β

we choose Fα(γ) < cf(μ) so large that

• Fα(γ) ≥ Fβ(γ), and

• fγ(i) < fβ(i) for all i > Fα(γ)

It is straightforward to verify that Fα satisfies the demands of ⊕α.
Case 2. α is a limit.
Since (�μ, �f) is a better scale, there is a closed unbounded C ⊆ α of order-

type cf(α) such that for β ∈ C, there is an i < cf(μ) with fγ(j) < fβ(j) for
all γ ∈ C ∩ β and j > i.

For each δ ∈ nacc(C), let Fδ be a function with the properties required
by ⊕δ. If γ < α, then γ lies in an interval of the form [sup(C ∩ δ), δ) for some
unique δ ∈ nacc(C). Let ε = sup(C ∩ δ), and note that ε ∈ C except for the
case where δ = min(C).

We now define Fα(γ) < cf(μ) to be so large that

1. Fα(γ) ≥ Fδ(γ),

2. fε(i) ≤ fγ(i) < fδ(i) for all i > Fα(γ), and

3. fε∗ (i) < fε(i) for all ε∗ ∈ C ∩ ε and i > Fα(γ).

Note that condition (3) is where our choice of C is important, and the con-
junction of (2) and (3) guarantees

fζ(i) ≤ fγ(i) for all ζ ∈ C ∩ γ and i > Fα(γ). (15.73)

All that remains is to prove that the function Fα defined above satisfies all
the requirements of ⊕α. Given γ < β < α, we need to prove

i > max{Fα(γ), Fα(β)} =⇒ fγ(i) < fβ(i). (15.74)
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We break the verification of (15.74) into two subcases.

Subcase 1. There is a δ ∈ nacc(C) such that sup(C ∩ δ) ≤ γ < β < δ.
Our construction guarantees that Fα(γ) ≥ Fδ(γ) and Fα(β) ≥ Fδ(β).

Since Fδ satisfies the requirements of ⊕δ, (15.74) follows immediately.

Subcase 2. Subcase 1 fails.
In this situation, there must be ordinals δ∗ < δ in nacc(C) such that

γ < δ∗ ≤ sup(C ∩ δ) ≤ β < δ.

If i > Fα(γ), then fγ(i) < fδ∗ (i) by requirement (2) in our definition of Fα(γ).
If i > Fα(β), then an appeal to (15.73) tells us that fδ∗ (i) ≤ fβ(i). Thus,
(15.74) holds for this subcase as well.

Now that we have established ⊕α for all α < μ+, the proof of Theorem 4.72
is complete. �

In the remainder of this subsection, we discuss some applications of the
principle ADSμ for μ a singular cardinal. Our first stop is the following
theorem of Shelah (originally appearing in [84], but see also Lemma 4.9 in
Chap. VII of [89]).

4.73 Theorem. If W ⊆ V are models of ZFC such that

W |= θ is a cardinal and ADSθ holds,

and (θ+)W remains a cardinal in V , then

V |= cf(θ) = cf(|θ|). (15.75)

Proof. In W , let 〈Aα : α < (θ+)W 〉 be an ADSθ-sequence and suppose by
way of contradiction that

V |= cf(θ) �= cf(|θ|). (15.76)

We begin by stepping into the model V and assessing the situation. First,
it is clear from (15.76) that θ is not a cardinal, and so there is a cardinal κ
such that κ < θ < κ+ = (θ+)W . Thus, the ADSθ-sequence from W looks like
a sequence 〈Aα : α < κ+〉 of subsets of the ordinal θ from the point of view
of V .

Still inside of V , let σ be the cofinality of the ordinal θ and let τ be the
cofinality of κ. There is a increasing sequence of sets 〈Bi : i < τ〉 with
union θ such that |Bi| < κ for each i < τ . Given α < κ+, we know that
Aα has cofinality σ (as a set of ordinals). Since τ �= σ and the sequence
〈Bi : i < τ〉 is increasing, it follows that there is an ordinal i(α) < τ with
Aα ∩Bi(α) unbounded in θ.

Fix i∗ < τ so that Z = {α < κ+ : i(α) = i∗} is of size κ+, and let α∗

be the κth member of Z. By choice of 〈Aα : α < κ+〉, there is a function
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F : α∗ → θ such that the family {Aα \ F (α) : α < α∗} is disjoint. Since
Aα ∩Bi∗ is unbounded in Aα for all α ∈ Z, it follows that

{Aα ∩Bi∗ \ F (α) : α ∈ Z ∩ α∗} (15.77)

is disjoint family of κ non-empty subsets of Bi∗ . However, this is absurd as
|Bi∗ | < κ. �

The preceding theorem also sheds light on a question of Bukovský and
Copláková-Hartová [9], who ask if there can exist two models W ⊆ V of ZFC
with ℵW

ω+1 = ℵV
2 . This problem and its natural generalizations have been

studied by Cummings [12]. He has shown that the assumption of ADSθ in
Theorem 4.73 can be replaced, in the interesting case where θ is singular,
by the existence of a good scale for θ. He also discusses how these results
connect to other problems concerning singular cardinal combinatorics.

We end this subsection with an application of ADS to reflection of general-
ized stationary sets in the sense of Jech [50]. We use the following definition,
which Kueker [57] has shown to be equivalent to Jech’s original definition.

4.74 Definition. Let X be an uncountable set. A set S ⊆ [X]ℵ0 is stationary
if and only if for all F : <ωX → X, there is an A ∈ S closed under F .

Jech’s chapter [49] in this Handbook contains a much more comprehensive
treatment of generalized stationary sets. We, however, will rest content with
just the following definitions.

4.75 Definition. Let X be an uncountable transitive set.

1. A stationary set S ⊆ [X]ℵ0 reflects to Y ⊆ X if |Y | ⊆ Y and S ∩ [Y ]ℵ0

is stationary in [Y ]ℵ0 .

2. If S is stationary in [X]ℵ0 , then we say Refl∗(S) holds if every stationary
T ⊆ S reflects to some Y ∈ [X]ℵ1 with cf(ot(Y ∩ On)) = ℵ1.

The vocabulary of the preceding definition now allows us to state the
following theorem from [16].

4.76 Theorem. Suppose that μ is singular of countable cofinality. If ADSμ

holds then Refl∗([μ+]ℵ0) fails.

Proof. Let 〈Aα : α < μ+〉 be an ADSμ-sequence. Clearly we may assume
that each Aα is of order-type ω, and we define

S = {X ∈ [μ+]ℵ0 : Asup(X) ⊆ X}.

4.77 Claim. The set S is stationary in [μ+]ℵ0 .

Proof. Let F : <ωμ+ → μ+ be a finitary function. There is a closed un-
bounded set of α < μ+ that are closed under F . Suppose now that μ < α <
μ+, cf(α) = ℵ0, and α is closed under F . Let C be an unbounded ω-sequence
in α, and define A to be the closure of C ∪ Aα under the function F . Since
sup(A) = α, it follows that A ∈ S and therefore S is stationary in [μ+]ℵ0 . �
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Let us now assume by way of contradiction that Refl∗([μ+]ℵ0) holds. This
gives us a Y ∈ [μ+]ℵ1 such that

• ω1 ⊆ Y ,

• ot(Y ) has cofinality ℵ1, and

• S ∩ [Y ]ℵ0 is stationary in [Y ]ℵ0 .

Note that if X ∈ [Y ]ℵ0 then sup(X) < sup(Y ).
By our assumptions, there is a function F : sup(Y ) → μ such that the

sequence 〈Aα \ F (α) : α < sup(Y )〉 is disjoint. For X ∈ S ∩ [Y ]ℵ0 , let

h(X) = min(Asup(X) \ F (sup(X))).

Note that h(X) ∈ X because Asup(X) ⊆ X, and

sup(X0) �= sup(X1) =⇒ h(X0) �= h(X1) (15.78)

because of the properties of F .
By Jech’s generalization of Fodor’s Theorem (see [49, Sect. 4]), there is

a stationary T ⊆ S ∩ [Y ]ℵ0 on which h is constant. It follows immediately
from (15.78) that there is a β such that sup(X) = β for all X ∈ T .

Since cf(β) = ℵ0 < ℵ1 = cf(sup(Y )), it follows that β < sup(Y ). But
then it is easy to see that {X ∈ [Y ]ℵ0 : sup(X) = β} is nonstationary—
a contradiction. �

By work of Foreman, Magidor, and Shelah [36], Martin’s Maximum implies
Refl∗([λ]ℵ0) for all regular λ ≥ ℵ2. As a consequence, Martin’s Maximum
implies that ADSℵω fails. Since NPT(ℵω+1,ℵ1) always holds, we see that
NPT(ℵω+1,ℵ1) does not imply ADSℵω .

4.7. Some Consequences of pp(μ) > μ+

In the Analytical Guide appendix to [89], Shelah writes

14.6 Up to now we have many consequences of GCH (or instances
of it) and few of the negations of such statements. We now begin
to have consequences of the negation . . . so we can hope to have
proofs by division to cases. For example, let λ be strong limit
singular; if ppλ > λ+ then NPT(λ+, cf λ) [NPT(λ∗, (cf λ)+) in
the conventions adopted in this chapter] and if pp(λ) ≤ λ+ then
2λ = λ+ (and ♦∗

{δ<λ+:cf(δ) �=cf(λ)}) and so various constructions
are possible.

In this section, we take advantage of better scales to illustrate his point. The
following theorem is a restatement of part of Claim 1.3 from Chap. II of [89].

4.78 Theorem. Let μ be a singular cardinal. If pp(μ) > μ+, then there is
a better scale for μ.
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Proof. By Proposition 1.19, there is an increasing sequence 〈μi : i < cf(μ)〉
of regular cardinals with limit μ such that

(∏
i<cf(μ)μi, <

∗) is μ++-directed. (15.79)

For each limit δ < μ+, choose a closed unbounded Cδ ⊆ δ of order-type cf(δ),
and define

Cδ = {Cα ∩ δ : δ ≤ α < μ+, α limit}.

Note that |Cδ| ≤ μ+, so our sequence is essentially a �μ+

μ -sequence. As
mentioned before, such a sequence is referred to as a silly square sequence in
the literature.

If
∏

i<cf(μ) μi we construct a <∗-increasing sequence 〈gα : α < μ+〉 such
that for every limit δ < μ+ and C ∈ Cδ,

fC <∗ gδ,

where fC is defined as in (15.71). Note that this construction is the place
where (15.79) is used in a crucial manner.

Note as well that our construction guarantees that every limit δ < μ+

satisfying cf(δ) > cf(μ) is a good point for �g. From our earlier work, it
follows that �g has an exact upper bound g with the property that

|{i < cf(μ) : cf(g(i)) < κ}| < cf(μ)

for all κ < μ.
The rest of the proof parallels that of Theorem 3.53—one uses g to find

an increasing sequence �θ = 〈θξ : ξ < cf(μ)〉 of regular cardinals with limit
μ with the property that there is a natural operation Φ that transforms the
sequence �g into a sequence �f of functions in

∏
ξ<cf(μ) θξ in such a way that

(�θ, �f) is a scale for μ. The only detail that must be checked is that this
transformation preserves the “betterness” that is built into �g, and this is
straightforward. �

4.79 Corollary. If μ is a strong limit singular cardinal and 2μ > μ+, then
there is a better scale for μ. Hence ADS(μ) and NPT(μ+, (cf μ)+) hold as
well.

Proof. The proof of the corollary follows immediately once we know that the
assumptions imply pp(μ) > μ+. If μ has uncountable cofinality, then this
follows from Conclusion 5.5 on page 93 of Shelah’s [89] (or see Theorem 9.1.3
on page 271 of [46] for a more explicit statement). If cf(μ) = ℵ0, then we
get what we need (that is, pp(μ) > μ+) from Conclusion 5.10 on page 410
of [89]. �

We conclude this section with a result designed to complement Proposi-
tion 1.19 from the introduction to this chapter.
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4.80 Theorem. The following statements are equivalent for a singular car-
dinal μ.

1. pp(μ) = μ+.

2. If �μ = 〈μi : i < cf(μ)〉 is an increasing sequence of regular cardinals
with limit μ, then there is an unbounded I ⊆ cf(μ) such that �μ � I admits
a scale for μ, that is, we can find �f such that (�μ � I, �f) is a scale for μ.

If in addition we know cf(μ) = ℵ0, then we can add

3. Every increasing sequence 〈μi : i < cf(μ)〉 of regular cardinals with limit
μ admits a scale for μ.

Proof. Note that the implication from (2) to (1) follows immediately from
Proposition 1.19 by taking the contrapositive, so we concentrate on the im-
plication from (1) to (2). Assume now that pp(μ) = μ+, and let �μ be given.

We may assume that cf(μ) < μ0, so that the set A = {μi : i < cf(μ)} is
a progressive set of regular cardinals cofinal in μ. It is clear from the defi-
nitions involved that μ+ ∈ pcf(A), so let B = Bμ+ [A] be the corresponding
generator and recall that

tcf
(∏

B,<J<μ+ [A]

)
= μ+. (15.80)

The set B is unbounded in A (this follows easily from the assumption that
pp(μ) = μ+) and so there is an unbounded I ⊆ cf(μ) for which B = {μi :
i ∈ I}. Observe as well that any subset of B in J<μ+ [A] must be bounded in
B—if D is any ultrafilter A disjoint to Jbd[A], then cf(

∏
A/D) ≥ μ+. When

we combine this observation with (15.80), it follows that

tcf
(∏

B,<Jbd[B]

)
= μ+,

and from this we see that �μ � I admits a scale.
It is clear that (1) follows from (3) by the same reason that it follows

from (2). For the other direction, we actually prove something a little stronger
than required—we show that for any singular μ with pp(μ) = μ+ (regardless
of cofinality), if we are given an increasing sequence of regular cardinals
〈μi : i < cf(μ)〉 with limit μ that in addition satisfies

max pcf{μj : j < i} < μi for all i < cf(μ), (15.81)

then �μ admits a scale. If cf(μ) = ℵ0, then any relevant �μ will satisfy this
property, and so this will be sufficient to prove that (1) implies (3) under
those circumstances.

Suppose now that �μ satisfies (15.81), and let A = {μi : i < cf(μ)}. If D
is any ultrafilter on A, then either D contains a bounded subset of A (and
hence cf(

∏
A/D) < μ by (15.81), or D is disjoint to Jbd[A] (in which case
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cf(
∏

A/D) = μ+ because pp(μ) = μ+). We conclude that max pcf(A) = μ+

and hence A is the pcf generator Bμ+ [A] corresponding to μ+. Thus,

tcf
(∏

A,<J<μ+ [A]

)
= μ+.

It follows from work earlier in the current proof that

J<μ+ [A] ⊆ Jbd[A],

and clearly
Jbd[A] ⊆ J<μ+ [A]

because of our assumption (15.81). Putting these three statements together,
we see that

tcf
(∏

A,<Jbd[A]

)
= μ+,

and therefore �μ admits a scale. �

In closing the section, we mention that the relationship between failures of
the Singular Cardinals Hypothesis and reflection phenomena is a very active
area of current research, as evidenced by the following recent results:

• (Sharon [79]) It is consistent that there is a strong limit singular cardinal
μ such that 2μ > μ+ and Refl(μ+) holds.

• (Gitik and Sharon [39]) It is consistent that ℵω2 is a strong limit car-
dinal, 2ℵω2 > ℵω2+1, VGSℵω2 holds, but AP(ℵω2) fails.

The latter result gives us an example where goodness is not the same as ap-
proachability. Their work leaves open the question of whether it is consistent
that ℵω is a strong limit, 2ℵω > ℵω+1, and ¬�∗

ℵω
, as well as the question of

whether it is consistent to have a strong limit singular μ with 2μ > μ+ such
that �∗

μ fails and such that GCH holds beneath μ.

4.8. Trees at Successors of Singular Cardinals

Early on in the chapter we lamented that some material that should be
covered in such a survey had to be sacrificed in the interest of keeping the
chapter to a manageable length. Thus, this subsection will be quite short,
and little more than a list of open problems, but the topic we cover is too
important to be left out altogether. We speak of trees at successors of singular
cardinals.

Throughout the earlier parts of the chapter, we have used reflection prop-
erties of stationary sets as a lens to study the various combinatorial principles
uncovered in the course of the narrative. We could just as easily have used
trees to study the fine gradations in strength in the hierarchy of concepts we
have examined.

Let us start with Jensen’s result [52] that �κ together with the GCH
implies the existence of a κ+-Souslin tree. Schimmerling [76] notes that in
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fact, a simple modification of Jensen’s argument shows that it suffices to
assume only the principle �<ω

κ in addition to GCH. He goes on to suggest the
following family of questions:

Assume μ is a singular cardinal and GCH holds. Find the least θ
such that �<θ

μ does not imply the existence of a μ+-Souslin tree.
Does the existence of an ℵω+1-Souslin tree follow from GCH and
�∗

ℵω
? What about GCH and �ω

ℵω
?

With regard to Aronszajn trees, recall that �∗
κ is equivalent to the ex-

istence of a special κ+-Aronszajn tree (see Theorem 4.13). Shelah proved
that if μ is a singular limit of strongly compact cardinals, then there are no
μ+-Aronszajn trees at all. This result appears in [66], along with his joint
work with Magidor wherein starting with a 2-huge cardinal, they prove the
consistency of there being no ℵω+1-Aronszajn trees at all.

Foreman’s collection of open questions [32] lists several problems concern-
ing Aronszajn trees at successors of singular cardinals. At the forefront is the
general task of discerning the relationship between the failure of the singular
cardinals hypothesis, weak versions of square, and the existence of Aronszajn
trees. We offer the following list of questions taken from [32] as an example
of some specific manifestations of the general problem:

• If ℵω is a strong limit and 2ℵω > ℵω+1, does there exist an ℵω+1-
Aronszajn tree?

• If ℵω is a strong limit and 2ℵω > ℵω+1, does �∗
ℵω

holds?

• Does the existence of a μ+-Aronszajn tree follow from the existence of
a very good scale for μ?

• If cf(μ) = ℵ0 and APμ holds, does there exist a μ+-Aronszajn tree?

With these questions, we leave the topic of trees and push on into the last
section of the chapter.

5. Square-Bracket Partition Relations

In the opening of this chapter, we dealt briefly with the following well-known
open question:

If μ is singular, is there a Jónsson algebra on μ+? (15.82)

This question has been responsible for a great deal of the development of
pcf theory and club guessing technology by Shelah. As we shall see, there
are many partial results, but a final resolution remains elusive. In this final
section of the chapter, we consider this open question and some of its special
cases.
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5.1. Colorings of Finite Subsets

We begin with our “official” definition of Jónsson cardinals—we gave a differ-
ent definition in Definition 1.3, but we shall see that the two are equivalent.

5.1 Definition.

1. An algebra is a structure A = 〈A, fn〉n<ω, where each fn is a finitary
function mapping A to A.

2. A Jónsson algebra is an algebra without a proper subalgebra of the
same cardinality.

3. A cardinal λ is a Jónsson cardinal if there is no Jónsson algebra of
cardinality λ, that is, every algebra of cardinality λ has a proper sub-
algebra of cardinality λ.

We refer the reader to [53, Chap. 12] for the basic theory of Jónsson
cardinals, for we do not have room to explore in detail the ways in which
such cardinals fit into the general scheme of large cardinals. We also cite the
follow result from [53], which appears as Exercise 8.12.

5.2 Theorem. The following are equivalent:

1. λ is a Jónsson cardinal.

2. λ → [λ]<ω
λ , that is, whenever F : [λ]<ω → λ, we can find an H ⊆ λ of

size λ such that the range of F �[H]<ω is a proper subset of λ.

3. Any structure for a countable first-order language with domain of cardi-
nality λ has a proper elementary substructure with domain of the same
cardinality.

The equivalence of (1) and (2) is due to Erdős and Hajnal [26], while the
equivalence of (1) and (3) was first shown by Keisler and Rowbottom [54].
We will need one more standard fact about Jónsson cardinals; we give a proof
to illustrate the technique of utilizing Skolem functions.

5.3 Theorem. The following statements are equivalent for a cardinal λ:

1. λ carries a Jónsson algebra.

2. For every sufficiently large regular χ > λ, if M is a elementary submodel
of 〈H(χ),∈, <χ〉 such that

(a) λ ∈M , and

(b) |M ∩ λ| = λ,

then λ ⊆M .
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Proof. Assume that λ carries a Jónsson algebra. By condition (2) of Theo-
rem 5.2, there is a function F : [λ]<ω → λ with the property that

A ∈ [λ]λ =⇒ ran(F �[A]<ω) = λ.

Given a model M as above, by elementarity there is such a function F inside
of M . Given α < λ, there must be a set a ∈ [M ∩ λ]<ω such that F (a) = α.
Since a is also an element of M (any finite sequence of elements from M is in
M as well!), we see that α is definable from parameters in M and therefore
α ∈M . Thus λ ⊆M as required.

For the other direction, let A be the structure 〈H(χ),∈, λ,<χ〉 and let
〈fn : n < ω〉 be a complete set of Skolem functions for A. We assume
without loss of generality that fn is kn-ary for some kn ≤ n. We define
a function F with domain [λ]<ω as follows:

F (α1, . . . , αn)

=

{
fn(α1, . . . , αkn) if this is an ordinal below λ, and
0 otherwise.

(15.83)

The definition of F guarantees that for every subset B of λ, the range of F
restricted to [B]<ω coincides with SkA(B) ∩ λ. Thus, statement (2) implies
that this particular F witnesses that λ � [λ]<ω

λ . By Fact 5.2, λ is not
a Jónsson cardinal. �

Note that the proof of the preceding theorem actually establishes more
than is claimed—in addition, we may require that the models M in (2) contain
some fixed x ∈ H(χ). Theorem 5.3 is quite useful, and as an illustration we
prove a theorem (due independently to Tryba [99] and Woodin) that shows
that (15.82) is connected to stationary reflection.

5.4 Theorem. If λ is a regular Jónsson cardinal, then every stationary
subset of λ reflects.

Proof. Let λ be a regular Jónsson cardinal, and suppose that M ≺ H(χ)
(for a sufficiently large regular χ) is such that λ ∈ M , |M ∩ λ| = λ, but
λ � M . It suffices to prove that every stationary S ∈ M reflects—if λ had
a non-reflecting stationary subset then there would be one in M .

Given such an S, we claim that S \M must be stationary. To see why,
assume by way of contradiction that there is a closed unbounded E ⊆ λ with
E ∩ S ⊆ M . In the model M , we can find a function f : S → λ such that
Sα := f −1({α}) is stationary for each α < λ. Fix α < λ such that α /∈ M .
Since Sα ⊆ S, we know E ∩ Sα ⊆ M . Given β ∈ E ∩ Sα, since f ∈ M and
β ∈M we conclude α = f(β) ∈M , a contradiction.

Thus, we can find δ ∈ S \M such that δ = sup(M ∩ δ). Let us define

βδ := min(M ∩ λ \ δ). (15.84)
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Since δ is not in M , we clearly have δ < βδ. Furthermore, an easy argument
establishes that βδ is a limit ordinal of uncountable cofinality. To finish the
proof, we establish that S ∩ βδ is a stationary subset of βδ.

Assume by way of contradiction that this fails. Since S and βδ are both
members of M , the model M contains a closed unbounded subset C of βδ

disjoint to S. Now M ∩ δ is cofinal in δ, and so for any α < δ there is
a β ∈M ∩ λ with α < β < δ. Furthermore, since

M |= C is unbounded in βδ,

there is a γ ∈ M ∩ C with β < γ. By our choice of βδ, it must be the case
that γ < δ. Thus, δ is a limit point of C. But C is closed, and so δ must be
in C as well. This contradicts our assumption that S and C are disjoint. �

As an immediate corollary, we see that successors of regular cardinals carry
Jónsson algebras.

5.5 Corollary. If κ is regular, then κ+ carries a Jónsson algebra.

The fact that successors of regular cardinals cannot be Jónsson cardinals
is put to good use in the following lemma which provides a strengthening of
Theorem 5.3.

5.6 Lemma. The following two statements are equivalent:

1. λ is a Jónsson cardinal.

2. For every sufficiently large regular χ > λ whenever we are given a car-
dinal κ satisfying κ+ < λ, there is an M ≺ 〈H(χ),∈, <χ〉 such that

(a) {λ, κ} ∈M ,

(b) |M ∩ λ| = λ,

(c) λ � M , and

(d) κ + 1 ⊆M .

Proof. The implication (2) → (1) is immediate by the comments following
Theorem 5.3. For the other direction, assume that λ is a Jónsson cardi-
nal, but χ and κ provide a counterexample to (2). Let A be the structure
〈H(χ),∈, λ, κ,<χ〉. Since λ is a Jónsson cardinal, we can find and elementary
submodel M of A such that |M ∩λ| = λ but λ � M . Let B = M ∩λ; without
loss of generality M = SkA(B).

Since κ is in M , our choice of κ implies κ � M . The cardinal κ++ is in M
as well, and since κ++ carries a Jónsson algebra by Corollary 5.5, it follows
that

sup(M ∩ κ++) < κ++.

Now let N = SkA(B ∪ κ). Since κ + 1 ⊆ N , our choice of κ implies λ ⊆ N .
In particular, sup(N ∩ κ++) = κ++. This is a contradiction, as Lemma 1.6
tells us that sup(M ∩ κ++) = sup(N ∩ κ++) < κ++. �
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We now fulfill a promise made in the introductory section of the chapter—
we prove that ℵω+1 cannot be a Jónsson cardinal. The proof is due to She-
lah [82] and furnishes yet another instance of the utility of scales.

5.7 Theorem. Suppose that λ = μ+ where μ is a singular cardinal, and
assume (�μ, �f) is a scale for μ with the property that μi carries a Jónsson
algebra for each i. Then there is a Jónsson algebra on λ.

Proof. Let M be an elementary submodel of H(χ) such that

• both λ and (�μ, �f) are in M ,

• cf(μ) ⊆M , and

• |M ∩ λ| = λ.

The conclusion follows from Lemma 5.6 provided that we establish λ ⊆M .
This will follow provided we can show |M ∩ μi| = μi for arbitrarily

large i < cf(μ)—since each μi is in M and no μi is a Jónsson cardinal,
we could conclude μ ⊆M and then an easy argument yields λ = μ+ ⊆M as
well.

Thus, suppose by way of contradiction that |M ∩μi| < μi for all sufficiently
large i < cf(μ), and let Ch�μ

M be the characteristic function of M on �μ, defined
by

Ch�μ
M (i) :=

{
sup(M ∩ μi) if sup(M ∩ μi) < μi,

0 otherwise.
(15.85)

Clearly Ch�μ
M ∈

∏
i<cf(μ) μi, and Ch�μ

M (i) = sup(M ∩ μi) for all sufficiently
large i < cf(μ) by our assumptions.

Since M ∩ λ is unbounded in λ and (�μ, �f) is a scale, it follows that there
is an α ∈M ∩ λ such that

Ch�μ
M (i) < fα(i) for all sufficiently large i < cf(μ). (15.86)

Since fα ∈M and dom(fα) ⊆M , it follows that fα(i) ∈M for all i < cf(μ),
and this contradicts (15.86). �

5.8 Corollary. ℵω+1 is not a Jónsson cardinal.

Theorem 5.7 is quite powerful, especially when taken in conjunction with
results in pcf theory. The following corollary collects a few of the more
important consequences of Theorem 5.7.

5.9 Corollary. Let μ be a singular cardinal, and assume μ+ is a Jónsson
cardinal.

1. μ is a limit of regular Jónsson cardinals.

2. pp(μ) > μ+.
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3. If cf(μ) is uncountable, then {θ < μ : θ+ is a Jónsson cardinal} is
closed and unbounded in μ.

Proof. If μ+ is a Jónsson cardinal, then we conclude from Theorem 5.7 that
whenever (�μ, �f) is a scale for μ, it must be the case that μi is a Jónsson
cardinal for all sufficiently large i < cf(μ). From this, (1) follows easily.

We regard to (2), note that Theorem 5.7 implies that if �μ is an increasing
sequence of successors of regular cardinals with limit μ, then �μ does not admit
a scale for μ. By Theorem 4.80, it follows that pp(μ) > μ+.

Statement (3) follows for essentially the same reason as (1); the missing
ingredient here is Theorem 2.23 in the chapter of Abraham and Magidor in
this Handbook on cardinal arithmetic [1]. �

Concerning statement (2) in Corollary 5.9, we mention that here is a rel-
atively easy “pcf free” proof due to Erdős, Hajnal, and Rado that 2μ must
be greater than μ+ if μ+ is a Jónsson cardinal. Since their argument makes
use of colorings of pairs, we examine it in the next subsection (see Proposi-
tion 5.11). Also, Shelah [92] has proved a generalization of Theorem 5.7 that
implies, among other things, that the cardinal �

+
ω carries a Jónsson algebra.

5.2. Colorings of Pairs

The second part of Theorem 5.2 showed us that Jónsson cardinals can be
characterized by a certain square-bracket partition relation. The notation
below is due originally to Erdős, Hajnal, and Rado [27], and we refer the
reader to Chap. XI of [28] for a survey of the elementary theory of square-
bracket partition relations.

5.10 Definition. Given cardinals κ, λ, and μ, and an ordinal γ, the notation

κ→ [μ]λγ

means that given a partition f : [κ]λ → γ, there is a set H ⊆ κ of cardinality
μ such that

ran(f �[H]λ) is a proper subset of γ.

The negation of this assertion is denoted

κ � [μ]λγ .

Expressions such as κ→ [μ]<λ
γ should be given the obvious meaning.

It is a theorem of Erdős and Hajnal [26] that κ � [κ]ωκ for every infinite
cardinal κ (see [53, Sect. 23] for a nice proof due to Galvin and Prikry [37]).
This result is a key ingredient in Kunen’s proof [58] that there is no elemen-
tary embedding j : V → V .

In this subsection, we will concentrate on colorings of pairs, that is, the
case where λ = 2 in Definition 5.10. Our first result is an easy proposition
due to Erdős, Hajnal, and Rado [27] which we mentioned in the discussion
following Corollary 5.9.
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5.11 Proposition. If 2κ = κ+, then κ+
� [κ+]2κ+ .

Proof. Assume 2κ = κ+, and let 〈Xα : α < κ+〉 enumerate the bounded
subsets of κ+ in such a way that Xα ⊆ α. An easy construction yields
a function f : [κ+]2 → κ+ with the property that whenever κ ≤ α < β and
γ < β, there is a ξ ∈ Xα such that f(ξ, β) = γ. If A is any unbounded subset
of κ+ and γ < κ+, we can choose α with Xα ⊆ A. If β is the least element
of A greater than γ and α, then our construction guarantees that there is
a ξ ∈ A with f(ξ, β) = γ. �

Todorčević [97] obtained the following significant strengthening of The-
orem 5.4 using his technique of minimal walks. Shelah’s paper [86] also
contains a proof of this theorem, and Sect. 20 of Hajnal and Hamburger’s
book [42] gives a nice exposition.

5.12 Theorem. If λ has a non-reflecting stationary subset, then λ � [λ]2λ.

Proof. See [42, Sect. !20]. �

5.13 Corollary. If κ is a regular cardinal, then κ+
� [κ+]2κ+ .

The following counterpart of Theorem 5.7 is also due to Todorčević, and
Burke and Magidor [10] contains a nice treatment. The proof we give is based
on their paper.

5.14 Theorem. Let (�μ, �f) be a scale for the singular cardinal μ. If

μi � [μi]2μi
(15.87)

for all i < cf(μ), then
μ+

� [μ+]2μ+ . (15.88)

Proof. Assume (�μ, �f) is a scale satisfying (15.87), with ci the corresponding
coloring on μi for each i < cf(μ). Define d : [μ+]2 → cf(μ) by setting d(α, β)
equal to the maximal i∗ < cf(μ) for which fβ(i∗) < fα(i∗) if such an i∗ exists,
and setting d(α, β) equal to 0 otherwise.

Now define c : [μ+]2 → μ+ by

c(α, β) = ci∗ (fβ(i∗), fα(i∗))

where α < β and i∗ = d(α, β). We now work to prove that c has the properties
needed for us to conclude that μ+

� [μ+]2μ+ .
Suppose that we are given a set X ⊆ μ+ of cardinality μ+, and a color

γ < μ+; we must produce α < β in X with c(α, β) = γ. Let M be an
elementary submodel of H(χ) such that

• μ, (�μ, �f), and X are all in M ,

• cf(μ) ⊆M , and

• |M | < μ
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and let Ch�μ
M be defined as in (15.85).

There is an α0 such that Ch�μ
M <∗ fα for all α ≥ α0. Since μ+ is regular

and |X| = μ+, it follows that there is an i0 < cf(μ) and a set Y ⊆ X of
cardinality μ+ such that

sup(M ∩ μi) = Ch�μ
M (i) < fα(i) for all i ≥ i0 and α ∈ Y .

For each α < μ+ and i ≥ i0, define

A(α, i) = {fξ(i) : ξ ∈ Y \ α}.

Note that A(α, i) ⊆ μi, and for each i the sequence 〈A(α, i) : α < μ+〉 is
non-increasing, hence eventually constant. Thus, for i0 ≤ i < cf(μ) there is
a set Ai ⊆ μi and αi < μ+ such that

α ≥ αi =⇒ A(α, i) = Ai.

Since μ+ is regular, it follows that there is a single α∗ < μ+ satisfying

α ≥ α∗ =⇒ A(α, i) = Ai for i ≥ i0. (15.89)

We can assume that α∗ ≥ α0, as increasing α∗ preserves (15.89).
Next, note that Ai is unbounded in μi for all sufficiently large i < cf(μ).

This has a straightforward proof by contradiction—if Ai is bounded below μi

for arbitrarily large i < cf(μ), then one easily contradicts the fact that �f is
a scale.

Choose i∗ ≥ i0 large enough so that γ < μi∗ and Ai∗ is unbounded in μi∗ .
Our choice of ci∗ guarantees the existence of ξ < ζ in Ai∗ for which

ci∗ (ξ, ζ) = γ.

The definition of Ai∗ implies that there is a β ∈ Y such that

fβ(i∗) = ξ.

Now let N = SkA(M ∪ μi∗ ). An application of Lemma 1.6 from the
introduction tells us that

Ch�μ
N (i) = sup(N ∩ μi) = Ch�μ

M (i) for i > i∗,

and since β ∈ Y , it follows that

Ch�μ
N (i) < fβ(i) for i > i∗. (15.90)

The ordinal ζ is in N , and by elementarity

N |= (∃α ∈ X)[fα(i∗) = ζ],

so we can find a α ∈ N ∩X such that fα(i∗) = ζ.
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Since fα(i) ∈ N ∩ μi for all i, it follows from (15.90) that

i > i∗ =⇒ fα(i) < fβ(i).

Since fβ(i∗) = ξ < ζ = fα(i∗), we conclude that d(α, β) = i∗ and therefore

c(α, β) := ci∗ (fβ(i∗), fα(i∗)) = ci∗ (ξ, ζ) = γ,

as desired. �

The proof of the theorem just completed exploits a crucial property of the
function d defined in the course of the demonstration. As we shall see, that
particular function implies that certain square-bracket partition relations fail
dramatically at successors of singular cardinals. To make this precise we need
the following definition of Shelah, which is only one of an imposing family of
related concepts. We refer to the reader to the first appendix of [89] for more
information.

5.15 Definition. Let μ be a singular cardinal. Pr1(μ+, cf(μ), cf(μ)) says
that there is a function c : [μ+]2 → cf(μ) such that whenever we are given
a sequence 〈ti : i < μ+〉 of disjoint sets from [μ+]<cf(μ) and an ordinal
γ < cf(μ), we can find ε1 < ε2 such that c(α, β) = γ whenever α ∈ tε1 and
β ∈ tε2 .

We point out that in the above definition, the coloring takes on only cf(μ)
possible values, and not μ+. Also, note that

Pr1(μ+, cf(μ), cf(μ)) =⇒ μ+
� [cf(μ)]2cf(μ)

because each ti can be taken to be a singleton. The following theorem is due
to Shelah (see Conclusion 4.1 in Chap. II of [89]).

5.16 Theorem. Pr1(μ+, cf(μ), cf(μ)) holds for every singular cardinal μ.

Proof. Let λ = μ+ and κ = cf(μ). By Theorem 3.53, we can find a scale
(�μ, �f) for μ with κ < μ0. Let us define d : [λ]2 → κ just as in the proof of
Theorem 5.14, that is d(α, β) is set (for α < β < λ) equal to the maximal
i∗ < cf(μ) for which fβ(i∗) < fα(i∗) if such an i∗ exists, and d(α, β) = 0
otherwise.

Next, let h : κ→ κ be a partition of κ into sets of size κ. We define (again
for α < β < λ)

c(α, β) = h(d(α, β)).

We claim that c has the property required by Pr1(λ, κ, κ).
To see this, suppose that we are given a sequence 〈ti : i < λ〉 of subsets of

λ, each of size less than κ. Without loss of generality, we assume that all ti
have the same order-type ξ < κ, i ≤ min(ti), and that sup(ti) < min(tj) for
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i < j < κ. Given γ < κ, our task is to find ε1 < ε2 < λ such that c � tε1 × tε2
is constant with value γ.

For each β < λ, we define functions f inf
β and f sup

β mapping κ to μ by

f inf
β (i) = inf{fα(i) : α ∈ tβ}

and
f sup

β (i) = sup{fα(i) : α ∈ tβ}.

Note that f sup
β ∈

∏
i<κ μi as ξ < κ < μ0 and each μi is regular, while

f inf
β (i) = fmin(tβ)(i) for all sufficiently large i < κ (15.91)

as ξ < κ and κ is regular.
Let M be an elementary submodel of H(χ) of size κ with κ ⊆ M and

containing λ, (�μ, �f), and 〈ti : i < λ〉. Finally, let Ch�μ
M be the characteristic

function of M on �μ, defined as in (15.85).
Since �f forms a scale, by (15.91) there is an ordinal ε1 < λ such that

Ch�μ
M <∗ f inf

ε1 . Also, we note that for all sufficiently large i < κ we have

μi = sup{f inf
β (i) : β < λ}.

This follows easily from the fact that (�μ, �f) is a scale.
After putting these two observations together, it follows that we can choose

an i∗ < κ such that the following conditions hold:

1. h(i∗) = γ,

2. μi∗ = sup{f inf
β (i∗) : β < λ}, and

3. Ch�μ
M (i) < f inf

ε1 (i) for all i ≥ i∗.

By condition (2), we can find an ε∗ < λ such that

f sup
ε1 (i∗) < δ := f inf

ε∗ (i∗).

We now define N = SkA(M ∪ μi∗ ). By Lemma 1.6, we know that

sup(N ∩ σ) = sup(M ∩ σ)

for every regular cardinal in M greater than μi∗ . In particular,

Ch�μ
M �[i∗ + 1, κ) = Ch�μ

N �[i∗ + 1, κ).

By elementarity,
N |= (∃β < λ)[f inf

β (i∗) = δ],

and so there is an ε2 ∈ N with f inf
ε2 (i∗) = δ. Thus

f sup
ε1 (i∗) < f inf

ε2 (i∗). (15.92)
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On the other hand, for i > i∗ we have

f sup
ε2 (i) < Ch�μ

N (i) = Ch�μ
M (i) < f inf

ε1 (i). (15.93)

Thus for α ∈ tε1 and β ∈ tε2 , (15.92) and (15.93) imply

d(α, β) = i∗,

and so
c(α, β) = h(e(α, β)) = h(i∗) = γ,

as required. �

As a special case of the preceding theorem, we obtain the following.

5.17 Corollary. If μ is singular, then μ+ � [μ+]2cf(μ).

Much more is known about colorings of pairs at successors of singular
cardinals, but the techniques used involve club guessing in an essential way—
see [25] and [24], for example. We discuss the interplay between club guessing
and the existence of complicated colorings in the next subsection.

5.3. Colorings and Club Guessing

In the previous subsection, we have exploited the existence of scales to shed
light on square-bracket partition relations at successors of singular cardinals.
In this subsection, we get more results using a different technique—club guess-
ing. We remark that all the results presented in this section are due to Shelah,
and they can be found in his book [89]. Club guessing has already made a few
brief appearances in earlier chapters, e.g., [49, Theorem 1.16] and [1, Theo-
rem 2.17]. In the following subsections we develop the theory just enough to
shed light on the question (15.82). We begin with some terminology.

5.18 Definition. Let κ be a regular cardinal and let S ⊆ κ be a stationary
set. A family C̄ = 〈Cδ : δ ∈ S〉 is an S-club system if the set of δ ∈ S for
which Cδ is not closed and unbounded in δ is nonstationary.

Given an S-club system C̄ for a cardinal κ, there are several senses in which
C̄ can be said to “guess clubs”, but they all have the same general form—
they all require that for every closed unbounded E ⊆ κ, the set E ∩ Cδ is
“large” for a “large” set of δ ∈ S. For example, one might require for every
closed unbounded E ⊆ κ that Cδ ⊆ E for stationarily many δ ∈ S—we used
this sort of club guessing in our proof of Theorem 3.18. The hypotheses of
the following theorem include another example of club guessing, and we shall
use the theorem and its proof to motivate further investigations.

5.19 Theorem. Suppose that λ = μ+ where μ is singular, and let S ⊆ λ be
stationary. Further suppose that there is an S-club system C̄ = 〈Cδ : δ ∈ S〉
with the property that for every closed unbounded E ⊆ λ, there is a stationary
set of δ ∈ S such that for all β < δ and γ < μ, there is an α ∈ E ∩ nacc(Cδ)
such that



5. Square-Bracket Partition Relations 1339

1. β < α,

2. γ < cf(α), and

3. cf(α) carries a Jónsson algebra.

Then λ carries a Jónsson algebra.

Proof. Let M by an elementary submodel of H(χ) for some sufficiently large
regular χ containing S and C̄. Further suppose that λ ∈M and |M ∩λ| = λ.
We must establish that λ ⊆M .

Given δ ∈ S, let us define βδ to be the least member of M ∩λ greater than
or equal to δ. Clearly, δ < βδ if and only if δ /∈M . Let E ⊆ λ be the closed
unbounded set of all α ∈ λ \μ satisfying α = sup(M ∩α), and fix δ ∈ S such
that E ∩ nacc(Cδ) satisfies the assumptions of the theorem. The following
crucial lemma tells us that M must contain many points of Cδ, even though
δ itself need not be in M .

5.20 Lemma. M contains all members of E ∩nacc(Cδ) of cofinality greater
than cf(βδ).

Proof. We dispose of the easy case first—if δ ∈ M then E ∩ nacc(Cδ) ⊆ M
as well. To see why, suppose that β ∈ E ∩ nacc(Cδ). Since β = sup(β ∩M),
there is an ordinal β∗ ∈ M with sup(Cδ ∩ β) < β∗ < β. Thus, β is the least
member of Cδ above β∗. Since Cδ and β∗ are both in M (recall that we
assumed δ ∈M), it follows that β must be in M as well.

The case where δ is not in M is more difficult as we do not have Cδ

available in the model. In this case, recall that δ < βδ.
Inside M , let d be a closed unbounded subset of βδ of order-type cf(βδ).

The same argument we used in the proof of Theorem 5.4 shows us that δ is
an element of d.

Now let β ∈ E ∩ nacc(Cδ) satisfy cf(β) > |d| = cf(βδ). It follows that β
cannot be a limit point of d, and so (using the definition of E) there exists
an ordinal β0 with

• β0 ∈M ,

• sup(Cδ ∩ β) < β0 < β, and

• sup(d ∩ β) < β0.

Given β0, we define A to be the set {min(Cε \β0) : ε ∈ d∩S}. Notice that
A is in M because all parameters used in its definition are available there.
Also, |A| ≤ |d| < cf(β) and so A ∩ β is bounded below β. Thus, there is an
ordinal β1 such that

• β1 ∈M ,

• β0 < β1 < β, and

• A ∩ [β1, β) = ∅.
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Let us now define

d∗ = {ε ∈ d ∩ S \ β1 : min(Cε \ β0) = min(Cε \ β1)}.

The set d∗ is an element of M as it is definable from parameters in M . Clearly
δ is in the set d∗ as

min(Cδ \ β0) = min(Cδ \ β1) = β. (15.94)

If ε ∈ d ∩ S is such that min(Cε \ β0) < β, then our choice of β1 implies
min(Cε \ β0) < β1 and hence ε /∈ d∗. Thus

ε ∈ d∗ =⇒ β ≤ min(Cε \ β0). (15.95)

Putting (15.94) and (15.95) together, we conclude

β = min ({min(Cε \ β0) : ε ∈ d∗}) .

Thus β is definable from parameters in M , and so β ∈M as required. �

To finish the proof that λ carries a Jónsson algebra, we note that it suffices
to prove that σ ⊆M for arbitrarily large σ < μ, as this implies μ ⊆M which
implies λ = μ+ ⊆M .

Choose an ordinal δ ∈ S as guaranteed by the assumptions of the theorem.
Given σ < μ, our choice of δ together with the preceding lemma lets us find
an α ∈ E ∩ nacc(Cδ) such that

• σ < cf(α),

• cf(α) carries a Jónsson algebra, and, most importantly,

• α ∈M .

Since M ∩ α is unbounded in α, it follows immediately that M ∩ cf(α) is
unbounded in cf(α). However, cf(α) is in M and it also carries a Jónsson
algebra. By Theorem 5.3, we must conclude cf(α) ⊆ M , and the proof is
complete. �

We mentioned prior to the statement of Theorem 5.19 that its hypotheses
require the S-club sequence C̄ to guess clubs in a certain sense. We will
invest a little time in unpacking some notation of Shelah in order to make
this more precise.

5.21 Definition. Let κ be a regular cardinal, and let C̄ be an S-club system
for some stationary S ⊆ κ. A sequence Ī = 〈Iδ : δ ∈ S〉 is said to be an ideal
sequence associated with C̄ if each Iδ is a (not necessarily proper) ideal on Cδ

extending Jbd[Cδ], the ideal of bounded subsets of Cδ. When we write “let
(C̄, Ī) be an S-club system” it is to be understood that Ī is an ideal sequence
associated with C̄.
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Now associated to every pair (C̄, Ī) as in the preceding definition, we have
two natural club guessing ideals.

5.22 Definition. Let κ be a regular cardinal, let S ⊆ κ be stationary, and
let (C̄, Ī) be an S-club system.

1. ida(C̄, Ī) is defined to be the set of all A ⊆ κ for which there is a club
E ⊆ λ such that {δ ∈ S ∩A : Cδ \ E ∈ Iδ} is nonstationary.

2. idp(C̄, Ī) is defined to be the set of all A ⊆ κ for which there is a club
E ⊆ λ such that {δ ∈ S ∩A : E ∩ Cδ /∈ Iδ} is nonstationary.

We pause here for a moment to consider the preceding definitions. Note
that an S-club system (C̄, Ī) can be said to “guess clubs” if one or both
of these ideals are proper—for example, if Iδ = Jbd[Cδ] for all δ ∈ S and
ida(C̄, Ī) is a proper ideal, then for every closed unbounded E ⊆ κ the set
of δ such that E contains a tail of Cδ is stationary. With the same choice
of Ī, we see that idp(C̄, Ī) is a proper ideal if and only if for every closed
unbounded E ⊆ κ there is a stationary set of δ ∈ S with E ∩ Cδ unbounded
in δ. (This last statement is true for any δ ∈ S ∩ acc(E) of uncountable
cofinality, so in practice we usually require the ideal Iδ to contain acc(Cδ).)
Note that in the case of ida(C̄, Ī), we require that E ∩ Cδ contains almost
all (in the sense of Iδ) elements of Cδ, while in the case of idp(C̄, Ī) we only
require that E ∩ Cδ is Iδ-positive.

We do not have room here for a full exposition of club guessing results,
and accordingly we focus on the special case that is extremely relevant to
square-bracket partition relations at successors of singular cardinals. In par-
ticular, we will not have an opportunity to discuss recent work of Foreman
and Komjath [33] and Ishiu [47, 48] in this area; the reader is encouraged to
look in these papers for more information.

5.23 Definition. Suppose that λ = μ+ for some singular cardinal μ, and
let δ < λ be a limit ordinal. For Cδ closed and unbounded in δ, we define
Jb[μ][Cδ] to be the ideal of subsets of Cδ generated sets of the following forms:

• acc(Cδ)

• Cδ ∩ β for all β < δ

• {α ∈ Cδ : cf(α) < γ} for all γ < μ

There are three comments that should be made here. First, the notation is
due to Shelah, who first realized the relevance of these ideals to the problems
we are considering. Second, note that a set A is in Jb[μ][Cδ] if and only if
there are β < δ and γ < μ such that

A ⊆ acc(Cδ) ∪ β ∪ {ε < δ : cf(ε) < γ}. (15.96)

This makes it clear that Jb[μ][Cδ] is τ -complete where τ = min{cf(δ), cf(μ)}.
Finally, we point out that the ideal Jb[μ][Cδ] is perhaps easier to visualize
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when one considers what it means for a set to be Jb[μ][Cδ]-positive—a set
A ⊆ Cδ is not in Jb[μ][Cδ] if for any β < δ and γ < μ, there is an ordinal
α ∈ nacc(Cδ) such that β < α and cf(α) > γ.

In this terminology, we see that the hypothesis concerning C̄ in Theo-
rem 5.19 becomes “for every closed unbounded E ⊆ λ, there are stationarily
many δ ∈ S such that the set {α ∈ E ∩Cδ : cf(α) carries a Jónsson algebra}
is not in Jb[μ][Cδ]”. We now state without proof a club guessing result of
Shelah taken from [89, Chap. III].

5.24 Theorem. Let λ = μ+ for μ a singular cardinal, and let S ⊆ Sλ
cf(μ) be

stationary. There is an S-club system C̄ such that for every closed unbounded
E ⊆ λ, the set of δ ∈ S with E ∩ Cδ /∈ Jb[μ][Cδ] is stationary.

Said another way, the previous theorem states that idp(C̄, Ī) is a proper
ideal, where Iδ is defined to be Jb[μ][Cδ]. We remark that the theorem is
never explicitly stated in [89], but it follows from piecing together various
club guessing results appearing in Chap. III of that book, and the paper [40]
contains an exposition of related results. From this theorem, we can see that
the hypotheses of Theorem 5.19 are satisfied for any singular cardinal μ that
is not a limit of regular Jónsson cardinals.

5.25 Theorem. If μ is a singular cardinal that is not a limit of regular
Jónsson cardinals, then μ+ carries a Jónsson algebra.

Proof. Let 〈Cδ : δ ∈ Sμ+

cf(μ)〉 be a club system as in Theorem 5.24. The
hypotheses of Theorem 5.19 are then satisfied because of the definition of
Jb[μ][Cδ]. �

Plowing through the notation associated with club guessing may seem
a steep price to pay for the preceding theorem, especially as we obtained
a similar result in a much neater way using scales. However, the club guessing
proof seems to give more information, and we will spend the rest of the
subsection illustrating this.

The ideals defined in Definition 5.22 are certainly natural ones to con-
sider in association with club guessing, but for our purposes we need to also
consider the following ideals:

5.26 Definition. Let κ be a regular cardinal, let S ⊆ κ be stationary, and
let (C̄, Ī) be an S-club system.

1. ida(C̄, Ī) is defined to be the set of all A ⊆ κ for which there is a club
E ⊆ λ such that {δ ∈ S : A ∩ Cδ \ E ∈ Iδ} is nonstationary.

2. idp(C̄, Ī) is defined to be the set of all A ⊆ κ for which there is a club
E ⊆ λ such that {δ ∈ S : E ∩A ∩ Cδ /∈ Iδ} is nonstationary.

The notation above is due to Shelah and even though it is not terribly de-
scriptive, we note that the switch from superscripts in idp(C̄, Ī) to subscripts
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in idp(C̄, Ī) is suggestive—the “superscript ideals” concentrate on the set S,
while the “subscript ideals” concentrate instead on the set

⋃
δ∈S Cδ.

To see the difference between the two, let us consider the case where (C̄, Ī)
is an S-club system for some stationary S ⊆ κ. The ideal idp(C̄, Ī) is a proper
ideal if and only if idp(C̄, Ī) is, and both these conditions happen if and only
if the pair (C̄, Ī) guesses clubs in the “p-sense”.

Now, given such (C̄, Ī), a set T is in idp(C̄, Ī) if and only if the sequence
〈(Cδ, Iδ) : δ ∈ S∩T 〉 no longer guesses clubs, while T is in idp(C̄, Ī) precisely
when the sequence 〈(Cδ ∩ T, Iδ �(Cδ ∩ T )) : δ ∈ S〉 no longer guesses clubs.
In both cases, T is used to “shrink” the sequence (C̄, Ī), but the shrinking is
done in different senses.

The importance of this ideal is shown by the following theorem. Although
this theorem was first stated explicitly in [22], its proof is the same as that
of Theorem 5.19 and it is implicit in Claim 3.7 in Chap. III of [89] (which
appears as Corollary 5.28 below).

5.27 Theorem. Let λ = μ+ for μ a singular cardinal, and let S ⊆ λ be
stationary. Given an S-club sequence C̄ as in the conclusion of Theorem 5.24,
there is a function F : [λ]<ω → λ such that for any unbounded A ⊆ λ, the
range of F �[A]<ω is in the filter dual to idp(C̄, Ī), that is

A ∈ [λ]λ =⇒ [λ \ ran(F �[A]<ω)] ∈ idp(C̄, Ī). (15.97)

Proof. Let x = {S, λ, (C̄, Ī)}, and let χ be a sufficiently large regular cardinal.
The function F : [λ]<ω → λ is to code the Skolem functions of the structure
A = 〈H(χ),∈, x,<χ〉 just as in the proof of Theorem 5.3. This means, in
particular, that for any B ⊆ λ we have

ran(F �[B]<ω) = SkA(B) ∩ λ. (15.98)

Now let A be an unbounded subset of λ, and let B = ran(F �[A]<ω). If
B = λ, there is nothing to prove. If not, then M = SkA(A) is an elementary
submodel of H(χ) satisfying

• M ∩ λ = B = ran(F �[A]<ω),

• λ, S, and (C̄, Ī) are all in M ,

• |M ∩ λ| = λ, and

• λ � M .

Let E be the closed unbounded set of α < λ for which α = sup(M ∩ α). By
Lemma 5.20, if δ ∈ S is such that Cδ guesses E then M contains all members
of E ∩ nacc(Cδ) of cardinality greater than βδ. In other words,

δ ∈ S =⇒ E ∩ (λ \B) ∩ Cδ ∈ Iδ.

Therefore λ \B is in idp(C̄, Ī), as was to be shown. �
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Thus, even though we as yet do not know whether the successor of a sin-
gular cardinal must carry a Jónsson algebra, the above theorem gives an
approximation to a positive answer—for any unbounded A ⊆ λ, the function
F takes on almost all values (in the sense of idp(C̄, Ī)) when restricted to
[A]<ω. As a corollary, we deduce the following result of Shelah.

5.28 Corollary. Let λ, S, and (C̄, Ī) be as in the statement of Theorem 5.27.
If there exists a partition of λ into θ sets, each of which is idp(C̄, Ī)-positive,
then λ � [θ]<ω

λ .

Proof. Let 〈Ai : i < θ〉 be a partition of λ into idp(C̄, Ī) positive sets, and
for s ∈ [λ]<ω we define

c(s) = i ⇐⇒ F (s) ∈ Ai.

Given an unbounded A ⊆ λ an i < θ, we know Ai meets the range of
F �[A]<ω. In particular, there must be an s ∈ [A]<ω with F (s) ∈ Ai, and for
this choice of s we have c(s) = i, as required. �

If each Cδ is of cardinality less than μ (this can be guaranteed if the
cofinality of μ is uncountable, but the question for countable cofinality is still
open), then the function F from Theorem 5.27 can be improved to a function
defined on pairs. This is shown in [24], where minimal walks are combined
with combinatorics of scales to construct a complicated coloring of pairs.
It then follows that the conclusion of the corollary can then be improved
to λ � [λ]2λ (and even to Pr1(λ, λ, cf(μ)) using a stronger argument). The
fourth section of Chap. III from [89] also achieves this improvement of the
corollary, but Shelah’s colorings are constructed directly from a partition of λ
into disjoint idp(C̄, Ī)-positive sets.

We now close the section by remarking that the problem of partitioning
λ into idp(C̄, Ī)-positive sets is a very concrete one, and Shelah exploits this
in [89] as a way of obtaining Jónsson algebras and colorings of pairs.

6. Concluding Remarks

In this final section, we make a few remarks concerning the overarching
themes present in this chapter. As mentioned in the introduction, one can
view successors of singular cardinals as a battleground between “compact-
ness” and “non-compactness”. On the one side, we have all the reflection phe-
nomena associated with supercompact cardinals and their ilk, while squares
act as a paradigmatic representative for the other side. In between, we find
a gradation of combinatorial principles that can be used to measure the non-
reflection inherent in a combinatorial statement.

There is more here to hold our interest than the simple weighing of com-
binatorial statements on scales of reflection, however, for the theory contains
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many surprises. We hope that this introduction to the topic adequately com-
municates the richness of this area of set theory, and that it will serve as an
invitation for other researchers to join in the exploration.
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One of the central topics of set theory since Cantor has been the study
of the power function κ → 2κ. The basic problem is to determine all the
possible values of 2κ for a cardinal κ. Cohen [7] proved the independence
of CH and invented the method of forcing. Easton [11] building on Cohen’s
results showed that the function κ → 2κ for regular κ can behave in any
prescribed way consistent with the Zermelo-König inequality, which entails
cf(2κ) > κ. This reduces the study to singular cardinals.

It turned out that the situation with powers of singular cardinals is much
more involved. Thus, for example, a remarkable theorem of Silver states that
a singular cardinal of uncountable cofinality cannot be the first to violate
GCH. The Singular Cardinals Problem is the problem of finding a complete
set of rules describing the behavior of the function κ→ 2κ for singular κ’s.

There are three main tools for dealing with the problem: pcf theory, inner
model theory and forcing involving large cardinals. The purpose of this chap-
ter is to present the main forcing tools for dealing with powers of singular
cardinals. We refer to [19] or to [24] for detailed discussion of the Singular
Cardinals Problem.

The chapter should be accessible to a reader with knowledge of forcing
(say, Chaps. VII, VIII of Kunen’s book [30]) and familiarity with ultrapow-
ers and elementary embeddings. Thus §§5, 26 of Kanamori’s book [26] will
be more than enough. Only Sect. 6 requires in addition a familiarity with
iterated forcing (for example Baumgartner’s paper [5], §§0–2 of Sect. II of
Shelah’s book [54], or Cummings’ chapter [8] in this Handbook). The follow-
ing sections can be read independently: Sects. 1 and 2; Sects. 1.1, 3 and 4;
Sects. 1.1 and 5.1, 5.2; Sect. 6.
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1. Prikry Forcings

We describe here the classical Prikry forcing and some variations of it. They
were all introduced implicitly or explicitly by Karel Prikry in [47].

1.1. Basic Prikry Forcing

Let κ be a measurable cardinal and U a normal ultrafilter over κ.

1.1 Definition. Let P be the set of all pairs 〈p,A〉 such that

(1) p is a finite subset of κ,
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(2) A ∈ U , and

(3) min(A) > max(p).

It is convenient sometimes to view p as an increasing finite sequence of ordi-
nals.

We define two partial orderings on P , the first one conspicuously lacking
any useful closure property and the second closed enough to compensate for
the lack of closure of the first.

1.2 Definition. Let 〈p,A〉, 〈q,B〉 ∈ P . We say that 〈p,A〉 is stronger than
〈q,B〉 and denote this by 〈p,A〉 ≥ 〈q,B〉 iff

(1) p is an end extension of q, i.e. p ∩ (max(q) + 1) = q,

(2) A ⊆ B, and

(3) p \ q ⊆ B.

We shall use ≤ with the corresponding meaning, and proceed analogously
in similar definitions without further comment.

1.3 Definition. Let 〈p,A〉, 〈q,B〉 ∈ P . We say that 〈p,A〉 is a direct (or
Prikry) extension of 〈q,B〉 and denote this by 〈p,A〉 ≥∗ 〈q,B〉 iff

(1) p = q, and

(2) A ⊆ B.

We will force with 〈P ,≤〉, and 〈P ,≤∗〉 will be used to show that no new
bounded subsets are added to κ after the forcing with 〈P ,≤〉.

Let us prove a few basic lemmas.

1.4 Lemma. Let G ⊆ P be generic for 〈P ,≤〉. Then
⋃
{p | ∃A(〈p,A〉 ∈ G)}

is an ω-sequence cofinal in κ.

Proof. Just note that for every α < κ and 〈q,B〉 ∈ P the set

Dα = {〈p,A〉 ∈ P | 〈p,A〉 ≥ 〈q,B〉 and max(p) > α}

is dense in 〈P ,≤〉 above 〈q,B〉. �

1.5 Lemma. 〈P ,≤〉 satisfies the κ+-c.c.

Proof. Note that any two conditions having the same first coordinate are
compatible: If 〈p,A〉, 〈p,B〉 ∈ P , then 〈p,A ∩ B〉 is stronger than both of
them. �

Let us now state three lemmas about ≤∗ and its relation to ≤. The third
one contains the crucial idea of Prikry that makes everything work.

1.6 Lemma. ≤∗ ⊆ ≤ .
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This is obvious from Definitions 1.2 and 1.3.

1.7 Lemma. 〈P ,≤∗〉 is κ-closed.

Proof. Let 〈〈pα, Aα〉 | α < λ〉 be a ≤∗-increasing sequence of length λ for
some λ < κ. Then all the pα’s are the same. Set p = p0 and A =

⋂
α<λ Aα.

Then A ∈ U by κ-completeness of U . So 〈p,A〉 ∈ P , and it is stronger than
each 〈pα, Aα〉 according to ≤∗. �

1.8 Lemma (The Prikry condition). Let 〈q,B〉 ∈ P and σ be a statement
of the forcing language of 〈P ,≤〉. Then there is a 〈p,A〉 ≥∗ 〈q,B〉 such that
〈p,A〉 ‖ σ (i.e. 〈p,A〉 � σ or 〈p,A〉 � ¬σ), where, again, we force with 〈P ,≤〉
and not with 〈P ,≤∗〉.

Proof. We identify finite subsets of κ and finite increasing sequences of ordi-
nals below κ, i.e. [κ]<ω. Define a partition h : [B]<ω → 2 as follows:

h(s) =

{
1, if there is a C such that 〈q ∪ s, C〉 � σ,

0, otherwise.

U is a normal ultrafilter, so by the Rowbottom theorem (see [26, 7.17] or
[25, 70]) there is an A ∈ U , A ⊆ B homogeneous for h, i.e. for every n < ω
and every s1, s2 ∈ [A]n, h(s1) = h(s2). Now 〈q, A〉 will decide σ. Otherwise,
there would be

〈q ∪ s1, B1〉, 〈q ∪ s2, B2〉 ≥ 〈q, A〉

such that 〈q ∪ s1, B1〉 � σ and 〈q ∪ s2, B2〉 � ¬σ. By extending one of these
conditions if necessary, we can assume that |s1| = |s2|. But then s1, s2 ∈
[A]|s1| and h(s1) �= h(s2), which contradicts the homogeneity of A. �

The above lemma allows us to implement the κ-closure of 〈P ,≤∗〉 in the
actual forcing 〈P ,≤〉. Thus we can conclude the following:

1.9 Lemma. 〈P ,≤〉 does not add new bounded subsets of κ.

Proof. Let t ∈ P , a∼ is a name, λ < κ and

t � a∼ ⊆ λ̌.

For every α < λ denote by σα the statement “α̌ ∈ a∼”. We define by recursion
a ≤∗-increasing sequence of conditions 〈tα | α < λ〉 such that tα ‖σα for
each α < λ. Let t0 be a direct extension of t deciding σ0; one exists by
Lemma 1.8. Suppose that 〈tβ | β < α〉 is defined. Define tα. First, using
Lemma 1.7 we find a direct extension t′

α of 〈tβ | β < α〉. Then by Lemma 1.8
choose a direct extension tα of t′

α deciding σα. This completes the definition
of 〈tα | α < λ〉. Now let t∗ be a direct extension of 〈tα | α < λ〉 (again
Lemma 1.7 is used). Then t∗ ≥ t (in fact t∗ ≥∗ t) and t∗ � a∼ = b̌ where
b = {α < λ | t∗ � α ∈ a∼}. �
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Let us summarize the situation.

1.10 Theorem. The following holds in V [G]:

(a) κ has cofinality ℵ0.

(b) All the cardinals are preserved.

(c) No new bounded subsets are added to κ.

Proof. (a) Is established by Lemma 1.4, (c) by Lemma 1.9. Finally, (b)
follows from (c) and Lemma 1.5. �

If 2κ > κ+ in V , then in V [G] the Singular Cardinal Hypothesis will fail
at κ.

Let C =
⋃
{p | ∃A(〈p,A〉 ∈ G)}. By Lemma 1.4, C is an ω-sequence

cofinal in κ. It is called a Prikry sequence for U . The generic set G can be
easily reconstructed from C:

G = {〈p,A〉 ∈ P | p is an initial segment of C and C \ (max(p) + 1) ⊆ A}.

So, V [G] = V [C].

1.11 Lemma. C is almost contained in every set in U , i.e.

(∗) for every A ∈ U the set C \A is finite.

Proof. Let A ∈ U . Then the set

D = {〈p,B〉 ∈ P | B ⊆ A}

is dense in P . So, there is a 〈q, S〉 ∈ G ∩ D. But then, for every 〈q′, S′〉 ≥
〈q, S〉, q′ \ q ⊆ S ⊆ A. Hence, also, C \ q ⊆ A. �

The above implies that C generates U , i.e. X ∈ U iff X ∈ V and C \X is
finite.

Mathias [38] pointed out that (∗) of Lemma 1.11 actually characterizes
Prikry sequences:

1.12 Theorem. Suppose that M is an inner model of ZFC, U a normal
ultrafilter over κ in M . Assume that C is an ω-sequence satisfying (∗). Then
C is a Prikry sequence for U over M .

Proof. We need to show that the set

G(C) = {〈p,A〉 ∈ P | p is an initial segment of C

and C \ (max(p) + 1) ⊆ A}

is a generic subset of P over M . The only non-trivial property to check is
that G(C) ∩ D �= ∅ for every dense open subset D ∈ M of P . Let us first
point out that the following holds in M :
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1.13 Lemma. Let 〈q,B〉 ∈ P and D ⊆ P be dense open. Then there are
〈q, A〉 ≥∗ 〈q,B〉 and m < ω such that for every n with m ≤ n < ω and every
s ∈ [A]n, we have 〈q ∪ s,A \ (max(s) + 1)〉 ∈ D.

Proof. We define a partition h : [B]<ω → 2 as in Lemma 1.8 only replacing
“� σ” by “∈ D”. Let A′ ∈ U , A′ ⊆ B be homogeneous for h. Then, starting
with some m, for every n ≥ m and s ∈ [A′]n we have h(s) = 1. Hence there
will be a set As ∈ U such that 〈q ∪ s,As〉 ∈ D. Set A = A′ ∩ Δ{As | s ∈
[A′]n,m ≤ n < ω}, where

Δ{As | s ∈ [A′]n,m ≤ n < ω}
= {α < κ | ∀n ≥ m∀s ∈ [A′]n(max(s) < α→ α ∈ As)}.

Then clearly A ∈ U . The condition 〈q, A〉 is as desired, since for each n ≥ m
and s ∈ [A]n we have A \ (max(s) + 1) ⊆ As and, so 〈q ∪ s, A \ (max(s) +
1)〉 ∈ D. �

Now, let D ∈ M be a dense open subset of P . For every finite q ⊆ κ,
using Lemma 1.13, we pick m(q) < ω and A(q) ∈ U such that 〈q, A(q)〉 ≥∗

〈q, κ \ (max(q) + 1)〉 and for every n ≥ m(q) and s ∈ [A(q)]n, 〈q ∪ s,A(q) \
(max(s) + 1)〉 ∈ D. Set

A = Δ{A(q) | q ∈ [κ]<ω} = {α < κ | ∀q ∈ [κ]<ω(max q < α→ α ∈ A(q))}.

There is a τ < κ such that C \ τ ⊆ A. Consider 〈C ∩ τ, A \ τ〉. Since C ∩ τ is
finite, 〈C ∩ τ, A \ τ〉 ∈ P . Then, for every n ≥ max(C ∩ τ) and s ∈ [C \ τ ]n

we have
〈(C ∩ τ) ∪ s,A \ (max(s) + 1)〉 ∈ D,

since A \ τ ⊆ A \ (C ∩ τ). But C \ τ ⊆ A, so we can pick s ∈ [C \ τ ]n for
some n ≥ max(C ∩ τ). Then (C ∩ τ) ∪ s ⊆ C and C \ (max(s) + 1) ⊆
A \ (max(s) + 1). Hence, 〈(C ∩ τ) ∪ s,A \ (max(s) + 1)〉 ∈ G(C) ∩D. �

1.2. Tree Prikry Forcing

We would now like to eliminate the use of the normality of the ultrafilter U
in the previous construction. Note that it was used only once in the proof of
the Prikry condition 1.8.

Let us now assume only that U is a κ-complete ultrafilter over κ.

1.14 Definition. A set T is called a U -tree with a trunk t iff

(1) T consists of finite increasing sequences of ordinals below κ.

(2) 〈T,�〉 is a tree, where � is the order of end extension of finite sequences,
i.e. η � ν iff ν�dom(η) = η.
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(3) t is a trunk of T , i.e. t ∈ T and for every η ∈ T , η � t or t � η.

(4) For every η � t the set SucT (η) = {α < κ | η�〈α〉 ∈ T} is in U .

Define Levn(T ) = {η ∈ T | length(η) = n} for every n < ω.

We now define the tree Prikry forcing.

1.15 Definition. The set P consists of all pairs 〈t, T 〉 such that T is a U -tree
with trunk t.

1.16 Definition. Let 〈t, T 〉, 〈s, S〉 ∈ P . We say that 〈t, T 〉 is stronger than
〈s, S〉 and denote this by 〈t, T 〉 ≥ 〈s, S〉 iff S ⊇ T .

Note that S ⊇ T implies that t � s and t ∈ S.

1.17 Definition. Let 〈t, T 〉, 〈s, S〉 ∈ P . We say that 〈t, T 〉 is a direct (or
Prikry) extension of 〈s, S〉 and denote this by 〈t, T 〉 ≥∗ 〈s, S〉 iff

(1) S ⊇ T , and

(2) s = t.

As in the previous section we will force with 〈P ,≤〉 and the role of ≤∗ will
be to provide closure.

1.18 Lemma. Let 〈Tα | α < λ〉 be a sequence of U -trees with the same trunk
and λ < κ. Then T =

⋂
α<λ Tα is a U -tree having that same trunk.

Proof. Let t be the trunk of T0 (and so of every Tα). Suppose that η ∈ T
and η � t. Then

SucT (η) =
⋂

α<λSucTα(η).

By κ-completeness of U , SucT (η) ∈ U . Hence T is a U -tree with trunk t. �

Using Lemma 1.18 it is easy to prove lemmas analogous to Lemmas 1.4–1.7.

1.19 Lemma. Let G ⊆ P be generic for 〈P ,≤〉. Then
⋃
{t | ∃T (〈t, T 〉 ∈ G)}

is an ω-sequence cofinal in κ.

1.20 Lemma. 〈P ,≤〉 satisfies the κ+-c.c.

1.21 Lemma. ≤∗ ⊆ ≤ .

1.22 Lemma. 〈P ,≤∗〉 is κ-closed.

Let us show that 〈P ,≤,≤∗〉 satisfies the Prikry condition. The proof is
based on the following Ramsey property:

If T is a U -tree and f : T → λ < κ, then there is an U -tree S ⊆ T such
that f�Levn(S) is constant for each n < ω.

We prefer here and later to give a direct proof instead of deducing first
a relevant Ramsey property and then proving it.
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1.23 Lemma (The Prikry condition). Let 〈t, T 〉 ∈ P and σ be a statement
of the forcing language. Then there is a 〈s, S〉 ≥∗ 〈t, T 〉 such that 〈s, S〉 ‖σ.

Proof. Suppose otherwise. Consider the set SucT (t). We split it into three
sets as follows:

X0 = {α ∈ SucT (t) | ∃Sα ⊆ T a U -tree with trunk t�〈α〉
such that 〈t�〈α〉, Sα〉 � σ}

X1 = {α ∈ SucT (t) | ∃Sα ⊆ T a U -tree with trunk t�〈α〉
such that 〈t�〈α〉, Sα〉 � ¬σ}

X2 = SucT (t) \ (X0 ∪X1).

Clearly, X0∩X1 = ∅, since by Lemma 1.18 any two conditions with the same
trunk are compatible. Now U is an ultrafilter and SucT (t) ∈ U , so for some
i < 3, Xi ∈ U . We shrink T to a tree T1 with the same trunk t, having
SucT1(t) = Xi and: If i < 2, then let T1 be Sα above t�〈α〉 for every α ∈ Xi;
if i = 2, then let T1 be the same as T above t�〈α〉 for every α ∈ X2. We
continue by recursion to shrink the initial tree T level by level. Thus define
a decreasing sequence 〈Tn | n < ω〉 of U -trees with trunk t so that

(1) T0 = T .

(2) For every n > 0 and m > n, Tm�(n + |t|) = Tn�(n + |t|), i.e. after
stage n the n-th level above the trunk remains unchanged in all Tm’s
for m ≥ n.

(3) For every n > 0, if i < 2, η ∈ Levn+|t|(Tn) and for some U -tree S with
trunk η we have 〈η, S〉 � iσ, then

(3a) 〈η, (Tn)η〉 � iσ, and
(3b) For every ν ∈ Levn+|t|(Tn) having the same

immediate predecessor as η,

〈ν, (Tn)ν〉 � iσ.

Here, 0σ denotes σ, 1σ denotes ¬σ and for a tree R with r ∈ R,

(R)r = {r′ ∈ R | r′ � r}.

Now we set T ∗ =
⋂

n<ω Tn. Clearly, T ∗ is a U -tree with a trunk t by (2) or
by Lemma 1.18. Consider 〈t, T ∗〉 ∈ P . By the assumption, 〈t, T ∗〉 �\ σ. Pick
a condition 〈s, S〉 ≥ 〈t, T ∗〉 forcing σ with n = |s − t| as small as possible.
Then s ∈ Levn+|t|(T ∗) = Levn+|t|(Tn). By (3) of the recursive construction,

〈s, (Tn)s〉 � σ

and for every s′∈ Levn+|t|(Tn) with the same predecessor as s, 〈s′, (Tn)s′〉� σ.
But T ∗ ⊆ Tn, so

〈s, (T ∗)s〉 � σ and 〈s′, (T ∗)s′〉 � σ

for every s′ as above.
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Let s∗ denote the immediate predecessor of s, i.e. s without its last element.
Then 〈s∗, (T ∗)s∗〉 � σ since for every 〈r,R〉 ≥ 〈s∗, (T ∗)s∗〉, r = s′�r′ for some
s′ ∈ Levn+|t|(T ∗) and s′ ! s∗. Hence, 〈r,R〉 ≥ 〈s′, (T ∗)s′〉 � σ.

But we chose s to be of minimal length such that for some S, 〈s, S〉 � σ,
yet |s∗| = |s| − 1. Contradiction. �

Now, as in Lemma 1.9 the κ-closure of 〈P ,≤∗〉 can be used to derive the
following:

1.24 Lemma. 〈P ,≤〉 does not add new bounded subsets of κ.

The conclusions are the same as those of the previous section.

1.25 Theorem. The following holds in V [G]:

(a) κ has cofinality ℵ0.

(b) All the cardinals are preserved.

(c) No new bounded subsets are added to κ.

1.3. Adding a Prikry Sequence to a Singular Cardinal

Suppose that κ is a limit of an increasing sequence 〈κn | n < ω〉 of measurable
cardinals. We want to add an ω-sequence dominating every sequence in∏

n<ω κn, i.e. a sequence 〈τm | m < ω〉 ∈
∏

n<ω κn such that for every
〈ρm | m < ω〉 ∈ (

∏
n<ω κn) ∩ V and for all but finitely many m’s, τm > ρm.

Fix a κn-complete ultrafilter Un over κn for every n < ω. One can assume
normality but it is not necessary.

Let n < ω. We describe first a very simple forcing for adding a one-element
Prikry sequence.

1.26 Definition. Let Qn = Un ∪ κn. If p, q ∈ Qn we define p ≥n q iff either

(1) p, q ∈ Un and p ⊆ q,

(2) q ∈ Un and p ∈ q, or

(3) p = q ∈ κn.

Thus we can pick a set in Un, and then shrink it still in Un or pick an
element of this set. In particular, above every condition there is an atomic
one. So, the forcing 〈Qn,≤n〉 is trivial.

Nevertheless we also define a direct extension ordering:

1.27 Definition. Let p, q ∈ Qn. Set p ≥∗
n q iff p = q, or p, q ∈ Un and p ⊆ q.

The forcing 〈Qn,≤n,≤∗
n〉 is called the one-element Prikry forcing. The

following lemma follows from the κn-completeness of Un.

1.28 Lemma. 〈Qn,≤∗
n〉 is κn-closed.
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1.29 Lemma. 〈Qn,≤n,≤∗
n〉 satisfies the Prikry condition, i.e. for every

p ∈ Qn and every statement σ of the forcing language there is a q ≥∗
n p

such that q ‖σ.

The proof repeats the first stage of the proof of Lemma 1.23.
We now combine Qn’s together.

1.30 Definition. Let P be the set of all sequences p = 〈pn | n < ω〉 so that

(1) For every n < ω, pn ∈ Qn.

(2) There is an �(p) < ω so that for every n < �(p), pn is an ordinal below
κn and for every n ≥ �(p), pn ∈ Un.

The orderings ≤ and ≤∗ are defined on P in obvious fashion:

1.31 Definition. Let p = 〈pn | n < ω〉, q = 〈qn | n < ω〉 ∈ P . We say that
p ≥ q (resp. p ≥∗ q) iff for every n < ω, pn ≥n qn (resp. pn ≥∗

n qn).
For p = 〈pn | n < ω〉 ∈ P we denote 〈pm | m < n〉 by p�n and 〈pm | m ≥ n〉

by p \ n. Let P�n = {p�n | p ∈ P} and P \ n = {p \ n | p ∈ P}.

The following splitting lemma is obvious:

1.32 Lemma. P  P�n× P \ n for every n < ω.

1.33 Lemma. For every n < ω, 〈P \ n,≤∗〉 is κn-closed.

The above follows from the fact that each Um with m ≥ n is κn-complete.

1.34 Lemma. 〈P ,≤,≤∗〉 satisfies the Prikry condition.

Proof. Let p = 〈pn | n < ω〉 be an element of P and σ be a statement
of the forcing language. Suppose for simplicity that �(p) = 0. Then let
pn = An ∈ Un for every n < ω. We want to find a direct extension of p
deciding σ. Assume that there is no such extension. Define by recursion on
n < ω a ≤∗-increasing sequence 〈q(n) | n < ω〉 of ≤∗-extensions of p such
that for every n < ω the following holds:

(1) If m ≥ n, then q(m)�n = q(n)�n.

(2) If q = 〈qn | n < ω〉 ≥ q(n) decides σ and �(q) = n+1 then already 〈qm |
m ≤ n〉�〈q(n)m | m > n〉 decides σ and in the same way as q; moreover,
for every τn ∈ q(n)n also 〈qm | m < n〉�〈τn〉�〈q(n)m | m > n〉 makes
the same decision.

The recursive construction is straightforward. At the nth stage, the κn-
completeness of the Um’s for m ≥ n is used in order to take care of the
possibilities for initial sequences of length n − 1 below κn. The number of
such possibilities is |

∏
i≤n−1 κi| = κn−1 < κn. Now define s = 〈sn | n < ω〉

to be 〈q(n)n | n < ω〉. Clearly, s ∈ P and s ≥∗ p. The conclusion is now as
in Lemma 1.23. Thus let q = 〈qn | n < ω〉 be an extension of s forcing σ and
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with �(q) as small as possible. By the assumption, �(q) > 0. Let n = �(q)−1.
Now, using (2) of the construction, we conclude that

〈qm | m < n〉�〈τn〉�〈sm | m > n〉 � σ

for every τn ∈ q(n)n = sn. But then also 〈qm | m < n〉�〈sm | m ≥ n〉 � σ,
contradicting the minimality of �(q). �

Combining Lemmas 1.32, 1.33 and 1.34 we obtain the following:

1.35 Lemma. 〈P ,≤〉 does not add new bounded subsets to κ.

Note that for each n < ω, P�n is just a trivial forcing “adding” a sequence
of length n of ordinals in

∏
m≤n−1 κm.

1.36 Lemma. 〈P ,≤〉 satisfies the κ+-c.c.

Proof. Note that any two conditions p = 〈pn | n < ω〉 and q = 〈qn | n < ω〉
are compatible provided �(p) = �(q) and 〈pn | n < �(p)〉 = 〈qn | n < �(q)〉. �

Now let G ⊆ P be generic for 〈P ,≤〉. Define an ω-sequence 〈tn | n < ω〉 ∈∏
n<ω κn as follows: tn = τ if for some p = 〈pm | m < ω〉 ∈ G with �(p) > n

pn = τ .
Using density arguments it is easy to show the following:

1.37 Lemma. For every 〈sn | n < ω〉 ∈ (
∏

n<ω κn) ∩ V there is an n0 < ω
such that for every n ≥ n0, tn > sn.

Combining lemmas together we now obtain the following:

1.38 Theorem. The following holds in V [G]:

(a) All cardinals and cofinalities are preserved.

(b) No new bounded subsets are added to κ.

(c) There is a sequence in
∏

n<ω κn dominating every sequence in
(
∏

n<ω κn) ∩ V .

1.4. Supercompact and Strongly Compact Prikry
Forcings

In this section, we present Prikry forcings for supercompact and strongly
compact cardinals. The main feature of these forcings is that not only κ
changes its cofinality to ω, but also every regular cardinal in the interval
[κ, λ] does so, if we use a λ-supercompact (or strongly compact) cardinal κ.
The presentation will follow that of Menachem Magidor who was the first to
use these forcings in his celebrated papers [35, 36].

Fix cardinals κ ≤ λ. Let Pκ(λ) = {P ⊆ λ | |P | < κ}. Let us recall few
basic definitions.
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1.39 Definition. An ultrafilter U over Pκ(λ) is called normal iff

(1) U is κ-complete.

(2) U is fine, i.e. for every α < λ, {P ∈ Pκ(λ) | α ∈ P} ∈ U .

(3) For every A ∈ U and every f : A → λ satisfying f(P ) ∈ P for P ∈ A
there are A′ ∈ U and α′ < λ such that for every P ∈ A′ we have
f(P ) = α′.

1.40 Definition.

(1) κ is called λ-strongly compact iff there exists a κ-complete fine ultrafilter
over Pκ(λ).

(2) κ is called λ-supercompact iff there exists a normal ultrafilter over Pκ(λ).

(3) If P,Q ∈ Pκ(λ), then P is strongly included in Q iff P ⊆ Q and
otp(P ) < otp(Q ∩ κ). We denote this by P ⊂∼Q.

Suppose now that κ is λ-supercompact cardinal and U is a normal ultra-
filter over Pκ(λ). The normality of U easily implies the following:

(a) If F is function from a set in U into Pκ(λ) such that for all P �= ∅
F (P )⊂∼ P , then F is constant on a set in U .

(b) If for every Q ∈ Pκ(λ), AQ ∈ U , then {P | ∀Q ⊂∼ P (P ∈ AQ)} ∈ U .
(This last set is called the diagonal intersection of the system {AQ |
Q ∈ Pκ(λ)}.)

For B ⊆ Pκ(λ), denote by [B][n] the set of all n element subsets of B
totally ordered by ⊂∼ ; denote

⋃
n<ω[B][n] by [B][<ω]. The following is a

straightforward analog of the Rowbottom theorem:
If F : [Pκ(λ)][<ω] → 2, then there is an A ∈ U such that for every n < ω,

F is constant on [A][n].
We are now ready to define the supercompact Prikry forcing with a normal

ultrafilter U over Pκ(λ).
The definitions will be the same as in Definition 1.1 with only κ replaced

by Pκ(λ) and the order on ordinals replaced by ⊂∼ .

1.41 Definition. Let P be the set of all pairs 〈〈P1, . . . , Pn〉, A〉 such that

(1) 〈P1, . . . , Pn〉 is a finite ⊂∼ -increasing sequence of elements of Pκ(λ),

(2) A ∈ U , and

(3) for every Q ∈ A, Pn ⊂∼Q.

1.42 Definition. Let 〈〈P1, . . . , Pn〉, A〉, 〈〈Q1, . . . , Qm〉, B〉 ∈ P . Then define
〈〈P1, . . . , Pn〉, A〉 ≥ 〈〈Q1, . . . , Qm〉, B〉 iff
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(1) n ≥ m,

(2) for every k ≤ m Pk = Qk,

(3) A ⊆ B, and

(4) {Pm+1, . . . , Pn} ⊆ B.

1.43 Definition. Let 〈〈P1, . . . , Pn〉, A〉, 〈〈Q1, . . . , Qm〉, B〉 ∈ P . Then
〈〈P1, . . . , Pn〉, A〉 ≥∗ 〈〈Q, . . . , Qm〉, B〉 iff

(1) 〈P1, . . . , Pn〉 = 〈Q1, . . . , Qm〉, and

(2) A ⊆ B.

The next lemmas are proved as in Definition 1.1 with obvious changes
from κ to Pκ(λ).

1.44 Lemma. ≤∗ ⊆ ≤.

1.45 Lemma. 〈P ,≤∗〉 is κ-closed.

1.46 Lemma (The Prikry condition). Let 〈q,B〉 ∈ P and σ be a statement
of the forcing language (i.e. of 〈P ,≤〉). Then there is a 〈p,A〉 ≥∗ 〈q,B〉 such
that 〈p,A〉 ‖σ.

1.47 Lemma. 〈P ,≤〉 does not add new bounded subsets to κ.

1.48 Lemma. 〈P ,≤〉 satisfies the (λ<κ)+-c.c.

Proof. As in Lemma 1.5, any two conditions with the same finite sequence,
i.e. of the form 〈p,A〉 and 〈p,B〉 are compatible. The number of possibilities
for p’s now is λ<κ. So we are done. �

By the theorem of Solovay (see [55] or [27]), λ<κ = λ if λ is regular or of
cofinality ≥ κ, and λ<κ = λ+ if cf(λ) < κ. Note that λ-supercompactness
of κ actually implies its λ<κ-supercompactness. We can restate Lemma 1.48
using Solovay’s theorem as follows:

1.49 Lemma. 〈P ,≤〉 satisfies the μ+-c.c., where

μ =

{
λ, if cf(λ) ≥ κ

λ+, if cf(λ) < κ.

Our next lemma presents the main property of the supercompact Prikry
forcing. Also, it shows that Lemma 1.49 is sharp.

Let G be a generic subset of 〈P ,≤〉 and let 〈Pn | 1 ≤ n < ω〉 be the Prikry
sequence produced by G, i.e. the sequence such that for every n < ω, there
is an A ∈ U with 〈〈P1, . . . , Pn〉, A〉 ∈ G.
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1.50 Lemma. Every δ ∈ [κ, μ] of cofinality ≥ κ (in V ) changes its cofinality
to ω in V [G], where

μ =

{
λ, if cf(λ) ≥ κ

λ+, if cf(λ) < κ.

Moreover, for each δ ≤ λ, δ =
⋃

n<ω(Pn ∩ δ), i.e. it is a countable union of
old sets each of cardinality less than κ.

Proof. Let α < λ. The fineness of U implies that {P ∈ Pκ(λ) | α ∈ P} ∈ U .
Then, by a density argument, α ∈ Pn for all but finitely many n’s. Hence,
for each δ ≤ λ

δ =
⋃

n<ω(Pn ∩ δ).

This implies that each δ ≤ λ of cofinality ≥ κ in V changes cofinality to ω
in V [G], as witnessed by 〈sup(Pn ∩ δ) | n < ω〉. In order to finish the proof,
we need to deal with λ of cofinality below κ and to show that in this case λ+

also changes its cofinality to ω. Fix in V a sequence cofinal in λ of regular
cardinals 〈λi | i < cf(λ)〉, a sequence of functions 〈fα | α < λ+〉 in

∏
i<cf(λ) λi

and an ultrafilter D over cf(λ) including all cobounded subsets of cf(λ), so
that

(a) α < β < λ+ =⇒ fα < fβ (mod D), and

(b) for every g ∈
∏

i<cf(λ) λi there is an i < λ+ such that fi > g(mod D).

Using λ<κ = λ+, it is not hard directly by induction to construct such
sequence of fi’s. One can also appeal to general pcf considerations; see [1].
Now, by fineness and density again, for every α < λ+ and for all but finitely
many n < ω we will have Pn ⊇ ran(fα). Hence, for such n’s, 〈

⋃
(Pn ∩ λi) |

i < cf(λ)〉 > fα. So, {〈
⋃

(Pn ∩λi) | i < cf(λ)〉 | n < ω} will be an ω-sequence
of functions from (

∏
i<cf(λ) λi) ∩ V unbounded in (

∏
i<cf(λ) λi) ∩ V . This

implies that λ+ should have cofinality ω in V [G]. �

Let us now turn to strongly compact Prikry forcing. So, we give up nor-
mality and assume only that U is a κ-complete fine ultrafilter over Pκ(λ).
The construction here is completely parallel to the construction of the tree
Prikry forcing in Definition 1.2.

1.51 Definition. A set T is called a U -tree with trunk t iff

(1) T consists of finite sequences 〈P1, . . . , Pn〉 of elements of Pκ(λ) so that
P1 ⊂∼ P2 ⊂∼ · · · ⊂∼ Pn.

(2) 〈T,�〉 is a tree, where � is the order of the end extension of finite
sequences.

(3) t is a trunk of T , i.e. t ∈ T and for every η ∈ T , η � t or t � η.
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(4) For every η � t,

SucT (η) = {Q ∈ Pκ(λ) | η�〈Q〉 ∈ T} ∈ U.

The definitions of the forcing notion P and the orders ≤ and ≤∗ are now
exactly the same as those in Definitions 1.15, 1.16 and 1.17. 〈P ,≤,≤∗〉 here
shares all the properties of the tree Prikry forcing of Sect. 1.2 except the
κ+-c.c. Thus the Lemmas 1.18, 1.21–1.24 are valid in the present context
with basically the same proofs. Instead of the κ+-c.c. we will have here the
(λ<κ)+-c.c. Also Lemmas 1.48–1.50 hold with the same proofs.

Let us summarize the properties of both supercompact and strongly com-
pact Prikry forcings.

1.52 Theorem. Let G be a generic set for 〈P ,≤,≤∗〉, where 〈P ,≤,≤∗〉
is either supercompact or strongly compact Prikry forcing over Pκ(λ). The
following holds in V [G]:

(a) No new bounded subsets are added to κ.

(b) Every cardinal in the interval [κ, μ] of cofinality ≥ κ (as computed in
V ) changes its cofinality to ω.

(c) All the cardinals above μ are preserved, where

μ =

{
λ, if cf(λ) ≥ κ

λ+, if cf(λ) < κ.

2. Adding Many Prikry Sequences to a Singular
Cardinal

In this section we present the extender-based Prikry forcing over a singular
cardinal. It is probably the simplest direct way for violating the Singular
Cardinal Hypothesis using minimal large cardinal hypotheses. This type of
forcing first appeared in [20] in a more complicated form. The presentation
here follows [17, Sect. 3].

Let, as in Definition 1.3, κ =
⋃

n<ω κn with 〈κn | n < ω〉 increasing and
each κn measurable. The Prikry forcing described in Definition 1.3 produces
basically one Prikry sequence. More precisely, if GCH holds in the ground
model, then κ+-many new ω-sequences are introduced but all of them are
coded by the generic Prikry sequence. Here we present a way for adding any
number of Prikry sequences into

∏
n<ω κn. In particular, this will increase

the power of κ as large as one likes without adding new bounded subsets and
preserving all the cofinalities.

The basic idea is to use many ultrafilters over each of the κn’s instead of a
single one as in Definition 1.3. This leads naturally to extenders over the κn’s.
For the basics about extenders and corresponding large cardinal hypotheses,
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which are significantly weaker than λ-supercompactness of Lemma 1.4, see
the fine structure and inner model chapters of this Handbook.

Assume GCH and let λ ≥ κ+ be a regular cardinal. Suppose that we
want to add to κ or into

∏
n<ω κn at least λ many Prikry sequences. Our

basic assumption will now be that each κn is a (λ + 1)-strong cardinal. This
means that for every n < ω there is a (κn, λ + 1)-extender En over κn whose
ultrapower contains Vλ+1 and which moves κn above λ. We fix such En and
let jn : V → Mn  Ult(V,En). For every α < λ we define a κn-complete
ultrafilter Unα over κn by setting X ∈ Unα iff α ∈ jn(X). Actually only Unα’s
with α ≥ κn will be important. Note that a lot of Unα’s are comparable in
the Rudin-Keisler order ≤RK, recalling that

U ≤RK W iff ∃f :
⋃

W →
⋃

U ∀X ⊆
⋃

U

(X ∈ U ↔ f −1(X) ∈W ).

Thus for example, if α is a cardinal and β ≤ α, then Un(α+β) ≥RK Un,α and
Un(α+β) ≥RK Un,β .

We will need a strengthening of the Rudin-Keisler order. For α, β < λ
define

α ≤En β iff α ≤ β and
for some f ∈ κnκn, jn(f)(β) = α.

Clearly, then α ≤En β implies Unα ≤RK Unβ , as witnessed by any f ∈ κnκn

with jn(f)(β) = α: If A ∈ Unβ , then β ∈ jn(A). So α = jn(f)(β) ∈
jn(f)“jn(A) = jn(f“A). Hence f“A ∈ Un,α. Note that, in general, α < β <
λ and Unα <RK Unβ does not imply α <En β.

The partial order 〈λ,≤En〉 is κn-directed, as we see in Lemma 2.1 below.
Actually, it is κ++

n -directed, but for our purposes κn-directness will suffice.
Thus, using GCH, find some enumeration 〈aα | α < κn〉 of [κn]<κn so that
for every regular cardinal δ < κn, 〈aα | α < δ〉 enumerates [δ]<δ and every
element of [δ]<δ appears δ many times in the enumeration. Let jn(〈aα | α <
κn〉) = 〈aα | α < jn(κn)〉. Then, 〈aα | α < λ〉 will enumerate [λ]<λ ⊇ [λ]<κn

in both Mn and V ; this coding will be applied below.

The next lemma is a basic application of commutativity of diagrams cor-
responding to extenders and their ultrafilters.

2.1 Lemma. Let n < ω and τ < κn. Suppose that 〈αν | ν < τ〉 is a sequence
of ordinals below λ and α ∈ λ \ (

⋃
ν<τ αν + 1) codes this sequence, i.e. aα =

{αν | ν < τ}. Then α >En αν for every ν < τ .
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Proof. Fix ν < τ . Consider the following diagram

where Nα  Ult(V, Un,α), kα([f ]Un,α) = jn(f)(α) and the same with αν

replacing α. Then jn(〈aβ | β < κn〉) = kα(iα(〈aβ | β < κn〉)) and kα(iα(〈aβ |
β < κn〉)([id])Un,α)) = jn(〈aβ | β < κn〉)(α) = aα = {αμ | μ < τ}. But τ <
κn, so it is fixed by kα, since crit(kα) ≥ κn. Hence iα(〈aβ | β < κn〉)([id]Un,α)
is a sequence of ordinals of length τ . Let α∗

ν denote its ν-th element. Then,
by elementarity, kα(α∗

ν) = αν . We can hence define kανα : Nαν −→ Nα by
setting kανα([f ]Uαν

) = iα(f)(α∗
ν). It is easy to see that kανα is elementary

embedding and the following diagram is commutative.

Finally, we can define the desired projection πααν of Un,α onto Un,αν .
Thus let πααν : κn → κn be a function such that [πααν ]Un,α = α∗

ν . Then,
jn(πααν )(α) = kα ([πα,αν ]Un,α) = kα(α∗

ν) = αν . So, α >En αν . �

Hence we obtain the following:

2.2 Lemma. For every set a ⊆ λ of cardinality less than κn, there are λ
many α’s below λ so that α >En β for every β ∈ a.

For every α, β < λ such that α >En β we fix the projection παβ : κn → κn

defined as in Lemma 2.1 witnessing this. Let παα = id, the identity map:
κn → κn.

The following two lemmas are standard.
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2.3 Lemma. Let γ < β ≤ α < λ. If α ≥En β and α ≥En γ, then {ν < κn |
παβ(ν) > παγ(ν)} ∈ Unα.

Proof. We consider the following commutative diagram

where for δ′, δ ∈ {α, β, γ}

iδ : V −→ Nδ  Ult(V, Unδ)

kδ([f ]Unδ
) = jn(f)(δ)

and

kδ′δ([f ]Unδ′ ) = iδ(f)([πδδ′ ]Unδ
).

Then kα([παβ ]Unα) = kα(kβα([id]Unβ
)) = kβ([id]Unβ

) = jn(id)(β) = β.
The same is true for γ, i.e.

kα([παγ ]Unα) = γ.

But Mn � γ < β and kα is elementary, so Nα � [παγ ]Unα < [παβ ]Unα . Hence

{ν < κn | παβ(ν) > παγ(ν)} ∈ Unα.

�

2.4 Lemma. Let {αi | i < τ} ⊆ α < λ for some τ < κn. Assume that
α ≥En αi for every i < τ . Then there is a set A ∈ Unα so that for every
i, j < τ : αi ≥En αj implies πααj(ν) = παiαj (πααi(ν)) for every ν ∈ A.

Proof. It is enough to prove the lemma for τ = 2 and then to use the κn-
completeness of Unα. So, let β, γ < α and assume that γ ≤En β ≤En α.
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Consider the following commutative diagram:

where k’s and i’s are defined as in Lemma 2.3.
We need to show that

[παγ ]Unα = [πβγ ◦ παβ ]Unα .

As in Lemma 2.3, kα([παγ ]Unα) = γ. On the other hand, again as Lemma 2.3,

kα([πβγ ◦ παβ ]Unα) = jn(πβγ ◦ παβ)(α) = jn(πβγ)(jn(παβ)(α))
= jn(πβγ)(β) = γ.

Since kα is elementary, we have in Nα the desired equality. �

We are now ready to define our first forcing notion. It will resemble the
one-element Prikry forcing considered in Definition 1.3 and will be built from
two pieces. Fix n < ω.

2.5 Definition. Let Qn1 = {f | f is a partial function from λ to κn of
cardinality at most κ}. We order Qn1 by inclusion, which here is denoted
by ≤1.

Thus Qn1 is basically the usual Cohen forcing for blowing up the power of
κ+ to λ. The only, and minor, change is that the functions take values inside
κn rather than 2 or κ+.

2.6 Definition. Let Qn0 be the set of triples 〈a,A, f〉 so that

(1) f ∈ Qn1.

(2) a ⊆ λ with

(2a) |a| < κn,

(2b) a ∩ dom(f) = ∅, and
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(2c) a has a ≤En -maximal element, i.e. an element
α ∈ a such that α ≥En β for every β ∈ a.

(3) A ∈ Un max(a).

(4) For every α, β, γ ∈ a, if α ≥En β ≥En γ, then παγ(ρ) = πβγ(παβ(ρ))
for every ρ ∈ πmax(a),α“A.

(5) For every α > β in a and every ν ∈ A,

πmax(a),α(ν) > πmax(a),β(ν).

The last two conditions can be met by Lemmas 2.3, 2.4.

2.7 Definition. Let 〈a,A, f〉, 〈b, B, g〉 ∈ Qn0. We say that 〈a,A, f〉 is
stronger than 〈b, B, g〉 and denote this by 〈a,A, f〉 ≥0 〈b, B, g〉 iff

(1) f ⊇ g,

(2) a ⊇ b, and

(3) πmax(a),max(b)“A ⊆ B.

We now define a forcing notion Qn which is an extender analog of the
one-element Prikry forcing of Definition 1.3.

2.8 Definition. Qn = Qn0 ∪Qn1.

2.9 Definition. The direct extension ordering ≤∗ on Qn is defined to be
≤0 ∪ ≤1.

2.10 Definition. Let p, q ∈ Qn. Then p ≤ q iff either

(1) p ≤∗ q, or

(2) p = 〈a,A, f〉 ∈ Qn0, q ∈ Qn1 and the following holds:

(2a) q ⊇ f ,

(2b) dom(q) ⊇ a,

(2c) q(max(a)) ∈ A, and

(2d) for every β ∈ a, q(β) = πmax(a),β(q(max(a))).

Clearly, the forcing 〈Qn,≤〉 is equivalent to 〈Qn1,≤1〉, i.e. Cohen forcing.
However, the following basic facts relate it to the Prikry-type forcing notion.

2.11 Lemma. 〈Qn,≤∗〉 is κn-closed.

2.12 Lemma. 〈Qn,≤,≤∗〉 satisfies the Prikry condition, i.e. for every p ∈ Qn

and every statement σ of the forcing language there is a q ≥∗ p deciding σ.
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Proof. Let p = 〈a,A, f〉. Suppose otherwise. By recursion on ν ∈ A define
an increasing sequence 〈pν | ν ∈ A〉 of elements of Qn1 with dom(pν)∩ a = ∅
as follows. Suppose that 〈pρ | ρ ∈ A ∩ ν〉 is defined and ν ∈ A. Define pν

as follows: Let u =
⋃

ρ<ν pρ. Then u ∈ Qn1. Consider q = 〈a,A, u〉. Let
q�〈ν〉 = u ∪ {〈β, πmax(a),β(ν)〉 | β ∈ a}. If there is a p ≥1 q�〈ν〉 deciding σ,
then let pν be some such p restricted to λ \ a. Otherwise, set pν = u. Note
that there will always be a condition deciding σ.

Finally, let g =
⋃

ν∈A pν . Shrink A to a set B ∈ Un max(a) so that pν
�〈ν〉 =

pν ∪ {〈β, πmax(a),β(ν)〉 | β ∈ a} decides σ the same way or does not decide σ
at all, for every ν ∈ B. By our assumption 〈a,B, g〉 � ‖σ. However, pick some
h ≥ 〈a,B, g〉, h ∈ Qn1 deciding on σ. Let h(max(a)) = ν. Then, pν

�〈ν〉
decides σ. But this holds then for every ν ∈ B. Hence, already 〈a,B, g〉
decides σ. Contradiction. �

Let us now define the main forcing of this section by putting the blocks of
Qn’s together. This forcing is called the extender-based Prikry forcing over
a singular cardinal.

2.13 Definition. The set P consists of sequences p = 〈pn | n < ω〉 so that

(1) For every n < ω, pn ∈ Qn.

(2) There is an �(p) < ω so that for every n < �(p), pn ∈ Qn1, and for
every n ≥ �(p), pn = 〈an, An, fn〉 ∈ Qn0 and an ⊆ an+1.

2.14 Definition. Let p = 〈pn | n < ω〉 and q = 〈qn | n < ω〉 ∈ P . We set
p ≥ q (resp. p ≥∗ q) iff for every n < ω, pn ≥Qn qn (resp. pn ≥∗

Qn
qn).

The forcing 〈P ,≤〉 does not satisfy the κ+-c.c. However:

2.15 Lemma. 〈P ,≤〉 satisfies the κ++-c.c.

Proof. Let {p(α) | α < κ++} be a set of elements of P , with p(α) = 〈p(α)n |
n < ω〉 and p(α)n = 〈a(α)n, A(α)n, f(α)n〉 for n ≥ �(p(α)). There is an
S ⊆ κ++ stationary such that for every α, β ∈ S the following holds:

(a) �(p(α)) = �(p(β)) = �.

(b) For every n < �, {dom(p(α)n) | α ∈ S} forms a Δ-system with p(α)n

and p(β)n having the same values on its kernel.

(c) For every n ≥ �, {(a(α)n∪dom(f(α)n) | α ∈ S} forms a Δ-system with
f(α)n, f(β)n having the same values on the kernel. Also, if α, β ∈ S
then a(α)n ∩ dom(f(β)n) = ∅.

Now let α < β be in S. We construct a condition q = 〈qn | n < ω〉 stronger
than both p(α) and p(β).

For every n < � let qn = p(α)n ∪ p(β)n. Now suppose that n ≥ �. qn will
be of the form 〈bn, Bn, gn〉. Set gn = f(α)n ∪ f(β)n. We would like to define
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bn as the union of a(α)n and a(β)n. But Definition 2.6(2(iii)) requires the
existence of a maximal element in the ≤En order which need not be the case
in the simple union of a(α)n and a(β)n. It is easy to fix this. Just pick some
ρ < λ above a(α)n∪a(β)n in the ≤En order. Also let ρ > sup(dom(f(α)n))+
sup(dom (f(β))n). Lemma 2.2 insures that there are such ρ’s. Now we set
bn = a(α)n ∪ a(β)n ∪ {ρ}. Let B′

n = π−1
ρα∗ (A(α)n) ∩ π−1

ρβ∗ (A(β)n), where
α∗ = max(a(α)n) and β∗ = max(a(β)n). Finally we shrink B′

n to a set
Bn ∈ Unρ satisfying Definition 2.6((4), (5)). This is possible by Lem-
mas 2.3, 2.4. �

For p = 〈pn | n < ω〉 ∈ P set p�n = 〈pm | m < n〉 and p\n = 〈pm | m ≥ n〉.
Let P�n = {p�n | p ∈ P} and P \ n = {p \ n | p ∈ P}. Then the following
lemmas are obvious:

2.16 Lemma. P  P�n× P \ n for every n < ω.

2.17 Lemma. 〈P \ n,≤∗〉 is κn-closed. Moreover, if 〈pα | α < δ < κ〉 is
a ≤∗ increasing sequence with κ�(p0) > δ, then there is a p ≥∗ pα for every
α < δ.

We will now turn to the Prikry condition and establish a more general
statement which will allow us to deduce in addition that κ+ is preserved
after forcing with 〈P ,≤〉.

Let us introduce first some notation. For p = 〈pn | n < ω〉 ∈ P and m
with �(p) ≤ m < ω, let pm = 〈am, Am, fm〉. Denote am by am(p), Am by
Am(p) and fm by fm(p). Let 〈ν�(p), . . . , νm〉 ∈

∏m
k=�(p) Ak(p). We denote by

p�〈ν�(p), . . . , νm〉

the condition obtained from p by adding the sequence 〈ν�(p), . . . , νm〉, i.e.
a condition q = 〈qn | n < ω〉 such that qn = pn for every n, n < �(p) or n > m,
and if �(p) ≤ n ≤ m then qn = fn(p) ∪ {〈β, πmax(an(p)),β(νn)〉 | β ∈ an(p)}.

We prove the following analog of Lemma 1.13:

2.18 Lemma. Let p ∈ P and D be a dense open subset of 〈P ,≤〉 above p.
Then there are p∗ ≥∗ p and n∗ < ω such that for every 〈ν0, . . . , νn∗ −1〉 ∈
∏�(p)+n∗ −1

m=�(p) Am(p∗), p∗�〈ν0, . . . , νn∗ −1〉 ∈ D.

Let us first deduce the Prikry condition from this lemma.

2.19 Lemma. Let p ∈ P and σ be a statement of the forcing language. Then
there is a p∗ ≥∗ p deciding σ.

Proof of Lemma 2.19 from Lemma 2.18. Consider D = {q ∈ P | q ≥ p
and q ‖σ}. Clearly, D is dense open above p. Apply Lemma 2.18 to this D
and choose n∗ as small as possible and p∗ ≥∗ p such that for every q ≥ p∗

with �(q) ≥ n∗, q ∈ D. If n∗ = �(p), then we are done. Suppose otherwise.
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Assume for simplicity that �(p) = 0 and n∗ = 2. Then let p∗ = 〈p∗
n | n < ω〉

and for every n < ω let p∗
n = 〈a∗

n, A∗
n, f ∗

n〉. Let α0 = max(a∗
0) and α1 =

max(a∗
1). Then A∗

0 ∈ U0α0 and A∗
1 ∈ U1α1 . Let ν0 ∈ A∗

0 and ν1 ∈ A∗
1.

Consider p∗�〈ν0, ν1〉 the condition obtained from p∗ by adding ν0 and ν1.
Clearly, �(p∗�〈ν0, ν1〉) = 2. Hence it decides σ. Now we shrink A∗

1 to A∗
1ν0

so
that for every ν′

1, ν
′ ′
1 ∈ A∗

1ν0
p∗�〈ν0, ν

′
1〉 and p∗�〈ν0, ν

′ ′
1 〉 decide σ the same

way. Let A∗ ∗
1 =

⋂
{A∗

1ν0
| ν0 ∈ A∗

0}. We shrink now A∗
0 to A∗ ∗

0 so that for
every ν′

0, ν
′ ′
0 ∈ A∗ ∗

0 and for every ν1 ∈ A∗ ∗
1 , p∗�〈ν′

0, ν1〉 and p∗�〈ν′ ′
0 , ν1〉 decide

σ in the same way. Let p∗ ∗ be a condition obtained from p∗ by replacing in
it A∗

0 by A∗ ∗
0 and A∗

1 by A∗ ∗
1 . Then p∗ ∗ ≥∗ p∗ and p∗ ∗ ‖σ. Contradiction.

Proof of Lemma 2.18. The main objective is to reduce the problem to the
point where we can use the argument of the corresponding fact in Sect. 1.3,
as if we were forcing using 〈Un max(an) | n < ω〉.

We first prove the following crucial claim:

Claim. There is a p′ ≥∗ p, p′ = 〈p′
n | n < ω〉, such that for every q ≥ p′,

q = 〈qn | n < ω〉, if q ∈ D, then also

〈p′
n | n < �(p)〉�〈qn�an(p′) ∪ fn(p′) | �(p′) ≤ n < �(q)〉�〈p′

n | n ≥ �(q)〉 ∈ D,

where p′
n = 〈an(p′), An(p′), fn(p′)〉 for n ≥ �(p).

Proof of Claim. Choose a function h : κ↔ [κ]<ω, such that for every n < ω,
h�κn : κn ↔ [κn]<ω. Now define by recursion a ≤∗-increasing sequence
〈pα | α < κ〉 of direct extensions of p, where pα = 〈pα

n | n < ω〉 and,
for n ≥ �(p), pα

n = 〈aα
n, Aα

n, fα
n 〉. Set p0 = p. Suppose that α < κ and

〈pβ | β < α〉 has been defined. As a recursive assumption we assume the
following:

(∗) For every n < ω and for β, γ, κn ≤ β, γ < κ,

if �(p) ≤ m ≤ n + 1, then aβ
m = aγ

m and Aβ
m = Aγ

m.

Let p̃α be pα−1 if α is successor ordinal, and a direct extension of 〈pβ |
β < α〉 satisfying (∗) if α is a limit ordinal. Note that if n < ω is the
maximal such that α ≥ κn then Lemma 2.17 applies, since the parts of pβ ’s
below κn+1 satisfy (∗). Now we consider h(α). Let h(α) = 〈ν1, . . . , νk〉. If
〈ν0, . . . , νk−1〉 �∈

∏�(p)+k−1
m=�(p) Am(p̃α), then we set pα = p̃α, where for m ≥ �(p),

p̃α
m = 〈am(p̃α), Am(p̃α), fm(p̃α)〉. If not, we consider q = p̃α�〈ν0, . . . , νk−1〉.

If there is no direct extension of q inside D, then let pα = p̃α. Otherwise, let
s = 〈sn | n < ω〉 ≥∗ q be in D. Define pα = 〈pα

n | n < ω〉 then as follows:

(a) For each n with n ≥ �(p) + k or n < �(p), let pα
n = sn, and

(b) For each n with �(p) ≤ n ≤ �(p) + k − 1, an(pα) = an(p̃α),
An(pα) = An(p̃α), and fn(pα) = fn(s)�((dom(fn(s)) \ an(p̃α)).
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The meaning of this last part of the definition is that we extend for n with
�(p) ≤ n ≤ �(p) + k− 1 only fn(p̃α) and only outside of an(p̃α). Clearly such
defined pα satisfies (∗).

Finally, (∗) allows us to put all the 〈pα | α < κ〉 together. Thus we define
p′ = 〈p′

n | n < ω〉 as follows:

(i) For n < �(p), let p′
n =

⋃
α<κ pα

n.

(ii) For n ≥ �(p), let fn(p′) =
⋃

α<κ fn(pα), an(p′) = an(pκn), and An(p′) =
An(pκn).

Obviously p′ ∈ P and p′ ≥∗ p. This p′ is as desired. Thus, if q ≥ p′ is in
D, then we consider α = h−1(〈qn(max(an(p′))) | �(p) ≤ n < �(q)〉). By the
construction of pα ≤∗ p′, pα�〈qn(max(an(p′))) | �(p) ≤ n < �(q)〉 will be
in D. Then also p′�〈qn(max(an(p′)) | �(p) ≤ n < �(q)〉 ∈ D, since D is open.

This concludes the proof of the claim.

Now let p′ ≥∗ p be given by the claim. Assume for simplicity that �(p) = 0.
We would like to shrink the sets An(p′) in a certain way. Thus define p(1) ≥∗

p′ such that:

(∗)1 For every m < ω and 〈ν0, . . . , νm−1〉 ∈
∏m−1

n=0 An(p(1)), if for
some ν ∈ Am(p(1)), p(1)�〈ν0, . . . , νm−1, ν〉 ∈ D, then for every
ν′ ∈ Am(p(1)) p(1)�〈ν0, . . . , νm−1, ν

′〉 ∈ D.

Let m < ω and �ν = 〈ν0, . . . , νm−1〉 ∈
∏m−1

n=0 An(p′), where in case of
m = 0, �ν is the empty sequence. Consider the set

Xm,�ν = {ν ∈ Am(p′) | p′�〈ν0, . . . , νm−1, ν〉 ∈ D}.

Define Am�ν to be Xm,�ν , if Xm�ν ∈ Um,max(am(p′)) and Am(p′) \Xm,�ν , other-
wise. Let Am =

⋂
{Am,�ν | �ν ∈

∏m−1
n=0 An(p′)}. Define now p(1) = 〈p(1)n |

n < ω〉 as follows: for each n < ω let p(1)n = 〈an(p′), An, f(p′)〉. Clearly,
such defined p(1) satisfies (∗)1.

Then, in a similar fashion we chose p(2) ≥∗ p(1) satisfying:

(∗)2 For every m < ω and 〈ν0, . . . , νm−1〉 ∈
∏m−1

n=0 An(p(2)), if for
some 〈νm, νm+1〉 ∈ Am(p(2))×Am+1(p(2)),

p(2)�〈ν0, . . . , νm−1〉�〈νm, νm+1〉 ∈ D,

then for every 〈ν′
m, ν′

m+1〉 ∈ Am(p(2))×Am+1(p(2)),

p(2)�〈ν0, . . . , νm−1〉�〈ν′
m, ν′

m+1〉 ∈ D.

Continue and define for every k with 2 ≤ k < ω a p(k) ≥∗ p(k − 1)
satisfying (∗)k, where (∗)k is defined analogously for k-sequences. Finally,
let p∗ be a direct extension of 〈p(k) | 1 ≤ k < ω〉. Let s ≥ p∗ be in D. Set
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n∗ = �(s). Consider 〈s0(max(a0(p∗))), . . . , sn∗ −1(max(an∗ −1(p∗)))〉. Then
the choice of p′, p′ ≤∗ p∗ and openness of D imply that

p∗�〈s0(max(a0(p∗)), . . . , sn∗ −1(max(an∗ −1(p∗)))〉 ∈ D.

But p∗ ≥∗ p(n∗). So, p∗ satisfies (∗)n∗ . It follows that for 〈ν0, . . . , νn∗ −1〉 ∈∏n∗ −1
m=0 Am(p∗), p∗�〈ν0, . . . , νn∗ −1〉 ∈ D. �

Combining these lemmas we obtain the following:

2.20 Proposition. The forcing 〈P ,≤〉 does not add new bounded subsets to
κ and preserves all the cardinals above κ+.

Actually, it is not hard now to show that κ+ is preserved as well.

2.21 Lemma. Forcing with 〈P ,≤〉 preserves κ+.

Proof. Suppose that (κ+)V is not a cardinal in a generic extension V [G]. Re-
call that cf(κ) = ℵ0 and by Proposition 2.20 it is preserved. So, cf((κ+)V ) <
κ in V [G]. Pick p ∈ G, δ < κ and a name g

∼ so that κ�(p) > δ and

p � (g∼ : δ̌ → (κ+)V and ran(g∼) is unbounded in (κ+)V ).

For every τ < δ let

Dτ = {q ∈ P | q ≥ p and for some α < κ+, q � g
∼(τ̌) = α̌}.

Define by recursion, using Lemma 2.17, a ≤∗-increasing sequence 〈pτ | τ < δ〉
of ≤∗-extensions of p so that pτ satisfies the conclusion 2.18 with D = Dτ .
By Lemma 2.17, there is a pδ ≥∗ pτ for each τ < δ.

Now let τ < δ. By the choice of pτ there is an n(τ) < ω such that for
every 〈ν0, . . . , νn(τ)−1〉 ∈

∏�(p)+n(τ)−1
m=�(p) Am(pδ), pδ�〈ν0, . . . , νn(τ)−1〉 ∈ Dτ .

This means that for some α(ν0, . . . , νn(τ)−1) < κ+

pδ�〈ν0, . . . , νn(τ)−1〉 � g
∼(τ̌) = α̌(ν0, . . . , νn(τ)−1).

Set

α(τ) = sup
{
α(ν0, . . . , νn(τ)−1) |

〈ν0, . . . , νn(τ)−1〉 ∈
�(p)+n(τ)−1∏

m=�(p)

Am(pδ)
}
.

Then clearly α(τ) < κ+ and

pδ � g
∼(τ̌) < α̌(τ).

Now let α∗ =
⋃

τ<δ α(τ). Then again α∗ < κ+ and

pδ � ∀τ < δ̌(g∼(τ) < α̌∗).

But this is impossible since p ≤∗ pδ forced that the range of g was unbounded
in κ+. Contradiction. �
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Finally, let us show that this forcing adds λ ω-sequences to κ. Thus, let
G ⊆ P be generic. For every n < ω define a function Fn : λ→ κn as follows:

Fn(α) = ν if for some p = 〈pm | m < ω〉 ∈ G with �(p) > n, pn(α) = ν.

Now for every α < λ set tα = 〈Fn(α) | n < ω〉. Let us show that the set
{tα | α < λ} has cardinality λ. Notice that we cannot claim that all such
sequences are new or even distinct due to the Cohen parts of conditions,
i.e. the fn’s.

2.22 Lemma. For every β < λ there is an α with β < α < λ such that tα
dominates every tγ with γ ≤ β.

Proof. Suppose otherwise. Then there is a p = 〈pn | n < ω〉 ∈ G and β < λ
such that

p � ∀α(β < α < λ→ ∃γ ≤ β (tα∼
does not dominate tγ∼

)).

For every n ≥ �(p) let pn = 〈an, An, fn〉. Pick some

α ∈ λ \
(⋃

n<ωan ∪
⋃

dom(fn) ∪ (β + 1)
)
.

We extend p to a condition q so that q ≥∗ p and for every n ≥ �(q) = �(p),
α ∈ bn, where qn = 〈bn, Bn, gn〉. Then q will force that tα dominates every
tγ with γ < α. This leads to the contradiction. Thus, let γ < α and assume
that q belongs to the generic subset of P . Then either tγ ∈ V or it is a
new ω-sequence. If tγ ∈ V then it is dominated by tα by the usual density
arguments. If tγ is new, then for some r ≥ q in the generic set γ ∈ cn for
every n ≥ �(r), where rn = 〈cn, Cn, hn〉. But also α ∈ cn since cn ⊇ bn. This
implies Fn(α) > Fn(γ) (by Definition 2.6(5)) and we are done. �

We now have the following conclusion.

2.23 Theorem. The following holds in V [G]:

(a) All cardinals and cofinalities are preserved.

(b) No new bounded subsets are added to κ; in particular, GCH holds be-
low κ.

(c) There are λ new ω-sequences in
∏

n<ω κn. In particular, 2κ ≥ λ.

2.24 Remark. The initial large cardinal assumptions used here are not
optimal. We refer to Mitchell’s chapter [41] on the Covering Lemma for
matters of the consistency strength. In the next section another extender-
based Prikry forcing requiring much weaker extenders will be introduced.

It is tempting to extend Lemma 2.22 and claim that 〈tα | α < λ and
tα �∈ V 〉 is a scale in

∏
n<ω κn, i.e. for every t ∈

∏
n<ω κn there is an α < λ

such tα �∈ V and tα dominates t. Unfortunately this is not true in general.
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We need to replace
∏

n<ω κn by the product of a sequence 〈λn | n < ω〉
related to λ (basically the Prikry sequence for Unλ whenever it is defined).
Assaf Sharon [50] made a full analysis of possible cofinalities structure for a
similar forcing (the one that will be discussed in the next section). Let us
now deal with a special case that cannot be covered by such forcing. Let us
assume that for every n < ω, jn(κn) = λ, where jn : V → Mn  Ult(V,En)
is the canonical embedding. In particular, each κn is a superstrong cardinal.
Then the following holds.

2.25 Lemma. Let t ∈
∏

n<ω κn in V [G]. Then there is an α < λ such that
tα �∈ V and for all but finitely many n < ω, tα(n) > t(n).

Proof. Let t∼ be a name of t. Pick p ∈ G forcing “t∼ ∈
∏

n<ω κ̌n”. Define for
every n < ω a set dense open above p:

Dn = {q ∈ P | q ≥ p and there is a νn < κn such that q � t∼(n) = ν̌n}.

Apply Lemma 2.18 to each of Dn’s and construct a ≤∗-sequence 〈p(k) | k <
ω〉 of direct extensions of p such that p(k) and Dk satisfy the conclusion of
Lemma 2.18. Let p∗ be a common direct extension of p(k)’s. Then for every k,
1 ≤ k < ω, there is an n(k) < ω such that for every 〈ν0, . . . , νn(k)−1〉 ∈
∏�(p)+n(k)−1

m=�(p) Am(p∗),

p∗�〈ν0, . . . , νn(k)−1〉 � t∼(k − 1) = ξ̌(ν0, . . . , νn(k)−1)

for some ξ(ν0, . . . , νn(k)−1) < κk−1. Assume for simplicity of notation that
�(p) = 0. Let 1 ≤ k < ω. We can assume that ξ(ν0, . . . , νn(k)−1), defined
above, depends really only on ν0, . . . , νk−1, since its values are below κk−1

and ultrafilters over κm’s are κk-complete for m ≥ k. Also assume that for
every m > 0 Am(p∗) ∩ κm−1 = ∅. Now, we replace ξ by a bigger function η
depending only on νk−1. Thus set

η(νk−1) =
⋃{

ξ(ν0, . . . , νk−2, νk−1) | 〈ν0, . . . , νk−2〉 ∈
∏k−2

m=0Am(p∗)
}

+ νk−1.

Clearly, η(νk−1) < κk−1. So,

p∗�〈ν0, . . . , νk−1〉 � t∼(k − 1) < η̌(νk−1)

for every k, 1 ≤ k < ω and every 〈ν0, . . . , νk−1〉 ∈
∏k−1

m=0 Am(p∗). For every
n < ω let ηn : An(p∗) → κn be the restriction of η to κn. Let αn =
max(an(p∗)). Consider jn(ηn)(αn) where jn : V → Mn is the embedding of
the extender En. Then jn(ηn)(αn) < jn(κn) = λ. Choose some α below λ
and above

⋃
n<ω jn(ηn)(αn) ∪ (dom(fn(p∗))). Now extend p∗ to a condition

p∗ ∗ such that p∗ ∗ ≥∗ p∗ and for every n < ω α ∈ an(p∗ ∗). Then,

p∗ ∗ � ∀n(tα
∼

(n) > ηn((tαn
∼

(n)) > t∼(n)).

So we are done. �
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The extender-based forcing described in this section can also be used with
much stronger extenders than those used here. Thus with minor changes we
can deal with En’s such that jn(κn) < λ but requiring jn(κn+1) > λ. Once
jn(κn+1) ≤ λ for infinitely many n’s, the arguments like the one in the proof
of the Prikry condition seem to break down completely.

Another probably more exciting direction is to use shorter extenders in-
stead of long ones. Thus it turned out that for λ’s below κ+ω1 an extender of
length κ+n

n over κn for n < ω suffices. The basic idea is to replace in p ∈ P
the subset an(p) of λ by an order preserving function from λ to κ+n

n . Such
defined forcing fails to satisfy κ++-c.c. and actually will collapse λ to κ+.
But using increasing with n similarity of ultrafilters involved in the exten-
ders, it turns out that there is a subforcing satisfying the κ++-c.c. and still
producing λ new sequences in

∏
n<ω κn. This approach was implemented in

[17] for calculating the consistency strength of various instances of the fail-
ure of the Singular Cardinal Hypothesis and, as well, for constructing more
complicated cardinal arithmetic configurations.

3. Extender-Based Prikry Forcing with a Single
Extender

In this section we present a simplified version of the original extender-based
Prikry forcing of [19, Sect. 1]. Our aim is simultaneously to change the
cofinality of a regular cardinal to ℵ0 and blow up its power. Recall that
the Prikry forcing of Definitions 1.1 and 1.2 does the first part, i.e. change
cofinality. As in the previous section, we would like to use an extender instead
of a single ultrafilter in order to blow up the power.

Let κ, λ be regular cardinals with λ ≥ κ++. Assume that κ is Vκ+δ-
strong for a δ so that κ+δ = λ. Let E be an extender over κ witnessing
this and j : V −→ M  Ult(V,E) with M ⊇ Vκ+δ be the corresponding
elementary embedding. Suppose also that there is a function fλ : κ → κ
such that j(fλ)(κ) = λ. Notice that such a function always exists for small
λ’s like λ = κ++, λ = κ+116, λ = κ+κ+1 etc., just take mappings α → α++,
α → α+116, α → α+α+1. In general, assuming j(κ) > λ, it is not hard to
force such fλ. The idea is to force for every inaccessible α ≤ κ a generic
function from α to α and then to extend the embedding specifying to κ the
value λ under the generic function from j(κ) to j(κ) in M .

If κ is a strong cardinal then for every λ > κ there is a (κ, λ)-extender
E and a function f : κ → κ so that jE(f)(κ) = λ, where jE : V → M  
Ult(V,E). The Solovay argument [56], originally used for a supercompact κ,
works without change for a strong cardinal κ: Let κ be a strong cardinal and
suppose that for some λ > κ for every (κ, λ)-extender E and every function
f : κ → κ we have jE(f)(κ) �= λ. Let λ be the least such ordinal. Pick a
(κ, 22λ

)-extender E∗. Let j : V → M  Ult(V,E∗). Then, in M , λ will be
the least such that for every (κ, λ)-extender E and every function f : κ→ κ,
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jE(f)(κ) �= λ, since M ⊇ V
22λ . Now define a function g : κ → κ as follows:

g(α) = the least β > α such that for every (α, β)-extender E and every
function f : α → α, jE(f)(α) �= β, if there is such a β and let g(α) = 0
otherwise. Then, clearly, j(g)(κ) = λ. But then E∗�λ and g provide the
contradiction.

Suppose for simplicity that V satisfies GCH. Then we will have
κ+

Vκ+δ ⊆M . For every α < λ define a κ-complete ultrafilter Uα over κ
by setting X ∈ Uα iff α ∈ j(X). Notice that Uκ will be normal and each Uα

with α < κ will be trivial; we shall ignore such Uα and refer to Uκ as the
least one. As in Sect. 2, we define a partial ordering ≤E on λ:

α ≤E β iff α ≤ β and for some f ∈κ κ, j(f)(β) = α.

Again, clearly, α ≤E β implies that Uα ≤RK Uβ as witnessed by any f ∈ κκ
with j(f)(β) = α. In the previous section only the κ directedness (more
precisely, κn directedness for every n < ω) of the ordering was used. Here we
will need more—κ++-directedness. Thus, as in Sect. 2, fix an enumeration
〈aα | α < κ〉 of [κ]<κ so that for every regular cardinal μ < κ, 〈aα | α < μ〉
enumerates [μ]<μ and every element of [μ]<μ appears μ many times in the
enumeration. Let j(〈aα | α < κ〉) = 〈aα | α < j(κ)〉. Then, 〈aα | α < λ〉 will
enumerate [λ]<λ ⊇ [λ]<κ++

. For each α < λ we consider the following basic
commutative diagram:

where iα : V −→ Nα  Ult(V, Uα) and kα([f ]Uα) = j(f)(α).

3.1 Lemma. crit(kα) = (κ++)Nα .

Proof. It is enough to show that kα(κ) = κ, since kα((κ+)Nα) = κ+ and
kα((κ++)Nα) = κ++ by elementarity. But κNα ⊆ Nα. Hence (κ+)Nα = κ+.
By 2κ = κ+, (κ++)Nα < κ++. So (κ++)Nα is the first ordinal moved by kα.

In order to show that κ is fixed let us use the function fλ : κ → κ rep-
resenting λ in M . Thus by commutativity, kα(iα(fλ)) = j(fλ). Clearly,
iα(fλ) : iα(κ) → iα(κ) and iα(fλ)�κ = fλ. Hence

Nα � ∀τ < κ (iα(fλ)(τ) < κ).

Using kα we obtain that

M � ∀τ < kα(κ) (j(fλ)(τ) < kα(κ)).
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But kα(κ) ≤ kα([id]Uα) = α < λ. Hence,

M � ∀τ < kα(κ) (j(fλ)(τ) < λ).

But kα(κ) ≥ κ and j(fλ)(κ) = λ. So, kα(κ) must be equal to κ and we are
done. �

The following is a consequence of the previous lemma.

3.2 Lemma. For every α with κ ≤ α < λ, α ≥E κ.

Proof. By Lemma 3.1, kα(κ) = κ. So, kα([g]Uα) = κ for g : κ→ κ represent-
ing κ in Nα. Then g projects Uα on Uκ and j(g)(α) = kα([g]Uα) = κ. �

We can now improve Lemma 2.1 to κ++-directedness.

3.3 Lemma. Let 〈αν | ν < κ+〉 be a sequence of ordinals below λ. Suppose
that α ∈ λ \ (

⋃
ν<κ+ αν + 1) codes {αν | ν < κ+}, i.e. aα = {αν | ν < κ+}.

Then α >E αν for every ν < κ+.

Proof. Let ν < κ+. Consider the following commutative diagram:

Then j(〈aβ | β < κ〉) = kα(iα(〈aβ | β < κ〉)). Let α∗ = [id]Uα . Then
kα(α∗) = α. So, aα = kα(a∗

α∗ ), where a∗
α∗ = iα(〈aβ | β < κ〉)(α∗). But

aα = {αν′ | ν′ < κ+} and, by Lemma 3.1, kα(κ+) = κ+. So, a∗
α∗ = {α∗

ν′ |
ν′ < κ+}, where kα(α∗

ν′ ) = αν′ . Now we can define an elementary embedding
kανα : Nαν −→ Nα. Set

kανα([f ]Uαν
) = iα(f)(α∗

ν).

Finally, every function representing α∗
ν in Nα will be a projection of Uα onto

Uαν and witness αν <E α. �

For β ≤E α < λ we fix a projection παβ : κ→ κ defined as in Lemma 3.3.
Let παα = id. The following two lemmas were actually proved in the previous
section (Lemmas 2.3 and 2.4).
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3.4 Lemma. Let γ < β ≤ α < λ. If α ≥E β and α ≥E γ, then {ν < κ |
παβ(ν) > παγ(ν)} ∈ Uα.

3.5 Lemma. Let α, β, γ < λ be so that α ≥E β ≥E γ. Then there is an
A ∈ Uα so that for every ν ∈ A

παγ(ν) = πβγ(παβ(ν)).

Consider the following set:

X = {ν < κ | ∃ν∗ ≤ ν(ν∗ is inaccessible,
fλ�ν∗ : ν∗ −→ ν∗, and fλ(ν∗) > ν)}.

Clearly X ∈ Uα for every α < λ (ignoring α’s below κ). Also the function
g : X → κ defined by g(ν) = the maximal inaccessible ν∗ ≤ ν closed under
fλ and with fλ(ν∗) > ν, projects each Uα onto Uκ. Let us change each πακ

to g on X and for ν ∈ κ \ X let πακ(ν) = 0. Also change παβ ’s a little for
α, β > κ. Thus for ν ∈ κ \X let παβ(ν) = 0. If ν ∈ X and παβ(ν) is below
πακ(ν) then change παβ(ν) to ν or any ordinal between πακ(ν) and ν. Note
that these changes are on a small set since κ \X �∈ Uα for any α < λ. Hence
the changed παβ ’s are still projections. The following summarizes the main
properties of the Uα’s and παβ ’s:

(1) 〈λ,≤E〉 is a κ++-directed partial ordering.

(2) 〈Uα | α < λ〉 is a Rudin-Keisler commutative sequence of κ-complete
ultrafilters over κ with projections 〈παβ | β ≤ α < λ, α ≥E β〉.

(3) For every α < λ, παα is the identity on a fixed set X which belongs to
every Uβ for β < λ.

(4) (Commutativity) For every α, β, γ < λ such that α ≥E β ≥E γ, there
is a Y ∈ Uα so that for every ν ∈ Y

παγ(ν) = πβγ(παβ(ν)).

(5) For every α < β, γ < λ, if γ ≥E α, β then

{ν < κ | πγα(ν) < πγβ(ν)} ∈ Uγ .

(6) Uκ is a normal ultrafilter.

(7) κ ≤E α when κ ≤ α < λ.

(8) (Full commutativity at κ) For every α, β < λ and ν < κ, if α ≥E β
then πακ(ν) = πβκ(παβ(ν)).

(9) (Independence of the choice of projection to κ) For every α, β, κ ≤ α,
β < λ, and ν < κ

πακ(ν) = πβκ(ν).
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(10) Each Uα is a P -point ultrafilter, i.e. for every f ∈ κκ, if f is not
constant mod Uα, then there is a Y ∈ Uα such that for every ν < κ
|Y ∩ f −1{ν}| < κ.

The last property just follows using the set X defined above and the normality
of Uκ.

A system of ultrafilters and projections satisfying (1)–(10) was called in
[19] a nice system. Its existence is a bit weaker than the strongness assump-
tion used here. In what follows we will use only such a system in order to
define extender-based Prikry forcing over κ.

Let us denote πακ(ν) by ν0, where κ ≤ α < λ and ν < κ. By a ◦-increasing
sequence of ordinals we mean a sequence 〈ν1, . . . , νn〉 of ordinals below κ so
that

ν0
1 < ν0

2 < · · · < ν0
n.

For every α < λ by X ∈ Uα we shall always mean that X ⊆ X, in particular,
it will imply that for ν1, ν2 ∈ X if ν0

1 < ν0
2 then |{α ∈ X | α0 = ν0

1}| < ν0
2 .

The following weak version of normality holds, since Uα is a P -point: if
Xi ∈ Uα for i < κ then also X = Δ∗

i<κXi = {ν | ∀i < ν0 (ν ∈ Xi)} ∈ Uα.
Let ν < κ and 〈ν1, . . . , νn〉 be a finite sequence of ordinals below κ. Then

ν is called permitted for 〈ν1, . . . , νn〉 if ν0 > max{ν0
i | 1 ≤ i ≤ n}.

We shall ignore Uα’s with α < κ and denote Uκ by U0.
Let us now define a forcing notion for adding λ ω-sequences to κ.

3.6 Definition. The set of forcing conditions P consists of all the elements
p of the form {〈γ, pγ〉 | γ ∈ g \ {max(g)} ∪ {〈max(g), pmax(g), T 〉}, where

(1) g ⊆ λ of cardinality ≤ κ which has a maximal element in ≤E-ordering
and 0 ∈ g. Further let us denote g by supp(p), max(g) by mc(p), T by
T p, and pmax(g) by pmc (mc for the maximal coordinate).

(2) For γ ∈ g, pγ is a finite ◦-increasing sequence of ordinals < κ.

(3) T is a tree with a trunk pmc consisting of ◦-increasing sequences. All
the splittings in T are required to be on sets in Umc(p), i.e. for every
η ∈ T , if η ≥T pmc then the set

SucT (η) = {ν < κ | η�〈ν〉 ∈ T} ∈ Umc(p).

Also require that for η1 ≥T η2 ≥T pmc

SucT (η1) ⊆ SucT (η2).

(4) For every γ ∈ g, πmc(p),γ(max(pmc)) is not permitted for pγ .

(5) For every ν ∈ SucT (pmc)

|{γ ∈ g | ν is permitted for pγ}| ≤ ν0.
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(6) πmc(p),0 projects pmc onto p0 (so pmc and p0 are of the same length).

Let us give some intuitive motivation for the definition of forcing condi-
tions. We want to add a Prikry sequence for every Uα(α < λ). The finite
sequences pγ (γ ∈ supp(p)) are initial segments of such sequences. The sup-
port of p has two distinguished coordinates. The first is the 0-coordinate of p
and the second is its maximal coordinate. The 0-coordinate or more precisely
the Prikry sequence for the normal ultrafilter will be used further in order
to push the present construction to ℵω. Also condition (6) will be used for
this purpose. The maximal coordinate of p is responsible for extending the
Prikry sequences for γ’s in the support of p. The tree T p is a set of possible
candidates for extending pmc and by using the projections map πmc(p),γ for
γ ∈ supp(p), T p becomes also the set of candidates for extending the pγ ’s.
Instead of working with a tree, it is possible to replace it by a single set.
The proof of the Prikry condition will then be a bit more complicated. Con-
dition (4) means that the information carried by max(pmc) is impossible to
project down. The reasons for such a condition are technical. Condition (5)
is desired to allow the use of the diagonal intersections.

In contrast to the main forcing of the previous section, we deal with κ
coordinates simultaneously (i.e. the support of the condition may have car-
dinality κ). This causes difficulties since we cannot hope to have full com-
mutativity between κ many ultrafilters.

3.7 Definition. Let p, q ∈ P . We say that p extends q and denote this by
p ≥ q iff

(1) supp(p) ⊇ supp(q).

(2) For every γ ∈ supp(q), pγ is an end-extension of qγ .

(3) pmc(q) ∈ T q.

(4) For every γ ∈ supp(q),

pγ \ qγ = πmc(q),γ“((pmc(q) \ qmc(q))�(length(pmc) \ (i + 1)),

where i ∈ dom(pmc(q)) is the largest such that pmc(q)(i) is not permitted
for qγ .

(5) πmc(p),mc(q) projects T p
pmc into T q

qmc .

(6) For every γ ∈ supp(q) and ν ∈ SucT p(pmc), if ν is permitted for pγ ,
then

πmc(p),γ(ν) = πmc(q),γ(πmc(p),mc(q)(ν)).

In clause (5) above the following notation is used: let T be a tree and
η ∈ T , then Tη consists of all finite sequences μ such that η�μ is in T .
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Intuitively, we are allowing almost everything to be added on the new
coordinates and restrict ourselves to choosing extensions from the sets of
measure one on the old coordinates. Actually here we are really extending
only the maximal old coordinate and then we are using the projection map.
This idea goes back to [13] and further to Mitchell [44].

3.8 Definition. Let p, q ∈ P . We say that p is a direct (or Prikry) extension
of q and denote this by p ≥∗ q iff

(1) p ≥ q, and

(2) for every γ ∈ supp(q), pγ = qγ .

Our strategy is to show that 〈P ,≤,≤∗〉 satisfies the Prikry condition, that
〈P ,≤∗〉 is κ-closed, and that 〈P ,≤〉 satisfies the κ++-c.c.

The Prikry condition together with κ closedness of 〈P ,≤∗〉 insure that no
new bounded subsets of κ are added. The κ++-c.c. takes care of cardinals
≥ κ++. Since κ will change its cofinality to ℵ0, an argument similar to
Lemma 2.21 will be used to show that κ+ is preserved. Clause 3.7(4) of the
system of ultrafilters and projections insures that at least λ-many ω-sequences
will be added to κ.

3.9 Lemma. The relation ≤ is a partial order.

Proof. Let us check the transitivity of ≤. Suppose that r ≤ q and q ≤ p. Let
us show that r ≤ p. Conditions (1) and (2) of Definition 3.7 are obviously
satisfied. Let us check (3), i.e. let us show that pmc(r) ∈ T r. Since p ≥ q ≥ r,
mc(r) ∈ supp(q), qmc(r) ∈ T r and

pmc(r) \ qmc(r) = πmc(q),mc(r)“(pmc(q) \ qmc(q)).

Also pmc(q) ∈ T q. By (5) of Definition 3.7 (for q and r) πmc(q),mc(r) projects
T q

qmc into a subtree of T r
qmc(r) . Hence pmc(r) ∈ T r and, so condition (3) is

satisfied.
Let us check condition (4). Suppose that γ ∈ supp(r). We need to show

that pγ \ rγ = πmc(r),γ“(pmc(r) \ rmc(r)). In order to simplify the notation,
we are assuming here that every element of pmc(r) \ rmc(r) is permitted for
rγ . Since q ≥ r, qγ \ rγ = πmc(r),γ“(qmc(r) \ rmc(r)). So, we need to show
only that pγ \ qγ = πmc(r),γ“(pmc(r) \ qmc(r)). Since p ≥ q, pmc(q) ∈ T q and
pγ \ qγ = πmc(q),γ“(pmc(q) \ qmc(q)). Using condition (6) of Definition 3.7 for
q ≥ r and the elements of pmc(q) \ qmc(q), we obtain the following

pγ \ qγ = πmc(q),γ“(pmc(q) \ qmc(q))

= πmc(r),γ“(πmc(q),mc(r)“(pmc(q) \ qmc(q)))

= πmc(r),γ“(pmc(r) \ qmc(r)).

The last equality holds by condition (4) of Definition 3.7 used for p and q.
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Let us check condition (5), i.e. πmc(p),mc(r) projects T p
pmc into T r

pmc(r) . Since
p ≥ q, T p

pmc is projected by πmc(p),mc(q) into T q
qmc . Since q ≥ r, πmc(q),mc(r)

projects T q
qmc into T r

qmc(r) . Now, using condition (6) for p and q with γ =
mc(r), we obtain condition (5) for p and r.

Finally, let us check condition (6). Let γ ∈ supp(r), ν ∈ SucT p(pmc)
and suppose that ν is permitted for pγ . Using condition (5) for p and q,
we obtain that πmc(p),mc(q)(ν) ∈ SucT q (qmc). Recall that it was required
in Clause 3.6(3) that each splitting has a splitting below it in the tree.
Denote πmc(p),mc(q)(ν) by δ. By condition (6) for q and r, πmc(q),γ(δ) =
πmc(r),γ(πmc(q),mc(r)(δ)). Using (6) for p and q, we obtain

πmc(p),γ(ν) = πmc(q),γ(πmc(p),mc(q)(ν))
= πmc(q),γ(δ)
= πmc(r),γ(πmc(q),mc(r)(δ)).

Once more using (6) for p and q,

πmc(q),mc(r)(πmc(p),mc(q)(ν)) = πmc(p),mc(r)(ν).

This completes the checking of (6) and also the proof of the lemma. �

The main point of the proof appears in the next lemma.

3.10 Lemma. Let q ∈ P and α < λ. Then there is a p ≥∗ q so that
α ∈ supp(p).

Proof. If α ≤E mc(q), then it is obvious. Thus, if α ∈ supp(q), then we
can take p = q. Otherwise add to q a pair 〈α, t〉 where t is any ◦-increasing
sequence so that max(qmc) is not permitted for t.

Now suppose that α 	E mc(q). Pick some β < λ so that β ≥E α and
β ≥E mc(q). Without loss of generality we can assume that β = α. We shall
define p to be of the form

q′ ∪ {〈α, t, T 〉}
where q′ is derived from q by deleting T q from the triple 〈mc(q), qmc, T q〉, t
is an ◦-increasing sequence which projects onto q0 by πα0 and the tree T will
be defined below.

First consider the tree T0 which is the inverse image of T q
qmc by πα,mc(q),

with t added as the trunk. Then p0 = q′ ∪ {〈α, t, T0〉} is a condition in P
which is “almost” an extension and even a direct extension of q. The only
concern is that condition (6) of Definition 3.7 may not be satisfied by p0

and q. In order to repair this, let us shrink the tree T0 a little.
Denote SucT0(t) by A. For ν ∈ A set

Bν = {γ ∈ supp(q) | γ �= mc(q) and ν is permitted for qγ}.

Then we have |Bν | ≤ ν0, since πα,mc(q)(ν) ∈ SucT q (qmc), ν0 = πα0(ν) =
πmc(q),0(παmc(q)(ν)), and q being in P satisfies condition (5) of Definition 3.6.
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Clearly, for ν, δ ∈ A, if ν0 = δ0 then Bν = Bδ, and if ν0 > δ0 then Bν ⊇ Bδ.
Also, if ν ∈ A and ν0 is a limit point of {δ0 | δ ∈ A}, then Bν =

⋃
{Bδ | δ ∈ A

and δ0 < ν0}. So the sequence 〈Bν | ν ∈ A〉 is increasing and continuous
(according to the ν0’s). Obviously,

⋃
{Bν | ν ∈ A} = supp(q) \ {mc(q)}. Let

〈ξi | i < κ〉 be an enumeration of supp(q)\{mc(q)} such that for every ν ∈ A

Bν ⊆ {ξi | i < ν0}.

Now pick for every i ∈ A a set Ci ⊆ A, with Ci ∈ Uα so that for every
ν ∈ Ci παξi(ν) = πmc(q),ξi

(πα,mc(q)(ν)). Let C = A�Δ∗
i<κCi = {ν ∈ A |

∀i < ν0(ν ∈ Ci)}. Then C ∈ Uα.
Now define T to be the tree obtained from T0 by intersecting every level of

T0 with C. Let us show that condition (6) of Definition 3.7 is now satisfied.
Suppose that γ ∈ supp(q). If γ = mc(q), then everything is trivial. Assume
that γ ∈ supp(q) \ {mc(q)}. Then for some i0 < κ, γ = ξi0 . Suppose that
some ν ∈ C is permitted for qγ . Then ξi0 = γ ∈ Bν . Since Bν ⊆ {ξi | i < ν0},
i0 < ν0. Then ν ∈ Ci0 . Hence

παξi0
(ν) = πmc(q),ξi0

(πα,mc(q)(ν)).

So condition (6) is satisfied by p. Hence, p ≥∗ q. �

3.11 Lemma.

(a) 〈P ,≥〉 satisfies the κ++-c.c.

(b) 〈P ,≥∗〉 is κ-closed.

Proof of (a). Let {pα | α < κ++} ⊆ P . Without loss of generality, we can
assume their supports form a Δ-system and are contained in κ++. Also, we
can assume that there are s and 〈t, T 〉 so that for every α < κ++, pα�α = s
and 〈pmc

α , T pα〉 = 〈t, T 〉. Let us then show that pα and pβ are compatible for
every α, β < κ++.

Let α, β < κ++ be fixed. We would like simply to take the union pα ∪ pβ

and to show that this is a condition stronger than both pα and pβ . The first
problem is that pα ∪ pβ may not be in P , since supp(pα ∪ pβ) = supp(pα) ∪
supp(pβ) may not have a maximal element. In order to fix this, let us add
say to pα some new coordinate δ so that δ ≥E mc(pα),mc(pβ). Let p∗

α be the
extension of pα defined in the previous lemma by adding δ as a new coordinate
to pα. Then p∗

α ∪ pβ ∈ P . But we do need a condition stronger than both pα

and pβ . The condition p∗
α ∪ pβ is a good candidate for it. The only concerns

here are (5) and (6) of Definition 3.6. Actually, (5) can be easily satisfied by
intersecting T

p∗
α

(p∗
α)mc with π−1

δ,mc(pβ)“(T
pβ

pmc
β

). In order to satisfy (6), we need to

shrink T p∗
α more. The argument of the previous lemma can be used for this.

Proof of (b). Let δ < κ and let 〈pi | i < δ〉 be an ≤∗-increasing sequence
of elements of P . Pick α < λ above {mc(pi) | i < δ}. Let p be the union
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of pi’s with T pi removed. Set T =
⋂

i<δ π−1
α,mc(pi)

“T pi . Also remove all
τ ’s with τ0 ≤ δ from this tree. Let t be a ◦-increasing sequence so that
πα0“t = p0

0. Consider p ∪ {〈α, t, T 〉}. Clearly, it belongs to P . Now, as in
Lemma 3.9, shrink T to a tree T i so that p ∪ {〈α, t, T i〉}∗ ≥ pi, where i < δ.
Let T ∗ =

⋂
i<δ T i and consider r = p ∪ {〈α, t, T ∗〉}. Then r ≥∗ pi for every

i < δ. �

3.12 Lemma. 〈P ,≤,≤∗〉 satisfies the Prikry condition, i.e. for every state-
ment σ of the forcing language, for every q ∈ P there exists a p ≥∗ q decid-
ing σ.

Proof. Let σ be a statement and q ∈ P . In order to simplify the notation
we assume that q = ∅. The object in this proof is to reduce the problem
to that of Prikry forcing on some Uα, so the arguments of Sect. 1.1 can
be applied. In order to find a suitable ordinal α, which will be pmc, pick
an elementary submodel N of Vμ for μ sufficiently large to contain all the
relevant information of cardinality κ+ and closed under κ-sequences of its
elements. Pick α < λ above (in the ≤E-ordering) all the elements of N ∩ λ.
Let T be a tree so that {〈α, ∅, T 〉} ∈ P . More precisely, we should write
{〈0, ∅〉} ∪ {〈α, ∅, T 〉}. But let us omit the least coordinate when the meaning
is clear. If there is a p ∈ N so that p ∪ {〈α, ∅, T ′〉} ∈ P and decides σ, for
some T ′ ⊆ T , then we are done. Suppose otherwise. Denote SucT (〈〉) by A.
We shall define by recursion sequences 〈pν | ν ∈ A〉 and 〈T ν | ν ∈ A〉.

Let ν = min(A). Consider {〈α, 〈ν〉, T〈ν〉〉}. If there is no p ∈ N and
T ′ ⊆ T〈ν〉 such that p ∪ {〈α, 〈ν〉, T ′〉} is in P and decides σ, then set pν = ∅
and T ν = T〈ν〉. Otherwise, pick some p and T ′ ⊆ T〈ν〉 so that p∪{〈α, 〈ν〉, T ′〉}
is in P and decides σ. Set pν = p and T ν = T ′.

Suppose now that pξ and T ξ are defined for every ξ < ν in A. We shall
define pν and T ν . But let us first define p′

ν and p′ ′
ν . Define p′ ′

ν to be the
union of all pξ’s with ξ ∈ A ∩ ν. Let p′

ν = {〈γ, p′γ
ν 〉 | γ ∈ supp(p′ ′

ν)}, where
for γ ∈ supp(p′ ′

ν), p′γ
ν = p′ ′

ν
γ unless ν is permitted for p′ ′

ν
γ and then p′γ

ν =
p′ ′

ν
γ�〈παγ(ν)〉. If there is no p ∈ N and T ′ so that q = p ∪ {〈α, 〈ν〉, T ′〉} ∈

P , q ≥∗ p′
ν ∪ {〈α, 〈ν〉, T〈ν〉〉} and q ‖σ, then set pν = p′ ′

ν and T ν = T〈ν〉.
Suppose otherwise. Let p, T ′ be witnessing this. Then set T ν = T ′ and
pν = p′ ′

ν ∪ (p \ p′
ν).

This completes the recursive definition. Set p =
⋃

ν∈A pν . For i < κ let

Ci =
{

A, if there is no δ ∈ A such that δ0 = i,⋂
{SucT δ(〈δ〉) | δ ∈ A and δ0 = i}, otherwise.

Note that Ci ∈ Uα since A ∈ Uα and this means by our agreement that for
ν1, ν2 ∈ A, if ν0

1 < ν0
2 then |{γ ∈ A | γ0 = ν0

1}| < ν0
2 . Set A∗ = A ∩Δ∗

i<κCi.
Then for every ν ∈ A∗ for every δ ∈ A if δ0 < ν0 then ν ∈ SucT δ (〈δ〉). Let
S be the tree obtained from T by first replacing T〈ν〉 by T ν for every ν ∈ A∗

and then intersecting all levels of it with A∗. �

3.12.1 Claim. p ∪ {〈α, ∅, S〉} belongs to P.
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Proof. The only non-trivial point here is to show that p∪{〈α, ∅, S〉} satisfies
condition (5) of the definition of P . So let ν ∈ SucS(〈〉). By the definition of
S, SucS(〈〉) = A∗. Consider the set

Bν = {γ ∈ supp(p) | ν is permitted for pγ
∼
}.

For every δ ∈ A let Bν,δ = {γ ∈ supp(pδ) | ν is permitted for pγ}. Then
Bν =

⋃
δ∈A Bν,δ. But, actually the definition of the sequence 〈pδ | δ ∈ A〉

implies that Bν =
⋃
{Bν,δ | δ ∈ A and δ0 < ν0}. The number of δ’s in A

with δ0 < ν0 is ≤ ν0, since for δ, ν ∈ A, δ0 < ν0 implies δ < ν0, and it
means in particular that for every ξ < ν0, |{δ ∈ A | δ0 = ξ}| < ν0. So it is
enough to show that for every δ ∈ A, δ0 < ν0 implies |Bν,δ |≤ ν0. Fix some
δ ∈ A such that δ0 < ν0. Since ν ∈ A∗ and δ0 < ν0, ν ∈ SucT δ(〈δ〉). But
pδ ∪ {〈α, 〈δ〉, T δ〉} ∈ P . So, by the definition of P , |Bν,δ| ≤ ν0. �

Then, clearly p ∪ {〈α, ∅, S〉} ≥∗ 〈α, ∅, T 〉}.
For δ ∈ SucS(〈〉) = A∗ let us denote by (p ∪ {〈α, ∅, S〉})δ the sequence

{〈γ, (pγ)παγ(δ)〉 | γ ∈ supp(p)} ∪ {〈α, 〈δ〉, S〈δ〉〉}, where

(pγ)παγ(δ) =

{
pγ�παγ(δ), if δ is permitted for pγ ,

pγ , otherwise.

Note that (p ∪ {〈α, ∅, S〉})δ is a condition and παγ(δ) is added only for γ’s
which appear in the support of some pξ with ξ0 < δ0 and hence, with ξ < δ.
Also (p ∪ {〈α, ∅, S〉})δ

∗≥ pδ ∪ {〈α, 〈δ〉, T δ〉}.

3.12.2 Claim. For every δ ∈ SucS(〈〉) if for some q,R ∈ N ,

(p ∪ {〈α, ∅, S〉})δ ≤∗ q ∪ {〈α, 〈δ〉, R〉} and q ∪ {〈α, 〈δ〉, R〉} � σ(resp. ¬σ),

then (p ∪ {〈α, ∅, S〉})δ � σ (resp. ¬σ).

Proof. Such a q ∪ {〈α, 〈δ〉, R〉} is a direct extension of pδ ∪ {〈α, 〈δ〉, T δ〉}. By
the choice of pδ and T δ, pδ∪{〈α, 〈δ〉, T δ〉} decides σ. But (p∪{〈α, ∅, S〉})δ

∗≥
pδ ∪ {〈α, 〈δ〉, T δ〉}. �

Let us now shrink the first level of S in order to insure that for every δ1

and δ2 in the new first level

(p ∪ {〈α, ∅, S〉})δ1 � σ (resp. ¬σ) iff (p ∪ {〈α, ∅, S〉})δ2 � σ (resp. ¬σ).

Let us denote the shrunken tree again by S.

3.12.3 Claim. For every δ ∈ SucS(〈〉), (p ∪ {〈α, ∅〉})δ � ‖σ.

Proof. Suppose otherwise. Then every δ in SucS(〈〉) will force the same
truth value of σ. Suppose, for example, that σ is forced. Then p∪{〈α, ∅, S〉}
will force σ. Since every q ≥ p ∪ {〈α, ∅, S〉} is compatible with one of (p ∪
{〈α, ∅, S〉})δ for δ ∈ SucS(〈〉). This contradicts the initial assumption. �
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Now, climbing up level by level in the fashion described above for the first
level, construct a direct extension p∗ ∪ {〈α, ∅, S∗〉} of p ∪ {〈α, ∅, S〉} so that:

(a) For every η ∈ S∗, if for some q,R ∈ N ,
(p∗ ∪ {α, ∅, S∗〉})η ≤∗ q ∪ {〈α, 〈η〉, R〉} and
q ∪ {〈α, 〈η〉, R〉} � σ (resp. ¬σ), then
(p∗ ∪ {〈α, ∅, S∗〉})η � σ (resp. ¬σ).

(b) If η1, η2 ∈ S∗ are of the same length, then

(p∗ ∪ {〈α, ∅, S∗〉})η1 � σ (resp. ¬σ)
iff (p∗ ∪ {〈α, ∅, S∗〉})η2 � σ (resp. ¬σ).

As in Claim 3.12.3, it is impossible to have any η ∈ S∗ so that (p∗ ∪
{〈α, ∅, S∗〉})η decides σ. Combining this with (a) we obtain the following.

3.12.4 Claim. For every q,R, t ∈ N , if q ∪ {〈α, t, R〉} ≥ p∗ ∪ {〈α, ∅, S∗〉}
then q ∪ {〈α, t, R〉} does not decide σ.

Proof. Just note that q ∪ {〈α, t, R〉} ≥∗ (p∗ ∪ {〈α, ∅, S〉})t and use (a). �

Pick some β ∈ N ∩ λ which is ≤E above every element of supp(p∗). This
is possible since supp(p∗) ∈ N . Shrink S∗ to a tree S∗ ∗, as in Lemma 3.10 in
order to insure the following:

For every ν ∈ SucS∗ ∗ (〈〉) and γ ∈ supp(p∗),
if ν is permitted for (p∗)γ , then παγ(ν) = πβγ(παβ(ν)).

Let S∗ ∗ ∗ be the projection of S∗ ∗ to β via πα,β . Denote p∗ ∪ {〈β, ∅, S∗ ∗ ∗〉}
by p∗ ∗. Then p∗ ∗ ∈ N and p∗ ∗ ∪ {〈α, ∅, S∗ ∗〉} ≥∗ p∗ ∪ {〈α, ∅, S∗〉}. Since
N is an elementary submodel there is some q ∈ N with q ≥ p∗ ∗ deciding σ.
Let, for example, q � σ. Pick some t ∈ S∗ ∗ so that παβ“t = qβ . Such t
exists, since by Definition 3.7 qβ belongs to S∗ ∗ ∗ which is the image of S∗ ∗

under παβ . Note also that mc(q) <E α by the choice of N . Let R be a
from S∗ ∗

t by intersecting S∗ ∗
t with π−1

α,mc(q)(T
q) and shrinking, if necessary,

as in Lemma 3.10 in order to insure the equality of projections παγ and
πmc(q),γ ◦ πα,mc(q) for permitted γ’s in supp(q). Then q ∪ {〈α, t, R〉} will
be a condition stronger than q. Hence, it forces σ. But this contradicts
Claim 3.12.4, since q ∪ {〈α, t, R〉} ≥ p∗ ∪ {〈α, ∅, S∗〉}. This contradiction
finishes the proof of Lemma 3.12. �

Let G be a generic subset of P . By Lemma 3.10, for every α < λ there is
a p ∈ G with α ∈ supp(p). Let us denote

⋃
{pα | p ∈ G} by Gα.

3.13 Lemma.

(a) For every α < λ, Gα is a Prikry sequence for Uα, i.e. an ω-sequence
almost contained in every set in Uα.
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(b) G0 is an ω-sequence unbounded in κ.

(c) If α �= β then Gα �= Gβ, moreover α < β implies that Gβ dominates
Gα.

Proof. (a) Follows from the definition of P . (b) Is a trivial consequence of (a).
For (c) note that there is a γ < λ such that γ ≥E α, β. By Lemma 3.4 then
{ν < κ | πγα(ν) < πγβ(ν)} ∈ Uγ . This together with the definition of P
implies that Gα is dominated by Gβ . �

3.14 Lemma. κ+ remains a cardinal in V [G].

Proof. Suppose otherwise. Then it changes its cofinality to some μ < κ. Let
g : μ→ (κ+)V be unbounded in (κ+)V . Pick p ∈ G forcing this. Suppose for
simplicity that ∅ � g

∼ : μ̌→ κ̌+ unbounded. Pick an elementary submodel N
as in Lemma 3.12. Let α < λ be above every element of N\λ. Pick a tree T so
that {〈α, ∅, T 〉} ∈ P . As in Lemma 3.12, define by induction an ≤∗ increasing
sequence of direct extensions of {〈α, ∅, T 〉} 〈qi ∪ {〈α, ∅, Si〉} | i < μ〉 so that

(a) qi ∈ N .

(b) If for some q,R, t ∈ N and j < κ+, q ∪ {〈α, t, R〉} ≥ qi ∪ {〈α, ∅, Si〉}
and q ∪ {〈α, t, R〉} � g

∼(̌i) = ǰ, then

(qi ∪ {〈α, ∅, Si〉})t � g
∼(̌i) = ǰ.

Using Lemma 3.11, find S so that
⋃

i<μ qi ∪{〈α, ∅, S〉} ≥∗ qi ∪{〈α, ∅, Si〉}
for every i < μ. Denote

⋃
i<μ qi by p. As in Lemma 3.12, choose β ∈ N \ λ

above supp(p) and project S into β using παβ . Denote the projection by S∗.
Let p∗ = p ∪ {〈β, ∅, S∗〉}. Then p∗ ∈ N and p∗∪{〈α, ∅, S〉} ≥∗ p ∪ {〈α, ∅, S〉}.
Since N is an elementary submodel, for every i < μ there will be a q ∈ N ,
q ≥ p∗ forcing a value for g

∼(i). Then, using (b), as in Lemma 3.12 for some
t ∈ S (p∪{〈β, ∅, S〉})t will force the same value for g

∼(i). But |S| = κ. So, all
such values are bounded in κ+ by some ordinal δ which is impossible, since
N ⊇ κ+ and N � (φ � (g∼ : μ̌→ κ̌+ unbounded)). Contradiction. �

Now combining the lemmas together, we obtain the following.

3.15 Theorem. The following holds in V [G]:

(a) κ has cofinality ℵ0 and κℵ0 ≥ λ.

(b) All the cardinals are preserved.

(c) No new bounded subsets are added to κ.

If κ is a strong cardinal and λ > κ, then by the Solovay argument, de-
scribed in the beginning of the section, there is a function f : κ → κ and a
λ-strong embedding j : V → M so that j(f)(κ) = λ. Now, having f and j
we can use the extender-based Prikry forcing over κ, as it was defined above.
So, the following holds.
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3.16 Theorem. Let V be a model of GCH and let κ be a strong cardinal.
Then for every λ there exists a cardinal preserving set generic extension V [G]
of V so that

(a) No new bounded subsets are added to κ.

(b) κ changes its cofinality to ℵ0.

(c) 2κ ≥ λ.

4. Down to ℵω

The forcings of Sects. 2 and 3 produce models with κ of cofinality ℵ0, GCH
below κ, and 2κ arbitrarily large. But such κ are quite large. Thus, in
Sect. 2, it is a limit of measurables. In Sect. 3, it is a former measurable
and no cardinals below it were collapsed. We should now like to collapse
cardinals below κ and to move it to ℵω. Note that it is impossible to keep
2κ arbitrarily large once κ is ℵω, since by the celebrated results of Shelah
[53] 2ℵω < min(ℵ(2ℵ0 )+ ,ℵω4) provided that ℵω is a strong limit. Our goal
will be only to produce a finite gap between κ = ℵω and 2κ. It is possible to
generalize this to countable gaps and for this we refer to [19, Sect. 3]. The
possibility of getting uncountable gaps between ℵω and 2ℵω is a major open
problem of cardinal arithmetic.

Let 2 ≤ m < ω. We construct a model satisfying “2ℵn = ℵn+1 for every
n < ω and 2ℵω = ℵω+m” based on the forcing of the previous section.

The basic ideas for moving down to a small cardinal like ℵω are due to
Magidor [35, 36]. Hugh Woodin, see [9] or [15] was able to replace the use of
supercompacts and huge cardinals by Magidor in [15] by strong cardinals. We
present here a simplified version of [20, Sect. 2]. The main simplification is an
elimination of M -generic sets used there. Another simplification, suggested
by Assaf Sharon, allows the removal of bounds b(p, γ) of [20, Sect. 2].

Fix a (κ, κ+m)-extender E over κ. Let j : V →M  Ult(V,E), crit(j) =
κ, M ⊇ Vκ+m, be the canonical embedding. Assume GCH. Let 〈Uα | α < λ〉,
〈παβ | α, β < λ, β ≤E α〉 be as in the previous section with λ = κ+m and
fλ : κ→ κ defined by fλ(ν) = ν+m.

We now define the set of forcing conditions.

4.1 Definition. The set of forcing conditions P consists of all elements p of
the form

{〈0, 〈τ1, . . . , τn〉, 〈f0, . . . , fn〉, F 〉}
∪ {〈γ, pγ〉 | γ ∈ g \ {max(g), 0}} ∪ {〈max(g), pmax(g), T 〉},

where

(1) {〈0, 〈τ1, . . . , τn〉〉} ∪ {〈γ, pγ〉 | γ ∈ g \ {max(g), 0}} ∪ {〈max(g), pmax(g),
T 〉} is as in Definition 3.6. Let us use the notations introduced there.
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So, we denote g by supp(p),max(g) by mc(p), T by T p and pmax(g) by
pmc. Also, let us denote further 〈τ1, . . . , τn〉 by p0, 〈f0, . . . , fn〉 by fp,
for i < n fi by fp

i , n by np and F by F p.

(2) f0 ∈ Col(ω, τ1), fi ∈ Col(τ+m+1
i , τi+1) for 0 < i < n, and fn ∈

Col(τ+m+1
n , κ).

(3) F is a function on the projection of Tpmc by πmc(p),0 so that

F (〈ν0, . . . , νi−1〉) ∈ Col(ν+m+1
i−1 , κ).

Let us denote by T p,0 the projection of T by πmc0. For every η ∈ T p,0
p0 let Fη

be defined by Fη(ν) = F (η�〈ν〉).
Intuitively, the forcing P is intended to turn κ to ℵω and simultaneously

blowing up its power to κ+m+1. The part of P , which is responsible for
blowing up the power of κ is the forcing used in Sect. 3. The function
f0, . . . , fn−1 provides partial information about collapsing already known el-
ements of the Prikry sequence for U0. F is a set of possible candidates for
collapsing between further, still unknown elements of this sequence. Note,
that for i < n we are starting the collapse with τ+m+1

i , i.e. we intend to pre-
serve all τi, τ

+
i , . . . , τ+m+1

i . The reason for this appears in the proof of the
κ++-c.c. and of the Prikry condition. It looks technical but what is hidden
behind is that collapsing indiscernibles (i.e. members of Prikry’s sequences
for Uα’s (α < λ)) causes collapsing generators, i.e. cardinals between κ and λ.
Shelah’s bounds on the power of ℵω, [53] suggest that there is no freedom in
using collapses below κ without effecting the structure of cardinals above κ
as well.

4.2 Definition. Let p, q ∈ P . We say that p extends q and denote this by
p ≥ q iff

(1) {〈0, p0〉} ∪ {〈γ, pγ〉 | γ ∈ supp(p) \ {mc(p), 0}} ∪ {〈mc(p), pmc, T p〉}
extends
{〈0, q0〉} ∪ {〈γ, qγ〉 | γ ∈ supp(q) \ {mc(q), 0}} ∪ {〈mc(q), qmc, T q〉}
in the sense of Definition 3.7.

(2) For every i < length(q0) = nq, fp
i ≥ fq

i .

(3) For every η ∈ T p,0
p0 , F p(η) ⊇ F q(η).

(4) For every i with nq ≤ i < np,

fp
i ⊇ F q((p0 \ q0)�i + 1).

(5) min(p0 \ q0) > sup(ran(fnq )).

4.3 Definition. Let p, q ∈ P . We say that p is a direct extension of q and
denote this by p ≥∗ q iff
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(1) p ≥ q, and

(2) for every γ ∈ supp(q), pγ = qγ .

The following lemmas are analogous to the corresponding lemmas of the
previous section and they have analogous proofs.

4.4 Lemma. The relation ≤ is a partial order.

4.5 Lemma. Let q ∈ P and α < κ+m. Then there is a p ≥∗ q so that
α ∈ supp(p).

4.6 Lemma. 〈P ,≤〉 satisfies the κ++-c.c.

For the proof of the last lemma, note only that the number of possibilities
for the collapsing part 〈f0, , . . . , fn〉, F of a condition (in the form of Defini-
tion 4.1) is κ+. It is important that F depends only on the normal ultrafilter
of the extender. This way F can be viewed as an element of Col(κ, iκ(κ)) of
Nκ  Ult(V, Uκ), which (in V ) has cardinality κ+. Once allowing F to de-
pend on the extender itself, say on the maximal coordinate of a condition, we
will have the correspondence to Col(κ, j(κ)) of M  Ult(V,E). This set is of
cardinality > κ+ (in V ) and using it, it is easy to produce κ++ incompatible
conditions.

If p ∈ P and τ ∈ p0, then the set P/p of all extensions of p in P can be
split in the obvious fashion into two parts: one everything above τ and the
second everything below τ . Denote them by (P/p)≥τ and (P/p)<τ . Then
P/p can be viewed as (P/p)≥τ × (P/p)<τ . The part (P/p)<τ consists of
finitely many Levy collapses and the part (P/p)≥τ is similar to P but has
a slight advantage, namely the Levy collapses used in it are τ+m+1-closed.
Using this observation, one can show the following analog of Lemma 3.11(b):

4.7 Lemma. If p ∈ P and τ ∈ p0, then 〈(P/p)≥τ ,≤∗〉 is τ+m+1-closed.

Let us now turn to the Prikry condition.

4.8 Lemma. 〈P ,≤,≤∗〉 satisfies the Prikry condition.

Proof. Let σ be a statement of the forcing language and q ∈ P . We shall find
p ≥∗ q deciding σ. In order to simplify notation, assume that q = ∅.

Pick an elementary submodel N , α < κ+m and T as in Lemma 3.12.
Consider condition {〈α, ∅, T 〉}. More precisely, we should write {〈0, ∅, ∅, ∅〉 ∪
{〈α, ∅, T 〉}. But when the meaning is clear we shall omit {〈0, ∅, ∅, ∅〉}. If
for some p ∈ N {〈0, ∅, f, F 〉} ∪ p ∪ {〈α, ∅, T ′〉} ∈ P and decides σ, for some
T ′ ⊆ T, f and F , then we are done. Suppose otherwise.

As in the proof of Lemma 3.12 we first show that it is possible to deal with
conditions having fixed support. Once the support is fixed the proof will be
more or less like that of Lemma 1.20, with small complications due to the
involvement of collapses.
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4.8.1 Claim. There are p, F and S in N so that

(a) {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, S〉} ≥∗ {〈α, ∅, T 〉}.

(b) If for some q ∈ N , q0, qα, F ′, T ′ and �f ,

{〈0, q0, �f , F ′〉} ∪ q ∪ {〈α, qα, T ′〉}

is a an extension of {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, T ∗〉} and forces σ (or
¬σ) then also

{〈0, q0, (�f�length(q0))�F (q0), F 〉} ∪ (p)qα ∪ {〈α, qα, Sqα〉}

forces the same, where (p)qα is the set {〈γ, pγ�tγ〉 | γ ∈ supp(p)} with
tγ the maximal final segment of παγ“qα permitted for pγ .

Proof. Let A denote SucT (〈〉). Assume that A ⊆ κ and for ν1, ν2 ∈ A,
ν1 < ν2 implies ν0

1 < ν0
2 . Also assume that only the elements of A appear in

T , i.e. T ⊆ [A]<ω. Let {〈q0
i ,

�fi, q
α
i 〉 | i < κ} be an enumeration of all triples

〈q0, �f , qα〉 such that

(i) qα ∈ T .

(ii) q0 = πα0“qα.

(iii) If q0 = 〈τ0, . . . , τn−1〉 then dom(�f) = n and �f(0) ∈ Col(ω, τ0), �f(1) ∈
Col(τ+m+1

0 , τ1), . . . , �f(n−1) ∈ Col(τ+m+1
n−2 , τn−1). (Note that we do not

enumerate the “last” function from Col(τ+m+1
n−1 , κ).)

For every ν ∈ A, |{ρ ∈ A | ρ0 = ν0}| ≤ (ν0)+m. So, the number of such
triples satisfying q0(i) ≤ ν0 for every i ≤ length(q0) is at most (ν0)+m. We
can assume that {〈q0

i ,
�fi, q

α
i 〉 | i < (ν0)+m} = {〈q0, �f , qα〉 | 〈q0, �f , qα〉 satisfy

the conditions (i), (ii), (iii) above and q0(i) ≤ ν0 for every i ≤ length(q0)}.
Define by recursion sequences 〈pi | i < κ〉, 〈T i | i < κ〉, 〈f i | i < κ〉 and

〈F i | i < κ〉. Set p0 = ∅, T 0 = T, f0 = ∅ and F 0 = ∅.
Suppose that pj , T j and F j are defined for every j < i. Define pi, T i, f i

and F i.
Set first p′ ′

i =
⋃

j<i pj . Let p′
i = {〈γ, p′γ〉 | γ ∈ supp(p′ ′

i )}, where for
γ ∈ supp(p′ ′

i ), p′γ
i = p′ ′γ

i unless there is a ν ∈ qα
i permitted for p′ ′γ

i and then
p′γ

i = p′ ′γ
i

� the maximal final segment of παγ“qα
i permitted for p′ ′γ

i .
We now wish to define a function F ′ on the set q0

i
�(Tqα

i
)0 =df {q0

i
�〈η〉 |

〈η〉 ∈ (Tqα
i
)0}. Let 〈η〉 ∈ (Tqα

i a)0 (it may be just the empty sequence).
Consider the set

C = {j < i | q0
i

�〈η〉 extends q0
j and q0

i
�〈η〉 ∈ q0

j
�(T j)0}.

For every j ∈ C we have

q0
j (length(q0

j )− 1) ≤ q0
i

�〈η〉(length(q0
i

�〈η〉)− 1).
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Then, by the properties of the enumeration {〈q0
ν ,

�fν , q
α
ν 〉 | ν < κ} we have

j < (q0
i

�〈η〉(length(q0
i

�〈η〉)− 1))+m. So

C ⊆ (q0
i

�〈η〉(length(q0
i

�〈η〉)− 1))+m.

Now define
F ′(q0

i
�〈η〉) =

⋃
j∈CF j(q0

i
�〈η〉).

Then
F ′(q0

i
�〈η〉) ∈ Col(q0

i
�〈η〉(length(q0

i
�〈η〉)− 1)+m+1, κ),

since |C| ≤ q0
i

�〈η〉(length(q0
i

�〈η〉)− 1)+m. Define

ri = {〈q0
i ,

�fi
�F ′(q0

i ), F ′〉} ∪ p′
i ∪ {〈α, qα

i , Tqα
i
〉}.

If ri /∈ P or it belongs to P and there is no p ∈ N,T ′, g and F so that
{〈0, q0

i ,
�fi

�g, F 〉} ∪ p ∪ {〈α, qα
i , T ′〉} ∈ P extends ri and decides σ, then set

pi = p′ ′
i , T i = Tqα

i
, f i = F ′(q0

i ) and F i = F ′. Otherwise, pick some p, T ′, g
and F witnessing this. Then define T i = T ′, F i = F , f i = g, F i(q0

i ) = f i.
Set pi = p′ ′

i ∪ p∗, where p∗ = p \ p′
i.

This completes the recursive definition. Set p =
⋃

i<κ pi. Now define
a subtree S of T by putting together all the T i’s for i < κ. The definition is
level by level. Thus, if S is defined up to level n and t sits in S on this level,
then set

SucS(t) = {ν ∈ A | ν0 > max(t), and for every i < ν0,

ν ∈ SucT i(〈〉) and ν ∈ SucT i(t) when t ∈ T i}.

So SucS(t) ∈ Uα.
Let us now put together all the F i’s. Define a function F on a tree (S)0.
Thus let η ∈ S0. Consider the set C = {j < κ | q0

j ⊆ η ∈ q0
j

�(T j)0}. Let
� = length(η)− 1. Then for each j ∈ C q0

j (length(q0
j )− 1) ≤ η(�). So, by the

choice of the enumeration {〈q0
ν ,

�fν , q
α
ν 〉 | ν < κ} we have j < η(�)+m. Hence

C ⊆ η(�)+m. Define F (η) =
⋃

j∈C F j(η). Then F (η) ∈ Col(η(�)+m+1, κ).

4.8.2 Subclaim. {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, S〉} ∈ P.

Proof. The only problem is to show that for every ν ∈ SucS(〈〉),

|{γ ∈ supp(p) | ν is permitted for pγ}| ≤ ν0.

Thus let ν ∈ SucS(〈〉) and i < κ. If 〈q0
i ,

�fi, q
α
i 〉 satisfies max(q0

i ) < ν0,
then i < max(q0

i )+m < ν0. Hence for every i ≥ ν0, ν is not permitted
for q0

i . So after the stage ν0 we did not add any new coordinate γ with
ν permitted for (pi)γ . This means that {γ ∈ supp(p) | ν is permitted for
pγ} =

⋃
i<ν0{γ ∈ supp(pi) | ν is permitted for pγ} and we are done. �
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Denote {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, S〉} by p∗. We now show that p∗ is as
desired. Clearly, p∗ ≥∗ {〈α, ∅, T 〉}. Suppose that for some q ∈ N , q0, qα, G

R and �f

{〈0, q0, �f ,G〉} ∪ q ∪ {〈α, qα, R〉} ≥ p∗

and
{〈0, q0, �f ,G〉} ∪ q ∪ {〈α, qα, R〉} � σ (or ¬σ)

Let q0 = 〈τ1, . . . , τn〉 and �f = 〈f0, . . . , fn〉. Obviously, n > 0 since
otherwise we will have a direct extension of p∗ (and hence of {〈α, ∅, T 〉})
deciding σ contrary to the initial assumption. Find i < τ+m

n such that
〈q0, 〈f0, . . . , fn−1〉, qα〉 = 〈q0

i ,
�fi, q

α
i 〉. Consider the condition

ri = {〈q0
i ,

�fi
�F ′(q0

i ), F ′〉} ∪ p′
i ∪ {〈α, qα

i , Tqα
i
〉},

defined at stage i of the construction. We have

{〈0, q0, �f,G〉} ∪ q ∪ {〈α, qα, R〉} ≥∗ ri,

since R ⊆ Sqα ⊆ Tqα , F ′(η) ⊆ F (η) for η’s from the common domain, so that
in particular, F ′(q0

i ) ⊆ F (q0
i ) ⊆ fn. But then

{〈0, q0
i ,

�fi
�f i, F i〉} ∪ (pi)qα

i
∪ {〈α, qα

i , T i
qα

i
〉} � σ (or ¬σ)

by the choice of f i, F i, T i and pi at the stage i of the construction. Hence
also

{〈0, q0, 〈f0, . . . , fn−1, F (q0)〉, F 〉} ∪ (p)qα ∪ {〈α, qα, Sqα〉}

forces the same. This completes the proof Claim 4.8.1. �

Fix p∗ = {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, S〉} satisfying the conclusion of
Claim 4.8.1.

As in Lemma 3.12, it is possible to show that the assumption “q ∈ N” is
not really restrictive. Briefly, if there is some q outside of N which is used
to decide σ, then there exists one also inside N . So the following claim will
provide the desired contradiction.

4.8.3 Claim. There is a

p∗ ∗ = {〈0, ∅, ∅, F �T ∗〉} ∪ p ∪ {〈α, ∅, T ∗〉} ≥∗ p∗

such that the following holds:

(∗) There are no q ∈ N, q0, qα, �f , F ′ and T ′ such that

p∗ ∗ ≤ {〈0, q0, �f , F ′〉} ∪ q ∪ {〈α, qα, T ′〉} ‖σ.
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Proof. We shall construct by recursion a ≤∗-increasing sequence 〈p(�) | � ≤
ω〉 of direct extensions of p∗ satisfying for every � ≤ ω the following condition:

(∗)� There are no q ∈ N , q0, qα, �f , F ′ and T ′ such that length(q0) ≤ � and

p(�) ≤ {〈0, q0, �f , F ′〉} ∪ q ∪ {〈α, qα, T ′〉} ‖σ.

Clearly, then p(ω) will be as desired.
Set p(0) = p∗. Define p(1) to be a condition of the form {〈0, ∅, ∅, F �T1〉}∪

p ∪ {〈α, ∅, T1〉} with T1 defined below. Consider the three sets

Xi =
{
ν ∈ SucS(〈〉) | ∃fν

0 ∈ Col(ω, ν0)
(
{〈0, 〈ν0〉, fν

0
�F (〈ν0〉), F 〉} ∪ p〈ν〉 ∪ {〈α, 〈ν〉, S〈ν〉〉} �i σ

)}
,

where i < 2, 0σ = σ and 1σ = ¬σ, and

X2 = SucS(〈〉) \ (X0 ∪X1).

There is an i < 3 such that Xi ∈ Uα. Let T ′
1 be the tree obtained from S by

intersecting all its levels with Xi. Let r = {〈0, ∅, ∅, F �T ′
1〉} ∪ p ∪ {〈α, ∅, T ′

1〉}.
If there is no q ∈ N, �f, ν, F ′ and T ′ such that

r ≤ {〈0, 〈ν0〉, �f , F ′〉} ∪ q ∪ {〈α, 〈ν〉, T ′〉} ‖σ,

then set T1 = T ′
1 and p(1) = r. We claim that this is the only possible case.

Otherwise, pick q, �f = 〈f0, f1〉, ν, F ′ and T ′ witnessing this and, say, forcing
σ. By the previous claim, then

{〈0, 〈ν0〉, f0
�F (ν0), F 〉} ∪ p〈ν〉 ∪ {〈α, 〈ν〉, (T ′

1)〈ν〉〉} � σ.

By the choice of T ′
1, then X0 ∈ Uα. Hence, for every ν ∈ SucT1(〈〉) there

is an fν
0 ∈ Col(ω, ν0) such that

{〈0, 〈ν0〉, fν
0

�F (〈ν0〉), F 〉 ∪ p〈ν〉 ∪ {〈α, 〈ν〉, (T ′
1)〈ν〉〉} � σ.

Note that the function taking ν0 to fν
0 is actually a regressive function on

(X0)0. Find Y ∈ Uα and f ∗ ∈ Col(ω, κ) such that for every ν ∈ Y , fν
0 = f ∗.

Let T1 be a tree obtained from T ′
1 by shrinking all its levels to Y . Set

F1 = F �T1. Finally, let

p(1) = {〈0, ∅, f ∗, F1〉} ∪ p ∪ {〈α, ∅, T1〉}.

By the construction, p∗ ≤∗ p(1) � σ, which contradicts the assumption that
it is impossible to decide σ by direct extensions of p∗.

Let us define p(2) = 〈0, ∅, ∅, F �T2〉 ∪ p ∪ {〈α, ∅, T2〉} now. Fix a ν ∈
SucT 1(〈〉). Let {〈fi, νi〉 | 1 ≤ i < (ν0)+m} be the enumeration of all pairs
〈f, ρ〉 such that ρ ∈ SucT1(〈〉), ρ0 = ν0 and f ∈ Col(ω, ν0). We would first like
to define T2〈ρ〉 for every ρ ∈ SucT1(〈〉) with ρ0 = ν0. In order to do this define
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by recursion on i < (ν0)+m sets Si as follows: for i = 0 let S0 = (T1)〈ν〉.
Suppose that Sj is defined for every j < i. Set S = (

⋂
j<i Sj) ∩ (T1)〈νi 〉.

Consider a condition

r = {〈0, 〈ν0〉, fi, F (〈ν0〉), F �S〉} ∪ (p)〈νi 〉 ∪ {〈α, 〈νi〉, S〉}.

Clearly, r ≥ p(1). By the choice of p(1), neither r or its direct extensions
decide σ. Then, the construction of p(1) from p(0) applied to r (instead of
p(0)) will produce

ri = {〈0, 〈ν0〉, fi, F (〈ν0〉), F �Si〉} ∪ (p)νi ∪ {〈α, 〈νi〉, Si〉} ≥∗ r

satisfying the following: There are no q ∈ N, ρ, g1, g2, F
′, S′ such that

ri ≤ {〈0, 〈ν0, ρ0〉, 〈fi, g1, g2〉, F ′〉} ∪ (p)〈νi,ρ〉 ∪ {〈α, 〈νi, ρ〉, S′〉} ‖σ.

Now let (T2)〈ν0〉 =
⋂

j<(ν0)+m Sj . Define T2 to be the tree obtained from
T1 by replacing (T1)〈ν〉 by (T2)〈ν0〉 for each ν ∈ SucT1(〈〉). Set p(2) =
{〈0, ∅, ∅, F �T2〉} ∪ p ∪ {〈α, ∅, T2〉}. It is easy to see that p(2) satisfies (∗)2.

We continue in the same fashion and define p(n) = {〈0, ∅, ∅, F �Tn〉} ∪ p ∪
{〈α, ∅, Tn〉} satisfying (∗)n for every n, 2 ≤ n < ω. Finally let Tω =

⋂
n<ω Tn.

Set p(ω) = {〈0, ∅, ∅, F �Tω〉 ∪ p ∪ {〈α, ∅, Tω}. Then p(ω) will satisfy (∗)n for
every n < ω and hence (∗). �

This completes the proof of Lemma 4.8. �

Using Lemma 4.8 as a replacement for Lemma 3.12, the arguments of
Lemma 3.12 show the following:

4.9 Lemma. κ+ remains a cardinal in V P .

Lemma 3.13 transfers directly to the present forcing notion. Thus for G
a generic subset of P and α < κ+m define and Gα, as in Sect. 3, as to be⋃
{pα | p ∈ G}. Let G0 = 〈κ0, κ1, . . . , κn, . . .〉.

4.10 Lemma.

(a) For every α < κ+m, Gα is a Prikry sequence for Uα.

(b) G0 is an ω-sequence unbounded in κ.

(c) If α �= β are then Gα �= Gβ.

Let α < κ+m and Gα = 〈ν0, ν1, . . . , νn, . . .〉. An easy density argument
provides an n(α) < ω such that either

(i) for all but finitely many n’s, ν0
n+n(α) = κn, or

(ii) for all but finitely many n’s, ν0
n = κn+n(α).
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Transform Gα into a sequence G′α = 〈ν′
0, ν

′
1, . . . , ν

′
n, . . .〉 defined as follows:

ν′
n =

⎧
⎪⎨

⎪⎩

νn+n(α), if (a) holds,
νn−n(α), if (b) holds and n ≥ n(α), and
κn, if (b) holds and n < n(α).

Then, for every n < ω, (ν′
n)0 = κn.

Assaf Sharon [50] showed that 〈G′α | α < κ+m〉 is a scale in
∏

n<ω κ+m
n ,

i.e. every member of
∏

n<ω κ+m
n is dominated by one of the G′α’s and α < β

implies that G′β dominates G′α.
The next lemma is obvious.

4.11 Lemma. If ℵ0 < τ < κ and τ remains a cardinal in V [G], then for
some n and for some m′ ≤ m, τ = κ+m′+1

n .

Implementing Col(ν, ν+)’s also, Sharon [50] was able to collapse each κ+
n

as well. Thus in his model κ+m′+1
n for 1 ≤ m′ ≤ m are the only uncountable

cardinals below κ. Notice that 〈κ+
n | n < ω〉 and 〈κ+m+1

n | n < ω〉 are Prikry
sequences for Uκ+ and Uκ+m+1 and so correspond to κ+ and κ+m+1 of the
ultrapower M by (κ, κ + m)-extender E. So, in V , cf((κ+m+1)M ) = κ+.
Also 〈κn+1 | n < ω〉 may be viewed as a sequence corresponding to j(κ)
which again has cofinality κ+. Hence, the collapses involved collapse between
members of the same cofinality.

Now combining all the lemmas, we obtain the following.

4.12 Theorem. In a generic extension V [G], 2ℵn = ℵn+1 for every n < ω
and 2ℵω = ℵω+m.

5. Forcing Uncountable Cofinalities

In the previous sections we dealt with a singular κ of cofinality ℵ0 or changed
the cofinality of a regular κ to ℵ0. Here we would like to deal with forcings
changing cofinality to an uncountable value. The first such forcing was in-
troduced by Magidor [37]. It changed the cofinality of a regular κ to any
prescribed regular value δ below κ. The Magidor forcing adds a closed un-
bounded in κ sequence of order type δ instead of an ω-sequence added by
the Prikry forcing in Definition 1.1. The initial assumption used for this was
stronger than just measurability. A measurable cardinal κ of the Mitchell
order δ, i.e. o(κ) = δ, was used. Later Mitchell [45] showed that this as-
sumption is optimal. Lon Radin [48] defined a forcing of the same flavor
which not only could change the cofinality of κ to δ < κ by shooting a closed
unbounded δ-sequence, but also adding a closed unbounded κ-sequence pre-
serving regularity and even measurability of κ. It is not a big deal to add
a closed unbounded subset to a regular κ preserving its regularity and also
measurability. But what is special about the Radin club is that it consists
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of cardinals which were regular in the ground model and this way combines
together a variety of ways of changing cofinalities. This feature allows results
of global character in the cardinal arithmetic. Thus, shortly after the dis-
covery of the Radin forcing, Foreman and Woodin [12] constructed a model
satisfying 2τ > τ+ for every τ and Woodin produced a model with 2τ = τ++

for every τ . Later James Cummings [9] constructed a model with 2τ = τ+

for every regular τ and 2τ = τ++ for every singular cardinal τ . Recently,
Carmi Merimovich [39, 40] obtained additional results of this type introduc-
ing extender-based Radin forcing.

5.1. Radin Forcing

Here we will give the basics of Radin forcing. A comprehensive account on
the matter containing various beautiful results of Woodin using Radin forcing
should appear in the book by Cummings and Woodin [10]. Originally Radin
[48] and then Mitchell [42] defined this forcing axiomatically. We will follow
a more concrete approach due to Woodin.

Let j : V → M be an elementary embedding of V into transitive inner
model M , with critical point κ. Define a normal ultrafilter U(0) over κ:

X ∈ U(0) iff κ ∈ j(X).

If U(0) ∈ M , then we define a κ-complete ultrafilter U(1), only not over κ
but over Vκ:

X ∈ U(1) iff 〈κ, U(0)〉 ∈ j(X).

Such defined U(1) concentrate on pairs 〈ν, F 〉 so that ν is a measurable
cardinal below κ and F is a normal ultrafilter over ν.

If U(1) ∈ M , then we can continue and define a κ-complete ultrafilter
U(2) over Vκ:

X ∈ U(2) iff 〈κ, U(0), U(1)〉 ∈ j(X).

Continue by recursion and define a sequence

�U = 〈κ, U(0), U(1), . . . , U(α), . . . | α < length(�U)〉,

where each U(α) will be a κ-complete ultrafilter over Vκ:

X ∈ U(α) iff �U�α = 〈κ, U(0), U(1), . . . , U(β), . . . | β < α〉 ∈ j(X),

and length(�U) will be the least α with �U�α �∈ M . For example, if M ⊇
P(P(κ)), then length(�U) will be at least (2κ)+, as we will see below. Let us
call �U and �U�α (0 < α < length(�U)) j-sequences of ultrafilters.

Fix some α∗ with 0 < α∗ ≤ length(�U). Let �V = �U�α∗. We want to define
Radin forcing with the ultrafilter sequence �V . Denote it by R�V . As usual, it
will have two orders ≤ and ≤∗.

Let us deal first with α∗ = 1 and α∗ = 2. Thus, for α∗ = 1, �V = 〈κ, U(0)〉.
Let 〈R�V ,≤,≤∗〉 be the usual Prikry forcing with U(0) of Definition 1.1, only
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instead of writing 〈t, A〉 (where t is an increasing finite sequence and A ∈
U(0)) we shall write 〈t, 〈κ, U(0)〉, A〉.

Now let α∗ = 2. Then �V = 〈κ, U(0), U(1)〉. We would like to incorporate
both U(0) and U(1) in the process generating the generic cofinal sequence.
Thus instead of A ∈ U(0) in the previous case we allow two sets A0 ∈ U(0)
and A1 ∈ U(1), or equivalently, a set in U(0) ∩ U(1). Notice, that we can
separate U(0) and U(1) since U(0) concentrates on ordinals and U(1) on
pairs 〈ν, F 〉 with F a normal ultrafilter over ν. An initial condition in R�V
will have a form

p = 〈〈κ, U(0), U(1)〉, A〉
with A ∈ U(0) ∩ U(1) and require also that each a ∈ A is either an ordinal
or a pair consisting of a measurable cardinal and a normal ultrafilter over it.
In order to extend p pick a ∈ A and B ⊆ A, with B ∈ U(0)∩U(1) such that
the rank of each member of B is above rank(a) + 1. If a is an ordinal then
just add it. We will obtain a one-step extension of p

〈a, 〈〈κ, U(0), U(1)〉, B〉〉.

If a = 〈ν, F 〉, then consider A∩ν. a can be added to p only if this set is in F .
Notice that the set XA = {〈ν′, F ′〉 | A ∩ ν′ ∈ F ′} ∈ U(1) since A ∩ κ ∈ U0

and so in M , 〈κ, U0〉 ∈ j(XA). If A ∩ ν ∈ F , then let Bν ∈ F be a subset of
A ∩ ν. The following will be one-step extension of p:

〈〈〈ν, F 〉, Bν〉, 〈〈κ, U(0), U(1)〉, B〉〉.

Consider a one-step extension 〈d, 〈〈κ, U(0), U(1)〉, B〉〉. If d is an ordinal
then repeat the recipe of one-step extension described above. Suppose that
d = 〈〈ν, F 〉, Bν〉. We now have two alternatives. The first, just as at step
one, is to add an ordinal or a pair but between ν and κ. The second is
to add an element of Bν . Thus 〈ν, F 〉 will be responsible for producing a
Prikry sequence for F . This way, generically a sequence of the type ω2 will
be produced.

We now turn to the general case and give a formal definition of R�V the
Radin forcing with the sequence of ultrafilters �V . First let us introduce some
notation. Thus, for a sequence �F = 〈F (0), . . . , F (τ), . . . | τ < length(�F )〉 let
⋂ �F =

⋂
{F (τ) | τ < length(�F )}. For an ordinal d = ν or pair d = 〈ν, �F 〉

or a triple d = 〈ν, �F ,B〉 let us denote ν by κ(d). For a triple d = 〈ν, �F ,B〉
by d ∈ A we shall mean that the two first coordinates of d, i.e. 〈ν, �F 〉 belong
to A.

The main idea behind this forcing is to use members of finite sequences
(that it produces) to give rise to separate blocks that are themselves Radin
forcings. In order to realize this idea let us first shrink a bit the possibilities
of choosing these finite sequences. Let �F be a sequence of ultrafilters over ν.
We would like to use only �F ’s which are j-sequences of ultrafilters for some
j : V →M . Also, we like to have a set B ∈

⋂ �F such that each member d of
it is a j-sequence for some j with critical point κ(d).
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To achieve this let us define by recursion classes of sequences:

A(0) = {�F | �F is a j-sequence of ultrafilters for some j : V →M}

A(n+1) = {�F ∈ A(n) | ∀α 0 < α < length(�F ) (A(n) ∩ Vκ(�F ) ∈ F (α))}

A =
⋂

n<ωA(n).

The main feature of A is that if �F ∈ A then, for 0 < α < length(�F ), F (α)
concentrates on A ∩ Vκ(�F ), since then A(n) ∩ Vκ(�F ) ∈ F (α) for every n and
hence by countable completeness of F (α), also A ∩ Vκ(�F ) ∈ F (α).

Note that each measurable cardinal is in A. But in the presence of stronger
large cardinals, A turns out to be much wider. We will need the following
statement proved by Cummings and Woodin [10]:

5.1 Lemma. Let E be a (κ, λ)-extender and j : V → M  Ult(V,E) the
corresponding elementary embedding, so that M ⊇ Vκ+2 and κM ⊆ M . Let
�U be the j-sequence of ultrafilters of the maximal length. Then

(a) length(�U) ≥ (2κ)+.

(b) For every α < (2κ)+, �U�α ∈ A.

Proof. Note that αVκ+2 ⊆M for every α < (2κ)+. Hence �U�α ∈M for every
such α.

Let us first show that for every α < (2κ)+, �U�α ∈ A(1). Equivalently, for
every β, 0 < β < (2κ)+, we need to show that A(0) ∩ Vκ ∈ U(β). By the
definition �U , this means that in M , �U�β ∈ j(A0). So we need to find in
M an embedding constructing �U�β. Let E′ be the extender E�[β]<ω. Then
E′ ∈M , since βVκ+2 ⊆M . Consider the following commutative diagram:

V
j

j′

M
i

N  Ult(M,E′)

M ′  Ult(V,E′)

k

Now, it is not hard to see that i = j′�M , since κM ⊆ M and E′ is an
extender over κ. In particular, i(κ) = j′(κ). Since κVκ+2 ∩M = κVκ+2 ∩ V ,
we have Vj′(κ)+2 ∩N = Vj′(κ)+2 ∩M ′. In addition, β ⊆ ran(k), so crit(k) ≥
max(β, κ+). Let �U ∗ be the i-sequence of ultrafilters constructed in M . We
show by induction that U ∗(γ) = U(γ) for every γ < β. First note that k(U) =
U for every ultrafilter U over κ. Thus crit(k) > κ implies that U = k“U .
Also, clearly, k“U ⊆ k(U). Finally, using Vκ+1∩M ′ = Vκ+1∩M = Vκ+1 and
maximality of U as a filter we have U = k(U).

Suppose now that γ < β and we have already shown �U ∗�γ = �U�γ. Let
X ⊆ Vκ. Then X ∈ U ∗(γ) iff �U ∗�γ ∈ i(X) iff �U�γ ∈ i(X) iff �U�γ ∈ j′(X) iff
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k(�U�γ) ∈ j(X) (by elementarity of k and since �U�γ ∈M ′) iff �U�γ ∈ j(X) iff
X ∈ U(γ) (since k(γ) = γ and k(U(δ)) = U(δ) for every δ < γ).

This concludes the proof of �U�α ∈ A(1), for α < (2κ)+. Let us show that
�U�α ∈ A(n) for every n, 2 ≤ n < ω and α < (2κ)+. First, for n = 2 we have

�U�α ∈ A(2) iff ∀β < α A(1) ∩ Vκ ∈ �U�β
iff ∀β < α �U�β ∈ j(A(1))

iff ∀β < α∀γ < β j(A(0)) ∩ Vκ ∈ U(γ).

It is enough to show that j(A(0)) ∩ Vκ = A(0) ∩ Vκ, since we already proved
that A(0)∩Vκ ∈ U(γ) for every γ < (2κ)+. Let �F ∈ Vκ be an i-sequence of ul-
trafilters for an embedding of either V or M with critical point ν = κ(�F ) < κ.
The length of �F is below κ, and κ is an inaccessible, so it is easy to find an
extender inside Vκ such that the elementary embedding i′ of it agrees with i
long enough and constructs �F . Hence i′ will witness both �F ∈ j(A(0)) and
�F ∈ A(0). The same argument works for any n ≥ 2. Thus we will have

�U�α ∈ A(n) iff ∀γ(γ + n ≤ α→ jn−1(A(0)) ∩ Vκ ∈ U(γ)),

where jn−1 is an application of j n − 1 many times, or equivalently the
embedding j0n−1 : V →Mn−1 of V into the n− 1 times iterated ultrapower
Mn−1 of V by E. Again, as above jn−1(A(0)) ∩ Vκ = A(0) ∩ Vκ. �

Note that using stronger j’s it is possible to show that longer ultrafilter
sequences are in A.

We are now ready to define Radin forcing. Let �V = 〈U(α) | α <

length(�V )〉 be a j-sequence of ultrafilters in A for some j : V → M with
crit(j) = κ.

5.2 Definition. Let R�V be the set of finite sequences 〈d1, . . . , dn, 〈κ, �V 〉, A〉
such that

(1) A ∈
⋂ �V and A ⊆ A.

(2) A ∩ Vκ(dn)+1 = ∅.

(3) For every m with 1 ≤ m ≤ n, either

(3a) dm is an ordinal, or

(3b) dm = 〈ν, �Fν , Aν〉 for some �Fν ∈ A, Aν ⊆ A and Aν ∈
⋂ �Fν .

(4) For every 1 ≤ i < j ≤ n,

(4a) κ(di) < κ(dj), and

(4b) if dj is of the form 〈ν, Fν , Aν〉 then Aν ∩ Vκ(di)+1 = ∅.
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Each dm of the form 〈ν, �Fν , Aν〉 will give rise to Radin forcing R�Fν
with

�Fν playing the same role as �V in R�V .
We define two orders ≤ and ≤∗ on R�V , where, as usual, ≤ will be used to

force and ≤∗ will provide the closure.

5.3 Definition. Let p = 〈d1, . . . , dn, 〈κ, �V 〉, A〉, q = 〈e1, . . . , em, 〈κ, �V 〉,
B〉 ∈ R�V . We say that p is stronger than q and denote this by p ≥ q
iff

(1) A ⊆ B.

(2) n ≥ m.

(3) There are 1 ≤ i1 < i2 < · · · < im ≤ n such that for 1 ≤ k ≤ m, either

(3a) ek = dik
, or

(3b) ek = 〈ν, �Fν , Bν〉 and then dik
= 〈ν, �Fν , Cν〉 with Cν ⊆ Bν .

(4) Let i1, . . . , im be as in (3). Then the following holds for every j,
1 ≤ j ≤ n:

(4a) if j > im, then dj ∈ B or dj is of the form 〈ν, �Fν , Cν〉 with 〈ν, �Fν〉 ∈
B and Cν ⊆ B ∩ ν;

(4b) if j < im, then for the least k with j < ik, ek is of the form
〈ν, �Fν , Bν〉 so that

(i) if dj is an ordinal then dj ∈ Bν , and

(ii) if dj = 〈ρ, �T , S〉 then 〈ρ, �T 〉 ∈ Bν and S ⊆ Bν .

5.4 Definition. Let p = 〈d1, . . . , dn, 〈κ, �V 〉, A〉, q = 〈e1, . . . , em, 〈κ, �V 〉,
B〉 ∈ R�V . We say that p is a direct extension of q and denote this by p ≥∗ q
iff

(1) p ≥ q, and

(2) n = m.

Intuitively, 〈R�V ,≤,≤∗〉 is like Prikry forcing once some point of the form
〈ν, �Fν〉 is produced, when it starts to act completely autonomously and even-
tually adds its own sequence.

As in the case of the Prikry forcing, any two conditions in R�V having the
same finite sequences are compatible. So we obtain the following analogue of
Lemma 1.5:

5.5 Lemma. 〈R�V ,≤〉 satisfies the κ+-c.c.
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Suppose that p = 〈d1, . . . , dn, 〈κ, �V 〉, A〉 ∈ R�V . Let, for some m with
1 ≤ m ≤ n, dm = 〈νm, �Vm, Am〉. Set p≤m = 〈d1, . . . , dm〉 and

p>m = 〈dm+1, . . . , dn, 〈κ, �V 〉, A〉.

Then p≤m ∈ R�Vm
and p>m ∈ R�V . Let for �W ∈ A and q ∈ R �W

R �W /q = {r ∈ R �W | r ≥ q}.

5.6 Lemma. R�V /p  R�Vm
/p≤m ×R�V /p>m.

5.7 Lemma. 〈R�V /p>m,≤∗〉 is νm-closed.

This together with the Prikry condition (the next lemma) will suffice to
prove the preservation of cardinals. Thus let p = 〈d1, . . . , dn, 〈κ, �V 〉, A〉 ∈ R�V
and ξ be a cardinal. If ξ > κ, then we use Lemma 5.5. Let ξ ≤ κ. Then
we pick the last m, 1 ≤ m ≤ n with dm of the form 〈νm, �Vm, Am〉 such
that νm < ξ, if it exists. Work with R�V /p>m in this case. Otherwise we
continue to deal with R�V . Suppose for simplicity that such an m does not
exist, i.e. ξ ≤ νm for every m, 1 ≤ m ≤ n with dm = 〈νm, �Vm, Am〉.

Let

ρ = min({κ, κ(dm) | 1 ≤ m ≤ n and dm is of form 〈νm, �Vm, Am〉} \ ξ).

Assume for simplicity that ρ = κ. If length(�V ) = 1, then R�V is just the
Prikry forcing and it preserves cardinals. Suppose that length(�V ) > 1. Let
δ < κ. Extend p to p∗ by shrinking A to A \Vδ+1. Then 〈R�V /p∗,≤∗〉 will be
δ-closed. Using the Prikry condition, one can see that 〈R�V /p∗,≤〉 does not
add new subsets to δ. But δ was any cardinal below κ. So ξ is not collapsed
even if ξ = κ and we are done.

Let us now turn to the Prikry condition. The main new point here is that
we are allowed to extend a given condition by picking elements from different
ultrafilters of the sequence �V . So maybe different choices will decide some
statement σ differently. The heart of the matter will be to show that this
really does not happen. Actually, we can pass from one choice of an ultrafilter
to another, remaining with compatible conditions.

5.8 Lemma. 〈R�V ,≤,≤∗〉 satisfies the Prikry condition.

Proof. Let p ∈ R�V and σ be a statement of the forcing language. We need
to find p∗ ≥∗ p that decides σ. Suppose that there is no such p∗. Assume for
simplicity that p = 〈〈κ, �V 〉, A〉.

For every �d = 〈d1, . . . , dn〉 ∈ [Vκ]n consider

〈d1, . . . , dn〉�p =df 〈d1, . . . , dn, 〈κ, �V 〉, A \ Vκ(dn)+1〉.
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Suppose that it is a condition in R�V . Let

Ã(�d) = {d ∈ A | either d is an ordinal and then �d�d�p ∈ R�V

or d is of the form 〈ν, �Fν〉 and then �d�〈ν, �Fν , A ∩ Vν〉�p ∈ R�V }.

Clearly, Ã(�d) ∈
⋂ �V . We split Ã into three sets: First, set

A0(�d) = {d ∈ Ã(�d) | either (i) or (ii)}

where

(i) d is an ordinal and there is a Bd such that

�d�d�p ≤∗ 〈�d�d, 〈κ, �V 〉, Bd〉 � σ, or

(ii) d is of the form 〈ν, �Fν〉 and there are Bd and bd such that

�d�〈ν, �Fν , A ∩ Vν〉�p ≤∗ 〈�d�〈ν, �Fν , bd〉, 〈κ, �V 〉, Bd〉 � σ.

Then, let A1(�d) be the same as A0(�d) but with σ replaced by ¬σ. Finally,
set

A2(�d) = Ã(�d) \ (A0(�d) ∪A1(�d)).

For every α < length(�V ) choose an iα ≤ 2 such that Aiα(�d) ∈ U(α). Set
A(α, �d) = Aiα(�d). If �d�p /∈ R�V then let A(α, �d) = A. Set

A(α) =
{
d ∈ A | ∀�d = 〈d1, . . . , dn〉 ∈ [Vκ]n
(
if max{κ(dk) | 1 ≤ k ≤ n} < κ(d), then d ∈ A(α, �d)

)}
.

This is the kind of diagonal intersection which is appropriate for our set-
ting. We claim that A(α) ∈ U(α). Thus, for every �d ∈ [Vκ]n we have
A(α, �d) ∈ U(α). So, in M , 〈κ, V �α〉 ∈ j(A(α, �d)) for every �d ∈ [Vκ]n. Clearly
κ(〈κ, U�α〉) = κ. Hence, by the definition of A(α), 〈κ, V �α〉 ∈ j(A(α)).

Define now A∗ =
⋃

α<length(�V ) A(α). Obviously A∗ ∈
⋂

α<length(�V ) U(α).

Consider p∗ = 〈〈κ, �V 〉, A∗〉. By our initial assumption there is no direct
extension of p∗ deciding σ. Pick 〈〈d1, . . . , dn+1〉, 〈κ, �V 〉, B〉 to be an extension
of p∗ deciding σ with n as small as possible. Suppose, for example, that it
forces σ. Pick α < length(�V ) such that dn+1 ∈ A(α). Let �d = 〈d1, . . . , dn〉.
Then �d�p ∈ R�V . By the definition of A(α), dn+1 ∈ A(α, �d). By the choice of
A(α, �d), then A(α, �d) = A0(�d). This means that for every d ∈ A(α)\Vκ(dn)+1

there are d̃ and B such that

�d�d�p ≤∗ 〈�d�d̃, 〈κ, �V 〉, B〉 � σ.
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Obviously we can replace p by p∗ here. In what follows we show that for
some C

p∗ ≤ 〈〈d1, . . . , dn〉, 〈κ, �V 〉, C〉 � σ.

This will contradict the minimality of n and, in turn, our initial assumption.
We shrink first the sets in U(β) for every β < α (if there are any). Suppose

that α > 0. The case α = 0 is similar and slightly easier. For every d ∈
A(α) \ Vκ(dn)+1 of the form 〈ν, �Fν〉 pick some bd and Bd so that �d�d�p∗ ≤∗

〈�d, 〈〈ν, �Fν〉, bd〉, 〈κ, �V 〉, Bd〉 � σ. We take a diagonal intersection of the Bd’s.
Thus, let

B∗ = {e ∈ A∗ | ∀d ∈ Vκ(e) (if Bd is defined then e ∈ Bd)}.

For every β < length(�V ), B∗ ∈ U(β), since clearly for every d ∈ Vκ with Bd

defined 〈κ, �V �β〉 ∈ j(Bd) due to Bd ∈
⋂ �V , so 〈κ, �V �β〉 ∈ j(B∗).

Note that by the choice of A and Lemma 5.1(3(b)), bd ∈
⋂

W ∈ �Fν
W , where

each W ∈ �Fν is a ν-complete ultrafilter over Vν . Consider A<α = j(〈bd |
d ∈ A(α)〉)(�V �α) (recall that A(α) ∈ U(α) implies that �V �α ∈ j(A(α))).
Then, by elementarity, A<α ∈ U(β) for every β < α. Also, note that the set
A′(α) = {d ∈ A(α) | A<α ∩ Vκ(d) = bd} ∈ U(α), since j(A<α) ∩ Vκ(�V �α) =

j(A<α) ∩ Vκ = A<α = j(〈bd | d ∈ A(α)〉)(�V �α) and hence �V �α ∈ j(A′(α)).
Set A≤α = (A<α ∪A′(α)) ∩A∗. Then A≤α ∈ U(β) for every β ≤ α.
Now let us shrink the sets in U(β) for all β > α (if there are any). Actually,

we need to care for only β’s with A≤α /∈ U(β). Consider the set

A>α = {〈ν, �F 〉 ∈ A∗ | ∃ξ < length(�F )(A′(α) ∩ Vν ∈ F (ξ))}.

Then A>α ∈ U(β) for every β with α < β < length(�V ). Set

A∗ ∗ = (A≤α ∪A>α) ∩B∗.

Clearly, A∗ ∗ ∈
⋂ �V . Consider a condition p∗ ∗ = 〈〈κ, �V 〉, A∗ ∗〉 and q =

〈d1, . . . , dn〉�p∗ ∗. By the choice of n, neither q nor its direct extensions can
decide σ. Pick some r ≥ q forcing ¬σ. Let r = 〈e1, . . . , em, 〈κ, �V 〉, C〉. There
is a k ≤ m such that κ(dn) = κ(ek), by Definition 5.2(3). Consider three
cases.

Case 1. k = m.
Then choose some d ∈ A(α)∩C such that C∩ν ∈

⋂ �Fν where d = 〈ν, �Fν〉.
By the choice of A(α) and B∗ there is a bd such that

〈d1, . . . , dn, 〈〈ν, �Fν〉, bd〉, 〈κ, �V 〉, A∗ ∗ \ Vκ(d)+1〉 � σ.

Clearly we can shrink A∗ ∗ \ Vκ(d)+1 to C. Then,

〈e1, . . . , em, 〈〈ν, �Fν〉, bd ∩ C〉, 〈κ, �V 〉, A∗ ∗ ∩ C \ Vκ(d)〉
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will be a common extension of r and 〈d1, . . . , dn, 〈〈ν, �Fν〉, bd〉〈κ, �V 〉, A∗ ∗∩C \
Vκ(d)〉, which is clearly impossible since they disagree about σ.

Case 2. k < m and for k < j ≤ m, ej ∈ A<α.

Pick d ∈ A′(α) ∩ C, d = 〈ν, �Fν〉 such that C ∩A<α ∩ Vν ∈ ∩�Fν . Then, by
the choice of A′(α), bd = A<α ∩ Vν . So,

〈d1, . . . , dn, 〈〈ν, �Fν〉, A<α ∩ Vν〉, 〈κ, �V 〉, A∗ ∗ \ Vκ(d)+1〉〉 � σ.

But

〈〈e1, . . . , em〉, 〈〈ν, �Fν〉, C ∩A<α ∩ Vν〉, 〈κ, �V 〉, A∗ ∗ ∩ C \ Vκ(d)+1〉
≥ 〈d1, . . . , dn, 〈〈ν, �Fν〉, A<α ∩ ν〉, 〈κ, �V 〉, A∗ ∗ ∩ C \ Vκ(d)+1〉,

since ej ∈ A<α for every k < j ≤ m, κ(dn) = κ(ek) and r ≥ q. Also, clearly,

〈〈e1, . . . , em〉, 〈〈ν, �Fν〉, C ∩A<α ∩ ν〉, 〈κ, �V 〉, A∗ ∗ ∩ C \ Vκ(d)+1〉〉 ≥ r.

But this is impossible, since r � ¬σ.

Case 3. k < m and there is a j with k < j ≤ m such that ej /∈ A<α.
Let j∗ be the minimal j with k < j ≤ m and ej /∈ A<α. Then ej∗ ∈

A′(α) ∪A>α. If ej∗ ∈ A′(α), then

〈e1, . . . , ej∗ −1, 〈〈ν, �Fν〉, E ∩A<α〉, 〈κ, �V 〉, A∗ ∗ \ Vκ(ej∗ )+1〉

≥ 〈d1, . . . , dn, 〈〈ν, �Fν〉, A<α ∩ Vν〉 〈κ, �V 〉, A∗ ∗ \ Vν+1〉 � σ,

by minimality of j∗, where ej∗ = 〈〈ν, �Fν〉, E〉. But, 〈e1, . . . , ej∗ −1, 〈〈ν, �Fν〉,
E ∩A<α〉, 〈κ, �V 〉, A∗ ∗ \ Vκ(ej∗ )+1〉 and r are compatible, which is impossible
since r � ¬σ.

So, assume that 〈ν, �Fν〉 ∈ A>α \A≤(α), where ej∗ = 〈〈ν, �Fν〉, E〉. We have
E ∈

⋂ �Fν . By the choice of A>α, for some ξ < length(�Fν) A′(α)∩Vν ∈ Fν(ξ).
Hence A′(α)∩E ∈ Fν(ξ). Pick some 〈τ, �Gτ 〉 ∈ (A′(α)∩E) \Vκ(ej∗ −1)+1 such
that E∩τ ∈ ∩ �Gτ . This can be done since �Fν is a j′-sequence for some j′ and
E ∈

⋂ �Fν . Now we can extend r by adding to it 〈τ, �Gτ 〉. This will reduce
the situation to the one considered above, i.e. ej∗ ∈ A′(α). This completes
the proof of the lemma. �

Now let G be a generic subset of R�V . Combining the previous lemmas
together, we obtain the following:

5.9 Theorem. V [G] is a cardinal preserving extension of V .

Consider the following crucial set:

CG =
{
κ(d) < κ | ∃p ∈ G

(d is one of the elements of the finite sequence of p)
}
.
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5.10 Lemma. CG is a closed unbounded subset of κ.

Proof. CG is unbounded since for every condition p = 〈d1, . . . , dn, 〈κ, �V 〉, A〉
and every ordinal τ < κ we can find some ν ∈ A ∩ (κ \ τ) and extend p by
adding ν to its finite sequence 〈d1, . . . , dn〉.

Let us show that CG is closed. Thus, let for some τ < κ some

p = 〈d1, . . . , dn, 〈κ, �V 〉, A〉 � τ̌ /∈ CG∼
.

Clearly, τ �= κ(di) for any i, 1 ≤ i ≤ n. If τ > κ(dn), then we shrink A to
A \ (τ + 1). By the definition of the forcing ordering ≤,

〈d1, . . . , dn, 〈κ, �V 〉, A \ (τ + 1)〉 � sup(CG∼
∩ τ̌) = κ̌(dn).

Suppose now that τ < κ(dn). Let i∗ < n be the least such that τ <
κ(di∗+1). If di∗+1 is an ordinal, then again by the definition of the forcing
ordering ≤, p forces that CG∼

will not have elements in the open interval
(κ(di∗ ), di∗+1), where d0 = 0. So, let di∗+1 = 〈ν, �Fν , Bν〉. Then Bν \ (τ +1) ∈
⋂ �Fν and the extension of p

〈
d1, . . . , di∗ , 〈ν, �Fν , Bν \ (τ + 1)〉, di∗+2, . . . , dn, 〈κ, �V 〉, A

〉

� sup(CG∼
∩ τ̌) = κ̌(di∗ ).

Combining all the cases together we conclude that there is always an ex-
tension of p forcing that τ is not a limit of elements of CG. �

The next question will be crucial for the issue of changing cofinalities:
What is the order type of CG?
For every τ with 0 < τ < κ, U(τ) concentrates on the set Xτ = {〈ν, �Fν〉 |

�Fν is a sequence of ν-complete ultrafilters over Vν of length τ < ν}. Clearly,
{Xτ | 0 < τ < κ} are disjoint. We can add to them also X0 = κ and
Xκ = {〈ν, �Fν〉 | �Fν is a sequence of ν-complete ultrafilters over ν of length ν}.
Using this partition and an easy induction it is not hard to see the following.

5.11 Lemma. Let δ, 0 < δ < κ, length(�V ) = δ, and G ⊆ R�V be generic.
Then, in V [G], a final segment of CG has order type ωδ, where ωδ is the
ordinal power. Moreover, 〈κ, �V ,

⋃
{Xτ | 0 < τ < δ}〉 forces the order type of

CG to be ωδ. In particular, otp(CG) = δ if δ is an uncountable cardinal.

Combining this with Theorem 5.9 we obtain the following:

5.12 Theorem. Let length(�V ) = δ < κ be a cardinal, and let G ⊆ R�V
be generic. Then V [G] is a cardinal preserving extension of V in which κ
changes its cofinality to cf(δ)V .

Notice that if δ > 0 then R�V changes cofinalities also below κ. Hence
new bounded subsets are added to κ. Mitchell [45] showed that once one
changes the cofinality of κ to some uncountable δ < κ preserving cardinals,
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then new bounded subsets of κ must appear, provided the ground model
was the core model. On the other hand, it is possible to prepare a ground
model and then force in order to change cofinality of κ to an uncountable δ
without adding new bounded subsets. This was first done by Mitchell [44],
combining iterated ultrapowers and forcing. A pure forcing construction was
given in [13].

If we force with R�V having length(�V ) = κ, then κ changes its cofinality to
ω again.

5.13 Lemma. Suppose that length(�V ) = κ and G ⊆ R�V generic. Then, in
V [G], cf(κ) = ℵ0.

Proof. Let 〈Xτ | τ < κ〉 be the partition defined before Lemma 5.11. Then,
⋃

τ<κ Xτ ∈
⋂ �V , since for every τ < κ Xτ ∈ U(τ) and �V = 〈U(0), . . . ,

U(τ), . . . | τ < κ〉. Let X =
⋃

τ<κ Xτ . Consider

Y =
{
〈ν, �Fν〉 ∈ X |

⋃
{Xτ | τ < length(�Fν)} ∩ Vν ∈ ∩�Fν

}
∪ κ.

Clearly, Y ∈
⋂ �V . Now pick some p = 〈d1, . . . , dn, 〈κ, �V 〉, A〉 ∈ G with

A ⊆ Y . Let

C =
{
〈ν, �Fν〉 ∈ Vκ | ∃E ∈

⋂�Fν(〈ν, �Fν , E〉 appears in a condition in G)
}
.

Then, C \ (κ(dn) + 1) ⊆ A. A simple density argument shows that for every
τ < κ, C will contain unboundedly many members of Xτ . Let

C ′ = {ν < κ | ∃�F (〈ν, �F 〉 ∈ C)}.

Clearly, C ′ is just the set of all limit points of CG. Also, for every ν ∈ C ′

there is a unique �Fν with 〈ν, �Fν〉 ∈ C. We define an increasing sequence 〈νn |
n < ω〉 of elements of C ′ as follows: ν0 = min(C ′), νn+1 = min{ν ∈ C ′ | ∃�Fν

〈ν, �Fν〉 ∈ Xνn} \ (νn + 1)).
Set νω =

⋃
n<ω νn. We claim that νω = κ. Otherwise there is a τ < κ

such that 〈νω, �F 〉 ∈ C ∩ Xτ for some (unique) �F , since C ′ is closed and
C ⊆ A ⊆ Y ⊆ X =

⋃
τ<κ Xτ . Then there is a q ≥ p in G with 〈〈νω, �F 〉, B〉

appearing in q for some B ∈ ∩�F . We require also B ⊆
⋃
{Xτ ′ | τ ′ < τ}∩Vνω .

This is possible since q ≥ p, A ⊆ Y , νω > κ(dn), and hence
⋃
{Xτ ′ | τ ′ <

τ} ∩ Vνω ∈
⋂ �F . Now, by the definition of Xτ , we have τ < νω. So, there is

an n < ω with νn > max(τ,min(B)). But νn ∈ C ′, hence 〈νn, �Fνn〉 should be
in B, for some (unique) �Fνn . The same holds for each νm with n ≤ m < ω.
In particular, 〈νn+1, �Fνn+1〉 ∈

⋃
τ ′<τ Xτ ′ . But it was picked to be in Xνn

which is disjoint to each Xτ ′ for τ ′ < νn. Contradiction. �

Similar arguments show that for every δ < κ+, if length(�V ) = δ then the
forcing R�V changes the cofinality of κ. If δ is a successor ordinal, then to ℵ0;
if δ is limit and cf(δ) �= κ then to cf(δ) and, finally, if cf(δ) = κ then to ℵ0.
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Let us now show that if �V is long enough then R�V can preserve measurabil-
ity of κ. Later it will be shown that length(�V ) = κ+ suffices to keep κ regular
and so inaccessible. The ability of keeping κ regular turned out to be very
important in applications to the cardinal arithmetic. Thus a basic common
theme used there is to arrange some particular pattern of the power function
over CG, sometimes adding Cohen subsets or collapsing cardinals in between
and then to cut the universe at κ. This type of constructions were used by
Foreman-Woodin [12], Cummings [9] and recently by Merimovich [40].

5.14 Definition. An ordinal γ < length(�V ) is called a repeat point for �V if
for every δ with γ ≤ δ < length(�V ) and for every A ∈ U(δ), there is a δ′ < γ

such that A ∈ U(δ′). Equivalently,
⋃ �V =

⋃ �V �γ.
Note that if 2κ = κ+ and our sequence has length κ++, then there will

be κ++ repeat points between κ+ and κ++. This implies that also �V = �U�α
will have a repeat point for unboundedly many α’s below κ++.

5.15 Theorem. If γ is a repeat point for �V and G ⊆ R�V is generic, then κ
remains measurable in V [G].

Proof. Recall that �V = 〈U(α) | α < length(�V )〉 is a j-sequence for some
elementary embedding j : V → M with crit(j) = κ. By the definition of
a repeat point, the forcing R�V and R�V �γ are basically the same (we need

only to replace 〈κ, �V 〉 in each condition of R�V by 〈κ, �V �γ〉 in order to pass
to R�V �γ). So we can view G as a generic subset of R�V �γ . Define now an
ultrafilter F over κ in V [G]. Let X

∼
be a name of a subset of κ. Set X

∼
[G] ∈ F

iff for some 〈d1, . . . , dn, 〈κ, �V 〉, A〉 ∈ G the following holds in M : For some
B ∈

⋂
j(�V ),

〈d1, . . . , dn, 〈〈κ, �V �γ〉, A〉, 〈j(κ), j(�V )〉, B〉 ‖Rj(�V )
κ̌ ∈ j(X

∼
).

First note that F is well defined. Thus, let some 〈d1, . . . , dn, 〈κ, �V 〉, A〉 ∈ G
forces “X

∼
= Y

∼
”. Then, in M

〈d1, . . . , dn, 〈j(κ), j(�V ), j(A)〉〉 � j(X
∼

) = j(Y
∼

).

But A ∈
⋂ �V . In particular, A ∈ U(γ). Hence, 〈κ, �V �γ〉 ∈ j(A). Also,

j(A) ∩ Vκ = A. So, 〈〈κ, �V �γ〉, A〉 is addible to 〈d1, . . . , dn, 〈j(κ), j(�V ), j(A)〉.
But if for some B ∈

⋂
j(�V ),

〈d1, . . . , dn, 〈〈κ, �V �γ〉, A〉, 〈j(κ), j(�V )〉, B〉 ‖Rj(�V )
κ̌ ∈ j(X

∼
),

then

〈d1, . . . , dn, 〈〈κ, �V �γ〉, A〉, 〈j(κ), j(�V )〉, B ∩ j(A)〉
‖Rj(�V )

κ̌ ∈ j(X
∼

) ∧ j(X
∼

) = j(Y
∼

).
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Let us establish normality for F . Suppose that 〈d1, . . . , dn, 〈κ, �V 〉, A〉〉 ∈ G

and 〈d1, . . . , dn, 〈κ, �V 〉, A〉〉 � ({ν < κ | f
∼
(ν) < ν} ∈ F

∼
). Then, in M , for

some B ∈
⋂

j(�V )

〈d1, . . . , dn, 〈〈κ, �V �γ〉, A〉, 〈j(κ), j(�V )〉, B〉 ‖Rj(�V )
j(f

∼
)(κ̌) < κ̌.

Working in M , construct B′ ∈
⋂

j(�V ) such that: If for some ν < κ, we have
a condition 〈x1, . . . , x�, 〈〈κ, �V �γ〉, C〉, 〈j(κ), j(�V )〉, E〉 forcing “j(f

∼
)(κ̌) = ν̌”,

then 〈x1, . . . , x�, 〈〈κ, �V �γ〉, C〉, 〈j(κ), j(�V )〉, B′〉 forces the same.
Back in V , the set

D =
{
〈x1, . . . , x�, 〈〈κ, �V �γ〉, C〉〉 | for some ν < κ,

〈x1, . . . , x�, 〈〈κ, �V �γ〉, C〉, 〈j(κ), j(�V )〉, B′〉 ‖Rj(�V )
j(f

∼
)(κ̌) = ν̌

}

will be dense in R�V �γ above 〈d1, . . . , dn, 〈κ, �V 〉, A〉. Thus, if some p ∈ R�V �γ
with p ≥ 〈d1, . . . , dn, 〈κ, �V 〉, A〉 has no extension in D, then we consider the
statement

ϕ ≡ “There is a q ∈ R�V stronger than p, a ν < κ, and
an r in G

∼
(Rj(�V )\κ+1) such that 〈q, r〉 ‖Rj(�V )

j(f
∼
)(κ̌) = ν̌”,

where G
∼
(Rj(�V )\κ+1) is the canonical name of a generic subset of Rj(�V )\k+1.

Let, in M , s ≥∗ 〈〈j(κ), j(�V )〉, B′〉 deciding ϕ. Then s must force ϕ. Find
some s1 ≥∗ s deciding the values of ν and q in ϕ. This leads to the contra-
diction.

So, pick some 〈e1, . . . , em, 〈κ, �V 〉, A′〉 ≥ 〈d1, . . . , dn, 〈κ, �V 〉, A〉 in G ∩ D.
There is a δ < κ such that

〈〈e1, . . . , em〉, 〈〈κ, �V �γ〉, A′〉, 〈j(κ), j(�V )〉, B′〉 � j(f
∼
)(κ̌) = δ̌.

Then {ν < κ | f(ν) = δ} ∈ F , by the definition of F . �

Similar arguments show that it is possible to preserve the degree of strong-
ness and even of supercompactness of j. Notice also that F defined above
extends U(0), but the elementary embedding of F does not extend that of
U(0). Instead, it extends a certain iterated ultrapower embedding using ul-
trafilters of Ult(V, U(0)) between κ and iU(0)(κ).

We now want to show that κ remains regular in V R�V when we have
cf(length(�V )) ≥ κ+. But first we need to extend a bit the Prikry condi-
tion Lemma 5.8 in the spirit of Lemma 2.18. This will allow us to deal with
dense sets. The situation here is more involved due to the possibility of ex-
tending a given condition by adding to it elements from different ultrafilters
U(α)’s. We start with the following definition.

5.16 Definition. Let �F be a sequence of ultrafilters over some ν ≤ κ. A tree
T ⊆ [Vν ]≤n with n < ω levels is called �F -fat iff
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(1) For every 〈ν1, . . . , νk〉 ∈ T , κ(ν1) < κ(ν2) < · · · < κ(νk).

(2) For every 〈ν1, . . . , νk〉 ∈ T with k < n, there is an α < length(�F ) so
that SucT (〈ν1, . . . , νk〉) ∈ F (α).

Let T be as in Definition 5.16 and η a maximal branch in T . A sequence
�A = 〈 �A(1), . . . , �A(n)〉 ∈ [Vν ]n will be called a sequence of η-measure one if,
for every i, 1 ≤ i ≤ n with η(i) of form 〈τi, �Gτi〉 we have �A(i) ∈

⋂ �Gτi . Let
p = 〈d1, . . . , dn, 〈κ, �V 〉, A〉 ∈ R�V and di = 〈〈νi, �Fi〉, Ai〉 or di = νi < κ for
each i, 1 ≤ i ≤ n. Here also denote 〈〈κ, �V 〉, A〉 by 〈〈νn+1, �Fn+1〉, An+1〉. Let
1 ≤ i1 < · · · < im ≤ n+1 be some elements of the set {i | 1 ≤ i ≤ n+1, di =
〈〈νi, �Fi〉, Ai〉}.

Let for each k with 1 ≤ k ≤ m and some nk < ω, Tk ⊆ [Vνik
]nk be a

�Fνik
-fat tree, ηk a maximal branch in Tk, and �Ak ∈ [Vνik

]≤nk a sequence of
ηk-measure one. Let q = 〈t1, . . . , t�, t�+1〉 be obtained from p by adding to it
between dik −1 and dik

, for each k, 1 ≤ k ≤ m, the following nk-sequence 〈sj |
1 ≤ j ≤ nk〉, where sj = ηk(j), if ηk(j) is an ordinal, or sj = 〈τj , �Gτj ,

�Ak(j)〉,
if ηk(j) = 〈τi, Gτi〉. Denote by p�〈η1, �A1〉� · · ·� 〈ηm, �Am〉 the condition in
R�V obtained from q by the obvious shrinking of sets of measure one needed
in order to satisfy Definition 5.2, i.e. for every i with 1 < i ≤ � + 1, if
ti = 〈δi, �Hi, Bi〉, then we replace Bi by Bi \ Vκ(ti−1)+1.

5.17 Lemma. Let D be a dense open subset of R�V and p = 〈d1, . . . , dn,
〈κ, �V 〉, A〉 ∈ R�V . Then there are p∗ = 〈d∗

1, . . . , d
∗
n, 〈κ, �V 〉, A∗〉 ≥∗ p; 1 ≤ i1 <

· · · < im ≤ n + 1; and for 1 ≤ k ≤ m, Tk ⊆ [Vνik
]nk �Fνik

-fat trees so that
the following holds:

For every sequence 〈ηk | 1 ≤ k ≤ m〉 such that ηk is a maximal branch
in Tk, there exists a sequence 〈 �Ak | 1 ≤ k ≤ m〉 such that

(1) �Ak ∈ [Vik
]nk is a sequence of ηk-measure one, and

(2) p∗�〈η1, �A1〉� · · ·� 〈ηm, �Am〉 ∈ D.

5.18 Remark. Roughly, the meaning of this is that in order to get into D
we need to specify certain U(α)’s (or F (α)’s, if below κ) and sets Aα’s in
these ultrafilters. Then any choice of elements in Aα’s will put us into D.

Proof. The proof is very similar to that of Lemma 5.8. Suppose for simplicity
that p = 〈〈κ, �V 〉, A〉. We need to find a direct extension p∗ = 〈〈κ, �V 〉, A∗〉
of p and a �V -fat tree T of some finite height m such that the following
holds: for every maximal branch η = 〈f1, . . . , fm〉 through T there are sets
�A = 〈a1, . . . , am〉 of η-measure one (i.e. for every i with 1 ≤ i ≤ m, if
fi = 〈τi, �Gτi〉 then ai ∈

⋂ �Gτi) such that p∗�〈η, �A〉 ∈ D, where

p∗�〈η, �A〉 = 〈f ′
1, . . . , f

′
m, 〈κ, �V 〉, A∗ \ Vκ(fm)〉

and for every i with 1 ≤ i ≤ m, either
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(α) fi is an ordinal and then f ′
i = fi, or

(β) fi = 〈τi, �Gτi〉 and then f ′
i = 〈τi, �Gτi , ai〉.

If p already has a direct extension in D, then we take such an extension and
set T = {〈〉}. Suppose that this is not the case. Define Ã(�d) as in Lemma 5.8.
Here we split it only into two sets A0(�d) = {d ∈ Ã(�d)| either (i) or (ii)} and
A1(d) = Ã(�d) \A0(�d), where:

(i) d is an ordinal and then there is a B�d such that

�d�d�p ≤∗ 〈�d�d, 〈κ, �V 〉, B�d〉 ∈ D.

(ii) d is of form 〈ν, �Fν〉 and then there are B�d and b�d such that

�d�〈ν, �Fν , A ∩ Vν〉�p ≤∗ 〈�d�〈ν, �Fν , b�d〉, 〈κ, �V 〉, B�d〉 ∈ D.

As in Lemma 5.8, define A(α, �d)’s and A(α) ∈ U(α) for α < length(�V ). Set
A1 =

⋃
{A(α) | α < length(�V )} and p1 = 〈〈κ, �V 〉, A1〉. Then p1 satisfies the

following:

(∗)1 If p1 ≤ q = 〈e0, . . . , em, 〈κ, �V 〉, B〉 ∈ D, then there is an
α < length(�V ) such that for every e′

m ∈ A(α) \ Vκ(em−1)+1,
〈e0, . . . , em−1, e

′
m, 〈κ, �V 〉, A1〉 has a direct extension

of form 〈e0, . . . , em−1, e
′ ′
m, 〈κ, �V 〉, A′ ′〉 in D.

Just pick α with em ∈ A(α) (more precisely, only 〈ν, �Fν〉 if em = 〈ν, �Fν , Bν〉).
Then em ∈ A(α, 〈e0, . . . , em−1〉) and so by choice of A(α, 〈e0, . . . , em−1〉),
for every e′

m ∈ A(α, 〈e0, . . . , em−1〉) a direct extension of 〈e0, . . . , em−1, e
′
m,

〈κ, �V 〉, A1〉 will be in D. But if we were to take e ∈ A(α) \ Vκ(em−1)+1, then
e ∈ A(α, 〈e0, . . . , em−1〉), by the definition of the diagonal intersection.

If for some d ∈ A1, d�p1 has a direct extension in D, then we are done.
Thus choose α < length(�V ) with d ∈ A(α). By the choice of A(α), then for
every d′ ∈ A(α) some direct extension of d′�p1 will be in D. Let us fix for
every d ∈ A(α) a direct extension 〈d̃, 〈κ, �V 〉, Bd〉 of d�p1 in D, where d̃ is
either d, if d is an ordinal or 〈ν, �Fν , bd〉 if d = 〈ν, �Fν〉. Set A∗ = {e ∈ A1 | ∀e′ ∈
Ve(e ∈ Be′ )}. Clearly, A∗ ∈

⋂ �V and for every d ∈ A∗, A∗\Vκ(d)+1 ⊆ Bd. So,
for every d ∈ A(α) ∩ A∗, 〈d̃, 〈κ, �V 〉, Bd〉 ≤∗ 〈d̃, 〈κ, �V 〉, A∗ \ Vκ(d)+1〉. Hence,
also 〈d̃, 〈κ, �V 〉, A∗ \ Vκ(d)+1〉 is in D. Then we can take p∗ = 〈〈κ, �V 〉, A∗〉 and
T to be a one level tree which level consists of A(α) ∩A∗.

Suppose now that there is no d ∈ A1 with d�p1 having a direct extension
in D. We continue to two steps extensions. Replacing A by A1 we define
Ã(�d) as above. Let A0(�d) = {d ∈ Ã(�d) | there are α(�d) < length(�V ) and
C(�d) ⊆ Ã(d) \ κ(d), C(�d) ∈ U(α(�d)) such that for every c ∈ C(�d) there is in
D a direct extension of the condition �d�d�c�p1 (i.e. the one obtained by
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adding �d, d and c to p1)} and A1(�d) = A1 \ A0(�d). Define A(α, �d)’s, A(α)’s,
A2 and p2 as was done above. Now, if for some d1, d2 ∈ A2 some direct
extension of d1

�d2
�p2 is in D, then by (∗)1 for some β < length(�V ), for every

d′
2 ∈ A1(β) \Vκ(d1)+1, d1

�d′
2
�p2 will have a direct extension in D. But then

for α < length(�V ) with d1 ∈ A(α) we will have that d1 ∈ A0(〈 〉), i.e. for every
d′
1 ∈ A(α) for some β′ < length(�V ) for every d′

2 ∈ A1(β′)\Vκ(d′
1)+1, d′

1
�d′

2
�p′

will have a direct extension in D. In this case we can define p∗ and two levels
tree T . The definition is similar to those given above. Otherwise we consider
(∗)2 the two-step analogue of (∗)1. Continue in a similar fashion. Thus at
stage n we will have sets An(α) ∈ U(α), An =

⋃
{An(α) | α < length(�V )}

and pn = 〈〈κ, �V 〉, An〉. Also the following n-dimension version of (∗)1 will
hold:

(∗)n If pn ≤ q = 〈e0, . . . , em−1, d1, . . . , dn, 〈κ, �V 〉, B〉 ∈ D, then there
is an n-levels �V -fat tree Tq such that for every maximal branch
η = 〈f1, . . . , fn〉 of Tq there are sets �A = 〈a1, . . . , an〉 of η-measure
one and Bη ∈

⋂ �V such that

〈e0, . . . , em−1〉�〈η, �A〉�〈〈κ, �V 〉, Bη〉 ∈ D.

Again, if for some d1, . . . , dn ∈ An, a direct extension q of 〈d1, . . . , dn〉�pn

is in D, then we can easily finish. Just use Tq given by (∗)n as T and let
A∗ = {e ∈ An | ∀η ∈ Vκ(e)(e ∈ Bη)}.

Suppose that the process does not stop at any n < ω. Set

p∗ =
〈
〈κ, �V 〉,

⋂
n<ωAn

〉
.

Then p∗ ≥∗ p. By our assumption, no direct extension of p (and so of p∗)
is in D. Pick some q, q = 〈d1, . . . , dn, 〈κ, �V 〉, B〉 ≥ p∗ and q ∈ D. Then
q ≥∗ 〈d1, . . . , dn〉�pn. So, by the choice of pn, we were supposed to stop at
stage n. Contradiction. �

We are now ready to show the following:

5.19 Theorem. If cf(length(�V )) ≥ κ+ then κ remains regular (and hence
inaccessible) in V R�V .

5.20 Remark. In view of Theorem 5.15 the converse of Theorem 5.19 is
false.

Proof. Suppose that δ < κ and f
∼

is an R�V -name so that the weakest condition
forces

f
∼

: δ̌ −→ κ̌.

Let t = 〈μ1, . . . , μs, 〈κ, �V 〉, E〉 ∈ R�V . We find a p ≥ t forcing “ranf
∼

is
bounded in κ”. Let ξ < δ. Consider the set

Dξ =
{
p ∈ R�V | for some d ∈ Vκ \ Vμ3+1

appearing in p, (p � f
∼
(ξ̌) < κ̌(d))

}
.
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Clearly, Dξ is a dense subset of R�V . For every �d = 〈d1, . . . , dn〉 ∈ Vκ with
�d�〈〈κ, �V 〉, Vκ\Vκ(dn)+1〉 ∈ R�V apply Lemma 5.17 to �d�〈〈κ, �V 〉, Vκ\Vκ(dn)+1〉
and to Dξ. We are interested only in the last Tm and only if im = n + 1
there. Such a Tm is a �V -fat tree of the height nm < ω. Denote Tm further
as T (ξ, �d). By Definition 5.16, for every η ∈ Tm \ Levnm(Tm) there is an
α(η) < length(�V ) such that SucTm(η) ∈ U(α(η)). Define α(�d) =

⋃
{α(η) |

η ∈ Tm \ Levnm(Tm)}. Then α(�d) < length(�V ), since cf(length(�V )) = κ+.
Pick α(ξ) < length(�V ) to be larger than each α(�d) with �d as above. Finally
let α < length(�V ) be above each α(ξ). Consider the following set:

B = {〈ν, �Fν〉 ∈ Vκ | ∀ξ < δ∀�d ∈ Vν(T (ξ, �d) ∩ Vν is �Fν-fat)}.

By the choice of α,B ∈ U(α). For every ξ < δ, let A∗
ξ ∈

⋂ �V be the set given
by Lemma 5.17 applied to Dξ and t. Let A∗ =

⋂
ξ<δ A∗

ξ . Every condition
of R�V can be extended to one containing elements of B \ Vμs+1. Hence the
following will conclude the proof:

Claim. Let p ≥ 〈μ1, . . . , μs, 〈κ, �V 〉, A∗ \Vμs+1〉 and some 〈ν, �Fν〉 ∈ B \Vμs+1

appears in p. Then
p � ∀ξ < δ̌ (f

∼
(ξ) < ν̌).

Proof. Suppose otherwise. Let

p ≥ 〈μ1, . . . , μs, 〈κ, �V 〉, A∗ \ Vμs+1〉,

some 〈ν, �Fν〉 ∈ B \ Vμs+1 appears in p and for some ξ < δ p � f
∼
(ξ̌) ≥ ν̌. Let

p = 〈d1, . . . , d�, 〈〈ν, �Fν〉, aν〉, d�+2, . . . , dn, 〈κ, �V 〉, A〉. Consider

p′ = 〈d1, . . . , d�, 〈κ, �V 〉, A∗ \ Vκ(d�)+1〉.
We would like to apply Remark 5.18. By the definition of B, T (ξ, 〈d1, . . . ,

d�〉) ∩ Vν is �Fν-fat. Since aν ∈
⋂ �Fν , we can find a maximal branch

〈f1, . . . , fm〉 through T (ξ, 〈d1, . . . , d�〉) inside aν . By Lemma 5.17, there is
a q ≥ p′ with q ∈ Dξ of form

〈e1, . . . , ei, f̃1, . . . , f̃m, A∗ \ Vκ(fm)+1〉

where κ(ei) = κ(d�) and for every j, 1 ≤ j ≤ m, f̃j is fj , if fj is an ordinal, or
f̃j = 〈fj , bj〉 for some bj , otherwise. q ∈ Dξ implies that q � f

∼
(ξ̌) < κ̌(fm).

Obviously, κ(fm) < ν, since fm ∈ aν ⊆ Vν . On the other hand, q and p are
compatible, since p ≥ 〈μ1, . . . , μs, 〈κ, �V 〉, A∗ \ Vμs+1〉,

p = 〈d1, . . . , d�, 〈〈ν, �Fν〉, aν〉, d�+2, . . . , dn, 〈κ, �V 〉, A〉

and, hence 〈ν, �Fν〉, d�+2, . . . , dn come from A∗. So they are addible to q.
Hence

〈e1, . . . , ei, f̃1, . . . , f̃m, 〈〈ν, �Fν〉, aν \ Vκ(fm)+1〉, d�+2, . . . , dn, 〈κ, �V 〉, A〉

is a common extension of q and p. But this is impossible since p � f
∼
(ξ̌) ≥ ν̌

and q � f
∼
(ξ̌) < ν̌. Contradiction. �
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5.2. Magidor Forcing and Coherent Sequences of
Measures

Magidor [37] invented a forcing for changing the cofinality of a cardinal κ
to an uncountable value δ < κ. As an initial assumption, his forcing uses a
coherent sequence of measures of length δ. Coherent sequences of measures
were introduced by Mitchell [43]. In [42] Mitchell showed that it is possible to
do Radin forcing with coherent sequences of measures replacing an elementary
embedding j : V → M . The main advantage of this approach is reducing
initial assumptions to weaker ones that in turn also provide equiconsistency
results. This allows the simultaneous treatment of both the Magidor and the
Radin forcings.

5.21 Definition. A coherent sequence of measures (ultrafilters) �U is a func-
tion with domain of form

{(α, β) | α < �
�U and β < o

�U (α)}

for an ordinal �
�U , the length of �U , and a function o

�U (α), called the order of
�U at α. For each pair (α, β) ∈ dom(�U),

(1) U(α, β) is a normal ultrafilter over α, and

(2) if jα
β : V −→ Nα

β  Ult(V, (α, β)) is the canonical embedding, then

jα
β (�U)�α + 1 = �U�(α, β),

where
�U�α = �U�{(α′, β′) | α′ < α and β′ < o

�U (α′)}
and

�U�(α, β) = �U�
{
(α′, β′) | (α′ < α and β′ < o

�U (α′))

or (α′ = α and β′ < β)
}
.

Suppose that �U is a coherent sequence of measures with �
�U = κ + 1

and o
�U (κ) = δ > 0. We will now use �U as a replacement for �V of the

previous section. Thus, over κ, �U(κ) = 〈�U(κ, α) | α < δ〉 is used. Let
A ∈

⋂ �U(κ) =
⋂

α<δ U(κ, α). Elements of A are ordinals only, no more pairs
of form 〈ν, �Fν〉 with ν an ordinal and �Fν a sequence of ultrafilters over Vν .
But actually, if ν ∈ A and o

�U (ν) > 0, then we have a sequence of measures
�U(ν) = 〈�U(ν, α) | α < o

�U (ν)〉 over ν. And it can be used exactly as �Fν of the
previous section. Note that here �U(ν) is determined uniquely from ν and �U .
Also, because of coherence, namely Definition 5.21(2), there is no need to
define the set A as it was done in the previous section before the definition
of R�V (Lemma 5.1).

Let us denote for an ordinal d = ν or pair d = 〈ν,B〉, ν by κ(d). Using
the above observations we define P�U a coherent sequences analogue of R�V .
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5.22 Definition. Let P�U be the set of finite sequences 〈d1, . . . , dn, 〈κ,A〉〉
such that:

(1) A ∈
⋂ �U(κ).

(2) min(A) > κ(dn).

(3) For every m with 1 ≤ m ≤ n, either

(3a) dm is an ordinal and then o
�U (dm) = 0, or

(3b) dm = 〈ν,Aν〉 for some ν with o
�U (ν) > 0 and

Aν ∈
⋂

α<0�U (ν) U(ν, α).

(4) For every 1 ≤ i ≤ j ≤ m,

(4a) κ(di) < κ(dj), and

(4b) if dj is of form 〈ν,Aν〉 then min(Aν) > κ(di).

The definition of orders ≤,≤∗ on P�U repeats those of R�V (5.2), only
ultrafilter sequences �Fν ’s and �V are removed from the conditions there.

5.23 Definition. Let p = 〈d1, . . . , dn, 〈κ,A〉〉, q = 〈e1, . . . , em, 〈κ,B〉〉 ∈ P�U .
We say that p is stronger than q and denote this by p ≥ q iff

(1) A ⊆ B.

(2) n ≥ m.

(3) There are 1 ≤ i1 < i2 < · · · < im ≤ n such that for every k with
1 ≤ k ≤ m, either

(3a) ek = dik
, or

(3b) ek = 〈ν,Bν〉 and then dik
= 〈ν, Cν〉 with Cν ⊆ Bν .

(4) Let i1, . . . , im be as in (3). Then the following holds for every j with
1 ≤ j ≤ n and j �∈ {i1, . . . , ik}:

(4a) If j > im, then dj ∈ B or dj is of form 〈ν, Cν〉 with ν ∈ B and
Cν ⊆ B ∩ ν.

(4b) If j < im, then for the least k with j < ik, ek is of form 〈ν,Bν〉 so
that

(i) if dj is an ordinal then dj ∈ Bν , and
(ii) if dj = 〈ρ, S〉 then ρ ∈ Bν and S ⊆ Bν .

5.24 Definition. Let p = 〈d1, . . . , dn, 〈κ,A〉〉, q = 〈e1, . . . , em, 〈κ,B〉〉 ∈ P�U .
We say that p is a direct extension of q and denote this by p ≥∗ q iff

(1) p ≥ q, and

(2) n = m.
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Now all the results of the previous section are valid in the present context
with P�U replacing R�V . Also their proofs require only trivial changes.

If δ < κ, then 〈U(κ, α) | α < δ〉 can be split. Thus for every α < δ,
U(κ, α) concentrates on the set Yα = {ν < κ | o�U (ν) = α}. P�U , above the
condition 〈〈κ,

⋃
α<δ Yα〉〉 is then the Magidor forcing for changing cofinality

of κ to cf(δ).

5.3. Extender-Based Radin Forcing

In this section we give a brief description of the extender-based Radin forcing
developed by Merimovich [39]. Previously, extender-based Magidor forcing
was introduced by Miri Segal [49]. The basic idea is to combine the forcing
of Sect. 3 with those of Sect. 5.1.

Assume GCH and let j : V −→ M ⊇ Vκ+4 be an elementary embedding
with crit(j) = κ. First, as in Sect. 3, but with λ = κ++, for every α < κ++,
we consider Uα an ultrafilter over κ defined by:

X ∈ Uα iff α ∈ j(X).

Define a partial order ≤j on λ:

α ≤j β iff α ≤ β and for some f ∈ κκ, j(f)(β) = α.

Let 〈παβ | β ≤ α < κ++, α ≥j β〉 be the sequence of projections defined in
Sect. 3. The whole system (i.e. the extender)

〈〈Uα | α < κ++〉, 〈παβ | β ≤ α < κ++, α ≥j β〉〉

is in M , as κ++
Vκ+3 ⊆ Vκ+3 ⊆ M . Denote this system by E(0) and Uα

by Eα(0) for every α < κ++. Now, as in Lemma 5.1, we use the fact that
E(0) ∈ M in order to define E(1). Thus for every α < κ++, we define over
Vκ the following ultrafilter:

A ∈ E〈α,E(0)〉(1) iff 〈α,E(0)〉 ∈ j(A).

It is possible to use only α as an index instead of 〈α,E(0)〉, but it turns out
that the latter notation is more convenient. Note that E〈α,E(0)〉(1) concen-
trates on elements of form 〈ξ, e(0)〉, where e(0) is an extender over ξ0 (recall,
that in the notation of Sect. 3, ξ0 denotes the projection of ξ to the normal
ultrafilter by πακ) of length (ξ0)++ including projections between its mea-
sures. Also note that σα defined by σα(ξ, e(0)) = ξ projects E〈α,E(0)〉(1) onto
Eα(0) = Uα.

We define projections π〈α,E(0)〉,〈β,E(0)〉 for κ++ > α ≥ β with α ≥j β as
follows:

π〈α,E(0)〉,〈β,E(0)〉(〈ξ, e(0)〉) = 〈παβ(ξ), e(0)〉.
Then, in M ,

j(π〈α,E(0)〉,〈β,E(0)〉)(〈α,E(0)〉) = 〈β,E(0)〉.
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This defines an extender

E(1) =
〈
〈E〈α,E(0)〉(1) | α < κ++〉,
〈π〈α,E(0)〉,〈β,E(0)〉 | κ++ > α ≥ β, α ≥j β〉

〉
.

Continue by recursion. Suppose that τ < κ+4 and a sequence of extenders
〈E(τ ′) | τ ′ < τ〉 is already defined. Again, as κ++

Vκ+4 ⊆ Vκ+4 ⊆ M ,
〈E(τ ′) | τ ′ < τ〉 ∈M . So, for every α < κ++ we can define an ultrafilter over
Vκ as follows

A ∈ E〈α,E(0),...,E(τ ′),...|τ ′<τ 〉(τ)
iff 〈α,E(0), . . . , E(τ ′), . . . | τ ′ < τ〉 ∈ j(A).

Define projections:

π〈α,E(0),...,E(τ),...|τ ′<τ 〉,〈β,E(0),...,E(τ ′),...|τ ′<τ 〉(〈ξ, d〉) = 〈παβ(ξ), d〉,

for every α, β, with κ+ > α ≥ β and α ≥j β. Further, let us suppress these
long indexes and use only α and β, i.e. the above projection will be denote
by παβ and E〈α,E(0),...,E(τ ′),...|τ ′<τ 〉(τ) by Eα(τ). Define

E(τ) =
〈
〈Eα(τ) | α < κ++〉, 〈παβ | κ++ > α ≥ β, α ≥j β

〉
.

Fix some τ ∗ ≤ κ+4. Let �E = 〈E(τ) | τ < τ ∗〉.
In [24] and [25] Merimovich used such �E to define the extender-based Radin

forcing. The general definition is quite complicated and we will not reproduce
it here. Instead let us concentrate on the case length( �E) = 2. This exhibits
the idea of the Merimovich construction. So let �E = 〈E(0), E(1)〉. For each
α < κ++ let α = 〈α,E(0), E(1)〉. Set E = {〈α,E(0), E(1)〉 | α < κ++}.

5.25 Definition. A basic condition in P�E over κ is one of form

p = {〈γ, pγ〉 | γ ∈ s} ∪ {〈α, pα〉, T}

so that

(1) s ⊆ E, |s| ≤ κ and κ ∈ s.

This s is the support of the condition and here, instead of just ordinals
used as supports in the extender-based Prikry forcing of Sect. 3, its
elements are of form γ = 〈γ,E(0), E(1)〉.

(2) pγ ∈ Vκ is a finite sequence of elements of form an ordinal ν or a pair
〈ν, eν(0)〉 with eν(0) and extender of length (ν0)++ over ν0 (recall that,
as in Sect. 3, ν0 denotes the projection of ν by πγ,κ, i.e. to the normal
measure). We require that the ν0’s of elements of pγ are increasing.
Denote the ν of the last element of pγ by κ(pγ), if pγ is nonempty and
let κ(pγ) = 0 otherwise.



5. Forcing Uncountable Cofinalities 1421

(3) α is above every γ ∈ s in the ≤j order (i.e. γ ≤j α).

(4) κ(pα) ≤ κ(pγ).

(5) T ∈ Eα(0) ∩ Eα(1) \ Vκ(pκ)+1.

(6) For every ν ∈ T ,

|{γ ∈ s | (κ(pγ))0 < (κ(ν))0}| ≤ (κ(ν))0.

(7) For every ν ∈ T , β, γ ∈ s, if (κ(pβ))0, (κ(pγ))0 < (κ(ν))0 and β �= γ
then

πα,β(ν) �= πα,γ(ν).

As in Sect. 3, we write T p,mc(p), supp(p) for T, α and s ∪ {α} respectively.

5.26 Definition. For basic conditions p, q of P�E over κ, define p ≥∗ q iff

(1) supp(p) ⊇ supp(q).

(2) For every γ ∈ supp(q), pγ = qγ .

(3) T p ⊆ π−1
mc(p),mc(q)“T

q.

(4) For every γ ∈ supp(q) and ν ∈ T p, if (κ(pγ))0 < (κ(ν))0 then

πmc(p),γ(ν) = πmc(q),γ(πmc(p),mc(q)(ν)).

Now let p0 be a basic condition over κ and ν ∈ T p0 . We define p0
�ν, a

one-element extension of p0 by ν.

5.27 Definition. p0
�〈ν〉 will be of form p′

1
�p′

0 where

(1) supp(p′
0) = supp(p0).

(2) For every γ ∈ supp(p′
0)

p′γ
0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

πmc(p0),γ(ν),

if (κ(pγ
0 ))0 < (κ(ν))0 and ν is of form 〈ν, eν(0)〉,

pγ
0

�πmc(p0),γ(ν),

if (κ(pγ
0 ))0 < (κ(ν))0 and ν is an ordinal,

pγ
0 , otherwise.

(3) T p′
0 = T p0 \ V(κ(ν))0+1.

If ν is an ordinal then p′
1 is empty, otherwise the following holds:

(4) mc(p′
1) = ν.
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(5) supp(p′
1) =

{πmc(p0),γ(ν) | γ ∈ supp(p0) and (κ(pγ
0))0 < (κ(ν))0} ∪ {ν}.

(6) p
′πmc(p0),γ(ν)

1 = pγ
0 .

(7) T p′
1 = T p0 ∩ V(κ(ν))0 .

Definition 5.27 is the crucial step of the definition of P�E . If ν was an
ordinal then p�〈ν〉 = p′

0 is generated as in Sect. 3. But if ν is of form
〈ν, eν(0)〉 then after adding ν, p0 splits into two blocks p′

0 and p′
1. p′

0 is still
a basic condition over κ generated in the fashion of Sect. 3. But p′

1 is a new
block. We just separate and move to the new block every pγ

0 to which ν can
be added. The actual addition, πmc(p0),γ(ν), is kept both in the support of
p′
1 and on the new p′γ

0 . T p0 is moved down to ν and p′
1 is a basic condition

over ν0. We can extend it further using measures of the extender eν(0). It
acts from now autonomously and as a condition in the extender-based Prikry
forcing of Sect. 3. Note that we still keep some connection with the upper
block p′

0. Thus πmc(p0),γ(ν)’s appear in both supp(p′
1) and p′

0, as p′γ
0 . See the

figure below which gives an example of such p0, p′
0, p

′
1.

μ0

μ11

μ10

μ32

μ31

μ30 μ4 T ∩ Vκ(ν)
ν0 πα4α1(ν) πα4α3(ν) ν

p′
1

ν0 πα4α1(ν)
μ21

μ20 πα4α3(ν) ν T \ Vκ(ν)+1

κ α1 α2 α3 α4 = mc
p′
0

μ0

μ11

μ10

μ21

μ20

μ32

μ31

μ30 μ4 T
κ α1 α2 α3 α4 = mc

p0

Once we have a two-block condition p1
�p0 we can extend it further in the

same way by adding either ν ∈ Tp0 or ν ∈ Tp1 . In the first case this will
generate a new block between p1 and p0 and the second below p1. We are
allowed to repeat this any finite number of times. Thus a general condition
in P�E will be of form p = pn

�pn−1
� · · ·�p0 where p0 is a basic condition

over κ, p1 over some ν0 < κ, . . . and, pn over some νn−1 < νn−2.
An example of a condition in P�E :

τ0

τ12

τ11

τ10 τ2 τ3 τ4 τ5 R
μ0 μ1 μ2 μ3 μ4 μ5 = mc

p2
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μ0 μ1

μ71

μ70 μ8 μ6 μ5 S
ν0 ν1 ν2 ν3 ν4 ν5 = mc

p1

ν0 ν1 ν6

ν71

ν70 ν4 T
κ α1 α2 α3 α4 = mc

p0

Each block may grow separately. Thus in the example the maximal coor-
dinate of p1 changed from ν4, corresponding to α4, to a new value ν5. New
coordinates ν2, ν3 were added in p1 and μ2, μ3, μ4 in p2.

The following is a straightforward generalization of Definition 5.27.

5.28 Definition. Let p, q ∈ PE . We say that p is a one-point extension of q
and denote this by p ≥1 q iff p and q are of form

p = pn+1
�pn

� · · ·�p0

q = qn
� · · ·�q0

and there is a k with 0 ≤ k ≤ n such that

(1) pi and qi are basic conditions over some νi with pi ≥∗ qi for i < k.

(2) pi+1 and qi are basic conditions over some νi with pi+1 ≥∗ qi for each
k < i ≤ n.

(3) There is a ν ∈ T qk such that pk+1
�pk ≥∗ qk

�〈ν〉.

We now define n-point extension for every n < ω.

5.29 Definition. Let p, q ∈ P�E . We say that p is an n-point extension of
q and denote this by p ≥n q iff either n = 0 and p ≥∗ q, or else n > 0 and
there are pn, . . . , p0 such that

p = pn ≥1 · · · ≥1 p0 = q.

Finally, we can define the order ≤ on P�E .

5.30 Definition. Let p, q ∈ P�E . Define p ≥ q iff there is n < ω such that
p ≥n q.

Let G be a generic subset of 〈P�E ,≤〉. For every α with κ ≤ α < κ++ we
want to collect together all the ordinals corresponding to α into a set which
we call Gα. Define

Gα =
{
κ(p�Eα) | ∃p ∈ G (p is a basic condition

over κ with �Eα ∈ supp(p) and p
�Eα �= ∅)

}
.

It is not hard to see using the definition of the order on P�E that Gα will be
unbounded in κ sequence of order type ω2. Also α �= β will imply Gα �= Gβ .
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In addition, the sequence Gκ (the one corresponding to the normal ultrafilter)
will be closed.

Now let length( �E) be any ordinal ≤ κ+4. Merimovich [39] showed that his
forcing P�E shares all the properties of the Radin forcing of Lemma 5.1, only
κ+-c.c. should be replaced by κ++-c.c. This causes a new problem to show
that κ+ is preserved in cases of regular κ. In order to preserve measurability
of κ the following variation of repeat point is used:

τ < length( �E) is called a repeat point of �E if for every

ξ < length( �E) and α < κ++, A ∈ Eα(ξ) implies that for some
ξ′ < τ A ∈ Eα(ξ′).

That is, τ acts simultaneously as a repeat point of the sequence of ultrafilters
〈Eα(ξ′) | ξ < length( �E)〉 for each α < κ++. Clearly, there will be lots
of repeat points below κ+4. The κ++ sets Gα defined above for a generic
G ⊆ P�E will witness 2κ = κ++; Gκ will be a club in κ.

In further work [40], Merimovich added collapses to the extender-based
Radin forcing. This allowed him to reprove results of Foreman-Woodin [12],
and Woodin and obtain new interesting patterns of global behavior of the
power function.

6. Iterations of Prikry-Type Forcing Notions

In this section we present two basic techniques for iterating Prikry-type forc-
ing notions. The first one is called the Magidor or full support iteration and
the second, Easton support iteration.

A set with two partial orders 〈P ,≤,≤∗〉 is called a Prikry-type forcing
notion iff

(a) ≤ ⊇ ≤∗.

(b) (The Prikry condition) For every p ∈ P and statement σ of the forcing
language of 〈P ,≤〉 there is a p∗ ≥∗ p deciding σ.

Notice that any forcing 〈P ,≤〉 can be turned into a Prikry-type by defining
≤∗ =≤. In this case the iterations below coincide with the usual iterations
with full or Easton support.

6.1. Magidor Iteration

The presentation below follows [16] and is a bit different from Magidor’s
original version [34].

Let ρ be an ordinal. We define an iteration 〈Pα, Qα∼
| α < ρ〉. For every

α < ρ define by recursion Pα to be the set of all p of form 〈pγ∼
| γ < α〉 so

that for every γ < α,
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(a) p�γ = 〈pβ∼
| β < γ〉 ∈ Pγ , and

(b) p�γ ‖Pγ
“pγ∼

is a condition in the forcing 〈Qγ∼
,≤γ∼

,≤∗
γ∼
〉 of Prikry-type”.

We next define two orderings ≤Pα and ≤∗
Pα

on Pα.

6.1 Definition. Let p = 〈pγ∼
| γ < α〉, q = 〈qγ∼

| γ < α〉 ∈ Pα. Then p ≥Pα q
iff

(1) For every γ < α, p�γ ‖Pγ
“pγ∼

≥γ qγ∼
in the forcing Qγ∼

”.

(2) There exists a finite b ⊆ α such that for every γ ∈ α \ b,
p�γ ‖Pγ

“pγ∼
≥∗

γ qγ∼
in the forcing Qγ∼

”.

If the set b in (2) is empty, then we call p a direct extension of q and denote
this by p ≥∗

Pα
q.

Thus we use full support iteration here, but in order to pass from a con-
dition q ∈ Pα to a stronger one, we are allowed to take non-direct extensions
only at finitely many places. A typical example and the one originally used
by Magidor in [34], is an iteration of Prikry forcings at each measurable be-
low α. Here, in order to extend a condition we may shrink sets of measure
one at each measurable β < α but only for finitely many β’s is it allowed to
add new elements of the Prikry sequence. We further discuss this important
example in detail. Let us now show that 〈Pα,≤,≤∗〉 is itself of Prikry-type.

6.2 Lemma. Let p = 〈pγ∼
| γ < α〉 ∈ Pα and σ be a statement of the forcing

language of 〈Pα,≤〉. Then there is a direct extension of p deciding σ.

Proof. We deal first with the successor case. Let α = α′ + 1. Assume that
Pα′ has the Prikry property, Pα = Pα′ ∗ Qα′

∼
, and ‖Pα′ (〈Qα′

∼
,≤α′

∼
,≤∗

α′
∼
〉 has

the Prikry property). Let Gα′ ⊆ Pα′ be generic for 〈Pα′ ,≤〉 with p�α′ =
〈pγ∼

| γ < α′〉 ∈ Gα′ . Find p∗
α′ ≥∗

α′ pα′ in Qα′ which decides σ[Gα′ ]. Back
in V , let p∗

α′
∼

be a name of such p∗
α′ so that

p�α′ ‖Pα′
p∗

α′
∼

decides σ.

Use the Prikry property of 〈Pα′ ,≤,≤∗〉 to find a q ≥∗ p�α′ such that q ‖Pα′

(p∗
α′

∼
‖Q

∼
∗
α′

iσ), for some i < 2, where oσ = σ and 1σ = ¬σ. Then, with
r = q�p∗

α′
∼

, we have r ‖Pα

iσ.
Suppose now that α is a limit ordinal. Assume that there is no direct

extension of p deciding σ. We define by recursion on β < α

p(β) = 〈p∗
γ∼
| γ < β〉�〈pγ∼

| β ≤ γ < α〉 ≥∗ p

so that p(β)�β = 〈p∗
γ∼
| γ < β〉 �Pβ

¬σβ where σβ ≡ (∃q∼ ∈ Pα \ β(q∼ ≥
∗ p \ β

and q
∼ ‖σ)).

Suppose that 〈p(γ) | γ < β〉 are defined and ≤∗-increasing. Define p(β):
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Case 1. β = β′ + 1.
Force with Pβ′ = Pα�β′, i.e. with 〈Pβ′ ,≤〉. Let Gβ′ ⊆ Pβ′ be generic with

p(β′)�β′ ∈ Gβ′ . At stage β′ we use 〈Qβ′ ,≤β′ ,≤∗
β′〉. It satisfies the Prikry

condition. So there is a p∗
β′ ≥∗

β′ pβ′ deciding σβ .

6.2.1 Claim. p∗
β′ ‖Qβ′¬σβ.

Proof. Suppose otherwise. Then there is a p∗ ∗
β′ ≥∗ p∗

β′ with

p∗ ∗
β′ ‖Qβ′ (∃q∼ ∈ Pα \ β(q∼ ≥

∗ p \ β and q
∼ ‖Pα \β

iσ))

for some i < 2, where oσ = σ and 1σ = ¬σ. Without loss of generality assume
i = 0. Then there are r = 〈rγ

∼
| γ < β′〉 ∈ Gβ′ and q

∼ such that p(β′)�β′ ≤ r
and

r ‖Pβ′ (pβ′
∼
≤∗

β′ p∗ ∗
β′

∼
‖Q

∼ β′ (q∼ ≥
∗ p \ β and q

∼ ‖Pα \βσ)).

Hence, r ‖Pβ′ (p∗ ∗
β′

∼
�q

∼ ≥
∗ p\β′ and p∗ ∗

β′
∼

�q
∼ ‖Pα \β′ σ). In particular, p(β′)�β′ ≤

r ‖Pβ′ σβ′ which contradicts the choice of p(β′). �

Now, since Gβ′ was arbitrary, we can take a name p∗
β′

∼
of p∗

β′ such that
p(β′)�β′ � (p∗

β′
∼
‖Q

∼ β′¬σβ). Set p(β) = p(β′)�β′�p∗
β′

∼
�〈pγ∼

| β ≤ γ < α〉.

Case 2. β is a limit ordinal.
Then we need to show that

p(β) = 〈p∗
γ∼
| γ < β〉�〈pγ∼

| β ≤ γ < α〉

is as desired, i.e. p(β)�β � ¬σβ . Suppose otherwise; then there is an r = 〈rγ∼
|

γ < β〉 ∈ Pβ such that r ≥ p(β)�β and r � σβ . Extend it, if necessary, so
that for some q

∼ and i < 2

r � (q∼ ≥
∗ p \ β and q

∼ ‖Pα \β
iσ)

where 0σ = σ and 1σ = ¬σ. Let us assume that i = 0. By the definition of
order on Pβ (Definition 6.1(2)), there is a β∗ < β such that for every γ with
β∗ ≤ γ < β, r�γ � rγ∼

≥∗
γ p∗

γ∼
. Consider a Pβ∗ -name q′

∼
= 〈rγ∼

| β∗ ≤ γ <

β〉�q
∼. Then, r�β∗ � (q′

∼
≥∗ p \ β∗ and q′

∼
‖Pα \β∗ σ). But r�β∗ ≥ p(β∗)�β∗ �

¬σβ∗ . Contradiction.
This completes the construction. Consider p(α) = 〈p∗

γ∼
| γ < α〉. Pick

some r ≥ p(α) deciding σ. Now we obtain a contradiction as in Case 2. This
completes the proof of the lemma. �

Let us now use this type of iteration to prove the following result of Magi-
dor [34]:

6.3 Theorem. Let κ be a strongly compact cardinal. Then there is a cardinal
preserving extension in which κ is the least strongly compact and also the least
measurable.
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Proof. We use the Magidor iteration 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 defined by

recursion on α as follows:

(a) If ‖Pα
(α is not measurable), then take 〈Qα∼

,≤α∼
,≤∗

α∼
〉 to be the trivial

forcing

(b) If ‖Pα
(α is a measurable cardinal), then let 〈Qα∼

,≤α∼
,≤∗

α∼
〉 be the Prikry

forcing over α with some normal ultrafilter.

(c) If ¬(a) and ¬(b), then we pick a maximal antichain 〈pi | i < τ〉 of
elements of Pα so that each pi decides measurability of α. Above each
pi forcing (α is not measurable) we take 〈Qα∼

,≤α∼
,≤∗

α∼
〉 to be the trivial

forcing. Above every pi forcing measurability of α let 〈Qα∼
,≤α∼

,≤∗
α∼
〉 be

the Prikry forcing over α with some normal ultrafilter.

This means that 〈Qα∼
,≤α∼

,≤∗
α∼
〉 is a Pα-name such that Pα forces: “if α is a

measurable then 〈Qα∼
,≤α∼

,≤∗
α∼
〉 is Prikry forcing, and otherwise 〈Qα∼

,≤α∼
,≤∗

α∼
〉

is trivial.
Let us now force with 〈Pκ,≤〉. Let Gκ ⊆ Pκ be generic. Then, in V [Gκ],

all measurable cardinals below κ are destroyed. Note that for α < κ the
iteration past stage α + 1 does not add measurables below α, since it is
itself a Prikry-type iteration with ≤∗-order more than 2α-closed. So, no new
subsets are added to α. We need only show that κ remains strongly compact.
This will follow from the next more general statement. �

Note that the above proof is a simplification of Magidor’s proof, which
showed that the measures to be killed are exactly the unique normal exten-
sions of measures of order 0 in V .

6.4 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is the Magidor iteration

of Prikry-type forcing notions such that Pα ⊆ αVα for unboundedly many
α’s. Then κ is strongly compact in V Pκ provided it was such in V and for
every α < κ, ‖Pα

((a) 〈Qα∼
,�α∼

∗〉 is |α|-closed, and (b) for all p, q, r ∈ Qα∼
, if

p, q ≥∗ r there is a t ∈ Qα∼
such that t ≥∗ p, q).

6.5 Remark. The requirement (a) holds for most of the Prikry-type forcing
notions. But we refer the reader to [16] and [46] for doing without closure but
still preserving measurability. The requirement (b) is much more restrictive.
For example extender-based Prikry forcings of Sects. 2 and 3 do not satisfy it.
Also the Easton support iteration that will be defined later fails to satisfy (b).
It will be shown in Lemma 6.8 in non trivial cases (a) + (b) imply existence
of a measurable cardinal ≥ |α|.

Proof. Let Gκ ⊆ Pκ be generic, i.e. generic for 〈Pκ,≤〉. Let λ ≥ κ. We
want to establish the λ-strong compactness of κ. In V pick a κ-complete
fine ultrafilter U over Pκ(λ) (recall that U is fine if for every α < λ the set
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{P ∈ Pκ(λ) | α ∈ P} is in U). Let j : V −→M  Ult(V, U). Back in V [Gκ],
let us define U ∗ ⊇ U over Pκ(λ) as follows:

X ∈ U ∗ iff for some p ∈ Gκ, in M there is a q ∈ Pj(κ) \ κ with

q ≥∗ j(p) \ κ so that p�q ‖Pj(κ)
[ǐd]U ∈ j(X

∼
)

for some name X
∼

of X.

Note that Pκ = j(Pκ)�κ, since, in M , j(Pκ)�κ ⊆ κVκ and j“Vκ = Vκ. So
Gκ is an M -generic subset of Pκ. Also j(p)�κ = p for every p ∈ Pκ. We
need to first check that U ∗ is well defined. By (b) any two q’s as above
are compatible. Note also that if p, p′ ∈ Pκ are ≤-compatible, then, in M ,
j(p) \ κ and j(p′) \ κ are ≤∗-compatible. To see this, let r ∈ Pκ, r ≥ p, p′.
Then there is a β < κ such that for β ≤ α < κ, r�β ‖Pβ

rβ∼
≥∗

β
pβ∼

, p
′
β∼
, where

r = 〈rγ∼
| γ < κ〉, p = 〈pγ∼

| γ < κ〉, and p′ = 〈p′
γ∼
| γ < κ〉. So, in M , the same

is true for j(r), j(p) and j(p′). Hence, r forces ≤∗-compatibility of j(p) \ κ
and j(p′) \ κ witnessed by j(r) \ κ. In particular, this shows using (b) that
q ≥∗ j(p) \ κ is ≤∗-compatible with every j(p′) \ κ with p, p′ ∈ G.

Now applying above, if p ∈ G forces “X
∼
∈ U ∗

∼
and X

∼
= Y

∼
”, then for some

q ∈ Pj(κ) \ κ, q ≥∗ j(p) \ κ we have

j(p)�κ�q �Pj(κ) [ǐd]U ∈ j(X
∼

).

But by elementarity, j(p) � j(X
∼

) = j(Y
∼

). Also, j(p)�κ�q ≥∗ j(p). Hence

j(p)�κ�q �Pj(κ) [ǐd]U ∈ j(Y
∼

).

Clearly, U ∗ ⊇ U , and so it is fine. Let 〈Xν | ν < δ < κ〉 be a partition of
Pκ(λ). We need to show that then for some ν < δ, Xν ∈ U ∗. Pick some
p ∈ Gκ and names 〈Xν∼

| ν < δ〉 such that p � 〈Xν∼
| ν < δ〉 is a partition of

Pκ(λ).
Then in M , j(p) � (〈j(Xν∼

) | ν < δ〉 is a partition of Pj(κ)(j(λ)). Now we
use κ-completeness of 〈Pj(κ) \κ,≤∗〉 in order to find ν∗ < δ and q ∈ Pj(κ) \κ
with q ≥∗ j(p) \ κ such that for some r ∈ Gκ,

r�q ‖Pj(κ)
[ǐd] ∈ j(Xν∗

∼
).

Hence Xν∗ ∈ U ∗ and we are done. �

Note that once the ultrafilter U (in the proof above) is normal and the
forcing 〈Pj(κ) \ κ,≤∗〉 is λ+-closed, then the ultrafilter U ∗ extending U will
be normal as well. Just use a regressive function instead of a partition in the
proof of Lemma 6.4.

In particular, if we change the cofinality of each measurable cardinal below
a measurable cardinal κ using the Magidor iteration of Prikry forcings, then
the normal measure U over κ in V extends to a normal measure in the
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extension, provided 〈Pj(κ) \κ,≤∗〉 is κ+-closed. In order to insure this degree
of closure, we may take U which concentrates on non-measurables, i.e.

{α < κ | α is not a measurable } ∈ U.

It is still necessary to check that the iteration Pκ does not turn κ into a mea-
surable in M (the ultrapower by U). This will follow from the following
general statement. The proof of it is based on [34].

6.6 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is the Magidor iteration

of Prikry-type forcing notions such that

(a) Pα ⊆ αVα for unboundedly many α’s.

(b) For every α < κ, ‖Pα
(〈Qα∼

,�α∼
∗〉 is |α|-closed, and: for all p, q, r ∈ Qα∼

,
if p, q ≥∗ r there is a t ∈ Qα∼

such that t ≥∗ p, q).

(c) The forcing in the interval [α, (2α)+] is trivial for stationary many α’s.

If κ is measurable in V Pκ then it was measurable in V .

6.7 Remark. We do not know if there is a non-trivial Prikry-type forcing
〈Q,≤,≤∗〉 satisfying the clause 2 for a non-measurable cardinal α, assuming
that 〈Q,≤∗〉 is not α+-closed. So, the clause 3 may hold automatically.

Proof. Let G be a generic subset of Pκ and W a κ-complete ultrafilter over κ
in V [G]. Then, clearly, κ is at least a Mahlo cardinal in V . So, the following
set is stationary in V :

S =
{
α < κ | Pα ⊆ αVα, |Vα| = α,

the forcing is trivial in the interval [α, (2α)+]
}
.

Suppose for simplicity that 0Pκ = 〈0Qγ∼
| γ < κ〉 ∈ G and it forces that

W is a κ-complete ultrafilter over κ in V [G]; otherwise, just work above a
condition forcing this. Note that in our setting, 0Pκ need not be weaker than
every other condition in Pκ: We may have a t = 〈tγ∼

| γ < κ〉 ∈ Pκ such that
for infinitely many γ’s tγ∼

is a non-direct extension of 0γ∼
in Qγ∼

; such a t would
be incompatible with 0Pκ .

Let α ∈ S. Define an ultrafilter Uα over κ in V [G�α] as follows:

X ∈ Uα iff for some p ∈ G�α there is a q ∈ Pκ \ α with q ≥∗ 0Pκ \ α

so that p�q ‖Pκ
X

∼
∈W

∼
for some name X

∼
of X.

Trivially, Uα is well-defined. α ∈ S implies that Uα is at least a (2α)+-
complete ultrafilter over κ in V [G�α] (just use the ≤∗-completeness of the
forcing Pκ \ α to deal with partitions of κ into ≤ (2α)+ many pieces).

We use now the argument of Levy-Solovay [33] to find a condition t(α) ∈
Pα with t(α) ≥ 0Pα so that for every set X ∈ V with X ⊆ κ, either

t(α) ‖Pα
X ∈ Uα∼

or t(α) ‖Pα
X �∈ Uα∼

.
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Thus, suppose that there is no such t(α). Work in V . For each q ∈ Pα with
q ≥ 0Pα , we pick a set Aq ⊆ κ such that q does not decide whether Aq ∈ Uα∼

.
Define a function from κ into a set of cardinality at most 2α as follows:

F (ν) = 〈〈q, i〉 | q ∈ Pα, i < 2, and: i = 0 if ν ∈ Aq, i = 1 otherwise〉.

Now, in V [G�α], Uα is (2α)+-complete ultrafilter, hence there is an X ∈
V ∩ Uα such that F (ν) = F (μ), for any ν, μ ∈ X. Pick some q ∈ G�α
forcing this. Finally, back in V , there is an i < 2 such that for each ν ∈ X
the pair 〈q, i〉 appears in F (ν). Then, i = 0 implies X ⊆ Aq and i = 1
implies X ⊆ κ \ Aq. But q ‖Pα

X ∈ Uα∼
. Hence, either q ‖Pα

Aq ∈ Uα∼
or

q ‖Pα
κ \Aq ∈ Uα∼

, which contradicts the choice of Aq.
Set now (in V )

U(α) = {X ⊆ κ | t(α) ‖Pα
X ∈ Uα∼

}.

Clearly, U(α) is a (2α)+-complete ultrafilter over κ.
We shall find a stationary subset S′ of S such that for every α < β ∈ S′,

U(α) = U(β). Then, α ∈ S′ will imply that U(α) is a κ-complete ultrafilter
over κ.

Thus, consider the sequence of conditions 〈t(α) | α ∈ S〉. For each α ∈ S
we have t(α) ≥ 0Pα . Hence, by the definition of the order ≤, there is a finite
set b(α) ⊆ α such that for each γ ∈ α \ b(α),

t(α)�γ ‖Pγ
t(α)γ∼

≥∗ 0γ∼
in the forcing Qγ∼

.

Now, we shrink S to a stationary set S1 such that for each α, β ∈ S1,
b(α) = b(β). Denote b(α) for α ∈ S1 by b. Let δ = max(b) + 1. The
cardinality of the forcing Pδ is less than α, for each α ∈ S1, since α = |Vα|
and Pδ ∈ Vα. Hence, there are a stationary S′ ⊆ S1 and t ∈ Pδ such that for
each α ∈ S′ we have t(α)�δ = t. It follows that t(α) and t(β) are compatible
in the order ≤∗, for any α, β ∈ S′. We claim that U(α) = U(β), for each
α, β ∈ S′.

Recall the definition of U(α). Thus,

X ∈ U(α) iff t(α) ‖Pα
X ∈ Uα∼

iff ∃q ∈ Pκ \ α with q ≥∗ 0Pκ \ α

such that t(α)�q ‖Pκ
X ∈W

∼
.

Suppose for a moment that there is an X ∈ U(α) \ U(β). Find qα ∈ Pκ \ α
with qα ≥∗ 0Pκ \ α such that t(α)�qα ‖Pκ

X ∈ W
∼

and qβ ∈ Pκ \ α, qβ ≥∗

0Pκ \α such that t(β)�qβ ‖Pκ
κ \X ∈W

∼
. But t(α)�qα and t(β)�qβ are ≤∗-

compatible, which is impossible since they force contradictory assertions. �

The next simple observation shows that the conditions (a) and (b) of
Lemma 6.4 already imply some strength.
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6.8 Lemma. Let 〈Q,≤,≤∗〉 be a non-trivial Prikry-type forcing notion and
κ be an uncountable cardinal such that

(1) 〈Q,≤∗〉 is κ-closed.

(2) For all p, q, r ∈ Q, if p, q ≥∗ r there is a t ∈ Q such that t ≥∗ p, q.

Then there is a measurable cardinal ≥ κ.

Proof. Let λ be a cardinal which contains a new subset. Fix a name a∼ of
such a subset of λ. We assume that 0Q already forces this.

Set
A = {ρ < λ | ∃t ≥∗ 0Q t ‖ Qρ̌ ∈ a∼}.

Then
0Q ‖ Qa∼ �= Ǎ

just since A is old but a is new. Now define U to be the set of all X ⊆ λ
such that

∃t ≥∗ 0Q t ‖ Q(ρ ∈ X̌ for the least ρ such that ρ ∈ a∼ΔǍ).

Then, clearly, U is a κ-complete ultrafilter over λ. Let us show that it is
a non-principal one. Suppose otherwise. Then, for some ρ < λ we will have
{ρ} ∈ U . Hence there is a t ≥∗ 0Q such that t ‖ ρ̌ ∈ a∼ΔǍ. Extend t to some
s ≥∗ t such that

s ‖ Q ρ̌ ∈ a∼ or s ‖ Q ρ̌ ∈ Ǎ.

The former possibility implies that ρ ∈ A, by the definition of A, which is
impossible. If the later possibility occurs, then, again by the definition of A,
we will have an r ≥∗ 0Q such that r ‖ Qρ̌ ∈ a∼. But r is compatible with s, so
we arrive to a contradiction. Hence, U is non-principal and we are done. �

6.9 Example. Let us show how the Magidor iteration may destroy station-
arity. Fix a regular cardinal κ, and set Z = {α < κ | α is a measurable}.
Assume that Z is stationary. Change the cofinality of each measurable car-
dinal below κ to ω using the Magidor iteration 〈Pα, Qβ∼

| α ≤ κ, β < κ〉 of
Prikry forcings. By Lemma 6.6, only the members of Z change their cofinal-
ity. Let G be a generic subset of Pκ with 0Pκ ∈ G. Let Cα denote the Prikry
sequence for α deduced from G, where α ∈ Z. Define a function f : Z → κ
by setting f(α) = min(Cα).

6.10 Claim. There is a finite b ⊆ κ such that the elements of the sequence
〈Cα | α ∈ Z \ b〉 are pairwise disjoint. In particular, f is one-to-one on Z \ b
and, so Z is not stationary in V [G].

Proof. Work in V . Let t ∈ Pκ with t ≥ 0Pκ . Suppose for simplicity that
t ≥∗ 0Pκ ; otherwise, we work only with the coordinates where the extension
is direct. Let t = 〈tγ∼

| γ < κ〉 and for each γ ∈ Z we have tγ∼
= 〈〈〉, Aγ∼

〉,
where Aγ∼

is a Pγ-name of a set in the normal ultrafilter U ∗
γ∼

over γ which



1432 Gitik / Prikry-Type Forcings

extends a normal ultrafilter Uγ , as in Lemma 6.4. Note that by Lemma 6.6,
the forcing at each γ ∈ κ \ Z is trivial.

Fix γ ∈ Z. Let Gγ be a generic subset of Pγ with r = t�γ ∈ Gγ . Turn to
V [Gγ ]. Let us show that the set

Bγ = {ν ∈ Aγ | ∀δ ∈ Z ∩ γ (ν �∈ Cδ)}

must be in U ∗
γ . Consider j(r) \ κ in M , where j : V → M is the canonical

embedding into the ultrapower of V by Uγ . Let q ≥∗ j(r) \ κ be obtained
from j(r) \κ by replacing each set of measure one Aδ∼

(for δ ∈ j(Z) \ (κ+ 1))
of j(r) \ κ by Aδ∼

\ (κ + 1). Then

r�q ‖Pj(κ)
[γ̌] ∈ j(Bγ∼

).

Hence, Bγ ∈ U ∗
γ .

Finally, back in V , we define t∗ ≥∗ t by replacing each Aγ∼
by Bγ∼

. Then
t∗ will force that Cγ ’s are pairwise disjoint. �

Suppose now that κ above was measurable and there was a measure U
on κ concentrating on measurables. Then Z ∈ U . But in V [G], Z is not
stationary any more. Hence U does not extend to a normal ultrafilter.

6.2. Leaning’s Forcing

Jeffrey Leaning [32] suggested a new and interesting way to put together
Prikry forcings over different cardinals avoiding iteration. Below, we will
briefly describe his forcing.

Fix a set Z of measurable cardinals, and set κ = sup(Z). For each δ ∈ Z

pick a normal ultrafilter Uδ over δ. Set �U = 〈Uδ | δ ∈ Z〉.

6.11 Definition. Let the filter of long measure one sets be

L(�U) = {X ⊆ κ | X ∩ δ ∈ Uδ for all δ ∈ Z}.

6.12 Definition. Let D(�U) be the set of all the pairs 〈s,X〉 such that

(1) s ∈ [κ]<ω.

(2) X ∈ L(�U).

6.13 Definition. Let 〈s,X〉, 〈t, Y 〉 ∈ D(�U). Then 〈s,X〉 ≥ 〈t, Y 〉 iff

(1) s ⊆ t.

(2) X ⊆ Y .

(3) s \ t ⊆ Y .

If s = t then 〈s,X〉 ≥∗ 〈t, Y 〉.
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In [32] Leaning showed that 〈D(�U),≤,≤∗〉 satisfies the Prikry condition,
and so it is a Prikry-type forcing notion. He found a very interesting applica-
tion of this forcing. Thus, starting from an assumption weaker than o(κ) = 2,
Leaning constructed a forcing extension in which the first measurable cardinal
κ may have any number λ ≤ κ normal measures.

Note that if Z does not include its limit points (for example, if there is no
measurable which is a limit of measurables), then this forcing is equivalent
to the Magidor iteration of Prikry forcings for elements of Z. Crucially for
each δ ∈ Z, the forcing Pδ below δ has cardinality less than δ. Hence, it is
not hard to replace a name of a set of measure one by an actual set in Uδ;
see [33] or just apply the corresponding argument from Lemma 6.6. Also, for
each δ ∈ Z the set Aδ = δ \ sup(Z ∩ δ) is in Uδ and these sets are disjoint.
Hence, we can link between finite sequences s and measurable cardinals in Z.

Leaning’s forcing is equivalent for a while to a kind of the Magidor “it-
eration” of Prikry forcings, where instead of names of sets of measure one
actual sets of measure one (i.e. those from Uδ’s) are used. But once the set
Z includes δ such that

for all X ∈ Uδ, there is a μ < κ such that X ∩ μ ∈ Uμ,

the forcing 〈D(�U),≤,≤∗〉 is different. Namely, at this stage the Magidor
“iteration” of Prikry forcings without names fails to satisfy the Prikry con-
dition. Thus, for example, there is no direct extension of the condition
〈〈〈 〉, γ〉 | γ ∈ Z〉 which can decide the following statement: “The first el-
ement of the Prikry sequence for δ belongs to the Prikry sequence of some
μ < δ”.

6.3. Easton Support Iteration

In many applications of iterated forcings it is important to have the κ-c.c.
at stage κ of an iteration. The Magidor iteration or full support iteration,
as well as the usual full support iterations in different contexts, fail to have
this property. The common approach is to replace a full support by an
Easton one. In the present section we show how to realize this dealing with
iterations of Prikry-type forcing notions. The method was introduced in [13]
and simplified in [16]. Shelah [51] found generalizations and applied them to
small cardinals.

Let us give one example that illuminates the difference between full and
Easton support iteration.

6.14 Example. Suppose that κ is inaccessible and the limit of a set A of
measurable cardinals. Assume for simplicity that A does not contain any of
its limit points. Either iteration can be used to add a Prikry sequence Cγ

for each γ ∈ A. In case of the full support iteration this sequence is uniform
(below a certain condition) in the sense that if 〈Xγ | γ ∈ A〉 is any sequence
in V such that Xγ is in a normal ultrafilter Uγ over γ, then

⋃
γ∈A(Cγ \Xγ)



1434 Gitik / Prikry-Type Forcings

is finite. Just the definition of the Magidor iteration and an easy density
argument imply this. Thus let p = 〈pγ∼

| γ ∈ A〉 be a condition in this
iteration. A does not contain its limit points, so we can assume that each pγ∼
is in V . Then pγ is just a condition in the Prikry forcing with Uγ . Hence
pγ = 〈tγ , Aγ〉, where tγ ∈ [γ]<ω and Aγ ∈ Uγ . Suppose now that we force
only with extensions of the condition {〈∅, γ〉 | γ ∈ A}. Then all but finitely
many tγ ’s are empty. Let tγ1 , . . . , tγn be the only nonempty tγ ’s. Extend p to
a condition q = {〈tγ , Xγ∩Aγ〉 | γ ∈ A}. Then q � (

⋃
γ∈A

Cγ∼
\X̌γ) ⊆

⋃n
i=1 tγi .

In the case of Easton support iteration this will not be true: for example
the set {min(Cγ) | γ ∈ A} will be essentially an Easton support Cohen subset
of κ, and in fact V [〈Cγ | γ ∈ A〉] will not have uniform sequence of Prikry
sequences as in the full support iteration.

Let us now turn to the definition of the Easton iteration of Prikry-type
forcing notions.

Let ρ be an ordinal. We define an iteration 〈Pα, Qα∼
| α < ρ〉 with Easton

support. For every α < ρ define by recursion Pα to be the set of all elements
p of form 〈pγ∼

| γ ∈ g〉, where

(1) g ⊆ α.

(2) g has an Easton support, i.e. for every inaccessible β ≤ α,
β > |g ∩ β|, provided that for every γ < β, |Pγ | < β.

(3) For every γ ∈ dom(g),

p�γ = 〈pβ∼
| β ∈ g ∩ γ〉 ∈ Pγ

and p�γ ‖Pγ
“pγ∼

is a condition in the forcing 〈Qγ∼
,≤γ

∼
,≤∗

γ
∼
〉

of Prikry-type”.

Let p = 〈pγ∼
| γ ∈ g〉 and q = 〈qγ∼

| γ ∈ f〉 be elements of Pα. Then p ≥ q iff

(1) g ⊇ f .

(2) For every γ ∈ f , p�γ ‖Pγ
“pγ∼

≥γ qγ∼
in the forcing Qγ∼

”.

(3) There exists a finite subset b of f so that for every γ ∈ f \ b,
p�γ ‖Pγ

“pγ∼
≥∗

γ qγ∼
in the forcing Qγ∼

”.

If the set b in (3) is empty, then we call p a direct extension of q, and denote
this by p ≥∗ q.

Notice that in contrast to Definition 6.1, we are allowed to take non-direct
extensions in both ≤ and ≤∗ orderings for infinitely many coordinates γ < α
provided that they are outside of the support (i.e. outside of f for extensions
of q = 〈qγ∼

| γ ∈ f〉). Inside the support, as in Definition 6.1, only for finitely
many γ’s can a non-direct extension be taken.

Let p = 〈pγ∼
| γ ∈ g〉 ∈ Pα and β < α. Consider p�β = 〈pγ∼

| γ ∈ g∩β〉. Let
Gβ ⊆ Pβ be generic with p�β ∈ Gβ . Then p \ β = 〈pγ∼

| γ ∈ g \ β〉 ∈ P \ β =
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Pα/Gβ . Let t = 〈tγ∼
| γ ∈ f〉 ∈ Pα/Gβ be an extension of p \ β. The support

f of t need not be in V . But we can always find an f ∗ ∈ V , f ⊆ f ∗ ⊆ α \ β
satisfying (2) of the definition of the conditions. Thus let t∼, f

∼
be a Pβ-names

of t, f so that
p�β � t∼ = 〈tγ∼

| γ ∈ f
∼
〉 ≥ p \ β.

Work in V . Define f ∗ ⊆ α covering f
∼

and satisfying (2) of the definition of
the conditions. The construction of f ∗ is recursive. Let f ∗ ∩ β = ∅. Suppose
that β < γ < α and f ∗ ∩ δ is already defined for each δ < γ. If γ is a limit
ordinal then let f ∗ ∩ γ =

⋃
δ<γ f ∗ ∩ δ. If γ = γ′ + 1, then we include γ′ in

f ∗ only in the case if some extension of p�β forces (in Pβ) “γ̌′ ∈ f
∼
”. This

completes the definition of f ∗. It is easy to check that for every γ ≤ α,

p�β ‖Pβ
(f̌ ∗ ⊇ f

∼
and |f̌ ∗ ∩ γ̌| ≤ |f

∼
∩ γ̌|+ |Pβ |).

Now, if γ with β < γ ≤ α is inaccessible and for every δ < γ, |Pδ| < γ,
then |f ∗ ∩ γ| < γ, since, back in V [Gβ ] we have |f ∩ γ| < γ and |Pβ | < γ.
So γ remains inaccessible and |f ∗ ∩ γ| ≤ |f ∩ γ| + |Pβ | < γ. Clearly, in V ,
|f ∗ ∩ γ| < γ holds then as well.

Using the observation above, we can establish the Prikry condition for
〈Pα,≤,≤∗〉 repeating the argument of Lemma 6.2.

6.15 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is an Easton iteration

of Prikry-type forcing notions such that for unboundedly many α’s Pα ⊆ αVα.
Then κ is measurable in V Pκ , provided:

(a) κ is measurable in V .

(b) V � 2κ = κ+.

(c) For every cardinal α < κ we have

(i) ‖Pα
(〈Qα∼

,≤∗
α∼
〉 is |α|-closed).

(ii) for every β with α < β < α+, ‖Pα
(〈Qα∼

,≤∗
α∼
〉 is α+-closed).

(d) For a closed unbounded set of α’s below κ,
‖Pα

either

(i) 〈Qα∼
,≤∗

α∼
〉 is |α|+-closed, or

(ii) for all p, q ∈ Q∗
α∼
, if p, q≥∗

α∼
0Qα∼

there is a t ∈ Qα∼
such that t≥

∼
∗
α p, q

where 0Qα∼
is the weakest element of Qα∼

.

6.16 Remark.

(1) The requirement Pα ⊆ αVα for unboundedly many α < κ easily implies
here that Pα ⊆ Vα, for every inaccessible α in a closed unbounded
subset of κ, due to the Easton support of conditions.
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(2) If at each α < κ, ≤α =≤∗
α, then also ≤=≤∗ for Pκ and the lemma is

actually the Kunen-Paris [31] result on preservation of measurability.
Also our argument is very close to the Kunen-Paris one.

(3) If κ was a supercompact then as in [4] it is possible to show that κ
remains strongly compact. Clearly, the supercompactness may be lost
by iterating the Prikry forcing at each measurable below κ.

(4) Even if the alternative (ii) of the conclusion holds for each α < κ,
〈Pκ,≤∗〉 fails to satisfy it, i.e. in Pκ there are lots of incompatible
direct extensions of a fixed condition.

Proof. Let U be a κ-complete ultrafilter over κ. Consider its elementary
embedding

j : V →M  Ult(V, U).

Then κM ⊆M .
Let Gκ ⊆ Pκ be generic. The set of α < κ such that Pα ⊆ Vα is a member

of U . Hence Pκ ⊆ Vκ, Pκ = Pj(κ)�κ and for every p ∈ Pκ we have j(p) = p.
Using 2κ = κ+, we chose an enumeration 〈Aα∼

| α < κ+〉 of all canonical
names of subsets of κ. In M , at κ either 〈Qκ,≤∗

κ〉 is κ+-closed, or for every
p, q ∈ Qκ, if p, q ≥∗

κ 0Qκ then there is a t ∈ Qκ with t ≥∗
κ p, q. Suppose first

that 〈Qκ,≤∗
κ〉 is κ+-closed. Define by recursion a ≤∗-increasing sequence

〈rα | α < κ+〉 of conditions in Pj(κ) \ κ such that for every α < κ+ there is
a p ∈ Gκ satisfying

p�rα ‖ κ̌ ∈ j(Aα∼
).

Let U ∗ = {Aα | α < κ+, for some p ∈ Gκ p�rα � κ̌ ∈ j(Aα∼
)}. It is routine to

check that U ∗ is well-defined and is a normal ultrafilter over κ extending U .
We now turn to the second possibility, i.e. any two ≤∗

κ-extensions of 0Qκ∼
in Qκ are ≤∗

κ-compatible. Define by recursion an ≤∗-increasing sequence
〈rα∼

| α < κ+〉 of conditions in Pj(κ) \ (κ+1) such that for every α < κ+ there
are p ∈ Gκ and t∼ such that p ‖Pκ

t∼≥
∗
κ∼

0Qκ∼
and

p� t∼
�rα∼

‖ κ ∈ j(Aα∼
).

Let

U ∗ =
{
Aα | α < κ+, and for some p ∈ Gκ and t∼,

p ‖Pκ
t∼≥

∗
κ∼

0Qκ∼
and p� t∼

�rα∼
� κ̌ ∈ j(A

∼
)
}
.

Using the compatibility in 〈Qκ,≤∗〉 of any two extensions of 0Qκ , it is routine
to check that U ∗ is well defined and is a κ-complete ultrafilter extending U .
Note that U ∗ need not be normal anymore. �

Using a similar idea a bit more general result can be shown.
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6.17 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is an Easton iteration

of Prikry-type forcing notions such that for unboundedly many α’s Pα ⊆ αVα.
Let U1 be a κ-complete ultrafilter over κ and U0 a normal ultrafilter over κ
such that U0 � U1 in the Mitchell order (i.e. U0 = U1 or U0 ∈ Ult(V, U1)).
Then U1 extends to a κ-complete ultrafilter in V Pκ provided:

(a) V � 2κ = κ+.

(b) For every cardinal α < κ we have

(i) ‖Pα
(〈Qα∼

,≤∗
α∼
〉 is |α|-closed).

(ii) For every β with α < β < α+, ‖Pα
(〈Qα∼

,≤∗
α∼
〉 is α+-closed).

(c) The set of α < κ satisfying the condition below is in U0:
‖Pα

either

(i) 〈Qα∼
,≤∗

α∼
〉 is |α|+-closed, or

(ii) for all p, q ∈ Q∗
α∼
, if p, q≥∗

α∼
0Qα∼

there is a t ∈ Qα∼
with t≥

∼
∗
α p, q.

Proof. If U1 = U0, then this was proved in Lemma 6.15. Suppose then that
U0 ∈ Ult(V, U1). Let M1 = Ult(V, U1) and j1 : V →M1 be the corresponding
elementary embedding. Consider M = Ult(M1, U0) and j10 : M1 → M the
corresponding elementary embedding. Set j = j10 ◦ j1. Clearly, j : V → M
is an elementary embedding, U0 = {X ⊆ κ | κ ∈ j(X)} and U1 = {X ⊆
κ | j10([id]U1) ∈ j(X)}. We use j,M as in the proof of Lemma 6.15 to
define a ≤∗-increasing sequence 〈rα∼

| α < κ+〉, but now deciding statements
“j10([id]U1) ∈ j(Aα∼

)” and not “κ̌ ∈ j(Aα∼
)” as in that lemma. The κ-complete

ultrafilter defined using this sequence will then be as desired. �

The above lemma turned out to be useful for iterations of extender-based
Prikry and Radin forcings for which the ≤∗

α-compatibility condition (i.e. the
alternative (ii) of the conclusion of the lemma) fails.

The next lemma is a basic tool our Easton support iteration and has the
same proof as that for the usual Easton support iteration. See Baumgartner
[5], Jech [25] or Shelah [54] for the proof.

6.18 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is an Easton iteration

of Prikry-type forcing notions such that for unboundedly many α’s Pα ⊆ αVα.
If κ is a Mahlo cardinal, then Pκ satisfies the κ-c.c.

Let us show now an analog of Lemma 6.6 that Easton iterations of Prikry-
type forcing notions do not create new measurable cardinals. The proof is
based on an argument of Kimchi and Magidor [28]; see also Apter [3].

6.19 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is an Easton iteration

of Prikry-type forcing notions such that for unboundedly many α’s Pα ⊆ αVα.
Let G be a generic subset of Pκ. If κ is a measurable cardinal in V [G], then
it was measurable already in V .
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Proof. Let W be a normal ultrafilter over κ in V [G]. Fix a p ∈ G such that
p ‖Pκ

(W
∼

is a normal ultrafilter over κ). Work in V . Clearly, κ is a Mahlo
cardinal. It is enough to find a q ≥ p such that for every X ⊆ κ, q decides
the statement “X̌ ∈W

∼
”.

Suppose that there is no such q. We build a binary κ-tree T of height κ.
Star with 〈p, κ〉.

Successor Levels

Let the pair 〈r, A〉 be on level α of T . We assume that r ≥ p, A ⊆ κ and
r ‖Pκ

(Ǎ ∈W
∼

). Pick some partition A0, A1 of A and incompatible extensions
r0, r1 of r such that r0 ‖Pκ

(Ǎ0 ∈ W
∼

) and r1 ‖Pκ
(Ǎ1 ∈ W

∼
). Place both

〈r0, A0〉 and 〈r1, A1〉 in T at the level α + 1 to be the successors of 〈r, A〉.

Limit Levels

Let α < κ be a limit ordinal. For each branch in T of height α, we take the
intersection of all second coordinates of elements along the branch. We thus
obtain a partition of κ into at most 2α many sets. But κ is Mahlo, hence
2α < κ. Also,

p ‖Pκ
(W

∼
is a normal ultrafilter over κ).

Hence, there are an element A of this partition and r ≥ p such that

r ‖Pκ
Ǎ ∈W

∼
.

For all such A, we place a pair of form 〈r, A〉 into T at level α as the successor
of each element of the branch generating A.

This completes the construction of T .
Turn now to V [G]. κ is measurable and so weakly compact. Hence T must

have a κ-branch. Let 〈〈rα, Aα〉 | α < κ〉 be such a branch. For each α < κ
set Bα = Aα \ Aα+1. By the construction of T , then there is an sα such
that 〈sα, Bα〉 is an immediate successor of 〈rα, Aα〉. In addition, sα ≥ rα

and the conditions rα+1, sα are incompatible. Also, for each β > α, we have
Aβ ⊆ Aα+1. So, Aβ ∩Bα = ∅. But

rβ ‖Pκ
Ǎβ ∈W

∼
and sα ‖Pκ

B̌α ∈W
∼

,

hence rβ and sα are incompatible. This implies that sβ and sα are incom-
patible as well, since sβ ≥ rβ .

Hence, 〈sα | α < κ〉 forms an antichain of size κ in V [G]. But this is impos-
sible, since we can run the usual Δ-system argument for the Easton support
iteration (Pκ)V inside V [G] and this will give the κ-c.c. Contradiction. �

Let us conclude with two applications. The first one will be a construction
of a κ+-saturated ideal over an inaccessible κ concentrating on cardinals of
cofinality ℵ0. Such an ideal was first constructed by Woodin starting from
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a supercompact and using a beautiful construction involving passing to a
model without AC and then restoring the choice by forcing. Mitchell in [44]
gave another construction from the optimal assumptions. The construction
below follows the lines of [13]. Let U0 " U1 be normal ultrafilters over κ
(i.e. U0 ∈ Ult(V, U1)). Suppose GCH for simplicity. Fix a sequence of normal
ultrafilters 〈U(β) | β < κ〉 representing U0 in the ultrapower by U1. Pick
some A ⊆ κ, A ∈ U1 \U0 such that for every β ∈ A, A∩β �∈ U(β). We define
〈Pκ,≤,≤∗〉 by taking the Easton iteration of Prikry forcings with U(β) (or
more precisely with the extension of U(β) defined in Remark 6.7) for every
β ∈ A. Let j : V −→ M1  Ult(V, U1) and let Gκ ⊆ Pκ be generic. Fix
an enumeration 〈Aα∼

| α < κ+〉 of all canonical names of subsets of κ. As in
Lemma 6.15, we define a ≤∗-increasing sequence 〈rα∼

| α < κ+〉 of elements
of Pj(κ) \ κ+ 1 such that for every α < κ+ there are p ∈ Gκ and t ∈ Qκ with

p�t�rα∼
‖ κ̌ ∈ j(Aα∼

).

Define

F1 =
{
B ⊆ κ | there are p ∈ Gκ and α < κ+

such that p�0Qκ∼
�rα∼

� κ̌ ∈ j(B
∼

)
}
.

It is not hard to see that F1 is a well-defined normal filter over κ extending U1.
Let us establish the normality. Suppose that 〈Bβ | β < κ〉 is a sequence

of elements of F1. We need to show that B = Δ{Bβ | β < κ} ∈ F1. By the
definition of F1, for each i < κ there are pβ ∈ Gκ and αβ < κ+ such that

pβ
�0Qκ∼

�rαβ∼
� κ̌ ∈ j(Bβ∼

).

Let α ≥
⋃

β<κ αβ . We would like to show that for some p ∈ Gκ,

p�0Qκ∼
�rα∼

� κ̌ ∈ j(B
∼

).

Suppose otherwise. Then for some p ∈ Gκ, t ∈ Qκ and r∼ ≥ rα∼
,

p�t�r∼ � κ̌ �∈ j(B
∼

).

Then, by the definition of the diagonal intersection, there would be β < κ,
p′ ∈ G, t′ ∈ Qκ, and r′

∼
such that

p�t�r∼ � p′�t′�r′
∼

� κ̌ �∈ j(Bβ∼
).

But this is impossible, since pβ
�0Qκ

�rαβ∼
� κ̌ ∈ j(Bβ∼

), there is a q ∈ Gκ

which is stronger than both p and pβ , and so q�t�r
∼ ≥ pβ

�0Qκ
�0Qκ

�rαβ∼
.

Contradiction.
Forcing with F1-positive sets is equivalent to forcing with 〈Qκ,≤κ〉. The

last forcing is just Prikry forcing with an extension of U0. Hence it satisfies
the κ+-c.c. Clearly, F1 concentrates on cardinals of cofinality ℵ0, since each
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member of A is such a cardinal in V [Gκ]. Reference [13] contains general-
izations of the above construction for cofinalities different from ℵ0 and to
the nonstationary ideal. Thus it was shown there that NSκ�S can be κ+-
saturated for a stationary set S ⊆ κ so that for every regular cardinal δ < κ
S ∩ {β < κ | cf(β) = δ} is stationary.

If we define a function f : A → κ by f(α) = min(Cα), where Cα is the
Prikry sequence for α, then for every γ < κ the set {α < κ | f(α) = γ}
will be F1-positive. This is in contrast to a similar construction in Sect. 6.2.
There, f is one-to-one. Below, we will see that this f may be a projection
function from a non-normal extension of U1 to a normal extension of U0.

Let us now turn to the second application. Consider U0 " U1 as above.
Perform the same iteration. Let j1 : V −→ M1  Ult(V, U1). In M1[Gκ],
at stage κ we are supposed to use the Prikry forcing with a normal ultra-
filter U ∗

0 extending U0. Clearly, U ∗
0 is such also in V [Gκ]. Obviously, any

two direct extensions of the weakest condition in Prikry forcing are compat-
ible. Hence, by Lemma 6.6 or Lemma 6.8, there is a κ-complete ultrafilter
U ∗

1 extending U1. We pick U ∗
1 as it was defined in Lemma 6.17 using the

embedding j1.

6.20 Lemma. U ∗
1 >RK U ∗

0 .

Proof. Define the projection map f : A −→ κ as follows: f(α) = the first
element of the Prikry sequence of α, where A ∈ U1 \ U0 is as in the first
application. In order to show that this f projects U ∗

1 onto U ∗
0 , it is enough

to prove that for every B ∈ U ∗
0 and C ∈ U ∗

1

f −1(B) ∩ C �= ∅.

So let C ∈ U ∗
1 and B ∈ U ∗

0 . By the definition of U ∗
1 there are p ∈ Gκ,

t = 〈∅, D〉 ∈ Qκ and α < κ+ so that p�t�rα∼
� κ̌ ∈ j1(C∼

). Then also,
p�〈∅, D ∩ B〉�rα∼

� κ̌ ∈ j1(C∼
) and in addition 〈∅, D ∩ B〉 ‖Qκ

(the first
element of the Prikry sequence of κ is in B). Hence,

p�〈∅, D ∩B〉�rα∼
� κ̌ ∈ j1(C∼

) ∩ j1(f∼
−1)(j1(B∼

)) = j1(C∼
∩ f

∼

−1(B
∼

)).

So, C ∩ f −1(B) ∈ U ∗
1 . In particular, C ∩ f −1(B) �= ∅.

Notice now that U ∗
1 cannot be isomorphic to U ∗

0 or in other words, f cannot
be one-to-one on a set in U ∗

1 . Thus, by the κ-c.c. every closed unbounded
subset of κ in V [Gκ] contains a closed unbounded subset of κ which is in V .
U1 was normal in V , hence U ∗

1 containing U1 contains as well all closed
unbounded subsets of κ. Clearly, f is regressive. So, if it is one-to-one on a
set E ∈ U ∗

1 then E is nonstationary which is impossible. Hence U ∗
1 >RK U ∗

0

and we are done. �

The construction above turns the Mitchell order into the Rudin Keisler
order for two ultrafilters. Longer sequences were dealt in [13], and the con-
sistency correlation between these orderings was studied in [14]. In [15], the
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construction above was extended further in order to turn a Mitchell increasing
sequence of length κ++ into a Rudin-Keisler increasing sequence of the same
length. Such a sequence (with minor changes) can be used in the extender-
based Prikry forcing of Sect. 3 for changing the cofinality of κ to ℵ0 blowing
simultaneously its power to κ++. This way, the consistency strength of the
negation of the Singular Cardinal Hypothesis is reduced to the optimal value
o(κ) = κ++, i.e. a measurable cardinal of Mitchell order κ++.

6.4. An Application to Distributive Forcing Notions

We would like to apply the iteration techniques of Sects. 6.1 and 6.2 to
distributive forcing notions.

Let 〈Q,≤〉 be (κ,∞)-distributive, i.e. it does not add new sequences of
ordinals of length less than κ or, equivalently, the intersection of any less
than κ dense open subsets of Q is dense open. If κ is 2|Q|-supercompact (or
2|Q|-strongly compact) then it is possible to turn Q into a Prikry-type forcing
〈Q,≤,≤∗〉 with 〈Q,≤∗〉 κ-closed.

Recall that a map π : P1 → P2 between forcing notions is called a projec-
tion if

(a) q ≤ r implies π(q) ≤ π(r).

(b) π(0P1) = 0P2 .

(c) If p ≥ π(q), then there is an r ≥ q with π(r) ≥ p.

If G1 ⊆ P1 is generic then π“G1 generates a generic subset of P2. We say
that in this case P2 is a subforcing of P1.

6.21 Lemma. Assume that 〈Q,≤〉 is a (κ,∞)-distributive forcing notion
where κ is 2|Q|-supercompact. Let 〈P ,≤,≤∗〉 be the supercompact Prikry
forcing with a normal ultrafilter over Pκ(2|Q|). Then 〈Q,≤〉 is a subforcing
of 〈P ,≤〉.

Proof. Let λ = 2|Q|. Fix 〈Dα | α < λ〉 a list of all dense open subsets of Q.
Let G be a generic subset of P and 〈Pn | n < ω〉 its Prikry sequence. Then,
by Lemma 1.50, λ =

⋃
n<ω Pn. Each Pn ∈ V and has cardinality less than κ.

Hence, by distributivity, D(n) =
⋂
{Dα|α ∈ Pn} ∈ V is dense open subset

of Q. Also, D(n + 1) ⊆ D(n), since Pn+1 ⊇ Pn. Now, we pick an increasing
sequence 〈qn | n < ω〉 with qn ∈ D(n). It will generate a generic subset
of Q. �

Let π : P → Q be a projection map, which exists by the previous lemma.
Define now a forcing ordering (quasiorder) ≤Q over P :

p ≤Q r iff π(p) ≤ π(r).

Then 〈P ,≤Q〉 is a forcing equivalent to 〈Q,≤〉.
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6.22 Lemma. 〈P ,≤Q,≤∗〉 is a Prikry-type forcing notion.

Proof. Clearly, ≤Q ⊇ ≤ ⊇ ≤∗. So we need to check that for every p ∈ P
and a statement σ of the forcing 〈P ,≤Q〉 there is a p∗ ≥∗ p deciding σ in
〈P ,≤Q〉. Set

A0 = {q ∈ P | q ≥Q p and q �〈P,≤Q 〉 σ}, and

A1 = {q ∈ P | q ≥Q p and q �〈P,≤Q 〉 ¬σ}.

Note that any q0 ∈ A0 and q1 ∈ A1 are incompatible in 〈P ,≤〉, since ≤⊆≤Q.
Also, each r ∈ P has a ≤Q-extension in A0 or in A1. Thus, it must have
a ≤-extension in one of these sets. Let, for example, r ≤Q s ∈ A0. So,
π(r) ≤ π(s) and by (3) of the definition of projection there is an r′ ≥ r
such that π(r′) ≥ π(s). Hence, r′ ≥Q s ∈ A0 and so r′ ∈ A0. The above
means that A0 ∪ A1 is dense 〈P ,≤〉. The Prikry condition for 〈P ,≤,≤∗〉
implies then that there is a p∗ ≥∗ p forcing in 〈P ,≤〉 “G

∼
∩Ai �= ∅” for some

i ∈ 2, where G
∼

is the canonical name for a 〈P ,≤〉-generic set. Without loss
of generality suppose that i = 0. Then, p∗ �〈P,≤Q 〉 σ. Otherwise, there will
be a q ∈ A1 such that q ≥Q p∗. But, then, using the property (3) of the
projection, there will be a q′ ≥ p∗ such that q′ ≥Q q. Hence q′ ∈ A1 which
means q′ �〈P,≤ 〉 G

∼
∩A1 �= ∅. This contradicts the choice of p∗. �

Let us conclude with an example of iterating distributive forcing notions.
We refer to [16, 13, 46] and [29] for more sophisticated applications.

A subset E of a regular κ > ℵ0 is called fat if for every δ < κ and every
closed unbounded subset C of κ there is a closed subset s ⊆ E ∩ C of order
type δ. It is not hard to obtain a fat subset with fat complement. For
example, just force a Cohen subset to κ. It will be as desired. Suppose
now that E ⊆ κ is fat. Consider the usual forcing for adding a club to E:
P [E] = {d | d is a closed bounded subset of E} ordered by the end extension,
i.e. d1 ≥ d2 iff d1 ∩max(d2) + 1 = d2. By Abraham and Shelah [2], or just
directly, the forcing 〈P [E],≤〉 is (κ,∞)-distributive.

Suppose now that for every n < ω, κn is a κ+
n -supercompact cardinal,

2κn = κ+
n and En is a fat subset of κn. We would like to produce a cardinal

preserving extension in which every En will contain a club.
By Lemma 6.22, for every n < ω there is a Prikry-type forcing 〈Qn,≤n,≤∗

n〉
such that 〈Qn,≤n〉 is equivalent to 〈P [En],≤〉 and 〈Qn,≤∗

n〉 is κn-closed. Let
〈Pn, Qn∼

| n < ω〉, 〈Pω,≤,≤∗〉 be the Magidor iteration (the Easton iteration
is just the same in case of ω stages) of 〈Qn,≤n,≤∗

n〉’s. It certainly will add
clubs to each En. We need to show only that cardinals are preserved. Let
m < ω. We use an obvious splitting Pω = P≤m ∗ P>m of Pω into the part
of the iteration up to m and those above m. Then, 〈P>m,≤∗〉 will be κm+1-
closed. So the Prikry condition will imply that it does not add new bounded
subsets to κm+1. P≤m is a finite iteration P [E0] ∗ P [E1] ∗ · · · ∗ P [Em]. For
every k ≤ m, |P≤k| = κk. So each Ek+1 remains fat in V P≤k . Hence, P≤m

preserves all the cardinals.
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7. Some Open Problems

We conclude this chapter with several open problems on cardinal arithmetic.
Some of them are well known; others are less so, but seem to us important
for the further understanding of the power function.

The first and probably the most well known:

1 Problem. Suppose that ℵω is strong limit or even 2ℵn = ℵn+1 for every
n < ω. Is it possible to have 2ℵω > ℵω1?

By Shelah [53], an upper bound is min(ℵω4 ,ℵ(2ℵ0 )+). It is shown in [21]
that “2ℵω > ℵω1” implies an inner model with overlapping extenders. Re-
cently this was improved in [23] to Projective Determinacy.

The next problem is probably a bit less well known, but according to
Shelah it is the crucial for cardinal arithmetic.

2 Problem. Let a be a set of regular cardinals with |a| < min(a). Can
|pcf(a)| > |a|?

Recall that pcf(a) = {cf(
∏

a/D) | D an ultrafilter over a}. By the basics
of pcf theory, |pcf(a) |≤ 2|a| (see [53], [6] or [1]). It is unknown even for
countable a’s whether “|pcf(a)| > |a|” implies an inner model with a strong
cardinal. But in [18], it was shown that if for a set a of regular cardinals
above 2|a|++ℵ2 we have |pcf(a)| > |a|+ℵ1, then there is an inner model with
a strong cardinal.

Recall that pp(κ) = sup{cf(
∏

a/D) | a ⊆ κ is a set of at most cf(κ)
of regular cardinals, unbounded in κ and D an ultrafilter over a including
all cobounded subsets of a}. The next problem was proposed by Shelah in
[52] and deals with the following strengthening of “|pcf(a)| = |a|” called the
Shelah Weak Hypothesis:

For every cardinal λ the number of singular cardinals κ < λ with pp(κ) ≥ λ
is at most countable.

Also, for uncountable cofinality an even stronger statement is claimed:

For every cardinal λ the number of singular cardinals κ < λ of uncountable
cofinality with pp(κ) ≥ λ is finite.

3 Problem. Is the negation of the Shelah Weak Hypothesis consistent?

In [22] was shown that much more complicated forcing notions than those
of Sects. 2 and 3 seem to be needed in order to deal with the negation of the
Weak Hypothesis.

The general formulation of the Singular Cardinals Problem (SCP) is as
follows: Find a complete set of rules describing the behavior of the power
(or more generally, the pseudo-power (pp)) function on singular cardinals.
In terms of core models (see the inner model chapters of this Handbook) we
can reformulate SCP in a more concrete form: Given a core model K with
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certain large cardinals, which functions in K can be realized as the power
set function in a set generic extension of K, i.e. if F : λ → λ ∈ K for some
ordinal λ, is there a generic extension of K satisfying 2ℵα = ℵF (α) for all
α < λ?

If we restrict ourselves to finite gaps between singular cardinals and its
power then, at present, the most general results on possible behavior of the
power function are due Merimovich [40]. They extend previous results by
Foreman-Woodin [12], Woodin, Cummings [9] and Segal [49]. However lots
of possibilities are still open. Let us state a few of the simplest:

4 Problem. Is it possible to have 2ℵω1 = ℵω1+2 and two stationary sets
S1, S2 ⊆ ω1 with S1 ∪ S2 = ω1 such that

α ∈ S1 implies 2ℵα = ℵα+2 and
α ∈ S2 implies 2ℵα = ℵα+3?

5 Problem. Is it possible to have two stationary sets S1, S2 ⊆ ω2 with
S1 ∪ S2 = ω2 and S2 ∩ {α < ω2 | cf(α) = ω1} stationary such that

α ∈ S1 implies 2ℵα = ℵα+1 and
α ∈ S2 implies 2ℵα = ℵα+2?

The usual approach via Magidor or Radin forcing produces a club set of
αs with the same cardinal behavior, and here we would like to have different
behaviors on relatively big sets. The first of these two problems may be the
easier one, since we need only GCH on S1 and, so starting with the GCH in
the ground model nothing special should be done on S1. Note also that in
view of Silver’s Theorem (see [25, Sect. 1.8]) we must have 2ℵω1 = ℵω1+1 in
models of Problem 5 and 2ℵω1 ≤ ℵω1+2 in those of Problem 4. Methods of [21]
can be used to show that at least a strong cardinal is needed for constructing a
model of Problem 4. By [23], the strength of at least Projective Determinacy
is needed for constructing a model of Problem 5.
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This chapter provides an introduction to the basic theory of inner models
without fine structure. It assumes that the reader is familiar with Gödel’s
class L of constructible sets; however Sect. 1 begins by recalling the definition
and basic theory of L with an emphasis on the condensation property. This
discussion leads to a consideration of relative constructibility—that is, models
of the form L[A]—and then to L[U ], the minimal model with a measurable
cardinal. A discussion of 0#, and of sharps in general, leads up to a brief
description of the Dodd-Jensen core model Kdj, which links the models L
and L[U ].

Sections 2 and 3 discuss generalizations of the ideas of Sect. 1 to larger
cardinals. Section 2 looks at sequences of measurable cardinals and the mod-
els L[U ] constructed from such sequences. The use of iterated ultrapowers
to compare pairs of models, introduced in Sect. 1 for the model L[U ], is ex-
tended to these models L[U ]. Section 3 introduces the notion of an extender,
a generalized form of ultrafilter used to express cardinal properties stronger
than measurability. Extenders are combined with the ideas of Sect. 2 to
obtain models L[E ], constructed from a sequence E of extenders, which can
contain cardinals up to a strong cardinal.

The definition of models for still stronger cardinals requires an understand-
ing of iteration trees and fine structure, which are not covered in this chapter.
Section 4 gives a brief survey of such larger cardinals, and the current status
of their inner model theory.

The principal goal of research in inner models is to define a core model K
which can coexist with larger cardinals in the universe V . The construction of
the core model is not described in this chapter except for a brief description
of Kdj (which is the core model if there is no model with a measurable
cardinal) in Sect. 1.2. Because of its centrality, however, the core model
itself is mentioned frequently. Briefly, the core model K should have two
properties: (1) it is like L, and (2) it is close to V . The first property is
satisfied by defining it as one of the models L[U ] or L[E ] described in this
chapter. For the second property we can ask for some form of a covering
lemma. In the case when L is the core model—that is, when the only large
cardinal properties which hold anywhere are those which hold in L—the
second criteria is satisfied by Jensen’s covering lemma, which states that
every uncountable set x of ordinals in V is contained in a set y ∈ L of the
same cardinality. This also holds of Kdj when it is the core model—that is,
when there is no model with a measurable cardinal—but for larger cardinals
the core model K can only be expected to satisfy some form of the weak
covering lemma: that (λ+)K = λ+ for every singular cardinal λ.

In the final Sect. 5 there is a further discussion of the core model, but
from a somewhat different perspective. This is not an attempt to describe
the construction of an existing model, but instead is an attempt to answer
the questions “how do we decide that a particular model is ‘the core model’ ”
and “how will we recognize a model, newly discovered in the future, as the
core model”. This attempt is, of course, highly speculative: new discoveries
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may show that models with the properties we are expecting are impossible or
even uninteresting, or a newly discovered model with properties substantially
different from what we expect may play a critical role with respect to larger
cardinals, which demands that it be recognized as the core model.

Most of the topics related to inner model theory which are not covered
in this chapter can be found elsewhere in this Handbook. The core model
and covering lemma are introduced in the chapters [24, 33, 38]. An excel-
lent source for further information on large cardinals is Kanamori’s book
[15, 16]. For more information on L, the standard reference is [3]. The
more recent book [42] is an excellent introduction to inner models and core
model techniques. In this Handbook, fine structure is covered in the chapters
[36, 40].

One other approach to inner models which is not covered in this chapter
is the class HOD of hereditarily definable sets and its variants. The model
HOD has the serious disadvantage that it is not canonical—for example, it
can easily be changed by forcing. However it is frequently used for models in
which the axiom of choice fails, where it usually gives more readable proofs
than do symmetric models, and has been used in studies of determinacy and
of cardinals large enough that the inner models described in this chapter are
unknown or poorly understood.

The major goal of this introduction is to establish notation and a certain
amount of background for other topics in this Handbook. Where sketches of
proofs are given, the intention is not so much to present the proof itself as to
introduce techniques which are important to the further development of the
theory of inner models and core models.

1. The Constructible Sets

1.1 Definition. Gödel’s class L of constructible sets is defined to be L =⋃
α∈On Lα, where the sets Lα are defined by recursion on α as follows:

1. L0 = ∅,

2. Lα+1 = def(Lα,∈),

3. Lλ =
⋃

α<λ Lα if λ is a limit ordinal.

Here def(Lα,∈) is the set of subsets of Lα which are first-order definable in
the structure (Lα,∈), using parameters from Lα.

The most basic property of L is the following:

1.2 Lemma. There is a Π2 sentence of set theory, which we denote by “V =
L”, such that the transitive models of the sentence “V = L” are exactly
the sets Lα and the class L itself. Furthermore, if α is any ordinal then
〈Lν : ν < α〉 is definable in Lα by a Σ1 formula.
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The main content of the sentence “V = L” is the statement ∀x∃α∃y
(y = Lα & x ∈ Lα). See Jech [14, Lemma 13.17] for a proof of Lemma 1.2
in the case that α is a limit ordinal, which is sufficient for most uses which do
not involve fine structure. The use of fine structure goes beyond Lemma 1.2
by splitting the successor interval between Lα and Lα+1 into infinitely many
levels of definability.

The most important property of the constructible hierarchy follows from
Lemma 1.2:

1.3 Lemma (Condensation Lemma).

1. If X ≺1 Lα for some ordinal α, then there is an ordinal α′ ≤ α such
that X ∼= Lα′ .

2. If X is a proper class such that X ≺1 L, then X ∼= L.

That is, if X is a Σ1 elementary substructure of L or of any Lα, then X
is isomorphic, via its transitive collapse, to L or some Lα′ .

The simplest application of Lemma 1.3 is Gödel’s proof that GCH holds
in L.

1.4 Definition. If M is any structure and X is a subset of the universe of
M then the Skolem hull of X in M is the smallest elementary submodel of
M containing X. We write HM(X) for the Skolem hull of X in M.

This definition assumes the existence of such a unique minimal submodel of
M containing X. In all of our applications the modelM will have a definable
well-ordering which provides Skolem functions that ensure this. Definition 1.4
can also be used in cases when M is a well-founded class model of ZF. In this
case, provided X contains a proper class of ordinals, the Skolem hull HM(X)
is equal to

⋃
α∈X HVα ∩M(X ∩ Vα), and hence is definable in M.

1.5 Theorem. L |= GCH.

Proof. We work inside L. An easy induction on α shows that |Lα| = |α|
for all infinite ordinals α. Hence, to establish 2κ = κ+ it is enough to show
that any set x ⊆ κ is a member of Lκ+ . To this end, pick τ large enough
that x ∈ Lτ and set X = HLτ (κ ∪ {x}). By Lemma 1.3 there is an ordinal
α such that π : (X,∈) ∼= Lα where π is the transitive collapse map. Then
x = π(x) ∈ Lα, and |Lα| = |X| = κ so α < κ+. �

The aim of the inner model theory which we will outline in this chapter is
to extend this result to a more general class of models. We will describe (in-
formally, and without attempting a precise definition) a hierarchy satisfying
the analog of Lemma 1.3 as a hierarchy with condensation.
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1.1. Relative Constructibility

Each of the inner models which we will consider is defined as the class of all
sets which are constructible from some specified set or class A. Two notions
of relative constructibility are in general use:

1.6 Definition.

1. If A is a transitive set then L(A) =
⋃

α∈On Lα(A), where the sets
Lα(A) are defined exactly like the hierarchy Lα except that rule 1.1(1)
is replaced by L0(A) = A.

2. If A is any set or class, then L[A] =
⋃

α∈On Lα[A], where the sets
Lα[A] are defined exactly like the hierarchy Lα, except that rule 1.1(2)
is replaced by

Lα+1[A] = def(Lα[A],∈, A),

where def(Lα[A],∈, A) is the set of subsets of Lα[A] first-order definable
with parameters from Lα[A], using A ∩ Lα[A] as a predicate.

The class L(A) satisfies ZF and contains the set A, and it can be char-
acterized as the smallest such class which contains the ordinals. It need not
satisfy the axiom of choice, and indeed it is usually used in cases where the
axiom of choice is intended to fail. The most important example is L(R),
the smallest model of ZF containing all the reals.1 This model is heavily
used in studies of the axiom of determinacy (AD), where it reconciles that
axiom with the axiom of choice in the sense that the axiom “L(R) |= AD”
implies many of the same consequences as the full axiom of determinacy, but
is consistent with the axiom of choice in V . We will not consider models of
the form L(A) further in this chapter.

If A is a set then the model L[A] always satisfies ZFC. It need not have
A itself as a member, but the restriction A ∩ L[A] of A to the model L[A] is
in L[A]. The model L[A] can be characterized as the smallest model M of
ZF which contains all the ordinals and has A ∩M as a member. The case
when A is a class is similar, provided that replacement holds for formulas
with a predicate for A.

In one sense the models L[A] can be fully as complex as any other model
of set theory. This is clear in the case that A is a class, since (assuming
the axiom of global choice) the universe V can be coded by a class A of
ordinals, so that L[A] = V . However, a surprising result of Jensen ([2],
see [10, Theorem 5.1]) shows that A need not be a proper class: he defines
a class generic extension V [G] of the universe V such that V [G] = L[a] for
some a ⊆ ω. Thus any class can be contained in a model of the form L[a],
with a ⊆ ω.
1 Strictly speaking Definition 1.6 does not apply to L(R), since R is not transitive. Taking
L(R) to be L(Vω+1) repairs this defect and also gives a more convenient form to the low
levels of the Lα(R) hierarchy.
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In another sense the models L[A] are quite simple when A is a set—nearly
as simple as L itself. This simplicity appears when working above the set A,
for submodels M of L[A] such that A∩L[A] ∈M . For example, the sentence
“V = L” can be generalized straightforwardly to a sentence “V = L[A]”
which satisfies the following generalization of the Condensation Lemma 1.3:

1.7 Lemma. Suppose that A is a set, and that X ≺1 Lα[A], where α ∈
On ∪{On}, and the transitive closure of A∩Lα[A] is contained in X. Then
there is an α′ ≤ α such that X ∼= Lα′ [A].

Hence the sets Lα[A], with α ≥ rank(A), also form a hierarchy with con-
densation, and it follows that all of the basic properties of L, such as GCH,
♦κ and �κ, hold in L[A]—at least above rank(A)—for the same reason that
they hold in L

Lemma 1.7 does not give any information about the set A itself, and it says
nothing about how models L[A] and L[A′] might be related when A �= A′. If
we are to use the techniques of inner model theory to study the set A, then
we need a version of Lemma 1.7 which does not assume A ∩ L[A] ∈ X. Any
such lemma will require some restriction on the class of sets A for which it
is valid.

Elementary embeddings (or, rather, sets A encoding elementary embed-
dings) have proved to be especially fruitful for this purpose. One reason
for this fruitfulness is that when A and A′ encode different elementary em-
beddings of L[A] and L[A′], respectively, then it is possible, under suitable
conditions, to use the embeddings themselves to modify the models so that
they can be compared. This gives at least a start on the goal of understand-
ing the relationships between distinct models L[A] and L[A′]. This idea may
be seen in the proof of Theorem 1.9 and in the comparison Lemma 2.8 for
sequences of measures.

A second reason for this fruitfulness arises in the consideration of the
embeddings π : Lᾱ[Ā] ∼= X ≺1 Lα[A] arising from a transitive collapse. If
embeddings coded by A are suitably chosen, then the embedding π will be
closely related to the embeddings encoded into A. In this case an analog of
the Condensation Lemma 1.3 may hold without the restriction A∩L[A] ⊆ X
needed for Lemma 1.7. This phenomenon often occurs, and is heavily used,
in the analysis of inner models for large cardinals.

1.2. Measurable Cardinals

The simplest, and oldest, example of a model L[A] in which A encodes an
embedding of L[A] is L[U ], the minimal inner model for a measurable cardi-
nal.

1.8 Definition. Recall that a cardinal κ is measurable if there is an elemen-
tary embedding i : V →M , where M is a well-founded class and κ = crit(i).
Here crit(i) is the critical point of i, that is, the least ordinal α such that
i(α) > α.
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The ultrafilter associated with such an embedding i is the set

U = {x ⊆ κ : κ ∈ i(x)}.

This set U is a κ-complete ultrafilter on κ, where κ-completeness means that⋂
X ∈ U whenever X ⊆ U and |X| < κ. Indeed, U is normal, which is

a stronger property: for any function f : κ → κ, if {ν < κ : f(ν) < ν} ∈ U
then there is an ordinal γ < κ such that {ν : f(ν) = γ} ∈ U .

A normal ultrafilter is frequently called a measure. The analogy with
Lebesgue measure on the real line, from which this terminology is derived, is
slightly strained since neither normality nor the property of being two-valued
has an analog in the real line; however this usage has a strong historical basis
(evidenced by the term “measurable cardinal”) and it is useful in a context
such as the present chapter, in which non-normal ultrafilters never appear.

In the other direction, from an ultrafilter to an embedding, the ultrapower
construction gives, for any normal ultrafilter U on κ, an embedding iU : V →
M = Ult(V, U) with critical point κ such that U is the ultrafilter associated
with iU . The ultrapower has the property that M = {iU (f)(κ) : f ∈ V ∩κV },
and as a consequence iU is minimal among all embeddings related to U in the
following sense: Any other embedding i : V → N with the same associated
ultrafilter U can be factored as

i : V iU

−→ Ult(V, U) k−→ N,

where the embedding k is defined by k([f ]U ) = k(iU (f)(κ)) = i(f)(κ).
It is easy to see that if U is a normal ultrafilter on κ, then U ∩ L[U ] is

a normal ultrafilter in L[U ]. On its face, the model L[U ] appears to depend
on the choice of the ultrafilter U ; however Kunen [18] showed that it depends
only on the critical point of U .

The proof, which we outline below, uses iterated ultrapowers. We write
iUα : V → Ultα(V, U) for the α-fold iterated ultrapower by U , which is de-
fined by setting Ult0(V, U) = V , Ultα+1(V, U) = Ult(Ultα(V, U), iUα (U)), and
Ultα(V, U) = dir limα′<α Ultα′ (V, U) if α is a limit ordinal.

We will need the fact that every iterated ultrapower Ultα(L[U ], U) is well-
founded. This is easily proved by induction on α: more generally, let M be
any well-founded model containing the ordinals, and suppose that M satisfies
that U is a countably complete ultrafilter. A useful observation is that all
iterated ultrapowers of M are definable subsets of M , and hence we can work
inside M . It is easy to see that Ult(M,U) is well-founded. For any ordinal
α such that Ultα(M,U) is well-founded, it then follows, by working inside
Ultα(M,U), that Ultα+1(M,U) is also well-founded. Hence the least ordinal
α such that Ultα(M,U) is ill-founded would be a limit ordinal. Now call an
ordinal γ U -soft in M if there is an iterated ultrapower iUα by U such that
the set of ordinals in Ultα(M,U) below iUα (γ) is ill-founded. Let γ be the
least U -soft ordinal in M , and let α be least such that iUα witnesses that
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γ is soft. Now if α′ is any ordinal in the interval 0 ≤ α′ < α, then iUα′ (γ)
is, by elementarity, the least iUα′ (U)-soft ordinal in Ultα′ (M,U). But this is
impossible, since for sufficiently large α′ < α there is an ordinal ξ < iUα′ (γ) in
Ultα′ (M,U) such that iα′,α(ξ) is a member of an infinite descending sequence
below iα(γ). Then iUα′,α is an iterated ultrapower of Ultα′ (M,U) by iUα′ (U)
which witnesses that ξ is iUα′ (U)-soft in Ultα′ (M,U).

The proof above can be generalized to any well-founded model M with
ω1 ⊆ M , and to any iterated ultrapower of M by arbitrary measures in
M rather than by the single ultrafilter U . We will later see that the situa-
tion is much more difficult for iterations involving cardinals beyond a strong
cardinal.

1.9 Theorem. Suppose that U and U ′ are normal ultrafilters in L[U ] and
L[U ′], respectively.

1. If crit(U) = crit(U ′) then U = U ′, and hence L[U ] = L[U ′].

2. If crit(U) < crit(U ′) then L[U ′] = Ultα(L[U ], U) for some ordinal α.

1.10 Corollary. The model L[U ] has only the one normal ultrafilter U .

Sketch of Proof of Theorem 1.9(1). The proof of Theorem 1.9 uses the fol-
lowing two observations about the iterated ultrapower Ultλ(L[U ], U), where
λ > κ+ is a cardinal of uncountable cofinality.

(1) The set C = {iUα (κ) : α < λ} is a closed, unbounded set of indis-
cernibles for Ultλ(L[U ], U) which generates its measure iUλ (U) in the sense
that

iUλ (U) = {x ⊆ λ : sup(C − x) < iUλ (κ)}, (17.1)

and therefore Ultλ(L[U ], U) = L[iUλ (U)] = L[Cλ] where Cλ is the filter of
closed unbounded subsets of λ. To see that (17.1) holds, let x be any subset of
iλ(κ) in Ultλ(L[U ], U). Then there is some α0 < λ and xα0 ∈ Ultα0(L[U ], U)
such that x = iα0,λ(xα0). For ordinals α in the interval α0 < α < λ set
xα = iα0,α(xα0), so that x = iα,λ(xα). Then iUα (κ) ∈ x ⇐⇒ iUα (κ) ∈ xα+1 =
iα,α+1(xα) ⇐⇒ xα ∈ iUα (U) ⇐⇒ x ∈ iUλ (U).

(2) Let Γ be the class of ordinals ξ > λ such that iUλ (ξ) = ξ. Then simple
cardinal arithmetic shows that Γ is a proper class, and contains all of its limit
points of cofinality greater than λ.

Now suppose that the models L[U ] and L[U ′] are as in the hypothesis
of Theorem 1.9(1), with κ = crit(U) = crit(U ′). Let λ = (2κ)+. By the
first observation, Ultλ(L[U ], U) = Ultλ(L[U ′], U ′) = L[Cλ], with iUλ (U) =
iU

′

λ (U ′) = Cλ ∩ L[Cλ]. By the second observation Γ = {ξ > λ : iUλ (ξ) =
iU

′

λ (ξ) = ξ} is a proper class.
Let X = HL[Cλ](κ ∪ Γ ∪ {Cλ ∩ L[Cλ]}) ≺ L[Cλ] be the Skolem hull, and

let π : M ∼= X be its transitive collapse. Then X ⊆ ran(iUλ ), so M ≺ L[U ].
However U = π−1(Cλ ∩L[Cλ]) ∈M , and the proper class Γ is a subset of M .
It follows by Lemma 1.7 that M = L[U ]. By the same argument M = L[U ′]
and U ′ = π−1(Cλ ∩ L[Cλ]), so L[U ] = L[U ′] and U = U ′. �
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1.11 Theorem (Silver). L[U ] |= GCH.

Sketch of Proof. First we recall Gödel’s proof of GCH for L. Assume V = L,
and fix any set x ∈ PL(λ). Now pick some τ > λ such that x ∈ Lτ , and let
π : Mx

∼= X ≺1 Lτ where |X| = λ, λ ∪ {x} ⊆ X, and Mx is transitive. Then
the Condensation Lemma 1.3 implies that Mx = Lα for some α < λ+, so
that x = π−1(x) ∈ Lα. Thus {z ⊆ λ : z ≤L x} ⊆ Lα, and since |Lα| = λ it
follows that no set in P(λ) has more than λ many <L-predecessors. Hence
otp(P(λ),≤L) = λ+, so L |= 2λ = λ+.

Now assume V = L[U ], where U is a normal ultrafilter on κ, and fix
a cardinal λ. If λ ≥ κ then Gödel’s proof for L can be easily adapted to L[U ]
by substituting Lemma 1.7 for Lemma 1.3. Thus we only need to consider
the case λ < κ.

Fix a set x ⊆ λ, and pick τ such that x ∈ Lτ [U ]. For convenience, also
let Lτ [U ] satisfy ZF−, the axioms of ZF without the Power Set Axiom; this
will be true if τ is any successor cardinal. Now let X ≺ Lτ [U ] where x ∈ X,
λ ⊆ X, and |X| = λ. If Mx

∼= X is the transitive collapse of X, then
Mx = Lαx [Ux] for some αx < λ+ and some filter Ux which is a normal
ultrafilter in Mx.

In order to conclude, as in the proof for L, that otp
(
P(λ), <L[U ]

)
= λ+,

we need to show that {z ⊆ λ : z ≤L[U ] x} ⊆ Mx. The fact that Ux �= U
is a complication which is not present in L, and we will use the techniques
from the proof of Theorem 1.9 to deal with it. The assumption that Lτ [U ],
and hence Mx, satisfies ZF− makes it is easy to verify that the iterated
ultrapower iUx

κ : Lαx [Ux] → Ultκ(Lαx [Ux], Ux) can be defined and has all
of the required properties: In particular, Ultκ(Lαx [Ux], Ux) = Lα′

x
[iUx

κ (Ux)]
for some α′

x < κ+, and iUx
κ (Ux) ⊆ U since iUx

κ (Ux) is generated by the set
Cx = {iUx

ν (λ) : ν < κ}, which is in U since it is closed and unbounded.
Since iUx

λ �PMx(λ) is the identity, it follows that {z ⊆ λ : z <L[U ] x} ⊆
PLα′

x
[Ux](λ) ⊆Mx, as desired. �

This proof can be interpreted as showing that L[U ] contains a hierarchy
with condensation; however this hierarchy has two flaws: (i) the very exis-
tence of the model L[U ], and hence of this hierarchy, is conditional on the
existence of the normal ultrafilter U , and (ii) unlike the structures Lα, the
structures Mx do not actually satisfy condensation. That is, the model Mx

is not actually an initial segment of L[U ], but only a structure which can be
compared to an initial segment of L[U ] by means of an iterated ultrapower.
The first, and more important, of these two flaws was fixed by the Dodd and
Jensen [4, 6, 5] with their introduction of the original core model Kdj. They
defined a mouse to be a structure M = LαM [UM ] such that (i) M satisfies
the sentence “UM is a normal ultrafilter”, (ii) all of the iterated ultrapowers
of M are well-founded, and (iii) M satisfies a fine structure condition which
implies that there is a ρ ≤ crit(UM ) such that LαM+1[UM ] |=

∣
∣αM

∣
∣ = ρ. The

Dodd-Jensen core model Kdj is defined to be L[M], where M is the class of
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all mice. With the emergence of a general concept of “the core model” (see
Sect. 5), Kdj came to be seen as the core model below L[U ], that is, it is the
core model provided that there is no model with a measurable cardinal.

The weakest mouse is equi-constructible with 0#, which is described in the
next subsection. The model Mx in the proof of Theorem 1.11 is an example of
a mouse; however its construction required starting with the model L[U ] and
it is difficult to prove that such a model exists using any assumption weaker
than a measurable cardinal. Dodd and Jensen threw out the assumption
Mx |= ZF− of Theorem 1.11, and replaced it with clauses (i) and (ii); they
then used fine structure to show that iterated ultraproducts of mice can still
be defined and have the required properties.

The second flaw, the lack of condensation, is only a minor technical prob-
lem at the level of one measurable cardinal but leads to serious difficulties at
higher levels. This problem is corrected by the modern presentation of the
core model. As adapted to the special case of the Dodd-Jensen core model
Kdj, this presentation works as follows: First note that Kdj does satisfy
a form of condensation, for if π : Lα′ [M′] ∼= X ≺1 Lα[M], then π preserves
the property of being a mouse. It follows that M′ is contained in M, and
since the Dodd-Jensen mice are well-ordered by relative constructibility it
follows that M′ is an initial sequence of the class M. We can extend this to
L[U ] as follows: each mouse is a model LαM

[UM ]. Since UM and LαM
[UM ] are

equi-constructible, Kdj can be equivalently written as L[〈UM : M ∈M〉] in-
stead of as L[M], and then L[U ] is equal to L[M, U ] = L[〈UM : M ∈M〉, U ].
If we let U be the sequence 〈UM : M ∈ M〉�〈U〉, then L[U ] = L[U ], and
the transitive collapse of a substructure X ≺1 Lα[U ] has the form Lα′ [U ′]
where, as in the case of Kdj, the sequence U ′ is an initial segment of U . Thus
X ∼= Lα′ [U�α′], which is an initial segment of L[U ] = L[U ].

Notice that this construction has the further advantage of smoothly joining
the construction of Kdj with L[U ] at one extreme and (taking U to be empty)
L at the other.

1.3. 0#, and Sharps in General

This subsection covers the first steps of the core model hierarchy suggested
by the proof of Theorem 1.11. They are the first steps historically, since the
model L[0#] was the first canonical inner model to be extensively studied
other than L and L[U ]. They are also the first steps in the sense that they
lie at the bottom of the core model hierarchy: 0# is, as we will see later,
essentially the same as the first Dodd-Jensen mouse.

Lemma 1.2 implies that if i : L → M , where M is a well-founded class,
then M = L. As Scott [37] observed, it follows that there are no measurable
cardinals in L: otherwise let U ∈ L be a normal ultrafilter on the least
measurable cardinal κ of L. Then iU (κ) > κ; but this is impossible since iU (κ)
is, by the elementarity of the embedding iU , the least measurable cardinal in
Ult(L,U) = L, and that is κ.
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Nontrivial embeddings from L into L can, however, exist in V : for ex-
ample, if U is a normal ultrafilter and iU : V → Ult(V, U) then iU �L :
L → L. Silver’s 0# gives a complete analysis of such embeddings. We
say that a class I of ordinals is a class of indiscernibles for a model M if
for any formula ϕ(v0, . . . , vn−1) of the language of set theory and any in-
creasing sequences (c0, . . . , cn−1) and (c′

0, . . . , c
′
n−1) of members of I we have

M |= ϕ(c0, . . . , cn−1) ⇐⇒ ϕ(c′
0, . . . , c

′
n−1).

1.12 Definition. We say that 0# exists if there is closed proper class I of
indiscernibles for L. In this case we define 0# ⊆ ω to be the set of Gödel
numbers of formulas ϕ(v0, . . . , vn−1) such that L |= ϕ(c0, . . . , cn−1) for any
increasing sequence 〈c0, . . . , cn−1〉 ∈ [I]n.

Since I is a class of indiscernibles for L, this characterization of the set
0# does not depend on the choice of the sequence �c ∈ [I]n. The fact that I
is required to be closed implies that the definition of 0# does not depend on
the choice of the class I. It also implies that the members of I possess the
following normality property, which Silver called remarkability : if η is any
ordinal and f : On → On is any map definable in L from parameters in Lη

such that f(c0, . . . , cn−1) = ξ < c0 for some sequence �c = (c0, . . . , cn−1) ∈
[I − η]n, then f(�d) = ξ for every sequence �d ∈ [I − η]n.

Silver showed that if 0# exists then there is a unique maximal class I, the
Silver indiscernibles such that L = HL(I), that is, every set in L is definable
in L from parameters in I. This class can be obtained by starting with any
remarkable class I ′ of indiscernibles. Then HL(I ′) ≺ L is a proper class and
hence is isomorphic to L. If π : HL(I ′) ∼= L is the transitive collapse map,
then I = π“I ′ is a closed class of indiscernibles and HL(I) = L.

Our Definition 1.12 requires that I be a proper class, but Silver showed
that this is not necessary:

1.13 Theorem. If there is an uncountable set of indiscernibles for L then
0# exists. Furthermore, there is a Π1

2 formula ψ such that if a is any subset
of ω, then ψ(a) holds if and only if a = 0#.

Thus for example, the existence of 0# is an immediate consequence of the
existence of a Ramsey cardinal. The following result shows how 0# can be
used to characterize the elementary embeddings from L into L:

1.14 Theorem (Silver). Assume that 0# exists. Then (i) for any strictly
increasing map π : I → I there is a unique elementary embedding i : L → L
such that π = i�I, and (ii) if i : L→ L then i“I ⊆ I, and i is determined by
i�I : I → I.

The proof follows easily from the indiscernibility of the members of I
and the fact that every constructible set is definable from members of I:
if x is the unique set satisfying a formula ϕ(x, α0, . . . , αn−1) for some se-
quence (α0, . . . , αn−1) ∈ [I]<ω, then i(x) must be the unique set x′ satisfying
ϕ(x′, π(α0), . . . , π(αn−1)).
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This leaves open one gap in the use of 0# to characterize embeddings from
L into L: the question of whether the existence of such an embedding implies
the existence of 0#. This question was settled by Kunen; the version of the
proof which we sketch below is largely due to Silver and is included because
it involves ideas which are basic to the proof of the covering lemma:

1.15 Theorem. If i : L→ L is a nontrivial elementary embedding then 0#

exists.

Sketch of Proof. Let κ = crit(i). We can assume without loss of generality
that i is continuous at every ordinal of cofinality greater than κ: if it is not,
then factor the embedding i as i : L → X := {i(f)(κ) : f ∈ L} ≺ L and
replace i with i′ : L i−→ X

π−→ L, where π : X ∼= L is the transitive collapse.
We will define, for each ν ∈ On, a class Γν of ordinals which is unbounded

and contains all of its limit points of cofinality greater than κ. If we set
κν = inf(Γν − κ) then the class J = {κν : ν ∈ On} will be a class of
indiscernibles for L, and by Silver’s results this implies that 0# exists.

Set Γ0 = On∩ ran(i), and if λ is a limit ordinal then set Γλ =
⋂

ν<λ Γν .
Now suppose that Γν has been defined, and write HL(X) ≺ L for the class
of sets definable in L from parameters in X. Then HL(Γν) ∼= L since Γν is
a proper class, so consider the map

iν : L ∼= HL(Γν) ≺ L.

Then Γν+1 is defined to be the set of ordinals ξ such that iν(ξ) = ξ.
Notice that Γν = On ∩HL(Γν), that κν = inf(Γν − κ) = iν(κ), and that

if ν > ν′ then iν′ (κν) = κν . Now define, for each pair ν′ < ν of ordinals, the
embedding iν′,ν : L ∼= HL(κν′ ∪ Γν) ≺ L to be the inverse of the transitive
collapse of HL(κν′ ∪ Γν). Thus iν′,ν is the identity on κν′ ∪ Γν+1.

We claim that iν′,ν(κν′ ) = κν . This claim is equivalent to the statement
that κν ∩ HL(κν′ ∪ Γν) = κν′ , and if it were false then there would be
�α ∈ [Γν ]<ω and a formula ϕ such that

L |= ∃η ∈ κν − κν′∃�γ ∈ [κν′ ]<ω
(
ϕ(�γ, η, �α) & ∀η′ < η ¬ϕ(�γ, η′, �α)

)
. (17.2)

Now the embedding iν′ : L ∼= HL(Γν′ ) ≺ L is elementary, and iν′ (κ) =
κν′ , but iν′ (κν) = κν and iν(�α) = �α since iν′ �Γν is the identity. Thus
formula (17.2) implies that

L |= ∃η ∈ κν − κ∃�γ ∈ [κ]<ω
(
ϕ(�γ, η, �α) & ∀η′ < η ¬ϕ(�γ, η′, �α)

)
.

But this is impossible, since any such ordinal η would be in Γν and κν =
min(Γν − κ).

This completes the proof of the claim. Now suppose that �c and �c ′ are
two increasing sequences in [J ]<ω which differ only in the ith place; say that,
c′
i = κν′ < ci = κν while cj = c′

j for j �= i. Then iν′,ν(�c ′) = �c, and since
iν′,ν : L→ L is elementary it follows that �c ′ and �c ′ satisfy the same formulas
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over L. But if �c ′ and �c are any two increasing sequences of the same length
from [J ]<ω, then one can be obtained from the other in a finite sequence of
steps in such a way that each step changes only one element of the sequence.
Hence J is a class of indiscernibles for L. �

The following result of Silver states that if 0# exists then the class L of
constructible sets is much smaller than V :

1.16 Theorem (Silver). Assume that 0# exists, and let I be the class of
Silver indiscernibles. Then (i) every uncountable cardinal κ of V is a member
of I, and indeed |I ∩ κ| = κ, (ii) every Silver indiscernible is weakly compact
in L, (iii) ∀η

∣
∣PL(η)

∣
∣ = |η|, and (iv) ∀η cf(η+L) = ω.

Clause (ii) can be strengthened by replacing “weakly compact” with any
large cardinal property which can consistently hold in L. This fact suggests
that the existence of 0# can be viewed as the weakest large cardinal property
which cannot consistently be true in L, and further experience has supported
this view. Such a statement cannot be proved, or even stated precisely,
without a precise definition of “large cardinal property”; however it is true
for large cardinals inside the core model, and the covering lemma provides
other senses in which L[0#] is a minimal extension of L. For example, if M
is any class model such that M |= λ+ �= (λ+)L for some singular cardinal λ
of M , then L[0#] is contained in M .

Solovay once suggested that L[0#] might be minimal in another sense:
that every real a ∈ L[0#] such that 0# /∈ L[a] would be set generic over L.
This suggestion was refuted by Jensen [2], who used class forcing to construct
a counterexample. A weaker conjecture might be that 0# is the minimal real
which is easily definable; however Friedman [11] has shown that if 0# exists
then there is a set a such that 0 <L a <L 0# and a is a Π1

2 singleton;
furthermore, the set defined by this Π1

2 formula remains a singleton in any
extension with the same ordinals. See [10, Theorem 6.5] for more on this
subject.

1.4. Other Sharps

The process used to define 0# can also be applied to models larger than L.
This process is commonly used in two slightly different contexts: in order to
define the sharp of a large cardinal property, and in order to define the sharp
of a set.

In order to construct the sharp of a large cardinal property, we need to start
with a minimal inner model M for the property such that M has a suitable
inner model theory. For a measurable cardinal, for example, we could take
any model of the form M = L[U ] such that U is a normal ultrafilter in M .
If J is a closed proper class of indiscernibles for M , then we can define
a new real, just as with 0#, to be the set of Gödel numbers of formulas
ϕ(x0, . . . , xn−1) such that M |= ϕ(c0, . . . , cn−1) for any (c0, . . . , cn−1) ∈ [J ]n.
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By using the inner model theory for the model M in question, together
with Silver’s techniques from the theory of 0#, it can be shown that this
construction yields a unique real even though (as in the case of L[U ]) the
model M may not itself be unique.

This procedure is not limited to properties involving a single cardinal. As
we will see shortly, the ideas of L[U ] can be extended to a model M = L[U ],
having a proper class of measurable cardinals, so that M has an inner model
theory similar to that of L[U ]. The procedure described above, applied to
the model M , will then yield a real which is the sharp for a proper class of
measurable cardinals.

The sharp construction was first applied to L[U ] by Solovay, who gave the
name 0† to the resulting sharp for a measurable cardinal. This precedent
has had the effect of leading to a proliferation of typographical symbols for
sharps of various large cardinal properties, the most common of which is 0¶,
used for the sharp of a strong cardinal. The use of these symbols, apparently
chosen on a whim and with no relation to the cardinals they are supposed
to represent, places an unfortunate and unnecessary burden on the reader’s
memory. Fortunately the most important example, the sharp for a Woodin
cardinal, has escaped the use of such symbols. This sharp is important be-
cause a number of applications of Woodin cardinals, particularly to inner
model theory, appear to require the sharp for a Woodin cardinal, rather than
simply a Woodin cardinal itself. It is commonly denoted by M#

1 , where M1

is the standard symbol for the minimal model with one Woodin cardinal.
It is straightforward to generalize the construction of 0# to obtain the

sharp A# for an arbitrary set A of ordinals: If A ⊆ γ, and J is a closed,
proper class of indiscernibles for L[A], then A# is the set of pairs (n,�a)
where n = 6ϕ7 is the Gödel number of a formula ϕ(�v, z, �u), �a ∈ [γ]<ω, and
L[A] |= ϕ(�c,A,�a) for any �c ∈ [J ]n. By use of an appropriate coding, we can
regard A# as a subset of γ.

In particular, this construction can be used to iterate the sharp operation:
Starting with 0#1

= 0#, we define 0#α+1
= (0#α

)#. If α is a limit ordinal
then 0#α

is defined to be a set encoding 〈0#γ

: γ < α〉.
Assuming the existence of a large cardinal (a Ramsey cardinal is much

more than enough) it can be shown to be consistent that 0#α

exists for all
ordinals α. The model L[〈0#α

: α ∈ On〉] forms a hierarchy with conden-
sation, and this hierarchy is an initial segment of the core model hierarchy
toward which we are working. This process can easily be continued: the
model M = L[〈0#α

: α ∈ On〉] is a minimal model for the large cardinal
property “A# exists for all sets A”, and (given a class of indiscernibles for
this model) we can define the sharp for this property. This sharp will be
a subset of ω and it is the next step 0#On

in the desired hierarchy.
On the one hand there seems to be no obvious bound determining how

far the hierarchy obtained through this process can be extended, but on the
other hand it is not clear how to generalize the process to give a uniform
definition, using indiscernibles, of such a hierarchy. The core model provides
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such a definition by replacing the indiscernibles by ultrafilters, as suggested
by the proof of Theorem 1.11. We will conclude this section by discussing
the relationship between ultrafilters and sets of indiscernibles.

1.5. From Sharps to the Core Model

The Dodd-Jensen core model Kdj was briefly described at the end of Sect. 1.3.
This subsection will explain how the concept of a mouse, which they invented
for this model, generalizes and extends the concept of sharps.

Recall that they defined a mouse to be a model LαM [UM ], similar to the
models Mx used in the proof of Theorem 1.11, but with the strong theory
ZF− replaced with a fine structural condition. One of the uses of this fine
structural condition was to allow them to define iterated ultrapowers of mice
and to show that they have the required properties. Silver, Magidor and
others later gave a construction of Kdj without the need for fine structure,
but fine structure is still needed to define core models for larger cardinals.

As in the proof of Theorem 1.11, iterated ultrapowers can be used to com-
pare two mice. This comparison process prewellorders the class of mice, and
shows that they form, in an appropriate sense, a hierarchy with condensation.
The Dodd-Jensen core model is defined to be the model K = L[M], where
M is the class of all mice; the well-ordering of mice and their condensation
properties imply that L[M] is a model of ZF + GCH.

This model cannot contain a measurable cardinal, but Dodd and Jensen
proved a covering lemma for K which asserts that a model L[U ] with a mea-
surable cardinal has approximately the same relation to K that 0# has to L.

The Dodd-Jensen core model can be better understood by considering
a translation from mice to sharps and vice versa. Suppose first that M =
Lα[U ] is a mouse. Then the result of the iterated ultrapower iUOn : M →
M ∗ = UltOn(M,U) is a well-founded model by clause (ii) of the definition of
a mouse. The ordinals OnM ∗

of M ∗ have length greater than On, and On
is the measurable cardinal in M ∗. If we write iUλ for the embedding from
Lα[U ] to Ultλ(Lα[U ], U), then the class I = {iUλ (κ) : λ ∈ On} is a class of
indiscernibles for M ∗.

This class I can be used, as described in the last subsection, to define an
initial sequence of the class of sharps. This sequence of sharps can be defined
by recursion over OnM ∗

, so that the length of OnM ∗
provides an indication of

how long a hierarchy of sharps will be generated before the process generates
a model for which I is not a class of indiscernibles. Clause (iii) of the definition
of a mouse can be used to show that this final model is M ∗.

In discussing the other direction, from sharps to mice, we will use Kunen’s
notion of a M -ultrafilter:

1.17 Definition. A normal M -ultrafilter in Kunen’s sense is an ultrafilter
on P(κ) ∩M , for some κ in M , such that
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1. If f : κ → κ is in M and {ν < λ : f(ν) < ν} ∈ U , then there is γ such
that {ν : f(ν) = γ} ∈ U , and

2. If x ⊆ P(κ) is a member of M , and |x|M = κ, then U ∩ x ∈M .

The second condition enables the ultrapower by U to be iterated, even
though U /∈ M . If iU : M → Ult(M,U) then U1 = {[f ]U : f ∈ (κU) ∩M} is
an Ult(M,U)-ultrafilter, which can be used as iU (U).

A member of the sharp hierarchy is a set which encodes the theory of
a model M ∗, with parameters taken from a class I of indiscernibles for M ∗.
A mouse will be a model Lα[U ], where α is the least ordinal such that U is
not a normal ultrafilter in Lα+1[U ]. We could easily get an M ∗-ultrafilter
U on any limit point of I by setting U = {x ⊆ λ : sup((I ∩ λ) − x) < λ},
the filter on λ generated by I ∩ λ. A better construction, however, uses
the analog of Theorem 1.14 for M ∗ to get an M ∗-ultrafilter on λ = min(I):
let i : I → I be an increasing map such that i(λ) > λ. By Theorem 1.14
the embedding i extends to a map i∗ : M ∗ → M ∗ such that i = i∗�I, and
U = {x ⊆ λ : λ ∈ i∗(x)} is a normal M ∗-ultrafilter.

2. Beyond One Measurable Cardinal

The next step beyond L[U ] is to develop an inner model theory for models
with many measurable cardinals. This is straightforward so long as all of the
measures have different critical points: If U = 〈Uν : ν < λ〉 is a sequence
of measures, with increasing critical points κν , then the model L[U ] has
measures Uν ∩L[U ], and (as with the model L[U ]) no other measures. If it is
desired to have several measures on the same cardinal then the answer is less
obvious: if U0 and U1 are two measures on a cardinal κ then U0∩L[U0, U1] =
U1∩L[U0, U1] by Kunen’s Theorem 1.10, so the model L[U0, U1] has only one
normal ultrafilter.

A way to proceed is suggested by the following observation of Kunen:

2.1 Proposition. Every measurable cardinal κ has a normal ultrafilter Uκ

which concentrates on nonmeasurable cardinals.

Proof. Suppose as an induction hypothesis that for each measurable cardi-
nal λ < κ there is a normal ultrafilter Uλ concentrating on nonmeasurable
cardinals, and let U be a normal ultrafilter on κ. If U concentrates on non-
measurable cardinals then set Uκ = U ; otherwise

U ′ = [〈Uλ : λ < κ〉]U = {x ⊆ κ : {λ < κ : x ∩ λ ∈ Uλ} ∈ U}

is a second normal ultrafilter on κ which concentrates on nonmeasurable
cardinals. In this case set Uκ = U ′. �

Note that in the second case of the proof, the model L[〈Uλ : λ < κ〉, U ′, U ]
is a model with at least two normal ultrafilters U ′ and U on κ. The following
partial order captures the relation between U ′ and U :
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2.2 Definition. If U and U ′ are normal ultrafilters on a cardinal κ then we
write U ′ � U if U ′ ∈ Ult(V, U).

Thus U ′ � U if and only if there is a function f such that

{α < κ : f(α) is a normal ultrafilter on α} ∈ U

and
U ′ = {x ⊆ κ : {λ < κ : x ∩ λ ∈ f(λ)} ∈ U}.

The argument which Scott used to prove that there are no measurable car-
dinals in L proves the follow proposition:

2.3 Proposition. The ordering � is well-founded.

Proof. Assuming the contrary, let κ be the least cardinal such that the normal
ultrafilters on κ are not well-founded by �. Then there is a normal ultrafilter
U on κ so that {U ′ : U ′ � U} is not well-founded by �. The normal
ultrafilters on κ in Ult(V, U) are exactly the normal ultrafilters U ′ on κ in
V such that U ′ � U , and the �-ordering on these normal ultrafilters in
Ult(V, U) is the same as in V since V and Ult(V, U) have the same functions
from κ to Vκ. Thus the measures on κ in Ult(V, U) are not well-founded
under �. Since Ult(V, U) is well-founded it follows that Ult(V, U) satisfies
that the measures on κ are not well-founded by �, but this is impossible
since, by the elementarity of the embedding i, there is no cardinal λ < i(κ)
in Ult(V, U) such that the measures on λ are not well-founded by �. �

2.4 Definition. The order o(U) of a normal ultrafilter U is its rank in the
ordering �, that is, o(U) = sup{o(U ′)+ 1 : U ′ � U}. The order of a cardinal
κ is o(κ) = sup{o(U) + 1 : U is a normal ultrafilter on κ}.

Thus a measure U has order 0 if and only if the set of smaller measurable
cardinals is not a member of U . A cardinal κ has order 0 if it is not measur-
able, and order 1 if it is measurable, but has no measures concentrating on
smaller measurable cardinals. Since each measure U ′ � U is equal to [f ]U
for some f : κ→ Vκ, we have the following upper bound:

2.5 Proposition (Solovay). If U is a normal ultrafilter on a measurable
cardinal κ then o(U) < (2κ)+, and hence o(κ) ≤ (2κ)+.

Under the GCH, it follows that o(κ) ≤ κ++.
The inner models L[U ] for sequences of measures utilize this ordering �.

We give here the original presentation of these models as in [25]. This pre-
sentation is the simplest way to approach these models, and we will show
that it can be generalized with the use of extenders to define inner models
with a strong cardinal. However it is not adequate for dealing with cardinals
very much larger than this; and in Sect. 3 we will follow up by giving a brief
description of the modified presentation now used for the core model and for
inner models with larger cardinals.
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2.6 Definition. A coherent sequence of measures is a function U such that

1. dom(U) = {(κ, β) : κ < len(U) and β < oU (κ)}, where len(U) is a car-
dinal and oU is a function mapping cardinals κ < len(U) to ordinals.

2. If (κ, β) ∈ dom(U) then U = U(κ, β) is a normal ultrafilter on κ.

3. If U = U(κ, β) then oiU (U )(κ) = β and iU (U)(κ, β′) = U(κ, β′) for all
β′ < β.

The final clause of this definition is the coherence condition, which can
also be expressed by saying that (iU (κ,β)(U))�κ+1 = U�(κ, β). Here we write
U�(κ, β) for the restriction of U to

{(κ′, β′) ∈ dom(U) : κ′ < κ ∨ (κ′ = κ ∧ β′ < β)}

and U�λ for U�(λ, 0). Notice that the coherence condition implies that
U(κ, β′) � U(κ, β) for all β′ < β < oU (κ), so that o(U(κ, β)) ≥ β.

The following theorem is the main result of [25]; it is a generalization of
the Corollary 1.10 to Theorem 1.9:

2.7 Theorem. If U is a coherent sequence of measures in L[U ], then the
only normal ultrafilters in L[U ] are the members of the sequence U .

It follows from Theorem 2.7 that o(U(κ, β)) is exactly equal to β in L[U ],
and that each cardinal κ has exactly |oU (κ)| many normal ultrafilters in L[U ].
Theorem 1.9 itself does not generalize to L[U ]: starting in a model with
κ+ measurable cardinals, where κ is measurable, it is possible to construct
sequences U and U ′ with the same domain such that L[U ] �= L[U ′].

2.1. The Comparison Process

The main difficulty in generalizing the proofs of Theorem 1.9 and Theo-
rem 1.11 to the models L[U ] is in adapting the iterated ultrapowers used in
those proofs. Recall that they used the iterated ultrapower Ultλ(Lα[U ], U),
where λ is some larger cardinal, so that the image iUλ of U is contained in
the closed unbounded filter Cλ on λ. Thus two normal ultrafilters U and U ′

were compared indirectly, via the filter Cλ. In adapting this construction to
the models L[U ] we use iterated ultrapowers to compare sequences U and U ′

directly, through a process known as iterating the least difference.

2.8 Lemma (Comparison). Suppose that Lα[U ] and Lα′ [U ′] satisfy ZF−,
and that U and U ′ are coherent in Lα[U ] and Lα′ [U ′] respectively. Then for
some sequence W and some ordinals ᾱ and ᾱ′, there are iterated ultrapowers
i : Lα[U ] → Lᾱ[W�ᾱ] and i′ : Lα′ [U ′] → Lᾱ′ [W�ᾱ′].

Notice that the sequence W plays the role of the closed unbounded filter
in the proof of Theorem 1.9
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For simplicity, this statement of Lemma 2.8 assumes that the models being
compared are sets; however the process can also be used if one or both of the
models is a proper class, that is, if one or both of Lα[U ] or Lα′ [U ] is replaced
by L[U ] or L[U ′]. In this case one or both of the iterated ultrapowers may have
length On, and one (but never both) of the models Lᾱ[W�ᾱ] or Lᾱ′ [W�ᾱ′]
may have length larger than On. The simplest example of this is when L[U ] =
L[U ], with a single normal ultrafilter, and L[U ′] = L. Then the comparison
consists of iterating U , the only ultrapower available, and U must be iterated
On many times to move it past L. Thus Lᾱ[W�ᾱ] = UltOn(L[U ], U), which
has On as its measurable cardinal and has length greater than On.

Proof of Lemma 2.8. An iterated ultrapower of length θ of a model M is
a family of maps iν,ν′ : M = Mν → Mν′ , commuting in the sense that
iν,ν′ ′ = iν′,ν′ ′ ◦ iν,ν′ whenever ν < ν′ < ν′ ′ < θ, which is defined by recursion
on ordinals ν < ν′ < θ by setting M0 = M and Mν = dir limν′<ν Mν′ for each
limit ν ≤ θ, and for successor ordinals ν +1 < θ letting either Mν+1 = Mν or
else Mν+1 = Ult(Mν , Uν) for some Mν-measure Uν . The iterated ultrapowers
used in this proof are internal, which means that Uν ∈Mν for all ν < θ. We
write iν for i0,ν .

The proof given before Lemma 1.9 that the model L[U ] is iterable relied
on the fact that every iterated ultrapower of L[U ] is internal to L[U ] in the
stronger sense that every iterated ultrapower of L[U ] is definable in L[U ].
That is not true for the models L[U ] described here, since the choice of which
ultrafilters to use in the iteration may be made externally to L[U ]; however,
every iterated ultrapower of L[U ] can be embedded into an iterated ultra-
power which is definable in L[U ], and thus the argument before Lemma 1.9
shows that every iterated ultrapower of L[U ] is well-founded.

We define two iterated ultrapowers: iν′,ν : Mν′ → Mν on L[U ] and
i′
ν′,ν : M ′

ν′ → M ′
ν on L[U ′], as follows: Suppose that iν : M0 = Lα[U ] →

Mν = Lαν [Uν ] and i′
ν : M ′

0 = Lα′ [U ′] → M ′
ν = Lα′

ν
[U ′

ν ] have already been
defined, where Uν = iν(U) and U ′

ν = i′
ν(U ′). Let γ = min{αν , α

′
ν}. If

U ′
ν�γ = Uν�γ then we are finished, since we can take ᾱ = αν and ᾱ′ = α′

ν

and let W be the longer of the sequences Uν and U ′
ν . In this case we say that

the comparison terminates at stage ν.
Otherwise we define Mν+1 and M ′

ν+1 by the process of iterating the least
difference: Let (κν , βν) be the lexicographically least pair of ordinals such
that κν < γ, βν ≤ min{oUν (κν), oU ′

ν (κν)}, and

Uν(κν , βν) �= U ′
ν(κν , βν), (17.3)

where the inequality (17.3) may hold either because oUν (κν) �= oU ′
ν (κν) and

βν = min{oUν (κν), oU ′
ν (κν)} (so that only one side of (17.3) is defined) or

because there is a set xν ∈ Mν ∩M ′
ν such that xν ∈ Uν(κν , βν) /⇐⇒ xν ∈

U ′
ν(κν , βν). If βν = oUν (κν) then set Mν+1 = Mν ; otherwise set Mν+1 =

Ult(Mν ,U(κν , βν)). Similarly, M ′
ν+1 = Ult(M ′

ν ,U ′
ν(κν , βν)) if βν < oU ′

ν (κν),
and M ′

ν+1 = M ′
ν otherwise.
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Note that the ordinals κν are strictly increasing: we have Uν+1�κν + 1 =
Uν�(κν , βν) = U ′

ν�(κν , βν) = U ′
ν+1�κν + 1, where the outer equalities follow

from the coherence condition and the inner equality follows from the mini-
mality of the pair (κν , βν). It follows that iν+1,ν′ (κν) = i′

ν+1,ν′ (κν) = κν for
all ν′ > ν.

In order to complete the proof of the lemma, we need to show that this
comparison eventually terminates. The proof relies on the following observa-
tion:

2.9 Claim. Suppose that τ is an infinite regular cardinal and 〈Nν : ν < τ〉
is an iterated ultrapower with embeddings jν,ν′ : Nν → Nν′ . Further suppose
that |N0| < τ , that S ⊆ τ is stationary, and that yν ∈ Nν for each ν ∈ S.
Then there is a stationary set S′ ⊆ S such that jν,ν′ (yν) = yν′ for all ν < ν′

in S′.

Proof. For each limit ν ∈ S there is an ordinal γ < ν such that yν ∈ ran(jγ,ν),
so by Fodor’s Lemma there is a fixed γ0 < τ such that the set of ν ∈ S such
that yν ∈ ran(jγ0,ν) is stationary. Since |Nγ0 | ≤ max{|N0| , |γ0|} < τ , there
is a fixed ȳ ∈ Nγ0 such that S′ = {ν ∈ S : yν = jγ0,ν(ȳ)} is stationary. Now
if ν < ν′ are in S′ then yν′ = jγ0,ν′ (ȳ) = jν,ν′ jγ0,ν(ȳ) = jν,ν′ (yν). �

Set τ = (max{α, α′})+, and suppose for the sake of contradiction that
the comparison does not terminate in fewer then τ steps. By applying the
claim successively to the two iterations of the comparison we get a stationary
subset S0 of τ such that for any two ordinals ν < ν′ in S0 we have iν,ν′ (κν) =
i′
ν,ν′ (κν) = κν′ . It follows that βν < min{oUν (κν), oU ′

ν (κν)} for all ν ∈ S0,
for otherwise if we take any ν′ > ν in S0, then either iν,ν′ (κν) = κν < κν′ or
i′
ν,ν′ (κν) = κν < κν′ .

Thus xν is defined for each ν ∈ S0, and by applying the claim twice again
we get a stationary set S1 ⊆ S0 such that iν,ν′ (xν) = i′

ν,ν′ (xν) = xν′ for each
ν < ν′ in S1. But this is impossible, for since iν+1,ν′ (κν) = i′

ν+1,ν′ (κν) = κν

it follows that

xν ∈ Uν(κν , βν) ⇐⇒ κν ∈ iν,ν+1(xν)
⇐⇒ κν ∈ iν,ν′ (xν) = xν′ = i′

ν,ν′ (xν)

⇐⇒ κν ∈ i′
ν,ν+1(xν)

⇐⇒ xν ∈ U ′
ν(κν , βν),

contradicting the choice of xν and thus completing the proof of Lemma 2.8.
�

As an example of the use of Lemma 2.8, we sketch the proof of Theorem 2.7:

Sketch of Proof. Suppose that Theorem 2.7 is false, so that there is a se-
quence U such that U is coherent in L[U ] and L[U ] contains a normal ul-
trafilter U which is not a member of the sequence U . We can assume that
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Lemma 2.7 does hold for every proper initial segment of the sequence U ,
that κ and β = o(U) are the smallest ordinals such that there is a normal
ultrafilter U on κ in L[U ] with o(U) = β which is not in the sequence U , and
that U is the first such ultrafilter in the order of construction of L[U ]. Note
that all of these statements can be expressed by sentences in L[U ].

Now apply Lemma 2.8 to the models L[U ] and Ult(L[U ], U) (with α =
α′ = On). We must also have ᾱ = ᾱ′ = On; otherwise if, for example,
On = ᾱ < ᾱ′, then the lemma would fail in Lᾱ[W�ᾱ] = L[W�On], which
contradicts the fact that Lᾱ′ [W ] satisfies the sentence stating that Lemma 2.7
does hold for every proper initial segment of W . Thus we have the following
diagram:

Ult(L[U ], U)
i

L[U ] i′

iU

L[W ]

(17.4)

This diagram obviously commutes on definable members of L[U ], but since
the diagram itself is definable in L[U ], the least element of L[U ] for which it
failed to commute would be definable. Hence diagram (17.4) commutes.

In particular i′(κ) = i iU (κ), so i′(κ) > κ. Since i�κ and i′�κ are the
identity it follows that i′ begins with an ultrapower by a normal ultrafilter
on κ; that is, β0 = β = o(U) < oU (κ) and i′ = i′

θ = i′
1,θ iU (κ,β). But now U =

U(κ, β), for if x is any subset of κ in L[U ] then i iU (x) = i′(x) = i′
1,θi

U (κ,β)(x),
so

x ∈ U ⇐⇒ κ ∈ iiU (x) ⇐⇒ κ ∈ i′
1,θ iU (κ,β)(x)

⇐⇒ x ∈ U(κ, β).

�

Models L[U ] with higher order measures are more difficult to obtain than
the model L[U ] with one measure. One might try to proceed by analogy with
the model L[U ], choosing a coherent sequence U in V and using the model
L[U ], but this fails on two counts. In the first place it is not clear that there
is a coherent sequence U in V , for example it is not known whether o(κ) = ω
implies that there is a coherent sequence U of measures in V with oU (κ) = ω.
In the second place, if o(κ) > κ+ then it is not clear that a sequence which
is coherent in V need be coherent in L[U ]. The first construction of an inner
model of o(κ) = ω from the assumption oV (κ) = ω used the covering lemma;
however we outline a proof which avoids this. Call a sequence U weakly
coherent if it satisfies conditions 1 and 2 of Definition 2.6, together with the
following weakened coherence condition: if (κ, β) ∈ dom(U) and U = U(κ, β)
then oV (U) = β.

We first show that the comparison process can be modified to use se-
quences which are only weakly coherent. Notice that this proof requires that
U and W be sequences of measures in V , not just in L[U ] and L[W ]. The
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example described following Theorem 2.7 shows that this hypothesis cannot
be eliminated.

2.10 Lemma. Suppose that U and W are weakly coherent sequences of mea-
sures in V with the same domain. Then L[U ] = L[W ], and U(κ, β) ∩ L[U ] =
W(κ, β) ∩ L[W ] for every (κ, β) in their common domain.

Proof. We compare the model V with itself, using iterated ultrapowers
iν : V = M0 → Mν and jν : V = N0 → Nν . The comparison process is
similar to that in Lemma 2.8 except that we simultaneously compare each of
the sequences iν(U) and iν(W) in Mν with each of the sequences jν(U) and
jν(W) in Nν . Thus, condition (17.3) of the proof of Lemma 2.8 is modified as
follows: Suppose that Mν and Nν have been defined. Define oMν and oNν by
setting oMν (κ) = oiν(U )(κ) = oiν(W)(κ) and oNν (κ) = ojν(U )(κ) = ojν(W)(κ).
Now let (κν , βν) be the least pair (κ, β) such that one of the following hold:

1. β < min{oMν (κ), oNν (κ)} and there is a set in Mν ∩ Nν on which the
four filters iν(U)(κ, β), iν(W)(κ, β), jν(U)(κ, β) and jν(W)(κ, β) do not
all agree.

2. β = min{oMν (κ), oNν (κ)} and oMν (κ) �= oNν (κ).

Now proceed with a slightly modified version of the proof of Lemma 2.8. In
case 1 pick Uν to be one of {iν(U)(κ, β), iν(W)(κ, β)} and U ′

ν to be one of
{jν(U)(κ, β), jν(W)(κ, β)} so that Uν ∩Mν ∩ Nν �= U ′

ν ∩Mν ∩ Nν , and set
Mν+1 = Ult(Mν , Uν) and Nν+1 = Ult(Nν , U

′
ν). In case 2 let Mν+1 = Mν

if oMν (κ) = β and Mν+1 = Ult(Mν , iν(U)(κ, β)) if β < oMν (κ), and define
Nν+1 similarly.

Unlike the proof of Lemma 2.8, the sequence of ordinals κν need not be
strictly increasing; however the sequence is nondecreasing and the fact that
βν+1 < βν whenever κν+1 = κν implies that for each ν there is an n < ω
such that κν+n > κν . This, together with the weak coherence of U and W ,
is enough to show that the comparison terminates at some stage θ.

There is a λ such that either oiθ(U ) = ojθ(U )�λ or ojθ(U ) = oiθ(U )�λ; we
may assume the former. We will show that L[iθ(U)] = L[iθ(W)], and since iθ
is an elementary embedding it follows that L[U ] = L[W ], as was to be shown.

The four sequences iθ(U)�λ, iθ(W)�λ, jθ(U) and jθ(W) agree on sets in
Mθ ∩ Nθ, and thus L[iθ(U)] = L[iθ(W)] will follow if we can show that
L[iθ(U)] ⊆Mθ ∩Nθ. Suppose the contrary, and let α be least such that there
is a set in Lα+1[iθ(U)] which is not in Mθ ∩Nθ. Now iθ(U) and jθ(U) agree
on all sets in Lα[iθ(U)]. Thus Lα[iθ(U)] = Lα[jθ(U)], and the restrictions
of iθ(U) and jθ(U) to this set are equal. However Lα+1[iθ(U)] is equal to
the set of subsets of Lα[iθ(U)] definable over Lα[iθ(U)] using as a predicate
the restriction of iθ(U) to Lα[iθ(U)], and similarly for Lα+1[jθ(U)]. Hence
Lα+1[iθ(U)] = Lα+1[jθ(U)], and it follows that Lα+1[iθ(U)] ⊆ Mθ ∩ Nθ,
contradicting the choice of α. This contradiction completes the proof of
Lemma 2.10. �
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2.11 Corollary. If U is weakly coherent in V , then either U is coherent in
L[U ] or there is an inner model of ∃κ(o(κ) = κ++).

Sketch of Proof. Let U be any weakly coherent sequence which is not coherent
in L[U ]. Since initial segments of U are also weakly coherent, we may assume
that U has minimal length, so that U�(κ, β) is coherent in L[U�(κ, β)] for all
(κ, β) in the domain of U . In particular, if (κ, β) is the least place at which
U is not coherent in L[U ] then U�(κ, β) is coherent in L[U�(κ, β)], and it will
be sufficient to show that L[U�(κ, β)] |= o(κ) = β = κ++.

To this end, set U = U(κ, β) and consider the following triangle:

L[U ]
j

iU �L[U ]

Ult(L[U ], U)

k

L[iU (U)]

where iU : V → Ult(V, U), j is the ultrapower of L[U ] using functions in
L[U ], and k is defined by k

(
j(f)(κ)

)
= iU (f)(κ).

We claim that iU (U)�κ + 1 agrees with U�(κ, β) on all sets in L[U ]. To
see this, let U ′ be the sequence obtained from U by replacing U�(κ, β) with
iU (U)�κ + 1. Then U ′ is weakly coherent, and has the same domain as U , so
by Lemma 2.10 it is equal to U on sets in L[U ].

This implies that k is not the identity on oj(U )(κ) + 1, since otherwise we
would have k(j(U)�κ + 1) = iU (U)�κ + 1. Since L[U ] and L[j(U)] have the
same subsets of κ, and iU (U)�κ+1 agrees with U on these subsets, this would
contradict the assumption that U is not coherent in L[U ] at (κ, β).

Now let η = crit(k). Then η ≤ oL[j(U )](κ), and since β = k(oL[j(U )](κ)) it
follows that k(η) ≤ β. Also η > κ, and η is a cardinal in L[j(U)] and hence in
L[U ]. But k(η) is a cardinal in L[iU (U)], and hence also in L[iU (U)�κ + 1] =
L[U�(κ, β)]. Thus β ≥ k(η) ≥ κ++ in L[U�(κ, β)]. �

2.2. Indiscernibles from Iterated Ultrapowers

We now look at the use of iterated ultrapowers to generate systems of indis-
cernibles, and at the relation between these indiscernibles and those added
generically by Prikry forcing and its variants. Such forcing is covered exten-
sively in chapter [12].

The simplest case is Prikry forcing [31], which involves only one normal
ultrafilter. Let U be a normal ultrafilter on a cardinal κ, and let iUω : V →
Mω = Ultω(V, U) be the iterated ultrapower of length ω. Then the set
C = {iUn (κ) : n < ω} is a set of indiscernibles over Mω in the following sense:
if x is any subset of iω(κ) in Mω, then there are n < ω and x′ ⊆ in(κ)
in Mn such that x = in,ω(x′). Then for all m ≥ n we have im(κ) ∈ x if
and only if x′ ∈ in(U), which is to say if and only if x ∈ iω(U). Hence C
is almost contained in any set x ∈ PMω (iω(κ)) such that x ∈ iω(U). By
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Mathias’s genericity criterion [23], this implies that the sequence C is generic
for Prikry forcing over Mω.

In order to extend this construction to the variants of Prikry forcing discov-
ered by Magidor [21] and Radin [32], let U = 〈Uβ : β < η〉 be a �-increasing
sequence of measures on κ, with o(Uβ) = β for β < η and define an iterated
ultrapower iν : V →Mν , of length θ, as follows:

As usual, set M0 = V and set Mν = dir limν′<ν Mν′ whenever ν is a limit
ordinal. Now suppose that Mν has been defined. Set κν = iν(κ), and let
Mν+1 = Ult(Mν , iν(U)βν ) where βν < iν(η) is the least ordinal β such that
{ν′ < ν : iν′,ν(βν′ ) = β} is bounded in ν. If there is no such ordinal β then
set θ = ν and stop the process.

Assuming η < κ++ and 2κ = κ+, Fodor’s Lemma implies that θ < κ++.
If η < κ then a straightforward induction shows that θ = ωη, and that βν is
always the least ordinal β such that ν = ν′ + ωβ for some ordinal ν′ < ν. In
particular βν = 0 if ν is a successor ordinal.

The set C = {iν(κ) : ν < θ} is a closed unbounded subset of iθ(κ), since
the sequence 〈iν(κ) : ν < θ〉 is continuous. If x ∈ Mν and x ⊆ κν then
κν ∈ iν,θ(x) ⇐⇒ x ∈ iν(U)βν ⇐⇒ iν,θ(x) ∈ iθ(U)β , where β = iν,θ(βν).
Thus the sets Cβ = {κν : ν < θ and iν,θ(βν) = β} are sets of indiscernibles
for the normal ultrafilters iθ(U)β on iθ(κ).

We have already considered the case n = 1, when C = C0 is a Prikry
sequence for the normal ultrafilter i(U0) on iω(κ). If η < κ is an uncountable
regular cardinal then Mθ[C] is a generic extension of the model Mθ by Magi-
dor’s generalization [21] of Prikry forcing: the cardinals of Mθ[C] are the
same as those of Mθ, while κθ is regular in Mθ and has cofinality η in Mθ[C].
Notice that �C = 〈Cβ : β < η〉 ∈Mθ[C], since Cβ = {λ ∈ C : o(λ) = β}.

The covering lemma, which is discussed in a separate chapter [24], implies
that these results are the best possible in the sense that if there is a cardinal κ
which is regular in the core model but is singular of cofinality η > ω in V , then
o(κ) ≥ η in the core model. Furthermore, the singularity of κ is witnessed by
a set which is similar to the Prikry-Magidor generic set C described above,
but which may be more irregular: it satisfies o(ν) ≥ lim sup{o(ν′) + 1 : ν′ ∈
C ∩ ν}, while the Prikry-Magidor generic set satisfies the stronger condition
∀ν ∈ C o(ν) = lim sup{o(ν′) + 1 : ν′ ∈ C ∩ ν}. The case of cf(κ) = ω can be
somewhat more complicated.

If κ < η ≤ κ++ then the set C obtained from the iterated ultrapower
described above is generic for Radin forcing [32], or rather for the variant
of Radin forcing described in [26]. It is a closed unbounded subset of iθ(κ)
and it is eventually contained in every member x of the filter

⋂
iθ(U) on

PMθ(iθ(κ)). If η ≥ κ+ then the sequence 〈Cβ : β < iθ(η)〉 /∈ Mθ[C], and
the cardinals of Mθ[C] are the same as those of Mθ. If cf(η) = κ+ then
κθ remains inaccessible in Mθ[C], and κ can have stronger larger cardinal
properties in Mθ[C] as the ordinal η becomes larger. For the most important
example, define β to be a weak repeat point in the sequence U if for each
set A ∈ Uβ there is β′ < β such that A ∈ Uβ′ . If η = β + 1, where β is
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a weak repeat point in U , then iθ(κ) is measurable in Mθ[C], with a measure
on iθ(κ) in Mθ[C] which extends the measure i(Uβ) in Mθ.

If the set C is obtained by Radin forcing or, equivalently, by an iterated
ultrapower as described above, then C is eventually contained in any closed
unbounded subset of κ which is a member of the ground model M . It can
be shown [28] that if this additional condition is imposed, then neither the
hypothesis o(κ) ≥ κ+ for preserving the inaccessibility of κ nor the hypothesis
of a weak repeat point for preserving measurability can be weakened. If
this condition is removed, however, then work of Gitik [13], improved by
Mitchell [28], has shown that if M |= o(κ) = κ then there is a forcing to add
a closed, unbounded set C ⊆ κ such that every member of C is inaccessible
in M , while κ is still measurable in M [C]. Gitik also shows that if {ν < κ :
o(κ) > β} is stationary in κ for all β < κ then κ remains inaccessible in κ.
Such sets cannot be obtained by iterated ultrapowers alone, without forcing.
Both of these results are the best possible.

3. Extender Models

The next step above the hierarchy of measurable cardinals is the hierarchy
leading to a strong cardinal:

3.1 Definition. A cardinal κ is λ-strong if there is an elementary embedding
j : V →M such that κ = crit(j), λ < j(κ), and Pλ(κ) ⊆M . A cardinal κ is
strong if it is λ-strong for every ordinal λ.

A cardinal is 1-strong if and only if it is measurable; however an embedding
of the form iU , where U is an ultrafilter on κ, will never witness that a cardinal
κ is 2-strong since U ∈ P2(κ) − Ult(V, U). An extender is a generalized
ultrafilter designed to represent the stronger embeddings needed for strong
cardinals. Extenders can be equivalently defined in either of two different
ways, as elementary embeddings or as sequences of ultrafilters. We will begin
with the simpler of the two:

3.2 Definition. A (κ, λ)-extender is an elementary embedding π : M → N
where M and N are transitive models of ZF−, κ = crit(π), and λ ≤ π(κ).

The model M need not be a model of ZF; indeed we can typically assume
that κ is the largest cardinal in M since PM (κ) is the only part of M which
will be used for the ultrapower construction. Extenders are so called because
the embedding π can be extended to an embedding on a full model M ′ of set
theory, provided that the subsets of κ in M ′ are contained in those of M :

3.3 Definition. Suppose that π : M → N is an extender and M ′ is a model
of set theory such that PM ′

(κ) ⊆ PM (κ).
If a, a′ ∈ [λ]<ω, and f and f ′ are functions in M ′ with domains [κ]|a|

and [κ]|a′ | respectively, then we say that (f, a) ∼π (f ′, a′) if and only if
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(a, a′) ∈ π({(v, v′) ∈ [κ]|a| × [κ]|a′ | : f(v) = f ′(v′)}). We write [f, a]π for the
equivalence class {(f ′, a′) : (f, a) ∼π (f ′, a′)}.

Finally we write Ult(M ′, π) for the model with universe

{[f, a]π : f ∈ κM ′ ∩M ′ & a ∈ <ωλ},

and with the membership relation ∈π defined by [f, a]π ∈π [f ′, a′]π if (a, a′) ∈
π({(v, v′) : f(v) ∈ f ′(v′)}.

The ultrapower embedding iπ : M ′ → Ult(M ′, π) is defined by iπ(x) =
[x,∅]π. Here x is regarded as a constant, that is, a 0-ary function.

We will only be interested in extenders such that Ult(M ′, π) is well-founded
and hence isomorphic to a transitive model, and we will identify Ult(M ′, π)
with the transitive model to which it is isomorphic.

The ordinal λ is called the length of the (κ, λ)-extender π, and is written
len(π). The embedding π does not actually itself determine the value of λ,
since the same embedding π could be used as to represent a (κ, λ′) extender
for any λ′ < π(κ). When necessary, the ordinal λ may be explicitly specified,
for example by writing Ult(M ′, π, λ) instead of Ult(M ′, π) or [f, a]π,λ instead
of [f, a]π.

If λ < λ′ then a natural elementary embedding

k : Ult(M ′, π, λ) → Ult(M ′, π, λ′)

can be defined by setting k([f, a]π,λ) = [f, a]π,λ′ . It can be that Ult(M ′, π, λ)
= Ult(M ′, π, λ′) and k is the identity, in which case we will say that the (κ, λ)-
and (κ, λ′)-extenders defined by π are equivalent. This will happen whenever
there is, for each ν ∈ λ′, some a ∈ [λ]<ω and f ∈ M such that [f, a]π =
[id, ν]π. For example, the (κ, λ + 1)- and (κ, λ + 2)-extenders determined by
π will always be equivalent, since if s is the successor function, s(ν) = ν + 1,
then [s, {λ}]π = [id, {λ + 1}]π.

�Loś’s Theorem for extender ultrapowers is proved in the same way as the
�Loś’s Theorem for ultrafilters:

3.4 Proposition (�Loś’s Theorem). Suppose that ϕ(v0, . . . , vn−1) is any for-
mula of set theory, and that ai ∈ [λ]<ω for i < n and fi : [κ]|ai | → λ. Then

Ult(M ′, π) |= ϕ([f0, a0]π, . . . , [fn−1, an−1]π)

if and only if

(a0, . . . , an−1) ∈ π
(
{(v0, . . . , vn−1) : M ′ |= ϕ(f0(v0), . . . , fn−1(vn−1))}

)
.

This statement suggests the alternate definition of an extender as a se-
quence E of ultrafilters:

3.5 Definition. The ultrafilter sequence representing a (κ, λ)-extender π is
the sequence Eπ = 〈Ea : a ∈ [λ]<ω〉 of ultrafilters defined by

Ea = {x ⊆ aκ : a ∈ π({ran(v) : v ∈ x})}. (17.5)
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Here we write ran(v) for the sequence 〈v(ai) : i < |a|〉 ∈ |a|κ, where
a = 〈ai : i < |a|〉. The use of ran(v) instead of v in the right side of (17.5)
is necessary because a need not be a member of M . This complication could
have been avoided by equivalently defining Ea to be an ultrafilter on subsets
of [κ]|a| or |a|κ instead of on aκ; however the use of aκ simplifies some later
notation.

3.6 Definition. The ultrapower Ult(M ′, E) is defined to be the direct limit
of the commuting system of maps

(
〈Ult(M ′, Ea) : a ∈ <ωλ〉, 〈πa,a′ : ran(a) ⊆ ran(a′)〉

)
,

where πa,a′ : Ult(M ′, Ea) → Ult(M,Ea′ ) is defined by setting πa,a′ ([f ]Ea) =
[v �→ f(v�a)]Ea′ .

It can easily be shown that if π is a (κ, λ)-extender then Ult(M,Eπ) =
Ult(M,π, λ).

In the future we will follow the usual practice of using the ultrafilter rep-
resentation for extenders. This generally makes for clearer notation, which
among other things does not tie down the variables M and N . It also has
the advantage of explicitly incorporating the length λ of the extender, but re-
quires additional notation for the shortened extender: if E = 〈Ea : a ∈ [λ]<ω〉
is a (κ, λ)-extender and λ′ < λ, then we write E|λ′ for the subsequence
〈Ea : a ∈ [λ′]<ω〉 of E. Thus E|λ′ is the (κ, λ′)-extender represented by the
embedding πE .

It may happen that Ult(V,E|λ′) = Ult(V,E), in which case we say that
the two extenders are equivalent. This will be true whenever there is, for each
α ∈ λ−λ′, a function f and finite set a ∈ [λ′]<ω such that [f, a]E = [id, {a}]E
or, equivalently, such that {v ∈ a∪{α}κ : f(v�a) = v(α)} ∈ Ea∪{α}. As
a simple example, by taking f to be the successor function we can see that
E|(λ + 1) is always equivalent to E|(λ + 2).

The notion of countable completeness is somewhat more complicated for
extenders than for ultrafilters:

3.7 Definition. An (κ, λ)-extender E is countably complete if for each se-
quence (ai : i ∈ ω) of sets ai ∈ [λ]<ω and each sequence (Xi : i < ω) of sets
Xi ∈ Eai there is a function v :

⋃
i ai → κ such that v�ai ∈ Xi for each i < ω.

As in the case of ultrafilters, countably complete extenders are important
because they ensure well-foundedness of iterated ultrapowers.

3.8 Definition. Suppose that M is a model of set theory and E is a collection
of extenders in M . An iterated ultrapower of M by extenders in E is a pair
of sequences 〈Mν : ν ≤ θ〉 and 〈Eν : ν < θ〉, together with a commuting
system of elementary embeddings iν,ν′ : Mν → Mν′ , such that M0 = M , if
ν is a limit ordinal then Mν is the direct limit of the models 〈Mν′ : ν′ < ν〉
under the embeddings iν′,ν′ ′ , and if ν < θ then Eν ∈ i0,ν(E) and iν,ν+1 :
Mν → Ult(Mν , Eν) = Mν+1.
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3.9 Lemma. If E is a collection of countably complete extenders then any
iterated ultrapower using extenders in E is well-founded.

Proof. Suppose to the contrary that we have an iterated ultrapower as in
Definition 3.8 with Mθ ill-founded. The initial model M0 could be a proper
class, but in that case M0 can be replaced by an initial segment of M0 sat-
isfying ZF− which exhibits the ill-foundedness; thus we can assume that M0

is a set.
Fix a regular cardinal τ such that the ill-founded iterated ultrapower is

a member of H(τ), the set of sets which are hereditarily of size less than τ ,
let X ≺ H(τ) be a countable elementary substructure containing the iterated
ultrapower, and let σ : P ∼= X be the inverse of the transitive collapse map.
Set θ̄ = σ−1(θ), and set Ēν = σ−1(Eσ(ν)) and M̄ν = σ−1(Mσ(ν)) for each
ν < θ̄.

Set Ē = σ−1(E). Then (〈M̄ν : ν ≤ θ̄〉, 〈Ēν : ν < θ̄〉) is an ill-founded
iterated ultrapower of M̄0 of countable length θ̄, using only extenders from Ē .

We will define a commuting sequence of elementary embeddings

V

M̄0

σ0

i0,1
M̄1

σ1

i1,2
M̄2

σ2

i2,3 . . . M̄θ̄

σθ̄ (17.6)

with σ0 = σ�M̄0. Thus σθ̄ embeds M̄θ̄ into V , contradicting the assumption
that M̄θ̄ is ill-founded and thus completing the proof of the lemma.

The embedding σ0 has already been defined, and the requirement that
the diagram (17.6) commutes determines the choice of σα for limit ordinals
α ≤ θ̄: if x ∈ M̄α then σα(x) = σα′ (i−1

α,α′ (x)) where α′ is any ordinal less
than α such that x ∈ iα′,α“M̄α′ .

To define σα+1, supposing that σα : Mα → H(τ) has been defined, set λ̄ =
len(Ēα), and let 〈(X̄i, āi) : i < ω〉 be an enumeration of the set of pairs (X, a)
in Mα such that a ∈ [λ̄]<ω and X ∈ (Ēα)a. Then σα(X̄i) ∈ (σα(Ēα))σα(āi),
and since σα(Ēα) is a member of the collection E of countably complete
extenders there is a function v :

⋃
i σα(āi) → σα(κ̄) such that v�σα(āi) ∈

σα(X̄i) for each i ∈ ω. Then a straightforward induction shows that the
map σα+1 : M̄α+1 → H(τ) defined by setting σα+1(x) = σα(f)(v�σα(a))
for each x = [f, a]Ēα

∈ M̄α+1 is an elementary embedding such that σα =
σα+1 ◦ īα,α+1. �

This completes the preliminary exposition of extenders, and we now dis-
cuss sequences of extenders. The following definition is almost the same as
that of a coherent sequence of ultrafilters:

3.10 Definition. A coherent sequence of nonoverlapping extenders is a func-
tion E with domain of the form {(κ, β) : β < oE (κ)} such that

1. if oE (κ) > 0 then oE (λ) < κ for every λ < κ,
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and if β < oE (κ) then

2. E(κ, β) is a (κ, κ + 1 + β)-extender E, and

3. iE(κ,β)(E)�(κ + 1) = E�(κ, β).

Here E�(κ, β) is the restriction of E to those pairs (κ′, β′) in its domain
which are lexicographically less than (κ, β).

The term nonoverlapping refers to clause 1. We will show that nonover-
lapping sequences are adequate to construct models with a strong cardinal.
It is possible to obtain models with somewhat larger cardinals by weakening
clause 1 and modifying the comparison iteration; Baldwin [1] describes a gen-
eral method of constructing such models. Cardinals very much larger than
a strong cardinal, however, require extender sequences E with overlapping
extenders, which greatly complicates the theory of iterated ultrapowers on
L[E ], and usually requires the use of iteration trees rather than the linear
iterations described in Definition 3.8.

Note that the indexing of the sequences described in Definition 3.10 is the
same as that used for sequences of ultrafilters: E(κ, β) is the βth extender
with critical point κ. This indexing works well for nonoverlapping extenders
but fails to be meaningful for sequences with overlapping extenders, where
there may be a proper class of extenders with the same critical point κ, and
there may be extenders which have critical point κ, but which are stronger
than all of the extenders with critical point κ.

All sequences of extenders referred to in this section will be nonoverlap-
ping.

One useful difference between sequences of ultrafilters and sequences of ex-
tenders is the fact that the coherence functions for extenders are trivial. The
coherence property for a sequence U of measures depends on the presence,
for each β′ < β < o(κ), of a function f such that β′ = [f ]U (κ,β), or equiva-
lently, such that β′ = iU (κ,β)(f)(κ); thus the sequence U may, for example,
be coherent in V but not in L[U ]. In the case of a sequence E of exten-
ders, however, the only coherence function needed is the identity function: if
β′ < β < oE (κ) then β′ = [id, {β′}]E(κ,β), that is, β′ = iE(κ,β)(id)(β′). The
following proposition, which is not true for sequences of measures, follows
immediately:

3.11 Proposition. If E is a coherent nonoverlapping sequence of extenders
in V and M is an inner model such that the restriction of E to M is a member
of M , then E is coherent in M .

In order to define the class L[E ] of sets constructible from E , we can code
E as {(κ, β, a, x) : x ∈ (Eκ.β)a}. Using this coding, if M is an inner model
then E ∩M is the code for the sequence of restrictions 〈Ea ∩M : a ∈ domE〉
to M of the extenders E in E .

As we did with sequences of ultrafilters, we need to start with a weaker
version of coherence in order to obtain long extender sequences which are
coherent in L[E ]:
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3.12 Definition. A sequence E of extenders is weakly coherent if each ex-
tender E = E(κ, β) is a (κ, κ + 1 + β)-extender such that oiE(E)(κ) = β.

3.13 Definition. Suppose that N0 and M0 are models with countably com-
plete weakly coherent extender sequences E0 and F0, respectively. The com-
parison iterations of N0 and M0 are defined as follows: Assume iα : M0 →
Mα and jα : N0 → Nα have been defined, and let (κ, β) be the least pair
such that one of the following holds:

1. β = oiα(E)(κ) < ojα(F )(κ).

2. β = ojα(F )(κ) < oiα(E)(κ).

3. β < min{ojα(F )(κ), oiα(E)(κ)} and there is an a ∈ [κ + 1 + β]<ω and
x ∈ P(aκ) ∩Mα ∩Nα such that x ∈ (iα(E)(κ, β))a − (jα(F)(κ, β))a.

If there is no such pair (κ, β) then the sequences iα(E) and jα(F) have the
same domain and are equal, at least with respect to sets which are in both
models. If κ is greater than the length of one of the sequences iα(E) or jα(E),
that is, if oiα(E)(μ) = 0 for all μ ≥ κ or ojα(F )(μ) = 0 for all μ ≥ κ, then one
of the sequences is an initial segment of the other (again, at least with respect
to sets which are in both models). In either case the process is terminated
at this stage.

Otherwise define iα,α+1 : Mα → Mα+1 to be the ultrapower embedding
iiα(E)(κ,β) : Mα → Ult(Mα, iα(E)(κ, β)) in cases 2 and 3, and in case 1 define
Mα+1 = Mα and let iα,α+1 be the identity. Similarly define Nα+1 by using
the extender jα(F)(κ, β) in cases 1 and 3, and set Nα+1 = Nα in case 2.

The proof that this comparison iteration terminates will use the following
proposition, which is proved just like Claim 2.9.

3.14 Proposition. Suppose that θ is an uncountable regular cardinal, and
that we have an iterated extender ultrapower 〈Mα : α < θ〉 with iteration
embeddings iα′,α : Mα′ → Mα. If X is a set in M0 such that |iλ(X)| < θ
for each λ < θ, and yα ∈ i0,α(X) for all α < θ, then for every stationary set
S ⊆ θ there is a stationary set S′ ⊆ S such that if α′ < α are in S′ then
yα = iα′,α(yα′ ).

3.15 Lemma. If M0, N0, E and F are as in Definition 3.13, and θ is
a regular cardinal such that θ ≥ sup{ 2κ : oE (κ) > 0 or oF (κ) > 0}, then the
comparison process terminates in fewer than θ steps.

Proof. Assume the contrary, and at each α < θ let κα and βα be as in the
definition of Mα+1 and Nα+1. By applying Proposition 3.14 twice, once to
the iterated ultrapower of M0 and then to that of N0, we can find a stationary
set S ⊆ θ such that if α′ < α are in S then κα = iα′,α(κα′ ) = jα′,α(κα′ ).

Now the sequence 〈κα : α < θ〉 is nondecreasing. Furthermore, whenever
κα+1 = κα we have βα+1 < βα, and it follows that for each α there is k < ω
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such that κα < κα+k. It follows that κα′ < κα whenever α′ < α are limit
ordinals.

Now oiα+1(E)(κα) = ojα+1(F )(κα) = βα for each α < θ, so case 1 or 2 can
only occur at stages α such that κα′ < κα for all α′ < α. In particular, it never
happens that cases 1 and 2 both occur at stages with the same critical point
κα. For ordinals α < α′ in S we have iα,α′ (κα) = jα,α′ (κα) = κα′ > κα,
so if α ∈ S and α∗ ≥ α is the last stage for which κα∗ = κα then case 3
must occur at stage α∗. Finally, let aα∗ ∈ [βα∗ ]<ω and xα∗ ⊆ [κα]|aα∗ | be
as in the definition of the comparison at stage α∗. Two more applications
of Proposition 3.14 give a stationary S′ ⊆ S such that if α < γ are in S′

then xγ∗ = iα,γ(xα∗ ) = jα,γ(xα∗ ). Set Eα = i0,α(E)(κα, βα) and Fα =
j0,α(F)(κα, βα). Then we have

xα ∈ (Eα∗ )aα∗ ⇐⇒ aα∗ ∈ iα∗,α∗+1(xα)
⇐⇒ aα∗ ∈ iα∗+1,γ ◦ iα∗,α∗+1 ◦ iα,α∗ (xα)

= iα,γ(xα) = xγ ,

since iα,α∗ (xα) ∩ [κα]|aα∗ | = xα and iα∗+1,γ(aα∗ ) = aα. Similarly, xα ∈
(Fα∗ )aα∗ if and only if aα∗ ∈ jα,γ(xα) = xγ , and hence xα∗ ∈ (Eα∗ )aα∗ if
and only if xα∗ ∈ (Fα∗ )aα∗ . This contradicts the choice of xα∗ and hence
completes the proof of the lemma. �

The proof of Lemma 3.15 relied crucially on the fact that iα∗+1,γ(aα∗ ) =
jα∗+1,γ(aα∗ ) = aα∗ for all α < γ in S; that is, none of the generators arising
from a use of an extender in the iteration is moved by the remainder of
the iteration. This problem of moving generators is the reason that linear
iterations like those used in the proof of Lemma 3.15 are not adequate for
comparisons of sequences having overlapping extenders. Thus iteration trees
are needed for the analysis of inner models with larger cardinals.

When the comparison process terminates, it is only guaranteed that the
sequences match with respect to sets which are in both models, so it is im-
portant to observe that this is true of all relevant sets:

3.16 Proposition. Suppose that the comparison maps iθ : L[E ] → L[iθ(E)]
and jθ : L[F ] → L[iθ(F)] terminate with iθ(E) equal to jθ(F)�η in the sense
that oiθ(E) = ojθ(F )�η and

iθ(E) ∩ L[iθ(E)] ∩ L[jθ(F)] = (jθ(F))�η ∩ L[iθ(E)] ∩ L[jθ(F)].

Then L[iθ(E)] ⊆ L[jθ(F)], so that iθ(E) = (jθ(F)�η) ∩ L[iθ(E)].

Proof. We prove by induction on α that Lα[iθ(E)] ⊆ Lα[jθ(F)] for all or-
dinals α. It is only the successor case that could be problematic: assume
as an induction hypothesis that α < η and Lα[iθ(E)] ⊆ Lα[jθ(F)]. Notice
that it follows that iθ(E) ∩ Lα[iθ(E)] = jθ(F) ∩ Lα[jθ(F)] if α ≤ η, and
iθ(E) ∩ Lα[iθ(E)] = (jθ(F)�η) ∩ Lα[jθ(E)] if α > η. In either case both
Lα[iθ(E)] and iθ(E) ∩ L[iθ(E)] are definable in Lα[jθ(F)], and it follows that
Lα+1[iθ(E)] ⊆ Lα+1[jθ(F)]. �
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3.17 Definition. Suppose that E is a weakly coherent sequence and ϕ(E) is
a sentence in the language of set theory. Then L[E ] is said to be ϕ-minimal
if L[E ] |= ϕ(E) but there is no proper initial segment E ′ = E�(κ, β) of E such
that L[E ′] |= ϕ(E ′).

3.18 Proposition. Suppose that E is weakly coherent and L[E ] is ϕ-minimal
for some formula ϕ, and suppose that π : L[E ] → L[E ′] is an elementary em-
bedding. Then the comparison of L[E ] and L[E ′] gives the following diagram:

L[E ]
jθ

π

L[jθ(E)]

L[E ′]

kθ (17.7)

Furthermore, if π is definable in L[E ] then this diagram commutes.

Proof. If jθ : L[E ] → L[jθ(E)] and kθ : L[E ′] → L[kθ(E ′)] are the two embed-
dings generated by the comparison process, then Proposition 3.16 implies that
one of the two sequences jθ(E) and kθ(E ′) is an initial segment of the other.
Since ϕ-minimality is a first order property, both of the models L[jθ(E)] and
L[kθ(E ′)] are ϕ-minimal; and it follows that neither can be a proper initial
segment of the other. Thus jθ(E) = kθ(E ′).

It follows that the comparison yields the diagram (17.7). To see that the
diagram commutes whenever π is definable, suppose the contrary and let x be
the least set in the order of construction of L[E ] such that jθ(x) �= kθ ◦ π(x).
Since π is definable in L[E ], the set x is also definable, but this is impossible
since then jθ(x) and kθ◦π(x) are both defined in L[jθ(E)] by the same formula
and hence must be equal. �

3.19 Lemma. Suppose that E is a weakly coherent extender sequence and
that E is a countably complete (κ, κ + 1 + β)-extender in L[E ] such that
oiE(E)(κ) = β. Then E = E(κ, β).

Proof. If this fails then we may assume that E is ϕ-minimal for the formula
ϕ asserting that it fails. Pick a counterexample E ∈ L[E ] with (κ, β) as small
as possible and let jθ and kθ be the maps arising from the comparison of
L[E ] with the model Ult(L[E ], E). By Proposition 3.18 this gives rise to the
following commutative diagram:

L[E ]
jθ

iE

L[jθ(E)]

L[iE(E)]

kθ (17.8)

Now all of the extenders iE(E)(κ, β′) for β′ < oiE(E)(κ) = β are members of
L[E ], and by the minimality of (κ, β) it follows that iE(E)�(κ+1) = E�(κ, β).
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If oE (κ) = β then this would imply jθ(κ) = κ < iE(κ), contradicting the
commutativity of diagram (17.8). Hence the comparison starts with case 1,
so that j0,1 = iE

′
, where E′ = E(κ, β), and k0,1 is the identity. Furthermore,

iE
′
(E)�κ + 1 = E�(κ, β) = iE(E)�κ + 1, so κ1 > κ. Now suppose that a ∈

[κ+1+β]<ω and x ⊆ [κ]|a|. Then x ∈ Ea ⇐⇒ a ∈ iE(x) ⇐⇒ a ∈ kθ ◦ iE(x)
and x ∈ E′

a ⇐⇒ a ∈ iE
′
(x) = j0,1(x) ⇐⇒ a ∈ j1,θ ◦ j0,1(x) = jθ(x). Since

jθ(x) = kθ ◦ iE(x) it follows that E = E′, contrary to the choice of E. �

3.20 Corollary. If E is a weakly coherent extender sequence of countably
complete extenders, then E is coherent in L[E ].

Proof. Suppose to the contrary that γ < oE (α) and iE(α,γ)(E)�γ �= E�(α, γ).
Let β < γ be such that E(α, β) �= iE(α,γ)(E)(α, β), and apply Lemma 3.19
with E = iE(α,γ)(E)(α, β). �

It should be noted that the assumption that the extenders in E are count-
ably complete is used only to assure that any iterated ultrapower using ex-
tenders in E is well-founded.

3.21 Theorem. If κ is a strong cardinal, then there is a weakly coherent
sequence E of countably complete extenders such that there is a strong cardinal
κ′ ≤ κ in L[E ].

Proof. We define the domain oE of E and the extenders E(λ, β) using recursion
on λ with an inner recursion on β. Suppose that oE �λ and E�λ have been
defined. If λ is not measurable, or if there is some λ′ < λ such that oE (λ′) ≥ λ,
then set oE (λ) = 0. Otherwise define extenders E(λ, β) by recursion on β.
Suppose that E�(λ, β) has been defined. If there is a countably complete
(λ, λ + 1 + β)-extender E such that oiE(E �λ)(λ) = β, then let E(λ, β) be
any such extender. If there is no such extender E then the inner recursion
terminates and oE (λ) is defined to be β.

The sequence E is coherent in L[E ] by Corollary 3.20. Now a cardinal κ′

is strong in L[E ] if and only if oE (κ′) = On. The necessity follows from the
fact that if oE (κ′) ∈ On then E�κ′ + 1 is a set, but there is no extender E
on κ′ in L[E ] such that E�κ′ + 1 ∈ Ult(L[E ], E). To see that the condition
oE (κ′) = On is sufficient, let X be any set in L[E ] and fix τ so that X ∈
Lτ [E ]. Now set E = Eκ,τ . Then by coherence E�(κ, τ) = iE(E)�κ + 1, so
X ∈ Lτ [E ] = Lτ [E�(κ, τ)] = Lτ [iE(E)] ∈ Ult(L[E ], E).

To finish the proof we need to show that there is some κ′ ≤ κ such that
oE (κ′) = On. We may suppose that oE (κ′) < On for all κ′ < κ. This implies
that oE (κ′) < κ for all κ′ < κ: otherwise there is, for all ordinals β, an
extender F on κ so that i(κ) > β and Vβ ⊆ Ult(V, F ). Then oiF (E)(κ′) =
iF (oE (κ′)) > β, but iF (E)�β = E�β. Since β was arbitrary, this implies that
oE (κ′) = On, contrary to assumption.

Now suppose that E�(κ, β) has been defined. We must show that there
is a countably complete (κ, κ + 1 + β)-extender E such that iE(oE )(κ) = β.
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Since κ is strong in V , there is a countably complete extender F on κ such
that E�(κ, β) ∈ Ult(V, F ). Now iF (E) is defined in Ult(V, F ) in the same way
as E is defined in V . Since E(κ, γ) ∈ Ult(V, F ) for each γ < β, and E(κ, γ) is
a possible choice for iF (E)(κ, γ), we must have oiF (E)(κ) ≥ β.

If oiF (E) > β then set E = iF (E)(κ, β). Since V and Ult(V, F ) have
the same subsets of κ and E�κ = iF (E)�κ, E is also a countably complete
extender on V and satisfies oiE(E) = β. Otherwise, if oiF (E)(κ) = β, let
E = F |(κ + 1 + β), the (κ, κ + 1 + β)-extender given by the embedding
iF : V → Ult(V, F ). Since the identity functions serve as coherence functions
for extenders, iE(oE )(κ) = iF (oE )(κ) = β, and hence E is a suitable choice
for E(κ, β). �

Theorem 3.21 can be generalized to smaller cardinals: If κ is λ-strong in
V then there is a sequence E such that oE (κ) > (κ+λ)L[E], and this holds if
and only if κ is λ-strong in L[E ].

The next result shows that, as was the case for sequences of measures, the
sequence E ∩ L[E ] is uniquely determined by its domain, provided that the
extenders E(κ, β) are countably complete extenders in V , not merely in L[E ].

3.22 Theorem. Suppose that E is a weakly coherent sequence of extenders
in V , β < oE (κ), and F is a countably complete extender of length κ + 1 + β

such that oiF (E)(κ) = β. Then F ∩ L[E ] = E(κ, β).

Proof. Let iθ : M0 := L[E , F ] → Mθ and jθ : N0 := L[E , F ] → Nθ be it-
erated ultrapowers comparing the model L[E , F ] with itself, with the com-
parison process modified to include F as an alternative to E(κ, β). This
means that case 3 of Definition 3.13 is modified to allow Mν+1 to be either of
Ult(Mν , iν(E(κ, β))) or Ult(Mν , iν(F )) if the ultrafilter in question differs on
a set in Mν ∩Nν either from jν(E)(iν(κ), iν(β)) or (in the case iν(κ) = jν(κ)
and iν(β) = jν(β)) from jν(F ). Similarly, jν(F ) is a candidate for use in
defining Nν+1.

Lemma 3.15, asserting that the comparison terminates, is still valid for
this comparison. Consider the final models Mθ = L[iθ(E), iθ(F )] and Nθ =
L[jθ(E), jθ(F )] of this comparison. One of the sequences iθ(E) and jθ(E) will
be an initial segment (possibly proper) of the other; suppose that iθ(E) is an
initial segment of jθ(E). Then we have that iθ(E(κ, β)) and iθ(F ) agree with
jθ(F)(iθ(κ), iθ(β)), and hence with each other, on all sets in Mθ∩Nθ. By the
elementarity of iθ there is a set x ∈Mθ on which iθ(F ) and iθ(E(κ, β)) differ.
Let x be the first such set in the order of construction of Mθ, and suppose that
x ∈ Lτ+1[iθ(E), iθ(F )]−Lτ [iθ(E), iθ(F )]. Then Lτ [iθ(E), iθ(F )] = Lτ [iθ(E)] =
Lθ[jθ(E)] so, as in the proof of Lemma 3.19, x ∈ Lτ+1[iθ(E)] ⊆ Nθ. Thus
x ∈Mθ ∩Nθ, contradicting the assumption that iθ(F ) and iθ(E(κ, β)) differ
about x. �

3.23 Corollary. If E and E ′ are weakly coherent sequences of extenders in
V with the same domain then L[E ] = L[E ′] and E ∩ L[E ] = E ′ ∩ L[E ′].
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It was previously observed that this statement is false, even for ultrapowers
of order 0, if the requirement that E be a sequence of extenders in V is
weakened to require only that they be extenders in L[E ].

We conclude this section by showing that the Generalized Continuum Hy-
pothesis holds in L[E ]. The same argument shows that other consequences
of condensation such as ♦κ and �κ also hold in L[E ].

3.24 Theorem. If E is a coherent sequence of countably complete extenders
in L[E ] then L[E ] |= GCH.

Proof. The proof of Theorem 3.24 will require the proof of a condensation
lemma for L[E ]. Let us say that a model M is a coarse mouse in L[E ]
with projectum ρ if π : M ∼= X ≺ Lτ [E ] where Lτ [E ] |= ZF− and X =
HLτ [E]({E} ∪ ρ ∪ p) for some finite set p ∈ Lτ [E ] of parameters. As in the
proof of GCH for L, every subset of ρ in L[E ] is in some coarse mouse with
projectum ρ, and each such mouse has cardinality |ρ|. Hence it will be enough
to show that if M and N are coarse mice in L[E ] with the same projectum
ρ, then either P(ρ) ∩M ⊆ N or P(ρ) ∩N ⊆M .

First, suppose that oE (κ) ≤ ρ for all κ < ρ and let iθ : M → P and
jθ : N → Q be the maps arising from the comparison of M = Lτ0 [F0] and
N = Lτ1 [F1]. Then F0�ρ = F1�ρ = E�ρ and hence both iθ�ρ and jθ�ρ are
the identity. Therefore PM (ρ) = PP (ρ) and PN (ρ) = PQ(ρ); and since one
of P and Q is contained in the other it follows that one of PM (ρ) and PN (ρ)
is contained in the other, as was to be proved.

In particular, the assumption that there is no overlapping in the sequence
E implies that 2κ = κ+ in L[E ] for any κ such that oE (κ) > 0.

Now suppose that there is κ < ρ with oE (κ) > ρ, and let M = Lα[F ] be
any coarse ρ-mouse in L[E ]. If we set β = oF (κ), then because L[E ] satisfies
GCH at κ we have PL[E](κ) ⊆M and hence the extenders F(κ, γ) for γ < β
are all extenders in L[E ]. It follows by Lemma 3.19 that F(κ, γ) = E(κ, γ)
for all γ < β, and hence F�κ + 1 = E�(κ, β).

Now if M and N are two coarse ρ-mice in L[E ] with βM = βN , then the
same argument as that used for the case when oE (κ) ≤ ρ for all κ < ρ implies
that one of PM (ρ) and PN (ρ) is a subset of the other. Thus, if we hold β
fixed then there are at most ρ+ many subsets of ρ which are in some coarse
mouse M for L[E ] with projectum ρ and which have βM = β. Now βM < ρ+

in L[E ] for any such coarse mouse with projectum ρ, so there can be at most
ρ+-many subsets of ρ in L[E ]. �

The natural well-ordering of PL[E](ρ) suggested by this proof is given by
setting x ≺ y if there is β < oE (κ) such that x, but not y, is a member of
Ult(L[E ], E(κ, β)); and otherwise setting x ≺ y if x is less than y in the order
of construction either of Ult(L([E ], E(κ, β)) where β is least such that x, y ∈
Ult(L([E ], E(κ, β)), or of L[E ] if there is no such β. Note that iE(κ,β)(ρ) < ρ+

for any β < ρ+, and hence this well-ordering has ordertype ρ+.
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3.1. The Modern Presentation of L[E ]

Almost all of the description of L[U ] and L[E ] given so far has followed the
original style of [25]; the only exception being the brief description at the end
of Sect. 1.2 of the application of the modern presentation to L[U ] and Kdj.
This presentation was invented in order to accommodate larger cardinals than
those considered here, but it has several advantages even for models with
smaller cardinals, especially when core model and fine structural techniques
are being used.

We will now outline some aspects of this new presentation. There are
three major changes.

(1) As was pointed out previously, the method of indexing used in the
models of this chapter breaks down beyond a strong cardinal. Instead we
index extenders in the sequence with a single ordinal. In the original indexing
of these models, the index γ for a extender E = Eγ on the sequence is given by
γ = (ν+)L[E �γ] where ν is the larger of κ+ and the length of the extender E.
This choice of ν ensures that E can easily be coded as a subset of ν.

As part of this indexing, the class coding the sequence �E is chosen so that
Lγ [E ] = Lγ [E�γ], while Lγ+1[E ] is the collection of subsets of Lγ [E ] which are
definable in the structure (Lγ [E ], E�γ, Eγ).

This indexing is still commonly used, but Jensen and others have also
worked with indexing schemes using indices as large as iE(κ+).

(2) More importantly, an extender E = Eγ of the sequence E does not
measure all of the sets in L[E ], but instead only measures the sets in Lγ [E�γ],
that is, the sets already constructed at the time E appears. This is in contrast
to the models of this chapter, in which an extender E is expected to measure
sets in L[E ] which require E, and even larger extenders, for their construction.
Note that if κ = crit(Eγ) then the choice of γ = (ν+)Lγ [E �γ] implies that
P(ν)∩L[E�γ] ⊆ Lγ [E�γ] = Lγ [E ]. Thus Eγ ⊆ Lγ [E ], and hence Eγ is a member
of Lγ+1[E ].

An extender Eγ with critical point κγ will be a full extender in the final
model L[E ] if and only if no new subsets of κγ are constructed in L[E ]−Lγ [E ].
The other extenders, those extenders Eγ for which P(κγ)∩L[E ] �⊆ Lγ [E ], are
only partial extenders in L[E ]; however (as in the discussion of Kdj at the
end of Sect. 1.2) they serve as full extenders inside the mice by which these
new subsets of κγ are constructed. In fact these mice turn out to be exactly
the initial segments Lα[E ] = Lα[E�α] of the model L[E ].

(3) This use of the partial extenders in mice requires the definition and
use of a fine structure which is essentially identical to Jensen’s fine structure
for L. Fine structure is beyond the purview of this chapter, but one important
consequence has already been mentioned in connection with Kdj: whenever
ρ < α and there is a set x ∈ P(ρ)∩Lα+1[E ]−Lα[E ], then Lα+1[E ] |= |α| ≤ ρ.

This discussion ignores one further difference: the model L[E ] (like all
recent fine structural arguments) is defined using Jensen’s rudimentary hier-
archy Jα[E ] instead of the hierarchy Lα[E ] used in this chapter. This change
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yields a substantial technical simplification, but makes no conceptual differ-
ence.

The main disadvantage of the newer approach is evident. The use of fine
structure makes the newer models L[E ] more complex than the models L[U ],
and furthermore, the extra complexity cannot be delayed, since the model
L[E ] cannot even be defined without it.2 Thus one would want to have
a good understanding of the simpler models described here, as well as of
fine structure in the simpler setting of L, before studying the newer extender
models.

We list below some of the advantages which justify the extra complexity. It
should be noted that for larger cardinals there is no choice: the inner models
require the newer style—which was in fact invented in order to make inner
models for these cardinals possible. However it turns out that arguments
using the newer L[E ] style models are simpler, even though the older style
L[U ] could have been used instead. The discussion below indicates some of
the reasons for this.

(1) A much stronger condensation property holds for the new fine struc-
tural models than for those discussed in this chapter. This point was briefly
touched on during the discussion of the model L[U ] in Sect. 1.2.

(2) The coherence property is simpler and more robust in the fine struc-
tural models. We have already seen this as an advantage of using extenders
instead of ultrafilters, and this sometimes gives reason to use extender models
even when all extenders used turn out to be equivalent to ultrafilters. This
advantage is strengthened in the fine structural models, in which all relevant
functions have already been constructed before the extender is added.

(3) The use of partial extenders helps to simplify and strengthen the com-
parison process. Suppose that the two sequences E and E ′ being compared
differ first at an ordinal γ, so that E�γ = E ′�γ but Eγ �= E ′

γ . Then Eγ mea-
sures only the sets in Lγ [E ] = Lγ [E�γ] = Lγ [E ′�γ] = Lγ [E ′], which contains
the sets measured by E ′

γ . Hence there is no need for the maneuver used in
Definition 3.13, in which two extenders are deemed to differ for the purposes
of defining the iterated ultrapower only if they differ on a set in the inter-
section L[E ] ∩ L[E ′] of the two models: If Eγ and Eγ′ differ at all, then they
disagree on a member of their common domain Lγ [E ] = Lγ [E ′].

(4) The development of the core model is greatly simplified in fine struc-
tural models, because there is no need to treat mice and ultrafilters sepa-
rately. Under the old approach, the core model was a structure of the form
K = L[U ,M] where U is a coherent sequence of measures and M is the

2 There do exist inner models for larger cardinals which do not use fine structure. These
include the original Martin-Steel model [22] for a Woodin cardinal, the HOD models having
Woodin cardinals which Woodin obtained from determinacy hypotheses, and Woodin’s
recent models for cardinals beyond a supercompact. However all of these models fall badly
short of being the L-like models we are looking for: for example, it is still not known
whether the Martin-Steel models satisfy GCH.
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class of mice over U . In fine structural models the core model K has the
form L[E ], and the mice used to construct the model are simply the initial
segments Lγ [E ] of L[E ], with some of the partial measures of E being used as
full measures in the mouse Lγ [E ].

This point becomes more important for core models for larger cardinals.
In order for the construction to work properly, the mice must reflect the
properties of the full core model, and in particular they must be allowed to
recursively contain smaller mice. This seems almost prohibitively compli-
cated when working with a core model in the form K = L[U ,M], with the
measures and the mice treated separately, but it falls out naturally in the
fine structural model K = L[E ] where a mouse M = Lγ [E ] will contain as
smaller mice all its initial segments Lγ′ [E ] for γ′ < γ.

(5) The fine structural models come much closer to satisfying the analog of
Theorem 1.9 than do the models described in this chapter. To see why this is
so, consider an argument like that given for Lemma 3.22, where E�γ has been
defined and E = Eγ and F is a second extender which could have been chosen
as Eγ . In the fine structural model both of these extenders measure the same
collection of sets, namely the members of the structure Lγ [E�γ]. Thus instead
of using an iterated ultrapower of the structure L[E , F ], in which both exten-
ders are used in the construction, one can use the bicephelus (Lγ , E�γ,E, F ),
in which both extenders are available as predicates but neither is used in the
construction. The only extra hypothesis on E and F which is needed, beyond
the requirement that each extender individually satisfies the conditions to be
Eγ , is that they are jointly iterable in the sense that all ultrapowers of this
structure are well-founded.

One further point should be noted: the principal disadvantage of the fine
structural approach, the need to introduce the extra complexity of fine struc-
ture at the very beginning, is not an issue in the development of the core
model because the fine structure will be required in any case. Indeed incor-
porating fine structure into the initial definition of L[E ] allows for a much
more natural presentation and development of the core model and its fine
structure.

4. Remarks on Larger Cardinals

In this section we briefly list some of the most important large cardinals
above measurability, in increasing order of size. The primary focus is on
the inner model theory available for these large cardinal properties; more
information on some of these inner models can be found in later chapters in
this Handbook.

All of the large cardinal properties described here are defined by elemen-
tary embeddings. Throughout this section, i is always an elementary embed-
ding and M is a well-founded class.
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Strong cardinals

Strong cardinals, together with their inner models, have already been intro-
duced and an inner model has been described. It was also pointed out that
such simple models, with comparison defined by linear iterations, are inade-
quate to handle very much larger cardinals. The line beyond which iteration
trees are needed is not sharp. Baldwin [1] uses modified linear iterations to
handle cardinals substantially larger than strong cardinals, and Schindler [35]
has used nearly linear iterations to define a fine structural core model up to
the sharp of a proper class of strong cardinals. In the other direction, a care-
ful analysis shows that fine structural models actually use a simple form of
iteration tree even down at the level of a 2-strong cardinal, that is, one with
an extender E on κ such that P2(κ) ⊆ Ult(V,E).

Because of the need for iteration trees rather than linear iterations, it is
much more difficult to obtain iterable models for larger cardinals in this range.
Indeed, it is not known3 whether a core model larger than those constructed
by Schindler in [35] can be constructed without an added assumption of some
large cardinal strength in the universe. Chapter [33] covers the core model
and the covering lemma up to a Woodin cardinal.

Woodin cardinals

A cardinal δ is said to be Woodin if for all functions f : δ → δ there is an
embedding i : V → M with critical point κ < δ such that f“κ ⊆ κ and
Vi(f)(κ) ⊆M .

Woodin cardinals were defined by Woodin in 1984, following work of Fore-
man, Magidor and Shelah [8], and are the most important large cardinal
property for current research in set theory. The most notable result con-
cerning Woodin cardinals is probably the equiconsistency of the axiom of
determinacy with the existence of infinitely many Woodin cardinals, due to
Woodin, Martin and Steel, which is discussed in chapters [29] and [17].

This, and other consequences of Woodin cardinals, depend largely on two
forcing notions which can be used to prove that inner models for Woodin and
stronger cardinals must differ in important respects from those for smaller
cardinals. The first of these forcing notions is stationary tower forcing,
which was defined by Woodin using ideas from Foreman, Magidor and Shelah
[9, 8]. In one form, this forcing will preserve a Woodin cardinal δ, while mak-
ing massive changes to the cardinal structure below δ: for example, there is
a stationary subset of singular cardinals below δ whose successors are col-
lapsed by the forcing. Hence there cannot be a core model satisfying the
weak covering property for (exactly) a Woodin cardinal, although there is
one for the sharp of a Woodin cardinal. In addition, stationary tower forcing

3 It is now known, by a recent unpublished result of Jensen and Steel, that if there is no
model with a Woodin cardinal then the core model K can be constructed with no extra
large cardinal hypothesis.
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can collapse ω1, and in the process will add new countable mice. This forcing
is discussed in the book [20].

The second forcing notion, invented by Woodin, is the remarkable “all sets
are generic” forcing: If M is a model with a Woodin cardinal δ, and M is
iterable in V , then there is a forcing notion P ∈M of size δ such that for any
set x in V there is a tree iteration of M , with final model N and embedding
i : M → N , such that N [x] is a generic extension of N by the forcing i(P ).
This forcing can be used to show that the minimal model M for a Woodin
cardinal cannot satisfy the sentence asserting that M is iterable, even when
M is iterable in the universe V . The implications of this for the core model
are discussed further at the end of this chapter.

At present it is not known how to construct core models for cardinals in
this range without some large cardinal properties holding in the universe.
Jensen has shown that a subtle cardinal, a property weak enough to hold
in L, is enough to show prove that the core model exists and satisfies the
covering lemma; however it is an open question whether this assumption is
needed. Other than this gap, the core model theory through ω many Woodin
cardinals is well understood [39]. The strongest current result on existence
of iterable inner models is due to Neeman, who has constructed [30] iterable
extender models with a Woodin limit of Woodin cardinals. These models,
however, are not fine structural, and no core model results are known in this
region.

Superstrong Cardinals

A cardinal κ is superstrong if there is an embedding i : V →M with critical
point κ such that Vi(κ) ⊆M .

As was pointed out previously, a superstrong cardinal is at the outer limits
of our understanding of inner models. Much of the basic inner model theory
is understood up to a superstrong cardinal: for example it is known [34] that
�κ holds in any extender model up through a superstrong cardinal. Indeed
they show that �κ holds in an extender model L[E ] for any cardinal κ short
of what Jensen has labeled a subcompact cardinal. Jensen has shown that
�κ cannot hold if κ is subcompact. However it is not known, under any
large cardinal assumption, that there are any iterable extender models with
anything near a superstrong cardinal.

Supercompact Cardinals

A cardinal κ is λ-supercompact if there is an embedding i : V →M with crit-
ical point κ such that λM ⊆M , and κ is supercompact if κ is λ-supercompact
for all cardinals λ.

None of the models described in this chapter give any promise of yielding
models with a supercompact cardinal. However Woodin has recently pro-
posed a form of model, using what he calls suitable extender sequences which
can include supercompact cardinals and even the larger cardinals discussed
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in the next paragraph, and which he hopes to show have many of the prop-
erties enjoyed by the extender models L[E ] which have been discussed in this
chapter.

Like these models, Woodin’s models have the form L[E ], the class of sets
constructible from a sequence of extenders. An important difference is that
not all of the extenders witnessing large cardinal properties are members of
the sequence E ; in fact all of the critical points of extenders on the sequence
are below the first supercompact cardinal. It is still not known whether these
models have an analog of the comparison process of Lemma 2.8, and no proofs
are known for their iterability.

Larger Cardinals

A number of cardinals larger than supercompact have been defined. Some of
these have important consequences, notably huge cardinals and variants of
these. A cardinal κ is huge if there is an elementary embedding i : V → M
with critical point κ such that i(κ)M ⊆M .

Catalogs of large cardinal properties, such as this one, traditionally end
with a nontrivial elementary embedding from V into V , which Kunen proved
in [19] to be inconsistent. It is still open whether such an embedding is
consistent with ZF without the axiom of choice.

5. What is the Core Model?

This section is not intended to be a description of existing core models, but
rather an examination of the term “core model” itself. We will try to deter-
mine the meaning of the phrase “the core model”, and in particular explain
the difference between it and the term “extender model”. The structure,
construction and properties of known core models is described elsewhere in
this chapter and in chapters [24, 33, 38] and [36]. In addition the reader may
want to look at [27], which discusses from a relatively non-technical point of
view the use of iteration trees and the construction of the Steel core model
up to a Woodin cardinal.

Our first approach will be to look at the history of the term “core model”,
which was introduced by Dodd and Jensen [5, 6] for the model which is var-
iously referred to as the Dodd-Jensen core model, Kdj, or the core model
below a measurable cardinal. The history, however, begins earlier—at least
as far back as Jensen’s discovery of the covering lemma for L, since the
Dodd-Jensen core model generalizes this result. The model L[U ] also pre-
dated Kdj, and although L[U ] is not contained in the structure Kdj which
Dodd and Jensen referred to as the core model, they proved [7] the covering
lemma for L[U ] and hence brought this model into the modern pantheon of
core models. Their work was extended by Mitchell to include sequences of
measures. The core model to this point is described in chapter [24]. The use
of extenders as a generalization of normal ultrafilters, and of iteration trees
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as a generalization of iterated ultrapowers, led to the Steel core model, which
is described in chapters [33, 38]. This model is currently at the frontier of
the subject.

Of the two terms under consideration, only “extender model” has a precise
meaning: an extender model is a model of the form L[E ] where E is a good
sequence of extenders as defined in chapter [38]. Every known core model
is an extender model, but this should not be assumed to be true for larger
cardinals; indeed it seems unwise to be dogmatic about the properties of as
yet unknown core models until we have a better idea of what is possible.

Even keeping this caveat in mind, “the core model” is always singular:
there is at most one core model in any given model of set theory, and in
particular there is at most one true core model in the true universe of sets.

Some authors have used the term “core model” to mean the same as “ex-
tender model”. While it is true that every known core model is an extender
model, and that generally, or arguably always, an extender model is its own
core model, the distinction between the terms is important and should be
preserved. The term extender model describes the interior structure of the
model, while the term core model refers to the relation between the model
and the class of all sets.

Some illumination on this point can be gained by looking at cases in which
we find it useful, in apparent contradiction to the dictum in the last para-
graph, to speak of “a core model”. It is often useful to refer to a model as
“a core model” if it is the core model as defined inside some model which
is of particular interest, but is not necessarily the universe of all sets. In
a related usage, the term “core model” is often used for a model obtained
by a particular construction which is known to yield the core model under
additional assumptions such as the nonexistence of some large cardinal prop-
erty. The Dodd-Jensen core model Kdj is an example of both usages: It
is characterized by its mode of construction, which is an initial segment of
the core model construction in every model for which such a construction is
known. It is also characterized by the fact that it (or at least Kdj∩M) is the
core model inside any model M , so long as M does not have an inner model
with a measurable cardinal. Core models for larger cardinals are less clear
cut, since the core model for a model M varies with the particular extenders
which are members of M , even though the large cardinal strength of the
model is held fixed. There is a unique core model, however, for the sharps of
such large cardinal properties.

The second approach to understanding the term “core model” is through
consideration of the properties of the known core models. These properties
fall into two classes. The properties in the first class are those which hold
in any extender model: These models are built up from below, in a manner
analogous to the construction of L, and as a consequence they satisfy some
sort of condensation. They satisfy combinatorial principles such as ♦κ and
(for cardinals small enough that we currently have a core model) �κ. They
satisfy the generalized continuum hypothesis, they satisfy the global axiom of
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choice and their well-ordering, both of their reals, and of their full universe,
has a logical form which is as simple as possible in any model with the same
large cardinal properties.

The other class of properties of the core models are those which might be
seen as asserting that the model is close to V . The most important of these
is the covering lemma, or at the least some form of the weak covering lemma.
A second is rigidity: there is no nontrivial elementary embedding i : K → K.
A third is absoluteness: the core model is absolute for a class of sentences
which falls just short of including the sentence asserting that there is a set
not in that core model.

It is unclear to what extent we should assume that these properties will
necessarily hold for larger core models. Even down at the level of a Woodin
cardinal, without the sharp of a Woodin cardinal, there is no inner model
which satisfies both weak covering and invariance under forcing; and proper-
ties which seem close to rigidity fail well below a Woodin cardinal.

A final property bridges these two classes: The core models are uniquely
defined by a formula which is absolute under set generic extensions. This
formula says on the one hand that the model is built up from below as
an extender model L[E ], and on the other that the construction is greedy,
including everything appropriate into the sequence E . If we take the first
class of properties as evidence of minimality then we could take something
like the following as the definition of the core model:

5.1 Definition. The core model is the minimal class inner model of ZF
which contains all of the large cardinal structure which exists in the universe.

We could modify the statement by requiring ZFC rather than ZF, but it
seems better to regard the axiom of choice as a consequence (so far, at least)
of minimality.

Although it is labeled a “definition”, Definition 5.1 is not intended to be
a precise mathematical definition. Neither “minimal” nor “large cardinal
structure” have a precise meaning. The phrase “minimal class inner model
of ZF” is, perhaps, reasonably clear. We can take “minimal” to mean ⊆-
minimal, which works for all known core models—provided a suitable mean-
ing for the term “large cardinal structure” is understood.

The meaning of this term is somewhat more problematic. One important
point is that “large cardinal structure” is not the same as “large cardinal
properties”. The model L[U ] is not ⊆-minimal among all models having
a measurable cardinal; for example Ult(L[U ], U) is a proper subclass of L[U ].
However L[U ] is the minimal model containing the filter U ∩ L[U ], and it
seems quite clear that the ultrafilter U should be included as part of the large
cardinal structure. There are more doubtful cases in which Definition 5.1 may
be at least potentially circular: once a particular model K has been anointed
as “the core model” there will be a tendency to take the “large cardinal
structure” of the universe to be just that structure which is contained in K.

As a case study to illustrate how the line might be drawn, we consider
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the situation when there is a Woodin cardinal δ, but no sharp for a model
with a Woodin cardinal. There is an obvious candidate for the core model
in this case, namely the extender model L[E ] given by Steel’s core model
construction described in chapter [33]. It might be objected that this model
is not really obtained by Steel’s construction of the core model, but rather as
a limiting case of that construction: Steel’s construction gives a sequence of
models Kθ = Lθ[Eθ] for measurable cardinals θ < δ. Each of the models Kθ

is unequivocally the core model in Vθ, and the extender sequences Eθ of the
models Kθ agree so as to yield a combined sequence E =

⋃
θ Eθ such that δ is

Woodin in L[E ]. This objection is a reason for caution, but is irrelevant to the
application of Definition 5.1, which deliberately avoids specifying a particular
means of construction. A second objection to the model L[E ] is that it is not
iterable: Woodin’s “all sets are generic” forcing demonstrates that there is
an iteration tree of height δ which can be defined in L[E ], but which has
no well-founded branch in L[E ]. Again this is a reason for caution but is
not necessarily fatal: the iterability of the model might well be considered
as large cardinal structure, but it is large cardinal structure which does not
exist in the universe and thus cannot be expected to exist in the core model.
In fact, for example, the existence of a model L[E ] with a Woodin cardinal
such that every iteration tree in L[E ] has a well-founded branch in V implies
the existence of a class of indiscernibles for L[E].

A more significant question is raised by Woodin’s stationary tower forcing,
which massively violates the weak covering lemma. The cardinal δ is still
Woodin in the generic extension, but it is possible to arrange (and is possibly
impossible to avoid) that every sufficiently large successor cardinal below δ
is collapsed. This probably should not bother us: we can consider this to
be analogous to Prikry forcing at a measurable cardinal, which shows that
if there is a measurable cardinal then no core model will satisfy the covering
lemma in all generic extensions. It is true that the situation at a measurable
cardinal is well understood while that at a Woodin cardinal is quite hazy,
but the analogy seems reasonable.

It has been argued that it is not really necessary to give up the weak cov-
ering lemma because there is a second candidate for the core model. If we
assume that the ground model is L[E ], then an L[E ]-generic set G for the sta-
tionary tower forcing is essentially an extender which gives an elementary em-
bedding iG : L[E ]→ L[iG(E)] with the property that Vδ∩L[E ][G] ⊆ L[iG(E)].
In particular, L[iG(E)] does satisfy the covering lemma in the generic exten-
sion L[E ][G], and furthermore, L[iG(E)] is the model obtained as described
above using Steel’s construction inside L[E ][G]. We could take L[iG(E)] as the
core model, provided that we are willing to give up invariance under forcing.
In favor of L[E ], we could assert that i : L[E ] → L[iG(E)] should be regarded
as analogous to Ult(L[U ], U) = L[iU (U)], and note that L[iU (U)] is certainly
not the core model. This view is supported by Woodin’s [41] extensive and
fruitful theory of iterated ultrapowers using generic embeddings such as iG,
but it is weakened by the fact that it throws no light on the failure of the
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weak covering lemma.
The model L[E ] is certainly the core model according to Definition 5.1, at

least inside the ground model L[E ] itself. The question is whether the mice
in L[iG(E)]− L[E ] should be included as part of the large cardinal structure
of L[E ][G]. For an answer to this question we consider another analogy with
L[U ]: Jensen has proved (see Theorem 3.43 in chapter [24]) that if H is a L[U ]
generic Levy collapse, then in L[U ][H] there is an embedding i : Kdj → Kdj

such that crit(i) is smaller than crit(U). The embedding is constructed from
a model N = Lα[UN ] in L[U ][H]− L[U ] which is iterable and satisfies ZF−.
In fact N is a mouse; however it is not a mouse in the sense of Kdj because
there is no subset of crit(UN ) in Lα+1[UN ] − Lα[UN ]. Now UN is not an
ultrafilter in L[UN ], so let α′ > α be the least ordinal such that there is
a subset of crit(UN ) in Lα′+1[UN ]−Lα′ [UN ]. If N ′ = Lα′ [UN ] were iterable
then it would be a member of Kdj, and that is not true because UN measures
all sets in Kdj while there is a set in Lα′+1[UN ] which UN does not measure.
Thus N ′ is not iterable; in fact the set in Lα′+1[UN ] which is not measured
by UN can be constructed from a sequence of functions in N ′ which witnesses
that Ult(N ′, UN ) is not well-founded.

The extra information given by the ordinal α′ > α shows that Lα[UN ]
is, in an extended sense, not really iterable. Similarly, the information given
by the extender sequence E shows that the supposed mice M which are in
L[iG(E)] but not in L[E ] are not really iterable: if we attempt to compare M
with L[E ] then the tree on M has height δ and has no well-founded cofinal
branch, as any such branch could be used to construct the sharp for a Woodin
cardinal. Thus it seems appropriate to conclude that M is not part of the
large cardinal structure of L[E ][G], and hence that L[E ] is the core model in
L[E ][G].

Why then does Steel’s construction seem to go wrong here? As was sug-
gested earlier, it is not the construction which is in error: If θ is a measurable
cardinal below δ then every mouse in the model Kθ = Lθ[iG(E)�θ] is iterable
in V

L[E][G]
θ , and hence Kθ really is the core model in the universe V

L[E][G]
θ .

The only error is in assuming that the limit of these local core models will be
a core model in V L[E][G]: it is not, because its “mice” are not iterable there.
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Astronomiques et Physiques, 9:521–524, 1955.

[38] John R. Steel. An outline of inner model theory. Chapter 19 in this
Handbook. 10.1007/978-1-4020-5764-9 20.

[39] John R. Steel. Core models with more Woodin cardinals. The Journal
of Symbolic Logic, 67(3):1197–1226, 2002.

[40] Philip D. Welch. Σ∗ fine structure. Chapter 10 this Handbook.
10.1007/978-1-4020-5764-9 11.

[41] W. Hugh Woodin. The Axiom of Determinacy, Forcing Axioms, and the
Nonstationary Ideal. de Gruyter, Berlin, 1999.

[42] Martin Zeman. Inner Models and Large Cardinals. de Gruyter, Berlin,
2002.

http://dx.doi.org/10.1007/978-1-4020-5764-9_23
http://dx.doi.org/10.1007/978-1-4020-5764-9_21
http://dx.doi.org/10.1007/978-1-4020-5764-9_10
http://dx.doi.org/10.1007/978-1-4020-5764-9_20
http://dx.doi.org/10.1007/978-1-4020-5764-9_11


18. The Covering Lemma

William J. Mitchell

Contents
1 The Statement . . . . . . . . . . . . . . . . . . . . . . 1498

2 Basic Applications . . . . . . . . . . . . . . . . . . . . 1504

3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . 1508

3.1 Fine Structure and Other Tools . . . . . . . . . . . . 1509

3.2 Proof of the Covering Lemma for L . . . . . . . . . . 1517

3.3 Measurable Cardinals . . . . . . . . . . . . . . . . . 1523

3.4 Unsuitable Covering Sets . . . . . . . . . . . . . . . 1551

4 Sequences of Measures . . . . . . . . . . . . . . . . . 1554

4.1 The Core Model for Sequences of Measures . . . . . 1558

4.2 The Covering Lemma up to o(κ) = κ++ . . . . . . . 1564

4.3 The Singular Cardinal Hypothesis . . . . . . . . . . 1579

4.4 The Covering Lemma for Extenders . . . . . . . . . 1584

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . 1590

The writing of this chapter was partially supported by grant number DMS-9970536 from
the National Science Foundation.

The author would also like to thank Diego Rojas-Robello, Assaf Sharon and the referee
for helpful suggestions.

M. Foreman, A. Kanamori (eds.), Handbook of Set Theory,
DOI 10.1007/978-1-4020-5764-9 19, c© Springer Science+Business Media B.V. 2010

http://dx.doi.org/10.1007/978-1-4020-5764-9_19


1498 Mitchell / The Covering Lemma

1. The Statement

Ronald Jensen’s discovery of the covering lemma arose out of work on the
singular cardinals problem. Paul Cohen published his proof of the indepen-
dence of the continuum hypothesis [4, 5] in 1963, and one year later William
Easton’s thesis [13, 14] completely settled the question of the size of the con-
tinuum for regular cardinals. The continuum problem for singular cardinals
remained open, and the Singular Cardinal Hypothesis (SCH), stating (in its
simplest form) that 2λ = λ+ for every singular strong limit cardinal, became
one of the most important problems in set theory. It was ten years before
Jack Silver made the first significant advance on the problem: In a sharp
contrast to Easton’s result, which stated that the only constraints on the size
of the continuum for regular cardinals are the obvious ones, Silver [56] proved
that SCH cannot fail at a singular cardinal of uncountable cofinality unless it
already fails at all but a nonstationary set of smaller cardinals. Silver’s proof,
which depends heavily on the use of the filter of closed unbounded subsets of
λ, fails badly at cardinals of cofinality ω and attention turned immediately
to understanding this case. A year later, in 1974, Jensen distributed a series
of handwritten notes titled Marginalia to a Theorem of Silver.1 These notes,
later revised by Keith Devlin and Jensen and published [7] under the same
title, stated and proved the basic covering lemma for L:

1.1 Theorem (Covering Lemma for L). If 0# does not exist then for any
set x of ordinals there is a set y ∈ L such that y ⊇ x and |y| = |x|+ ℵ1.

It is an immediate corollary that ¬0# implies SCH: Theorem 1.1 implies
that any function f : cf(λ) → λ is determined by a covering set y ⊇ ran(f)
in L of size at most max{ℵ1, cf(λ)}, together with a function from cf(λ)
into y. Thus λcf(λ) ≤ (λcf(λ))L τ cf(λ) = λ+2cf(λ) = max{λ+, 2cf(λ)}, where
τ = max{ℵ1, cf(λ)}. This implies the more general form of SCH, λcf(λ) =
λ+ 2cf(λ) for every singular cardinal λ, and this in turn implies 2λ = λ+ if λ
is a singular strong limit cardinal.

The most obvious direction in which to extend the covering lemma is
by weakening the assumption ¬0# to allow larger cardinals in the universe.
The first step in this direction was due to Anthony Dodd and Jensen, who
constructed a core model Kdj under the assumption that there is no inner
model with a measurable cardinal [9, 10, 8]. The Dodd-Jensen core model
is, in many ways, similar to L: it satisfies GCH along with most of the
combinatorial properties of L, and it satisfies an analogous covering lemma:

1.2 Theorem (Covering Lemma for Kdj). Assume that there is no inner
model with a measurable cardinal, and let Kdj be the Dodd-Jensen core model.
Then for any set x of ordinals there is a set y ∈ Kdj such that y ⊇ x and
|y| = |x|+ ℵ1.
1 It is worth pointing out that about 20 years later, during the 1990’s, this same problem
led to another of the major advances in set theory, Saharon Shelah’s pcf theory ([53], see
chapter [1]).
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The statement cannot be extended directly to larger cardinals, as Prikry
forcing [46] gives a counterexample. However, Dodd and Jensen generalize
Theorem 1.2 to show that Prikry forcing is the only possible counterexample
[11]:

1.3 Theorem (Covering Lemma for L[U ]). Assume that 0† does not exist
but that there is an inner model with a measurable cardinal, and that the
model L[U ] is chosen so that κ = crit(U) is as small as possible. Then one
of the following two statements holds:

1. For every set x of ordinals there is a set y ∈ L[U ] with y ⊇ x and
|y| = |x|+ ℵ1.

2. There is a sequence C ⊆ κ, which is Prikry generic over L[U ], such
that for all sets x of ordinals there is a set y ∈ L[U,C] such that y ⊇ x
and |y| = |x|+ ℵ1.

Furthermore, the sequence C of clause 2 is unique up to finite initial seg-
ments.

Theorem 1.3 can easily be generalized to models with no inaccessible limit
of measurable cardinals, but two problems have to be overcome to extend it
to larger cardinals: (i) it is necessary to construct a core model which can
consistently contain larger cardinals and for which the basic argument of the
proof of the covering lemma can be made to work, and (ii) it is necessary to
find a useful statement of the covering lemma for this core model which can
be proved from the basic argument. The construction and basic properties
of the core model are given in chapters [47] and [57], or in [29]. In addition
the current chapter includes, in Sect. 4, an outline of the theory of the core
model for sequences of measures and for non-overlapping extenders.

A statement of the full covering lemma for these models will be deferred
to Sect. 4 of this chapter, but Theorem 1.8 below states a simplified version
which generalizes the result of Dodd and Jensen by showing that a singular
cardinal which is regular in K is made singular by a set which approximates
a Prikry-Magidor generic set (see [32, Sect. 2.2]). This statement requires
some preliminary definitions.

Say that a cardinal κ is μ-measurable if there is an embedding i : V →M
such that the measure {x ⊆ κ : κ ∈ i(x)} associated with i is a member of M .
This is the weakest large cardinal property which requires the existence of
something more than normal ultrafilters.

For the rest of this subsection we assume that there is no inner model with
a μ-measurable cardinal, and we assume that K is the core model. If κ is a
cardinal of K and β < o(κ) then use U(κ, β) to denote the measure of order
β on κ in K. First we define what appears to be a rather weak notion of
indiscernibility:
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1.4 Definition. Assume that κ is a singular cardinal which is regular in K.
A closed unbounded subset C of κ is a weak Prikry-Magidor set for K if
(i) |C| < κ, and (ii) if x is any closed unbounded subset of κ with x ∈ K
then C − x is bounded in κ.

Any Prikry-Magidor generic subset of κ is a weak Prikry-Magidor set.

1.5 Theorem. If there is no model with a μ-measurable cardinal then any
weak Prikry-Magidor set C ⊆ κ for K has the following two properties:

1. C is eventually contained in any set a ∈ K such that a ∈ U(κ, β) for
all β < o(κ).

2. C ∩ λ is a weak Prikry-Magidor set over K for every sufficiently large
limit point λ of C.

1.6 Definition. A function σ is an assignment function in K for C if

1. There is an h ∈ K such that σ(ν) = h(ν) for all sufficiently large ν ∈ C.

2. C is a set of indiscernibles for U(κ, σ(ν)) in the sense that for any
sequence 〈aξ : ξ < κ〉 ∈ K∩ κP(κ) of subsets of κ, and for all sufficiently
large ν ∈ C, we have ∀ξ < ν (ν ∈ aξ ⇐⇒ aξ ∈ U(κ, σ(ν))).

If o(κ) < κ, as in Prikry-Magidor forcing, then we can always take σ to be
the function σ(ν) = o(ν). If o(κ) ≥ κ+ then Radin forcing (cf. chapter [15])
can be used to add a set C which satisfies the definition of a weak Prikry-
Magidor set except that κ remains regular, and hence |C| = κ. Clearly such
a set does not have an assignment function, since any assignment function
would be bounded in κ+. Thus the following theorem would be false if the
requirement that |C| < κ were dropped from Definition 1.4.

1.7 Theorem. Any weak Prikry-Magidor set C ⊆ κ for K has an assignment
function in K. Furthermore

1. The assignment function σ is unique except for initial segments.

2. The assignment function is weakly increasing in the sense that σ(ν) ≥
lim sup{σ(ξ) + 1 : ξ ∈ C ∩ ν} for every sufficiently large limit point ν
of C.

Any weak Prikry-Magidor set C which satisfies the stronger version of
clause 2 obtained by changing the inequality to an equality, and in particular
has σ(ξ) = 0 for each successor member ξ of C, is a Prikry-Magidor generic
set.

We cannot hope to actually cover subsets of κ using indiscernibles for only
a single cardinal κ, but the following theorem, which is our promised version
of the covering lemma, generalizes Dodd and Jensen’s Theorem 1.3 to say
that any small subset of κ can be approximated by a weak Prikry-Magidor
set:
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1.8 Theorem. If a singular cardinal κ is regular in K then for any set x ⊆ κ
with |x| < κ there is a weak Prikry-Magidor set C ⊆ κ for K and a function
g : κ→ κ in K such that x−

⋃
ν∈C (g(ν)− ν) is bounded in κ.

The Weak Covering Lemma

No satisfactory statement of the full covering lemma is known for cardinals
much larger than a single strong cardinal: the indiscernibles are too compli-
cated to use to approximate arbitrary sets in the manner of Theorem 1.3 or
Theorem 1.8. What remains is known as the weak covering lemma, which
is proved by using the same basic proof as that used below a strong cardi-
nal, but applying it only to subsets of the interval (λ, (λ+)K), in which there
cannot be any indiscernibles.

1.9 Definition. A class model M of set theory satisfies the weak covering
property if (λ+)M = λ+ for every singular cardinal λ of V .

The weak covering lemma, stating that K has the weak covering property,
is among the most important consequences of the covering lemma. If K con-
tains more than a few measurable cardinals then the weak covering property
is needed to prove the basic properties of the core model, including the full
covering lemma; indeed the weak covering property may be taken as part of
the definition of what it means to be a “core model”. The best results known
to date are as follows:2

1.10 Theorem.

1. If the sharp for a model with a class of strong cardinals does not exist,
then there is a core model K of the form L[E ] which satisfies the weak
covering property (see [50]).

2. If there are no inner models with a Woodin cardinal and there is a subtle
cardinal θ, then the Steel core model Kθ = Lθ[E ] below θ exists, and
satisfies the weak covering property for λ < θ (see chapter [47]).

The proof of clause 1 will be sketched in Sect. 4. The proof of clause 2 is
given in [45].

It is not clear what, if anything, can be done in the actual vicinity of
a Woodin cardinal. Mitchell [42] reports some unsatisfactory results from
2 It is now known, by recent unpublished work of Jensen and Steel, that if there is no
model with a Woodin cardinal then there is a core model K as in clause 1. This new result
supersedes clauses 1 and 2.

The proof uses a new technique which was discovered by Jensen and is described in the
recent paper [27], which deals with a model Kc of the form L[E] under the assumption that
there is no model with a cardinal κ which is simultaneously a limit of Woodin cardinals
and of cardinals strong to κ. Although this paper does not actually show that the weak
covering lemma holds in Kc, it does show that a weak covering property holds in the
structures which Jensen calls “stacks”. This is sufficient to show that many core model
arguments can be extended to such large cardinals. Indeed the technique works up to a
superstrong cardinal; however, it is not known that the model Kc exists for such cardinals.



1502 Mitchell / The Covering Lemma

applying the standard proof at a Woodin cardinal, but the following result
of Woodin may suggest a more useful direction. The theorem only applies
below 2ℵ (assuming AC in V ) but that is the region where the large cardinals
implied by AD exist. This result also goes beyond the large cardinal limit of
¬AD imposed by Theorem 1.10.

1.11 Theorem (Woodin [64]). Suppose that the nonstationary ideal on ω1

is ℵ2-saturated, and suppose that M is a transitive inner model of ZF + DC
+ AD containing all reals and ordinals such that every set of reals in M is,
in V , weakly homogeneously Souslin. Let X be a bounded subset of ΘM such
that |X| = ℵ1. Then there exists a Y ⊇ X in M such that |Y |M = ℵ1.

Here ΘM is the supremum of the ordinals δ in M such that there is a map
in M from the reals onto δ.

The Strong Covering Lemma

This concludes, until Sect. 4, the discussion of cardinals larger than a mea-
surable cardinal. We now return to the models L and L[U ] in order to look
at another direction in which the original covering lemma has been extended.
The strong covering lemmas use Jensen’s proof but show that more can be
extracted from it. Theorem 1.12, which is our version of the strong covering
lemma for the Dodd-Jensen core model, is essentially taken from unpublished
notes of Timothy Carlson, who proved it for L by using a variant, influenced
by ideas of Silver, of Jensen’s proof. The idea, as well as the name, comes
from work of Shelah (see [53, Theorem VII.0.1] and [54]) who obtains the
strong covering property in a more general setting by assuming the ordinary
covering property together with some extra combinatorial structure. We will
describe his main application in the next section.

1.12 Theorem (Strong Covering Lemma). Assume that there is no inner
model with a measurable cardinal. Then there is a class C ⊆ Kdj, definable
in Kdj, such that the following statements hold:

1. If x is any uncountable set of ordinals then there is a set X ∈ C such
that x ⊆ X and |x| = |X|.

2. The class C is closed in V under increasing unions of uncountable
cofinality; that is, if 〈Xν : ν < η〉 is an increasing sequence of members
of C and cf(η) > ω then

⋃
ν<ηXν ∈ C.

Notice that clause 2 holds for all sequences 〈Xν : ν < η〉, not only for
those which are members of K.

The statement of Theorem 1.12 remains valid if L[U ] exists but 0† does
not, provided that K is replaced by the appropriate model L[U ] or L[U,C]
from Theorem 1.3. The following statement, however, is stronger and is easier
to generalize to larger core models (see Sect. 4).
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1.13 Theorem. Assume that 0† does not exist, and that the measure U
and Prikry sequence C are as in Theorem 1.3(2). Then there is a class
C ⊆ L[U,C] which satisfies clauses 1 and 2 of Theorem 1.12, and in addition

3. For each set X ∈ C there is an ordinal ρ < max{ℵ2, |X|+} and a func-
tion h ∈ L[U ] such that X = Hh(ρ ∪ C), the smallest set containing
ρ ∪ C and closed under h.

4. The class C is definable in L[U ] in the sense that there is a formula
ϕ such that a set X is in C if and only if there is a set A ∈ U ,
a function h ∈ L[U ] and an ordinal ρ such that L[U ] |= ϕ(A, h, ρ) and
X = Hh(ρ ∪ (C ∩A)).

Clause 4 follows from the definability of forcing: the formula ϕ(A, h, ρ)
asserts that (∅, A) � Hh(ρ̌ ∪ Ċ) ∈ Ċ, where the forcing is Prikry forcing
for the measure U , Ċ is a name for the resulting Prikry sequence, and Ċ is
a name, derived from the proof of the covering lemma, for the class C.

The following proposition gives a very useful property of the function h.
It is also true for L, for the Dodd-Jensen core model, and for the core model
for sequences of measures.

1.14 Proposition. Let h be as in Theorem 1.13 for X ∈ C. Then h can
be written as h =

⋃
ν<αhα for some functions hν ∈ X such that hν ⊆ hν′

whenever ν < ν′ < α.

The Covering Lemma without Second-Order Closure

The strong covering lemma can be viewed as asserting that if 0# does not
exist then every sufficiently closed set is a member of L. The precise state-
ment of the requirement that X be sufficiently closed has both first-order
and second-order components. Magidor’s covering lemma [31] for L weakens
the conclusion of the covering lemma in order to eliminate the second-order
components:

1.15 Theorem (Magidor [31]). If 0# does not exist and x is a set of ordinals
which is closed under the primitive recursive set functions, then there are sets
yn ∈ L for n < ω such that x =

⋃
n<ωyn.

Magidor also extends Theorem 1.15 to the Dodd-Jensen core model by
requiring closure under a larger set of functions in Kdj and assuming that
there is no inner model with an ω1-Erdős cardinal. He points out that this
assumption is necessary, since if there is an ω1-Erdős cardinal in K then there
is a generic extension M of K such that for any countable set F of functions
in K there is a set X ∈ M which is closed under the functions in F , but is
not a countable union of sets in K.

The following theorem was proved independently of Theorem 1.15, but the
same idea lies behind both theorems.
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1.16 Theorem (Mitchell [33, 41], Jensen [12]). If there is no model with
a Woodin cardinal then every regular Jónsson cardinal is Ramsey in the core
model K. Furthermore, if κ is δ-Jónsson for some uncountable ordinal δ < κ
then κ is δ-Erdős in K.

A cardinal κ is said to be δ-Jónsson if any structure with universe κ
and countably many predicates has an elementary substructure with order
type δ; and κ is said to be δ-Erdős [3] if for any such structure and any closed
unbounded subset C of κ there is a normal set of indiscernibles of order type
δ contained in C.

A similar proof shows that Chang’s conjecture implies that ω2 is ω1-Erdős
in K, and together with a result of Silver (1967, unpublished) proves the
equiconsistency of the two notions.

This concludes our discussion of the various statements of the covering
lemma. In Sect. 2 we will briefly describe some of the basic applications of
the core model, and in Sect. 3 we will outline the basic proof of the covering
lemma and its variants under the hypothesis that 0† does not exist. The final
section looks at larger cardinals, giving the statement and an outline of the
proof of the covering lemma for sequences of ultrafilters or extenders. The
basic proof is taken almost unchanged from Sect. 3, but the analysis of the
resulting system of indiscernibles is much more difficult.

2. Basic Applications

We pointed out earlier that the source of the covering lemma, as well as its
first application, is the Singular Cardinal Hypothesis:

2.1 Theorem (Jensen [7]). If 0# does not exist, λcf(λ) = max{λ+, 2cf(λ)}
for every singular cardinal λ and hence 2λ = λ+ for every singular strong
limit cardinal λ.

Jensen’s proof can be generalized to larger cardinals, but the full strength
of the failure of SCH was not discovered until Moti Gitik combined the cov-
ering lemma with Shelah’s pcf theory:

2.2 Theorem (Gitik [17, 20]). The failure of the Singular Cardinal Hypoth-
esis is equiconsistent with ∃κ(o(κ) = κ++).

In Sect. 4.3 we present Gitik’s proof that the failure of the singular cardinal
hypothesis implies that there is an inner model satisfying ∃κ(o(κ) = κ++).
Gitik’s proof that this is sufficient is given in [16]; in this Handbook [15] he
describes a later method of forcing which is simpler and more general, but
which gives slightly weaker results in this case.

The following theorem is Shelah’s main application of the Strong Covering
Lemma 1.12. The sufficiency of slightly stronger large cardinal assumptions
is proved in [55].
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2.3 Theorem. If M is a model containing K such that M |= GCH, and
r is a real such that M [r] |= ¬CH, then there is an inner model with an
inaccessible cardinal. If, in addition, the cardinals of M [r] are the same as
those of M then there is an inner model with a measurable cardinal.

The Weak Covering Lemma

By far the most important consequence of the covering lemma is the weak
covering property, Definition 1.9. Indeed it is arguably more accurate to
turn the statement around: the covering lemma is an application, and not
necessarily the most important application, of the weak covering lemma.
Below a strong cardinal the proof of the weak covering lemma is a special
case of the proof of the full covering lemma, so that the importance of the
weak covering lemma is not immediately apparent. Beyond a strong cardinal,
in Steel’s core model, we do not know how to even begin the proof of the
covering lemma without first proving, by an entirely different method using a
weak large cardinal hypothesis, a slightly weaker version of the weak covering
lemma.

Among the most important properties of the core model K (stated under
the assumption that 0¶ does not exist) which follow from the weak covering
lemma are the following:

• The construction of K from the countably complete core model Kc.

• If i : K → M is an elementary embedding, where M is well-founded,
then i is an iterated ultrapower of K.

• If U is a normal K-ultrafilter on κ and Ult(K,U) is well-founded then
U ∈ K. If crit(U) > ω2 then the hypothesis that Ult(K,U) is well-
founded can be omitted.

Many results which are usually regarded as consequences of the covering
lemma in fact use only these basic properties of the core model. Among such
results are the lower bounds in the following theorem:

2.4 Theorem.

1. The failure of GCH at a measurable cardinal κ is equiconsistent with
∃κ(o(κ) = κ++).

2. If κ is weakly compact and oK(κ) < κ++ then (κ+)K = κ+.

3. If κ is Jónsson, there is no model with a Woodin cardinal, and the
Steel core model exists (in particular, if there is no model with a strong
cardinal), then (κ+)K = κ+; furthermore (λ+)K = λ+ for stationarily
many λ < κ [62].

4. The consistency of a Woodin cardinal implies that of the existence of
a saturated ideal on ω1. If the Steel core model exists then the existence
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of such an ideal implies in turn that there is a Woodin cardinal in an
inner model [58].

Sketch of Proof. We prove, as an example, the lower bound for clause 1. The
upper bound is proved in Gitik [16]. Suppose that U is a measure on κ
and 2κ ≥ κ++, but that o(κ) < κ++ in K. Let iU : V → M = Ult(V, U),
and consider i = iU �K : K → KM . Then i is an iterated ultrapower of
K, so let i = i0,θ where iν,ν′ : Nν → Nν′ . If ν < θ is a limit ordinal then
there are ξν < ν and Uν ∈ Nξν such that Nν+1 = Ult(Nν , iξν ,ν(Uν)). Since
o(κ) < κ++ ≤ θ, there is a stationary class S ⊆ κ++ of ordinals of cofinality ω
such that ξν = ξ̄ and Uν = Ū are constant for ν ∈ S. Now fix ν ∈ S∩ lim(S).
If �κ = 〈νn : n < ω〉 is a cofinal sequence in S ∩ ν and κn = crit(iνn,ν),
then the sequence �κ generates the measure iξ̄,ν(Ū). Since ωM ⊆ M , the
sequence �κ and hence the measure iξ̄,ν(Ū) is a member of M . It follows that
iξ̄,ν(Ū) ∈ KM ; but this is impossible since iξ̄,ν(Ū) is not in Nν+1 and hence
not in Nθ = KM . This contradiction completes the proof that o(κ) �< κ++

in K. �

The näıve proof of clause 2 uses the fact that κ is inaccessible; however,
Ralf Schindler [49] has adapted it to successor cardinals, showing that if κ
has the tree property and 2κ > κ+ then κ is strong in K.

The main reason for the importance of the weak covering property is that
it can be used to adapt to K techniques which Kunen (see [28, §21]) originally
used in proving that 0# follows from the existence of a nontrivial elementary
embedding from L into L. As applied to L these techniques make use of the
fact that any proper class Γ ≺ L is isomorphic to L. The corresponding fact
for K is that any class Γ ≺ K is isomorphic to K, provided that the class

{λ : ot(Γ ∩ (λ+)K) = (λ+)K} (18.1)

is stationary. Cardinal calculations show that the classes Γ used in Kunen’s
arguments satisfy that

{λ : 2<λ = λ ∧ cf(λ) < λ ∧ |Γ ∩ λ+| = λ+} (18.2)

is stationary. The weak covering lemma implies that the class (18.2) is con-
tained in the class (18.1) and hence implies that Γ ∼= K.

The Full Covering Lemma

The Singular Cardinal Hypothesis has already been mentioned as a result
which requires the full covering lemma. We now look at other such results.

2.5 Theorem (Dodd-Jensen [11], Mitchell [37]). Let κ be a singular cardinal
of cofinality λ which is regular in K. Then κ is measurable in K, and if λ > ω
then o(κ) ≥ λ in K.
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The proof, using Theorems 1.7 and 1.8, is easy, and a more careful analysis
yields a classification of singular cardinals [38]:

2.6 Theorem (Mitchell [38]). Assume that ¬∃κ (o(κ) = κ++). Let κ be
a singular cardinal which is regular in K. Then there is a cofinal set C ⊆ κ
of ordertype cf(κ) such that

1. If cf(κ) > ω then C is a weak Prikry-Magidor set (Definition 1.4).

2. If cf(κ) = ω then let β ≤ o(κ) be the least ordinal such that o(ν) < β
for all but boundedly many ν ∈ C. Then

(a) If β is a successor ordinal then C is Prikry generic over K.

(b) If cfK(β) < κ then cf(β) = ω, and C is a weak Prikry-Magidor
sequence.

(c) If cfK(β) = κ, witnessed by τ : κ → β, then there is a weak
Prikry-Magidor sequence D with assignment function σ such that
the increasing enumeration 〈cn : n < ω〉 of C is definable recur-
sively from D by letting cn+1 be the least member c of D such that
σ(c) ≥ τ(cn).

(d) If cfK(β) = κ+ then C is a sequence of accumulation points
for κ (the definition of an accumulation point is given in Defi-
nition 4.18).

Further, the set C can be chosen to be maximal in a sense which makes
it definable up to initial segment, except in case (2d) where any two such
sequences eventually alternate.

A measure U on κ is a weak repeat point if for every set A ∈ U there is
a U ′ � U with A ∈ U ′. Results similar to the following theorem have been
proved by Gitik [19, 22] for the nonstationary ideal.

2.7 Theorem (Mitchell [34]). If the closed, unbounded filter on ω1 is an
ultrafilter, then there is a weak repeat point in K.

2.8 Theorem (Sureson [60], Mitchell [36]). The following four statements
are equiconsistent, where δ < κ is a regular cardinal.

1. There is a κ-complete ultrafilter U on κ extending the closed, unbounded
filter such that {α : cf(α) = δ} ∈ U .

2. There is a κ-complete ultrafilter U on κ with δ skies; that is, there is an
increasing sequence 〈αν : ν < δ〉 of ordinals between κ and iU (κ) with
the property that iU (f)(αν) < αν′ for all ν < ν′ < δ and all f : κ→ κ.

3. There is a κ+-saturated normal filter F with {α : cf(α) = δ} ∈ F .

4. o(κ) = δ + 1 if δ > ω, and o(κ) = 2 if δ = ω.
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The covering lemma is used to prove that each of clauses 1–3 imply that
clause 4 holds in K. The forcing used in [36] to prove the other direction has
been simplified and extensively generalized by Gitik; in particular it is used
to give the upper bounds for the consistency strength of the failure of SCH.

The Σ1
3-absoluteness theorem, Theorem 2.9 below, was originally proved

by Jensen assuming ¬0†; Magidor (unpublished, see [59, §4]) has given a
simpler proof but one which gives slightly less information. Clause 1 was
proved under the assumption that ¬∃κ (o(κ) = κ++) by Mitchell [39] using
Jensen’s method. Steel and Welch [59] later proved clause 1 using Magidor’s
method, and Steel, using results of Hjorth, extended it [58, Theorem 7.9] to
prove clause 2.

We say that a model M is Σ1
3-correct if for any Σ1

3 formula ϕ and any real
r ∈M we have M |= ϕ(r) if and only if V |= ϕ(r).

2.9 Theorem (Σ1
3-absoluteness).

1. Suppose that there is no inner model of ∃κ (o(κ) = κ++) and that r#

exists for every real r. Then any model M of ZFC such that M ⊇ K
is Σ1

3-correct.

2. Assume that there are two measurable cardinals and no inner model
with a Woodin cardinal. Then any model M of ZFC such that M ⊇ K
is Σ1

3-correct.

The conclusion can be equivalently stated as “Σ1
3 formulas are absolute

for models containing K”.

3. The Proof

This section outlines the proof of the Jensen and Dodd-Jensen covering lem-
mas up through a single measurable cardinal. Section 4 will continue, using
the same basic ideas, to describe the covering lemmas for larger cardinals.

Section 3.1 briefly describes the basic tools, including fine structure, needed
for the proof. Section 3.2 gives the proof of Jensen’s covering lemma for L,
Theorem 1.1 (including the proof of the strong variant, Theorem 1.12). Sec-
tion 3.3 extends this proof to the Dodd-Jensen covering lemma, Theorems 1.2
and 1.3. Finally Sect. 3.4 looks at the two major variants on the covering
lemma: Magidor’s Theorem 1.15 and Theorem 1.16, stating that Jónsson
cardinals are Ramsey in K.

The proofs given in this section are not complete, but enough details are
given so that a reader with some understanding of fine structure should be
able to fill in the rest. Complete proofs may be found in the original sources,
[7–11, 26, 31], or in later references such as Devlin [6].
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3.1. Fine Structure and Other Tools

This section has two incompatible aims: the first is to be accessible to a reader
without a sophisticated knowledge of fine structure, and the second is to
present a proof which is sufficiently complete that a reader with a under-
standing of fine structure can fill in the details.

One very interesting approach to this dilemma was invented by Silver (see
[28, 31]), who gave a proof of the Jensen covering lemma which essentially
eliminates any need for fine structure. He has extended this method to yield
the Dodd-Jensen covering lemma, and it has been further extended and pub-
licized by Magidor. In unpublished work, Magidor and Silver have used this
approach at least up a model with a cardinal α such that o(α) is measurable.
It is not known whether this approach works up to o(α) = α++, and it seems
unlikely that it will work for the newer models containing cardinals up to a
Woodin cardinal. This rules out its use here, since this section is intended to
serve as an introduction to covering lemmas for larger models.

The approach we have used is very close than that presented by Schindler
and Zeman earlier in this Handbook [52]. We have attempted to make this
section accessible without such an introduction: The hope is that this presen-
tation will be sufficiently generic that a knowledgeable reader will be readily
able to translate it to his preferred version, while at the same time it is suf-
ficiently specific (without being too detailed) that it is understandable to a
näıve reader. However, any reader wanting a full understanding of the subject
is encouraged to read [52] before or after this section.

Our presentation of fine structure, like Jensen’s original papers, is based di-
rectly on master code structures. We follow current practice in using Jensen’s
Jα hierarchy, rather than the Lα hierarchy. This newer hierarchy yields sub-
stantial advantages, some of which will be pointed out in the text, for a
complete exposition of the fine structure; however, the differences are not ap-
parent at this level of detail and the näıve reader will lose little, if anything,
by simply reading Jα as Lα.

One unfortunate exception to this equivalence comes from the fact that
members M = Jα of the Jα hierarchy are conventionally indexed by α =
On(M), which is always a limit ordinal. Thus the γth member of this hi-
erarchy is Jω·γ , which is nearly the same as Lγ . In particular Jω·γ+n does
not exist for 0 < n < ω: the successor of a member Jω·γ of the hierarchy is
Jω·γ+ω.

At some points in the arguments, primarily those involving the Downward
Extension Lemma, it did not seem possible to give the full proof without being
more specific about the fine structure; in these cases we restrict ourselves to
giving the proof in the simplest case, which is Σ1 definability over Jα for a
limit ordinal α. This case may seem very special, but in fact it essentially
contains the general case. See [52] for a more complete discussion of fine
structure.
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As stated earlier, we take the basic models of our fine structure to be the
sets Jα. We will call these models mice in anticipation of larger core models.

Two concepts are basic to the fine structure of a mouse M = Jα: the
Σn projectum ρM

n and the Σn-Skolem function hM
n . A third concept which is

central to the proof of the covering lemma is the Σn-ultrafilter Ultn(M,π, κ)
of M , obtained by using the embedding π as an extender. A fourth concept,
the use of substructures of mice, is used in the definition of fine structure
and is central to the proof of �κ and other combinatorial applications of fine
structure; however, it is more peripheral to the proof of the covering lemma,
where it is only needed for the non-countably closed case.

We discuss these four concepts further before beginning the actual proof.
We begin with the definition of the fine structure of Jα in the special case
when n = 1 and α is a limit ordinal.

3.1 Definition. Assume that α is a limit ordinal, and that M = (Jα, A) is
amenable, that is, A ∩ x ∈ Jα for all x ∈ Jα.

1. The Σ1 projectum ρM
1 of an amenable structure M = (Jα, A) is the

least ordinal ρ such that there is a Σ1 subset x of ρ which is not a
member of Jα, but is Σ1-definable in M using a finite set p ⊆ α as a
parameter.

2. The Σ1 standard parameter pM
1 of M is the least finite sequence p ∈

[α]<ω of ordinals such that there is some set x ⊆ ρM
1 so that x /∈ Jα,

but x is Σ1-definable in M from parameters in ρM
1 ∪ p.

The ordering of the parameters is lexicographical on descending se-
quences of ordinals; that is, p < p′ if max(p$ p′) ∈ p′.

3. The Σ1 standard master code is the set AM
1 of pairs (
ϕ�, ξ) such that

ξ < ρM
1 and 
ϕ� is the Gödel number of a Σ1 formula ϕ over M , with

parameter pM
1 , such that M |= ϕ(ξ).

4. The Σ1-Skolem function hM
1 of M is defined as follows: fix an enumer-

ation 〈∃zϕn : n < ω〉 of the Σ1 formulas of set theory. Then hM
1 (〈n, x〉)

is defined if and only if there are z and y such that M |= ϕn(x, y, z, pM
1 ).

In this case hM
1 (〈n, x〉) = y where (α′, z, y) is the lexicographically least

triple such that (Jα′ , A ∩ α′) |= ϕn(x, y, z, pM
1 ).

5. The Σ1-code C1(M) of M is the structure (JρM
1

, AM
1 ).

It should be noticed that the Σ1-Skolem function is itself Σ1-definable
over M . The Σ1-Skolem function is a function of one variable; however, we
will frequently abuse the notation by writing it as a function with a variable
number of arguments. Thus hM

1 (x1, x2, x3) should be understood to mean
hM

1 (
x1, x2, x3�) where 
. . .� is an appropriate coding of finite sequences. In
addition, we will abuse notation by writing h1“x to mean h1“<ωx, the closure
of x under the Skolem function h1.
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We will rarely be using the function hM
1 as a Skolem function for any

particular formula ϕn, and so will not normally mention the parameter n
explicitly, regarding it instead as being coded into the stated parameters.

If α is a successor ordinal, α = γ + 1, then the definitions are the same,
except that the hierarchy 〈Jα′ : α′ < α〉 used for the definition of hM

1 is
replaced by a hierarchy, with length ω, of the sets in Jω·γ+ω − Jω·γ . The
hierarchy depends on the specific fine structure being used. Jensen originally
used the Levy hierarchy on Lγ , the kth level of which contains the subsets
of Lγ which are Σk-definable in (Lγ , A). Later he invented the rudimentary
functions and the hierarchy of sets Jω·α in order to avoid technical complica-
tions caused by the use of the Levy hierarchy. See chapter [52] for a detailed
presentation of the rudimentary functions and their use in setting up the fine
structure.

One major advantage of the Jα hierarchy over the Lα hierarchy is that
[Jα]<ω ⊆ Jα even for successor ordinals α. Thus a finite set of ordinals
α0, . . . , αk−1 can be freely treated as a single parameter, the finite sequence
〈α0, . . . , αk−1〉. In the case of the Lα hierarchy some awkward and painful
coding is necessary to achieve the same result.

We will not say more about the successor case, except to mention that
arguments involving fine structure generally treat the case of successor α
as simpler special cases of the arguments for limit ordinals α. This char-
acterization of the case of successor α as “simpler” assumes, of course, an
understanding of the detailed definition of the fine structure.

We now turn to consider the fine structure for n > 1. The central theme
of fine structure is that it is never necessary to deal directly with Σn+1

definability for any n greater than zero; instead a Σn+1 formula is reduced
to an equivalent Σ1 formula over the Σn-code of Jα. The definition of the
Σn-code Cn(Jα) is itself a good example of this theme.

3.2 Definition. We define the Σn-codes of Jα by recursion on n < ω. We
set C0(Jα) = (Jα,∅), and for n ≥ 0

ρJα
n+1 = ρ

Cn(Jα)
1 pJα

n+1 = p
Cn(Jα)
1 hJα

n+1 = h
Cn(Jα)
1

AJα
n+1 = A

Cn(Jα)
1 Cn+1(Jα) = C1(Cn(Jα))

Finally, the projectum of Jα is defined to be proj(Jα) = ρJα = infn ρJα
n .

Since the sequence of projecti 〈ρJα
n : n < ω〉 is nonincreasing, ρJα

n = proj(Jα)
for all sufficiently large n < ω.

Note that if n > 1 then the Σn-Skolem function hM
n need not be Σn-

definable over M . Jensen’s Σn-uniformization theorem states that this con-
struction can be used to define a Skolem function for Σn formulas over Jα

which is Σn-definable in Jα (though not uniformly so). This Σn-uniformization
theorem was an important part of the motivation for Jensen’s invention of
fine structure, but it has turned out to have little direct importance because
it is simpler and more useful to work directly with the fine structure.
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We now consider the problem of recovering the original structure M =
(Jα, A) from its code M1 = C1(M) = (JρM

1
, AM

1 ). In order to do so, recall
that the Skolem function hM

1 is Σ1-definable in M from the parameter pM
1 ,

and that AM
1 = {
ϕn(a, pM

1 )� : n < ω & a ∈ (ρM1)<ω}, the set of Gödel
numbers of the Σ1 theory of M with parameters from ρM

1 ∪ pM
1 . Now define

X to be the set of equivalence classes [ξ]∼, where ξ ∈ ρM
1 ∩ dom(hM

1 ) and
ξ ∼ ξ′ if and only if 
hM

1 (ξ) = hM
1 (ξ′)� ∈ AM

1 . The membership relation E
on X is defined by [ξ] E [ξ′] if and only if 
hM

1 (ξ) ∈ hM
ξ (ξ′)� ∈ AM

1 ; and the
subset Ā ⊆ X is defined by setting [ξ] ∈ Ā if and only if 
hM

1 (ξ) ∈ A� ∈ AM
1 .

It is straightforward to verify that we can define a Σ1-elementary embed-
ding i : (X,E, Ā) → (Jα,∈, A) by setting i([ξ]) = hM

1 (ξ). This embedding i

is an isomorphism if and only if M = hM
1 “ρM

1 , in which case we can say that
this construction recovers M from its Σ1-code C1(M).

3.3 Definition. The structure M = (Jα, A) is said to be 1-sound if Jα =
hM

1 “ρM
1 . Further, M is said to be n-sound if it is (n−1)-sound and Cn−1(M)

is 1-sound; and M is said to be sound if M is n-sound for all n.

We will say that the model Jα is n-sound or sound, respectively, if the
structure (Jα,∅) is n-sound or sound.

Notice that if M is sound then one can repeat the process described above
n times in order to recover M from any of its codes Cn(M). Thus the following
lemma is the basic fact of fine structure:

3.4 Lemma. If α is any ordinal then the structure Jα is sound.

We will only consider the case when α is a limit ordinal, and begin with
the proof that Jα is 1-sound.

Sketch of Proof. Let Z = hM
1 “ρM

1 ≺1 Jα, and let i be the collapse map
i : M̄ ∼= Z ≺1 Jα. Since M̄ |= “V = L”, we must have M̄ = Jᾱ for
some ᾱ ≤ α. Since i is Σ1-elementary and ρM

1 ∪ pM
1 ⊆ Z, the set AJα

1 is
Σ1-definable in Jᾱ. Since AJα

1 /∈ Jα it follows that ᾱ = α.
Similarly, pM

1 is the least parameter which can be used to define AM
1 in

Jα, and i−1(pM
1 ) ≤ pM

1 , so pM
1 = i(pM

1 ). But every member of dom(i) is
Σ1-definable in Jᾱ from parameters in ρM

1 ∪ pM
1 , and it follows that i is the

identity. Thus hM
1 “ρM

1 = Z = ran(i) = Jα. This completes the proof that
Jα is 1-sound. �

It should be noted that this proof is closely related to the proof that GCH
holds in L. Both rely on the following condensation lemma:

3.5 Lemma. If Z ≺0 Jα then there is an ᾱ ≤ α such that Z ∼= Jᾱ.

The proof here is somewhat more delicate than that of GCH, as the sen-
tence “V = L” needs to be carefully formulated so that it is satisfied by Jα
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even for successor α. The hypothesis of Lemma 3.5, stating that Z is Σ0-
elementary, is meant be interpreted in the terms of the Jα hierarchy as mean-
ing that Z is closed under rudimentary functions. This is slightly stronger
than the assertion that it is Σ0-elementary in the sense of the Levy hierarchy.
This observation is another example of the superiority of the Jα hierarchy:
when using the Lα hierarchy, the hypothesis must be strengthened to require
that Z be Σ1-elementary.

In order to prove Lemma 3.4 for arbitrary n we need an extension of
Lemma 3.5 in which the model Jα is replaced by the Σn−1-code Cn−1(Jα).
This generalization is given by the downward extension or condensation prop-
erty, stated in the following lemma, and is central to many applications of
fine structure.

3.6 Lemma (Downward Extension Lemma). Suppose that i : (Jρ′ , A′) ≺0

Cn(Jα). Then there is an α′ ≤ α such that (Jρ′ , A′) = Cn(Jα′ ), and i extends
to a Σn-embedding ı̃ : Jα′ → Jα. Furthermore ı̃ preserves the first n stages
of the fine structure, so that ı̃ h

Jα′
k = hJα

k ı̃ for all k ≤ n.

Sketch of Proof. Lemmas 3.4 and 3.6 are proved by a joint induction on n.
First we assume that Lemma 3.6 is true for Cn(Jα), and use this to prove
that Jα is (n+ 1)-sound. The proof is essentially identical to the proof given
above that Jα is 1-sound. The collapse map i : Jᾱ

∼= Z ≺0 Jα becomes
i : (Jρ̄, Ā) ∼= Z ≺0 (JρM

n
, AM

n ) = Cn(Jα). Since Lemma 3.6 holds for Cn(Jα)
this can be written as i : Cn(Jα′ ) → Cn(Jα) for some α′ ≤ α. Since AJα

n+1 is
Σ1-definable in Cn(Jα′ ) we must have α′ = α, and since i−1(pJα

n+1) ≤ pJα
n+1,

which is the least parameter which can be used to define AJα
n+1, we must have

i(pn+1) = pn+1. Hence i is the identity on Cn(Jα), so Jα is (n + 1)-sound.
To complete the proof, we show that if Jα is (n+1)-sound, and Lemma 3.6

holds for Cn(Jα), then Lemma 3.6 also holds for Cn+1(Jα). Suppose that
i : (Jρ′ , A′) ≺0 Cn+1(Jα).

Apply to the structure (Jρ′ , A′) the construction described before Defi-
nition 3.3 to recover a structure (Jα, A) from its Σ1-code C1(Jα, A). The
assumption that i is Σ0-elementary implies that the construction succeeds to
the extent of defining a model (X,E, Ā) and an embedding i′ : (X,E, Ā) →
Cn(Jα). The existence of the embedding i′ ensures that (X,E) is well-
founded, and therefore X ∼= Jρ′ ′ for some ordinal ρ′ ′. If A′ ′ is the image
of Ā under this isomorphism, then i′ induces an embedding ı̃n : (Jρ′ ′ , A′ ′) →
Cn(Jα).

By the construction, the set A′ encodes the Σ1 theory of (Jρ′ ′ , A′ ′), and
since i is Σ0-elementary and A encodes the Σ1 theory of Cn(Jα) it follows
that ı̃n is a Σ1-elementary embedding. By the induction hypothesis it follows
that there is an ordinal α′ such that (Jρ′ ′ , A′ ′) = Cn(Jα′ ), and an embedding
ı̃0 : Jα′ → Jα which extends ı̃n and which preserves the first n stages of the
fine structure, as far as Cn(Jα′ ).

Now it only remains to verify that (Jρ′ , A′) = C1(Jρ′ ′ , A′ ′), which entails
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verifying that ρ
(Jρ′ ′ ,A′ ′)

1 = ρ′ and p
(Jρ′ ′ ,A′ ′ )

1 = ı̃−1
n (pCn(Jα)

1 ). The inequality
ρ
(Jα′ ′ ,A′ ′)
1 ≤ ρ′ follows from the fact that A′ /∈ Jρ′ ′ , which is proved by the

argument of the Russell paradox: If A′ ∈ Jρ′ ′ then so is y = {ν : 
ν /∈
h(ν)� ∈ A′}, where h : ρ′ → Jρ′ ′ is the Skolem function coded by A′. But
this is impossible, as then y = h(ν) for some ν and then ν ∈ y ⇐⇒ ν /∈ y.

The inequality ρ′ ≤ ρ
(Jα′ ′ ,A′ ′)
1 follows from the fact that A′ ∩ ξ ∈ Jρ′ for

ξ < ρ′, which follows from the assumption that (Jρ′ , A′) ≺0 Cn+1(Jα). Thus

ρ′ = ρ
(jα′ ′ ,A′ ′)
1 , and this implies the inequality p

(Jρ′ ′ ,A′ ′ )

1 ≤ ı̃−1
n (pCn(Jα)

1 ) since

p
(J ′ ′

ρ ,A′ ′)

1 is, by definition, the least parameter which can be used to define A′ ′.
The final inequality p

(Jρ′ ′ ,A′ ′ )

1 ≥ ı̃−1
n (pCn(Jα)

1 ) is the point in the proof of
Lemma 3.6 which requires the joint induction with Lemma 3.4: assume for
the sake of contradiction that pJᾱ

n+1 < ı̃−1
n (pn+1)Jα and apply Lemma 3.4

to Jᾱ. This implies that ı̃−1
n (pJα

n+1) is Σ1-definable in (Jα′ , A′) from pJᾱ
n+1. It

follows that pJα
n+1 is Σ1-definable in Cn(Jα) from ı̃n+1(pJᾱ

n+1) < pJα
n+1, but this

contradicts the definition of pJα
n+1.

This completes the proof of Lemma 3.6, except for the claim that ı̃ is
Σn+1-elementary. To see this, notice that the embedding i′ ′ constructed in
the induction step is one quantifier stronger than i′. The map ı̃ is obtained
by repeating this process n + 1 times, and hence the original Σ0 embedding
is strengthened to a Σn+1-elementary embedding ı̃ : Jα′ → Jα. �

It should be noted that the statement that the embedding ı̃ preserves the
fine structure is stronger—and usually more useful—than the statement that
ı̃ is Σn-elementary.

If we define h̄Jα
n = hJα

1 . . . hJα
n , then h̄Jα : ρJα

n → Jα and an induction using
Lemma 3.4 shows that Jα = h̄Jα

n “ρJα
n . In order to avoid considering detailed

fine structure as much as possible, we make the following convention:

Notation. Unless stated otherwise, we abuse notation by using hJα
n to denote

the function h̄Jα
n described above, and we call it the Σn-Skolem function of Jα.

We end the discussion of Lemma 3.6 with Lemma 3.7, which is frequently
useful in applications of the covering lemma and in particular proves, used
along with the proof of the covering lemma itself, Proposition 1.14 from the
introduction.

3.7 Lemma. The Σn-Skolem function hJα
n of Jα can be written as an in-

creasing union hJα
n =

⋃
ν<ηgν of functions gν ∈ Jα, with η ≤ ρJα

n .

Sketch of Proof. First consider the case when n = 1 and α is a limit ordinal.
Pick a sequence of ordinals αν cofinal in α, and define gν to be the function
defined in Jαν by the same Σ1 formula (with the same parameter pJα

1 ) as was
used to define hJα

1 in Jα. Thus gν(x) = y if and only if hJα
1 (x) = y, both x

and y are in Jαν , and in addition the witness to the Σ1 fact “hJα
1 (x) = y” is

a member of Jαν .
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For n > 1, apply the construction above to Cn−1(Jα), noting that ρJα
n is

always a limit ordinal for n > 0. �

The importance of Lemma 3.6 to fine structure theory extends far be-
yond the arguments above; however, its importance in the proof of the
covering lemma is secondary to the that of the upward extension property,
Lemma 3.10, described below.

Embeddings of Mice

In this subsection we define a generalized ultrapower which is central to
the proof of the covering lemma. This ultrapower, which is used to extend
a given embedding π : Jκ̄ → Jκ to an embedding π̃ : Jᾱ → Jα′ with a
larger domain, can be described in modern terms as the ultrapower by the
extender Eπ,β of length β which is associated with the embedding π. It
should be noted, however, that this construction of Jensen is older than, and
in fact is ancestral to, the modern notion of an extender. Extenders are more
completely described in chapter [32].

We first explain the extender construction by defining the Σ0-ultrapower
Ult(M,π, β) of a model M .

3.8 Definition. Assume that M and N are transitive models of a fragment
of set theory, and that π : N → N ′ is a Σ0-elementary embedding such that
P(ν) ∩M ⊆ N for all ν < On(N) such that sup(π“ν) < β. Then

Ult(M,π, β) = {[a, f ]π : f ∈M and dom(f) ∈ dom(π)
and a ∈ [β]<ω ∩ π(dom(f))} (18.3)

where [a, f ]π is the equivalence class of the pair (a, f) under the relation

(a, f) ∼π (a′, f ′) ⇐⇒ (a, a′) ∈ π({(�ν, �ν′) : f(�ν) = f ′(�ν′)}). (18.4)

The membership relation Eπ and any other predicates of Ult(M,π, β) are
defined similarly, and the embedding i : M → Ult(M,π, β) is defined as
usual by i(x) = [a, Cx]π where a is arbitrary and Cx is the constant function,
∀z Cx(z) = x.

The embedding i : M → Ult(M,π, β) satisfies �Los’s theorem for Σ0 for-
mulas:

3.9 Proposition. If ϕ is a Σ0 formula, then for any f0, . . . , fn in M and
a0, . . . , an in β we have Ult(M,π, β) |= ϕ([f0, a0], . . . , [fn, an]) if and only if
〈a0, . . . , an〉 ∈ π({〈u0, . . . , un〉 : M |= ϕ(f0(u0), . . . , fn(un))}).

If M = Jα for some ordinal α then ran(i) is cofinal in Ult(M,π, β), and
it follows that i is Σ1-elementary. In particular, i preserves the Σ1-Skolem
function of Jα.
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We will need to define Σn ultrapowers, for arbitrary n ∈ ω, so that they
preserve Σn+1-Skolem functions. The obvious way to define such an ultra-
power is to modify Definition 3.8 by replacing the condition “f ∈M” of (18.3)
with “f is Σn-definable in Jα”; however, doing so would require first proving
Jensen’s uniformization theorem, which states that there is a Σn-definable
Skolem function for Σn formulas on Jα. A second possible approach is that of
Silver, who showed that it is possible to define Ultn(Jα, π, β) by using compo-
sitions of the näıve Σn-Skolem function, and that the näıve Skolem function
is preserved by the resulting embedding even though it is not defined by a Σn

formula. This is the simplest approach, as it avoids the use of fine structure,
but it appears to have difficulties with models for larger cardinals.

Our approach will be closer to the first one, but will use the fine structure
directly. The notion of Σn ultrapower which we use can be defined in two
different, but equivalent, ways. One way is to define Ultn(Jα, π, β) directly,
using Definition 3.8, but allowing any function f of the form f(x) = hn(x, q)
where hn is the Σn-Skolem function mapping a subset of JρJα

n
onto Jα, and

q ∈ JρJα
n

is an arbitrary parameter. The other way is indirect, by taking
the ordinary Σ0 ultrapower i : Cn(Jα) → Ult(Cn(Jα), π, β) of the Σn-code
of Jα, and then extending this to a map ĩ : Jα → Jα̃. This approach has
the advantage that most arguments can be carried out at the level of the
Σn-code of Jα, which involves the easily understandable Σ0 ultrapower and
Σ1-Skolem function.

The extension of π to an embedding π̃ with the larger domain Jα de-
pends on Lemma 3.10 below, which is the counterpart of the Downward
Extension Lemma 3.6 given earlier. One major difference between the Up-
ward and Downward Extension Lemmas concerns the well-foundedness of
the new structure. In the Downward Extension Lemma, this structure is a
substructure of a given well-founded structure and hence is automatically
well-founded. In the Upward Extension Lemma the well-foundedness of
Ultn(Jα, π, β) must be explicitly assumed.

3.10 Lemma (Upward Extension Lemma). Suppose that π : Jκ̄ → Jκ, that
β ≤ κ, and either ρJα

n > min{ν : π(ν) ≥ β} or ran(π) is cofinal in β and
π(ρJα

n ) ≥ β. Set Mn = Cn(Jα) and M̃n = Ult(Mn, π, β).

1. There is a structure M̃0 such that M̃n is, formally, equal to Cn(M̃0). If
this structure M̃0 is well-founded then there is an ordinal α̃ such that
M̃0 = Jα̃ and M̃n = Cn(Jα̃).

2. There is an embedding π̃ : Jα → M̃0 such that π�Jβ̄ = π̃�Jβ̄, where β̄

is the least ordinal such that π(β̄) ≥ β if β < κ, or β̄ = κ̄ if β = κ.

3. The embedding π̃ preserves the Σk codes for k ≤ n: in particular,
π̃ ◦ hJα

k (x) = hM̃0
k ◦ π̃(x) for all x for which either side is defined.

4. The embedding π̃ preserves the Σ1-Skolem function of Mn in the sense
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that there is a function h̃, which is Σ1-definable over M̃n, such that
π̃ hM

n+1(x) = h̃ π̃(x) for all x ∈M such that either side is defined.

The proof of the Upward Extension Lemma is nearly the same as that of
the Downward Extension Lemma 3.6. The models M̃n−k, and embeddings
π̃n−k : Cn−k(Jα) → M̃n−k are defined by recursion on k ≤ n: The embedding
π̃0 : Cn(Jα) → M̃n is the Σ0 ultrapower, and M̃n−(k+1) is constructed from
M̃n−k by the same recovery process as was used for the Downward Extension
Lemma. This process uses the fact that M̃n−k has the form (M̃n−k,E, Ãn−k)
and satisfies the first-order sentences asserting that (M̃n−k,E) is a model of
V = L, and that Ãn−k is the Σn theory of a larger model M̃n−(k+1) of which
M̃n−k is the Σ1-code.

The embedding π̃ does not, in general, preserve fine structure below ρM
n ;

for example if β is a cardinal in L then ρM̃ ≥ β, since every bounded subset
of β in L is a member of Jβ , but it may happen that ρM

n+1 < β̄. In this case
π̃(ρM

n+1) = π(ρM
n+1) < β. It follows that the function h̃ will not, in general,

be the Σ1-Skolem function hM̃n
1 . It is defined by the same formula as hM̃n

1 ,
but using the image π̃0(p

JMn
1 ) of the standard parameter of Mn instead of

the standard parameter pM̃n
1 of M̃n.

In order for the ultrapower Ultn(M,π, β) described above to be defined,
the set {(�ν, �ν′) : f(�ν) = f ′(�ν′)} must be in the domain of π for each pair
(f, f ′) of functions in Σn(M). This yields the following condition for the
existence of Ultn(M,π, β):

3.11 Proposition. Let M , π and β be as above, and let β̄ be the least ordinal
such that π(β̄) ≥ β (or β̄ = On(N) if β = sup(ran(π))). Then the ultrapower
Ultn(M,π, β) is defined if and only if either ρM

n > β̄, or else ρM
n ≥ β̄ and

ran(π) is cofinal in β.
Equivalently, the ultrapower is defined if and only if either

1. Every subset of κ̄ which is Σn-definable in M is a member of Jκ̄, or

2. ran(π) is cofinal in β and every bounded subset of κ̄ which is Σn-
definable in M is a member of Jκ̄.

3.2. Proof of the Covering Lemma for L

The main part of the proof of the covering lemma for L is a construction
which shows that any set X ≺1 Jκ, which is suitable in a sense to be made
precise in Definition 3.14, is a member of L. The concluding part of the proof
is an analysis of the notion of suitability showing that every uncountable set
of ordinals is contained in a suitable set of the same cardinality.

The construction, together with the Definition 3.14 of suitability, will prove
the following lemma:
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3.12 Lemma.

1. If X ≺1 Jκ is suitable then there is a cardinal ρ < κ of L and a function
h ∈ L such that X = h“(ρ ∩X).

2. If X ≺1 Jκ is suitable and ρ < κ is a cardinal of L then X ∩ Jρ is also
suitable.

3.13 Corollary. Any suitable set X ≺1 Jκ is a member of L.

Proof. The proof is by induction on κ. Let X ⊆ κ be suitable, and let h and
ρ be as in clause 1. Then X ∩ Jρ is suitable by clause 2 and hence is in L by
the induction hypothesis, but then X = h“(X ∩ ρ) ∈ L. �

In order to describe the basic construction, we fix a cardinal κ of L and
a set X ≺1 Jκ with sup(X) = κ �⊆ X. Let π : N → X be the collapse map,
so that N = Jκ̄ for some ordinal κ̄, and let (α, n) be the lexicographically
largest pair such that Ultn(Jα, π, κ) is defined. There are two cases:

1. If P(δ) ∩ L ⊆ N for all δ < κ̄ then Jα = L and n = 0.

2. Otherwise α is the least ordinal such that there is a bounded subset of
κ̄ in Jα+ω − Jκ̄, and n is the least integer such there is such a subset
which is Σn+1-definable in Jα. That is, ρJα

n+1 < κ̄ ≤ ρJα
n , and ρ

Jα′
m ≥ κ̄

whenever κ̄ ≤ α′ < α and m < ω.

The basic construction will succeed whenever M̃ = Ultn(Jα, π, κ) is well-
founded; the Definition 3.14 of suitability, given in the next subsection, is a
generalization of this requirement. If case (1) occurs for some suitable set
X then π̃ : L → Ult(L, π, κ) = L is a nontrivial embedding from L into L,
which implies by Kunen’s theorem (see chapter [32, Theorem 1.13]) that 0#

exists. This contradicts our current assumption that the core model is equal
to L, so we can assume that case (2) occurs for all suitable sets X. Then
by Lemma 3.10, Ultn(Jα, π, κ) = Jα̃ for some ordinal α̃, and the following
diagram commutes:

Jα
π̃ M̃ = Ultn(Jα, π, κ) = Jα̃

Jκ̄
π

X ≺1 Jκ

(18.5)

Now let ρ̄ = ρJα
n+1. Then ρ̄ < κ̄, and Jα = h̄“ρ̄ where h̄ = hJα

n+1, so

X = π“Jκ̄ = π“(κ̄ ∩ h̄“(ρ̄)), (18.6)

and furthermore
h̃ ◦ π̃ = π̃ ◦ h̄ (18.7)
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where h̃ is the function given by Lemma 3.10(4). Putting equations (18.6)
and (18.7) together, we get

X = Jκ ∩ (π̃ ◦ h̄“ρ̄) = Jκ ∩ (h̃ ◦ π̃“ρ̄) = Jκ ∩ h̃“(X ∩ ρ) (18.8)

where ρ = sup(π“ρ̄) < κ. Since h̃ ∈ L, this completes the basic construction.

Suitable Sets

Here is the formal definition of suitability:

3.14 Definition. Suppose X ⊆ L and let π : N ∼= X be the inverse of the
transitive collapse. Then X is suitable if X ≺1 Jκ for some ordinal κ and
Ultn(Jα, π, β) is well-founded for all triples (α, n, β) such that the ultrapower
is defined.

We write C for the class of suitable sets.

Proof of Lemma 3.12. If X ≺1 Jκ is any set in C then the basic construction
succeeds for X, and hence clause 1 of Lemma 3.12 holds for X. Clause 2 of
that lemma is clear. �

It follows by Corollary 3.13 that every suitable set is in L, so Jensen’s
covering Lemma 1.1 for L will follow if we can show that every uncountable
set is contained in a suitable set of the same cardinality. For the Strong
Covering Lemma 1.12 we additionally need to show that the class C is closed
under increasing unions of uncountable cofinality. Notice that Definition 3.14
is absolute, so that the class C is definable in L.

The countably closed sets give a easy, but useful, special case:

3.15 Definition. We will call a set X ≺1 Jκ countably closed if there is a set
Y ≺ H(λ), for some λ ≥ κ, such that ωY ⊆ Y and X = Y ∩ Jκ.

If |x|ω < κ then it is always possible to find a countably closed X ⊇ x
with |X| = |x|ω, so the following easily proved observation is often all that is
needed.

3.16 Proposition. Every countably closed set X ≺1 Jκ is suitable, and
hence is a member of L.

It follows that if 0# does not exist then every set x is contained in a set
y ∈ L such that |y| ≤ |x|ω. This result gives much of the strength of the
covering lemma, and moreover its proof highlights the most important ideas
of the proof of the full covering lemma while omitting the most delicate part
of the argument. This by itself would be sufficient reason to consider the
countably closed case, but for core models involving measurable cardinals or
non-overlapping extenders the countably closed case of the covering lemma
is a necessary step in the proof of the full lemma: it is used to prove that
the weak covering lemma, Definition 1.9, holds in a variant Kc of the core
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model. The weak covering lemma for Kc is then used to prove the existence
and essential properties of the true core model K, and only after this can the
full covering lemma be proved for K.

The following lemma will conclude the proof of Theorem 1.1 and of The-
orem 1.12 in the case 0# does not exist: the covering lemma and the strong
covering lemma for L:

3.17 Lemma. The class C is unbounded in [Jκ]δ for every uncountable car-
dinal δ, and

⋃
ν<ηXν ∈ C whenever 〈Xν : ν < η〉 is an increasing sequence

of sets in C with cf(η) > ω.

The proof of this lemma will take up the remainder of Sect. 3.2.

Fix, for the moment, a set X which is not suitable, and let α, n and β
be such that M̃ = Ultn(Jα, π, β) is defined but not well-founded. This ill-
foundedness is witnessed by a descending E-chain, . . . E z2 E z1 E z0, of
members of M̃ , where E is the membership relation of M̃ . In order to prove
Lemma 3.17 we need to incorporate additional structure into such a witness:

3.18 Definition. A witness w to the unsuitability of X ≺1 Jκ is a ω-chain
of Σ0-elementary embeddings ik : mk → mk+1 such that

1. ik ∈ X and mk ∈ X for each k < ω.

2. dir lim(π−1[w]) = Cn(Jα) for some ordinal α and some n ∈ ω.

3. dir lim(w) is not the Σn-code of any well-founded model Jα̃.

4. Write βk for the critical point of ik. Then the sequence 〈βk : k < ω〉 is
nondecreasing.

5. For each k we have mk ∈ mk+1, and there is a function f ∈ mk+1 such
that f“βk = ik“mk.

We will call β = supk(βk) the support of the witness w, and we will call the
pair (α, n) the height of w in X. We will say that a witness w is minimal in
X if it has minimal height in X among all witnesses with the same support β.

There may be more than one minimal witness for X with the same sup-
port β. It is possible, with some care, to modify the definition so that this
minimal witness is unique; however, we do not need to do so.

3.19 Lemma. A set X ≺1 Jκ is unsuitable if and only if it has a witness
to its unsuitability. Furthermore, if w is a witness to the unsuitability of X
then

1. If w ⊆ X ′ ≺1 X then w is also a witness to the unsuitability of X ′.

2. If, in clause 1, w is a minimal witness for X then it is also a minimal
witness for X ′, and furthermore any other minimal witness for X ′ with
the same support is also a minimal witness for X.

3. If X = Y ∩Jκ, where Y ≺1 H(τ) for some cardinal τ > κ, then w /∈ Y .
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We will give some immediate consequences of Lemma 3.19 and then use
it to finish the proof of the covering lemma. We will then give the proof of
Lemma 3.19.

3.20 Corollary. If 〈Xν : ν < η〉 is an increasing sequence of sets in C, with
cf(η) > ω, then X =

⋃
ν<ηXν ∈ C.

Proof. Otherwise there would be a witness w to the unsuitability of X; but
since cf(η) > ω this would imply that w ⊆ Xν for some ν < η and hence w
is a witness to the unsuitably of Xν by clause 1. �

We can use Lemma 3.19 to give a proof of Proposition 3.16, although
a direct proof is somewhat simpler.

3.21 Corollary. Every countably closed set X ≺1 Jκ is suitable, and hence
is a member of L.

Proof. By definition, X is countably closed if and only if X = Y ∩ Jκ for
some Y ≺1 H(τ) where ωY ⊆ Y . Then any witness to the unsuitability of
X would have to be a member of Y , contrary to clause 3 of Lemma 3.19. �

The following lemma will complete the proof of the covering lemma except
for the proof of Lemma 3.19.

3.22 Lemma. The class C is unbounded in [Jκ]δ for any cardinal δ with
ω < δ < κ.

Proof. Jensen’s proof of this result begins by generically collapsing the cardi-
nal κ onto δ+. The proof given here is essentially the same, but the presenta-
tion is slightly different: instead of carrying out the generic collapse we work
with the set Col(δ+, Jκ) of forcing conditions for the collapse. The members
of Col(δ+, Jκ) are functions σ : ξ → Jκ with ξ < δ+. With the obvious
notions of “closed” and “unbounded” this space satisfies Fodor’s Lemma: if
S ⊆ Col(κ+, Jκ) is a stationary set and F is a function with domain S such
that F (σ) ∈ ran(σ) for all σ ∈ S, then F is constant on a stationary subset
of S. The reason for using the space Col(δ+, Jκ) instead of [Jκ]κ is that
Col(δ+, Jκ) also satisfies the following variant of Fodor’s Lemma:

3.23 Proposition. Suppose that S ⊆ Col(δ+, Jκ) is a stationary set such
that cf(dom(σ)) > ω for all σ ∈ S, and that F is a function defined on S
such that F (σ) is a countable subset of ran(σ) for all σ ∈ S. Then there is
a stationary subset S′ of S and a function σ0 ∈ S′ such that

∀σ ∈ S′ (σ0 ⊆ σ and F (σ) ⊆ ran(σ0)).

Proof. Let f(σ) < dom(σ) be the least ordinal η such that F (σ) ⊆ σ“η, and
let S0 ⊆ S be a stationary set on which f(σ) is constant. Pick any σ0 ∈ S0

and let S′ = {σ ∈ S0 : σ0 ⊆ σ}. Then S′ and σ0 are as required. �
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Let S0 be the set of functions σ ∈ Col(δ+, Jκ) such that ran(σ) /∈ C,
cf(dom(σ)) > ω and ran(σ) ≺1 Jκ. We will prove that S0 is nonstationary,
which implies that C is unbounded in [Jκ]δ.

Suppose to the contrary that S0 is stationary. It follows by Lemma 3.19
that there is, for each σ ∈ S0, a minimal witness wσ to the unsuitability of
ran(σ). Let βs be the support of wσ. By the ordinary Fodor’s Lemma there
is a stationary set S1 ⊆ S0 such that β = βσ is constant for σ ∈ S1, and
by Proposition 3.23 there is a stationary set S2 ⊆ S1 and σ0 ∈ S2 such that
σ0 ⊆ σ and wσ ⊆ ran(σ0) for all σ ∈ S2. It follows that wσ0 is a minimal
witness to the unsuitability of ran(σ) for each σ ∈ S2. Now consider the class
Y of sets Y ≺Σ1 H(κ+) such that wσ0 ∈ Y . Then

X = {σ ∈ Col(δ+, Jκ) : ∃Y ∈ Y ran(σ) = Y ∩ Jκ}

contains a closed unbounded subset of Col(δ+, Jκ), and hence S2 ∩ X �= ∅.
However, this contradicts Lemma 3.19(3), and this contradiction completes
the proof of Lemma 3.22. �

This completes the proof of the covering lemma, except for the proof of
Lemma 3.19:

Proof of Lemma 3.19. First, notice that if w is a witness with support β
to the unsuitability of X, then clauses 4 and 5 imply that dir lim(w) =
Ult(dir lim(π−1[w]), π, β), and hence clause 3.18(3) implies that X is in fact
unsuitable.

Now suppose that X is unsuitable, so that there are α, n and β such that
Ultn(Jα, π, β) is defined, but not well-founded. If we write Mn = Cn(Jα)
then this means that Ult(Mn, π, β) is defined, but is not the Σn-code of any
well-founded structure Jα̃. We will find a witness w to the unsuitability of
X, such that w has height and support less than or equal to (α, n) and β,
respectively.

If Ult(Mn, π, β) is not well-founded then there are fk ∈Mn and ak ∈ β so
that zk+1 E zk, where zk = [ak, fk]π = π̃(fk)(ak), and E is the membership
relation of Ult(Mn, π, β). If on the other hand Ult(Mn, π, β) is well-founded,
then, since π̃ : Mn → M̃n = Ult(Mn, π, β) is Σ1-elementary, there is a (ill-
founded) structure M̃ such that M̃n = Cn(M̃), along with a map h̃n, the Σn-
Skolem function of M̃ , mapping M̃n onto M̃ . Then we can find zk = [ak, fk]π
so that h̃n(zk+1) E h̃n(zk) for each k < ω.

Write Mn = (Jρn , An) (if n = 0 then ρn = α and An = ∅, in which
case we assume as usual that α is a limit ordinal). Let αk < ρn be the
least ordinal ξ > αk−1 such that {f1, . . . , fk} ⊆ Jξ, and let βk be the least
member of X such that {a0, . . . , ak} ⊆ βk. Finally let β̄k = π−1(βk) and let
j̄k : m̄k

∼= H(Jαk
,An ∩Jαk

)

Σ1
(β̄k ∪ {f1, . . . , fk}) be the transitive collapse of the

Σ1 hull of β̄k∩{f1, . . . , fk} in (Jαk
, An∩Jαk

), with īk = j̄−1
k+1j̄k : m̄k → m̄k+1.

Then m̄k, īk ∈ Jκ̄ for each k < ω. Set w = 〈π(m̄k), π(̄ik) : k < ω〉, with
mk = π(m̄k) and ik = π(̄ik), and set β′ = supk(βk) ≤ β.
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If w̄ = 〈m̄k, īk : k < ω〉 = π−1[w] then dir lim(w̄) ≺0 Mn = Cn(Jα) and
hence, by Lemma 3.6, dir lim(w̄) is the Σn-code of Jα′ for some α′ ≤ α, but
w was constructed so that dir lim(w) is not the Σn-code of any well-founded
model. Finally, since αk+1 > αk, the Skolem function mapping βk onto
jk“mk ≺Σ1 Jαk

, with parameters {f1, . . . , fk}, is a member of Jακ+1 . This
gives the functions f required by clause 3.18(5).

Thus w is the desired witness to the unsuitability of X.
To prove clause 3.19(3), note that by the absoluteness of well-foundedness

we can find, working in Y , a sequence a′
k < β′ of ordinals and a sequence f ′

k ∈
mk+1 of functions such that if f ′ ′

k is the image jk(f ′
k) of f ′

k in dir lim(w) then
the sets z′

k = f ′ ′
k (a′

k) demonstrate, in the same way that 〈zk : k < ω〉 above
did for M̃n, that dir lim(w) is not the Σn-code of a well-founded structure.
Then the sets a′

k and f ′
k are members of Y ∩ Jκ = X, so the sets z̄′

k =
īk π−1(f ′

k)(π−1(α′
k)) demonstrate that dir lim(π−1[w]) is not the Σn-code of

a well-founded structure, contradicting clause 3.18(2).
Clause 3.19(1), stating that any witness w ⊆ X ′ ≺1 X to the unsuitability

of X is also a witness that X ′ is not suitable, is straightforward. Finally, to
prove clause 3.19(2), suppose that w is minimal, and that w′ is a minimal
witness for X ′ having the same support β.

Let (α′, n′) and (α′ ′, n) be the heights of w′ and w, respectively, in X ′,
and let π̄ = (πX)−1πX′

. Then (α′, n′) ≤ (α′ ′, n) since w′ is minimal, so

dir lim((πX)−1“w′) = Ultn′ (dir lim((πX′
)−1“w′), π̄, β̄)

= Ultn′ (Jα′ , π̄, β̄)

⊆ Ultn(Jα′ ′ , π̄, β̄) = dir lim((πX)−1“w).

Hence dir lim((πX)−1“w′) is well-founded, and it follows that w′ is a witness
to the unsuitability of X with support β, and by the minimality of w we
must have Ultn′ (Jα′ , π̄, β̄) = Jα and n′ = n. Hence the height of w′ in X is
(α, n), so that w′ is also a minimal witness for X. �

This completes the proof of the covering lemma for L. In the rest of
this section we consider two variations on this proof. The first, and most
important, extends the argument to models with a measurable cardinal in
order to obtain the Dodd-Jensen covering lemma; the second variation applies
the argument to unsuitable sets X, obtaining Magidor’s Covering Lemma 1.15
and the absoluteness theorem for Jónsson cardinals, Theorem 1.16.

3.3. Measurable Cardinals

The primary aim of this subsection is to prove the Dodd-Jensen covering
lemma, and an important secondary aim is to prepare the way for Sect. 4
which describes the covering lemma for larger core models. In accordance
with this secondary aim we do not assume ¬0† except when it is explicitly
specified. For simplicity we do assume that there is no model of ∃κ o(κ) =
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κ++, but much of our discussion is true in general (though not always in
detail) for the larger core models described in chapter [57].

In Dodd and Jensen’s original papers [9–11], the minimal model L[U ] for
a measurable cardinal is treated separately from the Dodd-Jensen core model
Kdj. The model L[U ] is the simplest natural analogue of L and was already
well understood long before the core model was invented. While L[U ] has
many of the properties of L, there is one vital difference: The existence of
the model L is implied by the axioms of set theory, but the construction of
the model L[U ] depends on being first given the filter U which will be the
measure in the model L[U ].

If L[U ] does exist then Kdj can easily be obtained by “iterating the mea-
sure U out of the universe”:

Kdj =
⋂

ν∈On Ultν(L[U ], U) =
⋃

ν∈On(Ultν(L[U ], U) ∩ Viν(κ))

where iν : L[U ] → Ultν(L[U ], U) is the ν-fold iteration of the ultrapower by
U . In order to define an inner model which would exist even in the absence
of a model L[U ], Dodd and Jensen defined the core model Kdj to be L[M],
where M is a class of approximations, called mice, to models of the form
L[U ]. The mice are structures M = Jα[W ] with the properties (i) M |= “W
is a measure”, (ii) M is iterable (in the sense that every iterated ultrapower
of M is well-founded) and (iii) M is sound and has projectum smaller than
crit(W ). Note that condition (iii) implies that Jα+ω[W ] |= |α| < crit(W ), so
that W is not a measure in any model larger than M .

In [35], the Dodd-Jensen core model was extended to obtain a core model
for sequences of measures. This extended core model had the form K[U ] =
L[U ,M], where U was the sequence of measures in K[U ] and M was a class
of mice. The mice M ∈ M were models of the form M = Jα[U ′] where the
sequence U ′ was a concatenation U ′ = U�W of the sequence of measures
of K[U ] with a sequence W of filters which are measures in M but not in
Jα+ω[U ′]. The sequenceW corresponded to the measure W in a Dodd-Jensen
mouse Jα[W ].

The modern approach to mice, which we follow here, originated in at-
tempts to extend the core model to cardinals approaching a supercompact
cardinal. This program has many difficulties, some of which are still not
solved, but a key to making a beginning was the observation that the orig-
inal notion of a mouse was too simple. A key fact in the theory of the
constructible sets is that all of the models Jα, as well as L itself, have the
same structure, so that they differ only in length. It became clear in course of
the investigation that the mice for an extended core model should similarly
have the same structure as the full core model. That is, the mice are them-
selves constructed from smaller mice, like a well-founded version of Swift’s
well known flea, which

hath smaller fleas that on him prey
And these have smaller still to bit ’em;
And so proceed ad infinitum.
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This seemed prohibitively complicated, but a suggestion of S. Baldwin
made it possible to realize the desired situation while simplifying, instead
of complicating, the construction: The mice and the core model would be
structures of the form M = Jα[E ] or M = L[E ], respectively. The members of
the sequence E would be extenders, but some would be only partial extenders,
not measuring all of the sets in M . These partial extenders would be the full
extenders of those mice which are members of M ; thus the sequence E codes
both the mice and the extenders in the structure M .

For the rest of this section we limit ourselves to sequences of measures,
with no extenders, and we mark this restriction by using the letter U to
denote the sequence instead of E .

As hoped, this approach leads to a feasible fine structure for the extended
core models, but surprisingly it also simplifies the fine structure for the pre-
viously existing core models. This is particularly surprising for the Dodd-
Jensen core model, the mice of which have at most one measurable cardinal.
It would seem at first glance that nothing could be simpler than a mouse of
the form Jα[U ], but the apparent simplicity of this model hides a compli-
cated fine structure. For example, consider the key fact of the fine structure
of L—and even of Gödel’s proof of the continuum hypothesis—that every
constructible subset of ω is a member of Jω1 . This fact fails badly in the
model L[U ]: if κ = crit(U) then Jα[U ] = Jα for all α ≤ κ + 1. The first
nonconstructible set to be constructed is 0#, which is a subset of ω and is
Δ1-definable over Jκ+ω[U ], so that 0# ∈ Jκ+ω·2[U ]− Jκ+ω[U ].

The newer fine structure avoids this problem because the subsets of ω in
L[U ] are all in Jω1 [U ] and hence are constructed from the restriction U�ω1

of U to (partial) measures on countable ordinals. In fact, the first nontrivial
member of U is the L-ultrafilter on the first Silver indiscernible c0 which is
induced by, and which constructs, the real 0#. In the case L[U ] = L[U ], the
sequence U has as its last nontrivial member the measure U , which is the
only member of the sequence U which is a full measure on L[U ].

The benefit of the new approach to the core model is suggested by the
fact that the following two modifications are all that is necessary to adapt
Definition 3.1 of fine structure for L to the core model.

1. An added predicate is needed to represent the sequence of measures, so
that the Σ1-code is a structure of the form (Jα[U ],U�α,A) instead of
(Jα, A).

2. For ordinals α such that Uα �= ∅ it is necessary to begin the construction
with a special amenable code, defined to be C0(Jα[U ]) = (Jρ0 ,U�ρ0,Uα)
where, if κ = crit(Uα), then ρ0 is defined to be κ+ of L[U�α].

The “Skolem function” h
Jα[U ]
0 mapping ρ0 = ρ

Jα[U ]
0 = κ+Jα[U ] onto Jα[U ]

is derived from the function mapping functions f : κ → Jκ[U ] in Jρ0 [U ] to
their equivalence classes [f ]Uα ∈ Jα[U ] = Jα[U�α] ⊆ Ult(Jκ[U ],Uα).
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The analogous structure in the fine structure of L was simply C0(Jα) =
(Jα,∅). The amenable code is needed here because the obvious structure
(Jα[U ],∈,U�α,Uα) is not amenable: P(α)Jα[U ] ∈ Jα[U ], but Uα∩P(α)Jα[U ] =
Uα /∈ Jα[U ]. If Uα = ∅ then the amenable code is simply (Jα[U ],U�α,∅), as
in L.

Some additional change is necessary for cardinals larger than measurable
cardinals:

3. In models where iteration trees are needed instead of linear iterated
ultrapowers, the standard parameter is augmented to included a witness
to its minimality. This witness, which is discussed later, is used in the
models of this section, but does not need to be explicitly included in
the structure.

4. The amenable code is somewhat more complicated in the case of se-
quences L[E ] involving extenders instead of only measures. See chap-
ter [47] for details.

The proof that the fine structure given by this definition satisfies the nec-
essary properties is, of course, more complicated than the proof in L. We
begin with the definition of a mouse. Recall that U is a M -ultrafilter on κ
if it is a normal M -ultrafilter in the sense of Kunen, that is, U is a normal
ultrafilter on PM (κ) and U ∩X ∈M whenever X ∈M and M |= |X| = κ. If
M is a structure Jα[U ] and γ < α then we write M |γ for the initial segment
Jγ [U ] of M .

3.24 Definition. A mouse is a premouse which is iterable and sound.
We define the terms premouse and sound by a simultaneous recursion

on α:

1. A premouse is a model Jα[U ] (or L[U ], allowing α = On) which satisfies
the following three conditions:

(a) For each γ such that Uγ �= ∅, there is a cardinal κ of Jα[U�γ]
such that (Jγ [U�γ],Uγ) |= (γ = κ++ and Uγ is a normal Jγ [U�γ]-
measure on κ).

(b) (Coherence) If Uγ �= ∅ then (iUγ (U�γ))�γ + 1 = U�γ.

(c) (Soundness) The structure (Jα′ [U ],U�α′,Uα′ ) is sound for every
ordinal α′ < α.

We say that a sequence U is good if L[U ] is a premouse.

2. A premouse M = (Jα[U ],U�α,Uα) is said to be n-sound if hM
m “ρm =

Jα[U ] for each m ≤ n, where hM
m and ρM

m are the Σm-Skolem functions
and Σm projectum of M, respectively. The model M is sound if it is
n-sound for all n ∈ ω.

We will say that M is sound above η if either M is sound or there is n
such that ρM

n+1 ≤ η, M is n-sound and hM
n+1“η = Jα[U ].



3. The Proof 1527

3. (Iterability) A premouse Jα[U ] is iterable if every iterated ultrapower
of Jα[U ] is well-founded.

Note that this definition of the term iterable needs to be supplemented
by Definition 3.30, given later, of an iterated ultrapower of a premouse.

Again, see chapter [47] for the somewhat more complicated conditions on
the sequence U when it is allowed to contain extenders.

3.25 Remark. Notice that any premouse satisfies GCH, since the sound-
ness condition implies that whenever x ⊆ η < α and x ∈ Jα+ω[U ] − Jα[U ],
then Jα+ω[U ] |= |α| ≤ η. This property is often called acceptability in the
literature, where it is used as a placeholder for soundness in the definition of
a premouse in order to avoid the use of simultaneous recursion as in Defini-
tion 3.24.

If Jα[U ] is a n-sound premouse then the ultrapower Ultn(Jα[U ], π, β) of
M = Jα[U ] by the extender derived from an embedding π is defined just like
that for L, by taking the ultrapower Ult0(Cn(M), π, β) of the Σn-code using
functions in Cn(M) and then using the upward extension property to extend
the embedding to all of M . In particular the upward extension property,
Lemma 3.10 (which we will not restate here) is still valid for these models.
Since not every premouse Jα[U ] is sound, the Proposition 3.11 giving the
conditions for the existence of Ultn(Jα[U ], π, β) needs to be supplemented
with the requirement that Jα[U ] be n-sound. In addition, we now have
the possibility of taking an ultrapower by one of the ultrafilters U = Uγ

in M = Jα[U ]. The ultrapower Ultn(M,U), like Ultn(M,π, β), is obtained
by taking the ordinary ultrapower Ult(Cn(M), U) of the nth code of M and
using Lemma 3.10.

3.26 Lemma. Suppose that M = Jα[U ] is an n-sound iterable premouse,
and U is a M -ultrafilter with crit(U) ≥ ρM

n+1. Then the embedding iU : M →
M ′ = Ultn(M,U) satisfies the following two properties:

1. AM
n+1 /∈M ′, and hence ρM ′

n+1 = ρM
n+1.

2. iU (pM
n+1) = pM ′

n+1.

Furthermore, any embedding i : M → M ′ which is given by the Upward
Extension Lemma from a Σ0-elementary embedding from Cn(M) and which
satisfies clause 1 also satisfies clause 2.

The thing which makes the conclusion stronger than that of Lemma 3.10 is
the assertion that ρM ′

n+1 = ρM
n+1. This may be contrasted with diagram (18.5)

in the proof of the covering lemma, in which π̃ : Jα → Jα̃ = Ult(Jα, π, κ) and
ρJα < κ̄, while ρJα̃

n+1 = κ = π̃(κ̄).
A part of the proof of clause 2 will be deferred until after the discussion

of iterated ultrapowers.
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Sketch of Proof. To see that ρM ′

n+1 = ρM
n+1 we need to verify that the master

code A = AM
n+1 ⊆ ρM

n+1 is not a member of M ′. Suppose to the contrary that
A = [f ]U ∈ M ′ = Ultn(M,U). Then A can be written as {β < ρM

n+1 : {ξ :
β ∈ f(ξ)} ∈ U}, which is a member of M since the assumptions that U is a
M -ultrafilter and ρM

n+1 ≤ κ imply that

U ∩ {{ξ < κ : β ∈ f(ξ)} : β < ρM
n+1} ∈M.

This contradiction concludes the proof that A /∈M ′.
One direction of clause 2 is straightforward: clearly iU (pM

n+1) ≥ pM ′

n+1, since
AM

n+1 can be defined using the parameter iU (pM
n+1). The hard part is to see

that iU (pM
n+1) ≤ pM ′

n+1. The proof proceeds by induction on n, and we will
only present the case n = 0. If to the contrary pM ′

1 < iU (pM
1 ), then there is an

ordinal iU (ν) ∈ iU (pM
1 )− pM ′

1 such that pM ′

1 − iU (ν) = iU (pM
1 )− (iU (ν)+ 1).

Set p = pM − (ν +1) and p′ = iU (p) = pM ′

1 − iU (ν), and set A′ = {ξ < iU (ν) :
M ′ |= Φ(ξ, p′)} where Φ is the universal Σ1 formula. Any subset of i(ν)
which is Σ1-definable in M ′ from p′ is rudimentary in A′, so if we can show
that A′ ∈ M ′, then it will follow that any set Σ1-definable from parameters
in p′ ∪ ν is also a member of M ′. This will contradict the assumption that
p′ = pM ′

1 − ν.
Set A = {ξ < ν : Φ(ξ, p)}. Then A ∈M , so iU (A) ∈M ′. Unfortunately it

may not be the case that A′ = iU (A), so we need to analyze this set further.
Let M = J U

α , and define a prewellordering R on A by ξ′ R ξ if ξ ∈ A and
∃γ (JU

γ |= Φ(ξ′, p) & ∀γ′ < γ J U
γ �|= Φ(ξ, p)). Then R is also Σ1-definable

from p, and hence is a member of M . Define R′ in M ′ similarly. Then the
prewellordering R′ on A′ is an initial segment of the preordering i(R) on i(A).
Now i(R) ∈ M ′, and if i(R) is a prewellordering then all initial segments of
i(R) are also in M ′. The following definition will be used to show that i(R)
is a prewellordering:

3.27 Definition. A solidity witness that ν ∈ pM
1 is a function τ ∈M which

maps A into the ordinals of M so that ∀ξ′, ξ ∈ A (ξ′ R ξ ⇐⇒ τ(ξ′) ≤ τ(ξ)).

If τ is a solidity witness that ν is in pM
n+1 then i(τ) is an order preserving

embedding from i(R) into the ordinals of M ′. Since M ′ is well-founded it
follows that i(R) is a prewellordering.

The general proof of the existence of a solidity witness will be deferred until
after the introduction of iterated ultrapowers; however, we note here that the
construction of a solidity witness τ can be carried out in any admissible set
containing R; in fact this is the central element of the standard proof that
well-foundedness is absolute. This leads to two easy cases, in which the
solidity witness for a mouse M = Jα(UM ) can be found in an admissible
initial segment M |γ = Jγ(UM �γ) of M . If M has a measurable cardinal
μ ≥ ν then (ν+)M exists, so there is a solidity witness in the admissible
set M |(ν+)M ; and if M has a full measure Uγ with crit(Uγ) < ν < γ and
R ∈ Ult(M,Uγ) then M has a solidity witness in the admissible set M |γ. �
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Note that the hypothesis that U is a normal M -ultrafilter holds whenever
U = UM

γ for some γ ≤ α. If γ < α then a slightly stronger result holds, since
the hypothesis that κ ≥ ρM

n+1 can be eliminated (with some adjustment to
the conclusion). Even then, however, not all of the fine structure of M is
preserved by the ultrapower iU . First, and most important, the ultrapower
M ′ = Ultn(M,U) is never sound above κ = crit(U), even if M is, since κ /∈
(iUhM

n+1)“ crit(U) = hM ′

n+1“ crit(U) = hM ′

n+1“ρn+1. The model M ′ is sound
above κ + 1. Second, the two projecti ρM

n and ρM
n+1 need not be preserved

by the embedding i: if crit(U) = ρM
n+1 then ρM ′

n+1 = ρM
n+1 < iU (ρM

n+1); and in
any case ρM ′

n = sup(iU “ρM
n ), which may be smaller then iU (ρM

n ).
The existence of unsound premice is an important difference between the

fine structure of L and that of larger core models. The counterpart of
Lemma 3.4, which states that Jα is sound, is given by the following lemma:

3.28 Lemma. Any iterable premouse M = Jα[U ] is an iterated ultrapower
of a mouse.

The mouse is given by the following definition:

3.29 Definition. The nth core of a premouse M , written coren(M), is the
model obtained by decoding the nth code Mn = Cn(M) of M . The core
of M , written core(M), is coren(M) where n is least such that ρM

n = ρM .

Note that the definition of Cn(M) is not hindered by the possibility that M
is not sound. The structure core(M) will be equal to the transitive collapse of
the substructure of M containing those elements which are, in an appropriate
sense, definable in M . In particular, if we define core1(M) to be the model
obtained by decoding the Σ1-code M1 = C1(M), and then decoding M1, then
core1(M) is the transitive collapse of hM

1 “ρM
1 , the set of x ∈ M which are

Σ1-definable using parameters from ρM
1 ∪ pM

1 .
Any further sketch of the proof will clearly depend on the definition and

properties of iterated ultrapowers. These were described in chapter [32],
but are complicated here by the fact that they may involve ultrapowers of
differing degrees and since they may involve filters UMν

γ which are not full
ultrafilters on Mν . Both of these situations result in the drops mentioned in
the following definition.

The situation is slightly simpler in the case when 0† does not exist, so
that the premice Jα[U ] have at most one full ultrafilter, than it is in the
more general case needed in Sect. 4. At stage ν of the iterated ultrapowers
being considered here there are only two possible choices. One is to use the
single full ultrafilter in the model Mν , which will be the last member of the
sequence UMν ; this is case 3a of the definition. The other is to use one of the
earlier filters in the sequence UM . This earlier filter is not a full ultrafilter in
Mν and hence must be applied to a smaller mouse in Mν on which it is an
ultrafilter; this is case 3c. Case 3b does not arise in the absence of 0†.
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3.30 Definition. An iterated ultrapower of a premouse M = Jα[U ] is a se-
quence of models Mν for ν ≤ θ, together with a finite set D ⊆ θ+1, called the
set of drops, and embeddings iν,ν′ : Mν →Mν′ defined for all pairs ν < ν′ ≤ θ
such that D ∩ (ν, ν′] = ∅.

All of these are determined by a sequence of filters Uν = UMν
γν

∈Mν , with
a strictly increasing sequence of critical points crit(Uν), as follows:

1. M0 = Jα[U ].

2. If ν is a limit ordinal then Mν = dir limν0≤ν′<ν Mν′ where ν0 =
sup(D ∩ ν). Note that this direct limit exists since the finiteness
of D implies that D ∩ ν is bounded in ν, so that the embeddings
iν′ ′,ν′ : Mν′ ′ →Mν′ exist for all sufficiently large ν′ ′ < ν′ < ν.

3. If ν + 1 ≤ θ then Mν+1 is determined by the choice of the ultrafilter
Uν = UMν

γν
, where γν > γν′ for all ν′ < ν. There are three cases:

(a) If Uν is a full ultrafilter on Mν then set nν = n where n is the
largest number such that Ultn(Mν , Uν) is defined. If nν = nν′ for
all sufficiently large ν′ < ν, then Mν+1 = Ultnν (Mν , Uν). In this
case iν,ν+1 is the canonical embedding.
Note that since the critical points of the ultrafilters Uν are in-
creasing, Mν is sound above crit(Uν) and hence the soundness
hypothesis of Lemma 3.26 is satisfied.

(b) If Uν is a full ultrafilter on Mν , but nν < nν′ for all ν′ ∈ ν −
max(D ∩ ν), then Mν+1 = Ultnν (Mν , Uν). In this case we add
ν + 1 to D, so that iν,ν+1 is not defined.
Note that this happens when crit(Uν) ≥ ρMν

nν′ , but crit(Uν′ ) <

ρ
Mν′
nν′ , for sup(D ∩ ν) < ν′ < ν. This case is known as a drop in

degree.

(c) If Uν is not a full ultrafilter on Mν , then let M ∗
ν+1 be the largest

initial segment of Mν on which Uν is an ultrafilter. Thus M ∗
ν+1 =

Jα∗
ν
[Uν ] where α∗

ν is the least ordinal β < α such that there is a
subset x of crit(Uν) in Jβ+ω[Uν ] − Jβ [Uν ] which is not measured
by Uν .
In this case, which is known as a normal drop, we set Mν+1 =
Ult(M ∗

ν+1, Uν), and we add ν+1 to D so that iν,ν+1 is not defined.

We say that M is iterable if every model in any iterated ultrapower of M
is well-founded and no attempt to create an iterated ultrapower leads to
infinitely many drops.

Here again the situation becomes more complicated in the case of exten-
ders, where iteration trees are needed instead of the linear iterated ultrapow-
ers described above. See chapter [47] or [57].
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3.31 Remark. In practice we will frequently make the trivial modification
that Uν = UMν

γν
= ∅ is also allowed in an iterated ultrapower, and set Mν+1 =

Mν in this case. This gives what is known as padded iterated ultrapowers.

3.32 Lemma. The formula asserting that a set M is a mouse is absolute
for models N containing ω1.

Proof. The statement that M is a premouse is first-order over M , as is the
assertion that M is sound, so we only need verify that the iterability of M is
absolute. If M is countable in N then this can be proved using the Shoenfield
absoluteness theorem, as the statement that there is an ill-founded iterated
ultrapower of M , with the iterated ultrapower indexed by a countable well-
order, is a Σ1

2 statement. The proof for general M is similar to the proof
of Shoenfield’s theorem: for each countable ordinal α one builds a “tree of
attempts to find a ill-founded iterated ultrapower of length at most α”, that
is to say, a tree Tα such that the infinite branches of Tα correspond exactly
to the ill-founded iterated ultrapowers of M of length at most α. If there is
an ill-founded iteration of length α < ω1 in V , then Tα has an infinite branch
and hence is ill-founded. Assuming that the tree Tα can be constructed in
N just as it was constructed in V (this relies on the fact that ω1 ⊆ N , so
that α is countable in N) the tree Tα is in N . By the absoluteness of well-
foundedness it is ill-founded there, so there is, in N , an infinite branch of Tα

which specifies an ill-founded iterated ultrapower of M .
Since this is a very important technique, we suggest here one method of

constructing such a tree. In order to simplify the construction we first ignore
the possibility of drops. A node at the nth level of the tree Tα will be a 4-tuple
p = 〈x, �U, �M, �ξ 〉 such that

1. {0, α} ⊆ x ∈ [α + 1]<ω,

2. �M is a finite iterated ultrapower of M0 = M indexed by the ordinals in
x and using the ultrafilters �U . That is, if ν ∈ x and ν′ = min(x−(ν+1))
then Uν ∈Mν and Mν′ = Ult(Mν , Uν).

3. �ξ is a descending sequence of ordinals, �ξ has length n, and �ξ ∈Mα.

We will say that a node p′ = 〈x′, �U ′, �M ′, �ξ 〉 at the n+1st level of Tα is below
p in Tα if x′ ⊇ x and for each ν ∈ x there is σν : Mν →M ′

ν such that

1. σ0 is the identity.

2. σν(Uν) = U ′
ν .

3. If ν ∈ x, ν′ = min(x − (ν + 1)) and ν′ ′ = min(x′ − (ν + 1)) then
σν′ ([f ]Uν ) = i′

ν′,ν′ ′ ([σν(f)]U ′
ν
), where i′

ν′,ν′ ′ : Mν′ →Mν′ ′ is the embed-
ding associated with the iteration �M ′.

4. ξ′
k = i′

ν,ν′ (σν(ξk)) for each k < n, where ν = max(x) and ν′ = max(x′).
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In order to see how an ill-founded iteration 〈Mν : ν < α〉 yields an infinite
branch in Tα we need the concept of a support :

3.33 Definition. If 〈Mν : ν ≤ η〉 is an iterated ultrapower, then the notion
of a support is defined by recursion on η: a finite set y ⊆ η + 1 is a support
for z ∈Mη if

1. {0, η} ⊆ y.

2. If η is a limit ordinal then there are ν < η in y and z′ ∈ Mν such that
z = iν,η(z′) and y ∩ (ν + 1) is a support for z′ in �M�(ν + 1).

3. If η = ν + 1 then ν ∈ y and y ∩ η is a support for {Uν , f}, where
Mη = Ult(Mν , Uν) and z = [f ]Uν .

Suppose that y ⊆ η + 1 is a support in 〈Mν : ν ≤ η〉. We will construct a
finite iterated ultrapower 〈M ′

ν : ν ∈ x〉, together with embeddings σν : M ′
ν →

Mν for ν ∈ x, with the key property that the range of each embedding σν is
exactly the set of z ∈Mν such that y ∩ (ν + 1) is a support for z.

The index set x for the iteration is the set of ν ∈ y such that ν = 0,
ν = η, or ν + 1 ∈ y. The models M ′

ν and embeddings σν : M ′
ν → Mν for

ν ∈ x, and the ultrafilters U ′
ν ∈ M ′

ν for ν ∈ x ∩ η, are defined by recursion
on ν. To start out, M ′

0 = M0 and σ0 is the identity. If ν ∈ x ∩ η then
U ′

ν = σ−1
ν (Uν), which exists because y ∩ (ν + 1) is a support for Uν in Mν ,

and M ′
ν′ = Ult(Mν , Uν) where ν′ = min(x− (ν + 1)). If ν′ = ν + 1 ∈ x then

σν+1 is defined by setting σν+1([f ]U ′
ν
) = [σν(f)]Uν . Otherwise ν′ is a limit

ordinal and σν′ ([f ]U ′
ν
) = iν+1,ν′ ([σν(f)]Uν ).

Now if 〈Mν : ν ≤ α〉 is an ill-founded iterated ultrapower, then let �ξ =
〈ξn : n < ω〉 be an infinite descending sequence of ordinals in the final
model Mα, and pick an increasing sequence {yn : n < ω} such that yn is a
support for �ξ�n. Then the construction in the last paragraph gives a sequence
〈(xn, �Un, �Mn, �ξn) : n ∈ ω〉 which is an infinite branch in the tree Tα.

To go the other direction, if 〈〈xn, �Un, �Mn, �ξn〉 : n ∈ ω〉 is an infinite branch
of Tα then we can obtain, by a direct limit construction, an iterated ultra-
power which is indexed by

⋃
nxn and hence has length at most α. Clause 4

of the definition implies that the direct limit maps σn,α : Mn,α →Mα satisfy
σn,α(�ξn) = σn′,α(�ξn′ )�n for all n < n′ < ω. Thus

⋃
nσn,α(�ξn) is an infinite

descending sequence of ordinals which witnesses that the final model Mα is
ill-founded.

In order to allow for iterated ultrapowers including drops, the definition
of Tα must be modified: first, the definition of a node allows iterations with
drops, and in the definition of the tree ordering the maps σν is required
to preserve the drops; furthermore any ν ∈ x′ − x at which �M ′

ν drops are
required to be larger than max(x ∩ α). Finally, clause 4 of that definition is
modified to state that either clause 4 holds as stated previously, or else the
iteration �M ′ has a drop in x′ − x.
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An infinite branch of Tα describes a presumptive iteration which is indexed
by a subset of α, and hence has length at most α. If a new drop is added
at infinitely many levels in the branch then the presumptive iteration has
infinitely many drops; otherwise the presumptive iteration is a real iteration
and hence has a last model, but the levels of the branch beyond the last drop
provide a witness �ξ that the last model of the iteration is ill-founded. In
either case this presumptive iteration demonstrates that the model M0 is not
iterable. �

Comparisons of Mice

In the case of L, the only mice are the structures Jα, and hence it is triv-
ial that, given two mice M and N , one is an initial segment of the other.
Under appropriate conditions the same crucial fact is true of the mice for
higher core models, but the proof requires the use of iterated ultrapowers to
compare the two mice. We describe this process below, using the notation of
Definition 3.30 for the iterated ultrapowers. Superscripts M and N are used
to distinguish the iterated ultrapower on M from that on N .

3.34 Definition (Comparison for Premice). We will say that two premice M
and N strongly agree up to τ if crit(UM

γ′ ) ≥ τ and crit(UN
γ′ ) ≥ τ for all γ′ ≥ γ,

where γ is the least ordinal such that UM
γ �= UN

γ . Assume strongly agree up
to τ . Then the comparison of M and N is defined by the use of iterated
ultrapowers on M and N , which we distinguish by means of superscripts M
and N .

Start the comparison by setting M0 = M and N0 = N . Now suppose
that Mν and Nν have been defined. If either of the models Nν or Mν is
an initial segment of the other then the comparison is complete, and the
iterated ultrapower is terminated with θ = ν. Otherwise let γν be the least
ordinal γ such that UNν

γ �= UMν
γ , and set UM

ν = UMν
γν

and UN
ν = UNν

γν
. Now

use these ultrafilters to define Mν+1 and Nν+1 as in Definition 3.30 of an
iterated ultrapower.

Note that Definition 3.34 uses padded iterated ultrapowers, since it may
be that UNν

γ �= UMν
γ because one of the two is equal to ∅.

The coherence property of premice ensures that both the indices γν and
the critical points of the ultrafilters UM

ν and UN
ν are strictly increasing.

3.35 Lemma. This comparison process always stops after fewer than τ+

steps, with one of Mθ and Nθ an initial segment of the other.

Proof. Suppose to the contrary that the comparison continues for τ+ steps,
and let iν,ν′ : Nν → Nν′ and jν,ν′ : Mν → Mν′ be the iteration embeddings.
Set ν0 = max(DN ∩ DM ), the last place at which either iteration drops.
Then for each ν < τ+ − ν0 at least one of iν,ν+1 and jν,ν+1 is nontrivial;
let κν be the critical point of this embedding. If one of these embeddings is
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trivial then set xν = ∅; otherwise pick xν ⊆ κν so that xν ∈ Mν ∩ Nν and
xν ∈ UM

ν ⇐⇒/ xν ∈ UN
ν .

Now for each limit ordinal ν ∈ τ+ − ν0 there is some ην < ν such that κν

and xν are in the range of iην ,ν , say κν = iην ,ν(κ′
ν) and xν = iην ,ν(x′

ν). By
Fodor’s Lemma there is a stationary set S0 ⊆ τ+ on which ην is constant, say
ην = η, and since |Nη| < τ+ there is a stationary S1 ⊆ S0 on which κ′

ν and
x′

ν are also constant, say κ′
ν = κ′ and x′

ν = x′. Then for any ν′ < ν in S1 we
have iν,ν′ (κν) = iν,ν′ iη,ν(κ′) = iη,ν′ (κ′) = κν′ , and similarly iν,ν′ (xν) = xν′ .
In particular iν,ν+1 is not the identity for ν ∈ S1, since otherwise we would
have κν′ = iν,ν′ (κν) = iν+1,ν′ iν,ν+1(κν) = iν+1,ν′ (κν) = κν . Similarly there
is a stationary set S2 ⊆ S1 such that if ν < ν′ are in S2 then jν,ν′ (κν) = κν′

and jν,ν′ (xν) = xν′ . But this is impossible, for if ν < ν′ are in S2 then
xν ∈ UN

ν ⇐⇒ ν ∈ iν,ν′ (xν) = xν′ = jν,ν′ (xν) ⇐⇒ κν ∈ UM
ν , contrary to the

choice of xν . �

The next few results analyze some of the possible outcomes of this com-
parison. All results assume that M and N satisfy the requirements for Defi-
nition 3.34: that is, they strongly agree up to τ and are sound above τ .

3.36 Lemma. Suppose that Mθ is a proper initial segment of Nθ. Then
M is sound, and the only ultrafilters UM

ν used in the iteration of M are full
ultrafilters with crit(UM

ν ) < ρMν . Thus DM = ∅.

Sketch of Proof. Since Mθ is an initial segment of the premouse Nθ, the defi-
nition of a premouse implies that it is sound. Any model Ult(Mν , U) obtained
by taking the ultrapower by an ultrafilter U with crit(U) ≥ ρMν is unsound,
and this unsoundness is preserved by any further iterated ultrapowers.

If DM �= ∅ then let ν + 1 = max(DM ). Then Mν+1 = Ult(M ∗
ν+1, U

M
ν )

where crit(UM
ν ) ≥ ρM ∗

ν+1 , and hence Mν′ is unsound for all ν′ ≥ ν + 1.
Similarly, if any of the models Mν+1 arise as ultrapowers by an ultrafilter
UM

ν ∈Mν with crit(UM
ν ) ≥ ρMν , or if M = M0 is unsound, then all succeed-

ing models Mν′ are unsound. In either case this contradicts the fact that Mθ

is sound. �

3.37 Lemma. Suppose that Mθ = Nθ, that DM = DN = ∅, and that
τ ≥ max{ρM , ρN}. Then M = N .

Sketch of Proof. Since DM = DN = ∅, both iM0,θ : M → Mθ and iN0,θ : N →
Nθ are defined. Since τ ≥ ρM we have M = hM“τ . By Lemma 3.26, we
have iM0,θh

M = hMθ so it follows that M ∼= hMθ“τ . Similarly N ∼= hNθ“τ ,
and since Nθ = Mθ it follows that M = N . �

3.38 Corollary. At least one of DM and DN are empty.

Sketch of Proof. Assume to the contrary that both iterated ultrapowers drop.
Then Lemma 3.36 implies that neither of Mθ and Nθ is a proper initial
segment of the other, so Mθ = Nθ. Now let ν + 1 be the largest member of
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DM ∪DN , and suppose for example that ν + 1 ∈ DM . Then the remainder
of the iterated ultrapower can be regarded as a comparison of M ∗

ν+1 with
either Nν or N ∗

ν+1, depending on whether ν + 1 ∈ DN . Furthermore, since
DN contains some ordinal ν′ ≤ ν+1, this comparison satisfies the hypothesis
of Lemma 3.37, with τ = crit(UM

ν ), so M ∗
ν+1 = Nν or M ∗

ν+1 = N ∗
ν+1. This is

impossible since UM
ν = UMν

γν
�= UNν

γν
. �

3.39 Lemma. Suppose that M and N are mice with max{ρN , ρM} ≤ τ , and
that M and N strongly agree up to τ . Then one of M and N is an initial
segment of the other.

Sketch of Proof. We prove the lemma by induction on the lengths of the mice
M and N . First suppose that Mθ = Nθ. If DM = DN = ∅ then M = N
by Lemma 3.37. Otherwise, suppose that DN �= ∅ and let ν + 1 be the
largest member of DN . If this is a drop in degree, then the remainders
〈Mξ : ν ≤ ξ < θ〉 and 〈Nξ : ν ≤ ξ < θ〉 of the two iterated ultrapowers
form the comparison of Mν with Nν . This comparison has no drops, so we
can apply Lemma 3.37 to conclude that Mν = Nν , contradicting the fact
that ν < θ. Similarly, if this is a normal drop, then the remainders of the
two iterated ultrapowers form the comparison of Mν with the mouse N ∗

ν+1

to which the iteration on N drops at that point. Again, Lemma 3.37 shows
that Mν = N ∗

ν+1, which is an initial segment of Nν , so that the comparison
would have terminated at ν < θ.

Thus we can assume without loss of generality that Mθ is a proper initial
segment of Nθ. It follows by Lemma 3.36 that the iteration of M uses only
ultrafilters with critical point smaller than the projectum; however, since
the M and N strongly agree to τ the comparison uses only ultrafilters with
critical point larger than τ , which in turn is larger then the projectum ρM .
Thus M is never moved in the comparison, that is, Mθ = M . �

We are now ready to sketch a proof of Lemma 3.28 together with the
existence of solidity witnesses:

3.40 Lemma. If M is an iterable premouse then M is an iterated ultrapower
of the mouse core(M), and M has a solidity witness for each ν ∈ pM

k and
k < ω.

Sketch of Proof of Lemmas 3.28 and 3.40. The proof is an induction over n,
showing for each n that coren(M) is an iterated ultrapower of coren+1(M)
and that pM

n+1 has solidity witnesses. We will give the proof for the case
n = 0, beginning by showing that M = core0(M) is an iterated ultrapower
of N = core1(M) (with critical point at least ρM

1 ) and will assume for the
moment that N has solidity witnesses for all ν ∈ pN

1 . Let π : N → M be
the collapse map, and let i : N → Nθ and j : M → Mθ be the iterated
ultrapowers comparing N and M . We begin by assuming that both maps
have critical point at least ρM

1 . Then neither side of the comparison can drop:
if, say, the iterated ultrapower on M dropped then Mθ would be a proper
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initial segment of Nθ since AM
1 is definable in Nθ, but not in Mθ; however,

this contradicts Lemma 3.36. Furthermore Nθ = Mθ since AM
1 is definable

in, but not a member of, each. Now the existence of solidity witnesses for pN
1

implies that i(pN
1 ) = pNθ

1 = jπ(pN
1 ), but this implies that ihN

1 (ξ) = jπhN
1 (ξ)

for all ξ < ρM
1 . Since N is 1-sound it follows that i = jπ.

If M is not an iterated ultrapower of N , then M �= Mθ and j is not the
identity. Let ν be the least stage in the ultrapower that jν,ν+1 is nontrivial,
let U ′

ν be the ultrafilter used at this point, and let η = crit(j) be its critical
point. Then η /∈ jπhN

1 “η = ihN
1 “η, and it follows that η is also the critical

point of an ultrapower in i: that is, iν,ν+1 = iUν for an ultrafilter Uν in Nν ,
as in diagram (18.9):

N
i0,ν

π

Nν
iUν

Nν+1

iν+1,θ

Nθ

M
j0,ν

Mν
jU ′

ν

Mν+1

jν+1,θ

Mθ

(18.9)

Let x ⊆ η be a set in Nν ∩ Mν such that x ∈ Uν ⇐⇒/ x ∈ U ′
ν . Then

x = hNν
1 (ξ) for some ξ < η. We claim that x = hMν

1 (ξ) as well: to see this,
note that jν,θ(hMν

1 (ξ)) = hMθ
1 (ξ) = hNθ

1 (ξ) = jν,θ(x), and each of iν,θ and
jν,θ are the identity on η. Thus iν,θ(x) = jν,θ(x), but this is impossible since
then x ∈ Uν ⇐⇒ ν ∈ iν,θ(x) ⇐⇒ ν ∈ jν,θ(x) ⇐⇒ x ∈ U ′

ν , contradicting the
choice of x.

This completes the proof that M is an iterated ultrapower of C1(M),
except for verifying that neither i nor j have critical point smaller than ρM

1 .
If this is false, then it must be that ρM

1 = μ+M , where μ = crit(UM
γ ) for some

γ > ρM
1 , and (μ++)N = (μ++)M ∩hM

1 “ρM
1 < (μ++)M . If γ ≥ (μ++)N is least

such that UM
γ is a measure on μ, then the measures in N with critical point

μ are exactly the measures in UM �γ. It follows that none of these measures
will be applied in the comparison, and hence crit(i) ≥ ρM

1 .
To see that crit(j) ≥ ρM

1 we need to use another basic result, the proof of
which will be delayed until after the current proof is completed.

3.41 Lemma (Dodd-Jensen Lemma). Suppose that N is an iterable pre-
mouse, i : N → P is an iterated ultrapower, and k : N → P is any Σ0-
elementary embedding. Then the range of k is cofinal in P , i does not drop,
and i(α) ≥ k(α) for all α ∈ N .

Now if crit(j) = μ < crit(i), then i(μ) = μ < j(μ) = jπ(μ). This contra-
dicts Lemma 3.41 with P = Nθ, k = iπ, and α = μ, and this contradiction
completes the proof that M is an iterated ultrapower of core1(M).

The proof that M has solidity witnesses is similar. Fix ν ∈ pM
1 , set

p = pM
1 − (ν + 1), and let π : N → M be the transitive collapse of the Σ1
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hull hM
1 “ν of ν ∪ p in M . Recall that A = {ξ < ν : M |= Φ(ξ, p)}, the Σ1

theory of ν ∪ p in M , and R is the prewellordering of A defined by letting
ξ R ξ′ if there is γ such that J U

γ |= Φ(ξ, p) and ∀γ′ < γ J U
γ′ |= ¬Φ(ξ′, p) where

Φ is the universal Σ1 formula. Clearly A and R are Σ1-definable in N . Let
i : N → Nθ and j : M → Mθ be the iterated ultrapowers comparing N
and M . By the same argument as before, crit(i) ≥ ν. We claim that Nθ is a
proper initial segment of Mθ, for if not, then Lemma 3.41 implies crit(j) ≥ ν
by the same argument as before, and hence A is a member of Mθ; however,
A /∈ Nθ and hence Mθ �⊆ Nθ.

Now there is a τ ∈ Mθ mapping A into the ordinals of Nθ such that
∀ξ, ξ′ ∈ A (τ(ξ) ≤ τ(ξ′) ⇐⇒ ξ R ξ′), namely the map defined by letting
τ(ξ) be the least ordinal γ such that JU Mθ

γ |= Φ(ξ, iπ−1(p)). This map is
Σ1-definable in Nθ and hence is a member of Mθ.

If j is the identity, then Mθ = M and hence τ ∈M is the desired solidity
witness. If j is not the identity, then it does not drop by Lemma 3.36 so either
M has a full measure U with crit(U) ≥ ν or else there is a full measure U ∈M
with crit(U) < ν but R ∈ Ult(M,U). We observed following Definition 3.27
that either of these implies that M has a solidity witness that ν is in pM

1 ,
and this completes the proof of Lemma 3.40. �

We outline the proof of Lemma 3.41. A full proof is given in Sect. 4 of
chapter [57].

Sketch of the Proof of Lemma 3.41. Suppose that i and k are as in the hy-
pothesis. We will define iterations in : Nn → Nn+1 so that the direct limit
i∗ = . . . i3i2i1i0 : N0 → Nω is an iterated ultrapower on N . We will then see
that if the conclusion fails then the iteration i∗ contradicts the assumption
that N is iterable.

The maps in and kn are defined by recursion on n, starting by setting
N1 = P , i0 = i and k0 = k. The recursion step uses a general copy process:
using the notation of diagram (18.10), we set in+1 = kn(in) and kn+1 =
in ∗ kn.

To describe the copy process leading to diagram (18.10), suppose that
e : N → P is an iterated ultrapower and j : N → P is a Σ0-elementary
embedding. We will define the copy map j(e) and a map e ∗ j so that the
following diagram commutes:

P
j(e)

N ′

N

j

e
P

e∗j (18.10)

The definition is by recursion on length of the iterated ultrapower e, with the
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induction step using the following diagram:

Pν
ejν (Uν )

Pν+1

Nν
eUν

jν

Nν+1

jν+1 (18.11)

Here eUν : Nν → Nν+1 is the νth stage of the iteration e on N , j0 = j, and
jν+1 is defined by jν+1([f ]Uν ) = [jν(f)]jν(Uν). The maps of diagram (18.10)
are defined by letting j(e) be the iteration using the maps ejν(Uν) on the top
row of diagram (18.11), and setting e ∗ j = jθ where θ is the length of the
iteration.

Now suppose that the map i does contain a drop. Then each of the maps
in contains a drop, and hence i∗ = . . . i3i2i1i0 : N0 → Nω is a presumptive
iteration on N containing infinitely many drops, contrary to the assumption
that N is iterable. Hence i does not drop.

Now we will show that if either of the other clauses of the conclusion is
false, then there are ordinals αn ∈ Nn such that in(αn) > αn+1, so that
the ordinals α′

n = . . . in+1in(αn) form an infinitely descending sequence of
ordinals in Nω, again contradicting the assumption that N is iterable. In
the case that the range of k is bounded in P = N1 a simple induction shows
that the ordinals αn+1 = sup(ran(kn)) ∈ Nn1 are as required. If i(α) > k(α)
for some α ∈ N , then the ordinals αn ∈ Nn are defined by recursion on
n, setting α0 = α and αn+1 = kn(αn). Then by induction on n we have
αn+1 = kn(αn) < in(αn) and kn+1(αn+1) = kn+1kn(αn) < kn+1in(αn) =
in+1kn(αn) = in+1(αn+1). �

The Dodd-Jensen Core Model

The discussion above is valid for the core model up through ∃κ (o(κ) = κ++).
We now turn our attention to the Dodd-Jensen core model, and for this
purpose we assume that 0† does not exist, and hence no mouse has any full
measures except possibly for the final nontrivial measure on its sequence.

3.42 Definition. We will define the Dodd-Jensen core Kdj = L[U ] by re-
cursion as follows: Suppose Kdj

κ = Jκ[U�κ] has been defined. Let M be the
set of mice M = JαM [UM ] such that M has no full measures, ρM = κ and
UM �κ = U�κ. Then Kdj

κ̄ =
⋃
M, where κ̄ = sup{αM : M ∈M}.

To justify this definition of Kdj, notice that Lemma 3.39 implies that of
any two members M0 and M1 of M, one is an initial segment of the other.
Thus Kdj

κ̄ = Jκ̄[U�κ̄] where U�κ̄ =
⋃
{UM : M ∈ M}. The ordinal κ̄ will be

equal to κ+ in Kdj.
If there is no inner model with a measurable cardinal, then the core model

K is equal to Kdj. If there is an inner model with a measurable cardinal, but
0† does not exist, then K = L[U ], where the model L[U ] is chosen so that
the critical point of the measure U of L[U ] is as small as possible.
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Note that Kdj = L if 0# does not exist. If K = L[U ], with U a measure
on κ, then we can write L[U ] = L[U ] where, setting γ = (κ++)Kdj

, the
sequence U has a largest member Uγ = U and U�γ = UDJ�γ.

The fact that a mouse is required to be iterable, while a level Jα of the
L hierarchy is only required to be well-founded, makes the definition of a
mouse logically more complicated than that of the sets Jα. For example, the
statement ∃α (ω,E) ∼= (Jα,∈) is a Π1

1 statement about the set E ⊆ ω2, while
the statement that (ω,E) is isomorphic to a mouse Jα[U ] is Π1

2.
However, (Kdj)M = Kdj ∩M whenever M is a transitive model of ZF

containing ω1, since the definition of a mouse is absolute for models containing
ω1 by Lemma 3.32.

It is not the case, as it is for L, that there is a sentence V = K such that
every class model of V = K is equal to K. This can be seen by considering
the class L, which may or may not be equal to Kdj, depending on whether 0#

exists. A more general example can be obtained by taking any mouse M in
Kdj with a measure U on κ, and let M̃ = UltOn(M,U). Then iUOn(κ) = On,
and the initial segment M̃ |On = V M̃

On of M̃ is a class model of ZFC + V = K
which is not equal to Kdj. Notice, for example, that the critical points of
the iteration form a closed and unbounded class of indiscernibles for M̃ |On
which is definable in L[M ], and hence in Kdj.

Vickers and Welch have observed [61] that the existence of a Ramsey
cardinal implies that it is consistent that there is a proper class X ≺ Kdj

such that X �∼= Kdj.
The proof of Jensen’s covering lemma for L relied on Kunen’s result that

the existence of a nontrivial embedding i : L → L implies that 0# exists.
The proof of the covering lemma for Kdj will rely on an analogous result,
Lemma 3.47, stating that if 0† does not exist and there is a nontrivial elemen-
tary embedding i : Kdj → M , then K = L[U ] for some measure U in K. In
particular, if there is a nontrivial embedding i : Kdj → Kdj, then K �= Kdj,
so that (assuming 0† does not exist) K = L[U ] for some measure U in K.
However, Jensen has shown that it is not necessarily true, as one might ex-
pect, that U is the ultrafilter associated with i, or even that crit(U) = crit(i).
Notice that the model N of this proof gives an example of a mouse which is
not a member of K, and of a mouse which is added by a set forcing.

3.43 Theorem. Suppose that L[U ] satisfies that U is a measure on κ, and let
G be L[U ]-generic for the collapse of λ = (κ+)L[U ] onto ω. Then in L[U,G]
there is a fully iterable premouse N with measurable cardinal less than κ such
that Jλ(U) is an ultrapower of N . Hence there is an elementary embedding
i : Kdj → Kdj with crit(i) < κ.

Proof. We will prove that the theorem is true in Ult(L[U ], U), so that by
elementarity it is true in L[U ] as well. Let j : L[U ] →M = Ult(L[U ], U), let

κ′ = j(κ), λ′ = j(λ), and U ′ = j(U),
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and let G be M -generic for the collapse of λ′ onto ω. Let L be the infinitary
language with a constant x for each member x of Jλ′ [U ′, G] and one additional
constant W which will denote a measure on κ. Let T be the theory with
sentences

∀z
(
z ∈ x ⇐⇒

∨
y∈x(z = y)

)

for each x ∈ Jλ′ [U ′, G], together with a sentence asserting that W is an
amenable measure in Jλ[W] such that Ult(Jλ[W],W) ∼= Jλ′ [U ′]. This the-
ory is consistent because it is true in L[U ], so by the Barwise compactness
theorem it has a model A. Let W = WA and let N be the premouse Jλ[W ].
Then Ult(N,W ) = Jλ′ [U ′] by the construction of W , and it follows that N
is fully iterable since Jλ′ [U ′] is fully iterable.

Now Kdj is equal to the initial segment of UltOn(N,W ) below On, its
measurable cardinal, and hence it follows easily that there is an embedding
from Kdj into Kdj with critical point κ. �

A major difference between the proof of the covering lemma for L and
the proof of the covering lemma for L[U ] is that the proof of the analog
Lemma 3.47 of Kunen’s result itself uses the covering lemma. In order to
avoid circularity we prove the covering lemma in two steps: the first step
proves enough of the strength of the covering lemma to prove Lemma 3.47,
using the following observation:

3.44 Lemma. If U is a countably complete normal Kdj-ultrafilter then U
is a measure in L[U ], and Kdj ⊆ L[U ].

Proof. Let κ = crit(U) and set γ = (κ++)Kdj

. Take U to be the sequence
such that Kdj = L[U ] and let U ′ be the good sequence defined by U ′�γ = U�γ
and U ′

γ = U . We will show that P(κ)L[U ′] = P(κ)Kdj

, which implies that U
is a measure in L[U ′], and hence in L[U ].

Suppose the contrary, and let α be the least ordinal such that there is a set
x ∈ P(κ)∩Jα+ω[U ′]−Kdj. Now the model Jα[U ′] need not be sound, but the
iterability of L[U ] and the countable completeness of U ensure that Jα′ [U ] is
iterable. Hence Lemma 3.28 implies that Jα[U ′] is an iterated ultrapower of
a mouse N , but this is impossible since any such mouse would be a member
of Kdj.

To see that Kdj ⊆ L[U ], suppose the contrary and use iterated ultrapowers
to compare Kdj with KL[U ]. Note that the latter is equal to L[U ], and can be
written L[U ′ ′], where U ′ ′ is constructed like the sequence U ′ above, but using
(Kdj)L[U ] instead of the true Kdj. If the iterated ultrapower beginning with
Kdj does not drop, then it must be trivial since there are no full measures in
Kdj, and this would imply Kdj ⊆ L[U ]. If it does drop, on the other hand,
then the iterated ultrapower of L[U ] does not drop, and the final model L[Uθ]
of that iteration is an initial segment of the final model of the iteration on Kdj.
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Then that iteration would construct a class of indiscernibles for L[Uθ], which
implies that 0† exists and in fact is a member of Kdj, which is absurd. �

The second part of the proof will use the following analog of the Conden-
sation Lemma for L:

3.45 Lemma. Assume that there is no inner model with a measurable cardi-
nal, and that X ≺ Kdj is a class such that ot(X ∩ (λ+)Kdj

) = (λ+)Kdj

= λ+

for a proper class of cardinals λ of Kdj. Then X ∼= Kdj.

Sketch of Proof. Let N be the transitive collapse of X, and suppose to the
contrary that N �= Kdj. Then there is a mouse M ∈ Kdj − N . Now use
iterated ultrapowers to compare the models M and N , and let Mθ and Nθ be
the final models of the iterated ultrapower of M and N , respectively. Then
Nθ must be a proper initial segment of Mθ, since there is a set x ⊆ ρM which
is definable in M but not in N . Then x is definable in Mθ, but not in Nθ so
Nθ is a proper initial segment of Mθ and it follows by Corollary 3.38 that the
iterated ultrapower on N does not drop. Since N does not contain any full
ultrafilters it follows that the iterated ultrapower on N must be trivial, that
is, N = Nθ, and this implies that ot(X ∩ (λ+)Kdj

) = (λ+)N = (λ+)Mθ < λ+

for every cardinal λ > |Mθ|, contradicting the hypothesis. This contradiction
completes the proof of Proposition 3.45. �

The assumption that (λ+)Kdj

= λ+ is actually unnecessary here: any it-
erated ultrapower of Kdj is a member of Kdj, since it is a finite sequence of
drops, separated by an iterated ultrapower by a single ultrafilter. In partic-
ular Mθ ∈ Kdj.

The set Γ from Kunen’s proof satisfies |Γ ∩ λ+| = λ+ on a stationary set.
Hence the importance of the weak covering property:

3.46 Definition. A cardinal λ is countably closed if ηω < λ for all η < λ,
and a model M has the countably closed weak covering property if for all
sufficiently large countably closed singular cardinals λ we have (λ+)M = λ+.

3.47 Lemma. Suppose that 0† does not exist, and that K satisfies the count-
ably closed weak covering property. If there is a nontrivial elementary em-
bedding i : K → M , then K = L[U ] where U is a measure in L[U ] with
crit(U) = crit(i).

Proof. Set κ = crit(i). We can assume that M = {i(f)(κ) : f ∈ K}, for
otherwise we could factor i as

i : K i′
−→M ′ ∼= {i(f)(κ) : f ∈ K} ≺M,

and work with i′ : K →M ′ instead of i : K →M .
First we show that K �= Kdj, so that K = L[U ] for some measure U .

Suppose to the contrary that K = Kdj. We claim that in this case M also
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equals Kdj: to see this, assume M �= Kdj and use iterated ultrapowers to
compare M with Kdj. The iteration on M is trivial, and the iteration on Kdj

drops and generates a closed and unbounded class I of indiscernibles for M .
Then our assumption on i implies that i−1[I] is a class of indiscernibles for
Kdj, which would generate a countably complete Kdj-measure Uω1 on the
limit of the first ω1 members of I. By Lemma 3.47, it follows that Uω1 is
a measure in L[Uω1 ], contrary to our assumption that K = Kdj.

Thus i : Kdj → Kdj, and we can apply the proof, sketched in chapter [32,
Theorem 1.13], of Kunen’s corresponding result for L. This involves defining
a continuously descending sequence of classes Γα, beginning with Γ0 = ran(i)
and setting Γα+1 = {x ∈ Γα : iα(x) = x} where iα is the transitive collapse of
Γα ≺ K. The classes Γα contain all of their limit points of cofinality greater
than κ, and if κ < ν ∈ Γα then |Γα ∩ ν+| = ν+. Since ν+ = ν+K by the
weak covering property, it follows by Lemma 3.45 that Γα

∼= Kdj for each
ordinal α. Now the same argument as for L shows that if we set κ = crit(i)
and κα = min(Γα − κ) then the class of ordinals (κα : α ∈ On) is a closed
and unbounded class of indiscernibles for Kdj. It follows that {κα : α < ω1}
generates a normal Kdj-measure Uω1 on κω1 , and since Uω1 is countably
complete it follows by Lemma 3.44 that Uω1 is a measure in L[Uω1 ].

This completes the proof that K = L[U ] for some measure U . We must
have crit(U) ≥ crit(i), for otherwise Kunen’s argument for L implies directly
that 0† exists. To see that crit(U) ≤ crit(i), assume to the contrary that λ =
crit(U) > κ = crit(i) and observe that it is true for L[U ], as it is for L, that
HL[U ](Γ) ∼= L[U ] for any proper class Γ of ordinals. Now M = L[U ′], with
λ′ = crit(U ′) ≥ λ = crit(U), so there is an iterated ultrapower j : K → M .
Let Γ = {ν : i(ν) = j(ν)}. Then Γ is a proper class, it contains its limit
points of cofinality greater than λ, and κ /∈ HK(Γ) = On ∩Γ.

We will complete the proof by showing that this is impossible. First, note
that the family of proper classes Γ ≺ L[U ] which contain all of their limit
points of cofinality greater than λ is closed under intersections of size at most
λ. Hence there is such a class Γ′ such that Γ′∩λ is as small as possible. Now
if k : L[U ′ ′] ∼= HK(Γ′) is the transitive collapse then, since crit(U) is as small
as possible, crit(U ′ ′) = crit(U) = λ. However, there is some η < λ so that
k(η) > η. Then k(η) ∈ κ ∩ HK(Γ′) − HK(Γ′ ′), where Γ′ ′ = {ν : k(ν) = ν},
contrary to the choice of Γ′. �

Part 1 of the Proof

The proof of the Dodd-Jensen covering lemma can be divided into two parts.
The first part is a direct generalization of the proof of the covering lemma
for L: it involves defining the basic construction for suitable sets X ≺ Kκ, and
showing that the class of suitable sets is unbounded. One of the two major
novelties in this stage of the proof is the possible use of an iterated ultrapower
in the construction. The second part of the proof, which has no analog for L,
is used to analyze the indiscernibles generated by this iterated ultrapower.
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In the case when this iterated ultrapower is infinite, these indiscernibles will
yield a sequence C which is Prikry generic over K = L[U ].

The other major novelty arises from the fact that Lemma 3.47, which
is needed in the proof, has the hypothesis that K satisfies the countably
closed weak covering property. Thus we will, during part one of the proof,
simultaneously prove two results, the first of which is the hypothesis to the
second.

3.48 Lemma. Assume that 0† does not exist.

1. The core model K satisfies the countably closed weak covering property.

2. If K satisfies the countably closed weak covering property, then it also
satisfies the full Dodd-Jensen covering lemma, Theorems 1.12 and 1.13.

Most of this proof will be reused in proving the covering lemma for se-
quences of measures; however, certain segments of the proof are substantially
simplified by our assumption that 0† does not exist. This extra assumption
is equivalent to the assumption that no premouse has more than one full
ultrafilter.

The following definition will be valid up to a strong cardinal. We write
Kκ for Jκ[U ] = K ∩ Vκ.

3.49 Definition. Let X ≺1 Kκ, with transitive collapse π : K → X, where
K = Lκ̄[U ]. We say that X is suitable if Ultn(M,π, β) is iterable whenever
n ∈ ω, β ≤ κ, and M = Jα[U ′] is an iterable premouse (possibly with
α = On) such that Ultn(M,π, β) is defined and U ′�β̄ = U�β̄ where β̄ is the
least ordinal such that π(β̄) ≥ β.

As in the proof of the covering lemma for L, we say that X ≺1 Kκ is
countably closed if X = Y ∩ Kκ, where ωY ⊆ Y and Y ≺ H(τ) for some
τ > κ.

3.50 Lemma.

(i) Every countably closed set X ≺1 Kκ is suitable, and

(ii) the class of suitable sets X is closed under increasing unions of un-
countable cofinality, and is unbounded in H(δ)(Kκ) for any uncountable
cardinal δ.

Sketch of Proof. The only difference between the proof of this lemma and
the corresponding lemma for L is that we need to check that the model
M̃ = Ultn(M,π, β) is iterable rather than merely well-founded. This is
straightforward for clause (i). For clause (ii) this involves changing Defin-
ition 3.18 of a witness to the unsuitability of X: Clause 3.18(2), stating that
dir lim(π−1(w)) = Cn(Jα) for some ordinal α, is modified to require that
dir lim(π−1(w)) be the Σn-code for some mouse. Clause 3.18(3), is modified
to state that the witness w either the structure M̃0 of which dir lim(w) is
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the Σn-code is ill-founded, or else there is an ill-founded iteration of this
structure.

The proof for both clauses relies on the fact that if there is an ill-founded
iteration then there is one of countable length. �

We are now ready to describe the basic construction. As in the proof of
the covering lemma for L, we are given a suitable set X ≺1 Kκ, and we let
π : K = Jκ̄[U ] ∼= X ≺1 Kκ be the transitive collapse. We assume that X is
not transitive, so that π is not the identity, and furthermore we assume that
either X is countably closed or else K satisfies the countably closed weak
covering property.

In order to postpone some complications which arise in the proof of the
covering lemma for sequences of measures, we make the following additional
assumption:

If K = L[U ], where U is a measure on a cardinal μ of K,
then either (μ+)K ⊆ X or else κ ≤ (μ+)K . (18.12)

This assumption does not involve any loss of generality: the case (μ+)K ⊆ X
shows that any set x of size at most (μ+)K is contained in a set y′ ∈ K of size
(μ+)K , and then the case κ ≤ (μ+)K shows that x can be covered by a set
y ⊆ y′ which satisfies Theorem 1.3. The case (μ+)K ⊆ X is a relativization
of the proof for L and requires no new ideas.

In the proof for L, the next step was to set M = Jα, where α ≥ κ̄ was
the least ordinal such that there is a bounded subset of κ̄ in Jα − Jκ̄. If it
happens that U = U�κ̄ then we can similarly take Jα[U ], but in general we
need to modify the construction by using iterated ultrapowers to compare
the models K = Jκ̄[U ] and K = L[U ]. A key step of the proof is showing
(see Lemma 3.51(2)) that K is never moved in this comparison, so that the
final model of the iterated ultrapower on K is a model Mθ = Jαθ

[Uθ] such
that U = Uθ�κ̄.

Thus we obtain the following variant of diagram (18.5), where each of the
subset symbols indicate containment as an initial segment:

K
i

Mθ ⊇M
π̃

Ultn(M,π, κ) = M̃

K = Jκ̄[U ]
π

X ≺ Kκ

(18.13)

We will write M = Jα[UM ] and M̃ = Jα̃[Ũ ]. As in diagram (18.5), K is the
transitive collapse of the set X and π is the inverse of the collapse map. The
iterated ultrapower is indicated by the wavy line from K to Mθ. Since this
iteration drops whenever it is nontrivial (see Lemma 3.51(3)), the wavy line
does not represent an embedding.



3. The Proof 1545

Once the model Mθ = Jαθ
[UMθ ] has been constructed, diagram (18.13) is

completed like diagram (18.5): Let M = Jα[UMθ ], where (α, n) is the largest
pair (α, n) ≤ (αθ, nθ) such that Ultn(Jα[UMθ ], π, κ) is defined. Thus α is the
least ordinal such that there is a bounded subset x of κ which is definable in
Jα[Uθ] but is not a member of K. Finally, set M̃ = Ultn(M,π, κ).

3.51 Lemma. Assume that 0† does not exist. Let X ≺1 Kκ be a suitable
set which is not transitive, so that the collapse π : K ∼= X ≺1 Kκ is not the
identity. Finally, assume that either X is countably complete or else K has
the countably closed weak covering property.

1. PK(η) �⊆ K, where η = crit(π).

2. In the comparison of K and K, the iterated ultrapower on the model K
is trivial.

3. Either K is an initial segment of K, or else 1 ∈ D, so that the iterated
ultrapower on K drops immediately.

4. K is an initial segment of the final model Mθ of the iteration of K.

5. M̃ ∈ K.

Sketch of Proof. If clause 1 fails then U ′ = {x ∈ PK(η) : η ∈ π(x)} is
a K-ultrafilter. If X is countably closed then U ′ is countably complete, so
Lemma 3.44 implies that U ′ is a measure in L[U ′]. If K has the countably
closed weak covering property then Ult(K,U ′) is well-founded since it can
be embedded into Ult(K,π, κ), which is well-founded by the definition of
suitability, so Lemma 3.47 implies that K = L[U ] where crit(U) ≤ crit(U ′).
Thus, under the hypothesis of either clause of Lemma 3.48, K = L[U ] for
some measure U with crit(U) ≤ crit(i); but this is impossible: if crit(U) <
crit(i) then it would follow that 0† exists, contrary to the hypothesis, while if
crit(U) = crit(i) then crit(U) would be definable in Kκ as the only measurable
cardinal, and hence would be in X.

To see that the ultrapower on K is trivial, first note that the extra assump-
tion (18.12) on X implies that any full measure in K is contained in Kη. Thus
the iterated ultrapower on K must be trivial unless it drops. By Lemma 3.38
this would imply that the iterated ultrapower on K does not drop, and its
final model Mθ is an initial segment of the final model above K; but this is
absurd, since K is a set and Mθ is a proper class.

To verify clause 3, note that if K is not an initial segment of K then the
iterated ultrapower on K is nontrivial; however, again using (18.12), any full
ultrafilter in K with critical point smaller than η would also be in K, and
hence would not be used in the iteration. Thus the iterated ultrapower on
K must drop immediately.

Clause 4 follows from clause 2, so it only remains to check clause 5, stating
that M̃ ∈ K. If M̃ has no full measure U = UM̃

γ with crit(U) < κ, then M̃
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is iterable because of the suitability of X. Now M̃ is sound above κ, because
of its construction as an ultrapower Ult(M,π, κ). On the other hand, the
projectum ρ of M̃ cannot be smaller that κ, as otherwise M̃ would be an
iterated ultrapower of a mouse M ′ of size at most ρ, but this is impossible
since then M ′ ∈ Kκ ⊆M . It follows that M̃ is sound, and hence is a member
of K.

Now it will be sufficient to show that there is no full measure U in M̃ with
μ = crit(U) < κ. First, we observe that any such measure U would have to
satisfy κ = μ+K : otherwise κ > (μ+)K , so U = UM̃

γ for some γ < κ. Then
π̃−1(U) = UM

π−1(γ), with π−1(γ) < κ̄. By the construction it follows that
π̃−1(U) ∈ K, so U ∈ K, contradicting the special assumption (18.12).

Hence the following lemma will prove that there is no full measure U in
M̃ with μ = crit(U) < κ, and hence will complete the proof of Lemma 3.51:

3.52 Lemma. κ is not a successor cardinal in K.

Proof. We will first assume that there is no measure in M̃ with critical point
below κ. We will show that if κ is a successor in K then there is an η < κ such
that X = h̃“(X ∩ η), which implies that κ is singular in K and hence is not
a successor. To do so we will need to consider the indiscernibles generated
by the iteration i.

If M �= Mθ then M is a proper initial segment of the potential pre-
mouse Mθ. It follows that M is sound and is hence a mouse. In this case
the proof proceeds exactly as in that of the covering lemma for L, and leads
to the conclusion that X = h̃“(X ∩ ρ), where h̃ comes from Lemma 3.10 and
ρ = π(ρM

m+1) where m is least such that ρM
m+1 < κ̄.

Thus we can assume that M = Mθ. Then Lemma 3.51(3) states that
1 ∈ D, so D �= ∅. Let ν0 +1 < θ be the largest member of D. Then Mθ is an
iterated ultrapower (without drops) of the potential premouse M ∗

ν0+1, which
is an initial segment of Mν0 . All of the remaining ultrapowers have the same
degree n, and M ∗

ν0+1 is n-sound. Let C = {iν0,ν(κν0) : ν0 < ν < θ}, where
iν0,ν : M ∗

ν0+1 →Mν . Then C is a sequence of indiscernibles for Mθ.
Let ρ̄ be the Σn projectum of M , which is equal to the Σn projectum of

M ∗
ν0+1, and let h̄ be the Σn-Skolem function of Mθ. Then

Mθ = h̄“(ρ̄ ∪ C) (18.14)

by the soundness of M ∗
ν0+1 and Lemma 3.26. Now let ρ = sup(π“ρ̄) and

C = π“C. If h̃ = h̃X is the function given by Lemma 3.10, then it follows
that X = Kκ ∩ π̃“Mθ = Kκ ∩ π̃h“(ρ̄ ∪ C) = h̃π“(ρ̄ ∪ C) ⊆ h̃“(ρ ∪ C).

Now C cannot be unbounded in κ̄: κ̄ is not a limit cardinal in M since κ
is not a limit cardinal in K, but each member of C is a cardinal in M . Thus
X ⊆ h̃“η where η = sup(ρ ∪ C) < κ, as claimed.

This completes the proof in the case that there is no measure U ∈ M̃ with
crit(U) < κ. If there is such a measure then, as was pointed out at the end
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of the proof of Lemma 3.51, κ = (μ+)K where μ = crit(U). In this case set
M ′ = Ultn(M,U) where U = π̃−1(U). The same argument as above shows
that M̃ ′ = Ult(M ′, π, κ) ∈ K. In this case M ′ and M̃ ′ should be used in
place of M and M̃ in proof above. Note that M ′ is the result of carrying out
one more step in the iteration i of which Mθ is the last model. �

This completes the proof of Lemma 3.52, and hence of Lemma 3.51, and
we can now finish the proof of clause 1 of Lemma 3.48:

3.53 Corollary. If 0† does not exist then K satisfies the countably closed
weak covering property.

Sketch of Proof. Suppose to the contrary that λ is a countably closed singular
cardinal, and that κ = λ+K

< λ+. Then cf(κ) ≤ λ, and since λ is singular it
follows that cf(κ) < λ. Since λ is countably closed it follows that cf(κ)ω < λ,
so there is a set Y ≺ H(κ+) with Y ω ⊆ Y and |Y | = cf(λ)ω < κ such that
Y ∩ κ is cofinal in κ. Thus X = Y ∩ Kκ is countably closed, and hence is
suitable, contradicting Lemma 3.52. �

Part 2 of the Proof: Analyzing the Indiscernibles

We have now constructed all of the elements of diagram (18.13) and we have
proved the countably closed weak covering lemma. In order to complete the
proof of Lemma 3.48(2), and hence of Theorems 1.12 and 1.13, the strong
covering lemma below 0†, we need to study in more detail the indiscernibles
C introduced in the proof of Lemma 3.52. The use of indiscernibles from an
iterated ultrapower as a Prikry sequence is discussed in Sect. 2.2 of chap-
ter [32].

Fix, for the moment, an arbitrary suitable set X. We need to find f ∈ K
and η < κ such that either X = f“(η ∩ X) or else C is a Prikry sequence
and X = f“(C ∪ (η ∩ X)). Furthermore, we want to show that the Prikry
sequence C, if it is exists, is unique modulo finite differences.

Equation (18.14) states that M = h“(ρ ∪ C). This statement can be
strengthened:

∀ξ ∈ κ̄− C ξ ∈ h̄“(ρ̄ ∪ (C ∩ ξ)). (18.15)

Now let ρ = sup(π“ρ̄) and C = π“C. If h̃ = h̃X is the function given by
Lemma 3.10, then it follows that X = h̃“((X ∩ρ)∪C), and if ξ ∈ X ∩κ then
ξ ∈ h̃“((X ∩ ρ) ∪ (C ∩ ξ + 1)).

If C is finite then we can define f(x) = h̃X(x,C), so that f ∈ K and
X = f“(X ∩ ρX). Thus the first of the desired alternatives hold.

For the remainder of the proof, we will assume that C is infinite. We use
a superscript X to designate the results of applying this construction to the
arbitrary suitable set X.

3.54 Definition. Let C be the class of suitable sets X such that either CX

is finite or else K = L[U ], the set CX is a Prikry sequence for U , and CX is
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maximal in the sense that C − CX is finite whenever C is any other Prikry
sequence for L[U ].

Notice that CX and CX′
differ only finitely for any two sets X,X ′ ∈ C

such that CX and CX′
are both infinite.

The following lemma will complete the proof of the Dodd-Jensen covering
lemma:

3.55 Lemma. If 0† does not exist then the class C is closed under increasing
unions of uncountable cofinality, and is unbounded in [Kκ]δ whenever κ is
a cardinal of K and δ is an uncountable regular cardinal.

The proof of this lemma will take up the rest of Sect. 3.3. We already
know that the class of unsuitable sets is nonstationary, and by the comments
above, we can assume that CX is infinite for all but a nonstationary set of
sets X.

First we show, assuming Lemma 3.55 is true for all cardinals μ < κ, that
ot(CX) = ω on all but a nonstationary set. Assume the contrary; then there
is a μ < κ such that the ωth member CX of CX is equal to μ for stationarily
many sets X. Since the induction hypothesis states that the covering lemma
holds for C ∩ Kμ, there is a X with μX = μ such that X ∩ Kμ ∈ C, but
this implies that K = L[U ] where U is a measure on μ. Now this measure
U must be in X, and is generated by CX ∩ μ. Thus the iterated ultrapower
from diagram (18.13) which was used to generate C would not continue past
(πX)−1(μ), and hence C

X ⊆ (πX)−1(μ). This contradicts the assumption
that CX �⊆ μ, and completes the proof that CX has order type ω except on
a nonstationary set.

The proof of Lemma 3.55 is based on the following observation:

3.56 Proposition. Suppose that X is suitable and X = Y ∩ Kκ where
Y ≺ H(κ+) and CX ∈ Y . Then X ∈ C.

Proof. First we show that U is a measure in L[U ]. Since the members of
C = π−1(CX) come from the iteration of the unique full measure of Mθ, they
generate the final measure U of the measure sequence of that model. Thus
the filter U is the final measure in the measure sequence Ũ of M̃ = Jα̃[Ũ ]. It
follows that Ũ ∈ Y since U ∈ Y . If γ is the least ordinal such that U is not
a measure in Jγ [Ũ ], then γ ∈ Y and hence (πN )−1(Jγ [Ũ ]) = Jγ̄ [UM ] is in the
transitive collapse N of Y . Evidently γ̄ ≥ On(M) since U is a measure in M ,
but this is impossible since there is a bounded subset of κ̄ which is definable
in M but is not in K = H(κ̄)N .

Thus CX is a Prikry sequence for the measure U , and if CX fails to satisfy
Definition 3.54 then it is because there is another Prikry sequence C ′ such
that C ′ − C is infinite. Then by elementarity there is such a sequence C ′

which is a member of Y . Then C ′ ⊆ X, so any member α of C ′ − CX is
in h̃X“(ρ̃X ∪ (C ∩ α)) ⊆ hX“α, and since h̃X ∈ K = L[U ] it follows that
C ′ − CX is finite since C ′ is a Prikry sequence. �
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3.57 Corollary. If X is countably closed then X ∈ C.

Now we will deal with the proof of Lemma 3.55 for non-countably closed
sets X. This proof uses the ideas of the proof of Lemma 3.50, stating that
the class of suitable sets is unbounded, but is significantly more difficult. We
use the notation a ⊆∗ b to mean that a− b is finite, and a =∗ b to mean that
a ⊆∗ b and b ⊆∗ a.

3.58 Lemma. If X0, X1 are suitable and X0 ⊆ X1, then CX1 ∩X0 ⊆∗ CX0 .

Proof. We will use subscripts 0 and 1 to distinguish objects defined from
X0 or X1; for example we write π0 = πX0 and π1 = πX1 . We will find a
function h∗, definable in M1 = MX1 , such that ξ ∈ h∗“ξ for all but boundedly
many ξ ∈ π−1

1 ((C1 ∩ X0) − C0). Since this can only hold for finitely many
ξ ∈ π−1

1 (C1), this will imply that C1 ∩X0 ⊆∗ C0.
To this end, let ν be any member of X0 ∩ (C1 −C0) and set ν0 = π−1

0 (ν).
Then ν0 /∈ C0, so ν0 ∈ h0“ν0 where h0 is the Skolem function of M0 = MX0 .
Now let τ = π−1

1 ◦ π0 : K0 → K1, and let

τ̃ : M0 →M ∗ = Ult(M0, τ, κ̄1).

Then ν1 = τ(ν0) ∈ h∗“ν1 where h∗ is given by Lemma 3.10. But M ∗ is
sound above κ̄1, and agrees with K̄1 up to κ̄1, so by Lemma 3.39 one of M ∗

and M1 is an initial segment of the other. Since every bounded subset of
κ̄ in M ∗ is a member of K̄1, it must be that M ∗ is an initial segment of
M1 and it follows that h∗ is definable in M1 from some parameter q. Since
ν ∈ X0∩ (C1−C0) was arbitrary, it follows that X0∩ (C1−C0) is finite, that
is, C1 ∩X0 ⊆∗ C0. �

3.59 Corollary. The class C is uncountably upward closed.

Proof. Suppose that X =
⋃

ξ<ηXξ is an increasing union of sets Xξ ∈ C
such that cf(η) > ω. Then X is suitable since the class of suitable sets is
closed under uncountable increasing unions, and CX ⊆ Xξ for some ξ < η
so CX ⊆∗ CXξ by Lemma 3.58. In particular, the fact that CXξ is a Prikry
sequence for the measure U implies that CX is a Prikry sequence for the
same measure.

To complete the proof that X ∈ C we need to show that CX is maximal,
and since CXξ is maximal it is sufficient to show that CXξ ⊆∗ CX . Now if
ν is any member of CXξ − CX , then ν ∈ h̃“ν where h̃ is the function given
by Lemma 3.10. But since CXξ is a Prikry sequence over K and h̃ ∈ K, it
follows that CXξ − CX ⊆ {ν ∈ CXξ : ν ∈ h̃“ν} is finite, so CXξ ⊆∗ CX . �

The following lemma completes the proof of the Dodd-Jensen covering
lemma. We give a proof which is somewhat different from that given by
Dodd and Jensen in [11], as that proof does not easily adapt to larger core
models.
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3.60 Lemma. If δ is a regular cardinal and κ is a cardinal of K then C is
unbounded in [Kκ]δ.

Proof. As in the proof of the covering lemma for L, we work in the space
Col(δ,Kκ). If σ ∈ Col(δ,Kκ) then we will sometimes identify σ with ran(σ),
especially when it appears as a superscript. Let S be the set of functions σ ∈
Col(δ,Kκ) such that cf(dom(σ)) > ω and ran(σ) is suitable, but ran(σ) /∈ C,
and suppose for the sake of contradiction that S is stationary in Col(δ,Kκ).
By Lemma 3.23 there is a σ0 ∈ S and a stationary set S0 ⊆ S such that
σ ⊇ σ0 and Cσ ⊆ ran(σ0) for all σ ∈ S0. Thus Cσ ⊆∗ Cσ0 for all σ ∈ S0 by
Lemma 3.58. Set C0 = Cσ0 .

As in the proof of the covering lemma for L, we define, for each member
of S0, a witness w(σ) to the fact that ran(σ) /∈ C:

3.61 Claim. There is a function w mapping each member σ of S0 to a
countable subset of ran(σ) such that for any σ1, σ2 ∈ S0 such that σ1 ⊆ σ2

and w(σ2) ⊆ ran(σ1) we have Cσ1 ⊆∗ Cσ2 .

First we show that the lemma follows from this claim. By applying
Lemma 3.23 a second time, we can find an σ1 ∈ S0 and a stationary set
S1 ⊆ S0 so that σ1 ⊆ σ and w(σ) ⊆ ran(σ1) for all σ ∈ S1. If σ is any mem-
ber of S1 then Cσ1 ⊆∗ Cσ by Claim 3.61 and Cσ ⊆∗ Cσ1 by Lemma 3.58.
Thus Cσ =∗ Cσ1 for all σ ∈ S1.

Since S1 is stationary, there is a σ ∈ S1 such that ran(σ) = Y ∩Kκ for some
Y ≺ H(κ+) with Cσ1 ∈ Y . Since Cσ =∗ Cσ1 it follows that Cσ ∈ Y . This
implies ran(σ) ∈ C by Lemma 3.56, contradicting the fact that σ ∈ S1 ⊆ S0.
This contradiction shows that S0 is not stationary, and hence C is unbounded.

Proof of Claim 3.61. We will fix σ ∈ S1 for the moment in order to define
w(σ). The critical point is that Cσ ⊆∗ Cσ0 , so that Cσ is determined, up to
a finite set, by D = Cσ0 −Cσ. If D is finite then we can set w(σ) = ∅, so we
will assume that D is infinite. Let 〈dk : k < ω〉 enumerate D in increasing
order, and set d̄k = π−1(dk). Then d̄k ∈ hM“dk, where hM is the Skolem
function for the premouse M of diagram (18.13).

To define the function w we modify Definition 3.18 of a witness to the
unsuitability of X by replacing clause 3 with the statement that there is a
function h which is Σn-definable over dir lim(w) such that d ∈ h“d for all
d ∈ D.

To see that this witness function w(σ) satisfies Claim 3.61, let σ1 ⊆ σ
be a member of S0 with w(σ) ⊆ ran(σ1). Write π1 for πσ1 , and set τ =
π−1

1 π : K
σ1 → K

σ
. If m̄ = dir lim(π−1

1 (w(σ))) then the map τ extends to
an elementary embedding τ̃ : m̄ → m, so m̄ is also a premouse. The measure
on κ̄1 in m̄ is generated by the indiscernibles τ −1(C

σ
) = π−1

1 (Cσ), and since
Cσ ⊆∗ Cσ1 it follows that this measure is equal to the measure in Mσ1 . Thus
m̄ strongly agrees with Mσ1 up to κ̄1. Since both premice are sound above
κ̄1 it follows that one is an initial segment of the other. Now if Mσ1 were a
proper initial segment of m̄, then there would be a bounded subset x of κ̄1
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in m̄−K
σ1 . This is not the case, since every bounded subset of κ̄1 in m̄ is in

some m̄k ∈ K
σ1 , so m̄ must be an initial segment of Mσ1 . Hence, the Skolem

function of m̄ is definable in Mσ1 , and thus every sufficiently large member
d of π−1

1 (D) is in hMσ1 “d. It follows that D ∩ Cσ1 is finite, which is to say
that Cσ1 ⊆∗ Cσ, as was to be proved. �

This completes the proof of Lemma 3.60, and hence of the Dodd-Jensen
covering lemma, Theorems 1.2 and 1.3. �

3.4. Unsuitable Covering Sets

As we have seen, the proof of the covering lemma for L shows, assuming ¬0#,
that every suitable set is in L. This striking fact suggests that the proof may
also have something to say about sets X which are not suitable. Some re-
strictions on X are certainly needed: for example, if X is a Cohen generic
subset of some uncountable regular cardinal τ then any unbounded y ⊆ τ
in L intersects both X and its complement τ −X. Thus we will retain the
first order part of the definition of suitability: we assume that X ≺1 Jκ (or
X ≺1 Kκ in the case of larger core models) but omit the second-order condi-
tion that M̃X is well-founded and (in the case of K) that CX is a maximal
Prikry sequence. This one idea leads to two separate results: For L, or more
generally if there is no ω1-Erdős cardinal in K, it gives Magidor’s Covering
Lemma, 1.15, while in the presence of larger cardinals it gives Theorem 1.16
stating that Jónsson and Ramsey cardinals relativize to K.

We recall the statement of Magidor’s Covering Lemma 1.15 for L. This
statement follows [31] in using the hypothesis that X is primitive recursively
closed instead of X ≺1 Jκ, but we do not verify that this weaker condition
is sufficient.

3.62 Theorem. Suppose that 0# does not exist and that X is a primitive
recursively closed subset of Jκ, and let δ = inf(κ − X). Then there are
functions hi ∈ L for i < ω such that X ∩ κ =

⋃
i<ωhi“δ.

Sketch of Proof. Like the covering lemma, this theorem is proved by induc-
tion on κ. Suppose that X ≺1 Jκ. If cf(κ) = ω, say κ =

⋃
n<ωκn, then

X =
⋃

n<ω(Jκn ∩X), so the truth of the theorem for X follows from its truth
for each of the sets X ∩ Jκn for n < ω. Thus we can assume that cf(κ) > ω.
In addition we can assume that κ is a cardinal in L, that X is cofinal in κ,
and that κ �⊆ X. Note that we do not assume that |X| < κ.

The proof begins exactly like that of the covering lemma, with the transi-
tive collapse π : N = Jκ̄

∼= X ⊆ Jκ. Thus δ = crit(π) < κ.
If X is suitable then X ∈ L by the proof of the covering lemma, so

we can assume that X is not suitable. We recall the construction, given
in Lemma 3.19, of a witness to the unsuitability of X. There is a triple
(α, n, β), with β < κ, such that Ultn(Jα, π, β) is defined but not well-founded.
Let (α, n, β) be the least such triple, in the lexicographic ordering, and pick



1552 Mitchell / The Covering Lemma

fi ∈ Jα and ai ∈ [β]<ω for i < ω so that [ai+1, fi+1]π E [ai, fi]π, where E is
the membership relation in the ultrapower. Then β = sup(

⋃
iai), and since

cf(κ) > ω it follows that β < κ. We will show that there are functions hi ∈ L
such that X =

⋃
i<ωhi“(X ∩β). The truth of the theorem for X then follows

by applying the induction hypothesis to the set X ∩ β.
In order to simplify notation we will assume that n = 0 and that α is

a limit ordinal. We make two observations:

1. We can choose 〈fi : i < ω〉 so that Jα = HJα

Σ1
(β ∪ {fi : i < ω}). If this

is not true for the original choice of functions fi, then let M′ = Jα′

be the transitive collapse of HJαi

Σ1
(β ∪ {fi : i < ω}). Then α′ ≤ α and

Ult(Jα′ , π, β) is ill-founded, so α′ = α by the minimality of α. The
original functions fi may be moved in the collapse, but we can replace
them by their images under the collapse.

2. If αi < α is the least ordinal such that fi ∈ Jαi and Mi is the transi-
tive collapse of HJαi

Σ1
(κ̄∪{f0, . . . , fi}), then M̃i = Ult(Mi, π, κ) is well-

founded. To see this, note that Ult(Jαi , π, κ) is well-founded by the min-
imality of the triple (α, n, β), and M̃i is a substructure of Ult(Jαi , π, κ).

It follows that M̃i = Ult(Mi, π, κ) ∈ L for each i < ω, and X = π“κ̄ =
Jκ ∩

⋃
i<ωhi“(X ∩ β) where hi ∈ L is the function given by Lemma 3.10.

This completes the proof of Theorem 3.62. �

This argument, applied to Kdj in the absence of a model with a ω1-Erdős
cardinal, yields Magidor’s generalization of Theorem 1.15 to Kdj, while ap-
plied to larger core models K it yields the absoluteness to K of Jónsson
and Ramsey cardinals, Theorem 1.16. This extension of the argument to
K requires that the iterated ultrapower constructed in Definition 3.30 be
modified by adding a second type of drop: Suppose that Mν = Jαν [Uν ] has
been defined, and let β̄ν be the largest ordinal such that Uν�β̄ν = U�β̄ν .
The next model, Mν+1, is defined normally, following Definition 3.30, ex-
cept in the special case when D ∩ ν = ∅ and there is a triple (α, n, β) with
β ≤ π(βν) such that Ultn(Jα[Uν ], π, β) is defined but not iterable. In this
case put ν into D and set Mν+1 = Jα[Uν ], where (α, n, β) is the least such
triple. It is still true that if X = Y ∩ Kκ and N is the transitive collapse
of Y then KN is an initial segment of the final model Mθ of this itera-
tion: either as in the original proof because Mθ defines a bounded subset
of κ̄ which is not in H(κ)(N) = K, or else because Ultn(Mθ, π, κ) is not
iterable, while Ult(KN , π, κ) can be embedded into Ksup(Y ) which is iter-
able.

Let CX be the set of putative indiscernibles generated by this proof, that
is, the image under π of the critical points (after the last drop) of the iterated
ultrapower. Then we get, as in the proof of Theorem 3.62, a set of functions
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hk ∈ K for k < κ so that

M̃ =
⋃
{Hhk(ρ ∪ CX) : k ∈ ω}

=
⋃
{hk“(ρ ∪ �c) : k < ω ∧ �c ∈ [CX ]<ω}

where ρ = inf(κ−X).
If CX is finite or countable then this gives X as a countable union of sets

in K, so we can assume that CX is uncountable. There is no reason to expect
CX to be a set of indiscernibles for K, but it is a set of indiscernibles for any
structure in the range of π̃. This observation explains the importance of the
following proposition:

3.63 Proposition. Suppose that X = Y ∩Kκ where κ ∈ Y , Y is cofinal in
κ, and Y ∩Kλ ≺1 Kλ for some cardinal λ > κ. Then P(κ) ∩ Y ⊆ ran(π̃X).

Proof. Let πY : NY ∼= Y be the transitive collapse of Y , so that NY ∩ Kκ̄ =
K and πY �K = πX . Fix any member z of PK(κ) ∩ Y , let m ∈ Y be
the least mouse such that z ∈ m, and set m̄ = (πX)−1(m) ∈ NY . By
Lemma 3.39 one of m̄ and MX is an initial segment of the other. Every
bounded subset of κ̄ in m̄ is a member of NX since X = Y ∩ Kκ, but there
is a bounded subset of κ̄ which is definable in MX and not a member of
NX . It follows that MX is not a proper initial segment of m̄, so m̄ must be
an initial segment of MX . It follows that z̄ = (πY )−1(z) ∈ MX , and hence
z = π̃Y (z̄) = π̃X(z̄) ∈ ran π̃X . �

3.64 Corollary. Suppose that X = Y ∩ Kκ where Y ≺ H(λ) for some
λ > κ, and that A ∈ Y ∩K is a structure with universe κ. Then CX is a set
of indiscernibles for A.

Furthermore, if D ∈ K ∩ Y is a closed and unbounded subset of κ then
CX −D is bounded in sup(CX).

We will use this proposition to show that any Jónsson cardinal is Ramsey
in K. The argument that every δ-Jónsson cardinal is δ-Erdős in K is similar,
as is Magidor’s argument that Theorem 1.15 holds for Kdj unless there is an
ω1-Erdős cardinal in Kdj.

Let A be any structure in K with universe κ. Since X is Jónsson there
are sets Y and X as in the hypothesis of Proposition 3.64 such that |X| = κ
but κ �⊆ X.

It follows from the construction of the set CX that |CX | = κ. To show
that κ is Ramsey in K we will show that there is a ρ < κ and a set C ∈ K of
indiscernibles for A such that (CX − ρ) ⊆ C. To this end let U be the filter
on κ generated by CX , that is, z ∈ U if and only if CX − z is bounded in κ.
Let m be the least mouse with projectum κ such that A ∈ m. Then m ∈ Y ,
so U is a normal ultrafilter on m. Furthermore Ult(m, U) is iterable since U
is countably complete, so Ult(m, U) ∈ K and hence U ∩m ∈ K. Let h be the
Skolem function of m and define C to be the set of ν < κ such that, for each
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k < ω and each set z ∈ κ1+k ∩ h“ν,

z ∈ U ⇐⇒ ν ∈ z if k = 0

z ∈ U1+k ⇐⇒ {�γ ∈ (κ− ν)k : ν��γ ∈ z} ∈ Uk if k > 0.

Then C is a set of indiscernibles for M̃X , and hence for A. Furthermore
C ∈ K, and CX − C is bounded in κ since h ∈ Y . Then C is the required
set of indiscernibles in K for A, and since A was arbitrary this completes the
proof that every Jónsson cardinal is Ramsey in K.

4. Sequences of Measures

This section concerns the covering lemma in the presence of models contain-
ing large cardinals. Most of the section will concentrate on the core model
for sequences of measures; the remainder will describe, with less detail, what
is known about the covering lemma up to a strong cardinal and then for
overlapping extenders in the Steel core model up to and beyond a Woodin
cardinal. We begin with a general survey, which is followed by a precise state-
ment of the covering lemma for sequences of measures and some indications
as to its proof.

The two large cardinal properties which critically affect the statement of
the covering lemma are measurable cardinals and Woodin cardinals. Measur-
able cardinals are critical because they provide, via Prikry forcing, the first
counterexample to the full covering property. Woodin cardinals are critical
because they provide, via stationary tower forcing, a counterexample to the
weak covering property as described in Sect. 4 of chapter [32].

The Covering Lemma and Sequences of Measures

The Dodd-Jensen covering lemma neatly accommodates the covering lemma
to models L[U ] with a single measure; indeed the hypotheses ¬∃0† and K =
L[U ] are as well understood as is the hypothesis ¬∃0# of the Jensen covering
lemma. The situation for larger core models is both more complicated and
less elegant. We begin this section by describing some of these complications,
in rough order of the size of the core model at which they first appear.

The first three observations are relevant even in models in which o(κ) ≤ 1
for all κ, that is, when no cardinal has more than one measure. To simplify the
notation for this case we use an increasing enumeration �κ = 〈κν : ν < θ〉 of the
measurable cardinals in K = L[U ], and write Uν for the full measure on κν .
A system of indiscernibles for this model K is a sequence C = 〈Cν : ν < θ〉,
with Cν ⊆ κν . Each set Cν is either finite or a Prikry sequence, but in
addition the sequence C as a whole is uniformly a system of indiscernibles:

∀�x ∈ K
(
(∀ν < θ xν ∈ Uν) =⇒

∣
∣
⋃
{Cν − xν : ν < θ}

∣
∣ < ω

)
. (18.16)

This leads to our first observation:
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1. The sets Cν need not be infinite: formula (18.16) is meaningful even if
some or all of the sets Cν are finite.

The only constraint on the function f(ν) = |Cν | when o(κν) = 1 for all ν is
that otCν ≤ ω. For any predetermined function f , there is a straightforward
modification of Prikry forcing which can be used to obtain a sequence such
that |Cν | = f(ν) for all ν ∈ dom(U): the conditions are pairs (a, �A) such that
Aν ∈ Uν , aν ⊆ κν and |aν | ≤ f(ν) for each ν < θ, and

⋃
νaν is finite. The

order is defined by (a′, �A′) ≤ (a, �A) if a′
ν ⊇ aν , A′

ν ⊆ Aν , and a′
ν − aν ⊆ Aν

for each ν < θ.
As a consequence the relation between L[U ] and L[U , C] is more compli-

cated than that between L[U ] and L[U,C]:

2. The function f(ν) = |Cν | need not be a member of K.

As an example, suppose that θ ≥ ω and let a ⊆ ω be a real which is
Cohen generic over K. Then each of the measures Un can be extended to a
measure in K[a], so we can modify Prikry forcing as described above to obtain
a system C of indiscernibles for K[a] such that |Cn| = 1 (or, alternatively,
|Cn| = ω) for each n ∈ a and Cn = ∅ for each n ∈ ω − a. Thus a ∈ K[C]. If
|Cn| = ω for each n ∈ ω then a is definable in K[C] as {n ∈ ω : cf(κn) = ω}.
If |Cn| = 1 for n ∈ a then the covering lemma can be used to show that the
system C, and hence the set a, is definable in K[C] up to a finite set.

Note that a can be any set so long as the measures Un can be extended
to measures in K[a].

In the Dodd-Jensen covering lemma for L[U ], the Prikry sequence C, if it
exists, does not depend on the set x to be covered. This is not true for longer
sequences:

3. If there is an inaccessible limit of measurable cardinals in K, then
there is a cardinal preserving generic extension K[G] of K in which each
measure in K has a Prikry sequence, but there is no sequence C = 〈Cν :
ν < κ〉 of Prikry sequences which satisfies (18.16) [36, Theorem 1.3].

An inaccessible limit of measurable cardinals is needed to obtain such a
sequence: it is shown in [40, Theorem 4.1] that if there is no model with
an inaccessible limit of measurable cardinals then, as in the Dodd-Jensen
covering lemma, there is a single sequence C which can be used to cover any
set x.

Since the remaining observations only apply in the presence of cardinals
κ with o(κ) > 1, we now revert to the notation for sequences of measures
described in chapter [32] and in the last section: the core model K is a
structure of the form L[U ], where U is a sequence of filters such that each
member Uγ of the sequence is a normal measure on L[U�γ] ∩ P(κ), where
γ = κ++ in L[U�γ]. Not all of the filters Uγ are full measures in K, but we
only need to consider those measures which are full.
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We frequently write U(α, β) for the βth full measure on α in L[U ]; that
is, U(α, β) = Uγβ

where 〈γν : ν < o(α)〉 is the increasing enumeration of the
ordinals γ such that Uγ is a full measure on α in L[U ]. We write o(α), as
above, for the least ordinal β such that U(α, β) is undefined. The sequence
U has the following coherence property: if i : K → Ult(K,U(α, β)) then
oi(U )(α) = β and i(U)(α, β′) = U(α, β′) for all β′ < β.

For the next three observations we assume that the core model does not
contain any extenders, so that K always satisfies o(α) ≤ α++.

Corresponding to a sequence U of measures we will use C to denote a
system of indiscernibles: if γ ∈ dom(C) then Cγ ⊆ crit(Uγ) is a set of in-
discernibles for the measure Uγ (or, in the other notation, C(α, β) ⊆ α is a
set of indiscernibles for U(α, β)). The precise definition of a system of in-
discernibles will be given later, in Definitions 4.15 through 4.18 and in the
covering lemma, Theorem 4.19.

4. The sets C(κ, β) may have order type greater than ω. In general, the
set

⋃
β<o(κ)C(κ, β) of indiscernibles for measures on a cardinal κ is a

closed subset of κ which may have any order type up to min{κ, ωo(κ)}.

In [30] Magidor generalizes Prikry forcing in order to add such a sequence
of indiscernibles and hence change the cofinality of a cardinal κ to any smaller
regular cardinal λ, provided that o(κ) ≥ λ in the ground model. This forcing
is discussed briefly in chapter [32] and extensively in chapter [15].

For longer sequences of measures, and in particular when o(κ) > κ, it is
important in applications that the domain of the sequence CX is contained
in the covering set X. For this reason, we assume a slightly different context
for the covering lemma for sequences than was used for the Dodd-Jensen
covering lemma. Let κ = sup(x) be a cardinal of K, where x is the set which
we are trying to cover. We will look for a covering set X ⊇ x such that
X ≺1 Kκ̆, where κ̆ is the least cardinal of K such that κ̆ ≥ max{κ, o(κ)}.

This requirement that dom(CX) ⊆ X leads to two somewhat technical
problems in the study of longer sequences of measures:

5. It need not be that every suitable set X can be written as X = h“(ρ; CX)
where ρ = min(κ−X) and h ∈ K.

The notation h“(ρ; CX) (which is defined in Definition 4.17) corresponds to
the notation h“(ρ ∪ C) used when K = L[U ], but takes account of the fact
that CX is a function rather than a set. Recall that the strong version of the
Jensen covering lemma states that if 0# does not exist then every suitable set
X is in L, and the Dodd-Jensen covering lemma for L[U ] states (assuming
there is a Prikry sequence C) that any such set can be written as h“(ρ ∪ C)
where ρ = min(κ−X).

The covering lemma for longer sequences states that X = h“(ρ ∩X; CX)
for some ρ < κ, however, the induction used to show that ρ can be taken to
be inf(κ−X) breaks down for sequences of measures: it depends on the fact
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that X ∩ Kρ is suitable as a subset of Kρ, but in the case of sequences of
measures it may be that ρ is measurable, but is not a member of X. In this
case X ′ = X ∩Kρ̆ is not suitable since dom(CX′

) is not contained in X ′.
So far this limitation has not caused problems in applications, nor has the

next difficulty:

6. If o(α) ≥ α+ then it is not known whether countable completeness of
a set X is enough to ensure that X is a suitable covering set. What
is known is stated in Theorem 4.19, which requires that the set X be
cf(κ)-closed. In particular it is not known whether there always exist
suitable covering sets of size less than cf(κ)+.

The problem, again, comes from the requirement that dom(C) ⊆ X, but in
this case it is the measures on κ which are in question. These measures are
generated by cofinal subsets of

⋃
βC(κ, β), so the assumption that X contains

its subsets of size at most cf(κ) implies that these subsets, and hence the
corresponding measures, are in X.

Extenders

If o(κ) > κ++ then the core model is built using extenders, and we will write
K = L[E ] to denote the core model. Below 0¶, the sharp for a strong cardinal,
the extenders do not overlap and the covering lemma as stated for sequences
of measures remains true with two modifications. One of these is primarily
notational, but the following situation is unexpected:

7. If cf(κ) = ω and {α < κ : o(α) ≥ α+n} is unbounded in κ for all n < ω,
then the fact that a set X is countably closed does not ensure that X
contains all of the extenders on κ which are generated by the system
CX of indiscernibles for X.

If cf(κ) ≥ ω1 and cf(κ)X ⊆ X, however, in this case X does contain all
such extenders. As a result the covering lemma up to 0¶ is similar to
the result of substituting “ω1” and “countable” for “ω” and “finite” in
the covering lemma for sequences of measures.

Both parts of this observation are due to Gitik. In [18] he defines a game
which can be used to reconstruct a extender E on a cardinal of uncountable
cofinality from the sequences of ordinals which generate the constituent ul-
trafilters, and in [21] he constructs a model in which this is not possible for
extenders on a cardinal of cofinality ω.

The set 0¶ marks the introduction of overlapping extenders, and thus of
a dramatic shift in our understanding of the covering lemma:

8. If 0¶ exists then we cannot prove much more than the weak covering
lemma and the absoluteness theorem for Jónsson and Ramsey cardinals
(Theorem 1.16).
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The basic construction of the proof of the covering lemma does still go
through for overlapping extenders, with considerably increased technical dif-
ficulties [45, 43], but it uses iteration trees rather than the linear iteration
of Definition 3.30. The indiscernibles generated by such iterations are very
poorly understood, and the proofs for the known results above 0¶ rely on
avoiding indiscernibles rather than on analyzing them.

9. No core model with cardinals very much larger than 0¶ is known to exist
and satisfy the weak covering lemma without an additional assumption
that there is a subtle cardinal in the universe. It is known that there
is no model for a Woodin cardinal which satisfies the weak covering
lemma in set generic extensions.

Even the weak covering lemma is false for any model with a Woodin car-
dinal δ, since stationary tower forcing can be used to collapse successors of
many singular cardinals below δ. The situation between 0¶ and a Woodin
cardinal is still under investigation.

Of course any statement such as these must rely on implicit assumptions
about what it means to be a “core model”. Section 4 of chapter [32] explores
the assumptions lying behind the statement here.

The use of 0¶ as the dividing line is an oversimplification: it is possible to
use tricks to push some of the results somewhat further. In fact Schindler [50]
has constructed a core model under the assumption that there is no sharp for
a model with a class of strong cardinals. More importantly, there are some
suggestions that it is the presence of actual overlapping extenders in K which
cause the difficulty, not partial extenders such as those which appear in the
countable mouse 0¶. Schimmerling and Woodin have shown that in certain
special cases the core model can be proved to have the full covering property,
even though it contains inner models with several Woodin cardinals. See [48],
where Schimmerling and Woodin show that this result is not limited to the
Steel core models, but has consequences for the existence of core-like models.

This concludes our summary. The next subsection contains a more detailed
discussion of the covering lemma for sequences of measures.

4.1. The Core Model for Sequences of Measures

See chapter [32] for a discussion of the inner models for sequences of measures,
and Sect. 3.3 of this chapter on the Dodd-Jensen core model for its discussion
of the core model K in particular. Recall that K = L[U ], where U is a
coherent sequence with members Uγ which are Jγ [U�γ]-measures. We will
define the sequence U , and hence the core model, by recursion on γ. The
main problem in designing this recursion is to ensure that the final model
L[U ] is iterable: when U�γ has been defined, then the decision whether to
set Uγ = U for some measure U must take into account the requirement
that any iterated ultrapower of the as yet undefined model L[U ] must be
well-founded. This is accomplished by defining two core models: the first,
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the countably complete core model Kc, has the weak covering property and
is iterable because its full measures are countably complete; the second, the
true core model K, has the full covering property and is iterable because it
is an elementary substructure of Kc.

4.1 Definition. Either the core model K, or the countably complete core
model Kc, are defined as L[U ] where the sequence U is defined by recursion
on γ as follows. Assume that U�γ has already been defined:

1. If there is a mouse M = Jγ′ [U ′] such that U ′�γ = U�γ, the projectum
of M is smaller than γ, and no measure in U ′ −U is full in M , then set
U�γ′ = U ′.

2. If there is no mouse as in clause 1, and if Jγ [U ] |= γ = κ++ for some κ <
γ such that there is a Jγ [U ]-ultrafilter U on κ with iU (U)�γ + 1 = U�γ,
then set Uγ = U , provided it satisfies an iterability condition depending
on which model is being constructed:

(a) For the model Kc, the ultrafilter U is added to the sequence only
if U is countably complete and cf(crit(U)) = ω1.

(b) For the true core model K, the ultrafilter U is added to the se-
quence only if Ult(L[W ], U) is well-founded for every iterable inner
model L[W ] such that W�γ = U .

3. If neither of the previous clauses apply then Uγ = ∅.

The construction in clause 1 apparently depends on the choice of the mouse
M to be added; however, if two mice Jα0 [W0] and Jα1 [W1] satisfy clause 1,
then one of them is an initial segment of the other. Thus clause 1 could be
equivalently restated by specifying that U�γ is to be extended to the longest
good sequence U ′ ⊇ U�γ such that Lγ′ [U ′] is iterable, the largest cardinal in
L[U ′] below sup(dom(U ′)) is smaller than γ, and no measures in U ′ − U�γ
are full in L[U ′].

It can be shown that there is never more than one choice of the measure Uγ

satisfying clause 2. One way of doing so is to pick a mouse M with projectum
κ containing a set x on which two candidate measures U and U ′ differ, and
compare Ult(M,U) and Ult(M,U ′). Another is by using a bicephelus, which
is a structure B = (Jγ [U ],U , U, U ′) which is like a mouse except that both
of U and U ′ are used as the top measure Uγ of U . As in the proof of [32,
Theorem 3.22], an iterated ultrapower is used to compare B with itself and
conclude that in fact U is equal to U ′. The construction is simpler than
that of [32, Theorem 3.22] since B is a perfectly normal mouse except for the
doubled top measures U and U ′, which are used only as predicates, not in
the construction of Jγ [U ].

4.2 Lemma. The model Kc is iterable.
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Proof. We present a proof which seems slightly oblique compared to the origi-
nal proof, but which extends naturally to models with sequences of extenders.
First we show that if σ : M → Kc

θ is an elementary embedding, where M is a
countable transitive set and θ is a sufficiently large cardinal, and if U is a full
measure in M , then σ can be extended to obtain an elementary embedding
σ̃ : Ult(M,U) → Kc

θ such that σ = σ̃iU . To define σ̃ let A =
⋂

σ“U . Then
A �= ∅ since σ“U is a countable subset of the countably complete ultrafilter
σ(U), so choose λ ∈ A and define σ̃([f ]U ) = σ(f)(λ). Then σ̃ is elementary
because Ult(M,U) |= ϕ([f ]U ) if and only if M |= {ν : ϕ(f(ν))} ∈ U , and by
the choice of λ this holds if and only if Kc

θ |= ϕ(f(λ)).
Now suppose that Kc is not iterable. Then for sufficiently large θ there

is a countable elementary substructure X ≺ Vθ containing an iteration wit-
nessing this failure. If σ : M ∼= X ∩ Kc

θ is the transitive collapse then M
is not iterable, and there is a countable iteration of M witnessing this fail-
ure. If this iteration does not contain any drops then the construction of the
last paragraph can be repeated countably many times to obtain embeddings
σ̃ν : Mν → Kc

θ of the models Mν of this iteration into Kc
θ , but this is im-

possible because the final ill-founded model Mδ of the iteration is embedded
by σ̃δ into the well-founded set Kc

θ . If the iteration does contain a drop,
with the first drop occurring at ν0, then σ̃ν0�M ∗

ν0+1 embeds M ∗
ν0+1 into an

iterable mouse M̃ = σ̃ν0(M
∗
ν0+1) of Kc

θ . The remainder of the iteration on
M = M0 can then be copied to obtain an ill-behaved iteration on M̃ , which
contradicts the fact that M̃ is iterable. �

We will show that K is iterable by giving, in Lemma 4.11, a characteri-
zation of K as the transitive collapse of an elementary substructure of Kc.
This characterization, which depends on the weak covering lemma for Kc,
begins with the following preliminary definitions generalizing the fact that
the weak covering lemma for Kdj implies that any elementary substructure
X ≺ Kdj with |X ∩ λ+| = λ+ is isomorphic to Kdj.

4.3 Definition. An iterable premouse M = L[U ] is said to be universal if,
whenever M is compared with any other iterable premouse M ′, the iterated
ultrapower on M ′ does not drop and the final model in that iteration is
a (possibly proper) initial segment of the final model of the iteration on M .

Note that a universal premouse M must be a proper class, since if M =
Jα[U ] is an iterable premouse which is a set then Lemma 3.28 implies that M
is the iterated ultrapower of a mouse M ′ = Jα′ [U ′]. Thus L[U ′] is an iterable
premouse, and M comes out shorter than L[U ′] when they are compared
because the iteration on L[U ′] consists of an initial drop to the mouse M ′,
followed by the iterated ultrapower of M ′ to M .

4.4 Proposition. If M is a iterable class premouse and λ+M = λ+ for
a stationary class of cardinals, then M is universal.
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Proof. If M is not universal then there is an iterable premouse M ′ and it-
erated ultrapowers i : M → P and i′ : M ′ → P ′ such that P is a proper
initial segment of P ′. Thus the class of ordinals of P is the class Ω of actual
ordinals, and since P ′ is longer, we have Ω ∈ P ′. The iteration i does not
drop by Lemma 3.36. We can assume that i′ also does not drop, since if it
did drop we could consider only the tail of the iteration starting after the
last drop. If ν0 and κ are chosen so that Ω = i′

ν0,Ω(κ) then the class Γ of
ordinals λ such that i0,λ“λ ⊆ λ and λ = i′

ν0,λ(κ) is closed and unbounded.

Fix λ ∈ Γ such that (λ+)M = λ+. Then λ+P ′
= λ+M ′

λ = i′
ν0,λ(κ+M ′

ν0 ) < λ+.

This implies that λ+P = λ+Mλ < λ+. We will obtain a contradiction by
showing that κ+Mλ = λ+. If i0,λ(λ) = λ then this follows immediately
since λ+Mλ = i0,λ(λ+) ≥ λ+. Otherwise there is a unique ν < λ such
that i0,ν(λ) = λ and iν+1,λ(λ) = λ, but crit(iν,ν+1) = cfMν (λ). Then
λ+Mλ = λ+Mν+1 = λ+Mν = λ+M , with the first and last equalities being
proved as in the case when λ is never moved. �

We will prove the following lemma later, simultaneously with the full cov-
ering lemma:

4.5 Lemma (Weak Covering Lemma for Kc). Suppose that there is no inner
model of ∃κ (o(κ) = κ++) and that λ is a singular strong limit cardinal. Then
(λ+)Kc

= λ+.

4.6 Definition. A class Γ is thick if Γ is a proper class, there is some τ such
that Γ contains its limit points of cofinality greater than τ , and |Γ∩λ+| = λ+

for all sufficiently large singular strong limit cardinals λ ∈ Γ.

4.7 Proposition. Any set sized intersection of thick classes is thick.

The following observation explains the definition of a thick class, and also
the decision to require that every measurable cardinal in Kc have cofinal-
ity ω1.

4.8 Proposition. Suppose that W is an iterable, class length premouse, τ
is an ordinal, and Γ is a thick class such that for any singular cardinal λ ∈ Γ
with cf(λ) > τ we have that cfW (λ) is not measurable, and λ+W = λ+.

Then any (nondropping) iterated ultrapower i : W → N is continuous at
points ξ ∈ Γ of cofinality greater than τ . Hence, the class Γ′ of ordinals ξ ∈ Γ
such that i(ξ) = ξ is thick.

Proof. If i(ξ) > sup(i“ξ), then it must be that at some stage ν in the iteration,
Wν+1 = Ult(Wν , Uν) where Uν is a measure in Wν on a cardinal κν with
cfWν (iν(ξ)) = κν . Since κν = iν(cfW (ξ)) it follows that cfW (ξ) is measurable
in W . By the assumption on W , it follows that ξ is not a member of Γ of
cofinality greater than τ .
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For the final sentence, consider the class X of cardinals ξ such that ξ is
a limit point of Γ of cofinality at least τ , and i“ξ ⊆ ξ. Then X is a proper
class, and Γ′ contains all of the limit points of X of cofinality at least τ .

Finally, if λ ∈ Γ′ and λ+W = λ+ then i(λ+) = λ+, and an argument like
that in the last paragraph shows that |{ξ ∈ λ+ : i(ξ) = ξ}| = λ+. Thus
|Γ′ ∩ λ+| = λ+, so Γ′ is thick. �

4.9 Lemma. Assume that Kc satisfies the weak covering lemma, that λ
is a limit cardinal and Γ is thick. Then for each x ∈ PKc

(λ) there is a
y ∈ HKc

(Γ ∪ λ), the Skolem hull of Γ ∪ λ, such that x = y ∩ λ.

Proof. Let π : N ∼= HKc
(Γ ∪ λ) be the transitive collapse. Then ξ+N ≥

|Γ ∩ ξ+| = ξ+ for all singular limit cardinals ξ of sufficiently large cofinality,
so N is universal by Lemma 4.4. It follows that the comparison of N with
Kc will result in iterated ultrapowers with no drops and a common final
model P . Furthermore, the critical point of each of the associated embeddings
i : N → P and j : Kc → P is at least λ, since N and Kc agree on all measures
with critical point below λ. Thus x ∈ PP (λ) = PN (λ) ⊆ dom(π), and the
set y = π(x) satisfies the requirements. �

4.10 Lemma. If Kc satisfies Lemma 4.5, Γ is thick and λ > ω1 is a strong
limit cardinal of cofinality ω1, then λ ∈ HKc

(λ ∪ Γ).

Proof. Let X = HKc
(λ ∪ Γ), and suppose to the contrary that λ /∈ X. Let

π : N ∼= X be the transitive collapse, and let U = {x ⊆ λ : λ ∈ i(x)}. Then U
is a Kc-ultrafilter, since PKc

(λ) ⊆ N . Furthermore U is countably complete.
To see this, let A be any countable subset of U . Since cf(λ+Kc

) = cf(λ+) =
λ+ > ω there is B ∈ Kc of size κ such that A ⊆ B, and since cf(λ) > ω it
follows that there is B′ ∈ Kc of size less than κ such that A ⊆ B′ ⊆ B. Then⋂

A ⊇
⋂

(B′ ∩ U), but the latter is nonempty since B′ ∩ U ∈ Kc and U is
a Kc-ultrafilter.

Thus U ∈ Kc, which is impossible since o(U) = oKc
(λ). The contradiction

shows that λ ∈ X. �

4.11 Lemma. If Kc satisfies Lemma 4.5 then K is isomorphic to the class
X =

⋂
{HKc

(Γ) : Γ is thick}.

Sketch of Proof. Let π : K̃ ∼= X be the transitive collapse of X. First we
show that X is a proper class. Suppose to the contrary that X is a set
and let κ = sup(X ∩ On). Now use Proposition 4.7 to define a descending
sequence 〈Γν : ν < ω1〉 of thick classes such that X = HKc

(Γ0) ∩ Vκ+1,
the sequence of ordinals κν = inf(HKc

(Γν) − κ) is strictly increasing, and
λ = sup{κν : ν < ω1} is a strong limit cardinal. We will show that λ ∈ X,
contradicting the choice of κ.

Suppose the contrary, and pick Γω1 ⊆
⋂

ν<ω1
Γν so that λ /∈ HKc

(Γω1). By
Lemma 4.10 there is a parameter a ∈ Γω1 , an ordinal ξ < λ, and a formula
ϕ such that λ is the unique η such that Kc |= ϕ(a, ξ, η). Let τ ∈ K be the
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Skolem function for ϕ (with parameter a) so that Kc |= ∀ι (∃η ϕ(a, ι, η) =⇒
ϕ(a, ι, τ(ι))).

Now, notice that if ν < ω1 then τ“κν ∩ λ ⊆ κν : otherwise there is some
ν′ > ν and ξ′ < κν so that κν ≤ τ(ξ′) < κν′ . Then the least such ξ′ is
definable from κν , κν′ and a, so ξ′ ∈ HKc

(Γν) ∩ κν = X ∩ κ, but this is
impossible since in that case τ(ξ′) ∈ HKc

(Γν′ ).
Now let ξ0 be the least ordinal ξ such that λ = τ(ξ), and fix ν0 < ω1 so

ξ0 < κν0 . Then λ = min(τ“κν0 − κν0) ∈ HKc
(Γν0). However, this implies

that ξ0 ∈ HKc
(Γν0) ∩ κν0 = X ∩ κ ⊆ HKc

(Γω1). Hence λ ∈ HKc
(Γω1),

contrary to the choice of Γω1 .
Now we show that K̃ = K. Else, fix λ such that K̃λ �= Kλ, and fix

a thick class Γ small enough that if π : W ∼= HKc
(Γ) is the collapse map

then π“K̃λ = X ∩Kc
π(λ). Note that W , with the class π−1[Γ], satisfies the

conditions of Proposition 4.8. If we consider the least place at which K differs
from K̃, and hence from W , then there are two possibilities: K̃ is missing a
mouse which is in K, or K̃ is missing a full measure which is in K. The first
is impossible, since it would contradict the universality of W . Thus there
must be a measure U = Uγ on some cardinal κ < λ in K such that U /∈ W ,
but K and W agree up to γ = κ++W . Now consider the following diagram:

W
iU

j

Ult(W,U)

k

N

where N is the common final model of the iterated ultrapowers coming from
the comparison of the universal models W and Ult(W,U), and j and k are the
embeddings from these iterated ultrapowers. Let Γ′ be the set of ξ ∈ π−1[Γ]
such that kiUπ−1(x) = jπ−1(x). Then Γ′ is thick, but π(κ) �∈ HW (Γ′),
contradicting the assumption that π(κ) ∈ X. �

The trick used at the end of the last proof, using an approximation W
which agrees with the relevant initial segment of K but which satisfies the
hypothesis of Proposition 4.8, is often necessary. The following theorem gives
another example:

4.12 Theorem. If Kc satisfies the weak covering lemma then any universal
iterable premouse M is an iterated ultrapower of K.

Proof. Suppose that M is a counterexample, and let ν be the first stage
in the comparison with K at which the iterated ultrapower on M becomes
nontrivial. Thus Mν = M and Mν+1 = Ult(M,U), and the ultrafilter U =
UMν

γ is not in the νth model Nν in the iterated ultrapower on K.
Fix η large enough that iν(η) > γ, where iν : K = N0 → Nν is the

embedding coming from the iterated ultrapower on K, and as in the last proof
choose W satisfying the hypothesis of Proposition 4.8 which agrees with K
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up to η, so that Wη = Kη. Thus the description in the last paragraph of the
comparison between K and M applies equally to the comparison between W
and M , and for the rest of the proof we use the latter.

Since both W and M are universal, the comparison of these two models
gives iterated ultrapowers of length θ ≤ On with no drops and with a common
final model P , as in the left half of the following diagram:

W = N0
iν

Nν
iU

s
iν,θ

Ult(Nν , U)

t

M
jν

Mν jν,θ
P Q

(18.17)

Since there are no drops, the models Nν , P and Mν all have the same sub-
sets of κ, so U is an Nν-ultrafilter. Furthermore, Ult(Nν , U) is well-founded:
otherwise Ult(P,U) would be ill-founded, but the iterated ultrapower jν,θ can
be copied to an iterated ultrapower on Ult(Mν , U) with last model Ult(P,U),
so the iterability of Mν implies that Ult(P,U) is well-founded. Now compare
Nν and Ult(Nν , U). Again, both models are universal so this comparison
gives embeddings s and t as in diagram (18.17) with the same final model Q.

Let Γ = {ξ > η : tiU iν(ξ) = siν(ξ)}. Then Γ is thick, so Theorem 4.11
implies that Kη = Wη ⊆ HW (Γ). It follows that iν(Kη) ⊆ HNν (Γ ∪ κ),
so tiU�Wiν(η) = s�Wiν(η). In particular, s(κ) > κ since tiU (κ) > κ, so the
iteration s begins with an ultrapower by some measure U ′ = UNν

γ ∈ Nν with
critical point κ. But then U = U ′, since if x is any subset of κ in Nν then
x ∈ U ⇐⇒ κ ∈ tiU (x) = s(x) ⇐⇒ x ∈ U ′. This contradicts the assumption
that U /∈ Nν . �

4.13 Corollary. If Kc satisfies the weak covering property and U is a nor-
mal ultrafilter on K such that Ult(K,U) is well-founded, then there is some
γ such that U = Uγ , where K = L[U ].

Proof. Apply Theorem 4.12 to Ult(K,U). �

Note that the hypothesis that M is universal cannot be eliminated from
Theorem 4.12: The model N constructed in the proof of Jensen’s Theo-
rem 3.43 provides a counterexample in which N is a set, and a similar argu-
ment, starting with an assumption somewhat weaker than two measurable
cardinals, gives a counterexample in which N is a proper class. However,
such situations can only occur below ω2: If λ ≥ ω2 then the covering lemma
implies that cf((λ+)K) > ω, and it follows that any K-ultrafilter on λ is
countably complete.

4.2. The Covering Lemma up to o(κ) = κ++

We use the following setting for the covering lemma for sequences of measures:
We take κ to be a cardinal of K which is singular in V , and we consider
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covering sets X ≺1 Kκ̆ where κ̆ is a cardinal of K with κ̆ ≥ max{κ, o(κ)}.
The covering lemma asserts that for suitable sets X there is a system CX of
indiscernibles, a function h in K, and a ρ < κ such that X = h“(X ∩ ρ; C),
the smallest set containing X ∩ ρ and closed under h and C. We will call
such a set X a covering set.

Some definitions are required before we can give a precise statement of the
covering lemma. Here is a general definition for a system of indiscernibles:

4.14 Definition.

1. If U is a measure, then crit(U) is the cardinal κ such that U is a measure
on κ.

2. If γ < γ′, with γ′ ∈ dom(U), then Cohγ,γ′ is the least function f in the
ordering of L[U ] such that γ = [f ]Uγ′ in Ult(L[U ],Uγ′ ).

4.15 Definition. If U is a sequence of measures then a system of indis-
cernibles for M = L[U ] is a function C such that

1. dom(C) ⊆ dom(U), and Cγ ⊆ crit(Uγ) for all γ ∈ dom(C).

2. For any function f ∈ M there is a finite set a of ordinals such that if
γ ∈ dom(U) and λ = crit(Uγ) then

∀ν ∈ (Cγ − sup(a ∩ λ))∀x ∈ f“(ν × {λ}) (ν ∈ x ⇐⇒ x ∩ λ ∈ Uγ).

The indiscernible sequences rising from the covering lemma have some
additional structure:

4.16 Definition. If C is a system of indiscernibles for M , then C is said to
be h-coherent if h ∈M is a function and the following conditions hold:

1. For all ν ∈
⋃

γCγ there is a unique γ ∈ h“ν such that ν ∈ Cγ .

2. Suppose that ν ∈ Cγ ∩ Cγ′ and γ ∈ h“ν. If γ′ �= γ then crit(Uγ′ ) <
crit(Uγ), and crit(Uγ′ ) ∈ Cγ′ ′ for some γ′ ′ < γ with crit(Uγ′ ′ ) = crit(Uγ).

3. Suppose γν = Cohγ′,γ(ν), where γ′ < γ with crit(Uγ′ ) = crit(Uγ); and
suppose that ν ∈ Cγ with γ′ ∈ h“ν. Then Cγν = Cγ′ ∩ (ν − ν′), where
ν′ is least such that γ ∈ h“ν′.

For a simple example, consider a set C ⊆ κ which is Magidor generic over
M , making cf(κ) = oM (κ) = λ for some cardinal λ < κ. In this case we
can take h to be the function such that h(β) is the index of the βth full
measure on κ, that is, such that U(κ, β) = Uh(β) for all β < o(κ). Then
Ch(β) = {ν ∈ C : o(ν) = β}. If we take C to be Radin generic, with
o(κ) < κ+, then we could define h so that U(κ, σ(ξ)) = Uh(ξ), where σ is
the canonical function taking κ onto o(κ) < κ+. If C is Radin generic with
o(κ) = κ+, on the other hand, then there is no h ∈M and h-coherent system



1566 Mitchell / The Covering Lemma

C of indiscernibles such that C =
⋃

γCγ , for having such a system C would
require that h maps κ onto κ+.

The function h“(x; C) provides a weak sense in which a covering set X is
generated by a function h ∈ K and a sequence C of indiscernibles:

4.17 Definition. Suppose that C is a system of indiscernibles and x is a
set. Then h“(x; C) is the smallest set X such that x ⊆ X and X = h“(X ∪⋃

γ∈XCγ).

Definition 4.17 is too weak, since it does not provide any bounds on the
size of the sets Cγ . The functions defined below are used in clause 4 of
Theorem 4.19 to describe a stronger sense in which X is generated by C:

4.18 Definition. If C is a g-coherent system of indiscernibles and X is a set
then we define

1. sC (γ, ξ) is the least member of Cγ − (ξ + 1).

2. sC
∗ (γ, ξ) is the least member of

⋃
γ′ ≥γCγ′ − (ξ + 1).

3. If λ is measurable in K and γ ≤ λ++K then an ordinal ξ is an accu-
mulation point of C in X for γ if the ordinals γ, ξ are in X, and the
set

⋃
{Cγ′ ′ : crit(Uγ′ ′ ) = λ and γ′ ′ ≥ γ′} is unbounded in X ∩ ξ for all

γ′ < γ in X ∩ g“ν.

4. aC,X(γ, ξ) is the least accumulation point of C in X for γ above ξ.

This definition of an accumulation point does not seem to be entirely
satisfactory, since it depends on the set X and the function g as well as on
the system C; however, clause 5 of Theorem 4.19 gives a sense in which the
functions sC and aC,X are, up to finite differences, independent of g, X and C.

4.19 Theorem (Covering Lemma for Sequences of Measures). Assume there
is no inner model of ∃κ (o(κ) = κ++). Let κ be a cardinal of the core model
K, and let κ̆ be a cardinal of K such that κ̆ ≥ max{κ, o(κ)}. Finally, let X
be a set such that κ �⊆ X = Y ∩Kκ̆ for some set Y such that Y ≺1 H(κ̆+)
and cf(κ)Y ⊆ Y .

Then there is an ordinal ρ < κ, a function h ∈ K, and a function C such
that

1. C is an h-coherent system of indiscernibles for K.

2. dom(C) ⊆ X and
⋃

γCγ ⊆ X.

3. X = h“(X ∩ ρ; C), and hence X ⊆ h“(ρ; C).

4. For all ν ∈ X ∩ κ, either ν ∈ h“(X ∩ ν) or else there is a γ such that
ν ∈ Cγ . In the latter case there is ξ ∈ X ∩ ν such that either

(a) ν = sC (γ, ξ) = sC
∗ (γ, ξ), or else
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(b) ν = aC,X(γ′, ξ) for some γ′ > γ in h“(X ∩ ν).

Furthermore, clause (a) holds if ν is a limit point of X.

5. If X ′ is another set satisfying the hypothesis of the theorem, then there
is a finite set a of ordinals such that for any ξ, γ ∈ X ∩ X ′ with
a ∩ crit(Uγ) ⊆ ξ and ξ > max{ρX , ρX′} we have

sC (γ, ξ) = sC ′
(γ, ξ)

sC
∗ (γ, ξ) = sC ′

∗ (γ, ξ)

aC,X(γ, ξ) = aC ′,X′
(γ, ξ)

whenever either is defined.

To see that Theorem 4.19 implies the Dodd-Jensen covering lemma as
a special case, notice that if K = L[U ] then C contains only a single set
C of indiscernibles for the unique measure U . Then clause 4 asserts that
ot(C) ≤ ω, and clause 5 asserts that C is maximal.

4.20 Remark. As with the Dodd-Jensen covering lemma, the hypothesis
cf(κ)X ⊆ X can be weakened: If cf(κ) < δ < κ and δ is the successor of
a regular cardinal, then there is an unbounded class C ⊆ Pδ(Kκ̆) of sets
X satisfying the conclusion of Theorem 4.19 such that if �X is an increasing
chain of members of C such that cf(κ) < cf(len( �X)) < κ then

⋃ �X ∈ C.

4.21 Remark. The assumption that cf(κ)Y ⊆ Y is used to ensure that
the measures on κ generated by C are members of X. As was pointed out
in observation 6 at the beginning of this section, this assumption can be
weakened to ωY ⊆ Y if o(κ) < κ+.

Similarly, if o(κ) < κ+ then Remark 4.20 can be improved to state that C
is closed under increasing unions of uncountable cofinality.

4.22 Remark. If every measurable limit point of X is a member of X
then the condition ρ < κ can be strengthened to ρ = inf(κ − X), so that
X = h“(ρ; C). In particular, ρ = inf(κ−X) whenever o(α) < inf(κ−X) for
all α < κ.

Introduction to the Proof

Before beginning to sketch the proof of the covering lemma we pause to look
at three complications and digressions:

1. It was pointed out earlier that in order to ensure that dom(C) ⊆ X we
are assuming that X ≺1 Kκ̆, rather than X ≺1 Kκ as in the last section.
This change, however, appears only in the very last step of the proof: until
then we work only with X ∩ Kκ and use arguments which closely parallel
those of the Dodd-Jensen covering lemma.

Similarly, this final step is the only place where the closure condition
cf(κ)Y ⊆ Y is used: up until then countable closure, ωY ⊆ Y , is all that is
needed.
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2. The proof we give is for the cf(κ)-closed case, with cf(κ)Y ⊆ Y , as in the
statement of Lemma 4.19. With one exception, the extension of the proof
to the stronger result of Remark 4.20 is relatively straightforward, using
the ideas outlined in the proof of the Dodd-Jensen covering lemma. The
exception is Lemma 4.28, and we will digress from the main line of the proof
to state Lemma 4.29, the analogue of Lemma 4.28 for the unclosed case, and
to sketch its proof. The reader may, if desired, skip this digression.

3. As was explained in Sect. 4.1 an essential complication arises from the
special role which the weak covering lemma plays in the definition of the core
model. Beyond 0†, the core model K is constructed in two stages: The first
stage constructs the countably complete core model Kc, for which iterability
is guaranteed (below the sharp for a class of strong cardinals) by the fact that
every full measure of Kc is countably complete in V . After Lemma 4.5 is
proved for Kc, the true model K is shown to be an elementary substructure
of Kc, so that the iterability of Kc implies the iterability of K.

Part 1 of the Proof

Here we give the first part of the proof of the covering lemma for the true
core model K. At the end of this subsection we will show how to adapt this
proof to prove the Weak Covering Lemma 4.5 for Kc. As in the proof of the
Dodd-Jensen covering lemma we begin with the following diagram:

M0
i

Mθ ⊇M
π̃

M̃ = Ultn(M,π, κ)

K
π

X ∩Kκ ≺1 Kκ

(18.18)

The construction of this diagram is identical to the construction for the
Dodd-Jensen covering lemma: Mθ is obtained as the last model of the iterated
ultrapower of M0 = K arising from the comparison of K with the transitive
collapse K of X ∩Kκ; and M̃ = Ultn(M,π, κ) where M is the largest initial
segment of Mθ, and n is the largest integer, such that the ultrapower is
defined.

The proof of the analogue of Lemma 3.51, which states that the construc-
tion of diagram (18.18) succeeds, is the same as for the Dodd-Jensen covering
lemma except for two items. The first is clause 3.51(3):

4.23 Claim. Either θ = 0 and M is a proper initial segment of M0 = K,
or else 1 is in the set D of drops in the iteration on M0. That is, either the
iteration is trivial or it drops immediately.

Proof. Set η = crit(π) and let ρ be least such that PK(ρ) �⊆ K. As in the
proof of Lemma 3.17 it will be sufficient to show that ρ ≤ η and that any
ultrafilter U in K −K has critical point crit(U) ≥ ρ.
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We will show the second half first: suppose to the contrary that U ∈
K − K and τ = crit(U) < min{η, ρ}. Evidently η > τ+K , since otherwise
τ+K

> τ+K , which contradicts the assumption that PK(τ) ⊆ K. Then
η ≥ τ++K , and since K |= o(τ) < τ++ it follows that oK(τ) < η. Thus
o(τ) = π(oK(τ)) = oK(τ) and o(τ) ⊆ ran(π), which implies that every
measure on τ in K is in K, contradicting the choice of U .

Now suppose that ρ > η, that is, that PK(η) ⊆ K. Then the filter
U = {x ⊆ τ : η ∈ π(x)} is a normal ultrafilter on PK(τ), and hence is a

member of K. Now factor π into π : K
iU

−→ Ult(K,U) k−→ K and apply
the argument from the last paragraph to the map k to conclude that every
ultrafilter on η in K is in Ult(K,U). In particular U � U , which is impossible
since � is well-founded. �

The second item to consider is clause 3.51(2):

4.24 Claim. The model K is not moved in the comparison of K with K.

Proof. Since the iterated ultrapower on K drops, that on K does not. Sup-
pose for the sake of contradiction that the claim is false, and let ν be
the least stage at which the iterated ultrapower on K is nontrivial. Thus
Nν = N0 = K, and Nν+1 = Ult(K,U) for some measure U = UK

γ which
is not in the νth model Mν of the iteration on K. If U is an ultrafilter on
Mν then set Mν = Mν ; otherwise let Mν be the largest initial segment of
Mν such that every set in Mν is measured by U . In either case U is an
Mν-ultrafilter, and Mν is a mouse with projectum at most crit(U).

First we show that Ultn(Mν , U) is iterable, where n is largest for which the
ultrapower is defined. To see this, let μ = crit(U) and note that π(U) = Uπ(γ)

is a measure on π(μ) in K, while M̃ν = Ultn(Mν , π, π(μ) + 1) is an initial
segment of K by the same argument as for M̃ = M̃θ. Since Uπ(γ) is a full mea-
sure in K it follows that Ultn(M̃n,Uπ(γ)) is iterable. Then Ultn(Mν , U) must
also be iterable, since it can be embedded into Ultn(M̃n,Uπ(γ)) and hence any
witness to the contrary could be copied to a witness that Ultn(M̃ν ,Uπ(γ)) is
not iterable.

Thus we can use iterated ultrapowers to compare the models Mν and
Ultn(Mν , U). An argument like that for Lemma 3.39 shows that neither of
the two iterated ultrapowers drops and that they have the same last model
N , giving rise to the following diagram, where s and t are the embeddings of
the two iterated ultrapowers.

Mν
s

iU

N

Ultn(Mν , U)

t (18.19)
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Furthermore diagram (18.19) commutes, since every member of Mν can be
written as hMν

n+1(ξ) for some ξ < μ, and both of the embeddings s and tiU are
the identity on μ and both embeddings map hMν

n+1 to hN
n+1 by Lemma 3.26.

It follows that crit(s) = crit(tiU ) = μ, so that the ultrapower s on Mν starts
with an ultrapower using a measure UMν

γ . Furthermore, for every set x ⊆ κ

in Mν we have x ∈ U ⇐⇒ μ ∈ tiU (x) ⇐⇒ μ ∈ i(x) ⇐⇒ x ∈ UMν
γ . Thus

U = UMν
γ ∈Mν . �

This completes part one of the proof of the covering lemma for K, and we
are now ready to prove the Weak Covering Lemma 4.5 for Kc:

Proof of Lemma 4.5. The proof is similar to the proof of the weak covering
lemma for Kdj. Suppose to the contrary that λ is a singular cardinal with
μω < λ for all μ < λ, and that κ = λ+Kc

< λ+. Then cf(κ) < λ, and
hence there is a set X ≺1 Kκ, cofinal in κ, such that λ �⊆ X, ωX ⊆ X
and if η = min(λ −X) then cf(η) = ω1. The final condition is obtained by
constructing X as the union of an increasing chain of sets of length ω1.

Now apply the construction above of part one of the proof to the set X,
using Kc for K. The constraint cf(η) = ω1 is needed to ensure that the
measure U of the first paragraph of the proof of Claim 4.23 would be in Kc

if it existed.
Now, as in the proof of the weak covering lemma for Kdj, the fact that κ =

(λ+)Kc
implies that the set of indiscernibles generated by the construction

is bounded by λ + 1. It follows that X = hX“(X ∩ λ), which is impossible
since it would imply that cfKc

(λ+Kc

) ≤ λ. This contradiction completes the
proof of Lemma 4.5. �

We now turn to the main subject of this section, the analysis of indis-
cernibles which will complete the proof of the full covering lemma.

Part 2 of the Proof: Analyzing the Indiscernibles

As in the proof of the Dodd-Jensen covering lemma, the M̃ = Ultn(M,π, κ)
of diagram (18.18) is a mouse in K. It follows that M̃ is an initial segment
of K; that is, M̃ = Jα̃[U�α̃] for some ordinal α̃ < κ+.

Still following the proof of the Dodd-Jensen covering lemma, let ν0 be the
largest member of the set D of drops, and let ρ̄ < κ̄ be the Σn projectum of
M ∗

ν0+1 and hence of Mν for every ordinal ν in the interval ν0 < ν ≤ θ. The
ordinal ρ required by Lemma 4.19 must satisfy

ρ ≥ sup(π“ρ̄). (A)

In the proof of the Dodd-Jensen covering lemma we could set ρ = sup(π“ρ̄),
but in the present proof there are several other things which can go wrong,
and each of these will determine a separate lower bound for ρ. Rather than
specifying ρ at this point we will, at various points during the course of the
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proof, specify a series (A)–(E) of lower bounds on ρ. At any point in the
proof we will assume that ρ is an ordinal less than κ which satisfies all the
lower bounds specified up to that point.

Let C be the system of indiscernibles on K given by the iteration of K,
and define C̃ with dom(C̃) = π̃“ dom(C) by setting C̃π̃(γ) = π“Cγ − ρ for
each γ ∈ dom(C). This is nearly the desired set of indiscernibles: it is
an h̃-coherent system of indiscernibles at least for ran(π̃), and X ∩ Kκ =
Kκ ∩π“h(ρ̄∩X; C) = Kκ ∩ h̃(X ∩ ρ; C̃) where h̃ is the Skolem function of M̃ .

In order to convert C̃ into a system of indiscernibles for K we will show that
C̃ generates a sequence of normal ultrafilters U∗

γ on K such that Ult(K,U)
is well-founded. It will follow that U∗

γ is equal to some full measure Uτ(γ) in
K, and will define a sequence C of indiscernibles for K by setting Cτ(γ) = C∗

γ .
Finally, in order to show that C is a sequence of indiscernibles, we will use
the assumption cf(κ)Y ⊆ Y to show that the range of τ is contained in Y , and
obtain the required function h by combining h̃ with a function g obtained by
applying the covering lemma to X ∩ (κ̆− κ).

The coherence function Cohγ′

γ, was defined in Definition 4.14. Note that
this definition does make sense even though the measures Uγ′ and Uγ are
partial in K, and are full measures only in M̃ .

4.25 Definition. Define the relation ν ∈γ x, for x ∈ K and γ an ordinal, as
follows:

ν ∈γ x ⇐⇒

⎧
⎪⎨

⎪⎩

ν ∈ x if ν ∈ C̃γ

x ∩ ν ∈ Uγ′ ′ if ν ∈ Cγ′ where γ < γ′ and γ′ ′ = Cohγ,γ′ (ν)
undefined otherwise

4.26 Definition. If γ ∈ dom(C̃) then define

C+
γ =

⋃
{C̃γ′ : γ′ ≥ γ & crit(Ũγ′ ) = crit(Uγ)}.

If C+
γ is cofinal in crit(Uγ), then we write U∗

γ for the set of x ∈ PK(crit(Uγ))
such that ν ∈γ x for all sufficiently large ν ∈ C+

γ .

In order to show that the filters U∗
γ are K-ultrafilters we use the idea of

an indiscernible sequence:

4.27 Definition. A sequence �α = 〈αn : n < ω〉 is a C̃-indiscernible sequence
for �γ = 〈γn : n < ω〉 if �α is strictly increasing, αn ∈ C̃γn for all but fi-
nitely many n < ω, and either (i) supn(γn) = supn(αn), or (ii) crit(Uγn) =
supn∈ω(αn) for all n < ω.

The following lemma corresponds to the argument that CX is a Prikry
sequence in the proof of the Dodd-Jensen covering lemma.

4.28 Lemma. If �α is a C̃-indiscernible sequence for �γ in C̃ then for any
function f ∈ K there is an n0 < ω such that:
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1. If n0 ≤ n < n′ < ω and crit(Uγn′ ) < γm ≤ min{γn, γn′}, then for all
ξ < αn we have αn ∈γm f(ξ) ⇐⇒ αn′ ∈γm f(ξ).

2. If n0 < n and γn < κ then for all ξ < αn we have αn ∈ f(ξ) if and
only if f(ξ) ∩ crit(Uγn) ∈ Uγn .

Proof. Suppose that the lemma fails for some C̃-indiscernible sequence �α for
�γ. The assertion that clause 2 fails uses parameters �α and {γn : γn < κ},
both of which are contained in X, and since ωY ⊆ Y it follows that both
parameters are members of Y . By elementarity it follows that there is such a
function f which is a member of Y . Then f ∈ ran(π̃) by Proposition 3.63, so
π̃−1(f) is in M and contradicts the fact that C̄ is a sequence of indiscernibles
for M .

For clause 1, define γn′,n = Cohγn′ ,γn(αn) whenever this is defined. Then
the statement “αn ∈γm f(ξ)” is equivalent to the statement “Either γn = γm

and αn ∈ f(ξ) or else γm,n is defined and f(ξ) ∩ αn ∈ Uγm,n”, so the
statement that the lemma does not hold for �α, �γ and f can be stated using
as parameters �α, the ordinals γn′,n, and {(n, n′) ∈ ω2 : γn = γn′}. All of
these are contained in X, so the same argument as in the last paragraph
yields a contradiction. �

Before using Lemma 4.28 to show that the sets U∗ are K-ultrafilters, we
digress to look at the analog of Lemma 4.28 for the case when X is not
countably closed.

Digression for Non-Countably Closed Sets X

It was pointed out in the introduction to the proof of Theorem 4.19 that
Lemma 4.28 is the one point in the proof where a new idea, beyond those
presented in the proof of the Dodd-Jensen covering lemma, is needed in order
to strengthen Theorem 4.19 as in Remark 4.20 by removing the assumption
that X = Y ∩ Kκ̆ for some countably closed set Y . Lemma 4.29 below
substitutes for Lemma 4.28 in this case. Lemma 4.29 and its proof may
be skipped without affecting the proof of the covering lemma as stated in
Theorem 4.19.

4.29 Lemma. Suppose that δ = τ+ where τ is a uncountable regular cardinal,
and let C be the set of X ∈ Pδ(Kκ̆) such that CX satisfies Lemma 4.28. Then
C is unbounded in X ∈ Pδ(Kκ̆) and is closed under unions of increasing
sequences of uncountable cofinality.

Note that the requirement on δ is stronger than is needed for the corre-
sponding results in the proof of the Dodd-Jensen covering lemma, for which
δ could be any uncountable cardinal.

Sketch of Proof. The proof of the following analogue of Lemma 3.58 is direct:
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4.30 Lemma. If X0 ⊆ X1, and �α and �γ are sequences with range contained
in X0 such that �α is a CX1-indiscernible sequence for �γ, then �α is also a CX0-
indiscernible sequence for �γ.

As in the Dodd-Jensen covering lemma, it easily follows that C is closed
under increasing unions of uncountable cofinality. Thus we only need to prove
that C is unbounded.

Let S be the set of σ ∈ Col(δ,Kλ) such that cf(dom(σ)) = τ and ran(σ)
fails to satisfy Lemma 4.28. As in the Dodd-Jensen covering lemma, we will
finish the proof of Lemma 4.29 by showing that S is nonstationary. Suppose
toward a contradiction that S is stationary, and for each function σ ∈ S let �ασ

and �γσ be sequences which witness that Lemma 4.29 fails for Xσ = ran(σ);
that is, �ασ is a Cσ-indiscernible sequence for �γσ, but �α and �γ fail to satisfy
one of clauses 1 or 2 of Lemma 4.28. Now continue following the proof of
Lemma 3.60, which was the analog in the proof of the Dodd-Jensen covering
lemma of Lemma 4.29: Let Aσ be the set

{
�ασ, {γσ

n : γσ
n < κ}, {(n′, n) : γσ

n′,n is defined}, {(n′, n) : γσ
n′ = γσ

n}
}

of parameters used in the proof of Lemma 4.28, and find σ0 ∈ S and a sta-
tionary set S0 ⊆ S so that σ ⊇ σ0 and Aσ ⊆ ran(σ0) for all σ ∈ S0.

Recall that the key point in the proof of Lemma 3.60 was that, because
Cσ ⊆∗ Cσ0 for every σ ∈ S0, each of the sets Cσ were determined (up to
a finite set) by the subset Dσ = Cσ0 − Cσ of Cσ0 . The key step in the
current proof is to use Fodor’s Lemma and the hypothesis that δ = τ+ to
find a set Z which fills the role of Cσ0 . Toward this end, choose an function
k : τ ∼= dom(σ0) < τ+. Since cf(τ) > ω there is, for each σ ∈ S, an ordinal
ξσ < τ such that

⋃
Aσ ⊆ σ0k“ξσ. By Fodor’s Lemma there is a stationary

subset S′
0 ⊆ S0 such that ξσ is constant, say ξσ = ξ for each σ ∈ S′

0. Set
Z = (σ0 ◦ k)“ξ, so that |Z| < τ and

⋃
Aσ ⊆ Z for every σ ∈ S′

0.
The rest of the proof parallels the proof of Lemma 3.60 for the Dodd-

Jensen covering lemma. First define, for each σ ∈ S′
0, a set w(σ) which

witnesses that the restriction of C̃ to Z is as large as possible. This set is
obtained by modifying Definition 3.18 as follows: Set the support βσ of w(σ)
to be βσ = max{sup(Z), ρσ +1} < κ, and replace the requirement that w(σ)
be countable with the condition |w(σ)| = |Z|. Finally, modify clause 3 of
Definition 3.18 to state that mσ = dir lim(w(σ)) is the Σn-code of a mouse
of K, and there is a function f = fσ which is Σ1-definable in mσ such that
(i) for any α, γ ∈ Z such that γ < κ and α /∈ C̃σ(γ), there is a set x ∈ f“α
such that x ∈ U(γ) but α /∈ x, and (ii) for any α < α′ in Z which are not
members of the same set Cσ(γ), there is x ∈ f“(α ∩ w(σ)) such that α ∈ x
and α′ /∈ x.

Thus w(σ) gives a complete description of the restriction of Cσ to Z.
Now, since |w(σ)| = |Z| < τ and cf(dom(σ)) = τ for every member σ of

S′
0, Lemma 3.23 implies that there is σ1 ∈ S′

0 and a stationary set S1 ⊆ S′
0

such that if σ ∈ S1 then σ1 ⊆ σ and w(σ) ⊆ ran(σ1). By shrinking S1 further,
if necessary, we can ensure that βσ = β is constant for σ ∈ S1.
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Now since S1 is unbounded and the sequences �ασ1 and �γσ1 do not sat-
isfy the conclusion of Lemma 4.28, there is some σ ∈ S1 with a function
f ∈ ran(σ) which witnesses this failure. It follows that �ασ1 is not a C̃σ-
indiscernible sequence, and by the definition of w(σ) it follows that there
is a function f ′ which is Σ1-definable in dir lim(w(σ)) which witnesses this
failure. Now w(σ) ⊆ ran(σ1), and it follows that dir lim(w(σ)) ⊆ M̃σ1 . To
see this, notice that m̄ = dir lim((πσ1)−1w(σ)) ⊆ M , since every subset of
ρ̄ = (πσ1)−1(ρσ1) in m is a member of M and there is a subset of ρ̄ definable
in M which is not a member of M .

Thus �ασ1 is not a C̃σ1 -indiscernible sequence for �γσ1 . This contradicts the
choice of �ασ1 and �γσ1 , and hence completes the proof of Lemma 4.29. �

Continuation of the Main Proof

This completes the digression for non-countably closed covering sets X, and
we now return to the basic proof of the covering lemma.

4.31 Lemma. Suppose that C+(γ) is cofinal in α = crit(Uγ). Then U∗
γ is

a normal ultrafilter on K, and Ult(K,U∗
γ ) is well-founded. Hence U∗

γ = Uτ(γ)

in K for some ordinal τ(γ).
Furthermore, for any function f ∈ K there is an η < α such that

∀ν, γ
(
η < ν < α < γ & ν ∈ C+

γ

=⇒ ∀ξ < ν (ν ∈γ f(ξ) ⇐⇒ f(ξ) ∈ U∗
γ )
)
. (18.20)

We break up the proof of Lemma 4.31 into two parts, depending on the
cofinality of α.

4.32 Lemma. The conclusion of Lemma 4.31 holds whenever cf(α) = ω.
Furthermore if α < κ then τ(γ) = γ, and if α = κ then τ(γ) ∈ Y .

Proof. In this case everything except the existence of τ(γ) follows imme-
diately from Lemma 4.28, as any counterexample could be witnessed by a
C̃-indiscernible sequence. The assertion that τ(γ) = γ if α < κ follows from
clause 2 of that lemma, and the assertion that τ(γ) ∈ Y if γ > κ follows from
its proof.

The existence of τ(γ) follows from Corollary 4.13, which states that U∗
γ is

equal to some full measure Uγ′ on the K-sequence provided that Ult(K,U∗
γ )

is well-founded. If it is not well-founded then there are functions fn ∈
K ∩ H(α+) such that [fn+1]U ∗

γ
< [fn]U ∗

γ
for each n < ω. As in the proof

of Lemma 4.28 we can assert this condition on the functions fn by a state-
ment in Y , and by elementarity there must be such a sequence in Y . This
is impossible, as it would imply that Ult(M, π̃−1(Uγ)) is ill-founded, but
π̃−1(Uγ) = UM

π−1(γ) ∈ M , and hence Ult(M, π̃−1(Uγ)) must be well-founded
since M is an iterable model obtained by an iteration on K. �

Before proving Lemma 4.31 when cf(α) > ω we need to make the following
important observation:
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4.33 Lemma. Suppose �α is an increasing sequence with αn ∈ C̃γn for each
n < ω, and that crit(Uγn) = α for all n < ω. If α′ = limn αn < α then
α′ ∈ C̃γ′ for some γ′ ≥ lim sup{γn + 1 : n < ω}.

Proof. We can assume that γn < lim supm<ω(γm +1) for all n < ω. We want
to use Lemma 4.32, using α′ for α. This can be done by using X ∩ Kα̌′ ,
which is a suitable set for the covering lemma at α′. The iteration used
in the construction of diagram (18.18) for X ∩ Kα̌′ is an initial segment
of that for X: let θ′ be the least ordinal such that crit(iθ′,θ) > π−1(α′)
where the embeddings iξ′,ξ come from the iteration of K with last model
Mθ. The first θ′ stages of this iteration are exactly those which are used in
the proof of the covering lemma for α′, using the suitable set X ∩Kα̌′ . By
Lemma 4.32 it follows that this sequence generates measures Uγ′ , with critical
point α′, on the K-sequence; and furthermore Uγ′ ∈ X since it is generated
by countable sequences contained in X. Now the embedding iθ′,θ′+1 comes
from an ultrapower of Mθ′ using a measure UM ′

θ

γ̄′ larger than all of those in N .
Thus γ̄′ > π−1(γ′

n) for each n < ω. But γn = π̃iθ′,θ(π−1(γ′
n)) and α′ ∈ C̃γ′

where γ′ = π̃iθ′,θ(γ̄′). Thus γ′ > γn for each n < ω. �

Proof of 4.31 for cf(α) > ω. Suppose that cf(α) > ω. We will first prove
that for any function f ∈ K there is an η satisfying (18.20).

Suppose to the contrary that f is a function for which no η exists as
required. Define sequences ξn, νn and γn so that �γ is nondecreasing, ξn <
νn ∈ C+

γn
, and νn ∈γn f(ξn) ⇐⇒/ f(ξn) ∈ U∗

γn
but for all ν ∈ C+

γn
− νn+1 we

have ν ∈γn f(ξn) ⇐⇒ f(ξn) ∈ U∗
γn

.
Now set α′ = supn(νn). By Lemma 4.33 α′ ∈ Cγ′ for some γ′ ≥

supn(γn + 1), and if we set γ′
n = Cohγn,γ′ (νn) then �ν is a C̃-indiscernible

sequence for �γ′. Hence the lemma fails at α′, contradicting Lemma 4.32.
A similar argument shows that U∗

γ is normal.
Finally U∗

γ is countably complete when cf(α) > ω, so Ult(K,U∗
γ ) is well-

founded. Hence Corollary 4.13 implies that U∗
γ = Uτ(γ) for some ordinal τ(γ).

�

We are now ready to specify the second and third of the lower bounds
on ρ:

ρ > sup{γ ∈ dom(U∗) ∩ κ : Uγ �= U∗
γ}. (B)

Condition (B) holds for all sufficiently large ρ < κ since Lemma 4.28
implies that {crit(U∗

γ ) : Uγ �= U∗
γ} is finite.

ρ > sup
⋃
{C̃γ : κ < γ & U∗

γ is not defined}. (C)

To see that the right-hand side of condition (C) is smaller than κ, suppose to
the contrary that there is a cofinal set C ⊆ κ such that for each ν ∈ C there is
γν > κ such that ν ∈ C̃γν and U∗

γν
is not defined. By taking a subsequence if

necessary, we can assume that 〈γν : ν ∈ C〉 is nondecreasing, but this implies
that U∗

γν
is defined for each ν ∈ C.
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Conditions (B) and (C) enable us to complete the definition of C:

4.34 Definition. If γ ∈ dom C̃ then let τ(γ) be the ordinal such that U∗
γ =

Uτ(γ).
Define C by setting Cτ(γ) = C̃γ for all γ such that τ(σ) is defined.

Condition (A) ensures that τ(γ) = γ for all γ < κ. We now make our
single use of the assumption that X is cf(κ)-closed, that is, that X = Y ∩Kκ̆

for some Y ≺ H(λ) with cf(κ)Y ⊆ Y

4.35 Claim. If U∗
γ is defined then U∗

γ ∈ X, and hence τ(β) ∈ X.

Proof. As in the proof of Lemma 4.28, the filter U∗
γ is generated in X by

any cofinal subsequence of C+
γ . Since cf(κ)κ ⊆ Y , there is such a subsequence

in Y . �

4.36 Remark. If o(κ) < κ+K then the assumption that X is cf(κ)-closed
is unnecessary, for in that case there is a partition of κ into disjoint sets
〈Aβ : β < o(κ)〉 such that Aβ ∈ U(κ, β) for each β < o(κ). If �A ∈ Y then
there is an η < κ so that C(κ, β)−Aβ ⊆ η for all β < o(κ). If ν ∈ C(κ, β)− η

then β is definable from �A as the unique ordinal β such that ν ∈ Aβ , so
Claim 4.35 holds for all X = Y ∩Kκ̆ with �A ∈ Y .

It is easy to see from the construction that C is a sequence of indiscernibles
for K. Thus C satisfies clauses 1 and 2 of Theorem 4.19.

4.37 Claim. There is a function g ∈ K such that X ⊆ g“(X ∩ κ).

Proof. Apply the proof of the covering lemma to the full set X ≺1 Kκ̆ (rather
than to X ∩ Kκ). Notice that, as in the proof of Lemma 4.5, there are no
measurable cardinals in the interval (κ, κ̆] and hence any indiscernibles which
come up in the construction must be smaller than κ. It follows, just as in the
proof of the covering lemma for L, that there is a function g ∈ K such that
X = g“(X ∩ κ). �

We now put the fourth lower bound on ρ:

ρ > sup
{
ν : ∃β (ν ∈ C(κ, β) ∧ β /∈ g“(X ∩ ν))

}
. (D)

The following claim justifies this bound:

4.38 Claim. There is an ordinal η < κ such that γ ∈ g“(X ∩ ν) whenever
γ > κ and η < ν ∈ Cγ

Proof. Define, in K, a disjoint sequence of sets 〈Aγ : γ ∈ ran(g)〉 such that
Aγ ∈ Uγ whenever γ ∈ ran(g) and Uγ is a full ultrafilter on κ in K. By
Lemma 4.31 there is an η < κ so that for all γ ∈ dom(C)−κ and all ν ∈ Cγ−η
and ξ < ν we have ν ∈ Ag(ξ) ⇐⇒ Ag(ξ) ∈ Uγ . Since the diagonal union
B = {ν < κ : ∃ξ < ν ν ∈ Ag(ξ)} is a member of each measure Ug(ξ), we can
also assume

⋃
{Cγ − η : γ ∈ ran(g)} ⊆ B. It follows that this choice of η will

satisfy the statement of the lemma. �
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This completes the proof of the first three clauses of Theorem 4.19. For
the rest of the proof of the theorem it will be convenient to use the notation
U(α, β), which explicitly names the critical point of the measure, rather than
the notation Uγ . In doing so we will consistently adjust the notation de-
scribed earlier by replacing γ with the pair (α, β): for example, we will write
sC (α, β, ξ) instead of sC (γ, ξ), we will say that �ν is an indiscernible sequence
for (�α, �β) instead of �γ, and we will write Cohα,β,β′ for the coherence function
relating U(α, β) and U(α, β′).

It will also be useful to have a notion of an indiscernible sequence which,
like that of a Prikry sequence, depends directly on the sequence U of measures
rather than on a system of indiscernibles.

4.39 Definition. We say that �ν is an indiscernible sequence for (�α, �β) if
(i) �ν is a strictly increasing sequence of ordinals of length ω, (ii) either
supn(νn) = supn(αn) or else αn = supn(νn) for all n, and (iii) for any
function f ∈ K there is n0 < ω such that ∀n > n0∀ξ < αn (νn ∈ f(ξ) ⇐⇒
f(ξ) ∩ αn ∈ Uαn,βn).

Notice that Lemma 4.28 implies that any C̃-indiscernible sequence for
(�α, �β) is an indiscernible sequence for (�α, �β′) where β′

n = τ(βn).
In the rest of this proof we will say �ν <∗ �ν′ to mean that νn < ν′

n for all
but finitely many n < ω; and we will use >∗, ≤∗ and ≥∗ similarly.

We will first prove clause 4 of Theorem 4.19 in the case when cf(ν) = ω.
Suppose that ν ∈ Cα,β ; we want to show that there is an ξ < ν so that
ν = s(α, β, ξ) = s∗(α, β, ξ). If this is not so then there is a cofinal sequence
of ordinals νn ∈ Cα,βn with βn ≥ β, and this contradicts Lemma 4.33 which
implies that β ≥ lim supn(βn + 1).

Now let ν ∈ Cα,β0 be arbitrary and let β1 be the largest ordinal such
that ν is an accumulation point in X for (α, β1). Then

⋃
β1≤β<o(α)C(α, β)

is bounded in ν ∩ X, say by ξ ∈ X ∩ ν. If β0 ≥ β1 then ν = s(α, β0, ξ) =
s∗(α, β0, ξ), so we can suppose that β0 < β1. We claim that there are only
finitely many accumulation points in X for (α, β1) in the interval (ξ, ν), so
that ν = a(α, β1, ξ

′) for some ξ′ in [ξ, ν) ∩X. If, to the contrary, there are
infinitely many such accumulation points, then let ν′ be the least member of
the interval (ξ, ν] which is a limit of accumulation points for (α, β1). Then
cf(ν′) = ω and it follows from the last paragraph that ν′ ∈ C(α, β′) for some
β′ ≥ β1, contradicting the choice of ξ. This contradiction completes the proof
of clause 4, except for the last sentence which states that ν = s(α, β0, ξ0) =
s∗(α, β0, ξ0) whenever ν is a limit point of X. We will defer the proof of this
for the case cf(ν) > ω until after the proof of clause 5, on which its proof
depends.

Notice that any increasing ω-sequence �ν of indiscernibles from C is an
indiscernible sequence for some �α, �β. To see this, suppose that νn ∈ C(αn, βn),
with αn, βn ∈ g“νn. If αn ≤ supn(νn) for each n, then �ν is an indiscernible
sequence for (�α, �β). Otherwise αn = α is constant for sufficiently large n
with αn > α′ = supn(νn), and Lemma 4.33 implies that α′ ∈ C(α, β) for
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some β < o(α) such that βn > β for all sufficiently large n < ω. Then �ν is
an indiscernible sequence for (�α′, �β′) where α′

n = α′ and β′
n = Cohα,βn,β(ga′)

for all n such that αn = α.
The proof of clause 5 relies on Lemma 4.28(2), which implies for any

sequences �ν, (�α, �β) ∈ X that �ν is a CX -indiscernible sequence for (�α, �β) if and
only if it is an indiscernible sequence for (�α, �β) in the sense of Definition 4.39;
and similarly for X ′. Suppose that clause 5 is false for the function sC . Then
we can assume, without loss of generality, that there are infinite sequences
�α, �β and �ξ in X∩X ′ such that for each n < ω we have (i) ν′

n = sC ′
(αn, βn, ξn)

exists, (ii) ξn+1 ≥ ν′
n, and (iii) sC (αn, βn, ξn) either does not exist or is strictly

larger than sC ′
(αn, βn, ξn). Then �ν′ is an indiscernible sequence for (�α, �β),

and since Y ≺ H(λ) it follows that Y satisfies that there is an indiscernible
sequence �ν for (�α, �β) such that νn > ξn for all n. Thus, by Lemma 4.28,
sC (αn, βn, ξn) exists for all but finitely many n < ω, so we can set νn =
sC (αn, βn, ξn). By the choice of �α, �β and �ξ, we must have �ν >∗ �ν′, but then
again Y satisfies that there is an indiscernible sequence ν′ ′ for (�α,�γ) such
that �ξ <∗ �ν′ ′ <∗ �ν, so that �ν′ ′ is an indiscernible sequence for (�α, �β) in C,
which contradicts the choice of �ν.

The proof of clause 5 for the function sC
∗ is similar, except that �ν′ is an

indiscernible sequence for some (�α, �β′) with �β′ ≥∗ �β, instead of for (�α, �β)
itself.

The proof that clause 5 holds for the function aC is similar but slightly more
complicated. We say that �ν is an accumulation point sequence for (�α,�γ) if for

all sequences �γ′ <∗ �γ and �ν′ <∗ �ν there are sequences �ν′ ′ and �β′ ′ with �ν′ <∗

�ν′ ′ <∗ �ν and �β′ ≤ �β′ ′ such that �ν′ ′ is an indiscernible sequence for (�α, �β′ ′). By
using the elementarity of Y and the fact that being an indiscernible sequence
is absolute between Y and V , it follows that being an accumulation point
sequence is also absolute between Y and V . The rest of clause 5 follows as
for the functions sC and sC

∗ .
This completes the proof of clause 5, and we now return to the proof of the

final sentence of clause 4, which states that if ν is any limit point of X such
that ν ∈ C(α, β) for some β < o(α) then ν = s(α, β, ξ) for some ξ ∈ X ∩ ν.
Let Z be the set of ordinals ν ∈ X ∩ lim(X) such that ν /∈ h“ν and there is
no α, β and ξ in X such that ν = s(α, β, ξ) = s∗(α, β, ξ).

We specify the last lower bound on ρ:

ρ ≥ sup(Z). (E)

This is justified by the following claim:

4.40 Claim. The set Z is finite.

Sketch of Proof. Suppose to the contrary that �ν is an increasing ω-sequence
of members of Z. Then α = supn(νn) /∈ Z since clause 4 holds for ordinals of
cofinality ω, so �ν is an indiscernible sequence in C for some pair (�α, �β) with
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αn ≤ α. Since νn ∈ Z, νn = aC(αn, β′
n, ξn) for some β′

n with βn < β′
n ≤ o(αn)

and ξn ∈ X ∩ νn.
Now proceed as in the proof of Lemma 4.33 for each of the ordinals νn.

Let Cn =
⋃
{C(αn, β) : βn ≤ β < β′

n} and for each ν ∈ Cn let βn,ν be the
ordinal β such that ν ∈ C(αn, β). Set �βn = 〈βn,ν : ν ∈ Cn〉. If the sequences
�Cn and �βn are in X then we can use the argument of Lemma 4.33 to conclude
that βn ≥ supν∈Cn

βn,ν , contrary to assumption.
To deal with the general case, pick a set X ′ = Y ′ ∩Kκ̆ as in the hypoth-

esis of the Covering Lemma 4.19 so that Cn ∈ Y ′ and �βn ∈ Y ′ for each
n < ω. Then the argument in the last paragraph shows that it cannot be
true that νn ∈ CX′

(αn, βn) and at the same time ν ∈ CX′
(αn, βn,ν) for un-

boundedly many ν ∈ Cn. But by clause 5, for sufficiently large n < ω we
have νn ∈ CX(αn, βn) =⇒ νn ∈ CX′

(αn, βn) and ν ∈ CX(αn, βn,ν) =⇒
ν ∈ CX′

(αn, βn,ν) for all ν ∈ Cn. This contradiction completes the proof of
Claim 4.40. �

This completes the proof of the last sentence of clause 4, which is the end
of the proof of Theorem 4.19, the covering lemma for sequences of measures.

4.3. The Singular Cardinal Hypothesis

We will now use Theorem 4.19 to establish the lower bound for the strength
of a failure of the Singular Cardinal Hypothesis:

4.41 Theorem (Gitik [17]). If there is a singular cardinal κ with 2κ >
max{κ+, 2cf(κ)} then there is a cardinal κ with o(κ) ≥ κ++ in K.

The proof combines the use of the covering lemma with two theorems from
Shelah’s pcf theory. The first can be found as Conclusion 5.10(2) on page
410 of [53].

4.42 Theorem. If κ is the least cardinal satisfying κcf(κ) > κ+ +2cf(κ) then
pp(κ) ≥ κ++, cf(κ) = ω, and ∀μ < κμω ≤ max{μ+, 2ω}.

We will assume that oK(κ) < κ++, where κ is given by the conclusion of
Theorem 4.42, and derive a contradiction. Note that the conclusion implies
that κ > 2ω and μω = μ for each cardinal μ of uncountable cofinality in the
interval 2ω ≤ μ < κ.

The statement that pp(κ) ≥ κ++ implies that there is a sequence �κ =
〈κn : n < ω〉 of regular cardinals smaller than κ, together with a sequence
�f = 〈fα : α < κ++〉 of functions in

∏
�κ which is <∗-increasing and <∗-

cofinal in
∏

�κ. We will call such a sequence a scale and will use it to derive
the contradiction. The first part of the proof will use the covering lemma
to obtain from the given scale a scale in which each of the functions fα is
what Gitik calls a diagonal sequence. The exact meaning of this term will be
given in Lemma 4.44 after some notation has been established, but a typical
example, requiring o(κn+1) ≥ κn for each n, would be a sequence f ∈

∏
�κ
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such that f(n + 1) = s∗(κn+1, f(n), κn) for each n < ω. This construction
requires separate covering sets for each sequence fα, and relies heavily on the
fact that any two such covering sets agree (on their common domain) for all
but finitely many κn. The final contradiction, however, requires finding an
appropriate collection of covering sets which agree for some particular fixed
κn, and for this a second result of Shelah will be needed. A proof is in Jech
[25, Lemma 24.10].

4.43 Lemma. If 〈fα : α < κ++〉 is a scale, then for each α < κ++ with
cf(α) = κ+ there is an exact upper bound (eub) of 〈fα′ : α′ < α〉; that is,
a function g ∈

∏
�κ such that fα′ <∗ g for all α′ < α, and for any function

g′ <∗ g there is an α′ < α such that g′ <∗ fα′ .

In what follows we say that a set X is a covering set if it satisfies the
hypothesis of the covering lemma, Theorem 4.19. All covering sets have car-
dinality 2ω unless stated otherwise. We will be using a number of different
covering sets, and will heavily use the next indiscernible function sX

∗ (κ, β, ξ)
and next accumulation point function aX(γ, β, ξ) from that lemma. These
functions depend on the choice of covering set X, but by clause 5 of Theo-
rem 4.19 there is, for any two covering sets X and X ′, an n0 < ω such that
the functions defined using the two sets agree (whenever the arguments are
in both sets) above κn0 . Keeping this in mind, we will normally simplify the
notation by omitting the superscripts X. In addition we will use a standard,
fixed covering set X for many of our calculations, but we will want this set
to include a number of objects which are not defined until later in the course
of the proof. To see that we can do so without loss of generality, note that if
some desired object is not a member of X then we can choose a new, larger
covering set X ′ which does include it. If we were to redo the proof up to this
point using X ′ instead of X then there is some n < ω such that the X agrees
with X ′ about indiscernibles above κn, and hence about everything defined
in the proof so far which lies above κn. In this case we can throw out a finite
initial segment �κ�n + 1 of the sequence �κ. By restricting the functions fα in
the original scale to this reduced sequence we obtain a scale for which X and
X ′ agree. This will cause no problems so long as it occurs only finitely often.

We begin by assuming that {�κ, �f} ⊆ X. Set κ′
n = min(hX“κn), so κn ≤

κ′
n ≤ κ. If κ′

n > κn then κn will be an indiscernible for κ′
n. Let βn ≤ o(κn)

be the largest ordinal such that κn is an accumulation point for (κ′
n, βn) in

CX , noting that Definition 4.18 of an accumulation point makes perfectly
good sense even if κ′

n = κn. Pick g∗(n) < κn in X large enough that
κ′

n ∈ hX“g∗(n),
⋃

β≥βn
Cκ′

n,β ⊂ g∗(n), and CX has no accumulation points
for (κ′

n, βn) in κn − g∗(n). The latter is possible because it follows from
cf(κn) > ω that there are only boundedly many accumulation points for
(κ′

n, βn) below κn

Now choose, for each α < κ++, a covering set Xα with fα ∈ Xα. Since
o(κ) < κ++ implies that there are only κ+ many possible Skolem functions
hXα , there is a function h such that {α < κ+ : hXα = h} is cofinal in κ++.
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By throwing away the rest of the sequence �f we can assume without loss of
generality that hXα = h for all α < κ++. Similarly we can assume that there
is an n0 < ω such that ρXα = ρ is constant and that the ordinals κ′

n, βn and
g∗(n) computed using any Xα are the same as those computed using X for
all n > n0. By cutting off the start of the sequence �κ we can assume that
n0 = 0. We will also assume that h ∈ X.

Define, for each α < κ++, a function f ′
α by taking f ′

α(n) to be the least
ordinal ξ ≤ fα(n) such that κ′

n∩hX“({κ′
n}∪ (ξ +1)) �⊆ fα(n). The functions

f ′
α are unbounded in

∏
n κn: to see this, let g be any member of

∏
�κ and

pick α so that fα(n) > sup(κn ∩ h“g(n)) for almost all n. Then f ′
α >∗ g.

Thus we can assume that f ′
α = fα for all α, which implies that fα(n) is an

indiscernible in Cκ′
n,β for some β < o(κ′

n). We now show that we can assume
that the functions fα are what Gitik calls diagonal sequences:

4.44 Lemma. Under the assumptions of Theorem 4.42 there is a sequence
�κ of regular cardinals and a scale 〈fα : α < κ++〉 in

∏
�κ such that, using the

notation introduced above, cf(βn) = κn−1. Furthermore, if we fix continuous,
cofinal functions tn : κn−1 → βn, then each of the functions fα satisfies
fα(n) = s∗(κ′

n, tn(fα(n− 1)), g∗(n)) for almost all n.

Note that the cofinalities are computed in V , and the maps tn need not
be in K.

Proof. Each of the ordinals βn is a limit ordinal, for if βn = β + 1 then Cκ′
n,β

is cofinal in κn and Cκ′
n,β+1 ∩ κn ⊆ g∗(n), but this implies that cf(κn) = ω,

contrary to assumption.
For any α < κ++ we know that each of the ordinals fα(n) is equal to

either a(κ′
n, β, γ) or s(κ′

n, β, γ) for some γ < f(n) and β ∈ h“fα(n). Since
there is always some β′ ∈ βn ∩ h“fα(n) such that s∗(κ′

n, β, g∗(n)) is larger
than either of these, we can assume that fα(n) = s∗(κ′

n, βα,n, g∗(n)) for some
βα,n ∈ βn ∩ h“fα(n).

4.45 Claim. For any δ < κ there are at most finitely many n < ω such that
cf(βn) < δ; and there are at most finitely many n such that cf(βn) = κn.

Proof. First suppose that cf(βn) < δ < κ for all n in an infinite set A, and let
σn : cf(βn) → βn be cofinal maps. For each s ∈

∏
n∈A δn define gs ∈

∏
n∈A κn

(up to a finite set) by gs(n) = s∗(κ′
n, σn(s(n)), g∗(n)). Then the maps gs are

cofinal in
∏

n∈A κn, but this is impossible since
∏

n∈A κn has cofinality κ++

and there are at most δω < κ many functions gs.
Now suppose that cf(βn) = κn for all n in an infinite set A. We will

use the assumption that h ∈ X to show that for all α < κ++ we have
fα(n) < sup(X ∩κn) for all but finitely many n ∈ A. This is impossible since
|X| = 2ω < κn = cf(κn), and hence X ∩ κn is bounded in κn.

Recall that each fα is covered by the covering set Xα in the sense that
fα(n) = γk for some sequence 〈γ0, . . . , γk〉 of indiscernibles in CXα such that
for each i ≤ k either γi = s(αi, ηi, ξi) or γi = a(αi, ηi, ξi) for some αi, ηi and ξi
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in h“(ρ ∪ �γ�i). Let i ≤ κ be least such that γi ≥ sup(X∩κn). If αi < κn then
γi < αi < sup(X∩κn), contrary to the choice of i, so it must be that αi ≥ κn

which implies αi = κ′
n. In that case we have ηi < sup(βn ∩ h“(X ∩ κn)) and

ξi < sup(X ∩ κn). Thus we can find β > ηi in X ∩ βn and ξ > ξi in X ∩ κn,
and then γi ≤ s∗(κ′

n, β, ξ) < sup(X ∩ κn) for all n sufficiently large that X
agrees with Xα at κn. This again contradicts the choice of i. �

Now define D to be the smallest set such that each of the ordinals κn is
in D and D is closed under the function σ defined as follows: Suppose that
γ ∈ D, let γ′ be largest such that either γ′ = γ or γ ∈ Cγ′,β for some β,
and let β = β(γ) > 0 be the largest ordinal such that γ is an accumulation
point for (γ′, β). If cf(β) > ω then define σ(γ) = cf(β); otherwise leave σ(γ)
undefined.

4.46 Claim. ot(D) = ω.

Proof. Otherwise let δ be the least limit point of D. Then the set D′ = {γ ∈
D − δ : σ(γ) < δ} is infinite. Now consider a covering set X ′ ⊇ X of size δω

with δ ⊆ X. Then σX′
(γ) = σX(γ) for infinitely many of the γ ∈ D′, and

X ′ is cofinal in any γ with σX′
(γ) < δ. This contradicts the fact that every

γ ∈ D is regular. �

If γ ∈ D and σ(γ) is defined then let tγ : σ(γ) → β(γ) be continuous,
increasing and cofinal. Note that we do not assume that tγ ∈ K. Also let
g∗ ∗(γ) < γ be large enough that Cγ′,β ∩γ ⊆ g∗ ∗(γ) for all β ≥ β(γ). Define F
to be the set of functions f ∈

∏
D such that for all but finitely many γ ∈ D

such that σ(γ) is defined we have f(γ) = s(γ′, tγ(f(σ(γ)), g∗ ∗(γ))).

4.47 Claim. For each α < κ++ there is an f ∈ F such that fα <∗ f��κ.

Proof. Fix α < κ++, and work in the covering set Xα for fα. Define a
sequence of functions gk ∈

∏
D by recursion on k ∈ ω as follows: set g0(κn) =

fα(κn) for n < ω, and g0(γ) = 0 for γ ∈ D − �κ. Now define gk+1 so that the
inequalities

gk+1(γ) ≥ s∗(γ′, tγ(gk(σ(γ))), g∗ ∗(γ))
s∗(γ′, tγ(gk+1(σ(γ))), g∗ ∗(γ)) ≥ gk(γ)

hold for all γ ∈ D such that σ(γ) is defined. Then the function f ∈
∏

D
defined by f(γ) = supk(gk(γ)) is as required. �

Define a tree order on D by letting the immediate successors of a ordinal
γ′ ∈ D be the ordinals γ ∈ D such that γ′ = σ(γ). This tree is infinite and
finitely branching, so it has an infinite branch. This branch is an infinite
subset D′ ⊆ D such that σ(γ) = max(D′ ∩ γ) for each γ ∈ D′ − {min(D′)}.
This set D′ satisfies all of the original assumptions on �κ, and

∏
D′ has a scale

�f ′ of functions satisfying the equation

f ′
α(n) = s∗(κ′

n, tn(fα(n− 1)), g∗(n)) (18.21)
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for all α < κ++ and all sufficiently large n < ω, so the scale �f ′ consists of
diagonal sequences. This completes the proof of Lemma 4.44. �

Now modify the sequence �f by replacing the functions fα such that cf(α) =
κ+ with an exact upper bound (given by Lemma 4.43) of the sequence 〈fα′ :
α′ < α〉. These functions need not satisfy (18.21), but they do satisfy the
following:

4.48 Claim. If cf(α) = κ+ then fα(n) = a(κ′
n, tn(fα(n− 1)), g∗(n)) for all

but finitely many n < ω. Furthermore cf(fα(n)) > cf(fα(n−1)) for infinitely
many n < ω.

Note that we do not exclude the possibility that fα(n) is also equal to
s∗(κ′

n, βα,n, g∗(n)).

Proof. Let �ξ be any sequence such that ξn−1 < fα(n − 1) for almost all
n < ω. Since fα is an exact upper bound of �f�α, there is an α′ < α so
that fα(n − 1) > fα′ (n − 1) > ξn for almost all n. Then fα(n) > fα′ (n) ≥
s∗(κ′

n, tn(ξn), g∗(n)) for almost all n.
This shows that there is an accumulation point sequence �η for the sequence

〈(κ′
n, tn(fα(n− 1))) : n < ω〉 such that �η ≤∗ fα. We now show that no accu-

mulation point sequence �η can satisfy g∗(n) <∗ η(n) <∗ fα(n) for infinitely
many n. To this end let �η be any sequence such that fα(n) > ηn for almost all
n, and pick α′ < α so large that fα′ (n) > s∗(κn, tn(ηn−1), g∗(n)) for almost
all n. Then s∗(κ′

n, tn(fα′ (n− 1)), g∗(n)) = fα′ (n) > ηn for almost all n.
Finally, if cf(fα(n)) ≤ cf(fα(n − 1)) for all but finitely many n < ω then

the set {cf(fα(n)) : n < ω} is bounded by some δ < κ, but in this case∏
n fα(n) would have cofinality at most δω < κ, when in fact it has true

cofinality cf(α) = κ+. �

There is a certain tension implicit in the statement of Claim 4.48: the first
sentence appears to say that {s∗(κ′

n, tn(ξ), g∗(n)) : ξ < fα(n − 1)} is cofinal
in fα(n), but that would contradict the second sentence. This is not yet an
actual contradiction because the covering set in which s∗(κ′

n, tn(ξ), g∗(n)) is
evaluated varies with ξ. In the remainder of the proof we will realize this
contradiction. Towards this end, pick a set A ⊆ ω such that
{
α < κ++ : cf(α) = κ+ & A = {n : cf(fα(n)) > cf(fα(n− 1))}

}
(18.22)

has cardinality κ++, and then use the case (2ω)+ → (ω1)2ω of the Erdős-Rado
theorem to find an uncountable subset S of the set (18.22) and an n0 ∈ ω
such that fα′ (n) < fα(n) for all α′ < α in S and all n > n0. Let 〈δι : ι < ω1〉
enumerate S, set gι = fδι and write τn for supι<ω1

(gι(n)).
Enlarge the covering set X, if necessary, so that S ∪ {S} ⊆ X. Note

that {gι(n) : ι < ω1} ⊆ X for each n, so X is cofinal in τn. It follows by
the final sentence of Theorem 4.19.4 that τn = s(κ′

n, β′
n, g∗(n)) for some β′

n,
for all but finitely many n < ω, and that β′

n ≥ supι<ω1
(tn(gι(n − 1))). As
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a consequence we can work with indiscernibles for τn rather than for κ′
n, as

follows: Let t∗
n : τn → β′

n be defined by t∗
n(ξ) = Cohκ′

n,tn(ξ),β′
n
(τn). Then

s∗(κ′
n, tn(γ), g∗

n) = s∗(τn, t∗
n(γ), g∗

n).
For each n < ω let Yn be a covering set containing all of the data so

far which has τn−1 ⊆ Yn and |Yn| = |τn−1|ω ≤ τ+
n−1 ≤ κn−1 < τn. Define

maps dι,n(γ) by setting dι,n(γ) = sYn
∗ (τn, t∗

n(γ), g∗(n)) for each ordinal γ <
gι(n−1), and set d∗

ι,n = sup{dι,n(γ) : γ < gι(n−1)}. Notice that d∗
ι,n < gι(n)

for all n ∈ A. This is clear if the nondecreasing sequence 〈dι,n(γ) : γ < gι(n)〉
is eventually constant; and if it is not constant then cf(d∗

ι,n) = cf(gι(n−1)) <
cf(gι(n)), and since d∗

ι,n ≤ gι(n) it follows that d∗
ι,n < gι(n).

Fix, for each ι < ω1, some αι < δι and nι < ω so that d∗
ι,n < fαι(n) < gι(n)

for all n ≥ nι in A. Then for each ι < ω1 we have, for sufficiently large n < ω,

sYn
∗ (τn, t∗

n(fαι(n− 1)), g∗(n))

= dι,n(fαι(n− 1) ≤ d∗
n,γ < fαι = s

Xαι∗ (τn, t∗
n(fαι(n− 1)), g∗(n)).

(18.23)

By enlarging X if necessary, we can assume that all ordinals mentioned in
the inequality (18.23) are in X. Then for all n < ω there is ιn such that for
all ι > ιn

sYn
∗ (τn, t∗

n(fαι(n− 1)), g∗(n)) = sX
∗ (τn, t∗

n(fαι(n− 1)), g∗(n)) (18.24)

and for every ι < ω1 there is nι < ω such that for all n > nι

s
Xαι∗ (τn, t∗

n(fαι(n− 1)), g∗(n)) = sX
∗ (τn, t∗

n(fαι(n− 1)), g∗(n)). (18.25)

Now fix ι > supn<ω(ιn), and then pick n > nι large enough that inequal-
ity (18.23) holds for this n and ι. Then all three of (18.23), (18.24) and (18.25)
hold, and this contradiction completes the proof of Theorem 4.41.

4.4. The Covering Lemma for Extenders

This subsection is unevenly divided into three parts. The largest part con-
cerns the covering lemma up to 0¶, which is understood nearly as well as that
for sequences of measures. A smaller part covers the covering lemma for the
Steel core model, for which little is known beyond the weak covering lemma,
and the final part describes what is known beyond this. No proofs are given.
See [28] or chapter [57] for definitions and basic properties of extenders.

Up to a Strong Cardinal

This subsection covers the covering lemma when o(κ) > κ++ but 0¶ does not
exist; that is, when the core model contains extenders, but not overlapping
extenders. More information may be found in [23].

It was remarked in the introduction to Sect. 4 that the extension of the
covering lemma to this region involves two significant changes: one which
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is easy and largely notational, and another which is rather surprising. We
will begin with the notational considerations, which come into play whenever
extenders are present. These considerations are all that is needed for Theo-
rem 4.50, which deals with extenders of length less than κ+ω where κ is the
critical point of the extender. We will consider the more surprising change
following this theorem.

The first observation is that since there are no overlapping extenders,
the notations E(α, β) and o(α) are still meaningful: E(α, β) is the βth full
extender on α, and o(α) is the order type of the set of full extenders on α.
Some care is required in the use of this notation: it is not true, as it is
for sequences of measures, that E = E(α, β) implies oiE(E)(α) = β. For an
example of this, let E = E(α, β) where β ≥ α++, and let U be the associated
ultrafilter, that is, x ∈ U if and only if α ∈ iE(x). Then U = E(α, β′)
for some β′ < β. In fact E(α, β′) = Eγ′ where (since E(α, β′) is a measure)
γ′ = (α++)L[iU (E)]. There are β′ many ordinals γ′ ′ < γ′ such that Eγ′ ′ is a full
extender, so we must have β′ ≤ (α++)L[iU (E)]. Now {ν : o(ν) > ν++} ∈ U ,
so oiU (E)(α) > (α++)L[iU (E)]. Thus oiU (E)(α) > (α++)L[iU (E)] ≥ β′.

Because of this, it is not strictly true that comparisons of these models
use only linear iterations; however, the tree iterations which they do use have
a particularly simple form: there is a single trunk with no side branches of
length more than one, and furthermore each extender used in the iteration
tree is a member of (though not necessarily on the extender sequence of) the
model to which it is applied. These simple trees can be modified to obtain
linear iterations (cf. [2, 23]) or they can be handled directly without using
the stronger techniques required for larger extenders (cf. [59]). Schindler [50]
has extended such linearization techniques to work for cardinals below the
sharp for a class of strong cardinals, and it is not known how much further
they can be stretched.

Before we can state a covering lemma for models with extenders, we need to
develop some notation for dealing with indiscernibles for extenders. Consider
for contrast the more familiar case of indiscernibles for measures. If U is an
ultrafilter on κ in some model M , and i = iU : M → Ult(M,U) is the
canonical embedding, then κ is an indiscernible for i(U) in the sense that

∀x ∈ i“P(κ)
(
κ ∈ x ⇐⇒ i−1(x) ∈ U ⇐⇒ x ∈ i(U)

)
,

and κ generates Ult(M,U) in the sense that

Ult(M,U) = {iU (f)(κ) : f ∈M}.

Now let E be a (κ, λ)-extender, and let i = iE : M → Ult(M,E) be the
canonical embedding. In this case the role previously played by the ordinal κ
is played by the interval [κ, λ): if we write Ea for the ultrafilter corresponding
to a ∈ [λ]<ω then

∀x ∈ i“P(κ|a|)
(
a ∈ x ⇐⇒ i−1(x) ∈ Ea ⇐⇒ x ∈ i(Ea)

)
,
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and
Ult(M,E) = {i(f)(a) : f ∈M ∧ a ∈ [κ, λ)<ω}.

Thus a plays the role of an indiscernible for i(Ea) = i(E)i(a). Since i(a) = i“a
it will be sufficient to consider individual ordinals in the interval [κ, λ).

In the example above we regard the critical point κ of i as a principal
indiscernible for i(E), and we will call an ordinal α ∈ [κ, λ) the indiscernible
for i(E)i(α) belonging to κ. In order to extend these concepts to an iterated
ultrapower, we will write a system of indiscernibles for a model M = L[E ] as
a pair (C, b) of functions, where Cγ is the set of principal indiscernibles for
the extender Eγ and b(γ, α, ξ) is the indiscernible (if there is one) for (E(γ))ξ

which belongs to α. Here is the precise definition:

4.49 Definition. If i0,θ : M0 →Mθ = M is an iterated ultrapower then the
system (�C, b) of indiscernibles for Mθ generated by i0,θ is defined as follows:

1. α ∈ Cγ if and only if there are ν < ν′ ≤ θ such that α = crit(iν,ν′ )
and Eγ = EMν′

γ = iν,ν′ (Eν) where Eν is the extender such that Mν+1 =
Ult(Mν , Eν).

2. If α ∈ C(γ), with ν and ν′ as in clause 1, then b(γ, α, η) is defined if
and only if η ∈ i“[α, λ) where Eν is a (α, λ)-extender. In this case
b(γ, α, η) = i−1

ν,ν′ (η).

In order to obtain an abstract definition of a system of indiscernibles for
a model M = L[E ], without any assumption that the system came from an
iterated ultrapower, we replace clause 4.15(2) of Definition 4.15 of a system
of indiscernibles for sequences of measures with clause 2′ below.

2′ For any function f ∈ M there is a finite sequence �a of ordinals such
that if α ∈ C(γ), with �a∩ [α, γ) = ∅, and b̄ = b(γ, α, b), then b̄ ∈ x⇐⇒
x ∩ Vγ ∈ (E(γ))b.

Some obvious changes need to be made to the definition of a h-coherent
system of indiscernibles, and the definition of X = h“(ρ; C) needs to be
modified to h“(ρ; C, b).

4.50 Theorem (Covering Lemma for Short Extenders). Assume that n < ω
and that there is no inner model M such that {α < κ : oM (α) = α+n} is
unbounded in κ for any cardinal κ. Let κ be a cardinal of K, set λ = κ+n,
and suppose X = Y ∩Kλ where Y ≺ H(λ+) and cf(κ)Y ⊆ Y . Then there is
a pair (C, b), a function h ∈ K, and an ordinal ρ < κ such that

1. The pair (C, b) is a h-coherent system of indiscernibles for K.

2. dom(C) ∪ dom(b) ⊆ X, and ran(b) ∪
⋃

ran(C) ⊆ X.

3. For all ν ∈ X − ρ, one of the following four conditions hold:

(a) ν ∈ h“(X ∩ ν).
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(b) ν = sC (γ, ξ) for some ξ ∈ X ∩ ν and γ ∈ h“(X ∩ ν).

(c) ν = aC,X(γ, ξ) for some ξ ∈ X ∩ ν and γ ∈ h“(X ∩ ν). Further-
more, this clause never holds if ν is a limit point of X.

(d) ν = b(γ, α, a) for some α ∈ X ∩ ν and γ, a ∈ h“α.

4. If X ′ is another set satisfying the hypothesis of the theorem, and C′, b′,
X ′ satisfy clauses 1–4, then there is a finite set �d of ordinals such that
if ξ, γ ∈ X ∩X ′ with [ξ, γ) ∩ �d = ∅, then

sC (γ, ξ) ≤ sC ′
(γ, ξ)

aC,X(γ, ξ) ≤ aC ′,X′
(γ, ξ)

b(γ, α, ν) = b′(γ, α, ν).

In particular, the left side of the above relations is defined whenever the
right side is defined.

Longer extenders require the second, and more interesting, modification to
the covering lemma which was alluded to in observation 7 at the beginning
of this section: an extender can not necessarily be reconstructed from its
countable sequences of indiscernibles. Again we contrast indiscernibles for
extenders with those for measures. Suppose that M is a model of set theory
and C ⊆ κ is an ω-sequence of indiscernibles for M , in the sense that U =
{x ⊆ κ : C − x is finite} is a normal M -ultrafilter on κ. Then the added
hypothesis ωM ⊆M implies that C ∈M , so that U ∈M and hence U ∈ KM .

Now if (C, b) is similarly a system of indiscernibles for a M -extender E,
then the situation is more complicated. Again, C is an ω-sequence of indis-
cernibles which generates the normal measure U = Eκ associated with E.
In fact all of the ultrafilters Ea are members of M , since Ea is generated
by the ω-sequence 〈b(ν, α, a) : ν ∈ C〉). It is not clear, however, that these
ultrafilters Ea can be reassembled in M to obtain the extender E, and in
fact Gitik showed in [21] (see chapter [15]) that this reassembly is not always
possible. He also showed that it is possible under the stronger hypothesis of
Theorem 4.50, namely that {α < κ : o(α) > α+n} is bounded in κ for some
n < ω. In addition he discovered a game which does provide the desired
reassembly, provided that it is applied to a sequence (C, b) of indiscernibles
such that ot(C) has uncountable cofinality. Hence a version of the covering
lemma can be obtained for these longer extenders by systematically replacing
ω with ω1 [23]:

4.51 Theorem (Covering Lemma up to 0¶). Assume that 0¶ does not exist.
Let κ be a cardinal of K with cf(κ) > ω, and set λ = o(κ)+K . Then if
κ �⊆ X = Y ∩ Kλ, where Y ≺ H(λ) and cf(κ)Y ⊆ Y , then there is a pair
(C, b) such that the conclusion of Theorem 4.50 holds, except that clause 3c is
modified as follows, where we write aC,X

ι (γ, ξ) for the ιth accumulation point
for Eγ above ξ:
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(3c′) ν = aC,X
ι (γ, ξ) for some ξ ∈ X ∩ ν, some γ ∈ h“(X ∩ ν), and some

ι < ω1.

Furthermore clause (3c′) does not hold for any limit point ν of X with
cf(ν) > ω.

For details, see [23], which shows that these results are strong enough to
give the correct lower bound for the consistency strength of a failure of the
Singular Cardinal Hypothesis at a cardinal of cofinality greater than ω.

Up to a Woodin Cardinal

The following form of the weak covering lemma is proved for countably closed
cardinals in chapter [47]. This proof originally appeared in [45], and the
general case is proved in [43].

4.52 Theorem (Weak Covering Lemma up to a Woodin). Suppose that there
is no inner model with a Woodin cardinal, and that the Steel core model K
exists.3 Then (λ+)K = λ+ for every singular cardinal λ.

By “the Steel core model K exists” we mean that Steel’s construction of
the core model up to a Woodin cardinal, described in chapter [47], succeeds
in constructing a class model K satisfying the weak covering lemma. It is
known that this follows from the assumption that there is a class of subtle
cardinals.

The proof involves several technical difficulties which either do not occur
or are easily dealt with below 0¶, but it closely parallels the earlier proofs.
Like the first part of the proof of Theorem 4.19 it gives, for any suitable
covering set X, a mouse M̃ , a system C̃ of indiscernibles for M̃ , and an
ordinal ρ < κ such that X = hM̃“(X ∩ ρ; C̃). However, the system C̃ of
indiscernibles comes from an iteration tree, not a linear iteration, and no
known analysis of such indiscernibles yields any useful information. The
proof of Lemma 4.52 sidesteps this problem: like the proof of the Covering
Lemma 4.5 for sequences of measures, it relies on the observation that there
are no measures, and hence no indiscernibles, in the interval (λ, (λ+)K ].

Theorem 4.52 is actually weaker than it appears at first: its hypothesis
that the Steel core model exists has no parallel in the covering lemmas for
smaller cardinals. Recall that the proof of the full covering lemma for se-
quences of measures involved first proving the weak covering lemma for the
model Kc constructed using countably complete measures, and then defining
the true core model K as a elementary submodel of Kc. There are at least
two problems in extending this procedure past 0¶. The most important of

3 Jensen and Steel have recently shown that this extra assumption that K exists in un-
necessary, as it follows from the assumption that there is no inner model with a Woodin
cardinal. This work is as of yet unpublished.
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these is the fact that countable completeness is not, so far as is known, suffi-
cient to ensure iterability of extender sequences significantly beyond a strong
cardinal. Steel, in his construction of Kc, replaces countable completeness
with a stronger notions, which he calls countable certification. However, the
proof of the weak covering lemma, as given for sequences of measures, does
not work for Kc as defined from countably certified measures. Instead Steel
defines Kc by using a measurable cardinal in V , which provides the certifi-
cation needed to prove that Kc satisfies a form of the weak covering lemma
which is slightly weaker than the countably closed weak covering property,
Definition 3.46, but is sufficiently strong to support the definition of K and
the proof of the full covering lemma. Further work by Steel, Jensen and oth-
ers has weakened the strength required to a subtle cardinal; however, there is
no clear strategy for obtaining the weak covering property with any weaker
assumptions. In contrast, Mitchell and Schindler [44] have obtained a model
which is iterable and (in what appear to be the appropriate senses) universal
with no large cardinal assumptions.4

The second problem involves the proof that the iteration from the basic
construction in the proof of the core model drops immediately, that is, that
1 ∈ D. In the case of the covering lemma for extenders below 0¶ this ar-
gument splits. The argument used to show that the weak covering lemma
holds for countably complete cardinals λ is similar to that for sequences of
measures but requires an extra assumption that o(α) < λ for all α < λ.
The proof of the full covering lemma, on the other hand, uses a different
proof relying on the weak covering lemma; it does not show that the iter-
ation drops, but instead shows that even when the iteration does not drop
there is still a Skolem function gX ∈ K (derived, for a suitable set X, from
an extender Eγ of length κ and critical point less than inf(κ−X)) such that
X = gX“(X ∩ρX ; CX) for some ρX < λ. Beyond 0¶ the notion of o(α) is not
meaningful, so only the second argument, which requires the weak covering
lemma, is usable.

A few other results are known which use the ideas of the covering lemma.
One of these is Theorem 1.16, asserting that any Jónsson cardinal κ is Ramsey
in K. This proof avoids a measurable cardinal at κ, since if κ were measurable
then it would be Ramsey, and it avoids smaller measurable cardinals by
selecting a set of indiscernibles witnessing that κ is Ramsey which contains
only nonmeasurable cardinals. Others such results demonstrate that certain
properties of the smaller core models extend to larger cardinals: Schindler
proves in [51] that if M is a model which contains all of its countable subsets
then the core model KM defined inside M is an iterated ultrapower of K,
and Gitik, Schindler and Shelah prove in [24] that if κ > ω2 is a cardinal in
K then any sound mouse M extending K‖κ and projecting to κ is an initial
segment of K.

4 In recent work to appear in [27], Jensen has shown that such a model also has a form of
the weak covering property.
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Beyond a Woodin Cardinal

As was pointed out earlier, not even the weak covering lemma is valid for
a model containing a Woodin cardinal δ: Woodin has defined a notion of
forcing, the stationary tower forcing [63], such that the cardinal δ is still
Woodin in the generic extension L[E ][G] but there are cofinally many singular
cardinals λ < δ such that (λ+)L[E] < (λ+)L[E][G]. Indeed it seems likely that
every sufficiently large successor cardinal less than δ is collapsed by this
forcing.

It is possible that this situation is analogous to that of Prikry forcing
at a measurable cardinal, in that one could hope for an analogue of the
Dodd-Jensen lemma stating that any failure of the weak covering lemma
is achieved by some variant of stationary tower forcing. Some very weak
results in this direction are proved in [42], but there are many more questions
than theorems. One difficulty is that the stationary tower forcing, unlike
Prikry forcing, has a number of variants; furthermore there are other forcings,
notably Woodin’s “all sets generic” forcing, which require a Woodin cardinal
in the universe and which may be relevant to this question.

More promising developments deal with core models which do not contain
Woodin cardinals, but which are large in the sense that they have inner
models with Woodin cardinals. The best result so far is due to Schimmerling
and Woodin, in [48]:

4.53 Theorem. Suppose that E is a good extender sequence and the model
W = L[E , x] is sufficiently iterable. Then either there is an amenable ultra-
filter U on W with crit(W ) > rank(x) such that Ult(W,U) is well-founded,
or else W has the weak covering property above rank(x).
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1. Introduction

This chapter is an exposition of the theory of canonical inner models for
large cardinal hypotheses, or extender models. We hope to convey the most
important ideas and methods of this theory without sinking into the morass
of fine-structural detail surrounding them. The resulting outline should be
accessible to anyone familiar with the theory of iterated ultrapowers and L[U ]
contained in Kenneth Kunen’s paper [14], and with the fine structure theory
for L contained in Ronald Jensen’s paper [10].

We shall present basic inner model theory in what is roughly the greatest
generality in which it is currently known. This means that the theory we
shall outline applies to extender models which may satisfy large cardinal hy-
potheses as strong as “There is a Woodin cardinal which is a limit of Woodin
cardinals”. Indeed, granted the iterability Conjecture 6.5, the theory applies
to extender models satisfying “There is a superstrong cardinal”. Measuring
the scope of the theory descriptive-set-theoretically, we can say that it applies
to any extender model containing only reals which are ordinal definable over
L(R), and in fact to extender models containing somewhat more complicated
reals. One can obtain a deeper analysis of a smaller class of inner models
by restricting to models satisfying at most “There is a strong cardinal” (and
therefore having only Δ1

3 reals). The basic theory of this smaller class of
models is significantly simpler, especially with regard to the structure of the
iterated ultrapowers it uses. One can find expositions of this special case in
the papers [19] and [20], and in the book [50].

Our outline of basic inner model theory occupies Sects. 2 through 6 of this
chapter. In Sects. 7 and 8 we present an application of this theory in de-
scriptive set theory: we show that the model HODL(R) of all sets hereditarily
ordinal definable in L(R) is (essentially) an extender model.

The reader can find in [15] an exposition of basic inner model theory
which is similar to this one, but somewhat less detailed. That paper then
turns toward applications of inner model theory in the realm of consistency-
strength lower bounds, an important area driving much of the evolution of the
subject which we shall, nevertheless, avoid here. There is a more thorough
and modern exposition of this area in [32]. We shall also abstain here from
any extended discussion of the history of inner model theory. The reader
can find philosophical/historical essays on the subject in the introductory
sections of [18] and [15], and in [11, 24, 44], and in the chapter notes of [50].

2. Premice

The models we consider will be of the form L[ �E], where �E is a coherent
sequence of extenders. This framework seems quite general; indeed, it is
plausible that there are models of the L[ �E] form for all the known large
cardinal hypotheses. The framework is due, for the most part, to William
Mitchell [21, 22].
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2.1. Extenders

An extender is a system of ultrafilters which fit together in such a way that
they generate a single elementary embedding. The concept was originally
introduced by Mitchell [22], and then simplified to its present form by Jensen.

2.1 Definition. Let κ < λ and suppose that M is transitive and rudimen-
tarily closed. We call E a (κ, λ)-extender over M iff there is a nontrivial
Σ0-elementary embedding j : M → N , with N transitive and rudimentarily
closed, such that κ = crit(j), λ < j(κ), and

E = {(a, x) | a ∈ [λ]<ω ∧ x ⊆ [κ]|a| ∧ x ∈M ∧ a ∈ j(x)}.

We say in this case that E is derived from j, and write κ = crit(E), λ = lh(E).

If the requirement that N be transitive is weakened to λ ⊆ wfp(N), where
wfp(N) is the wellfounded part of N , then we call E a (κ, λ)-pre-extender
over M . For the most part, this weakening is important only in the sort of
details we intend to suppress.

If E is a (κ, λ)-pre-extender over M and a ∈ [λ]<ω, then setting Ea = {x |
(a, x) ∈ E}, we have that Ea is an M,κ-complete nonprincipal ultrafilter on
the field of sets P ([κ]|a|)∩M . Thus we can form the ultrapower Ult(M,Ea).
The fact that all the Ea’s come from the same embedding implies that there
is a natural direct limit of the Ult(M,Ea)’s, and we call this direct limit
Ult(M,E). We can present Ult(M,E) more concretely as follows.

Let E be a (κ, λ)-pre-extender over M . Let us identify finite sets of ordinals
with their increasing enumerations. Let a, c ∈ [λ]<ω with a ⊆ c, and let s be
the increasing enumeration of {i | c(i) ∈ a}. For x ⊆ [κ]|a|, we set

xac = {u ∈ [κ]|c| | u ◦ s ∈ x}.

If we think of x as a |a|-ary predicate on κ, then xac is just the result of
blowing it up to a |c|-ary predicate by adding dummy variables at spots
corresponding to ordinals in c \ a. It is easy to see that

x ∈ Ea ⇐⇒ xac ∈ Ec.

That this is true of all x, a, c is a property of E known as compatibility. Notice
that it really is a property of E alone; M only enters in through P (κ) ∩M ,
and E determines P (κ) ∩M . Similarly, if f is a function with domain [κ]|a|,
then fac is the function with domain [κ]|c| given by fac(u) = f(u ◦ s), which
comes from f by adding the appropriate dummy variables. It is easy to see
that E has the following property, known as normality: if a ∈ [λ]<ω, i < |a|,
f ∈M is a function with dom(f) = [κ]|a|, and1

for Ea a.e. u, f(u) ∈ u(i),
1 Here and in the future we use the “almost every” quantifier: given a filter F , we say
φ(u) holds for F a.e. u iff {u | φ(u)} ∈ F .
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then
∃ξ < a(i)(fa,a∪{ξ}(v) = v(j) for Ea∪{ξ} a.e. v),

where j is such that ξ is the jth element of a ∪ {ξ}. (Just take ξ = j(f)(a),
where E is derived from j.) Again, normality is a property of E alone.

Suppose that M is transitive and rudimentarily closed, and that E = 〈Ea |
a ∈ [λ]<ω〉 is a family of M -κ-complete ultrafilters Ea on [κ]|a|, having the
compatibility and normality properties. We construct Ult(M,E) as follows.
Suppose that a, b ∈ [κ]<ω and f, g are functions in M with domains [κ]|a| and
[κ]|b|; then we put

〈a, f〉 ∼ 〈b, g〉 iff for Ea∪b a.e. u (fa,a∪b(u) = gb,a∪b(u)).

It is easy to check that ∼ is an equivalence relation; we use [a, f ]ME to denote
the equivalence class of 〈a, f〉, and omit the subscript and superscript when
context permits. Let

[a, f ] ∈̃ [b, g] iff for Ea∪b a.e. u (fa,a∪b(u) ∈ gb,a∪b(u)).

Then Ult(M,E) is the structure consisting of the set of all [a, f ] together
with ∈̃. We shall identify the wellfounded part of Ult(M,E) with its transitive
isomorph, so that ∈̃ = ∈ on the wellfounded part.

Suppose also that M satisfies the Axiom of Choice, as will indeed be the
case in our applications. We then have �Loś’s theorem for Σ0 formulae, in
that if ϕ is Σ0 and c =

⋃n
i=1 ai, then

Ult(M,E) |= ϕ[[a1, f1], . . . , [an, fn]]

if and only if

for Ec a.e. u (M |= ϕ[(f1)a1c(u), . . . , (fn)anc(u)]).

(The full �Loś’s theorem may fail, as M may not satisfy enough ZFC.) It
follows that the canonical embedding

iME : M → Ult(M,E)

is Σ1-elementary, where iME is given by iME (x) = [{0}, cx], with cx(α) = x for
all α.

We have [a, id] = a for all a ∈ [λ]<ω by an easy induction using the
normality of E. From this and �Loś’s theorem we get

x ∈ Ea ⇐⇒ a ∈ iME (x),

for all a, x, and
[a, f ] = iME (f)(a),

for all a, f . The first of these facts implies that E is the (κ, λ)-pre-extender
over M derived from iME . Thus compatibility and normality are equivalent
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to pre-extenderhood; moreover, if E is a (κ, λ)-pre-extender over Q, then E
is also a (κ, λ)-pre-extender over any transitive, rudimentarily closed M such
that P (κ) ∩M = P (κ) ∩ Q. It is definitely not the case, however, that the
wellfoundedness of Ult(Q,E) implies the wellfoundedness of Ult(M,E).

If E is derived from j : M → N , then there is a natural embedding
k : Ult(M,E)→ N given by k([a, f ]) = j(f)(a), and the diagram

M
j

iE

N

Ult(M,E)

k

commutes. It is easy to see that k�λ = id.
If E is a (κ, λ)-pre-extender over M and ξ ≤ λ, then we set E�ξ = {(a, x) ∈

E | a ⊆ ξ}. There is a natural embedding σ from Ult(M,E�ξ) into Ult(M,E)
given by: σ([a, f ]ME�ξ) = [a, f ]ME . We call ξ a generator of E just in case
ξ = crit(σ); that is, ξ �= [a, f ]ME for all f ∈M and a ⊆ ξ. The idea is that in
this case E�(ξ + 1) has more information than E�ξ, in that it determines a
“bigger” ultrapower. The smallest generator of E is κ. All other generators
are > κ+M .

2.2 Definition. If E is a (κ, λ)-pre-extender over M , then

ν(E) = sup(κ+M ∪ {ξ + 1 | ξ is a generator of E}).

We call ν(E) the support of E.

The (κ, λ)-extender derived from j can capture significantly more of the
strength of j than the normal measure (that is, (κ, κ + 1)-extender) derived
from j. For example, if |V N

α |N ≤ λ, then the existence of the factor map k

implies that V N
α = V

Ult(M,E)
α . So if there is an embedding j : V → N such

that Vcrit(j)+2 ⊆ N , then there is an extender whose ultrapower gives rise
to such an embedding. Indeed, if we remove the requirement that λ < j(κ)
from the definition of “extender”, the results just discussed still go through,
and we see that any embedding can be fully captured by such a generalized
extender. We have included the restriction λ < j(κ) in Definition 3.1 only
because nothing we shall prove here requires these “long” extenders, and it
simplifies the exposition.

2.2. Fine Extender Sequences

Our models are to be constructed from coherent sequences of extenders.
Roughly speaking, this means that each Eα is either trivial (i.e. Eα = ∅),
or is an extender over L[ �E�α] satisfying certain conditions. The extenders
in a coherent sequence must appear in order of increasing strength, in that
β < α implies iEα( �E)β = �Eβ . There can be no gaps, in that iEα( �E)α = ∅.
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These two conditions constitute coherence, a key idea which goes back to [21].
There are further conditions on the extender sequences we consider which in-
sure that if Eα �= ∅, then α is completely determined by the embedding coded
in Eα; this prevents us from coding random information into our model via
the indexing of its extenders. There are different ways of handling the details
here, all of which lead to the same class of models in the end. We shall adopt
the indexing scheme of [25].

We shall use the Jensen J hierarchy to stratify our models. If A is any set
or class,

L[A] =
⋃

α∈OnJ
A
α ,

where JA
0 = ∅, JA

λ =
⋃

α<λ JA
α for λ limit, and

JA
α+1 = rudA(JA

α ),

the closure of JA
α ∪ {JA

α } under rudimentary functions and the function x �→
A ∩ x. If �E is a sequence, then we shall abuse notation slightly by writing
J

�E
α for JA

α , where A = {(β, z) | z ∈ Eβ}. In the case of interest to us, each
Eα is either ∅ or a pre-extender over J

�E
α of length α, and Eα = ∅ if α is a

successor ordinal. It follows then that JA
α = J

�E�α
α and Eα ⊆ J

�E�α
α ; from this

we get that for all X ⊆ J
�E
α ,

X ∈ J
�E
α+1 iff X is definable over (J �E

α ,∈, �E�α,Eα),

where the definition of X may use parameters from J
�E
α . (See [38, 1.4].)

Although we are officially using the J hierarchy, we might have used Gödel’s
L hierarchy instead, and the reader who prefers can change the J ’s to L’s in
what follows. (The advantages of using the J hierarchy show up in details
we shall suppress.)

There is one important point here: in our setup, if Eα �= ∅, then Eα is an
extender over J

�E
α ; it only measures the subsets of its critical point constructed

before stage α. There may or may not be subsets of crit(Eα) constructed in
L[ �E] after stage α; if there are, then Eα does not measure them, and so fails to
be an extender over all of L[ �E]. The idea of adding such “partial” extenders
to our sequences �E is due to Stewart Baldwin and Mitchell. It leads to a
stratification of core models much simpler than the sort studied previously.
In particular, the hierarchies we shall study are (strongly) acceptable in the
sense of [6].

2.3 Definition. A set A is acceptable at α iff

∀β < α∀κ((P (κ) ∩ (JA
β+1 \ JA

β ) �= ∅) −→ JA
β+1 |= |JA

β | ≤ κ).

Notice that if A is acceptable at α and JA
α |= “κ+ exists”, then JA

α |=
“P (κ) exists and P (κ) ⊆ JA

κ+”. It follows that GCH is true in JA
α .
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It is a basic fact in the fine structure of L that ∅ is acceptable at all α.
On the other hand, if μ is a normal measure on κ, then μ is not acceptable
at κ + 2, since there are subsets of ω in Jμ

κ+2 \ Jμ
κ+1 (such as 0#), while κ is

not countable in Jμ
κ+2 (or anywhere else).

Suppose that E is a pre-extender over M , and that M |= κ+ exists, where
κ = crit(E). Let ν = ν(E) and η = (ν+)Ult(M,E) be in the wellfounded part
of Ult(M,E). We shall use the ordinal η to index E in extender sequences.
Let E∗ be the (κ, η)-pre-extender derived from E. It is easy to check that
ν = ν(E∗) and E�ν = E∗�ν, so that E and E∗ are equivalent. For a minor
technical reason, it is E∗ which we shall index at η. We call E∗ the trivial
completion of E.

We shall need the following very technical concept. Let E be an extender
over M . We say that E is of type Z iff ν(E) = λ + 1 for some limit ordinal
λ such that (a) λ = ν(E�λ), and (b) (λ+)Ult(M,E) = (λ+)Ult(M,E�λ). Notice
that our indexing convention would require that the trivial completions E∗

and (E�λ)∗ be indexed at the same place, if E is type Z. We resolve this con-
flict by giving (E�λ)∗ preference, and therefore putting no type Z extenders
on our sequences.

We are ready for one of the most important definitions in this chapter.

2.4 Definition. A fine extender sequence is a sequence �E such that for each
α ∈ dom( �E), �E is acceptable at α, and either �Eα = ∅, or Eα is a (κ, α)-pre-
extender over J

�E
α for some κ such that J

�E
α |= κ+ exists, and:

1. Eα is the trivial completion of Eα�ν(Eα), and hence
α = (ν(Eα)+)Ult(J

�E
α ,Eα), and Eα is not of type Z,

2. (Coherence) i( �E�κ)�α = �E�α and i( �E�κ)α = ∅, where
i : J �E

α → Ult(J �E
α , Eα) is the canonical embedding, and

3. (Closure under initial segment) for any η such that (κ+)J
�E
α ≤ η <

ν(Eα), η = ν(Eα�η), and Eα�η is not of type Z, one of the following
holds:

(a) there is a γ < α such that Eγ is the trivial completion of Eα�η, or

(b) Eη �= ∅, and letting j : J
�E
η → Ult(J �E

η , Eη) be the canonical em-
bedding and μ = crit(j), there is a γ < α such that j( �E�μ)γ is the
trivial completion of Eα�η.

2.5 Remarks. Let �E be a fine extender sequence, Eα �= ∅, and let i : J �E
α →

Ult(J �E
α , Eα) be the canonical embedding.

1. Although Ult(J �E
α , Eα) may be illfounded, it must be that α + 1 is con-

tained in the wellfounded part of the ultrapower, and this is enough to
make sense of the conditions in Definition 2.4. Also, �E�β ∈ J

�E
α for all

β < α, and it is natural then to set i( �E�α) =
⋃

β<α i( �E�β).
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2. Let ν = ν(Eα). By coherence, J
i(�E�α)
α = J

�E
α . Since α = ν+ in

Ult(J �E
α , Eα), and since i( �E�α) is acceptable at all β < supγ<α i(γ)

by �Loś’s theorem (acceptability being a Π1 property of �E�α whenever
α is a limit), there are no cardinals > ν in J

�E
α . The ordinal ν itself

may be a successor ordinal. It is not hard to show that if ν is a limit
ordinal, then ν is a cardinal in both J

�E
α and Ult(J �E

α , Eα).

3. Let κ = crit(Eα). By clause 1 of Definition 2.4, there is a map of
(P (κ) ∩ J

�E
ν ) × [ν]<ω onto α, the map being in J

�E
α+1. Thus α is not a

cardinal in J
�E
α+1.

4. For the fine sequences �E we construct, Eα is an extender over L[ �E�α],
and α = ν(Eα)+ in both L[ �E�α] and Ult(L[ �E�α], Eα). This in fact
follows from the clauses of Definition 2.4 if we can iterate from J

�E
α via

Eα and its images On times.

Definition 2.4 diverges slightly from the definition of “good extender se-
quence” in [25, Sect. 1]. The latter definition is wrong, in that the extender
sequences constructed in Sect. 11 of [25] and Sect. 6 of the present chapter
do not satisfy it. This was shown by Martin Zeman. The problem lies in
the initial segment condition of [25], which does not contain the proviso in
clause 3 of Definition 2.4 that Eα�η is not of type Z. Zeman showed that on
any reasonably rich sequence of the sort constructed in [25] or Sect. 6 of this
chapter, there must be extenders E such that for some η < ν(E), η = ν(E�η)
and E�η is of type Z.2 Our indexing scheme implies that the conclusion of
clause 3 of Definition 2.4 must then fail for one of E�η and E�(η − 1). Ralf
Schindler and Hugh Woodin independently found the correct axiomatization
of the properties of the extender sequences constructed in [25] and here: one
simply adds that type Z extenders do not occur on the sequence, and weakens
the initial segment condition to take this into account.3

It might be hoped that alternative 3(b) of Definition 2.4 could be dropped,
but Farmer Schlutzenberg has recently proved that if �E is a fine extender
sequence such that L[ �E] has two strong cardinals, then case 3(b) does occur
somewhere in �E. The initial segment condition in Definition 2.4 is crucial in
the proof that the comparison process terminates. We need some form of it
as an axiom on our extender sequences in order to get a decent theory going.
Other forms of this axiom are discussed in [39].

Following a suggestion of Sy Friedman, Jensen has investigated an index-
ing of extenders different from the sort described in Definition 2.4 (cf. [50]).
In this framework, the extender E is indexed at the cardinal successor of
2 See [39], which also corrects some further errors in [25] and [33].
3 The “proof” in [25] of the stronger initial segment condition goes wrong in the proof of
Theorem 10.1, where on p. 98, in the “η = γ” case, the authors ignore the possibility that
G might be of type Z. Schindler found this error. What the argument of [25] does prove is
the weaker initial segment condition of Definition 2.4.
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iE(crit(E)) in its ultrapower. For any fine extender sequence �E there is a
Friedman-Jensen sequence �F such that L[ �E] = L[�F ], and vice-versa, so both
approaches lead to the same class of models. The Friedman-Jensen hierar-
chy grows more slowly than the one we are using, in that certain extenders
are put on a Friedman-Jensen sequence which only appear on ultrapowers
of its translation to a fine extender sequence. In particular, one can drop
the counterpart of clause 3(b) of Definition 2.4 in the Friedman-Jensen ap-
proach.

2.6 Definition. A potential premouse (or ppm) is a structure of the form
(J �E

α ,∈, �E�α,Eα), where �E is a fine extender sequence. We use J �E
α to denote

this structure.

2.7 Definition. Let M = J �E
α be a ppm. We say M is active if Eα �= ∅, and

passive otherwise. If M is active, then letting ν = ν(Eα) and κ = crit(Eα),
we say M is type I if ν = (κ+)M, M is type II if ν is a successor ordinal, and
M is type III if ν is a limit ordinal > (κ+)M.

The distinctions among potential premice introduced in Definition 2.7 are
mostly important in the sort of details we shall suppress, but we need them
in order to make certain definitions formally correct.

2.3. The Levy Hierarchy, Cores, and Soundness

Although it is possible to avoid fine structure theory entirely in the proofs
of basic facts about smaller core models (for example, in the proof that
L[U ] |= GCH), there is little one can show about larger core models (such
as the minimal model satisfying “There is a Woodin cardinal”) without fine
structure theory.4 It seems that one must marshall all one’s forces in good
order in order to advance; indeed, the very definition of the models requires
fine structural notions. Therefore, in order to be able even to state precise
definitions and theorems, we must lay out some of the fine structure theory
of definability over potential premice.

We shall simplify matters by concentrating on the representative special
case of Σ1 definability, and indicating only briefly the appropriate notions at
higher levels of the Levy hierarchy. In those few places where fine structural
details crop up in proofs we give in later sections, the reader will lose little
by considering only the special case Σn+1 = Σ1. The reader should see [38]

4 Fine structure theory begins with Jensen’s landmark paper [10]. Solovay (unpublished
manuscript) extended Jensen’s work to L[U ], and then Dodd and Jensen showed in [6–8],
and [5] just how remarkably fruitful this extension could be. Dodd, Jensen, and Mitchell
extended this older fine structure theory to still larger core models (in [23], and unpublished
work), but the complexities became unmanageable just past core models with strong car-
dinals. The Baldwin-Mitchell idea of putting partial extenders on a coherent sequence cut
through these difficulties. Ref. [25] was the first account to develop the Baldwin-Mitchell
idea.
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for an excellent full account of the fine structural underpinnings of the theory
we present here.5

The subsets of J
�E
α belonging to J

�E
α+1 are precisely those first-order defin-

able over the ppm J �E
α , but unfortunately, this structure is not amenable if

Eα �= ∅.

2.8 Definition. A structure (M,∈, A1, A2, . . .) is amenable iff

∀x ∈M∀i(Ai ∩ x ∈M) .

Since amenability is important in basic ways,6 we need an amenable struc-
ture with the same definable subsets as (J �E

α ,∈, �E�α,Eα); that is, we need an
amenable predicate coding Eα. The following lemma is the key.

2.9 Lemma. Let �E be a fine extender sequence, Eα �= ∅, κ = crit(Eα), and
ν = ν(Eα); then for any η < α and ξ < (κ+)J

�E
α , Eα ∩ ([η]<ω × J

�E
ξ ) ∈ J

�E
α .

Moreover, if for ξ < (κ+)J
�E
α we set

γξ = least γ < α such that Eα ∩ ([ν]<ω × J
�E
ξ ) ∈ J

�E
γ ,

then
sup({γξ | ξ < (κ+)J

�E
α }) = α.

Proof. Fix ξ < (κ+)J
�E
α . Let 〈Aβ | β < κ〉 be an enumeration of

⋃
n<ω(P ([κ]n) ∩ J

�E
ξ ) belonging to J

�E
α . Let

i : J �E
α → Ult(J �E

α , Eα)

be the canonical embedding, and notice that

〈i(Aβ) | β < κ〉 ∈ Ult(J �E
α , Eα),

since 〈i(Aβ) | β < κ〉 = i(〈Aβ | β < κ〉)�κ. But

Eα ∩ ([η]<ω × J
�E
ξ ) = {(a,Aβ) | a ∈ [η]<ω ∧ a ∈ i(Aβ)},

so Eα ∩ ([η]<ω × J
�E
ξ ) ∈ Ult(J �E

α , Eα). Since α is a cardinal in this ultrapower,

we have by acceptability that Eα∩([η]<ω×J
�E
ξ ) ∈ J

i(�E�α)
α . But J

i(�E�α)
α = J

�E
α

by coherence, so we are done with the first part of the lemma.
In order to show the γξ are cofinal in α, it suffices to show that whenever

A ⊆ ν and A ∈ Ult(J �E
α , Eα), then there is a ξ such that A ∈ J

�E
γξ+1. So fix

5 Jensen has developed a more general fine structure theory, using terminology somewhat
different from that used here. See [47] or [50]. We shall not need this extra generality here.
6 For example, in the proof that satisfaction for Σ1 formulae is Σ1, and in the proof of the
�Loś’s theorem for Σ0 formulae. See [38, 1.12, 8.4].
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such an A, and let A = [a, f ], where a ⊆ ν and, without loss of generality,
f ∈ J

�E
α and f : J

�E
κ → J

�E
κ . By acceptability, we have ξ < (κ+)J

�E
α such that

f ∈ J
�E
ξ . Now for η < ν, η ∈ A iff for (Eα)a∪{η} a.e. u, id{η},a∪{η}(u) ∈ f(u),

and the set to be measured in answering this question about η is in J
�E
ξ . Thus

A can be computed from Eα ∩ ([ν]<ω × J
�E
ξ ), so A ∈ J

�E
γξ+1. �

Given now a fine extender sequence �E with Eα �= ∅, we can code Eα as
follows: let Ec

α be the set of quadruples (γ, ξ, a, x) such that

(
ν(Eα) < γ < α

)
∧ (crit(Eα) < ξ < (crit(Eα)+)J

�E
α )

∧
(
Eα ∩ ([ν(Eα)]<ω × J

�E
ξ ) ∈ J

�E
γ

)
∧
(
(a, x) ∈ (Eα ∩ ([γ]<ω × J

�E
ξ ))

)
.

It follows from Lemma 2.9 that (J �E
α ,∈, �E�α,Ec

α) is amenable.
Certain ordinal parameters are important in the description of a ppm. Let

M = J �E
α . If M is active, then we set

νM = ν(Eα) and μM = crit(Eα).

If M is passive, set νM = μM = 0. If M is active of type II, then there is
a longest non-type-Z proper initial segment F of Eα containing properly less
information than Eα itself, and we let γM determine where F appears on �E
or an ultrapower of �E. More precisely, set

F =

{
(Eα�(νM − 1))∗ if (Eα�(νM − 1))∗ is not type Z
(Eα�ν(Eα�(νM − 1))− 1)∗ otherwise.

Then we let

γM = the unique ξ ∈ dom( �E) such that F = Eξ,

if there is such a ξ.7 If there is no such ξ, then setting η = ν(F ), we have by
3(b) of Definition 2.4 that F is on the extender sequence of Ult(J �E

η , Eη). We
then let

γM = (η, a, f), where F = [a, f ]
J

�E
η

Eη
,

and (a, f) is least in the order of construction on J
�E
η with this property.

Finally, if M is not active type II, then we set γM = 0.
Since we shall put these parameters in all hulls we form, we might as well

have names for them in our language.

2.10 Definition. L is the language of set theory with additional constant
symbols μ̇, ν̇, γ̇, and additional unary predicate symbols Ė and Ḟ .

7 γM = lh(F ) in this case.
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2.11 Definition. LetM = J �E
α be a ppm; then the Σ0 code ofM, or C0(M),

is the L-structure N given by:

1. if M is passive, then N has universe J
�E
α , ĖN = �E�α, Ḟ N = ∅, and

μ̇N = ν̇N = γ̇N = 0;

2. if M is active of types I or II, then N has universe J
�E
α , ĖN = �E�α,

Ḟ N = E∗
α (where E∗

α is the amenable coding of Eα), and μ̇N = μM,
ν̇N = νM, and γ̇N = γM;

3. if M is active type III, then letting ν = ν(Eα), N has universe J
�E
ν ,

ĖN = �E�ν, Ḟ N = Eα�ν, μ̇N = μM, and ν̇N = γ̇N = 0.

The Σ0 code C0(M) is amenable; this follows from our lemma unless M
is active type III, in which case it follows at once from the initial segment
condition of Definition 2.4. The reader may wonder why we treated the
type III ppm differently in the definition above, but fortunately, the answer
lies in fine structural details we shall avoid here.8 The reader will lose nothing
of importance if he pretends that all active premice are of type II. Notice that
M is indeed coded into C0(M); this is obvious unless M is active type III,
and in that case we can recover M by forming Ult(C0(M), Ḟ C0(M)), then
adding the trivial completion of Ḟ C0(M) to its sequence at the proper place.
There is little harm in identifying M with C0(M).

We can now define the Σ1 projectum, first standard parameter, and first
core of a ppm M.

2.12 Definition. Let M be a ppm; then the Σ1 projectum of M, or ρ1(M),
is the least ordinal α such that for some boldface ΣC0(M)

1 set A ⊆ α, A �∈
C0(M). (Thus ρ1(M) ≤ On∩C0(M).)

Notice that the new set A may not be (lightface) Σ1-definable. Since there
is a ΣC0(M)

1 map from the class of finite sets of ordinals onto C0(M), we can
take the parameter from which A is defined to be a finite set of ordinals. We
standardize the parameter by minimizing it in a certain wellorder.

2.13 Definition. A parameter is a finite sequence 〈α0, . . . , αn〉 of ordinals
such that α0 > · · · > αn (and could be empty). If M is a ppm, then the first
standard parameter of M, or p1(M), is the lexicographically least parameter
p such that there is a ΣC0(M)

1 ({p}) set A such that (A ∩ ρ1(M)) �∈ C0(M).

2.14 Definition.

1. For any L structureQ and set X ⊆ |Q|,HQ
1 (X) is the transitive collapse

of the substructure of Q whose universe consists of all y ∈ |Q| such that
{y} is ΣQ

1 definable from parameters in X.

8 See [25, Sect. 3].
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2. For any ppm M, the first core of M, C1(M), is defined by: C1(M) =
HC0(M)

1 (ρ1(M) ∪ {p1(M)}).

It is a routine matter to show that for any ppm M, C1(M) is the Σ0 code
of some ppm N . One need only check that being a Σ0 code can be expressed
using Π2 sentences of L. (See [25, 2.5].)

We introduce two important ways in which the standard parameter p1(M)
can behave well.

2.15 Definition. Let M be a ppm.

1. We say p1(M) is 1-universal iff whenever A ⊆ ρ1(M) and A ∈ C0(M),
then A ∈ C1(M).

2. Let p1(M) = 〈α0, . . . , αn〉. We say p1(M) is 1-solid iff whenever i ≤ n

and A is ΣC0(M)
1 ({α0, . . . , αi−1}), then A ∩ αi ∈ C0(M).

3. We say M is 1-solid just in case p1(M) is 1-solid and 1-universal.

If p1(M) is 1-universal, then letting C1(M) = C0(N ), we have ρ1(N ) =
ρ1(M), and p1(N ) is the image of p1(M) under the transitive collapse.9

The 1-solidity of p1(M) is important in showing that i(p1(M)) = p1(Q) for
certain ultrapower embeddings i : M→Q.10

2.16 Definition. M is 1-sound iff M is 1-solid and C1(M) = C0(M).

Let N be the ppm whose Σ0 code is C1(M). It is easy to see that C1(N ) =
C1(M), so that if N is 1-solid, then N is 1-sound. We should now go on and
define the nth projectum ρn(M), the nth standard parameter pn(M), and
the nth core Cn(M), as well as the notions of n-solidity and n-universality
for pn(M) and n-soundness for M, in the case n > 1. The definitions run
parallel to those in the n = 1 case, but there are enough annoying details that
we prefer to shirk our duty and refer the conscientious reader to [25, Sect. 2].
(Formally speaking, these objects and notions are defined by induction on n
in such a way that ρn(M), pn(M), etc., only make sense ifM is (n−1)-solid.)
There is one point worth mentioning here, namely, ρn(M), pn(M), Cn(M),
etc., are defined from the viewpoint of Cn−1(M). For example, ρ2(M) is the
least ordinal α such that there is an rΣC1(M)

2 -in-parameters set A ⊆ α such

9 Let r be the image of p1(M) under the collapse. As the collapse is the identity on
ρ1(M), r defines over C0(N ) a new Σ1 subset of ρ1(M), so that ρ1(N ) ≤ ρ1(M) and
p1(N ) ≤lex r. It is easy to see ρ1(N ) ≥ ρ1(M). Finally, if s <lex r and A ⊆ ρ1(M)

is Σ
C0(N )
1 definable from s, then A ∈ M by the minimality of p1(M), so A ∈ N by the

universality of p1(M). Thus r ≤lex p1(N ).
10 For any parameter s <lex p1(M), let Ts be the Σ1 theory in C0(M) of parameters from
ρ1(M) ∪ {s}; then Ts ∈ M by the definition of p1(M). The solidity of p1(M) is equivalent
to the assertion that the map s �→ Ts is a member of M.
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that A �∈ C1(M).11 The class of ΣC0(M)
2 -definable relations is not relevant at

this (or any) point, since random information can be coded into such relations
by iterating some C0(N ) above ρ1(N ).12

2.17 Definition. Let M be a ppm; then M is ω-solid iff M is n-solid for
all n < ω, and M is ω-sound iff M is n-sound for all n < ω. If M is ω-solid,
then we let ρω(M) be the eventual value of ρn(M) and Cω(M) the eventual
value of Cn(M) as n→ ω.

If n < m, then ρn(M) ≥ ρm(M), so there is indeed an eventual value
for ρn(M), and hence Cn(M). Clearly, M is ω-sound iff C0(M) = Cω(M).
All levels of the core models we shall construct will be ω-sound. Neverthe-
less, we must study potential premice which are not ω-sound, since these can
be produced from ω-sound potential premice by taking ultrapowers. (See
Lemma 2.23 below.) However, all proper initial segments of such an ultra-
power are ω-sound, so we can restrict ourselves to ppm all of whose proper
initial segments are ω-sound.

2.18 Definition. Let M = J �E
α be a ppm, and let β ≤ α; then we write JM

β

for J �E
β , and call JM

β an initial segment of M. We write N �M (N is an
initial segment of M) iff ∃β(N = JM

β ), and N �M (N is a proper initial
segment of M) iff ∃β < α(N = JM

β ).

2.19 Definition. A premouse is a potential premouse all of whose proper
initial segments are ω-sound. A coded premouse is a structure of the form
C0(M), where M is a premouse.

It is easy to see that if �E is an extender sequence with domain α such
that all proper initial segments of J �E

α are ω-sound then �E is acceptable at α.
Indeed, soundness is simply a refinement of acceptability, in that we demand
that whenever a new subset of κ appears in J

�E
τ+1−J

�E
τ , the surjection f ∈ J

�E
τ+1

from κ onto J
�E
τ required by acceptability must actually be definable over J �E

τ

at the same quantifier level that the new subset was. The acceptability of
the fine extender sequences we shall construct will come from soundness in
this way.

Perhaps the first substantial theorem in the fine structural analysis of L

is Jensen’s result that if Eβ = ∅ for all β ≤ α, then J �E
α is ω-sound [10]. If μ

is a normal ultrafilter on κ, then (Jμ
κ+1,∈, μ) is not 1-sound (in the naturally

11 The rΣ2 relations are, roughly speaking, just those which are Σ1-definable from the
function T , where T (η, q) = Σ1 theory of parameters in η ∪ {q}, for η < ρ1, and T (η, q) = 0
if η ≥ ρ1.
12 The following example is due to Mitchell. Suppose that 〈κi | i ∈ ω〉 is an increasing
sequence of measurable cardinals of N with ρ1(N ) ≤ κ0, and suppose that N is 1-sound
and iterable. Let a ⊆ ω be arbitrary. Let M result from iterating N by hitting a normal
measure with critical point κi iff i ∈ a. Then a is ΣM

2 since i ∈ a iff κi is not ΣM
1 -definable

from parameters in κi ∪ {pi(M)}.
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adapted meaning of the term). It is because we have followed the Baldwin-
Mitchell approach in putting partial extenders on �E that we have the very
useful L-like fact that all levels of L[ �E] are ω-sound.

2.4. Fine Structure and Ultrapowers

If M is a premouse and E is an extender over C0(M), then we can form
Ult(C0(M), E). One can show without too much difficulty that this struc-
ture is the Σ0 code of a premouse. The key here is that the canonical em-
bedding i into the ultrapower is not just Σ1-elementary, but cofinal, in that
both i“(On∩C0(M)) is cofinal in On∩Ult(C0(M), E), and i“(μ̇+)C0(M) is
cofinal in i((μ̇+)C0(M)). The second condition is of course only interesting
if M is active.13 If crit(E) < ρn(M), where 1 ≤ n ≤ ω, one can form a
stronger ultrapower of M, one for which �Loś’s theorem holds for rΣn formu-
lae. Roughly speaking, instead of using only functions f ∈ C0(M), one uses
all functions f which are rΣn-definable from parameters over C0(M). (See
[25, Sect. 4] and [38] for details, and generally for the rΣn hierarchy.) Since
crit(E) < ρn(M), E measures enough sets that the construction makes sense,
and �Loś’s theorem holds for rΣn formulae. We call this stronger ultrapower
Ultn(C0(M), E), and sometimes call the earlier ultrapower Ult0(C0(M), E).

We shall only form Ultn(C0(M), E) in the case that M is n-sound. In this
case, all of C0(M) can be coded by the rΣn theory of ρn(M) ∪ {pn(M)},
which we can regard as a subset An of ρn(M). The structure (J M

ρn
, An)

is amenable. If one decodes Ult0((J M
ρn(M), An), E) in the natural way, one

gets Ultn(C0(M), E). This is how Σn ultrapowers were treated by Dodd and
Jensen [6], and the reader can find an exposition of their method in [38, §8].
The equivalence of the two approaches in the case that M is n-sound is
proved in [25, §2].

We wish to record some basic facts concerning the elementarity of the
canonical embedding associated to a Σn ultrapower. As a notational conve-
nience, for any ppm M we let ρ0(M) = On∩C0(M) and p0(M) = ∅, and we
sayM is 0-sound. Again, the concept of being rΣn is treated in [25] and [38].

2.20 Definition. Let π : C0(M) → C0(N ), and let n < ω. We call π an
n-embedding iff

1. M and N are n-sound,

2. π is rΣn+1-elementary,

3. π(pi(M)) = pi(N ) for all i ≤ n, and

4. π(ρi(M)) = ρi(N ) for all i < n and sup(π“ρn(M)) = ρn(N ).

13 This is why we defined C0(M) as we did in the case M is of type III. Had we defined

it as in the type II case, the fact that i might not be continuous at νM might lead to a
failure of the initial segment condition for Ult(C0(M), E). Having said this, we ask the
reader to once again forget the type III case, and go back to identifying C0(M) with M.
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We call π an ω-embedding iff π is fully elementary. Such an embedding
preserves all projecta and standard parameters.

2.21 Lemma. For any n ≤ ω, the canonical embedding associated to a
Σn ultrapower is an n-embedding.

We must also consider the behavior of ρn+1(M) and pn+1(M) in Σn ul-
trapowers. Here we must impose an additional condition on the extender
used to form the ultrapower.

2.22 Definition. Let E be a (κ, λ)-extender over C0(M); then we say E is
close to C0(M) (or to M itself) iff for every a ∈ [λ]<ω

1. Ea is Σ1-definable over C0(M) from parameters, and

2. if A ∈ C0(M) and C0(M) |= |A| ≤ κ, then Ea ∩ A ∈ C0(M).

2.23 Lemma. Let M be a premouse, and E a (κ, λ)-extender over C0(M)
which is close to C0(M), with κ < ρn(M) where n ≤ ω. Let N be such that
C0(N ) = Ultn(C0(M), E). Then

P (κ) ∩M = P (κ) ∩N .

If in addition n < ω, M is n-sound and (n + 1)-solid, and ρn+1(M) ≤ κ,
then the canonical embedding π : C0(M) → C0(N ) satisfies

ρn+1(M) = ρn+1(N ) and π(pn+1(M)) = pn+1(N ),

so that
Cn+1(M) = Cn+1(N ),

and π�Cn+1(M) is (an isomorphic copy of) the uncollapse map from Cn+1(N )
to Cn(N ). In particular, N is n-sound but not (n + 1)-sound.

We omit the proof of Definition 2.23, which the reader can find in [25, 4.5,
4.6]. See also [38, 8.10]. It is a reasonable exercise to prove the lemma in the
case n = 0. Here the only tricky part is showing that π(p1(M)) = p1(N ).
At that point one uses heavily the solidity of p1(M). The prewellordering
property for ΣC0(M)

1 relations is also used.14

Let M be a premouse, and E an extender over C0(M) with crit(E) <
ρn(M); then by Ultn(M, E) we shall mean the unique premouse N such
that C0(N ) = Ultn(C0(M), E).15

14 Let p1(M) = 〈α0, . . . , αk 〉, and let T be a universal ΣM
1 ({α0, . . . , αi−1}) subset of αi.

Let ≤ be the prewellorder of T given by the stages at which Σ1 formulae are verified.
Then the universal ΣN

1 ({π(α0), . . . , π(αi−1)}) subset of π(αi) is an initial segment of
π(T ) under π(≤), and is therefore in N . Thus π(p1(M)) is solid, and from this we easily
see that π(p1(M)) = p1(N ).
15 This gives us two definitions of Ult0(M, E), but they clearly agree with one another
except possibly when M is active type III. In that case, we are now discarding the earlier
definition.
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3. Iteration Trees and Comparison

The key to Kunen’s theory of L[U ] is the method of iterated ultrapowers.
Given a structure M0 = 〈Lζ [U ],∈, U〉 with appropriate ultrafilter U , one
can form ultrapowers by U and its images under the canonical embeddings
repeatedly, taking direct limits at limit ordinals. One obtains thereby struc-
tures Mα and embeddings iα,β : Mα → Mβ for α < β. We call the struc-
tures Mα iterates of M0, and say that M0 is iterable just in case all its
iterates are wellfounded. Kunen’s key comparison lemma states that if M0

and N0 are two iterable structures of this form, then there are iterates Mα

and Nα such that one of the two is an initial segment of the other.16

One can form iterated ultrapowers of an arbitrary premouse M0 similarly.
In this case, the Mα-sequence may have more than one extender, and we are
allowed to choose any one of them to continue. If Eα is the extender chosen,
then we take Mα+1 to be Ult(Mα, Eα).17 At limit stages we form direct
limits and continue. We call any such sequence 〈(Mα, Eα) : α < β〉 a linear
iteration of M0, and the structures Mα in it linear iterates of M0. We say
M0 is linearly iterable just in case all its linear iterates are wellfounded.18

Given linearly iterable premice M0 and N0, there is a natural way to try
to compare the two via linear iteration. Having reached Mα and Nα, and
supposing neither is an initial segment of the other (as otherwise our work
is finished), we pick extenders E and F representing the least disagreement
between Mα and Nα, and use these to form Mα+1 and Nα+1.

If the extenders of the coherent sequence ofM0 do not overlap one another
too much, and similarly for N0, then this process must terminate with all
disagreements between some Mα and Nα eliminated, so that one is an initial
segment of the other. This is the key to core model theory at the level
of strong cardinals. At bottom, the reason this comparison process must
terminate is the following: if E and F are the extenders used at a typical
stage α, then there will be a finite set a of generators and sets X and X̃ such
that X = iη,α(X) = jξ,α(X̃), and X is measured differently by Ea and Fa.19

But then a ∈ iα,α+1(X) ⇐⇒ a �∈ jα,α+1(X), so iη,α+1(X) �= jξ,α+1(X̃), and

16 This means that there is a filter F such that Mα and Nα are of the form

〈Lξ[F ], ∈, F 〉

and
〈Lη [F ], ∈, F 〉

for some ξ and η. (Here and elsewhere we identify wellfounded, extensional structures
with their transitive isomorphs.) In fact, in this simple case we can take α to be
sup(| M0|, | N0|)+ and F to be the club filter on α.
17 This must be qualified, since if Eα does not measure all subsets of its critical point in
Mα, then Ult(Mα, Eα) makes no sense. In this case we take the “largest” Eα ultrapower
of an initial segment of Mα we can in order to form Mα+1. See below.
18 In which case we identify these iterates with the premice to which they are isomorphic.

Linear iterability should be taken to include the condition that no linear iteration of
M0 drops to proper initial segments infinitely often.
19 We use i for the embeddings in the M-iteration, and j in the N -iteration.
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the images of X and X̃ do not participate in a disagreement at stage α + 1
the way they did at stage α. If all future extenders used in either iteration
have critical point above sup(a), then iη,β(X) �= jξ,β(X̃) for all β, so the
images of X and X̃ never again participate in a disagreement, and we have
made real progress at stage α. A simple reflection argument shows that if
we never “move generators” in one of our iterations,20 then eventually all
disagreements are removed.21 The lack of overlaps in the sequences of mice
below a strong cardinal means that this process of iterating away the least
disagreement does not move generators, and hence terminates in a successful
comparison.

However, beyond a strong cardinal this linear comparison process definitely
will lead to moving generators. There are tricks for making do with linear
iterations a bit beyond strong cardinals, but the right solution is to give up
linearity. If the extender Eα from the Mα-sequence we want to use has
critical point less than ν(Eβ) for some β < α, then we apply Eα not to Mα,
but to Mβ , for the least such β: i.e., we set Mα+1 = Ult(Mβ , Eα), where β
is least such that crit(Eα) < ν(Eβ).22 We have an embedding iβ,α+1 : Mβ →
Mα+1. Thus this new iteration process gives rise to a tree of models, with
embeddings along each branch of the tree. Along each branch the generators
of the extenders used are not moved by later embeddings, and this is good
enough to show that if a comparison process involving the formation of such
“iteration trees” goes on long enough, it must eventually succeed.

What one needs to keep the construction of an iteration tree going past
some limit ordinal λ is a branch of the tree which has been visited cofinally
often before λ and is such that the direct limit of the premice along the branch
is wellfounded. Thus the iterability we need for comparison amounts to the
existence of some method for choosing such branches. We can formalize this
as the existence of a winning strategy in a certain game. In giving the details
of the necessary definitions, it is more convenient to introduce this “iteration
game” first. We turn to this now.

3.1. Iteration Trees

Let M be a k-sound premouse, and let θ be an ordinal; we shall define the
iteration game Gk(M, θ).

3.1 Definition. A tree order on α (for α an ordinal) is a strict partial order
T of α with least element 0 such that for all γ < α

1. β T γ =⇒ β < γ,

2. {β | β T γ} is wellordered by T ,
20 That is, if ν(E) ≤ crit(E′) whenever E is used before E′ in the M iteration, and
similarly on the N side.
21 More precisely, there must be a stage α < sup(| M0|, | N0|)+ at which Mα is an initial
segment of Nα, or vice versa.
22 Again, if Eα fails to measure all sets in Mβ , we take the ultrapower of the longest
possible initial segment of Mβ .
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3. γ is a successor ordinal ⇐⇒ γ is a T -successor, and

4. γ is a limit ordinal =⇒ {β | β T γ} is ∈-cofinal in γ.

3.2 Definition. If T is a tree order then

[β, γ]T = {η | η = β ∨ β T η T γ ∨ η = γ},

and similarly for (β, γ]T , [β, γ)T , and (β, γ)T . Also, if γ is a successor ordinal,
we let predT (γ) be the unique ordinal η T γ such that (η, γ)T = ∅.

3.3 Definition. Premice M and N agree below γ iff JM
β = JN

β for all
β < γ.

We now describe a typical run of Gk(M, θ). As play proceeds the players
determine

• a tree order T on θ,

• premice Mα for α < θ, with M0 = M,

• an extender Fα from the Mα sequence, for α < θ, and

• a set D ⊆ θ, and embeddings iα,β : C0(Mα) → C0(Mβ) defined when-
ever αT β and D ∩ (α, β]T = ∅.

The rules of the game guarantee the following agreement among the pre-
mice produced:

• α ≤ β =⇒ Mα agrees with Mβ below lh(Fα),

• α < β =⇒ lh(Fα) is a cardinal of Mβ .

Notice that the last condition implies that if α < β, then Mα does not agree
with Mβ below lh(Fα) + 1. This is because from Fα one can easily compute
a map from ν(Fα) onto lh(Fα).

The game is played as follows. Suppose first that we are at move α + 1,
and have already defined Fξ for ξ < α, Mξ for ξ ≤ α, and T and D on α+1.
(The first move is move 1, and in this case all we need is M = M0 to get
going.) At move α + 1, I must pick an extender Fα from the Mα sequence
such that lh(Fξ) < lh(Fα) for all ξ < α. (If he does not, the game is over and
he loses.) Now let β ≤ α be least such that crit(Fα) < ν(Fβ). Let

M∗
α+1 := JMβ

γ , where γ is the largest η such that

Fα is a pre-extender over JMβ
η .

Our agreement hypotheses imply that γ exists, lh(Fβ) ≤ γ, and Fα is a pre-
extender over C0(JMβ

γ ). [Proof: this is clear if β = α, so let β < α. Let
κ = crit(Fα). Since lh(Fβ) < lh(Fα) and lh(Fβ) is a cardinal of Mα,

P (κ) ∩ JMβ

lh(Fβ) = P (κ) ∩Mα = P (κ) ∩ JMα

lh(Fα).
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Thus Fα is a pre-extender over JMβ

lh(Fβ), so γ exists and lh(Fβ) ≤ γ. The

last statement needs proof only in the case JMβ
γ is of type III. In this case,

ν := ν(JMβ
γ ) is the largest cardinal of JMβ

γ . Thus if lh(Fβ) < γ, then
lh(Fβ) ≤ ν, so that κ < ν, as desired. If lh(Fβ) = γ, then ν = ν(Fβ), so once
again κ < ν, as desired.] We put

α + 1 ∈ D ⇐⇒ M∗
α+1 is a proper initial segment of Mβ .

Let n ≤ ω be largest such that: (i) crit(Fα) < ρn(M∗
α+1) and (ii) if D ∩

[0, α + 1]T = ∅, then n ≤ k. Set

Mα+1 := Ultn(M∗
α+1, Fα),

if this ultrapower is wellfounded. (If the ultrapower is not wellfounded, then
the game is over and II has lost.) Finally, we let β T (α+1), and if α+1 �∈ D,
then iβ,α+1 : C0(Mβ) → C0(Mα+1) is the canonical ultrapower embedding,
and iγ,α+1 = iβ,α+1 ◦ iγ,β whenever γ T β and D ∩ (γ, β]T = ∅. If α + 1 ∈ D,
then we leave iβ,α+1 undefined.

We must verify the agreement hypothesis we have carried along. For this,
it suffices by induction to show that Mα and Mα+1 have the necessary
agreement. Let κ = crit(Fα), and let i : M∗

α+1 → Mα+1, j : M∗
α+1 →

Ult0(M∗
α+1, Fα) := P , and h : JMα

lh(Fα) → Ult0(JMα

lh(Fα), Fα) := Q be the

canonical embeddings. We have just shown, in effect, thatM∗
α+1 and JMα

lh(Fα)

agree below their common value λ for κ+. It follows at once that P and Q
agree below j(λ) = h(λ). But P agrees below i(λ) = j(λ) with Mα+1

because κ < ρn(M∗
α+1) (so that the rΣ

M∗
α+1

n functions from κ to itself are
all in M∗

α+1). Finally, Q agrees with Mα below lh(Fα), which is a cardinal
of Q, from the definition of fine extender sequences. Since lh(Fα) < h(λ) we
have the required agreement.

At a limit move λ, II picks a branch b of the tree T on λ determined by
the play thus far. The branch b must be cofinal (i.e. ∈-cofinal in λ), and
wellfounded ; otherwise II loses. (We say b is wellfounded iff D∩ b is bounded
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below λ, and the direct limit of the C0(Mβ) for β ∈ (b \ sup(D ∩ β)) under
the embeddings iα,β along b is wellfounded.) If II picks such a b, we set

Mλ := dirlim
α∈b

Mα,

where we understand the direct limit here to be the premouse whose Σ0 code
is the direct limit of the C0(Mα), for α ∈ b sufficiently large. We put αT λ
for all α ∈ b, and let iα,λ be the canonical embedding into the direct limit
for α ∈ b \ sup(D ∩ b).

This completes the rules of play for Gk(M, θ). If no one has lost after θ
moves, then II wins.

3.4 Definition. A k-maximal iteration tree on M is a partial play of the
game Gk(M, θ) in which neither player has yet lost.23

We shall use calligraphic letters (e.g. T ) for iteration trees, and the cor-
responding roman letters (e.g. T ) for their associated tree orders. (T is an
iteration tree if it is a k-maximal iteration tree for some k ≤ ω.) We use MT

α

for the αth premouse of T , ET
α for the αth extender used in T , and iT

α,β for
the canonical embeddings. (So ET

α is on the sequence of MT
α .) We use DT

for the set of all α + 1 such that M∗ T
α+1 �= MT

predT (α+1). In order to avoid a
forest of superscripts, we shall often say “T is an iteration tree with models
Nα, extenders Fα, and embeddings jα,β” when Nα = MT

α , Fα = ET
α , and

jα,β = iT
α,β . We will then write N ∗

α+1 for M∗ T
α+1, and so forth. In general, we

drop superscripts keeping track of an iteration tree whenever it seems like a
good idea.

The length lh(T ) of an iteration tree T is the domain of the associated
tree order, so that lh(T ) = α + 1 iff T has last model MT

α .
In the course of describing Gk(M, θ) we proved the following lemma.

3.5 Lemma. Let T be an iteration tree with models Mα and extenders Eα,
and let α < β < lh(T ); then

1. Mα and Mβ agree below lh(Eα), and

2. lh(Eα) is a cardinal of Mβ, so that Mα and Mβ do not agree below
lh(Eα) + 1.

Here is another elementary fact:

3.6 Lemma. Let T be an iteration tree, and let α + 1 < lh(T ); then Eα is
close to M∗

α+1.

The proof is a straightforward induction (see [25, 6.1.5]). This lemma puts
the elementarity Lemma 2.23 at our disposal, and we can then describe the
elementarity of the embeddings along the branches of an iteration tree as
follows.
23 More commonly now, such a tree is called k-normal. The word “maximal” is used for
an entirely different descriptive set-theoretic property of iteration trees.
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3.7 Definition. If T is an iteration tree with models Mα and extenders Eα,
and α+ 1 < lh(T ), then degT (α+ 1) is the largest n ≤ ω such that Mα+1 =
Ultn(M∗

α+1, Eα). Also, we use i∗ T
α+1 for the canonical embedding fromM∗

α+1

into this ultrapower.

3.8 Theorem. Let T be a k-maximal iteration tree on a k-sound premouse,
with models Mα and embeddings iα,β, and let (α + 1)T β and DT ∩
(α + 1, β]T = ∅; then

1. degT (α + 1) ≥ degT (ξ + 1) for all ξ + 1 ∈ (α + 1, β]T , and

2. if degT (α + 1) = degT (ξ + 1) = n for all ξ + 1 ∈ (α + 1, β]T , then

iα+1,β ◦ i∗
α+1 is an n-embedding;

moreover if DT ∩ [0, α + 1] �= ∅ or n < k, then

ρn+1(M∗
α+1) = ρn+1(Mβ) ≤ crit(iα+1,β ◦ i∗

α+1),

iα+1,β ◦ i∗
α+1(pn+1(M∗

α+1)) = pn+1(Mβ),

and
Cn+1(M∗

α+1) = Cn+1(Mβ).

We omit the proof (see [25, 4.7]), which proceeds by induction on β, us-
ing the proof (not just the statement) of Lemma 2.23. Because of Theo-
rem 3.8, we can for limit λ set degT (λ) = eventual value of degT (α + 1),
for (α + 1)T λ sufficiently large. When we are considering T as a play in
Gk(M, θ), we set also degT (0) = k.24 We then have that for any α < lh(T ),
degT (α) is the largest n ≤ ω such that Mα is n-sound and n ≤ degT (0) if
D ∩ [0, α + 1]T = ∅. If M∗

α+1 is (n + 1)-sound, where n + 1 ≤ degT (0) if
D ∩ [0, α+1]T = ∅, and D ∩ (α+1, β]T = ∅ and degT (α+1) = degT (β) = n,
then by Theorem 3.8 the branch embedding iα+1,β◦i∗

α+1 is just the uncollapse
map from Cn+1(Mβ) to Cn(Mβ).

3.9 Definition. A (k, θ)-iteration strategy for M is a winning strategy for
II in Gk(M, θ). We say M is (k, θ)-iterable iff there is such a strategy.

The iteration trees we have introduced have some special properties. If
one drops the restriction on I in Gk(M, θ) that he pick extenders of increasing
lengths, and allow him to apply the extender chosen to any initial segment of
any earlier model over which it is an extender, one obtains a stronger notion
of iterability which is perhaps more natural. We shall need an approximation
to this stronger notion later.

It is customary to call an iterable premouse a mouse, and we shall fol-
low this custom in informal discussion. We shall make no formal definition
24 It is an awkward feature of our terminology that an iteration tree may be a play of
Gk(M, θ) for more than one k.
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of “mouse”, however, as it is not clear what sort of iterability one should
demand. The definition above captures only one variety of iterability. The
question of iterability and its applications is of central importance and, at
the same time, not very well understood. For this reason, we prefer to spell
out in each instance how much iterability we can prove, or how much we need
for a given purpose.

3.2. The Comparison Process

The most important use of iterability lies in the comparison process for mice.
There are certainly mice M and N such that neither is an initial segment
of the other, but if M and N are sufficiently iterable, then one can form
iteration trees on M and N with last models P and Q respectively such that
P is an initial segment of Q or vice-versa. Moreover, one can arrange that if,
say, P is an initial segment of Q, then the branch of the tree on M leading
to P does not drop, and thus gives rise to an elementary embedding from M
to P . Intuitively, this means that M has been compared with N , and found
to be no stronger.

3.10 Definition. A branch b of the iteration tree T drops (in model or
degree) iff DT ∩ b �= ∅ or degT (b) < degT (0).

If b does not drop in model, then i0,b exists, and if in addition b does not
drop in degree, then i0,b is a degT (0)-embedding. We shall also speak of
“partial branches” of the form [0, α]T dropping (in model or degree), with
the obvious meaning. Again, if there is no such dropping, then i0,α exists
and is a degT (0)-embedding.

3.11 Theorem (The Comparison Lemma). Let M and N be k-sound pre-
mice of size ≤ θ, and suppose that Σ and Γ are (k, θ+ +1)-iteration strategies
for M and N respectively; then there are iteration trees T and U played ac-
cording to Σ and Γ respectively, and having last models MT

α and MU
η , such

that either

1. [0, α]T does not drop in model or degree, and MT
α is an initial segment

of MU
η , or

2. [0, η]U does not drop in model or degree, and MU
η is an initial segment

of MT
α .

Proof. We build T and U by an inductive process known as “iterating away
the least disagreement”. Before step α + 1 of the construction we have initial
segments Tα and Uα of the trees we shall eventually construct, and these have
last models P and Q respectively. (T0 and U0 are one-model trees with last
models P = M and Q = N .) If one of P and Q is an initial segment of the
other, then the construction of T and U is finished. Otherwise, let

λ = least γ such that J P
γ �= JQ

γ .
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This means that the predicates Ḟ J P
λ and Ḟ J Q

λ are different. If Ḟ J P
λ �= ∅,

then letting lh(Tα) = β + 1, we set

E
Tα+1
β := pre-extender coded by Ḟ J P

λ

and let Tα+1 be the unique one-model extension of Tα determined by this
and the rules of Gk(M, θ+ + 1). If Ḟ J P

λ = ∅, then we just let Tα+1 = Tα.
Similarly, if Ḟ J Q

λ �= ∅, then letting lh(Uα) = η + 1, we set

EUα+1
η := pre-extender coded by Ḟ J Q

λ

and let Uα+1 be the one model extension of Uα thereby determined; otherwise
we let Uα+1 = Uα. Notice that in any case, the last models of Tα+1 and Uα+1

agree below λ + 1. This means that future extenders used in the two trees
will have length > λ, so that player I is not losing one of the iteration games
by failing to play extenders increasing in length.

At limit steps λ in our construction, we set Tλ =
⋃

α<λ Tα if this tree
has a last model, that is, if Tα is eventually constant as α → λ. Otherwise
we let Tλ be the one-model extension of

⋃
α<λ Tα determined by the cofinal,

wellfounded branch of this tree chosen by Σ. We define Uλ in parallel fashion.
The main thing we need to prove is that the inductive process just de-

scribed stops at some step α < θ+.

Claim. There is an α < θ+ such that the last model of Tα is an initial
segment of the last model of Uα, or vice-versa.

Proof. If not, then we have trees T = Tθ+ and U = Uθ+ . It is easy to see
that, since M and N have size ≤ θ, both T and U have length θ+ + 1.

Let us say that extenders E and F are compatible iff for some η, E is the
trivial completion of F �η or F is the trivial completion of E�η. (This implies
that the extenders have the same critical point, and measure the same subsets
of that critical point.)

Subclaim. For any α, β < θ+, ET
α is incompatible with EU

β .

Proof. Let E = ET
α , F = EU

β , and suppose E is the trivial completion of F �η,
for some η. Let ξ be such that E is the extender used to go from Tξ to Tξ+1,
and let γ be such that F is used to go from Uγ to Uγ+1. Since lh(E) ≤ lh(F ),
we have ξ ≤ γ. But if ξ = γ, then E and F are used at the same stage in
our process, so lh(E) = lh(F ), so E = F , contrary to the fact that we were
iterating away disagreements. Thus ξ < γ, and hence lh(E) < lh(F ). Now let
P and Q be the last models of Tγ and Uγ respectively. By Lemma 3.5, lh(E)
is a cardinal of P , and since P agrees with Q below lh(F ), this means lh(E)
is a cardinal of JQ

lh(F ). On the other hand, the initial segment condition of
Definition 2.4 implies (in both its cases) that E ∈ JQ

lh(F ). Since E collapses
its length in an easily computable way, this is a contradiction. �
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We now use a reflection argument to produce compatible extenders used
on the branches [0, θ+]T and [0, θ+]U , the desired contradiction. Let X ≺ Vη

for some large η, with T ,U ∈ X, |X| = θ, and X ∩ θ+ transitive. Let H be
the transitive collapse of X, π : H → Vη the collapse map, and α = crit(π) =
X ∩ θ+. (Note that θ < α.) Let T̄ = π−1(T ) and Ū = π−1(U).

SinceM and N have size ≤ θ, T̄ and Ū are trees onM and N respectively.
Similarly, T̄ �α = T �α and Ū�α = U�α. Also, [0, α]T̄ = [0, θ+]T ∩ α and
[0, α]Ū = [0, θ+]U ∩ α. Since [0, α]T̄ has limit order type, and any branch
of an iteration tree must be closed below its sup (by clauses 3 and 4 of
Definition 3.1), we have α ∈ [0, θ+]T , and thus [0, α]T̄ = [0, α]T . Similarly
α ∈ [0, θ+]U and [0, α]Ū = [0, α]U . Since the direct limit construction is
absolute to H, these facts imply that T̄ = T �(α + 1) and Ū = U�(α + 1).

We can find a γ ∈ [0, α]T such that DT ∩ [0, α]T ⊆ γ, and using π we
see that DT ∩ [0, θ+]T ⊆ γ. This means that iT

α,θ+ is defined. In fact, if
x ∈ C0(MT

α ), then letting

x = iT
γ,α(x̄) = iT̄

γ,α(x̄),

we have
π(x) = iT

γ,θ+(x̄) = iT
α,θ+(iT

γ,α(x̄)) = iT
α,θ+(x).

In other words
iT
α,θ+ = π�C0(MT

α ).

Similarly, we get
iU
α,θ+ = π�C0(MU

α).

Thus iT
α,θ+ and iU

α,θ+ agree wherever both are defined. Notice that they are
defined on the same subsets of α, since

P (α)MT
α = P (α)MT

θ+ = P (α)MU
θ+ = P (α)MU

α .

Here the first and third identities hold because crit(iT
α,θ+) = crit(iU

α,θ+) = α,
and the second holds because MT

θ+ agrees with MU
θ+ below θ+.

Now let ξ+1 ∈ [0, θ+]T be such that predT (ξ+1) = α, and γ+1 ∈ [0, θ+]U
be such that predU (γ + 1) = α. Let ν = inf(ν(ET

ξ ), ν(EU
γ )). Then for any

a ∈ [ν]<ω and B ∈ C0(MT
α ) ∩ C0(MU

α),

B ∈ (ET
ξ )a ⇐⇒ a ∈ iT

α,ξ+1(B)

⇐⇒ a ∈ iT
α,θ+(B)

⇐⇒ a ∈ iU
α,θ+(B)

⇐⇒ a ∈ iU
α,γ+1(B)

⇐⇒ B ∈ (EU
γ )a.

The first and last equivalences displayed come from the relationship of an
extender to its embedding, and the middle equivalence comes from the agree-
ment between iT

α,θ+ and iU
α,θ+ our reflection argument produced. The second

and fourth equivalences come from the fact that ν(ET
ξ ) ≤ crit(iT

ξ+1,θ+) and



1620 Steel / An Outline of Inner Model Theory

ν(EU
γ ) ≤ crit(iU

γ+1,θ+). This is because generators are not moved along the
branches of an iteration tree: if e.g. (ξ+1)T (η+1), then ET

η has been applied
to a model with index > ξ, so ν(ET

ξ ) ≤ crit(ET
η ).

This completes the proof of the claim. �

Now let α be as in the claim, and set T = Tα, U = Uα, β+1 = lh(T ), and
γ + 1 = lh(U). In order to complete our proof, we must show that we have
not dropped in model or degree in a way which would make our comparison
meaningless. Now if MT

β is a proper initial segment of MU
γ , then MT

β is
ω-sound, and hence by the remarks following Theorem 3.8 there can have
been no dropping in model or degree along [0, β]T , so that iT

0,β exists and is a
k-embedding, as desired. Similarly, if MU

γ is a proper initial segment of MT
β ,

then iU
0,γ exists and is a k-embedding. Thus we may assume MT

β = MU
γ .

If DT ∩ [0, β]T = ∅ and degT (β) = k, then we are done, so let us assume
otherwise. Similarly, we may assume that DU ∩ [0, γ]U �= ∅ or degU (γ) < k.
It follows from these assumptions that degT (β) = degU (γ) = n, where n is
largest such that MT

β = MU
γ is n-sound. (See Theorem 3.8.) But then, from

Theorem 3.8 and the remarks following it, we see that there are ξ+1 ∈ [0, β]T
and η + 1 ∈ [0, γ]U such that

iT
ξ+1,β ◦ i∗ T

ξ+1 = uncollapse map from Cn+1(MT
β ) to Cn(MT

β )

= uncollapse map from Cn+1(MU
γ ) to Cn(MU

γ )

= iU
η+1,γ ◦ i∗ U

η+1.

Because generators are not moved along the branches of an iteration tree, we
get as in the proof of the claim that the extender ET

ξ giving rise to i∗ T
ξ+1 is

compatible with the extender EU
η giving rise to i∗ U

η+1. This contradicts the
subclaim, and thereby completes the proof of the comparison theorem. �

We note that the conclusion of the Comparison Lemma can be strength-
ened a bit in the case that one is comparing ω-sound mice using ω-maximal
trees, which is the case of greatest interest. In this case, if T drops in model
or degree along the branch leading to its last model, then U does not, and the
last model of U is a proper initial segment of the last model of T . This follows
at once from the proof of the Comparison Lemma 3.11 and the observation
that the last model of T cannot be ω-sound in this case.

We can draw some simple corollaries concerning the definability of the
reals belonging to mice.

3.12 Corollary. Let M and N be ω-sound (ω, ω1 +1)-iterable premice such
that ρω(M) = ρω(N ) = ω; then M is an initial segment of N , or vice-versa.

Proof. Since M and N are ω-sound and project to ω, they are countable,
and so we have enough iterability to compare them. Let T onM and U on N
be as in the conclusion of the Comparison Lemma 3.11, with last models Mα
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and Nη respectively, and suppose without loss of generality that Mα � Nη

and [0, α] does not drop in model or degree. Since ρω(M) = ω, there are no
extenders over M with critical point < ρω(M), and therefore α > 0 implies
that [0, α] must drop in model or degree. So α = 0. If η = 0 we are done,
so assume η > 0. Since ρω(N ) = ω, this implies Nη is not ω-sound. Thus
M is a proper initial segment of Nη, and M is countable in Nη because
ρω(M) = ω. It is easy to see that this implies that M is an initial segment
of N , as desired. (One cannot gain reals by iterating, although one can lose
them along some branch that drops.) �

3.13 Corollary. If M and N are (ω, ω1 +1)-iterable premice, then the M-
constructibility order on R∩M is an initial segment of the N -constructibility
order on R ∩N , or vice-versa.

Proof. If x ∈ R ∩ (JM
α+1 \ JM

α ), then ρω(JM
α ) = ω. This observation and

Corollary 3.12 easily yield the desired conclusion. �

3.14 Corollary. If x ∈ R ∩M for some (ω, ω1 + 1)-iterable premouse M,
then x is ordinal definable, and in fact x is Δ2

2-definable from some countable
ordinal.

Proof. Say x is the αth real in the M-constructibility order. By Corol-
lary 3.13 we know that the formula “v is the αth real of some (ω, ω1 + 1)-
iterable premouse” characterizes x uniquely, so x is definable from α. In
fact, by simply counting quantifiers one sees that (ω, ω1 + 1)-iterability is
Σ2

3-definable, so x is Δ2
3-definable from α. To see that x is Δ2

2-definable, one
uses the following equivalence:

y = x ⇐⇒ ∃M∃Σ(M is a countable premouse and
Σ is an (ω, ω1)-iteration strategy for M and
∀N∀Γ(if N is a countable premouse which
has an αth real z �= y, and
Γ is an ω1-iteration strategy for N , then
if (T ,U) is the (Σ,Γ)-coiteration of M with N ,
then U has no cofinal branch)).

Here by the (Σ,Γ)-coiteration we mean the pair of iteration trees determined
by Σ and Γ through the process of iterating away the least disagreement, as
in the Comparison Lemma 3.11. Since an ω1-iteration strategy is essentially
a set of reals, and the property of being an ω1-iteration strategy is expressible
using only real quantifiers, the formula displayed above is Σ2

2, and hence x is
Δ2

2 in α. �

We shall refine the proof of Corollary 3.14 later, and thereby obtain
sharper upper bounds on the complexity of the reals in certain small mice.
The refinement involves producing a logically simpler condition equivalent to
(ω1 + 1)-iterability in the case of these small mice.
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4. The Dodd-Jensen Lemma

The Dodd-Jensen Lemma on the minimality of iteration maps is a funda-
mental, often-used tool in inner model theory.

4.1. The Copying Construction

Given a k-embedding π : M → N and a k-maximal iteration tree T on
M with models Mα, we can lift T to a k-maximal iteration tree πT on N
with models Nα. In fact, we need slightly less elementarity for π in order to
construct πT .

4.1 Definition. Let π : C0(M) → C0(N ) and let k < ω. We call π a weak
k-embedding iff

1. M and N are k-sound,

2. π is rΣk-elementary, and rΣk+1-elementary on parameters from some
set X cofinal in ρk(M),

3. π(pi(M)) = pi(N ), for all i ≤ k, and

4. π(ρi(M)) = ρi(N ) for all i < k, and sup(π“ρk(M)) ≤ ρk(N ).

A weak ω-embedding is just an ω-embedding, that is, a fully elementary
map.

We shall construct πT by induction; at stage α we define its αth modelNα,
together with an embedding πα from C0(Mα) to C0(Nα), as in the following
figure:

The next lemma describes the successor steps of this construction.

4.2 Lemma (Shift Lemma). Let M̄ and N̄ be premice, let κ̄ = crit(Ḟ N̄ ),
and let

ψ : C0(N̄ ) → C0(N )

be a weak 0-embedding, and

π : C0(M̄) → C0(M)
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be a weak n-embedding. Suppose that M̄ and N̄ agree below (κ̄+)M̄ and
(κ̄+)M̄ ≤ (κ̄+)N̄ , while M and N agree below (κ+)M and (κ+)M ≤ (κ+)N ,
where κ = ψ(κ̄). Suppose also

π�(κ̄+)M̄ = ψ�(κ̄+)M̄.

Let κ̄ < ρn(M̄), so that Ultn(C0(M̄), Ḟ N̄ ) and Ultn(C0(M), Ḟ N ) make sense,
and suppose the latter ultrapower is wellfounded. Then the former ultrapower
is wellfounded; moreover, there is a unique embedding

σ : Ultn(C0(M̄), Ḟ N̄ ) → Ultn(C0(M), Ḟ N )

satisfying the conditions:

1. σ is a weak n-embedding,

2. Ultn(C0(M̄), Ḟ N̄ ) agrees with N̄ below ρ0(N̄ ), and Ultn(C0(M), Ḟ N )
agrees with N below ρ0(N ),

3. σ�(ρ0(N̄ )) = ψ�(ρ0(N̄ )),

4. the diagram

Ultn(C0(M̄), Ḟ N̄ )
σ

Ultn(C0(M), Ḟ N )

C0(M̄)

i

π
C0(M)

j

commutes, where i and j are the canonical ultrapower embeddings.

The proof of the lemma is straightforward, so we omit it. In the represen-
tative special case n = 0, the desired map σ is defined by

σ([a, f ]M̄
Ḟ N̄ ) = [ψ(a), π(f)]M

Ḟ N .

This is of course how it must be defined if we are to have conditions 3 and 4.
Now let π : C0(M) → C0(N ) be a weak k-embedding, and let T be a

k-maximal iteration tree on M. We define the models of a k-maximal copied
tree πT on N by induction. In order to avoid some fine structural details, we
shall assume first that no model on T is a type III premouse. In that case,
πT will be a tree with the same order and drop structure as T , and we shall
have embeddings

πα : C0(Mα) → C0(Nα).

We shall have degT (α) ≤ degπT (α), with perhaps strict inequality being
forced on us by the desire that πT be k-maximal. We use Eβ and iβ,α for
the extenders and embeddings of T , and Fβ and jβ,α for the extenders and
embeddings of πT , and we maintain inductively:
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• πα is a weak degT (α)-embedding,

• if β < α and Eβ is the last extender of the initial segment P of Mβ ,
then πβ�ρ0(P) = πα�ρ0(P), and

• if β T α and (β, α]T ∩D = ∅, then the following diagram commutes:

C0(Nβ)
jβ,α C0(Nα)

C0(Mβ)

πβ

iβ,α
C0(Mα)

πα

We define Nα+1 and πα+1 by applying the Shift Lemma. Following the
notation of the lemma, we take N̄ to be the initial segment ofMα whose last
extender is Eα, and N to be πα(N̄ ) if N̄ is a proper initial segment of Mα,
and N = Nα otherwise. (Because we have assumed Mα is not of type III,
Mα is contained in the domain of πα.) We take ψ to be the embedding
with domain C0(N̄ ) induced by πα. We let Fα = Ḟ N . Following further the
Shift Lemma notation, M̄ is the initial segment M∗

α+1 of MpredT (α+1) to
which Eα is applied, and π : C0(M̄) → C0(M) is the map induced by πβ ,
for β = predT (α + 1).) Let n = degT (α + 1), and let m = degπT (α + 1)
be the degree dictated by Fα and our requirement that πT be k-maximal.
One can check n ≤ m. If the ultrapower Ultm(C0(N ), Fα) giving rise to
Nα+1 is illfounded, as may very well happen, then we stop the construction
of πT . Otherwise, let πα+1 = τ ◦ σ, where σ is given by the Shift Lemma,
and τ : Ultn(C0(N ), Fα) → Ultm(C0(N ), Fα) is the natural map. It is easy
to verify the induction hypotheses, and so we can continue.

At limit steps λ < lh(T ) we let Nλ be the direct limit over all α ∈ [0, λ)T ,
α sufficiently large, of the Nα, provided that this limit is wellfounded. We let
πλ be the embedding given by our induction hypothesis (3): πλ(iα,λ(x)) =
jα,λ(πα(x)). It is easy to verify the induction hypotheses. If the direct limit
is illfounded, as may very well happen, we stop the construction of πT .

Suppose now that α is such that Mα is type III. Letting N̄ be the initial
segment ofMα whose last extender is Eα, it is possible then that πα does not
act on N , because the domain of πα is only the squashed structure C0(Mα).
In the next paragraph, we include an outline of how to deal with this case,
as a service to the scrupulous reader. We advise the unscrupulous reader to
skip it.25

Let α be least such that Mα is type III and let β = predT (α+ 1). If N̄ =
Mα, then we can just take Fα to be the last extender of Nα, and everything
works out. The problem comes when N̄ is a proper initial segment of Mα,
but not in the domain of πα. But notice then that “un-squashing” upstairs
gives ψ : Ult(C0(Mα), F̄ ) → Ult(C0(Nα), F ) which extends πα, where F̄ and
25 We ignored this problem in [25]. Schlutzenberg found that error, and its repair.
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F are the last extenders of Mα and Nα respectively. Let N = ψ(N̄ ). The
problem is that N may not be an initial segment of Nα. So we extend πT by
two steps: first apply F to the appropriate initial segment of the appropriate
model (as dictated by maximality), forming Nα+1 = Ult(Q, F ). It is easy to
see that N is a proper initial segment of P . We then take the last extender
from N and apply it to the appropriate initial segment of Nβ to get Nα+2.
We have πα+1 : Mα+1 → Nα+2 given by πα+1([a, f ]) = [ψ(a), πβ(f)]. Again,
everything works out. Thus in general, one step forward in T may correspond
to two steps forward in πT , and our copy maps πγ map MT

γ to N πT
τ(γ), where

γ < τ(γ) is possible.
This completes the definition of πT .

4.3 Remark. A near k-embedding is a weak k-embedding which is fully
rΣk+1-elementary. If π0 is a near k-embedding, then all πα are near degT -
embeddings, and moreover degT (α) = degπT (α). See [35, 1.3]. There is an
error in [25], where it is claimed that one can copy under weak embeddings,
while maintaining both degT (α) = degπT (α) and that πT is maximal.26 See
[35] for more on how various degrees of elementarity are propagated in the
copying construction.

The Dodd-Jensen Lemma applies only to mice with a slightly stronger
iterability property than the one we have introduced. In order to describe
this property, we introduce an elaboration of the iteration game Gk(M, θ);
a run of the new game is a linear composition of appropriately maximal
iteration trees, rather than just a single such tree.

Let θ be an ordinal. In Gk(M, α, θ), there are α rounds, the βth being
played as follows: Let Q be the last model in the linear composition produced
before round β; that is, let Q = M if β = 0, Q be the last model of the tree
played during round β − 1 if β > 0 is a successor, and Q be the direct limit
along the unique cofinal branch in the linear composition of trees produced
before β, if β is a limit ordinal. (I wins if this branch is illfounded.) We
let q, the degree of Q, be k if β = 0, the degree of Q as a model of the tree
played during round β − 1 (see Definition 3.7) if β > 0 is a successor, and
the eventual value of the degrees of previous rounds if β is a limit ordinal.
I begins round β by choosing an initial segment P of Q, and an i ≤ ω such
that if P = Q then i ≤ q, where q is the degree of Q. The rest of round β
is a run of Gi(P , θ),27 except that we allow I to exit to round β + 1 before
all θ moves have been played, and we require him to do so, on pain of losing,
if θ is limit ordinal. (So if I has not lost, then when round β ends there
will be in any case a last model to serve as Q for round β + 1.) II wins
Gk(M, α, θ) just in case he does not lose any of the component games and,
for β ≤ α a limit ordinal, the unique cofinal branch in the composition of
trees previously produced is wellfounded. A play of this game in which II has
not yet lost is called a k-bounded iteration tree on M. More commonly now,
26 Schlutzenberg also found this error, and its repair.
27 So by our earlier conventions, i is the degree of P.
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it is called a stack of normal trees on M. Notice that any winning strategy
Γ for II in Gk(M, α, θ) determines a winning strategy Σ for II in Gk(M, θ) in
an obvious way: Σ calls for II to play as if he were using Γ in the first round
of Gk(M, α, θ), and I had not dropped to begin that round.

4.4 Definition. LetM be a k-sound premouse, where k ≤ ω; then a (k, α, θ)-
iteration strategy for M is a winning strategy for II in Gk(M, α, θ), and M
is (k, α, θ)-iterable just in case there is such a strategy.

The copying construction enables us to pull back iteration strategies for
N to iteration strategies for premice embedded in N .

4.5 Definition. Let π : M→N be a weak k-embedding, and Σ a strategy
for II in Gk(N , θ), or in Gi(P , α, θ) for some P such that N is an initial
segment of P and i such that i ≤ k if N = P ; then the pullback of Σ under
π is the strategy Σπ in the corresponding game on M such that for any
k-bounded T on M,

T is by Σπ ⇐⇒ πT is by Σ.

Clearly, if Σ is a winning strategy for II an iteration game on N , and
π : M→N is sufficiently elementary, then Σπ is a winning strategy for II in
the corresponding game on M. Thus

4.6 Theorem. Suppose N is (k, θ)-iterable (respectively, (k, α, θ)-iterable),
and there is a weak k-embedding from M into N ; then M is (k, θ)-iterable
(respectively, (k, α, θ)-iterable).

4.2. The Dodd-Jensen Lemma

The following definition enables us to state an abstract form of the Dodd-
Jensen Lemma.

4.7 Definition. Let Σ be a (k, λ, θ)-iteration strategy for M, where λ is ad-
ditively closed, and let T be an iteration tree played according to Σ; then we
say T is (k, λ, θ)-unambiguous iff whenever α < lh(T ) is a limit ordinal, then
[0, α]T is the unique cofinal branch b of T �α such that MT

b is (deg(b), λ, θ)-
iterable.

So the unambiguous trees are just those which are played according to
every (k, λ, θ)-iteration strategy for M.

4.8 Theorem (The Dodd-Jensen Lemma). Let λ be additively closed, let Σ
be a (k, λ, θ)-iteration strategy for M, and let T be an unambiguous iteration
tree of length α + 1 played according to Σ. Suppose degT (α) = k, and
π : M → N is a weak k-embedding, where N is an initial segment of MT

α ;
then

1. N = MT
α ,
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2. [0, α]T does not drop (in model or degree), and

3. for all x ∈M, iT
0,α(x) ≤L π(x), where ≤L is the order of construction.

Proof. Assume first toward contradiction that N is a proper initial segment
of MT

α . We shall construct a run r of Gk(M, λ, θ) which is a loss for Σ.
The run r is divided into ω blocks, each consisting of a number of rounds
of Gk(M, λ, θ) equal to the number of rounds in T . We shall use Tn for the
iteration tree played in the nth block of r, and Mn for the base model of Tn.
Thus Mn+1 is the model player I drops to at the beginning of the first round
in block n + 1 of r; we have I drop to the degree k at the beginning of this
round. We shall arrange that Mn+1 is a proper initial segment of the last
model of Tn, so that the unique cofinal branch of the composition of the Tn’s
is illfounded, and r is indeed a loss for Σ. As an auxiliary we define maps
πn : Mn →Mn+1 as we proceed.

Set M0 = M, T0 = T , M1 = N , and π0 = π.
Now suppose thatMn, Tn,Mn+1, and πn are given. Set Tn+1 = πnTn. We

shall check shortly that Tn+1 is played according to Σ, so that lh(Tn+1) =
lh(Tn), and we have from the copying construction an embedding σ from
the last model of Tn to the last model of Tn+1. Now Mn+1 ∈ dom(σ), so
we can set Mn+2 = σ(Mn+1) and πn+1 = σ�Mn+1. This completes the
construction of r, and thereby gives the desired contradiction.

We now show that Tn+1 is a play according to Σ. Let us call a position
u which is according to Σ transitional if u = (s, (P , i)) where s represents
some number β < λ of complete rounds of play according to Σ in which I
has not lost, and (P , i) is a way I might legally begin round β. Notice that
in this situation, Σ determines an (i, λ, θ)-iteration strategy for P . We call
this strategy Σu. Now let u and v be the transitional initial segments of r
ending with (Mn, k) and (Mn+1, k) respectively. Let ψ = πn−1 ◦ · · · ◦π0 and
τ = πn ◦ · · · ◦ π0, so that ψ : M → Mn and τ : M → Mn+1 are weak k
embeddings. Since (Σu)ψ and (Σv)τ are (k, λ, θ)-iteration strategies for M
and T is unambiguous, T is a play by each of (Σu)ψ and (Σv)τ . Therefore ψT
and τT are plays according to Σ, and since τT = πn ◦ ψT = πnTn = Tn+1,
we are done.

The proofs of conclusions 2 and 3 of the Dodd-Jensen Lemma are similar.
We construct Mn, Tn, and πn as above, but now we have that Mn+1 is the
last model of Tn. If the branch of T from M to N = M1 drops, then the
branch of Tn from Mn to Mn+1 drops for each n, and the unique cofinal
branch of the composition of the Tn’s is illfounded. Thus we may assume
that the branch of T from M to N does not drop, so that 2 holds. This
implies that for all n, the branch of Tn from Mn to Mn+1 does not drop,
so that we have an iteration map in : Mn → Mn+1 given by Tn. Assume
that conclusion 3 fails, and fix x0 ∈ M0 such that π0(x0) <L i0(x0). For
any n ≥ 0, define xn+1 by: xn+1 = πn(xn). It is easy to check that xn+1 <L

in(xn) for all n. (This is true for n = 0 by hypothesis. But if xn+1 <L in(xn),
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then

xn+2 = πn+1(xn+1) <L πn+1(in(xn)) = in+1(πn(xn)) = in+1(xn+1),

because πn+1 ◦ in = in+1 ◦πn by the commutativity of the copy maps.) Thus
again, the unique cofinal branch of the composition of the Tn’s is illfounded,
and we have a loss for Σ.

The following diagram illustrates the proof given for conclusion 3.

�

4.3. The Weak Dodd-Jensen Property

Unfortunately, there are important contexts in which one wants to use the
Dodd-Jensen Lemma, but in which one does not know that the given itera-
tion strategy is unambiguous. One such context is the proof of the key fine
structural fact that the standard parameters of a sufficiently iterable mouse
are solid and universal. (We shall prove this in the next section.) Fortunately,
one can construct from any iteration strategy for a countable mouse another
iteration strategy which satisfies a weak version of the Dodd-Jensen Lemma,
and this weak version suffices for the proof of solidity and universality. Since
the construction is simple and natural, we shall give it here.

The notions and results in this subsection come from [31].
Let M and P be premice; then we say that P is (M, k)-large just in case

there is a near k-embedding from M to an initial segment of P . (A near
k-embedding is a weak k-embedding which is rΣk+1 elementary. See [35,
1.2, 1.3], where it is shown that the copying construction gives rise to such
embeddings. We could make do with weak k-embeddings here, but it would
be a bit awkward at one point.) Let �e = 〈ei | i < ω〉 enumerate the universe
of a countable premouse M, and π : M → P be a near k-embedding; then
we say π is (k,�e)-minimal iff whenever σ is a near k-embedding from M to
an initial segment N of P , then N = P and either σ = π, or σ(ei) >L π(ei)
where i is least such that σ(ei) �= π(ei). Notice that if P is (M, k)-large but
no proper initial segment of P is (M, k)-large, then there is a (k,�e)-minimal
embedding fromM to P . This embedding is just the leftmost branch through
a certain tree.
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4.9 Definition. Let Σ be a (k, α, θ)-iteration strategy for a countable pre-
mouse M, and let �e = 〈ei | i < ω〉 enumerate the universe of M in order
type ω; then we say Σ has the weak Dodd-Jensen property (relative to �e) iff
whenever T is an iteration tree on M played according to Σ, and β < lh(T )
is such that MT

β is (M, k)-large, then iT
0,β exists and is (k,�e)-minimal.

4.10 Theorem (The Weak Dodd-Jensen Lemma). Suppose M is (k, ω1, θ)-
iterable, and that �e enumerates the universe of M in order type ω; then
there is a (k, ω1, θ)-iteration strategy for M which has the weak Dodd-Jensen
property relative to �e.

Proof. Let Σ be any (k, ω1, θ)-iteration strategy for M. We shall construct
a transitional position u = (r, (P , k)) of Σ and a (k,�e)-minimal embedding
π : M→ P such that π is strongly (k,�e) minimal, in the sense that whenever
R is an (M, k)-large Σu-iterate of P , then there is no dropping in the iteration
from P toR, and if i : P → R is the iteration map, then i ◦ π is (k,�e) minimal.
It is then easy to see that the π-pullback of Σu has the weak Dodd-Jensen
property.

Let us call a pair (r,Q) suitable if (r, (Q, k)) is transitional, and Q is
(M, k)-large but no proper initial segment of Q is (M, k)-large. In order to
obtain the desired u and π, we define by induction on n < ω suitable pairs
(rn,Pn). We maintain inductively that rn+1 extends (rn, (Pn, k)). We begin
by letting r0 be the empty position, and P0 = M. Now suppose that rn and
Pn have been defined.

Case 1. There is a suitable (s,Q) such that s extends (rn, (Pn, k)) and the
branch Pn-to-Q in the iteration given by s has a drop.

In this case, we simply let (rn+1,Pn+1) be any such (s,Q).

Case 2. Otherwise.
Let τ : M→ Pn be (k,�e)-minimal.

Subcase 2a. There is a suitable (s,Q) such that s extends (rn, (Pn, k)), and
letting i : Pn → Q be the iteration map given by s, i◦τ is not (k,�e)-minimal.

In this case, let m < ω be least such that for some such s, Q, and i we
have, letting σ : M → Q be (k,�e)-minimal, that σ(em) �= i ◦ τ(em) (and
thus σ(em) <L i ◦ τ(em)). We then let (rn+1,Pn+1) be a suitable pair (s,Q)
witnessing this property of m.

Subcase 2b. Otherwise.
In this case τ is strongly (k,�e)-minimal in the sense advertised earlier, so

we set u = (rn, (Pn, k)) and π = τ , and stop the construction.
Now suppose that the construction never stops. Notice that case 1 can only

apply finitely often, since otherwise we get an iteration tree played according
to Σ whose unique cofinal branch has infinitely many drops. Suppose then
that case 2 applies at all n ≥ n0, so that for all n0 ≤ n ≤ m we have a
k-embedding in,m : Pn → Pm given by rm. For n ≥ n0, let πn : M → Pn

be (k,�e)-minimal; then if n0 ≤ n < m, πm is “to the left” of in,m ◦ πn. It



1630 Steel / An Outline of Inner Model Theory

follows that for any j, in,m(πn(ej)) = πm(ej) for all sufficiently large n,m
(by induction on j). Let

r =
⋃

n<ωrn, P = lim
n→∞

Pn, u = (r, (P , k)),

let in,∞ : Pn → P be the direct limit map (a k-embedding), and define
π : M→ P by

π(ej) = eventual value of in,∞(πn(ej)), as n→∞.

We claim that u and π are as advertised earlier.
Clearly π is a near k-embedding, and so P is (M, k)-large. No proper

initial segment R of P can be (M, k)-large, as then (u,R) could serve as the
(s,Q) witnessing the occurrence of case 1 at a stage n > n0. Similarly, π
is (k,�e)-minimal. For if σ is a near k-embedding of M into P which is to
the left of π, then take m0 to be the least j such that σ(ej) �= π(ej), and
let l < ω be so large that n0 < l and π(ej) = il,∞(πl(ej)) for all j ≤ m0

(and so m > m0, where m is as in case 2a at stage l). Then r, P , and σ
could serve as the s, Q, and σ witnessing m ≤ m0 at stage l, contradiction.
Finally, let R be any (M, k)-large iterate of P via Σu. Clearly, there is a
transitional position (v, (R, k)) such that v extends u. We can argue as above
that there is no dropping in the iteration tree given by v from P to R, and
that if i : P → R is the iteration map, then i ◦ π is (k,�e)-minimal. Thus u
and π are as advertised.

We leave to the reader the easy verification that (Σu)π has the weak Dodd-
Jensen property. �

The weak Dodd-Jensen property isolates a unique iteration strategy, mod-
ulo the enumeration �e. Since the main ideas in the proof of this fact are used
very often in inner model theory, we give it here.

4.11 Theorem. Let �e enumerate the universe of the k-sound premouse M
in order type ω; then there is at most one (k, ω1 + 1)-iteration strategy for
M which has the weak Dodd-Jensen property relative to �e.

Proof. Suppose that Σ and Γ are distinct such strategies. We can find
a k-maximal iteration tree T on M such that T has limit length λ < ω1,
T is played according to both Σ and Γ, and Σ(T ) �= Γ(T ). Let U∗ and
V∗ be the iteration trees of length λ + 1 extending T produced by Σ and Γ
respectively. We now proceed as if we had produced U∗ and V∗ on the two
sides of a coiteration, and continue “iterating the least disagreement”. We
thereby extend U∗ and V∗ to k-maximal trees U and V , played according to
Σ and Γ respectively, in such a way that the last model of one is an initial
segment of the last model of the other. We may as well assume that MU

α

is an initial segment of MV
β . As in the Comparison Lemma 3.11, one of the

two trees does not drop along the branch leading to its last model, so we can
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assume that DU ∩ [0, α]U = ∅ and degU (α) = k, and hence iU
0,α exists and is

a k-embedding.
It follows that MV

β is (M, k)-large. Since Γ has the weak Dodd-Jensen
property relative to �e, iV

0,β exists and is (k,�e)-minimal. This implies that no
proper initial segment of MV

β is (M, k)-large, so MU
α = MV

β . Because Σ also
has the weak Dodd-Jensen property relative to �e, iU

0,α is also (k,�e)-minimal.
It follows that iU

0,α = iV
0,β .

Notice that since Σ(T ) �= Γ(T ), [0, α]U ∩ [0, β]V is bounded in λ. As
branches in an iteration tree are closed below their sups, we have a largest
ordinal γ such that γ ∈ [0, α]U ∩ [0, β]V ∩ λ. Let ν = sup{ν(ET

ξ ) | ξ T γ}.
Every member of MT

γ is of the form iT
0,γ(f)(a), for some f ∈ M and a ∈

[ν]<ω. (We take k = 0 for notational simplicity; otherwise we have f rΣk

overM.) Since iU
γ,α and iV

γ,β have critical point at least ν, this representation

of MT
γ and the fact that iU

0,α = iV
0,β yield that iU

γ,α = iV
γ,β .

Let ξ + 1 ∈ (γ, α]U be such that predU (ξ + 1) = γ. Let σ + 1 ∈ (γ, β]V
be such that predV (σ + 1) = γ. Since iU

γ,α = iV
γ,β , the extenders EU

ξ and
EV

σ are compatible, that is, they agree up to the inf of the sups of their
generators. If ξ < λ or σ < λ, this is impossible as no extender used in an
iteration tree is compatible with any extender used later in the same tree. (If
α < β and Eα is compatible with Eβ , then Eα ∈ Mβ by the initial segment
condition. This implies that lh(Eα) is not a cardinal in Mβ , contrary to
Lemma 3.5.) If λ ≤ ξ and λ ≤ σ, this is impossible as no two extenders used
in a coiteration are compatible. (This was a subclaim in the proof of the
Comparison Lemma 3.11.) This contradiction completes the proof. �

5. Solidity and Condensation

In this section we shall sketch the proofs of two theorems which are central in
the fine structural analysis of definability over mice. These results are much
deeper than the fine structural results of Sect. 2. Their proofs involve com-
parison arguments, and hence require an iterability hypothesis. The proofs
also use the weak Dodd-Jensen property, and they illustrate a very useful
technique for insuring that in certain comparisons, the critical point of the
embedding from the first to the last model in one of the trees is not too small.

Our first theorem is a condensation result.

5.1 Theorem. Let M be ω-sound and (ω, ω1, ω1 + 1)-iterable. Suppose that
π : H →M is fully elementary, and crit(π) = ρH

ω ; then either

1. H is a proper initial segment of M, or

2. there is an extender E on the M-sequence such that lh(E) = ρH
ω , and

H is a proper initial segment of Ult0(M, E).
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5.2 Remarks. The complexities in the statement of Theorem 5.1 are nec-
essary.

1. The hypothesis that crit(π) = ρH
ω is necessary in Theorem 5.1. For

notice that crit(π) > ρH
ω is impossible since otherwise we would have

ρH
ω = ρM

ω , and since M is ω-sound, this would imply that crit(π) is
definable over M from points in the range of π. On the other hand,
crit(π) < ρH

ω can occur while the conclusions of Theorem 5.1 fail: for
example, let M = Ultω(H, E), where E is on the H-sequence and
crit(E) < ρH

ω , and let π be the canonical embedding.

2. The alternatives in the conclusion of Theorem 5.1 are mutually exclu-
sive, since in the second case the extender E is on the M-sequence, but
not on the H-sequence. The following example shows that the second
alternative can occur. Suppose that P is an active, ω-sound mouse,
and F is the last extender on the P-sequence. Let κ = crit(F ), and
suppose F �α is on the P-sequence, where α > (κ+)P . (Under weak
large cardinal hypotheses, there is such a P .) Let

σ : Ult0(P , F �α) → Ult0(P , F )

be the natural embedding. Since α is a cardinal in Ult0(P , F �α) by
clause 1 of Definition 2.4, and not a cardinal in Ult0(P , F ) because
F �α is in this model and collapses α, we have that α = crit(σ). Let

H = J Ult0(P,F �α)
α+1

and
M = σ(H), π = σ�H.

Clearly α = crit(π) = ρH
ω , π is fully elementary, and H is not an initial

segment of M.

Proof of Theorem 5.1. Let H and M constitute a counterexample. Let X ≺
Vλ for some limit ordinal λ, with X countable and H,M ∈ X, and let H̄
and M̄ be the images of H and M under the transitive collapse of X. It is
easy to see that H̄ and M̄ still constitute a counterexample to Theorem 5.1.
Thus we may assume without loss of generality that M is countable. We can
therefore fix an enumeration �e of M in order type ω, and an (ω, ω1, ω1 + 1)-
iteration strategy Σ for M having the weak Dodd-Jensen property relative
to �e.

The natural plan is to compare H with M, using Σ to iterate M and Σπ

to iterate H. Suppose that P is the last model of the tree T on H and Q
is the last model of the tree U on M in this comparison. We would like to
see that P = H, for then it is clear that H is an initial segment of Q, and a
little further argument, given below, shows that U uses at most one extender,
so that one of the alternatives in the conclusion of Theorem 5.1 must hold.
Assume then that P �= H.
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If the branch H-to-P of T drops in model or degree, then M-to-Q does
not drop in model or degree, and Q is a proper initial segment of P . (Here
we use that T and U are ω-maximal.) But then, letting j : M→ Q be the
iteration map, and τ : P → R be the copy map from P to the last model of
πT , we have that τ ◦ j maps M to a proper initial segment of R, and R is a
Σ-iterate of M. This contradicts the weak Dodd-Jensen property of Σ. Thus
H-to-P does not drop in model or degree, and we have a fully elementary
iteration map i : H → P .

Since the branch H-to-P does not drop in model or degree, we must have
crit(i) < ρH

ω . Let ρ = ρH
ω . Since crit(π) = ρ, H and M agree below ρ, so

that all extenders used in their comparison have length at least ρ. Neverthe-
less, it is possible that the first extender E used along H-to-P is such that
crit(E) < ρ ≤ lh(E). This possibility ruins our proof, so we must modify the
construction of T so as to avoid it.

We modify the construction so that if E is an extender used in T and
crit(E) < ρ, then E is used in T to take an ultrapower of M, or rather
the longest initial segment of M containing only subsets of crit(E) measured
by E, instead of being used to take an ultrapower of H, as it would be in a
tree on H. This modification is possible because M and H agree below ρ.
The system T we form in this way is not an ordinary iteration tree, but rather
a “double-rooted” iteration tree whose base is the pair of models (M,H). We
shall use Pα for the αth model of T , and Eα for the extender taken from the
Pα-sequence and used to form Pα+1. Let

P0 = M, and P1 = H.

Let E0 = ∅, and
ν(E0) = ρ.

For α ≥ 1, Eα is the extender on the Pα-sequence which participates in its
least disagreement with the sequence of the current last model in U . As in
an ordinary iteration tree,

predT (α + 1) = least β such that crit(Eα) < ν(Eβ),

and
Pα+1 = Ultn(P∗

α+1, Eα),

where P∗
α+1 is the longest initial segment of Pβ and n is the largest number

≤ ω such that the ultrapower in question makes sense. (That is, we do so in
all but one anomalous case, which we shall explain in the next paragraph.)
Our convention on ν(E0) and the fact that the ν(Eα) are increasing then
implies that if crit(Eα) < ρ, then predT (α + 1) = 0, so that Eα is applied in
T to an initial segment of M.

There is one anomalous case here.28 Suppose that crit(Eα) := κ < ρ, and
let P∗

α+1 be the longest initial segment Q of M such that P (κ)∩Q ⊆ Pα. It
28 This case was overlooked in [25]. It was discovered by Jensen. Our method of dealing
with it is due to Schindler and Zeman; cf. [39].
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can happen that P∗
α+1 is of type III, with ν(P∗

α+1) = κ. (One can show easily
then that ρ = (κ+)H, and P∗

α+1 = JM
ρ .) In this case, Ult0(C0(P∗

α+1), Eα)
does not make sense, because C0(P∗

α+1) has ordinal height crit(Eα).29 We
must therefore return to our old, näıve meaning for Ult0(P∗

α+1, Eα). Let k
be the canonical embedding associated to this ultrapower, and let F be the
last extender of P∗

α+1. Then we set

Pα+1 = Ultω(M, k(F )).

Note here that k(F ) is indeed a total extender over M with critical point
strictly less than ρω(M).

Unfortunately, the extender k(F ) does not satisfy the initial segment con-
dition, since F �κ is an initial segment of it not present in Ult0(P∗

α+1, Eα).
This complicates the comparison argument to follow. We advise the reader
who is going through this argument for the first time to simply ignore the
anomalous case in the definition of Pα+1.

We can lift T to an ordinary iteration tree on M as follows. Let

R0 = R1 = M,

and let
π0 : P0 → R0 and π1 : P1 → R1

be given by: π0 = identity and π1 = π. Note that π0 and π1 agree be-
low ν(E0). We can use (π0, π1) to lift T to a double-rooted tree (π0, π1)T
on the pair (R0,R1) just as we did in the copying construction for ordinary
iteration trees. Since R0 = R1 = M, the tree (π0, π1)T , which we shall
call S, is nothing but an ordinary iteration tree on M.30

We form T and S at limit stages as follows. Suppose that the initial
segment S∗ of S built so far is a play by Σ; then we can use Σ to obtain a
cofinal wellfounded branch of S∗, and as in the ordinary copying construction,
the pullback of this branch is a cofinal wellfounded branch of the initial
segment T ∗ of T built so far. We extend S∗ and T ∗ by choosing these
branches. Thus S is a play by Σ, and T is a play by its pullback Σ(π0,π1).

Since Σ is an (ω, ω1, ω1 + 1) iteration strategy, this inductive construction
of S, T , and U can last as many as ω1+1 steps. But H andM are countable,
so as in the proof of the Comparison Lemma 3.11, the comparison represented
by T and U actually terminates successfully at some countable stage. Let P
and Q be the last models of T and U respectively. Let R be the last model
of S, and τ : P → R the copy map. The key claim is:

Claim. P is above H in T .

Proof. If not, then P is above M in T . Suppose that the branch M-to-Q
of U drops in model or degree. Since T and U are ω-maximal trees on ω-
sound mice, we then have that P is a proper initial segment of Q, and the
29 This problem cannot occur in the construction of an ordinary iteration tree, as we
verified in the course of describing the successor steps in an iteration game.
30 We are ignoring here some complications in the anomalous case.



5. Solidity and Condensation 1635

branch M-to-P of T does not drop in model or degree, so that there is a
fully elementary iteration map i : M→ P . But then i maps M to a proper
initial segment of a Σ-iterate of M, which contradicts the weak Dodd-Jensen
property of Σ. Thus M-to-Q does not drop, and we have a fully elementary
iteration map j : M→Q given by U .

Suppose that the branch M-to-P of T drops in model or degree. In
this case Q must be a proper initial segment of P . But then τ ◦ j is a fully
elementary map fromM to a proper initial segment ofR, which is a Σ-iterate
of M. This contradicts the weak Dodd-Jensen property of Σ. Thus M-to-P
does not drop, and we have a fully elementary iteration map i : M → P
given by T .

These arguments also show that P is not a proper initial segment of Q and
Q is not a proper initial segment of P , so that P = Q. We claim that i = j
as well. For let x be first in the enumeration �e of M such that i(x) �= j(x).
If i(x) <L j(x), then j is an iteration map produced by Σ which is not �e-
minimal, contrary to the weak Dodd-Jensen property of Σ. So j(x) <L i(x).
But now, since M-to-P did not drop in T , the branch M-to-R does not
drop in the copied tree S, and so we have an iteration map k : M → R
given by S. The copy maps commute with the tree embeddings, so we have
τ ◦ i = k ◦ π0 = k. But then

τ(j(x)) <L τ(i(x)) = k(x),

and τ ◦ j witnesses that k is not �e-minimal, contrary to the fact that k is an
iteration map produced by Σ. Thus i = j.

As in the proofs of Theorems 3.11 and 4.11, this implies that the first
extenders used along the branches giving rise to i and j are compatible with
each other. If these extenders satisfy the initial segment condition, then as
in Theorems 3.11 and 4.11, that is a contradiction because they participated
in disagreements when they were used.

We are left with the possibility that the first extender G used in i comes
from our anomalous case. Here G = k(F ), where k : JM

ρ → Ult0(JM
ρ , Eα)

is the canonical embedding, and F is the last extender of JM
ρ . We also

have crit(k) = ν(F ), so that F �ν(F ) is an initial segment of G. It is in fact
the first initial segment of G which is not in P , and since it is compatible
with the first extender used in j (which itself satisfies the initial segment
condition), the trivial completion of F �ν(F ) is the first extender used in j.
One can now show that the second extender used in j is compatible with Eα,
and that is a contradiction because both of these extenders satisfy the initial
segment condition. To prove the compatibility, one uses that for A ⊆ crit(G),
iG(A) = k(iF (A)). The reader can find the remaining details in [39]. �

So P is above H in T . The branch H-to-P cannot drop in model or
degree, since otherwise Q is a proper initial segment of P and we have a fully
elementary iteration map j : M → Q, so that τ ◦ j maps M into a proper
initial segment of the Σ-iterate R. Thus we have a fully elementary iteration
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map i : H → P given by T . If i is not the identity, then the rules for T
guarantee crit(i) ≥ ρ, so that H-to-P would have to drop in model or degree
at its first step. Therefore i is the identity; that is, H = P .
Q cannot be a proper initial segment of H, for otherwise M-to-Q does not

drop, and letting j be the iteration map, τ ◦ j maps M to a proper initial
segment of itself. It cannot be that H = Q, for if so, then M-to-Q does not
drop, and letting j be the iteration map, ρH

ω < ρM
ω ≤ j(ρM

ω ) = ρQ
ω . Thus H

is a proper initial segment of Q.
We can now complete the proof of Theorem 5.1. Suppose that H is not

an initial segment of M, so that U uses at least one extender EU
0 . Now

ρ ≤ lh(EU
0 ) because H and M agree below ρ, while lh(EU

0 ) ≤ OnH because
H is not an initial segment of M. But lh(EU

0 ) is a cardinal of Q, and H
is a proper initial segment of Q, so that |OnH | ≤ ρH

ω in Q. It follows that
lh(EU

0 ) = ρ. Similarly, if EU
1 exists, then we must have OnH < lh(EU

1 ), so
in fact EU

1 does not exist. This means that Q = Ultk(M, EU
0 ) for some k.

We can take k = 0 because Ult0(M, EU
0 ) and Ultk(M, EU

0 ) agree to their
common value for ρ+ and beyond. �

One can prove a version of Theorem 5.1 in which ρH
ω is replaced by ρH

n ,
for some n < ω. See [25, Sect. 8].

The technique by which Theorem 5.1 is proved is useful in many circum-
stances. One wants to compare two mice H and M in such a way that the
iteration map on the H side has critical point at least ρ. An ordinary com-
parison might not have this property, but one finds models (such as M itself
in the proof above) which agree with H to various extents below ρ, yet in
some sense carry more information than H. One then forms a many-rooted
iteration tree on H “backed up” by these other models, and argues that the
final model on this tree lies above the root H. One can view the proof of
Theorem 4.11 in this light.31 Another important application of the technique
lies in the proof of the following central fine-structural result concerning the
good behavior of the standard parameter.

5.3 Theorem. Let k < ω, and let M be a k-sound, (k, ω1, ω1 + 1)-iterable
premouse; then Ck+1(M) exists, and agrees with M below γ, for all γ of
M-cardinality ρk+1(M).

Sketch of Proof. We assume k = 0 for notational simplicity, and because
only in that case have we given full definitions anyway. Let r = p1(M) be
the first standard parameter of M; we must show that r is 1-solid and 1-
universal, so that C1(M) exists, and that C1(M) agrees with M as claimed.
These properties of r and M are expressed by sentences in the first order
theory of M, so if they fail, they fail in some countable fully elementary

31 In Theorem 4.11 one wanted to compare the last models of U ∗ and V ∗, but for the proof
it was important to back them up with the earlier models of T . Many-rooted iteration
trees are also important in the inductive definition of K [43, Sect. 6], and in the proof of
weak covering for K [26].
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submodel ofM. Any countable elementary submodel ofM inherits its (0, ω1,
ω1 + 1)-iterability. Thus we may assume without loss of generality that M
is countable.

We shall assume that r is solid, and briefly sketch the proof that r is
universal and C1(M) agrees with M below the cardinal successor of ρ1(M)
in M. So let ρ = ρ1(M), and let

H = HM
1 (ρ ∪ {r}).

We wish to show that P (ρ) ∩M ⊆ H, and for this the natural strategy is to
compare H with M. If the critical point of the embedding i from H to the
last model P on the H side is at least ρ, then the ΣH

1 set A ⊆ ρ which is not
in M (witnessing that ρ = ρM

1 ) is also ΣP
1 . Since A is not in the last model

Q on the M side, Q is an initial segment of P , and one can then argue that

P (ρ)M = P (ρ)Q ⊆ P (ρ)P = P (ρ)H,

as desired. In order to insure that crit(i) ≥ ρ, we once again form a double-
rooted tree on the pair (M,H) on the H side of our comparison, going back
to M whenever we use an extender with critical point < ρ.

Let r = 〈α0, . . . , αn〉, where the ordinals αi are listed in decreasing order.
Let �e be an enumeration of the universe of M such that ei = αi for all
i ≤ n. Let Σ be a (0, ω1, ω1 + 1) iteration strategy for M having the weak
Dodd-Jensen property relative to �e. Let π0 = identity and π1 : H → M be
the collapse embedding. We form the double-rooted tree T on (M,H) using
the pullback Σ(π0,π1) of Σ to choose branches at limit stages, and iterating
the least disagreement with the last model of the tree U on M at successor
stages. Let P and Q be the last models of T and U .

As in the proof of Theorem 5.1, the weak Dodd-Jensen property of Σ
implies that P is above H, and not above M, and that H-to-P does not
drop, and that Q is not a proper initial segment of P . Thus we have a 0-
embedding i : H → P given by T . Since crit(i) ≥ ρ, A is ΣP

1 , and since
A �∈ Q, P is not a proper initial segment of Q. Thus P = Q. We also get
that M-to-Q does not drop, so that U gives us an embedding j : M→Q.

Let ᾱe = π−1
1 (αe) be the image of αe under collapse, for e ≤ n. One can

show by induction on e that

i(ᾱe) = j(αe),

using the solidity of j(r) to show i(ᾱe) ≥ j(αe), and using the weak Dodd-
Jensen property for the copied tree (π0, π1)T to show i(ᾱe) ≤ j(αe). (This
is where we use the fact that ei = αi for all i ≤ n.)

It follows that crit(j) ≥ ρ. For otherwise, letting κ = crit(j), and S be
the Σ1 theory in M of parameters from κ ∪ {r}, then S ∈ M. But then
j(S) ∈ Q, and from j(S) one can compute the Σ1 theory in Q of parameters
from j(κ)∪{j(r)}. (This is like the proof of Lemma 2.23 which we hinted at
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earlier.) Now ρ < j(κ), P = Q, and i(r̄) = j(r), so this means the Σ1 theory
of ρ ∪ {i(r̄)} is in P . This implies A ∈ P , a contradiction.

Since i and j have critical point above ρ, P (ρ)H = P (ρ)P = P (ρ)Q =
P (ρ)M, as desired. Also, H = Ck+1(M) agrees with P , hence Q, hence M,
below any γ of M-cardinality ρ, as desired. �

One can use fine-structural condensation results such as Theorem 5.1 to
show that iterable mice satisfy many of the useful combinatorial principles
which Jensen has shown are true in L. For example

5.4 Theorem. Let M be an (ω, ω1, ω1 + 1)-iterable premouse satisfying the
axioms of ZF, except perhaps Power Set; then the following are true in M:

1. for all uncountable regular κ, ♦κ,

2. for all uncountable regular κ (♦+
κ ⇐⇒ κ is not ineffable),

3. for all infinite cardinals κ, �κ.

Clause 1 follows immediately from Theorem 5.1 and Jensen’s argument
for L. Clause 2 is due to Ernest Schimmerling [33]. Clause 3 is work of
Schimmerling and Zeman [37], building on the earlier work of Jensen, Solovay,
Welch, Wylie, and Schimmerling. (See [10, 48, 49, 33], and [34].)

It follows immediately from Theorem 5.3 that if M is sufficiently iterable,
then Cω(M) exists. We shall use this heavily in the construction of an iterable
model, all of whose levels are ω-sound. We turn to that construction now.

6. Background-Certified Fine Extender
Sequences

We have been studying mice in the abstract, but we have yet to produce
any! In this section we shall describe a certain family of mouse constructions
which we call, for obscure reasons, Kc-constructions. Such constructions
are sufficiently cautious about adding extenders to the model that one gets
an iterable model in the end,32 yet can be sufficiently daring that they can
capture the large cardinal strength present in the universe.33

6.1. Kc-Constructions

The natural idea is to construct a fine extender sequence �E by induction.
Given �E�α, we set Eα = ∅ unless there is a certified34 extender F such that
( �E�α)�F is still a fine extender sequence; if there is such an F we may
either set Eα = F or set Eα = ∅. Here “certified” means roughly that F

32 This is something between a conjecture and a theorem; see below.
33 Again, there are qualifications to come.
34 Whence the “c” in Kc.
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is the restriction to J
�E�α
α of a “background extender” F ∗ which measures

a broader collection of subsets of its critical point than does F , and whose
ultrapower agrees with V a bit past ν(F ). This background-certificate de-
mand is necessary in order to insure that the premice we are constructing are
iterable. Unfortunately, the background certificate demand conflicts with the
demand that all levels of the model we are constructing be ω-sound.35 Kc-
constructions deal with this conflict by continually replacing the premouse
Nα currently approximating the model being built by its core Cω(Nα). Tak-
ing cores insures soundness, while the background extenders one can resurrect
by going back into the history of the construction insure iterability.

This last claim must be qualified. We do not have a general proof of
iterability for the premice Nα produced in Kc-constructions. At the moment,
in order to prove that such a premouse is appropriately iterable, we need to
make an additional “smallness” assumption. One assumption that suffices,
and which we shall spell out in more detail shortly, is that no initial segment
of Nα satisfies “There is an extender E on my sequence such that ν(E) is a
Woodin cardinal”. We shall call this property of Nα tameness. Iterability is
essential from the very beginning, for our proof that Cω(Nα) exists involves
comparison arguments, and hence relies on the iterability of Nα. Thus, for all
we know, a Kc-construction might simply break down by reaching a non-tame
premouse Nα such that Cω(Nα) does not exist.

The following definitions describe our background certificate condition.
They come from [43, Sect. 1].

6.1 Definition. LetM be an active premouse, F the extender coded by Ḟ M

(i.e. its last extender), κ = crit(F ), and ν = ν(F ). Let A ⊆
⋃

n<ω P ([κ]n)M;
then an A-certificate for M is a pair (N,G) such that

1. N is a transitive, power admissible set, Vκ ∪A ⊆ N , N is closed under
ω-sequences, and G is an extender over N ,

2. F ∩ ([ν]<ω ×A) = G ∩ ([ν]<ω ×A),

3. Vν+1 ⊆ Ult(N,G), and

4. ∀γ(ωγ < OnM −→ JM
γ = J i(J M

κ )
γ ), where i = iNG is the canonical

embedding from N to Ult(N,G).

6.2 Definition. Let M be an active premouse, and κ the critical point of
its last extender. We say M is countably certified iff for every countable
A ⊆

⋃
n<ω P ([κ]n)M, there is an A-certificate for M.

In the situation described in Definition 6.1, we shall typically have |N | = κ,
so that OnN < lh(G). We are therefore not thinking of (N,G) as a structure

35 Part of the requirement on F ∗ is that it be countably complete, and so crit(F ∗) must

be uncountable; on the other hand, if α is least so that Eα �= ∅, then (J

E�α
α , ∈, �E�α, Eα)

has Σ1 projectum ω, so that crit(Eα) must be countable if this structure is even 1-sound.
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to be iterated; N simply provides a reasonably large collection of sets to be
measured by G. The conditions Vκ ⊆ N and Vν+1 ⊆ Ult(N,G) are crucial
(although the former can be weakened in a useful way; cf. [36, 2.1]). Power
admissibility is simply a convenient fragment of ZFC; it can probably be
weakened substantially.

6.3 Definition. A Kc-construction is a sequence 〈Nα | α < θ〉 of premice
such that

1. N0 = (Vω,∈, ∅, ∅);

2. if α + 1 < θ, then Nα is ω-solid, and letting M be the unique ω-sound
premouse such that Cω(Nα) = Cω(M), either

(a) M is passive, and Nα+1 is a countably certified premouse of the
form (|M|,∈, ĖM, F ), for some F , or

(b) letting ωγ = OnM and �E = ĖM ⊕ Ḟ M, we have that Nα+1 =
(J �E

γ+1,∈, �E, ∅);

3. if λ < θ is a limit ordinal, then Nλ is the unique passive premouse
P such that for all β, ωβ < OnP iff JNα

β is defined and eventually
constant as α → λ, and for all β such that ωβ < OnP , J P

β = eventual
value of JNα

β , as α→ λ.

So at successor steps in a Kc-construction one replaces the previous model
with its ωth core, and then either adds a countably certified extender to the
resulting extender sequence or takes one step in its constructible closure. At
limit steps one forms the natural “lim inf” of the previous premice.

Because we replace Nα by its core at each step in a Kc-construction, the
models of the construction may not grow by end-extension, and we need
a little argument to show, for example, that a construction of proper class
length converges to a premouse of proper class size. Our Theorem 5.3 on the
agreement of N with Cω(N ) is the key here.

6.4 Theorem. Let κ be an uncountable regular cardinal or κ = On, and let
〈Nα | α < κ〉 be a Kc-construction; then there is a unique premouse Nκ of
ordinal height κ such that 〈Nα | α ≤ κ〉 is a Kc-construction.

Proof. For any limit ordinal κ and Kc-construction 〈Nα | α < κ〉, there is a
unique premouse Nκ satisfying the limit ordinal clause of Definition 6.3. We
need only show that Nκ has ordinal height κ in the case κ is an uncountable
cardinal or κ = On. It is clear that |Nα| < κ for all α < κ, so Nκ has ordinal
height ≤ κ.

For ν < κ, let
ϑν = inf{ρω(Nα) | ν ≤ α < κ}.

So ϑ0 = ω, and the ϑ’s are nondecreasing. By Theorem 5.3, Nν agrees with
all later Nα below ϑν , so if κ = sup({ϑν | ν < κ}), we are done. Since κ is
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regular, the alternative is that the ϑ’s are eventually constant; say ϑν = ρ
for all ν such that η ≤ ν < κ. Now notice that if η ≤ ν < κ and ρω(Nν) = ρ,
then Cω(Nν) is a proper initial segment of Nν+1.36 Moreover, Cω(Nν) has
cardinality ρ in Nν+1 by soundness. It follows from Theorem 5.3 that Cω(Nν)
is an initial segment ofNα, for all α ≥ ν. Since there are cofinally many ν < κ
such that ρ = ρω(Nν), we again get that Nκ has height κ. �

It is not hard to see that the ϑν defined in the proof above are just the
infinite cardinals of Nκ.

6.2. The Iterability of Kc

It is clear by now that we have gotten nowhere unless we can prove that the
premice we have constructed are sufficiently iterable. Here we encounter the
central open problem of inner model theory. We formulate one instance of it
as a conjecture:

6.5 Conjecture. Suppose N is a premouse occurring in a Kc-construction,
that k ≤ ω, and that M is a countable premouse such that there is a weak
k-embedding from M into Ck(N ); then M is (k, ω1, ω1 + 1)-iterable.

A proof of this conjecture would yield at once the basics of inner model
theory at the level of models with superstrong cardinals.37 At present we can
prove the conjecture only for certain small mice.

In general, iterability proofs break up into an existence proof and a unique-
ness proof for “sufficiently good” branches in iteration trees on the premice
under consideration. The existence proof itself breaks into two parts, a direct
existence argument in the countable case and a reflection argument in the
uncountable case.

The direct existence argument applies to countable iteration trees on
countable elementary submodels of the premice under consideration, and
proceeds by using something like the countable completeness of the exten-
ders involved in the iteration to transform an ill-behaved iteration into an
infinite descending ∈-chain. When coupled with the uniqueness proof, this
shows that any countable elementary submodel of a premouse under con-
sideration has an ω1-iteration strategy, namely, the strategy of choosing the
unique cofinal “sufficiently good” branch.38

The reflection argument extends this method of iterating to the uncount-
able: given an iteration tree T on M, we go to V [G] where G is Col(ω, κ)-
generic over V and κ is large enough that M and T have become countable,
and find a sufficiently good branch there. This branch is unique, and hence
36 Assume the last extender predicate of Nν is empty here, as it obviously is for cofinally
many such ν.
37 New problems arise between superstrong and supercompact cardinals.
38 Of course a sufficiently good branch must be wellfounded, but in general more is re-
quired, for we want to be able to find cofinal wellfounded branches later in the iteration
game as well.
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by the homogeneity of the collapse it is in V . In order to execute this argu-
ment one needs a certain level of absoluteness between V and V [G]. Once
one gets past mice with Woodin cardinals, “sufficiently good” can no longer
be taken simply to mean “wellfounded”, and in fact “sufficiently good” is no
longer a Σ1

2 notion at all. Because of this, the generic absoluteness required
by our reflection argument needs large cardinal/mouse existence principles
that go beyond ZFC.39

The conjecture above overlaps slightly with the uncountable case because it
is (ω1 +1)-iterability, rather than ω1-iterability, which is at stake. One needs
(ω1 + 1)-iterability to guarantee the comparability of countable mice; the
reflection argument that shows coiterations terminate requires a wellfounded
branch of length ω1. Nevertheless, we believe that the conjecture is provable
in ZFC.40

At present, the strongest partial results on Conjecture 6.5 are those of [1]
and [30], which show that it holds for levels N of Kc which are of limited
complexity, in that they do not have too many extenders overlapping local
Woodin cardinals. (Ref. [30] goes further than Conjecture 6.5, to levels with
Woodin limits of Woodin cardinals, but it applies only to Kc constructions
in which the background extenders measure all sets in V .) In this chapter
we shall consider only premice having no extenders overlapping local Woodin
cardinals. We call these special premice “tame”. We shall outline a proof
of Conjecture 6.5 for the tame levels of Kc. Our direct existence argument
in the countable case seems perfectly general, but our uniqueness results are
less definitive, and it is here that we resort to the tameness assumption. We
begin by stating the existence theorem in the countable case.

We say that a branch b of an iteration tree T is maximal iff b has limit
order type but is not continued in T . Such a b must be ∈-cofinal in some
λ ≤ lh(T ), but different from [0, λ]T if λ < lh(T ). Notice that any cofinal
branch of T is maximal; the converse fails in general. Finally, a putative
iteration tree is just like an ordinary iteration tree, except that we allow the
last model, if there is one, to be illfounded.

6.6 Theorem (Branch Existence Theorem). Let π : M→ Ck(Nα) be a weak
k-embedding, where M is countable and 〈Nβ | β < θ〉 is a Kc-construction.
Let T be a countable, k-maximal, putative iteration tree on M; then either

1. There is a maximal branch b of T such that, letting l = degT (b),

(a) DT ∩ b = ∅ and l = k, and there is a weak l-embedding σ : MT
b →

Cl(Nα) such that

39 For example, if it is consistent that there is a Woodin cardinal, then it is consistent that
there is a premouse N occurring on a Kc-construction which is not θ-iterable for some θ.
40 We suspect that if κ is strictly less than the infimum of the critical points of the
background extenders, then the κ-iterability of the size κ elementary submodels of premice
in a Kc-construction is provable in ZFC.
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M π

i0,b

Cl(Nα)

MT
b

σ

commutes, or

(b) DT ∩ b �= ∅ or l < k, and there is a β ≤ α and weak l-embedding
σ : MT

b → Cl(Nβ), with β < α if DT ∩ b �= ∅, or

2. T has a last model MT
γ such that, letting l = degT (γ),

(a) DT ∩ [0, γ]T = ∅ and l = k, and there is a weak l-embedding
σ : MT

γ → Cl(Nα) such that

M π

i0,γ

Cl(Nα)

MT
γ

σ

commutes, or

(b) DT [0, γ]T �= ∅ or l < k, and there is a β ≤ α and weak l-embedding
σ : MT

b → Cl(Nβ), with β < α if DT ∩ [0, γ]T �= ∅.

We shall not attempt to prove this theorem here. The reader can find
a proof in [43, Sects. 2 and 9]. The theorem in the form stated here evolved
from earlier results of [18] and [25].

If b is a branch satisfying clause 1 of the conclusion of the Branch Existence
Theorem, then we say b (orMT

b ) is π-realizable, and call the map σ described
in clause 1 a π-realization of b (or MT

b ). Similarly, if γ satisfies clause 2 of
the conclusion, then we say γ (orMT

γ ) is π-realizable, and call the associated
map σ a π-realization.

Given M and π as in the hypotheses of the Branch Existence Theorem, it
is natural to attempt to iterate M using the following strategy: given T on
M of countable limit length, pick the unique cofinal π-realizable branch of T
with which to continue. Clause 2 in the conclusion of the Branch Existence
Theorem guarantees that this strategy cannot break down at any countable
successor stage. Clause 1 guarantees that if this strategy breaks down at some
countable limit stage, then there are distinct cofinal π-realizable branches
at that stage, since the uniqueness of the branches chosen at earlier stages
implies that any maximal π-realizable branch of T must be cofinal. However,
if we ever reach a stage at which our tree has distinct cofinal π-realizable
branches (this is possible for some M and π; see [18, Sect. 5]), our troubles
start. The best we can do, it seems, is to choose one such branch b and a
π-realization σ of MT

b . If our opponent in the iteration game is kind enough
to continue by playing extenders which can be interpreted as forming a tree
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on MT
b , then we can choose unique σ-realizable branches to continue, until

we get distinct such branches and must pick one, realize it, and continue,
etc. However, we are done for if our opponent applies an extender to a
model from T (that is, a model with index < sup(b)). Nothing in the Branch
Existence Theorem even guarantees that the associated ultrapower will be
wellfounded.41

Clearly, we need a uniqueness theorem to accompany our existence theo-
rem. What we can show, roughly speaking, is that at a non-uniqueness stage
in the process just described we pass a local Woodin cardinal.

6.7 Definition. Let κ < δ and A ⊆ Vδ; then we say κ is A-reflecting in δ iff
for all ν < δ there is an extender E over V such that crit(E) = κ, iE(κ) > ν,
and iE(A) ∩ Vν = A ∩ Vν .

6.8 Definition. A cardinal δ is a Woodin cardinal iff for all A ⊆ δ there is
a κ < δ which is A-reflecting in δ.

It is perhaps no surprise to the reader that Woodin cardinals were discov-
ered by Woodin. Woodin was inspired by the results of [9], and by earlier
work of Saharon Shelah reducing the large cardinal hypotheses employed
in [9]. The definition of Woodinness given above is different from Woodin’s
original one, but equivalent to it by an argument essentially due to Mitchell.
(See [21, Theorem 4.1].) Mitchell’s argument can also be used to show that
if δ is Woodin, then δ is witnessed to be Woodin by extenders in Vδ.42 It
follows that the Woodinness of δ can be expressed by a Π1 sentence about
(Vδ+1,∈), so that the least Woodin cardinal is not weakly compact. It is easy
to see that all Woodin cardinals are Mahlo.

The (local) Woodin cardinal we get from an iteration tree T having distinct
good branches is the supremum of the lengths of the extenders used in T .

6.9 Definition. Let T be a k-maximal iteration tree on M such that lh(T )
is a limit ordinal; then we set

δ(T ) = sup{lh(ET
α ) | α < lh(T )},

and

M(T ) = unique passive P such that OnP = δ(T ) and

∀α < δ(T )(M(T ) agrees with MT
α below lh(ET

α )).

It is clear that if b is a cofinal branch of T such that δ(T ) ∈ MT
b , then

δ(T ) is a limit cardinal of MT
b .

The main result connecting Woodin cardinals with the uniqueness of cofi-
nal wellfounded branches in iteration trees is the following theorem of [18].
41 We have described here how the Branch Existence Theorem yields a winning strategy
for II in a game that requires less of him, the weak iteration game. We shall introduce this
game formally in the next section.
42 This observation is due to Woodin.
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Figure 19.1: The overlapping pattern of two distinct wellfounded branches

6.10 Theorem (Branch Uniqueness Theorem). Let b and c be distinct cofinal
branches of the k-maximal iteration tree T , let δ = δ(T ), and suppose that
A ⊆ δ is such that δ, A ∈ wfp(MT

b ) ∩ wfp(MT
c ); then

MT
b |= ∃κ < δ(κ is A-reflecting in δ).

Sketch of Proof. The extenders used on b and c have an overlapping pattern
pictured in Fig. 19.1:

To see this, pick any successor ordinal

α0 + 1 ∈ b \ c,

and then let
βn + 1 = min{γ ∈ c : γ > αn + 1}

and
αn+1 + 1 = min{η ∈ b : η > βn + 1},

for all n < ω. Now for any n, the T -predecessor of βn+1 is on c and ≤ αn+1,
hence ≤ αn, so by the rules of the iteration game

crit(Fβn) < ν(Fαn).

Similarly, for any n
crit(Fαn+1) < ν(Fβn).

Now extenders used along the same branch of an iteration tree do not overlap
(i.e., if E is used before F , then ν(E) ≤ crit(F )), so we have

crit(Fβn) < ν(Fαn) ≤ crit(Fαn+1) < ν(Fβn)
≤ crit(Fβn+1) < ν(Fαn+1) ≤ crit(Fαn+2),

which is the overlapping pattern pictured.
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Now sup({αn : n < ω}) = sup({βn : n < ω}), and since branches of
iteration trees are closed below their suprema in the order topology on On,
the common supremum of the αn and βn is λ. Let us assume α0 was chosen
large enough that letting

ξ = predT (β0 + 1) and η = predT (α1 + 1),

we have
A = iξ,c(A∗) = iη,b(A∗ ∗)

for some A∗ and A∗ ∗. Let

κ = crit(Fβ0) = crit(iξ,c);

we shall show that κ is A-reflecting in δ in the model Mb.
Let E0 = Fβ0� crit(Fα1). Because of the overlapping pattern, E0 is a proper

initial segment of Fβ0 , and by initial segment condition on premice and
the agreement of the models of an iteration tree, E0 ∈ Mb. Moreover, if
j : Mb → Ult(Mb, E0) is the canonical embedding, then because A and A∗

agree below κ, j(A) and iξ,c(A∗) agree below crit(Fα1). That is, j(A) agrees
with A below crit(Fα1), and hence E0 witnesses that κ is A-reflecting up to
crit(Fα1) in Mb.

To get A-reflection all the way up to δ, we set

E2n = Fβn� crit(Fαn+1) and E2n+1 = Fαn+1� crit(Fβn+1),

for all n. Each of the En is in Mb for the same reason E0 is in Mb. There-
fore the extender E which represents the embedding coming from “compos-
ing” the ultrapowers by the Ei for 0 ≤ i ≤ 2n, is in Mb. The argument
above generalizes easily to show that E witnesses that κ is A-reflecting up
to crit(Fαn+1). Since crit(Fαn+1) → δ as n → ω, κ is A-reflecting in δ in the
model Mb. �

We shall need a fine-structural refinement of Theorem 6.10. For this, we
have to look closely at the first level of MT

b at which δ(T ) is seen not to be
Woodin, if there is one.

6.11 Definition. Let T be a k-maximal iteration tree on M of limit length,
and let b be a cofinal wellfounded branch of T . Let γ be the least ordinal, if
there is one, such that either

ωγ < OnMb and JMb
γ+1 |= δ(T ) is not Woodin,

or
ωγ = OnMb and ρn+1(JMb

γ ) < δ(T )

for some n < ω such that n + 1 ≤ k if DT ∩ b = ∅. We set

Q(b, T ) := JMb
γ

if there is such a γ, and let Q(b, T ) be undefined otherwise.
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Notice that if Q(b, T ) exists and δ(T ) ∈ Q(b, T ), then Q(b, T ) is just the
longest initial segment Q of MT

b such that Q |= δ(T ) is Woodin. There is a
failure of δ(T ) to be Woodin definable over Q(b, T ).43 Notice also that if b
drops in either model or degree, then ρn(MT

b ) < δ(T ) for some appropriate
n, and therefore Q(b, T ) exists.44

Suppose that Q(b, T ) = Q(c, T ) (so both exist), and Q(b, T ) is a proper
initial segment of MT

b and MT
c . Since Q(b, T ) codes up a failure of Woodin-

ness, Theorem 6.10 implies b = c. The following is a fine-structural strength-
ening of this fact.

6.12 Theorem. Let T be k-maximal, and let b and c be distinct cofinal
wellfounded branches of T such that Q(b, T ) and Q(c, T ) exist; then neither
is an initial segment of the other.

Proof. If one is an initial segment of the other, then since they are minimal
with respect to the same first-order property, Q(b, T ) = Q(c, T ). Since this
property involves a failure of δ(T ) to be Woodin, Q(b, T ) �∈ Mb andQ(c, T ) �∈
Mc by Theorem 6.10. Thus Mb = Q(b, T ) = Q(c, T ) = Mc.

It follows that Q(b, T ) and Q(c, T ) are defined by the second clause of
Definition 6.11. If we let n be least such that ρn+1(Mb) < δ(T ), then there
are η ∈ b and ξ ∈ c such that

M∗
η = Cn+1(Mb) = Cn+1(Mc) = M∗

ξ ,

and iη,b ◦ i∗
η and iξ,c ◦ i∗

ξ exist, and are n-embeddings with critical point at
least ρn+1(M∗

η). But then, as in the fine structure argument at the end of
the proof of the Comparison Lemma 3.11,

iη,b ◦ i∗
η = iξ,c ◦ i∗

ξ ,

since each is the core embedding from Cn+1(Mb) = Cn+1(Mc) to Mb = Mc.
Thus the extender applied toM∗

η in b is compatible with the extender applied
to M∗

ξ in c, so that η = ξ.
Let α be the largest ordinal in b∩ c, so that α > η by the argument above.

As usual, let us assume n = 0 to simplify matters a bit; the general case is
essentially the same. Letting ν = sup{ν(Eβ) | β T α}, we then have

Mα = {iη,α ◦ i∗
η(f)(a) | f ∈M∗

η and a ∈ [ν]<ω}.

Since iα,b and iα,c are the identity on ν and agree on the range of iη,α ◦ i∗
η,

we have iα,b = iα,c. But this means the extender applied to Mα in b is
compatible with the extender applied to Mα in c, so that α is not the largest
element of b ∩ c, a contradiction. �
43 The case ρn+1(Q(b, T )) < δ(T ) represents a failure of δ(T ) to be a cardinal at all.
44 Because T is maximal, b only drops when some extender used on b has critical point at
least a projectum of the model to which it is applied. At the last drop, this projectum is
preserved as a projectum of M T

b .
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6.13 Definition. We say η is a cutpoint of M iff for all extenders E on the
M-sequence, if crit(E) < η then lh(E) < η.

6.14 Corollary. Let T be k-maximal; then there is at most one cofinal,
wellfounded branch b of T such that

1. Q(b, T ) exists,

2. δ(T ) is a cutpoint of Q(b, T ), and

3. Q(b, T ) is δ(T )+ + 1-iterable.

Proof. Suppose that b and c are distinct such branches. Q(b, T ) and Q(c, T )
have cardinality δ(T ), so they are sufficiently iterable that their coiteration
terminates successfully. Since δ(T ) is a cutpoint of each model, and the two
models agree below δ(T ), all extenders used in this coiteration have critical
point above δ(T ). Also, each model is δ(T )-sound and projects to δ(T ),
in the sense that there is an n < ω such that ρn+1(Q(b, T )) ≤ δ(T ) and
Q(b, T ) = HQ(b,T )

n+1 (δ(T ) ∪ {pn+1(Q(b, T ))}), and similarly for Q(c, T ). Just
as in the proof of Corollary 3.12, this means that the side which comes out
shorter does not move at all in the comparison, so that Q(b, T ) is an initial
segment of Q(c, T ) or vice-versa. This contradicts Theorem 6.12. �

Notice that all we needed in this argument was that Q(b, T ) and Q(c, T )
be iterable enough that we can compare them successfully. We can think of
the structure Q(b, T ) as a branch oracle, in that the fact that it is sufficiently
iterable to be compared with other Q-structures identifies b as the good
branch of T , the one any iteration strategy ought to choose. The sufficient-
iterability-for-comparison of Q(b, T ) only identifies b as the good branch,
however, when δ(T ) is a cutpoint of Q(b, T ). This leads us to restrict our
attention to mice all of whose Woodin cardinals are cutpoints.

6.15 Definition. A premouse M is tame iff whenever E is an extender on
the M-sequence, and λ = lh(E), then

JM
λ |= ∀δ ≥ crit(E)(δ is not Woodin).

In other words, tame mice cannot have extenders overlapping local Woodin
cardinals. It is clear from the definition that any initial segment of a tame
mouse is tame. Tame mice can satisfy large cardinal hypotheses as strong as
“There is a strong cardinal which is a limit of Woodin cardinals”. No tame
mouse can satisfy “There is a Woodin cardinal which is a limit of Woodin
cardinals”.

The iterability conjecture above becomes a theorem when it is restricted
to tame premice.

6.16 Theorem. Let N be a tame premouse occurring on a Kc-construction,
let k ≤ ω, and let M be countable and such that there is a weak k-embedding
from M to Ck(N ); then M is (k, ω1, ω1 + 1)-iterable.
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We shall not prove this theorem here, but in the next section we shall
prove a fairly representative special case of it.

6.3. Large Cardinals in Kc

The iterability conjectures and theorems above show that Kc-constructions
are sufficiently conservative about putting extenders on their sequences. We
need also to know that they can be sufficiently liberal.

6.17 Definition. A Kc-construction 〈Nα | α < θ〉 is maximal iff Nα+1 is
defined by case (2)(a) of Definition 6.3 whenever possible; that is, a new
extender is added to the current sequence whenever there is one meeting all
the requirements of (2)(a) in Definition 6.3.

One evidence of liberality is that large cardinal hypotheses true in V must
also hold in Kc. Here is one such theorem.

6.18 Theorem. Let δ be Woodin; then either

1. there is a maximal Kc-construction 〈Nα | α < θ + 1〉 such that Nθ is
not tame, or

2. there is a maximal Kc-construction of length On +1, and for any such
construction 〈Nα | α ≤ On〉,

NOn |= δ is Woodin.

Sketch of Proof. If no maximal Kc-construction ever reaches a non-tame pre-
mouse, then by Theorems 6.16 and 5.3, every premouse occurring in a Kc-
construction is ω-solid, and hence there are maximal Kc-constructions of
length On +1.

Let 〈Nα | α ≤ On〉 be such a construction, and let NOn = (L[ �E],∈, �E).
Let A ⊆ δ and A ∈ L[ �E]; we must find a κ < δ which is satisfied by L[ �E] to
be A-reflecting in δ.

Since δ is Woodin in V , we can find a κ < δ which is (A, �E�δ)-reflecting
in δ. Now if F is an extender over V which witnesses this reflection up to η,
where κ < η < δ and η is, say, inaccessible, then we can show that for any
ξ < η,

Gξ := F �ξ ∩ L[ �E] ∈ L[ �E].

This is enough, for the extenders Gξ to witness that κ is A-reflecting in δ up
to ξ in L[ �E].

To show that Gξ ∈ L[ �E], we show by induction on ξ that if Gξ is not of
type Z, then the trivial completion of Gξ is either on the sequence �E or on
an ultrapower of it, as in the initial segment condition in the definition of
fine extender sequences. It is easy to see that Gξ satisfies the requirements
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for being added to �E: coherence comes from the fact that F witnesses �E�δ-
reflection,45 the initial segment condition comes from our induction hypoth-
esis, and F provides the necessary background certificates. However, there
are some problems. First, there is a timing problem: the above shows that
Gξ could be added to the L[ �E] sequence somewhere, but we need to find an
actual stage Nα of the construction at which it can be added. Second, there
is a uniqueness of the next extender problem: we need to conclude from the
fact that Gξ could be added to produce Nα +1 that it was added to produce
Nα + 1. For these arguments, we refer the reader to [25, Theorem 11.4]. �

We note that the proof of Theorem 6.18 would have gone through if we
had been even more conservative and required in Definition 6.3 that our
background extenders measure all sets in V . This requirement simplifies the
iterability proof for the resulting model, as it allows us to lift trees on it to
trees on V .46 It is important in some contexts, however, to allow partial
background extenders. For example, in proving relative consistency results
in which the theory assumed consistent does not imply the existence of mea-
surable cardinals, we must construct core models satisfying large cardinal
hypotheses without assuming there are any extenders which are total over V .
What assures us that maximal Kc-constructions are sufficiently liberal in
that situation is the following.

6.19 Theorem. Suppose that μ is a normal measure on the measurable
cardinal Ω, and that no Kc-construction reaches a non-tame premouse. Let
〈Nα | α ≤ Ω〉 be a maximal Kc-construction; then for μ-almost every α < Ω,
(α+)NΩ = α+.

This is essentially Theorem 1.4 of [43]. That is in turn an extension of
earlier work of Jensen and Mitchell which in effect proved Theorem 6.19 under
the hypothesis that no Kc-construction reaches the sharp for an inner model
with a strong cardinal. Jensen and Mitchell did not require the measurable
cardinal. Jensen and the author have recently proved in ZFC a version of
Theorem 6.19 under the hypothesis that there is no proper class model with
a Woodin cardinal, and used it to develop core model theory up to a Woodin
cardinal in ZFC. See [32].

Our focus for the rest of this chapter will be on applications of core model
theory in descriptive set theory, and so for simplicity we shall generally as-
sume that there are Woodin cardinals in V . Therefore it will be Theorem 6.18
rather than Theorem 6.19 which is important for us. The reader should

45 This is not actually as obvious as it might seem at first, because the Gξ ultrapower of

L[ �E] only obviously agrees with the F ultrapower (and hence L[ �E]) out to ν(Gξ), rather
than to the successor of ν(Gξ) in the Gξ ultrapower, as required by coherence. The
stronger agreement can be proved using the Condensation Theorem 5.1, applied to the
natural embedding of the Gξ ultrapower into the F ultrapower.
46 This is the iterability proof given in [25, Sect. 12]. Of course, it only applies to tame
mice; that is, it only proves a version of Theorem 6.16.
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see [15] for an introductory article which turns at this point toward rela-
tive consistency results, results which make use of Theorem 6.19 rather than
Theorem 6.18. See also [32] for a much more thorough survey of this area.

7. The Reals of Mω

We shall show that the reals in the minimal iterable proper class model
satisfying “There are ω Woodin cardinals” are precisely those reals which are
ordinal definable over L(R). Of course, in order to do this we must assume
that there is such a model. It will simplify matters if we assume something
a bit stronger, namely, that there are ω Woodin cardinals with a measurable
cardinal above them all (in V ). We shall do so throughout the rest of this
chapter, sometimes without explicitly mentioning the assumption. One useful
consequence of our assumption is ADL(R), the axiom of determinacy restricted
to sets of reals in L(R).47

7.1 Definition. A premouseM is ω-small iff whenever κ is the critical point
of an extender on the M-sequence, then

JM
κ �|= There are ω Woodin cardinals.

An ω-small mouse can satisfy “There are ω Woodin cardinals”, but it
cannot satisfy any significantly stronger large cardinal hypotheses.

7.2 Theorem. If there are ω Woodin cardinals with a measurable cardinal
above them all, then there is a (ω, ω1, ω1 + 1)-iterable premouse which is not
ω-small.

Sketch of Proof. If a Kc construction reaches a nontame premouse, then it
reaches a nontame premouse that is not ω-small, and we can apply Theo-
rem 6.16. So, we may assume our maximal Kc construction reaches only
tame mice. Let j : V →M witness the measurability of some κ below which
there are ω Woodin cardinals. By Theorem 6.18, the Woodin cardinals of M
are Woodin in j(Kc), and hence there are ω Woodin cardinals of j(Kc) be-
low κ. Now for any A ⊆ Vκ+1 of cardinality κ, the fragment Ej∩(A×[j(κ)]<ω)
of the extender determined by j is in M . These fragments provide sufficient
background certificates to show that there is an extender on the Kc sequence
whose critical point is above all the Woodin cardinals of j(Kc) which are
below κ. Thus our maximal Kc-construction reaches an Nα which is not
ω-small. By Theorem 6.16, any countable elementary submodel of Cω(Nα)
witnesses the truth of the theorem. �

7.3 Definition. M#
ω is the unique sound, (ω, ω1, ω1+1)-iterable mouse which

is not ω-small, but all of whose proper initial segments are ω-small.

47 This is a result of Woodin, building on the work of [9] and [17]. See [28] for a proof.
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It is easy to see that ρ1(M#
ω ) = ω, so that M#

ω is countable, and in fact
every x ∈ M#

ω is Σ1-definable over M#
ω .48 The uniqueness of M#

ω follows
from Corollary 3.12. It is also clear that M#

ω is active; that is, it has a
nonempty last extender predicate. We let Mω be the proper class model left
behind when the last extender of M#

ω is iterated out of the universe.

7.4 Definition. Mω = J P
On, where P is the Onth iterate of M#

ω by the last
extender on its sequence.

It is clear that Mω is an ω-small proper class model with ω Woodin cardi-
nals, and that the Woodin cardinals of Mω are countable in V . Their supre-
mum is the supremum of the lengths of the extenders on the Mω-sequence.
The iterability of M#

ω easily implies that Mω is (ω, ω1, ω1 + 1)-iterable.
We shall show that the reals of Mω are precisely the reals which are ordinal

definable in L(R).49 We begin by showing that every real in Mω is ODL(R).
Following the proof of Corollary 3.14, we see that for this it is enough to
show that if α = ωMω

1 , then L(R) satisfies “JMω
α is (ω1 + 1)-iterable”.50

7.1. Iteration Strategies in L(R)

Our task is complicated by the fact that Mω is not itself (ω, ω1 + 1)-iterable
in L(R), as we shall show later. We must drop to slightly smaller mice in
order to find iteration strategies in L(R).

7.5 Definition. A premouse P is properly small iff

1. P is ω-small,

2. P |= There are no Woodin cardinals, and

3. P |= There is a largest cardinal + ZF−.

Here ZF− is ZF without the Power Set Axiom. It is clear that if α is
a successor cardinal of Mω below its least Woodin cardinal, then JMω

α is
properly small. In particular, this is true when α = ωMω

1 .

7.6 Lemma. Let T be an ω-maximal iteration tree of limit length on a
properly small premouse, and let b be a cofinal wellfounded branch of T ; then
Q(b, T ) exists.
48 Suppose that M is sufficiently iterable, not ω-small, and has only ω-small proper initial

segments. The Σ1 hull H := H M
1 (∅) of M is sufficiently iterable that it can be compared

with J M
α , for any α < ωM

1 . Since J M
α is ω-small, H must iterate past it, and it follows

that for γ = ωM
1 , J M

γ is an initial segment of H. Since we can easily compute a counting

of J H
γ from the Σ1 theory of M, this theory is not a member of M. Thus if M is 1-sound,

M = H.
49 Of course, Mω and M#

ω have the same reals as members. M#
ω is (coded by) the simplest

canonical real which is not ODL(R); it is definable over L(R ∪ {R#}) in a simple way.
50 We are regarding this as a statement about the parameter J Mω

α , which is in L(R)

because it is hereditarily countable. L(R) need not believe that J Mω
α is obtained by

implementing the definition of Mω we gave in V .
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Proof. We have already observed that if b drops in model or degree, then
ρn+1(Mb) < δ(T ) for some n, so that Q(b, T ) exists. Let M = MT

0 . The
requirement that M satisfy ZF− insures that ρω(M) = OnM, so that any
iteration map along a non-dropping branch of an ω-maximal tree on M is
fully elementary. The requirement that there are no Woodin cardinals in
M then implies that there are none in Mb, so that if δ(T ) < OnMb then
Q(b, T ) exists. But we must have δ(T ) < OnMb , since if δ(T ) = OnMb , then
as lh(ET

α ) is a cardinal of Mb for all α < lh(T ), there is no largest cardinal
of Mb. �

This lemma will, together with Theorem 6.12, guarantee that there is
at most one iteration strategy for a properly small M, and ultimately the
L(R)-definability of this strategy when it exists.

It is useful to introduce yet another iteration game, one which requires
less of player II than Gk(M, λ, θ). We call this new game the weak iteration
game. Suppose that M is a k-sound premouse; then the weak iteration game
Wk(M, ω) is played in ω rounds as follows:

I T0 P1, i1, T1 P2, i2, T2 . . .
II b0 b1 b2 . . .

Here I begins by playing a countable, k-maximal, putative iteration tree T0

on M, after which II plays b0, which may be either “accept” or a maximal
wellfounded branch of T0, with the proviso that II cannot accept unless T0

has a last model, and this model is wellfounded. Let Q1 be this last model,
if II accepts, and let Q1 = MT0

b0
otherwise. Let k1 be the degree of Q1.

Play now goes into the next round as it did in Gk(M, λ, θ): I picks an initial
segment P1 of Q1, and an i1 ≤ ω such that i1 ≤ k1 if P1 = Q1, together
with a countable, i1-maximal, putative iteration tree on P1. Then II either
accepts or plays a maximal wellfounded branch of T1, with the proviso that
he can only accept if T1 has a last, wellfounded model. Etc.

If no one breaks any of these rules along the way, then we say II wins this
run of Wk(M, ω) iff for all sufficiently large i, Pi = Qi, the branch of Ti from
Pi to Qi+1 does not drop, and the direct limit of the Pi under the iteration
maps given by the Ti is wellfounded.

7.7 Definition. A weak (k, ω)-iteration strategy forM is a winning strategy
for II inWk(M, ω), and we sayM is weakly (k, ω)-iterable (or 

RΠ1
1-iterable)

just in case there is such a strategy.

It is an immediate consequence of the Branch Existence Theorem 6.6 that
every countable elementary submodel M of Ck(Nα), where Nα occurs in
a Kc-construction, is weakly (k, ω)-iterable. In fact, such mice are weakly
(k, ω1)-iterable, in the obvious sense.51 Weak (k, ω1)-iteration strategies suf-

51 In Wk(M, ω1), player I must play at limit λ < ω1 a tree Tλ on the direct limit of the
models Pη for η < λ. Player II must insure that this direct limit is wellfounded.
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fice for the comparison of tame mice, and this fact is what lies behind our
iterability Theorem 6.16 for tame mice.52

If M is countable, and coded by the real x, then the weak iteration game
Wk(M, ω) is (can be coded as) a game of length ω on R with Π1

1(x) payoff.
Thus the set of reals coding weakly iterable premice is 

RΠ1
1, which explains

the alternate terminology. By [16], 
RΠ1

1 statements are absolute between V
and L(R), so we have:

7.8 Theorem. Let M be countable and weakly (k, ω)-iterable; then L(R) |=
M is weakly (k, ω)-iterable.

It is also shown in [16] that 
RΠ1

1 = ΣL(R)
1 , that is, that definitions in each

form can be translated into the other.53 We shall do our definability calcula-
tions below with Σ1 formulae interpreted in L(R). It is important here that
we allow such formulae to contain a name Ṙ for R, so that quantification over
R counts as bounded quantification. (Without this provision, we would have
ΣL(R)

1 = Σ1
2.) The sets whose definability we are calculating are generally

subsets of HC, the class of hereditarily countable sets. Notice here that a set
A ⊆ HC is ΣL(R)

1 iff the set A∗ of all reals coding (in some natural system) a
member of A is ΣL(R)

1 . So we have:

7.9 Lemma. The set of countable, weakly (k, ω)-iterable premice is ΣL(R)
1 .

If we restrict our attention to properly small premice, weak (k, ω)-iterability
suffices for comparison.

7.10 Theorem. Assume ADL(R), and let M be countable, properly small,
and weakly (k, ω)-iterable; then

L(R) |= M is (k, ω1 + 1)-iterable.

Proof. We first note

7.11 Lemma. In L(R), every iteration tree of length ω1 on a countable
premouse has a cofinal, wellfounded branch.

Proof. Let T be such a tree. Let j be the embedding coming from the club
ultrafilter on ω1. Now T can be coded by a subset of ω1, so T ∈ L[T ].
As L[T ] is wellordered, j�L[T ] is elementary from L[T ] to L[j(T )]. Thus
j(T ) is an iteration tree of length j(ω1) > ω1, so that j(T )�ω1 has a cofinal,
wellfounded branch. But j(T )�ω1 = T . �

Because of this, it is enough to show that M is (k, ω1)-iterable in L(R).
We claim that the following is a (k, ω1)-iteration strategy for M: given that

52 See [40, Theorem 1.1] for the comparison proof. The proof of our unique strategies
result Theorem 4.11 is the other main ingredient in the proof of Theorem 6.16.
53 We only need here that RΠ1

1 ⊆ Σ
L(R)
1 , and this is trivial.



7. The Reals of Mω 1655

you have reached T of countable limit length, pick the unique cofinal branch
b of T such that Q(b, T ) is weakly (degT (b), ω)-iterable. Let us call this
putative iteration strategy Γ.

Let T be played according to Γ, and of minimal length such that Γ breaks
down at T , either because T has limit length and there is no such unique
branch to serve as Γ(T ), or because T has a last, illfounded model. Let Σ
be a weak (k, ω)-iteration strategy for M. If T has a last, illfounded model,
then Σ cannot accept T as I’s first move, so Σ(T ) = b is a maximal branch
of T . Clearly, Q(b, T ) is weakly (degT (b), ω)-iterable, as witnessed by Σ.
Letting λ = sup(b), we have from the definition of Γ that b = Γ(T �λ), so
b = [0, λ]T , contrary to the maximality of b. Thus T has limit length. The
argument just given shows that b := Σ(T ) is a cofinal branch of T , and that
Q(b, T ) is weakly (degT (b), ω)-iterable. Therefore there must be a second
such branch; call it c. By Theorem 6.12 and the proof of Corollary 6.14,
Q(b, T ) and Q(c, T ) cannot be compared. We shall use their weak iterability
to compare them.

Let
δ0 = sup{lh(ET

α ) | α < lh(T )}.

Since δ0 is Woodin in both Q(b, T ) and Q(c, T ), it is a cutpoint of each
model. Since Q(b, T ) and Q(c, T ) agree below δ0, the comparison we are
doing uses only extenders with critical point strictly greater than δ0.

Let Σ0 = Σ and Σ1 be any weak (deg(c), ω)-iteration strategy for Q(c, T ).
Let T 0

0 = T , b00 = b, and c0 = c. We coiterate Q(b, T ) and Q(c, T ) by
iterating the least disagreement at successor steps, and choosing the unique
cofinal branch with a weakly iterable Q-structure at limit steps. This process
is L(R)-definable, and must break down at some countable stage, as otherwise
by Lemma 7.11 and the proof of the Comparison Lemma 3.11 we shall succeed
in comparing Q(b, T ) with Q(c, T ). By the argument given above, the weak
iterability of Q(b, T ) and Q(c, T ) implies that uniqueness is what breaks
down. (It does not literally follow from Lemma 7.6 that cofinal branches
always have Q-structures, as the models we are comparing may no longer
be properly small. But if, say, Q(b, T ) is not properly small, then we have
dropped along b getting to it, and this guarantees that in the tree on Q(b, T )
we are now building, cofinal branches always have Q-structures.) Let T 0

1 on
Q(b, T ) and T 1

1 on Q(c, T ) be the trees produced by this process. Let

δ1 = sup{lh(ET 0
1

α ) | α < lh(T 0
1 )}

= sup{lh(ET 1
1

α ) | α < lh(T 1
1 )}.

Let
b01 = Σ0

(〈
T 0

0 , (Q(b00, T 0
0 ), deg(Q(b00, T 0

0 )), T 0
1 )
〉)

and
b11 = Σ1(T 1

1 )
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be the cofinal, weakly iterable branches of T 0
1 and T 1

1 chosen by Σ0 and Σ1.
By hypothesis we have a third branch c1 of some T i

1 (it does not matter which)
such that Q(c1, T i

1 ) is weakly (deg(c1), ω)-iterable, say via the strategy Σ2.
It follows that the premice Q(b01, T 0

1 ), Q(b11, T 1
1 ), and Q(c1, T i

1 ) cannot be
compared.

We attempt to reach a contradiction by simultaneously comparing these
three premice. (This means that we form three iteration trees simultaneously,
iterating by the shortest extender on the sequence of any of the three last
models which is not present on the sequences of both of the other two last
models.) Again, we choose unique weakly iterable branches at limit ordinals,
and again this process must break down due to non-uniqueness, giving trees
T 0

2 , T 1
2 , and T 2

2 , with cofinal branches b02, b
1
2, and b22 chosen by Σ0, Σ1, and Σ2.

(It is because the T i
2 use only extenders with critical point above δ1 that we

can interpret them as played by the Σi.) We also have a new branch c2 of
some T i

2 , and a weak iteration strategy Σ3 for Q(c2, T i
2 ). We let δ2 be the

sup of the lengths of the extenders used in the T i
2 . And so on.

After ω steps in the process we have for each i < ω a weak iteration
strategy Σi and a play by Σi in which the iteration trees played by I are the
T i

j for j ≥ i and the branches chosen by II are the bi
j for j ≥ i. Let Pi be

the direct limit of the MT i
j

bi
j
. Since each Σi is winning, these direct limits are

wellfounded. Clearly, all the δk are Woodin in each Pi. Since Pi is ω-small,
it has no extenders with index above the sup of the δk, and thus Pi is an
initial segment of Pn or vice-versa, for all i and n. Since all Pi project below
the sup of the δk, they must all be the same. Moreover, as in the proof of the
Comparison Lemma 3.11, we can show that for no i does the composition
of the trees T i

j drop in model or degree on the branch leading to Pi. But
this means that P0 and P1 are the last models of a successful comparison of
Q(b, T ) with Q(c, T ), a contradiction. �

We have at once

7.12 Corollary. Every real in Mω is ordinal definable in L(R).

Proof. Let x be the αth real in the order of constructibility of Mω; then

y = x ⇐⇒ L(R) |= ∃M(M is countable, properly small,
(ω, ω1 + 1)-iterable, and y is the αth real
in the constructibility order of M).

�

The proof of Theorem 7.10 gives at once:

7.13 Corollary. Assume ADL(R), and let M be countable, properly small,
and weakly (k, ω)-iterable; then in L(R), M has a unique (k, ω1)-iteration
strategy Σ; moreover, Σ is ΣL(R)

1 ({M}) definable, uniformly in M, and Σ
extends, in L(R), to a (k, ω1 + 1)-iteration strategy for M.
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7.2. Correctness and Genericity Iterations

We shall prove some correctness results for Mω, and use them to show that
every real ordinal definable over L(R) is in Mω. The key to these results is
the following remarkable theorem of Woodin.

7.14 Theorem. Let Σ be an (ω, ω1+1)-iteration strategy forM, and suppose
that δ is a countable ordinal such that M |= ZF− + δ is Woodin; then there
is a Q ⊆ V M

δ such that

1. M |= Q is a δ-c.c. complete Boolean algebra, and

2. for any real x, there is a countable iteration tree T on M played ac-
cording to Σ with last model Mα such that i0,α exists and x is i0,α(Q)-
generic over Mα.

Proof. Working in M, let Lδ,0 be the infinitary language whose formulae are
built up by means of conjunctions and disjunctions of size < δ, and negation,
from the propositional letters An, for n < ω. (So all formulae are quantifier-
free.) Any real x, regarded as a subset of ω, gives us an interpretation of
Lδ,0:

x |= An ⇐⇒ n ∈ x.

We can then define x |= ϕ, for arbitrary formulae ϕ, by the obvious induction.
Still working in M, consider the Lδ,0 theory S which has the axioms

∨
α<κϕα ←→

∨
α<λiE(〈ϕξ | ξ < κ〉)�λ

whenever E is on the M-sequence, crit(E) = κ ≤ λ, and ν(E) is an M-
cardinal such that iE(〈ϕξ | ξ < κ〉)�λ ∈ JM

ν(E).

We let Q be the Lindenbaum algebra of S. That is, we let

ϕ ∼ ψ iff S � ϕ↔ ψ,

and

[ϕ] ≤ [ψ] iff S � ϕ→ ψ,

and we let

Q := ({[ϕ] | ϕ ∈ Lδ,0},≤).

Here provability in S means provability using the usual finitary rules together
with the rule: from ϕα for all α < κ (where κ < δ) infer

∧
α<κ ϕα. Equiva-

lently, S � τ iff whenever x is a real in M[G] for some G generic over M and
x |= S, then x |= τ . (See [2]. Clearly, if S � τ , then any real which satisfies
S satisfies τ .)
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1 Claim. Q is δ-c.c. in M.

Proof. We work in M. Let 〈[ϕα] | α < δ〉 be an antichain in Q. Let κ < δ be
〈ϕα | α < δ〉-reflecting. Let ν be a cardinal such that 〈ϕα : α < κ+1〉 ∈ JM

ν ,
and let F on the M-sequence witness the reflection of κ at this ν.54 Let E
be the trivial completion of F �ν. We then have

iE
(∨

α<κϕα

)
�(κ + 1) =

∨
α≤κϕα,

so that ∨
α<κϕα ←→

∨
α≤κϕα

is provable in S. It follows that [ϕκ] ≤
∨

α<κ[ϕα] in Q, a contradiction. �

2 Claim. Q is a complete Boolean algebra in M.

Proof. Q is closed under sums of size < δ since
∨

α<κ[ϕα] = [
∨

α<κ ϕα] for
all κ < δ. By Claim 1, Q is closed under arbitrary sums. �

3 Claim. If x |= S, then setting Gx := {[ϕ] | x |= ϕ}, we have that Gx is
Q-generic over M and x ∈M[Gx].

Proof. Since x |= S, Gx is well-defined on equivalence classes: if S � (ϕ↔ ψ),
then x |= ϕ iff x |= ψ. It is also clear that Gx is an ultrafilter on Q. To see
that Gx is M-generic, let 〈[ϕα] | α < ν〉 be a maximal antichain. Since
[
∨

α<ν ϕα] = 1, we have S �
∨

α<ν ϕα. Since x |= S, we have x |= ϕα for
some α; that is, [ϕα] ∈ Gx for some α. Finally, n ∈ x iff [An] ∈ Gx, so
x ∈M[Gx]. �

An arbitrary real x may not satisfy S, but one can iterateM in such a way
that x satisfies some image of S.

4 Claim. For any real x, there is a countable iteration tree T on M which
is played according to Σ, has last model Mα, and is such that [0, α]T does
not drop and x |= i0,α(S).

Proof. We keep iterating away the first extender which induces an axiom not
satisfied by x. More precisely, set M0 = M, and now suppose that we have
constructed the model Mβ of T , where β < ω1. Suppose also that T has not
dropped anywhere yet; that is, DT = ∅ as of now. If x |= i0,β(S) we are done,
so suppose not. Let E on the Mβ-sequence be such that E induces an axiom
of i0,β(S) which is false of x, and lh(E) is minimal among all extenders on
the Mβ-sequence with this property. We set ET

β := E, and use E according
to the rules for ω-maximal iteration trees to extend T one more step.

We must check here that γ < β =⇒ lh(Eγ) < lh(Eβ). But if not, the
agreement of models in an ω-maximal iteration tree implies that Eβ is on

54 We are using here the fact that the Woodinness of δ in M is witnessed by extenders on
the M-sequence. We might just have added this to the hypotheses of Theorem 7.14, but
we need not do so because, by [36], it follows from the other hypotheses.
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the sequence of Mγ , and it is not hard to check that the false axiom of
i0,β(S) it induces in Mβ is also induced by it in Mγ . (To see that ν(Eβ)
is a cardinal of Mγ in this situation, note that since ν(Eγ) is a cardinal
of Mγ , any cardinal of Mβ which is ≤ ν(Eγ) is a cardinal of Mγ . But
ν(Eβ) < lh(Eβ) ≤ lh(Eγ) and there are no cardinals of Mβ in the interval
(ν(Eγ), lh(Eγ)), so ν(Eβ) ≤ ν(Eγ).)

We must also check that [0, β+1] does not drop; that is, that Eβ measures
all subsets of its critical point κ in the model Mγ to which it is applied. This
is true because κ < ν(Eγ), ν(Eγ) is a cardinal of Mγ , and Mβ agrees with
Mγ below ν(Eγ).

This finishes the successor step in the construction of T . At limit ordinals
λ ≤ ω1 we use Σ to extend T .

It is enough to show this process terminates at some countable ordinal,
so suppose not. We reach a contradiction much as in the proof that the
comparison process terminates. As in that argument, let

π : H → Vη

be elementary, where H is a countable, transitive set, and Vη and the range
of π are large enough to contain everything of interest. Let π(T̄ ) = T , etc.,
and let α = crit(π) = ωH

1 . We get as before, setting δ∗ = iT
0,α(δ) = iT̄

0,α(δ),

V
MT̄

α

δ∗ = V
MT

α

δ∗

and
π�V MT̄

α

δ∗ = iT
α,ω1

�V MT
α

δ∗ .

Now let β + 1 be the T -successor of α on [0, ω1]T . We have crit(Eβ) =
crit(iα,ω1) = α, and we have an axiom

∨
γ<αϕγ ←→ iEβ

(∨
γ<αϕγ

)
�λ

of i0,β(S) induced by Eβ and false of x. The falsity of this axiom means
that the right hand side is true of x, but the left hand side is not. But now∨

γ<α ϕγ is essentially a subset of α, and therefore is small enough that it is
in Mα. Moreover, λ < ν(Eβ), and since generators are not moved on T

iEβ

(∨
γ<αϕγ

)
�λ = iα,ω1

(∨
γ<αϕγ

)
�λ = π

(∨
γ<αϕγ

)
�λ.

But x ∈ H and π(x) = x. Since Lδ,0 satisfaction is sufficiently absolute and
x �|=

∨
γ<α ϕγ , we have x �|= π(

∨
γ<α ϕγ). This contradicts the fact that x

satisfies the initial segment iEβ
(
∨

γ<α ϕγ)�λ of this disjunction. �
IfMα is as in Claim 4, then we can replaceM byMα in Claims 1, 2, and 3,

and we see then that T and Mα witness the conclusion of Theorem 7.14. �

The complete Boolean algebra Q of Theorem 7.14 is known as the extender
algebra.
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We drop for a moment to smaller mice, and use the extender algebra to
prove a correctness result for the minimal proper class model with one Woodin
cardinal. (This was Woodin’s original application of Theorem 7.14.) Let us
call a premouse M 1-small iff whenever κ is the critical point of an extender
on the M-sequence, then JM

κ |= “There are no Woodin cardinals”. Let M#
1

be the least mouse which is not 1-small, and M1 the result of iterating the
last extender of M#

1 out of the universe. (Granted that there is a Woodin
cardinal with a measurable above it in V , M#

1 exists and is (ω, ω1 + 1)-
iterable.) Let Q be the extender algebra of M1; then for any Σ1

3 sentence ϕ,
possibly involving real parameters from M1, we have

ϕ ⇐⇒ M1 |= ∃p(p � ϕ).

The right-to-left direction comes from the fact that P (Q) ∩M1 is countable
in V , so that any condition is extended by a generic filter in V . For the left-to-
right direction: let x witness the outer existential quantifier of ϕ, and letMα

be an iterate of M1 over which x is i0,α(Q)-generic. Clearly, Mα[Gx] |= ϕ,
so Mα |= ∃p(p � ϕ), so by elementarity M1 |= ∃p(p � ϕ).

Thus M1 can compute Σ1
3 truth by asking what is forced in its extender al-

gebra. (M1 is not itself Σ1
3-correct.) This easily implies that every real which

is Δ1
3 in a countable ordinal is in M1. A careful look at the sort of iterability

needed to compare “properly 1-small” mice (like JM1
α , for α = ωM1

1 ) shows
every real in M1 is Δ1

3 in a countable ordinal, so we have a descriptive-set-
theoretic characterization of the reals in M1.55

M#
1 is essentially a real, and from this real we can recursively construct

generic objects for the extender algebra of M1 below any condition. It follows
that every nonempty Σ1

3 set of reals has a member recursive in M#
1 . We can

relativize the M#
1 construction to an arbitrary real x and obtain M#

1 (x);
simply throw x into the model at the bottom. We get that any nonempty
Σ1

3(x) set of reals has a member recursive in M#
1 (x), and therefore any pre-

mouse closed under the function x �→ M#
1 (x) is Σ1

3-correct. In particular,
Mω is Σ1

3-correct.
If we give Mn and M#

n the obvious meaning, then we can show that the
reals of Mn are precisely those which are Δ1

n+2 in a countable ordinal, and
that every nonempty Σ1

n+2 set of reals has a member recursive in M#
n . (See

[42].) Since Mω is closed under x �→M#
n (x) for all n < ω, Mω is projectively

correct. The following theorem gives us much more; it says that Mω can
compute L(R) truth in much the same way that M1 can compute Σ1

3 truth.
We let Col(ω,X) be the collapsing poset of all finite partial functions from

ω into X. Notice that Theorem 7.14 implies that if M, Σ, and δ satisfy its
hypotheses, then for any real x there is a countable T played by Σ, with
last model Mα, such that x is Col(ω, i0,α(δ))-generic over Mα. This is true

55 This set of reals is known in descriptive set theory as Q3, and it has many other

characterizations. M#
1 is also known from descriptive set theory; it is Turing equivalent

to y0. See [12].
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because Col(ω, κ) is universal for forcings of size κ. Unlike the extender
algebra, Col(ω, δ) is not δ-c.c.; on the other hand, it is homogeneous.

By Col(ω,<λ) we mean the finite support product of all Col(ω, α) such
that α < λ. If G is M-generic over Col(ω,<λ), then we set

R
∗
G :=

⋃
α<λR ∩M[G ∩ Col(ω,<α)],

and say that R
∗
G is the set of reals of a symmetric collapse of M below λ.

7.15 Theorem. Suppose that M |= λ is a limit of Woodin cardinals, where
λ is countable in V , and that Σ is an (ω, ω1 + 1)-iteration strategy for M.
Let H be Col(ω,R)-generic over V ; then in V [H] there is an iteration map
i : M→N coming from an iteration tree all of whose proper initial segments
are played by Σ, and a G which is Col(ω,<i(λ))-generic over N , such that

R
∗
G = R

V .

Proof. We shall need the following slight refinement of Theorem 7.14.

7.16 Lemma. Let M |= δ is Woodin, where δ is countable in V , and let Σ
be an (ω, ω1+1)-iteration strategy for M. Let κ < δ, and let G be M-generic
for a poset P ∈ V M

κ . Then for any x ⊆ ω, there is a countable iteration tree
T played by Σ and having last model Mα such that

1. DT = ∅ and crit(ET
β ) > κ for all β, and

2. x is in some Col(ω, δ)-generic extension of Mα[G].

Sketch of Proof. In M[G], δ is still Woodin via the extenders over M[G]
which are “completions” of extenders on the M-sequence with critical point
> κ. So in M[G], the version of the extender algebra which uses only these
extenders is a δ-c.c. complete Boolean algebra. The iteration U of M[G] we
need to do to make x generic can be obtained from an iteration T of M:
MU

β = MT
β [G] for all β. We omit further details. �

We can now prove the theorem. Working in V [H], let 〈xn | n < ω〉 be an
enumeration of RV . Let 〈δn | n < ω〉 be an increasing sequence of Woodin
cardinals ofM which is cofinal in λ. We shall use Lemma 7.16 to successively
absorb the xn into the collapse of some image of δn in an iterate of M.

More precisely, working in V we find a countable iteration tree T0 on
M played by Σ with last model P0, and a G0 which is P0-generic over
Col(ω, i0(δ0)), where i0 : M→ P0 is the iteration map, so that x0 ∈ P0[G0].
We then find an iteration tree T1 on P0 such that T0 ⊕ T1 is according to Σ,
and if i1 : P0 → P1 is the iteration map, then crit(i1) > i0(δ0), and there is a
G1 which is P1[G0]-generic over Col(ω, i1 ◦ i0(δ1)) such that x1 ∈ P1[G0][G1].
And so on: given Pn, we use Lemma 7.16 in V to obtain an iteration tree Tn+1

on Pn such that T0 ⊕ · · · ⊕ Tn+1 is according to Σ, and if in+1 : Pn → Pn+1

is the iteration map, then crit(in+1) > in ◦ . . . ◦ i0(δn), and there is a Gn+1
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which is Pn+1[G0, . . . , Gn]-generic over Col(ω, in+1 ◦ . . . ◦ i0(δn+1)) such that
xn+1 ∈ Pn+1[G0, . . . , Gn][Gn+1].

Let T =
(⊕

n Tn

)
⊕ b, where b is the branch of

⊕
n Tn containing the Pn.

By construction, b is the unique cofinal branch of
⊕

n Tn, and the Tn con-
stitute a play by Σ. Let N be the last model of T ; clearly N is just the
direct limit of the Pn under the in. A simple absoluteness argument shows
that N is wellfounded: if not, then the tree of attempts to produce a se-
quence 〈Un | n ∈ ω〉 which constitutes a play of ω rounds of Gω(M, ω, ω1 +1)
by Σ, together with a descending chain of ordinals in the direct limit along
the unique cofinal branch, would have a branch in V . Let i : M → N be
the direct limit map. By construction, each Gn is in V , so we have xn ∈
(R ∩ N [G0, . . . , Gn+1]) ⊆ RV , and therefore

⋃
n(R ∩ N [G0, . . . , Gn]) = RV .

It is easy to see that
⋃

n(R∩N [G0, . . . , Gn]) is the set of reals of a symmetric
collapse of N below i(λ), so we are done. �

7.17 Corollary. Let M be a proper class premouse such that M |= λ is a
limit of Woodin cardinals, where λ is countable in V , and suppose that M
is (ω, ω1 + 1)-iterable; then every real which is ordinal definable over L(R)
belongs to M.

Proof. Let i : M → N be as in Theorem 7.15, and let x be ODL(R). We
have, by the symmetry of Col(ω,<i(λ)) and the fact that L(R)V is realized
as some L(R∗

G), that x ∈ N . It follows that x ∈M. �

The proof of Theorem 6.16 shows that if λ is a limit of Woodin cardinals
and there is a measurable cardinal above λ, then M#

ω exists and is (ω, ω1,
ω1 + 1)-iterable, not just in V , but in V P, for any poset P of cardinality < λ.
So we get at once:

7.18 Corollary. If there are ω Woodin cardinals with a measurable above
them all in V , then R ∩Mω = {x ∈ R | x is ODL(R)}.

We are in a position now to see that Mω has no (ω, ω1)-iteration strategy
in L(R). (We assume here that there are in V ω Woodin cardinals with
a measurable above them all.) For if there were such a strategy in L(R),
then the set of reals which are not in Mω would be a ΣL(R)

1 set: z �∈ Mω iff
L(R) |= (there is an (ω, ω1)-iterable, ω-small premouse N of ordinal height
ω1 such that for some countable λ, N |= λ is a limit of Woodin cardinals,
and such that z �∈ N ). However, by [16], any nonempty ΣL(R)

1 set of reals
has an ODL(R) member.56 So there is an ODL(R) real not in Mω, contrary to
Corollary 7.18.

The proof of Theorem 7.15 shows that any sufficiently iterable proper class
model with ω Woodin cardinals can compute L(R) truth by consulting its
symmetric collapse; in fact

56 We shall give a purely inner-model-theoretic proof of this result immediately after
Theorem 7.20.
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7.19 Theorem. Let M be a proper class premouse such that M |= λ is a
limit of Woodin cardinals, where λ is countable in V , and suppose that M is
(ω, ω1 + 1)-iterable. Let R

∗ be the set of reals of a symmetric collapse of M
below λ; then in V Col(ω,R) there is an elementary j : L(R∗) → L(R)V .

Sketch of Proof. Let 〈δn | n < ω〉 be a sequence of Woodin cardinals with
limit λ, and let Gn be Col(ω, δn)-generic over M and such that

R
∗ =

⋃
n(R ∩M[Gn]).

Working in V [H], where H is Col(ω,R)-generic over V , the proof of Theo-
rem 7.15 gives for each n an iteration map

in : M→ Pn, with crit(in) > δn,

such that R
V is the set of reals of a symmetric collapse of Pn below in(λ).

Let
Γ = {α ∈ On | ∀n(in(α) = α)},

and

X = {x | x is definable over L(R) from elements of R
∗ ∪ Γ}.

Since the in are iteration maps, Γ is a proper class. Now in induces an
elementary embedding i∗

n : M[Gn] → Pn[Gn], and by the homogeneity of
the symmetric collapses we get, for all reals �x in M[Gn], ordinals �α, and
formulae ϕ,

L(R∗) |= ϕ[�x, �α] ⇐⇒ L(R)V |= ϕ[�x, in(�α)].

It follows easily that
R ∩X = R

∗.

Thus it suffices to show that X ≺ L(R), for then the inverse of the transitive
collapse of X is the desired elementary embedding. So suppose

L(R) |= ∃vσ[�y, �α],

where �y ∈ (R∗)<ω and �α ∈ Γ<ω. Pick n such that �y ∈ M [Gn]. Using the
partial elementarity of in displayed above, we get

L(R∗) |= ∃vσ[�y, �α].

Since Γ is a proper class, we can take the witness v from L(R∗) to be definable
over L(R∗) from z and �β, where z ∈ R

∗ and �β ∈ Γ<ω. Let k ≥ n be such
that z ∈ M [Gk]; then the partial elementarity of ik guarantees that there
is a witness v to σ which is L(R)-definable from z, �y, �β, and �α. This shows
X ≺ L(R), as desired. �
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Although iterable class models with ω Woodin cardinals can compute L(R)
truth, they need not be correct for arbitrary statements about L(R). We do
have, however:

7.20 Theorem. Let M be a proper class premouse such that M |= η is a
limit of Woodin cardinals, for some η < ωV

1 . Suppose that M is (ω, ω1 + 1)-
iterable; then for any real x ∈ M and Σ1 formula ϕ, containing perhaps a
name Ṙ for R,

(L(R) |= ϕ[x]) =⇒ (L(R)M |= ϕ[x]).

Proof. We shall assume x ∈ Mω; the argument in general is only slightly
more complicated.

Fix an ω-small proper class premouse N whose extender sequence is an
initial segment of that of M, and such that there is a λ ≤ η such that λ is
a limit of Woodin cardinals in N . To see that there is such an N , note that
either M is ω-small, in which case we can take N = M, or M#

ω = JM
α for

some α, in which case we can take N = Mω. The iterability of M implies
that of N . From Theorem 7.19 we get some α such that J N

α |= ZF− + “There
is a λ which is a limit of Woodin cardinals, and L(R∗) |= ϕ[x], where R

∗ is
the set of reals of a symmetric collapse below λ”. By taking a Skolem hull
inside N and comparing the result with N , we see that if ᾱ is the least such
α, then ᾱ is countable in N . Define λ̄ to be least λ such that J N

ᾱ |= λ is a
limit of Woodin cardinals.

We claim that JN
ᾱ is (ω, ω1 + 1)-iterable in M. (This is why we dropped

from M to N .) For Q := JN
ᾱ+1 is properly small, and therefore by Corol-

lary 7.13, has a (ω, ωV
1 )-iteration strategy Σ which is ΣL(R)

1 ({Q}). By The-
orem 7.19, and the homogeneity of Col(ω,<η), V M

η is closed under Σ, and
Σ�V M

η ∈M.
We can now run the construction of Theorem 7.15 in M[H], where H is

M-generic over Col(ω,R). We obtain an iteration map

i : JN
ᾱ → P

such that for some Col(ω,<i(λ̄))-generic G over P

R
M = R

∗
G.

Thus, for ξ = OnP , Lξ(RM) |= ϕ[x], and hence L(RM) |= ϕ[x] since ϕ
is Σ1. �

One can also prove this theorem using stationary tower forcing. (By The-
orem 7.15 we have an iteration map i : M→ P such that for some G which
is Col(ω,<i(η))-generic over P , R

V = R
∗
G. Via stationary tower forcing over

P one gets, for any α, a P-generic elementary embedding j : P → Q with
R

Q = R
∗
G and α ∈ wfp(Q). Then any Σ1 fact true in L(R)V is true in some

such L(R)Q, hence in L(R)P , and hence in L(R)M.) It is often the case that
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stationary tower forcing and genericity iterations can be made to do the same
work.57

The argument of Theorem 7.20 yields another proof of the standard basis
theorem for ΣL(R)

1 : every nonempty ΣL(R)
1 set of reals has a ΔL(R)

1 mem-
ber. For if ϕ defines our set over L(R), then as in Theorem 7.20 we get an
initial segment Q of Mω of height < ωMω

1 such that for some λ, Q |= λ is
a limit of Woodin cardinals and it is forced in the symmetric collapse over
Q below λ that L(R∗) |= ∃zϕ(z). Working in Mω, where λ is countable,
we can find a generic object G for some Col(ω, δ), where δ < λ, such that
Q[G] |= ∃z(Col(ω,<λ) � ϕ(ž)L(R)). Picking such a z ∈ Q[G], we see from
the iterability of Q in V Col(ω,R) that L(R)V |= ϕ[z]. But z is in Mω, hence z

is ODL(R). If we pick the least such z in the canonical wellorder of the reals
of Mω, we get that z is ΔL(R)

1 .
The argument just given is closely related to the proof we gave that every

nonempty Σ1
3 set of reals has a member recursive in M#

1 . One can extend
the argument so as to show via inner model theory that the pointclass ΣL(R)

1

has the scale property. (See [16] for the original proof, which used methods
involving games and determinacy due to Yiannis Moschovakis.) In recent
unpublished work, Itay Neeman has found a general method which uses de-
finability over mice to produce many pointclasses with the scale property.
Neeman’s work gives a new proof that Σ1

2n and Π1
2n+1 have the scale prop-

erty, for any n ≥ 1. Neeman’s work builds on earlier ideas of Woodin (un-
published, but see [42]), who found a purely inner-model-theoretic proof of
the weaker fact that Σ1

2n and Π1
2n+1 have the prewellordering property, for

all n.

7.21 Corollary. Suppose that there are ω Woodin cardinals with a measur-
able above them all. Then Mω |= R has a ΔL(R)

1 wellorder.

Proof. By the reflection theorem,

x ∈ ODL(R) ⇐⇒ ∃α(x ∈ ODLα(R)).

So being ODL(R) is a ΣL(R)
1 property. Thus, by Corollary 7.18 and Theo-

rem 7.20,
Mω |= ∀x ∈ R(x is ODL(R)).

The reals can now be wellordered in Mω via their definitions in L(R)Mω . �

One can also prove Corollary 7.21 by showing that the natural wellorder
of R∩Mω given by the stages of construction is Δ1 over L(R)Mω . The proof
of this is implicit in the arguments just given.

57 One can also show using the scale property for Σ
L(R)
1 that if M is any model of set

theory such that RM is countable, and every ODL(R)({RM }) set X ⊆ RM is in M,
then the conclusion of Theorem 7.20 holds. Combining this with the natural extension of
Corollary 7.17 to sets of reals, we get yet another proof of Theorem 7.20.
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The author (unpublished) has shown that Mω |= V = HOD. The proof
builds on that of Corollary 7.21, but more is required.58

The correctness theorem 7.20 is best possible, in the sense that, if there
are ω Woodin cardinals with a measurable cardinal above them all, then the
statement “There is a wellorder of the reals” is a Σ1 statement which is true
in L(R)Mω , but not true in L(R). Another such statement is “Every real is
ordinal definable over some Lα(R)”.

Iterations to make reals generic can be used to prove the generic absolute-
ness theorems one gets from stationary tower forcing. For example:

7.22 Theorem (Woodin). Suppose that λ is a limit of Woodin cardinals, and
there is a measurable cardinal above λ. Let G be P-generic over V , where
|P| < λ, and let H be Col(ω,R)V [G]-generic over V [G]; then in V [G][H] there
is an elementary

j : L(R)V → L(R)V [G]
.

In particular, L(R)V is elementarily equivalent to L(R)V [G].

Proof. Let 〈(in,Pn) | n < ω〉 be a genericity iteration of Mω such that
setting P = dirlim Pn, we have that R

V can be realized as the reals R
∗
K of a

symmetric collapse of P below the sup of its Woodin cardinals. We get such
an iteration in V [G][H] from the proof of Theorem 7.15, and we have from
that proof that each Pn is countable in V , and R

∗
K =

⋃
n R ∩ Pn[Kn], where

Kn is in V and Col(ω, in ◦ · · · ◦ i0(δn))-generic over Pn. (Here δn is the nth
Woodin cardinal of Mω.) Applying Theorem 7.15 again, we have for each
n an iteration map jn : Pn → Qn such that crit(jn) > in ◦ · · · ◦ i0(δn) and
R

V [G] is the set of reals of a symmetric collapse of Qn. Note that jn lifts to
an elementary ĵn from Pn[Kn] to Qn[Kn]. From the homogeneity of the two
collapses it then follows that for any real x ∈ Pn[Kn], formula ϕ, and ordinal
α, L(R)V |= ϕ[x, in,ω(α)] iff L(R)V [G] |= ϕ[x, jn(α)]. As in the proof of
Theorem 7.19, this means that if we let X = {α | ∀n(jn(α) = α = in,ω(α))},
and let j be the inverse of the transitive collapse of the hull in L(R)V [G] of
X ∪ RV , then j : L(R)V → L(R)V [G] elementarily. �

One can also use genericity iterations to eliminate stationary tower forcing
from the proof of ADL(R), and in fact this can be done in several different
ways. See for example [29, 28], and [45].

The connection between correctness of mice and definability of their itera-
tion strategies extends much further. How much further is one of the central
open problems of inner model theory.

7.23 Definition. Mouse capturing is the following statement: for all x, y ∈ R,
x is ordinal definable from y if and only if for some (ω, ω1)-iterable y-premouse
M, x ∈M.
58 One shows that the inductive definition of K from [43] relativizes in such a way that
one can define over Mω its extender sequence in each interval between successive Woodin
cardinals of Mω .
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Here a y-premouse is just like an ordinary premouse, except that we put
y in at the bottom of its hierarchy. We have shown in this section that the
existence of M#

ω implies that mouse capturing holds in L(R). Results of
Woodin show that ADL(R) implies that mouse capturing holds in L(R), and
in fact, appropriately interpreted, it holds in every Jα(R). (See [13] and [46].)
Woodin has also shown that mouse capturing holds in models of determinacy
beyond L(R): in any model of AD in which all ω1-iterable mice are tame (see
[46]), and even beyond that, in the minimal model of ADR + DC.59

In his PhD thesis (Berkeley 2009), Grigor Sargsyan has shown that in
fact mouse capturing holds in the minimal model of ADR + “Θ is regular”.60

These results have local refinements: mouse capturing holds in any reasonably
closed Wadge initial segment of the minimal model of ADR +“Θ is regular”.61

The capturing mice in the minimal model of ADR + DC can be nontame, but
all capturing mice in the minimal model of ADR + “Θ is regular” are below
a Woodin limit of Woodin cardinals.

This leads us to the

Mouse Set Conjecture. Assume AD+, and that there is no ω1-iteration
strategy for a premouse satisfying “There is a superstrong cardinal”; then
mouse capturing holds.

AD+ is a strengthening of AD which holds in all the models of AD we have
constructed under large cardinal hypotheses. See for example [13, §8] for a
precise definition. We might have stated the mouse set conjecture with AD as
its hypothesis, but preferred to separate it from the open technical question
as to whether AD implies AD+.

It might be possible to drop the hypothesis that there is no ω1-iteration
strategy for a premouse satisfying “There is a superstrong cardinal” from the
mouse set conjecture. One would presumably then have to enlarge the notion
of mouse, so as to accommodate canonical models with supercompacts and
more. The hypothesis that there is no ω1-iteration strategy for a premouse
satisfying “There is a superstrong cardinal” is a convenient way to say that
we are in the initial segment of AD+ models in which the capturing mice are
premice in the sense of this chapter.

The author believes that it is unlikely that one can construct (ω1 + 1)-
iterable premice satisfying “There is a superstrong cardinal” under any hy-
pothesis, even the hypothesis that there are superstrong cardinals, without
proving the mouse set conjecture.

59 ADR is the assertion that all games on R are determined.
60 This is a well-known, strong determinacy hypothesis. Θ is the least ordinal that is not
the surjective image of R. Θ for L(R) is officially defined at the beginning of the next
section.
61 Sargsyan also shows that if there is an iterable mouse with a Woodin limit of Woodin
cardinals, then there is an inner model of ADR + “Θ is regular”.
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8. HODL(R) below Θ

Having characterized the reals in HODL(R) in terms of mice, it is natural to
look for a similar characterization of the full model HODL(R). In this section
we shall describe some work of the author [41] and Woodin (unpublished)
which provides such a characterization.

The arguments of the last section give more in this direction than we stated
there. Let N be the linear iterate of Mω obtained by taking ultrapowers by
the unique normal measure on the least measurable cardinal, and its images,
ωV

1 times. Thus the least measurable cardinal of N is ωV
1 . One can show by

the methods of the last section that P (ωV
1 ) ∩ HODL(R) = P (ωV

1 ) ∩ N . (See
[40, Sect. 4].) This clearly suggests that the whole of HODL(R) might be an
iterate of Mω. We shall show in this section that is almost true.

8.1 Definition.

Θ = sup{α | ∃f ∈ L(R)(f : R → α and f is surjective)}.

8.2 Definition.

∼δ
2
1 = sup

{
α | ∃f(f : R → α and f is surjective and ΔL(R)

1

}
.

Standard notation would require that we write ΘL(R) and (∼δ
2
1)L(R) here,

but since we shall only interpret the notions in question in L(R), we have
chosen to drop the superscripts. Similarly, we shall occasionally write HOD
for HODL(R) in this section. We have nothing to say about HODV here.

We shall show that below ∼δ
2
1 , HOD is the direct limit of a certain class F of

countable, iterable mice, under the iteration maps given by the comparison
process. (One gets a typical element of F by iterating Mω, then cutting
the iterate off at a successor cardinal below its bottom Woodin cardinal.)
The mice in F are properly small, so that L(R) knows how to iterate them
correctly. They are as “full” as possible, given this smallness condition.
Fullness guarantees that in the comparison of two mice in F , neither side
drops along the branch leading to the final model, and thus we have iteration
maps on both sides. The Dodd-Jensen Lemma guarantees that these maps
commute, so that we can indeed form a direct limit. The whole direct limit
system is definable over L(R) in a way that insures its direct limit M∞ is
included in HOD ∩ V

∼δ
2
1
. On the other hand, we shall see that in the bigger

universe V Col(ω1,R) there is an iterate N of Mω such that M∞ is just N
cut off at the least cardinal κ which is β-strong for all β below the bottom
Woodin cardinal of N . The correctness properties of N can then be used to
show that HOD ∩ V

∼δ
2
1
⊆M∞.

The maps in our direct limit system will come from compositions of iter-
ation trees. In order to make the Dodd-Jensen Lemma applicable, we need
to take care of some details regarding unique iterability. Let M be properly
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small. By G∗(M, λ, θ) we mean the variant of the iteration game Gω(M, λ, θ)
in which player I is not allowed to drop at the beginning of a new round. That
is, if Q is the model we get at the end of round α and q is its degree (with
Q = M and q = ω if α = 0), then round α + 1 of G∗(M, λ, θ) must be a
play of Gq(Q, θ). Let us call a play of G∗(M, λ, θ) in which II has not yet
lost an almost ω-maximal iteration tree on M; such a tree is just a linear
composition of appropriately maximal trees, where “appropriately” means
that the composition is itself maximal. Our proof of Corollary 7.13 gives

8.3 Lemma. Let M be countable, properly small, and 
RΠ1

1-iterable; then
in L(R), there is a unique winning strategy Σ for G∗(M, ω1, ω1); moreover,
Σ is ΣL(R)

1 ({M}) definable, uniformly in M.

8.4 Definition. Let M be countable, properly small, and 
RΠ1

1-iterable.
An almost ω-maximal iteration tree on M is correct just in case it is played
according to the unique winning strategy for II in G∗(M, ω1, ω1). We say
that M iterates correctly to N iff N is the last model of some correct T on
M such that the branch M-to-N of T has no drops.

From the last lemma we have at once:

8.5 Lemma. The relations

{(M, T ) | T is a correct tree on M}

and
{(M,N ) | M iterates correctly to N}

on HC are Σ1-definable over L(R).

There may in fact be more than one iteration tree witnessing that M
iterates correctly to N , but our proof of the Dodd-Jensen Lemma, together
with the Uniqueness Lemma 8.3 above, easily implies that all such trees give
rise to the same iteration map π : M → N . Because properly small M
satisfy ZF−, π is fully elementary.

8.6 Definition. A properly small mouse M is full iff whenever M iterates
correctly to N , A is a bounded subset of On∩N , and A is ordinal definable
over L(R) from the parameter N , then A ∈ N .

Fullness is clearly Π1-definable over L(R).62 Since the ODL(R)({N}) sets
are captured by mice, we can reformulate fullness in purely inner-model-
theoretic terms.

8.7 Definition. We write N �∗ P iff N = J P
η for some cutpoint η of P . In

this case, we also call N a cutpoint of P .
62 Notice that a premouse which is not RΠ1

1-iterable is vacuously full, since there are no

correct trees on it. Of course, we are only interested in the full mice which are RΠ1
1-

iterable.
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8.8 Lemma. The following are equivalent:

1. M is full,

2. if M iterates correctly to N , and N �∗P, and P is 
RΠ1

1-iterable above
On∩N ,63 then ρω(P) ≥ On∩N .

Proof. To see that 1 =⇒ 2, notice that the proof of Corollary 7.12 relativizes,
and thus if P and N are as in clause 2, then P is ODL(R) from N as a
parameter.

For the converse, suppose that N is a correct iterate of M, and let A
be a bounded subset of λ := On∩N which is ODL(R) from N . We can
modify the Kc construction by starting with N instead of (Vω,∈, ∅, ∅) as our
initial structure, and by adding only extenders with critical point strictly
greater than λ. All ω-small structures we produce in such a construction
are 

RΠ1
1-iterable above λ, and so by clause 2 no such structure projects

strictly below λ. It follows that N is an initial segment of all structures in
the construction; indeed, λ is included in every core we take. Since N has
a largest cardinal, λ is not the critical point of any extender in such a core,
so that RΠ1

1-iterability above λ is enough for comparison. We therefore get
a proper class premouse Mω(N ) with ω Woodin cardinals which is iterable
above λ and has N as a cutpoint. The proof of Corollary 7.18 relativizes so
as to show that A ∈ Mω(N ). But by 2, no level of Mω(N ) projects strictly
below λ, and therefore A ∈ N . �

We can now define our direct limit system. Set

F := {M | M is properly small, 
RΠ1

1-iterable, and full},

and for M,N in F , let

M≺∗ N ⇐⇒ ∃P(M iterates correctly to P and P �∗ N ).

The Dodd-Jensen Lemma implies that if M ≺∗ N , then there is a unique
P �∗ N and a unique fully elementary π : M → P which is the iteration
map given by some play of G∗(M, ω1, ω1) according to the unique winning
strategy for II. (There may be more than one such play giving rise to π.) We
let

πM,N := unique correct iteration map from M to some P �∗ N .

It is clear that F ,≺∗, and the function (M,N ) �→ πM,N are ODL(R).

8.9 Lemma. The relation ≺∗ is transitive; moreover, if M ≺∗ N ≺∗ P,
then πM,P = πN ,P ◦ πM,N .

63 This means that II wins the variant of Wω(N , ω) in which I is constrained to play only
extenders with critical point above On ∩ N .
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Proof. Let T and U be correct trees witnessing that M ≺∗ N and N ≺∗ P
respectively. Let Q be the last model of T . Since Q is a cutpoint in N , we
can re-arrange U as an iteration tree R on N which uses only extenders from
the image of Q, followed by an iteration tree S on the last model MR

α of R
which uses no extenders from iR

0,α(Q). (We leave the details to the reader.)
But then T ⊕R witnesses that M≺∗ P . Moreover, the embedding given by
T ⊕R from M to its last model is just iR

0,α ◦ πM,N . Since iR
0,α = πN ,P �Q by

construction, the embedding given by T ⊕R is πN ,P ◦ πM,N , as desired. �

The Comparison Lemma and fullness imply that ≺∗ is directed. For sup-
pose that M,N ∈ F , and let T and U be the correct trees on M and N
constituting their coiteration. Let P and Q be their respective last models,
and suppose for example that P �∗ Q. (We can always take one more ultra-
power so as to guarantee that �∗, rather than just �, holds between the last
models.) From the Comparison Lemma we get that M-to-P has no drops,
so that M iterates correctly to P . But M is full, so ρω(Q) ≥ On∩P . Now
if N -to-Q drops, then letting κ be the extender used at the last drop, we
have ρω(Q) ≤ κ < On∩P . Thus N -to-Q has no drops, so that N iterates
correctly to Q, and we have M≺∗ Q and N ≺∗ Q.

We wish to show that ≺∗ is countably directed, and for this it is most
convenient to first relate the system (F ,≺∗) to a natural system (F+,≺+)
of iterates of Mω.

8.10 Definition. Let Σ0 be the unique winning strategy for II in the game
G∗(Mω, ω1, ω1 + 1).

We can extend Definition 8.4 from properly small mice to iterates of Mω

in the natural way. In general, let us say that M iterates correctly to Q, or
Q is a correct iterate of M, iff there is a unique winning strategy for II in
G∗(M, ω1, ω1 + 1), and Q is the last model of a countable iteration tree T
on M played according to this strategy such that the branch M-to-Q of T
does not drop.

8.11 Definition. We call an iteration tree on a premouse M which satisfies
“There is a Woodin cardinal” δ0-bounded if it uses only extenders from the
image of JM

δ , where δ is the least Woodin cardinal of M.

Thus a δ0-bounded tree on M is just one which can be interpreted as
a tree on JM

δ , where δ is the least Woodin cardinal of M.

8.12 Definition. We set

F+ = {Q |Mω iterates correctly to Q via a δ0-bounded tree},

and for P ,Q ∈ F+, put

P ≺+ Q ⇐⇒ P iterates correctly via a δ0-bounded tree to Q.

In this case, we let

π+
P,Q := unique iteration map from P to Q.
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The uniqueness of the iteration map from P to Q follows from the Dodd-
Jensen Lemma.

The pair (F+,≺+) is not lightface definable over L(R), since from it we
can define Mω. It does happen to be definable over L(R) from Mω as a
parameter, but this is of no use to us now. The function (P ,Q) �→ π+

P,Q does
not even belong to L(R). One can regard the system (F ,≺∗), with its maps,
as an L(R)-definable approximation to the direct limit system (F+,≺+),
with its maps. We shall spell this out in more detail momentarily, but first
we should verify:

8.13 Lemma. The relation ≺+ is transitive and countably directed; more-
over, if M≺+ N ≺+ Q, then π+

M,Q = π+
N ,Q ◦ π+

M,N .

Proof. Transitivity is obvious because we can compose iterations. (The situ-
ation here is a little simpler than it was with ≺∗.) The commutativity of the
maps is clear.

Let Pi ∈ F+ for all i ∈ ω. Let Q0 = Mω, and given Qi, let Qi+1 be
the last model of the iteration tree Ti on Qi which results from comparing
Qi with Pi, using their unique iteration strategies in both cases. Let Ui be
the tree on Pi in this comparison. Clearly, neither Ti nor Ui drops along
the branch to its last model, so Qi+1 is a correct iterate of both Qi and Pi.
Letting Q be the direct limit of the Qi, we have that for all i, Q is a correct
iterate of Pi. In order to show Pi ≺+ Q for all i, it is enough to show that
all Ti and Ui are δ0-bounded.

Suppose that this is true for all j < i. Now we can regard Mω as an
initial segment of M#

ω , and the latter is ω-sound and has Σ1 projectum ω.
The iteration strategy Σ0 is the restriction to Mω of a winning strategy in
G∗(M#

ω , ω1, ω1 + 1). Thus Pi and Qi are initial segments of Σ0-iterates P∗
i

and Q∗
i of M#

ω , and since the iterations are δ0-bounded, each of P∗
i and

Q∗
i is Σ1-generated by the ordinals below its bottom Woodin cardinal. Now

let T and U be the longest δ0-bounded initial segments of Ti and Ui, let R
and S be their last models, and let R∗ and S∗ be the corresponding iterates
of M#

ω . Then R∗ and S∗ agree below their common value δ for the least
Woodin cardinal (because this least Woodin is a cutpoint in each, and the
last models of Ti and Ui so agree). Moreover, each is Σ1-generated by δ, and
they have a common iterate Q∗

i+1 obtained from the rest of Ti and Ui, which
is above δ. It follows that R∗ = S∗, so that R = S = Qi+1, and Ti and Ui

are δ0-bounded. �

We now relate our two direct limit systems.

8.14 Lemma.

1. Let T be an iteration according to Σ0 of Mω with last model Q, and
suppose that Mω-to-Q does not drop. If η is a successor cardinal of Q
below its bottom Woodin cardinal, then JQ

η is full, and therefore in F .
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2. Let P ∈ F , and let M be a correct iterate of Mω; then there is a
correct iterate Q of M, given by a δ0-bounded iteration tree, such that
P ≺∗ JQ

η for some successor cardinal cutpoint η of Q below its bottom
Woodin cardinal.

3. If P ≺+ Q, and M is a cutpoint of P at some successor cardinal below
its bottom Woodin cardinal, and N = π+

P,Q(M), then M ≺∗ N , and
πM,N = π+

P,Q�M.

Proof. Clause 1 follows easily from Lemma 8.8: suppose that JQ
η iterates

correctly to N , and N �∗ P , where P is ω-small and 
RΠ1

1-iterable above
λ := On∩N . We must show ρω(P) ≥ λ. Now, since η is a successor cardinal
cutpoint of Q, our correct iteration JQ

η -to-N lifts to an iteration Q-to-R
according to Σ0; moreover λ is a successor cardinal cutpoint of R. We can
now compare P and R, and the comparison is above λ since it is a cutpoint
of each. If ρω(P) < λ, then we must have P � R, but this contradicts the
fact that λ is a cardinal of R.

For 2, we simply compare P with M, forming iterations according to the
unique (ω, ω1 +1)-iteration strategy on both sides. Since P is properly small,
it must iterate into an initial segment R of the last model Q on the M side,
with no dropping from P to R. Since P is full, M-to-Q does not drop. Since
R is properly small and full, it must have the form described.

For 3, notice that the iteration from P to Q can be factored so as to give
an iteration from M to N because M is a cutpoint in P . The uniqueness of
the iteration strategies gives the rest. �

8.15 Definition. We let M∞ be the direct limit of (F ,≺∗) under the πM,N ,
and M+

∞ be the direct limit of (F+,≺+) under the π+
M,N , transitively col-

lapsed in each case.

Since ≺+ is countably directed, M+
∞ is wellfounded, so we can regard it

as transitive. But Lemma 8.14 shows that M∞ is an initial segment of M+
∞,

so it too is wellfounded. In fact

8.16 Corollary. Let δ be the least Woodin cardinal of M+
∞, and let κ < δ be

the least cardinal of M+
∞ which is <δ-strong in M+

∞; then M∞ = JM+
∞

κ .

Proof. By Lemma 8.14, the set of all M which are cutpoints of some Q ∈
F+ at a successor cardinal below its bottom Woodin cardinal (and hence
below the least cardinal strong to its bottom Woodin) are cofinal in (F ,≺∗);
moreover, the π+ maps act on these M the same way that the π maps act.
Thus M∞ is the direct limit of all such M under the π+ maps. Clearly,
this direct limit is M+

∞ cut at the sup of all its successor cardinal cutpoints
below δ. That sup is just κ. �

We shall now show that the ordinal height of M∞ is ∼δ
2
1 .
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8.17 Definition. Let M be a premouse, ϕ(v) a Σ1 formula, and x ∈ R.
We call M a (ϕ, x)-witness just in case M has ω Woodin cardinals with
supremum λ, and for some set R

∗ of reals of a symmetric collapse below λ
over M, we have x ∈ R

∗ and Lα(R∗) |= ϕ[x], where α = On∩M.

8.18 Lemma. Let ϕ be Σ1 and x ∈ R. The following are equivalent:

1. L(R) |= ϕ[x],

2. There is an (ω, ω1 + 1)-iterable (ϕ, x)-witness,

3. ∃M ∈ F∃β(JM
β is a (ϕ, x)-witness).

Proof. For 3 =⇒ 2, notice that JM
β is (ω, ω1 +1)-iterable, because M is. For

2 =⇒ 1, we can easily adapt the proofs of Theorems 7.19 and 7.15 to mice of
set size with ω Woodin cardinals. We get, in some generic extension of V , an
iterate of our witness P which has a symmetric collapse of the form Lα(RV )
such that Lα(RV ) |= ϕ[x]. Since ϕ is Σ1, this implies that L(RV ) |= ϕ[x].

We now prove 1 =⇒ 3. Let Q be a correct iterate of Mω such that x is
generic over Q for the extender algebra at its least Woodin cardinal δ. Now
Q is a (ϕ, x)-witness by Theorem 7.19, but it is not an initial segment of any
M∈ F . We must therefore take some Skolem hulls.

Since ϕ is Σ1, we can fix α such that JQ
α is a (ϕ, x)-witness. Let GQ

x be
the generic object on the extender algebra of Q at δ determined by x. (That
is, [ψ] ∈ GQ

x iff x |= ψ.) We then have some p ∈ GQ
x such that

JQ
α |= ∃λ[λ is a limit of Woodins and p � (1 � (L(R∗) |= ϕ[ˇ̇x]))],

where the first forcing is the extender algebra, the second is the symmetric
collapse, and ẋ is the canonical name for the real determined by the extender
algebra generic. This is a Σ1 fact about p and δ, so we may assume that JQ

α

is Σ1-generated by δ ∪ {δ}. (The Σ1 hull of these parameters collapses to an
initial segment of Q by a simple comparison argument. The extender algebra
is definable over JQ

δ , hence contained in the hull, so that GQ
x is still generic

over the collapse of the hull.)
Now, working in Q[x], where δ is still a regular cardinal, we can find

an η and an elementary submodel Y ≺ JQ
η [x] such that δ, α, p, x ∈ Y and

Y ∩ δ ∈ δ. Let N be the transitive collapse of Y , and P be the image of JQ
α

under the collapse. Letting δ̄ = Y ∩ δ, we have that P is iterable, Σ1 projects
to δ̄, and agrees with Q below δ̄. It follows that P is an initial segment of JQ

δ ,
by comparison, and therefore P is an initial segment of some M ∈ F . Since
the property of being a (ϕ, x)-witness is first-order over JQ

η [x], we have that
P is a (ϕ, x)-witness, as desired. �

8.19 Lemma. On∩M∞ = ∼δ
2
1.

Proof. A direct computation shows that On∩M∞ ≤ ∼δ
2
1 . For let α ∈ On∩M∞,

and fix M ∈ F so that πM,∞(ᾱ) = α for some ᾱ. Let G := {P | M iterates
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correctly to P}. Then G ⊆ F , and one can easily check that G is ΔL(R)
1 ({M}).

Also, the relation R is ΔL(R)
1 ({M}), where

R(〈P , β̄〉, 〈Q, γ̄〉)
⇐⇒ (P ,Q ∈ G ∧ β̄ ∈ OnP ∧γ̄ ∈ OnQ ∧πP,∞(β̄) ≤ πQ,∞(γ̄)).

This is because we can check whether R(〈P , β̄〉, 〈Q, γ̄〉) by comparing P with
Q, using their unique ΣL(R)

1 ({P ,Q}) iteration strategies. Since every β < α

is of the form πP,∞(β̄) for some P ∈ G, there is a ΔL(R)
1 ({M}) prewellorder

of Hω1 of order type at least α. Thus α ≤ ∼δ
2
1 .

Now suppose that On∩M∞ < ∼δ
2
1 . Since M∞ can be coded simply by

a subset of On∩M∞, we have by the Coding Lemma [27, Chap. 7] that for
some real z, M∞ is coded by a ΔL(R)

1 ({z}) set of reals. But Lemma 8.18
implies that the universal ΣL(R)

1 set of reals is projective in any set of reals
coding M∞, for we have, for all Σ1 formulae ϕ and reals x:

L(R) |= ϕ[x] ⇐⇒ ∃M∃β∃π(M is a (ϕ, x) witness and π : M→ JM∞
β ).

(The left-to-right direction follows at once from 1 =⇒ 3 of Lemma 8.18, and
the right-to-left direction follows from 2 =⇒ 1 of Lemma 8.18.) This implies
that the universal ΣL(R)

1 set of reals is ΔL(R)
1 ({z}), a contradiction. �

8.20 Theorem. HOD ∩ V
∼δ
2
1

= M∞ ∩ V
∼δ
2
1
.

Proof. We have shown that F ,≺∗, and the function (M,N ) �→ πM,N are
definable over L(R). It follows that M∞ ∈ HOD. It is enough, then, to show
that every bounded subset A of ∼δ

2
1 which is ODL(R) is in M∞. (Note here

that ∼δ
2
1 is strongly inaccessible in HOD, by work of Harvey Friedman and

Moschovakis.) So fix such an A. By the reflection theorem, we can fix a Σ1

formula ϕ(v0, v1) and an ordinal β < ∼δ
2
1 such that A ⊆ β, and for all α < β

α ∈ A ⇐⇒ L(R) |= ϕ[α, β].

Since M∞ = JM+
∞

∼δ
2
1

, and ∼δ
2
1 is a cardinal of M+

∞ by Corollary 8.16, it will

be enough to show that A ∈M+
∞. Let λ be the sup of the Woodin cardinals

of M+
∞. By asking what is true in its own symmetric collapse below λ, M+

∞
will be able to answer membership questions about A. More precisely, let
ϕ̄(u) be the Σ1 formula:

“u ∈ R codes (N , γ, δ) where N ∈ F and ϕ(πN ,∞(γ), πN ,∞(δ))”.

Let η be a successor cardinal of M∞ above β, and for each α < β let τα be
a term for a real in the symmetric collapse below λ over M+

∞ such that for
all generic objects H for this collapse

τH
α codes (JM∞

η , α, β).
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The map α �→ τα, if chosen naturally, is definable over M+
∞ from η and β.

We claim that for all α < β,

α ∈ A ⇐⇒ M+
∞ |= (1 � ϕ̄(τα)L(R∗)).

It clearly suffices to prove this claim.
Fix α < β. By Lemma 8.14, we can find Q ∈ F+ and ordinals η̄, β̄, and

ᾱ in Q such that
π+

Q,∞(〈η̄, β̄, ᾱ〉) = 〈η, β, α〉.
Let τ̄ᾱ be definable over Q from η̄, β̄, and ᾱ the way τα was from η, β, and α
over M+

∞, so that for any H generic over Q for the symmetric collapse below
the sup λ̄ of its Woodin cardinals, τ̄H

ᾱ is a real coding (JQ
η̄ , ᾱ, β̄). We have

α ∈ A ⇐⇒ L(R) |= ϕ[α, β]

⇐⇒ ∀H(H is Col(ω,<λ̄),Q-generic ⇒ L(R∗
H) |= ϕ̄(τ̄H

ᾱ ))

⇐⇒ Q |= (1 � ϕ̄(τ̄ᾱ)L(R∗))

⇐⇒ M+
∞ |= (1 � ϕ̄(τα)L(R∗)).

The second equivalence above follows from the correctness of L(R∗
H) and the

fact that πM,∞(〈ᾱ, β̄〉) = 〈α, β〉, for M = JQ
η̄ ; this is true because the π and

π+ maps agree.
The displayed equivalences contain our claim. This completes the proof.

�

A different proof of Theorem 8.20 is sketched in [41]. One shows that in
L[M∞] there is a tree T on ω×∼δ

2
1 projecting to the universal ΣL(R)

1 set of reals,

and that this tree is enough like the tree of a ΣL(R)
1 scale that, by arguments

of Martin, Becker, and Kechris [4], HOD ∩ V
∼δ
2
1
⊆ L[T ]. The tree T attempts

to verify ϕ(x) by building a (ϕ, x)-witness and embedding it into M∞. In
this version of the proof, the Dodd-Jensen Lemma corresponds nicely to the
lower semi-continuity of a certain semi-scale.

Assuming sufficient determinacy, and given a pointclass Γ which resembles
Π1

1 in a certain technical sense, Moschovakis has defined a submodel of HOD
corresponding to Γ-definability which he calls HΓ. See [27, 8G]. Becker and
Kechris show in [4] that HΓ = L[T ], whenever T is the tree of a Γ-scale on
a universal Γ set. The argument of the last paragraph actually shows that
L[M∞] = HΓ, where Γ = ΣL(R)

1 . The argument generalizes to many other Γ,
with M∞ replaced by a direct limit of mice whose iteration strategies and
degree of correctness match Γ appropriately. This gives

8.21 Theorem. Assume ADL(R), and let Γ be either Π1
n for n odd, or the

pointclass ΣL(R)
1 ; then HΓ is an extender model.

The theorem probably holds for all Γ resembling Π1
1, but this has not been

fully proved.
One immediate consequence of Theorem 8.20 is
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8.22 Corollary. HOD |= GCH .

Proof. By Theorem 8.20, GCH holds in HOD at all α < ∼δ
2
1 . But Woodin [13]

has shown that ∼δ
2
1 is <Θ-strong in HOD, and thus GCH holds in HOD at

all α < Θ. Since HOD = L(P ) for some P ⊆ Θ,64 GCH holds in HOD at
all α. �

We emphasize that HOD = HODL(R) in the statement of Corollary 8.22,
and that ADL(R) is a tacit hypothesis there.65 Whether ADL(R) implies that
GCH holds in HOD was open for some time, and various partial results were
obtained using the methods of “neo-classical” descriptive set theory, such as
games and scales.66 Our proof of Theorem 8.20 is evidence of what inner
model theory can contribute to this mix. One gets not just GCH, of course,
but the other consequences of fine structure theory, such as ♦ and �.

It is natural to ask whether the full HODL(R) is a core model. Building
on the proof of Theorem 8.20, Woodin has shown that this is essentially, but
not literally, the case. We shall state Woodin’s results, although it is beyond
the scope of this chapter to prove them. The first is

8.23 Theorem (Woodin). M+
∞ ⊆ HOD; moreover, the least Woodin cardinal

of M+
∞ is Θ, and VΘ ∩HOD = VΘ ∩M+

∞.

Since the full HOD is of the form L(P ) for some P ⊆ Θ, M+
∞ is not far from

the full HOD. What is missing can be represented in inner-model-theoretic
terms. Let X be the class of all δ0-bounded iteration trees on M+

∞ which
belong to M+

∞ and are satisfied to have cardinality strictly less than the sup of
the Woodin cardinals in M+

∞. There is a unique iteration strategy for M+
∞; let

us call it Σ.67 Let Σ∗ := {(T , α) | T ∈ X and T is according to Σ and lh(T )
is a limit ordinal, and α ∈ Σ(T )}. We then have

8.24 Theorem (Woodin). HOD = M+
∞[Σ∗].

Woodin has obtained results on HODM for M a model of AD larger
than L(R); for example, the Mouse Set Conjecture implies that HODM �ΘM

0 is
an extender model. (Here Θ0 is the supremum of the lengths of prewellorders
of R which are ordinal definable from a real. If V = L(R), then Θ0 = Θ.)
Woodin has also obtained an analysis of the full HODM analogous to that in

64 This is another result of Woodin; P is a version of the Vopenka algebra which can add
R to HOD.
65 The proof we have given used a bit more, namely, that M#

ω exists and is (ω, ω1 + 1)-

iterable in V Col(ω,R). The proof can be made to work under the weaker hypothesis ADL(R),
however. The key is to prove the existence of mouse-witnesses, as stated in Lemma 8.18,

assuming only ADL(R). This is a result of Woodin. The method behind the original proof
is described in [13]; there is another proof using the core model induction method.
66 For example, Becker [3] showed that GCH holds in HOD at all α < ωV

1 .
67 Granted ω Woodins plus a measurable above in V , Σ0 prolongs uniquely to trees in

V Col(ω,R).
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Theorem 8.24. See [13, §8] for something on these results, on local forms of
Theorem 8.24, and on open questions in the area.

We conclude with some applications of these results on HOD.

8.25 Lemma. Let κ < Θ and suppose that HOD |= κ is regular; then exactly
one of the following holds:

1. HOD |= κ is measurable,

2. cfL(R)(κ) = ω.

Proof. Let Q ∈ F+ and κ̄ ∈ Q be such that π+
Q,∞(κ̄) = κ. Thus Q |=

κ̄ is regular.
Suppose first that κ̄ is not measurable in Q. Now since π+

Q,∞ is essentially
an iteration map, it is continuous at all regular, non-measurable cardinals
of Q. (In V Col(ω,R) we can find a ≺+-increasing ω sequence starting with
Q and cofinal in ≺+. The map π+

Q,∞ is just the iteration map coming from
composing iteration trees witnessing the ≺+ relations along this sequence. So
π+

Q,∞ is an iteration map in V Col(ω,R), which is good enough.) In particular,
π+

Q,∞“κ̄ is cofinal in κ. Since κ̄ is below the least Woodin cardinal of Q
by Theorem 8.23, and hence countable, cfV (κ) = ω. But clearly, V and
L(R) have the same ω-sequences of ordinals < μ, whenever μ < Θ. Thus
cfL(R)(κ) = ω. Note also that we have in this case that κ is not measurable
in HOD.

Suppose next that κ̄ is measurable in Q. It is clear then that κ is measur-
able in HOD, and we need only show that cfV (κ) > ω. Let X be a countable
subset of κ. By the countable directedness of ≺+, we can find an R ∈ F+

such that Q ≺+ R and X ⊆ dom(π+
R,∞). Let κ̌ = π+

Q,R(κ̄), and let S be the
ultrapower of R by some normal measure on κ̌. Then R ≺+ S, and it is easy
to see that X ⊆ π+

S,∞(κ̌) < κ, so that X is bounded in κ, as desired. �

We remark that the restriction of Lemma 8.25 to ordinals κ < ∼δ
2
1 requires

only Theorem 8.20, rather than the full Theorem 8.23.
It follows from Lemma 8.25 that all successor cardinals of HOD below Θ

have cofinality ω in L(R), or equivalently, V . This is also true if we replace
HOD by HODx, the sets hereditarily ordinal definable over L(R) from x, for
x a real. This is because our results relativize routinely to arbitrary reals x;
we simply extend the notion of mouse by requiring that x be put in J �E

0 (x).
The relativization of our dichotomy Lemma 8.25 gives the following result,
known as the “boldface GCH” for L(R).

8.26 Theorem. Assume AD and V = L(R); then for any κ < Θ, every
wellordered family of subsets of κ has cardinality at most κ.

Proof. If not, we have some A ⊆ κ+ which codes up a sequence of κ+ distinct
subsets of κ. Since V = L(R), we can find a real x such that A ∈ HODx.
We have just observed that (κ+)HODx < κ+, by the relativization of our
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dichotomy Lemma 8.25 to x. But then A witnesses that GCH fails in HODx,
contrary to the relativized version of Corollary 8.22. �

Although we have quoted Corollary 8.22 in our proof of Theorem 8.26, we
really only need Theorem 8.20. This is because “the boldface GCH fails at κ”
is a ΣL(R)

1 assertion about κ. Since L
∼δ
2
1
(R) is a Σ1 elementary substructure

of L(R), if the boldface GCH fails at some κ, it fails at some κ < ∼δ
2
1 . But we

can use Theorem 8.20 in the proof of Theorem 8.26 to see that this is not the
case.

Finally, if κ < Θ is regular in L(R), then by our dichotomy result, κ is
measurable in HOD, and in fact, κ is measurable in HODx for all reals x.
We can put the order zero measures on κ from the various HODx together,
and we obtain:

8.27 Theorem. Assume AD and V = L(R); then for any regular κ < Θ,
the ω-closed unbounded filter on κ is a κ-complete, normal ultrafilter on κ.
Thus all regular cardinals below Θ are measurable.

Proof. For any real x, let μx be the order zero measure on κ of HODx, that
is, the unique measure giving the set of measurable cardinals measure zero.
There is such a measure by Lemma 8.25; it is unique because HODx is a core
model. It will be enough to show that there is an ω-closed, unbounded set C
which generates μx, in the sense that for all A ⊆ κ such that A ∈ HODx,

A ∈ μx =⇒ ∃α < κ(C \ α ⊆ A).

For this implies that the union over x of the μx is just the ω-closed unbounded
filter on κ. Since every A ⊆ κ is in some HODx, this union is an ultrafilter.
Since every f : κ→ κ is in some HODx, that ultrafilter is normal, and hence
κ-complete.

We now construct the desired generating set for μx. Let us assume x = 0,
so that we can use our earlier notation for the direct limit system giving
HODx = HOD; the general case is only notationally different. Fix Q ∈ F+

such that κ ∈ ran(π+
Q,∞). Let

C := {α | cf(α) = ω and HullM
+

∞ (α ∪ ran(π+
Q,∞)) ∩ κ ⊆ α},

where the hull in question is the “uncollapsed” set of all points definable over
M+

∞ from parameters in ran(π+
Q,∞) and ordinals < α. Clearly, C is ω-closed

and unbounded in κ. To see that C works, fix A ∈ μx = μ0.
For any S such that Q ≺+ S, let

κ(S) := unique ν ∈ S such that π+
S,∞(ν) = κ.

Fix R such that Q ≺+ R and A ∈ ran(π+
R,∞), and for S such that R ≺+ S

put
A(S) := unique B ∈ S such that π+

S,∞(B) = A.
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We shall show that

C \ sup(ran(π+
R,∞) ∩ κ) ⊆ A,

which will then finish the proof.
We need the following general fact about iterated ultrapower construc-

tions.

1 Claim. If g ∈ R and g : [κ(R)]<ω → κ(R), then there is a function f ∈ Q
such that g = π+

Q,R(f)(b) for some finite b ⊆ κ(R).

Proof. Let T be an iteration tree on Q with last model R. One can show
by an easy induction that if R∗ is on the branch of T leading to R, then the
claim holds with R∗ replacing R. �

Because our mice do not reach superstrong cardinals, we also have

2 Claim. If M is a premouse, E is on the M-sequence, crit(E) = κ, and
i : M → Ult0(M, E) is the canonical embedding, then i(κ) = sup{i(f)(κ) |
f : κ→ κ ∧ f ∈M}.

Proof. Let λ be the sup in question. Clearly, λ ≤ i(κ), so suppose that
λ < i(κ) toward contradiction. Let ν = ν(E).

Suppose that ν ≤ λ. Let a ⊆ ν and g be such that λ = i(g)(a). Let h be
such that a ⊆ i(h)(κ). Now define f : κ→ κ by

f(α) := sup{g(u) | u ∈ [h(α)]|a|}.

Then clearly, λ ≤ i(f)(κ), a contradiction. Therefore λ < ν.
Arguing as in the last paragraph, we get that i(g)(a) < λ for all finite a ⊆ λ

and g : [κ]|a| → κ. This means that λ = j(κ), where j : M→ Ult0(M, E�λ)
is the canonical embedding. But the initial segment condition on premice
implies that the trivial completion E∗ of E�λ is on the sequence of some
premouse. Since iE∗ (κ) < lh(E∗), we do not allow such “long extenders” in
a fine extender sequence, so this is a contradiction. �

Now fix any α ∈ C \ sup(ran(π+
R,∞) ∩ κ). Fix any B∗ ∈ F+ such that

α ∈ ran(π+
B ∗,∞), and let T be the ω-maximal iteration tree on R which

results from the coiteration of B∗ with R, using Σ0 on both sides, and let B
be the last model of T . Since neither side drops, B ∈ F+ and α ∈ ran(π+

B,∞);
say

α = π+
B,∞(ᾱ).

It will be enough to show that ᾱ ∈ A(B).
Let us look closely at the tree T leading from R to B. We use Mξ, Eξ,

and iξ,γ for the models, extenders, and embeddings of T . Let B = Mη. Now
i0,η(κ(R)) = κ(B) > ᾱ, so we can set

ξ := least ν ∈ [0, η]T such that i0,ν(κ(R)) > ᾱ.
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Note here that κ(R) ≤ ᾱ, so that ξ > 0; this is because if γ < κ(R), then
π+

R,∞(γ) < α, so π+
R,B(γ) < ᾱ, so γ < ᾱ.

Let (ν+1)T ξ; we claim that lh(Eν) < ᾱ. For letting β = predT (ν+1), we
have crit(Eν) = crit(iβ,ξ) because T is ω-maximal, and crit(iβ,ξ) ≤ κ(Mβ) by
the minimality of ξ. But then lh(Eν) < i0,ν+1(κ(R)) ≤ ᾱ by the minimality
of ξ.

It follows that ξ is a successor ordinal, for otherwise, since ᾱ < i0,ξ(κ(R)),
we would get that ᾱ = i0,ξ(g)(a) for some a ⊆ crit(iξ,η) ∩ ᾱ finite and g :
[κ(R)]|a| → κ(R). (We get a ⊆ crit(iξ,η) because T is ω-maximal, and a ⊆ ᾱ
from the preceding paragraph and the assumption that ξ is a limit ordinal.)
But by our first claim, we have g = π+

Q,R(f)(b) for some f ∈ Q and b ⊆ κ(R).
We then have that

iξ,η(ᾱ) = iξ,η(i0,ξ(g)(a)) = i0,η(g)(a) = π+
Q,B(f)(π+

R,B(b))(a).

Since ᾱ ≤ iξ,η(ᾱ), we can apply π+
B,∞ to the identity above and obtain

α ≤ π+
Q,∞(f)(π+

R,∞(b))(π+
B,∞(a)).

Now π+
R,∞(b) ⊆ α because we chose α as large as we did, and π+

B,∞(a) ⊆ α
because a ⊆ ᾱ. Thus the ordinal named on the right side of the line just
displayed witnesses that α �∈ C. This is a contradiction, and hence ξ is
a successor ordinal.

Let ξ = γ + 1, E = Eγ , and β = predT (ξ). If ν(E) ≤ ᾱ, then we get
the same contradiction we got in the last paragraph, so we have ν(E) > ᾱ.
By the minimality of ξ, crit(E) ≤ κ(Mβ). We claim that crit(E) = ᾱ.
This is true because otherwise Claim 2 gives some h : κ(Mβ) → κ(Mβ)
such that ᾱ < iβ,ξ(h)(c), where c = {crit(E)} ⊆ ᾱ. One can then proceed
to a contradiction as in the last paragraph: represent h as i0,β(g)(d) where
d ⊆ crit(E), so that ᾱ = i0,ξ(g)(a), where a := c ∪ d ⊆ crit(iξ,η) ∩ ᾱ. Then
let f, b be such that π+

Q,R(f) = g and b ⊆ κ(R), etc.
Since κ(Mβ) ≤ ᾱ by the minimality of ξ, we have κ(Mβ) =

crit(E) = ᾱ. Now ᾱ cannot be measurable in Mξ = Ult(Mβ , E), since
then α = π+

B,∞(ᾱ) = π+
B,∞(iξ,η(ᾱ)) is measurable in HOD. Since cf(α) = ω,

our dichotomy Lemma 8.25 rules this out. It follows that E is the order zero
measure on κ(Mγ), and since using the order zero measure cannot move
generators, that β = γ. We have then that A(Mβ) ∈ Ea, for a = {κ(Mβ)},
so ᾱ = κ(Mβ) ∈ A(Mξ), so ᾱ ∈ A(B), so α ∈ A, as desired. �

We remark that, once again, the negation of Theorem 8.27 is a Σ1 state-
ment about L(R) by the Coding Lemma, so that if Theorem 8.27 fails, it fails
below ∼δ

2
1 . Therefore, we really needed only Theorem 8.20 for its proof. It is

also worth noting that Theorems 8.26 and 8.27 make no mention of mice, or
even HOD, in their statements.
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1. Introduction

The subject of this chapter is core model theory at a level where it involves
iteration trees. Our toolbox includes a list of fundamental theorems that set
theorists can use off the shelf in applications; see Sect. 3. It also contains a
catalog of applications of this sort of core model theory; see Sect. 5. The odd
sections have no proofs and are basically independent of the even sections.
For those interested in the nuts and bolts of core model theory, we offer a
guide to the monograph The Core Model Iterability Problem [42] by John
Steel in Sect. 2. We also provide an outline of the paper The covering lemma
up to a Woodin cardinal by William Mitchell, Steel and the author [21] in
Sect. 4.

What developed into the theory of core models began in earnest with
theorems of Ronald Jensen L under the hypothesis that 0# does not exist.
Jensen showed that if 0# does not exist, then L is the canonical core model,
which is written K = L. He also showed that if 0# exists but 0## does not
exist, then K = L[0#] is the canonical core model. In general, KV is the
canonical core model (if there is one) whereas W is a core model if W = KM

where M is a transitive class model of ZFC. Unfortunately, we must ask the
reader to pay close attention to articles in the sense of grammar.

Whether or not it is possible to give a definition of K that allows us
to make sense of KM for all M is unknown. Up until recently, for those
M for which KM has been defined, KM has turned out to be an extender
model. Backing up slightly, recall that the existence of 0# is equivalent to the
existence of an ordinal κ and an ultrafilter F over ℘(κ)∩L that gives rise to
a non-trivial elementary embedding from L to itself. Large cardinal axioms
such as the existence of 0# can all be phrased in terms of the existence of
filters or systems of filters. Some of these systems are known as extenders.
A model is a transitive set or proper class transitive model of ZFC. Extender
models are models of the form JE

Ω where Ω ≤ On, E is a sequence of length
Ω and Eα is an extender for each α < Ω.1

Statements asserting that certain models with large cardinals do not exist
are called anti-large cardinal hypotheses. Instead of making this precise, we
list the four examples most relevant to our introduction.

• 0# does not exist.

• There is no proper class model with a measurable cardinal.

• There is no proper class model with a measurable cardinal κ with
Mitchell order o(κ) = κ++.

• There is no proper class model with a Woodin cardinal.
1 Is every core model an extender model? Since we do not know how to define K in the
abstract, it is impossible to answer this question. There are models that are not extender
models that most likely will be accepted as core models but these are beyond the scope of
this introduction.
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For the last three examples, it would be equivalent to replace “model” by
“extender model” although this is not obvious.

Much of core model theory deals with generalizations of Jensen’s theorems
about L. The core model theorist adopts an anti-large cardinal hypothesis,
possibly for the sake of obtaining a contradiction. Then he defines K and
shows that K has many of the same useful properties that L has if 0# does
not exist. With some exceptions, these properties fall into the following
categories.

• Fine structure with the consequence, for example, that GCH and com-
binatorial principles such as ♦ and � hold in K.

• Universality with the consequence, for example, that the existence of
certain extender models is absolute to K.

• Maximality with the consequence, for example, that certain large car-
dinal properties of κ are downward absolute to K.

• Definability in a way that makes K absolute to set forcing extensions.

• Covering with the consequence, for example, that K computes succes-
sors of singular cardinals correctly.

Often, such properties of K are used in elaborate proofs by contradiction.
In order to prove that a principle P implies the existence of a model with
large cardinal C, one may assume that there is no model of C and use P to
show that one of the basic properties of K fails. When this accomplished, it
follows that the large cardinal consistency strength of P is at least C.

Dodd and Jensen developed the theory of K under the anti-large cardinal
hypothesis that there is no proper class model with a measurable cardinal.
Mitchell did this under the hypothesis that there is no proper class model with
a measurable cardinal κ of order κ++. Steel did this under the hypothesis
that there is no proper class model with a Woodin cardinal except that he
added a technical hypothesis, which we discuss momentarily.

It is important to emphasize that we do not know how to define K with-
out an anti-large cardinal hypothesis. We do not refer to the Dodd-Jensen,
Mitchell or Steel core model without the corresponding anti-large cardinal
hypothesis. It is also important to know that the various definitions of K
are consistent with each other. For example, if there is no transitive class
model with a measurable cardinal, then the Dodd-Jensen, Mitchell and Steel
definitions of K coincide. Quite reasonably, if 0# does not exist, then K = L
under all three definitions.

For all but the last section of this paper we assume:

Anti-Large Cardinal Hypothesis. There is no proper class model with a
Woodin cardinal.
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From what we said about the core model theories predating Steel’s, the
reader might expect that we could go straight into a discussion of K. But
it is not known if the theory of K can be developed under this anti-large
cardinal hypothesis alone. Following Steel, we add:

Technical Hypothesis. Ω is a measurable cardinal and U is a normal mea-
sure over Ω.

This means that U is a non-principal Ω-complete normal ultrafilter on ℘(Ω).
Except in the last section, we also assume this Technical Hypothesis through-
out this paper. Of course, by adding the Technical Hypothesis to ZFC we
obtain a stronger theory. But, in this setting, it is not much stronger as
measurable cardinals are much weaker than Woodin cardinals.2

The author thanks Paul Larson, Itay Neeman, Ralf Schindler, John Steel,
Stuart Zoble and the anonymous referee for their help.

2. Basic Theory of K

2.1. Second-Order Definition of K

All of the results and proofs in Sects. 2.1 and 2.2 are due to Steel and come
from [42]. But we only assume that the reader is familiar with [41] through
the theory of countably certified construction.3 Recall from [41, §6] that a
countably certified construction is a sequence of premice 〈Nα | α ≤ Ω〉 where
either

Nα+1 = rud(C(Nα))

or
Nα+1 = rud(C(Nα)�〈F 〉),

where the second option (adding an extender) is permitted if

C(Nα)�〈F 〉

is a countably certified mouse. When β is a limit ordinal, we define

Nβ = lim inf〈Nα | α < β〉.

The gist of [41, §6] as it applies to us is that the following statements hold
for all γ ≤ Ω.
2 In the Fall of 2007, Jensen and Steel found a way around the Technical Hypothesis.
Their new idea does not supersede the core model theory described in this chapter; rather,
it is an additional layer on top of what we are about to present.
3 Countably certified constructions are called Kc-constructions in [41]. There, Kc-
constructions are studied in generality before a particular maximal Kc-construction

〈Nα | α ≤ Ω〉

is fixed, at which point Kc is defined to be NΩ. The terminology here is slightly different
in this respect, and so is the definition of Kc.
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1. Nγ is a 1-small premouse. In other words, no initial segment of Nγ

has the first-order properties of a sharp for an inner model with one
Woodin cardinal.

2. If P is a countable premouse that embeds into Nγ , then P is ω1 + 1
iterable.

3. Let α < γ. Suppose that κ ≤ ρ
Nβ
ω for all β such that α < β < γ. Then

Nα and Nγ agree below (κ+)Nα .

The proof of clause 1 uses our Anti-Large Cardinal Hypothesis. Countable
certificates are used in the proof of clause 2. Clause 3 implies that NΩ has
height Ω. Another important fact that we revisit in this paper is Theo-
rem 6.19 of [41], which implies that if 〈Nα | α ≤ Ω〉 is a maximal countably
certified construction, then NΩ computes κ+ correctly for U almost all κ < Ω.
In this context, maximal means that at all successor stages of the construc-
tion, if it is possible to add an extender, then we do.

To define Kc, we consider a kind of countably certified construction that
is not maximal but still computes the successors of U almost all cardinals
correctly. The new condition is that we add an extender to form

Nα+1 = rud(C(Nα)�〈F 〉)

whenever it is permitted so long as

crit(F ) is an inaccessible cardinal

and, if
(crit(F )+)C(Nα) = crit(F )+

then

{κ < crit(F ) | κ is an inaccessible cardinal and (κ+)C(Nα) = κ+}

is stationary in crit(F ). For the rest of this section, fix such a countably
certified construction and let Kc = NΩ.

2.1 Definition. A weasel is an (ω,Ω + 1) iterable premouse of height Ω.

This is slightly different from the notation in [42] where weasels are not
required to be iterable at all.4 The meaning of (ω,Ω + 1) iterable is given
by Definition 4.4 of [41]. It says that there is a strategy for picking cofinal
branches at limit stages that avoids illfounded models at all stages when
building almost normal iteration trees. These are iteration trees obtained as
follows.

• Build a normal iteration tree T0 of length ≤ Ω + 1.
4 Following the convention on premice versus mice, a structure with the first-order prop-
erties of a weasel should have been called a preweasel.
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• If Tn has successor length θn +1 < Ω+1, then build a normal iteration
tree Tn on an initial segment of MTn

θn
.

• If Tn is defined for all n < ω, then form the concatenation

T0
�T1

� · · ·�Tn
� · · · .

In particular, the unique cofinal branch of the infinite concatenation may
have only finitely many drops and its corresponding direct limit must be
wellfounded. The original raison d’être for almost normal iteration trees is
the Dodd-Jensen Lemma, Theorem 4.8 of [41]. The reader must forgive us
for not saying whether we mean normal or almost normal when we write
iteration tree in this basic account except at key places when the difference
is most pronounced.

By the next theorem, the only way to iterate a weasel is to pick the unique
cofinal wellfounded branch through an iteration tree of limit length < Ω.

2.2 Theorem. Let P be a premouse with no Woodin cardinals. Suppose that
T is an iteration tree of limit length on P. Assume that

δ(T ) < On ∩ P .

Then T has at most one cofinal wellfounded branch.

Sketch. Let θ = lh(T ). Recall from Definition 6.9 of [41] that

δ(T ) = sup({lh(ET
η ) | η < θ})

and M(T ) is the unique passive mouse of height δ(T ) that agrees with MT
η

below lh(ET
η ) for all η < θ. Our Anti-Large Cardinal Hypothesis implies that

δ(T ) is not a Woodin cardinal in L[M(T )]. Let Q(M(T )) be the premouse
R of minimum height such that

M(T ) � R " L[M(T )]

and δ(T ) is not a Woodin cardinal in rud(R). By Theorem 6.10 of [41], there
is at most one cofinal branch b of T with the property that

Q(M(T )) � wfp(MT
b ).5

Our assumptions about P and T imply that if b is a cofinal wellfounded
branch of T , then

Q(M(T )) � MT
b .

�
5 We define M T

b to be the Mostowski collapse of the direct limit of M T
η for η ∈ b even if

this direct limit is illfounded. By wfp(M T
b ) we mean the wellfounded part of M T

b . In this

case, the wellfounded part and the transitive part are the same because M T
b is its own

Mostowski collapse.
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2.3 Theorem. Kc is a weasel.

Sketch. We already know that Kc is a premouse of height Ω. It remains to
see that Kc is (ω,Ω + 1) iterable. Here we show that it is Ω iterable. Our
strategy is to pick the unique cofinal wellfounded branch through iteration
trees of length < Ω and to use the fact that Ω is measurable to find a branch
through iteration trees of length Ω.

First suppose that T is an iteration tree on Kc of length θ < Ω. Recalling
that H(λ) denotes the collection of sets hereditarily of cardinality < λ, let

π : N → H(Ω+)

be an elementary embedding with N countable and transitive. Say π(P) =
Kc and π(S) = T . By Theorem 6.16 of [41], P has an ω1 + 1 iteration
strategy. Then S is consistent with this strategy because there is only one
strategy: by Theorem 2.2, [0, η)S is the unique cofinal wellfounded branch of
S�η whenever η is a limit ordinal < lh(S).

Assume that θ = η + 1 and F is an extender from the MT
η sequence such

that lh(F ) > lh(ET
ζ ) for all ζ ≤ η. We claim that

Ult(M∗
ζ+1, F )

is wellfounded where ζ ≤ η is least so that crit(F ) < ν(ET
ζ ), M∗

ζ+1 is the
maximal level ofMT

ζ that is measured by F , and the degree of the ultrapower
is as large as possible. Otherwise, there exists such an F and a witness to
illfoundedness in the range of π, so the corresponding extension of S using
π−1(F ) is also illfounded. This contradicts that P is lh(S) + 1 iterable.

Now assume that θ is a limit ordinal < Ω. Let b be the unique cofinal
wellfounded branch of S. We know that b is the unique cofinal branch of S
with the property that

Q(M(S)) � wfp(MS
b ).

By our Technical Hypothesis,

Q(M(T )) " LΩ[M(T )].

Therefore,
Q(M(S)) = π−1(Q(M(T ))) ∈ N.

Let κ < π−1(Ω) be a regular cardinal of N greater than the cardinality of
Q(M(S)) in N . For example, we may simply take

κ = (|δ(S)|+)N .

Let S∗ be S construed as an iteration tree on J P
κ and G be an N -generic

filter over Col(ω, κ).6 Then S∗ and Q(M(S)) = Q(M(S∗)) are hereditarily
6 We recall that Col (ω, κ) is the collapsing poset consisting of the finite partial functions
from ω to κ.
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countable in N [G]. Moreover, in N [G], there is a set Z and a subtree U of
<ωZ whose infinite branches correspond to picking an ordinal η < π−1(θ)
and a level Q "MS ∗

η , then, in infinitely many steps, picking a cofinal branch
c of S∗ and simultaneously defining an isomorphism

f : Q(M(S))  iS ∗

η,c(Q).

By being slightly more precise about the definition of U , we guarantee that
U has a unique branch, namely the one determined by b and the least ordinal
η ∈ b such that

Q(M(S)) ∈ ran(iη,b).

By the absoluteness of wellfoundedness, b ∈ N [G]. Then b ∈ N by the
uniqueness of b and the homogeneity of the poset Col(ω, κ). The fact that
b is a cofinal wellfounded branch of S is absolute to N . Therefore, π(b) is a
cofinal wellfounded branch of T .

Finally, suppose that T is an iteration tree on Kc of length Ω. Let

b = [0,Ω)j(T )

where j is the ultrapower map corresponding to U . There is an elementary
embedding from MT

b to Mj(T )
Ω . Since Mj(T )

Ω is wellfounded, so is MT
b . �

2.4 Theorem. {κ < Ω | (κ+)Kc

= κ+} ∈ U .

Sketch. Let V ′ = Ult(V, U) and j : V → V ′ be the ultrapower embedding.
Then for all A ⊆ ℘(Ω), if |A| ≤ Ω, then j�A ∈ V ′. Assume for contradiction
that

(Ω+)j(Kc) < Ω+.

Let F be the extender of length j(Ω) derived from j�j(Kc). Then F ∈ V ′

and F is countably certified in V ′. Now an elaborate induction similar to the
proof of Theorem 6.18 of [41] shows that for all ν < j(Ω), either the trivial
completion of F �ν is on the j(Kc) sequence, or something close enough that
still implies

F �ν ∈ j(Kc).

We could add F itself to j(Kc) to get a model with a superstrong cardinal
but it is enough to note that the initial segments of F witness that Ω is a
Shelah cardinal in j(Kc) for a contradiction. �

2.5 Definition. Let

A1 = {κ < Ω | κ is an inaccessible cardinal and (κ+)Kc

= κ+}

and
A0 = {λ ∈ A1 | A1 ∩ λ is not stationary in λ}.
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2.6 Theorem. The following hold.

(1) A0 �∈ U .

(2) A0 is stationary.

(3) If λ ∈ A0, then there are no total-on-Kc extenders on the Kc sequence
with critical point λ.

Sketch. From Theorem 2.4 it follows that A1 ∈ U . Suppose for contradiction
that A0 ∈ U . Then Ω ∈ j(A0). So j(A0) ∩ Ω is not stationary in Ω. But
A0 = j(A0)∩Ω. Thus A0 is not stationary in Ω. Since U is normal, A0 �∈ U ,
which is a contradiction.

Suppose for contradiction that A0 is not stationary. Then there exists a
C club in Ω such that for all λ < Ω, if λ ∈ A1 ∩C, then A1 ∩ λ is stationary
in λ. Let λ be the least element of A1 ∩ lim(C). Then C ∩ λ is club in λ
and λ is an inaccessible cardinal, so lim(C) ∩ λ is club in λ. Since A1 ∩ λ is
stationary in λ, there exists a κ < λ such that κ ∈ A1 ∩ lim(C), which is a
contradiction.

Let λ ∈ A0. For all sufficiently large α < Ω,

(λ+)Nα = (λ+)Kc

and Nα and Kc agree below their common λ+. For such α,

(λ+)C(Nα) = (λ+)Nα

and C(Nα) and Nα agree below their common λ+. Therefore,

(λ+)C(Nα) = λ+

and
{κ < λ | κ is an inaccessible cardinal and (κ+)C(Nα) = κ+}

is not stationary in λ. By the definition of Kc, we cannot add an extender
with critical point λ to C(Nα) in forming Nα+1. It follows that if λ+ < ξ < Ω,
then crit(EKc

ξ ) �= λ. Thus there are no total-on-Kc extenders on the Kc

sequence with critical point λ. �

Next we discuss some basic facts about coiteration. Suppose that (P ,Q)
is a pair of mice. Let (S, T ) be the coiteration of (P ,Q) determined by their
respective iteration strategies. Say η + 1 = lh(S) and θ + 1 = lh(T ). By
Theorem 3.11 of [41], there are two possibly overlapping cases.

1. P ≤∗ Q. That is, [0, η]S does not drop in model or degree and

MS
η � MT

θ .

2. P ≥∗ Q. That is, [0, θ]T does not drop in model or degree and

MS
η � MT

θ .
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Moreover, by the proof of Theorem 3.11 of [41],

η, θ < max(|P|, |Q|)+.

We continue the discussion above but assume instead that P and Q both
have height ≤ Ω and are Ω+1 iterable. Using the fact that Ω is inaccessible,
we can modify the proof of Theorem 3.11 of [41] to show that the coiteration
of (P ,Q) is successful. Moreover, with the same notation as above, η, θ ≤ Ω
and, if

max(η, θ) = Ω,

then at least one of the following holds.

1. P ≤∗ Q, P is a weasel and iS
0,η“Ω ⊆ Ω.

2. P ≥∗ Q, Q is a weasel and iT
0,θ“Ω ⊆ Ω.

We leave it to the reader to fill in these details.

2.7 Definition. A weasel Q is universal iff P ≤∗ Q for all Ω + 1 iterable
premice P of height ≤ Ω.

By the next theorem, Kc is a universal weasel.

2.8 Theorem. If Q is a weasel and {κ < Ω | (κ+)Q = κ+} is stationary,
then Q is universal.

Sketch. Otherwise, there is an Ω + 1 iterable mouse P of height ≤ Ω such
that not P ≤∗ Q. Therefore, P ≥∗ Q and, with notation as in our discussion
on coiteration, η = Ω. Moreover, for some ξ ∈ [0,Ω]S and κ < Ω,

iS
ξ,Ω(κ) = Ω.

Then the set
{λ ∈ (ξ,Ω)S | iS

ξ,λ(κ) = λ}
is club. Let us assume for simplicity that θ = Ω. Then also

{λ ∈ (0,Ω)T | iT
0,λ“λ ⊆ λ}

is club because iT
0,Ω“Ω ⊆ Ω. Let λ be a regular cardinal in both these clubs

with
(λ+)Q = λ+.

Then
iT
0,λ(λ) = sup(iT

0,λ“λ) = λ

so
iT
0,λ(λ+) = λ+

and
(λ+)MT

λ = λ+.



2. Basic Theory of K 1695

On the other hand,

(λ+)MS
λ = iS

ξ,λ((κ+)MS
ξ ) = sup(iS

ξ,λ“(κ+)MS
ξ ) < λ+.

Because iS
λ,Ω has critical point λ and iT

λ,Ω has critical point ≥ λ,

(λ+)MS
Ω = (λ+)MS

λ < (λ+)MT
λ = (λ+)MT

Ω .

This contradicts that MT
Ω � MS

Ω. �

We are leading up to the definitions of the definability and hull proper-
ties for weasels. Historically, these derive from familiar properties of mice
that have gone unnamed. Before dealing with weasels, we digress to discuss
the analogous properties of mice as motivation. The fundamental intuition
from fine-structure theory of mice is that cores and ultrapowers are inverse
operations. Let us give an illustrative example. Suppose that Q is a 1-sound
mouse, E = Ḟ Q and

ρQ
1 ≤ crit(E) = κ < On ∩ Q.

Let
i : Q → R = Ult(Q, E)

be the ultrapower map. Then i is a Σ1-elementary embedding and cofinal in
the sense that

On ∩R = sup(i“(On ∩ Q)).

Moreover, ρR
1 = ρQ

1 and pR
1 = i(pQ

1 ). By the definition of 1-soundness,

Q = HullQ
1 (ρQ

1 ∪ pQ
1 ).

By definition, HullQ
1 (X) has elements τ Q[c] where τ is a Σ1-Skolem term and

c ∈ X<ω. Therefore,
ran(i) = HullR

1 (ρR
1 ∪ pR

1 ).

The moral is that by deriving an extender from the inverse of the Mostowski
collapse of this hull, we recover E. We abstract two key notions from this
example. Observe that κ is the least ordinal α such that

α �∈ HullR
1 (α ∪ pR

1 ).

This says that κ is the least ordinal α ≥ ρR
1 such that R fails to have a

certain definability property at α. Observe also that

℘(κ) ∩R ⊆ the Mostowski collapse of HullR
1 (κ ∪ pR

1 ).

This says that R has a certain hull property at κ. The combination of the
two observations above is the minimum required to derive an extender over
R with critical point κ from the inverse of the Mostowski collapse of

HullR
1 (κ ∪ pR

1 ).
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Of course, Q has the definability and hull properties at all α ≥ ρQ
1 since we

assumed that Q is 1-sound. We could go on to show that for all α ≥ ρR
1 , R

fails to have the definability property at α iff α is a generator of E. And that
R has the hull property at α iff α ≤ κ or α ≥ ν(E) where

ν(E) = sup({(κ+)Q} ∪ {ξ + 1 | ξ is a generator of E}).

Taking our discussion to the next level, suppose instead that Q is a weasel.
This is fundamentally different because

ρQ
1 = On ∩ Q = Ω.

Nevertheless, it is important to find an analogous way of undoing iterations
of Q. What we need are versions of the definability and hull properties that
are appropriate for weasels. And we need a way to take hulls in Kc that
produces weasels with these properties.

2.9 Definition. Let Q be a weasel and Γ ⊆ Q. Then Γ is thick in Q iff
there is a club C in Ω such that for all λ ∈ A0 ∩ C,

1. (λ+)Q = λ+,

2. λ is not the critical point of a total-on-Q extender on the Q sequence,
and

3. there is a λ-club in Γ ∩ λ+.

2.10 Definition. Q is a thick weasel iff Ω is thick in Q.

The reader will not find the expression thick weasel in the literature but
the concept needed a name so we picked one. Clearly Kc is a thick weasel.
The next three results are useful closure properties of thick sets.

2.11 Theorem. Let Q be a thick weasel. Then

{Γ ⊆ Q | Γ is thick in Q}

is an Ω-complete filter.

2.12 Theorem. Suppose that π : P → Q is an elementary embedding and
ran(π) is thick in Q. Let

Φ = {α < Ω | π(α) = α}.

Then Φ is thick in both P and Q.

2.13 Theorem. Let T be an iteration tree on a thick weasel Q with

lh(T ) = θ + 1 ≤ Ω + 1.

Assume that there is no dropping along [0, θ]T and iT
0,θ“Ω ⊆ Ω. Let

Φ = {α < Ω | iT
0,θ(α) = α}.

Then Φ is thick in both Q and MT
θ .
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The proofs of the previous three theorems are reasonable exercises for the
reader. The θ = Ω case of the Theorem 2.13 is why we used A0 instead of A1.

2.14 Definition. A thick weasel Q has the definability property at α iff

α ∈ HullQ(α ∪ Γ)

whenever Γ is thick in Q.

By definition, the elements of HullQ(X) are those of the form τ Q[c] where
τ is a Skolem term and c ∈ X<ω. Equivalently, a ∈ HullQ(X) iff {a} is
first-order definable over Q with parameters from X.

2.15 Definition. A thick weasel Q has the hull property at α iff

℘(α) ∩ Q ⊆ the Mostowski collapse of HullQ(α ∪ Γ)

whenever Γ is thick in Q.

2.16 Theorem. Let β < Ω and Q be a thick weasel with the definability and
hull properties for all α < β. Suppose that T is an iteration tree on Q with

lh(T ) = θ + 1 ≤ Ω + 1.

Assume that there is no dropping along [0, θ]T and iT
0,θ“Ω ⊆ Ω. Then the

following hold for all α < β.

(1) MT
θ does not have the definability property at α iff there exists an

η + 1 ∈ [0, θ]T

such that α is a generator of ET
η .

(2) MT
θ does not have the hull property at α iff there exists an η+1 ∈ [0, θ]T

such that
(crit(ET

η )+)MT
θ ≤ α < ν(ET

η ).

Sketch. For simplicity, we deal only with the case of a single ultrapower. In
other words, θ = 2. Let E = ET

0 and consider the following diagram.

Q

i

j
Ult(Q, E)

Ult(Q, E�α)

k

Then crit(k) = α iff α is a generator of E. Let Φ = {ξ < Ω | j(ξ) = ξ}.
Then Φ is thick in all three models. Of course, j(ξ) = ξ implies k(ξ) = ξ and
i(ξ) = ξ.
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First we prove the if direction of (1). Assume that α is a generator of E.
Equivalently, that α = crit(k). Suppose for contradiction that Ult(Q, E)
has the definability property at α. Then there is a Skolem term τ and a
parameter c ∈ (α ∪ Φ)<ω such that

α = τUlt(Q,E)[c] = k(τUlt(Q,E�α)[c] ).

This is a contradiction since α �∈ ran(k).
Second we prove the if direction of (2). Assume that

(crit(E)+)Q ≤ α < ν(E).

The main point is that
E�α ∈ Ult(Q, E)

whereas
E�α �∈ Ult(Q, E�α).

We know this because E is on the Q sequence, which is a good extender
sequence. Since

(crit(E)+)Q ≤ α,

it is possible to code E�α by A ⊆ α with A ∈ Ult(Q, E). Suppose for
contradiction that Ult(Q, E) has the hull property at α. Then there is a
Skolem term τ and a parameter c ∈ (α ∪ Φ)<ω such that

A = τUlt(Q,E)[c] ∩ α.

Since crit(k) ≥ α,

A = τUlt(Q,E�α)[c] ∩ α ∈ Ult(Q, E�α),

so
E�α ∈ Ult(Q, E�α),

which is a contradiction.
Notice that the two if directions did not use the hypothesis that Q has the

definability and hull properties at all ordinals < β. These are used for the
two only if directions, which we leave to the reader. �

The next theorem explains how the definability property and hull property
are related, and its proof is a good example of how they are used.

2.17 Theorem. For all β < Ω, if Q has the definability property at all
α < β, then Q has the hull property at β.

Sketch. By induction, we may assume that Q has the definability and hull
properties at all α < β. Suppose that Γ is thick in Q. Let

π : P  HullQ(β ∪ Γ)
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be the inverse of the Mostowski collapse. We must show that

℘(β) ∩ P = ℘(β) ∩ Q.

If Δ is thick in P , then {ξ ∈ Δ | π(ξ) = ξ} is thick in Q. From this it follows
that P has the definability and hull properties at all α < β. Let (S, T ) be
the coiteration of (P ,Q). Both P and Q are universal, so

MS
η = MT

θ

where η +1 = lh(S) and θ+1 = lh(T ). Moreover, there is no dropping along
[0, η]S and [0, θ]T . It is enough to see that

crit(iS
0,η), crit(iT

0,θ) ≥ β.

For contradiction, suppose that

crit(iS
0,η) < β.

Apply Theorem 2.16 to S to see that crit(iS
0,η) is equal to the least α such that

MS
η does not have the definability property at α. And apply Theorem 2.16

to T to see that
crit(iS

0,η) = crit(iT
0,θ).

Call this ordinal α and let

α∗ = min(iS
0,η(α), iT

0,θ(α)).

As α < β, Q has the hull property at α, so

℘(α) ∩ P = ℘(α) ∩ Q.

Next we use the fact that

Φ = {ξ < Ω | iS
0,η(ξ) = ξ = iT

0,θ(ξ)}

is thick in both P and Q to show that if X ⊆ α with X ∈ P , then

iS
0,η(X) ∩ α∗ = iT

0,θ(X) ∩ α∗.

First note that α ⊆ Φ. Then, given X ⊆ α with X ∈ P , choose a Skolem
term τ and c ∈ Φ<ω such that

X = τ P [c] ∩ α.

Let
Y = τ Q[c] ∩ α.
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Then

iS
0,η(X) ∩ α∗ = iS

0,η(τ P [c] ∩ α) ∩ α∗

= τ MS
η [c] ∩ α∗

= τ MT
θ [c] ∩ α∗

= iT
0,θ(τ

Q[c] ∩ α) ∩ α∗

= iT
0,θ(Y ) ∩ α∗.

Also
X = iS

0,η(X) ∩ α = iT
0,θ(Y ) ∩ α = Y.

We have seen that the first extenders used along [0, η]S and [0, θ]T are com-
parable, which is impossible in a coiteration. (E.g., see the subclaim in the
proof of Theorem 3.11 of [41].)

The same contradiction is obtained similarly by assuming that

crit(iT
0,θ) < β.

�

2.18 Definition. Let P be a mouse of height < Ω. Then P is A0-sound iff
there exists a thick weasel P∗ such that P " P∗ and P∗ has the definability
property at all α ∈ On ∩ P .

The point of isolating A0-sound mice is that they line up as the next
theorem shows.

2.19 Theorem. Let P and Q be A0-sound mice. Then P � Q or P � Q.

Sketch. Let P∗ and Q∗ be A0-soundness witnesses for P and Q respectively.
Let (S, T ) be the coiteration of (P∗,Q∗). Then

MS
η = MT

θ

where η+1 = lh(S) and θ+1 = lh(T ), and there is no dropping along [0, η]S
and [0, θ]T . It is enough to see that

crit(iS
0,η), crit(iT

0,θ) ≥ min(On ∩ P ,On ∩ Q).

This is done by contradiction exactly as in the proof of Theorem 2.17 using
the hull property and definability property of P∗ and Q∗ at all

α < min(On ∩ P ,On ∩ Q).

�
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2.20 Definition. K is the union of all the A0-sound mice.

By Theorem 2.19, K is a premouse. But it is not immediate that K has
height Ω.

2.21 Definition. Let Q be a thick weasel. Then

Def(Q) =
⋂
{HullQ(Γ) | Γ is thick in Q}

The plan for proving that K is a weasel is as follows. First we show that
K is the Mostowski collapse of Def(Kc). Then we establish that Kc has the
hull and definability properties at U -almost all α < Ω. The last step is to
show that Def(Kc) is unbounded in Ω. The realization of this plan stretches
over several theorems.

2.22 Theorem. Let P and Q be thick weasels. Then Def(P)  Def(Q).

Sketch. Let (S, T ) be the coiteration of (P ,Q). Then

MS
η = MT

θ

where η+1 = lh(S) and θ+1 = lh(T ), and there is no dropping along [0, η]S
and [0, θ]T . It is enough to see that

iS
0,η“Def(P) = Def(MS

0,η)

and
iT
0,θ“Def(Q) = Def(MT

0,θ).

This is an easy exercise using the basic properties of thick sets. �

2.23 Theorem. K  Def(Kc).

Sketch. Let
π : K ′  Def(Kc)

be the inverse of the Mostowski collapse. We must show that K ′ = K.
First let P "K and P∗ be a witness that P is A0-sound. Since P∗ has the

definability property at all α < On ∩ P ,

P ⊆ Def(P∗).

But Def(Kc)  Def(P∗)  K ′ by Theorem 2.22. Therefore P " K ′.
Now let P "K ′. Let θ = sup(π“(On∩P)). For each α ∈ θ−Def(Kc), pick

an A0-thick set Γα such that

α �∈ HullK
c

(Γα).

Let
Δ =

⋂
{Γα | α ∈ θ −Def(Kc)}

and Q be the Mostowski collapse of HullK
c

(Δ). It is an easy exercise to see
that Q witnesses that P is A0-sound. Therefore P " K. �
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By Theorems 2.22 and 2.23, K  Def(P) whenever P is a thick weasel.

2.24 Theorem. Let Q be a thick weasel. Then there exists a C club in
Ω such that Q has the hull property at α for all inaccessible α ∈ C. In
particular,

{α < Ω | Q has the hull property at α} ∈ U.

Sketch. By recursion, define a continuous decreasing sequence

〈Xα | α < Ω〉

of thick elementary substructures of Q and an increasing sequence

〈λα | α < Ω〉

of cardinals of Q. For all α < Ω, let πα : Pα  Xα be the inverse of the
Mostowski collapse and πα(κα) = λα. Arrange the construction so that
〈κα | α ≤ β〉 is an initial segment of the infinite cardinals of Pβ for all β < Ω.
Also arrange that for all α < β < Ω,

πα�(κα + 1) = πβ�(κα + 1)

and Pβ has the hull property at all κ ≤ κα.
Start the construction with κ0 = λ0 = ω, X0 = Q and π0 = id�Q. If

β is a limit ordinal, then Xβ =
⋂

α<β Xα and this determines Pβ , πβ , κβ

and λβ by what we said above. The successor step is more complicated. If
A ∈ ℘(κα) ∩ Pα and there exists a Γ thick in Pα such that

A �∈ Mostowski collapse of HullPα(κα ∪ Γ),

then pick such a Γ and call it ΓA. Then let

Γα =
⋂

({Pα} ∪ {ΓA | A ∈ ℘(κα) ∩ Pα and ΓA is defined})

and
Xα+1 = HullPα((κα + 1) ∪ Γα).

This determines Pα+1, πα+1, κα+1 and λα+1 by what we said at the start.

2.25 Lemma. If γ is a limit ordinal, then Pγ = Pγ+1.

Sketch. Suppose not. Then ΓA is defined for some A ∈ ℘(κγ) ∩ Pγ . Let PA

be the Mostowski collapse of

HullPγ (κγ ∪ ΓA).

and (S, T ) be the coiteration of (PA,Pγ). Then MS
η = MT

θ where η + 1 =
lh(S) and θ + 1 = lh(T ), and there is no dropping along [0, η]S and [0, θ]T .

Suppose that crit(iT
0,θ) ≥ κγ . Then

A ∈ ℘(κγ) ∩ Pγ = ℘(κγ) ∩MT
θ = ℘(κγ) ∩MS

η ⊆ ℘(κγ) ∩ PA
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since all the extenders used on S have length at least κγ . But A �∈ PA,
contradiction!

Therefore, crit(iT
0,θ) < κγ . Let β < γ be such that

κβ = crit(iT
0,θ).

Then β is equal to the least ordinal α < γ such that MT
θ does not have the

hull property at κα+1. This is not precisely what Theorem 2.16 says about
T but the proof shows it. Applying a similar modification of Theorem 2.16
to S shows that κβ = crit(iS

0,η). Finally, use the hull property at κβ in
both PA and Pγ to see that the first extenders used on [0, η]S and [0, θ]T are
compatible. This leads to a standard contradiction. �

2.26 Lemma. Let X =
⋂
{Xα | α < Ω}. Then X is thick in Q.

Sketch. For each α < Ω, pick Cα club in Ω witnessing that Xα is thick in Q.
Let C be the diagonal intersection of 〈Cα | α < Ω〉. We show that C witnesses
that X is thick in Q. Let β ∈ A0 ∩ C. Clearly (β+)Q = β+ and β is not the
critical point of a total-on-Q extender on the Q sequence. For each α < β,
there exists a β-club Dα ⊆ Xα ∩ β+. Let D =

⋂
{Dα | α < β}. Then D is a

β-club subset of
⋂

α<βXα ∩ β+ = Xβ ∩ β+ = Xβ+1 ∩ β+ = X ∩ β+.

The first equation holds by the definition of Xβ . The second holds by
Lemma 2.25. The third holds because β ≤ λβ , β+ ≤ λβ+1 and

Xβ+1 ∩ (λβ+1 + 1) = X ∩ (λβ+1 + 1).

In fact, by taking β closed under α �→ λα we get that β = κβ = λβ and
β+ = κβ+1 = λβ+1. �

2.27 Lemma. Let P be the Mostowski collapse of X. Then P has the hull
property at all α < Ω.

Sketch. Lemma 2.26 implies that P is a thick weasel. By construction, 〈κα |
α < Ω〉 lists the infinite cardinals of P in increasing order and P has the hull
property at κα for all α < Ω. �

Let (S, T ) be the coiteration of (P ,Q). Consider the case in which S and
T both have length Ω + 1, the other cases being similar. Then MS

Ω = MT
Ω

and there is no dropping along [0,Ω]S and [0,Ω]T . Let C be the set of limit
ordinals

θ ∈ [0,Ω]S ∩ [0,Ω]T

such that θ is the supremum of

{lh(ES
η ) | η < θ} ∪ {lh(ET

η ) | η < θ}.
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Then C is club in Ω. Consider an arbitrary θ ∈ C. Then MS
θ has the hull

property at θ and, since
crit(iS

θ,Ω) ≥ θ,

MS
Ω has the hull property at θ. The fact that crit(iT

θ,Ω) ≥ θ can be used to see
thatMT

θ has the hull property at θ. Now assume that θ is inaccessible. Then
iT
0,θ(θ) = θ. To finish the proof of the theorem, we show that Q has the hull

property at θ. Suppose A ∈ ℘(θ) ∩ Q and Γ is thick in Q. Let B = iT
0,θ(A).

Then B ∈ ℘(θ) ∩MT
θ so there is a Skolem term τ and parameters c ∈ θ<ω

and d ∈ Γ<ω such that d = iT
0,θ(d) and

B = τ MT
θ [c, d] ∩ θ.

By minimizing c in this equation we find b ∈ θ<ω such that c = iT
0,θ(b). Thus

A = τ Q[b, d] ∩ θ.

�

We have used the Technical Hypothesis that Ω is measurable twice already.
First, to see that the set of α such that (α+)Kc

= α+ is stationary in Ω.
Second, to show that Kc is (ω,Ω+1) iterable starting from the fact that if P
is countable and elementarily embeds into Kc, then P is (ω, ω1 + 1) iterable.
The third and final use of the Technical Hypothesis comes in the proof of the
following theorem.

2.28 Theorem. {α < Ω | Kc has the definability property at α} ∈ U .

Sketch. Suppose not. Let

D = {α < Ω | Kc does not have the definability property at α}.

Then D ∈ U . For each α ∈ D, pick a thick Γα such that

α �∈ HullK
c

(α ∪ Γα).

We may assume Γβ ⊆ Γα whenever α < β are elements of D. We write
Γ = 〈Γα | α ∈ D〉. Form the iteration

V
j

V ′
k

V ′ ′

with V ′ = Ult(V, U), U ′ = j(U) and V ′ ′ = Ult(V ′, U ′). We will use the
general fact that

j ◦ j = k ◦ j.

This equation holds because

j([α �→ x]VU ) = [α �→ j(x)]V
′

U ′ .
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Let W = Kc, W ′ = j(W ) and W ′ ′ = k(W ′). By what we just said, W ′ ′ =
j(W ′). Consider the inverse of the Mostowski collapse

π : P  HullW
′
(Ω ∪ Γ′

Ω)

where Γ′
α = j(Γ)α. Also let Γ′ ′

α = k(Γ′)α. Then Γ′ ′
α = j(Γ′)α. Since W ′ does

not have the definability property at Ω, crit(π) = Ω. By Theorem 2.24,

(W ′ has the hull property at Ω)V ′
,

so
℘(Ω) ∩ P = ℘(Ω) ∩W ′.

Let Ω′ = j(Ω). Note that π(Ω) < Ω′ because Γ′
Ω is unbounded in Ω′. Let F

be the extender of length π(Ω) derived from π. We claim that

π(A) = j(A) ∩ π(Ω)

for all A ∈ ℘(Ω)∩W ′. From the claim, it follows that F is countably certified
in V ′, which can be used to show that F witnesses that Ω is a superstrong
cardinal in W ′. To prove the claim, pick a Skolem term τ and parameters
c ∈ Ω<ω and d ∈ (Γ′

Ω)<ω such that A = τW ′
[c, d] ∩ Ω. Then

j(A) = τW ′ ′
[c, j(d)] ∩ Ω′

and
j(d) ∈ (Γ′ ′

Ω′ )<ω ⊆ (Γ′ ′
Ω)<ω

because Γ′ ′ is a descending sequence and Ω′ > Ω. In particular,

τW ′ ′
[c, j(d)] ∈ HullW

′ ′
(Ω ∪ Γ′ ′

Ω)

and
A = τW ′ ′

[c, j(d)] ∩ Ω.

By elementarity,
k(π) : k(P)  HullW

′ ′
(Ω ∪ Γ′ ′

Ω).

Finally, since crit(k) = Ω′ > π(Ω) and A ⊆ Ω,

π(A) = k (π (A)) = k(π)(k(A)) = k(π)(A)

= k(π)(τW ′ ′
[c, j(d)] ∩ Ω)

= τW ′ ′
[c, j(d)] ∩ k(π(Ω))

= j(A) ∩ π(Ω).

�

2.29 Theorem. K is a weasel.

Proof. Consider the following recursive construction. Let Γ0 = Ω. Assuming
that Γα has been defined, if
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HullK
c

(Γα) = Def(Kc),

then stop the construction. Otherwise, let

γα = min(HullK
c

(Γα)−Def(Kc))

and pick Γα+1 ⊆ Γα so that

γα �∈ HullK
c

(Γα+1).

If β is a limit ordinal, then let

Γβ =
⋂
{Γα | α < β}.

Suppose for contradiction that Def(Kc) is bounded in Ω. Then γα and Γα

are defined for all α < Ω. And there exists an α < Ω such that

Def(Kc) ∩ Ω ⊆ γα.

By Theorem 2.28, there exists a δ ∈ (γα,Ω) such that

δ = sup({γβ | β < δ}) ≤ γδ

and Kc has the definability property at δ. This implies that there exist an
ordinal β ∈ (α, δ), parameters c ∈ (γβ)<ω and d ∈ (Γδ+1)<ω, and a Skolem
term τ such that δ = τKc

[c, d]. Then c is a witness to the sentence:

There exists a b ∈ (γβ)<ω such that γβ < τKc

[b, d] < γδ+1.

Since γβ and γδ+1 are elements of HullK
c

(Γβ) we may pick a witness b to
this sentence with

b ∈ HullK
c

(Γβ).

By the minimality of γβ and the fact that b ∈ (γβ)<ω,

b ∈ Def(Kc).

Hence
τKc

[b, d] ∈ HullK
c

(Γδ+1).

By the choice of γα and the fact that γα < γβ < τKc

[b, d],

τKc

[b, d] �∈ Def(Kc).

By the minimality of γδ+1,

τKc

[b, d] ≥ γδ+1.

But
τKc

[b, d] < γδ+1,

which is a contradiction. �
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At the corresponding point in [42], Steel goes on to prove that

{α < Ω | (α+)K = α+} ∈ U.

(Cf., Theorem 3.1 below.) The calculations involve combinatorics similar to
the proof of Theorem 2.29 but we omit them here. From this and Theo-
rem 2.8, it follows that K is universal. Also at this point, Steel shows that
K is absolute under forcing in H(Ω). (Cf., Theorem 3.4 below.) The proof
involves abstracting the properties of A0 in the arguments we have given so
far.

2.2. First-Order Definition of K

Now we head in a slightly different direction. Notice that the definition of K
we have given is second-order over H(Ω). Moreover, there is no obvious sense
in which the definition works locally. For example, it is not immediate from
what we have said so far that K∩HC is less complex than K.7 Our next goal
is to find an equivalent first-order definition of K that gives meaningful local
bounds on complexity. For example, K ∩ HC turns out to be Σ1 definable
over Lω1(R). (Cf., Theorem 3.5.) By results of Woodin, this is the best
possible upper bound on the complexity of K ∩ HC. The ideas that go into
the first-order definition of K are central to the proof of the weak covering
theorem in Sect. 4.

Before launching into the details, let us motivate what is to come. It is
not hard to see that all universal weasels have the same subsets of ω, namely
those in

JK
(ω1)K =

⋃
{Q | Q is a sound mouse and ρQ

ω = 1}.

Nor is it hard to see that all universal weasels have the same subsets of (ω1)K ,
namely those in

JK
(ω2)K =

⋃
{Q | Q is a sound mouse with ρQ

ω = (ω1)K and JK
(ω1)K "Q}.

This points to a simultaneous definition of what it means for α to be a
cardinal of K on one hand, and JK

(α+)K on the other, by induction on α < Ω.
However, the general pattern is more complicated than we have indicated; it
has to be by Woodin’s result on the complexity of K ∩ HC. Instead, Steel
wove together three definitions,

• α is a cardinal of K,

7 By definition, HC = H(ℵ1). The reader should be attentive here to the difference
between

JK
(ω1)K = HCK

and
JK
(ω1)V = K ∩ HC.
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• Q is an α-strong mouse, and

• JK
(α+)K

by induction on α < Ω, where α-strong is a natural strengthening of iterable.
In the end, if α is a cardinal of K, then

JK
(α+)K =

⋃
{Q | Q is a sound α-strong mouse with ωρQ

ω = α and JK
α "Q}.

The simpler pattern that leaves out α-strong holds for α less than the least
measurable cardinal of K, as the reader familiar with the core model theory
of Dodd and Jensen would expect. A remarkable fact due to Ralf Schindler
is that the simpler pattern holds again if α ≥ ℵ2. See Theorem 3.6.

Let us make the convention that if P is a mouse and T is an iteration tree
on P , then we have equipped P with an (ω,Ω+1) iteration strategy ΣP and
T is consistent with ΣP . Unless, of course, we specify otherwise. This will
save us some writing and make the main points clearer.

2.30 Definition. Suppose that Q is a premouse and α ≤ On ∩ Q ≤ Ω. Let
P = JQ

α . Then Q is α-strong iff

1. P is A0-sound (i.e., P " K) and

2. for each witness P∗ that P is A0-sound, there exist

(a) an iteration tree T on P∗ of successor length θ + 1 ≤ Ω + 1 such
that ν(ET

η ) ≥ α for all η < θ,

(b) R � MT
θ and

(c) an elementary embedding π : Q → R with π�α = id�α.

Definition 2.30 does not have the features advertised before in that it is
not first-order over H(Ω) and it is not a natural strengthening of iterability.
But there is a satisfactory equivalent formulation that we get to somewhat
later. However, the following connection between K and α-strong tells us
that we are on the right track.

2.31 Theorem. Let α be a cardinal of K and Q be a sound premouse that
agrees with K below α. Assume that ρQ

ω = α. Then

Q " K ⇐⇒ Q is α-strong.

The proof of this and the following closely related basic result are left as
reasonable exercises for the reader.

2.32 Theorem. Let α be a cardinal of K and P = JK
α . Suppose that P∗ is

a witness that P is A0-sound. Let β = (α+)K . Then

(1) β = (α+)P ∗
,
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(2) P∗ and K agree below β and

(3) P∗ is α-strong.

Theorem 2.31 tells us how to formulate a recursive definition of K in terms
of α-strong mice. But the definition of α-strong involves quantification over
weasels that witness A0-soundness, hence over subsets of H(Ω), so we are no
better off than we started in terms of complexity. The first-order formulation
we have in mind involves a generalization of the notion of an iteration tree
on a mouse to an iteration tree on a phalanx, which is defined below. Such
iteration trees also generalize the double-rooted iteration trees that appear in
the proofs of condensation, Theorem 5.1 of [41], and solidity, Theorem 5.3 of
[41], the difference being that we allow an arbitrary number of roots. (These
condensation and solidity theorems originally appeared in [20] where double-
rooted iteration trees are called pseudo-iteration trees.)

2.33 Definition. Suppose that �λ = 〈λα | α < γ〉 is an increasing sequence
of ordinals, and �Q = 〈Qα | α ≤ γ〉 is a sequence of mice. Then ( �Q, �λ) is a
phalanx of length γ + 1 iff Qα and Qβ agree below λα whenever α < β ≤ γ.

As an example, observe that if S is an iteration tree of successor length,
then

(〈MS
α | α < lh(S)〉, 〈lh(ES

α ) | α < lh(S)− 1〉)

is a phalanx of length lh(S). Notice that in passing from S to this phalanx
we retain the models and record the relevant amount of agreement between
the models but we lose all information about how the models were created
and the tree order. Of course, not every phalanx comes from an iteration
tree in this way.

2.34 Definition. Let ( �Q, �λ) be a phalanx of length γ +1 and θ ≥ γ +1. An
iteration tree T of length θ on ( �Q, �λ) consists of

• a tree structure <T on θ for which each ordinal ≤ γ is a root,

• the corresponding root operation rootT : θ → γ + 1,

• the corresponding predecessor operation predT that maps successor or-
dinals in the interval [γ + 1, θ) to ordinals ≤ θ,

• premice MT
η for η < θ,

• extenders ET
η whenever γ < η + 1 < θ,

• a set of successor ordinals DT ⊆ [γ + 1, θ),

• a commutative system of embeddings

iT
ζ,η : MT

ζ →MT
η
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indexed by ζ <T η for which

(ζ, η]T ∩DT = ∅

and

• an operation degT : [γ + 1, θ) → ω + 1

with the following properties.

• If α ≤ γ, then MT
α = Qα and λT

α = λα.

• If γ < η + 1 < θ, then ET
η is an extender from the MT

η sequence,
predT (η + 1) is the least ζ ≤ η such that

crit(ET
η ) < λT

ζ ,

and
MT

η+1 = Ult(N , ET
η )

where N is the greatest initial segment of MT
predT (η+1)

such that ET
η

is an extender over N . And

η + 1 ∈ DT ⇐⇒ N �= MT
predT (η+1).

The degree of this ultrapower is degT (η+1), and this degree equals the
largest n ≤ ω such that

ρN
n > crit(ET

η )

If η + 1 �∈ DT , then

iT
predT (η+1),η+1 : MT

predT (η+1) →MT
η+1

is the ultrapower embedding. And

λT
η = lh(ET

η ).

• If γ < η < θ and η is a limit ordinal, then

[rootT (η), η)T

is a cofinal branch of T �η. Moreover,

DT ∩ [rootT (η), η)T

is finite and MT
η is the direct limit of the models MT

ζ under the em-
beddings

iT
ι,ζ : MT

ι →MT
ζ

for ι, ζ ∈ [rootT (η), η)T −max(DT ) with ι <T ζ. In addition,

degT (η) = lim inf
ζ<T η

degT (ζ).
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Just like with iteration trees on a single mouse, in the literature one sees
the ultrapower embedding N →MT

η+1 above denoted

i∗
η+1 : M∗

η+1 →Mη+1.

Adding a superscript T leads to admittedly unattractive notation but we do
not break with tradition.

We remark that in most cases of interest, the degree is non-increasing
between drops in model so the lim inf ends up being the eventual value. The
phrase drop in degree has the obvious meaning.

The notion of an iteration strategy generalizes in the obvious way to pha-
lanxes. An iteration strategy picks cofinal branches at limit stages and is
responsible for wellfoundedness in both successor and limit stages. When we
speak of an iteration tree on an iterable phalanx, the reader should assume
that the iteration tree is compatible with a fixed iteration strategy on the
phalanx.

The following theorem is the key step towards a recursive definition of
α-strong. We write <β-strong to mean α-strong for all α < β.

2.35 Theorem. Suppose that α is a cardinal of K and Q is a premouse of
height ≤ Ω that agrees with K below α. Then the following are equivalent.

(1) Q is α-strong.

(2) For all <α-strong premice P,

(〈P ,Q〉, 〈α〉)

is an Ω + 1 iterable phalanx.

Proof. That (2) implies (1) is an immediate consequence of Theorem 2.32(3)
and the following result.

2.36 Lemma. Suppose that α is a cardinal of K and P = JK
α . Let P∗ be a

witness that P is A0-sound and Q be a premouse of height ≤ Ω. Suppose that
(〈P∗,Q〉, 〈α〉) is an Ω + 1 iterable phalanx. Then clause 2 of Definition 2.30
holds for Q and P∗.

Sketch. Let (S, T ) be the coiteration of the pair

((〈P∗,Q〉, 〈α〉),P∗).

We have not discussed this sort of coiteration before but it is defined in
the natural way, using comparison of extender sequences to decide which
extenders to apply at successor stages. The proof of the comparison, Theo-
rem 3.11 of [41], generalizes to show that this coiteration is successful, which
means that either MS

1+η � MT
θ or vice-versa where 1 + η + 1 = lh(S) and

θ + 1 = lh(T ). And that 1 + η, θ ≤ Ω.



1712 Schimmerling / A Core Model Toolbox and Guide

2.37 Claim. rootS(1 + η) = 1.

Sketch. For contradiction, suppose that rootS(1 + η) = 0. As in the proof
of universality Theorem 2.8, the fact that P∗ computes κ+ correctly for
stationary many κ < Ω can be used to see that

MS
1+η = MT

θ

and there is no dropping along [0, 1+η]S and [0, θ]T . We have the embeddings

iS
0,1+η : P∗ →MS

1+η

and
iT
0,θ : P∗ →MT

1+η

with
crit(iS

0,1+η) < α.

Theorems 2.13 and 2.16 generalize to iteration trees on phalanxes. Thus
using the fact that P∗ has the definability and hull properties at all ordinals
< α, we see that iS

0,1+η and iT
0,θ have the same critical point and move subsets

of their critical point the same way. In other words, the first extenders used
along [0, 1 + η]S and [0, θ]T agree, which leads to a contradiction as in the
proof of comparison, Theorem 3.11 of [41]. �

Again as in the proof of Theorem 2.8,

MS
1+η � MT

θ

and there is no dropping along [1, 1 + η]S . So we have the embedding

iS
1,1+η : Q →MS

1+η

with crit(iS
1,1+η) ≥ α. Since Q and P∗ agree below α, lh(ET

ζ ) ≥ α for all
ζ < θ. Since α is a cardinal of K, it is a cardinal of P∗. This can be used
to see that ν(ET

ζ ) ≥ α for all ζ < θ. Thus iS
1,1+η and T witness that Q is

α-strong relative to P∗ as desired. �

We have seen that (2) implies (1). Let β be a cardinal of K. We show that
(1) for β implies (2) for β. Suppose that Q is a β-strong premouse and P
is a <β-strong premouse. We must show that (〈P ,Q〉, 〈β〉) is Ω + 1 iterable.
By the proof of Theorem 2.29, there exist a witness W that JK

β is A0-sound
and an elementary embedding

σ : W → Kc.

We do not have a lower bound on the critical point of σ, nor is it relevant.
By Definition 2.30, for each α ≤ β, we have an iteration tree Tα of length
θα + 1 ≤ Ω + 1 on W such that ν(F Tα

η ) ≥ α for all η < θα,

Rα � MTα

θα
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and an elementary embedding πα with πα�α = id�α. If α < β, then

πα : P → Rα

whereas
πβ : Q → Rβ .

Use σ to copy each Tα to an iteration tree σTα on Kc and let

τα : Rα → Sα

be the restriction of the final copying map to Rα. Then

(τα ◦ πα)�α = τα�α = σ�α

for all α ≤ β.
We wish to construe

(〈Sα | α ≤ β〉, 〈σ(α) | α < β〉)

as a phalanx. Formally, for this we let 〈αη | η ≤ θ〉 enumerate the cardinals
of K up to and including β and set

F = (〈Sαη | η ≤ θ〉, 〈σ(αη) | η < θ〉).

Then F is a phalanx. There are two basic elements to the remainder of the
proof. Notice that all the models of F are obtained by iterating Kc. We
call such phalanxes Kc based. Steel proved that all Kc based phalanxes are
Ω + 1 iterable. The reader is referred to [42, §6] for the proof, which builds
on Steel’s proof that Kc is (ω,Ω + 1) iterable. The second idea is that the
sequence of embeddings

ψη = ταη ◦ παη

for η ≤ θ can be used to pull back an iteration strategy on F to an iteration
strategy on (〈P ,Q〉, 〈β〉). For this we use a generalization of the copying
construction in Sect. 4.1 of [41]. The generalization is routine except for a
few technical details. The main wrinkle comes in the case β = (α+)K when
we apply the shift lemma to an ultrapower of P by an extender with critical
point α. The difficulty is that ψθ−1 = τα ◦ πα and ψθ = τβ ◦ πβ agree to α in
this case whereas agreement to β would be needed to quote Lemma 4.2 of [41].
Nevertheless, a version of the shift lemma still goes through. We refer the
reader to [42, pp. 49–50] for the details. This type of copying construction
is used repeatedly in the proof of the weak covering property in Sect. 4. �

We are about to arrive at the much promised definition of K that is first-
order over H(Ω). Clause b of Theorem 2.35 quantifies over weasels so there
is still something to do.

2.38 Definition. If T is an iteration tree of length θ, then T is called bad if
it is a losing position for player II in the iteration game. In other words,
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1. if θ = η + 1, then there is an extender F on the MT
η sequence such

that lh(F ) > lh(ET
ζ ) for all ζ < η but if ζ ≤ η is least such that

crit(F ) ≥ ν(ET
ζ ) and N is the greatest initial segment of MT

ζ over
which F is an extender, then Ult(N , F ) is illfounded where the degree
of the ultrapower is as large as possible, and

2. if θ is a limit ordinal, then all cofinal branches of T have infinitely many
drops in model or are illfounded.

Because of our Technical Hypothesis, Ω + 1 iterability is equivalent to Ω
iterability. In light of our Anti-Large Cardinal Hypothesis, there are many
cases in which Ω + 1 iterability reduces further to the non-existence of a
countable bad tree. For example, the proof of Theorem 2.3 can be extended
to show that if a premouse P of height Ω is not Ω + 1 iterable, then there is
a countable bad tree on P . We give another useful example.

2.39 Definition. A premouse P is defined to be properly small iff P has no
Woodin cardinals and P has a largest cardinal.

Notice that if P is a weasel and μ < Ω, then J P
(μ+)P is properly small.

It is also easy to see that the properly small levels of K that project to α
are unbounded in (α+)K . If each premouse of a phalanx is properly small,
then the Ω + 1 iterability of the phalanx reduces to the non-existence of a
countable bad tree on the phalanx. Arguing along these lines we obtain the
following characterization.

2.40 Theorem. Suppose that α is a cardinal of K and Q is a properly small
premouse of height < Ω that agrees with K below α. Then the following are
equivalent.

(1) Q is not α-strong.

(2) There is a properly small <α-strong premouse P with the same cardi-
nality as Q and a countable bad iteration tree on the phalanx

(〈P ,Q〉, 〈α〉).

Sketch. Suppose that Q is not α-strong. Then there exist a weasel P∗ that
witnesses JK

α is A0-sound and a bad iteration tree on

(〈P∗,Q〉, 〈α〉).

The same bad iteration tree can be construed as a bad iteration tree, call
it U , on

(〈P∗ ∗,Q〉, 〈α〉)

for some properly small P∗ ∗ " P∗. Let Y ≺ H(Ω) with U ∈ Y such that
Y has the same cardinality as Q. Let τ : N  Y with N transitive. Then
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τ −1(Q) = Q. Let P = τ −1(P∗ ∗). Then P is <α-strong, properly small
and has the same cardinality as Q. Let X ≺ N with X countable and
τ −1(U) ∈ X. Let σ : M  X with M transitive. Let S = (τ ◦ σ)−1(U). An
absoluteness argument like that used in the proof of Theorem 2.3 shows that
S is bad. (Here is where the hypothesis that Q is properly small is used.)
Let T = σS. Then T is a countable bad iteration tree on (〈P ,Q〉, 〈α〉). �

Finally, we reach Steel’s recursive definition of K.

2.41 Theorem. Let M be a premouse of height < Ω. Then M "K iff there
exist θ < Ω, an increasing continuous sequence of ordinals

〈αη | η ≤ θ + 1〉

starting with α0 = ω, an " increasing continuous sequence of premice

〈Rη | η ≤ θ + 1〉

with M "Rθ+1 and a double-indexed sequence of sets

〈Fζ,η | ζ ≤ η ≤ θ〉

that satisfy the following conditions.

(1) For all ζ ≤ η ≤ θ and Q,
Q ∈ Fζ,η

iff Q is a properly small premouse of cardinality |αη| such that

Rζ "Q

and, if
P ∈

⋂
{Fι,η | ι < ζ},

then
(〈P ,Q〉, 〈αζ〉)

is a phalanx on which there is no countable bad iteration tree.

(2) For all η ≤ θ,

{Q ∈ Fη,η | Q is sound and ωρQ
ω = αη}

is a family of premice that are pairwise comparable under �. Moreover,
the union of this family is Rη+1, which is a premouse of height αη+1.

Sketch. The idea is that, for all ζ ≤ η < Ω,

αη = (ℵη)K

Rη = JK
(ℵη)K

and Fζ,η is the set of properly small (ℵζ)K -strong premice of size |(ℵη)K |.
And θ is large enough so that

M " JK
(ℵθ+1)K .

�
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3. Core Model Tools

Throughout this section, we continue to assume the Anti-Large Cardinal
Hypothesis,

there is no proper class model with a Woodin cardinal

and the Technical Hypothesis,

U is a normal measure over Ω.

Under these hypotheses, in the previous section, a certain transitive model
of ZFC of ordinal height Ω is defined and named K. Here, we list properties
of K that are useful in applications. For the most part, it is not necessary to
read the previous section to make sense of these properties.

3.1. Covering Properties

Jensen showed that if 0# does not exist and A is an uncountable set of
ordinals, then there exists a set B ∈ L such that A ⊆ B and |A| = |B|. Dodd
and Jensen proved the same theorem for K under the hypothesis that there is
no inner model with a measurable cardinal. If there is a measurable cardinal,
then the Jensen covering property for K fails in any Prikry forcing extension.
Mitchell proved that if there is no inner model satisfying ∃κ(o(κ) = κ++),
then K still satisfies several consequences of the Jensen covering property and
that these weak covering properties are still useful in applications. Mitchell’s
work in this regard and the history behind it is the subject of the Handbook
chapter [18].

The first result we list in this subsection, which is due to Steel, says that
K computes the successor of almost every cardinal correctly.

3.1 Theorem.
{κ < Ω | (κ+)K = κ+} ∈ U.

The reader should cite Theorem 5.18(2) of [42] when applying Theorem 3.1.
We mentioned this result in Sect. 2 just after the proof of Theorem 2.29.

Many people would identify the following result, which is due to Mitchell
and the author, as the weak covering theorem for K. It implies that K com-
putes successors of singular cardinals correctly but contains other applicable
information.

3.2 Theorem. Let κ be a cardinal of K such that

ω2 ≤ κ < Ω.

and
λ = (κ+)K .

Then
cf(λ) ≥ |κ|.

Thus either λ = |κ|+ or cf(λ) = |κ|.
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The reader should cite Theorem 0.1 of [19] when applying Theorem 3.2.
The proof builds on that of Theorem 1.1 [21], which is the special case in
which |κ| is a countably closed cardinal. We outline the proof under this and
further simplifying assumptions in Sect. 4.

The next result, which is due to Steel and the author, says that K com-
putes successors of weakly compact cardinals correctly. The corresponding
fact for L under the assumption that 0# does not exist was observed by
Kunen in the 1970s.

3.3 Theorem. Let κ be a weakly compact cardinal such that κ < Ω. Then

(κ+)K = κ+.

The reader should cite Theorem 3.1 of [30] when applying Theorem 3.3.

3.2. Absoluteness, Complexity and Correctness

Steel proved the following theorem, which says that K is forcing absolute.

3.4 Theorem. Let P ∈ H(Ω) be a poset. Then

�P K = KV .

The reader should cite Theorem 5.18(3) of [42] when applying Theorem 3.4.
We mentioned this result in Sect. 2 just after the proof of Theorem 2.29.

Using his first-order definition of K, Steel carried out the first part of the
following computation of K ∩ HC. Think of this as the set of reals that
code the countable levels of K, countable in V that is. The second part,
a computation done by Schindler, shows that the complexity drops if only
finitely many countable ordinals are strong cardinals in K.

3.5 Theorem. There is a Σ1 formula ϕ(x) such that for all a ∈ HC,

a ∈ K ⇐⇒ Lω1(R) |= ϕ[a].

Moreover, if K ∩ HC has at most finitely many strong cardinals, then there
is a formula ψ(x) such that for all a ∈ HC,

a ∈ K ⇐⇒ HC |= ψ[a].

The reader should cite Theorem 6.15 of [42] when applying the first part
of Theorem 3.5. We mentioned this result in Sect. 2; it is a corollary to
Theorem 2.41. The reader should cite Theorems 3.4 and 3.6 of [11] when
applying the moreover part of Theorem 3.5.

Steel defined the levels of K by recursion on their ordinal height < Ω.
It turns out that iterability alone is not enough to guarantee that a mouse
with all the right first-order properties to be a level of K is actually a level
of K. So, simultaneous with his recursive definition of the levels of K, Steel
defined increasingly strong forms of iterability. This is explained in detail in
Sect. 2.2. The following theorem of Schindler shows that there is a tremen-
dous simplification in the recursive definition for levels of K of height ≥ ℵ2.
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3.6 Theorem. Let κ be a cardinal of K such that ℵ2 ≤ κ < Ω. Suppose that
M is a mouse such that

(1) M and K agree below κ,

(2) ρM
ω ≤ κ and

(3) M is sound above κ.

Then M is an initial segment of K.

One says that above ℵ2, K is obtained by stacking mice. The reader
should cite Lemma 3.5 of [10] when using Theorem 3.6 and should consult
Lemma 2.2 of [34] as well. The proof of Theorem 3.6 builds on the proof of
Theorem 3.2.

By definition, a class M is Σ1
n correct iff M ≺Σ1

n
V . In other words, for

each Σ1
n formula ψ(x) and a ∈ R ∩M ,

ψ[a]M ⇐⇒ ψ[a].

Jensen proved that if x# exists for all x ⊆ ω but there is no inner model with
a measurable cardinal, then K is Σ1

3 correct. The following result is due to
Steel.

3.7 Theorem. Suppose that there exists a measurable cardinal < Ω. Then
K is Σ1

3 correct.

The reader should cite Theorem 7.9 of [42] when applying Theorem 3.7. It
is not known if the existence of a measurable cardinal < Ω is needed. There
is also an attractive conjecture regarding Σ1

4 correctness that has been open
for about a decade.8

3.3. Embeddings of K

The first result in this subsection, which is due to Steel, says that K is rigid.

3.8 Theorem. If j : K → K is an elementary embedding, then j is the
identity.

The reader should cite Theorem 8.8 of [42] when applying Theorem 3.8.
Steel proved the following result, which says that K is universal.

3.9 Theorem. K is the unique universal weasel that elementarily embeds
into all other universal weasels.

The reader should cite Theorem 8.10 of [42] when applying Theorem 3.9.
Universal weasels were defined in Sect. 2. See Definitions 2.1 and 2.7.

Now we turn to external embeddings and their actions on K. The question
is whether the restriction to K of an embedding from an iteration of V is the
embedding from an iteration of K.
8 Assume that M1(x) exists for all sets x but that there is no model with two Woodin

cardinals. Show that K is Σ1
4 correct.
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3.10 Theorem. Suppose that T is an iteration tree on V with final model
N and branch embedding

π : V → N.

Assume that

(1) T is finite and ωN ⊆ N , or

(2) T is countable and ρ-maximal in the sense of Neeman [23].

Then there is an iteration tree on K whose last model is KN and whose
branch embedding is π�K.

Keep in mind that even if the external iteration tree T consists of a single
ultrapower by a normal measure, the corresponding iteration tree on K may
be infinite and quite complicated. Schindler proved Theorem 3.10 under
assumption (1). The author observed that Schindler’s proof goes through
with assumption (2). The reader should cite Corollary 3.1 of [36] in case (1)
and Corollary 3.2 [36] in case (2) when applying Theorem 3.10.

3.4. Maximality

Steel proved that K is maximal in the following sense.

3.11 Theorem. Let F be an extender that coheres with the extender sequence
of K. Suppose that (K,F ) is countably certified. Then F is on the extender
sequence of K.

The reader should cite Theorem 8.6 of [42] when applying Theorem 3.11.
This can be used to see that certain large cardinals reflect to K. For example,
if κ < Ω and κ is a λ-strong cardinal for all λ < Ω, then κ has the same prop-
erty in K. The proof of a theorem slightly more general than Theorem 8.6 of
[42], applications of maximality and other results along these lines by Steel
and the author can be found in [30]. For example, Theorem 3.4 of [30] says
that if κ is a cardinal such that ℵ2 ≤ κ < Ω, then H(κ) ∩K is universal for
mice in H(κ).

3.5. Combinatorial Principles

Jensen’s results with the fine structure of L generalize to models of the
form L[E].

3.12 Theorem. Let Q be a weasel. Then Q satisfies the following state-
ments.

(1) If κ is a cardinal, then ♦+
κ+ holds.

(2) If κ is an inaccessible cardinal, then

♦+
κ holds ⇐⇒ κ is not ineffable.
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(3) If κ is a cardinal, then

�κ holds ⇐⇒ κ is not subcompact.

(4) If κ is a regular cardinal, then there is a κ+ morass.

When applying Theorem 3.12, the reader should cite Theorem 1.2 of [27]
for the clauses on diamond, which are due to the author. The reader should
cite Theorem 2 of [31] for the existence of a �κ-sequence. (It is a theorem
of ZFC due to Burke [4] that if κ is a subcompact cardinal, then �κ fails.)
Zeman and the author [32] proved the clause on morass.

Even though Q = K is its most interesting instance, Theorem 3.12 holds
in situations in which we do not know how to define K. Neither the Anti-
Large Cardinal Hypothesis nor the Technical Hypothesis is used in the proof
of Theorem 3.12. This explains why we bothered to mention subcompact
cardinals in the clause on square since subcompact cardinals are themselves
Woodin cardinals, which do not exist under our Anti-Large Cardinal Hypoth-
esis. We should add that only a weak form of iterability is needed for the
proof of Theorem 3.12, much less than is assumed in the definition of weasel.

The next result gives conditions under which the �κ sequence in K cannot
be threaded in V . It is a result of the author.

3.13 Theorem. Let κ be a cardinal such that

ℵ2 ≤ κ < Ω.

Suppose that κ is a limit cardinal of K. Let λ = (κ+)K . Then there exists a

〈Cα | α < λ〉 ∈ K

such that 〈Cα | α < λ〉 is a �κ sequence in K and 〈Cα | α < λ〉 has no
thread. That is, there is no club D in λ such that

D ∩ α = Cα

for all α ∈ lim(D).

The reader should cite [29] when applying Theorem 3.13.

3.6. On the Technical Hypothesis

Schindler proved that below “zero hand grenade”, the Technical Hypothesis
can be avoided:

3.14 Theorem. If there is no proper class model with a proper class of strong
cardinals, then the Technical Hypothesis is not needed for the results in this
chapter.
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The reader should consult [33] before applying Theorem 3.14. Not only is
Theorem 3.14 loosely worded, it does not make sense, at least not literally,
since there are results in this paper that explicitly refer to the normal measure
U over Ω. For these, Ω should be replaced by On and statements about sets
in U should be read as statements about stationary classes of ordinals.

Without going to a more restrictive anti-large cardinal hypothesis, it is
not known how to get away without a technical hypothesis. But technical
hypotheses weaker than a measurable cardinal are known to suffice. For
example, Steel showed that the existence of X# for all X ∈ H(Ω) is enough.
Also, Steel and the author showed in Theorem 5.1 of [42] that an ω-Erdős
cardinal is enough.

4. Proof of Weak Covering

In this section, we discuss elements of the proof of Theorem 3.2 under some
simplifying assumptions. Earlier versions of this theorem due to Jensen, Dodd
and Jensen, and Mitchell had no technical hypothesis and much stronger anti-
large cardinal hypotheses. In particular, their proofs involved linear iterations
at most whereas we deal with iteration trees and even some generalizations
of iteration trees. To make our task manageable we assume that the reader
is familiar with at least one of these earlier proofs, such as any proof in the
Handbook chapter [18] or just the proof for L as presented in [28] or in the
Handbook chapter [37]. Our emphasis here is on the new complications and
how to overcome them, really just a segue into [21] for the reader.

4.1 Definition. A cardinal κ is countably closed iff μℵ0 < κ for all cardinals
μ < κ.

For example, if 2ℵ0 < ℵω then ℵω is countably closed. The following
special case of Theorem 3.2 was proved in [21]. We continue to assume the
same anti-large cardinal hypothesis and technical hypothesis as in all earlier
sections, so that K exists.

4.2 Theorem. Let κ be a cardinal of K such that |κ| is countably closed and
λ = (κ+)K . Then

cf(λ) ≥ |κ|.
Thus either λ = |κ|+ or cf(λ) = |κ|.

For example, if 2ℵ0 < ℵω and κ = ℵω, then (κ+)K = ℵω+1.

Outline. The proof begins pretty much as do earlier proofs of weak covering
under stronger anti-large cardinal hypotheses. Let λ = (κ+)K and assume
for contradiction that

cf(λ) < |κ|.
By taking the union of an elementary chain of length ω1, we find

X ≺ (VΩ+1,∈, U)
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with
sup(X ∩ λ) = λ

and
ωX ⊆ X

such that
|X| < cf(λ)ℵ0 < |κ|.

Let π : N  X with N transitive and δ = crit(π). Note that π(δ) ≤ κ. Let

κ = π−1(κ)

λ = π−1(λ)

and
Ω = π−1(Ω).

Consider an arbitrary μ ≤ Ω. Let Eπ�μ be the extender of length μ derived
from π. This means the following. For each a ∈ [μ]<ω, let

δa = min({γ ∈ Ω ∩N | a ∈ [π(γ)]<ω}).

Then let
(Eπ)a = {X ⊆ [δa]|a| | a ∈ π(X)}.

Notice that (Eπ)a is an ultrafilter over

℘([δa]|a|) ∩N.

And
Eπ�μ = {(a,X) | a ∈ [μ]<ω and X ∈ (Eπ)a}.

The point of this extender is that if M is a transitive model and

℘(δa) ∩M ⊆ N

for all a ∈ [μ]<ω, then it makes sense to talk about the ultrapower map

iME : M → Ult(M,F )

where
F = Eπ ∩ ([μ]<ω ×M).

Put another way, we may apply F to M iff

℘(γ) ∩M ⊆ N

for all γ such that π(γ) ≥ μ. Define

Ult(M,π, μ) = Ult(M,Eπ�μ).
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Here are a few more general remarks. If a ∈ [δ]<ω, then (Eπ)a is principal
and therefore Eπ�δ is trivial in the sense that it gives rise to the identity
embedding. Observe that (Eπ){δ} is equivalent to the normal measure derived
from π,

{X ⊆ δ | δ ∈ π(X)},
in the sense that they determine the same ultrapower. We call

Eπ�π(δ)

the superstrong extender derived from π. And we call Eπ�μ a long extender
whenever π(δ) < μ or, equivalently, whenever δa > δ for some a ∈ [μ]<ω.
Long extenders come up in the covering theorem for L in exactly the same way
although the terminology had not been established when Jensen discovered
the proof. The reader may refer to [28] for an account of Jensen’s proof in
these terms.

Instead of K we work with an A0-soundness witness for a large enough
initial segment of K. Large enough for us means height Ω0 where

Ω > Ω0 ≥ |λ|+ = |κ|+.

But for convenience we assume that Ω0 is an inaccessible cardinal. Let W be
the witness that JK

Ω0
is A0-sound that comes out of the proof of Theorem 2.24.

There is an elementary embedding σ : W → Kc that is relevant later in the
current proof. Let

W = π−1(W )

and (T , T ) be the coiteration of (W,W ). Say

θ + 1 = lh(T )

and
θ + 1 = lh(T ).

Simplify the notation by setting

Wη = MT
η

for η ≤ θ and
W η = MT

η

for η ≤ θ. Because W is universal,

DT ∩ [0, θ]T = ∅

and
W θ " Wθ.

Nothing we have said so far differs significantly from earlier proofs of weak
covering under stronger anti-large cardinal hypotheses except possibly that
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we are using W instead of K. Before continuing, let us review the main
points of the earlier proofs and compare and contrast them with the current
proof. In the earlier proofs, it is shown that K = π−1(K) does not move in
its coiteration with K. The current proof shows this too but in an indirect
way.9 Now let η ≤ θ be least such that

ν(ET
η ) > κ

if there is such an η; otherwise let η = 0. In the earlier proofs, it is shown
that there exist P � Wη and n < ω such that

ρP
n ≥ λ = (κ+)P

and
P = HullP

n+1(κ ∪ pP
n+1).

People refer to P as the least mouse missing from N at κ. The current proof
is different in that Wη might be a weasel and

(κ+)Wη = λ.

In this case, we set P = Wη. Then P is a thick weasel. Moreover, because
ν(ET

ζ ) ≤ κ for all ζ < η, we conclude that P has the hull and definability
properties at μ whenever κ ≤ μ < Ω0. This collection of facts about P turns
out to be an adequate substitute if P happens to be a weasel instead of a
premouse of height < Ω. Moving on with our discussion, in the earlier proofs,
Eπ�λ is an extender over P and one sets

R = Ult(P , π, λ).

People refer to R as the lift up of P . In the current proof, because iteration
trees need not be linear, something along the lines of W not moving is needed
just to make sense of the definition of R. In the earlier proofs, a standard
argument using the fact that ωX ⊆ X shows that R is an iterable premouse.
The current proof is different on this point. For although R is wellfounded,
it can fail to be a premouse! This happens exactly when ρ1(P) ≤ κ (that is,
n = 0), P has a top extender with critical point μ < κ and π is discontinuous
at (μ+)P . For then the top extender of R is not total on R since its critical
point is π(μ) but it only measures sets in

J R
sup(π“(μ+)P ) " J R

(π(μ)+)R .

We call R a protomouse and its top predicate F R an extender fragment.
Vaguely put, our answer to the possibility that R is not a premouse is to
find an actual premouse that corresponds to R. But let us set aside this

9 The current proof is a complicated induction that shows no extender of length < Ω0 is

used on T .
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complication until later and assume thatR is a premouse. In the discussion so
far, we have implicitly used some basic facts about the ultrapower embedding
π̃ : P → R, mainly that

π̃�λ = π�λ.

It is also easy to see that

R = Ultn(P , π, κ).

And that, if P is not a weasel, then

R = HullR
n+1(κ ∪ π̃(pP

n+1)) = HullR
n+1(κ ∪ pR

n+1),

whereas if P is a weasel, thenR is a thick weasel with the hull and definability
properties at μ whenever κ ≤ μ < Ω0. The last step in the earlier proofs is
to analyze the coiteration of R versus W to obtain the contradiction

λ = (κ+)K = (κ+)W > (κ+)R = sup(π̃“λ) = sup(π“λ) = λ.

At the analogous step in the current proof, we coiterate (〈W,R〉, 〈κ〉) ver-
sus W . For this we need that the phalanx is iterable. Basically, we need to
know that R is κ-strong whereas in the earlier proofs, iterability was enough.
Our solution, which we make precise soon, is to work up to this phalanx by an
induction that involves other phalanxes. In summary, the new complications
are:

• how to show that W does not move,

• P and R could be weasels,

• R might be a protomouse but not a premouse and

• how to show that R is κ-strong.

We need more definitions to explain our strategy for dealing with these
new complications. Let �κ enumerate the infinite cardinals of W θ up to Ω0 =
π−1(Ω0). Thus

κα = (ℵα)W θ

for all α < Ω0. Also let �λ enumerate the infinite successor cardinals of W θ.
Thus λα = κα+1 for all α < Ω0. The main idea for dealing with the first and
last new complications involves an induction on γ < Ω0 with six induction
hypotheses. As they are introduced, we assume (1)α through (6)α for all
α < γ. Our obligation is to prove (1)γ through (6)γ . The first induction
hypothesis tells us that W has not moved yet. We use the notation Eη = ET

η .

(1)α For all η ≤ θ, if Eη �= ∅, then lh(Eη) > λα.
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The next step is to derive a phalanx from T . Let η(α) be the least η ≤ θ
such that

ν(ET
η ) > κα

if there is such an η; otherwise, let η(α) = 0. Then let Pα be the unique
P � Wη(α) such that for some n < ω

ρP
n ≥ λα = (κ+

α )P

and ρP
n+1 ≤ κα if it exists. In this case,

P = HullP
n+1(κα ∪ pP

n+1).

Otherwise, let Pα = Wη(α). In this case, Pα is a thick weasel with the hull
and definability properties at μ whenever κα ≤ μ < Ω0.

4.3 Lemma. The phalanx (�P�(γ + 1), �λ�γ) is iterable.

Idea. We may construe an iteration tree on this phalanx as an iteration tree
extending T �(η(γ) + 1). But W is iterable. �

By our induction hypothesis (1)α, Eπ�π(κα) is an extender over Pα for
each α < γ.10 This allows us to define

Rα = Ult(Pα, π, π(κα))

and
Λα = sup(π“λα) = (π(κα)+)Rα .

A standard application of the fact that ωX ⊆ X shows that Rα is a transitive
structure. Let πα : Pα → Rα be the ultrapower map. More standard
calculations show that

πα�λα = π�λα

and
πα(λα) = Λα ≤ π(λα).

Also that
Rα = Ult(Pα, π,Λα).

And, if Pα is not a weasel, then

Rα = HullRα
n+1(π(κα) ∪ πα(pPα

n+1)) = HullRα
n+1(π(κα) ∪ pRα

n+1)

for some n < ω, whereas if Pα is a weasel, then Rα is a thick weasel with the
hull and definability properties at μ whenever π(κα) ≤ μ < Ω0. But notice

10 Models on a non-linear iteration tree are not necessarily contained in the starting model.
In order to form Ult(Pα, π, π(κα)) we must know that Eπ�π(κα) measures all sets in Pα.
The proof presented in [21] overlooks this detail but can be straightened out easily using
the approach shown here.
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that if ρ1(Pα) ≤ κα, Pα is an active premouse and π is discontinuous at the
cardinal successor of crit(F Pα) in Pα, then Rα is not a premouse.

Observe that
( �R�(γ + 1), �Λ�γ)

satisfies the agreement condition for being a phalanx. We call it a phalanx
of protomice. Let us examine the situation in which β ≤ γ and Rβ is not a
premouse. Equivalently, there exist α < β with

crit(F Pβ ) = κα

and
Λα < π(λα).

In this case,
crit(F Rβ ) = π(κα).

And, although F Rβ is an extender fragment but not an extender over Rβ ,
it is an extender over Rα. More generally, if U is what would naturally be
called an iteration tree on

( �R�(γ + 1), �Λ�γ)

and γ < β′ < lh(U) with
rootU (β′) = β

and
DU ∩ (β, β′]U = ∅,

then
crit(F MU

β′ ) = π(κα) = crit(F Rβ )

and the two extender fragments are total over Rα. Thus F MU
β′ could legit-

imately be applied to Rα to form an extension of U . While the following
result is not used in the current proof, others like it are.

4.4 Lemma. The phalanx of protomice

( �R�(γ + 1), �Λ�γ)

is iterable.

Idea. In the standard way, use the fact that ωX ⊆ X to reduce the iterability
of the above phalanx to that of

(�P�(γ + 1), �λ�γ).

The latter phalanx is iterable by Lemma 4.3. �
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Based on our discussion of earlier proofs of weak covering, we would expect
to want to iterate

(〈W,Rγ〉, 〈π(κγ)〉).

We can make sense of what we mean by this even if Rγ is not a premouse,
but iterating this phalanx of protomice does not seem to accomplish much
in this case. Our solution to this problem is complicated. For each α ≤ γ,
if Rα is not a premouse, then we define a certain premouse Sα that agrees
with Rα below Λα. We also find a premouse Qα that agrees with Pα below
λα such that

Sα = Ult(Qα, π, π(κα)).

Only near the end of the current proof will we say exactly what Qα and Sα

are in this case. On the other hand, if Rα is a premouse, then Qα = Pα and
Sα = Rα. The reader is asked to consider this case only for the moment.

As we just indicated, the main thing we want to know besides (1)γ is that
Sγ is π(κγ)-strong, so we make it an induction hypothesis in the following
way.

(2)α (〈W,Sα〉, 〈π(κα)〉) is an iterable phalanx.

(3)α (〈W,Qα〉, 〈κα〉) is an iterable phalanx.

4.5 Lemma. (3)γ implies (2)γ .

Idea. The proof uses the fact that Sγ = Ult(Qγ , π, λγ) together with count-
able closure ωX ⊆ X. It is not as routine as Lemma 4.4 though. �

The next hypothesis is the key to showing that W does not move. It also
represents an interesting switch in that W appears as the starting model
instead of the back-up model.

(4)α ((�P�α)�〈W 〉, �λ�α) is an iterable phalanx.

4.6 Lemma. (4)γ implies (1)γ .

Idea. Let (U ,V) be the coiteration of the phalanxes

((�P�γ)�〈W 〉, �λ�γ)

and
((�P�γ)�〈Pγ〉, �λ�γ).

The former phalanx is iterable by (4)γ . The latter phalanx is iterable by
Lemma 4.3. In particular, V can be construed as an extension of T �η(γ)+1.
Let ζ + 1 = lh(U). Standard arguments can be used to see that

γ = rootU (ζ)
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and
DU ∩ (γ, ζ]U = ∅.

These arguments use the hull and definability properties at κα when Pα is a
thick weasel and soundness at κα otherwise. Suppose for contradiction that
(1)γ fails. Since (1)α holds for all α < γ,

lh(E0) = λγ .

Consequently, the first extenders used on U and T are the same, i.e.,

EU
γ = E0.

Hence
lh(EU

γ ) = λγ < ((κγ)+)W .

This can be used to see that if

γ = predU (ι + 1)

then
κγ ≤ crit(EU

ι )

so
ι + 1 ∈ DU ,

which is a contradiction. �

Here is a fact whose proof is like that of Lemma 4.6. Hypothesis (4)α

implies that there is an iteration tree Vα on W that extends T �(η(α) + 1),
an initial segment Nα of the last model of Vα with

℘(κα) ∩W = ℘(κα) ∩Nα

and an elementary embedding kα : W → Nα with kα�κα = id�κα. This fact
and the notation just established comes up again when we prove (3)γ .

(5)α (( �R�α)�〈W 〉, �Λ�α) is an iterable phalanx of protomice.

It makes sense to iterate this phalanx of protomice for reasons like those
we gave before Lemma 4.4. The difference is that W is the starting model
instead of Rγ .

4.7 Lemma. (5)γ implies (4)γ .

Idea. Consider the sequence of embeddings

〈πα | α < γ〉�〈π〉.

Since πα�λα = π�λα for all α < γ, this sequence can be used to reduce the
iterability of

((�P�γ)�〈W 〉, �λ�γ)

to that of
(( �R�γ)�〈W 〉, �Λ�γ).

The latter phalanx is iterable by (5)γ . �
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It is worth noticing that the iteration trees on (( �R�γ)�〈W 〉, �Λ�γ) that are
relevant to the proof of Lemma 4.7 have a special form: whenever α < γ
and an extender is applied to Rα, the critical point of the extender is exactly
π(κα). Similarly, only special iteration trees are relevant to the proof of
Lemma 4.4.

(6)α (( �S�α)�〈W 〉, �Λ�α) is an iterable phalanx.

4.8 Lemma. (6)γ implies (5)γ .

Since we have not defined �S�γ it would be meaningless to sketch the proof
of Lemma 4.8, which is not easy. It is interesting, though, that the proof
involves a variant of the usual copying constructions in which the tree struc-
ture changes. And an ultrapower by an extender fragment in an iteration tree
on (( �R�γ)�〈W 〉, �Λ�γ) corresponds to something like padding in the copied
iteration tree on (( �S�γ)�〈W 〉, �Λ�γ).

Having seen that

(6)γ =⇒ (5)γ =⇒ (4)γ =⇒ (1)γ

and
(3)γ =⇒ (2)γ

it remains to prove (3)γ and (6)γ , which we do next.

4.9 Lemma. (3)γ holds.

Idea. We must see that (〈W,Qγ〉, 〈κγ〉) is iterable. Consider the sequence of
embeddings

〈kα | α < γ〉�〈id�Qγ〉

where kα : W → Nα was defined just after the proof of Lemma 4.6. Since
kα�κα = id�κα, this sequence of embeddings can be used to reduce the iter-
ability of

(〈W,Qγ〉, 〈κγ〉)

to that of
(〈Nα | α < γ〉�〈Qγ〉, �κ�γ).

There is a subtlety in the copying construction that also came up at the
end of the proof of Theorem 2.35 but once again we omit this detail. The
phalanx (〈Nα | α < γ〉�〈Qγ〉, �κ�γ) is what we call W based because each
of its models appears on an iteration tree on W . For α < γ, the iteration
tree is Vα. And for Qγ the iteration tree is T �(η(γ) + 1) because we are still
assuming for simplicity that Qγ = Pγ . (Otherwise a generalized notion of W
based is used.) We chose W so that there is an elementary embedding from
σ : W → Kc. Copy each Vα to σVα and let

σ∗
α : Nα → N ∗

α
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be the final copy embedding restricted to Nα. Next, copy T �(η(γ) + 1) to
σT �(η(γ) + 1) and let

σ∗
γ : Qγ → Q∗

γ

be the final copy embedding restricted to Qγ . The sequence of embeddings

〈σ∗
α | α ≤ γ〉

can be used to reduce the iterability of (〈Nα | α < γ〉�〈Qγ〉, �κ�γ) to that of

(〈N ∗
α | α < γ〉�〈Q∗

γ〉, 〈σ(κα) | α < γ〉).

The latter phalanx is Kc based and hence iterable by §9 of [42]. �

The following lemma is the last step in our induction.

4.10 Lemma. (6)γ holds.

Idea. Consider an arbitrary α < γ. Freeing up earlier notation, let (U ,V) be
the coiteration of W versus (〈W,Sα〉, 〈π(κα)〉). The latter phalanx is iterable
by (2)α. Say lh(U) = ζ + 1 and lh(V) = η + 1. Standard arguments as in
Sect. 2 show that

MU
ζ � MV

η ,

1 = rootV (η) and DV ∩ (1, η]V = ∅. Since Sα and W agree below Λα, the
extenders used on U and V all have length ≥ Λα. In the remainder of this
proof, we refer to

jα = iV
1,η

and
Mα = MV

η .

Note that jα : Sα →Mα is an elementary embedding and

jα�π(κα) = id�π(κα).

To show that (6)γ holds we must see that the phalanx

(( �S�γ)�〈W 〉, �Λ�γ)

is iterable. Using the sequence of embeddings

〈jα | α < γ〉�〈id�W 〉

this reduces to seeing that the phalanx

(〈Mα | α < γ〉�〈W 〉, �Λ�γ)

is iterable. But the latter phalanx is W based. Since W embeds into Kc and
all Kc based phalanxes are iterable, all W based phalanxes are iterable. �



1732 Schimmerling / A Core Model Toolbox and Guide

This concludes the proof by induction that (1)α through (6)α hold for all
α < Ω0. Now fix α so that κα = κ. Then λα = λ and Λα = λ. Write
P = Pα, R = Rα, Q = Qα and S = Sα. Also let π̃ : Q → S be the
ultrapower embedding.

4.11 Lemma. It is not the case that S �= R and S is not a weasel.

Idea. Assume otherwise. We build on the facts from the proof of Lemma 4.10
about the coiteration (U ,V) of W versus (〈W,S〉, 〈κ〉). We have that

S = HullS
n+1(κ ∪ pS

n+1).

Standard arguments show that either

S "MV
0 = W

or
EU

0 = EW
λ

and
S = MV

1 = Ult((M∗
1)

V , EV
0 ).

Either way, we get the contradiction

λ = (κ+)S < (κ+)W = (κ+)K .

�

4.12 Lemma. It is not the case that S �= R and S is a weasel.

Idea. Assume otherwise. We build on facts about the coiteration (U ,V) of W
versus (〈W,S〉, 〈κ〉) from the proof of Lemma 4.10. We have that S is a thick
weasel with the hull and definability properties at μ whenever κ ≤ μ < Ω0.
By universality,

MU
ζ = MV

η .

MV
η has the hull property at κ because crit(iV

1,η) ≥ κ. On the other hand,
since MV

η also results from the iteration

W
iT
0,η(α)

Q
π̃

S
iV
1,η

MV
η

and crit(π̃) = crit(π) = δ, we conclude thatMV
η does not have the definability

property at δ. Here we are using that Wη(α) = P = Q. This implies that U
is not trivial. Let EU

ι be the first extender used along [0, ζ]U . That is,

0 = predU (ι + 1) ≤U ζ.

Since MU
ζ does not have the definability property at δ,

crit(EU
ι ) ≤ δ.
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Recall that S and W agree below λ. But λ is a cardinal in both hence not
the index of an extender on the sequence of either. Thus,

lh(EU
ι ) > λ.

This implies that the generators of EU
ι are unbounded in λ. But then MU

ζ

does not have the hull property at κ. This is a contradiction. �

To wrap things up for this section we give the definitions of Qβ and Sβ

and discuss how they fit with the outline of the proof of Theorem 4.2 given so
far. Recall that if Rβ is a premouse, then we already defined Qβ = Pβ and
Sβ = Rβ . Suppose that Rβ is not a premouse. Say α < β and crit(F R

β ) =
π(κα). Recall that F R

β is an extender over Rα. Suppose for the moment that
Rα is a premouse. Then what we would do is set

Sβ = Ult(Rα, F Rβ ) = Ult(Sα, F Rβ )

and
Qβ = Ult(Pα, F Pβ ) = Ult(Qα, F Pβ ).

It is easy to see that, in this case, Sβ is a premouse and

Sβ is a weasel ⇐⇒ Rα is a weasel
⇐⇒ Pα is a weasel
⇐⇒ Qβ is a weasel.

Of course, Rβ is not a weasel. With a little more work, one sees that

Sβ = Ult(Qβ , π, π(κα)) = Ult(Qβ , π,Λα).

As for Qα, it is a model on a finite extension of T �(η(α)+1) in this case but
not so literally in others.

The general definition of Sβ and Qβ is by induction. We set

Sβ = Ult(Sα, F Rβ )

and
Qβ = Ult(Qα, F Pβ )

whenever α < β,
crit(F R

β ) = π(κα)

and Rβ is not a premouse. For example, we could have α < β < γ,

Sα = Rα

Sβ = Ult(Sα, F Rβ )

Sγ = Ult(Sβ , F Rγ )
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and the analogous equations for Qα, Qβ and Qγ . Note that Qγ is a model on
a finite extension of T �(η(α)+1) but not in the conventional sense. What we
mean by W based phalanxes and the theorems about them can be generalized
accordingly though. This is needed to complete the proof of Lemma 4.9.

Beyond this, we do not attempt to explain how to incorporate this de-
finition of S and Q into the proof by induction of (1)α through (6)α. In
particular, the proof of Lemma 4.8 is beyond the scope of this exposition.
Instead, we finish this section by showing that it is still possible to obtain
a contradiction assuming (1)α through (6)α hold for all α < Ω0 without as-
suming that S = R. The argument uses two additional concepts: the Dodd
decomposition of an extender and fine structure for thick weasels. The sim-
plest case in which S �= R already illustrates the main new ideas. First we
look at the non-weasel subcase.

4.13 Lemma. Let α < β and F = F Pβ . Suppose that

ρPα
n+1 ≤ κα < λα ≤ ρPα

n

and Qβ = Ult(Pα, F ). Then

Qβ = HullQβ

n+1(κβ ∪ p
Qβ

n+1).

Idea. For simplicity, assume n = 0. (Otherwise, use the Σn mastercode
structure for Pα.) Let i : Pα → Qβ be the ultrapower map. The lemma is
relatively easy to see if ν(F ) = κβ because then

p
Qβ

1 = i(pPα
1 ).

More generally, we show that

p
Qβ

1 − κβ = i(pPα
1 ) ∪ (s− κβ)

for a certain s ∈ [lh(F )]<ω whose identity we are about to reveal.
The Dodd projectum of Pβ , written τ Pβ , is the least ordinal τ such that

λα = (crit(F )+)Pβ ≤ τ ≤ ν(F )

and there exists an s ∈ [ν(F )]<ω such that F and F �(τ ∪ s) have the same
ultrapower. The Dodd parameter of Pβ , written sPβ , is the least parameter
s ∈ [ν(F )]<ω such that F and F �(τ Pβ ∪ s) have the same ultrapower.11 In
fact, τ = max(ρPβ

1 , λα). There is a relationship between the sPβ and p
Pβ

1

that is slightly more complicated but not needed here. By a result of Steel
in [38], if Pβ is 1-sound, then for all i < |sPβ |,

F �(sPβ

i ∪ (sPβ �i)) ∈ Pβ

11 Recall that parameters, i.e., finite sets of ordinals, are often identified with descending
sequences of ordinals, and that the ordering on parameters is lexicographic.
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and for all ξ < τ Pβ ,
F �(ξ ∪ sPβ ) ∈ Pβ .

These properties are known as Dodd solidity and Dodd amenability respec-
tively. Counterexamples for mice that are not 1-sound can be found in [27].

If Pβ " Wη(β), then certainly Pβ is 1-sound and therefore Dodd solid and
Dodd amenable. The fact that F and F �(κβ∪sPβ ) have the same ultrapower
translates into

Qβ = HullQβ

1 (κβ ∪ i(pPα
1 ) ∪ sPβ ).

The fact that
F �(sPβ

i ∪ (sPβ �i)) ∈ Pβ

for all i < |sPβ − κβ | translates into

p
Qβ

1 − κβ = i(pPα
1 ) ∪ (sPβ − κβ).

Suppose instead that Pβ = Wη(β). Then Pβ is not 1-sound. Let ι + 1 be
the last drop in model or degree along [0, η(β)]T and let

W ∗
ι+1 � WpredT (ι+1)

be the level to which we drop. Also let

i∗
ι+1 : W ∗

ι+1 →Wι+1 = Ult(W ∗
ι+1, F

T
ι )

be the ultrapower embedding. Since W ∗
ι+1 is 1-sound, it is Dodd solid and

Dodd amenable by [38]. Now by induction on ζ such that

ι + 1 ≤T ζ ≤T η(β)

it is possible to show that if

s = iT
ι+1,ζ(i

∗
ι+1(s

W ∗
ι+1)),

then FWζ and FWζ �(νT
ζ ∪ s) have the same ultrapower,

FWζ �(si ∪ (s�i)) ∈Wζ

for all i < |s− νT
ζ | and

s− νT
ζ = sWζ − νT

ζ .

By definition, κβ ≥ νT
η(β). So at the end of this induction we see that if

s = sPβ , then F and F �(κβ ∪ s) have the same ultrapower and

F �(si ∪ (s�i)) ∈ Pβ

for all i < |s−κβ |. As before, these facts translate into the desired result. �
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The facts about Dodd solidity in the proof of Lemma 4.13 can be used to
avoid a convoluted argument in [21].12

4.14 Lemma. It is not the case that S �= R and S is not a weasel.

Idea. In the simplest case, which is the only one we discuss here, κ = κβ

satisfies the hypothesis of Lemma 4.13. Then

S = HullS
n+1(κ ∪ pS

n+1).

Now repeat the proof of Lemma 4.11 to obtain a contradiction. �

4.15 Lemma. It is not the case that S �= R and S is a weasel.

Idea. There is an analog of Lemma 4.13 that is valid when Qβ is a weasel.
With this analog, the proof of Lemma 4.12 can be adapted to give the proof
of Lemma 4.15. The basic idea behind this analog is as follows.

Once again, we look only at the simplest instance of Qβ �= Pβ . That is,
α < β and F = F Pβ and Qβ = Ult(Pα, F ). But this time suppose that
Pα = Wη(α) is a thick weasel with the hull and definability properties at μ
whenever κα ≤ μ < Ω0. Then Qβ is also a thick weasel. If ν(F ) = κβ , then
we can show that Qβ has the hull and definability properties at μ whenever
κβ ≤ μ < Ω0, which is just what is needed to run the proof of Lemma 4.12
when κβ = κ. More generally, consider again the fact that F and its Dodd
decomposition F �(τ Pβ ∪sPβ ) have the same ultrapower and τ Pβ ≤ κβ . There
is a natural sense in whichQβ has the sPβ definability property at μ whenever
κβ ≤ μ < Ω0. This fact motivates defining κQβ to be the least ordinal μ0 such
that there exists a c ∈ [Ω0]<ω such that Qβ has the c definability property
at μ whenever μ0 ≤ μ < Ω0. This is the class projectum. We have that

κQβ ≤ κβ

as witnessed by sPβ . We also define cQβ to be the least parameter c ∈ [Ω0]<ω

such that Qβ has the c definability property at μ whenever κQβ ≤ μ < Ω0.
This is the class parameter. The proof of Lemma 4.13 shows that F is Dodd
solid above κβ . This fact translates into

cQβ − κβ = sPβ .

The two displayed facts above are our version of Lemma 4.13 when Qβ is a
weasel. They translate into

κS ≤ κ

and
cS − κ = sR

when κβ = κ. With some additional work we can adapt the proof of
Lemma 4.12 to finish the proof of Lemma 4.15. �

This concludes our outline of the proof of Theorem 4.2. �
12 Avoid Lemma 2.1.2 and Corollaries 2.1.3 and 2.1.6 of [21].
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5. Applications of Core Models

In this section, we list some results whose proofs use core model theory at
a level that involves iteration trees. These are stated in a way that mini-
mizes core model prerequisites. We have also tried to avoid overly technical
hypotheses. For example, in some theorems, the hypothesis that Ω is a mea-
surable cardinal can be reduced to the existence of sharps for elements of
H(Ω) or even less.

5.1. Determinacy

Some of the results in Sect. 5 are stated in terms of determinacy instead of
large cardinals. Often it is easier to phrase things one way or the other but
there are reasons to think that there is more to it than that. We begin this
subsection by recalling some of the known equiconsistencies between large
cardinals and determinacy.

5.1 Theorem. The following are equiconsistent.

(1) There exists a Woodin cardinal.

(2) Δ1
2-determinacy.

5.2 Theorem. The following are equiconsistent.

(1) There exist infinitely many Woodin cardinals.

(2) L(R)-determinacy.

Theorems 5.1 and 5.2 are due to Woodin. A proof that (2) is consistent
relative to (1) in Theorem 5.2 is given in the Handbook chapter [22]. The
consistency of (1) relative to (2) in the two theorems is given in the Handbook
chapter [14]. It would be reasonable for the reader to suspect that these
parts of the proofs use core model theory. However, Woodin obtained these
results in the 1980’s before Steel developed the theory of K at the level
of one Woodin cardinal. Woodin used HOD instead of K. In the proof of
Theorem 5.1, Woodin showed that if Δ1

2-determinacy holds, then there exists
a real x such that ω

L[y]
2 is a Woodin cardinal in HODL[y] whenever x ∈ L[y].

And his proof of Theorem 5.2 built on that of Theorem 5.1. More recently,
Steel discovered alternate proofs that use core models.

Theorems 5.1 and 5.2 are equiconsistencies between determinacy and the
existence of large cardinals. This is a good place to recall some of the known
equivalences between determinacy and the existence of mice. For this, we
must recall the definition of M#

n (x), which can also be found in [41, §7].
The theory of mice generalizes to a theory of mice built over a real. If

n ≤ ω and x ⊆ ω, then there is at most one structure

M = 〈JE,x
β ,∈, E, F 〉
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such that M is a ω1 + 1 iterable sound premouse built over x,

JE,x
crit(F ) |= the number of Woodin cardinals = n

and for all α < β, if Eα �= ∅, then

JE,x
crit(Eα) |= the number of Woodin cardinals < n.

If it exists, then this unique mouse built over x is called M#
n (x). For n = 0,

we have that M#
0 (x) is Turing equivalent to x#.

Let us point out some features of M#
n . Recall that the empty extender

codes the identity embedding. The next weakest possibility is that the critical
point of an extender is the only generator of the extender, in which case the
extender codes the embedding from a normal measure. It follows from the
definition that FM#

n (x) is a measure in this sense and that if δ is the supremum
of the Woodin cardinals of M#

n (x), then

δ < crit(FM#
n (x))

and
E

M#
n (x)

α = ∅
whenever δ ≤ α < crit(FM#

n (x)). Regarding the projectum and standard
parameter, it is easy to see that

ρ
M#

n (x)
1 = 1

and
p

M#
n (x)

1 = ∅.
In particular, M#

n (x) is countable. We have enough iterability to guarantee
that all (not just the first ω1 many) iterates of M#

n (x) by images of its top
extender are wellfounded. By iterating away the top extender of M#

n (x) in
this way we obtain a proper class model that goes by the name Mn(x). For
n = 0 we have that M0(x) = L[x]. Observe that Mn(x) has the same Woodin
cardinals as M#

n (x) and that Mn(x) is ω1 +1 iterable. Moreover, the critical
points of extenders used on this linear iteration form a club class of Mn(x)
indiscernibles. In the case n = 0, these are the L[x] indiscernibles.

Let us call a structure that satisfies the first-order properties in the de-
finition of M#

n (x) but is λ iterable instead of ω1 + 1 iterable a λ iterable
M#

n (x).

5.3 Theorem. Let n < ω and assume Π1
n-determinacy. Then the following

are equivalent.

(1) Π1
n+1-determinacy.

(2) For every x ∈ R, there is an ω1 iterable M#
n (x).

(3) For every x ∈ R, there is a unique ω1 iterable M#
n (x).
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The case n = 0 boils down to the fact that

Π1
1-determinacy ⇐⇒ ∀x ∈ R (x# exists)

where the forward implication is due to Martin and the reverse is due to
Harrington. The proof that (1) implies (3) is due to Woodin and uses core
models. Parts of the proof can be found in the Handbook chapter [14] and
Theorem 7.7 of [42]. The proof that (2) implies (1) is due to Woodin for odd
n and Neeman for even n. See the Handbook chapter [22].

5.4 Corollary. The following are equivalent.

(1) Projective Determinacy.

(2) For all n < ω and x ⊆ ω, there is an ω1 iterable M#
n (x).

(3) For all n < ω and x ⊆ ω, there is a unique ω1 iterable M#
n (x).

(4) For all n < ω and x ⊆ ω, there exists a Σ1
n correct model M with

n Woodin cardinals and x ∈M .

This equivalence combines results of Martin, Steel and Woodin.
Woodin proved that if M#

ω (x) exists for all x ⊆ ω, then L(R)-determinacy
holds. See the Handbook chapter [22] for a proof due to Neeman. Steel and
Woodin obtained the following optimal result.

5.5 Theorem. The following are equivalent.

(1) L(R)-determinacy.

(2) For all x ⊆ ω and every Σ1 formula ϕ, if ϕ[x,R] holds in L(R), then
there is a countable, ω1 iterable model M satisfying ZF− plus there are
ω Woodin cardinals such that x ∈M , and ϕ[x,R∗] holds in the derived
model of M .

Next we state several theorems which show that some well-known conse-
quences of determinacy are equivalent to determinacy.

5.6 Theorem. Assume that for all x ⊆ ω, x# exists and the Σ1
3(x) separation

property holds for subsets of ω. Then Δ1
2-determinacy holds.

Steel proved Theorem 5.6 by combining the Σ1
3 correctness of K, Theo-

rem 3.7, with ideas due to Alexander Kechris. See [42, Corollary 7.14].
Recall that if A,B ⊆ ωω, then A ≤w B iff there is a continuous function

f : ωω → ωω such that A = f −1[B]. This is Wadge reducibility, which can
also be expressed in terms of games and winning strategies. By Γ Wadge
determinacy we mean that for all A,B ∈ Γ, either A ≤w B or B ≤w

ωω−A.
Under mild assumptions, Γ determinacy implies Γ Wadge determinacy. In the
other direction, Harrington showed that Π1

1(x) Wadge determinacy implies
x# exists, hence Π1

1(x)-determinacy by the result due to Martin mentioned
earlier. One level up, Greg Hjorth proved the following.
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5.7 Theorem. Π1
2 Wadge determinacy implies Π1

2-determinacy.

Theorem 5.7 is Theorem 3.15 of [12]. The proof uses the Σ1
3 correctness

of K, Theorem 3.7.
Projective Determinacy has the following well-known consequences: every

projective subset of R is Lebesgue measurable and has the property of Baire,
and every projective binary relation on R has a projective uniformization.
Woodin once conjectured that the conjunction of these three consequences
of PD implies PD, and he proved several theorems that provided evidence
in favor of his conjecture. Eventually, Steel disproved Woodin’s conjecture
by showing that these three consequences of PD hold in V Col(ω,κ) if V is the
minimal extender model with a cardinal λ such that the set of κ < λ that are
<λ-strong is unbounded in λ. This large cardinal axiom is weaker than the
existence of a Woodin cardinal, hence weaker than the consistency strength
of PD by Theorem 5.1. The reader is referred to Hauser and Schindler [11]
where the history is reviewed more completely than here and Steel’s theorem
is reversed. While these consequences of determinacy do not match up with
determinacy at the projective level, it turns out that they do match up at
other levels. For example, Woodin proved the following theorem using his
core model induction technique.

5.8 Theorem. The following statements are equivalent.

(1) L(R)-determinacy.

(2) For every A ∈ L(R) such that A ⊆ R × R and A is Δ2
1 definable in

L(R) from real parameters,

(a) A is Lebesgue measurable,

(b) A has the property of Baire and

(c) A can be uniformized by a function f ∈ L(R). (By reflection, f
can be chosen to be Δ2

1 definable in L(R) from real parameters.)

(3) Same as (2) except instead of (c) we have

(c′) A can be uniformized by a function f such that every B ⊆ R, if B
is projective in f , then B is are Lebesgue measurable and has the
property of Baire. (Note that f is not required to be in L(R).)

5.2. Tree Representations and Absoluteness

Shoenfield showed that all transitive proper class models of ZFC are Σ1
2 cor-

rect. The proof involves a canonical recursive tree T that projects to a
complete Σ1

1 subset of ωω and a tree T ∗ on ω ×On such that

proj([T ∗]) = ωω − proj([T ∗])
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holds in every uncountable transitive model of ZFC. Forcing and Shoenfield
absoluteness can be used to reprove the classical theorem that Σ1

1 sets are
Lebesgue measurable; the argument is due to Solovay.

Suppose that κ be a measurable cardinal. Martin showed that all Π1
1 sets

are κ-homogeneous and all κ-homogeneous sets are determined.13 The pro-
jection of a κ-homogeneous set is called κ-weakly homogeneous and there is
a corresponding notion of a κ-weakly homogeneous tree. Martin and Solovay
showed that if T is a κ-weakly homogeneous tree, then there is a tree T ∗ on
ω ×On such that

proj([T ∗]) = ωω − proj([T ∗])

in V P whenever P ∈ Vκ. We say that T and T ∗ are <κ absolutely comple-
mented and that their projections are <κ absolutely Suslin. (This property
of the projections is also called <κ universally Baire.) Martin and Solovay
used this to show that V P is Σ1

3 correct in V P∗Q for all P∗Q ∈ Vκ. Forcing and
Martin-Solovay absoluteness can be used to see that Σ1

2 sets are Lebesgue
measurable.

The main theorem of Martin and Steel [16] is that if δ is a Woodin cardinal
and A ⊆ ωω×ωω is δ+ homogeneous, then ωω − proj(A) is <δ homogeneous.
This has many important corollaries. For example, suppose that δ < κ
where δ is a Woodin cardinal and κ is a measurable cardinal. Then Π1

2

sets are <δ homogeneous and Σ1
3 sets are <δ weakly homogeneous. (The

latter was proved by Woodin before Martin and Steel obtained their result.)
By Martin, Π1

2 sets are determined. By Martin-Solovay, Σ1
3 sets are <δ

absolutely Suslin and V P is Σ1
4 correct in V P∗Q whenever P ∗Q ∈ Vδ. Forcing

and Σ1
4 absoluteness can be used to see that Σ1

3 sets are Lebesgue measurable.
Martin and Steel also combined their main theorem with an earlier theorem

of Woodin to see that if there are δ < κ such that δ is a limit of Woodin
cardinals and κ is a measurable cardinal, then all sets of reals in L(R) are <δ
homogeneous and hence determined. (Note that we are no longer assuming
that δ is a Woodin cardinal.) From this it follows that all sets of reals in L(R)
are < δ weakly homogeneous, that the theory of L(R) cannot be changed by
forcing and that all sets of reals in L(R) are Lebesgue measurable. (These
last three consequences were proved before Martin and Steel obtained their
result; see Woodin-Shelah [40] and Woodin [50].)

Now we turn to lower bounds on the large cardinal consistency strength
of the properties discussed above.

5.9 Theorem. Let Ω be a measurable cardinal. Suppose that for all posets
P ∈ H(Ω),

(Lω1(R))V P

≡ (Lω1(R))V .

Then
Kc |= there is a Woodin cardinal.

13 For these and other notions discussed below, we refer to the Handbook chapter [22].
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Theorem 5.9 is due to Woodin and appears as Theorem 7.4 of [42]. The
proof uses Theorem 3.5, that K ∩ HC is Σ1 definable over Lω1(R). It also
uses almost everywhere weak covering, Theorem 3.1, which allows us to use
forcing to change the truth value of the statement that ω1 of the universe is
a successor cardinal of K.

5.10 Theorem. Let Ω be a measurable cardinal. Then the following are
equivalent.

(1) For all posets P ∈ VΩ,

(L(R))V P

≡ (L(R))V .

(2) For all posets P ∈ VΩ,

(L(R)-determinacy)V P

.

(3) For all posets P ∈ VΩ,

(L(R) Lebesgue measurability)V P

.

(4) For all posets P ∈ VΩ,

(there is no ω1 sequence of distinct reals in L(R))V P

.

(5) There exists an Ω + 1 iterable model of height Ω with infinitely many
Woodin cardinals.

Theorem 5.10 is due independently to Steel and Woodin and appears as
Theorem 3.1 in [43]. The proof that the failure of (5) implies the failure of
(4) uses core model theory. Instead of Kc and K, an “excellent” premouse P
is found so that the maximal countably complete construction above P yields
a relativized weasel Kc(P) such that all the Woodin cardinals of Kc(P) are
in P and Kc(P) is Ω + 1 iterable above P . The relativized core model K(P)
is extracted from Kc(P) as in Sect. 2. One of the main tools is a version of
the recursive definition of K, Theorem 3.5, that shows K(P) ∩ HC ∈ L(R)
in this more general context.

5.3. Ideals and Generic Embeddings

Let κ be an uncountable cardinal and let I be a κ-complete ideal on P(κ).
Assume that I is κ+-saturated. In other words, P(κ)/I has the κ+-chain
condition. Suppose that G is V generic over P(κ)/I. Let

j : V →M = Ult(V,G)
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be the ultrapower map computed in V [G]. Then M is transitive, crit(j) = κ
and

<j(κ)M ⊆M.

Such a j is called a generic almost huge embedding. The story of saturated
ideals from the forcing side is far too rich to tell here but we do mention a
couple of results. Shelah showed that if δ is a Woodin cardinal, then there is
a semiproper poset P with the δ chain condition such that the nonstationary
ideal over ω1 is ℵ2 saturated in V P. The following result in this subsection
comes close to showing that one Woodin cardinal is the exact consistency
strength.

5.11 Theorem. Assume that Ω is a measurable cardinal and κ < Ω. Let
P ∈ VΩ be a poset. Suppose that forcing with P produces a generic almost
huge embedding. Then there is a model of height Ω that satisfies “there is a
Woodin cardinal”.

Theorem 5.11 is due to Steel and appears as Theorem 7.1 of [42]. The
proof uses core model theory. In particular, it uses forcing absoluteness,
Theorem 3.4 and the recursive definition of K, Theorem 3.5.

If I is a countably complete non-trivial ideal on P(ω1), then I is ℵ1-dense
iff P(ω1)/I has a dense subset of cardinality ℵ1. This implies that forcing
with P(ω1)/I is equivalent to forcing with Col(ω, ω1), which in turn implies
that I is ℵ2 saturated. It also implies that P(ω1)/I is weakly homogeneous in
the sense of forcing; we just say that I is homogeneous in this case. Woodin
showed that the existence of an ℵ1-dense ideal is consistent relative to L(R)-
determinacy in [49]. Using core models, Steel proved that if there is a homo-
geneous ideal on ω1 and CH holds, then PD holds. Building on this, Woodin
showed his hypothesis was optimal.

5.12 Theorem. The following are equiconsistent over ZFC.

(1) There is an ℵ1-dense ideal over ω1.

(2) L(R)-determinacy.

The passage from (1) to (2) uses core models. In particular, it uses K and
a method due to Woodin known as the core model induction. Woodin proves
that if A ⊆ R and A ∈ L(R), then A is determined. One could say that his
proof is by induction on the least (α, n) ∈ On×ω such that A ∈ Σn+1(Jα(R)).
Steel uses a version of the core model induction in [44].

5.4. Square and Aronszajn Trees

This section is actually on the failure of square and the non-existence of
Aronszajn trees, i.e., the tree property.

If λ is an ordinal and C = 〈Cα | α < λ〉, then C is a coherent sequence iff
for all limit β < λ,
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• Cβ is club in β and

• if α ∈ lim(Cβ), then Cα = α ∩ Cβ .

If C is a coherent sequence, then D is a thread of C iff D is club in λ and
Cα = α ∩ D for all α ∈ lim(D). The principle �(λ) says that there is a
coherent sequence of length λ with no thread. The principle �κ says that
there is a coherent sequence C of length κ+ such that type(Cα) ≤ κ for all
limit α < λ. Coherent sequences are the topic of the Handbook chapter [46].
In this and the next section, it is convenient to set c = 2ℵ0 .

5.13 Theorem. Let κ ≥ max(ℵ2, c). Suppose that both �κ and �(κ) fail.
Then L(R)-determinacy holds.

See [29], which explains credit for Theorem 5.13 and related results, and
has a proper introduction. Two basic elements of the proof are generalizations
of Theorems 3.2 and 3.13. Theorem 3.6 is also used. The author derived PD
from the hypothesis of Theorem 5.13. In fact, he showed that Mn(X) exists
for all n < ω and bounded X ⊆ κ+. Steel observed that the author’s proof
meshed with techniques from [44] to give the result as stated.

Todorcevic proved that if �(κ) holds then there is an Aronszajn tree on κ.
See [46]. From this and Theorem 5.13, one may conclude, for example, that
if c ≤ ℵ2 and the tree property holds at ℵ2 and ℵ3, then L(R)-determinacy
holds. Related theorems about the tree property were proved earlier without
going through square; see [6] and its bibliography.

5.14 Theorem. Suppose that κ is a singular strong limit cardinal and �κ

fails. Then L(R)-determinacy holds.

Theorem 5.14 is Theorem 0.1 of [44], which includes an explanation of
credit and related results. The proof uses Theorem 3.12, a generalization of
Theorem 3.2 and a version of Woodin’s core model induction due to Steel.

5.15 Theorem. Suppose that κ is a weakly compact cardinal and �κ fails.
Then L(R)-determinacy holds.

Theorem 5.15 is Corollary 8 of [31], which includes an explanation of credit.
Two basic elements of the proof are generalizations of Theorems 3.3 and 3.12.

5.16 Theorem. Suppose that κ is a measurable cardinal and �κ fails. Then
there is a model of height κ that satisfies “there is a proper class of strong
cardinals” and “there is a proper class of Woodin cardinals”.

See [2], which includes an explanation of credit. The proof uses a gen-
eralization of Theorem 3.12 for Kc and nothing about K. The hypothesis
of Theorem 5.16 holds if κ is strongly compact by a well-known theorem of
Solovay. Woodin has shown that the conclusion of Theorem 5.16 implies the
consistency of ZF + ADR where ADR asserts that all real games of length ω
are determined.

The following is a very recent theorem due to Jensen, Schimmerling,
Schindler and Steel [13].



5. Applications of Core Models 1745

5.17 Theorem. Let κ ≥ ℵ3 be regular and countably closed. Suppose that
both �κ and �(κ) fail. Then there is a proper class model that satisfies “there
is a proper class of strong cardinals” and “there is a proper class of Woodin
cardinals”.

5.5. Forcing Axioms

If C is a class of posets, then FA(C) says that for all P ∈ C and D with
|D| = ℵ1, there exists a D-generic filter on P. By definition,

PFA ≡ FA({P | P is proper}).

This is the Proper Forcing Axiom. For any cardinal λ, we set

PFA(λ) = FA({P | P is proper and |P| = λ}).

Todorcevic and Velickovic showed that PFA(c) implies that c = ℵ2. See
[48, Theorem 1.8] and [3, Theorem 3.16]. Todorcevic [47] showed that if λ is
an ordinal such that cf(λ) ≥ ℵ2, then PFA(λℵ0) implies the failure of �(λ).
Therefore PFA(c+) implies the hypothesis of Theorem 5.13.

5.18 Corollary. PFA(c+) implies L(R)-determinacy.

Note too that PFA(c++) implies the hypothesis of Theorem 5.17.

5.19 Corollary. PFA(c++) implies that there is a proper class model that
satisfies “there is a proper class of strong cardinals” and “there is a proper
class of Woodin cardinals”.

Baumgartner and Shelah showed that PFA is consistent relative to the
existence of a supercompact cardinal. The levels of the PFA hierarchy de-
scribed above do not require a supercompact cardinal. For example, Neeman
and Schimmerling [25] showed that the consistency strength of PFA(c+) is
strictly less than the existence of a cardinal κ that is κ+-supercompact. More
about this shortly.

By definition,

SPFA ≡ FA({P | P is semi-proper})

and
MM ≡ FA({P | P preserves stationary subsets of ω1}).

These are the Semi-proper Forcing Axiom and Martin’s Maximum respec-
tively. It is straightforward to see that MM implies SPFA, which in turn
implies PFA. Foreman, Magidor and Shelah showed that MM is consistent
relative to a supercompact cardinal; see [7, Theorem 5]. Their proof used
Shelah’s revised countable support iteration. (Donder and Fuchs [5] is a
good source for this.) Later, Shelah [39] proved that SPFA and MM are
equivalent.
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Recall that a poset P = (P,<P ) is λ-linked iff there is a function � : P → λ
such that for all p, q ∈ P , if �(p) = �(q), then p and q are compatible in P.
Here are two obvious comments. If |P | = λ, then P is λ-linked. If P is
λ-linked, then P has the λ+-chain condition. For any cardinal λ, we define

SPFA(λ-linked) ≡ FA({P | P is semi-proper and λ-linked})

and

MM(λ) ≡ FA({P | P preserves stationary subsets of ω1 and |P | = λ}).

Shelah [39] showed that SPFA implies MM. In [25], this theorem is refined to
SPFA(c+-linked) implies MM(c). This is useful because Neeman and Schim-
merling also show in [25] that SPFA(c+-linked) is consistent relative to the
existence of a cardinal λ that is (λ,Σ2

1)-subcompact. Without reproducing
the definition, we remark that a witness that λ is (λ,Σ2

1)-subcompact is a
certain family of elementary embeddings of the form

π : H(κ+) → H(λ+)

with crit(π) = κ and π(κ) = λ. Our point here is that each embed-
ding of this sort comes from a superstrong extender. Consequently, (λ,Σ2

1)-
subcompactness is strictly weaker than κ+-supercompactness in the large
cardinal hierarchy. The consistency proof in [25] of SPFA(c+-linked) uses a re-
vised countable support iteration of semi-proper posets of length λ as did She-
lah’s consistency proof of SPFA. Not surprisingly, if countable supports and
proper posets are used instead, then one obtains a model of PFA(c+-linked)
starting from the same large cardinal in the ground model. The theory of
extender models can accommodate (λ,Σ2

1)-subcompactness but core model
techniques are not sufficiently developed to measure the consistency strength
of PFA(c+-linked). However, there is evidence towards an equiconsistency:
Neeman [24] showed that in order to force PFA(c+-linked) by proper forc-
ing over an extender model, if λ is ℵ2 of the generic extension, then λ is
(λ,Σ2

1)-subcompact in the ground model.
Taking a fundamentally different approach, Woodin [51] established that

MM(c) is consistent relative to the theory

ZF + ADR + Θ is regular

where
Θ = sup({α ∈ On | there is a surjection f : R → α}).

The proof uses Woodin’s Pmax theory; see the Handbook chapter [15] for an
introduction to this technique.

Todorcevic showed that MM(c) implies the Stationary Reflection Princi-
ple SRP(ω2), which says that for every stationary S ⊆ Pω1(ω2), if for all
stationary T ⊆ ω1, {X ∈ S | X ∩ ω1 ∈ T} is stationary in Pω1(ω2), then
there exists an α such that ω1 < α < ω2 and S ∩ Pω1(α) contains a club in



5. Applications of Core Models 1747

Pω1(α). This version comes from Definition 9.74(3) and Lemma 9.75(1) of
Woodin [51]. The reason we bring this up here is the following core model
result of Steel and Zoble [45].

5.20 Theorem. SRP(ω2) implies L(R)-determinacy.

The proof builds on that of Corollary 9.86 of Woodin [51], which says that
SRP(ω2) implies PD.

Another well-known variant of MM is Bounded Martin’s Maximum or
BMM, which says that if P preserves stationary subsets of ω1, then

(H(ω2))V ≺Σ1 (H(ω2))V P

.

Woodin has shown that BMM is consistent relative to the existence of ω + 1
many Woodin cardinals; see [51, Theorem 10.99]. The following lower bound
by Schindler [35] uses core models.

5.21 Theorem. BMM implies that for every set X there is a model with a
strong cardinal containing X.

5.6. The Failure of UBH

The theory of iteration trees was initiated by Martin and Steel in the context
of inner models in [17] and determinacy in [16]. Three Hypotheses are iso-
lated in Sect. 5 of the former paper: UBH (Unique Branches), CBH (Cofinal
Branches), and SBH (Strategic Branches). These hypotheses have to do with
iteration trees on V but their motivation is the construction of inner models
with large cardinals. Results, both positive and negative, about the three
hypotheses and their variants give useful information towards a solution to
the inner model problem.

Woodin showed that UBH and CBH are false assuming sufficient large
cardinals. This lead to the question of consistency strength and the following
core model result of Steel [43].

5.22 Theorem. Suppose that there is a non-overlapping iteration tree T on
V with cofinal wellfounded branches b �= c. Then there is an inner model with
infinitely many Woodin cardinals. If, in addition,

δ(T ) ∈ ran(iT
0,b) ∩ ran(iT

0,c),

then there is an inner model with a strong cardinal that is a limit of Woodin
cardinals.

Woodin eventually reduced the large cardinal assumption in his refuta-
tions of UBH and CBH to a supercompact cardinal. Motivated by this,
Neeman and Steel [26] constructed counterexamples starting from much less
in the way of large cardinals. For example, under a large cardinal assumption
slightly stronger than the one mentioned in Theorem 5.22, they constructed
an iteration tree on V with distinct cofinal wellfounded branches. See [26]
for a discussion on additional results on UBH and CBH and their failure.
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5.7. Cardinality and Cofinality

Shelah famously showed that if ℵω is a strong limit cardinal, then (ℵω)ℵ0 <
ℵω4 . See the Handbook chapter [1]. An important conjecture is that the
actual bound is ℵω1 . The following theorem appears as Theorem 1.1 of [10].
It provides valuable information about what it would take to obtain a coun-
terexample to the conjecture.

5.23 Theorem. Let α be a limit ordinal. Suppose that 2|α| < ℵα and 2|α|+ <
ℵ|α|+ but (ℵα)|α| > ℵ|α|+ . Then Mn(X) exists for all n < ω and bounded
X ⊆ ℵ|α|+ .

The following theorem appears as Theorem 1.4 of [10]. Recently, Gitik
showed that its hypothesis is consistent relative to the existence of a super-
compact cardinal. See [8].

5.24 Theorem. Let λ be a cardinal such that ω < cf(λ) < λ. Suppose that
{κ < λ | 2κ = κ+} is stationary and co-stationary in λ. Then M#

n (X) exists
for all X ⊆ λ.

In [9], Gitik showed that if there is a proper class of strongly compact
cardinals, then there is a model of ZF in which all uncountable cardinals
are singular. Towards measuring the consistency strength of this statement,
Daniel Busche showed the following, which will appear in his PhD thesis.

5.25 Theorem. Suppose that all uncountable cardinals are singular. Then
AD holds in L(R)HODP

for some P ∈ HOD.
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Sy D. Friedman, and Jan Krajiček, editors, Logic Colloquium ’01, vol-
ume 20 of Lecture Notes in Logic, pages 386–401. Association for Sym-
bolic Logic, Urbana, 2005.

[35] Ralf Schindler. Bounded Martin’s Maximum and strong cardinals. In
Joan Bagaria and Stevo Todorcevic, editors, Set Theory. Centre de
recerca Matematica, Barcelona 2003–2004. Trends in Mathematics.
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1. Introduction
In this chapter we survey recent advances in descriptive set theory, starting
(roughly) from where Moschovakis’ book [31] ends. Our survey is not in-
tended to be complete, but focuses mainly on the structural consequences of
determinacy for the model L(R), including the important case of the projec-
tive sets. By “structural” we are referring to the combinatorial theory of the
pointclasses (for example, the scale property which in some sense describes
the structure of the set) as well as the cardinal structure up to the natural
ordinal associated with these pointclasses. This might include determining
their cofinalities, partition properties, and so forth.

The Axiom of Determinacy (AD), is the assertion that every two-player
integer game is determined; we review the basic concepts below. The axiom
was introduced by Mycielski and Steinhaus in the 1960s, and it soon became
apparent that AD was a powerful tool for unlocking the combinatorial struc-
ture of sets of reals, and a program for doing this was begun. One of the
central achievements during this period was the extension, assuming Projec-
tive Determinacy, to the general projective sets of the basic structural theory
of the Π1

1, Σ1
1 sets developed by the “classical” descriptive set theorists from

the 1920s through the 1940s. References [31] and [18] provide detailed ac-
counts of the history of these developments. The results we discuss here can
thus be viewed as extensions and refinements of the basic determinacy theory
developed by the descriptive set theorists of the 1960s and 1970s as described
in [31, 18].

We note that more recent work of Martin, Steel, and Woodin [28, 41] (de-
scribed in a little more detail below) has pinpointed the connection between
large cardinal axioms and various levels of determinacy, including ADL(R).

We work throughout this chapter in the base theory ZF + DC (except at
a few points where we mention the use of DC). However, we will be dealing
almost entirely in this chapter with the consequences of AD. In particular
we assume AD throughout Sects. 3–5. In Sect. 2 we mention explicitly the
hypotheses as needed. The reader should recall that AD contradicts the
Axiom of Choice as well as many of its consequences. In particular, successor
cardinals need not be regular and measurable cardinals need not be limit
cardinals.

There were two ways in which the earlier theory was inadequate. First, the
theory of the projective sets was described largely in terms of the so-called
projective ordinals, the δ1

n. The first four of these were computed, and several
general results were proved (a good reference here is [16]). Kunen initiated a
program for computing the δ1

n. The idea of a homogeneous tree, which plays
a central part in the program, arose independently in the work of Kunen
and Martin. Kechris and Martin independently (see [17]) then formulated
the general notion of a homogeneous tree. Despite this important progress,
however, the values of δ1

n for n ≥ 5, and the combinatorial structure of the
intervening cardinals were left open. Secondly, the projective sets represent
only the sets of reals occurring in the first level of the L(R) hierarchy. It is
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generally believed, however, that AD should suffice to develop the structural
theory (in some reasonable sense) of the entire model L(R). Thus, two central
goals emerge: first, to refine the arguments from the projective sets to permit
a detailed analysis of the cardinal structure within the projective ordinals,
and secondly, to extend this analysis as far as possible.

In the early 1980s, Martin and Steel [27] showed that (Σ2
1)L(R) was the

largest pointclass in L(R) having the scale property. Extending their meth-
ods, Steel [37] developed an analysis of the scale property in L(R). This
important work can be thought of as extending both the scale analysis of
the projective sets and also the “fine structure” theory of L (developed by
Jensen), and uses methods of both. This fine structure theory of L(R), like
the earlier theory of the projective sets, is not detailed enough to analyze the
fine combinatorial structure of the cardinals, nor to answer many questions
about the model L(R) (though it suffices to answer many “scale type” ques-
tions, e.g., showing which pointclasses are the κ-Suslin sets for some κ, or
showing every reliable cardinal is a Suslin cardinal; see [37]).

In the early 1980s, Martin [23] obtained a result on the ultrapowers of
δ1

3 by the normal measures on δ1
3. Building on this and some joint work

with Martin, the author computed δ1
5. In the mid-1980s, this was extended

to compute all the δ1
n, and to develop the combinatorics of the cardinal

structure of the cardinals up to that point. The analysis, naturally, proceeded
by induction. The complete “first-step” of the induction appears in [11]. The
analysis revealed a rich combinatorial structure to these cardinals. Indeed,
even the answer δ1

5 = ℵωωω +1 hints at such a structure (in general δ1
2n+1 =

ℵω(2n−1)+1, where ω(0) = 1 and ω(n+1) = ωω(n)). A goal, then, is to extend
some version of this “very-fine” structure theory to the entire model L(R).
In the late 1980s the author extended the analysis further, up to the least
inaccessible cardinal in L(R), although this lengthy analysis has never been
written up. It was clear, however, that new, serious problems were being
encountered shortly past the least inaccessible. In [10], for example, results
were given that show that the theory fell far short of κR, the ordinal of the
inductive sets (the Wadge ordinal of the least non-selfdual pointclass closed
under real quantification).

More recently, attempts have been made to isolate some of the “global”
obstructions to extending the detailed L(R) analysis. Some combinatorial
principles were thus formulated which seem to be necessary for extending the
theory sufficiently high in L(R) and which seem not to be provable by an
inductive “from below” argument. The most important principle along these
lines is called the weak square property, �κ,λ, for κ a Suslin cardinal and λ an
ordinal < Θ (the supremum of the lengths of prewellorderings of the reals).
Recently, the author has established this choice-like principle (to be defined
in Sect. 6). This has a number of consequences. For example, it follows
that every regular κ which is either a Suslin cardinal or the successor of a
Suslin cardinal is δ2

1-supercompact in L(R). This and other global choice-like
principles will be discussed in Sect. 6.
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At the time of this writing, then, we may summarize the current situation
as follows. A detailed structural analysis for an initial segment of L(R)
including the projective sets is known. Certain choice-like principles which
seem to be important for further extensions have been established globally
(that is, below Θ). What remains is to identify the further global principles
required, and integrate them with the inductive analysis.

In the present chapter we will survey both approaches mentioned above.
We will adopt a somewhat informal style at times in order to keep this chap-
ter reasonably self-contained, still give proofs, and keep the discussion to a
reasonable length. In Sect. 2 we will collect together and review various re-
sults from descriptive set theory and determinacy theory we will need. We
will present proofs for some of these results of particular significance for us,
and reference the others. In Sect. 3 we develop the AD theory of the Suslin
cardinals, culminating in a classification theorem. In Sect. 4 we will develop
a theory of “trivial” descriptions. This is not actually necessary, and in fact
was omitted from [11]. Descriptions are the combinatorial ingredients that
“describe” how to generate equivalence classes of functions with respect to
certain measures. At the level of ω1 (here the measures are simply the n-fold
products of the normal measure), descriptions are trivial enough objects that
they need not be introduced explicitly, but rather absorbed into the notation.
Nevertheless, by introducing them explicitly the reader can see the general
flavor of the arguments while the combinatorics is still trivial. Using this
approach, we will show in this section the strong partition relation on ω1, the
weak partition relation on δ1

3, and give a new proof of the Kechris-Martin
Theorem for Π1

3. In all cases, our proofs will use only the theory of the
trivial descriptions and techniques that will generalize to higher levels (in
particular, no use is made of the theory of indiscernibles for L). In Sect. 5 we
will introduce the (non-trivial) notion of a description of level 1. This cor-
responds to the analysis for computing δ1

5 and proving the strong partition
relation on δ1

3, etc. Although we state complete definitions and theorems,
we will illustrate proofs here frequently by considering examples which show
the reader the ideas involved without getting lost in details. In Sect. 6 we
introduce �κ,λ and other global choice-like principles. Some of the results
presented here are of interest in their own right, and several are new.

We hope Sects. 4, 5 will provide a good introduction to, and an overview
of, the modern theory of the projective sets (that is, the developments since
[31]), and Sect. 6 will give some insight into the problems being faced in
extending the theory and their possible solutions.

Although the focus of this chapter is on the consequences of AD, we men-
tion briefly some connections with other hypotheses. Martin (see [25] and
[26]) showed Borel Determinacy is a theorem of ZFC, although H. Friedman
[4] showed that ℵ1 iterations of the power set axiom applied to the reals
is needed to prove it. Martin also showed Π1

1-determinacy followed from
the existence of x# for every x ∈ ωω, and Harrington proved the converse.
Martin also showed the curious result that Δ1

2n-determinacy implies Σ1
2n-
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determinacy (see [19] for another proof). More recently, Martin and Steel
[28] showed that the existence of n Woodin cardinals (see [28] for the defin-
ition) plus a larger measurable implies Δ1

n+1-determinacy. Woodin showed
that the existence of ω many Woodin cardinals plus a larger measurable im-
plies ADL(R). In fact, Δ1

n+1-determinacy is equiconsistent with the existence
of n Woodin cardinals, and AD is equiconsistent with the existence of ω
many Woodin cardinals. Thus, the AD hypothesis now has the added mea-
sure of respect that ADL(R) follows from more “conventional” large cardinal
hypotheses. It should be noted, however, that the program of using AD to
explore the structural theory of the projective sets and beyond was begun in
the 1960s, well before this connection was known.

We review now some notation and terminology that we will use through-
out the chapter. We generally work in the Polish space (complete, separable,
metric space) ωω, the space of functions from ω to ω topologized with the
product of the discrete topologies on ω. As a topological space this is home-
omorphic to the space of irrationals, but any two uncountable Polish spaces
are Borel isomorphic (in fact, isomorphic by a Δ0

3-measurable function). We
follow the usual convention of referring to the elements of ωω as “reals”. By a
perfect product space we mean a space of the form X = X1× · · ·×Xn, where
each Xi = ω or ωω (ω always with the discrete topology), and at least one
factor is ωω. All perfect product spaces are recursively homeomorphic to ωω

by recursive coding and decoding maps, whose notation we now standardize.
For each n ≥ 2, fix a recursive bijection

(m0, . . . ,mn−1) → 〈m0, . . . ,mn−1〉n

from ωn to ω which is increasing in each argument, and let

m→ ((m)0, . . . , (m)n−1)

denote the recursive inverse map. Let (x0, x1, . . . ) → 〈x0, x1, . . . 〉 also denote
the induced recursive bijection from (ωω)ω to ωω defined by

〈x0, x1, . . . 〉(m) = xm0(m1),

where (m0,m1) refers to the inverse of the coding map 〈 〉2. Similarly, for
any perfect product space X = X1 × · · · × Xn−1, there is a recursive bi-
jection between X and ωω, we will use the same notation (x0, . . . , xn−1) →
〈x0, . . . , xn−1〉n, and x → ((x)0, . . . , (x)n−1), for the coding and decoding
maps. Since the precise meaning is generally clear from the context, we will
usually drop the subscripts and extra parentheses from the notation.

For X a perfect product space and A ⊆ X, we write Ac for X −A (it will
always be clear which X we are referring to). If R ⊆ X × Y , the domain of
R is defined by dom(R) = {x : ∃y (x, y) ∈ R}. For any x ∈ X, we let Rx

denote the section of R at x, that is, Rx = {y : (x, y) ∈ R}.
A (boldface) pointclass Γ is a collection of subsets of perfect product spaces

X which is closed under continuous inverse image. That is, if f : X → Y is
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continuous and A ⊆ Y is in Γ, then B = f −1(A) is in Γ. We also say A is
Wadge reducible to B, written A ≤w B. As is customary in descriptive set
theory, we frequently use logical notation in describing sets, and thus we write
A(x) for x ∈ A. Thus we may rewrite the above as B(x) ←→ A(f(x)), and
for this reason pointclasses are referred to as being closed under continuous
substitution (or Wadge reduction). Likewise ¬A(x) means x /∈ A. For Γ
a pointclass, Γ̌ denotes the dual pointclass, that is, A ∈ Γ̌ iff Ac ∈ Γ. We
say Γ is non-selfdual if Γ �= Γ̌, and otherwise say Γ is selfdual. We let ∃ω

and ∃ωω

denote existential quantification over ω and ωω respectively, and
likewise for ∀ω and ∀ωω

. We apply this notation also to pointclasses. For
example, ∃ωω

Γ denotes the A ⊆ X for which there is a B ⊆ X×ωω such that
∀x (A(x) ←→ ∃y ∈ ωω B(x, y)). For Γ a (usually non-selfdual) pointclass we
let Δ(Γ) = Γ ∩ Γ̌. When Γ is understood we frequently just write Δ.

Let X,Y be perfect product spaces, and A ⊆ X, B ⊆ Y . Assuming
AD, Wadge’s Lemma asserts that either A ≤w B or B ≤w Ac. In fact,
the proof shows something stronger. For example, suppose X = Y = ωω,
and let A,B ⊆ ωω. Consider the integer game where I plays integers a(i),
and II plays b(i), thereby producing reals a, b ∈ ωω, and II wins the run
iff (a ∈ A ←→ b ∈ B). If II has a winning strategy τ , then τ defines a
Lipschitz continuous function (which we also call τ) from ωω to ωω. By this
we mean τ(a)�n depends only on a�n. Also, a ∈ A ←→ τ(a) ∈ B. If I has
a winning strategy σ, we likewise get a Lipschitz continuous function σ such
that b ∈ B ←→ σ(b) ∈ Ac. If we let ≤l denote reduction by a Lipschitz
continuous function, we therefore have either A ≤l B or B ≤l Ac.

For X a Polish space, we let Σ0
1 (respectively Π0

1) denote the collection
of open (respectively closed) subsets of X. For α < ω1, we recursively define
Σ0

α to be the sets A ⊆ X which are countable unions of sets An, each of
which lies in Π0

β for some β < α. Also, Π0
α = Σ̌0

α, and Δ0
α = Σ0

α ∩ Π0
α.

The sets which are Σ0
α for some α < ω1 (equivalently Π0

α for some α < ω1)
are the Borel sets. The projective hierarchy is defined as follows. The Σ1

1

(or analytic) sets are the sets which are continuous images of closed sets in
Polish spaces. An equivalent definition is Σ1

1 = ∃ωω

Π0
1. Also, we define

Π1
1 = Σ̌1

1, and Δ1
1 = Σ1

1 ∩Π1
1. Suslin’s theorem says that the Δ1

1 sets are
exactly the Borel sets. In general, we define Σ1

n = ∃ωω

Π1
n−1, Π1

n = Σ̌1
n, and

Δ1
n = Σ1

n ∩Π1
n. The lightface projective classes, Σ1

n, Π1
n, Δ1

n are defined
an analogous manner, except at the bottom we take Σ0

1 to be the collection
of sets of the form

⋃
n∈ω Vf(n), where f : ω → ω is recursive, and {Vn}n∈ω

is a recursive presentation for the space X. See [31] for further details (we
will always have X a perfect product space, in which case any reasonable
enumeration of the usual basis for X will be a recursive presentation).

For s a finite sequence (i.e., a function with domain some n ∈ ω), we
let lh(s) = n denote the length of s. Thus, s�m, for m ≤ n, is the initial
subsequence of s of length m.

By a tree on a set X we mean a set T ⊆ X<ω closed under subsequence.
Given sets X and Y , we frequently identify a tree T on the set X × Y with
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a set T ⊆ {(s, t) ∈ (X × Y )<ω : lh(s) = lh(t)} closed under initial segment,
that is, if (s, t) ∈ T , then (s�m, t�m) ∈ T for any m < lh(s). Similarly, we
identify trees on X1×· · ·×Xn with subsets of X<ω

1 ×· · ·×X<ω
n . [T ] denotes

the set of paths or branches through T . We say a tree is well-founded iff it is
well-founded under the extension relation, and otherwise say it is ill-founded.
Thus, T is ill-founded iff [T ] �= ∅. If T is ill-founded, and X is equipped with a
wellorder <X , then T has a left-most branch f ∈ [T ]. That is, for all g ∈ [T ],
if f �= g, then for the least n such that f(n) �= g(n) we have f(n) <X g(n).
For T a tree on X×Y , and x ∈ Xω, we let Tx = {s ∈ Y <ω : (x� lh(s), s) ∈ T}
denote the section of the tree T at x. For T a tree on X × Y , we let p[T ]
denote the projection of [T ], that is,

p[T ] = {x ∈ Xω : ∃y ∈ Y ω ∀n (x�n, y�n) ∈ T}.

If T is a tree on λ1 × · · · × λn and β ∈ On, then we let

T �β = {(s1, . . . , sn) ∈ T : ∀m < lh(s1) (s1(m), . . . , sn(m) < β)}.

If (X,<X) is a wellordered set, then for any n ∈ ω the set Xn is wellordered
by the induced lexicographic ordering defined by:

s <lex t←→ ∃k(s(k) <X t(k) ∧ ∀l < k s(l) = t(l)).

We let |s|lex denote the rank of s ∈ Xn in the lexicographic ordering. If T is
a tree on X, then the wellorder <X also induces a linear order on T , known
as the Kleene-Brouwer order, defined by:

s <KB t←→ (s extends t) or ∃k < min{lh(s), lh(t)}
(s(k) <X t(k) ∧ ∀l < k s(l) = t(l)).

The Kleene-Brouwer order on T is a wellordering iff T is well-founded, that
is, [T ] = ∅. If T is a tree on X and s ∈ T , we let T (s) denote {t ∈ T :
t extends s}. If T is a well-founded tree, we let |T | denote the rank of T . In
this case, we let |T |KB denote the rank of T in the Kleene-Brouwer order (this
also implicitly depends on the wellorder of X). We always have |T | ≤ |T |KB.
Note that |T (s)| is the rank of s in T , and we also denote this by |s|T . Also,
|(T �α)(s)| denotes the rank of s in the tree T �α, and likewise for |(T �α)(s)|KB.
More generally, if ≺ is any well-founded relation on δ ∈ On, we let ≺�α denote
≺ ∩{(β, γ) : β, γ < α}. Likewise, ≺(α) = ≺ ∩ {(β, γ) : β, γ ≺ α}. We let |≺|
denote the rank of ≺. Similarly, |≺(α)| = |α|≺ both denote the rank of α in
the well-founded relation ≺.

By a game on a set X we mean a two player game where players I and
II alternate playing x0, x1, . . . ∈ X building �x ∈ Xω, and I wins the run iff
�x ∈ A, where A ⊆ Xω is the payoff set. Although the game is officially
identified with its payoff set A ⊆ Xω, we sometimes write GA to denote this
game for conceptual clarity. A strategy for I (II) in a game on X is a function
from the sequences from X of even (odd) length into X. The strategy is



1760 Jackson / Structural Consequences of AD

winning for I (II) if every run of the game where I (II) follows the strategy is
a win for I (II). A game A is determined if one of the players has a winning
strategy. AD is the assertion that every game on ω is determined. A quasi-
strategy for I (II) is a relation R ⊆ X<ω × X such that ∀s ∈ X<ω ∃x ∈ X
R(s, x), and ∀s ∈ X<ω of odd (even) length, ∀x ∈ X R(s, x). We think of a
quasi-strategy as a multi-valued strategy. A quasi-strategy is winning for I
(II) if every run �x ∈ Xω of the game such that ∀n R(�x�n, x(n)) is a win for I
(II). A game GA is quasi-determined if one of the two players has a winning
quasi-strategy. If X can be wellordered (e.g., X = ω), then from a winning
quasi-strategy for one of the players we easily get a winning strategy for the
same player. If X is a perfect product space, Y is a set, and A ⊆ X × Y ω,
then

GY A is the set B ⊆ X defined by x ∈ B iff I has a winning strategy in
the game GA(x) where I and II alternate playing y0, y1, y2, . . . ∈ Y producing
�y ∈ Y ω, and I wins the run if (x, �y) ∈ A. We abbreviate this by writing
x ∈ B ←→ ∃y0 ∀y1 ∃y2 ∀y3 · · · (x, �y) ∈ A.

By a measure on a set X we mean a countably additive ultrafilter on X.
Recall that assuming AD, every ultrafilter on a set X is countably additive,
that is, a measure. If ν is a measure on X, and f is a function with domain
X, we let [f ]ν denote the equivalence class of f in the ultrapower, that is,
f ∼ g ←→ ν({x ∈ X : f(x) = g(x)}) = 1. When considering ultrapowers by
measures, we also let [f ]ν denote the image of [f ]ν in the transitive collapse
of the ultrapower. We often say “A has measure one” in place of ν(A) = 1.
We also write ∀∗

νx ∈ X to abbreviate “for ν measure one many x ∈ X”.
We introduce a useful notational convention. Let ν1, . . . , νn be measures.

If P ⊆ On and δ ∈ On, we let ∀∗
ν1

α1 ∀∗
ν2

α2 · · · ∀∗
νn

αn P (δ(α1, . . . , αn)) abbre-
viate the statement: if [f1]ν1 = δ then for ν1 almost all α1, if [f2]ν2 = f1(α1),
then for ν2 almost all α2, if [f3]ν3 = f2(α2), . . . , for νn almost all αn,
P (fn(αn)). It is easily checked that this statement is well-defined. We also
extend this convention to properties of pairs of ordinals, etc. For example,
given measures ν1, . . . , νn and ordinals δ, ε, we might write ∀∗

ν1
α1 · · · ∀∗

νn
αn

cf(δ(α1, . . . , αn)) ≤ ε(α1, . . . , αn). If the measures are understood, we simply
write ∀∗α1, . . . , αn P (δ(α1, . . . , αn)), etc.

If f : X → On is a function and α ∈ On, we write Nf (α) for the least
ordinal in the range of f greater than α. Likewise, if A ⊆ On, we write
NA(α) for the least ordinal greater than α in A.

2. Survey of Basic Notions

Throughout Sect. 2 we work in the base theory ZF + DC, stating other
hypotheses explicitly as needed.

2.1. Prewellordering, Scales, and Periodicity

We begin with a review of the basic concepts of scale and prewellordering.
The definition of a scale was introduced by Moschovakis, and represents a dis-
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tillation of the key ideas in the Novikov-Kondo proof of uniformization for
Π1

1 sets.
Recall the basic notions of pointclass, Wadge reduction, etc., that were

defined in the introduction. If Γ is a pointclass, we say U ⊆ ωω ×X in Γ is
universal for Γ�X (where X = X0 × · · · ×Xn is a perfect product space) if
for every B ⊆ X in Γ, there is a y ∈ ωω such that B = Uy = {x : (y, x) ∈ U}.
Assuming AD, Wadge’s Lemma implies that every non-selfdual pointclass Γ
has universal sets. For suppose A ∈ Γ−Γ̌. For every product space X = X0×
· · · ×Xn, define UX ⊆ ωω ×X by UX(y, x0, . . . , xn) ←→ fy(〈x0, . . . , xn〉) ∈
A where we view every y ∈ ωω as coding a Lipschitz continuous function
fy : ωω → ωω (say by fy(a0, . . . , an) = (y(〈a0〉), . . . , y(〈a0, . . . , an〉)). Clearly
UX ∈ Γ. If B ⊆ X is in Γ, then by Wadge B ≤l A, so for some y we have
B = (UX)y.

The usual diagonal argument shows that a universal Γ set U ⊆ ωω × ωω

cannot lie in Γ̌, and thus if Γ has a universal set, it is non-selfdual. Also,
the s-m-n and Recursion Theorems go through at this level of generality.
Specifically, we have:

2.1 Theorem. Let Γ be a pointclass with a universal set. Then there are
universal sets UX ⊆ ωω × X for all product spaces X with the following
properties:

(1) (s-m-n Theorem) For every X = X1 × · · · ×Xn, Y = X1 × · · · ×Xn ×
· · ·×Xm where m > n, there is a continuous sY,X : ωω×X → ωω such
that

UY (y, x1, . . . , xn, . . . , xm) ←→ UX′ (sY,X(y, x1, . . . , xn), xn+1, . . . , xm)

where X ′ = Xn+1 × · · · ×Xm.

(2) (Recursion Theorem) For every product space X = X1 × · · · ×Xn and
Γ set A ⊆ ωω × X, there is a y∗ ∈ ωω such that for all x ∈ X,
UX(y∗, x) ←→ A(y∗, x).

Proof. Let U ⊆ ωω × ωω in Γ be universal for Γ subsets of ωω. For X =
X1 × · · · × Xn define UX(y, (x1, . . . , xn)) ←→ U(y0, 〈y1, x1, . . . , xn〉), where
here y → (y0, y1) denotes our recursive bijection from ωω to ωω×ωω. Suppose
Y = X1 × · · · ×Xn × · · · ×Xm. Then

UY (y, (x1, . . . , xn, . . . , xm)) ←→ U(y0, 〈y1, x1, . . . , xn, . . . , xm〉)

and
UX′ (s, (xn+1, . . . , xm)) ←→ U(s0, 〈s1, xn+1, . . . , xm〉).

Thus, it suffices to take sY,X(y, x1, . . . , xn) = 〈ε, 〈y, x1, . . . , xn〉〉 where ε is
such that U(ε, 〈〈y, x1, . . . , xn〉, xn+1, . . . , xm〉) ←→ U(y0, 〈y1, x1, . . . , xm〉) for
all y, x1, . . . , xm. That is, choose ε so that for all z

U(ε, z) ←→ U(z0,0,0, 〈z0,0,1, z0,1, . . . , z0,n, z1, . . . , zm−n〉)
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which is possible as U is universal (here z0,0,0 abbreviates (((z)0)0)0, etc.,
and these decoding functions refer to the obvious product spaces).

As for the Recursion Theorem, fix X = X1×· · ·×Xn, and let A ⊆ ωω×X
be in Γ. Let ε ∈ ωω be such that U(ε, y, x) ←→ A(s(y, y), x), where s is the s-
m-n function from (ωω)2 to ωω corresponding to the spaces ωω and ωω ×X.
Thus, U(s(ε, y), x) ←→ U(ε, y, x) ←→ A(s(y, y), x) for all y, x, where we
have dropped the cumbersome subscripts on the U . Let then y = ε, and thus
y∗ = s(ε, ε). �

Following Moschovakis, we call sets UX satisfying Theorem 2.1 good uni-
versal sets. We shall frequently implicitly assume (without loss of generality)
that our universal sets are good. Note that the construction of the UX is
uniform in the universal sets A.

We review now some of the general theory of prewellorderings and scales.

2.2 Definition. A (regular) norm on a set A ⊆ ωω is a map φ from A
into (onto) some ordinal. A norm φ : A → On is said to be a Γ-norm
if there are Γ, Γ̌ binary relations ≤Γ

φ , ≤Γ̌
φ on ωω such that for all y ∈ A,

∀x [(x ∈ A ∧ φ(x) ≤ φ(y)) ←→ x ≤Γ
φ y ←→ x ≤Γ̌

φ y]. A pointclass Γ has the
prewellordering property, written pwo(Γ), if every A ∈ Γ admits a Γ-norm.

Norms can be identified with prewellorderings of A (that is, transitive,
reflexive, connected binary relations � on A). We let ≺ denote the strict
part of a prewellordering � and vice versa (i.e., x ≺ y ←→ x � y ∧ ¬y � x).

The above definition generalizes immediately to any perfect product space
X as well. A standard and straightforward lemma (Theorem 4B.1 of [31])
says that if Γ is closed under ∧,∨, then φ : A → On is a Γ-norm on A ∈ Γ
iff the following relations are in Γ:

x ≤∗
φ y ←→ x ∈ A ∧ (y /∈ A ∨ φ(x) ≤ φ(y)),

x <∗
φ y ←→ x ∈ A ∧ (y /∈ A ∨ φ(x) < φ(y)).

In fact, to show that the existence of the starred relations implies the prewell-
ordering property requires no closure assumptions on Γ.

If Γ has the prewellordering property and is closed under ∨, ∧, then any
two Γ sets A,B have comparable Γ-norms. That is, there are Γ-norms φ, ψ
on A,B respectively and Γ relations ≤Γ

ψ,φ, ≤Γ
φ,ψ and Γ̌ relations ≤Γ̌

ψ,φ, ≤Γ̌
φ,ψ

such that ∀y ∈ A ∀x [(x ∈ B ∧ ψ(x) ≤ φ(y)) ←→ x ≤Γ
ψ,φ y ←→ x ≤Γ̌

ψ,φ y],
and likewise ∀y ∈ B ∀x [(x ∈ A ∧ φ(x) ≤ ψ(y)) ←→ x ≤Γ

φ,ψ y ←→ x ≤Γ̌
φ,ψ y].

To see this, let E = {〈i, z〉 : (i = 0 ∧ z ∈ A) ∨ (i = 1 ∧ z ∈ B)}. Let ρ be
a Γ-norm on E, and let φ(x) = ρ(〈0, x〉) for x ∈ A, and ψ(x) = ρ(〈1, x〉) for
x ∈ B. We can take, for example x ≤Γ

φ,ψ y iff 〈0, x〉 ≤Γ
ρ 〈1, y〉. Note, however,

that these norms are not regular.

2.3 Definition. A set A ⊆ ωω is κ-Suslin if there is a tree T on ω × κ such
that A = p[T ]. Let S(κ) denote the pointclass of κ-Suslin sets. A cardinal κ
is a Suslin cardinal if S(κ)−

⋃
κ′<κ S(κ′) �= ∅.
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A closely related concept (see Lemma 2.5) is that of a scale.

2.4 Definition. A semi-scale {φn}n∈ω on a set A ⊆ X (X a perfect product
space) is a collection of norms φn on A such that if {xm}m∈ω ⊆ A is a
sequence of points in A converging to x, and for all n, φn(xm) is eventually
constant, then x ∈ A. We say {φn} is an α semi-scale if all norms map
into α. We say {φn} is a scale if it in addition satisfies the lower semi-
continuity property: ∀n φn(x) ≤ λn

.= limm→∞ φn(xm). Likewise we define
α-scale.

A (semi)-scale {φn} on A is a good (semi)-scale if whenever xm ∈ A and
for all n, φn(xm) is eventually constant, then x = limm→∞ xm exists (and
thus x ∈ A).

A (semi)-scale is called very good if it is good and whenever x, y ∈ A and
φn(x) ≤ φn(y), then φi(x) ≤ φi(y) for all i < n.

A (semi)-scale is called excellent if it is very good and whenever x, y ∈ A
and φn(x) = φn(y) then x�n = y�n (assuming now X = ωω).

The notions of good α-scale, etc., are defined in the same manner, requiring
the norms to map into α.

The next lemma shows the essential equivalence of these concepts.

2.5 Lemma. For every A ⊆ ωω and every α ∈ On, A is α-Suslin iff A has
an α-semiscale iff A has an α-scale iff A has an excellent α-scale.

Proof. Clearly excellent scale → very good scale → good scale → scale →
semi-scale, for any α. If {φn} is a semi-scale on A into α, define the tree of
the semi-scale as follows:

((a0, . . . , an−1), (β0, . . . , βn−1)) ∈ Tφ

←→ ∃x ∈ A
[
x�n = (a0, . . . , an−1) ∧ φ0(x) = β0, . . . , φn−1(x) = βn−1

]
.

Clearly A ⊆ p[T ]. If (x, f) ∈ [T ], then ∃xm ∈ A such that xm → x and
φn(xm) → f(n) for all n. Thus, x ∈ A by definition of a semi-scale. Hence,
A = p[T ].

Thus, it suffices to show that A is α-Suslin implies A admits an excellent
α-scale. First note that A is α-Suslin iff A is κ-Suslin, where κ = |α|. Thus
we may assume α = κ is a cardinal. Fix a tree T on ω×κ such that A = p[T ].
We consider two cases.

First assume cf(κ) > ω. Then ∀x ∈ A ∃β < κ (x ∈ p[T �β]). Define a tree
S by:

((a0, . . . , an−1), (β0, . . . , βn−1)) ∈ S

←→ β0 > β1, . . . , βn−1 ∧ ((a0, . . . , an−2), (β1, . . . , βn−1)) ∈ T.

Thus, A = p[S] as well. For x ∈ A, define

φn(x) = |(f(0), x(0), . . . , f(n− 1), x(n− 1)|∗
lex,
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where f : ω → κ is the leftmost branch through Sx, and |�s|∗
lex denotes

the rank of �s in the lexicographic ordering restricted to �t ∈ κ2n such that
t(0) > t(1), . . . , t(2n − 1). Thus, φn : A → κ. Suppose {xm} ⊆ A and
φn(xm) → λn for all n. Let �sn be such that |�sn|∗

lex = λn. Then �sn+1 extends
�sn for all n, so xm → x ∈ ωω and the �sn define an f : ω → κ for which
(x, f) ∈ [T ]. This shows {φn} is a semi-scale, and the lower semi-continuity
and excellence are easily verified.

Suppose next that cf(κ) = ω. Let κi < κ with supi∈ω κi = κ. We may
assume T is a tree on ω× (κ− ω). Define a tree S on ω× κ by “padding” T
as follows. An element of S will be of the form

((a0, . . . , an−1), (k0, 0, . . . , 0, β0, . . . , ki, 0, . . . , 0, βi, . . .))

such that:

(1) Each kl ∈ ω, and after kl occur kl 0’s. Also, βl < κkl
.

(2) ((a0, . . . , aj), (β0, . . . , βj)) ∈ T , where j is maximal so that (k0 + 2) +
· · ·+ (kj + 2) ≤ n.

Note that if (�a,�s) ∈ S, then ∀i �s(i) < κi. Easily, A = p[S] as well. We now
define φn as in the previous case (using lexicographic ordering on (κn)2n). It
is easily checked that {φn} is an excellent α-scale. �

One standard consequence of scales is the Kunen-Martin Theorem (cf. [31,
Theorem 2G.2]) which we now state.

2.6 Theorem (Kunen, Martin). Every κ-Suslin well-founded relation on ωω

has length less than κ+.

We next recall the fundamental notion of a Γ-scale, a notion introduced
by Moschovakis.

2.7 Definition. A scale {φn} on a set A is a Γ-scale if all of the norms
φn are Γ-norms. We say Γ has the scale property, scale(Γ), if every A ∈ Γ
admits a Γ-scale.

The prewellordering and scale properties are the basic structural ingre-
dients in descriptive set theory, and have numerous applications there (this
theory is developed in [31]). For example, if pwo(Γ) and Γ is closed under
∀ω and ∧, ∨, then Γ has the number uniformization property, that is, every
A ⊆ ωω × ω in Γ can be uniformized by a Γ relation B ⊆ A. Namely, set

B(x, n) ←→ (∀m (x, n) ≤∗ (x,m)) ∧ (∀m < n (x, n) <∗ (x,m)),

where ≤∗, <∗ correspond to a Γ-norm on A. [The number uniformization
property can also be shown directly for pointclasses of the form ∃ωΓ where
Γ is closed under ∀ω but not ∃ω.] Likewise, if Γ has the scale property and
is closed under ∀ωω

and ∧,∨, then every Γ relation A ⊆ ωω × ωω has a Γ
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uniformization. To see this, note that if {φn} is a Γ scale on A ⊆ ωω × ωω,
and we define

ψn(x, y) =
∣
∣(φ0(x, y), x(0), y(0), . . . , φn−1(x, y), x(n− 1), y(n− 1)

∣
∣
lex

,

then {ψn} is a very good Γ-scale on A. For x ∈ dom(A), n ∈ ω, let sn =
(α0, x(0), y(0), . . . , αn−1, x(n − 1), y(n − 1)) be lexicographically least such
that for some (x, yn) ∈ A, ψn(x, yn) = |sn|lex. Note that sn+1 extends sn.
By the scale property, there is a (x, y) ∈ A with ψn(x, y) = |sn|lex for all
n, and by very goodness this y is unique. Thus if we define B(x, y) ←→
∀z∀n (x, y) ≤∗

ψn
(x, z), then B uniformizes A.

It is a relatively straightforward ZF result that the prewellordering and
scale properties propagate from a pointclass Γ closed under ∀ωω

to ∃ωω

Γ. The
important periodicity theorems assert that, granted sufficient determinacy,
they also propagate from a pointclass Γ closed under ∃ωω

to ∀ωω

Γ. We state
without proof the first two of the three periodicity theorems (proofs may be
found in [31]). These theorems are due to Martin-Moschovakis, Moschovakis,
and Moschovakis respectively. We note that DC is not required for the fol-
lowing two theorems.

2.8 Theorem (First Periodicity). Let Γ be a pointclass closed under ∃ωω

with pwo(Γ). If Δ-determinacy holds, then pwo(∀ωω

Γ).

2.9 Theorem (Second Periodicity). Let Γ be a pointclass closed under ∃ωω

and ∧,∨ with the scale property. If Δ-determinacy holds, then ∀ωω

Γ has the
scale property.

2.10 Remark. The proof of the Second Periodicity Theorem also shows that
if A ⊆ λω×ωω admits a scale (that is, is Suslin), then so does B ⊆ λω, where
B(�α) ←→ ∀x ∈ ωω A(�α, x).

Thus, assuming Projective Determinacy the pointclasses amongst the Σ1
n,

Π1
n having the scale property are Π1

1, Σ1
2, Π1

3, Σ1
4, . . . , exhibiting a period-

icity of order two.
We also recall a version of the Third Periodicity Theorem, due also to

Moschovakis. Because we will have specific need for this result later, we give
the proof. For the version we state, we require DC.

Let X be a set, and A ⊆ Xω. Recall GA is the game where I, II alternate
playing x0, x1, . . . ∈ X, and I wins iff (x0, x1, . . .) ∈ A. Assume I has a
winning quasi-strategy in the game GA, and A admits a very good semi-
scale {φn} (defined in an obvious way using Xω in place of ωω, where X is
given the discrete topology). We define (assuming sufficient determinacy) a
canonical winning quasi-strategy τ for I in GA as follows. Suppose s, t ∈ X<ω

are winning positions for I in GA of the same odd length (i.e., II’s turn to
move). For n ∈ ω, consider the game Gn

s,t played as follows:

s F a(0) S a(1) F a(2) S a(3)

t S b(0) F b(1) S b(2) F b(3)
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Figure 21.1

The game consists of two players F and S (first and second), making moves
from X as shown. Let a, b ∈ Xω be the sequences they produce. We say
S wins the run of the game iff s�a ≤∗

φn
t�b. Let Wm, for odd m, be the

set of winning positions for I in GA of length m (i.e., I has a winning quasi-
strategy starting from that position). For s, t ∈ Wm set s ≤m

n t iff S has
a winning quasi-strategy in Gn

s,t. We assume here that the games Gn
s,t are

quasi-determined. We claim that each ≤m
n is a prewellordering on each Wm.

First note that there cannot be an infinite sequence s0, s1, . . . ∈Wm such that
∀i si 	

m
n si+1. For if so, fix winning quasi-strategies for F in all of the games

Gn
si,si+1

, and fill in the sequence of games as shown in Fig. 21.1, using DC.
Here F follows the fixed winning quasi-strategies on all of the boards

(moves made by following one of F’s winning quasi-strategies are marked
with an F), S’s moves in the various boards are obtained by copying as shown,
except in the bottom run where S follows a fixed winning quasi-strategy for
the game GA starting from s0 (these moves are marked with a I). Let a0,
a1, a1, a2, a2, . . . , be the sequences they produce. Thus s0

�a0 ∈ A and
φn(s0

�a0) > φn(s1
�a1) > · · · , a contradiction. It follows that ≤m

n is well-
founded, reflexive, and connected on each Wm. Transitivity of ≤m

n also easily
follows, since if s ≤m

n t, t ≤m
n u, but ¬(s ≤m

n u), we could play quasi-strategies
for S in the first two games against one for F in the third game to get a con-
tradiction. Thus, each ≤m

n is a prewellordering on each Wm.
Define the quasi-strategy τ as follows. If s = (s(0), . . . , s(2n − 1)) is a

winning position for I in GA of even length, s�a ∈ τ iff s�a is a winning
position for I and s�a ≤2n+1

n s�b for all b ∈ X such that s�b is a winning
position for I.

To see this is a winning quasi-strategy, suppose a = (a(0), a(1), . . .) is a
run following τ . Consider then the play of the games as shown in Fig. 21.2.
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Figure 21.2

Here I is following a fixed winning quasi-strategy for GA on the bottom run
(these moves are marked with a I), and S is following winning quasi-strategies
for the Gn

s,t, s = (a(0), . . . , a(2n)), t = (a(0), . . . , a(2n−1), an(2n)), on all the
boards (these moves are marked with an S). If we let an = (a(0), . . . , a(2n−
1), an(2n), an(2n + 1), . . .), then an ∈ A and φn(an) ≤ φn(an−1). Since {φn}
is a very good scale, it follows that all the φn(am) are eventually constant
and thus a ∈ A.

We state now our version of the Third Periodicity Theorem.

2.11 Theorem (Third Periodicity). Let X be a set, A ⊆ Xω, and {φn} a
very good semi-scale on A. Assume I has a winning quasi-strategy in GA, and
all of the games Gn

s,t defined above are quasi-determined. Then the canonical
quasi-strategy τ defined above is winning for I. If each of the games Gn

s,t is
determined, that is one of the players has a winning strategy, then each of
the relations ≤m

n
∗, <m

n
∗ corresponding to the prewellordering ≤m

n on Wm is
in

GXφn. Specifically,

s≤m
n

∗t ←→ ∀a(0)∃b(0)∀b(1)∃a(1) · · · s�a ≤∗
φn

t�b,

s<m
n

∗t ←→ ∃b(0)∀a(0)∃a(1)∀b(1) · · · s�a <∗
φn

t�b.

Proof. Assuming all the games Gn
s,t are quasi-determined, we have defined

the quasi-strategy τ for I, and shown that it is winning for I. Assume now that
all of the games Gn

s,t are actually determined. For odd m, let ≤m
n

∗, <m
n

∗ be
the starred relations corresponding to the prewellordering ≤m

n defined above;
we must verify the equivalences stated in the theorem. Let s, t ∈ Xm, and
suppose first that s≤m

n
∗t. In particular, s ∈ Wm. If t ∈ Wm as well, so

s ≤m
n t, then the right hand side of the first equivalence holds, since it just

asserts II has a winning strategy in the game Gn
s,t, which is the definition

of s ≤m
n t in this case. If t /∈ Wm, II easily wins Gn

s,t by playing so the
a, b produced in the run of Gn

s,t satisfy s�a ∈ A and t�b /∈ A. Assume now
the right-hand side of the first equivalence, that is, II wins Gn

s,t. We must
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Figure 21.3

have s ∈Wm, as otherwise I could easily win this game by playing to ensure
s�a /∈ A. If t /∈Wm, s≤m

n
∗t holds by definition, and if t ∈Wm then again by

definition s ≤m
n t and so s≤m

n
∗t.

For the second equivalence, note first that the right-hand side is asserting
that F has a winning strategy in the game Hn

s,t:

s S a(0) F a(1) S a(2) F a(3)

t F b(0) S b(1) F b(2)

where F wins the run iff s�a <∗
φn

t�b.
Assume first now that s, t ∈ Xm and s<m

n
∗t. In particular s ∈ Wm. If

t /∈Wm, then easily F has a winning strategy in Hn
s,t by playing to ensure that

s�a ∈ A and s�b /∈ A. So, assume t ∈Wm. Suppose, toward a contradiction,
that S has a winning strategy ρ in Hn

s,t. Since ¬(t≤m
n s), we may fix also a

winning strategy σ for F in Gn
t,s. Using DC, fill in the runs of the games as

in Fig. 21.3.
In the bottom run, the moves marked with a I are those following a winning

quasi-strategy to produce a0 with t�a0 ∈ A. In the boards with moves
marked by F, those moves are made in accordance with σ. In the boards
with moves marked by S, those moves are made in accordance with ρ. The
other moves are made by copying as shown. Thus t�a0 ∈ A, and from the
definitions of ρ, σ we have:

φn(t�a0) > φn(s�a1) ≥ φn(t�a2) > φn(s�a3) . . . ,

a contradiction. Assume finally the right-hand side of the second equivalence,
that is, F has a winning strategy in Hn

s,t. Easily this implies s ∈ Wm. If
t /∈ Wm, then the left-hand side is true by definition, so assume t ∈ Wm as
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well. If ¬(s<m
n

∗t), then we would have t≤m
n s, and so S would have a winning

strategy in Gn
t,s. These two strategies may be directly played against each

other to get a contradiction. �

A case of particular importance is when X = ω, and A ⊆ ωω is Σ1
2n.

Assuming Δ1
2n-determinacy (←→ Σ1

2n-determinacy), Theorem 2.11 shows
that if I wins GA, then I has a Δ1

2n+1 winning strategy. For we may define
a canonical winning strategy τ for I in GA by:

τ(s) = k ←→ ∀m (s�k) ≤2l+1∗
l (s�m) ∧ ∀m < k (s�k) <2l+1∗

l (s�m),

where lh(s) = 2l. Thus the relation τ(s) = k is Π1
2n+1 from Theorem 2.11

since Σ1
2n has the scale property and Π1

2n+1 =

Gωω

Σ1
2n. Since this relation

does define a strategy, it follows that the relation is Δ1
2n+1. Similarly, if

I wins a Π1
2n+1 game, then, assuming Π1

2n+1-determinacy, I has a Δ1
2n+2

winning strategy.

2.2. Projective Ordinals, Sets, and the Coding Lemma

The Moschovakis Coding Lemma is a basic tool in determinacy theory. We
present the result in a general form.

2.12 Theorem (AD + DC; Coding Lemma). Let Γ be a non-selfdual point-
class closed under ∃ωω

and ∧, and ≺ a Γ well-founded relation on ωω of rank
θ ∈ On. Let R ⊆ dom(≺)× ωω be such that ∀x ∈ dom(≺) ∃y R(x, y). Then
there is a Γ set A ⊆ dom(≺)× ωω which is a choice set for R, that is:

(1) ∀α < θ ∃x ∈ dom(≺) ∃y [|x|≺ = α ∧A(x, y)].

(2) ∀x∀y A(x, y) → [x ∈ dom(≺) ∧R(x, y)].

Proof. We may assume θ is minimal so that the theorem fails, and fix ≺, R,
and a good universal set U ⊆ (ωω)3 for the Γ subsets of (ωω)2. Easily, θ
is a limit ordinal. For δ < θ, say u ∈ ωω codes a δ-choice set provided (1)
holds for α ≤ δ using A = Uu, and (2) holds for A = Uu where we replace
x ∈ dom(≺) with x ∈ dom(≺) ∧ |x|≺ ≤ δ. By minimality of θ, for all δ < θ
there are δ-choice sets. Play the game where I, II play out u, v ∈ ωω, and II
wins provided that if u codes a δ1-choice set for some δ1 < θ, then v codes
a δ2-choice set for some δ2 > δ1. If I has a winning strategy, we get a Σ1

1

set B of reals coding δ-choice sets for arbitrarily large δ < θ. Define then
A(x, y) ←→ ∃w ∈ B U(w, x, y), which easily works.

Suppose now that τ is a winning strategy for II. From the s-m-n Theorem,
let s : (ωω)2 → ωω be continuous such that for all ε, x, t, w, U(s(ε, x), t, w) ←→
∃y ∃z [y ≺ x∧U(ε, y, z)∧U(z, t, w)]. By the Recursion Theorem, let ε0 be such
that U(ε0, x, z) ←→ z = τ(s(ε0, x)). A straightforward induction on |x|≺ for
x ∈ dom(≺) shows that ∀x ∈ dom(≺) ∃!z U(ε0, x, z), and ∀x ∈ dom(≺)
∀z [U(ε0, x, z) → z codes a ≥ |x|≺-choice set]. Let A(x, y) ←→ ∃z ∈ dom(≺)
∃w [U(ε0, z, w) ∧ U(w, x, y)]. �
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The Coding Lemma is frequently used where ≺ is the strict part of a
prewellordering � which is also in Γ (Γ as in Theorem 2.12), and where the
set R is invariant, that is, there is an R′ ⊆ θ × ωω such that R(x, y) ←→
R′(|x|≺, y). In this case, the relation A may be taken to have domain dom(�).
For we may define A(x, y) ←→ ∃x′ [x′ � x ∧ x � x′ ∧ A′(x′, y)], where A′ is
the Γ choice set from Theorem 2.12. A useful consequence of this is that if
there is a Γ prewellordering � of length α whose strict part ≺ is also in Γ,
then every S ⊆ α is Δ in the codes provided by ≺. That is, there are Γ, Γ̌
sets C,D such that for all x ∈ dom(�), S(|x|≺) ←→ C(x) ←→ D(x). To see
this, apply the Coding Lemma to the relation R(x, a) ←→ (|x|≺ ∈ S ∧ a =
1)∨ (|x|≺ /∈ S∧a = 0) (identifying 0, 1 with two reals). Let A be an invariant
choice set for R in Γ, and set C(x) ←→ (x, 1) ∈ A, D(x) ←→ (x, 0) /∈ A.

Finally, if Γ is a non-selfdual pointclass closed under ∀ωω

, ∨, and pwo(Γ),
then we may improve the definability estimate. Namely, suppose P ∈ Γ− Γ̌
and φ is a Γ norm on P mapping onto α. Then every S ⊆ α is Δ = Γ ∩ Γ̌
in the codes provided by φ (rather than Δ(∃ωω

Γ)). To see this, let U be
universal for Γ̌�ωω × ω. For β < α (we may assume α is a limit ordinal), say
y codes S�β if for all (x, a),

Uy(x, a) ←→ (x ∈ P ∧ φ(x) < β ∧ x ∈ S ∧ a = 1)
∨ (x ∈ P ∧ φ(x) < β ∧ x /∈ S ∧ a = 0).

From the Coding Lemma, for all β < α there is a y coding S�β. Play the
integer game where I plays x, II plays y, and II wins iff [x ∈ P → ∃β >
φ(x) (y codes S�β)]. II wins by boundedness (a winning strategy for I would
give a Σ1

1 set S ⊆ P coding cofinally in α many ordinals, from which we
would compute P ∈ Γ̌ by x ∈ P ←→ ∃y ∈ S x ≤Γ̌ y), and if τ is winning for
II, define D(x) ←→ Uτ(x)(x, 1) and C(x) ←→ ¬Uτ(x)(x, 0).

There is also a “uniform” version of the Coding Lemma. Roughly speaking,
this asserts that A may be chosen so that A ∩ {(x,w) : |x|� ≤ δ} is Σ1(�δ),
where �δ denotes the prewellordering restricted to reals of rank ≤ δ. We
refer the reader to [22] for a precise statement. This is particularly useful for
long prewellorderings, where the initial segments may be much simpler than
the overall prewellordering (this also provides another proof of the result of
the previous paragraph).

The following lemma, due to Moschovakis, is of frequent use. It can be
proved using the Coding Lemma, or by a direct argument using the Recursion
Theorem (cf. [31, 4C.14]). To illustrate the Coding Lemma and Recursion
Theorem, we give both arguments.

2.13 Lemma (AD + DC). Let Γ be non-selfdual and closed under ∀ωω

, ∧,
∨, and assume pwo(Γ). Then any Γ̌ well-founded relation has length less
than δ(Γ) .= the supremum of the lengths of the Δ prewellorderings (where
Δ = Γ ∩ Γ̌).

Proof. First we give the argument using the Coding Lemma. Let P be a
Γ-complete set, and φ a regular Γ-norm on P . By definition of δ(Γ), φ maps



2. Survey of Basic Notions 1771

into δ(Γ). Suppose that ≺ is a Γ̌ well-founded relation of length ≥ |φ| (the
length of the norm φ). We may assume that |≺| is equal to |φ|. Apply the
Coding Lemma to the relation R ⊆ dom(≺)× ωω given by R(x, y) ←→ (y ∈
P ∧ φ(y) = |x|≺), where |x|≺ denotes the rank of x in the relation ≺. The
Coding Lemma gives a Γ̌ choice set A ⊆ dom(≺) × ωω as in Theorem 2.12.
Let B(y) ←→ ∃x A(x, y). Then B ⊆ P is in Γ̌, and for every α < |φ| there
is a y ∈ B with φ(y) = α. This contradicts boundedness, namely, we could
now compute P ∈ Γ̌ by P (z) ←→ ∃y (B(y) ∧ z ≤Γ̌ y), where ≤Γ̌ is the Γ̌
relation corresponding to the norm φ.

Now we give the proof using the Recursion Theorem. Let now U ⊆ ωω×ωω

be (good) universal for Γ (see Theorem 2.1), and let φ be a regular Γ-norm
on U . Again, |φ| ≤ δ(Γ). Let ≺ be a Γ̌ well-founded relation, and we again
show that |≺|< |φ|. It is enough to show that |≺|≤ |φ|, as it is easy, given
any Γ̌ relation ≺, to define a Γ̌ relation ≺′ having length |≺| +1. From the
Recursion Theorem, let x ∈ ωω be such that

U(x, y) ←→ ∀z (z ≺ y → (x, z) <∗
φ (x, y)),

holds for all y, where <∗
φ is the norm relation corresponding to φ. For every

y ∈ dom(≺), a straightforward induction on |y|≺ shows that U(x, y) and
φ(x, y) ≥ |y|≺. To see this, first prove by induction on |y|≺ that U(x, y) holds.
For if |y|≺ were a least violation, then for all z ≺ y we would have U(x, z),
and thus (x, z) <∗

φ (x, y) from the definition of <∗
φ. But then U(x, y) holds

from the above equation defining Ux. So, for any y ∈ dom(≺), U(x, y) holds.
From the definition of Ux it now follows that if z ≺ y then φ(x, z) < φ(x, y).
Thus, |φ| ≥ |≺|. �

2.14 Remark. The second proof given above has the advantage that it works
in ZF provided Γ has a universal set.

The next lemma, due to Martin, is also frequently useful. It has the same
hypotheses as the previous lemma.

2.15 Lemma (AD+DC). Let Γ be non-selfdual and closed under ∀ωω

, ∧, ∨,
and assume pwo(Γ). Then Δ = Γ ∩ Γ̌ is closed under <δ(Γ) length unions
and intersections.

Proof. It is enough to show Δ is closed under <δ(Γ) unions. Suppose not,
and let ρ < δ(Γ) be least such that Δ is not closed under ρ-unions. Let
{Aα}α<ρ be a sequence of Δ sets with A

.=
⋃

α<ρ Aα not in Δ. By minimality
of ρ we may assume that the Aα form an increasing sequence. From the
Coding Lemma and the fact that there is a Δ prewellordering ≺ of length ρ it
follows that A ∈ Γ̌. [Apply the Coding Lemma to R ⊆ dom(≺)×ωω given by
R(x, y) ←→ (Uy = A|x|≺ ), where U ⊆ ωω × ωω is universal for Γ̌. Let S ∈ Γ̌
be the set produced by the Coding Lemma. Then z ∈ A←→ ∃x ∃y (S(x, y)∧
U(y, z).] So, A is Γ̌-complete. Let φ be the norm on A corresponding to the
union A =

⋃
α<ρ Aα, that is, φ(x) = the least α such that x ∈ Aα. Then φ
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is a Γ̌-norm on A. For example x <∗
φ y ←→ ∃α < ρ (x ∈ Aα ∧ y /∈ Aα),

which writes <∗
φ as a ρ-union of Δ sets and thus shows <∗

φ∈ Γ̌. This shows
pwo(Γ̌). This, however, contradicts the ZF fact that for Γ having a universal
set, Γ and Γ̌ cannot both have the prewellordering property. [We mention
results along this line in Sect. 2.3, however we can also directly argue this
last fact as follows. Let U ⊆ ωω×ωω be a universal Γ set, and φ a Γ norm on
A. Define B(x, y) ←→ (x0, y) <∗

φ (x1, y), and C(x, y) ←→ (x1, y) <∗
φ (x0, y),

so B,C ∈ Γ, and B ∩ C = ∅ (here x �→ (x0, x1) is our recursive bijection
between ωω and ωω × ωω). Assume toward a contradiction that pwo(Γ̌)
also holds. Let ψ1, ψ2 be comparable Γ̌-norms on Bc, Cc (see the discussion
after Definition 2.2). Define E(x, z) ←→ (x, z) <∗

ψ1,ψ2
(x, z). Note also

E(x, z) ←→ ¬(x, z) ≤∗
ψ2,ψ1

(x, z), since Bc ∪ Cc = ωω × ωω. So E ∈ Δ.
However, E is also universal for Δ. For if D ⊆ ωω is Δ, let x be such that
Dc = Ux0 , D = Ux1 , and hence Dc = Bx, D = Cx. Then Ex = D. Being
selfdual, however, the pointclass Δ cannot have a universal set by the usual
diagonal argument (the set S(x) ←→ ¬E(x, x) cannot be in Δ).] �

We mention one more result of a general nature.

2.16 Lemma. Let Γ be non-selfdual and closed under ∃ωω

, ∧. Then the
supremum of the lengths of the Γ well-founded relations is a regular cardinal.

Proof. Let κ be the supremum of the lengths of the Γ well-founded relations.
Clearly κ is a limit ordinal. Suppose ρ

.= cf(κ) < κ, and let f : ρ → κ be
cofinal. Let ≺ be a Γ well-founded relation of length ρ. Let U ⊆ ωω × ωω

be universal for Γ. Apply the Coding Lemma to R ⊆ dom(≺) × ωω given
by R(x, y) ←→ (x ∈ dom(≺) ∧ Uy is well-founded of length ≥ f(|x|≺)). Let
A ⊆ dom(≺) × ωω be as in the Coding Lemma, so A ∈ Γ. Define then
(x, y, z) 3 (x′, y′, z′) ←→ ((x, y) ∈ A ∧ (x, y) = (x′, y′) ∧ Uy(z, z′)). Then 3
is a Γ well-founded relation of length κ, a contradiction. �

Recall from the introduction the definitions of the projective pointclasses
Σ1

n, Π1
n, Δ1

n. Also, assuming Projective Determinacy, Π1
2n+1 and Σ1

2n+2

have the scale property for all n. We now define the projective ordinals and
establish their basic properties.

2.17 Definition. δ1
n = the supremum of the lengths of the Δ1

n prewellorder-
ings of the reals.

2.18 Theorem (AD + DC). For all n, δ1
n is the supremum of the lengths

of the Σ1
n well-founded relations. Each δ1

n is a regular cardinal, δ1
2n+2 =

(δ1
2n+1)+, and δ1

2n+1 = λ+
2n+1 for some Suslin cardinal λ2n+1 of cofinality

ω. Σ1
2n+2 = δ1

2n+1-Suslin and Σ1
2n+1 = λ2n+1-Suslin. The Suslin cardinals

within the projective ordinals are exactly the λ2n+1 and the δ1
2n+1.

Proof. If φ : A → δ is a regular Π1
2n+1 norm on a Π1

2n+1 set A, then by
definition δ ≤ δ1

2n+1 (as all initial segments of the prewellordering are in
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Δ1
2n+1). Thus, from the scale property for Π1

2n+1, every Π1
2n+1, and hence

also every Σ1
2n+2, set is δ1

2n+1-Suslin. From the Coding Lemma it also follows
that every δ1

2n+1-Suslin set is Σ1
2n+2, so S(δ1

2n+1) = Σ1
2n+2. If A is universal

for Π1
2n+1, then from Lemma 2.13, δ = δ1

2n+1 and every Σ1
2n+1 well-founded

relation has length less than δ (this also follows from the Kunen-Martin
Theorem mentioned below, but the argument above does not need scales).
So, δ1

2n+1 is the supremum of the lengths of the Σ1
2n+1 well-founded relations.

From Lemma 2.16, δ1
2n+1 is regular.

From the Kunen-Martin Theorem 2.6, δ1
2n+2 ≤ the supremum of the

lengths of the Σ1
2n+2 well-founded relations ≤ (δ1

2n+1)
+. Conversely, let ≺ be

a wellordering of δ1
2n+1. The Coding Lemma implies that ≺ is Δ1

2n+2 in the
codes relative to a norm φ on a Π1

2n+1 universal set A, that is, the relation
(x, y ∈ A∧φ(x) ≺ φ(y)) is Δ1

2n+2. Thus, δ1
2n+2 = (δ1

2n+1)
+, and δ1

2n+2 = the
supremum of the Σ1

2n+2 well-founded relations. From Lemma 2.16, δ1
2n+2 is

also regular.
Note that δ1

n < δ1
n+1 as the Σ1

n well-founded relations can be “put to-
gether” into a single Σ1

n ∧Π1
n well-founded relation via a universal Σ1

n set.
Suppose A is a universal Σ1

2n+1 set, and write A(x) ←→ ∃y B(x, y) where
B ∈ Π1

2n. Clearly if B is κ-Suslin, then so is A. Now B admits a Δ1
2n+1

scale (using scale(Π1
2n+1)), and thus A is λ-Suslin for some λ < δ1

2n+1. Let
λ2n+1 be the least such λ. It follows that every Σ1

2n+1 set is λ2n+1-Suslin.
From the Kunen-Martin Theorem and the definition of δ1

2n+1, it follows that
δ1

2n+1 = λ+
2n+1. We claim that cf(λ2n+1) = ω. For if not, then A could be

written as a λ2n+1 union of sets Aα, each of which is <λ2n+1-Suslin. Each
Aα must be Σ1

2n, as otherwise by Wadge, some Π1
2n-complete set, and hence

every Σ1
2n+1 set, would be <λ2n+1-Suslin. By Lemma 2.15, A ∈ Δ1

2n+1,
a contradiction. So, cf(λ2n+1) = ω. We noted above Σ1

2n+1 ⊆ S(λ2n+1). The
reverse inclusion follows from the Coding Lemma. Thus, S(λ2n+1) = Σ1

2n+1.
For any κ the pointclass of κ-Suslin sets is closed under ∃ωω

(as well as
∧,∨). From Wadge’s Lemma, the only pointclasses within the projective
hierarchy that are closed under ∃ωω

(and contain the closed sets) are the Σ1
n,

and thus we have determined all the Suslin classes and cardinals within the
projective hierarchy. �

It follows also from our discussion above that δ1
1 = ω1 and δ1

2 = ω2.
Martin and Solovay also computed δ1

3 = ωω+1, and δ1
4 = ωω+2 (see also

the next section). In Sect. 2.6 we will show (assuming AD) that each δ1
n

is measurable, and in fact has the countable exponent partition property
δ1

n → (δ1
n)λ for all λ < ω1 (defined in Sect. 2.6).

2.3. Wadge Degrees and Abstract Pointclasses

We now recall some of the abstract theory of pointclasses. Additional back-
ground may be found in [35, 36], and [39]. We assume AD + DC throughout
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this section, though the determinacy required is “local”, e.g., only Projective
Determinacy is required within the projective sets, etc.

If Γ is a pointclass and κ a cardinal, let
⋃

κ Γ denote those A ⊆ ωω which
can be written as A =

⋃
α<κ Aa where each Aα ∈ Γ. We similarly define⋂

κ Γ.
We note the simple observation that if Γ is a non-selfdual pointclass, then

the closure of Γ under ∃ω implies the closure of Γ under countable unions, and
likewise the closure under ∀ω implies the closure under countable intersec-
tions. For suppose A ∈ Γ− Γ̌, and An ∈ Γ for n ∈ ω. Thus, An ≤w A for all
n, and it follows easily that B ≤w A as well, where B(x) ←→ x̄ ∈ Ax(0) and
x̄(i) = x(i + 1). Then x ∈

⋃
n An ←→ ∃i B(i�x). Another simple but useful

observation is that if Γ is non-selfdual and closed under countable intersec-
tions (respectively unions), then ∃ωω

Γ (respectively ∀ωω

Γ) is closed under
countable unions and intersections. As we already noted, ∃ωω

Γ is closed un-
der countable unions (since Γ has a universal set, so does ∃ωω

Γ, and hence
it also is non-selfdual). To check countable intersections, let An ∈ ∃ωω

Γ, say
An(x) ←→ ∃y Bn(x, y) with Bn ∈ Γ. Then x ∈

⋂
n An ←→ ∃y B(x, y),

where B =
⋂

n Bn and Bn(x, y) ←→ An(x, (y)n). Thus,
⋂

n An ∈ ∃ωω

Γ.
Recall the definitions of Lipschitz reduction ≤l and Wadge reduction ≤w

from the introduction. We say a set A ⊆ ωω is selfdual if A ≤l Ac. A theorem
of Steel [39] says that A ≤l Ac iff A ≤w Ac. Thus, A is selfdual iff the
pointclass generated by A, namely ΓA = {B : B ≤w A}, is selfdual (i.e.,
closed under complements).

Consider now pairs of the form (A,Ac) (if A is selfdual, we may equiva-
lently take just A in what follows). We extend ≤l to such pairs by setting
(A,Ac) ≤l (B,Bc) iff one of A,Ac is ≤l to one of B,Bc. This is easily seen
to be transitive, reflexive, and by Wadge’s Lemma, connected. A Lipschitz
degree, or l-degree, denotes an equivalence class of a pair under the relation
(A,Ac) ≡l (B,Bc) iff (A,Ac) ≤l (B,Bc) and (B,Bc) ≤l (A,Ac). An im-
portant basic result of Martin (cf. [39]) asserts that the strict part of ≤l is
well-founded.

The Wadge degrees, or w-degrees, are defined analogously, using ≤w in
place of ≤l. Of course, a Wadge degree is an amalgamation of l-degrees, and it
is immediate that the Wadge degrees are also wellordered. From the result of
Steel mentioned above, it follows that only selfdual l-degrees are amalgamated
in forming a w-degree. It is shown in [39] that for α a limit ordinal of cofinality
ω, an l-degree of rank α must be selfdual, and for cf(α) > ω the pair is non-
selfdual. Furthermore, following any non-selfdual l-degree (A,Ac), the next
ω1 l-degrees are all selfdual and of the same w-degree (that of the join of A
and Ac, that is, {n�x : (n is even ∧x ∈ A)∨(n is odd ∧x /∈ A)}). This gives
a general picture of the w-degrees: the selfdual and non-selfdual w degrees
alternate, and at limit ordinals α, a pair of Wadge degree α is selfdual iff
cf(α) = ω. For A ⊆ ωω, we let o(A) denote the rank of (A,Ac) in ≤w.

In [36, 35] some additional structural results for general pointclasses were
obtained. Recall Γ has the reduction property, red(Γ), if for all A,B ∈ Γ
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∃A′, B′ ∈ Γ such that A′ ⊆ A, B′ ⊆ B, A′ ∩ B′ = ∅ and A′ ∪ B′ = A ∪ B.
Γ has the separation property, sep(Γ), if for all A,B ∈ Γ with A ∩ B = ∅,
∃C ∈ Δ (A ⊆ C ⊆ Bc). A standard result in descriptive theory (see [31])
is that pwo(Γ) → red(Γ) for Γ closed under ∧, ∨, and red(Γ) → sep(Γ̌).
Reference [36] shows that for any non-selfdual pointclass Γ, either sep(Γ) or
sep(Γ̌), and from [39], both sides cannot have the separation property. Also,
if Γ is closed under ∧,∨ then red(Γ) or red(Γ̌). More generally, Steel [35]
shows that if Γ is closed under ∧ and ¬ sep(Γ), then red(Γ). Finally, [35]
shows that if Γ is a Levy class, that is closed under ∃ωω

or ∀ωω

, and if we
make the technical assumption that Δ = Γ∩Γ̌ is not closed under wellordered
unions (this is true in L(R), for example, for all selfdual Δ �= P(ωω)) then
either pwo(Γ) or pwo(Γ̌). It is also shown there that if Δ is closed under
real quantifiers, and sep(Γ), then Γ is closed under ∃ωω

(and thus Γ̌ is closed
under ∀ωω

).

2.19 Definition. Let Γ be a (possibly selfdual) pointclass. We let o(Γ) =
sup{o(A) : A ∈ Γ}. We let δ(Γ) = the supremum of the lengths of the Δ
prewellorderings of ωω (where Δ = Γ ∩ Γ̌).

In [21] it is shown that for Δ closed under real quantification, ∧ and ∨,
o(Δ) = δ(Δ) = the supremum of the Δ well-founded relations on ωω. We
note that for Δ closed under real quantification, closure under ∧ and ∨ is
almost automatic; it is needed only to rule out the case of a largest Wadge
degree in Δ, which occurs only when Δ = Γ ∩ Γ̌ for some non-selfdual Γ
closed under real quantification (by the hierarchy analysis below).

If Δ is selfdual and closed under real quantifiers, o(Δ) has uncountable
cofinality, and we again make the technical assumption that Δ is not closed
under wellordered unions, then Steel [35] shows there is a non-selfdual point-
class Γ closed under ∀ωω

with pwo(Γ) such that Δ = Γ∩ Γ̌. Steel establishes
this by getting a useful representation for the Γ sets. Namely, if δ is the least
ordinal such that Δ is not closed under δ unions, then Γ is the collection of
Σ1

1-bounded δ unions of Δ sets. A union A =
⋃

α<δ Aα is Σ1
1-bounded if for

every Σ1
1 set B ⊆ A, ∃δ′ < δ (B ⊆

⋃
α<δ′ Aα).

Steel shows in [35] (generalizing results of [21]) that these results suffice
to place the prewellordering property within the Levy classes, as well as to
classify the Levy classes within projective-like hierarchies. We summarize the
conclusions. Suppose Γ is non-selfdual and closed under ∃ωω

or ∀ωω

. Let α
be the supremum of the limit ordinals β such that Δβ

.= {A : o(A) < β} is
closed under real quantifiers and Δβ ⊆ Γ. We have the following cases:

Type I Hierarchy cf(α) = ω. The pointclass Λ of Wadge degree α is
selfdual, consisting of ω-joins of sets of smaller degree. Let Γ0 be the
class of countable unions of sets, each of degree < α. Then Γ0 is the
smallest class closed under ∃ω containing Λ, and we have pwo(Γ0). If
we let Γ1 = ∀ωω

Γ0, Γ2 = ∃ωω

Γ1, etc., then pwo(Γn) for all n by first
periodicity. Γ0 is closed under countable unions and finite intersections,
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and Γn for n ≥ 1 is closed under countable unions and intersections.
Also, Γ = Γi or Γ̌i for some i.

Type II, III Hierarchies cf(α) > ω, so there is a non-selfdual pointclass
Γ0 of degree α closed under ∀ωω

and with pwo(Γ0). We assume in
these cases that Γ0 is not closed under ∃ωω

. If we let Γ1 = ∃ωω

Γ0,
Γ2 = ∀ωω

Γ1, etc., then pwo(Γn) for all n. For n ≥ 1, Γn is closed
under countable unions and intersections. If Γ0 is as well (by [35,
Theorem 2.2] this is equivalent to Γ0 being closed under finite unions),
this is referred to as a type III hierarchy, otherwise a type II hierarchy.
Clearly, Γ = Γi or = Γ̌i for some i.

Type IV Hierarchy cf(α) > ω, and for Γ0 as in the previous case, Γ0 is
closed under real quantifiers. Let Γ1 = {A ∩ B : A ∈ Γ0 ∧ B ∈ Γ̌0}.
Let Γ2 = ∃ωω

Γ1, Γ3 = ∀ωω

Γ2, etc. Then pwo(Γn) for all n, and for
n ≥ 2 (or n = 0) Γn is closed under countable unions and intersections.
Clearly, Γ = Γi or = Γ̌i for some i.

2.20 Remark. We refer to the pointclasses Γ0 as in the type II, III hierar-
chies above as Steel pointclasses.

We present one more result in the abstract theory of pointclasses which
we will need later, and which illustrates the usefulness of the hierarchy clas-
sification.

2.21 Lemma. If Γ is a non-selfdual pointclass closed under ∃ωω

and pwo(Γ),
then Γ is closed under wellordered unions.

Proof. If Γ is closed under ∀ωω

as well, this is [14, Theorem 1.1], so assume
∀ωω

Γ �= Γ. If Γ is closed under countable unions and intersections, the
result follows from [21, Lemma 2.4.1]. Suppose now that Γ is not closed
under countable intersections. The hierarchy analysis above shows that Γ is
the base of a type I hierarchy, that is, Γ =

⋃
ω Δ, and Δ is closed under

real quantifiers. Note that Γ is closed under ∧. Towards a contradiction,
let κ be the least cardinal so that

⋃
κ Γ � Γ. Thus, κ is regular. Let

Γ1 = ∃ωω

Γ̌. By Wadge’s Lemma, Γ̌ ⊆
⋃

κ Γ, and thus Γ1 ⊆
⋃

κ Γ. Using the
regularity of κ, let 〈Aα | α < κ〉 be a strictly increasing κ sequence of sets
in Γ whose union A is in Γ̌ − Γ. Let B = {x : Sx ⊆ A}, where S ⊆ (ωω)2

is universal Σ1
1. B ∈ Γ̌ as Γ̌ is closed under ∀ωω

and ∨. Let B =
⋃

α<κ Bα,
where Bα ∈ Γ. If we replace Aα by {y : ∃x ∈ Bα (y ∈ Sx)}, then the Aα

form a Σ1
1-bounded sequence of Γ sets with union A. Let U ⊆ (ωω)2 be a

universal Γ set. Play the game where I plays x, II plays y, z, and II wins iff
x ∈ A→ ∃α > |x| (Uy = Aα∧z ∈ Aα−

⋃
β<α Aβ), where |x| is the least α < κ

such that x ∈ Aα. By Σ1
1-boundedness, II wins, say by τ . Define x ≺ y iff

x, y ∈ A∧ τ(y)1 /∈ Uτ(x)0 . Thus, ≺ is a Γ̌ prewellordering of length κ. By the
Coding Lemma, then,

⋃
κ Γ ⊆ Γ1, and hence

⋃
κ Γ = Γ1. Now, Δ1 = Γ1∩Γ̌1

is clearly also not closed under κ unions, and any κ union of sets in Δ1 is
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in Γ1. Thus, Γ1 =
⋃

κ′ Δ1, where κ′ ≤ κ is least such that Δ1 is not closed
under κ′ unions. This, however, shows pwo(Γ1), a contradiction (this last
part is Martin’s argument from Theorem 2.15 again). �

In the case of a type II, III, or IV hierarchy, the following observations are
occasionally useful.

2.22 Lemma. Let Γ be non-selfdual, closed under ∀ωω

, with pwo(Γ), and
assume Δ is closed under real quantification. Let κ = o(Δ). Then cf(κ) is the
least ordinal ρ such that Δ is not closed under ρ-length unions. Furthermore,
there is a κ strictly increasing sequence of sets in Δ.

Proof. From pwo(Γ) we have that Δ is not closed under δ(Δ) = δ(Δ) = κ
length unions. Let ρ be least so that Δ is not closed under ρ-length unions.
Clearly ρ ≤ κ is a regular cardinal. Suppose ρ > cf(κ). Let {Aα}α<ρ be an
increasing sequence of Δ sets whose union A is not in Δ. Since ρ > cf(κ)
is regular, there is a β < κ such that for cofinally in ρ many α we have
o(Aα) ≤ β. By Lemma 2.21 we may find a non-selfdual Γ0 ⊆ Δ which
is closed under wellordered unions and with o(Γ0) > β. Then A ∈ Γ0, a
contradiction. Suppose ρ < cf(κ) and again consider a sequence {Aα}α<ρ as
above. Since ρ < cf(κ), there is a β < κ such that for all α < ρ, o(Aα) ≤ β,
and we reach the same contradiction as before. So, ρ = cf(κ).

Fix now a sequence {Aα}α<cf(κ) of sets in Δ whose union A is not in Δ.
Let h(α) = o(Aα), so h is cofinal in κ. Without loss of generality we may
assume that h is strictly increasing. Furthermore, we may assume that there
is a prewellordering of length h(α) of Wadge degree less than Aα+1. Let
� be a Δ prewellordering of length cf(κ) (we may assume cf(κ) < κ as
otherwise there is nothing to show in the second claim). View every real y as
coding a Lipschitz continuous function fy : ωω → ωω. By the Coding Lemma
there is a Δ relation R ⊆ (ωω)2 with dom(R) = dom(�) and such that for
all (x, y) ∈ R, f −1

y (A|x|+1) is a prewellordering of length h(|x|), where |x|
denotes the rank of x in �. For β < κ define Eβ by:

(x, y, z) ∈ Eβ ←→ x ∈ dom(�) ∧ (∀γ < |x| h(γ) ≤ β)
∧R(x, y) ∧ |z|f −1

y (A|x|+1)
≤ β.

Clearly the Eβ form a κ-length strictly increasing sequence. To see that
Eβ ∈Δ, let α0 < cf(κ) be least such that h(α0) > β. Then Eβ =

⋃
α≤α0

Eα,β

where:

(x, y, z) ∈ Eα,β ←→ x ∈ dom(�) ∧ (|x| = α) ∧R(x, y) ∧ |z|f −1
y (Aα+1)

≤ β.

Since Δ is closed under < cf(κ) unions, it is enough to show each
Eα,β ∈ Δ. The first three conjuncts are clearly in Δ. For the last, note
that Py

.= f −1
y (Aα+1) is a Δ prewellordering computed uniformly from y,

that is, (u, v) ∈ Py ←→ fy(〈u, v〉) ∈ Aα+1. From the Coding Lemma it
is straightforward to compute that {(y, z) : |z|Py ≤ β} is projective in any
pointclass of Wadge degree at least o(Aα+1). �
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2.4. The Scale Theory of L(R)

The pointclass results of Sect. 2.3 can be considered to be a generalization of
the “Spector” theory of the projective sets, that is, the theory which uses only
the prewellordering property for the Π1

2n+1, Σ1
2n+2 sets. There is likewise a

generalization of the scale theory of the projective sets to the sets of reals in
L(R). This theory is developed in [37]. We survey without proof the main
results of this theory. We assume AD + V = L(R). Recall that Θ is the
supremum of the lengths of the prewellorderings of the reals.

Recall that the Jα(R) hierarchy building up L(R) is defined similarly to the
Jα hierarchy for L, except that we start with J1(R) = Vω+1. Thus, for limit
α, Jα(R) =

⋃
α′<α Jα′ (R), and Jα+1(R) is the closure of Jα(R) ∪ {Jα(R)}

under suitable rudimentary functions. Σn(Jα(R)) denotes the subsets of
Jα(R) which are Σn-definable over Jα(R) using parameters from Jα(R). We
also let Σn(Jα(R)) denote the pointclass Σn(Jα(R)) ∩ P(R). Note that
Σ1

n = Σn(J1(R)), so the Σn(Jα(R)) hierarchy provides an extension of
the projective hierarchy to all the pointclasses in L(R). Recall that for
X = ωω or X = P(ωω), a relation R ⊆ X is Σ2

1 if it can be written in
the form R(x) ←→ ∃B ⊆ ωω P (x,B), where P is projective. That is,
P (x,B) ←→ ∃z1 ∈ ωω ∀z2 ∈ ωω · · · ∃(∀)zn ∈ ωω Q(x,B, z1, . . . , zn), where
Q is in the smallest collection containing any Borel relation on the real co-
ordinates, the relations zi ∈ B, zi ∈ x (if X = P(ωω)), and closed under

countable unions, intersections, and complements. Let δ2
1

L(R)
be the supre-

mum of the lengths of the (Δ2
1)

L(R) prewellorderings. We will henceforth just

write δ2
1 in place of δ2

1

L(R)
(we will never consider δ2

1 in a context outside of
L(R)). δ2

1 is the least ordinal δ such that Jδ(R) ≺R
1 L(R), that is elementary

for Σ1 formulas with real parameters. Also, (Σ2
1)

L(R) = Σ1(Jδ2
1
(R)) ∩ P(R)

and (Δ2
1)L(R) = Jδ2

1
(R) ∩ P(R).

Martin and Steel [27] (using an idea of Moschovakis) show that (Σ2
1)

L(R)

has the scale property, and is the largest scaled pointclass in L(R). Steel
[37] refines this analysis as follows. Following Steel, call [α, β], where α ≤ β,
a Σ1-gap if Jα(R) ≺R

1 Jβ(R) and the interval [α, β] is maximal with this
property. The gaps thus partition the ordinals in [1,Θ]. [δ2

1,Θ] is the last
gap, and for the first non-trivial gap, that is where β > α, Σ1(Jα(R)) already
contains all the inductive sets (the smallest non-selfdual pointclass closed
under real quantification). For α beginning a gap [α, β], Σ1(Jα(R)) has the
scale property, and Σ1(Jα(R)) = Σ1(Jα(R); R), that is, every Σ1(Jα(R)) set
is Σ1-definable over Jα(R) using only parameters from R. If Σ1(Jα(R)) is not
closed under real quantifiers, then periodicity propagates the scale property
to Π2n(Jα(R)), Σ2n+1(Jα(R)). Otherwise (by a result of Martin), none of
the Σn(Jα(R)), Πn(Jα(R)) have the scale property for n ≥ 2. If β > α,
then none of the classes Σn(Jγ(R)), Πn(Jγ(R)) for α < γ < β have the scale
property. The existence of scales at the end of a gap hinges on whether the
gap satisfies a certain reflection property (a “strong” gap in the terminology
of [37]). If so, there are no new scaled classes at the end of the gap. If not
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(a “weak” gap), then Σn(Jβ(R)) has the scale property, where n is least such
that Σn(Jβ(R))∩P(R) � Jβ(R). A periodicity argument then propagates the
scale property to the Σn+2k(Jβ(R)), Πn+2k+1(Jβ(R)). These results place
exactly the scale property among the classes Σn(Jα(R)), Πn(Jα(R)). With a
little extra argument, this suffices to place exactly the scale property among
the Levy classes in L(R) (the only additional classes with the scale property
are the Steel classes Γ0 such that ∃ωω

Γ0 = Σ1(Jα(R)) for some α beginning
a gap).

The analysis also shows that for α beginning a gap, a universal Σ1(Jα(R))
set Uα and a Σ1(Jα(R)) scale {φα

n} on Uα can be constructed uniformly
in α. This uniformity, however, fails for the Steel pointclasses having the
scale property; this presents an obstacle in some arguments.

2.5. Determinacy and Coding Results

We begin by recalling a useful ordinal determinacy result. If λ1, . . . , λn ∈
On and A ⊆ λω

1 × · · · × λω
n , we say A is Suslin if there is a tree T on

λ1 × · · · × λn × λn+1 for some λn+1 ∈ On such that (�α1, . . . , �αn) ∈ A iff
∃�αn+1 ∈ λω

n+1 (�α1, . . . , �αn+1) ∈ [T ]. The collection of Suslin sets contains the
open and closed sets (λi

ω endowed with the product of the discrete topology
on λi), is closed under ∃ωω

, countable unions and intersections, continuous
preimages, and assuming AD, ∀ωω

(the only non-trivial part is closure under
∀ωω

which follows from the proof of the Second Periodicity Theorem). We
say A is co-Suslin if (λω

1 × · · · × λω
n)−A is Suslin.

The following theorem is the basis for many ordinal determinacy results.

2.23 Theorem (AD). Let λ < Θ, and A ⊆ λω be Suslin and co-Suslin.
Then the ordinal game GA is determined.

The theorem is due originally to Moschovakis, and appears as Theorem 2.2
of [32] (though in a weaker form). The proof there is similar to that of the
Third Periodicity Theorem, using also the Harrington-Kechris Theorem to
ensure the determinacy of certain real games. A second proof appears in [22,
Theorem 2.5], and is a more direct combinatorial proof.

An important tool in the theory of L(R) is the Solovay Basis Theorem.
This, along with Theorem 2.23, will provide the determinacy of some of the
games we will consider later.

2.24 Theorem (ZF; Solovay Basis Theorem). Let P (A) be a Σ2
1 relation on

sets A ⊆ ωω. If L(R) |= ∃A P (A) then L(R) |= ∃A ∈Δ2
1 P (A).

Proof. Write P (A) ←→ ∃B ⊆ ωω Q(A,B) where Q is projective. Work
inside L(R). Since every set in L(R) is ordinal definable from a real, we may
fix reals x0, y0 and formulas φ1, φ2 such that for some α, β ∈ On we have

L(R) |= ∃!A ∃!B [φ1(x0, α,A) ∧ φ2(y0, β, B) ∧Q(A,B)].
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Let ψ(x0, α, y0, β) denote the right-hand side and ψ′(x0, α, y0, β, A,B) de-
note the part inside the square brackets. Let N ∈ ω be large enough so that
a transitive set model of ZFN + V = L(R) containing the reals must be of
the form Jδ(R). Let (δ0, α0, β0), where δ0 > α0, β0, be the lexicographically
least triple such that

Jδ0(R) |= ZFN + ∃!A ∃!B[φ1(x0, α0, A) ∧ φ2(y0, β0, B) ∧Q(A,B)].

A hull argument shows that δ0 exists, and there is a map from the reals onto
Jδ0(R), and thus Jδ0(R) may be coded by a set of reals (that is, there is a
structure (R, E) isomorphic to Jδ0(R)). Let A,B be the unique sets of reals
in Jδ0(R) such that φ1(x0, α0, A), φ2(y0, β0, B), and Q(A,B) hold in Jδ0(R).
Since Q is projective, Q(A,B) holds in L(R), and thus P (A). We have:

x ∈ A←→ ∃E ⊆ ωω × ωω ∃x′, x′
0, y

′
0 ∈ R satisfying the following:

(1) (R, E) is well-founded, (R, E) |= ZFN + V = L(R), and R ⊆ π(R, E),
where π is the transitive collapse map.

(2) π(x′) = x, π(x′
0) = x0, π(y′

0) = y0.

(3) (R, E) |= ∃α′, β′ [ψ(x′
0, α

′, y′
0, β

′) ∧ ∀(α′ ′, β′ ′) <lex (α′, β′) ¬ψ(x′
0, α

′ ′,
y′
0, β

′ ′) ∧ ∃A′ ∃B′ ψ′(x′
0, α

′, y′
0, β

′, A′, B′) ∧ x′ ∈ A′].

(4) (R, E) |= ∀δ′ ∈ On Jδ′ (R) � ∃α′, β′ ψ(x′
0, α

′, y′
0, β

′).

Since (1)–(4) are projective statements about E, this shows that A ∈ Σ2
1,

and a similar computation shows Ac ∈ Σ2
1. �

From this, we get a useful determinacy result.

2.25 Theorem (AD + V = L(R)). Let λ < Θ and F : λω × (ωω)n → ωω be
continuous, and A ⊆ ωω. Consider the game Gλ,F,A on λ where I, II play
α0, α1, . . . producing �α ∈ λω, and I wins iff

∃x1∀x2 · · · ∃(∀)xn F (�α, x1, x2, . . . , xn) ∈ A.

Then Gλ,F,A is determined.

Proof. Suppose the theorem fails. By a hull argument, there is an E ⊆
ωω × ωω such that (R, E) is well-founded, R ⊆ π(M,E), where π denotes
the transitive collapse map, and there are λ′, F ′, A′ ∈ R such that (R, E) |=
ZFN+ “(λ′, F ′, A′) witnesses the theorem fails”. From Theorem 2.24, we
may fix such an E which is Δ2

1. Let Jδ(R) = π(R, E). Let λ′ ′ = π(λ′),
A′ ′ = π(A′), F ′ ′ = π(F ′). So, Jδ(R) |= “(λ′ ′, A′ ′, F ′ ′) witness the theorem
fails”. Since E ∈Δ2

1, easily A′ ′ ∈Δ2
1. Hence A′ ′ is Suslin, co-Suslin in L(R),

and thus so is

{(�α, x1, . . . , xn) ∈ λ′ ′ω × (ωω)n : F ′ ′(�α, x1, . . . , xn, ) ∈ A′ ′} .
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By periodicity, Gλ′ ′,A′ ′,F ′ ′ is Suslin, co-Suslin in L(R) and therefore deter-
mined. However, a winning strategy for this game can be identified with a
subset of λ′ ′ < ΘJδ(R). By the Coding Lemma, the strategy must then lie in
Jδ(R), a contradiction. �

2.26 Corollary (AD + V = L(R)). Let λ < Θ, F : λω → ωω be continuous,
A ⊆ ωω, and G the game on λ with payoff F −1(A). Then G is determined.

If Γ is a pointclass closed under ∀ωω

,∨, and pwo(Γ), and if φ : A
onto−→ κ

is a Γ norm on the Γ-complete set A, then the usual boundedness principle
applies: every B ⊆ A in Γ̌ is bounded below κ with respect to φ. In this
case, κ is the supremum of the lengths of the Δ prewellorderings, and κ is
regular. There is a useful generalization of this principle, due to Steel, which
applies to all ordinals α < Θ. First, we recall one of the main results of [35]:

2.27 Theorem (AD; Steel). Let Γ be non-selfdual, and ∃ωω

Δ ⊆ Δ. Then
Γ is closed under intersections with κ-Suslin sets for κ < cf(o(Δ)).

The non-trivial case of Theorem 2.27 is when sep(Γ) holds, for if sep(Γ̌)
then Γ is closed under ∧ by [35].

Using Theorem 2.27 we now have the following general boundedness prin-
ciple. We follow the proof in [12]. We say a norm φ : A

onto−→ α is κ-Suslin
bounded if for every B ⊆ A which is κ-Suslin we have sup{φ(x) : x ∈ B} < α.

2.28 Theorem (AD; Steel). Let α < Θ be a limit ordinal. Then there is an
A ⊆ ωω and a norm φ : A onto−→ α which is κ-Suslin bounded for all κ < cf(α).

Proof. First note that we may assume α is regular, since a norm of length
cf(α) which is κ-Suslin bounded for all κ < cf(α) produces one of length
α. For example, let δ = cf(α), h : δ → α be cofinal and increasing, and
ψ : B → δ a norm which is κ-Suslin bounded for all κ < δ. Let ρ : C

onto−→ α
be a norm. Define for β < α,

Aβ(x) ←→ [x0 ∈ C ∧ ρ(x0) = β ∧ x1 ∈ B ∧ β < h(ψ(x1))] .

Let A =
⋃

β<α Aβ , and φ(x) = ρ(x0) for x ∈ A. Suppose S ⊆ A is κ-Suslin
for some κ < δ. Let S1 = {x1 : x ∈ S}. Then S1 is κ-Suslin and S1 ⊆ B, and
so η

.= sup{ψ(x1) : x ∈ S} < δ. But clearly then sup{φ(x) : x ∈ S} ≤ h(η).
So assume α is regular.

Similarly, it suffices to produce a norm ψ : A
onto−→ ρ which is κ-Suslin

bounded for all κ < α, for some ρ of cofinality α. For suppose ψ : A onto−→ ρ is
such a norm, and cf(ρ) = α. Let h : α → ρ be cofinal. Define φ : A

onto−→ α
by φ(x) = the least β < α such that h(β) > ψ(x). Then easily φ is κ-Suslin
bounded for all κ < α.

Let ρ > α be a limit cardinal of cofinality α such that the collection Δ
of sets of Wadge degree < ρ is closed under ∃ωω

. We produce an A and
a norm φ : A

onto−→ ρ which is κ-Suslin bounded for all κ < α. Let Γ be
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the non-selfdual pointclass closed under ∀ωω

with Δ = Γ ∩ Γ̌ (see [35], we
assume α > ω as otherwise the result is trivial). Let B be a Γ universal
set. Define A by: x ∈ A iff x0, x1 code continuous functions fx0 , fx1 with
f −1

x0
(B) = ωω − f −1

x1
(B). For x ∈ A, let φ(x) be the Wadge degree of the Δ

set f −1
x0

. Clearly φ : A
onto−→ ρ. Suppose S ⊆ A is κ-Suslin for some κ < α,

and assume towards a contradiction that sup{φ(x) : x ∈ S} = ρ. Define

C(x, y) def←→ (x ∈ S ∧ fx0(y) ∈ B) ←→ (x ∈ S ∧ fx1(y) /∈ B) .

Thus, C ∈ Δ by Theorem 2.27. This is a contradiction, since any Δ set is
Wadge reducible to C. For let D ∈ Δ, and take x ∈ S so that f −1

x0
(B) =

ωω − f −1
x1

(B) = D′ ≥w D. Then y ∈ D′ ←→ (x, y) ∈ C. �

2.6. Partition Relations

We recall some facts and terminology associated with partition relations that
we will be using frequently. We give the definitions working in our base theory
ZF + DC, although to obtain non-trivial results we will have to assume AD.

If f : α→ On, we say f has uniform cofinality ω if there is a f ′ : α×ω →
On such that ∀β < α f(β) = sup{f ′(β, n) : n ∈ ω} and f ′ is increasing in
the second argument, that is, ∀β ∀n,m [n < m→ f ′(β, n) < f ′(β,m)].

2.29 Definition. We say f : α→ On is of the correct type if f is increasing,
everywhere discontinuous (i.e., for all β < α, f(β) > sup{f(β′) : β′ < β}),
and of uniform cofinality ω.

Generalizing this, we define:

2.30 Definition. Let f, S : α → On. We say f has uniform cofinality S if
there is a function l : {(β, γ) : β < α ∧ γ < S(β)} → On which is increasing
in the second argument and ∀β < α f(β) = sup{l(β, γ) : γ < S(β)}. We
frequently just say f(β) has uniform cofinality S(β).

If μ is a measure (i.e., a countably additive ultrafilter) on α, we say f has
uniform cofinality S almost everywhere, for S as above, if ∀∗

μβ < α f(β) =
f(β) = sup{l(β, γ) : γ < S(β)}. We usually just say f(β) has uniform
cofinality S(β) almost everywhere with respect to μ.

Note that the statement “f has uniform cofinality S almost everywhere
with respect to μ” depends only on [f ]μ, [S]μ.

For κ a cardinal and λ ≤ κ, we let (κ)λ denote the set of increasing
functions from λ to κ. We write κ → (κ)λ to mean: for every partition
P : (κ)λ → {0, 1} of the increasing functions from λ to κ into two pieces,
there is a homogeneous H ⊆ κ of size κ. That is, there is an i ∈ {0, 1}
such that for all f ∈ (H)λ we have P(f) = i. We define a variation on
this as follows. We say κ

c.u.b.−→ (κ)λ if for all partitions P : (κ)λ → {0, 1}
of the increasing functions from λ to κ into two pieces, there is a closed



2. Survey of Basic Notions 1783

unbounded C ⊆ κ such that for some i ∈ {0, 1} and all f : λ → C of the
correct type, P(f) = i.

The following well-known fact connects these two variations. The proof is
straightforward, and left to the reader.

2.31 Fact. For all cardinals κ and ordinals λ ≤ κ:

1. κ
c.u.b.−→ (κ)λ =⇒ κ→ (κ)λ.

2. κ→ (κ)ω·λ =⇒ κ
c.u.b.−→ (κ)λ.

The instances of the partition property of particular importance to us are
expressed in the following definition.

2.32 Definition. We say a cardinal κ has the strong partition property if
κ→ (κ)κ. We say κ has the weak partition property if κ→ (κ)λ for all λ < κ.

From Fact 2.31 it follows that the notions of strong and weak partition
property of κ do not depend on which of the two variations of the definition
are used. In all of the determinacy arguments, it is the “c.u.b.” version of
the partition relation which is relevant. Since we will never need the other
variation, we therefore adopt the convention that henceforth, κ→ (κ)λ means
κ

c.u.b.−→ (κ)λ.
There are two slight generalizations of the strong partition property of κ

which we will employ frequently. First, if ≺ is a wellordering of some set
dom(≺) of order-type κ, we have the strong partition property for partitions
of functions f : dom(≺) → κ of the correct type (defined in the obvious man-
ner). Second, instead of considering functions f : κ→ κ or f : dom(≺) → κ of
the correct type, we may consider f which are increasing, everywhere discon-
tinuous, and of uniform cofinality S, for any fixed S : κ → κ. Alternatively,
we may consider partitions of functions f which are increasing, continuous at
limit ordinals (or points of limit rank in ≺), and such that f(α) has uniform
cofinality S(α) at points of successor rank. In either case, the generalized
version of the strong partition property follows easily from the usual strong
partition relation.

We present now an abstract form of Martin’s proof of the strong partition
relation on ω1. We state it in the most general form for which we are able to
prove it.

2.33 Definition. Let κ be a regular cardinal, λ ∈ On, λ ≤ κ. We say κ
is λ-reasonable there is a non-selfdual pointclass Γ closed under ∃ωω

, and a
map φ with domain ωω satisfying (where Δ = Γ ∩ Γ̌):

(1) ∀x φ(x) ⊆ λ× κ.

(2) ∀F : λ→ κ ∃x (φ(x) = F ).



1784 Jackson / Structural Consequences of AD

(3) ∀β < λ ∀γ < κ Rβ,γ ∈Δ, where

x ∈ Rβ,γ ←→ φ(x)(β, γ) ∧ ∀γ′ < κ (φ(x)(β, γ′) → γ′ = γ).

(4) Suppose β < λ, A ∈ ∃ωω

Δ, and A ⊆ Rβ
.= {x : ∃γ < κ Rβ,γ(x)}. Then

∃γ0 < κ ∀x ∈ A ∃γ < γ0 Rβ,γ(x).

We say κ is reasonable if it is κ-reasonable. If ∃!γ φ(x)(β, γ), then we
write φ(x)(β) for this unique γ. Note that the pointclass hypotheses of the
theorem are really just that Δ = Γ ∩ Γ̌ for some Levy class Γ (i.e., Γ is
non-selfdual and closed under ∃ωω

or ∀ωω

) as the hypotheses are symmetric
between Γ and Γ̌. Recall that from AD we have either pwo(Γ) or pwo(Γ̌).

2.34 Theorem (AD; Martin). If κ is ω · λ-reasonable, then κ→ (κ)λ.

Proof. We will show below that Δ is in fact closed under <κ unions and
intersections; we assume this for now. We refer below to the sets Rβ , Rβ,γ

of Definition 2.33.
Fix a partition P : (κ)λ → {0, 1}. Play the integer game where I plays

out x ∈ ωω, II plays out y ∈ ωω. If there is a least ordinal β < ω · λ such
that x /∈ Rβ or y /∈ Rβ , then II wins provided x /∈ Rβ . Otherwise, let fx,
fy : ω ·λ→ κ be the functions they determine (e.g., fx(β) = φ(x)(β)). Define
in this case fx,y : λ→ κ by

fx,y(β) = sup{max(fx(β′), fy(β′)) : β′ < ω · (β + 1)} .

II then wins iff P(fx,y) = 1.
Assume without loss of generality that II has a winning strategy τ . For

β < ω · λ and γ < κ, define x ∈ Sβ,γ ←→ ∀β′ ≤ β ∃γ′ ≤ γ x ∈ Rβ′,γ′ .
Thus, Sβ,γ ∈ Δ. Hence, for all β < ω · λ and γ < κ, τ [Sβ,γ ] ∈ ∃ωω

Δ
(note that for any Levy class Γ that ∃ωω

Δ is closed under ∧, ∨; an easy
consequence of the hierarchy analysis of Sect. 2.3). Now, τ [Sβ,γ ] ⊆ Rβ .
Thus, θ(β, γ) .= sup{φ(x)(β) : x ∈ τ [Sβ,γ ]} < κ, from (4) of Definition 2.33.
Let C ⊆ κ be the set of points closed under θ, and C ′ ⊆ C the set of limit
points of C.

Suppose F : λ → C ′ is of the correct type; we show that P(F ) = 1.
Let x be such that φ(x) determines a function fx : ω · λ → C such that
F (β) = sup{fx(β′) : β′ < ω · (β + 1)}. We may assume fx(β) ≥ β for all β.
Let y = τ(x). From the definition of C it follows that φ(y) determines a
function fy : ω ·λ→ κ such that fy(β) ≤ fx(β +1) for all β. Thus, F = fx,y,
so P(F ) = 1.

We show now that Δ is closed under <κ unions. Suppose not, and let
δ < κ be least such that some union A =

⋃
α<δ Aα is not in Δ. Note that

R0 =
⋃

γ<κ R0,γ is a κ union of Δ sets, and R0 /∈ ∃ωω

Δ. Suppose first
pwo(Γ). Then Γ is closed under wellordered unions by Lemma 2.21. Thus
A ∈ Γ, and by Wadge’s Lemma, R0 =

⋃
α<δ Sα for some Sα ∈ Δ. Since κ

is regular, one of the Sα ⊆ R0 must be “unbounded” in κ, a contradiction
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to ω · λ-reasonableness. So assume pwo(Γ̌), and thus pwo(Γ1), where Γ1 =
∃ωω

Γ̌. Thus, Γ1 is closed under wellordered unions, and so R0 ∈ Γ1. We
cannot have

⋃
δ Δ = Γ, as otherwise Martin’s argument (Theorem 2.15)

shows pwo(Γ). It follows that
⋃

δ Δ ⊇ Γ̌, and so
⋃

δ ∃ωω

Δ ⊇ Γ1 (and hence
actually Γ1 =

⋃
δ ∃ωω

Δ). Thus, R0 =
⋃

α<δ Sα, with each Sα ∈ ∃ωω

Δ. As
before, this contradicts reasonableness. �

2.35 Remark. The proof shows that if Γ,φ witness the λ-reasonableness
of κ, then Δ is closed under <κ unions. With a little extra work one can
show Γ is closed under countable unions, intersections, and pwo(Γ̌).

The next lemma shows that all the δ1
2n+1, and in particular ω1, have the

countable exponent partition relation. We will take this as the start of our
analysis in the next section.

2.36 Theorem (AD). Let Γ be a non-selfdual pointclass closed under ∀ωω

,
∧,∨ and assume pwo(Γ). Let δ = δ(Γ) = the supremum of the lengths of the
Δ = Γ ∩ Γ̌ prewellorderings. Then δ → (δ)λ for all λ < ω1.

Proof. Fix λ, and a bijection π : ω → λ. Fix also a Γ universal set P and
a Γ norm ψ on P . We may assume ψ is onto an ordinal, in which case that
ordinal is δ. We define the map φ so that Γ̌, φ witness the λ-reasonableness
of δ. Define φ(x)(β, γ) iff xn ∈ P ∧ψ(xn) = γ, where π(n) = β. Items (1)–(3)
are immediate, and (4) follows since a Γ̌ subset of P is bounded. �

Note that if we know directly that Γ is closed under countable unions
and intersections, then the pointclass arguments in Theorem 2.34 are not
necessary for the application to Theorem 2.36, as the sets S(α, γ) as defined
there are in Δ directly.

3. Suslin Cardinals

In this section we develop the basic theory of Suslin cardinals and scales
assuming AD. The results presented here completely classify the Suslin car-
dinals κ and the corresponding Suslin classes S(κ). They also suffice to com-
pletely determine the scaled pointclasses with one exception: if Γ is scaled
and closed under quantifiers, then if λ denotes the next Suslin cardinal, we
do not get the scale property at Σ0 or Π1 where Σ0 is the class of countable
unions of sets of Wadge degree less than λ. We do, however, get the scale
property at Σ2 (and by periodicity for the appropriate classes in the remain-
der of this projective-like hierarchy). As we show in this case, λ+ is the next
Suslin cardinal after λ, and Σ2 = S(λ+). Steel’s analysis of scales in L(R)
(which we over-viewed in Sect. 2.4) provides a more detailed description if
one assumes in addition V = L(R). Namely, this analysis gives also the scale
property at Σ0, Π1.



1786 Jackson / Structural Consequences of AD

The main result is Theorem 3.28. We assume AD throughout this section.
The arguments of this section are mainly due to Martin and appear in [24],
which we follow.

We assume in this section a basic knowledge of homogeneous and weakly
homogeneous trees, though we only need here (aside from Theorem 3.2 be-
low) the basic definitions and general properties of the homogeneous tree
construction. The reader could skip ahead to Definition 5.1 and its following
paragraphs for a discussion.

Throughout this section, ν will denote the Martin measure on the Turing
degrees D. Recall that A ⊆ D has ν measure one iff it contains a cone, that
is, there is a degree d such that for all d′ ≥T d, d′ ∈ A (here ≤T denotes
Turing reducibility). From AD, ν is a measure (i.e., a countably additive
ultrafilter) on D. Thus we will write “∀∗

ν d” to mean “for ν almost all degrees
d ∈ D”. When we are clearly talking about degrees, we will frequently just
write x ≤ d instead of x ≤T d.

Recall that S(κ) denotes the pointclass of κ-Suslin sets. Recall also the
definitions of o(Γ), δ(Γ) from Definition 2.19. We will use frequently the fact
mentioned previously (from [21]) that for Δ closed under real quantification,
∧ and ∨, we have o(Δ) = δ(Δ).

We state two theorems we will need for this analysis. The first, due to
Steel and Woodin, is the following.

3.1 Theorem (Steel, Woodin). The set of Suslin cardinals is closed below
their supremum.

Thus, assuming AD, the set of Suslin cardinals is closed below Θ except
that the supremum of the Suslin cardinals, if less than Θ, may perhaps not be
a Suslin cardinal. Woodin [42] has isolated a strengthening of AD called AD+

which implies that the Suslin cardinals are closed below Θ. It is apparently
unknown whether AD implies AD+. We refer the reader to [42] for further
discussion of AD+.

We will also need the following theorem of Martin and Woodin on weak
homogeneity. We refer the reader to [30] for a proof.

3.2 Theorem (Martin, Woodin). Let κ be less than the supremum of the
Suslin cardinals. Then every tree on ω × κ is weakly homogeneous.

3.1. Pointclass Arguments

We recall the following fact about the homogeneously Suslin sets.

3.3 Lemma. Let κ be a cardinal. Let Γ be the collection of A ⊆ ωω which
can be written in the form A = p[T ] where T is a homogeneous tree on ω×κ.
Then Γ is a pointclass and is closed under ∀ωω

.

Proof. It is straightforward to check that Γ is a pointclass. We first show
that ∀ωω

Γ ⊆ S(κ). Suppose A(x) ←→ ∀y B(x, y) where B ∈ Γ, say B = p[T ]



3. Suslin Cardinals 1787

where T is a homogeneous tree on ω× ω× κ. Let {si}i∈ω enumerate ω<ω in
a reasonable manner. Define a tree U on ω × κ by:

(t, �α) ∈ U ←→ ∀i < lh(t) (t� lh(si), si, �β) ∈ T,

where �β = (αj(0), αj(1), . . . , αj(lh(si)−1)), and j(a) is the integer such that
sj(a) = si�a. Clearly p[U ] ⊆ A. The inclusion A ⊆ p[U ] follows also if we
have that for every x ∈ A there is a Lipschitz continuous f : ωω → κω such
that for all y ∈ ωω, (x, y, f(y)) ∈ [T ] (for this f will produce a branch through
Ux). The existence of f follows from the homogeneity of T : play the (closed
for II) game where I plays integers y(i), II plays ordinals α(i) < κ, and II
wins the run iff for all n, (x�n, y�n, �α�n) ∈ T . Since T is homogeneous, II
has a winning strategy in this game, and this gives the desired function f .
So, ∀ωω

Γ ⊆ S(κ).
If Γ = S(κ), then this shows ∀ωω

Γ = Γ (and Γ is closed under ∃ωω

as
well). Suppose Γ � S(κ). If κ is not the largest Suslin cardinal, then from
Theorem 3.2 we have S(κ) = ∃ωω

Γ. If ∀ωω

Γ �= Γ, then by Wadge’s Lemma
∀ωω

Γ ⊇ ∀ωω

Γ̌ = Š(κ), a contradiction. If κ is the largest Suslin cardinal,
then S(κ) is closed under ∀ωω

(as well as ∃ωω

) as otherwise periodicity would
give a larger Suslin class. So, Δ(S(κ)) is closed under real quantification.
Also, any A ∈ S(κ) − Š(κ) cannot be in Γ (or even be the projection of a
weakly homogeneous tree), as otherwise ωω − A would be Suslin from the
homogeneous tree construction. Thus, in this case Γ ⊆Δ(S(κ)). We borrow
one fact from the upcoming Lemma 3.6, namely that cf(κ) > ω. Thus, every
S(κ) set is an increasing union of sets in

⋃
λ<κ S(λ). If

⋃
λ<κ S(λ) were

properly contained in Δ(S(κ)), then we could find a pointclass Γ0 properly
contained in Δ(S(κ)) which is closed under ∃ωω

, pwo(Γ0), and
⋃

λ<κ S(λ) ⊆
Γ0. From Lemma 2.21 it follows that S(κ) ⊆ Γ0, a contradiction. So, every
Δ(S(κ)) set is λ-Suslin for some λ < κ. From Theorem 3.2 it follows that
every set in Δ(S(κ)) is the existential quantification of a set in Γ, and so
Γ = Δ(S(κ)). Hence, Γ is closed under ∀ωω

. �

We need the following simple lemma.

3.4 Lemma. Let κ be a Suslin cardinal. Then there is a κ-length strictly
increasing sequence of sets in S(κ). If cf(κ) > ω, then there is a κ-length
strictly increasing sequence of sets each of which is <κ-Suslin.

Proof. The proof that every Suslin cardinal is reliable (cf. [37, Lemma 4.6]
and Sect. 6.1) shows that for any Suslin cardinal κ there is an A ∈ S(κ)−Š(κ)
and a scale {φi} on A with norms into κ and with φ0 onto κ. We recall the
argument. Let B ∈ S(κ) − Š(κ), and {ψi} a regular scale on B with norms
into κ. Let A = {x : x′ ∈ B}, where x′(n) = x(n + 1). Define for x ∈ A,
φ0(x) = ψx(0)(x′), and φi+1(x) = ψi(x′). Then φ0 is onto κ as otherwise
A ∈ S(λ) for some λ < κ. For α < κ let Aα = {x ∈ A : φ0(x) ≤ α}. Each
Aα is in S(κ). Moreover, the Aα form a strictly increasing sequence of S(κ)
sets of length κ.
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Suppose now that cf(κ) > ω. We now use the argument of [14, Lemma 2.1].
Recall φ0 maps onto κ. For α < β < κ define

Aα,β = {x : ∀i φi(x) < β} ∪ {x : ∀i φi(x) ≤ β ∧ φ0(x) ≤ α}.

Each Aα,β is <κ-Suslin. If we view the increasing pairs (α, β) as ordered
first by the second coordinate and then the first, clearly the Aα,β form a (not
necessarily strictly) increasing sequence of order type κ. For each α < κ,
there is an x with φ0(x) = α and for this x there is a least β > α such that
∀i φi(x) ≤ β. It follows that for these α, β that Aα,β −

⋃
α′,β′ Aα′,β′ �= ∅

where the union ranges over (α′, β′) less than (α, β) in the ordering described.
Thus there is a κ length subsequence of the Aα,β which is strictly increasing.

�

We will need the following result, due to Chuang, in the theory of point-
classes. The methods used in the proof are similar to those of [14].

3.5 Theorem (Chuang). Let Γ be non-selfdual and closed under ∀ωω

, ∨, and
assume pwo(Γ). Then there is no strictly increasing or decreasing sequence
of Γ sets of length (δ(Γ))+.

Proof. Let Δ = Γ ∩ Γ̌ as usual. Note that Γ is closed under countable
intersections and ∃ωω

Γ (which may be Γ) is closed under countable unions
and intersections. We fix a universal Γ set U ⊆ ωω × ωω, so every real x
codes a Γ set Ux ⊆ ωω. Let δ0 be the supremum of those limit β such that
{A : o(A) < β} is closed under real quantification and is contained within Δ.
Let Δ0 = {A : o(A) < δ0}. Let δ = δ(Γ) = the supremum of the lengths of
the Δ prewellorderings. Suppose {Aα}α<δ+ is a strictly increasing sequence
of Γ sets. By thinning the sequence we may assume that for all α < δ+ that⋃

β<α Aβ � Aα. Let A =
⋃

α Aα. For x ∈ A let φ(x) < δ+ be the least
ordinal α such that x ∈ Aα. Let ≺ be the strict prewellordering defined by

x ≺ y ←→ x, y ∈ A ∧ φ(x) < φ(y).

Thus, ≺ has length δ+.
We consider two cases, though the argument in each case is similar.

Case I. Γ is not closed under ∃ωω

.
By periodicity pwo(∃ωω

Γ), and so by Lemma 2.21 ∃ωω

Γ is closed under
wellordered unions. It follows that ≺ ∈ ∃ωω

Γ since x ≺ y iff ∃α < β <
δ+ (x ∈ Aα ∧ y ∈ Aβ ∧ y /∈ Aα). We use here the fact that Γ̌ ⊆ ∃ωω

Γ as Γ is
not closed under ∃ωω

. Let C ⊆ (ωω)3 be defined by:

(x, y, z) ∈ C ←→ ∃α < δ+ (Ux = Aα ∧ y, z ∈ A ∧ φ(y) = α ∧ φ(z) = α + 1).

Applying the Coding Lemma to the ∃ωω

Γ relation ≺ gives an ∃ωω

Γ set S ⊆ C
such that for all α < δ+ there is an (x, y, z) ∈ S with φ(y) = α. From pwo(Γ)
and the closure of Γ under ∨ the usual boundedness argument shows that
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if ψ is a regular Γ norm on a Γ complete set B, then ψ maps onto δ and
every Γ̌ subset of B is bounded in the norm. In particular, every Γ̌ well-
founded relation has length less than δ (otherwise the Coding Lemma gives
an unbounded Γ̌ subset of B). Also from pwo(Γ), every Γ set is a δ union of
Δ sets. It follows that every ∃ωω

Γ set is a δ union of ∃ωω

Δ ⊆ Γ̌ sets. So write
S =

⋃
β<δ Sβ , where each Sβ ∈ Γ̌. For β < δ let ≤β be the prewellordering

on Sβ defined by

(x1, y1, z1) ≤β (x2, y2, z2)
←→ (x1, y1, z1), (x2, y2, z2) ∈ Sβ ∧ φ(y1) ≤ φ(y2)
←→ (x1, y1, z1), (x2, y2, z2) ∈ Sβ ∧ y1 ∈ Ux2

←→ (x1, y1, z1), (x2, y2, z2) ∈ Sβ ∧ z2 /∈ Ux1 .

Thus, ≤β can be written as the intersection of Sβ×Sβ with a Γ set or with a Γ̌
set. In particular, ≤β ∈ Γ̌, and has length less than δ. A similar computation
shows the strict part <β of the prewellordering to be in Γ̌ as well.

This however gives a one-to-one map of δ+ into δ × δ, a contradiction.
Namely, given α < δ+ let π0(α) be the least ordinal β < δ such that there is
an (x, y, z) ∈ Sβ with φ(y) = α. Let π1(α) be the rank of any (x, y, z) ∈ Sβ

with φ(y) = α in the prewellordering ≤β . It is easy to check that this is
well-defined and that α �→ (π0(α), π1(α)) is one-to-one.

Case II. Γ is closed under ∃ωω

.

In this case Γ is closed under real quantification, countable unions and
intersections. Define C as in case I. If there is a Γ well-founded relation of
length δ+, then using the coding as in case I gives a Γ set S as in that case.
We still have that every Γ̌ well-founded relation has length less than δ, and
we thus get a contradiction exactly as in case I. So suppose every Γ well-
founded relation has length less than δ+. From the Coding Lemma there are
Γ well-founded relations of any length less than δ+, so δ+ is the supremum
of the lengths of the Γ well-founded relations. From this, the Coding Lemma
easily implies that δ+ is regular. Consider the integer game where I plays
out w ∈ ωω and II plays out (x, y, z) ∈ (ωω)3. II wins the run iff (where U ′

is universal for Γ subsets of (ωω)2):

U ′
w is well-founded −→ ((x, y, z) ∈ C ∧ φ(y) > |U ′

w|),

where |U ′
w| denotes the rank of the relation U ′

w. I cannot have a winning
strategy, as this would give a Σ1

1 set of codes of Γ well-founded relations
whose lengths were unbounded in δ+, and from this we would get a Γ well-
founded relation of length δ+ (in fact there can be no Γ set of codes of Γ
well-founded relations having lengths unbounded in δ+). Let τ be a winning
strategy for II. Define the relation

w1 3 w2 ←→ (U ′
w1

, U ′
w2

are well-founded) ∧ y2 /∈ Ux1 ,



1790 Jackson / Structural Consequences of AD

where τ(w1) = (x1, y1, z1) and τ(w2) = (x2, y2, z2). From the closure of Γ
under quantifiers it follows easily that 3∈ Γ̌, and from the regularity of δ+

an easy argument shows that 3 has length δ+ [For α < δ+ let f(α) < δ+

be least such that for some w with U ′
w well-founded and |U ′

w| = α we have
f(α) = φ(y) where τ(w) = (x, y, z). Let C ⊆ δ+ be closed unbounded and
closed under f . By a straightforward induction check that for α ∈ C and w
with |U ′

w| = α, we have |w|� ≥ γ, where α is the γth element of C.] Thus
we have produced a Γ̌ well-founded relation of length δ+, a contradiction.

We have shown that there is no strictly increasing sequence of Γ sets
of length δ(Γ)+. The argument for decreasing sequences is similar in each
case (we use now for C the set of all (x, y, z) such that x codes some Aα,
y ∈ Aα −Aα+1, and z codes Aα+1). �

By a limit Suslin cardinal we mean a Suslin cardinal which is the supremum
of the smaller Suslin cardinals. A limit Suslin cardinal is necessarily a limit
cardinal. By a successor Suslin cardinal we mean a Suslin cardinal κ which is
the least Suslin cardinal greater than some Suslin cardinal λ. κ may or may
not be a successor cardinal in this case. From Theorem 3.1 it follows that
every Suslin cardinal is either a limit Suslin cardinal or a successor Suslin
cardinal.

3.6 Lemma. Let κ be a Suslin cardinal and assume S(κ) is closed under
∀ωω

. Then κ is a regular limit of Suslin cardinals and scale(S(κ)).

Proof. In this case S(κ) is closed under real quantification and thus also
countable unions and intersections. So Δ = Δ(S(κ)) is closed under real
quantification, countable unions and intersections. Thus, S(κ) is at the base
of a type IV hierarchy. Let δ = o(Δ). Since S(κ) is closed under ∧, ∨,
an argument using the Coding Lemma shows that δ is regular. [If δ were
singular, then the Coding Lemma would give an S ∈ Δ consisting of pairs
(x, y) coding Lipschitz continuous function fx, fy with f −1

x (A) = f −1
y (B),

where A is a S(κ) complete set and B is Š(κ) complete. So, (x, y) codes a
Δ set of some Wadge rank |(x, y)| < δ. Also, {|(x, y)| : (x, y) ∈ S} will be
cofinal in δ. Let

D = {(x, y, z) : (x, y) ∈ S ∧ fx(z) ∈ A}
= {(x, y, z) : (x, y) ∈ S ∧ fy(z) ∈ B}.

But then D ∈Δ yet every set in Δ is Wadge reducible to D, a contradiction.]
We cannot have δ > κ as then there would be a Δ prewellordering of

length κ, and by the Coding Lemma every subset of κ could be coded in Δ,
and so S(κ) would be contained in Δ. So, δ ≤ κ. On the other hand, from
Lemma 3.4 there is a κ strictly increasing sequence of S(κ) sets. Note that
Δ is not closed under wellordered unions, since if it were the standard tree
computation would show that S(κ) is contained in Δ. Thus (cf. the discussion
before Definition 2.19) either pwo(S(κ)) or pwo(Š(κ)). From Theorem 3.5
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(applied to either S(κ) or Š(κ), whichever has the prewellordering property)
we have κ < δ+, so κ ≤ δ. Thus, κ = δ. In particular, κ is regular.

Let λ be the supremum of the Suslin cardinals which are less than κ. We
show that λ = κ. Suppose λ < κ. From Lemma 3.4 there is a κ strictly
increasing sequence of sets in S(λ). [Note: λ is actually a Suslin cardinal
by Theorem 3.1, but we do not need this here. Note that S(λ) is properly
contained in Δ from the regularity of δ, even if λ is not a Suslin cardinal.]
Within the projective hierarchy over S(λ) we may find a non-selfdual Γ0

closed under ∃ωω

and pwo(Γ0), and so by Lemma 2.21, Γ0 is closed under
wellordered unions. Then S(κ) ⊆ Γ0, a contradiction (as Γ0 ⊆ Δ). Thus, κ
is a limit Suslin cardinal.

We cannot have pwo(Š(κ)) as then Š(κ) would be closed under wellordered
unions and then S(κ) ⊆ Š(κ), a contradiction. So, pwo(S(κ)). Thus, S(κ)
is closed under wellordered unions. Hence, S(κ) =

⋃
κ Δ. To see now

scale(S(κ)), let A ∈ S(κ)− Š(κ) and let T be a tree on ω× κ with A = p[T ].
For x ∈ A, let φ0(x) be the least α < κ such that x ∈ p[T �α]. For i > 0 let

φi(x) = 〈φ0(x), �φ0(x)
0 , . . . , �

φ0(x)
i (x)〉,

where �β
i (x) is the ith coordinate of the left-most branch of (T �β)x. Here

〈β, α0, . . . , αi〉 denotes the rank of the tuple (β, α0, . . . , αi) in lexicographic
ordering on those tuples satisfying β ≥ max{α0, . . . , αi}. It is easy to check
that {φi} is a scale on A with all norms into κ. Moreover, each of the norms
φi is an S(κ)-norm as the norm relations ≤∗

i , <∗
i are easily expressible as κ

unions of Δ sets. �

We consider first Suslin cardinals of uncountable cofinality. First we con-
sider the successor Suslin cardinals.

3.7 Lemma. Let κ be a successor Suslin cardinal with cf(κ) > ω. Let λ
be the largest Suslin cardinal less than κ. Then κ = λ+ and cf(λ) = ω.
Furthermore, S(κ) has the scale property and S(κ) = ∃ωω

Š(λ). Also, κ is
regular.

Proof. Let A ∈ S(κ) − Š(κ), and let {φi} be a regular scale on A with
norms into κ. From Lemma 3.4, there is a κ strictly increasing sequence
of λ-Suslin sets. We cannot have pwo(S(λ)) as then S(λ) would be closed
under wellordered unions by Lemma 2.21, and so A would be in S(λ). So,
pwo(Š(λ)). From Theorem 3.5 applied to Š(λ) it follows that κ < δ(Š(λ))+,
and thus κ ≤ δ(Š(λ)). Every Δ(Š(λ)) prewellordering is in S(λ) and so by
the Kunen-Martin Theorem has length < λ+. So, κ ≤ λ+ and thus κ = λ+.

Since κ ≤ δ(Š(λ)), there is an S(λ) well-founded relation of length λ. From
the Coding Lemma it follows that S(λ) is closed under λ unions. Suppose
that cf(λ) > ω. Then every S(λ) set is a λ union of Δ(S(λ)) sets. Thus
S(λ) =

⋃
λ Δ(S(λ)). By Martin’s argument (cf. Lemma 2.15) this gives

pwo(S(λ)), a contradiction. So, cf(λ) = ω. Since pwo(Š(λ)) we also have
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pwo(∃ωω

Š(λ)) and so from Lemma 2.21, ∃ωω

Š(λ) is closed under wellordered
unions. Note that S(λ) is not closed under ∀ωω

as otherwise by Lemma 3.6
λ would be regular. It follows that S(λ) ⊆ ∃ωω

Š(λ). Every S(κ) set is a
wellordered union of S(λ) sets, and thus S(κ) ⊆ ∃ωω

Š(λ). To show the other
inclusion it suffices to show that Š(λ) ⊆ S(κ), and this is immediate by
Wadge’s Lemma. So, S(κ) = ∃ωω

Š(λ).
Since pwo(Š(λ)) and S(κ) = ∃ωω

Š(λ) we have pwo(S(κ)). Thus, S(κ)
is closed under wellordered unions by Lemma 2.21. It follows that S(κ) =⋃

κ Δ(S(κ)). Since cf(κ) > ω, the argument at the end of Lemma 3.6 shows
that every S(κ) set admits a scale all of whose norm relations can be written
as κ unions of Δ(S(κ)) sets. Thus, scale(S(κ)).

Finally, from κ = δ(S(λ)) and the Kunen-Martin Theorem it follows that
κ is the supremum of the lengths of the S(λ) well-founded relations. From
Lemma 2.16 it follows that κ is regular. �

Next we consider the limit Suslin cardinals of uncountable cofinality.

3.8 Lemma. Suppose that κ is a limit Suslin cardinal with cf(κ) > ω. Then
scale(S(κ)). Furthermore, if Δ =

⋃
λ<κ S(λ) and Γ is the corresponding

Steel pointclass, then S(κ) = ∃ωω

Γ. Also, scale(Γ).

Proof. Let Δ =
⋃

λ<κ S(λ). Thus Δ is selfdual and closed under real quan-
tification, countable unions and intersections (for countable unions and inter-
sections we use cf(κ) > ω). Let δ = δ(Δ) = o(Δ). Let Γ be the correspond-
ing Steel pointclass, that is, Δ = Δ(Γ) and Γ is closed under ∀ωω

. Similar
to an earlier argument, we cannot have κ < δ as then the Coding Lemma
would compute S(κ) ⊆ Δ. So, δ ≤ κ. Suppose δ < κ. From Lemma 3.4
there is a strictly increasing sequence {Aα}α<κ of Δ sets of length κ. For
each β < δ let Sβ ⊆ κ consist of those α such that o(Aα) = β. If all the
Sβ had size < δ, then since κ =

⋃
β<δ Sβ , we would have a map from δ × δ

onto κ, a contradiction. Fix β so that |Sβ | ≥ δ. Thus we have a δ-length
strictly increasing sequence of sets {Bγ}γ<δ of Wadge degree ≤ β. Within
Δ we can find a non-selfdual pointclass Γ0 closed under ∧, ∨ and closed
under wellordered unions and properly containing the sets of Wadge degree
≤ β (from Lemma 2.21). The prewellordering associated to the Bγ (i.e.,
x ≺ y ←→ ∃η1 < η2 (x ∈ Bη1 ∧ y ∈ Bη2 ∧ y /∈ Bη1)) is a Γ0 prewellordering
of length δ, a contradiction (recall δ is the supremum of the Δ well-founded
relations). So, κ = δ.

Recall also pwo(Γ) (cf. [37]). Thus pwo(∃ωω

Γ), and by Lemma 2.21 ∃ωω

Γ
is closed under wellordered unions. Since cf(κ) > ω, every S(κ) set is a union
of Δ sets, and so S(κ) ⊆ ∃ωω

Γ. Since S(κ) is closed under ∃ωω

, it follows
from Wadge’s Lemma that either S(κ) = ∃ωω

Γ or S(κ) = Γ̌. We claim the
first possibility holds. To see this, let A ∈ S(κ)− Š(κ), and let A = p[T ] with
T a tree on ω×κ. From Theorem 3.2, T is weakly homogeneous. Thus, there
is a homogeneous tree T ′ on ω × κ such that x ∈ A ←→ ∃y 〈x, y〉 ∈ p[T ′]
(here x, y �→ 〈x, y〉 denotes our coding function). Let Γ′ denote the pointclass
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of sets which are projections of homogeneous trees on ω × κ. Thus, S(κ) =
∃ωω

Γ′. From Lemma 3.3, Γ′ is closed under ∀ωω

. If Γ is not closed under
∃ωω

, then the facts that S(κ) ⊆ ∃ωω

Γ and S(κ) = ∃ωω

Γ′ where Γ′ is closed
under ∀ωω

imply that Γ = Γ′ and S(κ) = ∃ωω

Γ. If Γ is closed under real
quantification, then S(κ) ⊆ ∃ωω

Γ = Γ (and also Γ = Γ′) Thus in all cases
S(κ) = ∃ωω

Γ.
Since pwo(Γ) we also have pwo(S(κ)), and so S(κ) is closed under wellor-

dered unions. Since cf(κ) > ω, the argument at the end of Lemma 3.6 shows
that every S(κ) sets admits a scale all of whose norm relations can be written
as κ unions of Δ sets, and thus are S(κ) relations. Thus, scale(S(κ)).

It remains to show scale(Γ). We use an argument similar to one of [35].
Let A ∈ Γ. Let U ⊆ (ωω)2 be universal Σ1

1. Define B = {y : Uy ⊆ A}. As Γ̌
is closed under intersections with Σ1

1 sets (from [35, Theorem 2.1]), B ∈ Γ.
Let B = p[T ] where T is a tree on ω × κ. Let S be a tree on (ω)3 with
p[S] = {(x, y) : U(y, x)}. Let V be the tree on (ω)3 × κ defined by:

(s, t, u, �α) ∈ V ←→ (s, t, u) ∈ S ∧ (t, �α) ∈ T.

Clearly A = p[V ]. We identify V with a tree V ′ on ω × κ by ordering the
triples (a, b, α) ∈ ω × ω × κ by reverse lexicographic order (i.e., order by α
first). Let V ′ ′ be the slight modification of V ′ (using cf(κ) > ω) so that
for (s, �α) ∈ V ′ ′, α0 ≥ max{α1, . . . , αlh(s)}. Let {φi} be the very good scale
derived from V ′ ′, so each φi maps into κ. To show that ≤∗

φi
∈ Γ (and similarly

for <∗
φi

) it suffices to show that ≤∗
φi

can be written as a Σ1
1-bounded κ-length

union of Δ sets (see the discussion after Definition 2.19). For α < κ let

Cα = {(x, y) : x ∈ A ∧ φi(x) = α ∧ ¬(y ∈ A ∧ φi(y) < α)}.

Clearly Cα ∈ Δ (it is a Boolean combination of α-Suslin sets). Suppose
S ⊆ ωω × ωω is Σ1

1 and for all (x, y) ∈ S, x ≤∗
φi

y. In particular, x ∈ A. Let
S′ = {x : ∃y (x, y) ∈ S}. Let y be such that Uy = S′. Then y ∈ B. Fix
�α ∈ κω so that (y, �α) ∈ p[T ]. Let α′ ≥ max{�αi}. Then S′ ⊆ p[V ′�(ω)3 × α′].
So for some α′ ′ < κ, S′ ⊆ {x : φi(x) ≤ α′ ′}. It follows that S ⊆ Cα′ ′ . Thus,
{φi} is a Γ-scale on A. �

3.2. The Next Suslin Cardinal

The results presented so far suffice to give the theory of the Suslin cardinals
up to the least κ so that S(κ) is closed under real quantification, that is, at
the base of a type IV hierarchy (we will give the details below). However,
at the base of a type IV hierarchy a new method is needed since we cannot
propagate the scale property upwards by periodicity. Martin [24] developed
a method for analyzing the next Suslin cardinal which works not just in this
case, but in general. Although we only need this construction in the case
where we are at the base of a type IV hierarchy, we present Martin’s method
in general. The idea is to describe the pointclass where the next scale gets
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constructed as those sets which are “Wadge reducible to a measure on κ”.
We will make this statement precise later.

3.9 Definition (Martin). Let A = {Aα}α<κ be a sequence of sets Aα ⊆ ωω,
for some κ ∈ On. Then Ā is the collection of A ⊆ ωω such that for all
countable S ⊆ ωω there is an α < κ such that S ∩A = S ∩Aα.

For Γ a pointclass and κ ∈ On we let

Λ(Γ, κ) =
⋃
{Ā : A ⊆ Γ ∧ ‖A‖ ≤ κ},

where ‖A‖ denotes the cardinality of A.

Note that Ā is the closure of {Aα : α < κ} under the topology on P(ωω)
with basic open sets of the form Nf = {A : ∀x ∈ dom(f) (x ∈ A←→ f(x) =
1)}, where f : S → {0, 1} and S ⊆ ωω is countable.

Following [24] we next prove a few basic facts about Λ.

3.10 Lemma. Let Γ be non-selfdual and closed under ∀ωω

and assume
pwo(Γ). If Δ is not closed under real quantification, then assume also that
∃ωω

Γ has the scale property with norms into κ
.= δ(Γ). Then there is an

A = {Aα}α<κ with each Aα ∈ Δ such that for every A ∈ Λ(Γ, κ) there is a
B ∈ Ā with A ≤w B.

Proof. First consider the case where Γ is closed under ∃ωω

(so Γ is at the base
of a type IV hierarchy), and so also countable unions and intersections. First
we show in this case that for every A = {Aα}α<κ with each Aα ∈ Γ there
is an A′ = {A′

α}α<κ with each Aα ∈ Δ such that Ā ⊆ Ā′. Let W be a Γ
complete set and φ a Γ norm on W . Let C = {(x, y) : x ∈W∧y ∈ Aφ(x)}. By
the Coding Lemma C ∈ Γ. Let C =

⋃
β<κ Cβ where Cβ ∈ Δ. For α, β < κ

let A′
α,β = {y : ∃x (x ∈ W ∧ φ(x) = α ∧ (x, y) ∈ Cβ)}. Then A′

α,β ∈ Δ and
easily Ā ⊆ Ā′. Next we show that there is a “universal” A = {Aα}α<κ with
all Aα ∈ Γ. That is, for all A′ ∈ Λ(Γ, κ), A′ ≤w A for some A ∈ Ā. Let
U1 ⊆ (ωω)2, U2 ⊆ (ωω)3 in Γ be universal for Γ�ωω, Γ�(ωω)2 respectively.
For α < κ let Aα ⊆ ωω × ωω be defined by

(x, y) ∈ Aα ←→ ∃z, u [z ∈W ∧ φ(z) = α ∧ U2(x, z, u) ∧ U1(u, y)].

Each Aα lies in Γ. Given A′ = {A′
α}α<κ with each A′

α ∈ Γ, by the Coding
Lemma there is an x0 such that for all α < κ, A′

α = (Aα)x0 . Suppose A′ ∈ Ā′.
For each Turing degree d, let β(d) be the least β < κ so that A′ and A′

β agree
on all x ∈ d (i.e., A′ ∩ d = A′

β ∩ d). Define A ⊆ ωω × ωω by:

(x, y) ∈ A←→ ∀∗
ν d [(x, y) ∈ Aβ(d)].

Clearly A′ = Ax0 . Also, we easily have A ∈ Ā. [If S ⊆ ωω ×ωω is countable,
then for every (x, y) ∈ S let dx,y be a large enough degree so that for all
d ≥T dx,y we have (x, y) ∈ Aβ(d) iff (x, y) ∈ A. Then for any d above all
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the dx,y for (x, y) ∈ S we have that A and Aβ(d) agree on all (x, y) ∈ S.] So
A′ = Ax0 ≤w A ∈ Ā.

Suppose now that we are in the case where Δ is closed under real quan-
tification, but Γ is not closed under ∃ωω

(so Γ is at the base of a type II or
III hierarchy). Again in this case κ = o(Δ). Suppose A = {Aα}α<κ with
each Aα ∈ ∃ωω

Γ. From Lemma 2.22 there is an ∃ωω

Γ set W and an ∃ωω

Γ
prewellordering of W of length κ with corresponding norm φ say, such that
for each α < κ, Wα = {x ∈ W : φ(x) = α} ∈ Δ. Let C be defined as in the
first case. Then C ∈ ∃ωω

Γ. We can write C =
⋃

β<ρ Cβ where each Cβ ∈Δ
and ρ ≤ κ (in fact ρ = cf(κ) from Lemma 2.22). For α < κ, β < ρ let as in the
first case A′

α,β = {y : ∃x (x ∈W ∧ φ(x) = α∧ (x, y) ∈ Cβ)}. Then A′
α,β ∈Δ

and Ā ⊆ Ā′. It suffices then to construct a universal A = {Aα}α<κ with all
Aα ∈ ∃ωω

Γ. This is done as in the first case, using the W , φ just mentioned,
universal sets U1, U2 for ∃ωω

Γ, and the Coding Lemma with respect to the
pointclass ∃ωω

Γ.
Suppose finally that Δ is not closed under real quantification. Inspecting

the hierarchy analysis shows that Γ is not at the base of a projective hierar-
chy. [It cannot be at the base of a type I hierarchy because in that case the
prewellordering property falls on the side closed under ∃ωω

, and it cannot be
at the base of a type II, III, or IV hierarchy since then Δ is closed under quan-
tifiers.] It follows that Γ is closed under countable unions and intersections.
From Lemma 2.13, a Γ-norm on a Γ-complete set has length κ, and every Γ̌
well-founded relation has length less than κ. So, κ is the supremum of the
lengths of the Γ̌ well-founded relations, and from Lemma 2.16 it follows that
κ is regular. We are assuming in this case that ∃ωω

Γ ⊆ S(κ). The reverse in-
clusion follows by the Coding Lemma, so S(κ) = ∃ωω

Γ. The same argument
as in the previous case also shows here that there is a single A = {Aα}α<κ

with all Aα ∈ ∃ωω

Γ which is universal for all such sequences. It remains to
show that for such a A we can find a A′ = {A′

α}α<κ with A′
α ∈Δ such that

Ā ⊆ Ā′. Let {φn} be a regular ∃ωω

Γ-scale on a ∃ωω

Γ-universal set U . Let
T ⊆ (ω× κ)<ω be the tree of the scale {φn}. From the Coding Lemma there
is an ∃ωω

Γ relation R ⊆ ωω × ωω with dom(R) = W (a Γ-complete set with
a Γ-norm φ onto κ) and such that R(x, y) implies Uy = Aφ(x). For α < κ let
β(α) be the least reliable ordinal > α with respect to {φn} (β(α) < κ since
κ is regular). As in the Becker-Kechris Theorem (see [3]), there is an ordinal
game Gα(z) (defined uniformly from α and z ∈ ωω) in which I plays ordinals
<β(α), II plays ordinals <κ, and the game is closed for II satisfying: for all
z ∈ ωω, z ∈ Aα iff II has a winning strategy in Gα(z). For γ < κ, let Gα,γ(z)
be the game played as Gα(z) except now II’s ordinal moves are restricted
to be <γ. Let Aα,γ be the set of z such that II has a winning strategy in
Gα,γ(z). Thus, Aα =

⋃
γ Aα,γ . Finally, for δ < κ let Aα,γ,δ be the set of z

such that I does not win the open game Gα,γ(z) with ordinal <δ (that is,
it is not the case that the empty node has rank <δ in the rank analysis of
the open game). Clearly for any countable S ⊆ ωω and any α, there are γ,
δ < κ such that Aα∩S = Aα,γ,δ ∩S. Also, each Aα,γ,δ ∈Δ since Δ is closed
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under <κ unions and intersections by Martin’s argument (cf. the proof of
Theorem 2.15). We use here the fact that the games Gα(z) are “uniformly”
closed for II, that is, the set of all (�η, z) such that �η is a winning run for II
in Gα(z) is closed in κω × ωω. If we let the A′

α enumerate the Aα,γ,δ then
Ā ⊆ Ā′. �

Note that if Δ is any selfdual class closed under ∧, and κ is any cardinal,
then Λ(Δ, κ) is closed under ∧, ∨, and ¬. For example, to see closure under
∧, given A = {Aα}α<κ, and B = {Bα}α<κ and A ∈ Ā, B ∈ B̄, consider the
sequence C = {Aα ∩ Bβ : α, β < κ}. Easily A ∩ B ∈ C̄. In particular, for
any Levy class Γ and any κ, Λ(Δ(Γ), κ) is closed under ∧, ∨, ¬. Thus as an
immediate corollary to Lemma 3.10 we have the following.

3.11 Corollary. Under the hypotheses of Lemma 3.10, Λ(Γ, κ) is closed
under ∧, ∨, and ¬.

The next lemma shows that if Γ is closed under real quantification, then
so will be Λ.

3.12 Lemma. Let Γ be non-selfdual and closed under ∀ωω

, ∃ωω

, and assume
pwo(Γ). Let κ = δ(Δ) = o(Δ). Then Λ(Γ, κ) is closed under ∀ωω

, ∃ωω

.

Proof. Let A ⊆ ωω × ωω be in Λ = Λ(Γ, κ). Fix A = {Aα}α<κ with each
Aα ∈ Δ and with A ∈ Ā (here each Aα ⊆ ωω × ωω). Define x ∈ B ←→
∃y (x, y) ∈ A. View every real z as coding a countable sz ⊆ ωω and a
fz : sz → {0, 1}. For d a Turing degree, let αz(d) be the least ordinal <κ,
if one exists, such that ∀x ∈ sz (fz(x) = 1 ←→ ∃y ≤ d (x, y) ∈ Aα). Let
C = {z : ∀∗

ν d αz(d) is defined}. A straightforward computation using the
closure of Γ shows that C ∈ Γ. Let φ be the norm on C corresponding to
the prewellordering z1 � z2 ←→ ∀∗

ν d (αz1(d) ≤ αz2(d)). A straightforward
computation shows that the norm relation ≤∗

φ, <∗
φ are in Γ, so φ is a Γ-norm

on C. For example,

z1 ≤∗
φ z2 ←→ ∀∗

ν d ∃α < κ ∀β < α
[
∀x ∈ sz1(fz1(x) = 1←→ ∃y ≤ d (x, y) ∈ Aα)

∧ ¬∀x ∈ sz2(fz2(x) = 1←→ ∃y ≤ d (x, y) ∈ Aβ)
]
.

This is in Γ using the closure of Δ under <κ intersections. Thus φ has
length κ.

For z ∈ C, define Bφ(z) by:

x ∈ Bφ(z) ←→ ∀∗
ν d ∃y ≤ d (x, y) ∈ Aαz(d).

A straightforward computation as above shows Bφ(z) ∈Δ. It suffices to show
that B ∈ B̄ where B = {Bφ(z) : z ∈ C}. Let s ⊆ ωω be countable. Define
f : s→ {0, 1} by f(x) = 1 iff x ∈ B. Let z code s, f . Since A ∈ Ā it follows
that z ∈ C, so φ(z) is defined. Let d0 be a large enough degree so that for
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all x ∈ s we have x ∈ B iff ∃y ≤ d0 (x, y) ∈ A. For any d ≥ d0 and x ∈ s we
then have:

x ∈ B ←→ ∃y ≤ d (x, y) ∈ A

←→ ∃y ≤ d (x, y) ∈ Aαz(d),

which shows that for x ∈ s, x ∈ B iff x ∈ Bφ(z). �

We next make precise the statement that Λ(Γ, κ) is the pointclass of sets
“Wadge reducible to a measure on κ”. Let Γ, κ be as in Lemma 3.10. From
the Coding Lemma, every subset of κ may be coded within the pointclass
∃ωω

Γ. To make this precise, let U ⊆ ωω × ωω be universal for ∃ωω

Γ. Let ψ
be an ∃ωω

Γ-norm on a ∃ωω

Γ set W of length κ (the existence of ψ follows
from Lemmas 2.21 and 2.22). For z ∈ ωω, define Bz ⊆ κ by α ∈ Bz iff
∃x ∈W (ψ(x) = α∧U(z, x)). By the Coding Lemma, every subset of κ is of
the form Bz for some z. We now define the code set Cμ of a measure μ on κ.

3.13 Definition. Let Γ, κ be as in Lemma 3.10. For μ a measure on κ
define Cμ = {z : μ(Bz) = 1}.

3.14 Lemma. Let Γ, κ be as in Lemma 3.10. Then A ∈ Λ(Γ, κ) iff there is
a measure μ on κ such that A ≤w Cμ.

Proof. First suppose μ is a measure on κ and we show Cμ ∈ Λ(Γ, κ). For
α < κ define Aα = {z : α ∈ Bz}. Clearly Aα ∈ ∃ωω

Γ. It suffices to observe
that Cμ ∈ Ā, where A = {Aα}α<κ (using the fact that Λ(∃ωω

Γ, κ) = Λ(Γ, κ)
from the proof of Lemma 3.10). Let s ⊆ ωω be countable. Let α(s) be the
least element of

⋂
z∈s B′

z, where B′
z = Bz if z ∈ Cμ and otherwise B′

z =
κ−Bz. Then for all z ∈ s we have z ∈ Cμ iff z ∈ Aα(s). So, Cμ ∈ Λ(Γ, κ).

Suppose next that A ∈ Λ(Γ, κ). Fix A = {Aα}α<κ with A ∈ Ā. For d a
Turing degree let f(d) be the least ordinal less than κ such that for all z ∈ d,
z ∈ A iff z ∈ Af(d). Define μ = f(ν) where again ν is the Martin measure on
the Turing degrees. Consider the relation R(y, x) ←→ (x ∈ W ∧ y ∈ Aψ(x)),
where W , ψ are defined just before Definition 3.13. From the Coding Lemma,
R ∈ ∃ωω

Γ. From the s-m-n Theorem there is a continuous function h : ωω →
ωω such that Uh(y) = {x ∈ W : y ∈ Aψ(x)}, and thus Bh(y) = {α : y ∈ Aα}.
We then have that for all y ∈ ωω, y ∈ A iff ∀∗

ν d (y ∈ Af(d)) iff ∀∗
μα (y ∈ Aα)

iff h(y) ∈ Cμ. So, A ≤w Cμ. �

We next show that the pointclass Λ(Γ, κ) is where the next semi-scale is
constructed. We first show the upper bound.

3.15 Lemma. Let Γ be non-selfdual and closed under ∀ωω

, and assume
pwo(Γ). Assume also ∃ωω

Γ has the scale property with norms into κ
.= δ(Γ).

Assume also that there is a Suslin cardinal greater than κ. Then every set in
∀ωω

Γ̌ admits a semi-scale with each norm a Λ(Γ, κ)-norm.
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Proof. In all cases we have cf(κ) > ω. [Γ cannot be at the base of a type I
hierarchy as then prewellordering falls on the side closed under ∃ωω

. If Γ is
at the base of a type II, III, or IV hierarchy, then cf(κ) = cf(o(Δ)) > ω. If
Γ is not at the base of a hierarchy, then Γ is closed under countable unions
and intersections, and it follows that δ(Γ) has uncountable cofinality.] If
A ∈ ∃ωω

Γ then there is a tree T on ω × κ with A = p[T ] by hypothesis.
Since cf(κ) > ω we may assume T has the property that if (s, �α) ∈ T with
�α = (α0, . . . , αn−1), then α0 > max{α1, . . . , αn−1}. From Theorem 3.2, T is
weakly homogeneous. The homogeneous tree construction then produces
a tree T ′ with p[T ′] = ωω − A

.= B. Let {φn} be the norms on B this
construction gives. For x ∈ B, φn(x) is of the form [fx]μ where fx is the rank
function on Tx and μ is a measure on κj for some j. Our property of T gives
that fx(�α) < κ for every �α ∈ Tx. The usual homogeneous tree argument
shows that {φn} is a semi-scale on B [if {xm} → x and for each n the norms
φn(xm) converge, then we get a sequence of measure one sets (with respect to
the homogeneity measures μs for T ) As, for s ∈ ω<ω, and an order-preserving
map from Tx�{As} to the ordinals. From the weak homogeneity of T this
gives that Tx is well-founded.] It suffices to show that the norm relations
≤∗

φn
, <∗

φn
are in Λ = Λ(Γ, κ). We consider the case φ = φ0 which is of the

form φ(x) = [α �→ fx(α)]μ (that is, j = 1). The general case is similar. For
α, β < κ, let

Aα,β = {(x, y) : ∃γ ≤ β (|α|Tx ≤ γ ∧ ¬(|α|Ty ≤ γ))},

where |α|Tx ≤ γ means α is in the well-founded part of Tx and has rank
≤γ. We claim that each Aα,β is in Δ = Δ(Γ). If Γ is closed under real
quantification or Δ is not closed under real quantification, then this follows
from the fact that Δ is closed under <κ unions and intersections. The
remaining case is when Γ is at the base of a type II or III hierarchy. Since
Δ is closed under real quantification, we may apply the Coding Lemma to a
suitable non-selfdual pointclass Γ0 ⊆ Δ closed under ∃ωω

to code functions
h : (α + 1)<ω → β. From this and the closure of Δ under quantifiers we
easily compute Aα,β ∈Δ.

Suppose s = {(xn, yn) : n ∈ ω} is a countable set of pairs. For each n
such that xn ≤∗

φ y, let Bn be a μ measure one set such that for all α ∈ Bn,
fx(α) ≤ fy(α) (we allow here the possibility that �α is in the illfounded part
of fy). For other n, let Bn be such that for all �α ∈ Bn we have either α is
in the illfounded part of Tx or else fy(α) < fx(α). Fix α ∈

⋂
n Bn. Let β be

large enough so that for all n, if fxn(α) is defined, then fxn(α) < β. Then
for all n we have xn ≤∗

φ yn iff (xn, yn) ∈ Aα,β . This shows ≤∗
φ ∈ Ā where

A = {Aα,β}. A similar argument works for <∗
φ. �

3.16 Remark. The {φn} produced in the above argument is only a semi-
scale, not necessarily a scale. We could get a scale by using the left-most
branch of the tree T ′, but then we seem to loose the definability estimate
≤∗

φn
∈ Λ. This was an oversight in the original arguments, and was pointed
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out by Grigor Sargsyan. We also thank John Steel for some helpful corre-
spondences.

We next get the lower bound.

3.17 Lemma. Let Γ, κ be as in Lemma 3.15. Let A be ∀ωω

Γ̌-complete. Then
A does not admit a scale all of whose norm relations are Wadge reducible to
some B ∈ Λ(Γ, κ).

Proof. Fix A = {Aα}α<κ with each Aα ∈ Δ and which is universal for
Λ = Λ(Γ, κ) (i.e., every A ∈ Λ is Wadge reducible to some B ∈ Ā). This is
possible from Lemma 3.10. View every real r as coding a continuous function
r : (ω)2 × (ωω)3 → ωω, and every real z as coding a Lipschitz continuous
function w �→ z(w). Define D ⊆ ωω × ωω by:

D(x, y) ←→∃r ≤T x ∀∗
ν d ∃α < κ ∀n,m ∈ ω

(y(n) = m←→ ∃z ≤T d ∀w ≤T d r(n,m, x, z(w), w) ∈ Aα).

From the closure of ∃ωω

Γ under wellordered unions it follows easily that
D ∈ ∀ωω∃ωω

Γ. Also, each section Dx of D is countable since it can be
wellordered (for fixed r ≤T x, the wellordering is induced by the map y → [f ]ν
where ν is the Martin measure on the degrees and f(d) is the least α < κ

satisfying the definition above). Consider Dc ∈ ∃ωω∀ωω

Γ̌. Since we are
assuming every ∀ωω

Γ̌ set has a scale all of whose norms are reducible to some
B ∈ Λ, a standard argument shows that Dc has a uniformizing function
f : ωω → ωω such that the relation R(n,m, x) ←→ f(x)(n) = m is in

G
Λ. To

see this, write ¬D(x, y) ←→ ∃u E(x, y, u) with E ∈ ∀ωω

Γ̌. Let {φn} be an
excellent scale on E with all norm relations ≤∗

φn
Wadge reducible to B ∈ Λ

(in particular φn(x, y, u) determines x�(n + 1), y�(n + 1), z�(n + 1)). This
is possible since Λ is closed under ∧, ∨. Let f be the canonical uniformizing
function for Dc from this scale (that is, for some u, (x, f(x), u) has minimal
φn norm for all n). Then f(x)(n) = m iff I wins the game Gn,m

x where I
and II play out z = 〈y, u〉, w = 〈y′, u′〉 respectively and I wins the run iff
y(n) = m and (x, y, u) ≤∗

φn
(x, y′, u′). Fix now a B ∈ Λ and a real r coding

a continuous function so that for all n,m, x, z, w,

f(x)(n) = m←→ I wins the game Gn,m
x

←→ G〈z, w〉 r(n,m, x, z, w) ∈ B

←→ ∀∗
ν d ∃z ≤T d ∀w ≤T d r(n,m, x, z(w), w) ∈ B.

Fix now x ≥T r and let y = f(x), so ¬D(x, y). On the other hand, for d
a Turing degree let α(d) < κ be least such that B and Aα(d) agree on reals
in d. Then for any n, m we have

y(n) = m ←→ ∀∗d ∃z ≤T d ∀w ≤T d r(n,m, x, z(w), w) ∈ Aα(d).

Intersecting countably many cones gives that

∀∗
ν d ∀n,m (y(n) = m←→ ∃z ≤T d ∀w ≤T d r(n,m, x, z(w), w) ∈ Aα(d)).

Since r ≤T x, this shows that D(x, y), a contradiction. �
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Lemmas 3.15 and 3.17 show that Λ(Γ, κ) is precisely where the norms rela-
tions for the next semi-scale are constructed. We record this in the following
theorem.

3.18 Theorem (Martin). Let Γ be non-selfdual and closed under ∀ωω

, and
assume pwo(Γ). Assume also ∃ωω

Γ has the scale property with norms into
κ

.= δ(Γ). Assume also that there is a Suslin cardinal greater than κ. Then
every ∀ωω

Γ̌ set admits a semi-scale all of whose norm relations lie in the
pointclass Λ = Λ(Γ, κ). Furthermore, there is no scale on a ∀ωω

Γ̌ complete
set all of whose norm relations are Wadge reducible to some B ∈ Λ.

In the case where Γ is closed under quantifiers, and hence so is Λ, the last
sentence of the previous theorem is equivalent to saying that there is no semi-
scale on a Γ̌ complete set all of whose norm relations are Wadge reducible to
some B ∈ Λ (since a semi-scale can be converted to a scale within the next
projective hierarchy). It follows that cf(o(Λ)) = ω. In fact, we can say a bit
more in this case.

3.19 Lemma. Let Γ be non-selfdual, closed under real quantification, and
scale(Γ). Assume there is a Suslin cardinal greater than κ = o(Γ). Then
λ

.= o(Λ) (where Λ = Λ(Γ, κ)) is the least Suslin cardinal greater than κ.
Furthermore, every set in Λ is λ-Suslin.

Proof. Recall in this case that Λ is a selfdual class closed under real quan-
tification. If A ∈ Γ̌ and {φn} is the semi-scale on A as in Lemma 3.15 (i.e.,
from the homogeneous tree construction) then each norm relation ≤∗

n is in
Λ and so has length less than δ(Λ) = o(Λ). Thus, A is λ-Suslin. On the
other hand, if A were λ′-Suslin where λ′ < λ, then from the Coding Lemma
and the closure of Λ under real quantifiers a straightforward computation
shows that for some B ∈ Λ, the scale corresponding to the λ′ tree has norm
relations ≤∗

n Wadge reducible to B for all n. This contradicts Lemma 3.17.
[Since δ(Δ) = o(Δ) we can find a non-selfdual Γ0 ⊆ Δ closed under ∃ωω

,
∧, ∨, with pwo(Γ0) and such that there is a Γ0 prewellordering of length λ′.
Then each ≤∗

n is in Σ2(Γ0).] Thus, λ is the next Suslin cardinal after κ.
Suppose now that B ∈ Λ. Let A ∈ Γ̌ − Γ, and let T be the tree of the

semi-scale {φn} from Lemma 3.15. Let {ψn} be the scale on A corresponding
to T (we do not know that the norm relations ≤∗

ψn
are in Λ). Let Γ0 ⊆ Λ

be a non-selfdual pointclass containing B and ωω − B. Let Γ1 ⊆ Λ be non-
selfdual, closed under ∃ωω

, pwo(Γ1), and Γ1 properly contains Γ0. Let λ1 < λ
be greater than the supremum of the lengths of the Γ1 prewellorders. Fix
n so that ψn has length > λ1 (by the previous paragraph). For α less than
the length of ψn, let Aα = {x ∈ A : ψn(x) ≤ α}. If all the Aα are in Γ0,
then from Lemma 2.21 we would have a Γ1 prewellordering of length ≥ λ1,
a contradiction. Fix α so that Aα /∈ Γ0. Then B ≤w Aα. The scale {ψn}
restricted to Aα is a scale on Aα with all the norm mapping into λ. So, Aα

is λ-Suslin. Since B ≤w Aα, B also admits such a λ-scale. �
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3.3. More on Λ in the Type IV Case

In the case where Γ is closed under real quantification (the type IV case) we
can say more about Λ. We will need these extra facts for the scale analysis to
follow. However, these results are also of independent interest. These results
were obtained after the oversight mentioned in Remark 3.16, and allow us to
recover the full scale analysis except for the scaled pointclasses immediately
after a type IV pointclass Γ (we state these results explicitly in the next
section). We again thank Steel for some helpful correspondences.

Throughout this section Γ will denote a Suslin class S(κ) which is closed
under real quantification. We assume κ is not the largest Suslin cardinal. We
let Λ = Λ(Γ, κ) be the corresponding Martin class. We let λ = o(Λ) = δ(Λ).
We showed in Lemma 3.19 that λ is the next Suslin cardinal after κ. Also
from that Lemma, Λ ⊆ S(λ).

We let Σ0 =
⋃

ω Λ denote the pointclass of countable unions of sets from Λ.
Let Π0 denote the dual class to Σ0, and define Σ1 = ∃ωω

Π0, etc., as usual.

3.20 Lemma. S(λ) = Σ1.

Proof. Since S(λ) contains Λ and is closed under countable unions, inter-
sections, and ∃ωω

, it follows that Σ1 ⊆ S(λ). Since there are clearly Σ1

prewellorderings of length λ, it follows from the Coding Lemma that every
tree on ω × λ can be coded in the pointclass Σ1. It follows easily that
S(λ) ⊆ Σ1. �

3.21 Lemma. pwo(Σ0), pwo(Π1), and δ1
.= δ(Π1) = λ+. Also, λ+ is

regular.

Proof. pwo(Σ0) follows easily from Σ0 =
⋃

ω Λ [if A ∈ Σ0, say A =
⋃

n An

where An ∈ Λ, the norm on A given by φ(x) = μn (x ∈ An) is a Σ0-norm]. By
periodicity we also have pwo(Π1). Also, Π1 is closed under countable unions,
intersections, and ∀ωω

. From Lemma 2.13 we have that δ1 is the supremum
of the lengths of the Σ1 wellfounded relations, and from the Coding Lemma
it then follows that δ1 is regular. Every Σ1 wellfounded relation has length
< λ+ by the Kunen-Martin Theorem. Since there are clearly Σ1 wellfounded
relations of length greater than λ, we have δ1 = λ+. �

The next says, roughly, that the Martin class of the Martin class is still
the Martin class.

3.22 Lemma. Let B ∈ Λ, ρ < λ, and let A = {Aα}α<ρ be a sequence where
each Aα ≤w B. Then Ā ⊆ Λ.

Proof. More generally, for ρ0, ρ1 < λ, let Λρ0,ρ1 be the pointclass of all sets
in some Ā where A = {Aα}α<ρ0 and for each α we have |Aα|w < ρ1. If the
lemma fails, then for some ρ0, ρ1 < λ we have Σ0 ⊆ Λρ0,ρ1 . We first show by
following the proof of Lemma 3.12 that if Πn ⊆ Λρ0,ρ1 , then by increasing
ρ0, ρ1 to ρ′

0, ρ′
1 < λ we have Σn+1 ⊆ Λρ′

0,ρ′
1
. Suppose A(x) ←→ ∃y B(x, y),
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where B ∈ Πn ⊆ Λρ0,ρ1 . Let B = {Bα}α<ρ0 be such that B ∈ B̄, where
each |Bα|w < ρ1. View every real z as coding a countable set sz ⊆ ωω and a
function fz : sz → {0, 1}. Define

z ∈ C ←→ ∀∗d ∃α < ρ0 ∀x ∈ sz (fz(x) = 1←→ ∃y ≤T d Bα(x, y)).

Let αz(d) be the least ordinal α < ρ0 in the above definition, if one exists.
From the closure properties of Λ and the Coding Lemma it follows easily that
C ∈ Λ. Define the prewellordering ≺ on C by:

z1 ≺ z2 ←→ ∀∗d (αz1(d) < αz2(d)).

Easily, ≺ is also in Λ. Let ρ′
0 = | ≺ |. For α < ρ′

0, say α = |z|≺ with z ∈ C,
define:

x ∈ A′
α ←→ ∀∗d ∃y ≤T d Bαz(d)(x, y) .

There is a bound ρ′
1 on the Wadge degrees of the A′

α (all the A′
α lie in

the projective hierarchy over a code set for the sequence of Bα). As in
Lemma 3.12 we have that A ∈ Ā′, where A = {A′

α}α<ρ′
0
.

So, by increasing ρ0, ρ1 we may assume that Σ2 ⊆ Λρ0,ρ1 . Fix A =
{Aα}α<ρ0 such that Ā contains a complete Σ2 set. We now proceed as in
Lemma 3.17. Define D ⊆ ωω × ωω by:

D(x, y) ←→ ∃τ ≤T x ∀∗d ∃α < ρ0 ∀m,n ∈ ω

(y(m) = n←→ ∃z ≤T d τ(x, z, n,m) ∈ Aα),

where we regard each real τ as coding a continuous function from (ωω)2 ×
(ω)2 → ωω. Clearly D ∈ Λ and all sections of D are countable. So, ¬D
is λ-Suslin and has a (total) uniformizing function f . Since the tree on
ω × λ projecting to ¬D can be coded in the pointclass Σ0 (from the Coding
Lemma), an easy computation shows the graph of f to be Σ2. Thus, there
is a continuous function τ such that for all x we have:

f(x)(n) = m←→ ∃z τ(x, z, n,m) ∈ A,

where A ∈ Ā. Let x ≥T τ . Then D(x, f(x)), a contradiction. �

We say an ordinal δ is closed under ultrapowers if for every ρ < δ and
measure μ on some η < δ we have jμ(ρ) < δ. If cf(δ) = ω, this is equivalent
to saying that jμ(δ) = δ for all measures μ on δ.

3.23 Lemma. λ is closed under ultrapowers.

Proof. Let μ be a measure on α < λ, and let β < λ. Let ≺ be a prewellorder-
ing of length γ > max{α, β} with ≺ in a pointclass Γ0 ⊆ Λ which is non-
selfdual, and closed under ∧, ∨, ∃ωω

. Fix a universal set U for Γ0, and use
U via the Coding Lemma to code subsets of γ. Define A = {Aα}α<γ by:

x ∈ Aα ←→ ∃y (|y|≺ = α ∧ U(x, y)).
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As in Lemma 3.14, the code set Cμ of the measure μ in Ā, and hence in
Λ from the previous lemma. From this and the Coding Lemma it follows
that the prewellordering corresponding to jμ(β) lies in Λ, and so has length
<λ. �

3.24 Lemma. δ1 is closed under ultrapowers.

Proof. This follows immediately from the previous lemma and the fact that
δ1 = λ+. That is, any measure μ on α < δ1 is equivalent to a measure μ′ on λ,
and any β < δ1 is in bijection with λ. So, jμ(β) has the same cardinality as
jμ′ (λ) = λ. �

3.25 Lemma. δ1 is a Suslin cardinal and S(δ1) = Σ2.

Proof. Let A be a complete Σ1 set, and write A = p[T ] where T is a tree
on ω× λ. T is weakly homogeneous, and the homogeneous tree construction
gives a tree T ′ with p[T ′] = B

.= ωω − A. Also. the ordinals in T ′ are
bounded by an ordinal of the form jμ(β) where β < λ+ and μ is one of the
homogeneity measures on λ. From Lemma 3.24 we have that T ′ is a tree on
ω × δ1.

Hence, δ1 is a Suslin cardinal and Π1 ⊆ S(δ1). Since S(δ1) is closed under
∃ωω

, we also have Σ2 ⊆ S(δ1). From the Coding Lemma and pwo(Π1) (which
gives Π1 prewellorderings of length δ1) it follows that S(δ1) ⊆ Σ2. �

3.26 Lemma. scale(Σ2) with norms into δ1.

Proof. This follows from Lemma 3.7 since δ1 is a regular successor Suslin
cardinal. �

We show one more result concerning measures on λ (which we do not need
for the main result).

3.27 Lemma. Δ1, Σ1, Π1 are closed under measure quantification for mea-
sures on λ. That is, if μ is a measure on λ and {Aα}α<λ is a sequence of
sets in Δ1 (or Σ1, etc.), then A ∈Δ1 where A(x) ←→ ∀∗

μα (x ∈ Aα).

Proof. Consider first the case of Δ1, Since cf(λ) = ω, we may assume μ
is a measure on ρ < λ, and {Aα}α<ρ is a <λ sequence of Δ1 sets. Let
A(x) ←→ ∀∗

μα (x ∈ Aα). It suffices to show that A ∈ Σ1. Let ≺ be a
prewellordering in Λ of length greater than ρ. Let Γ0 ⊆ Λ be non-selfdual,
closed under ∧, ∨, ∃ωω

, and such that Cμ ∈ Δ(Γ0), where Cμ denotes the
code set of μ with respect to the prewellordering ≺. Recall this means the
following. Let U ⊆ ωω × ωω be universal for Γ0. We view every real x as
coding a subset Bx of ρ by α ∈ Bx ←→ ∃y (|y|≺ = α ∧ U(x, y)). Then there
is a C ∈Δ(Γ0) such that C(z) ←→ μ(Bz) = 1.

We have:

A(x) ←→ ∃z (C(z) ∧ ∀α ∈ Bz (x ∈ Aα)).
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It suffices to show that D ∈ Σ1 where D(x, z) ←→ ∀α ∈ Bz (x ∈ Aα). From
Lemma 2.15, Δ1 is closed under <δ1 length unions and intersections. So, it
suffice to fix α < ρ and show that Dα ∈Δ1, where:

Dα(x, z) ←→ (α /∈ Bz ∨ x ∈ Aα).

But, {z : α ∈ Bz} ∈ Γ0 and Aα ∈Δ1, so clearly Dα ∈Δ1.
For the case of Σ1, the argument is similar, but we now need the fact that

Σ1 is closed under <λ intersections. This follows from the fact that Σ1 =
∃ωω

Π0 and the Coding Lemma. Briefly, let ≺ and Γ0 be as before. From the
Coding Lemma there is a Γ0 relation R ⊆ ωω × ωω with dom(R) = dom(≺)
and such that for all (x, y) ∈ dom(R), y is a Π0 code for a set By in ωω ×ωω

projecting to A|x|≺ . Let ≺′ be the relation on R given by (x1, y1) ≺′ (x2, y2)
iff (x1 ≺ x2). If w ∈

⋂
α<ρ Aα, then by the Coding Lemma applied to ≺′,

there is a S ⊆ (ωω)3 in Γ0 such that (1) (x, y, z) ∈ S → (x, y) ∈ R, (2) for
every α < ρ there is an (x, y, z) in S with |x|≺ = α, and (3) for all (x, y, z)
in S we have By(w, z). It follows that

w ∈
⋂

α<ρAα ←→ ∃S ∈ Γ0 (S satisfies (1) and (2)

∧ ∀(x, y, z) ∈ S → By(w, z))

which shows that
⋂

α<ρ Aα is Σ1. �

3.4. The Classification of the Suslin Cardinals

We are now ready to classify the Suslin cardinals and scale property assuming
AD. This is the content of the next theorem. The reader should recall the
definition of the Steel pointclass from Remark 2.20.

3.28 Theorem. Let κ be a limit of Suslin cardinals, and suppose there is a
Suslin cardinal greater than κ. Then κ is a Suslin cardinal and one of the
following cases applies.

Case I. cf(κ) = ω.

Let Σ0 =
⋃

ω S<κ, where S<κ =
⋃

ρ<κ S(ρ). Define Π0 = Σ̌0, and for
i > 0, define as usual Σi = ∃ωω

Πi−1 and Πi = ∀ωω

Σi−1. Then Σ0 has the
scale property with norms into κ. Also, S(κ) = Σ1. Let δ2i+1 = δ(Π2i+1).
Then for all i, scale(Π2i+1) and scale(Σ2i+2) with scales into δ2i+1. δ2i+1

is a Suslin cardinal and S(δ2i+1) = Σ2i+2. Also, δ2i+1 = (λ2i+1)+, where
λ2i+1 is a Suslin cardinal of cofinality ω, and λ1 = κ. S(λ2i+1) = Σ2i+1.
The sequence δ1, λ3, δ3, . . . enumerates the first ω Suslin cardinals greater
than κ.

Case II. cf(κ) > ω and the Steel pointclass Γ0 is not closed under ∃ωω

.

Let Σ0 = ∃ωω

Γ0, Π0 = Σ̌0, and for i > 0 define the Σi, Πi as usual. Then
scale(Γ0) and scale(Σ0) with norms into κ. Let δ2i+1 = δ(Π2i+1). Then for
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all i, scale(Π2i+1) and scale(Σ2i+2) with scales into δ2i+1. δ2i+1 is a Suslin
cardinal and S(δ2i+1) = Σ2i+2. Also, δ2i+1 = (λ2i+1)+, where λ2i+1 is a
Suslin cardinal of cofinality ω. S(λ2i+1) = Σ2i+1. The sequence λ1, δ1, λ3,
δ3, . . . enumerates the first ω Suslin cardinals greater than κ.

Case III. cf(κ) > ω and the Steel pointclass Γ0 is closed under ∃ωω

.
Γ0 has the scale property with norms into κ. Let Λ = Λ(Γ0, κ). Let Σ0 =⋃

ω Λ, Π0 = Σ̌0, and for i > 0 define Σi, Πi as usual. Let δ2i+1 = δ(Π2i+1).
Then scale(Σ2) with norms into δ1 = λ+

1 , where λ1 = o(Λ). For all i > 0,
scale(Π2i+1) and scale(Σ2i+2) with norms into δ2i+1. For all i, δ2i+1 is a
Suslin cardinal and S(δ2i+1) = Σ2i+2. Also, δ2i+1 = (λ2i+1)+, where λ2i+1

is a Suslin cardinal of cofinality ω. S(λ2i+1) = Σ2i+1. The sequence λ1, δ1,
λ3, δ3, . . . enumerates the first ω Suslin cardinals greater than κ.

Proof. Consider first case I, that is, cf(κ) = ω. Let A ∈ Σ0, and write
A =

⋃
i Ai with Ai ∈ S<κ. Let {φi

n}n∈ω be a scale on Ai of length γi < κ.
From the Coding Lemma, all of the norm relations ≤∗

φi
n
, <∗

φi
n

are in S<κ.
Define the norms ψn on A as follows. ψ0(x) = μi (x ∈ Ai), ψk+1(x) =
〈ψ0(x), φψ0(x)

k (x)〉, where 〈α, β〉 denotes the rank of (α, β) in the lexicographic
ordering on (γi)2. This is easily checked to be a scale on A with norms
into κ, and is clearly a Σ0-scale. Thus, scale(Σ0). From the Coding Lemma
an easy computation show S(κ) ⊆ Σ1. Also, Σ1 ⊆ S(κ) as S(κ) is closed
under ∃ωω

and countable intersections. Thus, S(κ) = Σ1. By periodicity,
scale(Π2i+1), scale(Σ2i). By definition of δ2i+1, every regular Π2i+1 scale
has length ≤ δ2i+1. In particular, every Π2i+1, and hence every Σ2i+2 set is
δ2i+1-Suslin. A straightforward computation from the Coding Lemma shows
S(δ2i+1) ⊆ Σ2i+2, so S(δ2i+1) = Σ2i+2. Every Π2i+1 set admits a Π2i+1-
scale with norms into δ2i+1, and the standard argument transferring the scale
property to ∃ωω

Π2i+1 shows that every Σ2i+2 set admits a Σ2i+2-scale with
norms into δ2i+1 (that is, the lengths of the norms do not increase with this
transfer). Since Π2i+1 is closed under ∀ωω

, ∧, ∨ and pwo(Π2i+1), another
standard argument (cf. the proof of Theorem 2.18) shows that δ2i+1 is the
supremum of the lengths of the Σ2i+1 well-founded relations, and from the
Coding Lemma this must be a regular cardinal. So, δ2i+1 is regular. From
the Kunen-Martin Theorem δ1 ≤ κ+, and so δ1 = κ+. Clearly δ2i+1 cannot
be a limit Suslin cardinal (there are only finitely many Levy classes between
Σo and Σ2i+1). From Lemma 3.7, δ2i+1 = λ+

2i+1 for some Suslin cardinal
λ2i+1 with cf(λ2i+1) = ω. Also from that lemma, Σ2i+2 = ∃ωω

Š(λ2i+1), and
thus S(λ2i+1) = Σ2i+1 (this also follows from the fact there is only one Levy
class closed under ∃ωω

between Σ2i and Σ2i+2). As we have now accounted
for all the Levy classes closed under ∃ωω

, we must have that δ1, λ3, δ3, . . .
enumerates the next ω Suslin cardinals after κ.

Consider next case II. From Lemma 3.8 we have scale(Σ0) with norms
into κ. Since Σ0 is not closed under ∀ωω

(as Π0 ⊆ ∀ωω

Σ0) we may propagate
the scale property by periodicity to Π2i+1, Σ2i+2. As in the previous case,
δ2i+1 is a Suslin cardinal, S(δ2i+1) = Σ2i+2, and δ2i+1 = λ+

2i+1, where λ2i+1
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is a Suslin cardinal of cofinality ω. In this case, since cf(κ) > ω, we have
λ1 > κ. From Lemma 3.7 again we have that S(λ2i+1) = Σ2i+1. As we
have again accounted for all the Levy classes closed under ∃ωω

, the sequence
λ1, δ1, λ3, δ3, . . . enumerates the next ω Suslin cardinals after κ. scale(Γ0)
follows from Lemma 3.8.

Consider now case III. From Lemma 3.8, Γ0 has the scale property with
norms into κ, and also S(κ) = Γ0. Recall in this case that Λ is selfdual
and closed under real quantification, and cf(λ) = ω, where λ = o(Λ). From
Lemma 3.19, λ is the next Suslin cardinal after κ, and S(λ) = Σ1 (Σ1 ⊆
S(λ) follows from the closure of S(λ) under ∃ωω

and countable intersections,
and S(λ) ⊆ Σ1 follows by a straightforward computation using the Coding
Lemma and the closure of Σ1 under countable unions and intersections).
From Lemma 3.26, Σ2 has the scale property with norms into δ1 = λ+. In
particular, λ1 = λ. The remaining arguments are exactly as in the previous
cases. �

4. Trivial Descriptions: A Theory of ω1

We assume AD + DC throughout Sect. 4.
Our goal in this section is to present a “theory of ω1”, using only techniques

that will generalize to higher levels. Starting from the weak partition relation
on ω1 (proved in the last section), we prove the strong partition relation on
ω1, calculate δ1

3, and prove the weak partition relation on δ1
3. This represents

the first step in the inductive analysis of the projective ordinals. We also use
these techniques to present a proof of the Kechris-Martin Theorem on Π1

3.
These results are not new (cf. [9, 33]), but our proofs do not rely on the
theory of indiscernibles for L (as did the original proofs) but rather on a
direct analysis on the measures on ω1 (and the ωn). The idea of using an
analysis of measures to provide a good coding for sets was first used by Kunen
(see [33]) in the original proof of the weak partition relation on δ1

3.
As we mentioned in the introduction, one of our motivations in this section

is to introduce and use the terminology of “descriptions”, even though the
concept at this level is rather trivial and could be dispensed with. This way,
the arguments at the higher levels will have the same general form, though
the concept of description will become non-trivial. This will free us, in the
next section, to concentrate on this point.

Our first job is to analyze the measures on ω1, from which the strong
partition relation on ω1 will follow.

Recall that if T ⊆ ρ<ω is a tree on ρ and α < ρ, then T �α = T ∩ α<ω

denotes the tree restricted to α, and if β is in the well-founded part of T �α,
then |(T �α)(β)| denotes the rank of β in T �α. Also, if T is a tree on α × ρ,
then Tx = {�s ∈ ρ<ω : (x� lh(�s), �s) ∈ T} is the section of the tree at x.

Let WO ⊆ ωω be the standard set of codes for wellorderings, that is x ∈
WO iff ≺x

.= {(n,m) : x(〈n,m〉) = 1} is a wellordering of ω. Let WF ⊇ WO
be the set of codes of well-founded, transitive relations on ω. That is, x ∈ WF
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iff ≺x is a well-founded and transitive relation. Both WO, WF are in Π1
1−Σ1

1.
For x ∈ WF, let |x| =|≺x|= sup{|n|≺x + 1 : n ∈ dom(≺x)}.

The finite exponent partition relation on ω1 easily implies that the closed
unbounded filter on ω1 is a normal measure, and is the unique normal mea-
sure on ω1. We let Wm

1 denote the m-fold product of this normal measure.
Equivalently, A ⊆ (ω1)m has measure one with respect to Wm

1 iff there is a
closed unbounded C ⊆ ω1 such that (C)m ⊆ A. Note that we regard Wm

1 as
a measure on the set of tuples (α0, . . . , αm−1) for which α0 < · · · < αm−1.
With this convention, we may safely write the ordinals in the tuple in any
order (which will be notationally convenient later).

Recall the construction of the Kunen tree on ω1:

4.1 Lemma (Kunen). There is a tree T on ω×ω1 such that for all f : ω1 →
ω1, there is an x ∈ ωω such that Tx is well-founded and for all ω ≤ α < ω1

we have f(α) ≤ |Tx�α|.
Proof. Let S be a recursive tree on ω×ω with p[S] a Σ1

1-complete set. Define
the tree U on ω × ω1 by:

((a0, . . . , an−1), (α0, . . . , αn−1)) ∈ U

←→ ∀i, j < n (a〈i,j〉 = 1 → αi < αj)
∧ ∀i, j, k < n (a〈i,j〉 = 1 ∧ a〈j,k〉 = 1 → a〈i,k〉 = 1).

Clearly, p[U ] = WF. Let V be the tree on ω × ω × ω1 × ω × ω defined by:

(�s,�a, �α,�b,�c) ∈ V ←→ (�a, �α) ∈ U ∧ (�b,�c) ∈ S

∧ ∃σ extending �s (σ(�a) = �b),

where we view every real σ as coding a strategy for II in some reasonable
manner. Suppose f : ω1 → ω1. Consider the game where I, II play out x, y,
and II wins iff [x ∈ WF → Sy is well-founded ∧ |Sy| > sup{f(β) : β ≤ |x|}].
II easily wins by boundedness, noting that

sup{|Sy| : Sy is well-founded} = ω1,

as otherwise p[S] would be Borel. Let σ be winning for II. Note that for all
α < ω1, if x ∈ WF and |x| = α, then Ux�α is ill-founded. It follows that Vσ

is well-founded and for all α ≥ ω, we have |Vσ�α| > f(α). It is now easy to
code the 2nd, 3rd, 4th, and 5th coordinates of V into the second coordinate
of a tree T (say by weaving the values of the four components; this does not
decrease rank, that is, |Tσ�α| ≥ |Vσ�α| for all σ, α). �

We note that the Kunen tree T is Δ1
1 in the codes. By this we mean

that there are Σ1
1, Π1

1 relations S(n, a, x), R(n, a, x) such that for all x with
x0, . . . , xn−1 ∈ WO, we have

S(n, a, x) ←→ R(n, a, x)
←→ ((a0, . . . , an−1), (|x0|, . . . , |xn−1|)) ∈ T.
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This follows immediately from the definition of T (see Lemma 4.1).
Although the difference is not large, it is sometimes to more convenient

to deal with linear orderings rather than trees. The following theorem shows
that we may modify the Kunen tree so as to make this possible. Recall that
if s ∈ ωn, then Ts = {�α ∈ ωn

1 : (s, �α) ∈ T}.

4.2 Theorem. There is a function s→ T (s) which assigns to each s ∈ ω<ω

a wellordering of a subset of ω1 with the following properties. If t extends s,
then T (t) ⊇ T (s). For x ∈ ωω, let T (x) =

⋃
n T (x�n), so T (x) is a linear

order. Then for any f : ω1 → ω1, there is an x ∈ ωω such that T (x) is
a wellordering and for all α ≥ ω, f(α) < |T (x)�α|. Furthermore, the map
s→ T (s) is Δ1

1 in the codes. That is, there are Σ1
1, Π1

1 relations S(n, a, x, y),
R(n, a, x, y) such that for all x, y ∈WO, we have

S(n, a, x, y) ←→ R(n, a, x, y) ←→ [(|x|, |y|) ∈ T (a0, . . . , an−1)].

Proof. We modify the Kunen tree T as follows. Fix a bijection π : (ω1)<ω →
ω1 such that for all α0, . . . , αn−1 < ω, we have π(α0, . . . , αn−1) < ω. For
s ∈ ω<ω, let T (s) be the wellordering defined by

α T (s) β ←→ π−1(α), π−1(β) ∈ Ts ∧ (π−1(α) <KB
Ts

π−1(β)),

where <KB
Ts

denotes the Kleene-Brouwer ordering on Ts. For x ∈ ωω, let
T (x) =

⋃
n T (x�n). Clearly T (x) is a linear ordering, and is a wellordering iff

Tx is well-founded. Suppose now that f : ω1 → ω1. Let C ⊆ ω1 be the closed
unbounded set of ordinals closed under π. Note that ω ∈ C. For α ≥ ω, let
l(α) be the greatest element of C which is less than or equal to α. Define

f ′(α) = sup{f(β) : l(β) = l(α)}.

Let x ∈ ωω be such that Tx is well-founded and for all α ≥ ω, |Tx�α| > f ′(α).
We claim that for all α ≥ ω, |T (x)�α| > f(α). Note that π−1 applied
to T (x)�α contains the entire tree Tx�l(α). Thus, |T (x)�α| ≥ |Tx�l(α)| >
f ′(l(α)) ≥ f(α). We may also choose the bijection π so that π is Δ1

1 in the
codes, and it is then straightforward to check that s → T (s) is Δ1

1 in the
codes. �

In the future, we will use the notation Ts for the Kunen “tree”, regardless
of whether we are using the tree Ts or the linear ordering T (s). The meaning
will be clear from the context.

For the rest of Sect. 4, T will denote the Kunen tree of Lemma 4.1.
Note that for every f : ω1 → ω1, the equivalence class [f ]W 1

1
may be coded

by a pair (x, β) where x ∈ ωω, β < ω1. By this we mean ∀∗
W 1

1
α f(α) =

|(Tx�α)(β)|. To see that x and β exist, use normality and the fact that ∀∗α
∃β < α f(α) = |(Tx�α)(β)|.
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4.3 Definition. A level −1, or trivial description, d is simply a positive
natural number d ∈ ω. We let D−1 = ω − {0} be the set of trivial descrip-
tions. The interpretation function h assigns to each d ∈ D−1 an ordinal by:
h(d) = d. We say a trivial description d is well-defined, or satisfies condition
D, with respect to a measure Wm

1 iff d ≤ m. If d is well-defined with respect to
Wm

1 and β1 < · · · < βm < ω1, we define h(β1, . . . , βm; d) = βd. If g : ω1 → ω1,
and d is well-defined with respect to Wm

1 , we define an ordinal (g;Wm
1 ; d).

This is represented with respect to Wm
1 by the function which assigns to

β1, . . . , βm the ordinal (g;β1, . . . , βm; d) .= g(h(β1, . . . , βm; d)) = g(βd).

Clearly, (g;Wm
1 ; d) only depends on [g]W 1

1
. In this way, the trivial de-

scriptions, together with the equivalence classes of functions with respect to
the normal measure on ω1, generate equivalence classes with respect to the
family of measures Wm

1 . Note that for g = id, the identity function on ω1,
we have (id; �β; d) = βd. We introduce a “lowering operator” L on D−1.

4.4 Definition. We define L(d) = d−1 for d > 1. If d = 1, we do not define
L(d), and say d = 1 is minimal with respect to L.

By definition, there is a unique d ∈ D−1 which is minimal with respect
to L.

As a warm-up, we use this terminology to recast one familiar proof of the
computation δ1

3 = ωω+1. In this context, our “main technical lemma” is the
following (the reader will note that the lemma corresponds to a well-known
property of indiscernibles for L).

4.5 Lemma. Let f : (ω1)m → ω1, d be well-defined with respect to Wm
1 , and

assume [f ]W m
1

< (id;Wm
1 ; d). If d is non-minimal with respect to L, then

there is a g : ω1 → ω1 such that [f ]W m
1

< (g;Wm
1 ;L(d)). If d is minimal with

respect to L, then ∃α < ω1 [f ]W m
1

< α.

Proof. We have ∀∗
W m

1
β1, . . . , βm f(�β) < (id;β1, . . . , βm; d) = βd. Consider the

case d non-minimal with respect to L. Consider the partition P , where we
partition ordinals β1 < · · · < βm < ω1 with the extra ordinal βd−1 < γ < βd

according to whether γ > f(β1, . . . , βm). Clearly, on the homogeneous
side the stated property holds. Let C ⊆ ω1 be closed unbounded and
homogeneous for P . Let g(α) = the least element of C greater than α.
Then ∀∗

W m
1

β1, . . . , βm f(�β) < g(βd−1) = (g;β1, . . . , βm;L(d)), thus [f ]W m
1

<

(g;Wm
1 ;L(d)). The case where d is minimal with respect to L is similar. �

We let < be the transitive relation on D−1 generated by the relation
L(d) < d. Of course, < is just the usual ordering on the positive integers.
We let |d| denote the rank of d in this ordering, so |d| = d− 1.

Lemma 4.5 and the analysis of functions f : ω1 → ω1 with respect to
the normal measure W 1

1 on ω1 (i.e., the Kunen tree construction) suffice
to compute upper bound for jW m

1
(ω1), where jW m

1
denotes the ultrapower

embedding corresponding to the measure Wm
1 . This is made explicit in the

following theorem.



1810 Jackson / Structural Consequences of AD

4.6 Theorem. Let d be defined with respect to Wm
1 . Then (id;Wm

1 ; d) ≤
ω|d|+1.

Proof. By induction on |d|. If |d| = 0 (i.e., d = 1), then (id;Wm
1 ; d) ≤ ω1 from

Lemma 4.5. Otherwise, let α < (id;Wm
1 ; d). From Lemma 4.5, ∃g : ω1 → ω1

such that α < (g;Wm
1 ;L(d)). Recall that T is the Kunen tree of Lemma 4.1.

Let x ∈ ωω be such that Tx is well-founded and ∀∗
W m

1
β g(β) < |Tx�β|. Let |Tx|

also denote the function β → |Tx�β|. Thus, α < (|Tx|;Wm
1 ;L(d)). Tx also

induces a bijection π between (id;Wm
1 ;L(d)) and (|Tx|;Wm

1 ;L(d)). Namely,
if δ < (id;Wm

1 ;L(d)), then π(δ) < (|Tx|;Wm
1 ;L(d)) is defined by

∀∗
W m

1
β1, . . . , βm [π(δ)(�β) = |(Tx�(id; �β;L(d)))(δ(�β))|].

Thus, (g;Wm
1 ; d) < (id;Wm

1 ;L(d))+, and so (id;Wm
1 ; d) ≤ (id;Wm

1 ;L(d))+.
By induction, (id;Wm

1 ;L(d)) ≤ ω|L(d)|+1 = ω|d|, so (id;Wm
1 ; d) ≤ ω|d|+1. �

As a corollary, we have an upper bound for δ1
3.

4.7 Corollary. δ1
3 ≤ ωω+1.

Proof. The homogeneous tree analysis, which we will not reproduce here,
shows that every Π1

2 set is λ3-Suslin, where λ3 ≤ supjν(ω1), the supre-
mum ranging over measures ν occurring in the homogeneous tree on a Π1

1-
complete set; that is, the measures Wm

1 . [The homogeneous tree construc-
tion is described in detail in [17]. The definition of a homogeneous tree is
given in Sect. 5, and more general arguments are presented there as well. In
particular, the arguments immediately after Definition 5.1 suffice to prove
the above claim.] From the Kunen-Martin Theorem, it follows that δ1

3 ≤
[supm jW m

1
(ω1)]+. Now, a small variation in the proof of Lemma 4.5 shows

that jW m
1

(ω1) ≤ (id;Wm
1 ; d̃)+, where d̃

.= m is the maximal description de-
fined with respect to Wm

1 . Thus, jW m
1

(ω1) ≤ ωm+1, and so λ3 ≤ ωω. �

We will get the lower bound for δ1
3 as a consequence of a general result of

Martin. However, we first need the strong partition relation on ω1.

4.1. Analysis of Measures on δ1
1

The next theorem is our analysis of an arbitrary measure ν on ω1. The key
idea is to exploit a pressing down argument with respect to ν.

4.8 Theorem. Let ν be a measure on ω1. Then there are finitely many reals
x0, . . . , xn with Txi well-founded for 0 ≤ i ≤ n, and an ordinal α < ω1 such
that for all A ⊆ ω1:

ν(A) = 1←→ ∀∗
W n+1

1
β0, . . . , βn (hα

x0,...,xn
(β0, . . . , βn) ∈ A),

where for 0 ≤ i ≤ n, δi
.= hα

x0,...,xi
(β0, . . . , βi) is defined inductively by:

δi = |(Txi�βi)(δi−1)|, and δ−1 = α. In particular, ν is equivalent to Wn+1
1

for some n ∈ ω.
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Proof. We may assume that ν is non-principal. Let g0 : ω1 → ω1 satisfy:

(1) There is a ν measure one set A such that g0�A is monotonically increas-
ing (i.e., if α < β are in A, then g0(α) ≤ g0(β)).

(2) There does not exist a ν measure one set A such that g0�A is constant.

(3) If [g]ν < [g0]ν , then g does not satisfy (1) and (2).

g0 exists, since the identity function satisfies (1) and (2). Consider the
measure g0(ν) (that is, g0(ν)(A) = 1 iff ν(g−1

0 (A)) = 1). If C ⊆ ω1 is closed
unbounded, then g0(ν)(C) = 1, as otherwise p ◦ g0 violates the minimality
of g0, where p(α) = the largest element of C less than or equal to α. Thus,
g0(ν) = W 1

1 . Fix A of ν measure one such that g0�A is monotonically increas-
ing. Define h(α) = sup{β ∈ A : g0(β) ≤ α}. Clearly h : ω1 → ω1. Let x0

be such that Tx0 is well-founded and ∀∗
W 1

1
β h(β) < |Tx0�β|. Thus, ∀∗

να α <

h(g0(α)) ≤ |Tx0�g0(α)|. Let r0 : ω1 → ω1 be such that ∀∗
να r0(α) < g0(α)

and ∀∗
να [α = |(Tx0�g0(α))(r0(α))|]. Let d0 = d1 = 1, which are defined with

respect to W 1
1 . For α in the ν measure one set such that r0(α) < g0(α) is

defined, we define

h(g0(α); (W 1
1 ;x0; d0, d1); r0(α)) = |(Tx0�h(g0(α); d0))(r0(α))|

= |(Tx0�g0(α))(r0(α))|.

We have thus produced a tuple (〈W 1
1 ;x0; d0, d1〉, g0, r0) satisfying the follow-

ing:

(1) d0, d1 are defined with respect to W 1
1 and Tx0 is well-founded.

(2) g0(ν) = W 1
1 .

(3) ∀∗
να r0(α) < h(g0(α); d1).

(4) ∀∗
να [α = h(g0(α); (W 1

1 ;x0; d0, d1); r0(α))].

With this first step as motivation, we make the following definitions.

4.9 Definition. A level-1 complex is a tuple of the form

C = 〈Wm
1 ;x0, . . . , xn−1; d0, . . . , dn〉

where m ≥ 1, n ∈ ω (if n = 0, then no xi appear). If n ≥ 1, then each di is
defined with respect to Wm

1 for 0 ≤ i ≤ n, d0 > d1 > · · · > dn−1 ≥ dn, and
each Txi is well-founded for 0 ≤ i ≤ n− 1.

If C as above is a complex with n ≥ 1, γ < ω1, and β1 < · · · < βm < ω1,
define

h(β1, . . . , βm; C; γ) = |(Tx0�h(�β; d0))(α1)|,

where α1 = |(Tx1�h(�β; d1))(α2)|, . . . , αn−1 = |(Txn−1�h(�β; dn−1))(αn)|, and
αn = γ. If n = 0, then we define h(�β; C; γ) = γ.
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Written out directly, the equation for h is:

h(β1, . . . , βm; C; γ) = |Tx0�βd0(|Tx1�βd1(. . . |Txn−1�βdn−1(γ)| . . .)).

The definition of h(�β; C; γ) is actually only on the Wm
1 measure one set of

�β such that h(�β; d0) > α1, etc. Off this measure one set, we leave h(�β; C; γ)
undefined. Note that the last description dn is not used in the definition of
h(�β; C; γ); its role is to provide a bound for the r function in the following
definition (the r stands for “remainder”—it represents, roughly speaking, the
part of the measure that has not yet been analyzed).

We abstract the general step of the analysis into the following definition.

4.10 Definition. A situation for ν is a triple (C, g, r) satisfying the following:

(1) C = 〈Wm
1 ;x0, . . . , xn−1; d0, . . . , dn〉 is a complex (defined immediately

above).

(2) g : ω1 → (ω1)m, and g(ν) = Wm
1 .

(3) r : ω1 → ω1, and ∀∗
να r(α) < h(g(α); dn).

(4) ∀∗
να [α = h(g(α); C; r(α))].

Among all situations for ν, we now choose one with the minimal value
for [α → h(g(α); dn)]ν (i.e., minimizing the bound for the function r). We
denote this situation by (C; g; r), where C = 〈Wm

1 ;x0, . . . , xn−1; d0, . . . , dn〉.
We claim that r is constant ν almost everywhere, that is, ∃γ < ω1 ∀∗

να
r(α) = γ. Granting this, it follows from (2) and (4) that ν(A) = 1 iff
∃ c.u.b. C ⊆ ω1 ∀β1, . . . , βm ∈ C h(�β; C; γ) ∈ A. This gives the theorem
via a minor cosmetic change: if m > n we replace Wm

1 by Wn
1 , and replace

d0, . . . , dn−1 by n, n − 1, . . . , 1, which gives the same measure (we eliminate
the coordinates of Wm

1 not used in the definition of h(�β; C; γ)).
We consider the case where dn is minimal, that is, dn = 1, the other case

being similar (in fact, as we remarked above, there is no loss of generality
in assuming m = n and d0, . . . , dn−1 = n, . . . , 1, in which case dn = 1). We
consider two cases.

First assume that there is a ν measure one set A such that for α ∈ A there
is a δ < h(g(α); dn) (that is, δ < β1, where g(α) = β1, . . . , βm) such that for
all α′ ∈ A with g(α′) = g(α) we have r(α′) < δ. Fix such a measure one set A,
and by (3) we may assume ∀α ∈ A r(α) < h(g(α); dn). By (2), let C be closed
unbounded such that for all β1 < · · · < βm ∈ C ∃α ∈ A g(α) = (β1, . . . , βm).
Thus,

∀β1 < · · · < βm ∈ C ∃δ < β1 sup{r(α) : α ∈ A ∧ g(α) = (β1, . . . , βm)} < δ.

By normality, δ is constant on a Wm
1 measure one set, and by countable

additivity of ν, r is constant on a ν measure one set.
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Suppose now that such a measure one set does not exist. It follows that
for any A of ν measure one that ∀∗

να ∈ A ∀δ < β1 ∃α′ ∈ A [g(α′) = g(α) ∧
r(α′) > δ], where g(α) = (β1, . . . , βm). Let g′ : ω1 → ω1 satisfy the following:

(1) ∀∗
να g′(α) < h(g(α); dn). In other words, g′(α) < β1, where g(α) =

(β1, . . . , βm).

(2) There is a ν measure one set A such that if α1, α2 ∈ A, g(α1) = g(α2),
and r(α1) ≤ r(α2), then g′(α1) ≤ g′(α2).

(3) For any A of ν measure one we have ∀∗
να ∈ A ∀δ < β1 ∃α′ ∈ A

[g(α′) = g(α) ∧ g′(α′) > δ], where g(α) = (β1, . . . , βm).

(4) If [g′ ′]ν < [g′]ν , then g′ ′ does not satisfy (1)–(3).

g′ exists, since r satisfies (1)–(3). Also, g′(ν) = W 1
1 , since if there were

a closed unbounded C such that ∀∗
να g′(α) /∈ C, then p ◦ g′ would violate

the minimality of g′, where p(α) = the largest element of C less than or
equal to α. Let g̃(α) = g′(α)�g(α), so g̃(ν) = Wm+1

1 . Fix a ν measure one
set A witnessing (1) and (2) for g′. Consider the partition P : we partition
β0 < δ < β1 < β2 < · · · < βm according to whether

sup{r(α) : α ∈ A ∧ g(α) = (β1, . . . , βm) ∧ g′(α) ≤ β0} < δ.

Using (2) and (3) it follows that on the homogeneous side the stated prop-
erty holds. Let C ⊆ ω1 be closed unbounded and homogeneous for P , and let
NC(α) = the least element of C greater than α. Thus, ∀∗

να r(α) < NC(g′(α)).
Let xn be such that Txn is well-founded and ∀∗

W 1
1
β NC(β) < |Txn�β|. Define

r′ : ω1 → ω1 so that ∀∗
να r′(α) < g′(α) and ∀∗

να [r(α) = |(Txn�g′(α))(r′(α))|.
Let d′

0 = d0 + 1, . . . , d′
n−1 = dn−1 + 1 (to maintain the correspondence

between the appropriate coordinates of Wm
1 and Wm+1

1 ), and let d′
n =

d′
n+1 = 1. Let C′ = 〈Wm+1

1 ;x0, . . . , xn; d′
0, . . . , d

′
n, d′

n+1〉. Note then that
∀∗

να [α = h(g̃(α); C′; r′(α)]. Since ∀∗
να h(g̃(α); d′

n) < h(g(α); dn), it follows
that (C′; g̃; r′) violates the minimality of (C; g; r), a contradiction. �

4.2. The Strong Partition Relation on ω1

We now convert this analysis of measures to a coding of the subsets of ω1.
As we mentioned before, this idea is due to Kunen. Throughout Sect. 4.2,
T continues to denote the Kunen tree of Lemma 4.1.

First we code (enough) closed unbounded sets. If σ ∈ ωω, let

Cσ = {α < ω1 : α > ω ∧ ∀β < α (Tσ�β is well-founded ∧ |Tσ�β| < α)}.

For any σ, Cσ is a closed subset of ω1, and if Tσ is well-founded then Cσ is
also unbounded. Also, for all closed unbounded C ⊆ ω1, there is a σ ∈ ωω

such that Tσ is well-founded and Cσ ⊆ C. For we may choose σ so that for
all infinite β < ω1, |Tσ�β| > NC(β).
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4.11 Definition. Suppose C = 〈Wm
1 ;x0, . . . , xn−1; d0, . . . , dn〉 is a complex,

Tσ is well-founded, and γ < ω1. If n ≥ 1, we define (with h as in Defini-
tion 4.9)

Sσ,C,γ = {h(β1, . . . , βm; C; γ) : �β ∈ (Cσ)m ∧ γ < β1 ∧ h(�β; C; γ) ≥ βm}.

For n = 0 we define Sσ,C,γ = {γ}. We say S ⊆ ω1 is simple if it is of the form
Sσ,C,γ for some σ, C, γ.

4.12 Theorem. Every A ⊆ ω1 is a countable union of simple sets.

Proof. Let A ⊆ ω1, and suppose the theorem fails for A. Let I ⊆ P(A) denote
the countably additive ideal of I ⊆ A such that I =

⋃
i Si is a countable union

of simple sets Si ⊆ A. Thus, A /∈ I. Also, I contains all singletons as every
{γ} is simple. By AD, every countably additive filter (dual to an ideal I) on
an ordinal < Θ (identified here with A) can be extended to a measure. [One
way to see this: by the Coding Lemma, let π : ωω → I be onto. For d a
Turing degree, let f(d) = least element of A−

⋃
x∈d π(x). If μ is the Martin

measure on the degrees, then f(μ) is a measure on A with f(μ)(I) = 0 for
all I ∈ I.]

Let ν be a measure on A extending the filter dual to I. Since ν(A) = 1, by
Theorem 4.8 we have some simple set S ⊆ A with ν(S) = 1. This contradicts
S ∈ I. �

We view each real z as coding countably many reals zn, each of which
codes reals σn, wn, and a sequence Cn = 〈Wm

1 ;x0, . . . , xt−1; d0, . . . , dt〉 which
satisfies the definition of a complex except that we do not require the Txi to
be well-founded (we call this a partial complex). To each zn we associate a
set Azn defined as follows. If wn /∈ WO (the set of codes for wellorderings
of ω), we set Azn = ∅. Otherwise, set

α ∈ Azn ←→∃β1 < · · · < βm ≤ α

[β1 > |wn| ∧ {∀i βi ∈ Cσn ∧ α = h(�β; Cn; |wn|)}].

We define here h(�β; Cn; γ) for the partial complex Cn similarly to Defini-
tion 4.9: h(�β; Cn; γ) = |Tx0�h(�β; d0)(α1)|, where α1 = |Tx1�h(�β; d1)(α2)|,
etc., provided α1 is in the well-founded part of Tx0�h(�β; d0), α2 is in the well-
founded part of Tx1�h(�β; d1), etc. If some αi+1 is not in the well-founded
part of Txi�h(�β; di), we leave h(�β; Cn; γ) undefined. Thus, for all z ∈ ωω, the
sets Azn ⊆ ω1 are defined. We set Az =

⋃
n∈ω Azn .

The following theorem says that this coding is reasonable.

4.13 Theorem. The coding z → Az satisfies the following:

(1) ∀A ⊆ ω1 ∃z A = Az.

(2) ∀α < ω1 {z : α ∈ Az} ∈Δ1
1.
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Proof. (1) follows immediately from Theorem 4.12. (2) is a straightforward
computation using the facts that ∀β < ω1 {σ : β ∈ Cσ} ∈Δ1

1, and ∀β, γ, δ <
ω1 {z : |(Tz�β)(γ)| ≤ δ} ∈Δ1

1. �

If we view functions F : ω1 → ω1 as subsets of (ω1)2, and use our coding
above (identifying (ω1)2 with ω1), it is not quite good enough to witness that
ω1 is ω1-reasonable. To get this, we must make a small modification to our
coding, essentially modifying only the first step of the proof of Theorem 4.8.
We sketch the changes that need to be made.

We code binary relations F ⊆ ω1 × ω1 as follows. Every real z codes
countably many reals zn, each of which codes reals σn, w1

n, w2
n, and a partial

complex Cn = 〈Wm
1 ;x0, . . . , xt−1; d0, . . . , dt〉. Set

(α, β) ∈ Fz ←→ ∃n
[
w1

n, w2
n ∈ WO ∧ |w1

n| < α ∧ |w2
n| < α

∧ ∃β1 < · · · < βm ≤ α
[
β1 > max{|w1

n|, |w2
n} ∧ ∀i βi ∈ Cσn

∧ α = h(�β; C; |w1
n|) ∧ β = h(�β; C; |w2

n|)
]]

∧ ∀n′ ∈ ω
[
{w1

n′ , w2
n′ ∈WO ∧ |w1

n′ | < α ∧ |w2
n′ | < α∧

∃β′
1 < · · · < β′

m ≤ α
[
β′

1 > max{w1
n′ , w2

n′} ∧ ∀i β′
i ∈ Cσn′

∧ α = h(�β′; C; |w1
n′ |)

]}
→ h(�β′; C; |w2

n′ |) = β
]
.

The main difference now is that the βi are required to be ≤ α (rather than
≤ max{α, β}). Note also that if Fz(α, β) and Fz(α, β′), then β = β′.

The analog of Theorem 4.12 becomes:

4.14 Theorem. For every function F : ω1 → ω1, F = Fz for some z.

Proof. Fix F : ω1 → ω1. Let X = {(α, β) : β = F (α)}. Let I be the
countably additive ideal on X consisting of countable unions of sets I such
that I ⊆ S ⊆ F for some simple S, that is, S = Sσ,C,γ1,γ2 for some complex C,
well-founded Tσ, and γ1, γ2 < ω1, where

(α, β) ∈ Sσ,C,γ1,γ2

←→ ∃β1 < · · · < βm ≤ α
[
β1 > max{γ1, γ2}

∧ ∀i(βi ∈ Cσn) ∧ α = h(�β; C; γ1) ∧ β = h(�β; C; γ2)
]
.

We finish as in Theorem 4.12 provided we show that every measure ν on
X is generated by simple sets. To do this, we need only modify the first step
in the proof of Theorem 4.8.

Let π(α, β) = α be the projection onto the first coordinate. Let ν′ = π(ν).
Define g0 exactly as in Theorem 4.8, using ν′. Let A be a ν′ measure one set
on which g0 is monotonically increasing, and define h(α) = sup{max(β, γ) :
β ∈ A ∧ γ = F (β) ∧ g0(β) ≤ α}. Let Tx0 be well-founded and ∀∗

W 1
1
γ h(γ) <

|Tx0�γ|. Thus, ∀∗
ν(α, β) max(α, β) < |Tx0�g0(α)|. Let r0, s0 : ω1 → ω1 be

such that ∀∗
ν(α, β) r0(α), s0(α) < g0(α) and

∀∗
ν(α, β) [α = |(Tx0�g0(α))(r0(α))| ∧ β = |(Tx0�g0(α))(s0(α))|].
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The argument then proceeds as in Theorem 4.8. �

This coding suffices for the strong partition relation on ω1.

4.15 Theorem. The coding z → Fz witnesses that ω1 is reasonable relative
to the pointclass Σ1

1.

Proof. (1) and (2) in Definition 2.33 are immediate, and (3) is a straightfor-
ward computation using the definition of Fz. (4) follows from the fact that if
A ∈ Σ1

1, α < ω1 and ∀z ∈ A ∃β Fz(α, β), then there is a Σ1
1 relation ≺ such

that for all z1, z2 ∈ A, Fz1(α) < Fz2(α) ←→ z1 ≺ z2. �

4.16 Corollary. ω1 → (ω1)ω1 .

We now obtain the lower bound for δ1
3, again, using only techniques that

will generalize. We use the following general theorem of Martin.

4.17 Theorem (Martin). Assume κ→ (κ)κ. Then for any measure ν on κ,
the ultrapower jν(κ) is a cardinal.

Proof. Toward a contradiction, fix ν such that jν(κ) is not a cardinal, and
let F : jν(κ) → λ be a bijection, where λ < jν(κ). Consider the partition P :
we partition f, g : κ → κ of the correct type with f(α) < g(α) < f(α + 1)
according to whether F ([f ]ν) < F ([g]ν). It is clear by wellfoundedness that
we cannot have a closed unbounded set homogeneous for the contrary side
of the partition. Let C ⊆ κ be closed unbounded and homogeneous for P .
Fix an ordinal θ with λ < θ < jν(κ), and let [h]ν = θ. Define h′ : κ →
C inductively by: h′(α) = the ω · (h(α) + 1)st element in C greater than
supβ<α h′(β). Since κ is regular, this is well defined. We then produce an
order preserving map H from θ into λ, a contradiction. Namely, if δ < θ,
let [fδ]ν = δ, with fδ < h everywhere. Define f ′

δ : κ → C by: f ′
δ(α) = the

ω · (fδ(α) + 1)st element of C greater than supβ<α h′(β). Then set H(δ) =
F ([f ′

δ]ν). It is easy to see that this is well-defined and order-preserving from
θ into λ. �

4.18 Corollary. δ1
3 = ωω+1.

Proof. Define π : jW m
1

(ω1) → jW m+1
1

(ω1) by: π([f ]W m
1

) = [f ′]W m+1
1

where
f ′(α1, . . . , αm+1) = f(α1, . . . , αm). This gives an embedding from jW m

1
(ω1)

into [idm+1]W m+1
1

, where idm+1(α1, . . . , αm+1) = αm+1. Thus, jW m
1

(ω1) <

jW m+1
1

(ω1). From Theorem 4.17 and the previous upper bound, it follows
that jW n

1
(ω1) = ωn+1. Using the Coding Lemma to code functions f :

(ω1)m → ω1, and also our coding of closed unbounded sets, it is easy to
compute the prewellordering corresponding to the ultrapower jW m

1
(ω1) as

Δ1
3 (in fact, a more careful computation shows that the prewellordering lies

in the pointclass

G

ω ·m–Π1
1). Thus, δ1

3 ≥ supm jW m
1

(ω1) = ωω. Since δ1
3 is

regular, δ1
3 ≥ ωω+1. �
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4.3. The Weak Partition Relation on δ1
3

Starting from the weak partition relation on δ1
1 = ω1, we have computed δ1

3

and proved the strong partition relation on δ1
1. To complete the cycle, we

establish now the weak partition relation on δ1
3. As we mentioned before,

this is a result of Kunen (see [33]). Again, we wish to use only methods
and terminology that will generalize. Nevertheless, the proof closely parallels
Kunen’s. An important concept which is introduced here is that of a tree of
uniform cofinalities; this plays a central role in the general inductive analysis
as well.

First, we analyze possible uniform cofinalities with respect to the measures
Wm

1 . This analysis is well known, but we emphasize that we use only the
weak partition relation on ω1 and the Kunen tree analysis.

4.19 Lemma. Let f : (ω1)m → ω1, and assume ∀∗
W m

1
α1, . . . , αm f(�α) is a

limit ordinal. Then either f has uniform cofinality ω almost everywhere with
respect to Wm

1 , or there is an i, 1 ≤ i ≤ m, such that f(�α) has uniform
cofinality αi almost everywhere. Also, each of these uniform cofinalities is
distinct, that is, these cases are mutually exclusive.

4.20 Remark. The uniform cofinalities other than ω are thus described by
the descriptions d defined with respect to Wm

1 . The lemma also holds for
any f : (ω1)m → Θ assuming AD + V = L(R) (see Sect. 6).

Proof. Fix f : (ω1)m → ω1, and call a pair (S, l) a liftup to f provided
S : (ω1)m → ω1, l : {(α1, . . . , αm, β) : β < S(�α)} → ω1 and ∀∗

W m
1

�α f(�α) =
sup{l(�α, β) : β < S(�α)}. Fix a liftup (S, l) for which [S]W m

1
is minimal. If

S is constant almost everywhere, then easily f has uniform cofinality ω. Let
1 ≤ d ≤ m be minimal so that ∀∗

W m
1

�α S(�α) ≤ h(�α; d) = αd. If equality
holds almost everywhere we are done, as then f(�α) has uniform cofinality αd

almost everywhere. Otherwise, there is an x with Tx well-founded such that
∀∗

W m
1

�α S(�α) < |Tx�αd−1| (d > 1 now). For almost all �α, set S′(�α) = αd−1,
and for β < αd−1 define l′(�α, β) = sup{l(�α, γ) : γ < |(Tx�αd−1)(β)|} if
|(Tx�αd−1)(β)| < S(�α), and = 0 otherwise. Then (S′, l′) is a liftup to f
with [S′]W m

1
< [S]W m

1
, a contradiction. We leave the uniqueness proof to the

reader. �

We introduce some useful notation.

4.21 Definition. Suppose π = (n, i2, . . . , in) is a permutation of {1, . . . , n}
beginning with n. <π is the wellordering of (ω1)n defined by: (α1, . . . , αn)
<π (β1, . . . , βn) iff (αn, αi2 , . . . , αin) <lex (βn, βi2 , . . . , βin). We say an n-
tuple of ordinals (γ1, . . . , γn) has type π if it is order-isomorphic to π. By
a partial permutation of n we mean a π = (n, i2, . . . , im), m ≤ n, which
can be extended to a permutation. We likewise define the ordering <π on
(ω1)n in this case by: (α1, . . . , αn) <π (β1, . . . , βn) iff (αn, αi2 , . . . , αim) <lex

(βn, βi2 , . . . , βim). We identify �α, �β ∈ dom(<π) if αn = βn, . . . , αim = βim .
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Note that if π = (n, i2, . . . , im) is a partial permutation and m < n, then
if f : dom(<π) → ω1 is order-preserving, f(α1, . . . , αn) depends only on
αn, αi2 , . . . , αim .

If π = (n, i2, . . . , ik), π′ = (m, j2, . . . , jl) are partial permutations, we say
π′ extends π provided m ≥ n, l > k, and (m, j2, . . . , jk) is order-isomorphic
to π. If, in addition, l = k + 1, we say π′ is an immediate extension of π.

4.22 Definition. If π = (n, i2, . . . , in) is a permutation and f :<π→ ω1

is order-preserving, we define the “mth invariant” f(m) : (ω1)m → ω1, for
m ≤ n by:

f(m)(αn, αi2 , . . . , αim)
= sup{f(αn, αi2 , . . . , αim , βim+1 , . . . , βin) : (αn, . . . , βin) has type π}.

For example, if π = (3, 1, 2), and f : dom(<π) → ω1 is order-preserving,
then f(2)(α1, α3) = sup{f(α1, α2, α3) : α1 < α2 < α3}. Recall our conven-
tion that for g : (ω1)2 → ω1 and α1 < α3, we write g(α1, α3) interchangeably
with g(α3, α1), etc.

4.23 Lemma. Let f : (ω1)n → ω1 with ωn < [f ]W n
1
. Then there is an m ≤ n

and a partial permutation π = (n, i2, . . . , im) such that for some closed un-
bounded C ⊆ ω1 and any �α, �β ∈ (C)n, f(�α) < f(�β) iff (αn, αi2 , . . . , αim) <lex

(βn, βi2 , . . . , βim).

Proof. Suppose (n, i2, . . . , ik) have been defined so that there is a closed un-
bounded C ⊆ ω1 satisfying

∀�α, �β ∈ (C)n (αn, αi2 , . . . , αik
) <lex (βn, βi2 , . . . , βik

) → f(�α) < f(�β) .

For each i ∈ {1, . . . , n}−{n, i1, . . . , ik}, consider the partition Pi: we partition
ordinals α1 < · · · < αn and β1 < · · · < βn with αn = βn, . . . , αik

= βik
,

αi < βi < αi+1, and αj−1 < βj < αj for all other j. We partition according
to whether f(�α) < f(�β).

If all the partitions Pi are homogeneous for the contrary side, it is easy
to see that on a closed unbounded set, if (αn, . . . , αik

) = (βn, . . . , βik
), then

f(�α) = f(�β), and we are done.
Otherwise, it is easy to see that there is a unique i such that Pi is

homogeneous for the stated side. We may then extend (n, i2, . . . , ik) to
(n, i2, . . . , ik, ik+1), setting ik+1 = i. Continuing, we establish the theo-
rem. �

Lemmas 4.19 and 4.23 completely analyze the “type” of a function f :
(ω1)n → ω1. If π = (n, i2, . . . , im) is a partial permutation of n, we say
f : (ω1)n → ω1 is of type π if f is order-preserving from <π to ω1, of uni-
form cofinality ω, and is everywhere discontinuous, that is, for �α ∈ (ω1)n,
f(�α) > sup{f(�β) : �β <π �α}. We say that f is of type (π, s) if f is order-
preserving from <π and for �α ∈ (ω1)n of limit rank in <π, f(�α) = sup{f(�β) :
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�β <π �α} (and for �α of successor rank, f(�α) has uniform cofinality ω). Fi-
nally, if π′ = (n + 1, j2, . . . , jm+1) is a partial permutation extending π, we
say that f is of type (π, π′) if f is order-preserving with respect to <π,
everywhere discontinuous, and f(αn+1, αj2 , . . . , αjm) has uniform cofinality
{β : (αn+1, αj2 , . . . , αjm , β) has type π′} if this set has limit order-type (and
otherwise has uniform cofinality ω). We say that f has type π, (π, s) or
(π, π′) almost everywhere if there is a closed unbounded C such that f�(C)n

is order-preserving with respect to <π, and f�(C)n has the appropriate uni-
form cofinality and continuity properties.

Lemmas 4.19 and 4.23 consequently say that if f : (ω1)n → ω1, [f ] > ωn,
and ∀∗

W n
1
�α f(�α) is a limit ordinal, then f has type π, (π, s), or (π, π′) almost

everywhere, for some partial permutation(s) π, π′.
The next lemma is simple but important. It says we may change the

values of functions on measure zero sets so that they are everywhere ordered
correctly.

4.24 Lemma (Sliding Lemma). Suppose f : (ω1)m → ω1, g : (ω1)n →
ω1 have types π1 = (m, i2, . . . , ik), π2 = (n, j2, . . . , jl) almost everywhere
respectively. Suppose r ≤ min(k, l) is such that [f(r − 1)] = [g(r − 1)], but
[f(r)] < [g(r)]. Then there are f ′, g′ of types π1, π2 with [f ′] = [f ], [g′] = [g],
ran(f ′) ⊆ ran(f), ran(g′) ⊆ ran(g), and such that for all �α ∈ (ω1)m, �β ∈
(ω1)n, g(�β) > f(�α) iff (βn, βj2 , . . . , βjr ) ≥lex (αm, αi2 , . . . , αir).

Proof. Note that (m, i2, . . . , ir), (n, j2, . . . , jr) are order-isomorphic, say to
the permutation π = (r, k2, . . . , kr), by uniqueness of the uniform cofinality
and the fact that [f(r−1)] = [g(r−1)]. Let C1 ⊆ ω1 be closed unbounded such
that f�(C1)m is order-preserving with respect to <π1 and of uniform cofinality
ω, and similarly for g. Let l : ω1 → ω1, and C ⊆ C1 be closed unbounded and
closed under l such that

∀�α ∈ (C)r f(r)(αr, αk2 , . . . , αkr ) < g(r)(αr, αk2 , . . . , αkr )
< f(r)(αr, αk2 , . . . , l(αkr )).

Let p(α) = the ω · αth element of C. Define

f ′(α1, . . . , αm) = f(p(α1), . . . , p(αm)),

and similarly
g′(α1, . . . , αn) = g(p(α1), . . . , p(αn)).

It is easy to check that f ′, g′ have the desired properties. �

A useful special case of the lemma is that if f : (ω1)n → ω1 has type
π almost everywhere, then there is an f ′ of type π with [f ′] = [f ] and
ran(f ′) ⊆ ran(f). A small variation of the argument shows this is also true
for functions f of type (π, s) or (π, π′) almost everywhere.

We now define the notion of a tree of uniform cofinalities, which plays an
important role in the projective hierarchy analysis. The concept is similar
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to that of a homogeneous tree. Roughly speaking, for each node in this tree
we allow as extensions all possible uniform cofinalities with respect to the
measure which is associated to that node (these uniform cofinalities in turn
define new measures).

In the following definition, we let (s), (ω) be two formal symbols (the first
stands for “sup”, and the second for “uniform cofinality ω”).

4.25 Definition. A type-1 tree of uniform cofinalities (of depth n) is a func-
tion R satisfying the following:

(1) 〈p1, i1〉 ∈ dom(R) for 0 ≤ i1 ≤ a for some integer a, and p1 = the unique
permutation of length 1, namely p1 = (1). For i1 = 0, R(〈p1, i1〉) =
(s), and for i1 > 0, R(〈p1, i1〉) is either (ω), or a permutation p2 of
length 2 (hence p2 = (2, 1)). Also, 〈p1, i1〉 is maximal in dom(R) iff
R(〈p1, i1〉) = (s) or (ω).

(2) In general, dom(R) consists of tuples 〈p1, i1, . . ., im−1, pm, im〉, m ≤ n,
and such a tuple is maximal in dom(R) iff R(〈p1, i1, . . . , pm, im〉) = (s)
or (ω) (these are the only values permitted, therefore, if m = n).
R(〈p1, i1, . . . , pm, im〉) = (s) iff im = 0. If R(〈p1, i1, . . . , pm, im〉) �= (s)
or (ω), then R(〈p1, i1, . . . , pm, im〉) is a permutation pm+1 immedi-
ately extending pm. In this case, (〈p1, i1, . . . , pm, im, pm+1, im+1〉) ∈
dom(R) for some integers 0 ≤ im+1 ≤ a (a ≥ 0 and depends on
〈p1, i1, . . . , pm, im, pm+1〉).

For R a type-1 tree of uniform cofinalities, we define <R to be the lexico-
graphic ordering on sequences 〈α1, i1, . . . , im−1, αm, im〉, m ≤ n, satisfying:

(1) α1, . . . , αm < ω1.

(2) (α1, . . . , αm) is of type pm, where (p1, . . . , pm) is the unique sequence
such that 〈p1, i1, . . . , pm, im〉 ∈ dom(R).

We say a sequence 〈α1, i1, . . . , αm, im〉 with (α1, . . . , αm) as in (2) is of
type 〈p1, i1, . . . , pm, im〉.

To each tree of uniform cofinalities R we associate a measure M R. First,
say a function f : dom(<R) → ω1 is of type R if it is order-preserving,
f(〈α1, i1, . . . , αm, im〉) has uniform cofinality ω if R(〈p1, i1, . . . , pm, im〉) =
(ω) or 〈α1, i1, . . . , αm, im〉 has successor rank in <R (for 〈α1, i1, . . . , αm, im〉
having type 〈p1, i1, . . . , pm, im〉), and otherwise

f(〈α1, i1, . . . , αm, im〉) = sup{f(�s) : �s <R 〈α1, i1, . . . , αm, im〉}.

Define A to have measure one with respect to M R iff ∃ c.u.b. C ⊆
ω1 ∀f : dom(<R) → C of type R (. . . , α〈p1,i1,...,pm,im 〉, . . .) ∈ A, where
α〈p1,i1,...,pm,im 〉 is represented with respect to Wm

1 by:

f 〈p1,i1,...,pm,im 〉(α1, . . . , αm) = f(〈α1, i1, . . . , αm, im〉).
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(Recall our notational convention; the α1, . . . , αm here are not written in
increasing order).

Thus, each M R is a measure on (ωω)<ω, and these measures generalize
somewhat the measures occurring in the homogeneous tree construction on
a Π1

2-complete set. We note that the requirement that 〈p1, i1, . . . , pm, im〉 be
non-maximal in dom(R) if R(〈p1, i1, . . . , pm, im〉) �= (s) or (ω) causes no es-
sential loss of generality as far as specifying functions of type R is concerned.
For suppose R(〈p1, i1, . . . , pm, im〉) = pm+1, where pm+1 is the permutation
(m+1, j2, . . . , jm, jm+1). Thus, pm is order-isomorphic to (m+1, j2, . . . , jm).
Suppose f : dom(<pm) → ω1 is order-preserving, f is discontinuous, that is,
for (α1, . . . , αm) of type pm we have

f(α1, . . . , αm) > sup{f(�β) : �β <π �α},

and for Wm
1 almost (α1, . . . , αm) of type pm we have f(�α) has uniform cofi-

nality {β : (α1, . . . , αm, β) has type pm+1}. By definition, there is an

f ′ : {(α1, . . . , αm, β) : (α1, . . . , αm, β) has type pm+1} → ω1

order-preserving with respect to <pm+1 , so that f ′(�α, β) = supβ′<β f ′(�α, β′)
for limit β and f ′ induces f in that f(�α) = supβ f ′(�α, β) almost everywhere.
Furthermore, it is not difficult to see that [f ′]W m+1

1
is uniquely determined

from [f ]W m
1

. This shows that adding 〈p1, i1, . . . , pm, im, pm+1, 0〉 to dom(R)
does no harm.

If R is a type-1 tree of uniform cofinalities, and f1, f2 : dom(<R) → ω1

are of type R, we write [f1] = [f2] to mean that for all 〈p1, i1, . . . , pk, ik〉 ∈
dom(R) we have [f 〈p1,i1,...,pk,ik 〉

1 ]W k
1

= [f 〈p1,i1,...,pk,ik 〉
2 ]W k

1
.

We say the type-1 tree of uniform cofinalities R′ extends R if there is
a length preserving injection ρ : dom(R) → dom(R′) such that R(�s) =
R′(ρ(�s)) for all �s ∈ dom(R). We usually just say �s ∈ dom(R) is “identified”
with ρ(�s) ∈ dom(R′). We say R′ is an immediate extension of R is there is
exactly one sequence �s not ending in 0 in dom(R′)− dom(R).

We say R′ is a partial extension of R if R′ has a unique extra sequence �s =
〈q1, j1, . . . , ql, j

∗
l 〉 in dom(R′), and j∗

l �= 0. More precisely, this means that
〈q1, j1, . . . , ql, jl〉 ∈ dom(R) for 0 ≤ jl ≤ a and we have 〈q1, j1, . . . , ql, jl〉 ∈
dom(R′) for 0 ≤ jl ≤ a + 1. For jl < j∗

l , we identify 〈q1, j1, . . . , ql, jl〉 ∈
dom(<R) with 〈q1, j1, . . . , ql, jl〉 ∈ dom(<R′

), and for jl ≥ j∗
l , we identify

〈q1, j1, . . . , ql, jl〉 ∈ dom(<R) with 〈q1, j1, . . . , ql, jl + 1〉 ∈ dom(<R′
). We

leave R′(�s) undefined (more formally, in order to still have �s ∈ dom(R′), we
require R′(�s) to be a formal symbol (u) for “undefined”). We define <R′

as
for immediate extensions. Thus, after identifying dom(<R) with a subset of
dom(<R′

) we have

dom(<R′
) = dom(<R) ∪ {〈α1, j1, . . . , αl, j

∗
l 〉 : (α1, . . . , αl) has type ql}.

Finally, we say that g′ : dom(<R′
) → ω1 is of semi-type R′ if g′ is order-

preserving with respect to <R′
, and the function g : dom(<R) → ω1 it
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induces by restriction is of type R. Note that g′ being of semi-type R′

imposes no restriction on the uniform cofinality of the component function
g′ 〈q1,j1,...,ql,j

∗
l 〉.

Lemma 4.24 generalizes to level-1 trees of uniform cofinalities as follows.

4.26 Lemma. Let R be a level-1 tree of uniform cofinalities, and suppose
f : dom(<R) → ω1 is of type R. Suppose �s = 〈p1, i1, . . . , pk, ik〉 is non-
maximal in dom(R), and R(�s) = pk+1. Suppose δ ∈ On and for W k+1

1

almost all (α1, . . . , αk+1) of type pk+1 we have δ(�α) < f(〈α1, i1, . . . , αk, ik〉).
Let i∗

k+1 be maximal such that 〈p1, i1, . . . , pk+1, i
∗
k+1〉 ∈ dom(R). Let R′ be

the partial extension of R with extra sequence 〈p1, i1, . . . , pk+1, i
∗
k+1 + 1〉 in

its domain. Then there is an f ′ of semi-type R′ such that:

(1) [f ′� dom(<R)] = [f ]. That is, for each 〈q1, j1, . . . , ql, jl〉 ∈ dom(R),
∀∗

W l
1
(α1, . . . , αl) f ′(〈α1, q1, . . . , αl, ql〉) = f(〈α1, q1, . . . , αl, ql〉).

(2) ran(f ′) ⊆ ran(f) ∪ (ran(f))′.

(3) ∀∗
W k+1

1
(α1, . . . , αk+1) δ(�α) < f ′(〈α1, i1 . . . , αk+1, i

∗
k+1〉).

Proof. Fix a representing function �α→ δ(�α) for δ, and fix b : ω1 → ω1 and a
closed unbounded C ⊆ ω1 closed under b such that for all (α1, . . . , αk+1) of
type pk+1 in C, δ(�α) < f(〈α1, i1, . . . , αk, ik, b(αk+1), 0〉). Let D be the set of
closure points of C, and define l(α) = αth element of D. For 〈α1, j1, . . . , αl, jl〉
∈ dom(<R), define

f ′(〈α1, j1, . . . , αl, jl〉) = f(〈l(α1), j1, . . . , l(αl), jl〉).

Define also

f ′(〈α1, i1, . . . , ik, αk+1, i
∗
k+1〉) = f(〈l(α1), i1, . . . , l(αk), ik, β, 0〉),

where β is the ωth element of C greater than l(αk+1). It is easy to check that
f ′ satisfies (1)–(3) above, and also satisfies all of the requirements for being
of type R except for the requirement that f ′(�s) have uniform cofinality ω for
�s in certain measure zero sets. It is easy, however, to redefine f ′(�s) at these
points to guarantee this last requirement. �

4.27 Definition. A generalized trivial (or type-1) description defined relative
to a measure Wm

1 and a type-1 tree of uniform cofinalitiesR is a sequence d =
〈d1, i1, . . . , dk, ik〉 where each di is a trivial description defined relative to Wm

1

(i.e., 1 ≤ di ≤ m), and for some (uniquely determined) 〈p1, i1, . . . , pk, ik〉 ∈
dom(R) we have pk is order-isomorphic to (d1, d2, . . . , dk). We order the
generalized descriptions lexicographically.

We extend the interpretation function h to generalized descriptions. If
d = 〈d1, i1, . . . , dk, ik〉 is defined relative to Wm

1 and R, f : dom(<R) → ω1

is of type R, and β1 < · · · < βm, then we define

h(f ; �β; d) = f(〈h(�β; d1), i1, . . . , h(�β; dk), ik〉).
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We extend also the lowering operation L to generalized descriptions as
follows.

4.28 Definition. Suppose d = 〈d1, i1, . . . , dk, ik〉 is defined relative to Wm
1

and R. Let 〈p1, i1, . . . , pk, ik〉 ∈ dom(R), where pk is order-isomorphic to
(d1, . . . , dk). We define L(d) through the following cases:

(1) If R(〈p1, i1, . . . , pk, ik〉) = (ω), L(d) = 〈d1, i1, . . . , dk, ik − 1〉 (note here
that ik > 0).

(2) If ik = 0, then L(d) = 〈d1, i1, . . . ,L(dk), i∗
k〉 provided L(dk) is defined

(i.e., dk > 1) and (d1, . . . ,L(dk)) is order-isomorphic to pk. Here i∗
k is

maximal such that 〈p1, i1, . . . , pk, i
∗
k〉 ∈ dom(R). Otherwise, set L(d) =

〈d1, i1, . . . , dk−1, ik−1 − 1〉 (note that ik−1 > 0) provided k > 1. For
k = 1 in this case (and thus d = 〈d1, 0〉, with d1 = 1), we declare d to
be L-minimal, and do not define L(d).

(3) Suppose now that ik > 0 and R(〈p1, i1, . . . , pk, ik〉) = pk+1. Let
1 ≤ j ≤ k be such that if αdj −1 < β < αdj , then (αd1 , . . . , αdk

, β)
is order-isomorphic to pk+1. If d∗

k+1
.= dj − 1 /∈ {d1, . . . , dk}, set

L(d) = 〈d1, i1, . . . , dk, ik, d
∗
k+1, i

∗
k+1〉, where i∗

k+1 is maximal such that

〈p1, i1, . . . , pk, ik, pk+1, i
∗
k+1〉 ∈ dom(R).

If dj − 1 = 0 or dj − 1 ∈ {d1, . . . , dk}, set L(d) = 〈d1, i1, . . . , dk, ik − 1〉.

The significance of this definition is embodied in the following lemma.

4.29 Lemma. Suppose d = 〈d1, i1, . . . , dk, ik〉 is defined relative to Wm
1 ,R,

and f : dom(<R) → ω1 has type R. Let δ ∈ On be such that ∀∗
W m

1
�β δ(�β) <

h(f ; �β; d). Suppose d is non-minimal with respect to L. Then there is an
f ′ : dom(<R) → ω1 of type R such that [f ′] = [f ] and ∀∗

W m
1

�β δ(�β) <

Nf ′ (h(f ′; �β;L(d))).

Proof. The result follows easily from Lemma 4.26 in all cases. For exam-
ple, suppose d = 〈d1, i1, . . . , dk, ik〉, and L(d) = 〈d1, i1, . . . , dk, ik, d

∗
k+1, i

∗
k+1〉,

where d∗
k+1 = dj − 1. Thus,

∀∗
W m

1
�α ∃β < αdj δ(�α) < f(〈h(�α; d1), i1, . . . , h(�α; dk), ik, β, 0〉).

Thus, there is an l : ω1 → ω1 such that

∀∗
W m

1
�α δ(�α) < f(〈h(�α; d1), i1, . . . , h(�α; dk), ik, l(αdj −1), 0〉).

From Lemma 4.26 there is an f ′ of type R with [f ′] = [f ] (and in fact with
ran(f ′) ⊆ ran(f) ∪ ran(f)′), and

∀∗�α Nf ′ (〈h(�α; d1), i1, . . . , h(�α; dk), ik, αdjj−1, i
∗
k+1〉)

> f(〈h(�α; d1), i1, . . . , h(�α; dk), ik, l(αdj −1), 0〉).

f ′ is as desired. �



1824 Jackson / Structural Consequences of AD

4.30 Definition. A level-2 complex C = 〈R;Wm
1 ;x0, . . . , xn−1; d0, . . . , dn〉

is a sequence where R is a type-1 tree of uniform cofinalities, Tx0 , . . . , Txn−1

are well-founded, and d0, . . . , dn are generalized trivial descriptions defined
relative to Wm

1 .

For C a complex as above, f : dom(<R) → ω1 of type R, �β ∈ (ω1)m,
and γ < ω1, we define h(f ; �β; C; γ) = |Tx0�h(f ; �β; d0)(α1)|, where α1 =
|Tx1�h(f ; �β; d1)(α2)|, . . . , αn−1 = |Txn−1�h(f ; �β; dn−1)(αn)|, and αn = γ. For
f of type R, we let h(f ;Wm

1 ; C; γ) < ωm+1 be the ordinal represented with
respect to Wm

1 by the function �β → h(f ; �β; C; γ). Note that dn is not used
in the definition of h(f ; �β; C; γ) (it plays a role in the definition of a situation
below).

The following theorem analyzes the measures on ωω.

4.31 Theorem. Let ν be a measure on ωω. Then there is a measure μ
on ω1 and a complex C = 〈R;Wm

1 ;x0, . . . , xn−1; d0, . . . , dn〉 such that for all
A ⊆ ωω:

ν(A) = 1 ←→ ∀∗
μγ ∃ c.u.b. C ⊆ ω1

∀f : dom(<R) → C of type R [h(f ;Wm
1 ; C; γ) ∈ A].

Proof. The proof is similar to that of Theorem 4.8. Fix the measure ν, and
let m be least such that ν(ωm+1) = 1. We may assume m ≥ 1.

4.32 Definition. A situation for ν is a triple (C, g, r) consisting of a complex
C = 〈R;Wm

1 ;x0, . . . , xn−1; d0, . . . , dn〉 (same m as above), and functions g, r
with domain ωm+1 satisfying:

(1) g : ωm+1 → ω<ω
m+1 and g(ν) = M R, the measure associated with R.

(2) r : ωm+1 → ωm+1 and ∀∗
να r(α) < h(g(α);Wm

1 ; dn).

(3) ∀∗
να [α = h(g(α);Wm

1 ; C; r(α))].

Note that in (2) and (3), when we write h(g(α);Wm
1 ; dn), for example, we

mean h(g;Wm
1 ; dn) where g : dom(<R) → ω1 of type R represents g(α).

We fix now a situation (C; g; r) for ν with minimal value for

[α→ h(g(α);Wm
1 ; dn)]ν ,

where C = 〈R;Wm
1 ;x0, . . . , xn−1; d0, . . . , dn〉.

We claim that ∀∗
να r(α) < ω1. Granting this, let μ = r(ν). Let ν′ be the

measure defined by:

ν′(A) = 1←→∀∗
μγ ∃ c.u.b. C ⊆ ω1

∀f : dom(<R) → C of type R [h(f ;Wm
1 ; C; γ) ∈ A].
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We show that ν′ = ν. Suppose not, and let ν′(A) = 1, ν(Ac) = 1. By
the ω2-additivity of M R (which follows from an easy partition argument) fix
a μ measure one set D ⊆ ω1, and a closed unbounded C ⊆ ω1 such that
if γ ∈ D and f : dom(<R) → C is of type R, then h(f ;Wm

1 ; C; γ) ∈ A.
Since g(ν) = M R and r(ν) = μ, there is an α ∈ Ac such that r(α) ∈ D
and g(α) is representable by f : dom(<R) → C of type R, and such that
α = h(f ;Wm

1 ; C; r(α)). However, h(f ;Wm
1 ; C; r(α)) ∈ A, a contradiction.

To fix notation, say dn = 〈dn
1 , i1, . . . , d

n
k , ik〉. We may assume dn is non-

minimal with respect to L, since otherwise ∀∗
να r(α) < h(g(α);Wm

1 ; dn) = ω1.
We proceed to violate the minimality of (C; g; r). From Lemma 4.29 we
have that ∀∗

να ∃f : dom(<R) → ω1 of type R such that [f ] = g(α) and
∀∗

W m
1

�β r(α)(�β) < Nf (h(f ; �β;L(dn)).
Define a partial extension R′ of R as follows. If

L(dn) = 〈dn
1 , i1, . . . , d

n
k , ik − 1〉,

then R′ has the extra sequence 〈dn
1 , i1, . . . , d

n
k , ik〉 in its domain. We iden-

tify 〈dn
1 , . . . , i〉 ∈ dom(R) with 〈dn

1 , . . . , i〉 ∈ dom(R′) for i < ik, and with
〈dn

1 , . . . , i + 1〉 ∈ dom(R′) for i ≥ ik. If ik = 0 and

L(dn) = 〈dn
1 , i1, . . . ,L(dn

k ), i∗
k〉,

then R′ has the extra sequence 〈dn
1 , i1, . . . ,L(dn

k ), i∗
k + 1〉 in its domain. If

ik = 0 and
L(dn) = 〈dn

1 , i1, . . . , d
n
k−1, ik−1 − 1〉,

then R′ has the extra sequence 〈dn
1 , i1, . . . , d

n
k−1, ik−1〉 in its domain. Finally,

if
L(dn) = 〈dn

1 , i1, . . . , d
n
k , ik, d

∗
k+1, i

∗
k+1〉,

thenR′ has the extra sequence 〈dn
1 , i1, . . . , d

n
k , ik, d

∗
k+1, i

∗
k+1+1〉 in its domain.

Thus, in all cases the extra sequence is inserted according to Lemma 4.29.
In all cases, let d∗

n be the generalized description corresponding to the extra
sequence in the partial complex R′. For example, if

L(dn) = 〈dn
1 , i1, . . . , d

n
k , ik − 1〉,

then d∗
n = dn = 〈dn

1 , i1, . . . , d
n
k , ik〉, and if

L(dn) = 〈dn
1 , i1, . . . , d

n
k , ik, d

∗
k+1, i

∗
k+1〉,

then d∗
n = 〈dn

1 , i1, . . . , d
∗
k+1, i

∗
k+1 + 1〉.

To unify notation, let �s = 〈q1, j1, . . . , ql, jl〉 be the extra sequence in
dom(R′) − dom(R). We therefore have: ∀∗

να ∃f ′ : dom(R′) → ω1 of semi-
type R′ inducing f of type R such that [f ] = g(α) and ∀∗

W m
1

�β r(α)(�β)

< Nf ′ (h(f ; �β;L(dn))). As in Theorem 4.8 we consider two cases.
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First suppose there is a ν measure one A such that for all α ∈ A there is
a f ′ : dom(<R′

) → ω1 of semi-type R′ inducing (by restriction) the function
f : dom(<R) → ω1 of type R such that [f ] = g(α) and

∀α′ ∈ A
[
(g(α′) = g(α)) → ∀∗

W m
1

�β r(α′)(�β) ≤ Nf ′ (h(f ; �β;L(dn)))
]
.

Consider the partition P where we partition f ′ of semi-type R′ inducing f of
type R, and where f ′(〈α1, j1, . . . , αl, jl〉) has uniform cofinality ω, according
to whether

∀α′ ∈ A
[
(g(α′) = [f ])→ ∀∗

W m
1

�β r(α′)(�β) ≤ Nf ′ (h(f ; �β;L(dn)))
]
.

We easily have, using Lemma 4.24, that on the homogeneous side the stated
property holds. Fix C ⊆ ω1 homogeneous for P . Let Txn be well-founded
and ∀∗

W m
1

β |Txn�β| > NC(β). Then ∀∗
να ∃f of type R with [f ] = g(α) and

∀∗
W m

1
�β r(α)(�β) < |Txn�h(f ; �β;L(dn))|. Define r′ by: ∀∗

να if [f ] = g(α), then

∀∗
W m

1
�β r(α)(�β) = |(Txn�h(f ; �β;L(dn)))(r′(α)(�β))|.

Let C′ = 〈R;Wm
1 ;x0, . . . , xn−1, xn; d0, . . . , dn−1,L(dn),L(dn)〉. It follows

that (C′; g; r′) violates the minimality of the original situation.
Suppose next that such a measure one set does not exist. Let g′ satisfy

the following:

(1) ∀∗
να g′(α) is represented by an f ′ : dom(<R′

) → ω1 of semi-type R′

inducing f of type R representing g(α).

(2) There is a ν measure one set A such that if α1, α2 ∈ A, g(α1) = g(α2),
and r(α1) ≤ r(α2), then [f ′

1
〈q1,j1,...,ql,jl 〉]W l

1
≤ [f ′

2
〈q1,j1,...,ql,jl 〉]W l

1
. Here

f ′
1, f

′
2 represent g′(α1), g′(α2).

(3) There does not exist a ν measure one set A such that ∀α ∈ A ∃f ′ of
semi-type R′ inducing f of type R representing g(α) and

∀α′ ∈ A [(g(α′) = g(α)) → [f ′
1

〈q1,j1,...,ql,jl 〉]W l
1
≤ [f ′ 〈q1,j1,...,ql,jl 〉]W l

1
.

Here f ′
1 represents g′(α).

(4) For all [g′ ′]ν < [g′]ν , g′ ′ does not satisfy (1)–(3).

Easily g′ is well-defined [to satisfy (1)–(3), let g′(α) be least such that it
is representable by an f ′ of semi-type R inducing f representing g(α) and
such that ∀∗

W m
1

�β r(α)(�β) ≤ Nf ′ (h(f ; �β;L(dn)))]. From (4) it follows by a
pressing down argument that for any closed unbounded C ⊆ ω1, ∀∗

να g′(α)
is represented by some f ′ : dom(<R′

) → C of semi-type R′. By count-
able additivity of ν, there is an immediate extension R′ ′ of R extending R′

(that is, R′ ′(�s) is now defined) such that ∀∗
να g′(α) is representable by f ′
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of type R′ ′. Fix a ν measure one set A on which (1) and (2) above hold.
Consider the partition P : we partition f ′ of type R′ ′ with the “extra val-
ues” h(〈α1, j1, . . . , αl, jl〉), for (α1, . . . , αl) of type ql, of uniform cofinality
ω inserted between f ′(〈α1, j1, . . . , αl, jl〉) and Nf ′ (f ′(〈α1, j1, . . . , αl, jl〉)) ac-
cording to whether

∀α′ ∈ A [(g′(α′) = [f ′])→ ∀∗
W m

1
�β r(α′)(�β) ≤ Nf ′ (f ′; �β; d∗

n)].

From (2), (3) and the definition of A it follows that on the homogeneous side
the stated property holds. Fix C ⊆ ω1 homogeneous for P , and xn with Txn

well-founded such that ∀∗
W m

1
β |Txn�β| > NC(β). Define r′ so that

∀∗
να r′(α) < h(f ′;Wm

1 ; d∗
n)

and
∀∗

να ∀∗
W m

1
�β r(α)(�β) = |(Txn�h(f ′; �β; d∗

n))(r′(α)(�β))|,
where [f ′] = g′(α). Let

C′ = 〈R′ ′;Wm
1 ;x0, . . . , xn;π(d1), . . . , π(dn−1), d∗

n, d∗
n〉 ,

where π(di) is the generalized description defined relative to R′ ′ correspond-
ing to di defined relative to R. Then (C′; g′; r′) violates the minimality of the
original situation. �

From Theorem 4.31, a suitable coding for the subsets of ωω follows, and
thus the weak partition relation on δ1

3. Since the details are now almost
identical to those of Theorem 4.12, we merely sketch the results.

If C = 〈R;Wm
1 ;x0, . . . , xn−1; d0, . . . , dn〉 is a level-2 complex, B ⊆ ω1, and

σ ∈ ωω codes the closed unbounded set Cσ ⊆ ω1, let Sσ,C,B ⊆ ωm+1 be the
corresponding simple set defined by:

α ∈ Sσ,C,B ←→ ∃γ ∈ B ∃f : dom(<R) → Cσ of type R [α = h(f ;Wm
1 ; C; γ)].

Theorem 4.31 then shows that every A ⊆ ωm+1 is a countable union of simple
sets.

We define our coding z → Az ⊆ ωω as follows. Every real z codes count-
ably many reals zn, each of which codes a real σn, a set Bn ⊆ ω1, and
a sequence Cn = 〈Rn;Wm

1 ;x0, . . . , xt−1; d0, . . . , dt〉 (here m, t depend on n)
satisfying the definition of a complex, except we do not require the Txi to be
well-founded (the exact manner in which Bn is coded is not important; we
could use the coding of Theorem 4.13, or simply use the Coding Lemma). For
each n ∈ ω, define Azn ⊆ ωm(n)+1 as follows. If σn does not code a closed
unbounded set, or one of the Txi is ill-founded, set Azn = ∅. Otherwise,
Azn = Sσn,Cn,Bn . Then set Az =

⋃
n∈ω Azn .

4.33 Theorem. The coding z → Az ⊆ ωω satisfies the following:

(1) ∀A ⊆ ωω ∃z A = Az.

(2) ∀α < ωω {z : α ∈ Az} ∈Δ1
3.
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Proof. The computation in (2) is straightforward using the closure of Δ1
3

under <δ1
3 unions and intersections, and the fact that if Aβ1,...,βk

are Δ1
3 sets

for all �β ∈ (ω1)k, then {x : ∀∗
W k

1

�β x ∈ A�β} ∈ Δ1
3 (this last fact is an easy

computation using our coding of closed unbounded sets). �

As a corollary we obtain the following result, due originally to Kunen.

4.34 Theorem. For all λ < δ1
3, δ1

3 → (δ1
3)

λ.

Proof. Fix λ < δ1
3, and a bijection π : ωω → λ. Fix the coding z → Az ⊆

(ωω)3 satisfying (1), (2) above (identifying (ωω)3 and ωω). Define z → Rz ⊆
λ × δ1

3 as follows. If π(α) = δ, set Rz(δ, ε) ←→ {(β, γ) : Az(α, β, γ)} is
a wellordering of length ε. From the closure of Δ1

3 under <δ1
3 unions and

intersections, it is easy to see that the coding z → Rz satisfies (3) in the
definition of reasonable, Definition 2.33. Theorem 4.33 also implies that
there is a Δ1

3 coding of the ordinals (i.e., singleton sets) less than ωω. That
is, there is a map x → |x| < ωω from ωω onto ωω such that for all α < ωω,
{x : |x| = α} ∈ Δ1

3. [In Definition 4.36 below we define a better Δ1
3 coding

of ωω via code sets WOm for the ordinals less than ωm.] From the closure of
Δ1

3 under <δ1
3 unions it follows that {(x, z) : |x| ∈ Az} ∈ Δ1

3. From this, it
follows that (4) in the definition of reasonable is satisfied, since if S ⊆ {z : Rz

is well-founded} is Σ1
3, then we get a Σ1

3 well-founded relation on ωω of length
≥ sup{|Rz| : z ∈ S}. �

As another consequence of the analysis of measures we obtain the following
result, also due originally to Kunen.

4.35 Theorem. Let α, β < δ1
3, and μ a measure on μ. Then jμ(β) < δ1

3.

Proof (Sketch). We may assume α = β = ωω. We use the coding of subsets of
ωω×ωω given by Theorem 4.33. It is enough to show that the prewellordering
� corresponding to the ultrapower relation, that is,

x � y ←→ (x, y code functions fx, fy : ωω → ωω)
∧ ∀∗

μα ∃β1, β2 < ωω (fx(α) = β1 ∧ fy(α) = β2 ∧ (β1 ≤ β2))

is Δ1
3. Using the closure of Δ1

3 under <δ1
3 length unions and intersections,

we see that it suffices to show that if {Bα}α<δ1
3

is a sequence of Δ1
3 sets, then

B
.= {x : ∀∗

μα (x ∈ Bα)} is also Δ1
3. It clearly suffices to show that Bμ is Σ1

3.
Let

C = 〈R;Wm
1 ;x0, . . . , xn−1; d0, . . . , dn〉

be a level-2 complex, and μ1 a measure on ω1, which generate μ, as in Theo-
rem 4.31. Let y0, . . . , yn be reals with Tyj well-founded for all j, and ε < ω1

which generate μ1 as in Theorem 4.8 (ε playing the role of α there). T is
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again the Kunen tree. Recall our coding of closed unbounded subsets of ω1

from Sect. 4.2. We then have

x ∈ B ←→ ∃σ1, σ2 (Tσ1 , Tσ2 are well-founded

∧ ∀γ1 < · · · < γn ∈ Cσ1 ∀�δ ∈ (ωω)<ω ∀η < ωω [If �δ is
representable by an f : dom(<R) → ω1 of the correct type,

each f 〈p1,i1,...,pk,ik 〉 has range in Cσ2 almost everywhere,
and h(f ;Wm

1 ; C; γ′) = η, then x ∈ Bη])

where h is as in Theorem 4.31, and γ′ = hε
y0,...,yn

(γ1, . . . , γn) as in Theo-
rem 4.8. Note that h(f ;Wm

1 ; C; γ′) depends only on �δ. From the closure
properties of Δ1

3 again, it is enough to show that if Cα1,...,αl
∈ Δ1

3 for all
�α ∈ (ω1)l, then C defined by

z ∈ C ←→ ∀∗
W l

1
�α (z ∈ C�α)

is also Δ1
3. This special case now follows easily by the same type of compu-

tation, using just level-1 complexes. �

Starting from the weak partition relation on δ1
1 = ω1, we have obtained the

strong partition relation on δ1
1, calculated δ1

3, and obtained the weak partition
relation on δ1

3. This completes the first step in the inductive projective
hierarchy analysis. We have used only techniques that will generalize (when
combined with a suitable notion of description at the higher levels). We will
sketch how this generalization takes place in Sect. 5.

4.4. The Kechris-Martin Theorem Revisited

We finish this section by using our theory of “trivial descriptions” to give
a proof of the Kechris-Martin Theorem for Π1

3 sets. This is an important
result in descriptive set theory, although it and its higher level analogs are
not needed for the inductive analysis of the projective sets. The proof we give
follows closely the proof of Kechris and Martin, recast into the theory of trivial
descriptions (their original proof appealed to the theory of indiscernibles for
L). We assume AD throughout this section. We caution the reader that we
will be using lightface notions in this section.

To state the theorem, we first introduce our coding for the ordinals < ωω.
T continues to denote the Kunen tree from Lemma 4.1 (or Theorem 4.2).

4.36 Definition. WO1 = WO = the standard set of codes of wellorderings
of ω. For m ≥ 1,

WOm+1 = {〈a, x1, . . . , xm〉 : a ∈ WO1 ∧ ∀i ≤ m Txi is well-founded}.
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For y = 〈a, x1, . . . , xm〉 ∈ WOm+1, let |y| = [fy]W m
1

, where fy : (ω1)m → ω1

is defined by:

fy(β1, . . . , βm) = |(Txm�βm)(δm−1)|,
where δm−1 = |(Txm−1�βm−1)(δm−2)|, . . . ,

δ1 = |(Tx1�β1)(δ0)|, and δ0 = |a|.

Let WOω =
⋃

m WOm.

Easily, WOm+1 ∈ Π1
2 for all m ≥ 1, and for all α < ωm+1 there is a

y ∈WOm+1 with |y| = α.

4.37 Definition. We say a relation R ⊆ ωω ×WOm+1, m ≥ 0, is invariant
in the codes if

∀x,w1, w2 [w1, w2 ∈ WOm+1 ∧ |w1| = |w2| ∧R(x,w1) → R(x,w2)].

In this case, we write R(x, α), for α < ωm+1, to denote ∃w ∈ WOm+1 [|w| =
α ∧ R(x,w)]. We similarly define R being invariant in the codes for R ⊆
WOm, or R ⊆ ωω ×WOm ×WOn, etc.

4.38 Theorem (Kechris-Martin). Let R ⊆ ωω ×WOm+1, m ≥ 0 be Π1
3 and

invariant in the codes. Then P (x) ←→ ∃w ∈WOm+1 R(x,w) is also Π1
3.

For the sake of completeness we include first the m = 0 case, though
the proof is unchanged here (cf. [15]). So, let R ⊆ ωω × WO be Π1

3 and
invariant in the codes. We show that P (x) ←→ ∃w R(x,w) ←→ ∃w ∈
Δ1

3(x) R(x,w), which suffices (cf. [31, Theorem 4D.3]). So fix x such that
P (x). Let S(w) ←→ w ∈ WO ∧ ∀w′ ∈ Δ1

3(w) [|w′| ≤ |w| → ¬R(x,w′)].
By “bounded quantification” [31, Theorem 4D.3] S ∈ Σ1

3(x). Clearly S is
invariant in the codes and codes a proper initial segment of ω1. Relativizing
to x, it suffices to show the following claim.

4.39 Claim. If S ⊆ WO is Σ1
3, invariant in the codes, and sup{|w| : w ∈

S} = α0 < ω1, then ∃w∗ ∈ Δ1
3 ∩WO (|w∗| > α0).

Proof. Let S(w) ←→ ∃z B(w, z), where B ∈ Π1
2. Consider the integer

game where I plays out w1, z, and II plays out w2. II wins iff w2 ∈ WO ∧
[B(w1, z) → |w2| > |w1|]. This is a Σ1

2 game for II, and II clearly wins, so by
third periodicity II has a Δ1

3 winning strategy τ . Then A
.= τ(ωω) ⊆ WO is

Σ1
1(τ), so there is a Δ1

1(τ) real w∗ ∈ WO with |w∗| > sup{|w| : w ∈ A} ≥
sup{|w| : w ∈ S}. Since τ ∈ Δ1

3, w∗ ∈ Δ1
3. �

A useful consequence of the m = 0 case which we shall need is the following
lemma.

4.40 Lemma. Let R ⊆ ωω×WO be Σ1
3 (Π1

3,Δ
1
3) and invariant in the codes.

Then P (x) ←→ ∀∗
W 1

1
α R(x, α) is Σ1

3 (Π1
3,Δ

1
3).
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Proof. Suppose, for example, R ∈ Σ1
3. We use a variation of our previous

coding of closed unbounded subsets of ω1. For any closed unbounded C ⊆ ω1,
there is a strategy σ for II such that ∀z ∈WO σ(z) ∈WO and C(σ) .= {α <
ω1 : ∀z ∈ WO (|z| < α → |σ(z)| < α)} is a closed unbounded subset of C.
This follows by playing a simple Solovay game (I plays x, II plays y, and II
wins iff (x ∈ WO→ y ∈ WO ∧ |y| > NC(|x|)).

Then

P (x) ←→ ∃σ
[
∀w ∈WO (σ(w) ∈WO)

∧ ∀w ∈ WO (∀z(z ∈ WO ∧ |z| < |w|
→ |σ(z)| < |w|) → R(x,w))

]
.

From the m = 0 case, P ∈ Σ1
3. From this, the result for Π1

3,Δ
1
3 follows

immediately. �

We recall our coding z → Fz ⊆ (ω1)2 of Theorem 4.15, which we will need
for the proof. Recall each real z codes countably many zn, each of which
codes reals σn, w1

n, w2
n, and a partial (level-1) complex

Cn = 〈Wm
1 ;x0, . . . , xt−1; d0, . . . , dt〉.

As we noted previously, each Fz is a partial function.
The next lemma summarizes the properties of this coding we will need.

4.41 Lemma. Consider the relations defined by:

R0(z) ←→ ∀β ∃γ Fz(β, γ)
R1(z, y) ←→ y ∈ WO ∧ ∃γ Fz(|y|, γ)
R2(z, y) ←→ y ∈ WO ∧ ∀β ≤ |y| ∃γ Fz(β, γ)

R3(z, x, y) ←→ x, y ∈WO ∧ ∀β ≤ |x| ∃γ ≤ |y| Fz(β, γ).

Then R0 ∈ Π1
2, and R1, R2 ∈ Π1

1. Also, R3 is Δ1
1 in the codes for x, y,

that is, there are Σ1
1,Π

1
1 relations C,D such that for all z and x, y ∈ WO,

R3(z, x, y) ←→ C(z, x, y) ←→ D(z, x, y).

Proof. The computations are all straightforward, as in the proof of the strong
partition relation. For example, (in this equation, t, xi refer to Cn, and t′, x′

i

refer to Cn′ )

R1(z, y)←→y ∈WO ∧ ∃n
{
w1

n, w2
n ∈ WO ∧ |w1

n|, |w2
n| < |y|

∧ ∃βt−1 < · · · < β0 ≤ |y| ∃γt−1, . . . , γ1 < |y| ∃δt−1, . . . , δ1 < |y|
[
βt−1 > max(|w1

n|, |w2
n|) ∧ ∀i βi ∈ Cσn

|(Txt−1�βt−1)(|w1
n|)| = γt−1 ∧ |(Txt−2�βt−2)(γt−1)| = γt−2

∧ · · · ∧ |(Tx0�β0)(γ1)| = |y| ∧ |(Txt−1�βt−1)(|w2
n|)| = δt−1
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∧ |(Txt−2�βt−2)(δt−1)| = δt−2 ∧ · · ·
∧ δ1 is in the well-founded part of (Tx0�β0)
∧∀n′ ∈ ω

[{
w1

n′ , w2
n′ ∈ WO ∧ |w1

n′ |, |w2
n′ | < |y|

∧ ∃β′
t′ −1 < · · · < β′

0 ≤ |y| ∃γ′
t′ −1, . . . , γ

′
1 < |y|

∃δ′
t′ −1, . . . , δ

′
1 < |y|(∀i β′

i ∈ Cσn′

|(Tx′
t′ −1

�β′
t′ −1)(|w1

n′ |)| = γ′
t′ −1

∧ |(Tx′
t′ −2

�β′
t′ −2)(γ

′
t′ −1)| = γ′

t′ −2 ∧ · · · ∧ |(Tx′
0
�β′

0)(γ
′
1)| = |y|

∧ |(Tx′
t′ −1

�β′
t′ −1)(|w2

n′ |)| = δ′
t′ −1

∧ |(Tx′
t′ −2

�β′
t′ −2)(δ

′
t′ −1)| = δ′

t′ −2

∧ · · · ∧ |(Tx′
1
�β′

1)(δ
′
2)| = δ′

1)
}

→ |(Tx′
0
�β′

0)(δ
′
1)| = |(Tx0�β0)(δ1)|

]]}
.

In the last line of this formula, “|(Tx′
0
�β′

0)(δ
′
1)| = |(Tx0�β0)(δ1)|” abbreviates

“δ′
1 is in the well-founded part of Tx′

0
�β′

0 and |(Tx′
0
�β′

0)(δ
′
1)| = |(Tx0�β0)(δ1)|”.

It is straightforward to check that all clauses in this formula define Δ1
1 re-

lations except the clauses “y ∈ WO” and “δ1 is in the well-founded part of
Tx0�β0”, which are Π1

1. �

We will write “Fz is a function” in place of R0(z), “Fz(|y|) is defined” in
place of R1(z, y).

4.42 Lemma. The relation Q(x, z) ←→ [x ∈ WO2 ∧ (Fz is a function) ∧
|x| = [Fz]W 1

1
] is Δ1

3.

Proof. Q(x, z) ←→ ∃σ [Tσ is well-founded ∧ ∀w ∈ WO(|w| ∈ Cσ → ∃v ∈
WO (fx(|w|) = |v| ∧Fz(|w|, |v|)))]. The m = 0 case shows Q ∈ Σ1

3. A similar
computation shows that Qc ∈ Σ1

3. �

If V is a tree on ω × ω1 and x ∈ ωω, let ≺x denote the Kleene-Brouwer
ordering on Vx. Thus, ≺x is a linear ordering, and is a wellorder iff Vx is
well-founded. We say α < ω1 is represented in the well-founded part of Vx�β
if there is an s ∈ Vx�β such that the initial segment determined by s in the
Kleene-Brouwer ordering on Vx�β is order-isomorphic to α. For the trees
used below this will be equivalent to saying that the initial segment of ≺x

determined by s is order-isomorphic to α.

4.43 Lemma. Let R ⊆ ωω × ωω be Π1
2. Then there is a tree V on ω × ω1

such that:

(1) V is Δ1
1 in the codes.

(2) ∀x, y ∈ ωω [R(x, y) ←→ V〈x,y〉 is well-founded ←→ ∀α < ω1 (α is
represented in the well-founded part of V〈x,y〉�α)].
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(3) The relation S(x, y, w) ←→ [w ∈ WO ∧ |w| is represented in the well-
founded part of V〈x,y〉�|w|] is Δ1

1 in the codes for w.

Proof. Let V ′ be the standard Shoenfield tree on ω × ω1 for Rc. Thus, V ′ is
Δ1

1 in the codes and ∀x, y [R(x, y) ←→ V ′
〈x,y〉 is well-founded ]. Let V be a

minor modification of V ′ such that

∀x∀α < ω1 (Vx�α is well-founded → |Vx�α| > α).

[For example, code into Vx all finite decreasing chains β0 > β1 > · · · >
βn.] We may assume that if ((a0, . . . , an), (α0, . . . , αn)) ∈ V , then α0 ≥
α1, . . . , αn. Clearly V is Δ1

1 in the codes.
If R(x, y), then V〈x,y〉 is well-founded, and by construction ∀α |V〈x,y〉�α| >

α, hence α is represented in the well-founded part of V〈x,y〉�α. If (x, y) /∈ R,
then V〈x,y〉 is ill-founded, say (〈x, y〉, (β0, β1, . . .)) ∈ [V ]. If the initial segment
I�α
x,y of ≺〈x,y〉 determined by �α = (α0, . . . , αn−1) ∈ V〈x,y〉 is well-founded, we

must have α0, . . . , αn ≤ β0. Thus,

γ
.= sup{|�α|≺ 〈x,y〉 : I�α

x,y is well-founded} < ω1.

For δ > max{β0, γ}, δ is not represented in the well-founded part of V〈x,y〉�δ.
Finally, (3) is a standard computation using (1). �

4.44 Lemma. Let W ⊆ WO2 be Σ1
3, invariant in the codes, and code a

bounded initial segment of ω2. Then there is a Δ1
3 relation F ⊆ WO ×WO

which is invariant in the codes, and defines a total function F : ω1 → ω1

(i.e., ∀α < ω1∃!β < ω1 F (α, β)) such that [F ]W 1
1

> |x| for all x ∈W .

Proof. Define W ′(w) ←→ ∃x ∈ WO2 [W (x)∧ (w codes a function Fw : ω1 →
ω1) ∧ (|x| = [Fw]W 1

1
)]. From Lemma 4.42, W ′ ∈ Σ1

3. W ′ is also invariant in
the sense that if w,w′ code functions Fw, Fw′ , [Fw]W 1

1
= [Fw′ ]W 1

1
, and W ′(w),

then W ′(w′). Let W ′(w) ←→ ∃y R(w, y), where R ∈ Π1
2. Let V be a tree on

ω × ω1 as in Lemma 4.43, in particular R(w, y) ←→ V〈w,y〉 is well-founded.
Say a real w is α-good if Fw(α) is defined, and say w is ≤α-good if it is

α′ good for all α′ ≤ α. Say a pair (w, y) is α-good if w is α-good and α is
represented in the well-founded part of V〈w,y〉�α.

Consider the integer game G where I plays out reals w1, y, and II plays
out w2, and II wins the run iff there exists an η0 < ω1 such that either:

(1) ∀η < η0 (w1, y), w2 are η-good, (w1, y) is not η0-good, and w2 is η0-
good, or

(2) ∀η ≤ η0 (w1, y), w2 are η-good, and Fw1(η0) < Fw2(η0).

Using Lemmas 4.41 and 4.43, G is a Σ1
2 game for II. II easily wins the game,

by playing any w∗ coding a function Fw∗ : ω1 → ω1 such that [Fw∗ ]W 1
1

>

sup{|x| : x ∈W}. Thus, by third periodicity, II has a Δ1
3 winning strategy τ .
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Define b : ω1 → ω1 inductively as follows. Let b(η0) be the maximum of
(supη<η0

b(η)) + 1 and

sup{Fτ(w1,y)(η0) : ∀η < η0 [(w1, y) is η-good ∧ Fw1(η) = b(η)]}.

We show by induction on η0 that:

4.45 Claim.

(a) b(η0) is well-defined, that is, b(η0) < ω1.

(b) If (w1, y) is ≤η0-good and ∀η ≤ η0 Fw1(η) = b(η), then ∀η ≤ η0

Fw2(η) ≤ Fw1(η), where w2 = τ(w1, y).

Proof. Suppose the claim holds for all η < η0. Note that if (w1, y) is η-good
for all η < η0 and ∀η < η0 Fw1(η) = b(η), then by (b) and induction, Fw2(η0)
is defined, where w2 = τ(w1, y), as otherwise II would lose this run of the
game. Now, Bη0

.= {(w1, y) : ∀η < η0 [(w1, y) is η-good ∧ Fw1(η) = b(η)]}
is Δ1

1, as it is Δ1
1 in any real coding η0 and b�η0. The reasonableness of the

coding z → Fz now gives (a) (cf. (4) in Definition 2.33). (b) at η0 is now
immediate from the definition of b(η0). �

Next we claim that [b]W 1
1

> |x| for all x ∈W . If not, then by the invariance
and initial segment properties of W ′, there is a w1 in W ′ with Fw1 = b.
Let y be such that R(w1, y), and have I play (w1, y) against τ , producing
w2 = τ(w1, y). Since ∀η0 < ω1 (w1, y) is η0-good, a straightforward induction
using (b) shows that ∀η0 < ω1 Fw2(η0) is defined and Fw2(η0) ≤ Fw1(η0),
a contradiction to II winning the game.

Finally, we show that the relation F (z1, z2) ←→ z1, z2 ∈ WO ∧ b(|z1|) =
|z2| is Δ1

3. We have F (z1, z2) iff the following hold:

(1) z1, z2 ∈ WO.

(2) There is a y ∈ ωω and a z ∈ WO with |z| = |z1| + 1 and |0|≺z = |z1|
satisfying:

(a) ∀n yn ∈WO.

(b) The map n → |yn| defines an order-preserving map from ≺z to
ω1.

(c) For any n ∈ dom(≺z), |yn| is the maximum of (sup{|ym| : m ≺z

n}) + 1 and

sup{Fτ(w1,y)(|n|z) : ∀m ≺z n

((w1, y) is |m|≺z -good ∧ Fw1(|m|≺z ) = |ym|)}.

(d) |y0| = |z2|.

It follows easily that F ∈ Σ1
2(τ), so F ∈ Δ1

3. �
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We prove now the m = 1 case of the Kechris-Martin Theorem. Let
R(x,w) ⊆ ωω ×WO2 be Π1

3 and invariant in the codes. Define R′(x,w) ←→
w ∈WO2 ∧ ∃w′ ∈WO2 [|w′| ≤ |w| ∧R(x,w′)]. Clearly R′ is invariant in the
codes, and we claim that R′ ∈ Π1

3. To see this, note that

R′(x,w) ←→ w = 〈a, v〉 ∈ WO2 ∧ ∃b ∈ WO
[
∀∗β < ω1 |(Tv�β)(|b|)|

≤ |(Tv�β)(|a|)| ∧ ∀z ∈ WO2(|z| = |〈b, v〉| → R(x, z))
]
.

From Lemma 4.40 and the m = 0 case of the theorem it follows that R′ ∈ Π1
3.

Replacing now R with R′, we may assume that R(x,w) is also closed upwards
in the codes w.

We employ a standard coding for the Δ1
3(x) subsets of ωω×ωω, uniformly

in x. Thus, let Q ⊆ (ωω)3 be Π1
3 and such that for every Π1

3(x) set A ⊆ (ωω)2,
there is a real y recursive in x such that A = Qx. Let Q′

0(x, y, z) ←→
Q(x0, y, z), and Q′

1(x, y, z) ←→ Q(x1, y, z). Let Q0, Q1 in Π1
3 reduce Q′

0, Q
′
1.

We then say x codes a Δ1
3 set if ∀y, z [Q0(x, y, z)∨Q1(x, y, z)], in which case

x codes the Δ1
3(x) set Dx = {(y, z) : Q0(x, y, z)}.

Returning to the proof, let P (x) ←→ ∃w ∈ WO2 R(x,w), where R ∈ Π1
3

is invariant and closed upwards in the codes. From Lemma 4.44 we have:

P (x) ←→∃y ∈ Δ1
3(x)

[
(y codes a Δ1

3 relation Dy ⊆ (ωω)2)
∧ (Dy ⊆ WO×WO ∧Dy is invariant in the codes)
∧ (Dy defines a total function from ω1 to ω1)

∧ ∀w ∈ WO2

[
(∀∗

W 1
1
α < ω1 (α, fw(α)) ∈ Dy) → R(x,w)

]]
.

For “Dy defines a total function from ω1 to ω1” we use:

∀x, z1, z2 ∈WO [Dy(x, z1) ∧Dy(x, z2) → |z1| = |z2|]
∧ ∀x ∈ WO ∃z ∈ WO [∀z′ ∈ WO (|z′| = |z| → Dy(x, z′))].

By the m = 0 case of the theorem, this expression defines a Π1
3 set, so P ∈ Π1

3,
using Lemma 4.40. This completes the m = 1 case of the theorem.

We prove now the general case m > 1 of the theorem. So let P (x) ←→
∃w ∈ WOm+1 R(x,w), where R ∈ Π1

3 is invariant in the codes w. Recall that
for w ∈ WOm+1, fw is the corresponding function from ωm

1 to ω1 (defined
Wm

1 almost everywhere) representing |w|. For any such fw, there is a function
g : ω1 → ω1 such that ∀∗

W m
1

(α1, . . . , αm) fw(�α) < g(αm). We may take g = fy

for some y = 〈a, u〉 ∈ WO2. Thus we have:

P (x) ←→ ∃y = 〈a, u〉 ∈WO2 ∃z ∈ WOm
[
∀∗

W m−1
1

α1, . . . , αm−1 fz(�α) ≺Tu |a|

∧ ∀w ∈ WOm+1

[
(∀∗

W m
1

α1, . . . , αm fw(α1, . . . , αm)

= |(Tu�αm)(fz(α1, . . . , αm−1))|) → R(x,w)
]]

.
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Note that the expression beginning with ∃z ∈ WOm is invariant in the codes
for y; it is equivalent to ∃f : (ω1)m → ω1 ∀∗

W m
1

α1, . . . , αm f(α1, . . . , αm) <

fy(αm) and R(x, [f ]W m
1

). By the m = 1 and m − 1 cases of the theorem,
P ∈ Π1

3. This completes the proof of Theorem 4.38. �

5. Higher Descriptions

We assume AD throughout Sect. 5. We sketch in this section how the theory
of Sect. 4 can be extended to higher levels. Indeed, the arguments here should
extend to the general case of a successor Suslin cardinal in the hierarchy of
L(R). We will concentrate here, however, on the projective hierarchy, and in
fact largely on the theory of δ1

5, since all of the new ideas occur here. As we
said in the introduction, our style here will be somewhat informal. We will
concentrate on presenting the new ideas without getting lost in details; we
will sometimes illustrate proofs by considering a representative example. The
reader wishing to see the complete details for the next level of the analysis
(the strong partition relation on δ1

3, the computation of δ1
5, and the weak

partition relation on δ1
5) can consult [11]. In Sect. 6 we will consider topics

related to extending this theory further.
Reflecting on the arguments of the previous section, we see that there

were two fundamental ingredients. First was the Kunen analysis, Lemma 4.1,
which provided an analysis of the equivalence classes of function f : ω1 → ω1

with respect to the normal measure W 1
1 on ω1. Second was the analysis,

embodied in Lemma 4.5, which showed how equivalence classes of functions
with respect to the more general measures Wm

1 are generated from the normal
measure analysis. The combinatorics of the process was described by the
descriptions. Admittedly, the concept there was rather trivial (descriptions
being just integers), and there was really no interesting combinatorics taking
place. The situation changes as we move to the higher levels, though, and
the concept of the description becomes a central point. Indeed, armed with
the correct notion of description and proper generalization of the Kunen
tree analysis (due to Martin, see below), the general step in the projective
hierarchy analysis is quite similar to that of Sect. 4. Thus, we concentrate in
this section on showing how these two key ingredients generalize.

5.1. Martin’s Theorem on Normal Measures

From the weak partition relation on δ1
3, Theorem 4.34, it follows that there

are precisely three normal measures on δ1
3, corresponding to the three reg-

ular cardinals ω, ω1, ω2 below δ1
3. [The weak partition relation shows that

the closed unbounded filter restricted to points of one of these cofinalities is
a normal measure. Conversely, any normal measure on δ1

3 must give every
closed unbounded set measure one, and by countable additivity must con-
centrate on one these cofinalities. Thus, it must coincide with one of these
three normal measures.]
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The ω-cofinal normal measure on δ1
3 behaves just as the normal measure

on ω1; indeed, the Kunen tree analysis is quite general and holds for all the
δ1

2n+1. Thus, there is a tree T on ω × δ1
2n+1 such that for all f : δ1

2n+1 →
δ1

2n+1, there is an x ∈ ωω with Tx well-founded such that ∀∗α < δ1
2n+1 f(α) <

|Tx�α| (where ∀∗ refers to the ω-cofinal normal measure). The proof is a
small variation of Lemma 4.1. Instead of WF, one uses the set W defined by
W (x) ←→ ∀n P (xn), where P is a Π1

2n+1-complete set. Let {φn} be a Π1
3

scale on P . Using {φn}, define a tree U on ω × δ1
3 with p[U ] = W (a branch

�α through Ux gives subsequences �α1, �α2, etc., such that for all m, (xm, �αm)
is a branch through the tree of the scale {φn}). We think of x ∈ W as
coding the ordinal |x| .= supn φ0(xn). Note that for almost all α < δ1

3 with
respect to the ω-cofinal normal measure, there is an x ∈W with |x| = α and
Ux�α is ill-founded. Let S be a complete Σ1

2n+1 set, which is (δ1
3)

−-Suslin
by Theorem 2.18. Say S = p[V ], V a tree on ω × (δ1

3)−. Since S /∈ Δ1
3,

it follows from Theorem 2.15 that sup{|Vx| : Vx is well-founded} = δ1
3. The

Kunen tree T is then constructed as in Lemma 4.1.
For the other normal measures, however, the situation is different. To

discuss this, we need to recall some facts from the homogeneous tree con-
struction. A detailed account of this may be found in [17]; we summarize the
main points.

Recall that if T is a tree on ω×κ, and s ∈ ωn, then Ts = {�α ∈ κn : (s, �α) ∈
T}. If t extends s, let πs,t denote the natural map from Tt to Ts defined by
πs,t(�α) = �α� lh(s). If μ is a measure on Tt, then πs,t(μ) is a measure on Ts

(recall πs,t(μ)(A) = μ(π−1
s,t (A))).

5.1 Definition. A tree T on ω× κ is homogeneous if there are measures μs,
for s ∈ ω<ω, with μs(Ts) = 1 such that if t extends s then πs,t(μt) = μs, and
having the following homogeneity property: for all x ∈ ωω, if Tx is ill-founded
and for each n a set An ⊆ Tx�n is given with μx�n(An) = 1, then there is a
sequence �α ∈ κω such that for all n, α�n ∈ An.

The homogeneity property for Tx is equivalent to saying that the direct
limit of the ultrapowers (of On) by the measures μx�n is well-founded.

We extend the definition in the obvious way to trees T on ω × ω × κ, etc.
(in this case, the measures μs,t are indexed by pairs of sequences of the same
length). We say T is a homogeneous tree for P ⊆ ωω if T is homogeneous
and p[T ] = P .

If P ⊆ 2ω is Π1
1, the standard Shoenfield construction gives a tree T1 on

2 × ω1 with P = p[T1]. T1 may be defined so that for each s ∈ 2ω, there is
a permutation πs of {1, . . . , n}, n = lh(s), with n occurring first, such that
(s, �α) ∈ T1 iff �α is order-isomorphic to πs. For π a permutation of {1, . . . , n},
let Wπ

1 be the natural measure on n-tuples �α which are order-isomorphic
to π (i.e., Wπ

1 is equivalent to Wn
1 under the map which re-arranges �α into

increasing order). Thus, the measures Wπs
1 witness that T1 is homogeneous.

If S ⊆ 2ω is Σ1
2, then S(x) ←→ ∃y P (x, y), where P ∈ Π1

1, so P = p[T1]
for some homogeneous tree T1 on 2 × 2 × ω1 (if we identify T1 with a tree
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T ′
1 on 2 × ω1 by identifying the second and third coordinates of T1 with

the second coordinate of T ′
1, then T ′

1 is said to be weakly homogeneous).
For s, t ∈ 2<ω of the same length, let πs,t and W

πs,t

1 be the permutation
and measure associated to s, t, and T1. We may assume without loss of
generality that for s, t ∈ 2<ω of the same length, that πs,t depends only on
s�(lh(s) − 1), t�(lh(t) − 1). For convenience we also assume (without loss of
generality) that for any s, t of the same length, (T1)s,t �= ∅. If Q = Sc, then
the homogeneous tree construction shows how, using the strong partition
relation on ω1, to get a homogeneous tree T2 for Q. One way of doing
this is as follows. For s ∈ 2<ω, let ≺s be the Kleene-Brouwer ordering on
(T1)s ⊆ (2 × ω1)≤lh(s). In specifying the Kleene-Brouwer ordering, we order
pairs (n, α) ∈ 2 × ω1 first by α. It is convenient here to adopt a minor
variation of the definition of R being a type-1 tree of uniform cofinalities,
Definition 4.25. First, we drop all sequences �p = 〈p1, i1, . . . , pm, im〉 where
im = 0 from the domain of R. Thus, for any �p, R(�p) is now either (ω) or
a permutation pm+1 extending pm. Second, we now allow either possibility
for R(�p) when �p is maximal in dom(R). We define <R exactly as before,
and define f : dom(<R) → ω1 being of type R in the obvious way (for �p
maximal in dom(R) with R(�p) = pm+1, we require f�p(α1, . . . , αm) to almost
everywhere have uniform cofinality {β : (α1, . . . , αm, β) is order-isomorphic
to pm+1}). It is now easy to check that ≺s is of the form <Rs for some
type-1 tree of uniform cofinalities Rs. In fact, we can define Rs as follows.
Let �p = 〈p1, i1, . . . , pm, im〉 ∈ dom(Rs) iff m ≤ lh(s), each ik = 1 or 2, and
pm = πs�m,t, where t = (i1−1, . . . , im−1). We set Rs(�p) = πs′,t′ , where s′, t′

are any immediate extensions of s, t (by our assumption, this only depends
on s and t).

We define (s, �β) ∈ T2 iff there is an f : dom(<Rs) → ω1 of type Rs

with �β = [f ]� lh(s). To say �β = [f ]� lh(s) means that for all i < lh(s),
βi = [f 〈p1,i1,...,pk,ik 〉]W k

1
, where (i1, . . . , ik) is the ith element of 2<ω in some

reasonable enumeration, and pj = π(s�j,(i1,...,ij)). From the strong partition
relation on ω1 it is not difficult to see that T2 is homogeneous for Q, with
measures M Rs . [For example, to show homogeneity, suppose (T2)x is ill-
founded, and each An has measure one with respect to M Rx�n . Let Cn be a
closed unbounded subset of ω1 defining a M Rx�n measure one set contained
in An. Let C =

⋂
n Cn. Since x ∈ Q = P c, (T1)x is well-founded. Let f

be order-preserving from the Kleene-Brouwer ordering on (T1)x to C such
that for all n, f�dom(≺x�n) is of type Rx�n. Let βi = [f 〈p1,i1,...,pk,ik 〉]W k

1
,

where again (i1, . . . , ik) is the ith element of 2<ω in our enumeration. Then
(β0, . . . , βn) ∈ An for all n.]

Recall WO2 is the Π1
2 set of codes for ordinals < ω2 (Definition 4.36), and

for x ∈ WO2, |x| = [fx]W 1
1

< ω2 is the ordinal coded by x. The next lemma
shows that we may get a homogeneous tree for WO2 with an additional
property.
5.2 Lemma. There is a homogeneous tree U on ω × ωω with WO2 = p[U ]
and with the following property:
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(�) If {ψn} is the scale on WO2 corresponding to U

(using left-most branches), then ∀x ∈ WO2|x| ≤ ψ0(x).

Proof. Let T be the Kunen tree of Sect. 4, where we use the linear-order
version of Theorem 4.2. Recall x ∈ WO2 if x = 〈a, y〉 where a ∈WO and Ty

is a wellordering. Since T is Δ1
1 in the codes, there is a Σ1

1 relation E such
that for all b ∈ WO:

E(y, b, x1, x2) ←→
[
x1, x2 ∈ WO ∧ |x1|, |x2| < |b| ∧ |x2| Ty |x1|

]
.

Let W1 be a tree on ω5 projecting to E. Let W2 be a homogeneous tree on
ω × ω1 for WO. We may assume that for all (s, (α0, . . . , αn−1)) ∈ W2 that
α0 > max{α1, . . . , αn−1}. Define the tree V on ω2 × ω1 × ω2 as follows. Let
(p, s, �α, v, w) ∈ V iff (s, �α) ∈W2 and (p, s, v, w) satisfies: for all i < lh(p)− 1,
if j is maximal so that 〈i, j〉, 〈i + 1, j〉 < lh(p), then
(
p�j, s�j,

(
vi(0), . . . , vi(j)

)
,
(
vi+1(0), . . . , vi+1(j)

)
, (wi(0), . . . , wi(j))

)
∈W1,

where vi(k) = v(〈i, k〉), and similarly for w. This last requirement is just
building the Kunen-Martin tree for the relation E. In particular, Vy is well-
founded iff for all a ∈ WO, Ty�|a| is a wellorder, that is, iff Ty is a wellorder.
Also, if Ty is well-founded, then for all β < ω1 the rank of Ty�β is less than
or equal to the rank of V β

y
.= those (p, s, �α, v, w) ∈ Vy with α0 ≤ β (as in the

proof of the Kunen-Martin Theorem).
Let W3 be the homogeneous tree on ω×ωω constructed from V , so p[W3] =

{y : Ty is well-founded}. For each p ∈ ωn, the homogeneity measure μp will
be of the form M Rp for some type-1 tree of uniform cofinalities Rp. Thus,
(p, �β) ∈ W3 iff there is an f of type Rp such that for all j < n, βj =
[f 〈p1,i1,...,pk,ik 〉]W k

1
, where 〈p1, i1, . . . , pk, ik〉 is the jth element of dom(Rp)

in some enumeration. We may assume that β0 = [f 〈p1,i1〉]W 1
1
, where i1 is

maximal so that 〈p1, i1〉 ∈ dom(Rp).
Finally, define U to be the tree which is the “conjunction” of W2 and W3:

(
(y(0), a(0), . . . , y(n− 1), a(n− 1)), (β0, α0, . . . , βn−1, αn−1)

)
∈ U

←→ (a�n, (α0, . . . , αn−1)) ∈W2 ∧ (y�n, (β0, . . . , βn−1)) ∈W3.

It is easy to see that U is homogeneous with measures of the form
Wπ

1 ×M R. Clearly p[U ] = WO2. To verify (�), suppose that

x = 〈a, y〉 = (y(0), a(0), y(1), a(1), . . . ) ∈ WO2 .

By definition |x| ≤ |Ty|. It is enough to show that if (y, �β) ∈ [W3], then
β0 ≥ |Ty|. For each n, let fn be of type Ry�n with [fn] = (β0, . . . , βn−1). For
C ⊆ ω1, let Vy�C denote those (s, �α, v, w) ∈ Vy with all αj ∈ C. From the
fn we get a function f and a closed unbounded C ⊆ ω1 such that:
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(1) f is order-preserving from the Kleene-Brouwer ordering on Vy�C to On.

(2) For each n, f induces by restriction a function f ′
n of type Ry�n with

[f ′
n] = [fn] = (β0, . . . , βn−1).

Thus, for all α ∈ C we have f ′
0(α) ≥ |V α

y �C|. However, for α a closure point
of C (i.e., α is the αth element of C), we easily have |V α

y �C| = |V α
y |. Hence,

β0 = [f ′
0]W 1

1
≥ [α→ |V α

y |]W 1
1
≥ [α→ |Ty�α|]W 1

1
= |Ty|. �

The above homogeneous tree construction, without the (�) argument, also
shows that every Π1

2 set is the projection of a homogeneous tree on ω × ωω.
This also shows that every Σ1

3 set is weakly homogeneous. Using the weak
partition on δ1

3 and the homogeneous tree construction again, one can then
show that every Π1

3 set admits a homogeneous tree T on ω × δ1
3. We wish,

however, to modify this construction to obtain a homogeneous tree on a Π1
3-

complete set with some additional properties. Our argument is really just
Martin’s analysis of functions with respect to the normal measures. The
form we present it here may be of use elsewhere. We sketch another version
in Theorem 5.6.

5.3 Theorem. There is a Π1
3 complete set P , a Π1

3-norm z → |z| < δ1
3

from P onto δ1
3, and a homogeneous tree S on ω × δ1

3 for P satisfying the
following. There is a closed unbounded C ⊆ δ1

3 such that for all α ∈ C there
is a z ∈ P with |z| = α and with Sz�(supν jν(α)) ill-founded, the supremum
ranging over measures ν = M Rs occurring in the homogeneous tree U of
Lemma 5.2. Furthermore, for any z and �β = (β0, β1, . . . ), if (z, �β) ∈ [S],
then |z| ≤ β0.

Proof. Recall according to Theorem 4.33 our Δ1
3 coding z → Az of subsets

of ωω (or (ωω)2, etc.). We assume for this proof that for all z, Az ⊆ ω2 ×
ωω × ωω. If α < ω2, let Aα

z = {(β, γ) : (α, β, γ) ∈ Az}. Define

P (z) ←→ ∀α < ω2 Aα
z is well-founded.

Note that the relation

C(z, x1, x2, x3) ←→ x1 ∈ WO2 ∧ x2, x3 ∈ WOω ∧ (|x1|, |x2|, |x3|) ∈ Az

is Δ1
3 by the closure of Δ1

3 under <δ1
3 unions (in fact, it is straightforward

to show that C is Δ1
3). Thus, P ∈ Π1

3. For z ∈ P , let |z| = sup{|Aα
z | :

α < ω2}. Using the closure of Δ1
3 under <δ1

3 unions and intersections, it is
straightforward to check that this defines a Π1

3-norm onto δ1
3.

Let C∗ ⊆ (ωω)5 be Π1
2 projecting to C. Let T ∗

2 be a homogeneous tree on
ω5× ωω for C∗. Let U be a homogeneous tree on ω×ωω for WO2 satisfying
(�). Define a tree V on ω2 × ωω × ω × ωω as follows. Set (p, s, �α, u, �β) ∈ V
iff (s, �α) ∈ U and if u = (u(0), . . . , u(n − 1)), then the u(i) code more and
more of reals u0, u1, . . . and reals w0, w1, . . .. Each u(j +1) extends the array
coded by u(j) by adding one extra pair (ui(k), ui+1(k)) for some i, k, and
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one extra value wi(k). For each i, k, if the pairs (ui(0), ui+1(0)), . . . , (ui(k −
1), ui+1(k − 1)) are added at stages q0, . . . , qk−1 < n, then we require that

(p�k, s�k, ui�k, ui+1�k, wi�k, (βq0 , . . . , βqk−1)) ∈ T ∗
2 .

Again, V embodies the Kunen-Martin construction for the relation C. The
tree V is also homogeneous, witnessed by measures Mp,s,u = νs×μp,s,u where
νs are the homogeneity measures for U and μp,s,u are measures of the form
M Rp,s,u for some type-1 trees of uniform cofinalities Rp,s,u which are simply
obtained from the type-1 trees giving the measures for T ∗

2 . (Note that for
any two type-1 trees R1 and R2, there is a type-1 tree R whose measure M R

projects naturally to both M R1 and M R2 .)
We now apply the homogeneous tree construction to V to produce a tree

S on ω×δ1
3 such that for all z, Sz is ill-founded iff Vz is well-founded. For any

p ∈ ω<ω, let ≺Vp denote the Kleene-Brouwer ordering on Vp. In specifying
the Kleene-Brouwer order, we must say how the tuples (s(n), αn, u(n), βn)
are ordered. In comparing two such tuples, it is important (at least for
n = 0) that we order first by αn (the remaining order is unimportant). We
define (p,�γ) ∈ S iff there exists an f which is order-preserving and of the
correct type from Vp with the Kleene-Brouwer order to δ1

3, and f represents
�γ in the following sense. First, we require γ0 = sup(f). Let (si, ui), i ≥ 1,
enumerate the pairs of finite sequences of the same length, with lh(si) ≤ i.
Then γi, for i ≥ 1, is represented with respect to Mp� lh(si),si,ui

by the function
fsi,ui(�α, �β) = f(si, �α, ui, �β). The weak partition relation on δ1

3 shows that S
is homogeneous (though we do not need this for the proof).

If z ∈ P , and hence Vz is well-founded, then easily Sz is ill-founded and
in fact there is a �γ with (z,�γ) ∈ [S] such that γ0 ≤ ω · |≺Vz|, where ≺Vz is
the Kleene-Brouwer ordering on Vz. That Sz being ill-founded implies z ∈ P
will be shown below.

We now define the closed unbounded set C ⊆ δ1
3 as required. Fix for the

moment α < ω2, β < δ1
3. Let

Pα,β = {z : ∀α′ ≤ α Aα′

z is well-founded of rank ≤ β}.

A standard computation, using the closure of Δ1
3 under <δ1

3 unions and
intersections shows Pα,β ∈ Δ1

3. Note that if z ∈ Pα,β then Vz restricted to
tuples (s, �α, u, �β) such that α0 ≤ α is well-founded; this uses property (�) of
the tree U . Since Pα,β ∈ Σ1

3 and is thus ωω-Suslin, an easy tree argument
shows that b(α, β) .= sup{|α|Vz : z ∈ Pα,β} < δ1

3, where by |α|Vz we mean the
supremum of the ranks of (s(0), α, u(0), γ0) in the Kleene-Brouwer ordering
of Vz. This defines the function b : ω2 × δ1

3 → δ1
3. Let then C ⊆ δ1

3 be a
closed unbounded set consisting of limit ordinals and closed under b.

Suppose now that δ ∈ C and cf(δ) = ω2. Let h : ω2 → δ be increasing
and cofinal. Let z ∈ ωω be such that ∀α < ω2 Aα

z is well-founded of rank
h(α). Thus P (z), and for all α < ω2, z ∈ Pα,h(α). For all α < ω2 we have
|α|Vz ≤ b(α, h(α)) < δ. Hence there is an order-preserving map f from the
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Kleene-Brouwer ordering of Vz to δ. If f represents �γ, then γ0 ≤ δ and for
all n, γn ≤ supp,s,u jMp,s,u(δ).

Suppose now that (z, (β0, β1, . . .)) ∈ [S]. We show that z ∈ P , and if we
let h(α) = |Aα

z | for α < ω2, then sup(h) ≤ β0. For each j, let fj : Vz�j → δ1
3

be order-preserving representing (β1, . . . , βj), and with β0 = sup(fj). Recall
that for i ≤ j and i > 0, βi is represented with respect to Mz� lh(si),si,ui

=
νsi × μz� lh(si),si,ui

by the function fsi,ui

j . For each i > 0, let Ei be a
Mz� lh(si),si,ui

measure one set such that for all j1, j2 ≥ i and all (�α, �β) ∈ Ei

we have fsi,ui

j1
(�α, �β) = fsi,ui

j2
(�α, �β). For (�α, �β) ∈ Ei, let fsi,ui(�α, �β) denote

the common value of fsi,ui

j (�α, �β) for j ≥ i. Let Ai be a νsi measure one
set such that for all �α ∈ Ai we have that for μz� lh(si),si,ui

almost all �β that
(�α, �β) ∈ Ei. Consider now α < ω2, and fix x ∈ WO2 with |x| = α. By
homogeneity of U , fix �α = (α0, α1, . . . ) such that (x, �α) ∈ [U ] and for all k,
�α�k ∈

⋂
i Ai, where the intersection runs over the i such that si = x�k.

Consider the tree

Vz,x,�α ∩ �B =
{
(u, �β) : (z� lh(u), x� lh(u), �α� lh(u), u, �β) ∈ V

∧ �β ∈ Bz� lh(u),x� lh(u),u

}

where Bz� lh(u),x� lh(u),u is a μz� lh(u),x� lh(u),u measure-one set satisfying
{�α� lh(u)} × Bz� lh(u),x� lh(u),u ⊆ Ei, for that i with (si, ui) = (x� lh(u), u).
The map (u, �β) → fx� lh(u),u(�α� lh(u), �β) is order-preserving from the Kleene-
Brouwer ordering of Vz,x,�α ∩ �B to β0. In particular, the tree Vz,x,�α ∩ �B has
rank at most β0. On the other hand, the proof of the Kunen-Martin Theo-
rem shows that the tree of finite sequences (y0, . . . , yn) of reals such that for
all i < n, C(z, x, yi+1, yi), embeds into Vz,x,�α ∩ �B (we use here the homo-
geneity of T ∗

2 , which allows the “witness sequences” from the Kunen-Martin
proof to be chosen in the B sets). Thus, Aα

z is well-founded of rank at most
|Vz,x,�α ∩ �B| ≤ β0. Since α < ω2 was arbitrary, we have sup(h) ≤ β0.

We have proved the theorem for points of cofinality ω2. A similar (but
slightly easier) construction works for points of cofinality ω1, using WO in
place of WO2. The cofinality ω case, we already observed, is the Kunen
result. �

5.4 Remark. If {φn}n∈ω is the semi-scale on P corresponding to S (using
left-most branches), then one can show that {φn} is a (not necessarily regular)
Π1

3-scale.

From Theorem 5.3, Martin’s Theorem now follows quickly.

5.5 Theorem (Martin). There is a tree T on ω×δ1
3 such that for all f : δ1

3 →
δ1

3 there is a z ∈ ωω with Tz well-founded, and a closed unbounded C ⊆ δ1
3

such that for all α ∈ C, f(α) < |Tz� supν jν(α)|, the supremum ranging over
measures ν occurring in the homogeneous trees on Π1

1, Π1
2-complete sets.
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Proof. The argument is now almost identical to the Kunen case. Fix P, S as
in Theorem 5.3. Let W be a tree on ω × ωω such that p[W ] is Σ1

3-complete,
and thus sup{|Ww| : Ww is well-founded} = δ1

3. Let U be the tree on
ω2 × δ1

3 × ω × ωω defined by:

(p, s, �α, u, �β) ∈ U

←→ (s, �α) ∈ S ∧ (u, �β) ∈W ∧ ∃σ(σ extends p ∧ σ(s) = u).

If f : δ1
3 → δ1

3, then play the game where I plays out z, II plays out y, and
II wins iff (z ∈ P ) → (Wy is well-founded and |Wy| > f(|z|)). II wins by
boundedness (a Σ1

1 subset of P codes a bounded below δ1
3 set of ordinals).

If σ is a winning strategy for II, and C is as in Theorem 5.3, then for all
α ∈ C, |Uσ� supν jν(α)| > f(α). Weaving the second, third, fourth, and fifth
coordinates of U into a single coordinate produces a tree T as desired. �

We refer to the tree T of Theorem 5.5 as the Martin tree.
In [11] a version of Martin’s Theorem is presented which does not get the

extra information about the homogeneous scale, but which refines slightly the
inequality. Actually, the refined inequality can also be obtained by examining
the proof of Theorem 5.3. Nevertheless, this second variation of the proof
has, we feel, enough advantages to warrant presenting. Specifically, we will
use this second variation of the proof in Theorem 5.7.

5.6 Theorem (Martin). There is a tree T on ω × δ1
3 such that for all

f : δ1
3 → δ1

3, there is a z with Tz well-founded and a closed unbounded C ⊆ δ1
3

such that for all α ∈ C, f(α) < |Tz� supν jν(α)|, where if cf(α) = ω1 the
supremum ranges over the measures Wm

1 occurring in the homogeneous tree
on a Π1

1-complete set, and if cf(α) = ω2, the supremum ranges over the mea-
sures occurring in the homogeneous tree on a Π1

2-complete set (if cf(α) = ω,
we use |Tz�α|).
Proof. The proof of this version is similar to that of the version presented
above, so we give a sketch. Let P , U be as in Theorem 5.3, and let νs be
the homogeneity measures for U . Define (where Aα

z is as in the proof of
Theorem 5.3)

P ′(z, x) ←→ x ∈ WO2 ∧ A|x|
z is well-founded.

Thus P ′ ∈ Π1
3 and P (z) ←→ ∀x [x ∈ WO2 → P ′(z, x)]. Let V be a ho-

mogeneous tree on ω × ω × δ1
3 for P ′ with δ1

3-complete measures μs,t (which
the usual homogeneous tree construction gives). Now define the tree W on
ω× δ1

3 as follows. Let {sn}n∈ω be an enumeration of ω<ω with any sequence
preceding its extensions. Define ((z(0), . . . , z(n − 1)), (β0, . . . , βn−1)) ∈ W
iff for all j < n, if sj = (s(0), . . . , s(k − 1)) and q0 < q1 < · · · < qk−1 = j
are such that sql

= (s(0), . . . , s(l)), and f0, . . . , fk−1 represent βq0 , . . . , βqk−1

with respect to νs(0), . . . , ν(s(0),...,s(k−1)), then

∀∗
νsj

γ0, . . . , γk−1 (z�k, sj , (f0(γ0), . . . , fk−1(γ0, . . . , γk−1))) ∈ V.
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We claim first that P = p[W ]. p[W ] ⊆ P is easily checked, and uses
only the homogeneity of U . If z ∈ P , consider the ordinal game Gz where
I plays out x ∈ ωω, �α = (α0, α1, . . . ) ∈ (ωω)ω with α0 < ω2, II plays out
�δ ∈ (δ1

3)
ω, and II wins iff ∀n [(x�n, �α�n) ∈ U → (z�n, x�n,�δ�n) ∈ V ]. The

game is closed for II, hence determined, and the usual homogeneity argument,
using the δ1

3 completeness of the measures for V , shows that I cannot have
a winning strategy [otherwise, by δ1

3-completeness of the measures μs,t, we
could stabilize I’s moves on measure one sets, and then by the homogeneity
of those measures, get a play for II which wins]. A winning strategy τ for
II then gives functions fs, and thus ordinals βi, such that (z, �β) ∈ [W ].
Namely, if lh(si) = k, then βi is represented with respect to νsi by the
function fsi(γ0, . . . , γk−1) = τ(si, (γ0, . . . , γk−1)).

Fix for the moment α < ω2, β < δ1
3. Let Gz,α be the game defined just

as Gz, except I’s first ordinal move α0 satisfies α0 ≤ α. Let Pα,β be as in
Theorem 5.3. For z ∈ Pα,β , let b(z, α) < δ1

3 be least so that II has a winning
strategy in Gz,α playing ordinals < b(z, α) (this exists since δ1

3 is regular).
We claim that b(α, β) .= sup{b(z, α) : z ∈ Pα,β} < δ1

3. This follows from the
fact that Pα,β is ωω-Suslin. To see this, consider the auxiliary game where
I plays out z, x ∈ ωω, �γ ∈ (ωω)ω, �α ∈ (ωω)ω with α0 ≤ α, and II plays out
�δ ∈ (δ1

3)
ω, and II wins iff

∀n [((z�n,�γ�n) ∈ U2 ∧ (x�n, �α�n) ∈ U) → (z�n, x�n,�δ�n) ∈ V ],

where U2 is a tree on ω×ωω with p[U2] = Pα,β . II again wins, and b(α, β) ≤
any ordinal η large enough so that II can win this auxiliary game playing
ordinals < η.

Let now C ⊆ δ1
3 be a closed unbounded set consisting of limit ordinals

and closed under b. Let δ ∈ C with cf(δ) = ω2. Let h : ω2 → δ be increasing
and cofinal, and z ∈ P be such that ∀α < ω2 |Az

α| = h(α). Then we claim
that z ∈ p[W � supν jν(δ)], the supremum ranging over the measures νs for U .
We must show that II can win Gz playing only ordinals < δ. If I first moves
(x(0), α0), II picks the least ordinal η ≤ b(α0, h(α0)) < δ such that II can win
Gz,α starting from that position playing only ordinals < η. II then follows
the canonical winning strategy for the closed game Gz,α�η.

Thus, we have produced a tree W and a closed unbounded C such that
P = p[W ] and for all α ∈ C of cofinality ω2 there is a z ∈ p[W � supν jνs(α)]
such that |z| = α, that is, α = sup{|Aβ

z | : β < ω2}. Again, the argument
for cofinality ω1 points is similar, using WO instead of WO2. The argument
now finishes exactly as before (i.e., Theorem 5.5). �

Theorems 5.5 and 5.6 are the correct extension of the Kunen analysis on ω1

to δ1
3. The fact that the identity function of the Kunen analysis is replaced by

α→ supν jν(α) is, at bottom, the source of the combinatorial complications
at the higher levels.

The proofs of Theorems 5.3, 5.5, and 5.6 are quite general. For example,
the proof of Theorem 5.6 generalizes to the following (the proof is identical
to that of Theorem 5.6 so we omit it).
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5.7 Theorem. Let λ < κ be regular cardinals, and Γ a non-selfdual point-
class closed under ∀ωω

,∧,∨. Assume:

(1) There is a Δ coding of the ordinals less than λ. That is, there is a Δ
set C ⊆ ωω and a map x→ |x|C < λ for x ∈ C such that the relations
(x1, x2 ∈ C ∧ |x1|C ≤ |x2|C) and (x1, x2 ∈ C ∧ |x1|C < |x2|C) are both
in Δ.

(2) There is a homogeneous tree U on C such that for all x ∈ C, |x| ≤
ψ0(x) < λ, where {ψn} is the semi-scale corresponding to U .

(3) There is a map z → Az ⊆ λ× κ, for z ∈ ωω, satisfying:

(a) ∀f : λ→ κ ∃z Az = f .

(b) The relation P ′(z, x) ←→ [x ∈ C ∧ ∃!β Az(|x|C , β)] is in Γ.

(c) For all α < λ, β < κ, Pα,β
.= {z : ∀α′ ≤ α ∃β′ ≤ β [Az(α′, β′) ∧

∀β′ ′(Az(α′, β′ ′) → β′ = β′ ′)]} is in Δ.

(4) Every Γ set admits a homogeneous tree on κ with κ-complete measures.

(5) Every Δ set is α-Suslin for some α < κ. Also, if A ⊆ P
.= {z : ∀x ∈

C P ′(z, x)} is in ∃ωω

Δ, then sup{|z| : z ∈ A} < κ, where for z ∈ P ,
|z| is the supremum of the range of the function Az : λ→ κ.

Then there is a tree W on ω × κ with p[W ] = P and a closed un-
bounded D ⊆ κ such that for all α ∈ D with cf(α) = λ, there is a z ∈ P with
|z| = α and Wz�(supν jν(α)) is ill-founded, the supremum ranging over the
measures ν for the homogeneous tree U .

5.8 Remark. The hypotheses imply that the prewellordering property falls
on the Γ side. For if not, then Γ̌ is closed under wellordered unions. From
(3c) it follows that there is a κ increasing sequence of Δ sets. Thus, there
is a Γ̌ prewellordering of length κ. If Δ is not closed under ∃ωω

, then by
(5.7) this prewellordering is α-Suslin for some α < κ, a contradiction. If Δ
is closed under real quantification, then κ = o(Δ), and Δ is closed under
<κ unions. Then P is a union of Δ sets, so is in Γ̌, and hence in Δ. This
contradicts (5.7). Thus, pwo(Γ). Similarly, it can be shown that Δ is closed
under <κ length unions and intersections.

This general form of Martin’s Theorem is particularly useful when com-
bined with another result of Martin and Steel (cf. [29]) which provides the
existence of homogeneous trees in a general setting. We recall this theo-
rem. Let {si}i∈ω be an enumeration of ω<ω with each sequence preceding its
proper extensions, and such that if si = t�a, sj = t�b, then a < b → i < j.
View each real σ as a strategy for II via σ(si+1) = σ(i) (note s0 = ∅).
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Let Γ be a Steel pointclass (i.e., Γ is non-selfdual, closed under ∀ωω

,
pwo(Γ), and Δ is closed under real quantification). By red(Γ), let U, V ⊆
(ωω)3 be disjoint Γ sets such that for every disjoint Γ sets A,B ⊆ (ωω)2 there
is an x ∈ ωω with A = Ux, B = Vx. We say Δ is uniformly closed under ∃ωω

if the relations

R(x, z) ←→ ∀z, w [Ux(z, w) ∨ Vx(z, w)] ∧ ∃w Ux(z, w),
S(x, z) ←→ ∀z, w [Ux(z, w) ∨ Vx(z, w)] ∧ ∀w Ux(z, w)

are in Γ.

5.9 Theorem (AD; Martin, Steel). Let Γ be a non-selfdual pointclass, A ∈
Γ − Γ̌, and assume A and Ac are both Suslin. Let B = {σ : ∀y σ(y) ∈ A}.
Then B is ∀ωω

Γ-complete and B admits a scale {ψn} whose corresponding
tree Tψ is homogeneous. If {φn} is a Γ very good scale on A and either Γ is
closed under ∃ωω

or Δ is uniformly closed under ∃ωω

, then {ψn} is a ∀ωω

Γ
scale. If Γ is closed under ∀ω, countable unions and intersections, then the
measures in Tψ will be κ-complete, where κ = the supremum of the lengths
of the Δ = Γ ∩ Γ̌ prewellorderings of the reals.

Combining this with Theorem 5.7 we have the following.

5.10 Theorem (AD + V = L(R)). Let κ < δ2
1 be a regular limit Suslin

cardinal, and λ < κ be regular. Let Γ be the pointclass closed under ∀ωω

such
that S(κ) = ∃ωω

Γ. Assume there is a Δ coding of λ with homogeneous tree
U as in (1) and (2) of Theorem 5.7. Then there is a tree W on ω × κ with
p[W ] = P , a Γ-complete set, and a map z → |z| < κ for z ∈ P satisfying:

(1) If S ⊆ P is in Δ, then sup{|z| : z ∈ S} < κ.

(2) There is a closed unbounded C ⊆ κ such that for all α ∈ C of cofinality
λ, there is a z ∈ P such that |z| = α and Wz� supν jν(α) is ill-founded,
the supremum ranging over the homogeneity measures ν for U .

Proof (Sketch). Γ is closed under countable unions and intersections from
[35], and also from [37] Γ has the scale property. The proof of Theorem 3.3
of [35] also shows that Δ is uniformly closed under ∃ωω

. Note also that κ
is the supremum of the lengths of the Δ prewellorderings, and Δ is closed
under <κ unions and intersections. By Theorem 5.9, some Γ-complete set
admits a homogeneous tree with κ-complete measures, and thus so does every
Γ set. The coding z → Az ⊆ λ× κ is given simply from the Coding Lemma
(relative to some Δ prewellordering of length λ and some Γ-norm on a Γ-
complete set). We define P , W as in Theorem 5.6, using a homogeneous tree
V with κ-complete measures for P ′. Items (1)–(5) of Theorem 5.7 are easily
checked. �

We note that if λ is a regular Suslin cardinal, the hypotheses of the previous
theorem are automatically satisfied. For there is a non-selfdual pointclass Λ
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closed under ∀ωω

with the scale property such that λ is the supremum of the
lengths of the Δ = Δ(Λ) prewellorderings. If λ is inaccessible, Δ is uniformly
closed under ∃ωω

. If λ is a successor Suslin, then from Theorem 4.3 of [37],
Λ = ∀ωω

Λ− with Λ− closed under ∃ωω

with scale(Λ−). In either case, by
Theorem 5.9, there is a Λ-scale {ψn} on a Λ-complete set C whose tree U
is homogeneous. We must have ψ0 onto λ in this case (assuming without
loss of generality that the scale is regular, i.e., all norms map onto an initial
segment on the ordinals). Letting our coding of λ be given by |x| = ψ0(x)
for x ∈ C, this verifies (1) and (2) of Theorem 5.7.

We make some comments on the possible significance of Theorem 5.10
to extending the inductive analysis of the projective sets to higher levels of
L(R). In analyzing the measures on κ, the first step of the proof of Theo-
rem 4.8 shows it is necessary to have at hand an analysis of the functions on
κ with respect to the semi-normal measures (the measures that give every
closed unbounded set measure one). At successor Suslin cardinals, Theo-
rem 5.7 and the analysis below κ should give the analog of Theorem 5.6. If κ
is singular, there should be no analog of Martin’s Theorem required, though
other methods become necessary (we will discuss some of these in the next
section). For κ inaccessible Suslin, Theorem 5.10 is a step towards provid-
ing the necessary result, but is not complete as it handles only the normal
measures on κ corresponding to fixed cofinalities λ < κ.

5.2. Some Canonical Measures

For the remainder of this section we return to the projective hierarchy, and
discuss the other main ingredient; the theory of descriptions. As we said in
the introduction, our purpose here is not to present complete details, but
rather to exposit the main ideas. We will frequently illustrate a proof by
considering a case which shows the central idea.

According to Theorem 5.6, in analyzing functions f : δ1
3 → δ1

3 with respect
to the ω1 cofinal normal measure, we need to consider ultrapowers by the
measures Wm

1 . There is nothing more to say in this case. With respect to
the ω2-cofinal normal measure, we need consider ultrapowers by the measures
M R occurring in the homogeneous tree on a Π1

2 set. One suspects that
there is a combinatorially simpler family which “dominates” these measures.
Indeed, it simplifies considerably the resulting theory to have such a family
at hand.

Let <m be the ordering on (ω1)m corresponding to the permutation π =
(m, 1, 2, . . . ,m− 1). Thus,

(α1, . . . , αm) <m (β1, . . . , βm)
←→ (αm, α1, . . . , αm−1) <lex (βm, β1, . . . , βm−1).

Recall that a function f from the domain of a wellordering≺ to the ordinals
is of the correct type if it order-preserving with respect to ≺, of uniform
cofinality ω, and everywhere discontinuous.
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5.11 Definition. Sm
1 is the measure on ωm+1 induced by the strong partition

relation on ω1 and functions h : dom(<m) → ω1 of the correct type. That
is, A has measure one if there is a closed unbounded C ⊆ ω1 such that
[f ]W m

1
∈ A for all f : dom(<m) → C of the correct type.

Thus, S1
1 is the ω cofinal normal measure on ω2. We let W1 denote the

collection of measures Wm
1 , and S1 the collection Sm

1 .
According to the next theorem, we need only consider ultrapowers by the

measures Sm
1 in Theorem 5.6.

5.12 Theorem. There is a closed unbounded C ⊆ δ1
3 such that for all θ ∈ C

of cofinality ω2, supν jν(θ) = supm jSm
1

(θ), the first supremum ranging over
measures ν of the form M R for some type-1 tree of uniform cofinalities R.

We let C be the set of θ closed under the embeddings jν , for ν = M R

(recall Theorem 4.35). The theorem follows easily from the following lemma:

5.13 Lemma. Let ν = M R. There is an m ∈ ω, a measure μ on ωω, and a
function h : ωm+1 → (ωω)<ω satisfying the following:

(1) ∀∗
Sm

1
α ∃�γ ∈ dom(ν) ∀∗

μβ h(α)(β) < �γ. By h(α)(β) < �γ we mean that
if �γ is represented by f : dom(<R) → ω1 of type R, and h(α)(β) by
g : dom(<R) → ω1 of type R, then [g〈p1,i1〉]W 1

1
< [f 〈p1,i1〉]W 1

1
for all

〈p1, i1〉 ∈ domR.

(2) If A ⊆ dom(ν) has ν measure one, then ∀∗
Sm

1
α ∀∗

μβ h(α)(β) ∈ A.

To see this proves the theorem, fix δ = [F ]ν < jν(θ), where θ ∈ C. Define
ε by: ∀∗

Sm
1
α ∀∗

μβ ε(α)(β) = F (h(α)(β)). From (5.13) this depends only on
[F ]ν , and from (5.13) it follows easily that ε < jSm

1
(θ). [We use here the fact

that if F : dom(ν) → On, then there is a ν measure one set A such that if
f, g : dom(<R) → ω1 of type R represent [f ], [g] ∈ A and [g〈p1,i1〉] < [f 〈p1,i1〉]
for all 〈p1, i1〉 ∈ dom(R), then F ([g]) ≤ F ([f ]). This follows by an easy
partition argument.] From (5.13), the map π(δ) = ε is an embedding of jν(θ)
into jSm

1
(θ).

The lemma is proved by a direct construction of the measure μ. We
illustrate with a case. Suppose that <R is the lexicographic ordering on tuples
〈γ1, i1, γ2, γ3〉 where γ3 < γ2 < γ1 < ω1, and i1 ∈ {0, 1} (we have removed
irrelevant indices from our notation now). Also, ν is induced by functions
f : dom(<R) → ω1 of the correct type (ν is actually the two-fold product of
the measure on ω4 corresponding to the permutation (3, 2, 1)). In this case,
take m = 4 and μ = W 2

1 × S2
1 . We define the function h as required. Let

α < ω5 be represented by fα : dom(<4) → ω1 of the correct type. Define h(α)
so that for almost all �β = (β1, β2, β3) ∈ domμ, so β1 < β2 < ω1 and β3 < ω3

is represented by fβ3 : dom(<2) → ω1 of the correct type, h(α)(�β) ∈ dom(ν)
is represented by h(α)(�β)(〈γ1, i1, γ2, γ3〉) = fα(βi1 , γ2, fβ3(γ3, γ2), γ1). It is
easy to check that this is well-defined and satisfies (1) and (2). �
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We state one more embedding theorem which helps to simplify the analy-
sis. By Theorem 2.18, δ1

5 = λ+
5 , where λ5 is least such that every Π1

4 set
is λ5-Suslin. The weak partition relation on δ1

3 and the homogeneous tree
construction shows every Π1

3 set admits a homogeneous tree with measures
νs on δ1

3. Thus, every Σ1
4 set is weakly homogeneous with the same family of

measures. The homogeneous tree construction again shows every Π1
4 set is

λ-Suslin, where λ = supν jν(δ1
3), ν ranging over the measures in a homoge-

neous tree on a Π1
3-complete set (granting the strong partition relation on δ1

3,
the resulting tree on ω × λ is also homogeneous). Thus, λ5 ≤ λ. Computing
the upper bound for δ1

5 is thus reduced to bounding the ultrapowers jν(δ1
3).

Again, one suspects that a simpler family of measures will suffice here.

5.14 Definition. Wm
3 is the measure on δ1

3 induced by the weak partition
relation on δ1

3, functions f : ωm+1 → δ1
3 of the correct type, and the measure

Sm
1 on ωm+1. That is, Wm

3 (A) = 1 iff there is a closed unbounded C ⊆ δ1
3

such that for all f : ωm+1 → C of the correct type, [f ]Sm
1
∈ A.

5.15 Theorem. Let ν be a measure on δ1
3 occurring in the homogeneous tree

on a Π1
3-complete set. Then for some m ∈ ω, jν(δ1

3) ≤ jW m
3

(δ1
3).

5.16 Remark. The theorem actually holds for any measure ν on δ1
3, al-

though this requires the analysis of measures on δ1
3 to show. The proof of

Theorem 5.15 is similar to that of Theorem 5.12. The reader can find the
details in [11].

5.3. The Higher Descriptions

In view of Theorem 5.15, the basic problem in computing the upper bound
for δ1

5 is to analyze equivalence classes of functions F : δ1
3 → δ1

3 with respect
to the measures Wm

3 . This leads us to the notion of a level 1 description. It
is helpful to consider some examples first.

Let us construct first an equivalence class of a function F : δ1
3 → δ1

3 with
respect to W 1

3 . We must define F ([f ]S1
1
) for f : ω2 → δ1

3 of the correct
type. We will define F (f) for any such f , and note that our definition only
depends on [f ]S1

1
. F (f) is defined to be the ordinal represented with respect

to K1 = S1
1 by the function which assigns to [h1]W 1

1
(here h1 : ω1 → ω1 is of

the correct type) the value F (f, [h1]). We will define F (f, h1) for any such h1,
and note that this depends only on [h1]W 1

1
, so we set F (f, [h1]) = F (f, h1).

Finally, F (f, h1) is the ordinal represented with respect to K2 = S1
1 by the

function which assigns to [h2]W 1
1

the value F (f, h1, h2)
.= f([h1 ◦ h2]W 1

1
).

Extending our earlier notational convention, we abbreviate this definition
by saying ∀∗f ∀∗h1 ∀∗h2 F (f, h1, h2) = f([h1 ◦ h2]). We could also write
∀∗f ∀∗h1 ∀∗h2 F (f, h1, h2) = f([h]), where ∀∗

W 1
1
α h(α) = h1(h2(α)).

It is easy to see that this definition is well-defined. Note, however, the map
(h1, h2) → f([h1 ◦ h2]W 1

1
) is not well-defined with respect to S1

1 × S1
1 , that

is, it does not just depend on [h1]W 1
1
, [h2]W 1

1
. Note also that it is important
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that we compose the functions h1, h2 in the order shown; the other way does
not lead to a well-defined definition.

This simple example shows that the basic operation of composition leads to
well-defined definitions of equivalence classes of functions F : δ1

3 → δ1
3. In the

general definition of a level 1 description, we generalize by allowing finitely
many functions h1, . . . , ht, where each hi is either a function hi : dom (<m) →
ω1 of the correct type, or a finite tuple of ordinals β1 < · · · < βm < ω1. That
is, instead of S1

1 in the example above, we allow measures Sm
1 , Wm

1 .
We first consider one more example. We now define the equivalence class

of three functions F1, F2, F3 with respect to the measure W 2
3 . Thus, we must

define Fi([f ]S2
1
) = Fi(f) where f : ω3 → δ1

3 is of the correct type. In all three
case we will use the sequence of measures K1 = K2 = S2

1 , K3 = W 2
1 . We

define F1 by:

∀∗f ∀∗h1 ∀∗h2∀∗h3 = (β1, β2) F1(f, h1, h2, h3) = sup{f(δ) : δ < [h]W 2
1
},

where ∀∗
W 2

1
α1, α2 h(α1, α2) = h1(1)(α2) (recall that h1(1)(α2) = sup{h1(γ,

α2) : γ < α2}). We define F2(f, h1, h2, h3) = f([h]), where

h(α1, α2) = h1(h2(1)(α1), α2).

We define F3(f, h1, h2, h3) = f([h]), where

h(α1, α2) = h1(h2(β2, α1), α2).

It is easy to check that all three functions are well-defined, and that ∀∗
W 2

3
[f ]

F3(f) < F2(f) < F1(f). We will return to this example in a moment.
In general, a description d will be a finitary object defined relative to

a sequence K1, . . . ,Kt of measures, each of the form W r
1 or Sr

1 . It will
describe how, given the functions h1, . . . , ht, to generate the function h as in
the above examples. In the first example, h : ω1 → ω1, and in the second
example, we had h : (ω1)2 → ω1 in all three cases. In general we will
have h : (ω1)m → ω1 for some m ∈ ω. The set D of descriptions will be
partitioned accordingly as D =

⋃
mDm. The d ∈ Dm, which we call the m-

descriptions, will thus generate h : (ω1)m → ω1 given the functions h1, . . . , ht.
We write also Dm(K1, . . . ,Kt) to denote those m-descriptions defined relative
to K1, . . . ,Kt.

Thus, in the first example the underlying description (which we haven’t
defined yet) lies in D1(S1

1 , S
1
1), and in the second, the descriptions lie in

D2(S2
1 , S

2
1 ,W

2
1 ).

Given a description d ∈ Dm(K1, . . . ,Kt), we will write h(d;h1, . . . , ht) to
denote the function h : (ω1)m → ω1 generated according to d from the �h.

Fix now m ∈ ω and the sequence K1, . . . ,Kt. The primitive descriptions
in Dm(K1, . . . ,Kt) are those which do not involve composing functions. We
refer to these as the basic descriptions, and the others as non-basic. As we
define the descriptions, we simultaneously define k(d) ∈ {1, . . . , t} ∪ {∞} for
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each description which gives the least k so that the function hk is involved
in the definition of h(d;�h). As we define the descriptions, we also define how
to interpret them, i.e. we define h(d;�h)(α1, . . . , αm). For hk : dom(<r) → ω1

order-preserving, and l ≤ r, recall the definition of hk(l) : (ω1)l → ω1 from
Definition 4.22. In this case it reduces to (for l = r, hk(l) = hk):

hk(l)(α1, . . . , αl)
= sup{hk(α1, . . . , αl−1, β1, . . . , βr−l, αl) : αl−1 < β1 < · · · < βr−l < αl}.

5.17 Definition (Descriptions).

(1) (Basic) We allow:

(a) d = (p) where p is an integer 1 ≤ p ≤ m (which we put in
parentheses to distinguish from a level-1 description). We define
h(d;�h)(α1, . . . , αm) = αp. We set k(d) = ∞.

(b) d = (k; p) where 1 ≤ k ≤ t, Kk is of the form Kk = W r
1 , and

1 ≤ p ≤ r. In this case, we define h(d;�h)(α1, . . . , αm) = βp, where
hk = (β1, . . . , βr). We set k(d) = k.

(2) (Non-Basic) Suppose 1 ≤ k ≤ t and Kk = Sr
1 . We allow:

(a) d = (k; dr, d1, . . . , dl), where d1, . . . , dl, dr ∈ Dm(K1, . . . ,Kt),
l < r, and k(d1), . . . , k(dl), k(dr) > k. We set k(d) = k and
define:

h(d;�h)(�α) = hk(l + 1)(h(d1;�h)(�α), . . . , h(dl;�h)(�α), h(dr;�h)(�α))

(b) d = (k; dr, d1, . . . , dl)s, where d1, . . . , dl,dr ∈ Dm(K1, . . . ,Kt),
l < r, k(d1), . . . , k(dl), k(dr) > k, and s is a formal symbol (which
stands for “sup”). We require in this case that r ≥ 2, l ≥ 1. We
set k(d) = k and define:

h(d;�h)(�α) =sup
{
hk(l + 1)(h(d1;�h)(�α), . . . , h(dl−1;�h), β,

h(dr;�h)(�α)) : β < h(dl;�h)
}
.

We write (k; dr, d1, . . . , dl)(s) to indicate the symbol s may or may not
appear.

This completes the definition of D and the “interpretation function” h.
We will write dm when we wish to emphasize d ∈ Dm. In the first example
above, the description is given by d1 = (1; (2; (1))). In the second example,
the three descriptions are given by d2

a = (1; (2)), d2
b = (1; (2); (2; (1))), and

d2
c = (1; (2); (2; (1), (3; 2))).
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If d1, d2 ∈ Dm(K1, . . . ,Kt), define d1 < d2 iff ∀∗h1 · · · ∀∗ht h(d1;�h) <

h(d2;�h) almost everywhere. Here ∀∗ refers to the measure on functions of
the correct type induced by the strong partition relation. Note that in a
non-basic description d = (k; dr, d1, . . . , dl) the component descriptions are
listed in their order of significance in determining h(d;�h). It is not difficult
to reformulate the < relation on Dm(K1, . . . ,Kt) in a purely “syntactical”
manner, we leave this to the reader.

The requirement that k(dr), k(d1), . . . , k(dl) > k = k(d) for non-basic
descriptions d is one of two necessary to ensure the equivalence class of h(d;�h)
is well-defined with respect to the measures K1, . . . ,Kt. This guarantees that
for almost all hk+1, . . . , ht, the values h(dr;�h)(�α), etc. that we are putting
into hk will lie in a closed unbounded set on which two functions hk, h

′
k (with

[hk] = [h′
k]) agree. The other requirement is that these values be in the

correct order. We can now state this requirement, which is referred to as
“condition C”.

5.18 Definition (Definition of C). We say d ∈ D satisfies condition C if
either d is basic or else d is non-basic, say of the form d = (k; dr, d1, . . . , dl)(s),
all dr, d1, . . . , dl satisfy C, and d1 < d2 < · · · < dl < dr.

It is now easy to check that if d satisfies this condition, then the equivalence
class of h(d;�h) is well-defined in the following precise sense:

5.19 Lemma. Suppose d ∈ Dm(K1, . . . ,Kt) satisfies condition C. Then for
almost all h1, if [h′

1] = [h1], then for almost all h2, if [h′
2] = [h2], . . . for

almost all ht if [h′
t] = [ht], then [h(d;h1, . . . , ht)]W m

1
= [h(d;h′

1, . . . , h
′
t)]W m

1
.

All of the descriptions in the examples above satisfy C.
From now on, we officially let h(d;�h) be the ordinal < ωm+1 (where

d ∈ Dm) represented by the function h.
We expand a little our notational convention mentioned at the end of

the introduction. Suppose that K1, . . . ,Kt is a sequence of measures, d ∈
D(K1, . . . ,Kt) satisfies C, and P ⊆ On. When we write

∀∗h1, . . . , ht P (h(d;h1, . . . , ht)),

we mean: ∀∗
K1

η1 if [h1] = η1, then ∀∗
K2

η2 if [h2] = η2, . . . , ∀∗
Kt

ηt if [ht] = ηt,
then P (h(d;h1, . . . , ht)). If θ ∈ On, we write

∀∗h1, . . . , ht P (θ(h1, . . . , ht))

to mean: if we fix a representing function η1 → θ(η1) for θ with respect to K1

then ∀∗
K1

η1 if [h1] = η1, then if we fix a representing function η2 → θ([h1], η2)
for θ([h1]) with respect to K2, then ∀∗

K2
η2 if [h2] = η2, . . . , if we fix a

representing function ηt → θ([h1], . . . , [ht−1], ηt) for θ([h1], . . . , [ht−1]) with
respect to Kt, then ∀∗

Kt
ηt if [ht] = ηt, then P (θ([h1], . . . , [ht])).
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We can use these conventions simultaneously. For example, for d satisfying
C we may write

∀∗h1, . . . , ht cf(h(d;h1, . . . , ht)) < θ(h1, . . . , ht).

This abbreviates: ∀∗
K1

η1 if [h1] = η1, then ∀∗
K2

η2 if [h2] = η2, . . . , ∀∗
Kt

ηt if
[ht] = ηt, then cf(h(d;h1, . . . , ht)) < θ([h1], . . . , [ht]). Written out in full, this
becomes: if η1 → θ(η1) represents θ with respect to K1, then ∀∗

K1
η1, if [h1] =

η1 and η2 → θ([h1], η2) represents θ([h1]) with respect to K2, then ∀∗
K2

η2,
if [h2] = η2 and η3 → θ([h1], [h2], η3) represents θ([h1], [h2]) with respect to
K3, . . . , ∀∗

Kt
ηt, if [ht] = ηt, then cf(h(d;h1, . . . , ht)) < θ([h1], . . . , [ht]). Such

a statement is well-defined by Lemma 5.19.
Recall the purpose of a description d ∈ Dm is to generate an ordinal

α < ωm+1 which we can plug into a function f : ωm+1 → δ1
3 in our attempt

to generate an equivalence class [F ]W m
3

. By “plug in” we mean either take
f(α) or sup{f(α′) : α′ < α}. Condition C guarantees the ordinal α is well-
defined in an appropriate sense. However, it does not guarantee α will be
representable by a function h : dom(<m) → ω1 of the correct type, or that it
is a limit of such ordinals. Thus we introduce another condition, condition D,
below.

First we extend slightly the notion of a description. Let D̄m be the set
of objects (“extended descriptions”) of the form (d) or (d)s where d ∈ Dm

satisfies C, together with one new object ()s. We write (d)(s) to denote either
(d) or (d)s.

5.20 Definition (Definition of D). Suppose d ∈ D̄m(K1, . . . ,Kt). Then:

1. (d) satisfies condition D if ∀∗h1, . . . , ht h(d;�h) : (ω1)m → ω1 is of the
correct type almost everywhere (i.e. restricted to a measure one set
with respect to Wm

1 ).

2. (d)s satisfies condition D if ∀h1, . . . , ht h(d;�h) is the supremum of or-
dinals representable by functions h : (ω1)m → ω1 of the correct type
almost everywhere. We also define ()s to satisfy D.

We can now describe our generation of equivalence classes.

5.21 Definition. Let m ∈ ω, K1, . . . ,Kt ∈W1∪S1, let (d)(s) ∈ D̄m(K1, . . . ,
Kt) satisfy condition D, and let g : δ1

3 → δ1
3. We define an ordinal which we

denote by (g; (d)(s);K1, . . . ,Kt). We represent this ordinal with respect to
Wm

3 by the function which assigns to [f ]Sm
1

the ordinal (g; f ; (d)(s);K1, . . . ,
Kt), for f : ωm+1 → δ1

3 of the correct type. We represent (g; f ; (d)(s);K1, . . . ,
Kt) with respect to K1 by the function which assigns to [h1] the ordi-
nal (g; f ; (d)(s);h1,K2, . . . ,Kt), and in general, represent (g; f ; (d)(s);h1, . . . ,
hi−1 Ki, . . . ,Kt) with respect to Ki by the function which assigns to [hi] the
ordinal (g; f ; (d)(s);h1, . . . , hi, Ki+1, . . . ,Kt). Finally, we define (g; f ; (d)(s),
h1, . . . , ht) by cases as follows:
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(1) If s does not appear, then (g; f ; (d);h1, . . . , ht) = g(f(h(d; h̄))).

(2) If s appears, then (g; f ; (d)s;h1, . . . , ht) = g(sup{f(β) : β < h(d;�h)}).

(3) For the object ()s, (g; f ; ()s;h1, . . . , ht) = g(sup{f(β) : β < ωm+1}).

Of particular importance is the case g = id, the identity function. In the
first example considered previously, the equivalence class [F ]W 1

3
constructed

was (id; (d);K1,K2), where d = (1; (2; (1))), and K1 = K2 = S1
1 . The three

functions of the second example represent the ordinals (id; (da)s;K1,K2,K3,
(id; (db);K1,K2,K3), and (id; (dc);K1,K2,K3) respectively.

It turns out, though we will not prove this fully here, that the cardinals
δ1

3 < κ < (δ1
5)− are precisely the ordinals of the form (id; (d)(s);K1, . . . ,Kt).

We have thus seen how descriptions generate equivalence classes of func-
tions F : δ1

3 → δ1
3 with respect to the measures Wm

3 , just as the trivial
descriptions did for functions F : ω1 → ω1 with respect to the measures
Wm

1 , Definition 4.3. The main task remaining is to formulate and prove a
result analogous to Lemma 4.5, the “main lemma” in the theory of trivial
descriptions. To do that we need the correct analog of the lowering operator
L (which we will still call L).

If we fix m ∈ ω and measures K1, . . . ,Kt ∈ W1 ∪ S1, then the relation <
on Dm(K1, . . . ,Kt) is a linear ordering. For d ∈ Dm(K1, . . . ,Kt), L(d) will
again give the description preceding d in this ordering, except for a unique
minimal description. For the sake of completeness we will give the complete
definition of L, though will be content to illustrate the proof of the main
lemma through one of our examples. The L operation is defined by defining
a series of approximations Lk to it. Lk(d) will only be defined for d with
k(d) ≥ k. Roughly speaking, Lk is the result of holding h1, . . . , hk−1 constant
and lowering with respect to hk, . . . , ht only. We will thus take L(d) = L1(d).
Following [11], we define Lk as follows.

5.22 Definition (Definition of Lk). Let m ∈ ω and K1, . . . ,Kt ∈W1 ∪ S1.
Let k ∈ {1, . . . , t} ∪ {∞}, and assume d ∈ Dm(K1, . . . ,Kt) with k(d) ≥ k.
Then Lk(d) is defined by reverse induction on k through the following cases:

I k = ∞. So, d = (i) where 1 ≤ i ≤ m. If i > 1, then L∞(d) = (i− 1). For
i = 1, d is minimal with respect to L∞.

II 1 ≤ k ≤ t.

(1) k = k(d).

(a) d = (k; p) is basic. For p > 1, we set Lk(d) = (k; p − 1), and
for p = 1 we define d to be minimal.

(b) d = (k; dr, d1, . . . , dl), where Kk = Sr
1 and l = r − 1. We

set Lk(d) = (k; dr, d1, . . . , dl)s if l ≥ 1, and if r = 1 and
d = (k; dr), we set Lk(d) = dr.
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(c) d = (k; dr, d1, . . . , dl), where Kk = Sr
1 and l < r − 1. First

assume l ≥ 1. If Lk+1(dr) is defined and > dl, we set Lk(d) =
(k; dr, d1, . . . , dl,Lk+1(dr)). If Lk+1(dr) is not defined or is
≤dl, we set Lk(d) = (k; dr, d1, . . . , dl)s. If l = 0 (so d =
(k; dr)), we set Lk(d) = (dr;Lk+1(dr)) if Lk+1(dr) is defined,
and otherwise Lk(d) = dr.

(d) d = (k; dr, d1, . . . , dl)s, where Kk = Sr
1 (so l ≥ 1). We set

Lk(d) = (k; dr, d1, . . . , dl−1, Lk+1(dl)) if Lk+1(dl) is defined
and if l ≥ 2 also satisfies Lk+1(dl) > dl−1. Otherwise, we set
Lk(d) = (k; dr, d1, . . . , dl−1)s if l ≥ 2 and for l = 1, Lk(d) =
dr.

(2) k < k(d), Kk = W r
1 .

(a) d not minimal with respect to Lk+1. We then set Lk(d) =
Lk+1(d).

(b) d is minimal with respect to Lk+1(d). We then set Lk(d) =
(k; r).

(3) k < k(d), Kk = Sr
1 .

(a) d not minimal with respect to Lk+1. We then set Lk(d) =
(k;Lk+1(d)).

(b) d minimal with respect to Lk+1. Then d is minimal with
respect to Lk.

Recall our previous example where m = 2, K1 = K2 = S2
1 , K3 = W 2

1 ,
and we had the three descriptions da = (1; (2)), db = (1; (2); (2; (1))), and
dc = (1; (2); (2; (1), (3; 2))). The reader can check now that L(da) = db,
L(db) = (1; (2); (2; (1)))s, and L((1; (2); (2; (1)))s) = dc.

We also extend the L operation to D̄m(K1, . . . ,Kt) as follows. We set
L((d)) = ((d)s), and L((d)s) = (L(p)(d)), where L(p)(d) denotes the pth
iterate of L, and p is least so that L(p)(d) satisfies condition D. If such a p
does not exist, we say (d)s is minimal with respect to L. Finally, for the
distinguished object ()s, we define L(()s) = (d̃)(s), where d̃ is the maximal
description in Dm(K1, . . . ,Kt) such that (d̃) or (d̃)s satisfies D (in the first
case, s does not appear, and in the second it does). If there are no descriptions
satisfying D, then ()s is declared minimal.

To illustrate, let m = 2, and consider the sequence of measures K1,K2,K3

where K1 = K2 = S2
1 , and K3 = W 2

1 . Applying the L operation repeatedly
to ()s ∈ D̄2(K1,K2,K3) results in a sequence whose first few terms are: (d0)s,
(d1), (d1)s, (d2), (d2)s, (d3), (d3)s, (d4)s, (d5), (d5)s, (d6), (d6)s, (d7), (d7)s,
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(d8), (d8)s, (d9), where:

d0 = (1; (2; (2)))
d1 = (1; (2; (2)); (2; (2); (1)))
d2 = (1; (2; (2)); (2; (2); (1)))s

d3 = (1; (2; (2)); (2; (2); (1))s)
d4 = (1; (2; (2)); (2; (2); (1))s)s

d5 = (1; (2; (2)); (2; (2); (3; 2)))
d6 = (1; (2; (2)); (2; (2); (3; 2)))s

d7 = (1; (2; (2)); (2; (2); (3; 2))s)
d8 = (1; (2; (2)); (2; (2); (3; 2))s)s

d9 = (1; (2; (2)); (2; (2); (3; 1)))

Note that (d0), and (d4) do not satisfy Condition D.
We now state our “main lemma”, the analog of Lemma 4.5.

5.23 Theorem (Main Lemma). Let (d)(s) ∈ D̄(K1, . . . ,Kt) satisfy Condi-
tion D. Suppose θ < (id; (d)(s);K1, . . . ,Kt). Then:

(1) If (d)(s) is not minimal with respect to L̄, then there is a g : δ1
3 → δ1

3

such that θ < (g;L((d)(s)); K1, . . . ,Kt).

(2) If (d)(s) is minimal with respect to L, then θ < δ1
3.

We will illustrate the proof of the main lemma by considering the example
(da)s above, where da = (1; (2)). So, fix θ < (id; (da)s;K1,K2,K3). Thus,

∀∗
W 2

3
f ∀∗h1, h2, h3 [θ(f,�h) < (id; f ; (da)s;�h) = sup{f(γ) : γ < h(da;�h)}].

Hence,

∀∗f ∃δ ∀∗h1, h2, h3 [δ(�h) < h(da;�h) ∧ θ(f,�h) < f(δ(�h))].

Suppose now δ ∈ On is such that ∀∗h1, h2, h3 δ(�h) < h(da;�h). In other words,

∀∗h1, h2, h3 ∀∗
W 2

1
α1, α2 δ(�h)(α1, α2) < h(da;�h)(α1, α2).

Recall that h(da;�h)(α1, α2) = h1(1)(α2) = sup{h1(η, α2) : η < α2}. Thus,

∀∗h1, h2, h3 ∀∗α1, α2 ∃η < α2 [δ(�h)(α1, α2) < h1(η, α2)].

It follows that

∀∗h1, h2, h3 ∃g : ω1 → ω1 ∀∗α1, α2 [δ(�h)(α1, α2) < h1(g(α1), α2)].
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In this expression, only the equivalence class of g with respect to W 1
1 matters,

and we may assume the g is of the correct type. Using the ω2-additivity of
the measure S1

1 , it follows that

∀∗h1, h2 ∃g : ω1 → ω1 ∀∗h3 ∀∗α1, α2 [δ(�h)(α1, α2) < h1(g(α1), α2)].

For fixed h1 of the correct type, and fixed δ(h1) ∈ On such that

∀∗h2 ∃g : ω1 → ω1 ∀∗h3 ∀∗α1, α2 [δ(h1)(h2, h3)(α1, α2) < h1(g(α1), α2)],

we consider the partition P : we partition h2 : dom(<2) → ω1 of the correct
type with the extra value g(α) inserted between h2(1)(α) and Nh2(h2(1)(α))
(with g(α) of uniform cofinality ω) according to whether

∀∗h3 ∀∗α1, α2 [δ(h1)(h2, h3)(α1, α2) < h1(g(α1), α2)].

From Lemma 4.24 (with m = 2, n = 1, r = 1) it follows that a closed
unbounded set cannot be homogeneous for the contrary side of the partition.
Let C be homogeneous for P , and g(α) = the ωth element of C greater that
α. We then have that for any h2 : dom(<2) → C ′ of the correct type

∀∗h3 ∀∗α1, α2 [δ(h1)(h2, h3)(α1, α2) < h1(g(h2(1)(α1)), α2)].

Since for almost all h1, δ(h1) satisfies the hypothesis of the partition, we
have:

∀∗h1 ∃g : ω1 → ω1 ∀∗h2, h3 ∀∗α1, α2

[δ(h1, h2, h3)(α1, α2) < h1(g(h2(1)(α1)), α2)].

Fix a representing function h1 → δ(h1) for δ, and consider the partition
P : we partition h1 : dom(<2) → ω1 of the correct type with the extra
values g(γ1, γ1) (of uniform cofinality ω) inserted between h1(γ1, γ2) and
Nh1(h1(γ1, γ2)) according to whether

∀∗h2, h3 ∀∗α1, α2

[δ(h1, h2, h3)(α1, α2) < Ng(h1(h2(1)(α1), α2)) = g(h2(1)(α1), α2)].

It follows from Lemma 4.24 that we cannot have a closed unbounded set C
homogeneous for the contrary side of the partition. For if so, fix a representing
function h1 → δ(h1) for δ, and fix then a h1 : dom(<2) → C of the correct
type such that for some ḡ : ω1 → ω1 of the correct type, which we fix, we
have:

∀∗h2, h3 ∀∗α1, α2 [δ(�h)(α1, α2) < h1(ḡ(h2(1)(α1)), α2)].

Define g̃(γ1, γ2) = h1(ḡ(γ1), γ2). Apply then Lemma 4.24 to f = h1 and g̃
(and r = 2). This produces h′

1, g
′ which are ordered as in P , have range in

C, and for which the property stated in P holds, a contradiction. If we fix
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now a closed unbounded C homogeneous for P , and define g(α) = the ωth
element of C greater than α, then we have:

∀∗h1, h2, h3 ∀∗α1, α2 [δ(�h)(α1, α2) < g(h1(h2(1)(α1), α2))].

We now have that for almost all f : ω3 → δ1
3 of the correct type, there is

a g : ω1 → ω1 such that

∀∗h1, h2, h3 θ(f,�h) < f(γ) (21.1)

where:

∀∗α1, α2 γ(α1, α2) = g(h1(h2(1)(α1), α2)) = g(h(db;�h)(α1, α2)), (21.2)

and db = (1; (2); (2; (1))) as before.
Fix a representing function f → θ(f) for θ with respect to W 2

3 , and con-
sider the partition P : we partition f : ω3 → δ1

3 of the correct type with the
extra values f2(α) of uniform cofinality ω inserted between f(α) and f(α+1)
according to whether ∀∗h1, h2, h3 θ(f)(�h) < f2(γ), where γ = h(db;�h). There
cannot be a closed unbounded C ⊆ δ1

3 homogeneous for the contrary side,
for if so, fix f : ω3 → C of the correct type such that there is a g : ω1 → ω1

as in (21.1), (21.2), and fix such a g. Define f2 : ω3 → C by: f2(γ) = f(δ),
where ∀∗α1, α2 δ(α1, α2) = g(γ(α1, α2)). A variation of Lemma 4.24 shows
that there are f ′, f ′

2 : ω3 → C of the correct type and ordered as in P such
that [f ′]S2

1
= [f ]S2

1
, [f ′

2]S2
1

= [f2]S2
1
. This contradicts the homogeneity of C for

the contrary side. Let C ⊆ δ1
3 now be a closed unbounded set homogeneous

for P . Define g : δ1
3 → δ1

3 by g(α) = the ωth element of C greater than α.
We then have that ∀∗f ∀∗h1, h2, h3 θ(f,�h) < g(f(γ)), where γ = h(db;�h). In
other words, θ < (g; (db);K1,K2,K3). �

From Lemma 5.23 and Theorem 5.5 our main result analyzing equivalence
classes with respect to the measures Wm

3 on δ1
3 now follows.

5.24 Theorem. Suppose (d)(s) ∈ D̄m(K1, . . . ,Kt) satisfies Condition D. If
(d)(s) is not minimal with respect to L then

(id; (d)(s);K1, . . . ,Kt) ≤
[

sup
Kt+1∈W1∪S1

(id;L((d)(s));K1, . . . ,Kt,Kt+1)
]+

.

Here L((d)(s)) is computed relative to the sequence K1, . . . ,Kt. If (d)(s) is
minimal with respect to L, then (id; (d)(s);K1, . . . ,Kt) = δ1

3.

Proof. We consider the first case, and suppose θ < (id; (d)(s);K1, . . . ,Kt).
By Lemma 5.23, there is a g : δ1

3 → δ1
3 such that

θ < (g;L((d)(s));K1, . . . ,Kt).
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Let T be as in Theorem 5.5, and fix a real x and a closed unbounded C ⊆ δ1
3

such that for all α ∈ C, g(α) < |Tx� supKt+1
jKt+1(α)|, the supremum ranging

over measures Kt+1 ∈W1 ∪ S1. For α < δ1
3, let

l(α) = sup
Kt+1

jKt+1(α) and l′(α) = |Tx�l(α)|.

We define a well-founded relation ≺ on λ
.= (l;L((d)(s));K1, . . . ,Kt) by:

ρ1 ≺ ρ2 iff

∀∗
W m

3
f ∀∗h1, . . . , ht |Tx�λ(f,�h)(ρ1(f,�h))| < |Tx�λ(f,�h)(ρ2(f,�h))|.

Easily, |≺ | ≥ (l′;L((d)(s));K1, . . . ,Kt) ≥ θ. It follows that

(id; (d)(s);K1, . . . ,Kt) ≤
[(

sup
Kt+1

jKt+1 ;L((d)(s));K1, . . . ,Kt

)]+
.

By countable additivity of the measures Wm
3 ,K1, . . . ,Kt, we have that if

α < (supKt+1
jKt+1 ; L((d)(s));K1, . . . ,Kt) then there is a Kt+1 such that

α < (jKt+1 ;L((d)(s));K1, . . . ,Kt). Also, from the definitions of these ordinals
it is immediate that

(jKt+1 ;L((d)(s));K1, . . . ,Kt) = (id;L((d)(s));K1, . . . ,Kt,Kt+1).

The result now follows. �

To compute the upper bound for δ1
5, it suffices to compute the rank of the L

operation, in a suitable sense. Namely, fix m and consider the set of all tuples
((d)(s);K1, . . . ,Kt) where (d)(s) ∈ D̄m(K1, . . . ,Kt) satisfies Condition D rel-
ative to K1, . . . ,Kt. Let ≺m be the transitive relation on this set generated
by the relation ((d)(s);K1, . . . ,Kt) ≺m (L((d)(s));K1, . . . ,Kt,Kt+1) for all
Kt+1, where L((d)(s)) is again computed relative to the sequence K1, . . . ,Kt.
The relation ≺m is easily well-founded. Let |�s|m denote the rank of the tuple
�s, computed in the slightly non-standard manner by: |�s|m = (sup{|�t|m : �t ≺m

�s}) + 1; by convention if �s is minimal, then |�s| = 0 (thus, at limit ranks, this
is one more than the usual rank).

An immediate induction on the ≺m rank using Theorem 5.24 then shows:

5.25 Theorem. For all m ∈ ω, (d)(s) ∈ D̄m(K1, . . . ,Kt) satisfying Condi-
tion D, we have (id; (d)(s);K1, . . . ,Kt) ≤ ℵω+1+|((d)(s);K1,...,Kt)|m

. �

Let θm be the supremum of the | |m ranks of the tuples ((d)(s);K1, . . . ,Kt)
where (d)(s) ∈ D̄m(K1, . . . ,Kt). From Theorem 5.25 and the homogeneous
tree analysis (cf. two paragraphs before Definition 5.14) we thus have δ1

5 ≤
[ℵsupm θm ]+.

The computation of the θm is a purely combinatorial problem, and is
relatively straightforward. We omit the proof, and simply state the result
that θm = ωωm

(ordinal exponentiation). As an immediate corollary we
have:



1860 Jackson / Structural Consequences of AD

5.26 Corollary (Jackson). δ1
5 ≤ ℵωωω +1.

At this point we have extended the basic ingredients in the theory, Martin’s
theorem and the description analysis, from the δ1

1 level to the δ1
3 level, and

we have used this to do one step in the next level of the inductive analysis,
namely the upper bound for δ1

5. To finish the next level analysis, it remains
to prove the strong partition relation on δ1

3, the lower bound for δ1
5, and the

weak partition relation for δ1
5. The proofs in all cases follow in outline those

of Sect. 4, using the description analysis, Theorem 5.24. Since we have now
illustrated all of the ideas which go into these arguments, we will content
ourselves with this. The complete details of these arguments can be found in
[11]. We mention only that the analysis of measures on δ1

3 and on λ5 require
the notions of type-2 and type-3 trees of uniform cofinalities respectively
(roughly corresponding to the measures occurring in homogeneous trees on
Π1

3,Π
1
4-complete sets).

5.4. Some Further Results

We close this section with some remarks on generalizations and refinements of
the results discussed. All the ordinals (id; (d)(s);K1, . . . ,Kt), it can be shown,
are actually cardinals (Theorem 5.24 shows that all cardinals between δ1

3 and
λ5 must be of this form). This is proved in [13]. It is also not difficult to show
that if μ is a semi-normal measure on a cardinal κ having the strong partition
relation, then jμ(κ) is a regular cardinal. For the three normal measures μω,
μω1 , μω2 on δ1

3, these ultrapowers are computed to be δ1
4 = ℵω+2, ℵω·2+1,

and ℵωω+1 respectively. These three regular cardinals κ all satisfy κ→ (κ)λ

for all λ < δ1
4, but κ � (κ)δ1

4 . One can also compute the cofinalities of all
successor cardinals between δ1

4 and λ5. The result, from [13] is:

5.27 Theorem. Suppose δ1
3 = ℵω+1 < ℵα+1 < ℵωωω +1 = δ1

5. Let α =
ωβ1 + · · ·+ ωβn , where ωω > β1 ≥ · · · ≥ βn be the normal form for α. Then:

(1) If βn = 0, then cf(κ) = δ1
4 = ℵω+2.

(2) If βn > 0, and is a successor ordinal, then cf(κ) = ℵω·2+1.

(3) If βn > 0 and is a limit ordinal, then cf(κ) = ℵωω+1.

Finally, one can extend the results of this section to all levels of the pro-
jective hierarchy. One first defines the measures Wm

2n+1, Sl,m
2n+1, for m ∈ ω,

1 ≤ l ≤ 2n+1 − 1, assuming the weak and strong partition relations on
δ1

2n+1 respectively (for n = 0, we set Sm
1 = S1,m

1 to agree with our previ-
ous notation). Order these (to be defined) families of measures as: Wm

1 ,
S1,m

1 , Wm
3 , S1,m

3 , S2,m
3 , S3,m

3 , Wm
5 , etc. Wm

2n+1 is defined to be the mea-
sure on δ1

2n+1 induced from the weak partition relation on δ1
2n+1, functions

f : dom(Sl0,m
2n−1) → δ1

2n+1, where l0 = 2n − 1, and the measure Sl0,m
2n−1 on

dom(Sl0,m
2n−1) < λ2n+1. S1,m

2n+1 is the measure on (δ1
2n+1)+m defined just as
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Sm
1 was, using δ1

2n+1 in place of ω1. For l > 1, Sl,m
2n+1 is the measure on

dom(Sl,m
2n+1) < λ2n+3 induced by the strong partition relation on δ1

2n+1, func-
tions f : δ1

2n+1 → δ1
2n+1 of the correct type, and the measure ν on δ1

2n+1.
Here ν is the measure on δ1

2n+1 induced by the weak partition relation on
δ1

2n+1, functions h : dom(μ) → δ1
2n+1, and the measure μ, where μ is the mth

measure in the (l−1)st family. In [8] it is shown that these measures dominate
the general measures in the homogeneous trees on Π1

2n+1,Π
1
2n+2-complete

sets, in the sense of Theorems 5.12, 5.15. The notion of a level n description
is introduced there, and the analog of the main theorem, Theorem 5.24, is
proved (with a suitable generalization of the L operator). The ranks of these
generalized L operations are also computed, giving the upper bounds for the
δ1

2n+1. As mentioned in the introduction, the result is δ1
2n+1 ≤ ℵω(2n−1)+1,

where ω(0) = 0 and ω(n + 1) = ωω(n). With the main theorem, the induc-
tive step is then similar to that of Sect. 4 or [11] (see the forthcoming [7]).
In particular, supn δ1

n = ℵε(0), where ε(0) = supm ω(m). Also, the regular
cardinals between δ1

2n+1 and δ1
2n+3 are given by the ultrapowers of δ1

2n+1 by
the normal measures on δ1

2n+1, corresponding to the regular cardinals below
δ1

2n+1. Thus, there are 2n+1 − 1 regular cardinals between δ1
2n+1 and δ1

2n+3.
In fact, these arguments extend with little modification up to δ1

ω1
= ℵω1 .

Here δ1
α is the supremum of the lengths of the Δ1

α prewellorderings, where
Σ1

α is the αth pointclass closed under ∃ωω

(so Σ1
0 = Σ0

1, and for limit α,
δ1

α = supβ<α δ1
β). For there are no new measures on δ1

α for α limit < ω1, and
a coding of P(δ1

α) may be constructed trivially from codings of P(δ1
β), β < α.

Also, the only normal measures on the δ1
α+2n+1 for limit α correspond to the

fixed cofinalities below δ1
α+2n+1 (since there will be only countably many

regular cardinals below δ1
α+2n+1). Again, the ultrapowers of the δ1

α+2n+1 by
these normal measures, together with the δ1

α+2n+1 precisely constitute the
regular cardinals below δ1

ω1
.

At ℵω1 , or at any limit Suslin cardinal δ of cofinality > ω, the situation
changes as there are, of course, new measures on δ. One can show directly
here that the next Suslin cardinal after δ1

ω1
has cardinality the supremum of

the ultrapowers of δ1
ω1

by the measures on δ1
ω1

. Actually, Martin has proved
a general result which shows the same fact for any limit Suslin cardinal of
cofinality > ω (or any successor Suslin cardinal as well). In unpublished
work, the author has analyzed these measures and shown that the supremum
of their ultrapowers is ℵℵω . We will consider some of the problems associated
with further extending the theory in the next section.

6. Global Results

We consider in this section some results and problems of a “global” nature,
that is, related to the attempt to push the structural theory of L(R) up
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through Θ. The problems we consider here (and in some cases solve) seem to
be necessary for further extensions of the theory, but are almost certainly not
sufficient. Identifying the remaining obstructions remains a central goal of
this subject. Nevertheless, some of the results we mention in this section are
of independent interest. We will not require any of the results of Sects. 4, 5 for
this section. We assume AD throughout this section, occasionally assuming
V = L(R) as well.

6.1. Generic Codes

Kechris and Woodin [20] have developed a theory of generic codes for un-
countable ordinals which we will use in several of the arguments of this sec-
tion. We will only need, however, the most basic lemma of their theory,
the one asserting the existence of a generic coding function. For the sake of
completeness, we give their proof of this result.

We say an ordinal α is reliable if there is a P ⊆ ωω and a scale {φn}n∈ω

with φn : P → α with φ0 onto α. Every Suslin cardinal is easily reliable
(cf. [37, Lemma 4.6]), and in [37] it is shown from AD + V = L(R) that
every reliable cardinal is a Suslin cardinal. Actually, using some additional
arguments this can be shown to follow from just AD. There are, however,
many reliable ordinals which are not cardinals, as, for example, the set of
reliable ordinals is closed unbounded in every δ1

2n+1. For the purposes of
generic codes, it is convenient to slightly strengthen the definition of reliable
to include the requirement that the scale relations ≤∗

n, <∗
n are both Suslin and

co-Suslin. This only has the effect of removing the largest Suslin cardinal, if
there is one, from consideration. We henceforth officially adopt this stronger
form of the definition.

If α is reliable, S ∈ Pω1(α), and β ∈ S, we say S is β-honest if there is an
x ∈ P with φ0(x) = β and ∀n φn(x) ∈ S (this notion is defined relative to the
choice of P and {φn}). We say S is honest if it is β-honest for all β ∈ S. For
x ∈ P we frequently write |x| for φ0(x). If S is a countable set of ordinals,
then Sω (S having the discrete topology) is homeomorphic to ωω and so
carries a natural notion of category. When we speak of meager or comeager,
we are always referring to this topology. If p ∈ S<ω, we write ∀∗

ps ∈ Sω to
mean for comeager many s in the neighborhood Np = {s ∈ Sω : s� lh(p) = p}.
We just write ∀∗s ∈ Sω to mean for comeager many s in the space Sω. Recall
from Definition 2.3 that S(κ) denotes the pointclass of κ-Suslin sets.

Recall that from AD, every set A ⊆ Sω has the Baire property. In particu-
lar, A is either meager or else comeager on some neighborhood Np. Also from
AD, a wellordered union of meager sets is meager (“additivity of category”).

6.1 Theorem (Kechris-Woodin). Let α be reliable, as witnessed by P , {φn}.
Then there is Lipschitz continuous function G : αω → ωω satisfying:

(1) ∀�s = (α0, α1, . . .) ∈ αω ∀n ∈ ω [G(�s)n ∈ P ∧ φ0(G(�s)n) ≤ αn].
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(2) If �s = (α0, α1, . . .) ∈ αω enumerates an honest set S, then for all n ∈ ω,
φ0(G(�s)n) = αn.

Proof. Let T be the tree of the scale {φn}, so T is a tree on ω×α. For γ < α,
let

Tγ = {(s, �α) ∈ T : α0 = γ}.

Consider the following ordinal game:

I α0 α1 α2 α3 . . .

II β0 β1 β2 β3 . . .

x(0) x(1) x(2) x(3) . . .

Here αi, βi < α, x(i) ∈ ω, so I plays out �α ∈ αω, and II plays out �β ∈ αω

and x ∈ ωω. Let S = {αi : i ∈ ω}. x codes reals xi and �β codes sequences
(�β)i ∈ αω in the usual manner, so xi(j) = x(〈i, j〉), and (�β)i(j) = β〈i,j〉 (we
assume 〈i, j〉 ≥ i for all j, so II does not have to play any of the xi(j) or
(�β)i(j) until I has played αi). II wins the run of the game iff

∀i (xi, α
�
i (�β)i) ∈ [T ] ∧ ∀i ∀y [y ∈ p[Tαi�S] → φ0(y) ≤ φ0(xi)].

Now I cannot have a winning strategy, for as soon as I plays αi, II can pick
some xi ∈ P with φ0(xi) = αi, and pick (�β)i with (xi, αi

�(�β)i) ∈ [T ] and
proceed to play these to defeat I’s strategy. Thus, if the game is determined,
then II has a winning strategy τ . Ignoring the ordinal moves of τ gives the
function G as desired.

To show the game is determined, it is enough to observe that it is Suslin,
co-Suslin by Theorem 2.23. The first conjunct in the payoff definition trivially
defines a Suslin, co-Suslin set (in fact, a closed set). For the second conjunct,
note that

y ∈ p[Tαi�S] ←→ ∃π ∈ ωω ∀n (y�n, (αi, απ(1), . . . , απ(n−1))) ∈ T.

From the closure of the Suslin sets under ∨ω,∧ω, ∃ωω

, and ∀ωω

(the latter
by the Second Periodicity Theorem; see Remark 2.10), it follows that this
relation, and thus the second conjunct, is Suslin, co-Suslin. �

If there is a largest Suslin cardinal Ξ, then Theorem 6.1 does not immedi-
ately give a generic coding function G : Ξω → ωω at Ξ. In this case Γ = S(Ξ)
will be a non-selfdual pointclass closed under real quantification, ∧, ∨, and
scale(Γ). The scale relations ≤∗

n, <∗
n will not be co-Suslin, however. Nev-

ertheless, we can argue that a generic coding function G still exists. To see
this, fix a Γ-scale {φn}n∈ω on a Γ-complete set A. Without loss of general-
ity, all of the norms φn are onto Ξ. Recall that Ξ is regular and a limit of
Suslin cardinals. Also, the Suslin cardinals are closed unbounded in Ξ. By
boundedness, there is a closed unbounded C ⊆ Ξ such that for all α ∈ C and
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β < α, if Bi
β = {x ∈ A : φi(x) < β}, then sup{φj(x) : j ∈ ω ∧ x ∈ Bi

β} < α.
Note that every Suslin cardinal in C is reliable with respect {φn}. For every
Suslin cardinal α ∈ C, there is a generic coding function at α with respect
to Aα = {x ∈ A : ∀i φi(x) < α} and the norms φi�Aα (from Theorem 6.1).
It suffices to show that we can get a function which to each such α assigns
a generic coding function Gα with respect to Aα and the φi�Aα. For then
we can define G : Ξω → ωω by: G(α0, α1, . . . ) = z where for all j we have
(z)j = (Gα′

j
(β0, β1, . . . ))j where α′

j is the least Suslin cardinal in C greater
than αj and βk = αk if αk < α′

j and otherwise βk = αj . Using the definition
of C it is not hard to check that G is a generic coding function (the point is
that if S is αj-honest then S ∩ α′

j is αj-honest). It remains to show that we
can uniformly define the Gα for α ∈ C a Suslin cardinal. Let Gα denote the
generic coding game as in Theorem 6.1 using Aα and the φi�Aα. The payoff
set for II is Suslin and co-Suslin, and is uniformly Suslin (but not uniformly
co-Suslin). For all Suslin cardinals α in C, II has a winning strategy in Gα.
From a Suslin representation for II’s payoff set and the fact that II has a
winning strategy, we can uniformly in α get a winning strategy for II in Gα,
which then gives us the generic coding function Gα. In fact, either of the
two proofs that Suslin, co-Suslin ordinal games are determined shows this
(cf. [32, Theorem 2.2] or [22, Theorem 2.5], also [27, Theorem 2]).

We are frequently only concerned with getting a real which codes the
ordinal α0. Thus, let G0 : αω → ωω be a Lipschitz continuous function so
that ∀�s ∈ αω G0(�s) = G(�s)0. The functions G0, G are referred to as generic
coding functions, and we fix them for the remainder of this section. Of course,
these functions depend on the choice of the set P and the scale {φn}, but we
suppress writing this. Frequently, α will be a Suslin cardinal.

Recall Theorem 2.25, according to which any game on α whose payoff de-
pends only on G(�s) is determined (where �s is the sequence I and II build,
assuming now V = L(R)). Thus, for any game on α with payoff set R ⊆ αω,
there is a determined game R′ ⊆ αω approximating R. Namely, define
R′(�s) ←→ R(|G(�s)0|, |G(�s)1|, . . .). R′ is always determined, and if �s enu-
merates an honest set, then R′(�s) ←→ R(�s).

The generic coding functions are particularly useful when combined with
the existence of supercompactness measures. Recall that from AD + V =
L(R) there is a supercompactness measure (i.e., a fine, normal, countably
additive ultrafilter) ν on Pω1(δ

2
1), which in turn induces one on Pω1(δ) for

any δ ≤ δ2
1. Woodin has shown [40] that the supercompactness measure ν

on Pω1(δ), for any δ ≤ δ2
1 is unique. Woodin has also shown that there is

a supercompactness measure on Pω1(λ) for any λ < Θ assuming AD + V =
L(R).

In fact, the existence of generic coding functions can be used to give a quick
proof of the existence of the supercompactness measure on Pω1(δ

2
1), assuming

AD+V = L(R). Recall δ2
1 is a Suslin cardinal, and S(δ2

1) = Σ2
1 has the scale

property. Let G : (δ2
1)ω → ωω be a generic coding function at δ2

1 (see the
remarks after the proof of Theorem 6.1). If A ⊆ Pω1(δ

2
1), define ν(A) = 1
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iff II has a winning strategy in the game GA: I and II alternate playing
α0, α1, . . . building �s ∈ (δ2

1)ω, and II wins iff S = {|G(�s)0|, |G(�s)1|, . . .} ∈ A.
It is not hard to check that this defines a fine, normal measure on Pω1(δ

2
1),

using standard dovetailing arguments and the fact that either player can play
to ensure S is honest. Alternatively, one can argue just using Theorem 6.1
as follows. Let μ be a normal measure on δ2

1 (the proof that the δ1
2n+1 are

measurable works for δ2
1). For every reliable λ < δ2

1 there is a generic coding
function G : λω → ωω from Theorem 6.1, and this gives a supercompactness
measure on Pω1(λ) as above. By Woodin’s theorem, this supercompactness
measure on Pω1(λ) is unique, call it νλ. A supercompactness measure on
Pω1(δ

2
1) can then be defined by ν(A) = 1 iff ∀∗

μλ ∀∗
νλ

S ∈ Pω1(λ) S ∈ A.
As an example of using generic coding arguments, we prove, following [12],

the following theorem.

6.2 Theorem. Let κ be a regular Suslin cardinal less than the supremum of
the Suslin cardinals. Let λ < Θ be a cardinal with jνα(λ) = λ for all α < κ,
where να is the supercompactness measure on Pω1(α). Then cf(λ+) > κ.

6.3 Corollary. If ω1 < λ+ < Θ, then cf(λ+) > ω1.

Proof. Fix κ, λ as above, and assume f : κ → λ+ is cofinal. For α < κ,
let α′ < κ denote the least reliable ordinal > α relative to the scale used
in constructing the generic coding function G0 for κ (it is not hard to see
that α′ < κ using the regularity of κ). Consider the game where I, II play
α0, α1, . . . building �s, and II plays also x(0), x(1), . . . ∈ ω building x ∈ ωω.
II wins iff x codes a wellordering of λ of length ≥ f(φ0(G0(�s))). Here we
code subsets of λ by reals in some manner which is not important, say by the
Coding Lemma. I cannot have a winning strategy, for as soon as I plays α0,
II can enumerate an honest set containing α0 and closed under I’s winning
strategy, and play some x coding a wellordering of λ of length ≥ f(α0).

A winning strategy τ for II gives (ignoring II’s ordinal moves) a Lipschitz
continuous F : κω → ωω such that

(1) For all �s ∈ κω, F(�s) codes a wellordering of λ.

(2) For all α < κ and all �s enumerating an honest S containing α, F(α��s)
codes a wellordering of λ of length ≥ f(α).

Let |β|x denote the rank of β in the wellordering coded by x.
Fix for the moment α < κ and an honest set S ∈ Pω1(α

′) containing α.
Define a tree T on S<ω × λ as follows. Put ((p0, β0), . . . , (pn, βn)) in T iff

(1) For all i < n, pi+1 extends pi.

(2) ∀∗
pi+1

�s ∈ Sω |βi+1|F (α��s) < |βi|F (α��s).

(3) ∀i ≤ n ∃ηi ∈ On ∀∗
pi
�s ∈ Sω |βi|F (α��s) = ηi.
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The last clause guarantees that T is well-founded, as the ηi are decreasing
along any branch. We define an order-preserving map π from the tree of the
ε relation on f(α) into T . Suppose

π(γ0, γ1, . . . , γn) = ((p0, β0), . . . , (pn, βn))

has been defined, and assume inductively that

∀∗
pn

�s ∈ Sω |βn|F (α��s) = ηn ≥ γn.

If γn+1 < γn, then let π(γ0, . . . , γn+1) be the least sequence

((p0, β0), . . . , (pn+1, βn+1))

extending ((p0, β0), . . . , (pn, βn)) such that

∀∗
pn+1

�s ∈ Sω |βn+1|F (α��s) = ηn+1 ≥ γn+1 and ηn+1 < ηn.

The additivity of category shows that pn+1, βn+1, ηn+1 exist.
The definition of the tree T = Tα

S is uniform in α, S. Let now F (α) = [S →
Tα

S ]να′ . F (α) may be viewed as a wellordering of jνα′ (λ) = λ, and clearly
|F (α)| ≥ f(α). This gives a wellordering of λ of length λ+, a contradiction.

�

The analog of Corollary 6.3 with κ = δ1
2n+1 replacing ω1 was shown by

Kechris and Woodin to hold for λ below the supremum of the projective
ordinals, i.e., λ < ℵε(0) (this also follows from the projective hierarchy analy-
sis, cf. Theorem 5.27). Along with Corollary 6.3, this suggests the following
conjecture:

6.4 Conjecture. If κ is a regular Suslin cardinal and κ < λ+ < Θ, then
cf(λ+) > κ.

6.2. Weak Square and Uniform Cofinalities

One of the important ingredients in the projective hierarchy analysis is the
analysis of uniform cofinalities. In the general step, one has the notion of
a type-n tree of uniform cofinalities R with associated measure M R, and
it is necessary to analyze the possible uniform cofinalities with respect to
these measures. Consider then the general question: given a measure ν
on κ, what are the possible uniform cofinalities of a function f : κ →
λ ∈ On with respect to ν? One possibility is that for some function g from
κ to the regular cardinals we have ∀∗

να f(α) has uniform cofinality g(α). We
call these the trivial uniform cofinalities. What are the possible non-trivial
uniform cofinalities? Suppose, for example, κ = ω2, ν = S1

1 , and λ ∈ On. Are
the possible non-trivial uniform cofinalities for f : ω2 → λ the same as for
f : ω2 → δ1

3? Intuitively, it seems as though the possible non-trivial uniform
cofinalities should depend only on κ (and ν), and not on λ (a phenomenon
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reminiscent of the Coding Lemma). For small λ, one can extend the pro-
jective hierarchy arguments directly to answer this question, but for large λ,
such an inductive approach does not seem to help.

From these considerations the author formulated a combinatorial principle
called �κ,λ. In fact, this principle also arose independently from attempts
to extend some joint work with Becker [2, 6]. The statement of the principle
follows.

6.5 Definition. Let κ, λ < Θ. �κ,λ is the assertion that for all f : κ → λ
such that cf(f(α)) ≤ κ for all α < κ, there is an A ⊆ λ of size ≤ κ such that
for all α < κ, A ∩ f(α) is cofinal in f(α).

Thus, �κ,λ can be viewed as a choice principle. The principle can be
stated for any cardinal κ, but for non-Suslin κ can fail. For example, it is
not difficult to see that �ω2,ω3 fails (using just that cf(ω3) = ω2). In [12],
the following theorem is proved.

6.6 Theorem (AD + V = L(R)). �κ,λ holds for any Suslin cardinal κ and
any λ < Θ.

This theorem provides a positive answer to the question on uniform cofi-
nalities asked above. Specifically, we have the following.

6.7 Theorem (AD + V = L(R)). Let κ be a Suslin cardinal, μ a measure
on κ, λ < Θ, and f : κ→ λ. Then one of the following holds.

(1) ∀∗
μα cf(f(α)) ≤ κ. Then the uniform cofinality of f with respect to μ

is realized by a function f ′ : κ→ κ.

(2) ∀∗
μα cf(f(α)) > κ. Let g(α) = cf(f(α)). Then there is an h with

domain {(α, β) : α < κ ∧ β < g(α)} such that h(α, β) < f(α) and
∀∗

μα f(α) = sup{h(α, β) : β < g(α)}.

We require a preliminary lemma. Throughout, ν denotes the supercom-
pactness measure on Pω1(κ).

6.8 Lemma. Let κ be a Suslin cardinal and λ ∈ On with cf(λ) > κ. Suppose
F : Pω1(κ) → λ. Then ∃δ < λ ∀∗

νS F (S) < δ.

Proof. Fix an S(κ)-bounded prewellordering (C,ψ) of length λ according to
Theorem 2.28. Play the game where I plays α0, α2, . . . , II plays α1, α3, . . .
and x(0), x(1), . . . ∈ ω, and II wins iff x ∈ C and ψ(x) ≥ F (S), where
S = {|G(�s)0|, |G(�s)1|, . . .} and �s = (α0, α1, . . .). The game is determined and
easily I cannot win. A winning strategy for II gives a Lipschitz continuous
function F : κω → κω×ωω such that ∀�s ∈ κω F(�s) ∈ C (ignoring II’s ordinal
moves in computing F(�s)), and for all �s enumerating an honest set S closed
under F , ψ(F(�s)) ≥ F (S). Let w ∈ B ←→ ∃�s ∈ κω w = F(�s). B ⊆ C
and is κ-Suslin, so δ = sup{φ(w) : w ∈ B} < λ (to see B is κ-Suslin, note
that the Lipschitz continuous F can be coded by the Coding Lemma with
the pointclass S(κ)). Thus, ∀∗

νS F (S) < δ. �
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Proof of Theorem 6.7. Assume first ∀∗
μα cf(f(α)) ≤ κ. By �κ,λ, let A ⊆ λ

have size κ such that ∀∗
μα (A∩ f(α) is cofinal in f(α)). Taking the transitive

collapse of A, we may assume that λ < κ+. Let ≺ be a wellordering of κ
of length > λ. For α < κ, let R(α) ≤ κ be least such that sup{|β|≺ : β <
R(α)∧|β|≺ < f(α)} = f(α). For β < R(α), let l(α, β) = |β|≺ if |β|≺ < f(α),
and 0 otherwise. R, l provide a liftup to f , as in the proof of Lemma 4.19.
The uniform cofinality of f with respect to μ is the same as that of R.

Assume now ∀∗
μα cf(f(α)) > κ. Let g(α) = cf(f(α)). The game argument

above produces a Lipschitz continuous F : κω → κω × ωω such that for
all α < κ, and all �s ∈ κω enumerating an honest set containing α and
closed under F , F(α�s) codes (ignoring II’s ordinal moves) an increasing
g(α) sequence cofinal in f(α). The exact manner in which reals code g(α)
sequences below λ is not important, say by the Coding Lemma with respect
to a suitably large pointclass.

Fix for the moment α < κ and an honest S containing α and closed
under F . For p ∈ S<ω and β < g(α) define h(α, β, S, p) to be the least
γ < f(α) such that ∀∗

ps ∈ Sω F(α�s)(β) < γ if one exists, and 0 otherwise.
Define h(α, β, S) = sup{h(α, β, S, p) : p ∈ S<ω}. Clearly h(α, β, S) < f(α).
If γ < f(α), then by additivity of category there is a p ∈ S<ω, a β < g(α),
and a η < f(α) such that η > γ and

∀∗
ps ∈ Sω F(α�s)(β) = η.

Thus, h(α, β, S, p) > γ. Hence, f(α) = sup{h(α, β, S) : β < g(α)}. Also, an
easy argument shows that h(α, β, S) is monotonically increasing in β. Define

h(α, β) = the least δ < f(α) such that ∀∗
νS ∈ Pω1(κ) h(α, β, S) < δ.

By Lemma 6.8, this is well-defined. Fix now α < κ, and suppose towards a
contradiction that ρ

.= sup{h(α, β) : β < g(α)} < f(α). We have

∀∗
νS ∃β < g(α) [h(α, β, S) > ρ].

By Lemma 6.8 and monotonicity, ∃β0 < g(α) ∀∗
νS [h(α, β0, S) > ρ]. However,

∀∗
νS h(α, β0, S) ≤ h(α, β0) ≤ ρ. �

Theorem 6.6 has other applications as well. For example, in [12] it is used
to show the following.

6.9 Theorem (AD + V = L(R)). Let κ be a regular cardinal which is ei-
ther a Suslin cardinal or the successor of a Suslin cardinal. Then κ is δ2

1-
supercompact.

6.10 Corollary (AD + V = L(R)). All the projective ordinals δ1
n are δ2

1-
supercompact.

Solovay [34] first showed, assuming ADR, that δ1
1 = ω1 is λ-supercompact

for all λ < Θ. The work of Martin-Steel [27] and Harrington-Kechris [5]
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showed that δ1
1 is (δ2

1)
L(R)-supercompact from just AD. Woodin later showed

from AD that ω1 is λ-supercompact for all λ < Θ. The κ = δ1
2 case of

Corollary 6.10 is due to Becker [1].
One of the main ideas in the proof of Theorem 6.6 involves combining

certain category methods with the generic coding arguments. We will not
prove Theorem 6.6 in detail here. Rather, we present a result whose proof
uses the same idea.

We fix some notation for the remainder of this section. We assume AD +
V = L(R). κ will henceforth denote a Suslin cardinal, and ν the supercom-
pactness measure on Pω1(κ). From the scale analysis in L(R) (see [37]) there
is a κ-Suslin set P and a κ-Suslin scale {φn} on P with φ0 onto κ (for κ below
the supremum of the projective ordinals, that is, κ = δ1

2n+1 or κ = (δ1
2n+1)

−,
this is immediate). We write |x| for φ0(x), for x ∈ P . The generic coding
functions G0, G are defined relative to P, {φn}, and are henceforth fixed. The
pointclass S(κ) of κ-Suslin sets is closed under ∃ωω

, so by the Coding Lemma
we may code subsets of κ within the pointclass S(κ). In particular, strategies
(Lipschitz continuous functions) may be coded within S(κ). If τ ∈ ωω codes a
strategy, we also write τ for the strategy it codes. Thus, if τ codes a strategy
τ : κω → κω × ωω, the relation τ(α1, . . . , αn) = ((β0, . . . , βn), (a0, . . . , an)) is
κ-Suslin in the codes (with respect to φ0). For any other object we need to
code by reals, the exact manner in which we do so is not important, say by
using the Coding Lemma with respect to some sufficiently large pointclass.

Suppose τ : κω → κω × ωω is a strategy, and �s = (α0, α2, . . .) ∈ κω. Let
(α1, α3, . . .) be the ordinal part of τ ’s response, and x = (x(0), x(1), . . .) the
integer part. Let S = {α0, α1, . . . } ∈ Pω1(κ). We say x codes a comeager
set A ⊆ Sω and a continuous function f : A → ωω provided x0 codes the
comeager set A, and x1 the continuous function f as follows. x0 codes A by
having each (x0)n code a dense open Dn ⊆ Sω such that A =

⋂
n Dn. To

say y codes the dense open set D ⊆ Sω means each y(k) codes a sequence
uk ∈ ω<ω, and D =

⋃
k Nu∗

k
, where if uk = (a0, . . . , al), then Nu∗

k
is the basic

open set in Sω determined by the sequence u∗
k = (αa0 , . . . , αal

). Likewise,
x1 codes f by coding a sequence of tuples of integers (a0, . . . , al, b0, . . . , bm),
where for u = (a0, . . . , al) coding a basic open set in Dk we have m ≥ k and
for s ∈ A ∩Nu∗ , f(s) extends (b0, . . . , bm). It is easy to see that for a fixed
enumeration α0, α1, . . . of a set S, the set of x coding a comeager set and a
continuous function on Sω is Π0

2.
If τ : κω → κω × ωω is a strategy and �s ∈ κω, we usually write τ(�s) to

denote the real obtained as the integer moves of τ against �s.

6.11 Theorem (AD + V = L(R)). Let κ be a Suslin cardinal, and ν the
supercompactness measure on Pω1(κ). Suppose F : Pω1(κ) → λ < Θ. Then
cf([F ]ν) > κ iff ∀∗

νS ∈ Pω1(κ) [cf(F (S)) > ω].

The full proof of this theorem can be found in [12]. We will prove here a
somewhat weaker version which still suffices to illustrate the main idea used
in the proof of Theorem 6.6. Specifically, we show here that
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(1) If ∀∗
νS [cf(F (S)) ≤ ω] then cf([F ]ν) ≤ κ.

(2) If ∀∗
νS [cf(F (S)) > κ], then cf([F ]ν) > κ.

The proof of the full Theorem in [12] uses these ideas plus also the Becker-
Kechris method used in proving the invariance of L[T2n+1] (see [3]).

Proof. Suppose first that ∀∗
νS cf(F (S)) ≤ ω. Play the game where I plays

α0, α2, . . ., II plays α1, α3, . . . and x(0), x(1),∈ ω, and II wins iff x codes an ω
sequence of ordinals cofinal in F (S′), where S′ = {|G(�s)0|, |G(�s)1|, . . .}, and
�s = (α0, α1, . . .). II has a winning strategy, since II can defeat any strategy
for I by enumerating an honest set S closed under I’s strategy, and playing
an x coding an ω sequence cofinal in F (S). A winning strategy for II gives a
Lipschitz continuous function F : κω → ωω (ignoring the ordinal moves) such
that for all �s ∈ κω F(�s) codes an ω sequence of ordinals |F(�s)0|, |F(�s)1|, . . .,
and for all �s enumerating an honest set S closed under F , supi |F(�s)i| = F (S).

For S ∈ Pω1(κ) honest and closed under F , define G(S) ⊆ F (S) by:
G(S) = {Gn,p(S) : n ∈ ω, p ∈ S<ω}, where Gn,p(S) .= the least ordinal
β < F (S) such that ∀∗

p�s ∈ Sω |F(�s)n| = β if such an ordinal exists, and
Gn,p(S) = 0 otherwise. The additivity of category shows that G(S) is cofinal
in F (S). Thus, [G]ν is cofinal in [F ], and by normality, [G]ν is a set of size
≤ κ. This shows the first claim.

Suppose now that ∀∗
νS cf(F (S)) > κ. Suppose towards a contradiction

that cf([F ]ν) ≤ κ, and let B ⊆ [F ]ν be cofinal with |B| ≤ κ. By the usual
game argument as above and Theorem 2.28, there is a Lipschitz continuous
F : κω → κω × ωω such that for all �s ∈ κω, u

.= F(�s) codes a S(κ)-bounded
prewellordering (Cu, ψu) of some limit length which we denote by |u|, and for
all �s enumerating an honest set S closed under F , |u| = F (S).

If β < [F ]ν , we say a real z is β-good if:

(1) z codes a Lipschitz continuous function z : κω → κω × ωω such that
if s0 ∈ κω enumerates an honest set S closed under z and F , then
z(s0) codes a comeager set Az(s0) ⊆ Sω, and a continuous function
z(s0,−) : Az(s0) → ωω such that for all s1 ∈ Az(s0), w

.= z(s0, s1) is in
the S(κ)-bounded union (Cu, ψu) coded by u

.= F(s1).

(2) ∀∗
νS ∈ Pω1(κ) ∀∗s0 ∀∗s1 ∈ Sω the rank of w = z(s0, s1) in the S(κ)-

bounded union coded by u = F(s1) is greater than β(S). (Recall
S → β(S) represents β.)

We first claim that for all β < [F ]ν there is a z ∈ ωω such that z is β-good.
To see this, fix a function S → β(S) representing β with respect to ν, and play
the game where I plays α0, α2, . . . , II plays α1, α3, . . . , and x(0), x(1), . . . , and
II wins iff x codes a comeager set Ax ⊆ Sω, where S = {|G(�s)0|, |G(�s)1|, . . . },
�s = (α0, α1, . . .), and a continuous function x(−) : Ax → ωω such that for all
s1 ∈ Ax, x(s1) = 0 if F(s1) = u does not code F (S), and otherwise the rank
of x(s1) in the S(κ)-bounded union coded by u is > β(S). This game is again
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determined. Suppose I won by σ. Let S be an honest set closed under σ and
F , and such that cf(F (S)) > κ, and F (S) > β(S). II will enumerate S in
the α1, α3, . . .. Let R ⊆ Sω×ωω be defined by: R(s1, w) ←→ [s1 enumerates
S ∧w ∈ Cu where u = F(s1)∧ψu(w) ≥ β(S)]. From AD, we may uniformize
R by R′ on a comeager set. Also, every function defined on a comeager subset
of Sω is continuous restricted to a comeager set. Let x ∈ ωω code such a
comeager set Ax ⊆ Sω (coding neighborhoods using only the α1, α3, . . .) and
continuous function x(−) : Ax → ωω. If II plays this x, then II defeats I.
A winning strategy τ for II then gives a β-good real.

By the Coding Lemma, there is an S(κ) set C ⊆ ωω such that ∀τ ∈ C
∃β < [F ]ν τ is β-good, and ∀β ∈ B ∃τ ∈ C τ is β-good. We now define
G : Pω1(κ) → On such that [G]ν < [F ]ν but ∀β ∈ B ∀∗

νS G(S) > β(S), a
contradiction.

Let S be honest and closed under F . Let G(S) be the least α ∈ On
such that ∀∗s1 ∈ Sω G(S, s1) < α, where G(S, s1) is defined as follows. Let
u = F(s1), so (Cu, ψu) is a S(κ)-bounded prewellordering of length F (S).
Set G(S, s1) = sup{ψu(w) : w ∈ Bs1}, where

w ∈ Bs1 ←→∃s0 enumerating S ∃τ ∈ C
[
(S is closed under τ) ∧ (s1 ∈ Aτ(s0)) ∧ (w = τ(s0, s1))

]
.

Easily, Bs1 ∈ S(κ). Also, Bs1 ⊆ Cu, and so by boundedness, G(S, s1) < F (S)
for all s1 ∈ Sω. By additivity of category, G(S) < F (S). Thus, [G]ν < [F ]ν .

Fix now β ∈ B and a function S → β(S) representing β, and let τ ∈ C be
β-good. Let S be honest, closed under F and τ , and such that (6.2) in the
definition of β-good above holds for S for this τ . We show that G(S) > β(S),
a contradiction. It is enough to show that ∀∗s1 ∈ Sω G(S, s1) > β(S). Fix
s0 enumerating S so that the remaining clause in (6.2) of β-good is satisfied.
If s1 ∈ Aτ(s0) and w = τ(s0, s1), then w ∈ Bs1 (using τ and s0 as witnesses)
and so G(S, s1) ≥ ψu(w), where u = F(s1). On the other hand, from the
choice of S, s0 and (6.2) of β-good we have ∀∗s1 ψu(w) > β(S). Thus,
∀∗s1 G(S, s1) > β(S). �

6.3. Some Final Remarks

We close this chapter with some final (somewhat tentative) thoughts on ex-
tending the structural theory throughout L(R). The analysis, of course, is
inductive, and proceeds by induction on the Suslin cardinals. As we remarked
earlier, the arguments of Sects. 4, 5 should provide the necessary ingredients
at successor Suslin cardinals. At singular Suslin cardinals δ, Theorems 6.6,
6.7, and similar results should provide a basis for the analysis. Aside from
providing an analysis of the uniform cofinalities (Theorem 6.7), these tech-
niques should provide a method for “gluing together” the description analyses
at the lower Suslin cardinals to obtain one at δ (Theorem 6.7 may be viewed
as a simple case of this; it shows how to glue together the pointwise cofinalities
below δ to obtain a uniform cofinality).
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At inaccessible Suslin cardinals δ, one gets some facts for “free”, such as
the strong partition relation on δ (see [22]). However, it still seems necessary
to analyze the measures on δ to permit analysis at the next Suslin cardinal.
One of the main problems here, as we mentioned earlier, is analyzing the
semi-normal measures on δ (which is where the first step in the “pressing
down” analysis of the measures leaves one; see the proof of Theorem 4.8).
The normal measures on δ corresponding to fixed cofinalities κ < δ seem
well-behaved (for example, we get Theorem 5.10), but there are, in general,
many more semi-normal measures on δ.

Let S ⊆ δ be a “thin” stationary set. By thin we mean for all α ∈ S,
S ∩ α is not stationary in α. Then the closed unbounded filter restricted to
S defines a normal measure μS on δ. We refer to this as the atomic normal
measure corresponding to S. This is shown using the strong partition relation
on δ. For example, to see this defines an ultrafilter, for A ⊆ δ consider the
partition of f : δ → δ of the correct type according to whether α(f, S) ∈ A,
where α(f, S) = the least limit point of ran(f) in S.

Given thin stationary sets S1, S2, define S1 ≺ S2 iff there is a closed
unbounded C ⊆ δ such that for all f : δ → C of the correct type, α(f, S1) <
α(f, S2). The strong partition relation on δ shows that ≺ is a wellordering
on equivalence classes [S], where S ∼ T iff there is a closed unbounded C ⊆
δ such that S ∩ C = T ∩ C. Equivalently, S1 ≺ S2 iff there is a closed
unbounded C ⊆ δ such that for all α ∈ C∩S2, S1 is stationary in α. Let o(δ)
denote the rank of this prewellordering, and o(S) the rank of S in ≺ (this
forms a generalized notion of Mahlo rank; δ is inaccessible if o(δ) ≥ δ, Mahlo
if o(δ) ≥ δ + 1, etc.). Note that the atomic normal measure corresponding
to S depends only on [S]. For β < o(δ), let [Sβ ] denote the βth equivalence
class in the stationary set ordering.

If o(δ) is fairly small compared with δ, we can transfer a semi-normal
measure μ on δ onto a smaller ordinal, and thereby begin to analyze μ.
Suppose, for example, o(δ) = δ + ω1, and μ concentrates on inaccessible
cardinals. A generic coding argument, which we omit, shows that we may
pick thin stationary sets Sα for α < ω1 which are pairwise disjoint and
o(Sα) = δ + α. For μ almost all α < δ, let α ∈ Sf(α). Then ν = f(μ) is a
measure on ω1. Let μ′ be the measure obtained by integrating the μS with
respect to ν, that is, μ′(A) = 1 iff ∀∗

να < ω1 ∀∗
μSα

β (β ∈ A). It is then not
hard to see that μ = μ′. Thus we have analyzed the semi-normal measures
on δ.

One can attempt to extend these arguments to larger values of o(δ). Sup-
pose, for example, that o(δ) = jνω (δ), where νω denotes the ω-cofinal normal
measure on δ. Using the strong partition relation on δ, νω induces a measure
V on jνω (δ) (using functions of the correct type, say). Integrating the ν[Sα]

using V produces a semi-normal measure ν on δ (there is a problem now
in trying to pick representatives Sα for the equivalence classes; the measure
ν[Sα], however, is still well-defined). In fact, if o(δ) is large enough we may
lift an arbitrary measure μ on δ to a new measure ν on δ in this manner
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(using μ in place of νω). It seems reasonable (but not clear) that one might
reverse the above process, and thus reduce the semi-normal measure ν on
δ to a “smaller” measure μ on δ and proceed inductively. The measure is
smaller in the following sense.

6.12 Lemma. Let μ be a measure on δ, where δ is an inaccessible Suslin
cardinal (and so has the strong partition property). Let V be the measure on
jμ(δ) induced by the strong partition property, functions F : δ → δ of the
correct type, and the measure μ on δ. Assume o(δ) ≥ jμ(δ), and let ν be the
measure on δ defined by: ν(A) = 1 iff ∀∗

V β < jμ(δ) ∀∗
[Sβ ]α < δ α ∈ A. Then

jμ(δ) < jν(δ).

The proof of the lemma is not difficult, we omit it (the basic fact is that if
S1 ≺ S2 then jS1(δ) embeds into [f ]S2 , where f(α) = the next Suslin cardinal
after α).

Unfortunately, the main definite result along these lines at the moment
is a negative one; it asserts that for Suslin cardinals δ where S(δ) is closed
under real quantification, o(δ) is closed under the above ultrapower operation
in the following precise sense (cf. [10]).

6.13 Theorem. Let δ be a Suslin cardinal with S(δ) closed under ∃ωω

,
∀ωω

. Let β < o(δ), and νβ the corresponding atomic normal measure. Then
jνβ

(δ) < o(δ). Furthermore, cf(o(δ)) > δ, and cf(o(δ)) �= jνβ
(δ) for all

β < o(κ).

It is conjectured in [10] that o(δ) is regular for such δ; Theorem 6.13 seems
a step towards showing that. A recent theorem of Steel [38] shows that in
L(R) every regular cardinal below Θ is measurable (using techniques of inner
model theory). Thus, granting the above conjecture, new (normal) measures
appear on δ which seem not to be approachable “from below” in the previous
sense. Undoubtedly, new techniques will be necessary.
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I x(0) x(2) . . . . . .
II x(1) x(3) . . . . . .

Diagram 22.1: The game Gω(C)

Given a set C ⊆ ωω define Gω(C), the length ω game with payoff set C,
to be played as follows: Players I and II collaborate to produce an infinite
sequence x = 〈x(i) | i < ω〉 of natural numbers. They take turns as in
Diagram 22.1, I picking x(i) for even i and II picking x(i) for odd i. If
at the end the sequence x they produce belongs to C then player I wins;
and otherwise player II wins. Gω(C), or any other game for that matter,
is determined if one of the two players has a winning strategy, namely a
strategy for the game that wins against all possible plays by the opponent.
The set C is said to be determined if the corresponding game Gω(C) is
determined. Determinacy is said to hold for a pointclass Γ if all sets of reals
in Γ are determined. (Following standard abuse of notation we identify R

with ωω.)
Perhaps surprisingly, determinacy has turned out to have a crucial and

central role in the study of definable sets of reals. This role resulted from
two lines of discoveries. On the one hand it was seen that determinacy for
definable sets of reals, taken as an axiom, can be used to prove many desirable
results about these sets, and indeed to obtain a rich and powerful structure
theory. On the other hand it was seen that determinacy can be proved for
definable sets of reals, from large cardinal axioms.

The earliest work on consequences of determinacy, by Banach, Mazur, and
Ulam [23] at the famous Scottish Café in the 1930’s, Oxtoby [35], Davis [3],
and Mycielski-Swierczkowski [27], established that determinacy for a point-
class Γ implies that all sets of reals in Γ have the Baire property, have the
perfect set property, and are Lebesgue measurable. Later on Blackwell [2]
used the determinacy of open sets to prove Kuratowski’s reduction theorem.
(In modern terminology this theorem states that for any Π1

1 sets A,B, there
are A∗ ⊆ A and B∗ ⊆ B so that A∗ ∪ B∗ = A ∪ B and A∗ ∩ B∗ = ∅.) In-
spired by his methods, Martin [15] and Addison-Moschovakis [1] used deter-
minacy for projective sets to prove reduction for each of the pointclasses Π1

n,
n > 1 odd, and indeed prove for these pointclasses some of the structural
properties that hold for Π1

1. Their results initiated a wider study of con-
sequences of the Axiom of Determinacy (AD), the assertion that all sets of
reals are determined, proposed initially by Mycielski-Steinhaus [26]. Over
time this line of research, which the reader may find in Moschovakis [25],
Jackson [7], and of course the Cabal volumes [9–12], established determi-
nacy axioms as natural assumptions in the study of definable sets of re-
als.

It should be emphasized that AD was not studied as an assumption
about V . (It contradicts the axiom of choice.) Rather, it was studied as an
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assumption about more restrictive models, models which contain all the reals
but have only definable sets of reals. A prime example was the model L(R),
consisting of all sets which are constructible from {R} ∪ R. It was known by
work of Solovay [37] that this model need not satisfy the axiom of choice, and
that in fact it is consistent that all sets of reals in this model are Lebesgue
measurable. The extra assumption of AD allowed for a very careful analysis
of L(R), in terms that combined descriptive set theory, fine structure, and
infinitary combinatorics. It seemed plausible that if there were a model of
AD, L(R) would be it.

Research into the consequences of determinacy was to some extent done on
faith. The established hierarchy of strength in set theory involved large cardi-
nals axioms, axioms asserting the existence of elementary embeddings from
the universe of sets into transitive subclasses, not determinacy axioms. A
great deal of work has been done in set theory on large cardinal axioms, with
Kanamori [8] a good reference, and large cardinals have come to be regarded
as the backbone of the universe of sets, providing a hierarchy of consistency
strengths against which all other statements are measured. From ADL(R) one
could obtain objects in L(R) which are very strongly reminiscent of large
cardinal axioms in V , suggesting a connection between the two. Perhaps
the most well-known of the early results in this direction is Solovay’s proof
that ω1 is measurable under AD. Further justification for the use of ADL(R)

was provided by proofs of determinacy for simply definable sets: for open
sets in Gale-Stewart [6], for Borel sets in Martin [18, 17], and for Π1

1 sets
from a measurable cardinal in Martin [16], to name the most well-known.
Additional results, inspired by Solovay’s proof that ω1 is measurable under
AD and Martin’s proof of Π1

1 determinacy from a measurable cardinal, identi-
fied detailed and systematic correspondences of strength, relating models for
many measurable cardinals to determinacy for pointclasses just above Π1

1.
These levels are well below the pointclass of all sets in L(R), but still the
accumulated evidence of the results suggested that there should be a proof of
ADL(R) from large cardinals, and conversely a construction of inner models
with these large cardinals from ADL(R). In 1985 the faith in this connection
was fully vindicated. A sequence of results of Foreman, Magidor, Martin,
Shelah, Steel, and Woodin (see [5, 36, 21, 22, 43] for the papers involved and
the introduction in [30] for an overview) brought the identification of a new
class of large cardinals, known now as Woodin cardinals, new structures of
iterated ultrapowers, known now as iteration trees, and new proofs of deter-
minacy, including a proof of ADL(R). Additional results later on produced
Woodin cardinals from determinacy axioms, and indeed established a deep
and intricate connection between the descriptive set theory of L(R) under
AD, and inner models for Woodin cardinals.

In this chapter we prove ADL(R) from Woodin cardinals. Our exposition
is complete and self-contained: the necessary large cardinals are introduced
in Sect. 1, and every result about them which is needed in the course of
proving ADL(R) is included in the chapter, mostly in Sects. 2 and 3. The climb
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to ADL(R) is carried out progressively in the remaining sections. In Sect. 4
we introduce homogeneously Suslin sets and present a proof of determinacy
for Π1

1 sets from a measurable cardinal. In Sect. 5 we move up and present a
proof of projective determinacy from Woodin cardinals. The proof in essence
converts the quantifiers over reals appearing in the definition of a projective
set to quantifiers over iteration trees and branches through the trees, and
these quantifiers in turn are tamed by the iterability results in Sect. 2. In
Sect. 6 we improve on the results in Sect. 5 by reducing the large cardinal
assumption needed for the determinacy of universally Baire sets. The section
also lays the ground for Sect. 7, where we show that models with Woodin
cardinals can be iterated to absorb an arbitrary given real into a generic
extension. Finally, in Sect. 8 we derive ADL(R).

There is much more to be said about proofs of determinacy that cannot be
fitted within the scope of this chapter. Martin [18, 19] and Neeman [32] for
example prove weaker forms of determinacy (from weaker assumptions) using
completely different methods, which handle increments of payoff complexity
corresponding to countable unions, rather than real quantifiers. Perhaps
more importantly there are strengthenings of ADL(R) in two directions, one
involving stronger payoff sets, and the other involving longer games. In the
former direction the reader should consult Steel [39], which contains a proof of
Woodin’s derived model theorem, a fundamental theorem connecting models
of AD to symmetric extensions of models of choice with Woodin cardinals, and
uses this theorem to establish AD in models substantially stronger than L(R).
In the latter direction the reader should consult Neeman [30, 33], which
contain proofs of determinacy for games of fixed countable lengths, variable
countable lengths, and length ω1.

Historical Remarks. With some exceptions, noted individually inside the
various sections, the following remarks summarize credits for the material in
the chapter. Extenders were introduced by Mitchell [24], then simplified to
their present forms by Jensen. The related material on ultrapowers in Sect. 1
is by now folklore within set theory. Its history can be found in Kanamori [8].
The material on iteration trees in Sect. 1 is due to Martin-Steel [22] and so is
all the material in Sect. 2. The material in Sect. 3 is due to Martin-Steel [21],
and follows the exposition of Neeman [30]. The material in Sect. 4 is due to
Martin. The material in Sect. 5 is due to Martin-Steel [21]. (The exposition
here is specifically geared to easing the transition to the next section.) The
material in Sects. 6 and 7 is due to Neeman. ADL(R) from infinitely many
Woodin cardinals and a measurable cardinal above them is due to Woodin,
proved using the methods of stationary tower forcing (see Larson [14]) and
an appeal to the main theorem, Theorem 5.11, in Martin-Steel [21]. A proof
using Woodin’s genericity iterations [38, 4.3] and fine structure instead of
stationary tower forcing is due to Steel, and the proof reached in this chapter
(using a second form of genericity iterations and no fine structure) is due to
Neeman.
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1. Extenders and Iteration Trees

Throughout this chapter we shall deal with elementary embeddings of the
universe into transitive classes. Here we develop tools for the study of such
embeddings. Most basic among them is the ultrapower construction, which
allows the creation of an embedding π : V →M from the restriction of such
an embedding to a set. We begin by characterizing the restrictions.

1.1 Remark. By embedding we always mean elementary embedding, even
when this is not said explicitly. As a matter of convention when we say a
wellfounded model of set theory we mean a transitive model equipped with
the standard membership relation ∈. More generally we always take the
wellfounded parts of our models to be transitive.

Let (∗, ∗) denote the Gödel pairing operation on ordinals. Given sets of or-
dinals A and B define A×B to be {(α, β) | α ∈ A∧β ∈ B}. Note that A×B
is then a set of ordinals too. We refer to it as the product of A and B. In gen-
eral define finite products of sets of ordinals as follows: For n = 0 set

∏
i≤n Ai

equal to A0; for n > 0 set
∏

i≤n Ai equal to (
∏

i≤n−1 Ai) × An. Define fi-
nite sequences of ordinals similarly by setting the empty sequence equal to 0,
setting (α) equal to α, and setting (α0, . . . , αn) equal to ((α0, . . . , αn−1), αn)
for n > 0.

If A is a set of ordinal sequences of length n, and σ : n→ n is a permutation
of n, then define σA by setting

(α0, . . . , αn−1) ∈ σA ⇐⇒ (ασ−1(0), . . . , ασ−1(n−1)) ∈ A.

If A is a set of ordinal sequences of length n + 1, then define bp(A) to
be the set {(α0, . . . , αn−1) | (∃ξ ∈ α0)(α0, . . . , αn−1, ξ) ∈ A}. bp(A) is the
bounded projection of A.

By a fiber of sets 〈Ai | i < ω〉 we mean a sequence 〈αi | i < ω〉 so that
(α0, . . . , αi−1) ∈ Ai for every i < ω.

1.2 Definition. A (short) extender is a function E that satisfies the following
conditions:

(1) The domain of E is equal to P(κ) for an ordinal κ closed under Gödel
pairing.

(2) E sends ordinals to ordinals and sets of ordinals to sets of ordinals.

(3) E(α) = α for α < κ, and E(κ) �= κ.

(4) E respects products, intersections, set differences, membership, the
predicates of equality and membership, permutations, and bounded
projections. More precisely this means that for all A,B ∈ dom(E),
all ordinals α ∈ dom(E), and all permutations σ of the appropriate
format:
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(a) E(A×B) = E(A)× E(B), E(A ∩B) = E(A) ∩ E(B), and
E(A−B) = E(A)− E(B).

(b) α ∈ A =⇒ E(α) ∈ E(A).

(c) E({(α, β) ∈ A× A | α = β}) is equal to {(α, β) ∈ E(A)× E(A) |
α = β}, and similarly with α ∈ β replacing α = β.

(d) E(σA) = σE(A).

(e) E(bp(A)) = bp(E(A)).

(5) E is countably complete. Precisely, this means that for any sequence
〈Ai | i < ω〉 of sets which are each in the domain of E, if there exists
a fiber through 〈E(Ai) | i < ω〉 then there exists also a fiber through
〈Ai | i < ω〉.

The first ordinal moved by E is called the critical point of E, denoted crit(E).
By condition (3), this critical point is precisely equal to the ordinal κ of condi-
tion (1). The set

⋃
A∈dom(E) E(A) is called the support of E, denoted spt(E).

Using condition (2) it is easy to see that the support of E is an ordinal.

1.3 Remark. Condition (3) limits our definition to extenders with domains
consisting of just the subsets of the extenders’ critical points. It is this
condition that makes our extenders “short”. We shall see later that it has
the effect of limiting the strength of embeddings generated by our (short)
extenders to a level known as superstrong. This level is more than adequate
for our needs. We shall therefore deal exclusively with short extenders in this
chapter, and refer to them simply as extenders. For a more general definition
see Neeman [31].

1.4 Definition. A (two-valued) measure over a set U is a function μ from
P(U) into {0, 1} with the properties that μ(∅) = 0, μ(U) = 1, and μ(X ∪
Y ) = μ(X) + μ(Y ) for any disjoint X,Y ⊆ U .

1.5 Remark. Given a ∈ spt(E) define Ea : P(κ) → {0, 1} to be the function
given by Ea(X) = 1 if a ∈ E(X), and 0 otherwise. Ea is then a measure
over κ. It has been customary to define extenders by specifying properties of
the sequence 〈Ea | a ∈ spt(E)〉 equivalent to the properties of E specified in
Definition 1.2. For a definition of extender through properties of 〈Ea | a ∈
spt(E)〉 see Martin-Steel [21, §1A] (short extenders) and Kanamori [8, §26]
(the general case).

By a pre-extender over a model Q we mean an object E that satisfies condi-
tions (1)–(4) in Definition 1.2, with P(κ) in condition (1) replaced by PQ(κ),
but not necessarily condition (5). The point of this distinction is that con-
dition (5) involves second-order quantification over E, whereas conditions
(1)–(4) involve only E, the power set of κ, and bounded quantifiers over the
transitive closure of E. By removing condition (5) we obtain a notion that
is absolute in the sense given by Claim 1.7:
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1.6 Definition. Two models Q and N agree to an ordinal ρ if (ρ is con-
tained in the wellfounded part of both models, and) PQ(ξ) = PN (ξ) for each
ξ < ρ. Q and N agree past an ordinal κ if they agree to κ + 1.

1.7 Claim. Let Q and N be models of set theory. Suppose that E is an
extender in N , and let κ = crit(E). Suppose that Q and N agree past κ.
Then E is a pre-extender over Q.

Extenders are naturally induced by elementary embeddings. Let π : V →
M be a non-trivial elementary embedding of V into some wellfounded class
model M . Let κ be the critical point of π, namely the first ordinal moved
by π. Let λ ≤ π(κ) be an ordinal closed under Gödel pairing. Define the
λ-restriction of π to be the map E given by:

(R1) dom(E) = P(κ).

(R2) E(X) = π(X) ∩ λ for each X ∈ dom(E).

It is then easy to check that E is an extender. The items in condition (4)
of Definition 1.2 follow directly from the elementarity of π and, in the case
of condition (4e), the absoluteness between M and V of formulae with only
bounded quantifiers. Condition (5) follows from the elementarity of π and
the wellfoundedness of M . If a fiber through 〈E(Ai) | i < ω〉 exists in V
then using the wellfoundedness of M such a fiber must also exist in M . Its
existence can then be pulled back via π to yield a fiber through 〈Ai | i < ω〉.
1.8 Remark. The λ-restriction makes sense also in the case of an embedding
into an illfounded model M , so long as the wellfounded part of M contains λ.
But countable completeness may fail in this case, and the λ-restriction need
only be a pre-extender.

The description above shows how extenders are induced by elementary
embeddings into wellfounded models. Extenders also give rise to such ele-
mentary embeddings, through the ultrapower construction, which we describe
next.

Let ZFC− consist of the standard axioms of ZFC excluding the Power Set
Axiom. Fix a model Q of ZFC− and a pre-extender E over Q. Let κ =
crit(E). Let F be the class of functions f ∈ Q so that dom(f) ⊆ κ. Let D =
{〈f, a〉 | f ∈ F ∧ a ∈ E(dom(f))}.

For two functions f, g ∈ F set Z =
f,g = {(α, β) | f(α) = g(β)} and Z ∈

f,g =
{(α, β) | f(α) ∈ g(β)}. Both Z =

f,g and Z ∈
f,g are then subsets of κ in Q, and

therefore elements of the domain of E.
Define a relation ∼ on D by setting 〈f, a〉 ∼ 〈g, b〉 iff (a, b) ∈ E(Z=

f,g).
One can check using condition (4) in Definition 1.2 that ∼ is an equivalence
relation. Let [f, a] denote the equivalence class of 〈f, a〉. Let D∗ denote D/∼.
Define a relation R on D∗ by setting [f, a] R [g, b] iff (a, b) ∈ E(Z∈

f,g). Again
using condition (4) in Definition 1.2 one can check that R is well defined.

The following property, known as �Loś’s Theorem, can be proved from the
various definitions, by induction on the complexity of ϕ:
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1.9 Theorem (�Loś). Let [f1, a1], . . . , [fn, an] be elements of D∗. Let ϕ =
ϕ(v1, . . . , vn) be a formula. Let Z be the set

{(α1, . . . , αn) | Q |= ϕ[f1(α1), . . . , fn(αn)]}.

Then (D∗, R) |= ϕ[[f1, a1], . . . , [fn, an]] iff (a1, . . . , an) belongs to E(Z).

For each set x let cx be the function with domain {0} and value cx(0) = x.
From �Loś’s Theorem it follows that the map x �→ [cx, 0] is elementary, from Q
into (D∗, R). (In particular, (D∗, R) satisfies ZFC−.)

1.10 Definition. The ultrapower of Q by E, denoted Ult(Q,E), is the struc-
ture (D∗;R). The ultrapower embedding is the map j : Q→ Ult(Q,E) defined
by j(x) = [cx, 0].

In general Ult(Q,E) need not be wellfounded. (If it is then we of course
identify it with its transitive collapse, and identify R with ∈.) But notice
that wellfoundedness is a consequence of countable completeness: if 〈[fi, ai] |
i < ω〉 is an infinite descending sequence in R, then the sequence of sets Ai =
{(α0, . . . , αi−1) | f0(α0) , f1(α1) , · · · , fi−1(αi−1)} violates countable
completeness. Ultrapowers by extenders, as opposed to mere pre-extenders,
are therefore wellfounded.

Let λ = spt(E). Using the various definitions one can prove the following
two properties of the ultrapower. The first relates the ultrapower embedding
back to the extender E, and the second describes a certain minimality of the
ultrapower:

(U1) The λ-restriction of j is precisely equal to E.

(U2) Every element of Ult(Q,E) has the form j(f)(a)
for some function f ∈ F and some a ∈ λ.

These properties determine the ultrapower and the embedding completely.
The following lemma relates an embedding π : V →M to the ultrapower

embedding by the extender over V derived from π. It shows that the ultra-
power by the λ-restriction of π captures π up to λ.

1.11 Lemma. Let π : V → M be an elementary embedding of V into a
wellfounded model M , and let κ = crit(π). Let λ ≤ π(κ) be an ordinal closed
under Gödel pairing. Let E be the λ-restriction of π. Let N = Ult(V,E) and
let j : V → N be the ultrapower embedding.

Then there is an elementary embedding k : N → M with π = k ◦ j (see
Diagram 22.2) and crit(k) ≥ λ.

1.12 Exercise. Let μ be a two-valued measure over a cardinal κ. Let F
be the class of functions from κ into V . For f, g ∈ F set f ∼ g iff {ξ <
κ | f(ξ) = g(ξ)} has measure one. Show that ∼ is an equivalence relation.
Let F∗ = F/∼. For f ∈ F let [f ] denote the equivalence class of f . Define
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M

V
j

π

N= Ult(V,E)

k

Diagram 22.2: The original map π and the ultrapower map j

a relation R on F∗ by [f ] R [g] iff {ξ < κ | f(ξ) ∈ g(ξ)} has measure one.
Show that R is well defined.

Define Ult(V, μ), the ultrapower of V by μ, to be the structure (F∗;R),
and define the ultrapower embedding j : V → Ult(V, μ) by j(x) = [cx] where
cx : κ→ V is the constant function which takes the value x.

Show that ultrapower embedding is elementary. Show that if μ is count-
ably complete, meaning that μ(

⋂
n<ω Xn) = 1 whenever 〈Xn | n < ω〉 is a

sequence of sets of measure one, then the ultrapower is wellfounded.

1.13 Exercise. The seed of a measure μ is the element [id] of the ultrapower,
where id : κ→ V is the identity function. Let s be the seed of μ. Prove that
every element of Ult(V, μ) has the form j(f)(s), where j : V → Ult(V, μ) is
the ultrapower embedding.

1.14 Exercise. A (two-valued) measure μ over a set U is called non-principal
just in case that μ({ξ}) = 0 for each singleton {ξ}. μ is κ-complete if
μ(
⋂

α<τ Xα) = 1 whenever τ < κ and Xα ⊆ U (α < τ) are all sets of
measure one. A cardinal κ is called measurable if there is a two-valued, non-
principal, κ-complete measure over κ. Let κ be measurable, let μ witness
this, and let j : V → Ult(V, μ) be the ultrapower embedding. Show that
crit(j) = κ.

1.15 Exercise. Let κ be measurable and let μ witness this. Let M =
Ult(V, μ). Prove that P(κ) ⊆M , and that P(P(κ)) �⊆M .

Hint. To see that P(κ) ⊆ M , note that j(X) ∩ κ = X for each X ⊆ κ
(where j : V →M is the ultrapower embedding).

To see that P(P(κ)) �⊆ M , prove that μ �∈ M : Suppose for contradiction
that μ ∈ Ult(V, μ). Without loss of generality you may assume that κ is
the smallest cardinal carrying a measure μ with μ ∈ Ult(V, μ). Derive a
contradiction to the analogous minimality of j(κ) in M by showing that
μ ∈ Ult(M,μ). �

1.16 Definition. An embedding π : V → M is α-strong just in case that
P(ξ) ⊆M for all ξ < α. An extender E is α-strong just in case that P(ξ) ⊆
Ult(V,E) for all ξ < α. The strength of π : V → M is defined to be the
largest α so that π is α-strong. The strength of an extender E is defined
similarly, using the ultrapower, and is denoted Strength(E). (Notice that
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the strength of an embedding is always a cardinal.) An embedding π with
critical point κ is superstrong if it is π(κ)-strong. A cardinal κ is α-strong if
it is the critical point of an α-strong embedding, and superstrong if it is the
critical point of a superstrong embedding.

Measurable cardinals lie at the low end of the hierarchy of strength: as-
suming GCH, an ultrapower embedding by a measure on κ is κ+-strong and
no more. Superstrong embeddings lie much higher in the hierarchy. These
embedding are the most we can hope to capture using (short) extenders:

1.17 Lemma. Let E be a (short) extender with critical point κ. Let j be the
ultrapower embedding by E. Then E is at most j(κ)-strong.

Proof. Using the ultrapower construction and the elementarity of j, one can
see that every element x of j(κ+) has the form j(f)(a) for a function f : κ→
κ+ and an a ∈ dom(j(f)) = j(κ). (The fact that f can be taken to have
domain κ traces back to the fact that the domain of E consists precisely of
the subsets of its critical point, in other words to the fact that E is a short
extender.) It follows that j(κ+) has cardinality at most θ = (κ+)κ · j(κ). If j
is j(κ)-strong then j(κ) is a strong limit cardinal in V , and a quick calculation
shows that θ = j(κ). Thus j(κ+) = (j(κ)+)Ult(V,E) has cardinality j(κ) in V ,
and from this it follows that Ult(V,E) must be missing some subsets of j(κ).
So E is not j(κ) + 1-strong. �

1.18 Lemma. Let π : V → M with critical point κ. Suppose that π is α-
strong where α ≤ π(κ). Let λ ≤ π(κ) be an ordinal closed under Gödel
pairing and such that λ ≥ (2<α)M . Then the λ-restriction of π is an α-
strong extender.

Proof. Immediate from Lemma 1.11. �

Lemma 1.18 shows that (short) extenders are adequate means for captur-
ing the strength of embeddings at or below the level of superstrong. On the
other hand Lemma 1.17 shows that (short) extenders cannot capture embed-
dings beyond superstrong. Such stronger embeddings can be captured using
the general extenders mentioned in Remark 1.3, but for our purpose in this
chapter the greater generality is not necessary.

1.19 Definition. We write Q‖α to denote V Q
α . We say that Q and N

agree well beyond κ if the first inaccessible above κ is the same in both Q
and N , and, letting α > κ be this inaccessible, Q‖α = N‖α. Given further
embeddings i : Q → Q∗ and j : N → N ∗ we say that i and j agree well
beyond κ if i�(Q‖α ∪ {Q‖α}) = j�(N‖α ∪ {N‖α}).

We shall use the notion of Definition 1.19 as an all-purpose security blan-
ket, giving us (more than) enough room in several arguments below.
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Q∗

i∗

E∗ ∈ N ∗ Ult(Q∗, E∗)

Q

π

i

E ∈ N

σ

Ult(Q,E)

τ

Diagram 22.3: Copying the ultrapower of Q by E to an ultrapower of Q∗

by E∗

1.20 Claim. Let Q and N be models of set theory. Suppose that E is an ex-
tender in N , and let κ = crit(E). Suppose that Q and N agree well beyond κ,
so that (in particular) E is a pre-extender over Q. Let i be the ultrapower
embedding of Q by E, and let j be the ultrapower embedding of N by E.
Then i and j agree well beyond κ, and Ult(Q,E) and Ult(N,E) agree well
beyond i(κ) = j(κ).

Let Q and N be models of set theory. Suppose that E is an extender in N ,
and let κ = crit(E). Suppose that Q and N agree well beyond κ, so that in
particular E is a pre-extender over Q.

Let π : Q→ Q∗ and σ : N → N ∗ be elementary. Let E∗ = σ(E). Suppose
that π and σ agree well beyond κ. Hence in particular Q∗ and N ∗ agree well
beyond π(κ) = σ(κ), and E∗ is therefore a pre-extender over Q∗. The models
and embeddings are presented in Diagram 22.3.

For an element x = [f, a] of Ult(Q,E) define τ(x) to be the element
[π(f), σ(a)] of Ult(Q∗, E∗).

Then τ is a well defined (meaning invariant under the choice of repre-
sentatives for x ∈ Ult(Q,E)) elementary embedding from Ult(Q,E) into
Ult(Q∗, E∗); τ� spt(E) = σ� spt(E); and τ makes Diagram 22.3, with i and i∗

being the relevant ultrapower embeddings, commute.
The ultrapower of Q∗ by E∗ is called the copy, via the pair 〈π, σ〉, of the

ultrapower of Q by E. τ is called the copy embedding. Note that the definition
of τ involves both π and σ, and the agreement between these two embeddings
is important for the proof that τ is well defined.

1.21 Remark. Recall that every element of Ult(Q,E) has the form i(f)(a)
for a function f ∈ Q and an ordinal a ∈ spt(E). The copy embedding τ is
characterized completely by the condition τ(i(f)(a)) = (i∗ ◦ π)(f)(σ(a)) for
all f and a.

Next we describe how to repeatedly form ultrapowers by extenders, to
obtain a chain, or a tree, of models. For the record let us start by defining
direct limits.
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1.22 Definition. Let 〈Mξ, jζ,ξ | ζ < ξ < α〉 be a system of models Mξ

and elementary embeddings jζ,ξ : Mζ →Mξ, commuting in the natural way.
Let D = {〈ξ, x〉 | ξ < α ∧ x ∈Mξ}.

Define an equivalence relation ∼ on D by setting 〈ξ, x〉 ∼ 〈ξ′, x′〉 iff
jξ,ν(x) = jξ′,ν(x) where ν = max{ξ, ξ′}. Let D∗ = D/∼.

Define a relation R on D∗ by setting [ξ, x] R [ξ′, x′] iff jξ,ν(x) ∈ jξ′,ν(x)
where again ν = max{ξ, ξ′}. It is easy to check that R is well defined.

The structure M ∗ = (D∗;R) is called the direct limit of the system
〈Mξ, jζ,ξ | ζ < ξ < α〉. The embeddings jξ,∗ : Mξ → M ∗ determined by
jξ(x) = [ξ, x] are called the direct limit embeddings. It is easy to check that
these embeddings commute with the embeddings jζ,ξ in the natural way.

1.23 Remark. If (D∗;R) is wellfounded then we identify it with its transitive
collapse, and identify R with ∈.

We pass now to the matter of iterated ultrapowers.

1.24 Definition. A tree order is an order T on an ordinal α so that:

(1) T is a suborder of <�(α× α).

(2) For each η < α, the set {ξ | ξ T η} is linearly ordered by T .

(3) For each ξ so that ξ + 1 < α, the ordinal ξ + 1 is a successor in T .

(4) For each limit ordinal γ < α, the set {ξ | ξ T γ} is cofinal in γ.

1.25 Definition. An iteration tree T of length α on a model M consists of
a tree order T on α and a sequence 〈Eξ | ξ + 1 < α〉, so that the following
conditions hold with an additional sequence 〈Mξ, jζ,ξ | ζ T ξ < α〉 which is
determined completely by the conditions:

(1) M0 = M .

(2) For each ξ so that ξ + 1 < α, Eξ is an extender of Mξ, or Eξ = “pad”.

(3) (a) If Eξ = “pad” then Mξ+1 = Mξ, the T -predecessor of ξ + 1 is ξ,
and jξ,ξ+1 is the identity.

(b) If Eξ �= “pad” then Mξ+1 = Ult(Mζ , Eξ) and jζ,ξ+1 : Mζ →
Mξ+1 is the ultrapower embedding, where ζ is the T -predecessor of
ξ + 1. It is implicit in this condition that Mζ must agree with Mξ

past crit(Eξ), so that Eξ is a pre-extender over Mζ by Claim 1.7.

(4) For limit λ < α, Mλ is the direct limit of the system 〈Mζ , jζ,ξ | ζ T
ξ T λ〉, and jζ,λ : Mζ →Mλ for ζ T λ are the direct limit embeddings.

(5) The remaining embeddings jζ,ξ for ζ T ξ < α are obtained through
composition.

Mξ and jζ,ξ for ζ T ξ < α are the models and embeddings of T . We view
them as part of T , though formally they are not.
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Mn+1

En ∈Mn

Mk

jk,n+1

Diagram 22.4: Forming Mn+1

1.26 Remark. The inclusion of pads in iteration tree is convenient for pur-
poses of indexing in various constructions, and we shall use it later on. But
for much of the discussion below we make the implicit assumption that the
iteration tree considered has no pads. This assumption poses no loss of gen-
erality.

We shall only need iteration trees of length ω in this chapter. We shall
construct these trees recursively. In stage n of the construction we shall have
the models M0, . . . ,Mn. During the stage we shall pick an extender En in Mn,
and pick further some k ≤ n so that Mk and Mn agree past crit(En). We
shall then set k to be the T -predecessor of n+1 and set Mn+1 = Ult(Mk, En).
This is illustrated in Diagram 22.4. After ω stages of a construction of this
kind we obtain an iteration tree of length ω.

A branch through an iteration tree T is a set b which is linearly ordered
by T . The branch is cofinal if sup(b) = lh(T ). By the direct limit along b,
denoted M T

b or simply Mb, we mean the direct limit of the system 〈Mξ, jζ,ξ |
ζ T ξ ∈ b〉. We use jT

ζ,b, or simply jζ,b, to denote the direct limit embeddings
of this system. The branch b is called wellfounded just in case that the
model Mb is wellfounded.

2. Iterability

The existence of wellfounded cofinal branches through certain iteration trees
is crucial to proofs of determinacy. This existence is part of the general
topic of iterability. In this section we briefly describe the topic, point out its
most important open problem, and sketch a proof of the specific iterability
necessary for the determinacy results in this chapter.

Let M be a model of ZFC−. In the (full) iteration game on M players
“good” and “bad” collaborate to construct an iteration tree T of length
ωV

1 +1 on M . “bad” plays all the extenders, and determines the T -predecessor
of ξ +1 for each ξ. “good” plays the branches {ζ | ζ T λ} for limit λ, thereby
determining the T -predecessors of λ and the direct limit model Mλ. Note
that “good” is also responsible for the final move, which determines MωV

1
.

If ever a model along the tree is reached which is illfounded then “bad”
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wins. Otherwise “good” wins. M is (fully) iterable if “good” has a winning
strategy in this game. An iteration strategy for M is a strategy for the good
player in the iteration game on M . The Strategic Branches Hypothesis (SBH)
asserts that every countable model which embeds into a rank initial segment
of V is iterable.

As stated the hypothesis is more general than necessary. The iteration
trees that come up in applications follow a specific format, and only the
restriction of SBH to trees of such format is needed.

Call an iteration tree T on M nice if:

(1) The extenders used in T have increasing strengths. More precisely,
〈StrengthMξ(Eξ) | ξ + 1 < lh(T )〉 is strictly increasing.

(2) For each ξ, StrengthMξ(Eξ) is inaccessible in Mξ.

(3) For each ξ, spt(Eξ) = StrengthMξ(Eξ).

2.1 Remark. Throughout this chapter, whenever a result claims the exis-
tence of an iteration tree, the iteration tree is nice. In the later sections we
often neglect to mention this explicitly.

A model N is λ-closed if every subset of N of size λ in V belongs to N .

2.2 Exercise. Let T be a nice, finite iteration tree on V . Prove that each
of the models in T is countably closed, and conclude from this that each of
the models in T is wellfounded. Prove further that each of the models in T
is 2ℵ0 -closed.

Hint. Prove the general fact that if Q |=“E is an extender with inaccessible
support”, N agrees with Q past the critical point of E, and both N and Q
are countably (respectively 2ℵ0) closed, then Ult(N,E) is countably (respec-
tively 2ℵ0) closed. Wellfoundedness follows from countable closure, since by
elementarity each of the models in T satisfies internally that “there are no
infinite descending sequences of ordinals”. �

Call M iterable for nice trees if “good” has a winning strategy in the
iteration game on M when “bad” is restricted to extenders which give rise
to nice trees. Let nSBH be the assertion that every countable model which
embeds elementarily into a rank initial segment of V is iterable for nice trees.
nSBH is a technical weakening of SBH, sufficient for all known applications.
A proof of nSBH would constitute a substantial breakthrough in the study
of large cardinals, particularly in inner model theory.

For the sake of the determinacy proofs in this chapter we need only a weak
form of iterability, involving linear compositions of trees of length ω. This
iterability was proved by Martin-Steel [22]. We now proceed to state the
iterability precisely, and give its proof.

A weak iteration of M of length α consists of objects Mξ, Tξ, bξ for ξ < α
and embeddings jζ,ξ : Mζ →Mξ for ζ < ξ < α, so that:
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M
b0T0

M1 Mξ
bξTξ

Mξ+1

Diagram 22.5: A weak iteration of M

V ‖θ

M

π

jbT
Mb

σ

Diagram 22.6: Theorem 2.3

(1) M0 = M .

(2) For each ξ < α, Tξ is a nice iteration tree of length ω on Mξ; bξ is
a cofinal branch through Tξ; Mξ+1 is the direct limit along bξ; and
jξ,ξ+1 : Mξ →Mξ+1 is the direct limit embedding along bξ.

(3) For limit λ < α, Mλ is the direct limit of the system 〈Mξ, jζ,ξ | ζ <
ξ < λ〉 and jζ,λ : Mζ →Mλ are the direct limit embeddings.

(4) The remaining embeddings jζ,ξ are obtained by composition.

A weak iteration is thus a linear composition of length ω iteration trees.
In the weak iteration game on M players “good” and “bad” collaborate

to produce a weak iteration of M , of length ωV
1 . “Bad” plays the iteration

trees Tξ and “good” plays the branches bξ. (These moves determine the iter-
ation completely.) If ever a model Mξ, ξ < ω1, is reached which is illfounded,
then “bad” wins. Otherwise “good” wins. M is weakly iterable if “good” has
a winning strategy in the weak iteration game on M .

2.3 Theorem. Let π : M → V ‖θ be elementary with M countable. Let T
be a nice iteration tree of length ω on M . Then there is a cofinal branch b
through T , and an embedding σ : Mb → V ‖θ, so that σ ◦ jb = π. (Note that b
is then a wellfounded branch, since Mb embeds into V ‖θ.)

2.4 Corollary. Let π : M → V ‖θ be elementary with M countable. Then
“good” has a winning strategy in the weak iteration game on M .

Proof. Immediate through iterated applications of Theorem 2.3. “Good”
should simply keep choosing branches given by the theorem, successively em-
bedding each Mξ+1 into V ‖θ, and preserving commutativity which is needed
for the limits.

The idea of proving iterability by embedding back into V , simple only in
retrospect, was first used by Jensen in the context of linear iterations. �
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Theorem 2.3 and Corollary 2.4 provide the iterability necessary for the
determinacy proofs in this chapter. In the remainder of this section we give
the proof of the theorem.

2.5 Definition. Let T be a nice iteration tree of length ω on a model M ,
giving rise to models and embeddings 〈Mm, jm,n | m T n < ω〉. T is contin-
uously illfounded if there exists a sequence of ordinals αn ∈ Mn (n < ω) so
that jm,n(αm) > αn whenever m T n.

Note that a continuously illfounded iteration tree has no wellfounded cofi-
nal branches. Indeed, for any cofinal branch b, the sequence jn,b(αn) for n ∈ b
witnesses that Mb is illfounded. Continuously illfounded iteration trees, on
countable models M which embed into rank initial segments of V , thus con-
tradict Theorem 2.3 in a very strong way. We begin by showing that in fact
any counterexample to Theorem 2.3 gives rise to a continuously illfounded
iteration tree.

2.6 Lemma. Let π : M → V ‖θ be elementary with M countable. Let T
be a nice iteration tree of length ω on M , and suppose that the conclusion
of Theorem 2.3 fails for T . Then there is a continuously illfounded nice
iteration tree on V .

Proof. Let En, Mn, and jm,n (m T n < ω) denote the extenders, models, and
embeddings of T . Working recursively define a length ω iteration tree T ∗

on V , and embeddings πn : Mn →M ∗
n through the conditions:

• M ∗
0 = V and π0 = π.

• E∗
n = πn(En).

• The T ∗-predecessor of n + 1 is the same as the T -predecessor of n + 1.

• M ∗
n+1 = Ult(M ∗

k , E∗
n) where k is the T -predecessor of n + 1, and πn+1

is the copy embedding via the pair 〈πk, πn〉.
It is easy to check that this definition goes through, giving rise to a nice
iteration tree T ∗ and the commuting diagram presented in Diagram 22.7.
We will show that T ∗ is continuously illfounded.

2.7 Definition. The tree T ∗ defined through the conditions above is the
copy of T via π : M → V . It is denoted πT .

From the fact that M is countable it follows that each Mn is countable.
Let �en = 〈en

l | l < ω〉 enumerate Mn. Given an embedding σ with do-
main Mn, we use σ�l to denote the restriction of σ to {en

0 , . . . , e
n
l−1}, and we

write Mn�l to denote {en
0 , . . . , e

n
l−1}.

Working in V let R be the tree of attempts to create a cofinal branch b
through T and a commuting system of embeddings realizing the models
along b into V . More precisely, a node in R consists of a finite branch a
through T , and of partial embeddings σi : Mi → V , i ∈ a, satisfying the
following conditions (where l is the length of a):
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T ∗ V M ∗
k

j∗
k,n1

M ∗
n M ∗

n+1

T M0

π

Mk

πk

jk,n+1

Mn

πn

Mn+1

πn+1

Diagram 22.7: T and T ∗

• For each i the domain of σi is precisely Mi�l.

• (Commutativity) If i T i′ ∈ a, x ∈ Mi�l, x′ ∈ Mi′ �l, and x′ = ji,i′ (x),
then σi′ (x′) = σi(x).

• σ0 is equal to π�l.

The tree R consists of these nodes, ordered naturally by extension for each
component.

An infinite branch through R gives rise to a corresponding infinite branch
b = {n0, n1, . . .} through T and an embedding σ∞ of the direct limit along b
into V , with the commutativity σ∞ ◦ jb = π. Thus, an infinite branch
through R produces precisely the objects b and σ necessary for the conclusion
of Theorem 2.3.

The assumption of the current lemma is that T witnesses the failure of
Theorem 2.3. The tree R must therefore have no infinite branches. Let
ϕ : R → On be a rank function, that is a function assigning to each node
in R an ordinal, in such a way that if a node s′ extends a node s then
ϕ(s′) < ϕ(s). The existence of such a function follows from the fact that R
has no infinite branches.

For each finite branch a = 〈0 = n0 T n1 . . . T nl−1〉 through T , let sa

consist of a itself and the embeddings (πnl−1 ◦jni,nl−1)�l for each i < l. Using
the commutativity of Diagram 22.7 it is easy to check that sa is a node
in j∗

0,nl−1
(R).

For k < ω let sk be the node sa where a is the branch of T ending at k. sk

is then a node in j∗
0,k(R). For k T k′ it is easy to check, again using the

commutativity of Diagram 22.7, that sk′ extends j∗
k,k′ (sk).

Let αk = j∗
0,k(ϕ)(sk). This is the rank of the node sk of j∗

0,k(R) given
by the shift of the rank function ϕ to M ∗

k . From the fact that sk′ extends
j∗
k,k′ (sk) for k T k′ it follows that αk′ < jk,k′ (αk). The ordinals 〈αk | k < ω〉

therefore witness that T ∗ is continuously illfounded. �

2.8 Lemma. Let U be a nice length ω iteration tree on V . Then U is not
continuously illfounded.
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Proof. Suppose for contradiction that U is a nice, length ω, continuously
illfounded iteration tree on V , and let 〈βn | n < ω〉 witness this. Let η be
large enough that U belongs to V ‖η. By replacing each βn with the βnth
regular cardinal of M U

n above jU
0,n(η) we may assume that βn is regular in M U

n

for each n, and larger than jU
0,n(η).

Let θ be large enough that both U and 〈βn | n < ω〉 belong to V ‖θ.
Let H be a countable Skolem hull of V ‖θ with U and 〈βn | n < ω〉 elements
of H. Let M be the transitive collapse of H and let π : M → V ‖θ be the
anticollapse embedding. Let T = π−1(U) and let 〈αn | n < ω〉 = π−1(〈βn |
n < ω〉). Then T is a nice, length ω, continuously illfounded iteration tree
on M ; 〈αn | n < ω〉 witnesses this; for each n, αn is regular in Mn = M T

n ;
and, for each n, En = ET

n belongs to Mn‖αn. (The last clause follows from
the fact that βn is greater than jU

0,n(η), obtained in the previous paragraph,
and the fact that η was chosen large enough that EU

n ∈ V ‖jU
0,n(η).)

Let Mn, En, and jm,n (m T n < ω) be the models and embeddings of T .
Let ρn be the strength of En in Mn. The sequence 〈ρn | n < ω〉 is increasing,
and for each n < n∗, Mn and Mn∗ agree to ρn.

Let P0 = V ‖β0 and let σ0 = π�(M‖α0). We work by recursion to produce
models Pn and embeddings σn satisfying the following conditions:

(1) σn is elementary from Mn‖αn into Pn.

(2) σn belongs to Pn and is countable in Pn.

(3) For n̄ < n, σn̄ and σn agree on Mn̄‖ρn̄.

We shall construct so that:

(i) For each n, Pn+1 ∈ Pn.

At the end of the construction we shall thus have an infinite ∈-decreasing
sequence, a contradiction.

We already have conditions (1) and (2) for n = 0, and condition (3) is
vacuous for n = 0. Suppose inductively that we have conditions (1)–(3)
for n. We describe how to construct Pn+1 and σn+1.

Let k be the T -predecessor of n + 1, so that Mn+1 is the ultrapower
of Mk by En. We wish to copy this ultrapower to an ultrapower of Pk via
the pair 〈σk, σn〉. We cannot quite manage this, since the domain of σk

is Mk�αk rather than Mk. We adjust our wishes as follows: Let γ =
jk,n+1(αk). Mn+1‖γ is then the ultrapower of Mk‖αk by En. Now let P ∗

n be
the copy of this ultrapower via the pair 〈σk, σn〉, and let σ∗

n : Mn+1‖γ → P ∗
n

be the copy embedding.
We would have liked to simply set Pn+1 = P ∗

n and σn+1 equal to the
restriction of σ∗

n to Mn+1‖αn+1. There are two problems with this. First, P ∗
n

does not belong to Pn, so we lose condition (i), the crucial condition in our
scheme for a contradiction. Second, σ∗

n does not belong to P ∗
n , so we lose

condition (2). We handle the second problem first.
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2.9 Claim. Let τ denote the restriction of σ∗
n to Mn+1‖ρn. Then τ belongs

to P ∗
n .

Proof. Let ϕn denote σn(ρn). Let Fn denote σn(En).
P ∗

n is the ultrapower of Pk by Fn. Fn is ϕn-strong in Pn. It follows that P ∗
n

and Pn agree to ϕn.
The definition of copy embedding requires that σ∗

n and σn agree on the
support of En. This support must contain ρn, since otherwise En could
not be ρn-strong. σ∗

n and σn thus agree on ρn. By condition (2) and the
inaccessibility of ϕn in Pn, σn�ρn belongs to Pn�ϕn. Since Pn and P ∗

n agree
to ϕn, σn�ρn belongs to P ∗

n . Now σ∗
n is the same as σn up to ρn, so σ∗

n�ρn

belongs to P ∗
n . From this, using the inaccessibility of ρn in Mn+1, one can

argue that σ∗
n�(Mn+1‖ρn) belongs to P ∗

n . �

Let α∗
n = σ∗

n(αn+1). Notice that the definition makes sense, as αn+1 is
smaller than γ = jk,n+1(αk), and therefore belongs to the domain of σ∗

n.

2.10 Claim. There is an elementary embedding σ∗ ∗
n : Mn+1‖αn+1 → P ∗

n‖α∗
n

so that:

• The restriction of σ∗ ∗
n to Mn+1‖ρn is equal to τ .

• σ∗ ∗
n (ρn) = ϕn.

• σ∗ ∗
n belongs to P ∗

n and is countable in P ∗
n .

Notice that σ∗
n, restricted to Mn+1‖αn+1, already satisfies the first two

demands of the claim. Replacing it by an embedding σ∗ ∗
n that also satisfies

the third demand solves our “second problem” mentioned above.

Proof of Claim 2.10. This is a simple matter of absoluteness. Using the fact
that τ belongs to P ∗

n we can put together, inside P ∗
n , the tree of attempts

to construct an embedding σ∗ ∗
n satisfying the demands of the claim. This

tree of attempts has an infinite branch in V , given by the restriction of σ∗
n

to Mn+1‖αn+1. By absoluteness then it has an infinite branch inside P ∗
n . �

Let P ∗ ∗
n = P ∗

n‖α∗
n. Note that P ∗ ∗

n is then a strict rank initial segment
of P ∗

n , ultimately because αn+1 < jk,n+1(αn).
Taking Pn+1 = P ∗ ∗

n and σn+1 = σ∗ ∗
n would satisfy conditions (1)–(3). But

we need one more adjustment to obtain condition (i), the crucial condition
in our scheme for a contradiction. This final adjustment hinges on the fact
that P ∗ ∗

n is a strict initial segment of P ∗
n , and therefore an element of P ∗

n .
Let H be the Skolem hull of P ∗ ∗

n ‖ϕn ∪{ϕn, σ∗ ∗
n } inside P ∗ ∗

n . Let Pn+1 be the
transitive collapse of H, and let j : Pn+1 → H be the anticollapse embedding.
Let σn+1 = j−1 ◦ σ∗ ∗

n . It is easy to check that conditions (1)–(3) hold with
these assignments.

Since P ∗ ∗
n and σ∗ ∗

n belong to P ∗
n , the Skolem hull H taken above has

cardinality ϕn inside P ∗
n . It follows that Pn+1 can be coded by a subset of ϕn
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inside P ∗
n . Now P ∗

n is equal to Ult(Pk, Fn). Since Pk and Pn agree well beyond
the critical point of Fn, the ultrapowers Ult(Pk, Fn) and Ult(Pn, Fn) agree
well beyond the image of this critical point (Claim 1.20). This image in turn
is at least ϕn, that is the strength of Fn, since Fn is a short extender. (See
Lemma 1.17.) It follows that all subsets of ϕn in P ∗

n = Ult(Pk, Fn) belong also
to Ult(Pn, Fn). Now Ult(Pn, Fn) can be computed over Pn (as Fn ∈ Pn). So
all subsets of ϕn in P ∗

n belong to Pn. We noted at the start of this paragraph
that Pn+1 can be coded by such a subset. So Pn+1 belongs to Pn, and we
have condition (i), as required. �

Lemmas 2.6 and 2.8 combine to prove Theorem 2.3.

2.11 Remark. The contradiction in Lemma 2.8 is obtained through the very
last adjustment in the proof, replacing P ∗ ∗

n by a Skolem hull which belongs
to Pn. It is crucial for that final adjustment that P ∗ ∗

n is a strict rank initial
segment of P ∗

n , and this is where the continuous illfoundedness of T is used.
The ordinals witnessing the continuous illfoundedness provide the necessary
drops in rank.

2.12 Lemma. Let T be a nice iteration tree of length ω on V . Then T has
a cofinal branch leading to a wellfounded direct limit.

Proof. Suppose not. For each cofinal branch b through T fix a sequence 〈αb
n |

n ∈ b〉 witnessing that the direct limit along b is illfounded, more precisely
satisfying jm,n(αb

m) > αb
n for all m < n both in b. Let θ be large enough that

all the ordinals αb
n are smaller than θ.

For each n < ω let Bn be the set of cofinal branches b through T with n ∈ b.
Let Fn be the set of functions from Bn into θ. Let ≺ be the following
relation: 〈n, f〉 ≺ 〈m, g〉 iff f ∈ Fn, g ∈ Fm, m T n, and f(b) < g(b) for
every b ∈ Fn. The relation ≺ is wellfounded: if 〈〈ni, fi〉 | i < ω〉 were an
infinite descending chain in ≺, then 〈fi(b) | i < ω〉, where b is the cofinal
branch through T generated by {ni | i < ω}, would be an infinite descending
sequence of ordinals.

For each n < ω let ϕn be the function b �→ αb
n, defined on b ∈ Bn, that is

on branches b so that n ∈ b. By Exercise 2.2, each of the models Mn of T
is 2ℵ0 -closed, and it follows that for each n < ω, ϕn belongs to Mn. Let ≺n

denote the relation j0,n(≺). Using the fact that jm,n(αb
m) > αb

n for all b
and all m < n both in b, it is easy to check that 〈n, ϕn〉 ≺n 〈m, jm,n(ϕm)〉
whenever m T n. Letting γn be the rank of ϕn in ≺n it follows that γn <
jm,n(γm) whenever m T n. But then the sequence 〈γn | n < ω〉 is a witness
that T is continuously illfounded, contradicting Lemma 2.8. �

3. Creating Iteration Trees

The creation of iteration trees with non-linear tree orders is not a simple
matter. Recall that the model Mn+1 in an iteration tree T is created by
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picking an extender En ∈ Mn, picking k ≤ n so that Mk and Mn agree
past crit(En), and setting Mn+1 = Ult(Mk, En). The agreement between Mk

and Mn is necessary for the ultrapower to make sense. The agreement can be
obtained trivially by taking k = n. But doing this repeatedly would generate
a linear iteration, that is an iteration with the simple tree order 0 T 1 T 2 . . . .
For the creation of iteration trees with more complicated orders we need a
way of ensuring that Mn has extenders with critical points within the level
of agreement between Mn and previous models in the tree.

This section introduces the large cardinals and machinery that will allow
us to create iteration trees with as complicated a tree order as we wish. The
results here are due to Martin-Steel [21]. The terminology follows Neeman
[30, §1A(1)].

3.1 Definition. u is called a (κ, n)-type, where κ is a limit ordinal and n < ω,
if u is a set of formulae involving n free variables v0, . . . , vn−1, a constant δ̃,
and additional constants c̃ for each c ∈ V ‖κ ∪ {κ}.

A (κ, n)-type can be coded by a subset of (V ‖κ)<ω. Since κ is assumed to
be a limit ordinal, (V ‖κ)<ω ⊆ V ‖κ. We may therefore view (κ, n)-types as
subsets of V ‖κ.

We refer to κ as the domain of u, denoted dom(u). For τ ≤ κ and m ≤ n,
we let

projmτ (u) =
{
φ(δ̃, c̃0, . . . , c̃k, v0, . . . , vm−1) | k ∈ N, c0, . . . , ck ∈ V ‖τ ∪ {τ},
φ(δ̃, c̃0, . . . , c̃k, v0, . . . , vn−1) ∈ u, and φ makes no mention of

vm, . . . , vn−1

}
.

We use projτ (u) to denote projnτ (u), and projm(u) to denote projmκ (u).

3.2 Definition. We say that a (κ, n)-type u is realized (relative to δ) by
x0, . . . , xn−1 in V ‖η just in case that:

• x0, . . . , xn−1 and δ are elements of V ‖η.

• For any k < ω, any c0, . . . , ck ∈ V ‖κ∪{κ}, and any formula φ(δ̃, c̃0, . . . ,

c̃k, v0, . . . , vn−1), φ(δ̃, c̃0, . . . , c̃k, v0, . . . , vn−1) ∈ u if and only if V ‖η |=
φ[δ, c0, . . . , ck, x0, . . . , xn−1]. (Implicitly we must have η > κ and
η > δ.)

We call u the κ-type of x0, . . . , xn−1 in V ‖η (relative to δ) if u is the unique
(κ, n)-type which is realized by x0, . . . , xn−1 in V ‖η. A (κ, n)-type u is real-
izable (relative to δ) if it is realized by some x0, . . . , xn−1 in some V ‖η.

We often neglect to mention the set δ involved in the realization. In
applications δ is usually fixed, and clear from the context.

3.3 Note. If u is realized by x0, . . . , xn−1 in V ‖η, then projmτ (u) is realized
by x0, . . . , xm−1 in V ‖η.
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3.4 Definition. If the formula “there exists a largest ordinal” and the for-
mula “κ̃, δ̃, v0, . . . , vn−1 ∈ V ‖ν, where ν is the largest ordinal” are both ele-
ments of the (κ, n)-type u we define

u− =
{
φ(δ̃, c̃0, . . . , c̃k, v0, . . . , vn−1) | k ∈ N, c0, . . . , ck ∈ V ‖κ ∪ {κ},
and the formula “V ‖ν |= φ[δ̃, c̃0, . . . , c̃k, v0, . . . , vn−1]

where ν is the largest ordinal” is an element of u
}
.

3.5 Note. If κ, δ, x0, . . . , xn−1 ∈ V ‖η and u is realized by x0, . . . , xn−1

in V ‖η + 1 then u− is defined and is realized by the same x0, . . . , xn−1 in
V ‖η.

3.6 Definition. Let u be a (κ, n)-type, and let w be a (τ,m)-type. We say
that w is a subtype of u (and write w < u) if:

• τ < κ.

• m ≥ n.

• The formula “there is an ordinal ν and vn, . . . , vm−1 ∈ V ‖ν such that w̃
is realized by some permutation of v0, . . . , vm−1 in V ‖ν” is an element
of the type u.

3.7 Note. Let u be the κ-type of x0, . . . , xn−1 in V ‖η. Then w is a subtype
of u iff there are τ < κ, ν < η, m ≥ n, and sets xn, . . . , xm−1 so that w is
the τ -type of some permutation of x0, . . . , xm−1 in V ‖ν.

3.8 Remark. Definition 3.6 makes no mention of realizability but only stip-
ulates that one particular formula belongs to u. It is immediate then that
the property w < u is absolute for any two models of set theory which have w
and u as elements.

3.9 Definition. We say that a (τ,m)-type w exceeds the (κ, n)-type u, if:

• τ > κ.

• m ≥ n.

• There exist ordinals ν, η, and sets x0, . . . , xm−1 ∈ V ‖ν such that

– u is realized by x0, . . . , xn−1 in V ‖η,

– w is realized by some permutation of x0, . . . , xm−1 in V ‖ν, and

– ν + 1 < η.

ν, η, and x0, . . . , xm−1 are said to witness the fact that w exceeds u.

3.10 Remark. The definition here is slightly more liberal than the corre-
sponding definition in Neeman [30], where it is required that w be realized
by x0, . . . , xm−1 in their original order, not by a permutation of x0, . . . , xm−1.
A similar comment applies to Definition 3.6.
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3.11 Note. Let u be the κ-type of x0, . . . , xn−1 in V ‖η. Suppose there
are τ > κ, ν with ν +1 < η, m ≥ n, and xn, . . . , xm−1 so that w is the τ -type
of a permutation of x0, . . . , xm−1 in V ‖ν. Then w exceeds u. This should
be compared with Note 3.7. There τ is smaller than κ, and here τ must be
larger than κ.

3.12 Definition. Let κ < λ, E a λ-strong extender with crit(E) = κ, and u a
type with dom(u) = κ. Let iE : V → Ult(V,E) be the ultrapower embedding.
We define StretchE

λ (u) to be equal to projλ(iE(u)).

iE(u) in Definition 3.12 is a type in Ult(V,E) with domain iE(κ). iE(κ) is
at least as large as λ by Lemma 1.17, since E is λ-strong. So the projection
to λ in Definition 3.12 makes sense.

3.13 Definition. A (κ, n)-type u is called elastic just in case that u− is
defined and u contains the following formulae:

• “δ̃ is an inaccessible cardinal.”

• “Let ν be the largest ordinal. Then for all λ < δ̃ there exists an
extender E ∈ V ‖δ̃ such that

– crit(E) = κ̃, spt(E) = Strength(E), Strength(E) is an inaccessible
cardinal greater than λ, and

– StretchE
λ (u−) is realized (relative to δ̃) by v0, . . . , vn−1 in V ‖ν.”

Formally the last clause should begin with “StretchE
λ (w), where w is the type

of v0, . . . , vn−1 in V ‖ν” instead of StretchE
λ (u−), as u− is not a parameter in

formulae in u.

3.14 Remark. The requirements on support and of inaccessible strength in
Definition 3.13 are not part of the definition in Neeman [30]. They are added
in this chapter so as to make sure, later on, that our iteration trees are nice.

3.15 Remark. Definition 3.13 makes no mention of realizability but only
stipulates that certain formulae belong to u. It is immediate then that the
property of being elastic is absolute between models of set theory.

Ordinarily if u is realized by x0, . . . , xn−1 in V ‖ν + 1 then StretchE
λ (u−)

is realized by iE(x0), . . . , iE(xn−1) in Ult(V,E)‖iE(ν), and relative to iE(δ).
The demand in Definition 3.13 that it must also be realized by x0, . . . , xn−1

in V ‖ν, and relative to δ, places a requirement of certain strength on the
extender E. The existence of realizable elastic types is dependent on the
existence of enough extenders with such strength.

3.16 Definition. Let H be a set. Let E be an extender and let κ = crit(E).
Let j be the ultrapower embedding by E. Let α ≤ j(κ). E is said to be
α-strong with respect to H if (a) it is α-strong; and (b) j(H ∩κ) and H agree
to α, i.e., j(H ∩ κ) ∩ α = H ∩ α.
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A cardinal κ is said to be α-strong with respect to H if it is the critical
point of an extender which is α-strong with respect to H.

A cardinal κ is said to be <α-strong with respect to H if it is β-strong with
respect to H for each β < α.

3.17 Lemma. Let τ be the critical point of a superstrong extender. Let
H ⊆ τ . Then there is a κ < τ which is <τ -strong with respect to H.

Proof. Let E be a superstrong extender with critical point τ , let M =
Ult(V,E), and let π : V →M be the ultrapower embedding. Let τ ∗ = π(τ).
For each α < τ ∗ let Fα be the λ-restriction of π, where λ < τ ∗ is the
least ordinal satisfying the requirements in Lemma 1.18 relative to α. Notice
that Fα is then an element of V ‖τ ∗, and therefore, through of the agreement
between V and M , an element of M . Notice further that, by Lemma 1.18, Fα

is α-strong. Let jα be the ultrapower embedding by Fα, and notice finally
that jα(H) and π(H) agree up to λ, meaning that jα(H) ∩ λ = π(H) ∩ λ.
Since H = π(H) ∩ κ it follows that Fα is α-strong with respect to π(H).

The extenders Fα, α < τ ∗, thus witness that τ is <τ ∗-strong in M with
respect to π(H). So M is a model of the statement “there is a κ < τ ∗ which
is <τ ∗-strong with respect to π(H).” Using the elementarity of π to pull this
statement back to V it follows that there is a κ < τ which is <τ -strong with
respect to H. �

3.18 Definition. A cardinal δ is called a Woodin cardinal if for every H ⊆ δ,
there exists a κ < δ which is <δ-strong with respect to H.

Lemma 3.17 shows that the critical point of a superstrong extender is
Woodin. The next exercise shows that there are Woodin cardinals below the
critical point. In fact Woodin cardinals sit well below such critical points in
the large cardinal hierarchy, and there are many large cardinal axioms strictly
between the existence of Woodin cardinals and the existence of superstrong
extenders.

3.19 Exercise. Let E be a superstrong extender. Show that there are
Woodin cardinals below the critical point of E. In fact, show that the critical
point of E is a limit of Woodin cardinals.

3.20 Exercise. Let δ be a Woodin cardinal. Show that δ is a limit of
(strongly) inaccessible cardinals, and that it is (strongly) inaccessible itself.

3.21 Exercise. Let δ be a Woodin cardinal. Let H ⊆ δ and let κ be <δ-
strong with respect to H. Let α < δ be given. Prove that there is an
extender E with critical point κ so that E is α-strong with respect to H, and
so that spt(E) = Strength(E) and Strength(E) is an inaccessible cardinal
greater than α.

Hint. Let λ < δ be the first inaccessible cardinal above α. Using the fact
that κ is <δ-strong with respect to H, get an extender F with critical point
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κ so that F is λ-strong with respect to H. In particular then F is α-strong
with respect to H, and Strength(F ) ≥ λ. Let π be the ultrapower embedding
by F , and let E be the λ-restriction of π. Show that the strength of E is
precisely λ, and that E is α-strong with respect to H. �

3.22 Lemma. Let δ be a Woodin cardinal. Let η > δ, and let x0, . . . , xn−1

be elements of V ‖η. Then there exist unboundedly many κ < δ such that
the κ-type of x0, . . . , xn−1 in V ‖η + 1 relative to δ is elastic.

Proof. For each (strongly) inaccessible γ < δ, let Aγ be the γ-type of
x0, . . . , xn−1 in V ‖η relative to δ, viewed as a subset of γ. Let H = {(ξ, γ) |
ξ ∈ Aγ}, where (∗, ∗) is the Gödel pairing.

Let κ be <δ-strong with respect to H. Let u be the κ-type of x0, . . . , xn−1

in V ‖η + 1.
It is easy to check that if λ∗ is closed under Gödel pairing and E is λ∗-

strong with respect to H, then for every λ < λ∗, StretchE
λ (u−) is realized

by x0, . . . , xn−1 in V ‖η. Using Exercise 3.21 it follows that the formula in
the second clause of Definition 3.13 holds for x0, . . . , xn−1 in V ‖η + 1, and
is therefore an element of u. By Exercise 3.20, δ is inaccessible, and so the
formula in the first clause of Definition 3.13 belongs to u. This shows that u
is elastic.

We have so far obtained one cardinal κ < δ such that the κ-type of
x0, . . . , xn−1 in V ‖η is elastic. We leave it to the reader to show that there
are unboundedly many. �

We now know that Woodin cardinals provide the strength necessary for
the existence of many elastic types. The usefulness of elastic types appears
through the following lemma. The lemma essentially says that an elastic
type u which is exceeded by a type w can be stretched to a supertype of w.

3.23 Lemma (One-Step Lemma). Assume that u is an elastic type, and
that w exceeds u (with all realizations relative to δ). Let τ = dom(w) and
let κ = dom(u). Suppose that τ < δ. Then there exists an extender E ∈ V ‖δ
so that

• crit(E) = κ, spt(E) = Strength(E), the strength of E is an inaccessible
cardinal greater than τ , and

• w < StretchE
τ+ω(u).

Proof. Let ν, η, x0, . . . , xm−1 witness that w exceeds u. Since u− exists, η is
a successor ordinal. Say η = η̄ + 1. Pick E ∈ V ‖δ so that crit(E) = κ, E
has inaccessible strength greater than τ , and StretchE

τ+ω(u−) is realized by
x0, . . . , xn−1 in V ‖η̄ relative to δ. This is possible since u is elastic.

Then w is a subtype of StretchE
τ+ω(u−), as it is realized by a permutation

of x0, . . . , xn−1, xn, . . . , xm in V ‖ν and ν < η̄. Simple properties of realizable
types now imply that w is a subtype of StretchE

τ+ω(u). �
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We now have the tools necessary for the creation of iteration trees. We
work for the rest of the section under the assumption that δ is a Woodin
cardinal.

3.24 Lemma. Let M0 = V . There is an iteration tree with the structure of
models presented in the following diagram:

M0 = M1 M2 M3

Proof. Let η be an ordinal greater than δ. Let κ0 < δ be such that the κ0-type
of η in V ‖η + 5 is elastic. Let u0 be this type.

Let κ1 > κ0 be such that the κ1-type of η in V ‖η + 3 is elastic. Let u1 be
this type.

Notice that u1 exceeds u0. Using the One-Step Lemma pick a κ1 + 1-
strong extender E1 ∈ M1‖δ so that crit(E1) = κ0, and u1 is a subtype of
StretchE1

κ1+ω(u0).
Set M2 = Ult(M0, E1), and let j0,2 : M0 →M2 be the ultrapower embed-

ding. Then u1 is a subtype of j0,2(u0). By the elementarity of j0,2, j0,2(u0)
is realized by j0,2(η) in M2‖j0,2(η)+5. It follows from this and from the fact
that u1 is a subtype of j0,2(u0), that u1 is also realized in M2, specifically it
must be realized by j0,2(η) in M2‖j0,2(η)+3. The level j0,2(η)+3 is reached
by observing that u1 contains the formula “v0 + 2 is the largest ordinal”.

Working now in M2, let κ2 > κ1 be such that the κ2-type of j0,2(η)
in M2‖j0,2(η) + 1 is elastic. Let u2 be this type. Notice that u2 then exceeds
u1, inside M2. This uses the realization of u1 in M2, reached in the previous
paragraph. Applying the One-Step Lemma pick an extender E2 ∈M2 which
stretches u1 to a supertype of u2. E2 has critical point κ1, and κ1 is within the
level of agreement between M2 and M1. E2 can therefore be applied to M1.
Set M3 = Ult(M1, E2). �

3.25 Exercise. Construct an iteration tree with the structure presented in
the following diagram:

M0 = M1 M2 M3 M4

3.26 Exercise. Construct a length ω iteration tree with the tree order pre-
sented in the following diagram:

M0 = M1 M2 M3 M4 M5
. . .

Hint. The following definition is useful:
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3.27 Definition. Let νL < νH be ordinals greater than δ. We say that 〈νL , νH〉
is a pair of local indiscernibles relative to δ just in case that:

(V ‖νL + ω) |= φ[νL , c0, . . . , ck−1] ⇐⇒ (V ‖νH + ω) |= φ[νH , c0, . . . , ck−1]

for any k < ω, any formula φ with k+1 free variables, and any c0, . . . , ck−1 ∈
V ‖δ + ω.

Given local indiscernibles νL < νH , note that a type u is realized by νL

in V ‖νL + 1 iff it is realized by νH in V ‖νH + 1. Notice further that if u is
realized by νH in V ‖νH +1, then any type of larger domain, which is realized
by νL in V ‖νL + 3, exceeds proj0(u), because νL + 3 < νH + 1. (It should be
pointed out that the use of the projection is necessary here, to pass to a type
which does not involve νH as a parameter.) In sum then you have:

3.28 Claim. Let u be κ-type realized by νL in V ‖νL +1. Let τ > κ and let w
be a τ -type realized by νL in V ‖νL + 3. Then w exceeds proj0(u).

You have also the following claim, directly from the definitions:

3.29 Claim. Let α be an ordinal greater than δ. Let u be a κ-type realized
by α in V ‖α + 3. Let τ > κ and let w be a τ -type realized by α in V ‖α + 1.
Then w exceeds u.

Use the two claims alternately, to construct the iteration tree required for
the exercise, types un ∈ Mn, and ordinals αn for n < ω odd, with α1 = νL ,
so that:

(1) For even n < ω, un is realized by j0,n(νL) in Mn‖j0,n(νL) + 3.

(2) For odd n < ω, un−1 is realized by αn in Mn‖αn +3, and un is realized
by αn in Mn‖αn + 1.

The construction is similar to that of the previous exercise, except that the
use of the projection introduces some changes. The ordinals αn for n > 1
odd are chosen using the third clause of Definition 3.6, applied to the fact
that un−1 is a subtype of jn−2,n(proj0(un−2)). If you get αn < jn−2,n(αn−2)
for n > 1 odd, then you are on the right track. �

3.30 Exercise. Go back to the last exercise, and make sure that the tree
you construct is nice.

4. Homogeneously Suslin Sets

By a tree on a set X we mean a set T ⊆ X<ω, closed under initial segments.
We use [T ] to denote the set of infinite branches through T , that is the set
{x ∈ Xω | (∀n)x�n ∈ T}. Given a tree T on X × Y we often think of T
as a subset of X<ω × Y <ω rather than (X × Y )<ω, and similarly we think
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of [T ] as a subset of Xω × Y ω. For T a tree on X × Y we use p[T ] to denote
the projection of [T ] to Xω, namely the set {x ∈ Xω | (∃y)〈x, y〉 ∈ [T ]}.
We use Ts (for s ∈ X<ω) to denote the set {t ∈ Y <ω | 〈s, t〉 ∈ T}, and
use Tx (for x ∈ Xω) to denote the tree

⋃
n<ω Tx�n. x is an element of p[T ]

iff [Tx] is non-empty. We sometimes apply similar terminology in the case
that T is a tree on a product of more than two sets, for example p[T ] = {x |
(∃y)(∃z)〈x, y, z〉 ∈ [T ]} in the case that T is a tree on X × Y × Z.

Recall that a set A ⊆ Xω is Σ1
1 iff there is a tree R on X × ω so that

A = p[R]. A set is Π1
n if its complement is Σ1

n; and a set A ⊆ Xω is Σ1
n+1

(for n ≥ 1) if there is a Π1
n set B ⊆ Xω ×ωω so that x ∈ A⇐⇒ (∃y)〈x, y〉 ∈

B. A set is projective if it is Π1
n for some n < ω. The projective sets are thus

obtained from closed sets using complementations and projections along the
real line.

The sets of reals in the very first level L1(R) (Definition 8.3) are precisely
the projective sets, and our climb to ADL(R) begins at the low end of the
projective hierarchy. We prove determinacy for Π1

1 sets assuming measurable
cardinals. The proof, due to Martin [16], can with hindsight be divided into
two parts: a proof, using a measurable cardinal κ, that all Π1

1 sets are κ-
homogeneously Suslin (see below for the definition); and a proof that all
homogeneously Suslin sets are determined.

Let γ be an ordinal and let m < n < ω. For Z ⊆ γm let Z∗ = {f ∈ γn |
f�m ∈ Z}. A measure ν over γn is an extension of a measure μ over γm just
in case that for every Z ⊆ γm, μ(Z) = 1 → ν(Z∗) = 1.

A tower of measures over γ is a sequence 〈μn | n < ω〉 so that:

(i) μn is a measure over γn for each n.

(ii) μn is an extension of μm for all m < n < ω.

The tower is countably complete just in case that:

(iii) If μn(Zn) = 1 for each n then there is a fiber through 〈Zn | n < ω〉,
namely a sequence 〈αi | i < ω〉 so that 〈α0, . . . , αn−1〉 ∈ Zn for each n.

For sequences s and t we write s ≤ t to mean that s is an initial segment
of t, and s < t to mean that s is a proper initial segment of t.

4.1 Definition. A tree T on X × γ is homogeneous if there is a sequence of
measures 〈μs | s ∈ X<ω〉 so that:

(1) For each s ∈ X<ω, μs is a measure over Ts (equivalently, over γlh(s)

with μs(Ts) = 1), and μs is card(X)+-complete.

(2) If s ≤ t then μt is an extension of μs.

It follows from condition (2) that for every x ∈ Xω, the sequence 〈μx�n |
n < ω〉 is a tower.

(3) If x ∈ p[T ] then the tower 〈μx�n | n < ω〉 is countably complete.
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T is κ-homogeneous if in addition each of the measures μs is κ-complete.

4.2 Exercise. Let T be a homogeneous tree on X × γ. Prove that there is
a system 〈Ms, fs, js,t | s ≤ t ∈ X<ω〉 of (wellfounded) models Ms, nodes fs,
and embeddings js,t satisfying the following conditions:

(1) js,t : Ms →Mt for each s ≤ t, crit(js,t) is larger than card(X), M∅ = V ,
and the system 〈Ms, js,t | s ≤ t ∈ X<ω〉 commutes in the natural way.

(2) fs ∈ j∅,s(Ts) for each s ∈ X<ω, and the nodes 〈fs | s ∈ X<ω〉 cohere in
the natural way, meaning that s < t =⇒ js,t(fs) < ft.

(3) If x ∈ p[T ] then the system 〈Ms, js,t | s ≤ t < x〉 has a wellfounded
direct limit.

Hint. Let Ms = Ult(V, μs) and let js : V → Ms be the ultrapower embed-
ding. Let fs be the seed of the measure μs. Notice that fs is an element
of js(Ts).

Recall that each element of Ms has the form js(g)(fs) for some function g :
γlh(s) → V . For s ≤ t ∈ X<ω define an embedding js,t : Ms → Mt by
letting js,t send js(g)(fs) to jt(g)(ft� lh(fs)).

Prove that the resulting system satisfies conditions (1)–(3). �

4.3 Exercise. Let T be a tree on X × γ and suppose that there is a sys-
tem 〈Ms, fs, js,t | s ≤ t ∈ X<ω〉 satisfying the conditions in Exercise 4.2.
Prove that T is homogeneous.

Suppose in addition that the embeddings js,t all have critical points at
least κ. Show that T is κ-homogeneous.

Hint. Set μs(Z) = 1 iff fs ∈ j∅,s(Z). Prove that the resulting system of
measures 〈μs | s ∈ X<ω〉 satisfies the conditions in Definition 4.1. �

The existence of a system satisfying the conditions in Definition 4.1 is
thus equivalent to the existence of a system satisfying the conditions in Ex-
ercise 4.2. We use the two systems alternately, and refer to both of them as
homogeneity systems for the tree T .

4.4 Exercise. Show that the converse of condition (3) in Exercise 4.2 follows
from conditions (1) and (2) in the exercise. Condition (3) can therefore be
strengthened to an equivalence, and so can condition (3) in Definition 4.1.

Hint. Fix x. Let Mx be the direct limit of the system 〈Ms, js,t | s ≤ t < x〉,
and let js,x : Ms → Mx for s < x be the direct limit embeddings. Let
fx =

⋃
s<x js,x(fs), and notice that using condition (2), fx is an infinite

branch through j∅,x(Tx). Use the wellfoundedness of Mx to find some infinite
branch f through j∅,x(Tx) with f ∈ Mx, and then using the elementarity
of j∅,x argue that x ∈ p[T ]. �
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A set A ⊆ Xω is Suslin if there is an ordinal γ and a tree T on X × γ
so that p[T ] = A. A ⊆ Xω is homogeneously Suslin if in addition T can be
taken to be homogeneous, and κ-homogeneously Suslin if T can be taken to
be κ-homogeneous. These definitions are due independently to Kechris and
Martin. In the context of the axiom of choice, which we employ through-
out the chapter, every A ⊆ Xω is Suslin. But of course not every set is
homogeneously Suslin.

Let κ be a measurable cardinal. Fix a set X ∈ V ‖κ and a Π1
1 set A ⊆ Xω.

We aim to show that A is κ-homogeneously Suslin.

4.5 Exercise. Let R ⊆ ω<ω be a tree. The Kleene-Brouwer order on R is
the strict order ≺ defined by the condition: s ≺ t iff s extends t or s(n) < t(n)
where n is least so that s(n) �= t(n). Prove that ≺ is illfounded iff R has an
infinite branch.

4.6 Exercise. Show that there is a map s �→≺s, defined on s ∈ X<ω, so
that:

• ≺s is a linear order on lh(s).

• If s ≤ t then ≺s⊆≺t.

• x ∈ A iff ≺x is wellfounded, where ≺x =
⋃

n<ω ≺x�n.

The last condition is the most important one. The first two conditions are
needed to make sense of ≺x.

Hint to Exercise 4.6. Let R ⊆ (X × ω)<ω be a tree so that p[R] is precisely
equal to the complement of A. Define the map s �→≺s in such a way that for
each x ∈ Xω, ≺x is isomorphic to the Kleene-Brouwer order on Rx. �

Let T ⊆ X×κ be the tree consisting of nodes 〈s, f〉 so that f has the form
〈α0, . . . , αlh(s)−1〉 with αi < κ for each i, and αi < αj iff i ≺s j.

4.7 Exercise. Show that p[T ] = A.

Since κ is measurable, there is an elementary embedding j : V → M
with crit(j) = κ. Let μ be the measure over κ defined by μ(Z) = 1 iff κ ∈
j(Z).

4.8 Exercise. Prove that μ is a κ-complete, non-principal measure on κ.

4.9 Exercise. A function f : κ → κ is pressing down if f(α) < α for all
α < κ. A measure over κ is called normal if every pressing down function
on κ is constant on a set of measure one. Prove that the measure μ defined
above is normal.

4.10 Exercise. The diagonal intersection of the sets Zα (α < κ) is defined
to be the set {ξ ∈ κ | (∀α < ξ)ξ ∈ Zα}. Prove, for the measure μ defined
above, that the diagonal intersection of sets of measure one has measure one.
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For each s ∈ X<ω and each C ⊆ κ define Cs to be the set of tuples
〈α0, . . . , αlh(s)−1〉 with αi ∈ C for each i, and αi < αj iff i ≺s j. Define a
filter Fs over κlh(s) by setting Z ∈ Fs iff there exists a set C ⊆ κ so that
Z ⊇ Cs and μ(C) = 1.

4.11 Exercise. Prove that Fs is an ultrafilter over κlh(s), meaning that for
every Z ⊆ κlh(s), either Z ∈ Fs or else κs − Z ∈ Fs.

Hint. Work by induction on the length of s. The inductive step makes several
uses of Exercises 4.9 and 4.10. �

Define a two-valued measure μs on κs by setting μs(Z) = 1 iff Z ∈ Fs.

4.12 Exercise. Prove that μs is κ-complete.

4.13 Exercise. Let s ≤ t ∈ X<ω. Prove that μt extends μs.

4.14 Exercise. Let x ∈ Xω, and suppose that x belongs to A, so that ≺x

is wellfounded. Prove that the tower 〈μx�n | n < ω〉 is countably complete.

Hint. Suppose that μx�n(Zn) = 1 for each n < ω. Fix Cn so that μ(Cn) = 1
and Cs

n ⊆ Zn. Let C =
⋂

n<ω Cn. Then Cs ⊆ Zn for each n, and μ(C) = 1
by countable completeness. Since x ∈ A, ≺x is wellfounded. The order ≺x

can therefore be embedded into the ordinals, and in fact into C since C is
uncountable. Pick then a sequence 〈αi | i < ω〉 of ordinals in C so that i ≺x j
iff αi < αj . The sequence 〈αi | i < ω〉 is a fiber through 〈Zn | n < ω〉. �

4.15 Theorem. Let κ be a measurable cardinal. Let X belong to V ‖κ and
let A ⊆ Xω be Π1

1. Then A is κ-homogeneously Suslin.

Proof. Let T ⊆ (X × κ)<ω be the tree defined above and let μs be the
measures defined above. Exercises 4.12 through 4.14 establish that 〈μs | s ∈
X<ω〉 is a κ-homogeneity system for T . �

Next we prove that homogeneously Suslin sets are determined. We work
for the rest of the section with some set X and a homogeneously Suslin
set A ⊆ Xω. Let T and 〈μs | s ∈ X<ω〉 witness that A is homogeneously
Suslin.

Define G∗ to be the game played according to Diagram 22.8 and the fol-
lowing rules:

• xn ∈ X for each n < ω.

• 〈x0, α0, . . . , xn−1, αn−1〉 ∈ T for each n < ω.

The first rule is a requirement on player I if n is even, and on player II if n
is odd. The second rule is a requirement on player I. A player who violates
a rule loses. Infinite runs of G∗ are won by player I.

4.16 Exercise. Prove that G∗ is determined.
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I x0 α0 α1 x2 α2 α3 . . .
II x1 x3 . . .

Diagram 22.8: The game G∗

Hint. You are asked to prove the famous theorem of Gale-Stewart [6] that
infinite games with closed payoff are determined. Let S be the set of positions
in G∗ from which player II has a winning strategy. If the initial position
belongs to S, then player II has a winning strategy in G∗. Suppose that
the initial position does not belong to S, and prove that there is a strategy
for player I which stays on positions outside S, and that this strategy is
winning. �

4.17 Exercise. Suppose that player I has a winning strategy in G∗. Prove
that player I has a winning strategy in Gω(A).

Hint. Let σ∗ be a winning strategy for I in G∗. Say that a position p =
〈x0, . . . , xn−1〉 in Gω(A) is nice if it can be expanded to a position p∗ =
〈x0, α0, . . . , xn−1, αn−1〉 in G∗ so that p∗ is according to σ∗. Note that if
such an expansion exists, then it is unique. Define a strategy σ for I in
Gω(A) by setting σ(p) = σ∗(p∗). Show that every infinite run according to σ
belongs to p[T ], and is therefore won by player I in Gω(A). �

4.18 Lemma. Suppose that player II has a winning strategy in G∗. Then
player II has a winning strategy in Gω(A).

Proof. Let σ∗ be a winning strategy for II in G∗.
Let s = 〈x0, . . . , xi−1〉 be a position of odd length in Gω(A). For each

ϕ = 〈α0, . . . , αi−1〉 ∈ Ts, let hs(ϕ) be σ∗’s move following the position
〈x0, α0, . . . , xi−1, αi−1〉 in G∗. hs is then a function from Ts into X. By
the completeness of μs there is a specific move xi so that:

(∗) {ϕ | hs(ϕ) = xi} has μs-measure one.

Define σ(s) to be equal to this xi.
Suppose now that x = 〈xi | i < ω〉 is an infinite run of Gω(A), played

according to σ. We have to show that x is won by player II.
Using condition (∗) fix for each odd n < ω a set Zn ⊆ Tx�n so that

hx�n(ϕ) = xn for every ϕ ∈ Zn and μx�n(Zn) = 1. For even n < ω let Zn =
Tx�n.

Suppose for contradiction that x ∈ A. Then 〈μx�n | n < ω〉 is countably
complete and so there is a fiber 〈αi | i < ω〉 for the sequence 〈Zn | n < ω〉.
In other words there is a sequence 〈αi | i < ω〉 in [Tx] so that hx�n(〈α0, . . . ,
αn−1〉) = xn for each odd n < ω. But then 〈xi, αi | i < ω〉 is a run of G∗ and
is consistent with σ∗. This is a contradiction, since σ∗ is a winning strategy
for player II, and infinite runs of G∗ are won by player I. �
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4.19 Corollary. Let A ⊆ Xω be homogeneously Suslin. Then Gω(A) is
determined.

Proof. By Exercise 4.16, G∗ is determined. By Exercise 4.17 and Lemma 4.18,
the player who has a winning strategy in G∗ has a winning strategy in Gω(A).

�

Theorem 4.15 and Corollary 4.19 establish the determinacy of Π1
1 subsets

of ωω, assuming the existence of a measurable cardinal. In the next section
we deal with Π1

2 sets.

5. Projections and Complementations

Martin and Steel [21] use Woodin cardinals to propagate the property of being
homogeneously Suslin under complementation and existential real quantifi-
cation, proving in this manner that all projective sets are determined. In
this section we present their results. We begin by proving that if δ is a
Woodin cardinal, and A ⊆ Xω × ωω is δ+-homogeneously Suslin, then the
set B = {x ∈ Xω | (∀y)〈x, y〉 �∈ A} is determined. We then go on to show
that B is κ-homogeneously Suslin for all κ < δ. Together with the results
in Sect. 4 this shows that all Π1

n+1 sets are determined, assuming that there
are n Woodin cardinals and a measurable cardinal above them.

Let δ be a Woodin cardinal. Let X be a set in V ‖δ, and let A ⊆ Xω×ωω.
Let B = {x ∈ Xω | (∀y)〈x, y〉 �∈ A}. Suppose that A is δ+-homogeneously
Suslin, and let S ⊆ (X × ω × γ)<ω (for some ordinal γ) and 〈μs,t | 〈s, t〉 ∈
(X × ω)<ω〉 witness this.

5.1 Remark. The objects in the homogeneity system are given for pairs
〈s, t〉 ∈ X<ω × ω<ω with lh(s) = lh(t). We sometimes write μs,t or Ss,t

also when s and t are of different length. We mean μs�n,t�n where n =
min{lh(s), lh(t)}, and similarly with Ss,t. We also write μx,t for x ∈ Xω to
mean μx�n,t where n = lh(t), and similarly with Sx,t.

5.2 Exercise (Martin-Solovay [20]). Let ti (i < ω) enumerate ω<ω. The
Martin-Solovay tree for the complement of p[A], where A ⊆ Xω × ωω is the
projection of a tree S with homogeneity system 〈μs,t | 〈s, t〉 ∈ (X × ω)<ω〉,
is the tree of attempts to create x ∈ Xω and a sequence 〈ρi | i < ω〉 so that:

(i) ρi is a partial function from Sx� lh(ti),ti
into |S|+, and the domain of ρi

has μx� lh(ti),ti
-measure one.

(ii) If ti < tj then ρi(f� lh(ti)) > ρj(f) for every f ∈ dom(ρj).

Prove that this tree projects to Xω − p[A].

Definitions 5.3 and 5.6 below essentially code a subset of the Martin-
Solovay tree for B by a relation on types. We will use this coding to prove that
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Gω(B) is determined, and that in fact B is homogeneously Suslin. Martin-
Steel [21] proved that the Martin-Solovay tree itself is homogeneous. We work
with types, rather than the Martin-Solovay tree of functions, in preparation
for Sect. 6.

The constructions below use the definitions of Sect. 3. By type here we
always mean a type with domain less than δ and greater than rank(X). All
realizations in V are relative to the fixed Woodin cardinal δ. The variable v0

in each type will always be realized by S. (Realizations in iterates M of V
are made relative to the appropriate image of δ, and with the first variable
realized by the image of S.)

5.3 Definition. Let 〈s, t〉 ∈ X<ω×ω<ω, with lh(s) = lh(t) = k say. Let w be
a (k+2)-type. Define Zs,t to be the set of f ∈ Ss,t for which (∃η ∈ On)(∃α >
max{δ, rank(S)}) so that w is realized by S, 〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉,
and α in V ‖η. Define ρs,t : Zs,t → On by setting ρs,t(f) equal to the least η
witnessing the existential statement above.

5.4 Remark. Both Zs,t and ρs,t depend on w. When we wish to emphasize
the dependence we write Zs,t(w) and ρs,t(w).

Definition 5.3 lets us view types as defining partial functions ρs,t from Ss,t

into the ordinals. The domain of the partial function ρs,t is Zs,t. Connecting
the definition to the homogeneity system, let us say that w is 〈s, t〉-nice if Zs,t

has μs,t-measure one.

5.5 Claim. Let w be a (k+2)-type and suppose that w is 〈s, t〉-nice. Then w
contains the formula “{v1, . . . , vk} is a node in the tree (v0)s̃,t̃”.

Note that both s and t belong to the domain of w, since they are elements
of X<ω, and the domain of w is greater than rank(X) (see the comment
following Remark 5.1). The reference to s̃ and t̃ in a formula which may
potentially belong to w therefore makes sense. (v0)s̃,t̃ in the formula stands
for the tree of nodes g so that 〈s, t, g〉 belongs to the interpretation of v0.

Proof of Claim 5.5. Let f be any element of Zs,t(w). (Zs,t has μs,t-measure
one, and so certainly it is not empty.) Then

(1) w is realized by S, 〈0, f(0)〉, . . . , 〈k− 1, f(k− 1)〉, α in V ‖η for some α
and η.

(2) 〈s, t, f〉 belongs to S, meaning that f , which is formally equal to the
set {〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉}, belongs to Ss,t.

It follows that the formula in the claim belongs to w. �

5.6 Definition. Let s′ and t′ extend s and t (perhaps not strictly), with
lh(s′) = lh(t′) = k′. Let w be 〈s, t〉-nice and let w′ be 〈s′, t′〉-nice. We
write w′ ≺ w to mean that the set {f ′ ∈ Ss′,t′ | ρs′,t′ (w′)(f ′) < ρs,t(w)(f ′�k)}
has μs′,t′ -measure one.
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5.7 Claim. The relation ≺ is transitive.

5.8 Definition. Given a k+2-type w we use dcp(w) (pronounced “decap w”)
to denote projk+1(w). If w is realized by S, 〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉,
and α, then dcp(w) is realized by S, 〈0, f(0)〉, . . . , and 〈k − 1, f(k − 1)〉.

5.9 Claim. Let w be 〈s, t〉-nice, and suppose that w contains the formula
“vk+1 + 2 exists” (where k = lh(s) = lh(t), and w is a (k + 2)-type). Let s′

and t′ extend s and t, with lh(s′) = lh(t′) = k′. Then there is a (k′ +2)-type u
so that:

(1) u is 〈s′, t′〉-nice.

(2) u contains the formula “vk′+1 is the largest ordinal”.

(3) dcp(u) is elastic.

(4) u exceeds w.

(5) u ≺ w.

Proof. Fix for a moment some f ′ ∈ Ss′,t′ , and suppose that f ′�k ∈ Zs,t(w).
Let η = ρs,t(f ′�k), so that w is realized by S, 〈0, f ′(0)〉, . . . , 〈k − 1,
f ′(k − 1)〉, and some α > max{δ, rank(S)} in V ‖η. Since w contains the
formula “vk+1 + 2 exists”, it must be that η > α + 2.

Let τ < δ be such that the τ -type of S, 〈0, f ′(0)〉, . . . , and 〈k′ − 1,
f ′(k′ − 1)〉 in V ‖α + 1 is elastic, and such that τ > dom(w). Such a τ exists
by Lemma 3.22. Let u be the τ -type of S, 〈0, f ′(0)〉, . . . , 〈k′ − 1, f ′(k′ − 1)〉,
and α in V ‖α + 1. Then u contains the formula “vk′+1 is the largest ordi-
nal”, u exceeds w, and dcp(u) is elastic.

The type u defined above depends on the node f ′ ∈ Ss′,t′ used. To empha-
size the dependence let us from now on write u(f ′) to denote this type. Let
us similarly write α(f ′) and η(f ′) to emphasize the dependence of α and η
on f ′.

The function f ′ �→ u(f ′) maps {f ′ ∈ Ss′,t′ | f ′�k ∈ Zs,t} into V ‖δ. Using
the fact that Zs,t has μs,t-measure one it is easy to check that the domain of
this function has μs′,t′ -measure one. From this and the δ+-completeness of
the measures it follows that the function is fixed on a set of μs′,t′ -measure one.
Thus, there exists a particular type u, and a set Z ⊆ Ss′,t′ , so that u(f ′) = u
for each f ′ ∈ Z, and Z has μs′,t′ -measure one.

Clearly Zs′,t′ (u) ⊇ Z, and it follows from this that u is 〈s′, t′〉-nice. It is
also clear that ρs′,t′ (u)(f ′) ≤ α(f ′)+1 < η(f ′) for each f ′ ∈ Z, and it follows
from this that u ≺ w. �

5.10 Claim. Let u be 〈s, t〉-nice, where lh(s) = lh(t) = k. Let w be a (k+2)-
type, containing the formula “vk+1 > max{δ̃, rank(v0)}”. Suppose that w is
a subtype of dcp(u). Then w is 〈s, t〉-nice, and w ≺ u.
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Proof. Fix for a moment some f ∈ Zs,t(u). Let η = ρs,t(u)(f), so that u is
realized by S, 〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉, and some α in V ‖η.

Since w is a subtype of dcp(u), there must be some β and some ν so
that w is realized by S, 〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉, and β in V ‖ν, and
so that ν < η. Since w contains the formula “vk+1 > max{δ̃, rank(v0)}”, β is
greater than max{δ, rank(S)}.

It follows from the argument of the previous paragraph that, for each f ∈
Zs,t(u), there exist ν and β > max{δ, rank(S)} so that w is realized by S,
〈0, f(0)〉, . . . , 〈k−1, f(k−1)〉, and β in V ‖ν, and that the least ν witnessing
this is smaller than ρs,t(u)(f). In other words f ∈ Zs,t(w) and ρs,t(w)(f) <
ρs,t(u)(f), for each f ∈ Zs,t(u). Since Zs,t(u) has μs,t-measure one this
implies that w is 〈s, t〉-nice and that w ≺ u. �

5.11 Claim. Let x ∈ Xω. Suppose that there are types 〈wt | t ∈ ω<ω〉 so
that:

(1) Each wt is 〈x, t〉-nice.

(2) For each t < t∗ ∈ ω<ω, wt∗ ≺ wt.

Then x ∈ B.

Proof. We have to show that (∀y ∈ ωω)〈x, y〉 �∈ A. Fix y ∈ ωω. For each
n < ω let μn denote μx�n,y�n. Let ρn denote ρx,y�n(wy�n). ρn is a partial
function with domain a μn-measure one subset of Sx�n,y�n.

Set Z0 = S∅,∅ and for each n < ω set Zn+1 = {f ∈ Sx�n+1,y�n+1 |
ρn+1(f) < ρn(f�n)}. By assumption wy�n+1 ≺ wy�n so Zn+1 has μn+1-
measure one.

Suppose for contradiction that 〈x, y〉 ∈ A. The tower 〈μn | n < ω〉 is
then countably complete by Definition 4.1, so the sequence 〈Zn | n < ω〉
has a fiber, f = 〈αi | i < ω〉 say. Then f�n + 1 ∈ Zn+1 for each n < ω,
meaning that ρn+1(f�n + 1) < ρn(f�n), so that 〈ρn(f�n) | n < ω〉 is an
infinite descending sequence of ordinals, contradiction. �

Let 〈νL , νH〉 be the lexicographically least pair of local indiscernibles (Defi-
nition 3.27) of V relative to max{δ, rank(S)}, minimizing first over the second
coordinate.

5.12 Claim. For each κ < δ, the κ-type of S and νL in V ‖νL + 1 is 〈∅, ∅〉-
nice.

For t ∈ ω<ω let pred(t) denote t�(lh(t)− 1).

5.13 Definition. Define G∗, illustrated in Diagram 22.9, to be played ac-
cording to the following rules:

(1) xn ∈ X.

(2) tn ∈ ω<ω.
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I w0 x0 w1 w2 x2 . . .
II l0, t0, u0 l1, t1, u1 x1 l2, t2, u2 . . .

Diagram 22.9: The game G∗

(3) un is a (kn + 2)-type, dcp(un) is elastic, and un contains the formula
“{v1, . . . , vkn} is a node in the tree (v0)s̃n,t̃n

”, where kn = lh(tn) and
sn = x�kn.

(4) If n > 0 then dom(un) > dom(un−1). (And dom(u0) > rank(X), see
the comment following Remark 5.1.)

(5) If tn = ∅ then un is realized by S and νL in V ‖νL + 1.

(6) If tn �= ∅ then ln < n is such that tln = pred(tn), and un exceeds wln .

(7) wn too is a (kn + 2)-type, wn is a subtype of dcp(un), and wn contains
the formulae “vkn+1 > max{δ̃, rank(v0)}” and “vkn+1 + 2 exists and is
the largest ordinal”.

The first player to violate any of the rules loses. Infinite runs where all rules
have been followed are won by player I.

5.14 Lemma. Suppose that player I has a winning strategy in G∗. Then
player I has a winning strategy in Gω(B).

Proof. Let σ∗ be a winning strategy for player I in G∗. Let 〈t∗
n | n < ω〉

enumerate ω<ω in such a way that (∀t ∈ ω<ω) pred(t) is enumerated before t.
In particular t∗

0 = ∅. For n > 0 let l∗
n < n be such that pred(t∗

n) = t∗
l∗
n
. Let

l∗
0 = 0.

Fix an opponent willing to play for II in Gω(B). We describe how to
play against the opponent, and win. Our description takes the form of a
construction of a run of G∗. σ∗ supplies moves for I. The opponent supplies
the moves x1, x3, x5, . . . for II. It is up to us to come up with the remaining
moves, ln, tn, un for n < ω. We make sure as we play that:

(1) tn = t∗
n and ln = l∗

n.

(2) un contains the formula “vkn+1 is the largest ordinal” where kn =
lh(tn).

(3) un is 〈x, tn〉-nice.

(We write 〈x, tn〉-nice, but notice that only x� lh(tn) is relevant to the condi-
tion.)

wn, by the rules of G∗, is a (kn + 2)-type, is a subtype of dcp(un), and
contains the formula “vkn+1 > max{δ̃, rank(v0)}”. It follows by Claim 5.10
that:
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(i) wn is 〈x, tn〉-nice.

(ii) wn ≺ un.

Let us now describe how to play ln, tn, and un. We begin with the
case n = 0. Set t0 = ∅ and l0 = 0. Using Lemma 3.22 let κ0 < δ be
such that the κ0-type of S in V ‖νL + 1 is elastic. Set u0 to be the κ0-type
of S and νL in V ‖νL + 1. These assignments determine the moves l0, t0,
and u0. It is easy to check that they satisfy the relevant rules of G∗, and
conditions (1)–(3) above for n = 0.

Suppose next that rounds 0 through n − 1 have been played, subject to
the relevant rules and to conditions (1)–(3) above. Set tn = t∗

n and ln = l∗
n.

Note that by condition (i), wln is 〈x, tln〉-nice. Let kn = lh(tn). Using
Claim 5.9, set un to be a (kn +2)-type so that: un is 〈x, tn〉-nice; un contains
the formula “vkn+1 is the largest ordinal”; dcp(un) is elastic; un exceeds wln ;
and un ≺ wln . These assignments determine the moves ln, tn, and un. It is
again easy to check that they satisfy the relevant rules of G∗, and conditions
(1)–(3) above. For the record let us note that we have also the following
condition:

(iii) un ≺ wln .

The assignments made above, together with moves supplied by σ∗ and by
the opponent, determine an infinite run 〈ln, tn, wn, un, xn | n < ω〉 of G∗. It
remains to check that the real x = 〈xn | n < ω〉 constructed as part of this
run is won by player I in Gω(B).

By conditions (ii) and (iii), wn ≺ wln for each n > 0. It follows from this
that wn ≺ wm whenever tn > tm. By Claim 5.11, x ∈ B. So x is won by
player I in Gω(B), as required. �

5.15 Lemma. Suppose that player II has a winning strategy in G∗. Then
player II has a winning strategy in Gω(B).

Proof. Let σ∗ be a winning strategy for player II in G∗. Fix an opponent
willing to play for I in Gω(B). We describe how to play against the opponent,
and win. Again our description takes the form of a construction. But this
time we do not construct a run of G∗. Rather we construct an iteration
tree T with an even branch consisting of {0, 2, 4, . . .}, and a run of jeven(G∗),
played according to jeven(σ∗).

Precisely, we construct:

(A) ln, tn, un, wn, and xn for n < ω.

(B) An iteration tree T giving rise to models Mk for k < ω and embed-
dings jl,k for l T k < ω.

(C) Nodes gn ∈ j0,2n+1(S)x,tn for n < ω.
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x in the last condition is the sequence 〈xn | n < ω〉, although of course
only x� lh(tn) is relevant to the condition.

We construct so that:

• 0 T 2 T 4 . . . .

• If tn �= ∅ then the T -predecessor of 2n + 1 is 2ln + 1.

• If tn = ∅ then the T -predecessor of 2n + 1 is 2n.

Note that these conditions determine the tree order T completely.
Let p0 = ∅ and recursively define

pn+1 = j2n,2n+2(pn)�〈ln, tn, j2n,2n+2(un), wn, xn〉.

We construct so that pn is a position in j0,2n(G∗), played according to
j0,2n(σ∗). This amounts to maintaining the following conditions:

(1) ln, tn, and un are the moves played by j0,2n(σ∗) following the posi-
tion pn.

(2) wn is a legal move for player I following the position j2n,2n+2(pn)�

〈ln, tn, j2n,2n+2(un)〉.

(3) If n is odd then xn is the move played by j0,2n+2(σ∗) following the
position j2n,2n+2(pn)�〈ln, tn, j2n,2n+2(un), wn〉.

Notice that conditions (1) and (3) determine ln, tn, and un for each n, and xn

for odd n.
Let kn denote lh(tn). Condition (C) above already places some restriction

on the nature of gn. It must be a sequence of length kn, and 〈x�kn, tn, gn〉
must belong to j0,2n+1(S). We maintain the following additional condition
during the construction:

(4) wn is realized by j0,2n+1(S), 〈0, gn(0)〉, . . . , 〈kn − 1, gn(kn − 1)〉 and
j0,2n+1(νL) in M2n+1‖j0,2n+1(νL) + 3.

Notice that from this it automatically follows that wn is a (kn + 2)-type and
that it contains the formulae “vkn+1 > max{δ̃, rank(v0)}” and “vkn+1 + 2
exists and is the largest ordinal” as demanded by rule (7) of G∗.

Finally, we maintain the conditions:

(5) wn is elastic.

(6) M2n+1 agrees with all later models of T , that is all models Mi for
i > 2n + 1, past dom(wn). wn belongs to Mi for each i > 2n + 1.

(7) All the extenders used in T have critical points above rank(X). For
each m > n, the critical point of j2n+2,2m+2 is greater than the domain
of wn. In particular j2n+2,2m+2(wn) = wn for each m ≥ n.
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5.16 Remark. It follows directly from the last condition that pn has the
form 〈li, ti, j2i,2n(ui), wi, xi | i < n〉.

Let us now describe the construction in round n, assuming inductively
that we have already constructed the objects corresponding to rounds 0
through n− 1, and that we maintained conditions (1)–(7) for these rounds.

Set ln, tn, and un to be the moves played by j0,2n(σ∗) following the po-
sition pn, in line with condition (1). The construction continues subject to
one of the following cases:

Case 1. tn = ∅. The rules of G∗ are such that un is realized by j0,2n(S) and
j0,2n(νL) in M2n‖j0,2n(νL) + 1. From the local indiscernibility of νL and νH

it follows that un is realized by j0,2n(S) and j0,2n(νH) in M2n‖j0,2n(νH) + 1.
Working in M2n using Lemma 3.22, let τ < j0,2n(δ) be such that τ > dom(un)
and such that the τ -type of j0,2n(S) and j0,2n(νL) in j0,2n(νL) + 3 is elastic.
Let wn be this type. It is easy to check that wn exceeds dcp(un) in M2n.

Set E2n = “pad” so that M2n+1 = M2n and j2n,2n+1 is the identity.
Using the One-Step Lemma 3.23, find an extender E2n+1 ∈ M2n+1 so that
wn is a subtype of StretchE2n+1

τ+ω (dcp(un)). Set M2n+2 = Ult(M2n, E2n+1),
and set j2n,2n+2 to be the ultrapower embedding. Note that these settings
are such that wn is a subtype of j2n,2n+2(dcp(un)). It is easy now to check
that wn satisfies the conditions of rule (7) of G∗, shifted to M2n+2, following
the position j2n,2n+2(pn

�〈ln, tn, un〉).
Finally, set xn to be the move played by j0,2n+2(σ∗) following the position

j2n,2n+2(pn)�〈ln, tn, j2n,2n+2(un), wn〉 if n is odd, and the move played by
the opponent in Gω(B) following 〈x0, . . . , xn−1〉 if n is even. This completes
the round. � (Case 1)

Case 2. tn �= ∅. The rules of j0,2n(G∗) following the position pn are such
that un exceeds wln in M2n. (We are making an implicit use of Remark 5.16
here.) Let κ denote the domain of un. Using the One-Step Lemma in M2n

find an extender E2n with critical point dom(wln), so that un is a subtype of
StretchE2n

κ+ω(wln). Set M2n+1 = Ult(M2ln+1, E2n), and set j2ln+1,2n+1 to be
the ultrapower embedding, so that un is a subtype of j2ln+1,2n+1(wln).

5.17 Exercise. Complete the precise details of this construction, verifying
that there is enough agreement between the various models to make sense of
the ultrapower taken.

Let k denote lh(tn). Note that tln = pred(tn), so lh(tln) = k − 1. Let k̄
denote k − 1. Let ḡ denote gln , and let ḡ′ = j2ln+1,2n+1(ḡ).

Now wln is realized by j0,2ln+1(S), 〈0, ḡ(0)〉, . . . , 〈k̄ − 1, ḡ(k̄ − 1)〉 and
j0,2ln+1(νL) in M2ln+1‖j0,2ln+1(νL) + 3. Using the elementarity of the em-
bedding j2ln+1,2n+1 it follows that j2ln+1,2n+1(wln) is realized by j0,2n+1(S),
〈0, ḡ′(0)〉, . . . , 〈k̄ − 1, ḡ′(k̄ − 1)〉 and j0,2n+1(νL) in M2n+1‖j0,2n+1(νL) + 3.
Since un is a subtype of j2ln+1,2n+1(wln) it must be realized, by the same
objects and one more object, at a lower rank. Combining this with the fact
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that un is a (k+2)-type which contains the formula in rule (3) of the definition
of G∗ (Definition 5.13), we see that there must exist some set z so that un is
realized by j0,2n+1(S), 〈0, ḡ′(0)〉, . . . , 〈k̄− 1, ḡ′(k̄− 1)〉, 〈k̄, z〉 and j0,2n+1(νL)
in M2n+1‖j0,2n+1(νL)+1, and that moreover the function g = ḡ′∪{〈k̄, z〉} is a
node in j0,2n+1(S)x,tn . Set gn equal to this function g, securing the demands
of condition (C) above. For the record let us note that:

(i) gn extends j2ln+1,2n+1(gln).

We now continue very much as we did in case 1. Using the local indis-
cernibility of νL and νH , we see that un is realized by j0,2n+1(S), 〈0, gn(0)〉,
. . . , 〈k − 1, gn(k − 1)〉, and j0,2n+1(νH) in M2n+1‖j0,2n+1(νH) + 1. Working
in M2n+1 using Lemma 3.22, let τ < j0,2n+1(δ) be such that τ > dom(un)
and such that the τ -type of j0,2n+1(S), 〈0, gn(0)〉, . . . , 〈k − 1, gn(k − 1)〉,
j0,2n+1(νL) in M2n+1‖j0,2n+1(νL)+3 is elastic. Let wn be this type. wn then
exceeds dcp(un) in M2n+1.

Using the One-Step Lemma in M2n+1, find an extender E2n+1 ∈ M2n+1,
with critical point equal to the domain of un, so that wn is a subtype of
StretchE2n+1

τ+ω (dcp(un)). Set M2n+2 = Ult(M2n, E2n+1), and set j2n,2n+2 to
be the ultrapower embedding. Note that these settings are such that wn

is a subtype of j2n,2n+2(dcp(un)), and this secures the main requirement
on wn posed by rule (7) of G∗, shifted to M2n+2, following the position
j2n,2n+2(pn

�〈ln, tn, un〉).
Finally, as in case 1, set xn to be the move played by j0,2n+2(σ∗) following

the position j2n,2n+2(pn)�〈ln, tn, j2n,2n+2(un), wn〉 if n is odd, and the move
played by the opponent in Gω(B) following 〈x0, . . . , xn−1〉 if n is even. This
completes the round. � (Case 2)

5.18 Exercise. Verify that the construction described above maintains con-
ditions (1)–(7).

It remains now to check that every sequence x = 〈xn | n < ω〉 ∈ Xω

that can be obtained by following the construction described above (with
moves xn for even n supplied by the opponent) is won by player II in Gω(B).

Let x, T , 〈ln, tn, un, wn | n < ω〉, and 〈gn | n < ω〉 be obtained through the
construction above. We work through a series of claims to show that x �∈ B.

5.19 Claim. The even branch of T has an illfounded direct limit.

Proof. Suppose for contradiction that Meven is wellfounded. Let R be the
tree of attempts to construct an infinite run of G∗, played according to σ∗.
Note that jeven(R) has an infinite branch, consisting of

⋃
n<ω j2n,even(pn).

Since Meven is wellfounded, the existence of an infinite branch through
jeven(R) reflects to Meven. Thus, Meven |= “there is an infinite run of jeven(G∗),
played according to jeven(σ∗)”. Using the elementarity of jeven it follows
that V |= “there is an infinite run of G∗ played according to σ∗”. But this
contradicts the fact that σ∗ is a winning strategy for player II, the player
who loses infinite runs. �
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Let θ be a regular cardinal, large enough that all the objects involved in the
construction belong to V ‖θ. Let H be a countable elementary substructure
of V ‖θ, with x, T , 〈ln, tn, un, wn | n < ω〉 and 〈gn | n < ω〉 in H. Let P
be the transitive collapse of H, and let π : P → H be the anti-collapse
embedding. Let U = π−1(T ) and let hn = π−1(gn). Let Pi and j̄i,i′ denote
the models and embeddings of U . Let S̄ denote π−1(S). Let x̄i = π−1(xi)
and let x̄ = 〈x̄i | i < ω〉.

Using Theorem 2.3 find an infinite branch b through U so that there is an
embedding σ : P̄b → V ‖θ with σ ◦ j̄b = π.

5.20 Claim. b is not the even branch.

Proof. The fact that P̄b embeds into V ‖θ implies that it is wellfounded. P̄even

is not wellfounded, by Claim 5.19. �

Let m0,m1, . . . be such that 2m0 + 1, 2m1 + 1, 2m2 + 2, . . . lists, in
increasing order, all the odd models in b. The tree structure of T , and hence
of U , is such that:

• tm0 = ∅.

• pred(tmi+1) = tmi .

From the last condition and from condition (i) of the construction it follows
that:

• hmi+1 extends j̄2mi+1,2mi+1+1(hmi).

Letting h∗
i = j̄2mi+1,b(hmi) it follows that:

• h∗
i+1 extends h∗

i for each i.

Let y =
⋃

i<ω tmi and let h∗ =
⋃

i<ω h∗
i . Condition (C) of the construction

implies that 〈x̄�i, y�i, h∗�i〉 is a node in j̄b(S̄). Applying the embedding σ :
Pb → V ‖θ to this statement, and using the fact that σ ◦ j̄b = π, it follows
that 〈x�i, y�i, σ(h∗�i)〉 is a node in π(S̄) = S. This is true for each i, and
hence:

5.21 Claim. 〈x, y〉 ∈ p[S].

Proof. Let h∗ ∗ =
⋃

i<ω σ(h∗�i). The argument of the previous paragraph
shows that 〈x, y, h∗ ∗〉 is an infinite branch through S. �

Recall that A = p[S] and that B = {x ∈ Xω | (∀y)〈x, y〉 �∈ A}. From the
last claim it follows that x �∈ B, and therefore x is won by player II in Gω(B),
as required. �

5.22 Definition. Let M be a model of ZFC−. Let X belong to M and let
S ∈M be a tree on X×U for some set U ∈M . Define gp(S), the generalized
projection of S, by setting x ∈ gp(S) iff there exists a length ω iteration tree T
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on M , using only extenders with critical points above rank(X), so that for
every wellfounded cofinal branch b of T , x ∈ p[jT

b (S)]. An iteration tree T
witnessing that x ∈ gp(S) is said to put x in a shifted projection of S. Notice
that the tree must be such that x ∈ p[jT

b (S)] for all wellfounded cofinal
branches of T .

5.23 Exercise. Let M be a model of ZFC and let δ be a Woodin cardinal
of M . Let X belong to M‖δ and let S ∈ M be a tree on X × ω × γ for
some ordinal γ. Let G∗ be the game of Definition 5.13 but relativized to M .
Suppose M |= “player II has a winning strategy in G∗”. Prove that there is
a strategy σ for player II in the game on X so that, in V , every infinite play
according to σ belongs to gp(S).

Hint. Let σ∗ ∈ M be a winning strategy for player II in G∗. Imitate the
construction in the proof of Lemma 5.15 to define a strategy σ for II in the
game on X. Show that if x ∈ Xω and T are produced by the construction
in the proof of Lemma 5.15, then T witnesses that x belongs to a shifted
projection of S: Claim 5.19 shows that the even branch of T is illfounded,
and the argument following Claim 5.20 can be modified to produce, for each
cofinal branch b other than the even branch, some y and f so that 〈x, y, f〉 ∈
[jb(S)]. �

Lemmas 5.14 and 5.15 combine to show that Gω(B) is determined: G∗ is
determined since it is a closed game, and by Lemmas 5.14 and 5.15 the player
who has a winning strategy in G∗ has a winning strategy in Gω(B). We thus
obtained the following theorem:

5.24 Theorem. Let δ be a Woodin cardinal. Let X belong to V ‖δ and
let A ⊆ (X × ω)ω. Let B = {x ∈ Xω | (∀y)〈x, y〉 �∈ A}. Suppose that A
is δ+-homogeneously Suslin. Then B is determined.

In the next section we weaken the assumption, from homogeneously Suslin
to universally Baire. But first we continue toward a proof that B is homoge-
neously Suslin.

Let Γ be the map that assigns to each position q∗ = 〈li, ti, ui, wi, xi | i < n〉
in the game G∗ the move 〈ln, tn, un〉 described in the proof of Lemma 5.14. By
this we mean the move that the construction there would produce for round n,
assuming that the moves of the previous rounds were 〈li, ti, ui, wi, xi | i < n〉.
(The construction appears between conditions (ii) and (iii) in the proof of
Lemma 5.14. Notice that this part does not depend on the strategy σ∗.) If
the moves in 〈li, ti, ui, wi, xi | i < n〉 do not satisfy the inductive conditions
in the proof of Lemma 5.14, then leave Γ(q∗) undefined.

Given a sequence q = 〈xi, wi | i < n〉 define q∗ to be the sequence 〈li, ti, ui,
wi, xi | i < n〉 where for each m < n, 〈lm, tm, um〉 is equal to Γ(q∗�m). If
for some m < n, q∗�m is not a legal position in G∗ or Γ(q∗�m) is undefined,
then leave q∗ undefined.

Let R ⊆ (X × V ‖δ)<ω be the tree of sequences q = 〈xi, wi | i < n〉 so
that q∗ is defined.
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5.25 Exercise. Suppose that x ∈ p[R]. Prove that x ∈ B.

Hint. Let 〈wi | i < ω〉 be such that 〈xi, wi | i < n〉 ∈ R for each n < ω.
Let qn denote 〈xi, wi | i < n〉. Note that for each n < ω, q∗

n is defined.
Let q∗ =

⋃
n<ω q∗

n. Check that q∗ is an infinite run of G∗, satisfying all the
conditions in the proof of Lemma 5.14. Use the final argument in that proof
to conclude that x ∈ B. �

Given z ∈ Xω let 〈lzn, tzn, uz
n, wz

n, xz
n | n < ω〉, T z, and 〈gz

n | n < ω〉 be
the objects obtained by constructing subject to the conditions in the proof
of Lemma 5.15, with condition (1) replaced by the condition “〈ln, tn, un〉 =
j0,2n(Γ)(pn)”, and condition (3) replaced by the condition “xn = zn for
all n”. These two replacements remove the use of the opponent and of σ∗ in
the construction. The use of σ∗ is replaced by a use of Γ and of the odd half
of z. The use of the opponent is replaced by a use of the even half of z.

Notice that the dependence of the construction on z is continuous, in the
sense that knowledge of z�n suffices to determine the construction in rounds 0
through n− 1. These rounds construct, among other things, T z�2n + 1, and
〈w0, . . . , wn−1〉. We have therefore maps s �→ T s, s �→ 〈lsi , tsi , us

i , w
s
i , x

s
i | i <

lh(s)〉, and s �→ 〈gs
i | i < lh(s)〉, defined on s ∈ X<ω, with the properties:

• T s is an iteration tree of length 2 lh(s) + 1, leading to a final model
indexed 2 lh(s).

• T z =
⋃

n<ω T z�n.

• lzi = lsi whenever z extends s and i < lh(s), and similarly with tzi , uz
i ,

wz
i , xz

i , and gz
i .

Let Ms
i , for i ≤ 2 lh(s), be the models of the tree T s. Let js

i,i′ be the
embeddings of the tree.

5.26 Exercise. Show that 〈xs
i , w

s
i | i < lh(s)〉 belongs to js

0,2 lh(s)(R).

Hint. Let q = 〈xs
i , w

s
i | i < lh(s)〉. Let p = 〈lsi , tsi , js

2i,2 lh(s)(u
s
i ), w

s
i , x

s
i | i <

lh(s)〉. Use the fact that 〈lsi , tsi , us
i 〉 = j0,2i(Γ)(p�i) to show that q∗ (in the

sense of Ms
2 lh(s)) is equal to p. �

Define Ms to be the last model of the tree T s, namely the model Ms
2 lh(s).

Define js,s∗ : Ms →Ms∗ to be the embedding js∗

2 lh(s),2 lh(s∗). Define ϕs to be
the sequence 〈ws

i | i < lh(s)〉.

5.27 Exercise. Prove that R is homogeneous by showing that the system
〈Ms, ϕs, js,s∗ | s < s∗ ∈ X<ω〉 satisfies the conditions in Exercise 4.2. Con-
clude that B is homogeneously Suslin.

Hint. Condition (2) of Exercise 4.2 follows from the previous exercise. For
condition (3): The direct limit of 〈Ms, js,s∗ | s < s∗ < x〉 is simply the
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direct limit along the even branch of T x. You can use its illfoundedness
as a replacement for Claim 5.19, and proceed from there as in the proof of
Lemma 5.15, to show that x �∈ B, and hence by Exercise 5.25, x �∈ p[R]. To
conclude that B is homogeneously Suslin you now only need the converse to
Exercise 5.25. To prove it use the fact that illfoundedness of the direct limit
of 〈Ms, js,s∗ | s < s∗ < x〉 implies not only x �∈ p[R], but x �∈ B. �

5.28 Exercise. Prove that the Martin-Solovay tree for B (see Exercise 5.2)
is homogeneous.

Hint. Embed R into the Martin-Solovay tree for B, and use the embedding
to transfer the homogeneity measures on R to the Martin-Solovay tree. �

The exercises above establish that B is homogeneously Suslin. With a
small additional adjustment we obtain the following:

5.29 Exercise. Let δ be a Woodin cardinal. Let X belong to V ‖δ and
let A ⊆ (X×ω)ω. Let B = {x ∈ Xω | (∀y)〈x, y〉 �∈ A}. Suppose that A is δ+-
homogeneously Suslin. Then B is κ-homogeneously Suslin for each κ < δ.

Hint. Fix κ < δ. Revise the construction in the proof of Lemma 5.14 to
make sure that dom(u0) > κ. Show that if Γ is defined using this revised
construction, then the embeddings js,s∗ obtained above all have critical points
above κ. �

5.30 Corollary. Suppose that there are n Woodin cardinals and a measurable
cardinal above them. Let A ⊆ ωω be Π1

n+1. Then A is homogeneously Suslin.

Proof. Let δ1 < · · · < δn be the Woodin cardinals, and let κ > δn be the
measurable cardinal. Let δ0 = ℵ0.

Let Ak ⊆ (ωω)k be such that An+1 is Π1
1, Ak = {〈x, y1, . . . , yk−1〉 |

(∀yk)〈x, y1, . . . , yk〉 �∈ Ak+1} for each k ≤ n, and A1 = A.
By Theorem 4.15, An+1 is (δn)+-homogeneously Suslin. Successive appli-

cations of Exercise 5.29, starting from k = n and working down to k = 1,
show that Ak is (δk−1)+-homogeneously Suslin. Finally then A = A1 is
homogeneously Suslin. �

5.31 Corollary. Suppose that there are n Woodin cardinals and a measurable
cardinal above them. Let A ⊆ ωω be Π1

n+1. Then Gω(A) is determined.

6. Universally Baire Sets

Let δ be a Woodin cardinal. Let X belong to V ‖δ. Let S be a tree
on X × ω × γ for some ordinal γ, let A = p[S] ⊆ Xω × ωω, and let B =
{x ∈ Xω | (∀y)〈x, y〉 �∈ A}. In the previous section we showed that if S
is δ+-homogeneous then Gω(B) is determined. Here we work without the
assumption of homogeneity, and try to salvage as much determinacy as we
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can. We cannot hope for actual determinacy since every set is Suslin under
the axiom of choice, but not every set is determined. The approximation for
determinacy that we salvage is the following lemma. Recalling a standard
notation, Col(ω, δ) is the poset that adjoins a map from ω onto δ using finite
partial maps as conditions.

6.1 Lemma. Let g be Col(ω, δ)-generic over V . In V [g] define B∗ to be the
set {x ∈ Xω | (∀y)〈x, y〉 �∈ p[S]}, where Xω, the quantifier (∀y), and the
projection p[S] are all computed in V [g]. Then at least one of the following
cases hold:

(1) In V , player II has a winning strategy in the game Gω(B).

(2) In V [g], player I has a winning strategy in Gω(B∗).

With a sufficiently absolute set B the lemma can be used to obtain actual
determinacy, as we shall see later on.

Proof of Lemma 6.1. Let G∗ be the game defined in the previous section,
specifically in Definition 5.13. Notice that the game is defined with no refer-
ence to the homogeneity system of the previous section, and so we may use
it in the current context. Notice further that Lemma 5.15 is proved without
use of the homogeneity system. It too applies in the current context, showing
that if player II has a winning strategy in G∗ then player II has a winning
strategy in Gω(B). To complete the proof of Lemma 6.1 it thus suffices to
show that if player I has a winning strategy in G∗, then condition (2) of
Lemma 6.1 holds true.

Let σ∗ be a winning strategy for player I in G∗. Let ρ : δ → V ‖δ be a
bijection. To be precise we emphasize that both σ∗ and ρ are taken in V .
Working now in V [g], notice that ρ ◦ g is a bijection of ω and V ‖δ.

In Lemma 5.14 we used the homogeneity measures for S to ascribe aux-
iliary moves for player II in G∗ while playing against σ∗. We cannot do the
same here since T is not assumed to be homogeneous. Instead, we plan to
ascribe to player II the ρ ◦ g-first legal move in each round.

6.2 Claim. Let p∗ = 〈li, ti, ui, wi, xi | i < n〉 be a legal position in G∗. Then
there is a move 〈ln, tn, un〉 which is legal for player II in G∗ following p∗.

Proof. Let ζ < δ be large enough that all the moves made in p belong to V ‖ζ.
Using Lemma 3.22 let κ < δ be such that the κ-type of S in V ‖νL + 1
is elastic, and such that κ > ζ. Set u to be the κ-type of S and νL in
V ‖νL + 1. (νL here is taken from the lexicographically least pair of local
indiscernibles relative to max{δ, rank(S)}.) It is easy to check that the triple
〈0, ∅, u〉 is legal for II in G∗ following p∗. It falls under the case of rule (5) in
Definition 5.13. �

Call a number e < ω valid at a position p∗ = 〈li, ti, ui, wi, xi | i < n〉 in G∗

just in case that (ρ ◦ g)(e) is a legal move for player II in G∗ following p∗.
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By this we mean that (ρ ◦ g)(e) is equal to a tuple 〈ln, tn, un〉 ∈ V ‖δ that
satisfies the relevant rules in Definition 5.13. By the last claim there is always
a number which is valid at p∗.

6.3 Definition. A position 〈x0, . . . , xn−1〉 in Gω(B∗) is nice if it can be
expanded to a position p∗ = 〈li, ti, ui, wi, xi | i < n〉�〈ln, tn, un, wn〉 in G∗ so
that:

(1) p∗ is according to σ∗.

(2) For each m ≤ n, 〈lm, tm, um〉 is equal to (ρ◦g)(e) for the least number e
which is valid at p∗�m.

Notice that if p is nice then the expansion p∗ is unique: condition (1)
uniquely determines wm for each m ≤ n, and condition (2) uniquely de-
termines lm, tm, and um for each m ≤ n. Define a strategy σ for player I
in Gω(B∗) by setting σ(p) = σ(p∗) in the case that p is a nice position of even
length. (It is easy to check that all finite plays by σ lead to nice positions.
So there is no need to define σ on positions which are not nice.)

The generic g comes in to the definition of σ through condition (2) in
Definition 6.3. σ is thus not an element of V , but of V [g]. We now aim to
show that, in V [g], σ is winning for I in Gω(B∗).

Let x ∈ V [g] be an infinite run, played according to σ. Suppose for
contradiction that x �∈ B, and let y ∈ V [g] and f ∈ V [g] be such that 〈x, y, f〉
is an infinite branch through S.

For each n < ω let p∗
n be the unique expansion of x�n that satisfies the

conditions of Definition 6.3. Let p∗ =
⋃

n<ω p∗
n. Let li, ti, ui, and wi be such

that p∗ = 〈li, ti, ui, wi, xi | i < ω〉. Let en be the least number valid at p∗�n,
so that 〈li, ti, ui〉 = (ρ ◦ g)(ei).

We work recursively to construct sequences n0 < n1 < · · · and α0, α1, . . .
so that for each i:

(1) tni = y�i.

(2) uni is realized by S, 〈0, f(0)〉, . . . , 〈i− 1, f(i− 1)〉, and αi in V ‖αi + 1.

Set to begin with n0 = 0 and α0 = νL . The rules of G∗ are such that t0 = ∅
and u0 is the type of S and νL in V ‖νL + 1. Conditions (1) and (2) for i = 0
therefore hold with these settings.

Suppose now that ni and αi have been defined and that conditions (1) and
(2) hold for i. The rules of G∗ are such that wni is a subtype of dcp(uni),
and must therefore be realized at a lower level. In fact, using the realization
of uni given by condition (2) above, the specific requirements in rule (7) in
Definition 5.13 are such that there must exist some ordinal β < αi so that wni

is realized by S, 〈0, f(0)〉, . . . , 〈i − 1, f(i − 1)〉, and β in V ‖β + 3, and so
that β > max{δ, rank(S)}.

Let αi+1 be this ordinal β. For the record we note that:
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(i) αi+1 < αi.

(ii) wni is realized by S, 〈0, f(0)〉, . . . , 〈i− 1, f(i− 1)〉, and αi+1 in
V ‖αi+1 + 3.

It remains to define ni+1 in such a way that conditions (1) and (2) hold
for i + 1.

6.4 Claim. Let E = max{e0, . . . , eni}. Then there exist e < ω and κ < δ so
that:

(a) (ρ ◦ g)(e) has the form 〈l, t, u〉 with l = ni, t = y�i + 1, and u equal to
the κ-type of S, 〈0, f(0)〉, . . . , 〈i, f(i)〉, and αi+1 in V ‖αi+1 + 1.

(b) dcp(u) is elastic.

(c) e > E.

(d) κ is large enough that (ρ ◦ g)(0), . . . , (ρ ◦ g)(e− 1) all belong to V ‖κ.

Proof. Let D ⊆ Col(ω, δ) be the set of conditions q so that conditions (a)–
(d) hold for some e < dom(q) and κ < δ, with (ρ ◦ g) replaced by (ρ ◦ q) in
conditions (a) and (d). Notice that D is defined in V : it only makes reference
to f�i+1 and y�i+1. Using Lemma 3.22 it is easy to check that D is dense.
Thus g ∩D is non-empty and the claim follows. �

Let e be given by the last claim. Let 〈l, t, u〉 = (ρ ◦ g)(e), and let κ =
dom(u).

6.5 Claim. 〈l, t, u〉 is a legal move for player II in G∗ following p∗�n, for
every n such that:

(1) n > ni.

(2) dom(un−1) < κ.

Proof. This is easy to verify, using conditions (1), (ii), (a), and (b) above,
and the fact that 〈x�i + 1, y�i + 1, f�i + 1〉 is a node in S. �

6.6 Claim. There exists an n < ω so that en = e.

Proof. Let n be least so that en ≥ e. Since e > E = max{e0, . . . , eni},
certainly n > ni. Note that en−1 < e and so from condition (d) it follows
that (ρ ◦ g)(en−1) belongs to V ‖κ. In particular then un−1 belongs to V ‖κ,
so certainly dom(un−1) < κ. Applying Claim 6.5 it follows that 〈l, t, u〉 is
legal for II in G∗ following p∗�n, and hence e is valid at p∗�n. Since en is the
least number which is valid at p∗�n, it must be that en ≤ e. We have en ≥ e
by the initial choice of n. Thus en = e. �
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Set ni+1 equal to the number n given by the last claim. By condition (a)
of Claim 6.4 then, lni+1 , tni+1 , and uni+1 are such that lni+1 = ni, tni+1 =
y�i+1, and uni+1 is equal to the κ-type of S, 〈0, f(0)〉, . . . , 〈i, f(i)〉, and αi+1

in V ‖αi+1 + 1. In particular conditions (1) and (2) hold for i + 1.
Working by recursion we completed the construction of the sequences 〈ni |

i < ω〉 and 〈αi | i < ω〉. By condition (i) above the sequence 〈αi | i < ω〉 is
descending. The construction of this infinite descending sequence was based
on the assumption that 〈x, y, f〉 is an infinite branch through S. (This as-
sumption was used in the proof of Claim 6.5.) The assumption must therefore
be false, and this shows that x, an arbitrary play according to σ∗ in V [g],
must belong to B∗. This completes the proof of Lemma 6.1. �

6.7 Corollary. Let δ be a Woodin cardinal. Let X belong to V ‖δ. Let T be
a tree on X × γ for some ordinal γ. Let g be Col(ω, δ)-generic over V . Then
at least one of the following holds:

(1) V |= “player II has a winning strategy in the game Gω(¬p[T ])”.

(2) V [g] |= “player I has a winning strategy in the game Gω(¬p[T ])”.

(¬p[T ] here is the complement of the projection of T . Notice that ¬p[T ] need
not be the same in V [g] and in V .)

Proof. Immediate from Lemma 6.1 by introducing a vacuous coordinate,
more precisely by using the tree S = {〈s, t, f〉 ∈ (X × ω × γ)<ω | 〈s, f〉 ∈
T}. �

6.8 Exercise. It may seem that we are losing ground in passing from the
lemma to the corollary, but in fact we are not. Prove that Lemma 6.1 is a
consequence of Corollary 6.7.

Hint. Let S ⊆ (X × ω × γ)<ω be given. Let ϕ : ω × γ → γ′ be a bijection
of ω × γ onto an ordinal γ′. Define a tree T on X × γ′ in such a way that
〈x, y, f〉 ∈ [S] iff 〈x, g〉 ∈ [T ] where g(n) = ϕ(〈yn, f(n)〉). Use Corollary 6.7
with T . �

6.9 Exercise. Let M be a model of ZFC. Let δ be a Woodin cardinal of M .
Let X belong to M‖δ. Let T ∈ M be a tree on X × γ for some ordinal γ.
Let g be Col(ω, δ)-generic over M . Prove that at least one of the following
holds:

(1) There is a strategy σ for player II in the game on X so that, in V , every
infinite play according to σ belongs to gp(T ).

(2) There is a strategy σ ∈ M [g] for player I in the game on X so that,
in M [g], every infinite play according to σ avoids p[T ].

Hint. Relativize the proof of Corollary 6.7 to M , but replace the use of
Lemma 5.15, which ultimately leads to the case of condition (1) in Corol-
lary 6.7, with a use of Exercise 5.23. �



1926 Neeman / Determinacy in L(R)

6.10 Corollary. Let δ be a Woodin cardinal. Let X belong to V ‖δ. Let T
be a tree on X × γ for some ordinal γ. Let g be Col(ω, δ)-generic over V .
Then at least one of the following holds:

(1) V |= “player I has a winning strategy in the game Gω(p[T ])”.

(2) V [g] |= “player II has a winning strategy in the game Gω(p[T ])”.

(Notice that p[T ] need not be the same in V [g] and in V .)

Proof. Immediate from Corollary 6.7, using continuous substitution to re-
verse the roles of the players. Let us just point out that both here and in
Corollary 6.7, the player who has a winning strategy in V is the player who
wants to get into p[T ], and the player who has a winning strategy in V [g] is
the player who wants to avoid p[T ]. �

We can use various forms of absoluteness to obtain actual determinacy,
either in V or in V [g], from Corollary 6.10:

6.11 Lemma. Let δ be a Woodin cardinal. Let X belong to V ‖δ. Let T be a
tree on X×γ for some ordinal γ. Let g be Col(ω, δ)-generic over V . Suppose
that there is a tree S in V so that V [g] |= “p[S] = ¬p[T ]”. Then V [g] |=
“Gω(p[T ]) is determined”.

Proof. It is enough to show that if case 1 of Corollary 6.10 holds, then player
I wins Gω(p[T ]) also in V [g].

Suppose then that player I wins Gω(p[T ]) in V , and let σ witness this.
Let R be the tree of attempts to construct a pair 〈x, f〉 so that x ∈ Xω is a
play according to σ, and 〈x, f〉 ∈ [S].

The tree R belongs to V . An infinite branch in V through R would produce
an x which belongs to both p[T ] and p[S]. But then the same x, taken in V [g],
would exhibit a contradiction to the assumption of the lemma that (p[S])V [g]

and (p[T ])V [g] are complementary.
Thus R has no infinite branches in V . By absoluteness R has no infinite

branches in V [g] either. It follows that all plays according to σ in V [g]
belong to the complement of (p[S])V [g], which by assumption is (p[T ])V [g].
So σ witnesses that player I wins Gω(p[T ]) in V [g]. �

6.12 Corollary (Woodin). Let δ be a Woodin cardinal and g a Col(ω, δ)-
generic filter over V . Then V [g] is a model of Δ1

2 (lightface) determinacy.

Let X be hereditarily countable. A set C ⊆ Xω is λ-universally Baire if
all its continuous preimages, to topological spaces with regular open bases of
cardinality ≤ λ, have the property of Baire. C is ∞-universally Baire if it
is λ-universally Baire for all cardinals λ. Feng-Magidor-Woodin [4] provides
the following convenient characterization of universally Baire sets, and the
basic results in Exercises 6.15 and 6.16:
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6.13 Definition. A pair of trees T and T ∗ on X×γ and X×γ∗ respectively
is exhaustive for a poset P if the statement “p[T ] ∪ p[T ∗] = Xω” is forced to
hold in all generic extensions of V by P.

6.14 Fact (Feng-Magidor-Woodin [4]). Let X be hereditarily countable,
let C ⊆ Xω, and let λ be an infinite cardinal. C is λ-universally Baire iff
there are trees T and T ∗ so that:

(1) p[T ] = C and p[T ∗] = Xω − C.

(2) The pair 〈T, T ∗〉 is exhaustive for all posets of size ≤ λ.

6.15 Exercise. Suppose T and T ∗ are trees so that:

(1) p[T ] ∩ p[T ∗] is empty.

(2) 〈T, T ∗〉 is exhaustive for Col(ω, λ).

Prove that p[T ∗] = R− p[T ], and that p[T ] is λ-universally Baire.

Hint. Use condition (2) and simple absoluteness to argue that p[T ] ∪
p[T ∗] = R. This establishes that p[T ∗] = R − p[T ]. Basic forcing arguments
show that condition (2) here is equivalent to the corresponding condition in
Fact 6.14. �

6.16 Exercise (Feng-Magidor-Woodin [4]). A set C ⊆ Xω is weakly ho-
mogeneously Suslin (respectively, weakly λ-homogeneously Suslin) if it is the
projection to Xω of a homogeneously Suslin (respectively, λ-homogeneously
Suslin) subset of Xω × ωω. Prove that if C is weakly λ+-homogeneously
Suslin then it is λ-universally Baire.

Hint. Let A ⊆ Xω×ωω be λ+-homogeneously Suslin with p[A] = C. Let S ⊆
(X × ω × γ)<ω be a λ+-homogeneous tree projecting to A, and let 〈μs,t |
〈s, t〉 ∈ (X × ω)<ω〉 be a λ+-homogeneity system for S.

Let T be equal to S, viewed as a tree on X × (ω × γ), so that T projects
to p[A] = C. Let T ∗ be the Martin-Solovay tree for the complement of
p[A], defined in Exercise 5.2. Prove that 〈T, T ∗〉 is exhaustive for every
poset P of size ≤ λ. You will need the following claim, which follows from
the completeness of the measures μs,t: Let ρ̇ ∈ V P be a function from Ss,t

into the ordinals. Then there is a μs,t-measure one set Z so that ρ̇�Ž is forced
to belong to V . �

Using the characterization in Fact 6.14 we can prove, from a Woodin car-
dinal δ, that δ-universally Baire sets are determined. In light of Exercise 6.16
this is a strengthening of Theorem 5.24:

6.17 Theorem. Suppose that C is δ-universally Baire and δ is a Woodin
cardinal. Then Gω(C) is determined.
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Proof. Let T and T ∗ witness that C is δ-universally Baire. Apply Corol-
lary 6.10 with T and Corollary 6.7 with T ∗.

If case 1 of Corollary 6.10 with T holds, then player I wins Gω(C) in V . If
case 1 of Corollary 6.7 with T ∗ holds, then player II wins Gω(C) in V . Thus
it suffices to show that it cannot be that case 2 holds in both applications.

Suppose for contradiction that case 2 holds in both applications. Then
in V [g] player II wins Gω(p[T ]) and player I wins Gω(¬p[T ∗]). Pitting I’s
winning strategy against II’s winning strategy we obtain a real x ∈ V [g]
which does not belong to (p[T ])V [g] and does belong to (¬p[T ∗])V [g]. In other
words x belongs to neither (p[T ])V [g] nor (p[T ∗])V [g]. But this contradicts
the fact that 〈T, T ∗〉 is exhaustive for Col(ω, δ). �

Our plan for the future is to prove ADL(R) by proving, from large cardinals,
that the least non-determined set in L(R), if it exists, is universally Baire, and
then appealing to Theorem 6.17 to conclude that in fact the set is determined.

7. Genericity Iterations

Given a tree S on X × U1 × U2, define dp(S), the demanding projection
of S, by putting x ∈ dp(S) iff there exist f1 : ω → U1 and f2 : ω → U2 so
that 〈x, f1, f2〉 ∈ [S] and so that f1 is onto U1. It is the final clause, that
f1 must be onto U1, that makes the demanding projection more demanding
than the standard projection p[S].

Let M be a model of ZFC and let δ be a Woodin cardinal of M . Let X
belong to M‖δ and let S ∈ M be a tree on X × U1 × U2 for some sets
U1, U2 ∈ M . For convenience suppose that U1 ∩ U2 = ∅. For further conve-
nience suppose that U1 and U2 are the smallest (meaning ⊆-minimal) sets so
that S is a tree on X × U1 × U2. U1 and U2 are then definable from S.

Define gdp(S), the generalized demanding projection of S, by setting x ∈
gdp(S) iff there exists a length ω iteration tree T on M , using only extenders
with critical points above rank(X), so that for every wellfounded cofinal
branch b of T , x ∈ dp(jT

b (S)).
An iteration tree T witnessing that x ∈ gdp(S) is said to put x in a

shifted demanding projection of S. Note that the tree must be such that x ∈
dp(jT

b (S)) for every cofinal wellfounded branch of T .
The generalized projection here is similar to the one in Definition 5.22, only

using the demanding projection instead of the standard projection. We work
next to obtain some parallel to the result in Exercise 6.9, for the generalized
demanding projection. We work with the objects M , X, δ, and S fixed.
We assume throughout that U1 and PM (δ) are countable in V , so that in V
there are surjections onto U1, and there are Col(ω, δ) filters which are generic
over M .

7.1 Definition. Working inside M , define G∗ to be played according to
Diagram 22.10 and the following rules:
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I w0 x0 w1 w2 x2 . . .
II l0, u0 l1, u1 x1 l2, u2 . . .

Diagram 22.10: The game G∗

I f1(0) f1(1) · · ·
II f2(0) f2(1) · · ·

Diagram 22.11: The game G(¬Sx)

(1) xn ∈ X.

(2) un is a (2kn + 2)-type for some number kn, dcp(un) is elastic, and,
setting sn = x�kn, un contains the formula “〈s̃n, a, b〉 is a node in v0

where a = {v1, v3, . . . , v2kn −1} and b = {v2, v4, . . . , v2kn}”.

(3) If n > 0 then dom(un) > dom(un−1). dom(u0) > rank(X).

(4) If kn = 0 then un is realized by S and νL in V ‖νL + 1.

(5) If kn �= 0 then ln < n is such that kln = kn − 1, and un exceeds wln .

(6) wn is a 2kn + 3-type, wn is a subtype of dcp(un), and wn contains the
formulae “v2kn+2 > max{δ̃, rank(v0)}”, “v2kn+2 + 2 exists and is the
largest ordinal”, and “v2kn+1 has the form 〈kn, z〉 with z ∈ A1, where
A1, A2 are the smallest sets so that v0 is a tree on X̃ ×A1 ×A2”.

The first player to violate any of the rules loses. Infinite runs where all rules
have been followed are won by player I.

7.2 Remark. The key difference between the definition here and that in
Sect. 5 is the addition of variables to the types. The use of these vari-
ables is governed by rules (2) and (6). Rule (2) is such that the sets real-
izing v1, . . . , v2k must form a node 〈a, b〉 of Sx. Rule (6) is such that v2k+1

must be realized by a pair 〈k, z〉 with z ∈ U1.
A smaller difference is the elimination here of the moves tn of Sect. 5.

These moves correspond to the vacuous coordinate in the derivation of Corol-
lary 6.7 from Lemma 6.1, and are not needed in a direct proof.

For x ∈ Xω define G(¬Sx) to be the following game: players I and II alter-
nate moves as in Diagram 22.11 to construct sequences f1 = 〈f1(n) | n < ω〉 ∈
(U1)ω and f2 = 〈f2(n) | n < ω〉 ∈ (U2)ω. If at any point 〈x�n, f1�n, f2�n〉 �∈ S
then player I wins. Otherwise player II wins.

Define

(¬S) by setting x ∈ 

(¬S) iff I has a winning strategy in G(¬Sx).

7.3 Exercise. Suppose x �∈ dp(S). Prove that x ∈ 
(¬S).
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7.4 Lemma. Let g be Col(ω, δ)-generic over M , and let B =

(¬S) in the

sense of M [g]. Suppose that M |= “player I has a winning strategy in G∗”.
Then M [g] |= “player I has a winning strategy in Gω(B)”.

Proof. We adapt the construction in the proof of Lemma 6.1.
Let σ ∈ M be a winning strategy for player I in G∗. Let ρ ∈ M be

a bijection of δ onto V ‖δ. Call a number e < ω valid at a position p∗ =
〈li, ui, wi, xi | i < n〉 in G∗ just in case that (ρ ◦ g)(e) is a legal move for
player II in G∗ following p∗. Adapting the proof of Claim 6.2, it is easy to
see that player II always has a legal move in G∗, so that there is always a
number which is valid at p∗.

7.5 Definition. Call a position 〈x0, . . . , xn−1〉 in Gω(B) nice if it can be
expanded to a position p∗ = 〈li, ui, wi, xi | i < n〉�〈ln, un, wn〉 in G∗ so that:

(1) p∗ is according to σ∗.

(2) For each m ≤ n, 〈lm, um〉 is equal to (ρ ◦ g)(e) for the least number e
which is valid at p∗�m.

Notice that if p is nice then the expansion p∗ is unique. Define a strategy σ
for player I in Gω(B) by setting σ(p) = σ(p∗) in the case that p is a nice
position of even length. (All finite plays by σ lead to nice positions, so there
is no need to define σ on positions which are not nice.)

We now aim to show that, in M [g], σ is winning for I in Gω(B). Again
we adapt the argument in the proof of Lemma 6.1.

Let x ∈M [g] be an infinite run of Gω(B), played according to σ. Suppose
for contradiction that x �∈ B. This implies that there is a strategy τ ∈ M [g]
which is winning for II in G(¬Sx). We intend to use τ and the nature of rule
(6) in Definition 7.1 as replacements for the infinite branch through Sx used
in the proof of Lemma 6.1.

For each n < ω let p∗
n be the unique expansion of x�n that satisfies the

conditions of Definition 7.5. Let p∗ =
⋃

n<ω p∗
n. Let li, ui, and wi be such

that p∗ = 〈li, ui, wi, xi | i < ω〉. Let ei be the least number valid at p∗�n, so
that 〈li, ui〉 = (ρ ◦ g)(ei).

We work recursively to construct f1 ∈ (U1)ω, f2 ∈ (U2)ω, and sequences
n0 < n1 < · · · and α0, α1, . . . so that for each i:

(1) kni = i (see Definition 7.1 for the definition of kn).

(2) 〈x�i, f1�i, f2�i〉 ∈ S.

(3) 〈f1�i, f2�i〉, viewed as a position in G(¬Sx), is according to τ .

(4) uni is realized by S, 〈0, f1(0)〉, 〈0, f2(0)〉, . . . , 〈i − 1, f1(i − 1)〉,
〈i− 1, f2(i− 1)〉 and αi in V ‖αi + 1.

As in the proof of Lemma 6.1, we shall have αi+1 < αi, leading to a contra-
diction.
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Set to begin with n0 = 0, α0 = νL , f1�0 = ∅, and f2�0 = ∅. It is easy
to check that these assignments satisfy conditions (1)–(4). In the case of
condition (4) note that condition (5) in Definition 7.1 implies that k0 = 0,
whence by condition (4) of the definition, u0 is realized by S and νL in
V ‖νL + 1.

Suppose now that ni, αi, f1�i, and f2�i have been defined and that con-
ditions (1)–(4) hold for i. The rules of G∗ are such that wni is a subtype
of uni . Using the realization of uni given by condition (4) and the con-
ditions placed on wni by rule (6) in Definition 7.1, it follows that there
are β < αi and z ∈ U1 so that wni is realized by S, 〈0, f1(0)〉, 〈0, f2(0)〉,
. . . , 〈i − 1, f1(i − 1)〉, 〈i − 1, f2(i − 1)〉, 〈i, z〉, and β, in V ‖β + 3, and so
that β > max{δ, rank(S)}.

Let αi+1 = β and let f1(i) = z. Let f2(i) be τ ’s reply to the move f1(i) = z
following the position 〈f1�i, f2�i〉 in G(¬Sx). Since τ is a winning strategy
for II in G(¬Sx), 〈x�i + 1, f1�i + 1, f2�i + 1〉 is a node in S.

7.6 Remark. The use of rule (6) in Definition 7.1 to obtain f1(i), and the use
of τ to obtain f2(i), together replace the use of the infinite branch through S
in the proof of Lemma 6.1.

We have so far determined αi+1, f1�i + 1, and f2�i + 1. It remains to
determine ni+1.

7.7 Claim. Let E = max{e0, . . . , eni}. Then there exist e < ω and κ < δ so
that:

(a) (ρ◦g)(e) has the form 〈l, u〉 with l = ni, and u equal to the κ-type of S,
〈0, f1(0)〉, 〈0, f2(0)〉, . . . , 〈i, f1(i)〉, 〈i, f2(i)〉, and αi+1 in V ‖αi+1 + 1.

(b) dcp(u) is elastic, e > E, and κ is large enough that (ρ ◦ q)(0), . . . ,
(ρ ◦ q)(e− 1) all belong to V ‖κ.

Proof. Similar to the proof of Claim 6.4. �

Let e be given by the last claim. Let 〈l, u〉 = (ρ ◦ g)(e), and let κ =
dom(u). An argument similar to that in the proof of Claim 6.5, using the
fact that 〈x�i+1, f1�i+1, f2�i+1〉 is a node in S, shows that 〈l, u〉 is a legal
move for player I following p∗�n. An argument similar to that in the proof
of Claim 6.6 produces n < ω so that en = e. Set ni+1 equal to this n. By
condition (a) then, lni+1 = ni and uni+1 is equal to the κ-type of S, 〈0, f1(0)〉,
〈0, f2(0)〉, . . . , 〈i, f1(i)〉, 〈i, f2(i)〉, and αi+1 in V ‖αi+1 + 1. It is easy now to
check that conditions (1)–(4) hold for i + 1.

The recursive construction above is such that αi+1 < αi for each i < ω.
This contradiction, similar to the one obtained in the proof of Lemma 6.1,
completes the proof of Lemma 7.4. �

7.8 Lemma. Suppose that player II has a winning strategy in G∗. Then
there is a strategy σ for player II in the game on X so that, in V , every
infinite play according to σ belongs to gdp(S).



1932 Neeman / Determinacy in L(R)

Proof. We adapt the solution for Exercise 5.23 to the current setting.
Let σ ∈ M be a winning strategy for player II in G∗. Fix an opponent,

willing to play for I in the game on X. We describe how to play against the
opponent, making sure that each infinite play according to our description
ends up in gdp(S). As usual our description takes the form of a construction.
Precisely, we construct:

(A) ln, un, wn, and xn for n < ω.

(B) An iteration tree T on M giving rise to models Mk for k < ω and
embeddings jl,k for l T k < ω.

(C) Nodes 〈an, bn〉 ∈ j0,2n+1(S)x for n < ω.

(D) zn ∈ j0,2n+1(U1) for n < ω.

This list of objects is similar to the one in the proof of Lemma 5.15, and our
construction too will be similar to the one in that proof.

As in Lemma 5.15 we construct so that: 0 T 2 T 4 . . .; if kn �= 0 then
the T -predecessor of 2n + 1 is 2ln + 1; and if kn = 0 then the T -predecessor
of 2n+1 is 2n. kn here is such that un is a (2kn +2)-type, see Definition 7.1.

Let p0 = ∅ and recursively define

pn+1 = j2n,2n+2(pn)�〈ln, j2n,2n+2(un), wn, xn〉.

We construct so that pn is a position in j0,2n(G∗), played according to
j0,2n(σ∗). In addition we maintain the conditions:

(1) wn is realized by the objects j0,2n+1(S), 〈0, an(0)〉, 〈0, bn(0)〉, . . . , 〈kn−
1, an(kn− 1)〉, 〈kn− 1, bn(kn− 1)〉, 〈kn, zn〉, and j0,2n+1(νL) in M2n+1‖
j0,2n+1(νL) + 3.

(2) wn is elastic.

(3) M2n+1 agrees with all later models of T , that is all models Mi for i >
2n + 1, past dom(wn). wn belongs to Mi for each i > 2n + 1.

(4) All the extenders used in T have critical points above rank(X). For
each m > n, the critical point of j2n+2,2m+2 is greater than the domain
of wn. In particular j2n+2,2m+2(wn) = wn for each m ≥ n.

Notice that from condition (1) and the fact that zn ∈ j0,2n+1(U1) it automat-
ically follows that wn is a (2kn + 3)-type and that it contains the formulae
required by rule (6) of G∗.

To begin round n of the construction set ln, and un to be the moves played
by j0,2n(σ∗) following the position pn. Let kn be such that un is a (2kn + 2)-
type. The construction in round n continues subject to one of the following
cases:
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Case 1. kn = 0. The rules of G∗ are such that un is realized by j0,2n(S) and
j0,2n(νL) in M2n‖j0,2n(νL) + 1. From the local indiscernibility of νL and νH

it follows that un is realized by j0,2n(S) and j0,2n(νH) in M2n‖j0,2n(νH) + 1.
Pick a set zn ∈ j0,2n(U1). We shall say more on how this set should be
picked, later on. Working in M2n using Lemma 3.22, let τ < j0,2n(δ) be such
that τ > dom(un) and such that the τ -type of j0,2n(S), 〈0, zn〉, and j0,2n(νL)
in j0,2n(νL) + 3 is elastic. Let wn be this type. It is easy to check that wn

exceeds dcp(un) in M2n.
Set E2n = “pad” so that M2n+1 = M2n and j2n,2n+1 is the identity.

Applying the One-Step Lemma 3.23 in M2n+1, find an extender E2n+1 ∈
M2n+1 so that wn is a subtype of StretchE2n+1

τ+ω (dcp(un)). Set M2n+2 =
Ult(M2n, E2n+1), and set j2n,2n+2 to be the ultrapower embedding. Note
that these settings are such that wn is a subtype of j2n,2n+2(dcp(un)). It is
easy now to check that wn satisfies the conditions of rule (6) of G∗, shifted
to M2n+2, following the position j2n,2n+2(pn

�〈ln, un〉).
Finally, set xn to be the move played j0,2n+2(σ∗) following the position

j2n,2n+2(pn)�〈ln, j2n,2n+2(un), wn〉 if n is odd, and the move played by the
opponent in the game on X following 〈x0, . . . , xn−1〉 if n is even. This com-
pletes the round. � (Case 1)

Case 2. kn �= 0. The rules of j0,2n(G∗) following the position pn are such
that un exceeds wln in M2n. Let κ denote the domain of un. Using the
One-Step Lemma in M2n find an extender E2n with critical point dom(wln),
so that un is a subtype of StretchE2n

κ+ω(wln). Set M2n+1 = Ult(M2ln+1, E2n),
and set j2ln+1,2n+1 to be the ultrapower embedding, so that un is a subtype
of j2ln+1,2n+1(wln).

Let k = kn be such that un is a (2kn + 2)-type. Let k̄ denote k − 1. The
rules of G∗ are such that wln is a (2k̄ + 3)-type. Let ā, b̄, and z̄ denote aln ,
bln , and zln . Let a = j2ln+1,2n+1(ā) and similarly with b and z.

Our construction is such that wln is realized by j0,2ln+1(S), 〈0, ā(0)〉,
〈0, b̄(0)〉, . . . , 〈k̄ − 1, ā(k̄ − 1)〉, 〈k̄ − 1, b̄(k̄ − 1)〉, 〈k̄, z〉, and j0,2ln+1(νL)
in M2ln+1‖j0,2ln+1(νL) + 3. Using the elementarity of j2ln+1,2n+1, the fact
that un is a subtype of j2ln+1,2n+1, and the conditions placed on un by
rule (2) of Definition 7.1, it follows that there must exist some set z′ so
that un is realized by j0,2n+1(S), 〈0, a(0)〉, 〈0, b(0)〉, . . . , 〈k̄ − 1, a(k̄ − 1)〉,
〈k̄−1, b(k̄−1)〉, 〈k̄, z〉, 〈k̄, z′〉, and j0,2n+1(νL) in M2n+1‖j0,2n+1(νL)+1, and
that moreover 〈a�〈z〉, b�〈z′〉〉 is a node in j0,2n+1(S)x. Set an = a�〈z〉 and
set bn = b�〈z′〉. Then 〈an, bn〉 is a node in j0,2n+1(S), and un is realized
by j0,2n+1(S), 〈0, an(0)〉, 〈0, bn(0)〉, . . . , 〈k− 1, an(k− 1)〉, 〈k− 1, bn(k− 1)〉,
and j0,2n+1(νL) in M2n+1‖j0,2n+1(νL) + 1. For the record we note that:

(i) an extends j2ln+1,2n+1(aln), and similarly with bn.

(ii) j2ln+1,2n+1(zln) belongs to the range of an.

From here we continue as in case 1.
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By the local indiscernibility of νL and νH , un is realized by j0,2n+1(S),
〈0, an(0)〉, 〈0, bn(0)〉, . . . , 〈k−1, an(k−1)〉, 〈k−1, bn(k−1)〉, and j0,2n+1(νH)
in M2n+1‖j0,2n+1(νH) + 1.

Pick some set zn ∈ j0,2n+1(U1). We shall say more on how this set should
be picked, later on. Working in M2n+1 using Lemma 3.22, let τ < j0,2n+1(δ)
be such that τ > dom(un) and such that the τ -type of j0,2n+1(S), 〈0, an(0)〉,
〈0, bn(0)〉, . . . , 〈k − 1, an(k − 1)〉, 〈k − 1, bn(k − 1)〉, 〈k, zn〉, and j0,2n+1(νL)
in M2n+1‖j0,2n+1(νL) + 3 is elastic. Let wn be this type. It is easy to check
that wn exceeds dcp(un) in M2n+1.

Using the One-Step Lemma 3.23, in M2n+1, find an extender E2n+1 ∈
M2n+1 so that wn is a subtype of StretchE2n+1

τ+ω (dcp(un)). Set M2n+2 =
Ult(M2n, E2n+1), and set j2n,2n+2 to be the ultrapower embedding. As in
case 1, wn satisfies the conditions of rule (6) of G∗, shifted to M2n+2, following
the position j2n,2n+2(pn

�〈ln, un〉).
Finally, set xn to be the move played by j0,2n+2(σ∗) following the posi-

tion j2n,2n+2(pn)�〈ln, j2n,2n+2(un), wn〉 if n is odd, and the move played by
the opponent in the game on X following 〈x0, . . . , xn−1〉 if n is even. This
completes the round. � (Case 2)

The description above completes the construction, except that we have yet
to specify how the sets zn are picked. Note that the structure of the iteration
tree T is such that cofinal branches other than the even branch have the form
0, 2, . . . , 2m0, 2m0 + 1, 2m1 + 1, . . . for some increasing sequence {mi}. The
sets zn should be picked during the construction in such a way that:

(iii) For every cofinal branch b other than the even branch, for every odd
node 2m + 1 ∈ b, and for every set y ∈ j0,2m+1(U1), there exists a
node 2m∗ +1 ∈ b, with m∗ > m, so that zm∗ is equal to j2m+1,2m∗+1(y).

Securing this through some condition on the way zn is chosen is a simple
matter of book-keeping, using the fact that U1 is countable in V . Let us
just note that this book-keeping cannot in general be phrased inside M ,
since U1 is only assumed to be countable in V . Thus the strategy σ which
our construction describes need not be an element of M .

With the construction complete, it remains to check that every sequence
x = 〈xn | n < ω〉 ∈ Xω that can be obtained by following the construction,
with moves xn for even n supplied by the opponent, belongs to gdp(S).

Let x, T , 〈ln, un, wn | n < ω〉, 〈an | n < ω〉, 〈bn | n < ω〉 and 〈zn | n < ω〉
be obtained through the construction above. We work through a series of
claims to show that x belongs to gdp(S).

7.9 Claim. The even branch of T has an illfounded direct limit.

Proof. Identical to the proof of Claim 5.19. �

7.10 Claim. Let b be a branch of T other than the even branch. Let {mi} be
such that b = {0, 2, . . . , 2m0, 2m0 +1, . . . , 2mi +1, . . .}. Let a∗

i = j2mi+1,b(ai)
and let b∗

i = j2mi+1,b(bi). Let a∗ =
⋃

i<ω a∗
i and let b∗ =

⋃
i<ω b∗

i . Then:
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(1) 〈x, a∗, b∗〉 ∈ [j0,b(S)].

(2) a∗ is onto j0,b(U1).

Proof. Note first that by condition (i),
⋃

i<ω a∗
i and

⋃
i<ω b∗

i are both in-
creasing unions giving rise to infinite sequences. By condition (C), below
Lemma 7.8, 〈x�i, a∗

i , b
∗
i 〉 is a node in j0,b(S) for each i. Thus 〈x, a∗, b∗〉 is an

infinite branch through j0,b(S).
By conditions (ii), j2mi+1,b(zmi) belongs to the range of a∗ for each i.

From this and condition (iii) it follows that a∗ is onto j0,b(U1). �

Claims 7.9 and 7.10 together combine to show that x ∈ dp(j0,b(S)) for
every wellfounded cofinal branch b of T . T therefore witnesses that x ∈
gdp(S). �

7.11 Corollary. Let M be a model of ZFC. Let δ be a Woodin cardinal of M .
Let X belong to M‖δ.

Let S ∈M be a tree. Suppose that both S and PM (δ) are countable in V .
Let g be Col(ω, δ)-generic over M .

Then at least one of the following conditions holds:

(1) There is a strategy σ for player II in the game on X so that, in V ,
every infinite run according to σ belongs to gdp(S).

(2) There is a strategy σ ∈ M [g] for player I in the game on X so that,
in M [g], every infinite run according to σ belongs to


(¬S).

Proof. Immediate from Lemma 7.4, Lemma 7.8, and the fact that the game G∗

is closed and therefore determined in M . �

Sometimes we want to restrict players on X to some specific subtree
of X<ω. The next exercise is useful in such circumstances.

7.12 Exercise. Work in the setting of Corollary 7.11, and in addition to the
objects there let R ∈ M be a tree on X with no terminal nodes. Show that
at least one of the cases in the corollary holds, with “game on X” replaced
by “game on R” in both cases.

Hint. Define π : X<ω → R so that lh(π(s)) = lh(s) for each s ∈ X<ω,
s < t =⇒ π(s) < π(t) for all s, t ∈ X<ω, and so that π is onto R. Let Ŝ =
{〈s, u1, u2〉 | 〈π(s), u1, u2〉 ∈ S}. Use Corollary 7.11 on Ŝ. �

One can use Corollary 7.11 to directly obtain determinacy results. Here
instead we use the corollary to obtain a genericity result, and then use the
genericity result in conjunction with Theorem 6.17 to obtain determinacy.

7.13 Definition. Let P ∈ M be a poset. An iteration tree T on M is said
to absorb x to an extension by an image of P just in case that for every
wellfounded cofinal branch b through T , there is a generic extension M T

b [g]
of M T

b by the poset jT
0,b(P), so that x ∈M T

b [g].
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7.14 Exercise. Let M be a model of ZFC. Let δ be a Woodin cardinal of M .
Let X belong to M‖δ. Suppose that PM (δ) is countable in V .

Let U1 be the set of dense sets in Col(ω, δ). Let A be the set of canonical
names in M for functions from ω into X. Let U2 be the union of A with the set
of conditions in Col(ω, δ). Working in M let S ⊆ (X×U1×U2)<ω be the tree
of attempts to construct sequences x = 〈x0, x1, . . . 〉 ∈ Xω, 〈D0, D1, . . . 〉 ∈
(U1)ω, and 〈ẋ, p1, p2, . . . 〉 ∈ (U2)ω so that:

(1) ẋ ∈ A and pn ∈ Col(ω, δ) for each n.

(2) pn+1 < pn and pn+1 ∈ Dn for each n.

(3) pn �“ẋ(ň) = x̌n” for each n.

Prove that x ∈ dp(S) iff there is a g which is Col(ω, δ)-generic over M
with x ∈M [g].

7.15 Exercise. Continuing to work with the tree of the previous exercise,
prove that x ∈ 

(¬S) iff there is no g which is Col(ω, δ)-generic over M
with x ∈M [g].

7.16 Theorem. Let M be a model of ZFC. Let δ be a Woodin cardinal of M .
Let X belong to M‖δ. Suppose that PM (δ) is countable in V .

Then for every x ∈ Xω there is a length ω iteration tree T on M which
absorbs x into an extension by an image of Col(ω, δ).

Note that in particular any real number in V can be absorbed into a
generic extension of an iterate of M .

Proof of Theorem 7.16. Let g be Col(ω, δ)-generic over M , and apply Corol-
lary 7.11 to the tree S of Exercise 7.14. Notice that condition (2) of the
corollary cannot hold: the strategy σ in that condition belongs to M [g], and
certainly then there are plays x ∈ Xω which are according to σ, and which
belong to M [g]. But from Exercise 7.15 and the fact that x belongs to M [g]
it follows that x �∈ 

(¬S), while from condition (2) of the corollary and the
fact that x is according to σ it follows that x ∈ 

(¬S).
Thus condition (1) of the corollary must hold, and this immediately implies

that for every sequence 〈x0, x2, . . . 〉 ∈ Xω, there is a sequence 〈x1, x3, . . . 〉 ∈
Xω and a length ω iteration tree T on M , so that the combined sequence
x = 〈x0, x1, . . . 〉 belongs to dp(j0,b)(S) for every cofinal wellfounded branch b
of T . By Exercise 7.14 then, x belongs to a generic extension of M T

b by
j0,b(Col(ω, δ)). So T absorbs x, and therefore certainly 〈x0, x2, . . . 〉, into an
extension by an image of Col(ω, δ). �

Theorem 7.16 was proved in Neeman [28, 29]. It is the second of two
genericity results. The first is due to Woodin [42]. Woodin’s theorem uses a
forcing notion which has the δ chain condition, and it does not require any
assumption on the size of δ or its power set in V . These properties often



7. Genericity Iterations 1937

make it more useful than Theorem 7.16, see for example Neeman-Zapletal
[34]. On the other hand Woodin’s theorem requires full iterability for trees
of lengths up to ω1, and in our setting this is a disadvantage.

7.17 Definition. Let M be a model of ZFC, let δ be a cardinal of M , let
X ∈M‖δ, and let Ȧ ∈M be a Col(ω, δ)-name for a subset of Xω.

x ∈ Xω belongs to the generalized interpretation of Ȧ if there exists a
length ω iteration tree T on M using only extenders with critical points
above rank(X), and a map h : ω → On<ω, so that for every wellfounded
cofinal branch b of T :

(1) hb =
⋃

n∈b h(n) is Col(ω, jT
b (δ))-generic over M T

b .

(2) x belongs to jT
b (Ȧ)[hb].

7.18 Exercise. Let M be a model of ZFC. Let δ be a Woodin cardinal
of M . Let X belong to M‖δ. Suppose that PM (δ) is countable in V . Let g
be Col(ω, δ)-generic over M .

Let Ȧ ∈ M be a Col(ω, δ)-name for a subset of Xω. Prove that at least
one of the following conditions holds:

(1) In V , player I has a winning strategy in Gω(A∗), where A∗ is the
generalized interpretation of Ȧ.

(2) In M [g], player II has a winning strategy in Gω(Ȧ[g]).

Hint. First note that by changing the roles of the players (and modifying the
name Ȧ accordingly) the exercise can be reduced to proving that at least one
of the following conditions holds:

(1) There is a strategy σ for player II so that, in V , every play according
to σ belongs to the generalized interpretation of Ȧ.

(2) There is a strategy σ ∈ M [g] for player I so that, in M [g], every play
according to σ belongs to the complement of Ȧ[g].

Were it not for the need for continuity of the map b �→ hb in Definition 7.17,
this could be derived from Corollary 7.11, using a tree S similar to the one
defined in Exercise 7.14, but replacing the set A used in that exercise with
the set of names forced to belong to Ȧ. The continuity of the map b �→ hb

is a consequence of the proof of Corollary 7.11, tracing back to the way b∗ is
constructed in Claim 7.10. �

Exercise 7.18 appeared in Neeman [28]. When applied with an iterable
model M and a name Ȧ for a set defined by an absolute condition, the
exercise leads to determinacy, and Neeman [28] uses it to prove projective
determinacy and indeed ADL(R).

Tracing through the construction leading to the exercise, the reader can
check that in condition (1), the tree T and the function h witnessing that x
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belongs to the generalized interpretation of Ȧ depend on x continuously. This
element of continuity is expressed more explicitly in Lemma 1.7 of Neeman
[28]. It is crucial for proofs of determinacy of long games, but we shall not
get into this here. The interested reader may find more in Neeman [30].

7.19 Exercise (Windßus [41], see [13, Lemma 4.5, Theorem 5.2]). Let
π : P → V ‖θ be elementary, with P countable. Let κ̄ ∈ P . Let A be
the set of sequences 〈ui | i < ω〉 ∈ Pω so that:

(i) ui is a (nice) finite iteration tree on P . If i < j then uj extends ui, so
that U =

⋃
i<ω ui is a (nice) iteration tree of length ω. The trees use

only extenders with critical points above κ̄.

(ii) Let ni + 1 = lh(ui). Then b = {ni | i < ω} is a branch through U .

(iii) The direct limit of the models of πU along b is wellfounded. (Recall
that πU is the copy of U via π, see Definition 2.7. It is an iteration tree
on V .)

Prove that A is π(κ̄)-homogeneously Suslin.

Proof. The proof builds on that of Lemma 2.12. Let B be the set of se-
quences 〈ui | i < ω〉 satisfying conditions (i) and (ii), but such that the direct
limit of πU along b is illfounded. For each x = 〈ui | i < ω〉 in B fix a se-
quence 〈αx

i | i < ω〉 witnessing the illfoundedness, more precisely a sequence
so that:

(1) for all i < ω, j
πui+1
ni,ni+1(αx

i ) > αx
i+1.

Let θ be larger than all the ordinals αx
i .

For s = 〈u0, . . . , ui−1〉 let Bs be the set of x ∈ B which extend s. Let T be
the tree of attempts to construct sequences x = 〈ui | i < ω〉 and 〈σi | i < ω〉
so that:

(2) x satisfies conditions (i) and (ii).

(3) σi : B〈u0,...,ui 〉 → θ.

(4) For all i and all y ∈ B〈u0,...,ui+1〉, σi(y) > σi+1(y).

Prove that x ∈ B =⇒ x �∈ p[T ], and hence p[T ] ⊆ A. You will prove
that A ⊆ p[T ] later on.

Let M∅ = V . For s = 〈u0, . . . , ui〉 let Ms be the final model Mπui
ni

of
the copied tree πui. Let ϕs be the function x �→ αx

i , defined for x ∈ Bs,
where αx

i are the ordinals witnessing condition (1) above. The models of πui

are 2ℵ0-closed by Exercise 2.2, and hence ϕs ∈Ms.
For t = 〈u0, . . . , ui∗〉 extending s = 〈u0, . . . , ui〉 let js,t : Ms → Mt be the

embedding jπui∗
ni,ni∗ . Let j∅,t : V → Mt be the embedding jπui∗

0,i∗ . Notice that
all these embeddings have critical points above π(κ̄).
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Show using condition (1) that fs = 〈js�1,s(ϕs�1), js�2,s(ϕs�2), . . . , ϕs〉 is a
node in j∅,s(Ts), and use the models Ms, embeddings js,t, and nodes fs to
assemble a homogeneity system for T along the conditions of Exercise 4.2.
Finally use the converse of condition (3) of Exercise 4.2, given by Exercise 4.4,
to show that A ⊆ p[T ]. �

7.20 Exercise (Woodin, see [14, Theorem 3.3.8]). Let δ be Woodin in V and
let A ⊆ ωω be δ-universally Baire. Prove that A is weakly κ-homogeneously
Suslin for each κ < δ.

Hint. Fix κ. Let 〈T, T ∗〉 witness that A is δ-universally Baire. Let θ be large
enough that δ, T , and T ∗ belong to V ‖θ. Let π : P → V ‖θ be elementary,
with P countable and κ, δ, T , and T ∗ in the range of π. Let κ̄ be such
that π(κ̄) = κ, and similarly with δ̄, T̄ , and T̄ ∗.

Let B be the set of tuples 〈x,U , b, n, ẋ, g〉 so that: x ∈ ωω; U is a (nice)
length ω iteration tree on P using only extenders with critical points above κ̄;
b is a cofinal branch through U , leading to a wellfounded direct limit in the
copy tree πU on V ; n ∈ b; ẋ ∈ Pn is a name in Col(ω, j0,n(δ̄)), forced by the
empty condition to be a real belonging to p[j0,n(T̄ )]; g is Col(ω, jb(δ̄))-generic
over Pb; and jn,b(ẋ)[g] = x.

Show using Exercise 7.19 that B is κ-homogeneously Suslin. Then show
using Theorem 7.16 and Lemma 2.12 that x ∈ A iff (∃U)(∃b)(∃n)(∃ẋ)(∃g)
〈x,U , b, n, ẋ, g〉 ∈ B. The quantifiers all involve elements of P and Pω, which
are isomorphic to ω and ωω. Use this to present A as the projection of
a κ-homogeneously Suslin subset of ωω × ωω. �

7.21 Remark. If κ is a limit of Woodin cardinals, then for any A ⊆ ωω,
Exercises 5.29, 6.16, and 7.20 together imply that A is <κ-universally Baire
iff A is <κ-homogeneously Suslin iff A is weakly <κ-homogeneously Suslin.

7.22 Exercise. Let j : M → N be elementary. Let h be Col(ω, κ)-generic
over M . Suppose that crit(j) > κ. Prove that j can be extended to an
embedding j∗ : M [h] → N [h].

Hint. Define j∗ by setting j∗(ȧ[h]) = (j(ȧ))[h]. Show that j∗ is well defined
and elementary. �

7.23 Exercise. Let M be a model of ZFC. Let δ be a Woodin cardinal of M .
Let X belong to M‖δ. Suppose that PM (δ) is countable in V .

Let κ < δ. Let h be Col(ω, κ)-generic over M .
Let x ∈ Xω. Then there is a length ω iteration tree T on M so that:

(1) All the extenders used in T have critical points above κ. (In particular
then the embeddings along branches of T extend to act on M [h].)

(2) For every cofinal wellfounded branch b of T , there is a g Col(ω, jb(δ))-
generic over Mb[h] so that x belongs to Mb[h][g].
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Note that in particular any real in V can be absorbed into a generic ex-
tension of Mb[h] for an iterate Mb of M .

Hint to Exercise 7.23. Let X̂ = M‖κ + ω. Let R ⊆ X̂<ω be the tree of
attempts to construct a sequence 〈〈x0, q0〉, E0, 〈x1, q1〉, E1, . . . 〉 so that:

(1) xn ∈ X for each n, and qn is a condition in Col(ω, κ).

(2) En is a dense subset of Col(ω, κ) for each n.

(3) qn+1 < qn and qn+1 ∈ En for each n.

For clarity let us point out that in games on R, player I plays the ob-
jects 〈xn, qn〉, and player II plays the objects En.

Working in M let U1 be the set of Col(ω, κ)-names for dense subsets
of Col(ω, δ), let A be the set of canonical Col(ω, κ) × Col(ω, δ)-names for
functions from ω into X, and let U2 be the union of A with the set of condi-
tions in Col(ω, δ).

Let S ⊆ (X̂ ×U1 ×U2)<ω be the tree of attempts to construct a sequence
〈〈x0, q0〉, E0, 〈x1, q1〉, E1, . . . 〉 ∈ [R], a sequence 〈Ḋ0, Ḋ1, . . . 〉 ∈ (U1)ω, and a
sequence 〈ẋ, p1, p2, . . . 〉 ∈ (U2)ω so that:

(1) ẋ ∈ A and pn ∈ Col(ω, δ) for each n.

(2) For each n and each i ≤ n, pn+1 < pn and qn+1 ��Col(ω,κ)“p̌i+1 �∈ Ḋi.”

(3) For each n and each i ≤ n, 〈qn, pn〉 ��Col(ω,κ)×Col(ω,δ)“ẋ(̌i) �= x̌i.”

Apply Exercise 7.12 to X̂, R, and S as defined above. Argue first that case
(2) cannot hold. (For this you will need the following forcing claim: Let g
be Col(ω, δ)-generic over M . Let h∗ belong to M [g] and suppose that h∗

is Col(ω, κ)-generic over M . Then there exists a g∗ which is Col(ω, δ)-generic
over M [h∗] and so that M [h∗][g∗] = M [g].) Then use case (1) of Exercise 7.12
to reach the conclusion of the current exercise. �

7.24 Remark. Let κ1 < κ2 < · · · < κi = κ. Col(ω, κ) is then isomorphic
to Col(ω, κ1)× · · · × Col(ω, κi). Exercise 7.23 can therefore be rephrased to
replace h by a generic h1×· · ·×hi for Col(ω, κ1)×· · ·×Col(ω, κi). This sets
the stage for an iterated use of the exercise, assuming an increasing sequence
of Woodin cardinals. We shall make such a use in the next section.

8. Determinacy in L(R)

Let M be a model of ZFC and let δ0 < δ1 < · · · be ω Woodin cardinals in M .
Let δ∞ = supn<ω δn. Suppose that PM (δ∞) is countable in V .

Let P be the finite support product Col(ω, δ0)× Col(ω, δ1)× · · · .
Given a filter G = 〈gi | i < ω〉 which is P-generic over M define R∗[G] to

be
⋃

n<ω R
M [G�n]. We refer to R∗[G] as the reals in the symmetric collapse
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of M induced by G. We refer to LM ∩On(R∗[G]) as the derived model of M
induced by G. (This is L(R∗[G]) if M is a class model.)

8.1 Remark. Suppose that v1, . . . , vk ∈M [G�n]. Let PL = Col(ω, δ0)×· · ·×
Col(ω, δn−1), so that G�n is PL -generic over M , and let PH = Col(ω, δn)×· · · .
Because of the symmetry of PH , any statement ϕ[v1, . . . , vk] which holds
in M(R∗[G]) must be forced to hold in M(R∗[G]) by the empty condition
in PH over M [G�n].

8.2 Exercise. Let R∗ denote the reals of the symmetric collapse of M in-
duced by G, and let W denote the derived model of M induced by G. Prove
that R

W = R∗.

Hint. The inclusion R
W ⊇ R∗ is clear. For the reverse inclusion: let b ∈

RW . b is definable in W from some parameters in R∗∪ (On∩M). Thus there
is some n < ω so that the parameters defining b belong to M [G�n]. Use this
and the symmetry given by Remark 8.1 to argue that b belongs to M [G�n],
and therefore b ∈ R∗. �

Exercise 8.2 makes no use of the assumption that δ∞ is a limit of Woodin
cardinals in M . But without this assumption the derived model need not even
satisfy the axiom of dependent choice for reals, and in such circumstances the
conclusion of the exercise is less meaningful than it appears.

8.3 Definition. By a Σ1(R) statement over L(R), Σ1(R) for short, we mean
a statement of the form (∃Q ⊇ R)Q |= ψ[x1, . . . , xn], where x1, . . . , xn ∈ R.

We say that Lα(R) is an initial segment of Lβ(R) if: (1) α ≤ β; and
(2) R

Lα(R) = R
Lβ(R) = R.

8.4 Claim. Suppose that Lα(R) is an initial segment of Lβ(R). Then
any Σ1(R) statement true in Lα(R) is also true in Lβ(R).

The failure of ADL(R) is Σ1(R), and so is the failure of dependent choice
for reals in L(R).

8.5 Lemma. Let ϕ[x1, . . . , xk] be Σ1(R) over L(R). Suppose that x1, . . . , xk

belong to the symmetric collapse of M induced by G. Suppose that M is
countable and embeds into a rank initial segment of V . Then if ϕ[x1, . . . , xk]
holds in the derived model of M induced by G, it must hold also in (the
true) L(R).

Proof. Let Σ be the weak iteration strategy for M given by Corollary 2.4.
Let θ be a cardinal large enough that M , Σ, G, and R all belong to V ‖θ,
and so that V ‖θ satisfies enough of ZFC for the argument below. Let X be
a countable elementary substructure of V ‖θ containing these objects. Let P
be the transitive collapse of X and let τ : P → V ‖θ be the anti-collapse
embedding. Notice that M , being countable, is not moved by the collapse.
So τ(M) = M . Notice further that τ −1(Σ) is simply equal to Σ ∩ P . This is
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because the iteration trees which come up in weak iteration games on M are
countable, and not moved by τ .

Let 〈ai | n ≤ i < ω〉 be an enumeration of the reals of P , which is Col(ω,
RP )-generic over P . Let M0 = M1 = · · · = Mn = M and let ji,i′ for i ≤ i′ ≤
n be the identity. For i < n let hi = gi. Below let hi denote h0×h1×· · ·×hi−1.
Using repeated applications of Exercise 7.23 and Remark 7.24 construct Ti, bi,
Mi, and hi for i ≥ n, and a commuting system of embeddings ji,i′ : Mi →Mi′

for i ≤ i′ < ω so that:

(1) Ti is a length ω iteration tree on Mi, using only extenders with critical
points above j0,i(δi−1).

(2) bi is the cofinal branch through Ti given by Σ (equivalently by Σ̄).

(3) Mi+1 is the direct limit of the models of Ti along bi. ji,i+1 : Mi →Mi+1

is the direct limit embedding.

(4) hi is Col(ω, j0,i+1(δi))-generic over Mi+1[hi].

(5) ai belongs to Mi+1[hi × hi].

The key point in the construction is the last condition, condition (5). It is ob-
tained through an application of Exercise 7.23, inside P , on the model Mi[hi],
to absorb the real ai into a generic extension of an iterate. Ti is the iteration
tree given by the exercise.

The construction is dependent on the sequence 〈ai | n ≤ i < ω〉 which does
not belong to P . Thus the sequence 〈Mi, Ti, bi, hi | i < ω〉 does not belong
to P . But notice that every stage of the construction is done inside P . Each
of the individual objects in the sequence is therefore an element of P (and
countable in P , since M is countable in P ). Using this and some book-keeping
it is easy to arrange that:

(i) For every i < ω, and every D ∈ Mi which is dense in j0,i(P), there
exists some i∗ > i so that the filter h0 × · · · × hi∗ −1 meets ji,i∗ (D).

The book-keeping requires an enumeration of
⋃

i<ω Mi. Notice that there are
such enumerations in P [ai | n ≤ i < ω] since each Mi is countable in P , and
therefore coded by a real.

Let M∞ be the direct limit of the system 〈Mi, ji,i′ | i ≤ i′ < ω〉, and let
ji,∞ be the direct limit maps. M∞ is wellfounded since it is obtained in a
play of the weak iteration game according to Σ.

From condition (1) it follows that crit(ji∗,∞) ≥ j0,i∗ (δi−1) for every i∗ < ω.
Conditions in hi∗

are therefore not moved by ji∗,∞. From this and condition
(i) it follows that H = 〈hi | i < ω〉 is j0,∞(P)-generic over M∞.

8.6 Claim. ϕ[x1, . . . , xk] holds in the derived model of M∞ induced by H.
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Proof. We know that ϕ[x1, . . . , xk] holds in the derived model of M in-
duced by G. By Remark 8.1 this statement, let us denote it (∗), is forced,
over M [g0×· · ·×gn−1] = M [h0×· · ·×hn−1] by the empty condition in PH . j0,∞
has critical point above δn−1 and therefore extends to an elementary embed-
ding of M [h0× · · · × hn−1] into M∞[h0× · · · × hn−1]. x1, . . . , xk, being reals,
are not moved by the embedding. From this and elementarity if follows that
the statement (∗) is forced to hold also over M∞[h0 × · · · × hn−1]. It follows
that ϕ[x1, . . . , xk] holds in the derived model of M∞ induced by H. �

8.7 Claim. R∗(H) = R
P .

Proof. From the restriction on the critical points in condition (1) it follows
that R ∩M∞[H�i] = R ∩Mi[H�i]. Since Mi and H�i belong to P it follows
that R ∩M∞[H�i] ⊆ P , and hence R∗(H) ⊆ R

P .
Conversely, every real in P belongs to {ai | n ≤ i < ω}, and is, by

construction, an element of Mi+1[hi][hi] = Mi+1[H�i + 1] for some i. Using
the restriction on the critical points in condition (1), R ∩Mi+1[H�i + 1] =
R ∩M∞[H�i + 1]. So RP ⊆ R∗(H). �

8.8 Claim. ϕ[x1, . . . , xk] holds in (L(R))P .

Proof. Notice that the ordinals of M∞ are contained in the ordinals of P .
(This is because M∞ belongs to P [ai | n ≤ i < ω].) From this and the last
claim it follows that the derived model of M∞ induced by H is an initial seg-
ment of the model (L(R))P . By Claim 8.6, ϕ[x1, . . . , xk] holds in the former
model. From this and the fact that ϕ is Σ1(R) it follows that ϕ[x1, . . . , xk]
holds also in the latter. �

We showed so far that ϕ[x1, . . . , xk] holds in (L(R))P , where P is the
transitive collapse of a Skolem hull of a rank initial segment of V . Using
the elementarity of the anti-collapse embedding it follows that ϕ[x1, . . . , xk]
holds in (L(R))V ‖θ, and since ϕ[x1, . . . , xk] is Σ1(R) this implies that it holds
in (L(R))V . �

8.9 Lemma. Suppose that 〈ηi | i < ω〉 is an increasing sequence of Woodin
cardinals of V . Let Q be the finite support product Col(ω, η1) ×
Col(ω, η2)× · · · . Let H = 〈hi | i < ω〉 be Q-generic over V .

Then the derived model of V induced by H satisfies the axiom of dependent
choice for reals (and hence the full axiom of dependent choice).

Proof. Suppose not. Let θ be a cardinal large enough that Q ∈ V ‖θ and
so that V ‖θ satisfies the fragment of ZFC that must be assumed in a model
M for Lemma 8.5 to hold for the model. Let π : M → V ‖θ be elementary,
with M countable and Q ∈ range(π). By elementarity, dependent choice for
reals fails in the derived models of M . The failure of dependent choice for
reals is Σ1(R). Thus by Lemma 8.5 dependent choice for reals must fail also
in the true L(R). But this is a contradiction. Dependent choice for reals
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in the true L(R) follows from the axiom of choice in V and the fact that
countable sequences of reals can be coded by reals. �

8.10 Theorem. Suppose that 〈ηi | i < ω〉 is an increasing sequence of
Woodin cardinals of V . Let Q be the finite support product Col(ω, η1) ×
Col(ω, η2)× · · · . Let H = 〈hi | i < ω〉 be Q-generic over V .

Then the derived model of V induced by H satisfies AD.

Proof. Let R∗ denote R∗[H], and suppose for contradiction that there is a
set A ∈ L(R∗) so that A ⊆ R∗ and Gω(A) is not determined in L(R∗).

Since every set in L(R∗) is definable from real and ordinal parameters
in a level of L(R∗), there must be a parameter a ∈ R∗, a formula ϕ, and
ordinals γ, ζ so that

x ∈ A ⇐⇒ Lγ(R∗) |= ϕ[x, a, ζ].

Without loss of generality we may assume that a ∈ R
V . Otherwise we may

simply replace V by V [h0×· · ·×hi] for i large enough that a ∈ R
V [h0×··· ×hi].

Again without loss of generality we may assume that 〈γ, ζ〉 is the lexico-
graphically least pair of ordinals for which the set {x | Lγ(R∗) |= ϕ[x, a, ζ]}
is not determined. By the symmetry of the collapse, this minimality of 〈γ, ζ〉
is forced by the empty condition in Q over V .

8.11 Remark. We refer to A as the least non-determined set definable from a
and ordinal parameters in L(R∗).

Let θ be a cardinal larger than supi<ω ηi, larger than γ, and so that V ‖θ
satisfies the fragment of ZFC that must be assumed in a model M for Lemma 8.5
to hold for the model. Let Ṙ∗ ∈ V be the canonical name for R∗[H].

8.12 Definition. Working in V let Tin ⊆ ω × V ‖θ be the tree of attempts
to construct a real x, and a sequence 〈〈ei, fi〉 | i < ω〉 ∈ (V ‖θ)ω so that:

(1) {ei | i < ω} is an elementary substructure of V ‖θ.

Let M be the transitive collapse of {ei | i < ω}, and let π : M → V ‖θ be the
anticollapse embedding.

(2) e0 = a, e1 is equal to 〈ηi | i < ω〉, e2 = Q, e3 = Ṙ∗, e4 = γ, e5 = ζ, and
e6 is a name for a real in the symmetric collapse of V by Q.

(3) It is forced by the empty condition in Q that Lγ̌(Ṙ∗) |= ϕ[e6, ǎ, ζ̌].

Let ẋ denote π−1(e6). Let P denote π−1(Q).

(4) The set G = {π−1(efi) | i < ω} forms a P-generic filter over M .

(5) ẋ[G] is equal to x.

Let Tout ∈ V be defined similarly, only changing “|=” in condition (3) to
“ �|=”.
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8.13 Remark. We emphasize that both Tin and Tout are defined in V , that
is with no reference to H.

8.14 Remark. Let x ∈ p[Tin] and let 〈〈ei, fi〉 | i < ω〉 witness this. Let M , π,
and G be as in Definition 8.12. Note in this case that the derived model of M
induced by G satisfies the statement “there is a non-determined set definable
from a and ordinal parameters, and x belongs to the least such set”. This
follows from the minimality of 〈γ, ζ〉, the elementarity of π, condition (3) of
Definition 8.12, and condition (5) of the definition.

Similarly, if x ∈ p[Tout], then the derived model of M induced by G satisfies
the statement “there is a non-determined set definable from a and ordinal
parameters, and x belongs to the complement of the least such set.”

8.15 Claim. The pair 〈Tin, Tout〉 is exhaustive for Col(ω, η0).

Proof. Let x be a real in V [h0]. Recall that A = {x | Lγ(R∗) |= ϕ[x, a, ζ]}.
If x ∈ A then a Skolem hull argument in V [H] easily shows that x ∈
(p[Tin])V [H], and from this by absoluteness it follows that x ∈ (p[Tin])V [h0].
If x �∈ A then a similar argument shows that x ∈ (p[Tout])V [h0]. �

8.16 Claim. Let x be a real in V . Suppose that x ∈ p[Tin]. Then, in L(R),
there is a non-determined set definable from a and ordinal parameters, and x
belongs to the least such set.

Proof. Let 〈〈ei, fi〉 | i < ω〉 witness that x ∈ p[Tin]. Let M , π, ẋ, and G be as
in Definition 8.12. By Remark 8.14, the derived model of M induced by G
satisfies the statement “there is a non-determined set definable from a and
ordinals parameters, and x belongs to the least such set”. This statement
is Σ1(R). By Lemma 8.5 the statement must hold of x and a in the true L(R).

�

8.17 Claim. Let x be a real in V . Suppose that x ∈ p[Tout]. Then, in L(R),
there is a non-determined set definable from a and ordinal parameters, and x
belongs to the complement of the least such set.

Proof. Similar to the proof of the previous claim. �

8.18 Claim. V |=“p[Tin] ∩ p[Tout] = ∅”.

Proof. This follows immediately from the last two claims: x cannot belong
to both the least non-determined set and its complement. �

From Claims 8.15 and 8.18, and Exercise 6.15, it follows that, in V , p[Tout]
is precisely equal to the complement of p[Tin]. In particular this means that,
in the true L(R), there is a non-determined set definable from a and or-
dinal parameter, for otherwise both p[Tin] and p[Tout] would be empty by
Claims 8.16 and 8.17. p[Tin] is equal to the least such set.

Again from Exercise 6.15, p[Tin] is η0-universally Baire. By Theorem 6.17,
Gω(p[Tin]) must be determined. But this is a contradiction since p[Tin] is the
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least non-determined set. The contradiction completes the proof of Theo-
rem 8.10. �

8.19 Definition. Let A ⊆ R in V be <η-universally Baire, i.e. κ-universally
Baire for each κ < η. Let H be Col(ω,<η)-generic over V and let R

∗ =
R∗[H] =

⋃
α<η R

V [H�α]. The set A has a canonical extension to a set A∗ ⊆
R

∗, defined as follows: x ∈ R
V [H�α] belongs to A∗ iff x ∈ p[T ] for some, and

equivalently any, pair 〈T, T ∗〉 ∈ V witnessing that A is α-universally Baire.
(The equivalence is easy to prove using the conditions in Fact 6.14, and makes
the canonical extension useful.)

8.20 Exercise. Let η be a limit of Woodin cardinals and H a Col(ω,<η)-
generic filter over V . Let A ⊆ R in V be <η-universally Baire (equivalently,
by Remark 7.21, <η-homogeneously Suslin, or weakly <η-homogeneously
Suslin). Let A∗ be the canonical extension of A to a subset of R

∗ = R∗[H].
Prove that L(R∗, A∗) satisfies AD.

Exercise 8.20 is a first step towards Woodin’s derived model theorem,
which the reader can find in Steel [40]. Assuming enough large cardinals,
it can be shown that there are universally Baire sets which do not belong
to L(R), and in that case Exercise 8.20 is a proper strengthening of Theo-
rem 8.10, taking determinacy to sets outside L(R∗).

Hint to Exercise 8.20. Adapt the proof of Theorem 8.10, replacing L(R) by
L(R, A) and, for countable N and σ : N → V ‖θ, replacing derived models
of N by models of the form LN ∩On(R̄∗, Ā∗) where R̄

∗ is the set of reals of the
derived model and Ā∗ is the canonical extension of Ā = σ−1(A) to a subset
of R̄

∗. (Notice that all the countable models which come up during the proof
of Theorem 8.10 embed into rank initial segments of V , either directly by
construction or because they are obtained through uses of Theorem 2.3.)
You will need the following observation, which is easily verified, to connect
L(R̄∗, Ā∗) with L(R, A): Let σ : N → V ‖θ be elementary, with N countable
and σ(Ā) = A, σ(η̄) = η. Let H̄ ∈ V be Col(ω, η̄)-generic over N . Let
R̄

∗ =
⋃

α<η̄ R
N [H̄�α] and let Ā∗ be the canonical extension of Ā to a subset

of R̄
∗, as defined inside N [H̄]. Then for every x ∈ R̄

∗, x ∈ Ā∗ ⇐⇒ x ∈ A. �

8.21 Theorem. Suppose that there is a model M of ZFC so that:

• M has ω Woodin cardinals and a measurable cardinal above them.

• M is countable in V .

• M is weakly iterable.

Then the true L(R) satisfies AD.
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Proof. Let Σ be a weak iteration strategy for M . Let θ be a cardinal large
enough that Σ ∈ V ‖θ, and so that V ‖θ satisfies enough of ZFC for the
argument below. Let X be a countable elementary substructure of V ‖θ
with M,Σ ∈ X. Let P be the transitive collapse of X and let τ : P → V ‖θ
be the anti-collapse embedding. We intend to show that (L(R))P satisfies
AD, and then use the elementarity of τ .

Let 〈δi | i < ω〉 ∈M be an increasing sequence of Woodin cardinals of M ,
and let ρ be a measurable cardinal of M above these Woodin cardinals. Let P

denote the finite support product Col(ω, δ0)× Col(ω, δ1)× · · · .
Using iterated applications of Exercise 7.23 construct a weak iteration

〈Mi, ji,i′ | i ≤ i′ ≤ ω〉 of M0 = M , and a filter H, so that: the iteration is
according to Σ, H is j0,ω(P)-generic over Mω, and R∗[H] is precisely equal
to R ∩ P . The construction is similar to the main construction in the proof
of Lemma 8.5.

By Theorem 8.10, the derived model of Mω induced by H satisfies AD.
This model is an initial segment of (L(R))P : it has the reals that P has,
but it does not have all the ordinals P has. We now add ordinals by passing
from Mω to an iterate of Mω obtained through ultrapowers by a measure
on ρ and its images.

Let μ witness that ρ is measurable in M . Extend the iteration 〈Mi, ji,i′ |
i ≤ i′ ≤ ω〉 of M to a weak iteration of length ω1 by setting Mξ+1 =
Ult(Mξ, j0,ξ(μ)) for each ξ ≥ ω and setting jξ,ξ+1 to be the ultrapower em-
bedding. This completely determines the iteration.

Let ηα denote the ordinal height of Mα, that is On ∩Mα.

8.22 Exercise. Show that ηα ≥ α.

Hint. The map ξ �→ j0,ξ(ρ) embeds α− ω into the ordinals of Mα. �

Note that, for α ≥ ω, jω,α has critical point j0,ω(ρ), and this is larger than
j0,ω(supi<ω δi). It follows that H is generic also over Mα, and that the reals
of the symmetric collapse induced by H over Mα are the same as the reals of
the symmetric collapse induced by H over Mω, which in turn are the same
as the reals of P . Thus, for each α ≥ ω:

(i) The derived model of Mα induced by H is equal to Lηα(RP ).

From this and Theorem 8.10 it follows that:

(ii) Lηα(RP ) satisfies AD.

Using (i) and Exercise 8.2:

(iii) R
Lηα (RP ) is equal to R

P .

Using Exercise 8.22 fix some α < ω1 so that ηα > On ∩ P . By condition
(iii) then, (L(R))P is an initial segment of Lηα(RP ). From this and condition
(ii) it follows that (L(R))P satisfies AD. Using the elementarity of τ it follows
that (L(R))V ‖θ = Lθ(R) satisfies AD. Since θ could be chosen arbitrarily
large, it follows finally that L(R) satisfies AD. �
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8.23 Remark. Readers familiar with sharps can verify, by adapting the
proof given above, that the assumption in Theorem 8.21 can be weakened,
from demanding that M has ω Woodin cardinals and a measurable cardinal
above them, to demanding that M is a sharp for ω Woodin cardinals.

8.24 Theorem. Suppose that in V there are ω Woodin cardinals and a
measurable cardinal above them. Then L(R) satisfies AD.

Proof. Let θ be a cardinal large enough that V ‖θ |= “there are ω Woodin
cardinals and a measurable cardinal above them”, and so that V ‖θ satisfies
the fragment of ZFC necessary in a model M for Theorem 8.21 to hold for
the model. Let X be a countable elementary substructure of V ‖θ and let M
be the transitive collapse of X. Then M |= “there are ω Woodin cardinals
and a measurable cardinal above them”, M is countable in V , and, by Corol-
lary 2.4, M is weakly iterable. Applying Theorem 8.21 it follows that L(R)
satisfies AD. �
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des Sciences Mathématiques, Astronomiques et Physiques, 10:1–3, 1962.
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1. Introduction

In this chapter we give an account of Woodin’s technique for deriving large
cardinal strength from determinacy hypotheses. These results appear here
for the first time and for this reason we have gone into somewhat more detail
than is customary in a handbook. All unattributed results that follow are
either folklore or due to Woodin.

1.1. Determinacy and Large Cardinals

In the era of set theory following the discovery of independence a major
concern has been the discovery of new axioms that settle the statements left
undecided by the standard axioms (ZFC). One interesting feature that has
emerged is that there are often deep connections between axioms that spring
from entirely different sources. In this chapter we will be concerned with
one instance of this phenomenon, namely, the connection between axioms of
definable determinacy and large cardinal axioms.

In this introduction we will give a brief overview of axioms of definable
determinacy and large cardinal axioms (in Sects. A and B), discuss their
interconnections (in Sects. C and D), and give an overview of the chapter (in
Sect. E). At some points we will draw on notation and basic notions that are
explained in fuller detail in Sects. 1.2 and 2.1.

A. Determinacy

For a set of reals A ⊆ ωω consider the game where two players take turns
playing natural numbers:

I x(0) x(2) x(4) . . .
II x(1) x(3) . . .

At the end of a round of this game the two players will have produced a
real x, obtained through “interleaving” their plays. We say that Player I
wins the round if x ∈ A; otherwise Player II wins the round. The set A is
said to be determined if one of the players has a “winning strategy” in the
associated game, that is, a strategy which ensures that the player wins a
round regardless of how the other player plays. The Axiom of Determinacy
(AD) is the statement that every set of reals is determined.
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It is straightforward to see that very simple sets are determined. For
example, if A is the set of all reals then clearly I has a winning strategy; if
A is empty then clearly II has a winning strategy; and if A is countable then
II has a winning strategy (by “diagonalizing”). A more substantive result
is that if A is closed then one player must have a winning strategy. This
might lead one to expect that all sets of reals are determined. However,
it is straightforward to use the Axiom of Choice (AC) to construct a non-
determined set (by listing all winning strategies and “diagonalizing” across
them). For this reason AD was never really considered as a serious candidate
for a new axiom. However, there is an interesting class of related axioms that
are consistent with AC, namely, the axioms of definable determinacy. These
axioms extend the above pattern by asserting that all sets of reals at a given
level of complexity are determined, notable examples being, Δ∼

1
1-determinacy

(all Borel sets of reals are determined), PD (all projective sets of reals are
determined) and ADL(R) (all sets of reals in L(R) are determined).

One issue is whether these are really new axioms or whether they follow
from ZFC. In the early development of the subject the result on the deter-
minacy of closed sets was extended to higher levels of definability. These
developments culminated in Martin’s proof of Δ∼

1
1-determinacy in ZFC. It

turns out that this result is close to optimal—as one climbs the hierarchy
of definability, shortly after Δ∼

1
1 one arrives at axioms that fall outside the

provenance of ZFC. For example, this is true of PD and ADL(R). Thus,
we have here a hierarchy of axioms (including PD and ADL(R)) which are
genuine candidates for new axioms.

There are actually two hierarchies of axioms of definable determinacy,
one involving lightface notions of definability (by which we mean notions
(such as Δ1

2) that do not involve real numbers as parameters) and the other
involving boldface notions of definability (by which we mean notions (such
as Δ∼

1
2) that do involve real numbers as parameters). (See Jackson’s chapter

in this Handbook for details concerning the various grades of definability
and the relevant notation.) Each hierarchy is, of course, ordered in terms
of increasing complexity. Moreover, each hierarchy has a natural limit: the
natural limit of the lightface hierarchy is OD-determinacy (all OD sets of reals
are determined) and the natural limit of the boldface hierarchy is OD(R)-
determinacy (all OD(R) sets of reals are determined). The reason these are
natural limits is that the notions of lightface and boldface ordinal definability
are candidates for the richest lightface and boldface notions of definability.
To see this (for the lightface case) notice first that any notion of definability
which does not render all of the ordinals definable can be transcended (as
can be seen by considering the least ordinal which is not definable according
to the notion) and second that the notion of ordinal definability cannot be so
transcended (since by reflection OD is ordinal definable). It is for this reason
that Gödel proposed the notion of ordinal definability as a candidate for an
“absolute” notion of definability. Our limiting cases may thus be regarded
as two forms of absolute definable determinacy.
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So we have two hierarchies of increasingly strong candidates for new ax-
ioms and each has a natural limit. There are two fundamental questions
concerning such new axioms. First, are they consistent? Second, are they
true? In the most straightforward sense these questions are asked in an ab-
solute sense and not relative to a particular theory such as ZFC. But since
we are dealing with new axioms, the traditional means of answering such
questions—namely, by establishing their consistency or provability relative
to the standard axioms (ZFC)—is not available. Nevertheless, one can hope
to establish results—such as relative consistency and logical connections with
respect to other plausible axioms—that collectively shed light on the origi-
nal, absolute question. Indeed, there are a number of results that one can
bring to bear in favour of PD and ADL(R). For example, these axioms lift the
structure theory that can be established in ZFC to their respective domains,
namely, second-order arithmetic and L(R). Moreover, they do so in a fash-
ion which settles a remarkable number of statements that are independent
of ZFC. In fact, there is no “natural” statement concerning their respective
domains that is known to be independent of these axioms. (For more on the
structure theory provided by determinacy and the traditional considerations
in their favour see [9] and for more recent work see Jackson’s chapter in this
Handbook.) The results of this chapter figure in the case for PD and ADL(R).
However, our concern will be with the question of relative consistency; more
precisely, we wish to calibrate the consistency strength of axioms of definable
determinacy—in particular, the ultimate axioms of lightface and boldface
determinacy—in terms of the large cardinal hierarchy.

There are some reductions that we can state at the outset. In terms of con-
sistency strength the two hierarchies collapse at a certain stage: Kechris and
Solovay showed that ZF + DC implies that in the context of L[x] for x ∈ ωω,
OD-determinacy and Δ1

2-determinacy are equivalent (see Theorem 6.6). And
it is a folklore result that ZFC + OD(R)-determinacy and ZFC + ADL(R) are
equiconsistent. Thus, in terms of consistency strength, the lightface hierarchy
collapses at Δ1

2-determinacy and the boldface hierarchy collapses at ADL(R).
So if one wishes to gauge the consistency strength of lightface and boldface
determinacy it suffices to concentrate on Δ1

2-determinacy and ADL(R).
Now, it is straightforward to see that if Δ1

2-determinacy holds then it
holds in L[x] for some real x and likewise if ADL(R) (or AD) holds then it
holds in L(R). Thus, the natural place to study the consistency strength of
lightface definable determinacy is L[x] for some real x and the natural place
to study the consistency strength of boldface definable determinacy (or full
determinacy) is L(R). For this reason these two models will be central in
what follows.

To summarize: We shall be investigating the consistency strength of light-
face and boldface determinacy. This reduces to Δ1

2-determinacy and ADL(R).
The settings L[x] and L(R) will play a central role. Consistency strength will
be measured in terms of the large cardinal hierarchy. Before turning to a
discussion of the large cardinal hierarchy let us first briefly discuss stronger
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forms of determinacy.
Our concern in this chapter is with axioms of determinacy of the above

form, where the games have length ω and the moves are natural numbers.
However, it is worthwhile to note that there are two directions in which one
can generalize these axioms.

First, one can consider games of length greater than ω (where the moves
are still natural numbers). A simple argument shows that one cannot have
the determinacy of all games of length ω1 but there is a great deal of room
below this upper bound and much work has been done in this area. For more
on this subject see [10].

Second, one can consider games where the moves are more complex than
natural numbers (and where the length of the game is still ω). One alternative
is to consider games where the moves are real numbers. The axiom ADR

states that all such games are determined. One might try to continue in
this direction and consider the axiom ADP(R) asserting the determinacy of
all games where the moves are sets of real numbers. It is straightforward
to see that this axiom is inconsistent. In fact, even the definable version
asserting that all OD subsets of P(R)ω is inconsistent. Another alternative
is to consider games where the moves are ordinal numbers. Again, a simple
argument shows that one cannot have the determinacy of all subsets of ω1

ω.
However, a result of Harrington and Kechris shows that in this case if one
adds a definability constraint then one can have determinacy at this level.
In fact, OD-determinacy implies that every OD set A ⊆ ω1

ω is determined.
It is natural then to extend this to large ordinals. The ultimate axiom in
this direction would simply assert that every OD set A ⊆ Onω is determined.
Perhaps surprisingly, at this stage a certain tension arises since recent work in
inner model theory provides evidence that this axiom is in fact inconsistent.
See [12] for more on this subject.

B. Large Cardinals

Our aim is to calibrate the consistency strength of lightface and boldface
determinacy in terms of the large cardinal hierarchy. The importance of
the large cardinal hierarchy in this connection is that it provides a canonical
means of climbing the hierarchy of consistency strength. To show, for a given
hypothesis ϕ and a given large cardinal axiom L, that the theories ZFC + ϕ
and ZFC+L are equiconsistent one typically uses the dual methods of inner
model theory and outer model theory (also known as forcing). Very roughly,
given a model of ZFC + L one forces to obtain a model of ZFC + ϕ and
given a model of ZFC + ϕ one uses the method of inner model theory to
construct a model of ZFC + L. The large cardinal hierarchy is (for the most
part) naturally well-ordered and it is a remarkable phenomenon that given
any two “natural” theories extending ZFC one can compare them in terms of
consistency strength (equivalently, interpretability) by lining them up with
the large cardinal hierarchy.
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In a very rough sense large cardinal axioms assert that there are “large”
levels of the universe. A template for formulating a broad class of large
cardinal axioms is in terms of elementary embeddings. The basic format of
the template is as follows: There is a transitive class M and a non-trivial
elementary

j : V →M.

To say that the embedding is non-trivial is simply to say that it is not the
identity, in which case one can show that there is a least ordinal moved. This
ordinal is denoted crit(j) and called the critical point of j. A cardinal is said
to be a measurable cardinal if and only if it is the critical point of such an
embedding.

It is easy to see that for any such elementary embedding there is necessarily
a certain degree of agreement between V and M . In particular, it follows
that Vκ+1 ⊆ M , where κ = crit(j). This degree of agreement in conjunction
with the elementarity of j can be used to show that κ has strong reflection
properties, in particular, κ is strongly inaccessible, Mahlo, weakly compact,
etc.

One way to strengthen a large cardinal axiom of the above form is to
demand greater agreement between M and V . For example, if one demands
that Vκ+2 ⊆M then the fact that κ is measurable is recognized within M and
hence it follows that M satisfies that there is a measurable cardinal below
j(κ), namely, κ. Thus, by the elementarity of the embedding, V satisfies that
there is a measurable cardinal below κ. The same argument shows that there
are arbitrarily large measurable cardinals below κ.

This leads to a natural progression of increasingly strong large cardinal
axioms. It will be useful to discuss some of the major axioms in this hierarchy:
If κ is a cardinal and η > κ is an ordinal then κ is η-strong if there is a
transitive class M and a non-trivial elementary embedding j : V → M such
that crit(j) = κ, j(κ) > η and Vη ⊆ M . A cardinal κ is strong iff it is
η-strong for all η. As we saw above if κ is (κ+2)-strong then κ is measurable
and there are arbitrarily large measurable cardinals below κ. Next, one can
demand that the embedding preserve certain classes: If A is a class, κ is
a cardinal, and η > κ is an ordinal then κ is η-A-strong if there exists a
j : V → M which witnesses that κ is η-strong and which has the additional
feature that j(A∩Vκ)∩Vη = A∩Vη. The following large cardinal notion will
play a central role in this chapter.

1.1 Definition. A cardinal κ is a Woodin cardinal if κ is strongly inaccessible
and for all A ⊆ Vκ there is a cardinal κA < κ such that

κA is η-A-strong,

for each η such that κA < η < κ.

It should be noted that in contrast to measurable and strong cardinals,
Woodin cardinals are not characterized as the critical point of an embedding
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or collection of embeddings. In fact, a Woodin cardinal need not be measur-
able. However, if κ is a Woodin cardinal, then Vκ is a model of ZFC and
from the point of view of Vκ there is a proper class of strong cardinals.

Going further, a cardinal κ is superstrong if there is a transitive class M
and a non-trivial elementary embedding j : V → M such that crit(j) = κ
and Vj(κ) ⊆ M . If κ is superstrong then κ is a Woodin cardinal and there
are arbitrarily large Woodin cardinals below κ.

One can continue in this vein, demanding greater agreement between M
and V . The ultimate axiom in this direction would, of course, demand that
M = V . This axiom was proposed by Reinhardt. But shortly after its in-
troduction Kunen showed that it is inconsistent with ZFC. In fact, Kunen
showed that assuming ZFC, there can be no non-trivial elementary embed-
ding j : Vλ+2 → Vλ+2. (An interesting open question is whether these axioms
are inconsistent with ZF or whether there is a hierarchy of “choiceless” large
cardinal axioms that climb the hierarchy of consistency strength far beyond
what can be reached with ZFC.)

There is a lot of room below the above upper bound. For example, a very
strong axiom is the statement that there is a non-trivial elementary embed-
ding j : Vλ+1 → Vλ+1. The strongest large cardinal axiom in the current
literature is the axiom asserting that there is a non-trivial elementary em-
bedding j : L(Vλ+1) → L(Vλ+1) such that crit(j) < λ. Surprisingly, this
axiom yields a structure theory of L(Vλ+1) which is closely analogous to the
structure theory of L(R) under the axiom ADL(R). This parallel between
axioms of determinacy and large cardinal axioms suggests seeking stronger
large cardinal axioms by following the guide of the strong axioms of determi-
nacy discussed at the close of the previous section. In fact, there is evidence
that the parallel extends. For example, there is a new large cardinal axiom
that is the analogue of ADR. See [12] for more on these recent developments.

C. Determinacy from Large Cardinals

Let us return to the questions of the truth and the consistency of axioms
of definable determinacy, granting that of large cardinal axioms. In the late
1960s Solovay conjectured that ADL(R) is provable from large cardinal axioms
(and hence that ZF+AD is consistent relative to large cardinal axioms). This
conjecture was realized in stages.

In 1970 Martin showed that if there is a measurable cardinal then all
Σ∼

1
1 sets of reals are determined. Later, in 1978, he showed that under the

much stronger assumption of a non-trivial iterable elementary embedding
j : Vλ → Vλ all Σ∼

1
2 sets of reals are determined. It appeared that there

would be a long march up the hierarchy of axioms of definable determinacy.
However, in 1984 Woodin showed that if there is a non-trivial elementary
embedding j : L(Vλ+1) → L(Vλ+1) with crit(j) < λ, then ADL(R) holds.

The next major advances concerned reducing the large cardinal hypothesis
used to obtain ADL(R). The first step in this direction was made shortly after,
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in 1985, when Martin and Steel proved the following remarkable result, using
a completely different technique:

1.2 Theorem (Martin and Steel). Assume ZFC. Suppose that there are n
Woodin cardinals with a measurable cardinal above them all. Then Σ∼

1
n+1-

determinacy holds.

It follows that if there is a Woodin cardinal with a measurable cardinal
above, then Δ1

2-determinacy holds and if there are infinitely many Woodin
cardinals then PD holds. Finally, the combination of Martin and Steel’s
work and Woodin’s work on the stationary tower (see [8]) led to a significant
reduction in the hypothesis required to obtain ADL(R).

1.3 Theorem. Assume ZFC. Suppose there are infinitely many Woodin
cardinals with a measurable cardinal above them all. Then ADL(R).

A more recent development is that, in addition to being implied by large
cardinal axioms, ADL(R) is implied by a broad array of other strong axioms,
which have nothing to do with one another—in fact, there is reason to believe
that ADL(R) is implied by all sufficiently strong “natural” theories. For
further discussion of this subject and other more recent results that contribute
to the case for certain axioms of definable determinacy see [7, 11, 13].

Each of the above results concerns the truth of axioms of definable deter-
minacy, granting large cardinal axioms. A closely related question concerns
the consistency of axioms of definable determinacy, granting that of large
cardinal axioms. For this one can get by with slightly weaker large cardinal
assumptions.

1.4 Theorem. Assume ZFC. Suppose δ is a Woodin cardinal. Suppose
G ⊆ Col(ω, δ) is V -generic. Then V [G] |= Δ1

2-determinacy.

1.5 Theorem. Assume ZFC. Suppose that λ is a limit of Woodin cardinals.
Suppose G ⊆ Col(ω,<λ) is V -generic and let R

∗ =
⋃
{RV [G�α] | α < λ}.

Then L(R∗) |= AD.

For more on the topic of this section see Neeman’s chapter in this Hand-
book.

D. Large Cardinals from Determinacy

The above results lead to the question of whether the large cardinal as-
sumptions are “necessary”. Of course, large cardinal assumptions (in the
traditional sense of the term) cannot be necessary in the strict sense since
axioms of definable determinacy (which concern sets of reals) do not outright
imply the existence of large cardinals (which are much larger objects). The
issue is whether they are necessary in the sense that one cannot prove the
axioms of definable determinacy with weaker large cardinal assumptions. To
establish this one must show that the consistency of the axioms of definable
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determinacy implies that of the large cardinal axioms and one way to do this
is to show that axioms of definable determinacy imply that there are inner
models of the large cardinal axioms.

There are two approaches to inner model theory, each originating in the
work of Gödel. These approaches have complementary advantages and dis-
advantages. The first approach is based on L, the universe of constructible
sets. The advantage of this approach is that L is very well understood; in
fact, it is fair to say that within ZFC one can carry out a “full analysis” of
this model. As a consequence of this one can show, for example, that under
ZF + AD, ωV

1 is inaccessible in L. The disadvantage is that L is of limited
applicability since it cannot accommodate strong large cardinal axioms such
as the statement that there is a measurable cardinal. So if the large cardinal
assumptions in Theorems 1.4 and 1.5 are close to optimal then L is of no use
in establishing this.

The second approach is based on HOD, the universe of hereditarily ordinal
definable sets. This inner model can accommodate virtually all large cardinal
axioms that have been investigated. But it has a complementary defect in
that one cannot carry out a full analysis of this structure within ZFC.

A major program in set theory—the inner model program—aims to com-
bine the advantages of the two approaches by building inner models that
resemble L in having a highly ordered inner structure but which resemble
HOD in that they can accommodate strong large cardinal axioms.

“L-like” inner models at the level of Woodin cardinals were developed in
stages beginning with work of Martin and Steel, and continuing with work
of Mitchell and Steel. The Mitchell-Steel inner models are true analogs of L.
Martin and Steel used their models to show that the large cardinal hypotheses
in their proofs of determinacy were essentially optimal. For example, they
showed that if there is a Woodin cardinal then there is a canonical inner
model M that contains a Woodin cardinal and has a Δ1

3 well-ordering of the
reals. It follows that one cannot prove Σ∼

1
2-determinacy from the assumption

of a Woodin cardinal alone.
However, this still left open a number of questions. First, does the consis-

tency of ZFC + “There is a Woodin cardinal” follow from that of ZFC+Δ1
2-

determinacy? Second, can one build an inner model of a Woodin cardi-
nal directly from ZFC + Δ1

2-determinacy? Third, what is the strength of
ZFC + ADL(R)? To approach these questions it would seem that one would
need fine-structural inner model theory. However, at the time when the cen-
tral results of this chapter were proved, fine-structural inner model theory
had not yet reached the level of Woodin cardinals. One option was to proceed
with HOD.

In contrast to L the structure of HOD is closely tied to the universe in
which it is constructed. In the general setting, where one works in ZF and
constructs HOD in V , the structure theory of HOD is almost as intractable
as that of V . Surprisingly if one strengthens the background theory then the
structure theory of HOD becomes tractable. For example, Solovay showed
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that under ZF + AD, HOD satisfies that ωV
1 is a measurable cardinal. It

turns out that both lightface and boldface definable determinacy are able
to illuminate the structure of HOD (when constructed in the natural inner
models of these axioms—L[x] and L(R)) to the point where one can recover
the large cardinals that are necessary to establish their consistency.

In the case of lightface definable determinacy the result is the following:

1.6 Theorem. Assume ZF+DC+Δ1
2-determinacy. Then for a Turing cone

of x,

HODL[x] |= ZFC + ω
L[x]
2 is a Woodin cardinal.

Thus, the consistency strength of ZFC+OD-determinacy is precisely that
of ZFC + “There is a Woodin cardinal”. For the case of boldface determinacy
let us first state a preliminary result of which the above result is a localization.
First we need a definition. Let

Θ = sup{α | there is a surjection π : ωω → α}.

1.7 Theorem. Assume ZF + AD. Then

HODL(R) |= ΘL(R) is a Woodin cardinal.

In fact, both of these results are special instances of a general theorem on
the generation of Woodin cardinals—the Generation Theorem. In addition
to giving the above results, the Generation Theorem will also be used to
establish the optimal large cardinal lower bound for boldface determinacy:

1.8 Theorem. Assume ZF+AD. Suppose Y is a set. There is a generalized
Prikry forcing PY through the Y -degrees such that if G ⊆ PY is V -generic
and 〈[xi]Y | i < ω〉 is the associated sequence, then

HODV [G]
Y,〈[xi]Y |i<ω〉,V |= ZFC + There are ω-many Woodin cardinals,

where [x]Y = {z ∈ ωω | HODY,z = HODY,x} is the Y -degree of x.

Thus, the consistency strength of ZFC+OD(R)-determinacy and of ZF+
AD is precisely that of ZFC + “There are ω-many Woodin cardinals”.

The main results of this chapter have applications beyond equiconsistency;
in particular, the theorems play an important role in the structure theory of
AD+ (a potential strengthening of AD that we will define and discuss in
Sect. 8). For example, Steel showed that under AD, in L(R) every uncount-
able regular cardinal below Θ is a measurable cardinal. (See Steel’s chapter
in this Handbook for a proof.) This theorem generalizes to a theorem of AD+

and the theorems of this chapter are an important part of the proof. We will
discuss some other applications in the final section of this chapter.
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E. Overview

The results on the strength of lightface and boldface determinacy were es-
tablished in the late 1980s. However, the current presentation and many of
the results that follow are quite recent. One of the key new ingredients is the
following abstract theorem on the generation of Woodin cardinals, which lies
at the heart of this chapter:

1.9 Theorem (Generation Theorem). Assume ZF. Suppose

M = LΘM
(R)[T,A,B]

is such that

(1) M |= T0,

(2) ΘM is a regular cardinal,

(3) T ⊆ ΘM ,

(4) A = 〈Aα | α < ΘM 〉 is such that Aα is a prewellordering of the reals of
length greater than or equal to α,

(5) B ⊆ ωω is nonempty, and

(6) M |= Strategic determinacy with respect to B.

Then
HODM

T,A,B |= ZFC + There is a T -strong cardinal.

Here T0 is the theory ZF + ACω(R)− Power Set + “P(ω)exists” and the
notion of “strategic determinacy” is a technical notion that we will state
precisely later.

The Generation Theorem provides a template for generating models con-
taining Woodin cardinals. One simply has to show that in a particular setting
the various conditions can be met, though this is often a non-trivial task. The
theorem is also quite flexible in that it is a result of ZF that does not pre-
suppose DC and has applications in both lightface and boldface settings. It
will play a central role in the calibration of the strength of both lightface and
boldface determinacy.

We shall approach the proof of the Generation Theorem by proving a series
of increasingly complex approximations.

In Sect. 2 we take the initial step by proving Solovay’s theorem that under
ZF + AD, ωV

1 is a measurable cardinal in HOD and we show that the associ-
ated measure is normal. The proof that we give is slightly more complicated
than the standard proof but has the virtue of illustrating in a simple setting
some of the key components that appear in the more complex variations. We
illustrate this at the end of the section by showing that the proof of Solovay’s
theorem generalizes to show that under ZF + AD, the ordinal (δ∼

2
1)

L(R) is a
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measurable cardinal in HODL(R). Our main aim in this section is to illustrate
the manner in which “boundedness” and “coding” combine to yield normal
ultrafilters. In subsequent sections stronger forms of boundedness (more pre-
cisely, “reflection”) and stronger forms of coding will be used to establish
stronger forms of normality.

In Sect. 3 we prove the strong forms of coding that will be central through-
out.

In Sect. 4, as a precursor to the proof of the Generation Theorem, we
prove the following theorem:

1.10 Theorem. Assume ZF + DC + AD. Then

HODL(R) |= ZFC + ΘL(R) is a Woodin cardinal.

The assumption of DC is merely provisional—it will ultimately be elim-
inated when we prove the Generation Theorem. Toward the proof of the
above theorem, we begin in Sect. 4.1 by establishing the reflection phenom-
enon that will play the role played by boundedness in Sect. 2. We will then
use this reflection phenomenon in L(R) to define for cofinally many λ < Θ,
an ultrafilter μλ on δ∼

2
1 that is intended to witness that δ∼

2
1 is λ-strong. In

Sect. 4.2 we shall introduce and motivate the notion of strong normality by
showing that the strong normality of μλ ensures that δ∼

2
1 is λ-strong. We

will then show how reflection and uniform coding combine to secure strong
normality. In Sect. 4.3 we will prove the above theorem by relativizing the
construction of Sect. 4.2 to subsets of ΘL(R).

In Sect. 5 we extract the essential components of the above construction
and prove two abstract theorems on Woodin cardinals in a general setting,
one that involves DC and one that does not. The first theorem is proved
in Sect. 5.1. The importance of this theorem is that it can be used to show
that in certain strong determinacy settings HOD can contain many Woodin
cardinals. The second theorem is the Generation Theorem, the proof of
which will occupy the remainder of the section. The aim of the Generation
Theorem is to show that the construction of Sect. 4 can be driven by light-
face determinacy alone. The difficulty is that the construction of Sect. 4
involves games that are defined in terms of real parameters. To handle this
we introduce the notion of “strategic determinacy”, a notion that resem-
bles boldface determinacy in that it involves real parameters but which can
nonetheless hold in settings where one has AC. To motivate the notion of
“strategic determinacy” we shall begin in Sect. 5.2 by examining one such
setting, namely, L[S, x] where S is a class of ordinals and x is a real. Once
we show that “strategic determinacy” can hold in this setting we shall return
in Sect. 5.3 to the general setting and prove the Generation Theorem. In the
final subsection, we prove a number of special cases, many of which are new.
Although some of these applications involve lightface settings, they all either
involve assuming full AD or explicitly involve “strategic determinacy”.

In Sect. 6 we use two of the special cases of the Generation Theorem to
calibrate the consistency strength of lightface and boldface definable determi-
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nacy in terms of the large cardinal hierarchy. In the case of the first result the
main task is to show that Δ1

2-determinacy suffices to establish that “strate-
gic determinacy” can hold. In the case of the second result the main task is
to show that the Generation Theorem can be iteratively applied to generate
ω-many Woodin cardinals.

In Sect. 7 we show that the Generation Theorem can itself be localized in
two respects. In the first localization we show that Δ1

2-determinacy implies
that for a Turing cone of x, ω

L[x]
1 is a Woodin cardinal in an inner model of

L[x]. In the second localization we show that the proof can in fact be carried
out in second-order arithmetic.

In Sect. 8 we survey some further results. First, we discuss results con-
cerning the actual equivalence of axioms of definable determinacy and axioms
asserting the existence of inner models with Woodin cardinals. Second, we
revisit the analysis of HODL(R) and HODL[x][g], for certain generic exten-
sions L[x][g], in light of the advances that have been made in fine-structural
inner model theory. Remarkably, it turns out that not only are these mod-
els well-behaved in the context of definable determinacy—they are actually
fine-structural inner models, but of a kind that falls outside of the traditional
hierarchy.

We have tried to keep the account self-contained, presupposing only ac-
quaintance with the constructible universe, the basics of forcing, and the
basics of large cardinal theory. In particular, we have tried to minimize ap-
peal to fine structure and descriptive set theory. Fine structure enters only in
Sect. 8 where we survey more recent developments, but even there one should
be able to get a sense of the lay of the land without following the details. For
the relevant background and historical development of the subject see [1, 2, 9].
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1.2. Notation

For the most part our notational conventions are standard. Nevertheless,
some comments are in order.

(1) We use μαϕ(α) to indicate the least ordinal α such that ϕ(α).

(2) In writing ODX and HODX we always mean that X itself (as opposed
to its elements) is allowed as a parameter. The notation OD{X} is
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sometimes used for this, for example, in contexts where one would like
to speak of both OD{X} and ODX . However, in this chapter we will
have no occasion to speak of the latter and so we have dropped the curly
brackets on the ground that they would only serve to clutter the text.
We also use ODX as both a name (for the class of sets which are ordinal
definable from X) and as an adjective (for example when we say that
a particular class is ODX .) We use <ODX

for a fixed canonical ODX -
well-ordering of ODX sets. The notation OD(R) is used in analogy
with L(R).

(3) A strategy for Player I is a function σ :
⋃

i<ω ω2i → ω. Letting σ ∗ y be
the real produced when Player I follows σ and Player II plays y, we say
that σ is a winning strategy for Player I in the game with payoff A ⊆ ωω

if for all y ∈ ωω, σ ∗ y ∈ A. The corresponding notions for Player II
are defined similarly. We typically reserve σ for strategies for Player I
and τ for strategies for Player II. The play that results from having II
play y against σ is denoted σ ∗ y and likewise the play that results from
having I play x against τ is denoted x ∗ τ . We write x ∗ y for the real
that results from having Player I play x and Player II play y and in
this case we let (x ∗ y)I = x and (x ∗ y)II = y. For example, (σ ∗ y)I is
the real that Player I plays when following the strategy σ against II’s
play of y. If σ is a strategy for Player I and τ is a strategy for Player
II we write σ ∗ τ for the real produced by playing the strategies against
one another. Occasionally, when z = x ∗ y we write zeven to indicate x
and zodd to indicate y.

(4) If X is a subset of the plane ωω×ωω we use proj1(X) for the “projection
to the first coordinate” and proj2(X) for the “projection to the second
coordinate”.

(5) For n0, . . . , nk−1 ∈ ω, we use 〈n0, . . . , nk−1〉 to denote the natural num-
ber encoding (n0, . . . , nk−1) via a recursive bijection between ωk and ω
(which we fix throughout) and we let (n)i be the associated projection
functions. For x ∈ ωω and i ∈ ω we also use (x)i for the projection
function associated to a recursive bijection between (ωω)ω and ωω. See
[9, Chap. 3] for further details on such recursive coding and decoding
functions.

There is a slight conflict in notation in that angle brackets are also
traditionally used for sequences and n-tuples. We have lapsed into this
usage at points but the context resolves the ambiguity; for example,
when we write 〈xα | α < λ〉 it is clear that we are referring to a
sequence.

(6) In this chapter by the “reals” we mean ωω, which, under the standard
topology, is homeomorphic to the irrationals as normally construed.
However, we continue to use the symbol ‘R’ in contexts where it is
traditional, for example, in L(R).
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(7) We use tc(x) for the transitive closure of x.

(8) A base theory that will play a central role throughout is

T0 = ZF + ACω(R)− Power Set + “P(ω) exists”.

2. Basic Results

The central result of this section is Solovay’s theorem to the effect that un-
der ZF + AD, ω1 is a measurable cardinal. The proof that we will give is
slightly more involved than the standard proof but it has the advantage of
illustrating some of the key components in the more general theorems to be
proved in later sections. One thing we would like to illustrate is the man-
ner in which “boundedness” and “coding” combine to yield normal ultrafil-
ters. In subsequent sections stronger forms of boundedness (more precisely,
“reflection”) and stronger forms of coding will be used to establish stronger
forms of normality. This will culminate in the production of Woodin cardi-
nals.

In Sect. 2.1 we review some basic consequences of ZF+AD. In Sect. 2.2 we
prove Σ∼

1
1-boundedness and use it to prove the Basic Coding Lemma, a simple

case of the more general coding lemmas to be proved in Sect. 3. In Sect. 2.3
we use Σ∼

1
1-boundedness to show that the club filter on ω1 witnesses that ω1

is a measurable cardinal and we use Σ∼
1
1-boundedness and the Basic Coding

Lemma to show that this ultrafilter is normal. In Sect. 2.4 we introduce δ∼
2
1

and establish its basic properties. Finally, in Sect. 2.5 we draw on the Coding
Lemma of Sect. 3 to show that the proof of Solovay’s theorem generalizes to
show that assuming ZF+DC+AD then in the restricted setting of L(R) the
ordinal (δ∼

2
1)

L(R) is a measurable cardinal. Later, in Sect. 4, we will dispense
with DC and reprove this theorem in ZF + AD.

2.1. Preliminaries

In order to keep this account self-contained, in this subsection we shall col-
lect together some of the basic features of the theory of determinacy. These
concern (1) the connection between determinacy and choice, (2) the impli-
cations of determinacy for regularity properties, and (3) the implications of
determinacy for the Turing degrees. See [2, 9], and Jackson’s chapter in this
Handbook for further details and references.

Let us begin with the axiom of choice. A straightforward diagonalization
argument shows that AD contradicts the full axiom of choice, AC. However,
certain fragments of AC are consistent with AD and, in fact, certain fragments
of AC follow from AD.

2.1 Definition. The Countable Axiom of Choice, ACω, is the statement
that every countable set consisting of non-empty sets has a choice function.
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The Countable Axiom of Choice for Sets of Reals, ACω(R), is the statement
that every countable set consisting of non-empty sets of reals has a choice
function.

2.2 Theorem. Assume ZF + AD. Then ACω(R).

Proof. Let {Xn | n < ω} be a countable collection of non-empty sets of reals.
Consider the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

where I wins if and only if y �∈ Xx(0). (Notice that we are leaving the definition
of the payoff set of reals A implicit. In this case the payoff set is {x ∈ ωω |
xodd �∈ Xx(0)}. In the sequel we shall leave such routine transformations to
the reader.) Thus, Player I is to be thought of as playing an element Xn of
the countable collection and Player II must play a real which is not in this
element. Of course, Player I cannot win. So there must be a winning strategy
τ for Player II. The function

f : ω → ωω

n �→ (〈n, 0, 0, . . . 〉 ∗ τ)II

is a choice function for {Xn | n < ω}. �

2.3 Corollary. Assume ZF + AD. Then ω1 is regular.

2.4 Definition. The Principle of Dependent Choices, DC, is the statement
that for every non-empty set X and for every relation R ⊆ X ×X such that
for all x ∈ X there is a y ∈ X such that (x, y) ∈ R, there is a function
f : ω → X such that for all n < ω, (f(n), f(n + 1)) ∈ R. The Principle of
Dependent Choices for Sets of Reals, DCR, is simply the restricted version of
DC where X is R.

It is straightforward to show that DC implies ACω and Jensen showed that
this implication cannot be reversed. Solovay showed that Con(ZF + ADR)
implies Con(AD + ¬DC) and this was improved by Woodin.

2.5 Theorem. Assume ZF + AD + V = L(R). Then in a forcing extension
there is an inner model of AD + ¬ACω.

2.6 Theorem (Kechris). Assume ZF + AD. Then L(R) |= DC.

1 Open Question. Does AD imply DCR?

Thus, of the above fragments of AC, ACω(R) is known to be within the
reach of AD, DCR could be within the reach of AD, and the stronger principles
ACω and DC are known to be consistent with but independent of AD (assum-
ing consistency of course). For this reason, to minimize our assumptions, in
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what follows we shall work with ACω(R) as far as this is possible. There are
two places where we invoke DC, namely, in Kunen’s theorem (Theorem 3.11)
and in Lemma 4.8 concerning the well-foundedness of certain ultrapowers.
However, in our applications, DC will reduce to DCR and so if the above
open question has a positive answer then these appeals to DC can also be
avoided.

We now turn to regularity properties. The axiom of determinacy has
profound consequences for the structure theory of sets of real numbers. See
[9] and Jackson’s chapter in this Handbook for more on this. Here we mention
only one central consequence that we shall need below.

2.7 Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis). Assume
ZF+AD. Then all sets are Lebesgue measurable, have the property of Baire,
and have the perfect set property.

Proof. See [2, Sect. 27]. �

Another important consequence we shall need is the following:

2.8 Theorem. Assume ZF + AD. Then every ultrafilter is ω1-complete.

Proof. Suppose U ⊆ P(X) is an ultrafilter. If U is not ω1-complete then
there exists {Xi | i < ω} such that

(1) for all i < ω, Xi ∈ U and

(2)
⋂

i<ω Xi �∈ U .

Without loss of generality we can suppose that
⋂

i<ω Xi = ∅. So this gives a
partition {Yi | i < ω} of X into disjoint non-empty sets each of which is not
in U . Define U ∗ ⊆ P(ω) as follows:

σ ∈ U ∗ iff
⋃
{Yi | i ∈ σ} ∈ U .

This is an ultrafilter on ω which is not principal since by assumption Yi �∈ U
for each i < ω. However, as Sierpiński showed, a non-principal ultrafilter
over ω (construed as a set of reals) is not Lebesgue measurable. �

Finally, we turn to the implications of determinacy for the Turing degrees.
For x, y ∈ ωω, we say that x is Turing reducible to y, x �T y, if x is recursive
in y and we say that x is Turing equivalent to y, x ≡T y, if x �T y and
y �T x. The Turing degrees are the corresponding equivalence classes [x]T =
{y ∈ ωω | y ≡T x}. Letting

DT =
{
[x]T | x ∈ ωω

}

the relation �T lifts to a partial ordering on DT . A cone of Turing degrees
is a set of the form {

[y]T | y �T x0

}
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for some x0 ∈ ωω. A Turing cone of reals is a set of the form
{
y ∈ ωω | y �T x0

}

for some x0 ∈ ωω. In each case x0 is said to be the base of the cone. In later
sections we will discuss different degree notions. However, when we speak of
a “cone of x” without qualification we always mean a “Turing cone of x”.
The cone filter on DT is the filter consisting of sets of Turing degrees that
contain a cone of Turing degrees.

2.9 Theorem (Cone Theorem; Martin). Assume ZF + AD. The cone
filter on DT is an ultrafilter.

Proof. For A ⊆ DT consider the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

where I wins iff [x ∗ y]T ∈ A. If I has a winning strategy σ0 then σ0 witnesses
that A is in the cone filter since for y �T σ0, [y]T = [σ0 ∗ y]T ∈ A. If II has a
winning strategy τ0 then τ0 witnesses that DT � A is in the cone filter since
for x �T τ0, [x]T = [x ∗ τ0]T ∈ DT � A. �

It follows that under ZF + AD each statement ϕ(x) either holds for a
Turing cone or reals x or fails for a Turing cone of reals x.

The proof of the Cone Theorem easily relativizes to fragments of definable
determinacy. For example, assuming Σ1

2-determinacy every Σ1
2 set which is

invariant under Turing equivalence either contains or is disjoint from a Turing
cone of reals.

It is of interest to note that when Martin proved the Cone Theorem he
thought that he would be able to refute AD by finding a property that
“toggles”. He started with Borel sets and, when no counterexample arose,
moved on to more complicated sets. We now know (assuming there are
infinitely many Woodin cardinals with a measurable above) that no coun-
terexamples are to be found in L(R). Moreover, the statement that there
are no counterexamples in L(R) (i.e. the statement that Turing determinacy
holds in L(R)) actually implies ADL(R) (over ZF + DC). Thus, the basic
intuition that the Cone Theorem is strong is correct—it is just not as strong
as 0 = 1.

2.2. Boundedness and Basic Coding

We begin with some definitions. For x ∈ ωω, let Ex be the binary relation
on ω such that mExn iff x(〈m,n〉) = 0, where recall that 〈·, ·〉 : ω × ω → ω
is a recursive bijection. The real x is said to code the relation Ex. Let
WO = {x ∈ ωω | Ex is a well-ordering}. For x ∈WO, let αx be the ordertype
of Ex and, for α < β < ω1 let WOα = {x ∈ WO | αx = α}, WO<α = {x ∈
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WO | αx < α}, WO(α,β] = {x ∈ WO | α < αx � β} and likewise for
other intervals of countable ordinals. For x ∈ WO, let WOx = WOαx . It is
straightforward to see that these sets are Borel and that WO is a complete
Π∼

1
1 set. (See [1, Chap. 25] for details.)
In addition to the topological and recursion-theoretic characterizations of

Σ∼
1
1 there is a model-theoretic characterization which is helpful in simplifying

complexity calculations. A model (M,E) satisfying T0 (or some sufficiently
strong fragment of ZF) is an ω-model if (ωM , E�ωM ) ∼= (ω,∈�ω), where recall
that T0 is the theory ZF+ACω(R)−Power Set+“P(ω) exists”. Notice that
ω-models are correct about arithmetical statements and hence Π1

1 statements
are downward absolute to ω-models. Moreover, the statement “There exists
a real coding an ω-model of T0” is Σ1

1, in contrast to the statement “There
exists a real coding a well-founded model of T0”, which is Σ1

2. Thus we have
the following characterization of the pointclass Σ∼

1
1: A ⊆ ωω is Σ∼

1
1 iff there is

a formula ϕ and there exists a z ∈ ωω such that

A = {y ∈ ωω | there is a real coding an ω-model M with z ∈M

such that y ∈M and M |= T0 + ϕ[y, z]}.

The lightface version Σ1
1 is defined similarly by omitting the parameter z,

as are the Σ1
1 subsets of (ωω)n and the Σ1

1 statements, etc. Theories much
weaker than T0 yield an equivalent definition. For example, one can use the
finite theory ZFN of the first N axioms of ZF for some sufficiently large N .

As an illustration of the utility of this model-theoretic characterization of
Σ∼

1
1 we shall use it to show that for each x ∈ WO, WO<x is Δ∼

1
1: Notice that

ω-models of T0 correctly compute “x, y ∈ WO and αy < αx” in the following
sense: If x, y ∈WO and αy < αx and M is an ω-model of T0 which contains x
and y, then M |= “x, y ∈WO and αy < αx”. (By downward absoluteness M
satisfies that x, y ∈ WO and hence that αy and αx are defined. Furthermore,
since M is an ω-model it correctly computes the ordering of αx and αy.) If
x ∈WO and M is an ω-model of T0 which satisfies “x, y ∈ WO and αy < αx”
then y ∈ WO and αy < αx. (The point is that M satisfies that there is an
order-preserving map f : Ey → Ex and, since ω-models are correct about
such maps and since Ex is truly well-founded, it follows that y ∈ WO and
αy < αx). So, for x ∈ WO,

WO<x = {y ∈ ωω | there is a real coding an ω-model M such that
x, y ∈M and M |= T0 + “x, y ∈ WO and αy < αx”}

= {y ∈ ωω | for all reals coding ω-models M if x, y ∈M

and M |= T0 then M |= “x, y ∈ WO and αy < αx”}.

Thus, for x ∈WO, WO<x is Δ∼
1
1 and hence Borel.

2.10 Lemma (Σ∼
1
1-Boundedness; Luzin-Sierpiński). Assume ZF+ACω(R).

Suppose X ⊆ WO and X is Σ∼
1
1. Then there exists an α < ω1 such that

X ⊆ WO<α.
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Proof. Assume toward a contradiction that X is unbounded. Then

y ∈ WO iff there is a x ∈ X such that αy < αx

since for x ∈ X ⊆ WO, ω-models of T0 correctly compute αy < αx. By the
above remark, we can rewrite this as

y ∈ WO iff there is an x ∈ X and there is an ω-model M such that
x, y ∈M and M |= T0 + “x, y ∈ WO and αy < αx”.

Thus, WO is Σ∼
1
1, which contradicts the fact that WO is a complete Π∼

1
1 set.

(Without appealing to the fact that WO is a complete Π∼
1
1 set we can arrive at

a contradiction (making free use of AC) as follows: Let z ∈ ωω be such that
both X and WO are Σ1

1(z). Let α be such that Vα |= T0 and choose Y ≺ Vα

such that Y is countable and z ∈ Y . Let N be the transitive collapse of Y .
By correctness, X ∩ N = XN . Choose a uniform ultrafilter U ⊆ P(ω1)N

such that if
j : N → Ult(N,U)

is the associated embedding then crit(j) = ωN
1 and j(ωN

1 ) is not well-founded.
(To obtain such an ultrafilter build a generic for (P(ω1)/countable)N . See
Lemma 22.20 of [1].) Since Ult(N,U) is an ω-model of T0 it correctly com-
putes WO. It follows that (WO)Ult(N,U) ⊆ WO, which in turn contradicts
the fact that ω

Ult(N,U)
1 is not well-founded.) �

2.11 Lemma (Basic Coding; Solovay). Assume ZF + AD. Suppose Z ⊆
WO× ωω. Then there exists a Σ∼

1
2 set Z∗ such that

(1) Z∗ ⊆ Z and

(2) for all α < ω1, Z∗ ∩ (WOα × ωω) �= ∅ iff Z ∩ (WOα × ωω) �= ∅.

Moreover, there is such a Z∗ which is of the form X ∩ (WO × ωω) where
X ⊆ ωω × ωω is Σ∼

1
1.

Proof. Here is the picture:

The space WO × ωω is sliced into sections WOα × ωω for α < ω1. Z is
represented by the unshaded ellipse and Z∗ is represented by the shaded
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region. Basic Coding says that whenever Z meets one of the sections so
does Z∗. In such a situation we say that Z∗ is a selector for Z.

To see that Z∗ exists, consider the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

where II wins iff whenever x ∈WO then y codes a countable set Y such that

(1) Y ⊆ Z and

(2) for all α � αx, Y ∩ (WOα × ωω) �= ∅ iff Z ∩ (WOα × ωω) �= ∅.

The idea is that Player I challenges by playing a countable ordinal αx and
Player II meets this challenge provided he can play (a code for a) a selector
Y for Z ∩ (WO�αx × ωω).

Claim. There can be no winning strategy for Player I in this game.

Proof. Suppose σ is a winning strategy for I. As the play unfolds, Player I
can attempt to increase αx as Player II’s play is revealed. However, Player
II can anticipate all such attempts as follows: The set

X = {(σ ∗ y)I | y ∈ ωω}
is Σ1

1(σ) and, since σ is winning for I, X ⊆ WO. So, by Σ∼
1
1-boundedness, there

is a β < ω1 such that X ⊆ WO<β . Since we have ACω(R) (by Theorem 2.2),
we can choose a countable set Y ⊆ Z such that for all α < β, Y ∩ (WOα ×
ωω) �= ∅ iff Z ∩ (WOα × ωω) �= ∅. Let y code Y and play y against σ. The
resulting play σ ∗ y is a win for II, which is a contradiction. �

Thus II has a winning strategy τ . For x ∈ WO, let Y x be the countable
subset of Z coded by (x ∗ τ)II . Then

Z∗ =
⋃
{Y x | x ∈WO}

is Σ1
2(τ) and such that

(1) Z∗ ⊆ Z,

(2) for all α < ω1, Z∗ ∩ (WOα × ωω) �= ∅ iff Z ∩ (WOα × ωω) �= ∅.

Hence Z∗ is as desired.
To see that we can choose Z∗ to be of the form X ∩ (WO × ωω) where

X ⊆ ωω × ωω is Σ∼
1
1, let

X = {(a, b) | there is an ω-model M

such that a, b, τ ∈M and M |= T0 + (a, b) ∈ Z∗ ∗}
where

Z∗ ∗ =
⋃
{Y x ∩ (WOαx × ωω) | x ∈WO}.

This set is Σ1
1(τ). The trouble is that although for a ∈ WO such models M

are correct about (a, b) ∈ Z∗ ∗, M might think a ∈ WO when a /∈ WO. To
overcome this difficulty we pare down, letting Z∗ = X ∩ (WO× ωω). �
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2.3. Measurability

2.12 Theorem (Solovay). Assume ZF + AD. Then the club filter is an
ω1-complete ultrafilter on ω1.

Proof. The ultrafilter on ω1 will be extracted from a game. As motivation,
for the moment work in ZFC. For S ⊆ ω1, consider the game

I α0 α1 α2 . . .
II β0 β1 . . .

where we demand that α0 < β0 < α1 < · · · < ω1 and where the first player
that fails to meet this demand loses and if both players meet the demand
then I wins provided supi<ω αi ∈ S.

We claim that I wins this game for S if and only if S contains a club
in ω1. Suppose first that S contains a club C. Let σ be a strategy for I which
chooses an element of C larger than the last ordinal played by II. This is a
winning strategy for I. For if II meets the first condition then the ordinals
played form an increasing sequence. The even elements of this sequence are
in C and hence the supremum of the sequence is in C (since C is club) and
hence in S. Thus σ is a winning strategy for I. Suppose next that I have
a winning strategy σ. Let C be the set of limit ordinals γ < ω1 with the
feature that for every i < ω and for every increasing sequence ξ0, . . . , ξ2i of
ordinals less than γ, the response σ(〈ξ0, . . . , ξ2i〉) is also less than γ. Let C ′

be the limit points of C. Since ω1 is regular it follows that C and C ′ are club
in ω1. Now suppose γ ∈ C ′. Let 〈γi | i < ω〉 be an increasing sequence of
ordinals in C which is cofinal in γ and such that γ0 is greater than I’s first
move via σ. The key point is that this sequence is a legal play for II. Player
II has “taken control” of the game. Now, since σ is a winning strategy for I
it follows that the supremum, γ, is in S. Thus, S contains the club C ′. So,
if we had determinacy (which of course is impossible in ZFC) we would have
an ultrafilter on ω1.

Now return to ZF + AD. We want to mimic the above game via a game
where each player plays natural numbers. This can be done since in an integer
game each player ultimately plays a real x that can be regarded as coding ω-
many reals (x)i each of which (potentially) codes a countable ordinal. More
precisely, for S ⊆ ω1, let G(S) be the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

with the following rules: Rule 1: For all i < ω, (x)i, (y)i ∈ WO. If Rule 1 is
violated then, letting i be least such that either (x)i �∈ WO or (y)i �∈ WO, I
wins if (x)i ∈ WO; otherwise II wins. Now suppose Rule 1 is satisfied. Rule 2:
α(x)0 < α(y)0 < α(x)1 < α(y)1 < · · · . The first failure defines who wins as
above. If both rules are satisfied then I wins if and only if supi<ω α(x)i

∈ S.
Now let

μ = {S ⊆ ω1 | I wins G(S)}.
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We claim that if I has a winning strategy in G(S) then S contains a club:
Let σ be a winning strategy for I. For α < ω1, let

Xα =
{
((σ ∗ y)I)n | n < ω, y ∈ ωω, and

∀i < n
(
(y)i ∈ WO and α(y)i

< α
)}

.

Notice that each Xα ⊆ WO (since Xα is Σ∼
1
1 (in σ and the code for α) and

σ is a winning strategy) and so by Σ∼
1
1-boundedness, there exists an α′ such

that Xα ⊆ WO<α′ . Let f : ω1 → ω1 be the function which given α chooses
the least α′ such that Xα ⊆ WO<α′ . As before let C be the set of limit
ordinals γ < ω1 with the feature that for every ξ < γ, f(ξ) < γ. Let C ′ be
the limit points of C. Since ω1 is regular (by Corollary 2.3) it follows that C
and C ′ are club in ω1. Now suppose γ ∈ C ′. Let 〈γi | i < ω〉 be an increasing
sequences of ordinals in C which is cofinal in γ. Let y ∈ ωω be such that for
all i < ω, α(y)i

= γi. We claim that playing y against σ witnesses that γ ∈ S.
It suffices to show that y is legal with respect to the two rules. For then the
supremum, γ, must be in S since σ is a winning strategy for I. Now the first
rule is trivially satisfied since we chose y such that for all i < ω, (y)i ∈ WO.
To see that the second rule is satisfied we need to see that for each i < ω,
α((σ∗y)I)i

< γi. This follows from the fact that Xγi ⊆ WO<γi . Again, Player
II has “taken control” of the game.

A similar argument shows that if II has a winning strategy in G(S) then
ω1 � S contains a club. Thus the club filter on ω1 is an ultrafilter and so
μ is that ultrafilter. Finally, the fact that μ is ω1-complete follows from
Theorem 2.8. �

We now wish to show that under AD the club filter is normal. This was
proved by Solovay, using DC. We shall give a proof that avoids appeal to DC
and generalizes to larger ordinals.

2.13 Theorem. Assume ZF + AD. Then the club filter is an ω1-complete
normal ultrafilter on ω1.

Proof. For S ⊆ ω1 let G(S) be the game from the previous proof and let
μ be as defined there. We know that μ is the club filter. To motivate the
proof of normality we give a proof of ω1-completeness that will generalize
to produce normal ultrafilters on ordinals larger than ω1. This is merely for
illustration—the proof uses DC but this will be eliminated in Claim 2.

Claim 1. μ is ω1-complete.

Proof. Suppose Sj ∈ μ for j < ω. We have to show that S =
⋂

j<ω Sj ∈ μ.
Let σj be a winning strategy for I in G(Sj). Assume toward a contradiction
that S /∈ μ—that is, that I does not win G(S)—and let σ be a winning
strategy for I in G(ω1 � S). Our strategy is to build a play y that is legal
for II against each σj and against σ. This will give us our contradiction by
implying that supi<ω α(y)i

is in each Sj but not in S.
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We build zn = (y)n by recursion on n using the foresight provided by
Σ∼

1
1-boundedness. For the initial step we use Σ∼

1
1-boundedness to get β0 < ω1

such that for all j < ω and for all y ∈ ωω

α((σj ∗y)I)0 < β0 and α((σ∗y)I)0 < β0.

Choose z0 ∈ WOβ0 . For the (n + 1)st step we use Σ∼
1
1-boundedness to get

βn+1 < ω1 such that βn < βn+1 and for all j < ω and for all y ∈ ωω, if
(y)i = zi for all i � n, then

α((σj ∗y)I)n+1 < βn+1 and α((σ∗y)I)n+1 < βn+1.

Choose zn+1 ∈ WOβn+1 . Finally, let y be such that for all n < ω, (y)n = zn.
The play y is legal for II against each σj and σ, which is a contradiction. �

Claim 2. μ is normal.

Proof. Assume toward a contradiction that f : ω1 → ω1 is regressive and
that there is no α < ω1 such that {ξ < ω1 | f(ξ) = α} ∈ μ or, equivalently
(by AD), that for all α < ω1,

Sα = {ξ < ω1 | f(ξ) �= α} ∈ μ.

Our strategy is to recursively define

(1.1) an increasing sequence 〈ηi | i < ω〉 of countable ordinals with supre-
mum η,

(1.2) a sequence of collections of strategies 〈Xi | i < ω〉 where Xi contains
winning strategies for I in games G(Sα) for α ∈ [ηi−1, ηi), where
η−1 = 0, and

(1.3) a sequence 〈yi | i < ω〉 of plays such that yi is legal for II against any
σ ∈ Xi and supj<ω α(yi)j

= η.

Since each σ ∈ Xi is a winning strategy for I, yi will witness that η ∈ Sα for
each α ∈ [ηi−1, ηi), i.e. yi will witness that f(η) �= α for each α ∈ [ηi−1, ηi).
Thus collectively the yi will guarantee that f(η) �= α for any α < η, which
contradicts our assumption that f(η) < η.

We begin by letting

Z = {(x, σ) | x ∈WO and σ is a winning strategy for I in G(Sαx)}.

By the Basic Coding Lemma, there is a Z∗ ⊆ Z such that

(2.1) for all α < ω1, Z∗ ∩ (WOα × ωω) �= ∅ iff Z ∩ (WOα × ωω) �= ∅,

(2.2) Z∗ = X ∩ (WO× ωω) where X is Σ∼
1
1.
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The key point is that for each α < ω1,

X ∩ (WO�α × ωω)

is Σ∼
1
1 since WO�α is Borel. Thus, we can apply Σ∼

1
1-boundedness to these

sets.
The difficulty is that to construct the sequence 〈yi | i < ω〉 we shall need

DC. For this reason we drop down to a context where we have DC and run
the argument there.

Let t be a real such that X is Σ1
1(t). By absoluteness, for each α < ω

L[t,f ]
1 ,

there exists an (x, σ) ∈ Z∗ ∩ L[t, f ] such that α = αx and σ is a winning
strategy for Player I in G(SL[t,f ]

α ) where

SL[t,f ]
α = {η < ω

L[t,f ]
1 | f(η) �= α}.

For the remainder of the proof we work in L[t, f ] and interpret Sα and X via
their definitions, simply writing Sα and X.

For the first step let

η0 = some ordinal η such that η < ω1

X0 = proj2
(
X ∩ (WO[0,η0) × ωω)

)

Y0 =
{
((σ ∗ y)I)0 | σ ∈ X0 ∧ y ∈ ωω

}

z0 = some real z such that Y0 ⊆ WO<αz .

So X0 is a collection of strategies for games G(Sα) where α < η0. Since these
strategies are winning for I the set Y0 is contained in WO. Furthermore, Y0

is Σ∼
1
1 and hence has a bound αz0 . For the next step let

η1 = some ordinal η such that η0, αz0 < η < ω1

X1 = proj2
(
X ∩ (WO[η0,η1) × ωω)

)

Y1 =
{
((σ ∗ y)I)1 | σ ∈ X0, y ∈ ωω such that (y)0 = z0

}

∪
{
((σ ∗ y)I)0 | σ ∈ X1, y ∈ ωω

}

z1 = some real z such that Y1 ⊆ WO<αz .

For the (n + 1)st step let

ηn+1 =some ordinal η such that ηn, αzn < η < ω1

Xn+1 =proj2
(
X ∩ (WO[ηn,ηn+1) × ωω)

)

Yn+1 =
{
((σ ∗ y)I)n+1 | σ ∈ X0, y ∈ ωω such that ∀i � n (y)i = zi

}

∪
{
((σ ∗ y)I)n | σ ∈ X1, y ∈ ωω such that ∀i � n− 1 (y)i = zi+1

}

...

∪
{
((σ ∗ y)I)0 | σ ∈ Xn+1, y ∈ ωω

}

zn+1 =some real z such that Yn+1 ⊆ WO<αz .
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Finally, for each k < ω, let yk be such that (yk)i = zi+k for all i < ω. Since
each of these reals contains a tail of the zi’s, if η = supn<ω ηn, then

sup
i<ω

(α(yk)i
) = η

for all k < ω. Furthermore, yk is a legal play for II against any σ ∈ Xk, as
witnessed by the (k + 1)st components of Yn for n � k. Since each σ ∈ Xk is
a winning strategy for I, yk witnesses that η ∈ Sα for α ∈ [ηk−1, ηk), i.e. that
f(η) �= α for any α ∈ [ηk−1, ηk). Thus, collectively the yk guarantee that
f(η) �= α for any α < η, which contradicts the fact that f(η) < η. �

This completes the proof of the theorem. �

It should be noted that using DC normality can be proved without using
Basic Coding since in place of the sequence 〈Xi | i ∈ ω〉 one can use DC
to construct a sequence 〈σα | α < η〉 of strategies. This, however, relies on
the fact that η is countable. Our reason for giving the proof in terms of
Basic Coding is that it illustrates in miniature how we will obtain normal
ultrafilters on ordinals much larger than ω1.

2.14 Corollary (Solovay). Assume ZF + AD. Then

HOD |= ωV
1 is a measurable cardinal.

Proof. We have that

HOD |= μ ∩HOD is a normal ultrafilter on ωV
1 ,

since μ ∩HOD ∈ HOD (as μ is OD and OD is OD). �

Thus, if ZF + AD is consistent, then ZFC + “There is a measurable
cardinal” is consistent.

There is also an effective version of Solovay’s theorem, which we shall need.

2.15 Theorem. Assume ZFC + OD-determinacy. Then

HOD |= ωV
1 is a measurable cardinal.

Proof. If S is OD then the game G(S) is OD and hence determined. It follows
(by the above proof) that if I has a winning strategy in G(S) then S contains
a club and if II has a winning strategy in G(S) then ω1 � S contains a club.
Thus,

V |= μ ∩HOD is an ultrafilter on HOD

and so
HOD |= μ ∩HOD is an ultrafilter.

Similarly the proof of Claim 1 in Theorem 2.13 shows that

V |= μ ∩HOD is ω1-complete

and so
HOD |= μ ∩HOD is ω1-complete,

which completes the proof. �
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2.4. The Least Stable

We now take the next step in generalizing the above result. For this purpose
it is useful to think of ω1 in slightly different terms: Recall the following
definition:

δ∼
1
1 = sup{α | there is a Δ∼

1
1-surjection π : ωω → α}.

It is a classical result that ω1 = δ∼
1
1. Now consider the following higher-order

analogue of δ∼
1
1:

δ∼
2
1 = sup{α | there is a Δ∼

2
1-surjection π : ωω → α}.

In this section we will work without determinacy and establish the basic
features of this ordinal in the context of L(R). In the next section we will
solve for U in the equation

δ∼
1
1

WO
=

δ∼
2
1

U

in such a way that U is accompanied by the appropriate boundedness and
coding theorems required to generalize Solovay’s proof to show that ZF +
DC + ADL(R) implies that (δ∼

2
1)

L(R) is a measurable cardinal in HODL(R).
The following model-theoretic characterization of the pointclass Σ∼

2
1 will be

useful in complexity calculations: A ⊆ ωω is Σ∼
2
1 iff for some formula ϕ and

some real z ∈ ωω,

A = {y ∈ ωω | there is a transitive set M such that
(a) ωω ⊆M,

(b) there is a surjection π : ωω →M, and
(c) M |= T0 + ϕ[y, z]}.

As before, theories much weaker than T0 yield an equivalent definition and
our choice of T0 is simply one of convenience. The lightface version Σ2

1 is
defined similarly by omitting the parameter z.

We wish to study δ∼
2
1 in the context of L(R). In the interest of keeping our

account self-contained and free of fine structure we will give a brief introduc-
tion to the basic features of L(R) under the stratification Lα(R) for α ∈ On.
For credits and references see [2].

Definability issues will be central. Officially our language is the language
of set theory with an additional constant Ṙ which is always to be interpreted
as R. For a set M such that X ∪ {R} ⊆ M , let Σn(M,X) be the collection
of sets definable over M via a Σn formula with parameters in X ∪ {R}. For
example, x is Σ1(L(R), X) iff x is Σ1-definable over L(R) with parameters
from X∪{R}. It is important to note that the parameter R is always allowed
in our definability calculations. To emphasize this we will usually make it
explicit.
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The basic features of L carry over to L(R), one minor difference being that
R is allowed as a parameter in all definability calculations. For example, for
each limit ordinal λ, the sequence 〈Lα(R) | α < λ〉 is Σ1(Lλ(R), {R}).

For X∪{R} ⊆M ⊆ N , let M ≺X
n N mean that for all parameter sequences

�a ∈ (X ∪ {R})<ω and for all Σn formulas ϕ, M |= ϕ[�a] iff N |= ϕ[�a]. Let
M ≺n N be short for M ≺M

n N .

2.16 Definition. The least stable in L(R), δR, is the least ordinal δ such
that

Lδ(R) ≺R∪{R}
1 L(R).

A related ordinal of particular importance is δF , the least ordinal δ such that

Lδ(R) ≺1 L(R).

We aim to show that (δ∼
2
1)

L(R) = δR = δF . For notational convenience we
write δ∼

2
1 for (δ∼

2
1)

L(R) and Θ for ΘL(R).
The definability notions involved in the previous definition also have use-

ful model-theoretic characterizations, which we will routinely employ. For
example, A ⊆ ωω is Σ1-definable over L(R) with parameters from R ∪ {R}
iff there is a formula ϕ and a z ∈ ωω,

A = {y ∈ ωω | ∃α ∈ On such that
(a) Lα(R) |= T0 and
(b) Lα(R) |= ϕ[y, z,R]}.

Again, theories weaker than T0 (such as ZFN for sufficiently large N) suffice.
The existence of arbitrarily large levels Lα(R) satisfying T0 will be proved
below in Lemma 2.22.

2.17 Lemma. Assume ZF + ACω(R) + V = L(R). Suppose

X =
{
x ∈ Lλ(R) | x is definable over Lλ(R)

from parameters in R ∪ {R}
}
,

where λ is a limit ordinal. Then X ≺ Lλ(R).

Proof. It suffices (by the Tarski-Vaught criterion) to show that if A is a non-
empty set which is definable over Lλ(R) from parameters in R ∪ {R}, then
A ∩X �= ∅. Let A be such a non-empty set and choose x0 ∈ A. Since every
set in Lλ(R) is definable over Lλ(R) from a real and an ordinal parameter,

{x0} = {x ∈ Lλ(R) | Lλ(R) |= ϕ0[x, c0, α0,R]}

for some formula ϕ0, and parameters c0 ∈ ωω and α0 ∈ On. Let α1 be least
such that there is exactly one element x such that Lλ(R) |= ϕ0[x, c0, α1,R]
and x ∈ A. Notice that α1 is definable in Lλ(R) from c0 and the real
parameter used in the definition of A. Thus, letting x1 be the unique element
such that Lλ(R) |= ϕ0[x1, c0, α1,R] we have a set which is in A (by the
definition of x1) and in X (since it is definable in Lλ(R) from c0 and the real
parameter used in the definition of A.) �
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2.18 Lemma. Assume ZF + ACω(R) + V = L(R). For each α < Θ, there
is an OD surjection π : ωω → α.

Proof. Fix α < Θ. Since every set in L(R) is ODx for some x ∈ ωω there
is an ODx surjection π : ωω → α. For each x ∈ ωω, let πx be the <ODx-
least such surjection if one exists and let it be undefined otherwise. We can
now “average over the reals” to eliminate the dependence on real parameters,
letting

π : ωω → α

x �→
{

π(x)0((x)1) if π(x)0 is defined
0 otherwise.

This is an OD surjection. �

2.19 Lemma (Solovay). Assume ZF + ACω(R) + V = L(R) . Then Θ is
regular in L(R).

Proof. By the proof of the previous lemma, there is an OD sequence

〈πα | α < Θ〉

such that each πα : ωω → α is an OD surjection. Assume for contradiction
that Θ is singular. Let

f : α→ Θ

be a cofinal map witnessing the singularity of Θ. Let g : ωω → α be a
surjection. It follows that the map

π : ωω → Θ
x �→ πf ◦g((x)0)((x)1)

is a surjection, which contradicts the definition of Θ. �

2.20 Lemma. Assume ZF + ACω(R) + V = L(R). Then

LΘ(R) = {x ∈ L(R) | there is a surjection π : ωω → tc(x)}.

Thus, P(R) ⊆ LΘ(R).

Proof. For the first direction suppose x ∈ LΘ(R). Let λ < Θ be a limit
ordinal such that x ∈ Lλ(R). Thus tc(x) ⊆ Lλ(R). Moreover, there is a
surjection π : ωω → Lλ(R), since every element of Lλ(R) is definable from
an ordinal and real parameters.

For the second direction suppose x ∈ L(R) and that there is a surjection
π : ωω → tc(x). We wish to show that x ∈ LΘ(R). Let λ be a limit ordinal
such that x ∈ Lλ(R). Thus tc(x) ⊆ Lλ(R). Let

X =
{
y ∈ Lλ(R) | y is definable over Lλ(R)

from parameters in tc(x) ∪ R ∪ {R}
}
,
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By the proof of Lemma 2.17, X ≺ Lλ(R) and tc(x) ⊆ X. By Condensation,
the transitive collapse of X is Lλ̄(R) for some λ̄. Since there is a surjection
π : ωω → tc(x) and since all members of Lλ̄(R) are definable from parameters
in tc(x)∪R∪ {R}, there is a surjection ρ : ωω → Lλ̄(R). So λ̄ < Θ and since
x ∈ Lλ̄(R) this completes the proof. �

2.21 Lemma. Assume ZF + ACω(R) + V = L(R). Then

LΘ(R) |= T0.

Proof. It is straightforward to see that LΘ(R) satisfies T0 − Separation −
Replacement.

To see that LΘ(R) |= Separation note that if S ⊆ x ∈ LΘ(R) then
S ∈ LΘ(R), by Lemma 2.20. To see that LΘ(R) |= Replacement we ver-
ify Collection, which is equivalent to Replacement, over the other axioms.
Suppose

LΘ(R) |= ∀x ∈ a ∃y ϕ(x, y),

where a ∈ LΘ(R). Let

f : a �→ Θ
x→ μα (∃y ∈ Lα(R) such that LΘ(R) |= ϕ(x, y)).

The ordertype of ran(f) is less that Θ since otherwise there would be a
surjection π : ωω → Θ (since there is a surjection π : ωω → a). Moreover,
since Θ is regular, it follows that ran(f) is bounded by some λ < Θ. Thus,

LΘ(R) |= ∀x ∈ a ∃y ∈ Lλ(R)ϕ(x, y),

which completes the proof. �

2.22 Lemma. Assume ZF + ACω(R) + V = L(R). There are arbitrarily
large α such that Lα(R) |= T0.

Proof. The proof is similar to the previous proof. Let us say that α is an
R-cardinal if for every γ < α there does not exist a surjection π : R× γ → α.
For each limit ordinal γ ∈ On, letting

Θ(γ) = sup{α | there is a surjection π : R× γ → α}

we have that Θ(γ) is an R-cardinal. For each γ which is closed under the
Gödel pairing function, the argument of Lemma 2.19 shows that Θ(γ) is
regular. The proof of the previous lemma generalizes to show that for every
regular Θ(γ), LΘ(γ)(R) |= T0. �

2.23 Lemma (Solovay). Assume ZF + ACω(R) + V = L(R). LΘ(R) ≺1

L(R).
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Proof. Suppose
L(R) |= ϕ[a],

where a ∈ LΘ(R) and ϕ is Σ1. By Reflection, let λ be a limit ordinal such
that

Lλ(R) |= ϕ[a].

Let

X =
{
y ∈ Lλ(R) | y is definable over Lλ(R)

from parameters in tc(a) ∪ R ∪ {R}
}
,

By Condensation and Lemma 2.20, the transitive collapse of X is Lλ̄(R) for
some λ̄ < Θ. Thus, by upward absoluteness,

LΘ(R) |= ϕ[a].

�

2.24 Lemma. Assume ZF + ACω(R) + V = L(R). There are arbitrarily
large α < δF such that Lα(R) |= T0

Proof. Suppose ξ < δF . Since LΘ(R) |= T0,

L(R) |= ∃α > ξ (Lα(R) |= T0).

The formula is readily seen to be Σ1 with parameters in {R, ξ} by our model-
theoretic characterization. Thus, by the definition of δF ,

LδF
(R) |= ∃α > ξ (Lα(R) |= T0),

which completes the proof. �

2.25 Lemma. Assume ZF + ACω(R) + V = L(R). Suppose ϕ is a formula
and a ∈ ωω. Suppose λ is least such that Lλ(R) |= T0 + ϕ[a]. Let

X =
{
x ∈ Lλ(R) | y is definable over Lλ(R)

from parameters in R ∪ {R}
}
.

Then X = Lλ(R). Moreover, there is a surjection π : ωω → Lλ(R) such that
π is definable over Lλ+1(R) from R and a.

Proof. By Lemma 2.17 we have that X ≺ Lλ(R). By condensation the
transitive collapse of X is some Lλ̄(R). So Lλ̄(R) |= T0 + ϕ[a] and thus by
the minimality of λ we have λ̄ = λ. Since every x ∈ X is definable from
a real parameter and since Lλ(R) ∼= X, we have that every x ∈ Lλ(R) is
definable from a real parameter, in other words, X = Lλ(R). The desired
map π : ωω → Lλ(R) is the map which takes a real coding the Gödel number
of ϕ and a real parameter a to the set {x ∈ Lλ(R) | Lλ(R) |= ϕ[x, a]}. This
map is definable over Lλ+1(R). �



1982 Koellner and Woodin / Large Cardinals from Determinacy

2.26 Lemma. Assume ZF + ACω(R) + V = L(R). Suppose 0 < α < δR.
Then there is a surjection π : ωω → Lα(R) such that {(x, y) | π(x) ∈ π(y)}
is Δ∼

2
1. Thus, δR � δ∼

2
1.

Proof. Fix α such that 0 < α < δR. By the minimality of δR,

Lα(R) ⊀
R∪{R}
1 L(R).

So there is an a ∈ ωω and a Σ1 formula ϕ such that if β is the least ordinal
such that Lβ(R) |= ϕ[a] then β > α. Let γ be least such that γ > β > α
and Lγ(R) |= T0 (which exists by Lemma 2.22). So γ is least such that
Lγ(R) |= T0 + ϕ[a] and, by Lemma 2.25, there is a surjection π : ωω →
Lγ(R) which is definable over Lγ+1(R) with the parameters R and a. Let
A = {(x, y) | π(x) ∈ π(y)}. Let ψ1 and ψ2 be the formulas defining A and
(ωω)2 � A over Lγ+1(R), respectively. By absoluteness,

(x, y) ∈ A iff there is a transitive set M such that
ωω ⊆M,

there is a surjection π : ωω →M, and
M |= T0 + ∃γ (Lγ(R) |= T0 + ϕ[a] and
Lγ+1(R) |= ψ1[x, y]).

This shows, by our model-theoretic characterization of Σ∼
2
1 that A is Σ∼

2
1.

A similar argument shows that (ωω)2 �A is Σ∼
2
1. Finally, the desired map can

be extracted from π. �

We now use a universal Σ∼
2
1 set to knit together all of these “Δ∼

2
1 projection

maps”.

2.27 Lemma. Assume ZF + ACω(R) + V = L(R). Then there is a partial
surjection ρ : ωω → LδR

(R) such that dom(ρ) and ρ are both Σ1-definable over
LδR

(R) with the parameter R. Thus, LδR
(R) ≺1 L(R) and hence δF � δR.

Proof. Let U be a Σ2
1 subset of ωω×ωω×ωω that is universal for Σ∼

2
1 subsets

of ωω × ωω, that is, such that for each Σ∼
2
1 subset A ⊆ ωω × ωω there is an

x ∈ ωω such that A = Ux where by definition

Ux = {(y, z) ∈ ωω × ωω | (x, y, z) ∈ U}.

We define ρ using U . For the domain of ρ we take

dom(ρ) = {x ∈ ωω | ∃α ∈ On (Lα(R) |= T0 and
Lα(R) |= U(x)0 = (ωω × ωω) � U(x)1)}.

Notice that dom(ρ) is Σ1(L(R), {R}) and hence Σ1(LδR
(R), {R}). Notice also

that in general if Lα(R) |= T0 then

(U(x)0)
Lα(R) ⊆ U(x)0



2. Basic Results 1983

and thus, if in addition,

(U(x)0)
Lα(R) = (ωω × ωω) � (U(x)1)

Lα(R),

then,
(U(x)0)

Lα(R) = U(x)0 .

We can now define ρ as follows: Suppose x ∈ dom(ρ). Let α(x) be the
least α as in the definition of dom(ρ). If there is an ordinal η and a surjection
π : ωω → Lη(R) such that

{(t1, t2) | π(t1) ∈ π(t2)} = (U(x)0)
Lα(x)(R)

then let ρ(x) = π((x)2); otherwise let ρ(x) = ∅. Notice that the map ρ is
Σ1(L(R), {R}) and hence Σ1(LδR

(R), {R}). By Lemma 2.26, ρ : dom(ρ) →
LδR

(R) is a surjection.
For the last part of the proof recall that by definition LδR

(R) ≺R∪{R}
1

L(R). The partial surjection ρ : ωω → LδR
(R) allows us to reduce arbitrary

parameters in LδR
(R) to parameters in ωω. �

2.28 Theorem. Assume ZF + ACω(R) + V = L(R). δ∼
2
1 = δR = δF .

Proof. We have δR � δ∼
2
1 (by Lemma 2.26), δR � δF (by definition), and

δF � δR (by Lemma 2.27). It remains to show δ∼
2
1 � δR.

Suppose γ < δ∼
2
1. We wish to show that γ < δR. Let π : ωω → α be a

surjection such that A = {(x, y) | π(x) < π(y)} is Δ∼
2
1. Using the notation

from the previous proof let x be such that

U(x)0 = A and U(x)1 = (ωω × ωω) � A.

There is an ordinal α such that Lα(R) |= T0 and

(U(x)0)
Lα(R) = (ωω × ωω) � (U(x)1)

Lα(R).

Since
LδR

(R) ≺R∪{R}
1 L(R),

the least such ordinal, α(x), is less than δR. Thus,

(U(x)0)
Lα(x)(R) = A.

Finally, since Lα(x)(R) |= T0, this model can compute the ordertype, γ, of
A. Thus, γ < α(x) < δR. �

2.29 Remark. Although we will not need these facts it is worthwhile to
note that the above proofs show

(1) (Σ∼
2
1)

L(R) = Σ∼1(Lδ
˜
2
1
(R)) ∩P(ωω),

(2) (Δ∼
2
1)

L(R) = Lδ
˜
2
1
(R) ∩P(ωω), and

(3) (Solovay’s Basis Theorem) if L(R) |= ∃X ϕ(X) where ϕ is Σ∼
2
1 then

L(R) |= ∃X ∈ Δ∼
2
1 ϕ(X).
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2.5. Measurability of the Least Stable

We are now in a position to show that under ZF + DC + AD,

HODL(R) |= (δ∼
2
1)

L(R) is a measurable cardinal.

This serves as a warm-up to Sect. 4, where we will show that under ZF +
DC + AD,

HODL(R) |= (δ∼
2
1)

L(R) is λ-strong,

for each λ < ΘL(R), and, in fact, that

HODL(R) |= ΘL(R) is a Woodin cardinal.

The proof that we give in Sect. 4 will show that DC can be eliminated from
the result of the present section.

First we need an analogue U of WO that enables us to encode (unbound-
edly many) ordinals below δ∼

2
1 and is accompanied by the boundedness and

coding theorems required to push the above proof through for δ∼
2
1. The follow-

ing works: Let U be a Σ2
1 subset of ωω × ωω that is universal for Σ∼

2
1 subsets

of ωω. For y ∈ ωω we let Uy = {z ∈ ωω | (y, z) ∈ U}. For (y, z) ∈ U , let
Θ(y,z) be least such that

LΘ(y,z)(R) |= T0 and (y, z) ∈ U
LΘ(y,z) (R)

.

Let δ(y,z) = (δ∼
2
1)

LΘ(y,z) (R). These ordinals are the analogues of αx from the
proof that ω1 is measurable. For notational convenience we will routinely use
our recursive bijection from ωω × ωω to ωω to identify pairs of reals (y, z)
with single reals x = 〈y, z〉. Thus we will write Θx and δx instead of Θ(y,z)

and δ(y,z).

2.30 Lemma. Assume ZF + ACω(R) + V = L(R). {δx | x ∈ U} is un-
bounded in δ∼

2
1.

Proof. Let α < δ∼
2
1. Let A be (the set of reals coding) a Δ∼

2
1 prewellordering of

length greater than α. Let y, z ∈ ωω be such that Uy = A and Uz = ωω
� A.

So L(R) |= “Uy = ωω
� Uz”. Since δ∼

2
1 is the least stable, there is a β < δ∼

2
1

such that Lβ(R) |= “Uy = ωω �Uz” and since (Uy)Lβ(R) ⊆ A and (Uz)Lβ(R) ⊆
ωω

�A we have that A = (Uy)Lβ(R). Now, letting x ∈ U �ULβ(R) and γ < δ∼
2
1

be such that Lγ(R) |= T0 + “x ∈ U”, we have that α < δx since A ∈ Lγ(R)
and Lγ(R) can compute the ordertype of A. �

In analogy with WO, for x ∈ U let Uδx = {y ∈ U | δy = δx}, U<δx = {y ∈
U | δy < δx} and so on.

2.31 Lemma (Δ∼
2
1-Boundedness, Moschovakis). Assume ZF + ACω(R) +

V = L(R). Suppose X ⊆ U and X is Δ∼
2
1. Then there exists an x ∈ U such

that such that X ⊆ U<δx .
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Proof. Let y, z ∈ ωω be such that Uy = X and Uz = ωω
� X. (Notice that

we are identifying X with the set of reals that recursively encodes it.) As
above, there is a β0 < δ∼

2
1 such that X = (Uy)Lβ0 (R). Choose γ such that

β0 < γ < δ∼
2
1 and Lγ(R) satisfies T0. Then for all z ∈ X, δz < γ. Now choose

x ∈ U such that δx > γ. �

2.32 Lemma (Coding; Moschovakis). Assume ZF + AD. Suppose Z ⊆
U × ωω. Then there exists a Z∗ ⊆ Z such that for all x ∈ U

(i) Z∗ ∩ (Uδx × ωω) �= ∅ iff Z ∩ (Uδx × ωω) �= ∅,

(ii) Z∗ ∩ (U�δx × ωω) is Δ∼
2
1.

This lemma will follow from the more general coding lemmas of the next
section. See Remark 3.6.

2.33 Theorem (Moschovakis). Assume ZF + DC + AD. Then

L(R) |= There is a normal ultrafilter on δ∼
2
1.

Proof. Work in L(R). The proof is virtually a carbon copy of the proof for ω1.
One just replaces δ∼

1
1, WO, αx, and Σ∼

1
1 with δ∼

2
1, U , δx, and Δ∼

2
1, respectively.

For completeness we include some of the details, noting the main changes.
For S ⊆ δ∼

2
1, let G(S) be the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

with the following rules: Rule 1: For all i < ω, (x)i, (y)i ∈ U . If Rule 1 is
violated then, letting i be least such that either (x)i �∈ U or (y)i �∈ U , I wins
if (x)i ∈ U ; otherwise II wins. Now suppose Rule 1 is satisfied. Rule 2:
δ(x)0 < δ(y)0 < δ(x)1 < δ(y)1 < · · · . The first failure defines who wins as
above. If both rules are satisfied then I wins iff supi∈ω δ(x)i

∈ S.
Now let

μ = {S ⊆ δ∼
2
1 | I wins G(S)}.

Notice that as before (using Δ∼
2
1-boundedness) if I has a winning strategy

in G(S) then S contains a set C which is unbounded and closed under ω-
sequences. The proof that U is an ultrafilter is exactly as before. To see that
it is δ∼

2
1-complete and normal one uses the new versions of Boundedness and

Coding. We note the minor changes in the proof of normality.
Assume for contradiction that f : δ∼

2
1 → δ∼

2
1 and that there is no α < δ∼

2
1

such that {ξ | f(ξ) = α} ∈ μ or, equivalently (by AD) that for all α < δ∼
2
1,

Sα = {ξ | f(ξ) �= α} ∈ μ.

Let 〈δα | α < δ∼
2
1〉 enumerate 〈δx | x ∈ U〉. Here we are appealing to the

fact that δ∼
2
1 is regular, which can be shown using the Coding Lemma (see [9,

p. 433]). In analogy with WO, for α < β < δ∼
2
1, let Uα = {x ∈ U | δx = δα},
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U(α,β] = {x ∈ U | δα < δx � δβ} and likewise for other intervals. Let �U be
the associated prewellordering.

As before, our strategy is to inductively define

(1.1) an increasing sequence 〈ηi | i < ω〉 of ordinals with supremum η,

(1.2) a sequence of collections of strategies 〈Xi | i < ω〉 where Xi contains
winning strategies for I in games G(Sα) for α ∈ [ηi−1, ηi), where
η−1 = 0, and

(1.3) a sequence 〈yi | i < ω〉 of plays such that yi is legal for II against any
σ ∈ Xi and supj<ω δ(yi)j

= η.

Thus the yi will collectively witness that f(η) �= α for any α < η, which
contradicts our assumption that f(η) < η. The key difference is that in our
present case we need the Coding Lemma since there are too many games.
Let

Z = {(x, σ) | x ∈ U and σ is a winning strategy for I
in G(Sα) where α is such that δα = δx}

and, by our new Coding Lemma, let Z∗ ⊆ Z be such that for all α < δ∼
2
1,

(2.1) Z∗ ∩ (Uα × ωω) �= ∅ iff Z ∩ (Uα × ωω) �= ∅

(2.2) Z∗ ∩ (U�α × ωω) is Δ∼
2
1.

This puts us in a position to apply Δ∼
2
1-boundedness.

For the first step let

η0 = some ordinal η such that η < δ∼
2
1

X0 = proj2
(
Z∗ ∩ (U[0,η0) × ωω)

)

Y0 =
{
((σ ∗ y)I)0 | σ ∈ X0 ∧ y ∈ ωω

}

z0 = some real z such that Y0 ⊆ U<δz .

So X0 is a collection of strategies for games G(Sα) where α < η0. Since these
strategies are winning for I the set Y0 is contained in U . Furthermore, Y0 is
Δ∼

2
1 and hence has a bound δz0 . For the induction step let

ηn+1 =some ordinal η such that ηn, δzn < η < δ∼
2
1

Xn+1 =proj2
(
Z∗ ∩ (U[ηn,ηn+1) × ωω)

)

Yn+1 =
{
((σ ∗ y)I)n+1 | σ ∈ X0, y ∈ ωω such that ∀i � n (y)i = zi

}

∪
{
((σ ∗ y)I)n | σ ∈ X1, y ∈ ωω such that ∀i � n− 1 (y)i = zi+1

}

...

∪
{
((σ ∗ y)I)0 | σ ∈ Xn+1, y ∈ ωω

}

zn+1 =some real z such that Yn+1 ⊆ U<δz .
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Finally, for k < ω, let yk be such that (yk)i = zi+k for all i < ω. Since each
of these reals contains a tail of the zi’s, if η = supn<ω ηn, then

sup
i<ω

(
δ(yk)i

)
= η

for all k < ω. Furthermore, yk is a legal play for II against any σ ∈ Xk, as
witnessed by the (k + 1)st components of Yn with n � k. Since each σ ∈ Xk

is a winning strategy for I, yk witnesses that η ∈ Sα for α ∈ [ηk−1, ηk), i.e.
that f(η) �= α for any α ∈ [ηk−1, ηk). So collectively the yk guarantee that
f(η) �= α for any α < η, which contradicts the fact that f(η) < η. �

2.34 Corollary. Assume ZF + DC + AD. Then

HODL(R) |= (δ∼
2
1)

L(R) is a measurable cardinal.

The above proof uses DC. However, as we shall see in Sect. 4.1 the theorem
can be proved in ZF + AD. See Lemma 4.7.

The Coding Lemma was used to enable II to “collect together” the relevant
strategies and then the Δ∼

2
1-boundedness lemma was used to enable II to “take

control of the ordinal played” in all such games by devising a play that is legal
against all of the relevant strategies and (in each case) has the same fixed
ordinal as output. This technique is central in what follows. It is important
to note, however, that the above ultrafilter (and, more generally, ultrafilters
obtained by such a “sup” game) concentrates on points of cofinality ω. Later
we will use a slightly different game, where the role of the Δ∼

2
1-boundedness

lemma will be played by a certain reflection phenomenon. Before turning to
this we prove the coding lemmas we shall need.

3. Coding

In the Basic Coding Lemma we constructed selectors relative to WO; we now
do so relative to more general prewellorderings.

3.1. Coding Lemma

We begin by fixing some notation. For P ⊆ ωω, the notion of a Σ∼
1
1(P ) set is

defined exactly like that of a Σ∼
1
1 set only now we allow reference to P and to

ωω
� P . In model-theoretic terms, X ⊆ ωω is Σ∼

1
1(P ) iff there is a formula ϕ

and a real z such that

X =
{
y ∈ ωω | there is an ω-model M such that

y, z, P ∩M ∈M and M |= T0 + ϕ[y, z, P ∩M ]
}
.

The notion of a Σ∼
1
1(P, P ′) set is defined in the same way, only now reference

to both P and P ′ and their complements is allowed. The lightface versions
of these notions and the versions involving P ⊆ (ωω)n are all defined in the
obvious way.
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Let U (n)(P ) be a Σ1
1(P ) subset of (ωω)n+1 that is universal for Σ∼

1
1(P )

subsets of (ωω)n, that is, such that for each Σ∼
1
1(P ) set A ⊆ (ωω)n there is an

e ∈ ωω such that A = U
(n)
e (P ) = {y ∈ (ωω)n | (e, y) ∈ U (n)(P )}. We do this

in such a way that the same formula is used, so that the definition is uniform
in P . Likewise, for U (n)(P, P ′) etc. (The existence of such a universal set
U (n)(P ) is guaranteed by the fact that the pointclass in question, namely,
Σ∼

1
1(P ), is ω-parameterized and closed under recursive substitution. See [9],

3E.4 on p. 160 and especially 3H.1 on p. 183. We further assume that the
universal sets are “good” in the sense of [9], p. 185 and we are justified in
doing so by [9], 3H.1. A particular component of this assumption is that our
universal sets satisfy the s-m-n-theorem (uniformly in P (or P and P ′)). See
Jackson’s chapter in this Handbook for further details.)

3.1 Theorem (Recursion Theorem; Kleene). Suppose f : ωω → ωω is
Σ∼

1
1(P ). Then there is an e ∈ ωω such that

U (2)
e (P ) = U

(2)
f(e)(P ).

Proof. For a ∈ ωω, let

Ta = {(b, c) | (a, a, b, c) ∈ U (3)(P )}.

Let d : ωω → ωω be Σ1
1 such that Ta = U

(2)
d(a)(P ). (The function d comes

from the s-m-n-theorem. In fact, d(a) = s(a, a) (in the notation of Jackson’s
chapter) and d is continuous.) Let

Y = {(a, b, c) | (b, c) ∈ U
(2)
f(d(a))(P )}

and let a0 be such that Y = U
(3)
a0 (P ). Notice that Y is Σ∼

1
1(P ) using the

parameter for Y (as can readily be checked using the model-theoretic char-
acterization of Σ∼

1
1(P )). We have

(b, c) ∈ U
(2)
d(a0)

(P ) iff (a0, a0, b, c) ∈ U (3)(P )

iff (a0, b, c) ∈ U (3)
a0

(P ) = Y

iff (b, c) ∈ U
(2)
f(d(a0))

(P )

and so d(a0) is as desired. �

3.2 Theorem (Coding lemma; Moschovakis). Assume ZF + AD. Suppose
X ⊆ ωω and π : X → On. Suppose Z ⊆ X × ωω. Then there is an e ∈ ωω

such that

(1) U
(2)
e (Q) ⊆ Z and

(2) for all a ∈ X, U
(2)
e (Q) ∩ (Qa × ωω) �= ∅ iff Z ∩ (Qa × ωω) �= ∅,

where Q = {〈a, b〉 | π(a) � π(b)}.
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Proof. Assume toward a contradiction that there is no such e. Consider the
set G of reals e for which (1) in the statement of the theorem is satisfied:

G =
{
e ∈ ωω | U (2)

e (Q) ⊆ Z
}
.

So, for each e ∈ G, (2) in the statement of the theorem fails for some a ∈ X.
Let αe be the least α such that (2) fails at the αth-section:

αe = min
{
α | ∃a ∈ X (π(a) = α ∧ U (2)

e (Q) ∩ (Qa × ωω) = ∅

∧ Z ∩ (Qa × ωω) �= ∅)
}
.

Now play the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

where I wins if x ∈ G and either y �∈ G or αx � αy. Notice that by our
assumption that there is no index e as in the statement of the theorem,
neither I nor II can win a round of this game by playing a selector. The
best they can do is play “partial” selectors. For a play e ∈ G, let us call
U

(2)
e (Q)∩ (Q<αe×ωω) the partial selector played. Using this terminology we

can restate the winning conditions by saying that II wins either by ensuring
that I does not play a subset of Z or, failing this, by playing a partial selector
which is longer than that played by I.

We will arrive at a contradiction by showing that neither player can win
this game.

Claim 1. Player I does not have a winning strategy.

Proof. Suppose toward a contradiction that σ is a winning strategy for I. As
in the proof of the Basic Coding Lemma our strategy will be to “bound” all
of I’s plays and then use this bound to construct a play e∗ which defeats σ.

Since σ is a winning strategy,

U
(2)
(σ∗y)I

(Q) ⊆ Z

for all y ∈ ωω. Let eσ be such that

U (2)
eσ

(Q) =
⋃

y∈ωωU
(2)
(σ∗y)I

(Q).

By assumption, U
(2)
eσ (Q) is not a selector. So αeσ exists. Since for all y ∈ ωω,

αeσ � α(σ∗y)I
, we can take αeσ as our bound. Choose a ∈ X such that

π(a) = αeσ . Pick (x1, x2) ∈ Z ∩ (Qa × ωω). Let e∗ be such that

U
(2)
e∗ (Q) = U (2)

eσ
∪ {(x1, x2)}.

So e∗ ∈ G. But αeσ < αe∗ . In summary, we have that for all y ∈ ωω,
α(σ∗y)I

� αeσ < αe∗ . Thus, by playing e∗, II defeats σ. �
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Claim 2. Player II does not have a winning strategy.

Proof. Assume toward a contradiction that τ is a winning strategy for II. We
shall show that τ yields a selector for Z; in other words, it yields an e∗ such
that

(1) U
(2)
e∗ (Q) ⊆ Z and

(2) for all a ∈ X, U
(2)
e∗ (Q) ∩ (Qa × ωω) �= ∅ iff Z ∩ (Qa × ωω) �= ∅.

Choose h0 : ωω ×X → ωω such that h0 is Σ1
1(Q) and for all e, a ∈ ωω,

U
(2)
h0(e,a)(Q) = U (2)

e (Q) ∩ (Q<a × ωω).

Thus, the set coded by h0(e, a) is the result of taking the initial segment
given by a of the set coded by e.

Choose h1 : ωω → ωω such that h1 is Σ∼
1
1(Q) and for all e ∈ ωω,

U
(2)
h1(e)

(Q) =
⋃

a∈X

(
U

(2)
(h0(e,a)∗τ)II

(Q) ∩ (Qa × ωω)
)
.

Thus, the set coded by h1(e) is the union of all “a-sections” of sets played by
II in response to “<a-initial segments” of the set coded by e.

By the recursion theorem there is a fixed point for h1; that is, there is an
e∗ such that

U
(2)
e∗ (Q) = U

(2)
h1(e∗)(Q).

This set has the following closure property: if I plays an initial segment of it
then II responds with a subset of it. We shall see that e∗ ∈ G. Moreover, if
U

(2)
e∗ (Q) is not a selector then having I play the largest initial segment which is

a partial selector, II responds with a larger selector, which is a contradiction.
Thus, e∗ codes a selector. Here are the details.

Subclaim 1. e∗ ∈ G.

Proof. Suppose for contradiction that U
(2)
e∗ (Q) � Z �= ∅. Choose (x1, x2) ∈

U
(2)
e∗ (Q) � Z with π(x1) minimal. So

(x1, x2) ∈ U
(2)
e∗ (Q) = U

(2)
h1(e∗)(Q)

=
⋃

a∈X

(
U

(2)
(h0(e∗,a)∗τ)II

(Q) ∩ (Qa × ωω)
)
.
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Fix a ∈ X such that

(x1, x2) ∈ U
(2)
(h0(e∗,a)∗τ)II

(Q) ∩ (Qa × ωω).

The key point is that h0(e∗, a) ∈ G since we chose (x1, x2) with π(x1) = π(a)
minimal. Thus, since τ is a winning strategy, (h0(e∗, a) ∗ τ)II ∈ G, and so
(x1, x2) ∈ Z, which is a contradiction. �

Subclaim 2. αe∗ does not exist.

Proof. Suppose for contradiction that αe∗ exists. Let a ∈ X be such that
π(a) = αe∗ . Thus h0(e∗, a) ∈ G and αh0(e∗,a) = αe∗ . Since τ is a winning
strategy for II,

α(h0(e∗,a)∗τ)II > αh0(e∗,a) = αe∗ ,

which is impossible since

U
(2)
(h0(e∗,a)∗τ)II

(Q) ⊆ U
(2)
e∗ (Q).

Thus αe∗ does not exist. �

Hence e∗ is the code for a selector. �

This completes the proof of the Coding Lemma. �

3.2. Uniform Coding Lemma

We shall need a uniform version of the above theorem. The version we prove
is different than that which appears in the literature [6]. We shall need the
following uniform version of the recursion theorem.

3.3 Theorem (Uniform Recursion Theorem; Kleene). Suppose
f : ωω → ωω is Σ∼

1
1. Then there is an e ∈ ωω such that for all P, P ′ ⊆ ωω,

U (2)
e (P, P ′) = U

(2)
f(e)(P, P ′).

Proof. The proof is the same as before. The key point is that the definition
of the fixed point d(a0) depends only on f and, of course, d, which is uniform
in P, P ′. �

3.4 Theorem (Uniform Coding Lemma). Assume ZF + AD. Suppose
X ⊆ ωω and π : X → On. Suppose Z ⊆ X × ωω. Then there exists an
e ∈ ωω such that for all a ∈ X,

(1) U
(2)
e (Q<a, Qa) ⊆ Z ∩ (Qa × ωω) and

(2) U
(2)
e (Q<a, Qa) �= ∅ iff Z ∩ (Qa × ωω) �= ∅,

where Q<a = {b ∈ X | π(b) < π(a)} and Qa = {b ∈ X | π(b) = π(a)}.



1992 Koellner and Woodin / Large Cardinals from Determinacy

Proof. Here is the picture:

Think of e as providing a “rolling selector”. The unshaded ellipse, Z, is sliced
into sections Z ∩ (Qa×ωω). The Uniform Coding Lemma tells us that there
is a simple selector U

(2)
e (Q<a, Qa) for each of these sections which is uniform

in the parameters Q<a, Qa; that is, there is a fixed e such that U
(2)
e (Q<a, Qa)

selects from Z ∩ (Qa × ωω), for all parameters Q<a, Qa.
Assume toward a contradiction that there is no such e. Consider the set

G of reals e for which (1) in the statement of the theorem is satisfied:

G =
{
e ∈ ωω | ∀a ∈ X

(
U (2)

e (Q<a, Qa) ⊆ Z ∩ (Qa × ωω)
)}

.

So, for each e ∈ G, (2) in the statement of the theorem fails for some a ∈ X.
Let αe be least such that (2) fails at the αeth-section:

αe = min
{
α | ∃a ∈ X (π(a) = α ∧ U (2)

e (Q<a, Qa) = ∅

∧ Z ∩ (Qa × ωω) �= ∅)
}
.

Now play the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

where I wins if x ∈ G and either y �∈ G or αx � αy.

Claim 1. Player I does not have a winning strategy.

Proof. Suppose toward a contradiction that σ is a winning strategy for I. As
before our strategy is to “bound” all of I’s plays and then use this bound to
construct a play e∗ for II which defeats σ.

The proof is as before except that we have to take care to choose a para-
meter eσ that works uniformly for all parameters Q<a, Qa: Choose eσ such
that for all P, P ′ ⊆ ωω,

U (2)
eσ

(P, P ′) =
⋃

y∈ωωU
(2)
(σ∗y)I

(P, P ′).
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In particular, eσ is such that for all a ∈ X,

U (2)
eσ

(Q<a, Qa) =
⋃

y∈ωωU
(2)
(σ∗y)I

(Q<a, Qa).

Since σ is a winning strategy for I, (σ ∗ y)I ∈ G for all y ∈ ωω. Thus,

U (2)
eσ

(Q<a, Qa) ⊆ Z ∩ (Qa × ωω),

that is, eσ ∈ G. Notice that for all y ∈ ωω, α(σ∗y)I
� αeσ . We have thus

“bounded” all of I’s plays. It remains to construct a defeating play e∗ for II.
Choose a ∈ X such that π(a) = αeσ . So

U (2)
eσ

(Q<a, Qa) = ∅

and
Z ∩ (Qa × ωω) �= ∅.

Pick (x1, x2) ∈ Z ∩ (Qa × ωω). Choose e∗ such that for all P, P ′ ⊆ ωω,

U
(2)
e∗ (P, P ′) =

{
U

(2)
eσ (P, P ′) if x1 �∈ P ′

U
(2)
eσ (P, P ′) ∪ {(x1, x2)} if x1 ∈ P ′.

In particular, e∗ is such that for all a′ ∈ X,

U
(2)
e∗ (Q<a′ , Qa′ ) =

{
U

(2)
eσ (Q<a′ , Qa′ ) if x1 �∈ Qa′

U
(2)
eσ (Q<a′ , Qa′ ) ∪ {(x1, x2)} if x1 ∈ Qa′ .

So e∗ ∈ G. But αeσ < αe∗ . In summary, we have that for all y ∈ ωω,
α(σ∗y)I

� αeσ < αe∗ . Thus, by playing e∗, II defeats σ. �

Claim 2. Player II does not have a winning strategy.

Proof. Assume toward a contradiction that τ is a winning strategy for II. We
seek e∗ such that

U
(2)
e∗ (Q<a, Qa) ⊆ Z ∩ (Qa × ωω) and

U
(2)
e∗ (Q<a, Qa) �= ∅ iff Z ∩ (Qa × ωω) �= ∅.

Choose h0 : ωω × ωω → ωω such that h0 is Σ1
1 and for all e, z ∈ ωω and

for all P, P ′ ⊆ ωω,

U
(2)
h0(e,z)(P, P ′) =

{
U

(2)
e (P, P ′) if z �∈ P ∪ P ′

∅ if z ∈ P ∪ P ′.

In particular, for all a ∈ X,

U
(2)
h0(e,z)(Q<a, Qa) =

{
U

(2)
e (Q<a, Qa) if z �∈ Q<a ∪Qa

∅ if z ∈ Q<a ∪Qa.
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Notice that for e ∈ ωω and z ∈ X, the set U
(2)
h0(e,z)(·, ·) is such that it agrees

with U
(2)
e (·, ·) for parameters Q<a, Qa where π(a) < π(z) and is empty for

parameters Q<a, Qa where π(a) � π(z).
Choose h1 : ωω → ωω such that h1 is Σ1

1(τ) and for all e ∈ ωω and for all
P, P ′ ⊆ ωω,

U
(2)
h1(e)

(P, P ′) =
⋃

z∈P ′ U
(2)
(h0(e,z)∗τ)II

(P, P ′).

In particular, for all a ∈ X,

U
(2)
h1(e)

(Q<a, Qa) =
⋃

z∈Qa
U

(2)
(h0(e,z)∗τ)II

(Q<a, Qa).

The idea is roughly this: Fix e ∈ ωω and z ∈ Qa. U
(2)
h0(e,z)(·, ·) is such that it

agrees with U
(2)
e (·, ·) for parameters Q<ā, Qā where π(ā) < π(a) and is empty

for parameters Q<ā, Qā where π(ā) � π(a). Think of this as a play for I. In
the case of interest, this play will be in G. And since τ is a winning strategy,
II’s response will be in G and when provided with parameters Q<a,Qa it
will select from the a-component. Uh1(e)(Q<a, Qa) is the union of these over
z ∈ Qa.

Let e∗ be a fixed point for h1, by Theorem 3.3.

Subclaim 1. e∗ ∈ G.

Proof. Suppose for contradiction that for some a ∈ X,

U
(2)
e∗ (Q<a, Qa) � (Z ∩ (Qa × ωω)) �= ∅.

Let a∗ be an a where π(a) is least such that

U
(2)
e∗ (Q<a, Qa) � (Z ∩ (Qa × ωω)) �= ∅.

Choose (x1, x2) ∈ U
(2)
e∗ (Q<a∗ , Qa∗ ) � (Z ∩ (Qa∗ × ωω)).

So

(x1, x2) ∈ U
(2)
e∗ (Q<a∗ , Qa∗ ) = U

(2)
h1(e∗)(Q<a∗ , Qa∗ )

=
⋃

z∈Qa∗ U
(2)
(h0(e∗,z)∗τ)II

(Q<a∗ , Qa∗ ).
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Fix z∗ ∈ Qa∗ such that

(x1, x2) ∈ U
(2)
(h0(e∗,z∗)∗τ)II

(Q<a∗ , Qa∗ ).

The key point is that h0(e∗, z∗) ∈ G: By the definition of h0, for all a ∈ X
and for all z ∈ ωω,

U
(2)
h0(e∗,z)(Q<a, Qa) =

{
U

(2)
e∗ (Q<a, Qa) if z �∈ Q<a ∪Qa

∅ if z ∈ Q<a ∪Qa.

We have fixed z∗ ∈ Qa∗ . For this fixed value, allowing a to vary, we have (i)
z∗ �∈ Q<a ∪Qa iff π(a) < π(a∗) and (ii) z∗ ∈ Q<a ∪Qa iff π(a) � π(a∗). So

U
(2)
h0(e∗,z∗)(Q<a, Qa) = U

(2)
e∗ (Q<a, Qa),

for all a such that π(a) < π(a∗) and

U
(2)
h0(e∗,z∗)(Q<a, Qa) = ∅,

for all a such that π(a) � π(a∗). Thus,

U
(2)
h0(e∗,z∗)(Q<a, Qa) ⊆ Z ∩ (Qa × ωω),

for all a ∈ X, i.e. h0(e∗, z∗) ∈ G.
Now since τ is a winning strategy for II, (h0(e∗, z∗) ∗ τ)II ∈ G, which

means that (x1, x2) ∈ Z, a contradiction. �

Subclaim 2. αe∗ does not exist.

Proof. Suppose not. Let a∗ ∈ X be such that π(a∗) = αe∗ , and choose
z∗ ∈ Qa∗ . Thus, h0(e∗, z∗) ∈ G, since e∗ ∈ G by Subclaim 1, and h0(e∗, z∗)
is defined such that for all a ∈ X,

U
(2)
h0(e∗,z∗)(Q<a, Qa) =

{
U

(2)
e∗ (Q<a, Qa) if π(a) < π(a∗)

∅ if π(a) � π(a∗).

So, αh0(e∗,z∗) = αe∗ . Since τ is a winning strategy for II,

α(h0(e∗,z∗)∗τ)II > αh0(e∗,z∗) = αe∗ ,

which is impossible since

U
(2)
(h0(e∗,z∗)∗τ)II

(Q<a, Qa) ⊆ U
(2)
e∗ (Q<a, Qa)

for all a ∈ X. �

Thus, e∗ is the code for a uniform selector. �

This completes the proof of the Uniform Coding Lemma. �
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3.5 Remark. The game in the above proof is definable from X, π, and Z
and no choice is required to show that it works. Thus, if these parameters
are OD, then ZF + OD-determinacy suffices for the proof.

3.6 Remark. The version of the Coding Lemma stated in Lemma 2.32
follows from the Uniform Coding Lemma: Take X = U and π : U → On
given by π(x) = δx. Then

Z∗ =
⋃

x∈UU (2)
e (Q<δx , Qδx).

This gives (i). For (ii) note that

Z∗ ∩ (U�δx × ωω) =
⋃

y∈U�δx
U (2)

e (Q<δy , Qδy ),

which is Δ∼
2
1.

2 Open Question (Strong Coding Lemma). Suppose X ⊆ ωω and
π : X → On. Let �X be the prewellordering associated with π. Suppose
Z ⊆ X<ω is a tree. Then there exists a subtree Z∗ ⊆ Z such that

(1) Z∗ is Σ1
1(�X) and

(2) for all �s ∈ (Z∗)<ω and for all a ∈ X, if there exists a t ∈ Qa such that
�st ∈ Z then there exists a t ∈ Qa such that �st ∈ Z∗,

where Qa = {b ∈ X | π(b) = π(a)}.

3.3. Applications

In this section we will bring together some basic results and key applications
of the above coding lemmas that will be of use later. It will be useful to do
things in a slightly more general fashion than is customary.

For a set X, let

ΘX = sup{α | there is an ODX surjection π : ωω → α}.

3.7 Lemma. Assume ZF and suppose X is a set. Then there is an ODX

sequence A = 〈Aα | α < ΘX〉 such that Aα is a prewellordering of the reals
of length α.

Proof. Let Aα be the <ODX
-least prewellordering of the reals of length α,

where <ODX
is the canonical ODX well-ordering of the ODX sets. �

3.8 Lemma. Assume ZF and suppose X is a set. Suppose that every set is
ODX,y for some real y. Then Θ = ΘX .

Proof. Fix α < Θ. We have to show that there is an ODX surjection π : ωω →
α. There is certainly an ODX,y surjection for some y. For each y ∈ ωω, let
πy be the <ODX,y -least such surjection if one exists and let it be undefined
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otherwise. We can now “average over the reals” to eliminate the dependence
on real parameters, letting

π : ωω → α

y �→
{

π(y)0((y)1) if π(y)0 is defined
0 otherwise.

This is an ODX surjection. �

The following theorem is essentially due to Moschovakis. We are just
replacing AD with ODX -determinacy and the changes are straightforward.

3.9 Theorem. Assume ZF + ODX-determinacy, where X is a set. Then

HODX |= ΘX is strongly inaccessible.

Proof. First we show that ΘX is regular in HODX . By Lemma 3.7 there is
an ODX sequence

〈πα | α < ΘX〉

where each πα : ωω → α is a surjection. Assume for contradiction that ΘX

is singular in HODX and let

f : η → ΘX

be an ODX cofinal map. Let g be an ODX surjection from ωω onto η. Then
the map

π : ωω → ΘX

x �→ πf ◦g((x)0)((x)1)

is an ODX surjection, which contradicts the definition of ΘX .
We now show that ΘX is a strong limit in HODX . For each η < ΘX , we

have to show that |P(η)|HODX < ΘX . For this it suffices to show that there
is an ODX surjection

π : ωω →P(η)HODX ,

since if |P(η)|HODX � ΘX then there would be an ODX surjection ρ :
P(η) → ΘX and so ρ ◦ π : ωω → ΘX would be an ODX surjection, which
contradicts the definition of ΘX .

Let πη : ωω → η be an ODX surjection and, for α < η, let Q<α and Qα

be the usual objects defined relative to πη. For e ∈ ωω, let

Se = {β < η | U (2)
e (Q<β , Qβ) �= ∅}.

The key point is that since πη is ODX the game for the Uniform Coding
Lemma for Z =

⋃
{Qα×ωω | α ∈ S} is determined for each S ∈P(η)HODX .
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(See Remark 3.5.) Thus, every S ∈ P(η)HODX has the form Se for some
e ∈ ωω and hence

π : ωω →P(η)HODX

e �→ Se

is a surjection. Moreover, π is ODX (since πη is ODX), which completes the
proof. �

The above theorem has the following corollary. The first part also fol-
lows from early work of Friedman and Solovay. The second part is a simple
application of the Coding Lemma and Solovay’s Lemma 2.23.

3.10 Theorem. Assume ZF + AD + V = L(R). Then

(1) HODL(R) |= Θ is strongly inaccessible and

(2) HODL(R) ∩ VΘ = HODLΘ(R).

Proof. (1) This follows immediately from Theorem 3.9 and Lemma 3.8.
(2) Since HODL(R) is Σ1-definable over L(R) (with the parameter R) and

since LΘ(R) ≺1 L(R) (by Lemma 2.23),

HODLΘ(R) = HODL(R) ∩ LΘ(R).

Thus, it suffices to show

HODL(R) ∩ VΘ = HODL(R) ∩ LΘ(R).

The right-to-left inclusion is immediate. For the left-to-right inclusion sup-
pose x ∈ HODL(R) ∩ VΘ. We have to show that x ∈ LΘ(R). Since Θ is
strongly inaccessible in HODL(R), x is coded by a set of ordinals A ⊆ α
where α < Θ. However, by the proof of Theorem 3.9, P(α) ∈ LΘ(R), for
each α < Θ. Thus, x ∈ LΘ(R), which completes the proof. �

3 Open Question. Assume ZF + DC + V = L(R).

(1) Suppose that for every α < Θ there is a surjection π : ωω → P(α).
Must AD hold in L(R)?

(2) Suppose Θ is inaccessible. Must AD hold in L(R)?

3.11 Theorem (Kunen). Assume ZF + DC + AD. Suppose λ < Θ and μ is
an ultrafilter on λ. Then μ is OD.

Proof. Let � be a prewellordering of ωω of length λ. Let π : ωω →P(λ) be
the surjection derived from � as in the above proof. For x ∈ ωω, let

Ax =
⋂
{π(y) | π(y) ∈ μ ∧ y �T x}.
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Since there are only countably many such y and AD implies that all ultrafil-
ters are countably complete (Theorem 2.8), Ax is non-empty. Let

f(x) =
⋂

Ax.

Notice that Ax and f(x) depend only on the Turing degree of x. In particular,
we can regard f as a function from the Turing degrees DT into the ordinals.
Notice also that

A ∈ μ iff for a cone of x, f(x) ∈ A

since if B ∈ μ then, for any x �T x0 we have f(x) ∈ B, where x0 is such that
π(x0) = B. We can now “erase” reference to the prewellordering by taking
the ultrapower. Let μT be the cone ultrafilter on the Turing degrees (see
Theorem 2.9) and consider the ultrapower V DT /μT . By DC the ultrapower
is well-founded. So we can let M be the transitive collapse of V DT /μT and
let

j : V →M

be the canonical map. Letting γ be the ordinal represented by f , we have

B ∈ μ iff γ ∈ j(B)

and so μ is OD. �

4. A Woodin Cardinal in HODL(R)

Our main aim in this section is to prove the following theorem:

4.1 Theorem. Assume ZF + DC + AD. Then

HODL(R) |= ZFC + ΘL(R) is a Woodin cardinal.

This will serve as a warm-up for the proof of the Generation Theorem in
the next section. The proof that we give appeals to DC at only one point
(Lemma 4.8) and as we shall see in the next section one can avoid this appeal
and prove the result in ZF + AD. See Theorem 5.36.

In Sect. 4.1 we will establish the reflection phenomenon that will play the
role played by boundedness in Sect. 2 and we will define for cofinally many
λ < Θ, an ultrafilter μλ on δ∼

2
1 that is intended to witness that δ∼

2
1 is λ-strong.

In Sect. 4.2 we shall introduce and motivate the notion of strong normality
by showing that the strong normality of μλ ensures that δ∼

2
1 is λ-strong. We

will then show how reflection and uniform coding combine to secure strong
normality. In Sect. 4.3 we will prove the main theorem by relativizing the
construction to subsets of Θ. Throughout this section we work in L(R) and
so when we write δ∼

2
1 and Θ we will always be referring to these notions as

interpreted in L(R).
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4.1. Reflection

We have seen that ZF + AD implies that Θ is strongly inaccessible in
HODL(R). Our next task is to show that

HODL(R) |= δ∼
2
1 is λ-strong,

for all λ < Θ. The proof will then relativize to subsets of Θ that are in
HODL(R) and thereby establish the main theorem.

The ultrafilters that witness strength cannot come from the “sup” game
of Sect. 2 since the ultrafilters produced by this game concentrate on ω-club
sets, whereas to witness strength we will need ultrafilters according to which
there are measure-one many measurable cardinals below δ∼

2
1. For this reason

we will have to use a variant of the “sup” game. In this variant the role of
boundedness will be played by a certain reflection phenomenon.

The reflection phenomenon we have in mind does not presuppose any
determinacy assumptions. For the time being work in ZF + ACω(R). The
main claim is that there is a function F : δ∼

2
1 → Lδ

˜
2
1
(R) which is Δ1-definable

over Lδ
˜
2
1
(R) and for which the following reflection phenomenon holds:

For all X ∈ L(R)∩ODL(R), for all Σ1 formulas ϕ, and for all z ∈ ωω, if

L(R) |= ϕ[z,X, δ∼
2
1,R]

then there exists a δ < δ∼
2
1 such that

L(R) |= ϕ[z, F (δ), δ,R].

One should think of F as a sequence that contains “proxies” or “generic
witnesses” for each ODL(R) set X: Given any Σ1 fact (with a real parameter)
about any ODL(R) set X there is a “proxy” F (δ) in our fixed sequence that
witnesses the same fact.

The function F is defined (much like ♦) in terms of the least counterex-
ample. To describe this in more detail let us first recall some basic facts from
Sect. 2.4 concerning L(R) and the theory T0: There are arbitrarily large α
such that Lα(R) |= T0. In particular,

LΘ(R) |= T0.

Moreover, since
LΘ(R) ≺1 L(R),

there are arbitrarily large α < Θ such that Lα(R) |= T0. Similarly, there are
arbitrarily large α < δ∼

2
1 such that Lα(R) |= T0. However, notice that it is

not the case Lδ
˜
2
1
(R) |= T0 (by Lemma 2.27).

Because of the greater maneuvering room provided by levels Lα(R) that
satisfy T0 we will concentrate (for example, in reflection arguments) on such
levels. For example, we can use these levels to give a first-order definition of
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ODL(R) and the natural well-ordering <ODL(R) on the ODL(R) sets. For the
latter, given X ∈ ODL(R), let

αX = the least α such that
(1) Lα(R) |= T0,

(2) X ∈ Lα(R), and
(3) X is definable in Lα(R) from ordinal parameters;

let ϕX be the least formula that defines X from ordinal parameters in Lα(R);
and let �ξX be the lexicographically least sequence of ordinal parameters used
to define X in Lα(R) via ϕX . Given X and Y in ODL(R), working in L(R)
set

X <OD Y iff αX < αY or
αX = αY and ϕX < ϕY or

αX = αY and ϕX = ϕY and �ξX <lex
�ξY .

Since the Lα(R) hierarchy is Σ1-definable in L(R), it follows that ODL(R)

and (<OD)L(R) are Σ1-definable in L(R). (This is in contrast to the usual
definitions of these notions, which are Σ2 since they involve existential quan-
tification over the Vα hierarchy, which is Π1.) Notice that if Lα(R) |= T0,
then

(<OD)Lα(R) � (<OD)L(R).

Furthermore, if Lα(R) ≺1 L(R), then

ODLα(R) = ODL(R) ∩ Lα(R) and (<OD)Lα(R) = (<OD)L(R)�Lα(R).

For example,
HODLΘ(R) = HODL(R) ∩ LΘ(R).

(For this it is crucial that we use the Σ1 definition given above since the
Σ2 definition involves quantification over the Vα hierarchy and yet in Lδ

˜
2
1
(R)

even the level Vω+2 does not exist.) Our goal can thus be rephrased as that
of showing

HODLΘ(R) |= δ∼
2
1 is a strong cardinal.

We are now in a position to define the reflection function F . If the reflec-
tion phenomenon fails in L(R) with respect to F �δ∼2

1 then (by Replacement)
there is some level Lα(R) which satisfies T0 over which the reflection phe-
nomenon fails with respect to F �δ∼2

1. This motivates the following definition:

4.2 Definition. Assume T0. Suppose that F �δ is defined. Let ϑ(δ) be least
such that

Lϑ(δ)(R) |= T0 and there is an X ∈ Lϑ(δ)(R) ∩ODLϑ(δ)(R) such that
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(�) there is a Σ1 formula ϕ and a real z such that

Lϑ(δ)(R) |= ϕ[z,X, δ,R]

and for all δ̄ < δ,

Lϑ(δ)(R) �|= ϕ[z, F (δ̄), δ̄,R]

(if such an ordinal exists) and then set F (δ) = X where X is (<OD)Lϑ(δ)-least
such that (�) holds.

We have to establish two things: First, F (δ) is defined for all δ < δ∼
2
1.

Second, F (δ∼
2
1) is not defined. This implies that the reflection phenomenon

holds with respect to F .

4.3 Lemma. Assume ZF + ACω(R). Then

(1) if Lα(R) |= T0, then (F )Lα(R) = F �γ for some γ,

(2) F
L

δ

˜
2
1
(R) = F �δ∼2

1, and

(3) F (δ) is defined for all δ < δ∼
2
1.

Proof. For (1) suppose that (F �δ)Lα(R) = F �δ with the aim of showing that
(F (δ))Lα(R) = (F (δ))L(R). The point is that

Lα(R) |= ϑ(δ) exists

if and only if
(ϑ(δ))L(R) < α,

in which case

(ϑ(δ))Lα(R) = (ϑ(δ))L(R) and (F (δ))Lα(R) = (F (δ))L(R),

by the locality of the definition of F and the assumption that (F �δ)Lα(R) =
F �δ.

For (2) first notice that we can make sense of F as defined over levels (such
as Lδ

˜
2
1
(R)) that do not satisfy T0 by letting, for an arbitrary ordinal ξ,

FLξ(R) =
⋃
{FLα(R) | α < ξ and Lα(R) |= T0}.

Thus, F
L

δ

˜
2
1
(R) = F �γ for some γ, by (1). Assume for contradiction that

(2) fails, that is, for some γ < δ∼
2
1, F (γ) is defined and yet F

L
δ

˜
2
1
(R)(γ) is not

defined. Since in L(R), ϑ(γ) and F (γ) are defined, the following is a true Σ1

statement about γ:

∃α > γ (Lα(R) |= T0 + ϑ(γ) exists.)
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Since Lδ
˜
2
1
(R) ≺1 L(R), this statement holds in Lδ

˜
2
1
(R) and so FLα(R)(γ) is

defined and hence F
L

δ

˜
2
1
(R)(γ) is defined, which is a contradiction.

For (3) assume for contradiction that γ < δ∼
2
1, where γ = dom(F ). By (2)

(and the definition of F
L

δ

˜
2
1
(R)) there is an α < δ∼

2
1 such that Lα(R) |= T0 and

FLα(R) = F �γ = F . We claim that this implies that

Lα(R) ≺R∪{R}
1 L(R),

which is a contradiction (by Theorem 2.28). Suppose

L(R) |= ψ[z,R]

where ψ is a Σ1 formula and z ∈ ωω. We have to show that Lα(R) |= ψ[z,R].
By Replacement there is an ordinal β such that

Lβ(R) |= ψ[z,R].

Consider the Σ1 statement ϕ[z,X,R] expressing “There exists ξ such that
X = Lξ(R) and X |= ψ[z,R]”. Letting ϑ > β be such that Lϑ(R) |= T0 we
have: there exists an X ∈ Lϑ(R) ∩ODLϑ(R) (namely, X = Lβ(R)) such that

Lϑ(R) |= T0 + ϕ[z,X,R].

Moreover, since ϑ(γ) does not exist, it follows (by the definition of ϑ(γ)) that
there exists a δ̄ < γ such that

Lϑ(R) |= ϕ[z, F (δ̄),R].

Thus (unpacking ϕ[z,X,R]) there exists a ξ such that F (δ̄) = Lξ(R) and
Lξ(R) |= ψ[z,R]. Since F ⊆ Lα(R), ξ < α and so, by upward absoluteness,

Lα(R) |= ψ[z,R],

which completes the proof. �

It follows that F �δ∼2
1 : δ∼

2
1 → Lδ

˜
2
1
(R) is total and Δ1-definable over Lδ

˜
2
1
(R).

It remains to see that F (δ∼
2
1) is not defined.

4.4 Theorem. Assume ZF + ACω(R). For all X ∈ ODL(R), for all Σ1

formulas ϕ, and for all z ∈ ωω if

L(R) |= ϕ[z,X, δ∼
2
1,R]

then there exists a δ < δ∼
2
1 such that

L(R) |= ϕ[z, F (δ), δ,R].
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Proof. The idea of the proof is straightforward but the details are somewhat
involved.

Assume for contradiction that there is an X ∈ ODL(R), a Σ1 formula ϕ,
and z ∈ ωω such that

L(R) |= ϕ[z,X, δ∼
2
1,R]

and for all δ < δ∼
2
1,

L(R) �|= ϕ[z, F (δ), δ,R].

Step 1. By Replacement, let ϑ0 > δ∼
2
1 be least such that

(1.1) Lϑ0(R) |= T0 and there is an X ∈ Lϑ0(R) ∩ODLϑ0 (R) and

(�) there is a Σ1 formula ϕ and a real z such that

Lϑ0(R) |= ϕ[z,X, δ∼
2
1,R]

and for all δ < δ∼
2
1

Lϑ0(R) �|= ϕ[z, F (δ), δ,R].

Let X0 be least (in the order of definability) such that (1.1) and for this choice
pick ϕ0 and z0 such that (�). (Thus we have let ϑ0 = ϑ(δ∼

2
1), X0 = F (δ∼

2
1), and

we have picked witnesses ϕ0 and z0 to the failure of reflection with respect
to F (δ∼

2
1).)

Notice that Lϑ0(R) |= δ∼
2
1 exists + F (δ) is defined for all δ < δ∼

2
1. Since

FLϑ0 (R)�δ∼2
1 = F �δ∼2

1,

by Lemma 4.3, (1.1) is equivalent to the internal statement Lϑ0(R) |= T0 +
“reflection fails with respect to F �δ∼2

1”. It is this internal statement that we
will reflect to get a contradiction. We have that for all δ < δ∼

2
1,

(1.2) Lϑ0(R) �|= ϕ0[z0, F (δ), δ,R].

Our strategy is to reflect to get ϑ̄ < δ∼
2
1 such that

Lϑ̄(R) |= ϕ0[z0, F ((δ∼
2
1)

Lϑ̄(R)), (δ∼
2
1)

Lϑ̄(R),R].

By upward absoluteness, this will contradict (1.2). To implement this strat-
egy we need the appropriate Σ1 fact (in a real) to reflect.

Step 2. The following is a true Σ1 statement about ϕ0 and z0 (as witnessed
by taking α to be ϑ0 from Step 1): There is an α such that

(2.1) Lα(R) |= δ∼
2
1 exists + F (δ) is defined for all δ < δ∼

2
1,

(2.2) Lα(R) |= T0 and there is an X ∈ Lα(R) ∩ODLα(R) and
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(�) there is a Σ1 formula ϕ and a real z such that

Lα(R) |= ϕ[z,X, (δ∼
2
1)

Lα(R),R]

and for all δ < (δ∼
2
1)

Lα(R)

Lα(R) �|= ϕ[z, FLα(R)(δ), δ,R],

(2.3) if β < α then it is not the case that Lβ(R) |= T0 and there is an
X ∈ Lβ(R) ∩ODLβ(R) and

(�) there is a Σ1 formula ϕ and a real z such that

Lβ(R) |= ϕ[z,X, (δ∼
2
1)

Lα(R),R]

and for all δ < (δ∼
2
1)

Lα(R)

Lβ(R) �|= ϕ[z, FLα(R)(δ), δ,R],

and

(2.4) if X̄ is least (in the order of definability) such that (2.2) then

Lα(R) |= ϕ0[z0, X̄, (δ∼
2
1)

Lα(R),R]

and for all δ < (δ∼
2
1)

Lα(R)

Lα(R) �|= ϕ0[z0, F
Lα(R)(δ), δ,R].

(Notice that in (2.3) the ordinal δ∼
2
1 and the function F are computed in

Lα(R) while the formulas are evaluated in Lβ(R).) Thus (2.1) ensures (by
Lemma 4.3) that FLα(R)�(δ∼

2
1)

Lα(R) = F �(δ∼
2
1)

Lα(R), (2.2) says that Lα(R)
satisfies “reflection is failing with respect to FLα(R)�(δ∼

2
1)

Lα(R)” and, because
of (2.1), this ensures that ϑ((δ∼

2
1)

Lα(R)) exists, (2.3) ensures in addition that
α = ϑ((δ∼

2
1)

Lα(R)), and (2.4) says that ϕ0 and z0 (as chosen in Step 1) witness
the existence of ϑ((δ∼

2
1)

Lα(R)).
Since Lδ

˜
2
1
(R) ≺R

1 L(R) and ϕ0 and z0 can be coded by a single real, the
least ordinal α witnessing the existential of the above statement must be less
than δ∼

2
1. Let ϑ̄ be this ordinal.

Step 3. We claim that

Lϑ̄(R) |= ϕ0[z0, F ((δ∼
2
1)

Lϑ̄(R)), (δ∼
2
1)

Lϑ̄(R),R],

which finishes the proof since by upward absoluteness this contradicts (1.2).
The ordinal ϑ̄ has the Σ1-properties listed in (2.1)–(2.4) for α. So we

have: (4.1) Lϑ̄(R) |= “δ∼
2
1 exists”+“F (δ) is defined for all δ < δ∼

2
1” and so (by

Lemma 4.3) FLϑ̄(R)�(δ∼
2
1)

Lϑ̄(R) = F �(δ∼
2
1)

Lϑ̄(R), (4.2) Lϑ̄(R) satisfies “reflection
is failing with respect to FLϑ̄(R)�(δ∼

2
1)

Lϑ̄(R)” and, because of (4.1), this ensures
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that ϑ((δ∼
2
1)

Lϑ̄(R)) exists, (4.3) ϑ̄ = ϑ((δ∼
2
1)

Lϑ̄(R)), and (4.4) ϕ0 and z0 (as
chosen in Step 1) witness the existence of ϑ((δ∼

2
1)

Lϑ̄(R)). Therefore, by the
definition of F , (4.4) implies that

Lϑ̄(R) |= ϕ0[z0, F ((δ∼
2
1)

Lϑ̄(R)), (δ∼
2
1)

Lϑ̄(R),R],

which contradicts (1.2). �

We will need a slight strengthening of the above theorem. This involves
the notion of the reflection filter, which in turn involves various universal
sets.

Let UX be a good universal Σ1(L(R), {X, δ∼
2
1,R}) set of reals. So UX is a

Σ1(L(R), {X, δ∼
2
1,R}) subset of ωω × ωω such that each Σ1(L(R), {X, δ∼

2
1,R ∪

{R}}) subset of ωω is of the form (UX)t for some t ∈ ωω. For each δ < δ∼
2
1,

let Uδ be the universal Σ1(L(R), {F (δ), δ,R}) set obtained using the same
definition used for UX except with X and δ∼

2
1 replaced by the reflected proxies

F (δ) and δ. As before, we shall identify each of UX and Uδ with a set of reals
using our recursive bijection between ωω × ωω and ωω.

For each Σ1 formula ϕ and for each real y, there exists a zϕ,y ∈ ωω such
that

zϕ,y ∈ UX iff L(R) |= ϕ[y,X, δ∼
2
1,R].

In such a situation we say that zϕ,y certifies the Σ1 fact ϕ about y. The key
property is, of course, that if zϕ,y ∈ Uδ then L(R) |= ϕ[y, F (δ), δ,R]. Notice
that the real zϕ,y is recursive in y (uniformly).

In what follows we will drop reference to ϕ and y and simply write z ∈ UX ,
it being understood that the formula and parameter are encoded in z. In these
terms Theorem 4.4 can be recast as stating that if z ∈ UX then there is an
ordinal δ < δ∼

2
1 such that z ∈ Uδ, in other words, UX ⊆

⋃
δ<δ

˜
2
1
Uδ. But notice

that equality fails since different X can have radically different “reflection
points”.

For z ∈ UX , let
Sz = {δ < δ∼

2
1 | z ∈ Uδ}

and set
FX = {S ⊆ δ∼

2
1 | ∃z ∈ UX (Sz ⊆ S)}.

Equivalently, for a Σ1 formula ϕ and a real y such that

L(R) |= ϕ[y,X, δ∼
2
1,R]

let
Sϕ,y = {δ < δ∼

2
1 | L(R) |= ϕ[y, F (δ), δ,R]}

and set

FX = {S ⊆ δ∼
2
1 | there is a Σ1 formula ϕ and a y ∈ ωω such that

L(R) |= ϕ[y,X, δ∼
2
1,R] and Sϕ,y ⊆ S}.
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Notice that we can reflect to points δ where the proxies F (δ), δ resemble X, δ∼
2
1

as much as we like. For example, suppose

L(R) |= ψ[y,X, δ∼
2
1,R]

and consider the following Σ1 statement:
There is an α such that

Lα(R) |= T0,

δ = (δ∼
2
1)

Lα(R), F �δ = (F )Lα(R), and F (δ) ∈ ODLα(R), and
Lα(R) |= ψ[y, F (δ), δ,R].

If we replace δ by δ∼
2
1 and F (δ) by X then this statement is true. It follows

that the statement holds for FX -almost all δ. The second clause ensures that
each such δ is a “local δ∼

2
1” and that the “local computation of F up to δ”

coincides with F . By altering ψ and y we can increase the degree to which
the proxies F (δ), δ resemble X, δ∼

2
1.

4.5 Lemma. Assume ZF + ACω(R). Then L(R) |= FX is a countably
complete filter.

Proof. Upward closure and the non-triviality condition are immediate. It
remains to prove countable completeness. Suppose {Sn | n < ω} ⊆ FX .
For n < ω, let zn ∈ UX be such that Szn ⊆ Sn. Let z ∈ ωω be such that
(z)n = zn for all n < ω. The following is a true Σ1 statement about z, X,
δ∼
2
1, and R:

There is an α such that

(1) δ∼
2
1 < α,

(2) Lα(R) |= T0,

(3) X ∈ ODLα(R) and

(4) for all n < ω, (z)n ∈ (UX)Lα(R).

Let z∗ ∈ UX certify this statement. It follows that for each δ < δ∼
2
1 such that

z∗ ∈ Uδ the following holds:
There is an α such that

(1) δ < α,

(2) Lα(R) |= T0,

(3) F (δ) ∈ ODLα(R) and

(4) for all n < ω, (z)n ∈ (Uδ)Lα(R).

But then, by upward absoluteness, δ ∈
⋂
{Szn | n < ω} and so Sz∗ ⊆

⋂
{Szn |

n < ω} ⊆
⋂
{Sn | n < ω}. �
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We shall call FX the reflection filter since, by definition, there are FX -
many reflecting points in the Reflection Theorem.

We wish now to extend the Reflection Theorem by allowing various para-
meters S ⊆ δ∼

2
1 and their “reflections” S ∩ δ. For this we bring in AD.

4.6 Theorem (Reflection Theorem). Assume ZF + AD. Suppose f :
δ∼
2
1 → δ∼

2
1 and S ⊆ δ∼

2
1 are in L(R). For all X ∈ ODL(R), for all Σ1 formulas

ϕ, and for all z ∈ ωω, if

L(R) |= ϕ[z,X, f, S, δ∼
2
1,R]

then for FX-many δ < δ∼
2
1,

L(R) |= ϕ[z, F (δ), f�δ, S ∩ δ, δ,R],

where here f and S occur as predicates.

Proof. First we show that the theorem holds for S ⊆ δ∼
2
1. For each δ < δ∼

2
1, let

Qδ = Uδ �
⋃
{Uγ | γ < δ}.

The sequence
〈Qδ | δ < δ∼

2
1〉

gives rise to a prewellordering of length δ∼
2
1. By the Uniform Coding Lemma,

there is an e(S) ∈ ωω such that

U
(2)
e(S)(Q<δ, Qδ) �= ∅ iff δ ∈ S.

The key point is that for FX -almost all δ

FLϑ(δ)(R) = F �δ.

To see this let z ∈ UX be such that if z ∈ Uδ then

Lϑ(δ)(R) |= δ = δ∼
2
1 and F �δ is defined.

Thus, if δ ∈ Sz, then

δ = (δ∼
2
1)

Lϑ(δ)(R) and F �δ = FLϑ(δ)(R),

which implies
〈Qγ | γ < δ〉 = 〈Qγ | γ < δ〉Lϑ(δ)(R).

It follows that for δ ∈ Sz, e(S) codes S ∩ δ.
This enables us to associate with each Σ1 sentence ϕ involving the predi-

cate S, a Σ1 sentence ϕ∗ involving instead the real e(S) in such a way that

L(R) |= ϕ[z,X, δ∼
2
1, S,R]
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if and only if
L(R) |= ϕ∗[z,X, δ∼

2
1, e(S),R]

and, for δ ∈ Sz ∈ FX ,

L(R) |= ϕ[z, F (δ), δ, S ∩ δ,R]

if and only if
L(R) |= ϕ∗[z, F (δ), δ, e(S),R].

In this fashion, the predicate S can be eliminated in favour of the real e(S),
thereby reducing the present version of the reflection theorem to the original
version (Theorem 4.4).

To see that we can also include parameters of the form f : δ∼
2
1 → δ∼

2
1 simply

note that FX -almost all δ are closed under the Gödel pairing function and
so we can include functions f : δ∼

2
1 → δ∼

2
1 by coding them as subsets of δ∼

2
1. �

We are now in a position to define, for cofinally many λ < Θ, an ultrafilter
μλ on δ∼

2
1. For the remainder of this section fix an ordinal λ < Θ and (by

the results of Sect. 3.3) an OD-prewellordering �λ of ωω of length λ. Our
interest is in applying the Reflection Theorem to

X = (�λ, λ).

For each S ⊆ δ∼
2
1, let GX(S) be the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

with the following winning conditions: Main Rule: For all i < ω, (x)i, (y)i ∈
UX . If the rule is violated then, letting i be the least such that either (x)i �∈
UX or (y)i �∈ UX , I wins if (x)i ∈ UX ; otherwise II wins. If the rule is satisfied
then, letting δ be least such that for all i < ω, (x)i, (y)i ∈ Uδ, (which exists
by reflection since (as in Lemma 4.5) we can regard this as a Σ1 statement
about a single real) I wins iff δ ∈ S. Thus, I is picking δ by steering into the
δth-approximation Uδ. (Note that the winning condition is not Σ1.)

Now set
μX = {S ⊆ δ∼

2
1 | I wins GX(S)}.

We let μλ = μX but shall typically write μX to emphasize the dependence
on the prewellorder. For z ∈ UX , Player I can win GX(Sz) by playing x such
that (x)i ∈ UX for all i < ω and, for some i < ω, (x)i = z. Thus,

FX ⊆ μX .

It is easy to see that μX is upward closed and contains either S or δ∼
2
1 � S

for each S ⊆ δ∼
2
1.

4.7 Lemma. Assume ZF+AD. Then L(R) |= μX is a δ∼
2
1-complete ultrafilter.



2010 Koellner and Woodin / Large Cardinals from Determinacy

Proof. The proof is similar to the proof of Theorem 2.33 (which traces back
to the proof of Theorem 2.13). Consider {Sα | α < γ} where Sα ∈ μX and
γ < δ∼

2
1. Let S =

⋂
α<γ Sα and assume for contradiction that S �∈ μX . Let σ′

be a winning strategy for I in GX(δ∼
2
1 � S). Let

Z = {(x, σ) | for some α < γ, x ∈ Qα and

σ is a winning strategy for I in GX(Sα)}

where Qα = {x ∈ ωω | |x|�U
= α} and �U is the prewellordering of length

δ∼
2
1 from Theorem 2.33. (One can also use the prewellordering from Theo-

rem 4.6.)
By the Uniform Coding Lemma, let e0 ∈ ωω be such that for all α < γ,

U (2)
e0

(Q<α, Qα) ⊆ Z ∩ (Qα × ωω) and U (2)
e0

(Q<α, Qα) �= ∅.

Let
Σ = proj2

(⋃
α<γU

(2)
e0

(Q<α, Qα)
)
.

Notice that Σ is Δ∼
2
1 since �U �γ is Δ∼

2
1. The key point is that (as in Lem-

ma 2.27) we can choose a real that ensures that in a reflection argument we
reflect to a level that correctly computes �U �γ and hence Σ. We assume
that all reals below have this feature.

Now we can “take control” of the output ordinal δ0 with respect to σ′ and
all τ ∈ Σ:

Base Case. We have

(1.1) ∀y ∈ ωω ((σ′ ∗ y)I)0 ∈ UX and

(1.2) ∀y ∈ ωω ∀σ ∈ Σ ((σ ∗ y)I)0 ∈ UX

since σ′ and σ (as in (1.2)) are winning strategies for I. Since Σ is Δ∼
2
1 this is a

Σ1(L(R), {X, δ∼
2
1,R} ∪R) fact about σ′ and hence certified by a real z0 ∈ UX

such that z0 �T σ′; more precisely, z0 �T σ′ is such that for all δ if z0 ∈ Uδ

then

(1.3) ∀y ∈ ωω ((σ′ ∗ y)I)0 ∈ Uδ and

(1.4) ∀y ∈ ωω ∀σ ∈ Σ ((σ ∗ y)I)0 ∈ Uδ.

(n + 1)st Step. Assume we have defined z0, . . . , zn in such a way that zn �T

· · · �T z0 and

(2.1) ∀y ∈ ωω
(
∀i � n (y)i = zi → ((σ′ ∗ y)I)n+1 ∈ UX

)
and

(2.2) ∀y ∈ ωω ∀σ ∈ Σ
(
∀i � n (y)i = zi → ((σ ∗ y)I)n+1 ∈ UX

)
.

Let zn+1 ∈ UX be such that zn+1 �T zn and for all δ, if zn+1 ∈ Uδ then

(2.3) ∀y ∈ ωω
(
∀i � n (y)i = zi → ((σ′ ∗ y)I)n+1 ∈ Uδ

)
and
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(2.4) ∀y ∈ ωω ∀σ ∈ Σ
(
∀i � n (y)i = zi → ((σ ∗ y)I)n+1 ∈ Uδ

)
.

Finally, let z ∈ ωω be such that (z)i = zi for all i < ω and let δ0 be least
such that (z)i ∈ Uδ0 for all i ∈ ω. Notice that by our choice of zn DC is not
required to define z. Then, for all i < ω,

(3.1) ((σ′ ∗ z)I)i ∈ Uδ0 by (1.3) and (2.3) and

(3.2) ((σ ∗ z)I)i ∈ Uδ0 for all σ ∈ Σ by (1.4) and (2.4).

So

(4.1) δ0 is the ordinal produced by σ′ ∗ z, i.e. δ0 ∈ δ∼
2
1 � S and

(4.2) δ0 is the ordinal produced by σα ∗ z where σα ∈ Σ is a winning
strategy for I in GX(Sα), i.e. δ0 ∈ Sα for all α < γ.

This is a contradiction. �

4.2. Strong Normality

Assuming ZF + AD, in L(R) we have defined, for cofinally many λ < Θ, an
ODL(R) ultrafilter on δ∼

2
1 and shown that these ultrafilters are δ∼

2
1-complete. We

now wish to take the ultrapower of HODL(R) with these ultrafilters and show
that collectively they witness that for each λ < Θ, δ∼

2
1 is λ-strong in HODL(R).

This will be achieved by showing that reflection and uniform coding combine
to show that μλ is strongly normal.

We begin with the following basic lemma on the ultrapower construction,
which we shall prove in greater generality than we need at the moment.

4.8 Lemma. Assume ZF+DC. Suppose μ is a countably complete ultrafilter
on δ and that μ is OD. Suppose T is a set. Let (HODT )δ be the class of
all functions f : δ → HODT . Then the transitive collapse M of (HODT )δ/μ
exists, the associated embedding

j : HODT →M

is ODT , and
M ⊆ HODT .

Proof. For f, g : δ → HODT , let f ∼μ g iff {α < δ | f(α) = g(α)} ∈ μ and
let [f ]μ be the set consisting of the members of the equivalence class of f
which have minimal rank. The structure (HODT )δ/μ is the class consisting
of all such equivalence classes. Let E be the associated membership relation.
So [f ]μ E [g]μ if and only if {α < δ | f(α) ∈ g(α)} ∈ μ. Notice that both
(HODT )δ/μ and E are ODT .

The map

jμ : HODT → (HODT )δ/μ

a �→ [ca]μ,
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where ca ∈ (HODT )δ is the constant function with value a, is an elementary
embedding, since �Loś’s theorem holds, as HODT can be well-ordered. Notice
that jμ is ODT .

Claim 1. ((HODT )δ/μ,E) is well-founded.

Proof. Suppose for contradiction that ((HODT )δ/μ,E) is not well-founded.
Then, by DC, there is a sequence

〈
[fn]μ

∣
∣n < ω

〉

such that [fn+1]μ E [fn]μ for all n < ω. For each n < ω, let

An = {α < δ | fn+1(α) ∈ fn(α)}.

For all n < ω, An ∈ μ and since μ is countable complete,
⋂
{An | n < ω} ∈ μ.

This is a contradiction since for each α in this intersection, fn+1(α) ∈ fn(α)
for all n < ω. �

Claim 2. ((HODT )δ/μ,E) is isomorphic to a transitive class (M,∈).

Proof. We have established well-foundedness and extensionality is immediate.
It remains to show that for each a ∈ (HODT )δ/μ,

{b ∈ (HODT )δ/μ | b E a}

is a set. Fix a ∈ (HODT )δ/μ and choose f ∈ (HODT )δ such that a = [f ]μ.
Let α be such that f ∈ Vα. Then for each b ∈ (HODT )δ/μ such that bEa,
letting g ∈ (HODT )δ be such that b = [g]μ,

{β < δ | g(β) ∈ Vα} ∈ μ.

Thus,

{b ∈ (HODT )δ/μ | b E a} = {[g]μ | [g]μ E [f ]μ and g ∈ Vα},

which completes the proof. �

Let
π : ((HODT )δ/μ,E) → (M,∈)

be the transitive collapse map and let

j : HODT →M

be the composition map π ◦ jμ. Since π and jμ are ODT , j and M are ODT .



4. A Woodin Cardinal in HODL(R) 2013

It remains to see that M ⊆ HODT . For this it suffices to show that for
all α, M ∩ Vj(α) ⊆ HODT . We have

M ∩ Vj(α) = j(HODT ∩ Vα).

Let A ∈ HODT ∩P(γ) be such that

HODT ∩ Vα ⊆ L[A]

for some γ. We have

M ∩ Vj(α) = j(HODT ∩ Vα) ⊆ L[j(A)].

But j and A are ODT . Thus, j(A) ∈ HODT and hence L[j(A)] ⊆ HODT ,
which completes the proof. �

4.9 Remark. The use of DC in this lemma is essential in that assuming
mild large cardinal axioms (such as the existence of a strong cardinal) there
are models of ZF + ACω in which the lemma is false. In these models the
club filter on ω1 is an ultrafilter and the ultrapower of On by the club filter
is not well-founded.

The ultrafilter μX defined in Sect. 4.1 is ODL(R). Thus, by Lemma 4.8
(with T = ∅), letting

π : (HODL(R))δ
˜
2
1/μX →MX

be the transitive collapse map and letting

jX : HODL(R) →MX

be the induced elementary embedding we have that MX ⊆ HODL(R) and
the fragments of jX are in HODL(R) (in other words, jX is amenable to
HODL(R)). Moreover, since μX is δ∼

2
1-complete, the critical point of jX is δ∼

2
1.

Our next aim is to show that

HODL(R) |= δ∼
2
1 is λ-strong

and for this it remains to show that

jX(δ∼
2
1) > λ and HODL(R) ∩ Vλ ⊆MX .

From now on we will also assume that λ is such that Lλ(R) ≺ LΘ(R) and
δ∼
2
1 < λ. There are arbitrarily large λ < Θ with this feature (by the proof of

Lemma 2.20). Since

HODL(R) ∩ VΘ = HODLΘ(R)

(by Theorem 3.10), it follows that

HODL(R) ∩ Vλ = HODLλ(R).
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Thus, letting A ⊆ λ be an ODL(R) set coding HODLλ(R), we have

HODL(R) ∩ Vλ = Lλ[A].

Thus, it remains to show that A ∈MX . In fact, we will show that

P(λ) ∩HODL(R) ⊆MX .

Let

S0 = {δ < δ∼
2
1 |F (δ) = (�δ, λδ) where �δ is a

prewellordering of length λδ and Lλδ
(R) |= T0}.

Note that S0 ∈ FX . For α < λ, let Q
δ
˜
2
1

α be the αth-component of �λ and,
for δ ∈ S0 and α < λδ, let Qδ

α be the αth-component of �δ. Each t ∈ ωω

determines a canonical function ft as follows: For δ ∈ S0, let αδ
t be the unique

ordinal α such that t ∈ Qδ
α and then set

ft : S0 → δ∼
2
1

δ �→ αδ
t .

For t ∈ ωω, let αt = |t|�λ
be the rank of t according to �λ, that is,

αt = |t|�λ
= μα (t ∈ Q

δ
˜
2
1

α ).

4.10 Lemma. Assume ZF + AD. jX(δ∼
2
1) > λ.

Proof. Suppose t1, t2 ∈ ωω and |t1|�λ
= |t2|�λ

. This is a true Σ1 statement
in L(R) about t1, t2, X and R. Thus, by reflection (Theorem 4.6), it follows
that for FX -almost all δ < δ∼

2
1, |t1|�δ

= |t2|�δ
and so the ordinal [ft]μX

represented by ft only depends on |t|�λ
. Likewise, if |t1|�λ

< |t2|�λ
then

[ft1 ]μX
< [ft2 ]μX

. Therefore, the map

ρ : λ→
∏

λδ/μX

|t|�λ
�→ [ft]μX

is well-defined and order-preserving and it follows that λ �
∏

λδ/μX <
jX(δ∼

2
1). �
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We now turn to showing P(λ) ∩ HODL(R) ⊆ MX . Fix A ⊆ λ such that
A ∈ HODL(R). By the Uniform Coding Lemma there is an index e(A) ∈ ωω

such that for all α < λ,

U
(2)
e(A)(Q

δ
˜
2
1

<α, Q
δ
˜
2
1

α ) �= ∅ iff α ∈ A.

For all δ ∈ S0, let

Aδ = {α < λδ | U (2)
e(A)(Q

δ
<α, Qδ

α) �= ∅}

be the “reflection of A”. Since the statement

{α < λ | U (2)
e(A)(Q

δ
˜
2
1

<α, Q
δ
˜
2
1

α ) �= ∅} ∈ HODL(R)

is a true Σ1 statement about X, R and e(A), there is a set S ∈ FX such that
for all δ ∈ S, Aδ ∈ HODL(R).

We wish to show that

hA : S → HODL(R)

δ �→ Aδ

represents A in the ultrapower. Notice that

|t|�λ
∈ A iff {δ < δ∼

2
1 | ft(δ) ∈ Aδ} ∈ μX

iff [ft]μX
∈ [hA]μX

.

The last equivalence holds by definition. For the first equivalence note that
if |t|�λ

∈ A then since this is a true Σ1 statement about e(A), t and X, for
μX -almost all δ, |t|�δ

∈ Aδ, that is, {δ < δ∼
2
1 | ft(δ) ∈ Aδ} ∈ μX . Likewise,

if |t|�λ
�∈ A then since this is a true Σ1 statement about e(A), t and X, for

μX -almost all δ, |t|�δ
�∈ Aδ.

So it suffices to show that the map

ρ : λ→
∏

λδ/μX

|t|�λ
�→ [ft]μX

is an isomorphism since then π([hA]μX
) = A ∈ MX , where recall that

π : (HODL(R))δ
˜
2
1/μX

∼= MX is the transitive collapse map. We already know
that ρ is well-defined and order-preserving (by Lemma 4.10). It remains to
show that ρ is onto, that is, that every function f ∈

∏
λδ/μX is equivalent

(modulo μX) to a canonical function ft. To say that this is true is to say
that μX is strongly normal :

4.11 Definition (Strong normality). μX is strongly normal iff whenever
f : S0 → δ∼

2
1 is such that

{δ ∈ S0 | f(δ) < λδ} ∈ μX

then there exists a t ∈ ωω such that

{δ ∈ S0 | f(δ) = ft(δ)} ∈ μX .
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Notice that normality is a special case of strong normality since if

{δ < δ∼
2
1 | f(δ) < δ} ∈ μX

then (since for FX -almost all δ, λδ > δ), by strong normality there is a
t ∈ ωω such that

{δ < δ∼
2
1 | ft(δ) = f(δ)} ∈ μX .

So if β is such that t ∈ Q
δ
˜
2
1

β then β < δ∼
2
1, since otherwise by reflection this

would contradict the assumption that

{δ < δ∼
2
1 | f(δ) < δ} ∈ μX .

Thus,
{δ < δ∼

2
1 | f(δ) = β} ∈ μX .

4.12 Theorem. Assume ZF + AD. L(R) |= μX is strongly normal.

Proof. Assume toward a contradiction that f is a counterexample to strong
normality. So, for each t ∈ ωω,

{δ ∈ S0 | f(δ) �= ft(δ)} ∈ μX .

Let

η = min
{
β < λ | ∀t ∈ Q

δ
˜
2
1

β {δ ∈ S0 | f(δ) < ft(δ)} ∈ μX

}

if such β exist; otherwise, let η = λ. Fix yη ∈ Q
δ
˜
2
1

η (unless η = λ, in which
case we ignore this parameter) and, for δ ∈ S0, let ηδ = fyη (δ) and for δ = δ∼

2
1,

let ηδ = η. Note that fyη (δ) > f(δ) for μX -almost all δ. In the proof we will
be working on this set and so we modify S0 by intersecting it with this set if
necessary. For convenience let

S(t) = {δ ∈ S0 | ft(δ) < f(δ)}.

Notice that by the definition of η and our assumption that f is a counterex-
ample to strong normality, we have that

S(t) ∈ μX

for all t ∈ Q
δ
˜
2
1

<η.
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Our aim is to compute f from a real parameter by coding relative to
the various prewellorderings. Our computation will give us “f(δ∼

2
1)”. Then,

picking a real yf ∈ Q
δ
˜
2
1

“f(δ
˜
2
1)”

we shall have by reflection that for μX -almost

every δ, f(δ) = fyf
(δ), which is a contradiction.

The proof involves a number of parameters which we list here. We will
also give a brief description which will not make complete sense at this point
but will serve as a useful reference to consult as the proof proceeds.

e0 is the index of the universal set that selects the Zδ
α’s (represented in the

diagrams as ellipses) from Z ′ (represented in the diagrams as chimneys).

e1 is the index of the universal set that selects subsets of the Zδ
α’s (repre-

sented in the diagrams as black dots inside the ellipses).

yη is the real in Q
δ
˜
2
1

η that determines ηδ for δ ∈ S0.

yf is the real in Q
δ
˜
2
1

“f(δ
˜
2
1)”

that determines f(δ) for δ ∈ S3.

We will successively shrink S0 to S1, S2, and finally S3. All four of these sets
will be members of μX . We now proceed with the proof.

Let

Z ′ =
{
(t, σ) | t ∈ Q

δ
˜
2
1

<η and σ is a winning strategy for I in GX(S(t))
}
.

Thus, by our assumption that f is a counterexample to strong normality and
by our choice of η we have, for all β < η,

Z ′ ∩ (Qδ
˜
2
1

β × ωω) �= ∅,

since for all t ∈ Q
δ
˜
2
1

<η, I wins GX(S(t)). By the Uniform Coding Lemma, let
e0 ∈ ωω be such that for all β < η,

(1.1) U
(2)
e0 (Qδ

˜
2
1

<β , Q
δ
˜
2
1

β ) ⊆ Z ′ ∩ (Qδ
˜
2
1

β × ωω) and

(1.2) U
(2)
e0 (Qδ

˜
2
1

<β , Q
δ
˜
2
1

β ) �= ∅.

By reflection, we have that for FX -almost all δ, for all β < ηδ,

(2.1) U
(2)
e0 (Qδ

<β , Qδ
β) ⊆ Qδ

β × ωω and

(2.2) U
(2)
e0 (Qδ

<β , Qδ
β) �= ∅.

Notice that in the reflected statement we have had to drop reference to
Z ′ since we cannot reflect Z ′ as the games involved in its definition are
not Σ1. Let S′

1 be the set of such δ and let S1 = S′
1 ∩ S0. Notice that S1 is

Σ1(L(R), {e0, yη, f,X, δ∼
2
1,R}).
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For δ ∈ S1 ∪ {δ∼2
1} and β < ηδ let

Zδ
β = U (2)

e0
(Qδ

<β , Qδ
β)

and for δ ∈ S1 ∪ {δ∼2
1} let

Zδ =
⋃

β<ηδ
Zδ

β .

Claim A (Disjointness Property). There is an S2 ⊆ S1, S2 ∈ μX such
that for δ1, δ2 ∈ S2 ∪ {δ∼2

1} with δ1 < δ2 � δ∼
2
1,

Zδ1
α ∩ Zδ2

β = ∅

for all α ∈ [f(δ1), ηδ1) and β ∈ [0, ηδ2).

Proof. Here is the picture:

We begin by establishing a special case.

Subclaim. For μX-almost all δ,

Zδ
α ∩ Z

δ
˜
2
1

β = ∅

for all α ∈ [f(δ), ηδ) and β ∈ [0, η).

Proof. The picture is similar:
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Let

T =
{
δ ∈ S1 | Zδ

α ∩ Z
δ
˜
2
1

β = ∅ for all α ∈ [f(δ), ηδ) and β ∈ [0, η)
}

and assume, toward a contradiction, that T �∈ μX . So (δ∼
2
1 � T ) ∩ S1 ∈ μX .

Let σ′ be a winning strategy for I in GX((δ∼
2
1 � T ) ∩ S1).

Let us first motivate the main idea: Suppose z is a legal play for II against
σ′ (by which we mean a play for II that satisfies the Main Rule) and suppose
that the ordinal associated with this play is δ0. So δ0 ∈ (δ∼

2
1 � T ) ∩ S1 and

(by the definition of T ) there exists an α0 ∈ [f(δ0), ηδ) and β0 ∈ [0, η) such
that Zδ0

α0
∩ Z

δ
˜
2
1

β0
�= ∅. Pick (t0, σ0) ∈ Zδ0

α0
∩ Z

δ
˜
2
1

β0
. In virtue of the fact that

(t0, σ0) ∈ Zδ0
α0

we have

(3.1) ft0(δ0) = α0 � f(δ0)

and in virtue of the fact that (t0, σ0) ∈ Z
δ
˜
2
1

β0
we have

(3.2) σ0 is a winning strategy for I in GX(S(t0)), where

S(t0) = {δ ∈ S0 | ft0(δ) < f(δ)}.

So we get a contradiction if δ0 happens to be in S(t0) (since then ft0(δ0) <
f(δ0), contradicting (3.1)). Notice that this will occur if we can arrange
the play z to be such that in addition to being a legal play against σ′ with
associated ordinal δ0 it is also a legal play against σ0 (in the game GX(S(t0)))
with associated ordinal δ0. We can construct such a play z recursively as in
the proof of completeness.

Base Case. We have

(4.1) ∀y ∈ ωω ((σ′ ∗ y)I)0 ∈ UX and

(4.2) ∀y ∈ ωω ∀(t, σ) ∈ Zδ
˜
2
1 ((σ ∗ y)I)0 ∈ UX

since σ′ and σ (as in (4.2)) are winning strategies for I. Now all of this is
a Σ1(L(R), {X, δ∼

2
1,R}) fact about σ′ and e0 (the index for Zδ

˜
2
1) and so it is

certified by a real z0 ∈ UX such that z0 �T 〈σ′, e0〉; so z0 is such that if
z0 ∈ Uδ then

(4.3) ∀y ∈ ωω ((σ′ ∗ y)I)0 ∈ Uδ and

(4.4) ∀y ∈ ωω ∀(t, σ) ∈ Zδ ((σ ∗ y)I)0 ∈ Uδ.

(n + 1)st Step. Assume we have defined z0, . . . , zn in such a way that zn �T

· · · �T z0 and

(5.1) ∀y ∈ ωω
(
∀i � n (y)i = zi → ((σ′ ∗ y)I)n+1 ∈ UX

)
and

(5.2) ∀y ∈ ωω ∀(t, σ) ∈ Zδ
˜
2
1
(
∀i � n (y)i = zi → ((σ ∗ y)I)n+1 ∈ UX

)
.



2020 Koellner and Woodin / Large Cardinals from Determinacy

Again, all of this is a Σ1(L(R), {X, δ∼
2
1,R}) fact about σ′, e0, z0, . . . , zn and so

it is certified by a real zn+1 ∈ UX such that zn+1 �T zn; so zn+1 is such that
if zn+1 ∈ Uδ then

(5.3) ∀y ∈ ωω
(
∀i � n (y)i = zi → ((σ′ ∗ y)I)n+1 ∈ Uδ

)
and

(5.4) ∀y ∈ ωω ∀(t, σ) ∈ Zδ
(
∀i � n (y)i = zi → ((σ ∗ y)I)n+1 ∈ Uδ

)
.

Finally, let z ∈ ωω be such that (z)i = zi for all i < ω and let δ0 be least such
that (z)i ∈ Uδ0 for all i ∈ ω. Notice that since we chose zn+1 to be recursive
in zn DC is not required to form z. Since (z)i ∈ UX for all i ∈ ω, z is a legal
play for II in any of the games GX(S) relevant to the argument. Moreover,
for all i ∈ ω,

(6.1) ((σ′ ∗ z)I)i ∈ Uδ0 by (4.3) and (5.3) and

(6.2) ((σ ∗ z)I)i ∈ Uδ0 for all σ ∈ proj2(Zδ0) by (4.4) and (5.4)

and so

(7.1) δ0 is the ordinal produced by σ′ ∗ z, i.e. δ0 ∈ (δ∼
2
1 � T ) ∩ S1 and

(7.2) δ0 is the ordinal produced by σ ∗ z for any σ ∈ proj2(Zδ0).

Since δ0 ∈ (δ∼
2
1�T )∩S1, by the definition of T there exists an α0 ∈ [f(δ0), ηδ0)

and β0 ∈ [0, η) such that Zδ0
α0
∩Z

δ
˜
2
1

β0
�= ∅. Pick (t0, σ0) ∈ Zδ0

α0
∩Z

δ
˜
2
1

β0
. In virtue

of the fact that (t0, σ0) ∈ Zδ0
α0

we have

(8.1) ft0(δ0) = α0 � f(δ0)

and in virtue of the fact that (t0, σ0) ∈ Z
δ
˜
2
1

β0
we have

(8.2) σ0 is a winning strategy for I in GX(S(t0)), where

S(t0) = {δ ∈ S0 | ft0(δ) < f(δ)}.

Combined with (7.2) this implies δ0 ∈ S(t0), in other words, ft0(δ0) < f(δ0),
which contradicts (8.1). �

Thus, T ∈ μX and we have

(9.1) ∀δ ∈ T ∀β ∈ [0, ηδ
˜
2
1
) ∀α ∈ [f(δ), ηδ) (Zδ

α ∩ Z
δ
˜
2
1

β = ∅).

This is a true Σ1 statement in L(R) about e0, yη, f , X, R, δ∼
2
1, and T . Since

T is Σ1(L(R), {e0, yη, f,X, δ∼
2
1,R}), the above statement is Σ1(L(R), {e0, yη,

f,X, δ∼
2
1,R}). Thus by the Reflection Theorem (Theorem 4.6) there exists an

S2 ⊆ S1, S2 ∈ μX such that for all δ2 ∈ S2,

(9.2) ∀δ1 ∈ T ∩ δ2 ∀β ∈ [0, ηδ2) ∀α ∈ [f(δ1), ηδ1) (Zδ1
α ∩ Zδ2

β = ∅).



4. A Woodin Cardinal in HODL(R) 2021

Notice that S2 is Σ1(L(R), {X, δ∼
2
1,R}) in e0, yη and the parameters for

coding. This completes the proof of Claim A. �

Claim B (Tail Computation). There exists an index e1 ∈ ωω such that
for all δ ∈ S2,

(1) U
(2)
e1 (P δ, Zδ

β) ⊆ Zδ
β for all β < ηδ,

(2) U
(2)
e1 (P δ, Zδ

f(δ)) = ∅, and

(3) U
(2)
e1 (P δ, Zδ

β) �= ∅ for β such that f(δ) < β < ηδ,

where P δ =
⋃
{Z δ̄

α | δ̄ ∈ S2 ∩ δ and α ∈ [f(δ̄), ηδ̄)} and S2 is from the end of
the proof of Claim A.

Proof. Here is the picture of the “tail parameter” P δ:

Here is the picture of the statement of Claim B:

Assume toward a contradiction that there is no such e1. We follow the
proof of the Uniform Coding Lemma. To begin with, notice that it suffices
to find an e1 ∈ ωω satisfying (2) and

(3′) U
(2)
e1 (P δ, Zδ

β) ∩ Zδ
β �= ∅ for β such that f(δ) < β < ηδ
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since given the parameter Zδ
β we can easily ensure (1).

Consider the set of reals such that (2) of the (revised) claim holds, that is,

G =
{
e ∈ ωω | ∀δ ∈ S2

(
U (2)

e (P δ, Zδ
f(δ)) = ∅

)}
.

So, for each e ∈ G, (3′) in the claim fails for some δ ∈ S2 and β ∈ (f(δ), ηδ).
For each e ∈ G, let

αe = lexicographically least pair (δ, β) such that
(1) δ ∈ S2,

(2) f(δ) < β < ηδ, and

(3) U (2)
e (P δ, Zδ

β) ∩ Zδ
β = ∅.

Now play the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

where II wins iff (x ∈ G→ (y ∈ G ∧ αy >lex αx))

Claim 1. Player I does not have a winning strategy.

Proof. Suppose toward a contradiction that σ is a winning strategy for I. As
in the proof of the Uniform Coding Lemma, we aim to “bound” all of I’s
plays and then use this bound to construct a play e∗ for II which defeats σ.
We will make key use of the Disjointness Property.

Choose eσ ∈ ωω such that for all P, P ′ ⊆ ωω,

U (2)
eσ

(P, P ′) =
⋃

y∈ωωU
(2)
(σ∗y)I

(P, P ′).

In particular, for all δ ∈ S2 and β < ηδ,

U (2)
eσ

(P δ, Zδ
β) =

⋃
y∈ωωU

(2)
(σ∗y)I

(P δ, Zδ
β).

Note two things: First, since σ is a winning strategy for I, (σ ∗ y)I ∈ G for
all y ∈ ωω; so eσ ∈ G. Second, for all y ∈ ωω, α(σ∗y)I

�lex αeσ . So eσ is “at
least as good” as any (σ ∗ y)I . We have to do “better”.

Pick x0 ∈ Zδ0
β0

where (δ0, β0) = αeσ . Choose e∗ such that for all P, P ′ ⊆ ωω,

U
(2)
e∗ (P, P ′) =

{
U

(2)
eσ (P, P ′) if x0 �∈ P ′

U
(2)
eσ (P, P ′) ∪ {x0} if x0 ∈ P ′.

In particular, for all δ ∈ S2 and β < ηδ,

U
(2)
e∗ (P δ, Zδ

β) =

{
U

(2)
eσ (P δ, Zδ

β) if x0 �∈ Zδ
β

U
(2)
eσ (P δ, Zδ

β) ∪ {x0} if x0 ∈ Zδ
β .

Since we chose x0 ∈ Zδ0
β0

, by the Disjointness Property (and the fact that for
fixed δ, Zδ

α ∩ Zδ
β = ∅ for α < β < ηδ) we have
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(10.1) x0 �∈ Zδ
β for δ ∈ S2 ∩ [0, δ0) and β ∈ [f(δ), ηδ),

(10.2) x0 �∈ Zδ0
β for β ∈ [0, ηδ0) � {β0}, and

(10.3) x0 �∈ Zδ
β for δ ∈ S2 ∩ (δ0, δ∼

2
1) and β ∈ [0, ηδ).

Thus, by the definition of e∗, we have, by (10.1–3),

U
(2)
e∗ (P δ, Zδ

f(δ)) = U (2)
eσ

(P δ, Zδ
f(δ))

for all δ ∈ S2. Since eσ ∈ G, this means e∗ ∈ G. So αe∗ exists. Similarly, by
the definition of e∗, we have, by (10.1) and (10.2),

U
(2)
e∗ (P δ, Zδ

β) = U (2)
eσ

(P δ, Zδ
β)

for all δ ∈ S2 ∩ [0, δ0) and β ∈ [f(δ), ηδ) and for δ = δ0 and β ∈ [f(δ0), β0).
So e∗ is “at least as good” as eσ. But since x0 ∈ Zδ0

β0
, we have that x0 ∈

U
(2)
e∗ (P δ0 , Zδ0

β0
), by the definition of e∗; that is, e∗ is “better” than eσ. In

other words, αe∗ >lex αeσ �lex α(σ∗y)I
for all y ∈ ωω and so, by playing e∗,

II defeats σ. �

Claim 2. Player II does not have a winning strategy.

Proof. Suppose toward a contradiction that τ is a winning strategy for II.
We shall find an e∗ such that e∗ ∈ G (Subclaim 1) and αe∗ does not exist
(Subclaim 2), which is a contradiction.

Choose h0 : ωω × (ωω × ωω) → ωω such that h0 is Σ1
1 and for all (e, x) ∈

ωω × (ωω × ωω) and for all P, P ′ ⊆ ωω,

U
(2)
h0(e,x)(P, P ′) =

{
U

(2)
e (P, P ′) if x �∈ P ∪ P ′

∅ if x ∈ P ∪ P ′.

In particular, for δ ∈ S2 and β < ηδ,

U
(2)
h0(e,x)(P

δ, Zδ
β) =

{
U

(2)
e (P δ, Zδ

β) if x �∈ P δ ∪ Zδ
β

∅ if x ∈ P δ ∪ Zδ
β .

Choose h1 : ωω → ωω such that h1 is Σ1
1 and for all P, P ′ ⊆ ωω,

U
(2)
h1(e)

(P, P ′) =
⋃

x∈P ′ U
(2)
(h0(e,x)∗τ)II

(P, P ′).

In particular, for δ ∈ S2 and β < ηδ,

U
(2)
h1(e)

(P δ, Zδ
β) =

⋃
x∈Zδ

β
U

(2)
(h0(e,x)∗τ)II

(P δ, Zδ
β).

By the Recursion Theorem, there is an e∗ ∈ ωω such that for all δ ∈ S2 and
β < ηδ,

U
(2)
e∗ (P δ, Zδ

β) = U
(2)
h1(e∗)(P

δ, Zδ
β).
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Subclaim 1. e∗ ∈ G.

Proof. Suppose for contradiction that e∗ �∈ G. Let δ0 ∈ S2 be least such that

U
(2)
e∗ (P δ0 , Zδ0

f(δ0)
) �= ∅.

Now

U
(2)
e∗ (P δ0 , Zδ0

f(δ0)
) = U

(2)
h1(e∗)(P

δ0 , Zδ0
f(δ0)

)

=
⋃

x∈Z
δ0
f(δ0)

U
(2)
(h0(e∗,x)∗τ)II

(P δ0 , Zδ0
f(δ0)

).

So choose x0 ∈ Zδ0
f(δ0)

such that

U
(2)
(h0(e∗,x0)∗τ)II

(P δ0 , Zδ0
f(δ0)

) �= ∅.

If we can show h0(e∗, x0) ∈ G then we are done since this implies that
(h0(e∗, x0) ∗ τ)II ∈ G (as τ is a winning strategy for II), which contradicts
the previous statement.

Subsubclaim. h0(e∗, x0) ∈ G, that is, for all δ ∈ S2,

U
(2)
h0(e∗,x0)

(P δ, Zδ
f(δ)) = ∅.

Proof. By the definition of h0, for all δ ∈ S2,

U
(2)
h0(e∗,x0)

(P δ, Zδ
f(δ)) =

{
U

(2)
e∗ (P δ, Zδ

f(δ)) if x0 �∈ P δ ∪ Zδ
f(δ)

∅ if x0 ∈ P δ ∪ Zδ
f(δ).

Since x0 ∈ Zδ0
f(δ0)

, by the Disjointness Property, this definition yields the
following: For δ ∈ S2 ∩ [0, δ0) we have x0 �∈ P δ ∪ Zδ

f(δ) and so,

U
(2)
h0(e∗,x0)

(P δ, Zδ
f(δ)) = U

(2)
e∗ (P δ, Zδ

f(δ)) = ∅,

where the latter holds since we chose δ0 to be least such that

U
(2)
e∗ (P δ0 , Zδ0

f(δ0)
) �= ∅;

for δ = δ0 we have x0 ∈ Zδ
f(δ) and so

U
(2)
h0(e∗,x0)

(P δ, Zδ
f(δ)) = ∅;

and for δ ∈ S2 ∩ (δ0, δ∼
2
1) we have x0 ∈ P δ and so

U
(2)
h0(e∗,x0)

(P δ, Zδ
f(δ)) = ∅.

Thus, h0(e∗, x0) ∈ G. �

This completes the proof of Subclaim 1. �
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Subclaim 2. αe∗ does not exist.

Proof. Suppose for contradiction that αe∗ exists. Recall that

αe∗ = lexicographically least pair (δ, β) such that
(1) δ ∈ S2,

(2) f(δ) < β < ηδ, and

(3) U
(2)
e∗ (P δ, Zδ

β) ∩ Zδ
β = ∅.

Let (δ0, β0) = αe∗ . We shall show U
(2)
e∗ (P δ0 , Zδ0

β0
) ∩ Zδ0

β0
�= ∅, which is a

contradiction. By the definition of h1,

U
(2)
e∗ (P δ0 , Zδ0

β0
) = U

(2)
h1(e∗)(P

δ0 , Zδ0
β0

)

=
⋃

x∈Z
δ0
β0

U
(2)
(h0(e∗,x)∗τ)II

(P δ0 , Zδ0
β0

).

Fix x0 ∈ Zδ0
β0

. Since e∗ ∈ G, h0(e∗, x0) ∈ G, by the Disjointness Property.
(This is because for δ ∈ S2 ∩ [0, δ0) we have x0 �∈ P δ ∪ Zδ

f(δ) and so

U
(2)
h0(e∗,x0)

(P δ, Zδ
f(δ)) = U

(2)
e∗ (P δ, Zδ

f(δ)) = ∅,

where the latter holds since e∗ ∈ G; for δ = δ0 we have x0 �∈ P δ ∪ Zδ
f(δ) and

since e∗ ∈ G this implies

U
(2)
h0(e∗,x0)

(P δ, Zδ
f(δ)) = ∅;

and for δ ∈ S2 ∩ (δ0, δ∼
2
1) we have x0 ∈ P δ and so

U
(2)
h0(e∗,x0)

(P δ, Zδ
f(δ)) = ∅.)

So αh0(e∗,x0) exists.

Subsubclaim. αh0(e∗,x0) = αe∗ .

Proof. By the definition of h0,

U
(2)
h0(e∗,x0)

(P δ, Zδ
β) =

{
U

(2)
e∗ (P δ, Zδ

β) if x0 �∈ P δ ∪ Zδ
β

∅ if x0 ∈ P δ ∪ Zδ
β

for δ ∈ S2 and β < ηδ. So

U
(2)
h0(e∗,x0)

(P δ0 , Zδ0
β0

) ∩ Zδ0
β0

= ∅,

since x0 ∈ P δ0 ∪ Zδ0
β0

. And, when either δ = δ0 and β ∈ (f(δ0), β0) or
δ ∈ S2 ∩ [0, δ0) and β ∈ [f(δ), ηδ), we have, by the Disjointness Property,
x0 �∈ P δ ∪ Zδ

β , hence

U
(2)
h0(e∗,x0)

(P δ, Zδ
β) = U

(2)
e∗ (P δ, Zδ

β).

Thus, αh0(e∗,x0) = αe∗ . �
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Since τ is winning for II,

(h0(e∗, x0) ∗ τ)II ∈ G

and
α(h0(e∗,x0)∗τ)II >lex αh0(e∗,x0) = αe∗ .

So
U

(2)
(h0(e∗,x0)∗τ)II

(P δ0 , Zδ0
β0

) ∩ Zδ0
β0
�= ∅.

Since
U

(2)
e∗ (P δ0 , Zδ0

β0
) =

⋃
x∈Z

δ0
β0

U
(2)
(h0(e∗,x)∗τ)II

(P δ0 , Zδ0
β0

)

we have
U

(2)
e∗ (P δ0 , Zδ0

β0
) ∩ Zδ0

β0
�= ∅,

which is a contradiction. �

This completes the proof of Claim 2. �

We have a contradiction and therefore there is an e1 is as desired. �

Notice that U
(2)
e1 (P δ, Zδ

α), for variable α, allows us to pick out f(δ).
Now we can consider the ordinal “f(δ∼

2
1)” picked out in this fashion.

Claim C. There exists a β0 < η such that

(1) U
(2)
e1 (P δ

˜
2
1 , Z

δ
˜
2
1

β0
) = ∅ and

(2) U
(2)
e1 (P δ

˜
2
1 , Z

δ
˜
2
1

β ) �= ∅ for all β ∈ (β0, η), where

P δ
˜
2
1 =

⋃
{Zδ

α | δ ∈ S2 and α ∈ [f(δ), ηδ)}.

Proof. Suppose for contradiction that the claim is false. The statement that
the claim fails is a true Σ1 statement about e0, e1, yη, X, R, f and S2. But
then by the Reflection Theorem (Theorem 4.6) this fact reflects to FX -almost
all δ, which contradicts Claim B. �

Pick yf ∈ Q
δ
˜
2
1

β0
. Now the statement that yf ∈ Q

δ
˜
2
1

β0
where β0 is such that

(1) and (2) of Claim C hold is a true Σ1 statement about e0, e1, yη, yf ,
f , X, R, and δ∼

2
1. Thus, by Theorem 4.6, for FX -almost every δ < δ∼

2
1 this

statement reflects. Let S3 ⊆ S2 be in μX and such that the above statement
reflects to each point in S3. Now by Claim B, for δ ∈ S3, the least β0 such
that yf ∈ Qδ

β0
is f(δ). Thus,

{δ ∈ S0 | fyf
(δ) = f(δ)} ∈ μX

and hence μX is strongly normal. �

This completes the proof of the following:
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4.13 Theorem. Assume ZF + DC + AD. Then, for each λ < ΘL(R),

HODL(R) |= ZFC + (δ∼
2
1)

L(R) is λ-strong.

4.14 Remark. For simplicity we proved Lemma 4.7 and Claim A of Theo-
rem 4.12 using a proof by contradiction. This involves an appeal to determi-
nacy. However, one can prove each result more directly, without appealing
to determinacy.

Call a real y suitable if (y)i ∈ UX for all i < ω. Call a strategy σ a
proto-winning strategy if σ is a winning strategy for I in GX(δ∼

2
1). Thus if y

is suitable and σ is a proto-winning strategy then

{((σ ∗ y)I)i, (y)i | i < ω} ⊆ UX

and so we can let

δ(σ,y) = the least δ such that {((σ ∗ y)I)i | i < ω} ∪ {(y)i | i < ω} ⊆ Uδ.

Let κ be least such that X ∈ Lκ(R) and Lκ(R) ≺1 L(R). This is the “least
stable over X”. It is easy to see that

P(R) ∩ Lκ(R) = Δ1(L(R),R ∪ {X, δ∼
2
1,R})

and so if Σ ∈ P(R) ∩ Lκ(R) then for FX -almost all δ there is a reflected
version Σδ of Σ. We can now state the relevant result:

Suppose Σ ∈ P(R)∩Lκ(R) is a set of proto-winning strategies for I. Then
there is a proto-winning strategy σ such that for all suitable reals y, for all
τ ∈ Σδ(σ,y) ∩ Σ, there is a suitable real yτ such that

δ(σ,y) = δ(τ,yτ ).

The proof of this is a variant of the above proofs and it provides a more direct
proof of completeness and strong normality.

4.3. A Woodin Cardinal

We now wish to show that ΘL(R) is a Woodin cardinal in HODL(R). In
general, in inner model theory there is a long march up from strong cardinals
to Woodin cardinals. However, in our present context, where we have the
power of AD and are working with the special inner model HODL(R), this
next step comes almost for free.

4.15 Theorem. Assume ZF + DC + AD. Then

HODL(R) |= ΘL(R) is a Woodin cardinal.
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Proof. For notational convenience let Θ = ΘL(R). To show that

HODL(R) |= ZFC + Θ is a Woodin cardinal

it suffices to show that for each T ∈ P(Θ) ∩ ODL(R), there is an ordinal δT

such that
HODLΘ(R)[T ]

T |= ZFC + δT is λ-T -strong,

for each λ < Θ. Since Θ is strongly inaccessible in HODL(R), HODL(R)

satisfies that V HODL(R)

Θ is a model of second-order ZFC. Thus, since T ∈
P(Θ) ∩HODL(R) and V HODL(R)

Θ = HODLΘ(R),

HODLΘ(R)[T ]
T |= ZFC.

It remains to establish strength. Since this is almost exactly as before we
will just note the basic changes.

The model LΘ(R)[T ] comes with a natural Σ1 stratification, namely,
〈
Lα(R)[T ∩ α]

∣
∣α < Θ

〉
.

Since Θ is regular in L(R) and LΘ(R) |= T0, the set
{
α < Θ | Lα(R)[T ∩ α] ≺ LΘ(R)[T ]

}

contains a club in Θ. To see this is note that for each n < ω,

Cn =
{
α < Θ | Lα(R)[T ∩ α] ≺n LΘ(R)[T ]

}

is club (by Replacement) and, since Θ is regular,
⋂
{Cn | n < ω} is club.

Thus, there are arbitrarily large α < Θ such that

Lα(R)[T ∩ α] |= T0.

For this reason ODT , <ODT and HODT are Σ1-definable in LΘ(R)[T ] exactly
as before. (Here, as usual, we are working in the language of set theory
supplemented with a predicate for T , which is assumed to be allowed in all
of our definability calculations.)

Let

δT = the least λ such that Lλ(R)[T ∩ λ] ≺1 LΘ(R)[T ].

As will be evident, the relevant facts concerning δ∼
2
1 carry over to the present

context. For example, δT is the least ordinal λ such that

Lλ(R)[T ∩ λ] ≺R∪{R}
1 LΘ(R)[T ].

The function FT : δT → LδT
(R)[T ∩ δT ] is defined as before as follows:

Work in T0. Suppose that FT �δ is defined. Let ϑ(δ) be least such that



4. A Woodin Cardinal in HODL(R) 2029

Lϑ(δ)(R)[T ∩ ϑ(δ)] |= T0 and there is an X ∈ Lϑ(δ)(R)[T ∩ ϑ(δ)] ∩
ODLϑ(δ)(R)[T ∩ϑ(δ)]

T and

(�) there is a Σ1 formula ϕ and a real z such that

Lϑ(δ)(R)[T ∩ ϑ(δ)] |= ϕ[z,X, δT , T ∩ ϑ(δ),R]

and for all δ̄ < δ,

Lϑ(δ)(R)[T ∩ ϑ(δ)] �|= ϕ[z, F (δ̄), δ̄, T ∩ ϑ(δ),R]

(if such an ordinal exists) and then let FT (δ) be the (<ODT
)Lϑ(δ)(R)[T ∩ϑ(δ)]-

least X such that (�).
The proof of the Reflection Theorem carries over exactly as before to

establish the following: For all X ∈ ODLΘ(R)[T ]
T , for all Σ1 formulas ϕ, and

for all z ∈ ωω if
LΘ(R)[T ] |= ϕ[z,X, δT , T,R]

then there exists a δ < δT such that

LΘ(R)[T ] |= ϕ[z, FT (δ), δ, T ∩ δ,R].

Let UT
X be a universal Σ1(LΘ(R)[T ], {X, δT , T,R}) set of reals and, for

δ < δT , let UT
δ be the universal Σ1(LΘ(R)[T ], {FT (δ), δ, T∩δ,R}) set obtained

by using the same definition. For z ∈ UT
X , let ST

z = {δ < δT | z ∈ UT
δ } and

set
FT

X = {S ⊆ δT | ∃z ∈ UT
X (ST

z ⊆ S)}.
As before, FT

X is a countably complete filter and in the Reflection Theorem
we can reflect to FT

X -many points δ < δT and allow parameters A ⊆ δT and
f : δT → δT .

Fix an ordinal λ < Θ. By the results of Sect. 3.3, there is an ODLΘ(R)[T ]
T -

prewellordering �λ of ωω of length λ. Our interest is in applying the Reflec-
tion Theorem to

X = (�λ, λ).

Working in LΘ(R)[T ], for each S ⊆ δT , let GX
T (S) be the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

with the following winning conditions: Main Rule: For all i < ω, (x)i, (y)i ∈
UT

X . If the rule is violated then, letting i be the least such that either (x)i �∈
UT

X or (y)i �∈ UT
X I wins if (x)i ∈ UT

X ; otherwise II wins. If the rule is satisfied
then, letting δ be least such that for all i < ω, (x)i, (y)i ∈ UT

δ , I wins iff
δ ∈ S.

Now set
μT

X = {S ⊆ δT | I wins GX
T (S)}.
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Notice that μT
X ∈ ODLΘ(R)[T ]

T . As before FT
X ⊆ μT

X and μT
X is a δT -complete

ultrafilter.
Let

S0 = {δ < δT |FT (δ) = (�δ, λδ) where �δ is a
prewellordering of length λδ and Lλδ

(R)[T ∩ λδ] |= T0}.

By reflection, S0 ∈ FT
X .

As before we say that μT
X is strongly normal iff whenever f : S0 → δT is

such that
{δ ∈ S0 | f(δ) < λδ} ∈ μT

X

then there exists a t ∈ ωω such that

{δ ∈ S0 | f(δ) = ft(δ)} ∈ μT
X .

The proof that μT
X is strongly normal is exactly as before. As in the proof

of Lemma 4.8 we can use μT
X to take the ultrapower of HODLΘ(R)[T ]. In

LΘ(R)[T ] form
(
HODLΘ(R)[T ]

T

)δT
/
μT

X .

As before we get an elementary embedding

jλ : HODLΘ(R)[T ]
T →M,

where M is the transitive collapse of the ultrapower. By completeness, this
embedding has critical point δT and as in Lemma 4.10 the canonical functions
witness that jλ(δT ) > λ. Assuming further that λ is such that

Lλ(R)[T ∩ λ] ≺1 LΘ(R)[T ]

we have that
HODLΘ(R)[T ]

T ⊆Mλ.

As before, strong normality implies that

ρ : λ→
∏

λδ/μ
T
X

|t|�λ
�→ [ft]μT

X

is an isomorphism. It remains to establish T -strength, that is,

|t|�λ
∈ T ∩ λ iff {δ < δT | ft(δ) ∈ T ∩ λδ} ∈ μT

X .

The point is that both
|t|�λ

∈ T ∩ λ

and
|t|�λ

�∈ T ∩ λ
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are Σ1(LΘ(R)[T ], {X, δT , T,R}) and so the result follows by the Reflection
Theorem (Theorem 4.6) and the fact that FT

X ⊆ μT
X .

Thus,
HODLΘ(R)[T ]

T |= ZFC + δT is λ-T -strong,

which completes the proof. �

In the above proof DC was only used in one place—to show that the ultra-
powers were well-founded (Lemma 4.8). This was necessary since although
the ultrapowers were ultrapowers of HOD and HOD satisfies AC, the ultra-
powers were “external” (in that the associated ultrafilters were not in HOD)
and so we had to assume DC in V to establish well-foundedness. However,
this use of DC can be eliminated by using the extender formulation of being
a Woodin cardinal. In this way one obtains strength through a network of
“internal” ultrapowers (that is, via ultrafilters that live in HOD) and this
enables one to bypass the need to assume DC in V . We will take this route
in the next section.

5. Woodin Cardinals in General Settings

Our aim in this section is to abstract the essential ingredients from the pre-
vious construction and prove two abstract theorems on Woodin cardinals in
general settings, one that requires DC and one that does not.

The first abstract theorem will be the subject of Sect. 5.1:

5.1 Theorem. Assume ZF + DC + AD. Suppose X and Y are sets. Let

ΘX,Y = sup{α | there is an ODX,Y surjection π : ωω → α}.

Then
HODX |= ZFC + ΘX,Y is a Woodin cardinal.

There is a variant of this theorem (which we will prove in Sect. 5.4) where
one can drop DC and assume less determinacy, the result being that ΘX is
a Woodin cardinal in HODX . The importance of the version involving ΘX,Y

is that it enables one to show that in certain settings HODX can have many
Woodin cardinals. To describe one such key application we introduce the
following notion due to Solovay. Assume ZF + DCR + AD + V = L(P(R))
and work in V = L(P(R)). The sequence 〈Θα | α � Ω〉 is defined to be the
shortest sequence such that Θ0 is the supremum of all ordinals γ for which
there is an OD surjection of ωω onto γ, Θα+1 is the supremum of all ordinals
γ for which there is an OD surjection of P(Θα) onto γ, Θλ = supα<λ Θα for
nonzero limit ordinals λ � Ω, and ΘΩ = Θ.

5.2 Theorem. Assume ZF + DCR + AD + V = L(P(R)). Then for each
α < Ω,

HOD |= ZFC + Θα+1 is a Woodin cardinal.
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The second abstract theorem provides a template that one can use in
various contexts to generate inner models containing Woodin cardinals.

5.3 Theorem (Generation Theorem). Assume ZF. Suppose

M = LΘM
(R)[T,A,B]

is such that

(1) M |= T0,

(2) ΘM is a regular cardinal,

(3) T ⊆ ΘM ,

(4) A = 〈Aα | α < ΘM 〉 is such that Aα is a prewellordering of the reals of
length greater than or equal to α,

(5) B ⊆ ωω is nonempty, and

(6) M |= Strategic determinacy with respect to B.

Then
HODM

T,A,B |= ZFC + There is a T -strong cardinal.

The motivation for the statement of the theorem—in particular, the notion
of “strategic determinacy”—comes from the attempt to run the construction
of Sect. 4.2 using lightface determinacy alone. In doing this one must sim-
ulate enough boldface determinacy to handle the real parameters that arise
in that construction. To fix ideas we begin in Sect. 5.2 by examining a par-
ticular lightface setting, namely, L[S, x] where S is a class of ordinals. Since
(ODS,x)L[S,x] = L[S, x] and L[S, x] satisfies AC one cannot have boldface
determinacy in L[S, x]. However, by assuming full determinacy in the back-
ground universe, strong forms of lightface determinacy hold in L[S, x], for an
S-cone of x. (The notion of an S-cone will be defined in Sect. 5.2). We will
extract stronger and stronger forms of lightface determinacy until ultimately
we reach the notion of “strategic determinacy”, which is sufficiently rich to
simulate boldface determinacy and drive the construction. With this motiva-
tion in place we will return to the general setting in Sect. 5.3 and prove the
Generation Theorem. Finally, in Sect. 5.4 we will use the Generation Theo-
rem as a template reprove the theorem of the previous section in ZF + AD
and to deduce a number of special cases, two of which are worth mentioning
here:

5.4 Theorem. Assume ZF + AD. Then for an S-cone of x,

HODL[S,x]
S |= ZFC + ω

L[S,x]
2 is a Woodin cardinal.
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5.5 Theorem. Assume ZF+AD. Suppose Y is a set and a ∈ H(ω1). Then
for a Y -cone of x,

HODY,a,[x]Y |= ZFC + ω
HODY,a,x

2 is a Woodin cardinal,

where [x]Y = {z ∈ ωω | HODY,z = HODY,x}.

(The notion of a Y -cone will be defined in Sect. 5.4.) In Sect. 6 these two
results will be used as the basis of a calibration of the consistency strength
of lightface and boldface definable determinacy in terms of the large cardinal
hierarchy. The second result will also be used to reprove and generalize
Kechris’ classical result that ZF + AD implies that DC holds in L(R). For
this reason it is important to note that the theorem does not presuppose DC.

5.1. First Abstraction

5.6 Theorem. Assume ZF + DC + AD. Suppose X and Y are sets. Then

HODX |= ZFC + ΘX,Y is a Woodin cardinal.

Proof. By Theorem 3.9,

HODX,Y |= ΘX,Y is strongly inaccessible

and so
HODX |= ΘX,Y is strongly inaccessible.

A direct approach to showing that in addition

HODX |= ΘX,Y is a Woodin cardinal

would be to follow Sect. 4.3 by showing that for each T ∈ P(ΘX,Y ) ∩ODX

there is an ordinal δT such that

HODX ∩ VΘX,Y
|= δT is λ-T -strong

for each λ < ΘX,Y . However, such an approach requires that for each
λ < ΘX,Y , there is a prewellordering of ωω of length λ which is OD in
LΘX,Y

(R)[T ] and in our present, more general setting we have no guarantee
that this is true. So our strategy is to work with a larger model (where such
prewellorderings exist), get the ultrafilters we need, and then pull them back
down to LΘX,Y

(R)[T ] by Kunen’s theorem (Theorem 3.11).
We will actually first show that

HODX,Y |= ΘX,Y is a Woodin cardinal.

Let T be an element of P(ΘX,Y ) ∩ODX,Y and let (by Lemma 3.7)

A = 〈Aα | α < ΘX,Y 〉
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be an ODX,Y sequence such that each Aα is a prewellordering of ωω of
length α. We will work with the structure

LΘX,Y
(R)[T,A]

and the natural hierarchy of structures that it provides.
To begin with we note some basic facts. First, notice that

ΘX,Y = (ΘT,A)L(R)[T,A] = ΘL(R)[T ][A].

(For the first equivalence we have

(ΘT,A)L(R)[T,A] � ΘX,Y

because of A and we have

(ΘT,A)L(R)[T,A] � ΘX,Y

because L(R)[T,A] is ODX,Y . The second equivalence holds since every ele-
ment in L(R)[T,A] is ODL(R)[T ][A]

T,A,y for some y ∈ ωω. So the “averaging over
reals” argument of Lemma 3.8 applies.) It follows that our earlier arguments
generalize. For example, by the proof of Theorem 3.10,

ΘX,Y is strongly inaccessible in HODL(R)[T,A]

and
ΘX,Y is regular in L(R)[T,A].

(Note that ΘX,Y need not be regular in V . For example, assuming ZF +
DC + ADR, Θ0 has cofinality ω in V .) Moreover, the proof of Lemma 2.21
shows that

LΘX,Y
(R)[T,A] |= T0

and the proof of Lemma 2.23 shows that

LΘX,Y
(R)[T,A] ≺1 L(R)[T,A].

This implies (in conjunction with the fact that ΘX,Y is regular in L(R)[T,A])
that

{α < ΘX,Y | Lα(R)[T �α,A�α] ≺ LΘX,Y
(R)[T,A]}

is club in ΘX,Y and hence that each such level satisfies T0.
So we are in exactly the situation of Sect. 4.3 except that now the prewellor-

derings are explicitly part of the structure. The proof of Theorem 4.15 thus
shows that: For each T ∈ P(ΘX,Y ) ∩ ODX,Y there is an ordinal δT,A such
that

HOD
LΘX,Y

(R)[T,A]

T,A |= δT,A is λ-T -strong

for each λ < ΘX,Y , as witnessed by an ultrafilter μT
λ on δT,A. These ultrafil-

ters are OD
LΘX,Y

(R)[T,A]

T,A .
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The key point is that all of these ultrafilters μT
λ are actually OD by Kunen’s

theorem (Theorem 3.11). This is where DC is used.
Now we return to the smaller model LΘX,Y

(R)[T ]. Since ΘX,Y is strongly
inaccessible in HODX there is a set H ∈P(ΘX,Y )LΘX,Y

(R)[T ] such that

HODX ∩ VΘX,Y
= LΘX,Y

[H].

We may assume without loss of generality that H is folded into T . Thus

HOD
LΘX,Y

(R)[T ]

T = HODX ∩ VΘX,Y

and this structure contains all of the ultrafilters μT
λ . These ultrafilters can

now be used (as in the proof of Lemma 4.8) to take the ultrapower and so
we have

HOD
LΘX,Y

(R)[T ]

T |= δT,A is λ-T -strong,

which completes the proof. �

5.2. Strategic Determinacy

Let us now turn to the Generation Theorem. We shall begin by motivating
the notion of “strategic determinacy” by examining the special case of L[S, x]
where S is a class of ordinals.

For x ∈ ωω, the S-degree of x is [x]S = {y ∈ ωω | L[S, y] = L[S, x]}. The
S-degrees are the sets of the form [x]S for some x ∈ ωω. Let DS = {[x]S |
x ∈ ωω}. Define x �S y to hold iff x ∈ L[S, y] and define the notions x ≡S y,
x <S y, x �S y, [x]S �S [y]S in the obvious way. A cone of S-degrees is a set
of the form {[y]S | y �S x0} for some x0 ∈ ωω. An S-cone of reals is a set
of form {y ∈ ωω | y �S x0} for some x0 ∈ ωω. The cone filter on DS is the
filter consisting of sets of S-degrees that contain a cone of S-degrees. Given
a formula ϕ(x) we say that ϕ holds for an S-cone of x if there is a real x0

such that for all y �S x0, L[S, y] |= ϕ(y). The proof of the Cone Theorem
(Theorem 2.9) generalizes.

5.7 Theorem (Martin). Assume ZF + AD. The cone filter on DS is an
ultrafilter.

Proof. For A ⊆ DS consider the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

where I wins iff [x ∗ y]S ∈ A. If I has a winning strategy σ0 then σ0 witnesses
that A is in the S-cone filter since for y �S σ0, [y]S = [σ0 ∗ y]S ∈ A. If II has
a winning strategy τ0 then τ0 witnesses that DS � A is in the S-cone filter
since for x �S τ0, [x]S = [x ∗ τ0]S ∈ DS � A. �
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It follows that each statement ϕ either holds on an S-cone or fails on an S-
cone. In fact, the entire theory stabilizes. However, in order to fully articulate
this fact one needs to invoke second-order assumptions (like the existence of
a satisfaction relation). Without invoking second-order assumptions one has
the following:

5.8 Corollary. Assume ZF + AD. For each n < ω, there is an xn such that
for all x �S xn,

L[S, x] |= ϕ iff L[S, xn] |= ϕ,

for all Σ1
n sentences ϕ.

Proof. Let 〈ϕi | i < ω〉 enumerate the Σ1
n sentences of the language of set

theory and, for each i, let yi be the base of an S-cone settling ϕi. Now using
ACω(R) (which is provable in ZF + AD) let xn encode 〈yi | i < ω〉. �

A natural question then is: “What is the stable theory?”

5.9 Theorem. Assume ZF + AD. Then for an S-cone of x,

L[S, x] |= CH.

Proof. Suppose for contradiction (by Theorem 5.7) that ¬CH holds for an
S-cone of x. Let x0 be the base of this cone.

We will arrive at a contradiction by producing an x �S x0 such that
L[S, x] |= CH. This will be done by forcing over L[S, x0] in two stages, first
to get CH and then to get a real coding this generic (while preserving CH).
It will be crucial that the generics actually exist.

Claim. ωV
1 is strongly inaccessible in any inner model M of AC.

Proof. We first claim that there is no ωV
1 -sequence of distinct reals: Let

μ be the club filter on ωV
1 . By Solovay’s theorem (Theorem 2.12, which

doesn’t require DC) μ is a countably complete ultrafilter on ωV
1 . Suppose

〈aα | α < ωV
1 〉 is a sequence of characteristic functions for distinct reals. By

countable completeness there is a μ-measure one set Xn of elements of this
sequence that agree on their nth-coordinate. Thus,

⋂
n<ω Xn has μ-measure

one, which is impossible since it only has one member.
It follows that for each γ < ωV

1 , (2γ)M < ωV
1 since otherwise (γ being

countable) there would be an ωV
1 sequence of distinct reals. Since ωV

1 is
clearly regular in M the result follows. �

Step 1. Let G be L[S, x0]-generic for Col(ωL[S,x0]
1 ,RL[S,x0]). (By the Claim

this generic exists in V ). So

L[S, x0][G] |= CH and R
L[S,x0][G] = R

L[S,x0].

The trouble is that L[S, x0][G] is not of the form L[S, x] for x ∈ R. (We could
code G via a real by brute force but doing so might destroy CH. A more
delicate approach is needed.)
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Step 2. Code G using almost disjoint forcing: First, view G as a subset of
ω

L[S,x0]
1 by letting A ⊆ ω

L[S,x0]
1 be such that

L[S, x0][G] = L[S, x0, A].

Now let
〈σα | α < ω

L[S,x0]
1 〉 ∈ L[S, x0]

be a sequence of infinite almost disjoint subsets of ω (that is, such that if
α �= β then σα ∩ σβ is finite). By almost disjoint forcing, in L[S, x0, A] there
is a c.c.c. forcing PA of size ω

L[S,x0,A]
1 such that if H ⊆ PA is L[S, x0, A]-

generic then there is a c(A) ⊆ ω such that

α ∈ A iff c(A) ∩ σα is infinite.

(See [1, pp. 267–268] for details concerning this forcing notion.) Also

L[S, x0, A][H] = L[S, x0, A][c(A)] = L[S, x0, c(A)].

Finally,
L[S, x0, c(A)] |= CH

as PA is c.c.c., |PA| = ω
L[S,x0,A]
1 , and L[S, x0, A] |= CH, and so there are, up

to equivalence, only ω
L[S,x0,A]
1 -many names for reals. �

5.10 Corollary. Assume ZF + AD. For an S-cone of x,

L[S, x] |= GCH below ωV
1 .

Proof. Let x0 be such that for all x �S x0,

L[S, x] |= CH.

Fix x �S x0. We claim that L[S, x] |= GCH below ωV
1 : Suppose for con-

tradiction that there is a λ < ωV
1 such that L[S, x] |= 2λ > λ+. Let

G ⊆ Col(ω, λ) be L[S, x]-generic. Thus L[S, x][G] |= ¬CH. But L[S, x][G] =
L[S, y] for some real y and so L[S, x][G] |= CH. �

A similar proof shows that ♦ holds for an S-cone of x, the point being
that adding a Cohen subset of ω1 forces ♦ and this forcing is c.c.c. and of
size ω1. See [1], Exercises 15.23 and 15.24.

5.11 Conjecture. Assume ZF + AD. For an S-cone of x,

L[S, x] ∩ VωV
1

is an “L-like” model in that it satisfies Condensation, �, Morasses, etc.
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Corollary 5.10 tells us that for an S-cone of x,

ΘL[S,x] = (c+)L[S,x] = ω
L[S,x]
2 .

Thus, to prove that for an S-cone of x,

L[S, x] |= ω2 is a Woodin cardinal in HODS ,

we can apply our previous construction concerning Θ provided we have
enough determinacy in L[S, x].

5.12 Theorem (Kechris and Solovay). Assume ZF + AD. For an S-cone of
x,

L[S, x] |= ODS-determinacy.

Proof. Play the following game

I a, b
II c, d

where, letting p = 〈a, b, c, d〉, I wins if L[S, p] �|= ODS-determinacy and
L[S, p] |= “a ∗ d ∈ Ap”, where Ap is the least (in the canonical ordering)
undetermined ODL[S,p]

S set in L[S, p]. In such a game the reals are played
so as to be “interleaved” in the pattern (a(0), c(0), b(0), d(0), . . . ). Here the
two players are to be thought of as cooperating to determine the playing
field L[S, p] in which they will simultaneously play (via a and d) an auxil-
iary round of the game on the least undetermined ODS set Ap (assuming, of
course, that such a set exists, as I is trying to ensure).

Case 1: I has a winning strategy σ0.

We claim that for all x �S σ0, L[S, x] |= ODS-determinacy, which contra-
dicts the assumption that σ0 is a winning strategy for I. For consider such
a real x and suppose for contradiction that L[S, x] �|= ODS-determinacy. As
above let Ax ∈ ODL[S,x]

S be least such that Ax is not determined. We will
arrive at a contradiction by deriving a winning strategy σ for I in Ax from
the strategy σ0. Run the game according to σ0 while having Player II feed
in x for c and playing some auxiliary play d ∈ L[S, x]. This ensures that the
resulting model L[S, p] that the two players jointly determine is just L[S, x]
and so Ap = Ax. We can now derive a winning strategy σ for I in Ax from
σ0 as follows: For d ∈ L[S, x], let σ be the strategy such that (σ ∗ d)I is the
a such that (σ0 ∗ 〈x, d〉)I = 〈a, b〉.

(It is crucial that we have II play c = x and d ∈ L[S, x] since otherwise we
would get a ∗ d ∈ Ap for varying p. By having II play c = x and d ∈ L[S, x],
II has “steered into the right model”, namely L[S, x], and we have “fixed”
the set Ax. This issue will become central later on when we refine this proof.)

Case 2: II has a winning strategy τ0.
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We claim that for x �S τ0, L[S, x] |= ODS-determinacy. This is as above
except that now we run the game according to τ0, having I steer into L[S, x]
by playing x for b and some a ∈ L[S, x]. Then, as above, we derive a winning
strategy for I in ωω

� Ax and hence a winning strategy τ for II in Ax. �

To drive the construction of a model containing a Woodin cardinal we need
more than ODS-determinacy since some of the games in the construction are
definable in a real parameter. Unfortunately, we cannot hope to get

L[S, x] |= ODS,y-determinacy

for each y since (ODS,x)L[S,x] = L[S, x] and L[S, x] is a model of AC. Nev-
ertheless, it is possible to have ODS,y-determinacy in L[S, x] for certain
specially chosen reals y. There is therefore hope of approximating a suffi-
cient amount of boldface definable determinacy to drive the construction.
To make precise the approximation we need, we introduce the notion of a
“prestrategy”.

Let A and B be sets of reals. A prestrategy for I (respectively II) in A
is a continuous function f such that for all x ∈ ωω, f(x) is a strategy for I
(respectively II) in A. A prestrategy f in A (for either I or II) is winning
with respect to the basis B if, in addition, for all x ∈ B, f(x) is a winning
strategy in A. The strategic game with respect to the predicates P1, . . . , Pk

and the basis B is the game SGB
P0,...,Pk

I A0 · · · An · · ·
II f0 · · · fn · · ·

where we require

(1) A0 ∈ P(ωω) ∩ODP0,...,Pk
, An+1 ∈ P(ωω) ∩ODP0,...,Pk,f0,...,fn and

(2) fn is a prestrategy for An that is winning with respect to B,

and II wins iff II can play all ω rounds. We say that strategic definable
determinacy holds with respect to the predicates P0, . . . , Pk and the basis B
(STP0,...,Pk

-determinacy) if II wins SGB
P0,...,Pk

and we say that strategic defin-
able determinacy for n moves holds with respect to the predicates P0, . . . , Pk

and the basis B (STP0,...,Pk
-determinacy for n moves) if II can play n rounds

of SGB
P0,...,Pk

. When these parameters are clear from context we shall often
simply refer to SG and ST-determinacy.

In the context of L[S, x] the predicate will be S and the basis B will be
the S-degree of x. Thus to say that L[S, x] satisfies STS-determinacy (or
ST-determinacy for short) is to say that II can play all rounds of the game

I A0 · · · An · · ·
II f0 · · · fn · · ·

where we require
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(1) A0 ∈ P(ωω) ∩ODL[S,x]
S , An+1 ∈ P(ωω) ∩ODL[S,x]

S,f0,...,fn
, and

(2) fn ∈ L[S, x] is a prestrategy for An that is winning with respect to [x]S .

The ability to survive a single round of this game implies that L[S, x] sat-
isfies ODS-determinacy. So this notion is indeed a generalization of ODS-
determinacy.

Before turning to the main theorems, some remarks are in order. First,
notice that the games STP0,...,Pk

are closed for Player II, hence determined.
The only issue is whether II wins.

Second, notice also that if I wins then I has a canonical strategy. This
can be seen as follows: Player I can rank partial plays, assigning rank 0 to
partial plays in which he wins; Player I can then play by reducing rank. The
result is a quasi-strategy that is definable in terms of the tree of partial plays
which in turn is ordinal definable. Since I is essentially playing ordinals this
quasi-strategy can be converted into a strategy in a definable fashion. We
take this to be I’s canonical strategy.

Third, notice that each prestrategy can be coded by a real number in a
canonical manner. We assume that such a coding has been fixed and, for
notational convenience, we will identify a prestrategy with its code.

Fourth, it is important to note that if II is to have a hope of winning then
we must allow II to play prestrategies and not strategies. To see this, work in
L[S, x] and consider the variant of SGB

S where we have II play strategies τ0,
τ1, . . . instead of prestrategies. The set A0 = {y ∈ ωω | L[S, yeven] = L[S, x]}
is ODL[S,x]

S and hence a legitimate first move for I. But then II’s response must
be a winning strategy for I in A0 since I can win a play of A0 by playing x.
However, ODL[S,x]

S,τ0
= L[S, x] and so in the next round I is allowed to play

any A1 ∈ L[S, x]. But then II cannot hope to always respond with a winning
strategy since L[S, x] �|= AD. The upshot is that if II is to have a hope of
winning a game of this form then we must allow II to be less committal.

Fifth, although one can use a base B which is slightly larger than [x]S ,
the previous example motivates the choice of B = [x]S . Let A0 be as in the
previous paragraph and let f0 be II’s response. By the above argument, it
follows that for all z ∈ B, 〈f0, z〉 ∈ [x]S and so in a sense we are “one step
away” from showing that one must have B ⊆ [x]S .

Finally, as we shall show in the next section, for every OD basis B ⊆ ωω

there is an OD set A ⊆ ωω such that there is no OD prestrategy which is
winning for A with respect to B (Theorem 6.11). Thus, for each basis B,
STB-determinacy does not trivially reduce to OD-determinacy.

5.13 Theorem. Assume ZF + AD. Then for an S-cone of x, for each n,

L[S, x] |= STS-determinacy for n moves,

where B = [x]S.
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5.14 Theorem. Assume ZF + DCR + AD. Then for an S-cone of x,

L[S, x] |= STS-determinacy,

where B = [x]S.

Proofs of Theorems 5.13 and 5.14. Assume toward a contradiction that the
statement of Theorem 5.14 is false. By Theorem 5.7, there is a real x0 such
that if x �T x0,

L[S, x] |= I wins SG ,

(where here and below we drop reference to S and B since these are fixed
throughout). For x �T x0, let σx be I’s canonical winning strategy in
SGL[S,x]. Note that the strategy depends only on the model, that is, if
y ≡S x then σy = σx.

Our aim is to construct a sequence of games G0, G1, . . . , Gn, . . . such that
the winning strategies (for whichever player wins) enable us to define, for
an S-cone of x, prestrategies fx

0 , fx
1 , . . . , fx

n , . . . which constitute a non-losing
play against σx in SGL[S,x].

Step 0. Consider (in V ) the game G0

I a, b
II c, d

where, letting p = 〈a, b, c, d, x0〉 and Ap
0 = σp(∅), I wins iff a ∗ d ∈ Ap

0. Notice
that by including x0 in p we have ensured that σp is defined and hence that
the winning condition makes sense. In this game I and II are cooperating to
steer into the model L[S, p] and they are simultaneously playing (via a and d)
an auxiliary round of the game Ap

0, where Ap
0 is I’s first move according to

the canonical strategy in the strategic game SGL[S,p]. I wins a round iff I
wins the auxiliary round of this auxiliary game.

Claim 1. There is a real x1 such that for all x �S x1 there is a prestrategy
fx
0 that is a non-losing first move for II against σx in SGL[S,x].

Proof. Case 1: I has a winning strategy σ0 in G0.

For x �T σ0, let fx
0 be the prestrategy derived from σ0 by extracting

the response in the auxiliary game where we have II feed in y for c, that
is, for y ∈ (ωω)L[S,x] let fx

0 (y) be such that fx
0 (y) ∗ d = a ∗ d where a is

such that (σ0 ∗ 〈y, d〉)I = 〈a, b〉. Note that fx
0 ∈ L[S, x] as it is definable

from σ0. Let x1 = 〈σ0, x0〉 and for x �S x1 let Ax
0 = σx(∅). We claim that

for x �S x1, fx
0 is a prestrategy for I in Ax

0 that is winning with respect to
{y ∈ ωω | L[S, y] = L[S, x]}, that is, fx

0 is a non-losing first move for II against
σx in SGL[S,x]. To see this fix x �S x1 and y such that L[S, y] = L[S, x] and
consider d ∈ L[S, x]. The value fx

0 (y) of the prestrategy was defined by
running G0, having II feed in y for c:

I a, b
II y, d
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By our choice of y and d, we have solved the “steering problem”, that is, we
have L[S, p] = L[S, x] and Ap

0 = Ax
0 where p = 〈a, b, y, d, x0〉. Now, fx

0 is such
that fx

0 (y) ∗ d = a ∗ d where a is such that (σ0 ∗ 〈y, d〉)I = 〈a, b〉. Since σ0 is
winning for I, we have fx

0 (y) ∗ d = a ∗ d ∈ Ap
0 = Ax

0 .

Case 2: II has a winning strategy τ0 in G0.

Let fx
0 be the prestrategy derived from τ0 by extracting the response in

the auxiliary game where we have I feed in y for b, that is, for y ∈ (ωω)L[S,x]

let fx
0 (y) be such that a ∗ fx

0 (y) = a ∗ d where d is such that (〈a, y〉 ∗ τ0)II =
〈c, d〉. Let x1 = 〈τ0, x0〉 and for x �S x1 let Ax

0 = σx(∅). As before, we have
that for x �S x1, fx

0 is a prestrategy for II in Ax
0 that is winning with respect

to {y ∈ ωω | L[S, y] = L[S, x]}, that is, fx
0 is a non-losing first move for II

against σx in SGL[S,x].
Let x1 be as described in whichever case holds. �

Step n + 1. Assume that we have defined games G0, . . . , Gn, reals x0, . . . ,
xn+1 such that x0 �S x1 �S · · · �S xn+1, and prestrategies fx

0 , . . . , fx
n which

depend only on the degree of x and such that for all x �S xn+1,

fx
0 , . . . , fx

n

is a non-losing partial play for II against σx in SGL[S,x].
Consider (in V ) the game Gn+1

I a, b
II c, d

where, letting p = 〈a, b, c, d, xn+1〉 and Ap
n+1 be I’s response via σp to the

partial play fp
0 , . . . , fp

n, I wins iff a ∗ d ∈ Ap
n+1. Notice that we have included

xn+1 in p to ensure that σp, fp
0 , . . . , fp

n are defined and hence that the winning
condition makes sense. In this game I and II are cooperating to steer into the
model L[S, p] and they are simultaneously playing an auxiliary round (via a
and d) on Ap

n+1, where Ap
n+1 is I’s response via σp to II’s non-losing partial

play fp
0 , . . . , fp

n in the strategic game SGL[S,p]. I wins a round iff he wins the
auxiliary round of this auxiliary game.

Claim 2. There is a real xn+2 such that for all x �S xn+2 there is a prestrat-
egy fx

n+1 such that fx
0 , . . . , fx

n , fx
n+1 is a non-losing partial play for II against

σx in SGL[S,x].

Proof. Case 1: I has a winning strategy σn+1 in Gn+1.

Let fx
n+1 be the prestrategy derived from σn+1 by extracting the response

in the auxiliary game, that is, for y ∈ (ωω)L[S,x] let fx
n+1(y) be such that

fx
n+1(y) ∗ d = a ∗ d where a is such that (σn+1 ∗ 〈y, d〉)I = 〈a, b〉. Let xn+2 =
〈σn+1, xn+1〉 and for x �S xn+2 let Ax

n+1 = σx(〈fx
0 , . . . , fx

n 〉), i.e. Ax
n+1 is the
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(n + 2)nd move of I in SGL[S,x] following σx against II’s play of fx
0 , . . . , fx

n .
As in Claim 1, fx

n+1 is a prestrategy for I in Ax
n+1 that is winning with respect

to {y ∈ ωω | L[S, y] = L[S, x]}, that is, fx
n+1 is a non-losing (n + 2)nd move

for II against σx in SGL[S,x].

Case 2: II has a winning strategy τn+1 in Gn+1.

Let fx
n+1 be the prestrategy derived from τn+1 by extracting the response

in the auxiliary game, that is, for y ∈ (ωω)L[S,x] let fx
n+1(y) be such that

a ∗ fx
n+1(y) = a ∗ d where d is such that (〈a, y〉 ∗ τn+1)II = 〈c, d〉. Let xn+2 =

〈τn+1, xn+1〉 and for x �S xn+2 let Ax
n+1 = σx(〈fx

0 , . . . , fx
n 〉), as above. As

before, we have that for x �S xn+2, fx
n+1 is a prestrategy for II in Ax

n+1 that
is winning with respect to {y ∈ ωω | L[S, y] = L[S, x]}, that is, fx

n+1 is a
non-losing (n + 2)nd move for II against σx in SGL[S,x].

Let xn+2 be as described in whichever case holds. �

Finally, using DCR, we get a sequence of reals x0, . . . , xn, . . . and pre-
strategies fx

0 , . . . , fx
n , . . . as in each of the steps. Letting x∞ �S xn, for all

n, we have that for all x �S x∞, fx
0 , . . . , fx

n , . . . is a non-losing play for II
against σx in SGL[S,x], which is a contradiction. This completes the proof of
Theorem 5.14.

For Theorem 5.13 simply note that DCR is not needed to define the finite
sequences x0, . . . , xn, xn+1 and fx

0 , . . . , fx
n for x �S xn+1 (as these prestrate-

gies are definable from x0, . . . , xn, xn+1). �

5.3. Generation Theorem

In the previous section we showed (assuming ZF + AD) that for an S-cone
of x,

L[S, x] |= ODS-determinacy,

and (even more) that for each n,

L[S, x] |= STS-determinacy for n moves,

where B = [x]S . It turns out that for a sufficiently large choice of n this
degree of determinacy is sufficient to implement the previous arguments and
show that

L[S, x] |= ω2 is a Woodin cardinal in HODS .

At this stage we could proceed directly to this result but instead, with this
motivation behind us, we return to the more general setting. The main
theorem to be proved is the Generation Theorem:

5.15 Theorem (Generation Theorem). Assume ZF. Suppose

M = LΘM
(R)[T,A,B]

is such that
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(1) M |= T0,

(2) ΘM is a regular cardinal,

(3) T ⊆ ΘM ,

(4) A = 〈Aα | α < ΘM 〉 is such that Aα is a prewellordering of the reals of
length greater than or equal to α,

(5) B ⊆ ωω is nonempty, and

(6) M |= STT,A,B-determinacy for four moves.

Then
HODM

T,A,B |= ZFC + There is a T -strong cardinal.

The importance of the restriction to strategic determinacy for four moves
is that in a number of applications of this theorem strategic determinacy for
n moves (for each n) can be established without any appeal to DC (as for
example in Theorem 5.13) in contrast to full strategic determinacy which
(just as in Theorem 5.14) uses DCR.

The external assumption that ΘM is a regular cardinal is merely for
convenience—it ensures that there are cofinally many stages in the strati-
fication of M where T0 holds. The dedicated reader can verify that this as-
sumption can be dropped by working instead with the theory ZFN +ACω(R)
for some sufficiently large N .

The remainder of this section is devoted to a proof of the Generation
Theorem.

Proof. Let us start by showing that HODM
T,A,B satisfies ZFC. When working

with structures of the form LΘM
(R)[T,A,B] it is to be understood that we

are working in the language of ZFC augmented with constant symbols for T ,
A, B, and R. The first step is to show that HODM

T,A,B is first-order over M .
For γ < ΘM , let

Mγ = Lγ(R)[T �γ,A�γ,B],

it being understood that the displayed predicates are part of the structure.
Since ΘM is regular and M |= T0 there are cofinally many γ < ΘM such that
Mγ |= T0. So a set x ∈M is ODM

T,A,B if and only if there is a γ < ΘM such
that Mγ |= T0 and x is definable in Mγ from ordinal parameters (and the
constant symbols for the parameters). It follows that ODM

T,A,B and HODM
T,A,B

are Σ1-definable over M (in the expanded language).
With this first-order characterization of HODM

T,A,B all of the standard
results carry over to our present setting. For example, since M |= ZF −
Power Set we have that HODM

T,A,B |= ZFC − Power Set. (The proofs that
AC holds in HODM

T,A,B and that for all α < ΘM , Vα∩HODM
T,A,B ∈ HODM

T,A,B

require that ODM
T,A,B be ordinal definable.)

5.16 Lemma. HODM
T,A,B |= ZFC.
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Proof. We have seen that HODM
T,A,B |= ZFC−Power Set. Since HODM

T,A,B |=
AC it remains to show that for all λ < ΘM ,

P(λ)HODM
T,A,B ∈ HODM

T,A,B .

The point is that since M |= ODT,A,B-determinacy, for each S ∈ ODM
T,A,B ∩

P(λ) the game for coding S relative to the prewellordering Aλ is determined:
Without loss of generality, we may assume Aλ has length λ. For α < λ, let
Qκ

<α and Qκ
α be the usual objects defined relative to Aλ. For e ∈ ωω, let

Se = {α < λ | U (2)
e (Qκ

<α, Qκ
α) �= ∅}.

Since Aλ is trivially ODM
T,A,B the game for the Uniform Coding Lemma for

Z =
⋃
{Qκ

α × ωω | α ∈ S} is determined for each S ∈ P(λ)HODM
T,A,B . Thus,

every S ∈ P(λ)HODM
T,A,B has the form Se for some e ∈ ωω and hence

π : ωω →P(λ)HODM
T,A,B

e �→ Se

is an ODM
T,A,B surjection. Thus, P(λ)HODM

T,A,B ∈ M and so, by our first-

order characterization, P(λ)HODM
T,A,B ∈ HODM

T,A,B . �

The ordinal κ that we will show to be T -strong in HODM
T,A,B is “the least

stable in M”:

5.17 Definition. Let κ be least such that

Mκ ≺1 M.

As before the ♦-like function F : κ → Mκ is defined inductively in terms
of the least counterexample: Given F �δ let ϑ(δ) be least such that

Mϑ(δ) |= T0 and there is an X ∈Mϑ(δ) ∩ODMϑ(δ)

T�ϑ(δ),A�ϑ(δ),B
and

(�) there is a Σ1 formula ϕ and a t ∈ ωω such that

Mϑ(δ) |= ϕ[t,X, δ,R]

and for all δ̄ < δ

Mϑ(δ) �|= ϕ[t, F (δ̄), δ̄,R]

(if such an ordinal exists) and then let F (δ) be the <
Mϑ(δ)

OD
T�ϑ(δ),A�ϑ(δ),B

-least

X such that (�) holds.
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5.18 Theorem. For all X ∈ ODM
T,A,B, for all Σ1 formulas ϕ, and for all

t ∈ ωω, if
M |= ϕ[t,X, κ,R]

then there exists a δ < κ such that

M |= ϕ[t, F (δ), δ,R].

Proof. Same as the proof of Theorem 4.6. �

Our interest is in applying Theorem 5.18 to

X = (�λ, λ)

where �λ= Aλ is the prewellordering of length λ, for λ < ΘM . Clearly X is
ODM

T,A,B .
Let UX be a universal Σ1(M, {X,κ,R}) set of reals and, for δ < κ, let

Uδ be the reflected version (using the same definition used for U except with
F (δ) and δ in place of X and κ). For z ∈ UX , let Sz = {δ < κ | z ∈ Uδ} and
set

FX = {S ⊆ κ | ∃z ∈ UX (Sz ⊆ S)}.
As before, FX is a countably complete filter and in Theorem 5.18 we can

reflect to FX -many points δ < κ. Let

S0 = {δ < κ | F (δ) = (Aλδ
, λδ) for some λδ > δ}.

Notice that S0 ∈ FX . For notational conformity let �δ be Aλδ
. For α < λ,

let Qκ
α be the αth-component of �λ and, for δ ∈ S0 and α < λδ, let Qδ

α be
the αth-component of �δ (where without loss of generality we may assume
that each Aα has length exactly α).

In our previous settings we went on to do two things. First, using the
Uniform Coding Lemma we showed that one can allow parameters of the
form A ⊆ κ and f : κ → κ in the Reflection Theorem. Second, for S ⊆ κ,
we defined the games GX(S) that gave rise to the ultrafilter extending the
reflection filter, an ultrafilter that was either explicitly OD in the background
universe (as in Sect. 4.3) or shown to be OD by appeal to Kunen’s theorem
(as in Sect. 5.1). In our present setting (where we have a limited amount
of determinacy at our disposal) we will have to manage our resources more
carefully. The following notion will play a central role.

5.19 Definition. A set x ∈M is n-good if and only if II can play n rounds
of (SGB

T,A,B,x)M . For y ∈M , a set x ∈M is n-y-good if and only if (x, y) is
n-good.

Notice that if M satisfies STT,A,B,y-determinacy for n + 1 moves then
II’s first move f0 is n-y-good. Notice also that if x is 1-y-good then every
ODM

T,A,B,x,y set of reals is determined. For example, if S ⊆ κ is 1-good then
the game for coding S relative to Aκ using the Uniform Coding Lemma is
determined. Thus we have the following version of the Reflection Theorem.
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5.20 Theorem. Suppose f : κ → κ, G ⊆ κ, S ⊆ κ and (f,G, S) is 1-good.
For all X ∈M ∩ODM

T,A,B, for all Σ1 formulas ϕ, and for all t ∈ ωω, if

M |= ϕ[t,X, κ,R, f, G, S]

then for FX-many δ < κ,

M |= ϕ[t, F (δ), δ,R, f�δ,G ∩ δ, S ∩ δ].

For each S ⊆ κ, let GX(S) be the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

with the following winning conditions: Main Rule: For all i < ω, (x)i, (y)i ∈
UX . If the rule is violated, then, letting i be the least such that either
(x)i �∈ UX or (y)i �∈ UX , I wins if (x)i ∈ UX ; otherwise II wins. If the rule
is satisfied, then, letting δ be least such that for all i < ω, (x)i, (y)i ∈ Uδ,
I wins iff δ ∈ S.

As before, if S ∈ FX then I wins GX(S) by playing any x such that for all
i < ω, (x)i ∈ UX and for some i < ω, (x)i = z, where z is such that Sz ⊆ S.
But we cannot set

μX = {S ⊆ κ | I wins GX(S)}
since we have no guarantee that GX(S) is determined for an arbitrary S ⊆ κ.

However, if S is 1-good then GX(S) is determined. In particular, GX(S)
is determined for each S ∈P(κ) ∩HODM

T,A,B . Thus, setting

μ = {S ∈P(κ) ∩HODM
T,A,B | I wins GX(S)}

we have directly shown that κ is measurable in HODM
T,A,B .

It is useful at this point to stand back and contrast the present approach
with the two earlier approaches. In both of the earlier approaches (namely,
that of Sect. 4.3 and that of Sect. 5.1) the ultrafilters were ultrafilters in V
and seen to be complete and normal in V and the ultrafilters were ODV , the
only difference being that in the first case the ultrafilters were directly seen
to be ODV , while in the second case they were indirectly seen to be ODV

by appeal to Kunen’s theorem (Theorem 3.11). Now, in our present setting,
there is no hope of getting such ultrafilters in V since we do not have enough
determinacy. Instead we will get ultrafilters in HODM

T,A,B . However, the
construction will still be “external” in some sense since we will be defining
the ultrafilters in V .

We also have to take care to ensure that the ultrafilters “fit together” in
such a way that they witness that κ is T -strong. In short, we will define a
(κ, λ)-pre-extender EX ∈ HODM

T,A,B , a notion we now introduce.
For n ∈ ω and z ∈ [On]n, we write z = {z1, . . . , zn}, where z1 < · · · < zn.

Suppose b ∈ [On]n and a ⊆ b is such that a = {bi1 , . . . bik
}, where i1< · · · < ik.

For z ∈ [On]n, set
za,b = {zi1 , . . . , zik

}.
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Thus the elements of za,b sit in z in the same manner in which the elements
of a sit in b. For α ∈ On and X ⊆ [α]k, let

Xa,b = {z ∈ [α]n | za,b ∈ X}.

For α ∈ On and f : [α]k → V , let fa,b : [α]n → V be such that

fa,b(z) = f(za,b).

Thus we use ‘a, b’ as a subscript to indicate that za,b is the “drop of z from
b to a” and we use ‘a, b’ as a superscript to indicate that Xa,b is the “lift of
X from a to b”.

5.21 Definition. Let κ be an uncountable cardinal and let λ > κ be an
ordinal. The sequence

E = 〈Ea | a ∈ [λ]<ω〉

is a (κ, λ)-extender provided:

(1) For each a ∈ [λ]<ω,

Ea is a κ-complete ultrafilter on [κ]|a|

that is principal if and only if a ⊆ κ.

(2) (Coherence) If a ⊆ b ∈ [λ]<ω and X ∈ Ea, then Xa,b ∈ Eb.

(3) (Countable Completeness) If Xi ∈ Eai where ai ∈ [λ]<ω for each
i < ω, then there is an order-preserving map

h :
⋃

i<ωai → κ

such that h“ai ∈ Xi for all i < ω.

(4) (Normality) If a ∈ [λ]<ω and f : [κ]|a| → κ is such that

{z ∈ [κ]|a| | f(z) < zi} ∈ Ea

for some i � |a|, then there is a β < ai such that

{z ∈ [κ]|a∪{β} | | f(za,a∪{β}) = zk} ∈ Ea∪{β}

where k is such that β is the kth element of a ∪ {β}.

If conditions (1) and (2) alone are satisfied then we say that E is a (κ, λ)-
pre-extender.

We need to ensure that the ultrafilter Ea on [κ]|a| depends on a in such a
way that guarantees coherence and the other properties. The most natural
way to define an ultrafilter Ea on [κ]|a| that depends on a is as follows:
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(1) For FX -almost all δ define a “reflected version” aδ ∈ [λδ]<ω of the
“generator” a.

(2) For Y ∈P([κ]|a|) ∩HODM
T,A,B , let

S(a, Y ) = {δ < κ | aδ ∈ Y }

and set

Ea = {Y ∈ P([κ]|a|) ∩HODM
T,A,B | I wins GX(S(a, Y ))}.

In other words, we regard Y as “Ea-large” if and only if it contains the
“reflected generators” on a set which is large from the point of view of the
game.

The trouble is that we have not guaranteed that S(a, Y ) is determined.
This set will be determined if it is 1-good but we have not ensured this. So
we need to “reflect” a in such a way that S(a, Y ) is 1-good. Now the most
natural way to reflect a ∈ [λ]k is as follows: Choose

(y1, . . . , yk) ∈ Qκ
a1
× · · · ×Qκ

ak

and, for δ ∈ S0, let aδ = {aδ
1, a

δ
2, . . . , a

δ
k} be such that

(y1, . . . , yk) ∈ Qδ
aδ
1
× · · · ×Qδ

aδ
k
.

There is both a minor difficulty and a major difficulty with this approach.
The minor difficulty is that we have to ensure that there is no essential
dependence on our particular choice of (y1, . . . , yk). The major difficulty is
that unless (y1, . . . , yk) is 1-good we still have no guarantee that S(a, Y ) is
1-good. The trouble is that there is in general no way of choosing such 1-
good reals. However, assuming that M satisfies STT,A,B-determinacy for two
moves, there is a way of generating 1-good prestrategies which (for all x ∈ B)
hand us the reals we want. We will prove something slightly more general.

5.22 Lemma. Assume z is (n + 1)-good. Then for each a ∈ [λ]<ω there is
a function fa : ωω → (ωω)k such that

(1) fa is n-z-good and

(2) for all x ∈ B,
fa(x) ∈ Qκ

a1
× · · · ×Qκ

ak
,

where k = |a|.

Proof. The set

A0 = {x ∈ ωω | (xeven)i ∈ Qκ
ai+1

for all i < k}
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is ODM
T,A,B and clearly I wins A0. Let A0 be I’s first move in (SGB

T,A,B,z)
M

and let f0 be II’s response. Notice that f0 is n-z-good. We have

∀x ∈ B ∀y ∈ ωω
(
f0(x) ∗ y ∈ A0

)

and hence

∀x ∈ B ∀y ∈ ωω
(
((f0(x) ∗ y)even)i ∈ Qκ

ai+1
for all i < k

)
.

Thus the function

fa : ωω → (ωω)k

x �→
{(

((f0(x) ∗ 0)even)0, . . . , ((f0(x) ∗ 0)even)k−1

)
if x ∈ B

0 otherwise

is n-z-good (since it is definable from the n-z-good object f0) and has the
desired property. �

5.23 Definition. Assume M satisfies STT,A,B-determinacy for two moves.
For a ∈ [λ]<ω, we call a 1-good function fa : ωω → (ωω)|a| given by
Lemma 5.22, a 1-good code for a.

The importance of a 1-good code fa is twofold. First, any game defined
in terms of fa is determined. Second, for FX -almost all δ a 1-good code fa

selects a reflected version aδ of a in a manner that is independent of x ∈ B;
moreover, we can demand that aδ inherits any Σ1(M, {X,κ,R})-property
that a has. To see this, consider a statement such as the following: For all
x, x′ ∈ B, if α1, . . . , αk are such that

fa(x) ∈ Qκ
α1
× · · · ×Qκ

αk

then
fa(x′) ∈ Qκ

α1
× · · · ×Qκ

αk

and
α1 < · · · < αk.

This is a true Σ1(M, {X,R, κ}) statement. Thus, for FX -almost all δ, the
statement reflects.

5.24 Definition. Suppose a ∈ [λ]<ω and fa is a 1-good code for a. Let

S0(fa) =
{
δ < κ | ∀x, x′ ∈ B ∀α1, . . . , αk (fa(x) ∈ Qδ

α1
× · · · ×Qδ

αk

→ fa(x′) ∈ Qδ
α1
× · · · ×Qδ

αk
∧ α1 < · · · < αk)

}
.

Notice that S0(fa) ∈ FX and S0(fa) is ODM
T,A,B,fa

.
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5.25 Definition. Suppose a ∈ [λ]<ω and fa is a 1-good code for a. For
δ ∈ S0(fa) and some (any) x ∈ B, let

aδ
fa

= {|(fa(x))1|�δ
, . . . , |(fa(x))|a||�δ

}

be the reflected generator of a.

5.26 Definition. For a ∈ [λ]<ω, fa a 1-good code for a, and Y ∈ P([κ]|a|)∩
HODM

T,A,B , let
S(a, fa, Y ) = {δ ∈ S0(fa) | aδ

fa
∈ Y }.

Since fa is 1-good and S(a, fa, Y ) is ODM
T,A,B,fa

it follows that S(a, fa, Y )
is 1-good and hence GX(S(a, fa, Y )) is determined.

For a ∈ [λ]<ω and fa a 1-good code for a, let

Ea(fa) = {Y ∈ P([κ]|a|) ∩HODM
T,A,B | I wins GX(S(a, fa, Y ))}

and let

EX(fa) : [λ]<ω → HODM
T,A,B

a �→ Ea(fa).

The only trouble with this definition is that there is no guarantee that EX(fa)
is in HODM

T,A,B because there is no guarantee that Ea(fa) is in HODM
T,A,B .

We have to “erase” the dependence on the choice of fa in the definition of Ea.

5.27 Lemma. Suppose a ∈ [λ]<ω and fa and f̂a are 1-good codes for a.
Suppose Y ∈ P([κ]|a|) ∩HODM

T,A,B. Then

(1) I wins GX({δ ∈ S0(fa) ∩ S0(f̂a) | aδ
fa

= aδ
f̂a
}).

(2) I wins GX(S(a, fa, Y )) iff I wins GX(S(a, f̂a, Y )), and

(3) Ea(fa) = Ea(f̂a).

Proof. (1) The statement

∀x ∈ B ∀i � |a|
(
(fa(x))i =λ (f̂a(x))i

)

is a true Σ1(M, {X,κ,R}) statement about fa and f̂a. So, by reflection, the
set {δ ∈ S0(fa) ∩ S0(f̂a) | aδ

fa
= aδ

f̂a
} is in FX and hence in μX .

(2) Assume I wins GX(S(a, fa, Y )). We have that I wins the game in (1).
Let GX(S0(fa, f̂a)) abbreviate this game. So I wins GX(S(a, fa, Y ) ∩
S0(fa, f̂a)). But

S(a, fa, Y ) ∩ S0(fa, f̂a) ⊆ S(a, f̂a, Y ).

So I wins GX(S(a, f̂a, Y )). Likewise if I wins GX(S(a, f̂a, Y )) then I wins
GX(S(a, fa, Y )).

(3) This follows immediately from (2). �
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Thus, we may wash out reference to fa by setting

Ea =
⋂
{Ea(fa) | fa is a 1-good code of a}

= Ea(fa) for some (any) 1-good code fa of a.

Let

EX : [λ]<ω → HODM
T,A,B

a �→ Ea

Note that Ea ∈ ODM
T,A,B and Ea ⊆ HODM

T,A,B . Thus, Ea ∈ HODM
T,A,B and

EX ∈ HODM
T,A,B .

Our definition of the extender EX presupposes that for each a ∈ [λ]<ω

there is a 1-good code fa of a and the existence of such codes is guaranteed
by the assumption that M satisfies STT,A,B-determinacy for two moves. Thus
we have proved the following:

5.28 Lemma. Assume that M satisfies STT,A,B-determinacy for two moves.
Then EX is well-defined and EX ∈ HODM

T,A,B.

It is important to stress that although the extender EX is in HODM
T,A,B it

is defined in M . For example, the certification that a certain set Y is in Ea

depends on the existence of a winning strategy for a game in M . In general
both the strategy and the game will not be in HODM

T,A,B . So in establishing
properties of EX that hold in HODM

T,A,B we nevertheless have to consult the
parent universe M .

5.29 Lemma. Assume that M satisfies STT,A,B-determinacy for two moves.
Then

HODM
T,A,B |= EX is a pre-extender,

that is, HODM
T,A,B satisfies

(1) for each a ∈ [λ]<ω,

(a) Ea is a κ-complete ultrafilter on [κ]|a| and

(b) Ea is principal iff a ⊆ κ, and

(2) if a ⊆ b ∈ [λ]<ω and Y ∈ Ea then Y a,b ∈ Eb.

Proof. (1)(a) It is easy to see that Ea is an ultrafilter in HODM
T,A,B . It

remains to see that Ea is κ-complete in HODM
T,A,B . The proof is similar to

that of Lemma 4.7. Let fa be a 1-good code of a such that Ea = Ea(fa) and
recall that

Ea(fa) = {Y ∈ P([κ]|a|) ∩HODM
T,A,B | I wins GX(S(a, fa, Y ))}.
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Consider {Yα | α < γ} ∈ HODM
T,A,B such that γ < κ and for each α < γ,

Yα ∈ Eα(fa). We have to show that

Y =
⋂
{Yα | α < γ} ∈ Ea(fa).

The key point is that

S(a, fa, Y ) =
⋂
{S(a, fa, Yα) | α < γ}

and so we are in almost exactly the situation as Lemma 4.7, only now we
have to carry along the parameter fa.

Since Y ∈ HODM
T,A,B , S(a, fa, Y ) ∈ ODM

T,A,B,fa
. Since fa is 1-good it

follows that GX(S(a, fa, Y )) is determined. Assume for contradiction that I
does not win GX(S(a, fa, Y )) and let σ′ be a winning strategy for I in GX(κ�

S(a, fa, Y )). We will derive a contradiction by finding a play that is legal
against σ′ and against winning strategies for I in each game GX(S(a, fa, Yα)),
for α < γ.

As in the case of Lemma 4.7, for the purposes of coding the winning strate-
gies (in the games GX(S(a, fa, Yα)) for α < γ) we need a prewellordering of
length γ which is such that in a reflection argument we can ensure that it
reflects to itself. For this purpose, for δ < κ, let

Qδ = Uδ �
⋃
{Uξ | ξ < δ}.

The sequence
〈Qξ | ξ < κ〉

gives rise to an ODM
T,A,B prewellordering with the feature that for FX -almost

all δ,
〈Qξ | ξ < δ〉 = 〈Qξ | ξ < δ〉Mϑ(δ)

and, by choosing a real, we can ensure that we always reflect to some such
point δ > γ.

Now set

Z = {(x, σ) | for some α < γ, x ∈ Qα and

σ is a winning strategy for I in GX(S(a, fa, Yα))}.

This set is ODM
T,A,B,fa

, hence determined (as fa is 1-good). So the game in
the Uniform Coding Lemma is determined. The rest of the proof is exactly
as before.

(b) By κ-completeness, Ea is principal if and only if there exists b ∈ [κ]|a|

such that
Ea = {Y ∈ P([κ]|a|) ∩HODM

T,A,B | b ∈ Y }.

Suppose that a ∈ [κ]|a|. We claim that b = a witnesses that Ea is principal.
Let fa be a 1-good code of a. For FX -almost all δ, aδ

fa
= a. So, for Y ∈
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P([κ]|a|) ∩HODM
T,A,B ,

Y ∈ Ea ↔ I wins GX(S(a, fa, Y ))

↔ I wins GX({δ ∈ S0(fa) | aδ
fa

= a ∈ Y })
↔ a ∈ Y.

Suppose that a �∈ [κ]|a|. We claim that no β ∈ [κ]|a| witnesses that Ea is
principal. Consider b ∈ [κ]|a| and let fb be a 1-good code for b and let fa be
a 1-good code for a. For FX -almost all δ, aδ

fa
�= bδ

fb
= b. Let S be the set of

such δ and let Y = {aδ
fa
| δ ∈ S}. Then Y ∈ Ea and b �∈ Y . Hence Ea is not

principal.
(2) Suppose a ⊆ b ∈ [λ]<ω and Y ∈ Ea. So I wins GX(S(a, fa, Y )) for

some (any) 1-good code fa of a. We must show that I wins GX(S(b, fb, Y
a,b))

for some (any) 1-good code fb of b. Let fb be a 1-good code of b and consider
the statement describing the manner in which a sits inside b. This is a
Σ1(M, {X,R, κ}) statement about fa and fb. So, by reflection, there exists
an S0(fa, fb) ∈ FX such that for all δ ∈ S0(fa, fb),

〈aδ
fa

, bδ
fb

,∈〉 ∼= 〈a, b,∈〉.

We claim that S(a, fa, Y )∩S0(fa, fb) ⊆ S(b, fb, Y
a,b). Let δ be an ordinal in

S(a, fa, Y ) ∩ S0(fa, fb). We have aδ
fa
∈ Y and 〈aδ

fa
, bδ

fb
,∈〉 ∼= 〈a, b,∈〉. Since,

by definition,
Y a,b = {z ∈ [κ]|b| | za,b ∈ Y },

this means that bδ
fb
∈ Y a,b (as (bδ

fb
)a,b = aδ

fa
), that is, δ ∈ S(b, fb, Y

a,b).
Finally, since I wins GX

(
S(a, fa, Y ) ∩ S0(fa, fb)

)
, I wins GX(S(b, fb, Y

a,b)).
�

5.30 Lemma. Assume that M satisfies STT,A,B-determinacy for two moves.
Then

HODM
T,A,B |= EX is countably complete.

Proof. Let {ai | i < ω} ∈ HODM
T,A,B and suppose that for each i < ω,

Xi ∈ Eai , that is, I wins GX(S(ai, fai , Xi)) for some (any) 1-good code
fai of ai. Let S =

⋂
i<ω S(ai, fai , Xi). We need to ensure that GX(S) is

determined. The point is that since {ai | i < ω} ∈ HODM
T,A,B , a slight

modification of the proof of Lemma 5.22 shows that there are fai such that
〈fai | i < ω〉 is 1-good. So GX(S) is determined. As in the proof of the
completeness of Ea we have that I wins GX(S).

As in the proof of coherence there is a set S0(fa1 , . . . , fan , . . . ) ∈ FX such
that for all δ ∈ S0(fa1 , . . . , fan , . . . ),

〈aδ
1, . . . , a

δ
i , . . . 〉 ∼= 〈a1, . . . , ai, . . . 〉.
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Fix δ ∈ S ∩ S0(fa1 , . . . , fan , . . . ). Set

hi : ai → κ

(ai)j �→ ((ai)δ
fai

)j .

Since δ ∈ S0(fa1 , . . . , fan , . . . ), the function

h =
⋃

i<ωhi :
⋃

i<ωai → κ

is well-defined. Since δ ∈ S(ai, fai , Xi), h“ai = (ai)δ
fai

∈ Xi. However, h

may not belong to HODM
T,A,B . To see that there is such an h in HODM

T,A,B

consider the tree T of attempts to build such a function. (The nth level of
T consists of approximations h∗ :

⋃
i<n ai → κ and the order is by inclusion.)

Thus T ∈ HODM
T,A,B and the existence of h in V shows that T is ill-

founded in V . But well-foundedness is absolute, so some such h must belong
to HODM

T,A,B . �

It remains to establish that

HODM
T,A,B |= EX is normal.

This will follow from an analogue of the earlier strong normality theorems.

5.31 Definition. Assume M satisfies STT,A,B-determinacy for two moves.
For α < λ, let fα : ωω → ωω be a 1-good code of {α} (as in Lemma 5.22)
and (as in Definition 5.25), for δ ∈ S0(fα), let αδ

fα
be the “reflected version”

of α. We call the function

gfα : S0(fα) → κ

δ �→ αδ
fα

the canonical function associated to fα.

Notice that the manner in which the ordinal αδ
fα

is determined is different
than in Sect. 4. In Sect. 4 we just chose t ∈ Qα and let αδ

t be unique such
that t ∈ Qδ

αδ
t
. Notice also that gfα is 1-good since it is ODM

T,A,B,fa
.

The statement and proof of strong normality are similar to before, only
now we have to ensure that the objects are sufficiently good to guarantee
the determinacy of the games defined in terms of them. The real parameters
that arise in the proof of strong normality will now have to be generated
using the technique of Lemma 5.22 and every time we use this technique
we will sacrifice one degree of goodness. There will be finitely many such
sacrifices and so it suffices to assume that M satisfies STT,A,B-determinacy
for n moves for some sufficiently large n. Furthermore, there is no loss in
generality in making this assumption since in all of the applications of the
Generation Theorem, one will be able to show without DC that M satisfies
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STT,A,B-determinacy for n < ω. As we shall see there will in fact only be
two sacrifices of goodness. Thus, since we want our final object to be 1-good
(to ensure that the games defined in terms of it are determined) it suffices to
start with an object which is 3-good.

5.32 Theorem (Strong Normality). Suppose g : κ→ κ is such that

(1) g is 3-good and

(2) I wins GX({δ ∈ S0 | g(δ) < λδ}).

Then there exists an α < λ such that

I wins GX({δ ∈ S0(fα) | g(δ) = gfα(δ)}),

where fα is any 1-g-good code of α.

Proof. We begin with a few comments. First, note that since g is 3-good, by
Lemma 5.22 we have that for each α < λ there is a 1-g-good code fα of α (in
fact, there is a 2-g-good code) and hence each game GX({δ ∈ S0(fα) | g(δ) =
gfα(δ)}) is determined. The only issue is whether I wins some such game.

Second, notice that α is uniquely specified. For suppose fα̂ is a 1-g-good
code of α̂ such that I wins the corresponding game. If α < α̂, then

{δ ∈ S0(fα) ∩ S0(fα̂) | gfα(δ) < gfα̂
(δ)} ∈ FX

and I wins GX(S) where S is this set. But then I cannot win both

GX({δ ∈ S0(fα) | g(δ) = gfα(δ)})

and
GX({δ ∈ S0(fα̂) | g(δ) = gfα̂

(δ)}).
Third, it will be useful at this point to both list the parameters that

will arise in the proof and motivate the need for assuming that g is 3-good.
In outline the proof will follow that of Theorem 4.12. The final game in
the present proof (the one involving e1) will be defined in terms of three
parameters: g, fη and e0, corresponding respectively to f , yη, and e0 from
Theorem 4.12. To ensure the determinacy of the final game we will need to
take steps to ensure that (g, fη, e0) is 1-good. Now, the parameter e0 will be
obtained by applying the technique of Lemma 5.22 to the parameter (g, fη)
and so we will need to take steps to ensure that this parameter is 2-good.
And the parameter fη will in turn be obtained by applying the technique of
Lemma 5.22 to the parameter g and so we have had to assume from the start
that g is 3-good.

We now turn to the proof proper. Suppose g : κ→ κ is such that

(1.1) g is 3-good and

(1.2) I wins GX({δ ∈ S0 | g(δ) < λδ}).
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Assume for contradiction that for each α < λ and for each 1-g-good code fα

of α,

(2.1) I does not win GX({δ ∈ S0(fα) | g(δ) = gfα(δ)}),

and hence (since each such game is determined, as fα is 1-g-good)

(2.2) I wins GX({δ ∈ S0(fα) | g(δ) �= gfα(δ)}).

Step 1. Let

η = min
({

β < λ | I wins GX({δ ∈ S0(fβ) | g(δ) < gfβ
(δ)})

for each 1-g-good code fβ of β
})

if such β exist; otherwise let η = λ. (So if there are such β then η is a limit
ordinal.) Notice that

(3.1) whenever α < η and fα is a 1-g-good code of α,

I wins GX({δ ∈ S0(fα) | g(δ) > gfα(δ)}),

which is the desired situation. By Lemma 5.22, let

fη be a 2-g-good code of η.

For notational convenience, for δ ∈ S0(fη), let ηδ be ηδ
fη

. By the definition
of η, I wins GX({δ ∈ S0(fη) | g(δ) < gfη (δ)}). Now update S0 to be S0∩{δ ∈
S0(fη) | g(δ) < gfη (δ)}. We will work on this “large” set. Notice that S0 is
ODM

T,A,B,g,fη
. If η = λ then ηδ = δ and we may omit mention of fη in what

follows.
For convenience let us write “S ∈ μX” as shorthand for “I wins GX(S)”.

To summarize:

(4.1) g is 3-good,

(4.2) (g, fη) is 2-good (First Drop in Goodness),

(4.3) S0 is ODM
T,A,B,g,fη

,

(4.4) S0 ∈ μX and for all δ ∈ S0, g(δ) < gfη (δ), and

(4.5) for all α < η and for all 1-g-good codes fα of α,

{δ ∈ S0(fα) | g(δ) > gfα(δ)} ∈ μX .

Step 2. We now establish the “disjointness property”.
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Let

Z ′ =
{
(x, 〈y, σ〉) | x ∈ Qκ

α for some α < η,

y codes a 1-g-good code fα of α

such that x ∈ ran(fα�B), and
σ is a winning strategy for I in

GX({δ ∈ S0(fα) | g(δ) > gfα(δ)})
}
.

We have

(5.1) Z ′ is ODM
T,A,B,g,fη

and Z ′ ⊆ Qκ
<η × ωω, and

(5.2) for all α < η,
Z ′ ∩ (Qκ

α × ωω) �= ∅,

by (3.1).

Since (g, fη) is 2-good the game in the proof of the Uniform Coding Lemma
(Theorem 3.4) is determined. So there is an index e ∈ ωω such that for all
α < η,

(6.1) U
(2)
e (Qκ

<α, Qκ
α) ⊆ Z ′ ∩ (Qκ

α × ωω) and

(6.2) U
(2)
e (Qκ

<α, Qκ
α) �= ∅.

The trouble is that we have no guarantee that such an index e has any degree
of (g, fη)-goodness; yet this is essential for the present proof since we shall go
on to define games in terms of this index and we need some guarantee that
these games are determined. As usual, we retreat from the reals we want to
the good functions that capture them and this will lead to the second (and
final) drop in goodness. Let

A0 =
{
x ∈ ωω | xeven is such that for all α < η

(1) U (2)
xeven

(Qκ
<α, Qκ

α) ⊆ Z ′ ∩ (Qκ
α × ωω) and

(2) U (2)
xeven

(Qκ
<α, Qκ

α) �= ∅
}
.

So A0 ∈ ODM
T,A,B,g,fη

. Now have I play A0 in (SGB
T,A,B,g,fη

)M and let f0

be II’s response. Since (g, fη) is 2-good, II’s response f0 is 1-(g, fη)-good.
Furthermore,

(7.1) ∀x ∈ B ∀y ∈ ωω (f0(x) ∗ y ∈ A0), which is to say,

(7.2) ∀x ∈ B ∀y ∈ ωω (f0(x) ∗ y)even is an index as in (6.1) and (6.2), hence

(7.3) ∀α < η,
⋃

x∈B U
(2)
(f0(x)∗0)even

(Qκ
<α, Qκ

α) is as in (6.1) and (6.2).

The union in (7.3) is itself Σ∼
1
1(B,Qκ

<α, Qκ
α) and so there is an e0 ∈ ωω which

is definable from f0 (and hence inherits the 1-(g, fη)-goodness of f0) such
that
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(8.1) (g, fη, e0) is 1-good (Second Drop in Goodness) and

(8.2) for all α < η,

(1) U
(2)
e0 (B,Qκ

<α, Qκ
α) ⊆ Z ′ ∩ (Qκ

α × ωω) and

(2) U
(2)
e0 (B,Qκ

<α, Qκ
α) �= ∅.

Omitting Z ′, (8.2) is Σ1(M, {X,κ,R, fη, e0}). So, for FX -almost all δ,

(8.3) for all α < ηδ,

(1) U
(2)
e0 (B,Qδ

<α, Qδ
α) ⊆ (Qδ

α × ωω) and

(2) U
(2)
e0 (B,Qδ

<α, Qδ
α) �= ∅.

The set S′
1 of such δ is Σ1(M, {X,κ,R, fη, e0}). Let S1 = S′

1 ∩ S0. Since
S′

1 ∈ μX and S0 ∈ μX , it follows that S1 ∈ μX . Notice also that S1 is
Σ1(M, {X,κ,R, g, fη, e0}). For δ ∈ S1 ∪ {κ} and α < ηδ, let

Zδ
α = U (2)

e0
(B,Qδ

<α, Qδ
α) and

Zδ =
⋃

α<ηδ
Zδ

α.

Claim A (Disjointness Property). There is an S2 ⊆ S1 such that S2 ∈ μX

and for δ1, δ2 ∈ S2 ∪ {κ} with δ1 < δ2 � κ,

Zδ1
α ∩ Zδ2

β = ∅

for all α ∈ [g(δ1), ηδ1) and β ∈ [0, ηδ2).

Proof. We begin by establishing a special case.

Subclaim. For μX-almost all δ,

Zδ
α ∩ Zκ

β = ∅

for all α ∈ [g(δ), ηδ) and β ∈ [0, η).

Proof. Let

G =
{
δ ∈ S1 | Zδ

α ∩ Zκ
β = ∅ for all α ∈ [g(δ), ηδ) and β ∈ [0, η)

}

be the set of “good points”. Our aim is to show that G ∈ μX . Note that G
is ODM

T,A,B,g,fη,e0
. Since (g, fη, e0) is 1-good, GX(G) is determined. Assume

for contradiction that G �∈ μX . Then, by determinacy, κ � G ∈ μX . Since
S1 ∈ μX , we have (κ � G) ∩ S1 ∈ μX . Let σ′ be a winning strategy for I in
GX((κ � G) ∩ S1).

We get a contradiction much as before: We can “take control” of the games
to produce a play z and an ordinal δ0 such that

(9.1) z is a legal play for II against σ′ and δ0 is the associated ordinal and
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(9.2) z is a legal play for II against each σ ∈ (proj2(Zδ0))1 and in each
case δ0 is the associated ordinal.

This will finish the proof: By (9.1) and the definition of G, there is an
α0 ∈ [g(δ0), ηδ0) and a β0 ∈ [0, η) such that Zδ0

α0
∩Zκ

β0
�= ∅. Fix (x0, 〈y0, σ0〉) ∈

Zδ0
α0
∩Zκ

β0
. Since (x0, 〈y0, σ0〉) ∈ Zκ

β0
⊆ Z ′ ∩ (Qκ

β0
×ωω) we have, by the defi-

nition of Z ′, x0 ∈ Qκ
β0

, y0 codes a 1-g-good code fβ0 of β0, x0 ∈ ran(fβ0�B),
and σ0 is a winning strategy for I in S({δ ∈ S0(fβ0) | g(δ) > gfβ0

(δ)}). Since
(x0, 〈y0, σ0〉) ∈ Zδ0

α0
, σ0 ∈ (proj2(Zδ0))1. Now, by (9.2), z is a legal play for

II against σ0 with associated ordinal δ0, and since σ0 is a winning strategy
for I in S({δ ∈ S0(fβ0) | g(δ) > gfβ0

(δ)}), this implies

(10.1) δ0 ∈ {δ ∈ S0(fβ0) | g(δ) > gfβ0
(δ)},

that is, g(δ0) > gfβ0
(δ0). We now argue

(10.2) gfβ0
(δ0) = α0,

which is a contradiction since α0 � g(δ0). Recall that by definition gfβ0
(δ0) =

|fβ0(x)|�δ0
, where x is any element of B. Since we arranged x0 ∈ ran(fβ0�B)

and since (x0, 〈y0, σ0〉) ∈ Zδ0
α0

, this implies that gfβ0
(δ0) = |fβ0(x)|�δ0

= α0,
where x is any element of B. Thus, a play z as in (9.1) and (9.2) will finish
the proof.

The play z is constructed as before:

Base Case. We have

(11.1) ∀y ∈ ωω ((σ′ ∗ y)I)0 ∈ UX and

(11.2) ∀y ∈ ωω ∀σ ∈ (proj2(Zκ))1 ((σ ∗ y)I)0 ∈ UX .

This is a true Σ1(M, {X,κ,R, σ′, e0, fη}) statement. So there is a z0 ∈ UX

such that z0 �T 〈σ′, e0, fη〉 and for all δ if z0 ∈ Uδ then

(11.3) ∀y ∈ ωω ((σ′ ∗ y)I)0 ∈ Uδ and

(11.4) ∀y ∈ ωω ∀σ ∈ (proj2(Zδ))1 ((σ ∗ y)I)0 ∈ Uδ.

(n + 1)st Step. Assume we have defined z0, . . . , zn in such a way that

(12.1) ∀y ∈ ωω
(
∀i � n (y)i = zi → ((σ′ ∗ y)I)n+1 ∈ UX

)
and

(12.2) ∀y ∈ ωω σ ∈ (proj2(Zκ))1,
(
∀i � n (y)i = zi → ((σ ∗ y)I)n+1 ∈

UX

)
.

This is a true Σ1(M, {X,κ,R, σ′, e0, fη, z0, . . . , zn}) statement. So there is a
zn+1 ∈ UX such that zn+1 �T zn and for all if zn+1 ∈ Uδ then

(12.3) ∀y ∈ ωω
(
∀i � n (y)i = zi → ((σ′ ∗ y)I)n+1 ∈ Uδ

)
and

(12.4) ∀y ∈ ωω ∀σ ∈ (proj2(Zδ))1
(
∀i � n (y)i = zi → ((σ ∗ y)I)n+1 ∈ Uδ

)
.
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Finally, let z ∈ ωω be such that (z)i = zi for all i ∈ ω and let δ0 be least such
that (z)i ∈ Uδ0 for all i ∈ ω. Notice that by our choice of zn, for n < ω, no
DC is required to construct z. We have that for all i ∈ ω,

(13.1) ((σ′ ∗ z)I)i ∈ Uδ0 by (11.3) and (12.3) and

(13.2) ((σ ∗ z)I)i ∈ Uδ0 for all σ ∈ (proj2(Zδ0))1 by (11.4) and (12.4).

So we have (9.1) and (9.2), which is a contradiction. �

By the subclaim,

(14.1) ∀δ ∈ G∀α ∈ [g(δ), ηδ) ∀β ∈ [0, η) (Zδ
α ∩ Zκ

β = ∅).

This is a true Σ1(M, {X,κ,R, 〈fη, e0〉, g, G}) statement ϕ. Notice that since
G is ODM

T,A,B,g,fη,e0
and (g, fη, e0) is 1-good, it follows that (G, g, fη, e0) is

1-good. In particular, (G, g) is 1-good, and so Theorem 5.20 applies (taking
〈fη, e0〉 for the real t in the statement of that theorem) and we have that

(14.3) for FX -almost all δ2,

(1) M |= ϕ[〈fη, e0〉, F (δ2), δ2, g�δ2, G ∩ δ2], that is,

(2) ∀δ1 ∈ G ∩ δ2 ∀α ∈ [g(δ1), ηδ1) ∀β ∈ [0, ηδ2) (Zδ1
α ∩ Zδ2

β = ∅).

Let S′
2 be the set of such δ2 in (14.3) and let S2 = S′

2 ∩G. Since S′
2 ∈ FX ⊆

μX and G ∈ μX , we have that S2 ∈ μX . Hence S2 is as desired in Claim A.
Also, S2 is ODM

T,A,B,g,fη,e0
. �

Notice that two additional parameters have emerged, namely, G and S2,
but these do not lead to a drop in goodness since

(15.1) ODM
T,A,B,g,fη,e0,G,S2

= ODM
T,A,B,g,fη ,e0,G = ODM

T,A,B,g,fη,e0
, and so

(15.2) (g, fη, e0, G, S2) is 1-good.

Step 3. We are now in a position to “compute g”.
For δ ∈ S2, let

P δ =
⋃{

Z δ̄
α | δ̄ ∈ S2 ∩ δ ∧ α ∈ [g(δ̄), ηδ̄)

}
.

By (15.1), P δ ∈ ODM
T,A,B,g,fη,e0

.

Claim B (Tail Computation). There exists an index e1 ∈ ωω such that
for all δ ∈ S2,

(1) U
(2)
e1 (P δ, Zδ

α) ⊆ Zδ
α for all α ∈ [0, ηδ),

(2) U
(2)
e1 (P δ, Zδ

g(δ)) = ∅, and

(3) U
(2)
e1 (P δ, Zδ

α) �= ∅ for α ∈ (g(δ), ηδ).



2062 Koellner and Woodin / Large Cardinals from Determinacy

Proof. As before it suffices to show (2) and (3′) U
(2)
e1 (P δ, Zδ

α) ∩ Zδ
α �= ∅ for

α ∈ (g(δ), ηδ).
Let

G =
{
e ∈ ωω | ∀δ ∈ S2

(
U (2)

e (P δ, Zδ
g(δ)) = ∅

)}
.

Toward a contradiction assume that for each e ∈ G, (3′) in the claim fails for
some δ and α. For each e ∈ G, let

αe = lexicographically least pair (δ, α) such that
(1) δ ∈ S2,

(2) g(δ) < α < ηδ, and

(3) U (2)
e (P δ, Zδ

α) ∩ Zδ
α = ∅.

Now play the game

I x(0) x(1) x(2) . . .
II y(0) y(1) . . .

where II wins iff (x ∈ G→ (y ∈ G ∧ αy >lex αx)).
The key point is that this payoff condition is ODM

T,A,B,g,fη,e0
, by (15.1),

and hence, the game is determined, since (g, fη, e0) is 1-good.
The rest of the proof is exactly as before. �

From this point on there are no uses of determinacy that require further
“joint goodness”.

Claim C. There exists an α0 < η such that

(1) U
(2)
e1 (Pκ, Zκ

α0
) = ∅ and

(2) U
(2)
e1 (Pκ, Zκ

α) �= ∅ for all α ∈ (α0, η), where

Pκ =
⋃
{Zδ

α | δ ∈ S2 ∧ α ∈ [g(δ), ηδ)}.

Proof. The statement that there is not a largest ordinal α0 which is “empty”
is Σ1(M, {X,κ,R, 〈fη, e0, e1〉, g, G, S2}). Since (g, fη, e0) is 1-good and G

and S2 are ODM
T,A,B,g,fη ,e0

, it follows that (g,G, S2) is 1-good. Thus, the
Reflection Theorem (Theorem 5.20) applies and we have that for FX -many δ,
the statement reflects, which contradicts Claim B. �

Let α0 be the unique ordinal as above and let fα0 be a 1-g-good code of
α0 (which exists by Lemma 5.22). The statement

(16.2) ∀x ∈ B fα0(x) ∈ Qκ
α where α is such that

(1) U
(2)
e1 (Pκ, Zκ

α) = ∅ and

(2) U
(2)
e1 (Pκ, Zκ

β ) �= ∅ for β ∈ (α, ηδ).
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is Σ1(M, {X,κ,R, 〈fη, fα0 , e0, e1〉, g, G, S2}). Since (g,G, S2) is 1-good, the
Reflection Theorem (Theorem 5.20) applies and hence for FX -almost all δ
the statement reflects. Let S′

3 ∈ FX be this set. Let S3 = S′
3 ∩ S2. So

S3 ∈ μX . By Claim B and Claim C, for δ ∈ S3 the ordinal α in question is
g(δ). So I wins GX({δ ∈ S0(fα0) ∩ S3 | g(δ) = gfα0

(δ)}) and hence I wins
GX({δ ∈ S0(fα0) | g(δ) = gfα0

(δ)}). This game is determined since fα0 is
1-g-good.

To summarize:

(17.1) fα0 is 1-g-good and

(17.2) I wins GX({δ ∈ S0(fα0) | g(δ) = gfα0
(δ)}),

which completes the proof of strong normality. �

Since every g : κ → κ in HODM
T,A,B is 3-good and since in the context of

the main theorem we assume that M satisfies STT,A,B-determinacy for four
moves, we have shown:

5.33 Corollary. Suppose g : κ → κ is in HODM
T,A,B and such that I wins

GX({δ ∈ S0 | g(δ) < λδ}). Then there exists an α < λ and a 1-g-good code
fα of α such that

I wins GX({δ ∈ S0(fα) | g(δ) = gfα(δ)}).

5.34 Lemma (Normality). In HODM
T,A,B : If a ∈ [λ]<ω and f : [κ]|a| → κ

is such that
{z ∈ [κ]|a| | f(z) < zi} ∈ Ea

for some i � |a|, then there is a β < ai such that

{z ∈ [κ]|a∪{β} | | f(za,a∪{β}) = zk} ∈ Ea∪{β}

where k is such that β is the kth element of a ∪ {β}.
Proof. The proof just involves chasing through the definitions: Suppose
f : κ|a| → κ is a function in HODM

T,A,B such that for some i � |a|,

{z ∈ [κ]|a| | f(z) < zi} ∈ Ea.

Since M satisfies STT,A,B-determinacy for four moves, f is 4-good. So, by
Lemma 5.22, there is a 3-good code fa of a. Hence

(1.1) I wins GX({δ ∈ S0(fa) | f(aδ
fa

) < (aδ
fa

)i}).
Let

f ∗ : κ→ κ

δ �→
{

f(aδ
fa

) if δ ∈ S0(fa)
0 otherwise.

So f ∗ ∈ HODM
T,A,B,fa

and hence f ∗ is 3-good. By Theorem 5.32,
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(1.2) there is an fβ such that

(1) fβ is a 1-f ∗-good code of β,

(2) I wins GX({δ ∈ S0(fβ) | f ∗(δ) = gfβ
(δ)}), and

(3) I wins GX({δ ∈ S0(fβ) ∩ S0(fa) | f(aδ
fa

) = gfβ
(δ)}).

Note that β < ai since if β � ai then for FX -almost all δ, gfβ
(δ) � (aδ

fa
)i

and we get that I wins GX({δ ∈ S0(fβ) ∩ S0(fa) | f(aδ
fa

) � (aδ
fa

)i}), which
contradicts (1.1).

Let k be such that β = (a∪{β})k. Let fa∪{β} be a 1-good code of a∪{β}.
Note that

(2.1) for FX -almost all δ,
(
(a ∪ {β})δ

fa∪{β}

)
k

= gfβ
(δ)

and

(2.2) for FX -almost all δ,
(
(a ∪ {β})δ

fa∪{β}

)
a,a∪{β} = aδ

fa

and, moreover, I wins on these sets (since the parameters in the definitions
are 1-good). So (1.2)(3) yields

(3.1) I wins GX
({

δ ∈ S0(fa∪{β}) | f
((

(a ∪ {β})δ
fa∪{β}

)
a,a∪{β}

)

=
(
(a ∪ {β})δ

fa∪{β}

)
k

})
, that is,

(3.2) {z ∈ [κ]|a∪{β} | | f(za,a∪{β}) = zk} ∈ Ea∪{β},

as desired. �

We are now in a position to take the “ultrapower” of HODM
T,A,B by EX .

It will be useful to recall this construction and record some basic facts con-
cerning it. For further details see Steel’s chapter in this Handbook.

Let

D = {〈a, f〉 ∈ HODM
T,A,B | a ∈ [λ]<ω and f : [κ]|a| → HODM

T,A,B}.

We get an equivalence relation on D by letting

〈a, f〉 ∼E 〈b, g〉 ∈ D ↔ {z ∈ [κ]|a∪b| | f(za,a∪b) = g(zb,a∪b)} ∈ Ea∪b.

Let [a, f ] be the elements of minimal rank of the equivalence class of 〈a, f〉.
Let Ult be the structure with domain

{[a, f ] | 〈a, f〉 ∈ D}
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and membership relation defined by

[a, f ] ∈EX
[b, g]↔ {z ∈ [κ]|a∪b| | f(za,a∪b) ∈ g(zb,a∪b)} ∈ Ea∪b.

Since HODM
T,A,B satisfies AC, �Loś’s theorem holds in the following form: For

all formulas ϕ(x1, . . . , xn) and all elements [a1, f1], . . . , [an, fn] ∈ Ult,

Ult |= ϕ
[
[a1, f1], . . . , [an, fn]

]

↔ {z ∈ [κ]|b| | HODM
T,A,B |= ϕ[f1(za1,b), . . . , fn(zan,b)]} ∈ Eb,

where b =
⋃

1�i�n ai. It follows that

j′
E : HODM

T,A,B → Ult

x �→ [∅, cx],

where cx is the constant function with value x, is an elementary embedding.
The countable completeness of EX ensures that Ult is well-founded and it is
straightforward to see that it is extensional and set-like. So we can take the
transitive collapse. Let

π : Ult →MX

be the transitive collapse map and let

jE : HODM
T,A,B →MX

be the elementary embedding obtained by letting jE = π ◦ j′
E . The κ-

completeness of each Ea, for a ∈ [λ]<ω, implies that jE is the identity on
HODM

T,A,B ∩Vκ and that κ is the critical point of jE . Normality implies that
for each a ∈ [λ]<ω, π([a, z �→ zi]) = ai, for each i such that 1 � i � |a|. In
particular, if α < λ then α = π([{α}, z �→ ∪z]). It follows that λ � jE(κ).

5.35 Lemma (T -strength).

HODM
T,A,B |= ZFC + There is a T -strong cardinal.

Proof. We already have that

HODM
T,A,B |= ZFC,

by Lemma 5.16. It follows that there are arbitrarily large λ < ΘM such that

HODM
T,A,B ∩ V

HODM
T,A,B

λ = Lλ[A],

where A ⊆ λ and A ∈ HODM
T,A,B . Let λ be such an ordinal and let κ, jE ,

etc. be as above. We have that jE(κ) � λ and it remains to show that

V
HODM

T,A,B

λ ⊆MX
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and
jE(T ∩ κ) ∩ λ = T ∩ λ.

The proof of each is the same. Let us start with the latter. We have to show
that for all α < λ,

α ∈ jE(T ∩ κ) ↔ α ∈ T.

We have

α ∈ jE(T ∩ κ) ↔ π([{α}, z �→ ∪z]) ∈ π([∅, cT ∩κ])
↔ [{α}, z �→ ∪z] ∈EX

[∅, cT ∩κ]

↔ {z ∈ [κ]1 | ∪z ∈ T ∩ κ} ∈ E{α}.

So we have to show that

α ∈ T ↔ {{z} | z ∈ T ∩ κ} ∈ E{α}.

Let f{α} be a 1-good code of {α}.
Assume α ∈ T . We have to show that

I wins GX
(
S({α}, f{α}, {{z} | z ∈ T ∩ κ})

)
.

The key point is that the statement “for all x ∈ B, |f{α}(x)|�λ
∈ T” is a true

Σ1(M, {X,κ,R, f{α}}) statement. So the set S of δ to which this statement
reflects is in FX . Since S ∈ ODM

T,A,B,f{α}
and f{α} is 1-good, GX(S) is

determined and I wins. But

S({α}, f{α}, {{z} | z ∈ T ∩ κ}) = S0(f{α}) ∩ S

and so I wins this game as well.
Assume α �∈ T . We have to show that

I does not win GX
(
S({α}, f{α}, {{z} | z ∈ T ∩ κ})

)
.

Again, the point is that the statement “for all x ∈ B, |f{α}(x)|�λ
�∈ T” is

a true Σ1(M, {X,κ,R, f{α}}) statement. So this statement reflects to FX -
almost all δ, which implies that I cannot win the above game.

Exactly the same argument with ‘A’ in place of ‘T ’ shows that

jE(A ∩ κ) ∩ λ = A ∩ λ,

and hence that
V

HODM
T,A,B

λ = Lλ[A] ⊆MX ,

which completes the proof. �

This completes the proof of the Generation Theorem. �
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5.4. Special Cases

We now consider a number of special instances of the Generation Theorem.
In each case all we have to do is find appropriate values for the parameters
ΘM , T , A, and B. We begin by recovering the main result of Sect. 4.

5.36 Theorem. Assume ZF + AD. Then

HODL(R) |= ΘL(R) is a Woodin cardinal.

Proof. For notational convenience let Θ = ΘL(R). Our strategy is to meet
the conditions of the Generation Theorem while at the same time arranging
that M = LΘ(R)[T,A,B] is such that

HODM
T,A,B = HODL(R) ∩ VΘ.

We will do this by taking care to ensure that the ingredients T , A, and B are
in HODL(R) while at the same time packaging HODL(R) ∩ VΘ as part of T .
It will then follow from the Generation Theorem that

HODL(R) ∩ VΘ |= ZFC + There is a T -strong cardinal,

and by varying T the result follows.
To begin with let ΘM = ΘL(R) and, for notational convenience, we con-

tinue to abbreviate this as Θ. By Theorem 3.9, Θ is strongly inaccessible in
HODL(R). Also,

HODL(R) ∩ VΘ = HODLΘ(R),

by Theorem 3.10. So we can let H ∈ P(Θ) ∩HODL(R) code

HODL(R) ∩ VΘ.

Fix T ′ ∈ P(Θ) ∩ HODL(R) and let T ∈ P(Θ) ∩ HODL(R) code T ′ and H.
By Lemmas 3.7 and 3.8, there is an ODL(R) sequence A = 〈Aα | α < Θ〉 such
that each Aα is a prewellordering of reals of length α. Let B = R.

Let
M = LΘ(R)[T,A,B]

where Θ, T , A, and B are as above. Conditions (1)–(5) of the Generation
Theorem are clearly met and condition (6) follows since L(R) satisfies AD
and M contains all reals. Moreover, since we have arranged that all of the
ingredients T , A, and B are in ODL(R) and also that T codes HODL(R) ∩VΘ,
we have

HODM
T,A,B = HODL(R) ∩ VΘ

and, since T ′ was arbitrary, the result follows as noted above. �

We can also recover the following approximation to Theorem 5.6.
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5.37 Theorem. Assume ZF + ACω(R). Suppose STX-determinacy holds,
where X is a set and B is non-empty and ODX . Then

HODX |= ΘX is a Woodin cardinal.

Proof. Let ΘM = ΘX . Let A = 〈Aα | α < ΘX〉 be such that Aα codes
the ODX -least prewellordering of reals of length α. By Theorem 3.9, ΘX is
strongly inaccessible in HODX and so there exists an H ∈ P(ΘX) ∩HODX

coding HODX ∩ VΘX
. Let T ∈ P(ΘX)∩HODX code H and some arbitrary

T ′ ∈ P(ΘX) ∩HODX .
Let

M = LΘM
(R)[T,A,B]

where ΘM , T , A, and B are as above. Work in HOD{X} ∪R. Conditions (3)–
(5) of the Generation Theorem are clearly met. For condition (2) note that
by Lemma 3.7, ΘX = ΘHOD{X} ∪R and that by the arguments of Lemma 3.8
and Lemma 3.9, ΘHOD{X} ∪R is regular in HOD{X} ∪R. Thus, ΘM is regular
in HOD{X} ∪R. Condition (6) follows from the fact that M is ODX and M
contains all of the reals. It remains to see that condition (1) can be met.
For this we just have to see that Replacement holds in M . If Replacement
failed in M then there would be a cofinal map π : ωω → ΘX that is definable
from parameters in M , which in conjunction with A would lead to an ODX

surjection from ωω onto ΘX , which is a contradiction. �

5.38 Remark. Work in ZF+DC. For μ a δ-complete ultrafilter on δ let Eμ be
the (δ, λ)-extender derived from μ where λ = j(δ) (or λ = δδ/μ) and j is the
ultrapower map. We have the following corollary: Assume ZF + AD + DC.
Then ΘX is Woodin in HODX and this is witnessed by the collection of
Eμ ∩HODX where μ is a normal ultrafilter on some δ < ΘX .

5.39 Remark. Theorem 5.6 cannot be directly recovered from the Gener-
ation Theorem and this is why we have singled it out for special treatment.
However, it follows from the proof of the Generation Theorem, as can be
seen by noting that in the case where one has full boldface determinacy the
ultrafilters are actually in HODX by Kunen’s theorem (Theorem 3.11).

4 Open Question. There are some interesting questions related to Theo-
rem 5.37.

(1) Suppose ΘX = Θ0. Suppose STX -determinacy, where B is non-empty
and ODX . Is Θ0 a Woodin cardinal in HOD?

(2) Suppose STX -determinacy, where X is a set and B is non-empty and
ODX . Is ΘX a Woodin cardinal in HOD?

(3) In the AD+ setting, every ΘX is of the form Θα and there are con-
straints on this sequence. For example, each ΘX must be of the form
Θα+1. Does this constraint apply in the lightface setting?



5. Woodin Cardinals in General Settings 2069

5.40 Theorem. Assume ZF + AD. Let S be a class of ordinals. Then for
an S-cone of x,

HODL[S,x]
S |= ω

L[S,x]
2 is a Woodin cardinal.

Proof. For an S-cone of x,

L[S, x] |= ZFC + GCH below ωV
1 ,

by Corollary 5.10, and, for all n < ω,

L[S, x] |= STS-determinacy for n moves,

where B = [x]S , by Theorem 5.13. Let x be in this S-cone.
Let ΘM = ω

L[S,x]
2 . Since L[S, x] satisfies GCH below ωV

1 and L[S, x] =
ODL[S,x]

S,x , by Lemma 3.8 we have that

ω
L[S,x]
2 = sup{α | there is an ODL[S,x]

S prewellordering of length α},

in other words, ω
L[S,x]
2 = (ΘS)L[S,x]. Let A = 〈Aα | α < ω

L[S,x]
2 〉 be such that

Aα is the ODL[S,x]
S -least prewellordering of length α. Since L[S, x] |= ODS-

determinacy, it follows (by Theorem 3.9) that ω
L[S,x]
2 is strongly inaccessible

in HODL[S,x]
S . So there is a set H ⊆ ω

L[S,x]
2 coding HODL[S,x]

S ∩ V
ω

L[S,x]
2

. Let

T ′ be in P(ωL[S,x]
2 ) ∩ ODL[S,x]

S and let T ∈ P(ωL[S,x]
2 ) ∩ ODL[S,x]

S code T
and H. Let B = [x]S .

Let
M = LΘM

(RL[S,x])[T,A,B],

where ΘM , T , A, and B are as above. Conditions (1)–(5) of the Generation
Theorem are clearly met and condition (6) follows since L[S, x] satisfies STS-
determinacy for four moves, M is ODS in L[S, x] and M contains the reals
of L[S, x]. Thus,

HODM
T,A,B |= ZFC + There is a T -strong cardinal.

Since we have arranged that all of the ingredients T , A, and B are in ODL[S,x]

and also that T codes HODL[S,x] ∩ V
ω

L[S,x]
2

, we have

HODM
T,A,B = HODL[S,x] ∩ V

ω
L[S,x]
2

.

Since T ′ was arbitrary, the result follows. �

5.41 Theorem. Assume ZF + AD. Then for an S-cone of x,

HODS,HODS,x
|= ω

HODS,x

2 is a Woodin cardinal.
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Proof. This will follow from the next theorem which is more general. �

The next two theorems require some notation. Suppose Y is a set and
a ∈ H(ω1). For x ∈ ωω, the (Y, a)-degree of x is the set

[x]Y,a = {z ∈ ωω | HODY,a,z = HODY,a,x}.

The (Y, a)-degrees are the sets of the form [x]Y,a for some x ∈ ωω. Define
x �Y,a y to hold iff x ∈ HODY,a,y. A cone of (Y, a)-degrees is a set of the
form {[y]Y,a | y �Y,a x0} for some x0 ∈ ωω and a (Y, a)-cone of reals is a set
of the form {y ∈ ωω | y �Y,a x0} for some x0 ∈ ωω. The proof of the Cone
Theorem (Theorem 2.9) generalizes to the present context. In the case where
a = ∅ we speak of Y -degrees, etc.

5.42 Theorem. Assume ZF+AD. Suppose Y is a set and a ∈ H(ω1). Then
for a (Y, a)-cone of x,

HODY,a,[x]Y,a
|= ω

HODY,a,x

2 is a Woodin cardinal,

where [x]Y,a = {z ∈ ωω | HODY,a,z = HODY,a,x}.

Proof. By determinacy it suffices to show that the above statement holds
for a Turing cone of x, which is what we shall do. The key issues in this
case are getting a sufficient amount of GCH and strategic determinacy. To
establish the first we need two preliminary claims. Recall that a set A ⊆ ωω

is comeager if and only if ωω
� A is meager.

Claim 1. Assume ZF + AD. Suppose that 〈Aα | α < γ〉 is a sequence of
sets which are comeager in the space ωω, where either γ ∈ On or γ = On,
in which case the sequence is a definable proper class. Then

⋂
α<γ Aα is

comeager.

Proof. Assume for contradiction that the claim fails and let γ be least such
that there is a sequence 〈Aα | α < γ〉 the intersection of which is not comea-
ger. By AD,

⋂
α<γ Aα has the property of Baire and so we may assume

without loss of generality that
⋂

α<γ Aα is meager. So, every proper initial
segment has comeager intersection while the whole sequence has meager in-
tersection. We can now violate the Kuratowski-Ulam Theorem. (This is the
analogue for category of Fubini’s theorem. See [9, 5A.9].) Define f on the
complement of

⋂
α<γ Aα as follows:

f(x) = min({α < γ | x �∈ Aα}).

So if y ∈
⋂

ξ<α Aξ then f(y) > α. Since
⋂

α<γ Aα is meager, dom(f) is
comeager. Consider the subset of the plane

Z = {(x, y) ∈ dom(f)× dom(f) | f(x) < f(y)}.
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For each x ∈ dom(f) the vertical section

Zx = {y ∈ dom(f) | f(y) > f(x)}

is comeager since it includes
⋂

α�f(x) Aα and for each y ∈ dom(f) the hori-
zontal section

Zy = {x ∈ dom(f) | f(x) < f(y)}
is meager since its complement contains the comeager set

⋂
α<f(y) Aα. Since

Z has the property of Baire, this contradicts the Kuratowski-Ulam Theorem,
the proof of which requires only ACω(R), which follows from AD (Theo-
rem 2.2). �

Claim 2. Assume ZF + AD. Suppose Y is a set, a ∈ H(ω1) and P ∈
HODY,a∩H(ω1) is a partial order. Then for comeager many HODY,a-generic
G ⊆ P,

HODY,a,G = HODY,a[G].

Proof. For each G we clearly have HODY,a[G] ⊆ HODY,a,G. We seek a set
A that is comeager in the Stone space of P and such that for all G ∈ A,
HODY,a,G = HODY,a[G]. We will do this by showing that for each G ∈ A
the latter model can compute the “ordinal theory” of the former model.

For every Σ2 statement ϕ and finite sequence of ordinals �ξ consider the
statement ϕ[�ξ, Y, a,G] about a generic G. Let Bϕ,�ξ,Y,a be the associated
collection of filters on P and let

Pϕ,�ξ = {p ∈ P | Bϕ,�ξ,Y,a is comeager in Op} and

Nϕ,�ξ = {p ∈ P | B¬ϕ,�ξ,Y,a is comeager in Op},

where Op is the open set of generics containing p. These are the sets of con-
ditions which “positively” and “negatively” decide ϕ[�ξ, Y, a,G], respectively.
So Pϕ,�ξ ∪Nϕ,�ξ is predense. Now let

Aϕ,�ξ = {G ⊆ P | ϕ[�ξ, Y, a,G] ↔ G ∩ Pϕ,�ξ �= ∅}

∪ {G ⊆ P | ¬ϕ[�ξ, Y, a,G] ↔ G ∩Nϕ,�ξ �= ∅}.

Each such set is comeager. We thus have a class size well-order of comeager
sets and so, by the previous lemma,

A =
⋂
{Aϕ,�ξ | ϕ is a Σ2 formula and �ξ ∈ On<ω}

is comeager. But now we have that for all G ∈ A

HODY,a,G = HODY,a[G]

since the latter can compute all answers to questions involving the former—
that is, questions of the form ϕ[�ξ, Y, a,G] where ϕ is Σ2—by checking whether
G hits Pϕ,�ξ or Nϕ,�ξ. (Notice that the restriction to Σ2 formulas suffices
(by reflection) since any statement about an initial segment of HODY,a,G

is Σ2.) �
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Claim 3. Assume ZF + AD. Suppose Y is a set and a ∈ H(ω1). Then for
a Turing cone of x,

HODY,a,x |= GCH below ωV
1 .

Proof. It suffices to show that CH holds on a cone since given this the proof
that GCH below ωV

1 holds on a cone goes through exactly as before.
Suppose for contradiction (by the Cone Theorem (Theorem 2.9)) that

there is a real x0 such that for all x �T x0,

HODY,a,x |= ¬CH.

We will arrive at a contradiction by producing an x �T x0 with the feature
that HODY,a,x |= CH. As before x is obtained by forcing (in two steps) over
HODY,a,x0 . First, we get a HODY,a,x0 -generic

G ⊆ Col(ωHODY,a,x0
1 ,RHODY,a,x0 )

and then we use almost disjoint forcing to code G with a real. Viewing the
generic g as a real, by the previous claim we have that for comeager many g,

HODY,a,x0,g = HODY,a,x0 [g] |= CH,

and hence
HODY,a,〈x0,g〉 |= CH,

which is a contradiction. �

Claim 4. Suppose Y is a set and a ∈ H(ω1). Then for a Turing cone of x,
for each n < ω, II can play n moves of SGB

Y,a,[x]Y,a
, where B = [x]Y,a, and

we demand in addition that II’s moves belong to HODY,a,x, in other words,
II can play n moves of the game

I A0 · · · An−1

II f0 · · · fn−1

where we require, for i + 1 < n,

(1) A0 ∈ P(ωω) ∩ODV
Y,a,[x]Y,a

, Ai+1 ∈P(ωω) ∩ODV
Y,a,[x]Y,a,f0,...,fi

and

(2) fi+1 is prestrategy for Ai+1 that belongs to HODY,a,x and is winning
with respect to [x]Y,a.

Proof. The proof of Theorem 5.13 actually establishes this stronger result. �

We are now in a position to meet the conditions of the Generation Theo-
rem. For a Turing cone of x,

HODY,a,x |= ZFC + GCH below ωV
1 ,
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by Claim 3, and for all n < ω,

STY,a,[x]Y,a
-determinacy for n moves

holds in V where B = [x]Y,a, by Claim 4. Let x be in this cone.
Let ΘM = ω

HODY,a,x

2 . Since HODY,a,x |= ZFC + GCH below ωV
1 ,

ΘM = Θ.

Since every set is ODY,a,x, and hence ODY,a,[x]Y ,x,

Θ = ΘY,a,[x]Y ,

by Lemma 3.8. Thus,
ω

HODY,a,x

2 = ΘHODY,a,x

Y,a,[x]Y,a
.

Letting A = 〈Aα | α < ω
HODY,a,x

2 〉 be such that Aα is the ODY,a,[x]Y,a
-least

prewellordering of length α we have that A is ODY,a,[x]Y,a
. We also have

that ω
HODY,a,x

2 is strongly inaccessible in HODY,a,[x]Y,a
, by Theorem 3.9. So

there is a set H ⊆ ω
HODY,a,x

2 coding HODY,a,[x]Y,a
∩ V

ω
HODY,a,x
2

. Let T ′ be in

P(ωHODY,a,x

2 )∩ODY,a,[x]Y,a
and let T ∈ P(ωHODY,a,x

2 )∩ODY,a,[x]Y,a
code T ′

and H. Let B = [x]Y,a.
Let

M = LΘM
(RHODY,a,x)[T,A,B],

where ΘM , T , A, and B are as above. Conditions (1)–(5) of the Generation
Theorem are clearly met. Condition (6) follows from the fact that M is
ODY,a,[x]Y,a

and we have arranged (in Claim 4) that all of II’s moves in
SGB

Y,a,[x]Y,a
are in M .

Thus,

HODM
T,A,B |= ZFC + There is a T -strong cardinal,

and since we have arranged that

HODM
T,A,B = HODY,a,[x]Y,a

∩ V
ω

HODY,a,x
2

,

and T was arbitrary, the result follows. �

In the above theorem the degree notion [x]Y,a depends on the initial choice
of a. However, later (in Sect. 6.2) we will want to construct models with many
Woodin cardinals. A natural approach to doing this is to iteratively apply
the previous theorem, starting off with a = ∅, increasing the degree of x

to get that ω
HODY,x

2 is a Woodin cardinal in HODY,[x]Y , and then taking

a = [x]Y , increasing the degree of x yet again to get that ω
HODY,[x]Y ,x

2 is a
Woodin cardinal in HODY,[x]Y ,[x]Y,[x]Y

, etc. This leads to serious difficulties
since the degree notion is changing. We would like to keep the degree notion
fixed as we supplement a and for this reason we need the following variant of
the previous theorem.
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5.43 Theorem. Assume ZF + AD. Suppose Y is a set and a ∈ H(ω1).
Then for a Y -cone of x,

HODY,a,[x]Y |= ω
HODY,a,x

2 is a Woodin cardinal,

where [x]Y = {z ∈ ωω | HODY,z = HODY,x}.

Proof. The proof is essentially the same as that of the previous theorem.
Claims 1 to 3 are exactly as before. The only difference is that now in
Claim 4 we have [x]Y in place of [x]Y,a. The proof of this version of the claim
is the same, as is that of the rest of the theorem. �

6. Definable Determinacy

We now use the Generation Theorem to derive the optimal amount of large
cardinal strength from both lightface and boldface definable determinacy.

The main result concerning lightface definable determinacy is the follow-
ing:

6.1 Theorem. Assume ZF+DC+Δ1
2-determinacy. Then for a Turing cone

of x,
HODL[x] |= ZFC + ω

L[x]
2 is a Woodin cardinal.

When combined with the results mentioned in the introduction this has
the consequence that the theories ZFC+OD-determinacy and ZFC + “There
is a Woodin cardinal” are equiconsistent. In order to prove this theorem we
will have to get into the situation of the Generation Theorem. The issue
here is that Δ1

2-determinacy does not imply that for a cone of x strategic
determinacy holds in L[x] with respect to the constructibility degree of x.
Instead we will use a different basis set B, one for which we can establish
STB-determinacy for four moves, using Δ1

2-determinacy alone.
The main result concerning boldface definable determinacy is the follow-

ing:

6.2 Theorem. Assume ZF+AD. Suppose Y is a set. There is a generalized
Prikry forcing PY through the Y -degrees such that if G ⊆ PY is V -generic
and 〈[xi]Y | i < ω〉 is the associated sequence, then

HODV [G]
Y,〈[xi]Y |i<ω〉,V |= ZFC + There are ω-many Woodin cardinals.

When combined with the results mentioned in the introduction this has
the consequence that the theories ZFC + OD(R)-determinacy and ZFC +
“There are ω-many Woodin cardinals” are equiconsistent. As an application
we show that when conjoined with the Derived Model Theorem (Theorem 1.5
or, more generally, Theorem 8.12) this result enables one to reprove and
generalize Kechris’ theorem (Theorem 2.6).
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6.1. Lightface Definable Determinacy

In this subsection we will work in the theory ZF+DC+Δ1
2-determinacy and

examine the features of the model L[x] for a Turing cone of reals x. Our aim
is to show that for a Turing cone of x,

HODL[x] |= ω
L[x]
2 is a Woodin cardinal.

This will be done by showing that the conditions of the Generation Theorem
can be met. We already know that this is true assuming full boldface deter-
minacy in the background universe. But now we are working with a weak
form of lightface definable determinacy and this presents new obstacles. The
main difficulty is in showing that for a Turing cone of x,

L[x] |= STB-determinacy

for an appropriate basis B. In the boldface setting we took our basis B to
be the constructibility degree of x. But as we shall see (in Theorem 6.12) in
our present setting one cannot secure this version of strategic determinacy.
Nevertheless, it turns out that strategic determinacy holds for a different,
smaller basis. This leads to the notion of restricted strategic determinacy.

We shall successively extract stronger and stronger forms of determinacy
until we ultimately reach the version we need. The subsection closes with
a series of limitative results, including results that motivate the need for
strategic and restricted strategic determinacy.

6.3 Theorem (Martin). Assume ZF + DC + Δ1
2-determinacy. Then Σ1

2-
determinacy.

Proof. Consider A = {x ∈ ωω | ϕ(x)} where ϕ is Σ1
2. We have to show that

A is determined. Our strategy is to show that if II (the Π1
2 player) does not

have a winning strategy for A then I (the Σ1
2 player) has a winning strategy

for A.
Assume that II does not have a winning strategy for A. First, we have

to shift to a “local” setting where we can apply Δ1
2-determinacy. For each

x ∈ ωω,

L[x] |= II does not have a winning strategy in {y ∈ ωω | ϕ(y)}

(since otherwise, by Σ1
3 upward absoluteness, II would have a winning strat-

egy in V , contradicting our initial assumption) and so, by the Löwenheim-
Skolem theorem, there is a countable ordinal λ such that

Lλ[x] |= T + II does not have a winning strategy in {y ∈ ωω | ϕ(y)},

where T is some fixed sufficiently strong fragment of ZFC (such as ZFCN

where N is large or ZFC−Replacement + Σ2-Replacement). For x ∈ ωω, let

λ(x) =μλ (Lλ[x] |= T + II does not have a winning
strategy in {y ∈ ωω | ϕ(y)}).
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For convenience let Ax = {y ∈ ωω | ϕ(y)}Lλ(x)[x].
Consider the game G

I a, x
II b

where I wins iff a ∗ b ∈ Lλ(x)[x] and Lλ(x)[x] |= ϕ(a ∗ b). Here Player I is to
be thought of as choosing the playing field Lλ(x)[x] in which the two players
are to play an auxiliary round (via a and b) of the localized game Ax. The
key point is that since λ(x) is always defined this game is Δ1

2 and hence
determined.

We claim that I has a winning strategy in G (and so I wins each round of
the localized games Ax) and, furthermore, that (by ranging over these rounds
and applying upward Σ1

2-absoluteness) this winning strategy yields a winning
strategy for I in A.

Assume for contradiction (by Δ1
2-determinacy) that II has a winning strat-

egy τ0 in G. For each x �T τ0, in Lλ(x)[x] we can derive a winning strategy
τx for II in Ax as follows: For a ∈ (ωω)Lλ(x)[x], let (a ∗ τx)II = b where b is
such that (〈a, x〉 ∗ τ0)II = b. Since τ0 is a winning strategy for II in G and
we have arranged that a ∗ b ∈ Lλ(x)[x], II must win in virtue of the second
clause, which means that a ∗ b /∈ Ax. Thus, Lλ(x)[x] |= “τx is a winning
strategy for II in Ax”, which is a contradiction.

Thus I has a winning strategy σ0 in G. Consider the derived strategy σ
such that for b ∈ ωω, (σ ∗ b)I = a where a is such that (σ0 ∗ b)I = 〈a, x〉. Since
σ0 is a winning strategy for I in G, σ ∗ b ∈ Lλ(x)[x] and Lλ(x)[x] |= ϕ(σ ∗ b)
and so, by upward Σ1

2-absoluteness, V |= ϕ(σ ∗ b). Thus, σ is a winning
strategy for I in A. �

6.4 Remark.

(1) The above proof relativizes to a real parameter to show that Δ1
2(x)-

determinacy implies Σ1
2(x)-determinacy.

(2) A similar but more elaborate argument shows that if Δ1
2-determinacy

holds and for every real x, x# exists, then Th(L[x]) is constant for a
Turing cone of x. See [4].

6.5 Theorem (Martin). Assume ZF + DC + Δ1
2-determinacy. If I has a

winning strategy in a Σ1
2 game then I has a Δ1

3 strategy.

Proof. Consider A = {x ∈ ωω | ϕ(x)} where ϕ is Σ1
2. Our strategy is to show

that if II (the Π1
2 player) does not win A then I (the Σ1

2 player) wins A via a
Δ1

3 strategy.
Assume that II does not have a winning strategy in A. For x ∈ ωω, let

λ(x), Ax, G, and σ0 be as in the previous proof. Since σ0 is a winning
strategy for I in G, for x �T σ0, in Lλ(x)[x] we can derive a winning strategy
σx for I in Ax as follows: For x �T σ0 and b ∈ (ωω)Lλ(x)[x] let (σ ∗ b)I = a
where a is such that (σ0 ∗ b)I = 〈a, x〉.
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Next we show that there is an x0 �T σ0 such that for all x �T x0,
Lλ(x)[x] |= Δ1

2-determinacy. Let 〈ϕn, ψn〉 enumerate the pairs of Σ1
2 formulas

and let Aϕ = {x ∈ ωω | ϕ(x)}. Using DC let zn be such that zn codes a
winning strategy for Aϕn if Aϕn = ωω

� Aψn (i.e. Aϕn is Δ1
2); otherwise let

zn = 〈0, 0, . . . 〉. Finally, let x0 code 〈zn | n < ω〉. Thus, for x �T x0,

Lλ(x)[x] |= I has a Σ1
4 strategy in Ax

by the Third Periodicity Theorem of Moschovakis.
(For a proof of Third Periodicity see Jackson’s chapter in this Hand-

book. The statement of Third Periodicity typically involves boldface de-
terminacy. However, the proof shows that lightface Δ1

2 determinacy suffices
to get Σ1

4 winning strategies for Σ1
2 games that I wins. To see this note that

Scale(Σ1
2) holds in ZF + DC. Furthermore, we also have the determinacy of

the Σ1
2 games (denoted Gn

s,t in Jackson’s chapter) that are used to define the
prewellorderings and ultimately the definable strategies. It follows that these
prewellorderings and strategies are


Σ1

2 ⊆ Σ1
4. (Notice that if we had Δ∼

1
2-

determinacy then we could flip the quantifiers and conclude that

Σ1

2 = Π1
3

and hence get Δ1
3 strategies. However, in our present lightface setting some

more work is required.))
For x �T x0, let σ̂x be the Σ1

4-strategy for I in Ax. For a Turing cone of
x the formula ϕ(y, z) defining this strategy is constant. We can now “freeze
out” the value of σ̂x on a Turing cone of x. The key point is that the function
x �→ Lλ(x)[x] is Δ1

2. So, for each s ∈ ω2n and m ∈ ω the statement

Lλ(x)[x] |= ϕ(s,m)

is Δ1
2. Thus, for each s ∈ ω2n, the m such that Lλ(x)[x] |= ϕ(s,m) is fixed for

a Turing cone of x. Since there are only countably many s ∈ ω2n this means
that the value of σ̂x is fixed on a Turing cone of x. Finally, letting

σ(s) = m↔ ∃x0∀x �T x0 (Lλ(x)[x] |= ϕ(s,m))
↔ ∀x0∃x �T x0 (Lλ(x)[x] |= ϕ(s,m))

(where we have used Δ1
2-determinacy to flip the quantifiers) we have that σ

is a Δ1
3 winning strategy for I in A. �

Kechris and Solovay showed (in [3]) that under ZF+DC+Δ1
2-determinacy

there is a real x0 that “enforces” OD-determinacy in the following sense: For
all x �T x0, L[x] |= OD-determinacy. We will need the following strength-
ening of this result, which involves a stronger notion of “enforcement”. We
need the following definition: An ordinal λ is additively closed (a.c.) iff for
all α, β < λ, α + β < λ.

6.6 Theorem. Assume ZF+DC+Δ1
2-determinacy. Then there is a real x0

such that for all additively closed λ > ω, and for all reals x, if x0 ∈ Lλ[x],
then Lλ[x] |= OD-determinacy.
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Proof. Some preliminary remarks are in order. First, for λ additively closed,
Lλ[x] might satisfy only a very weak fragment of ZFC; so the statement
“Lλ[x] |= OD-determinacy” is to be taken in the following external sense:
For each ξ < λ and for each formula ϕ, Lλ[x] |=“Either I or II has a winning
strategy for {z ∈ ωω | ϕ(z, ξ)}”. The point is that this statement makes sense
even when {z ∈ ωω | ϕ(z, ξ)} is a proper class from the point of view of
Lλ[x]. Second, the key feature of additively closed λ > ω, is that if y ∈ Lλ[x]
then Lλ[y] ⊆ Lλ[x]. This is true since additively closed ordinals λ > ω are
such that α + λ = λ for all α < λ and so if y is constructed at stage α, then
Lλ[x] still has λ-many remaining stages in which to “catch up” and construct
everything in Lλ[y]. Third, the proof of the theorem is a “localization” of
the proof of Theorem 5.12.

Assume for contradiction that for every real x0 there is an additively closed
λ > ω and a real x such that x0 ∈ Lλ[x] and Lλ[x] �|= OD-determinacy. So,
for every real x0 there is an additively closed λ > ω and a real x′ �T x0

such that Lλ[x′] �|= OD-determinacy (since we can take x′ = 〈x, x0〉 where x
and x0 are as in the first statement) and hence, by the Löwenheim-Skolem
theorem,

∀x0 ∈ ωω ∃x �T x0∃λ(λ is a.c. ∧ ω < λ < ω1)
∧ Lλ[x] �|= OD-determinacy,

where ‘a.c.’ abbreviates ‘additively closed’. Since the condition on x in this
statement is Σ1

2 and since we have Σ1
2-determinacy (by Theorem 6.3)

∃x0 ∈ ωω∀x �T x0∃λ(λ is a.c. ∧ ω < λ < ω1)
∧ Lλ[x] �|= OD-determinacy

by the Cone Theorem (Theorem 2.9). Let

λ(x) =

{
μλ (ω < λ < ω1 ∧ λ is a.c. ∧ Lλ[x] �|= OD-det) if such a λ exists
undefined otherwise.

Notice that for a Turing cone of x

λ(x) is defined

and that there are x0 of arbitrarily large Turing degree such that for all
x �T x0

λ(x) � λ(x0).

To see this last point it suffices to observe that otherwise (by Σ1
2-determinacy

and the Cone Theorem (Theorem 2.9)) there would be an infinite descending
sequence of ordinals. This point will be instrumental below in ensuring that
Player II can “steer into the right model”.

For each x such that λ(x) is defined let (ϕx, ξx) be lexicographically least
such that

Lλ(x)[x] |= {z ∈ ωω | ϕx(z, ξx)} is not determined
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and let Ax = {z ∈ ωω | ϕx(z, ξx)}. (However, note that since Ax might be
a proper class from the point of view of Lλ(x)[x], when we write ‘Lλ(x)[x] |=
a ∈ Ax’ we really mean ‘Lλ(x)[x] |= ϕx(a, ξx)’.)

Consider the game
I a, b
II c, d

where, letting p = 〈a, b, c, d〉, I wins iff λ(p) is defined and Lλ(p)[p] |= “a ∗ d ∈
Ap”. This game is Σ1

2, hence determined.
(Notice that in contrast to the proof of Theorem 5.12 we cannot include

x0 in p since we need our game to be lightface definable. However, in the
plays of interest we will have one player fold in x0. This will ensure that the
first clause of the winning condition is satisfied and so the players are to be
thought of as cooperating to determine the model Lλ(p)[p] and simultaneously
playing an auxiliary game (via a and d) on the least non-determined OD set
of this model, namely, Ax.)

We will arrive at a contradiction by showing that neither player can win.

Case 1: I has a winning strategy σ0.

Let x0 �T σ0 be such that for all x �T x0, λ(x) is defined and λ(x) �
λ(x0). We claim that Lλ(x0)[x0] |= “I has a winning strategy σ in Ax0”,
which is a contradiction. The strategy σ is the strategy derived by playing
the main game according to σ0 while having II feed in x0 for c and playing
some auxiliary play d ∈ Lλ(x0)[x0]; that is, (σ ∗ d)I = a where a is such that
(σ0 ∗ 〈x0, d〉)I = 〈a, b〉:

I a, b
II x0, d.

Let p = 〈a, b, x0, d〉. Since we have ensured that p �T x0 we know that λ(p)
is defined and, since σ0 is winning for I, I must win in virtue of the first clause
and so Lλ(p)[p] |= “a ∗ d ∈ Ap”. It remains to see that II has managed to
“steer into the right model”, that is, that

Lλ(p)[p] = Lλ(x0)[x0]

and hence
Ap = Ax0 .

Since x0 �T σ0 and d ∈ Lλ(x0)[x0] we have that p ∈ Lλ(x0)[x0] and

Lλ(x0)[p] = Lλ(x0)[x0]

(where for the left to right inclusion we have used that λ(x0) is additively
closed). Furthermore, by arrangement, λ(p) � λ(x0) since p �T x0. But
λ(p) is the least additively closed λ such that ω < λ < ω1 and Lλ[p] �|= OD-
determinacy. Thus, λ(p) = λ(x0) and

Lλ(p)[p] = Lλ(x0)[x0].
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So Lλ(x0)[x0] |= “σ ∗ d ∈ Ax0”. Since this is true for any d ∈ Lλ(x0)[x0], this
means that Lλ(x0)[x0] |= “σ is a winning strategy for I in Ax0”, which is a
contradiction.

Case 2: II has a winning strategy τ0.

Let x0 �T τ0 be such that for all x �T x0, λ(x) is defined and λ(x) �
λ(x0). For a ∈ Lλ(x0)[x0] let (a ∗ τ)II where d is such that (〈a, x0〉 ∗ τ0)II =
〈c, d〉. Since p �T x0, II must win in virtue of the second clause. The rest
of the argument is exactly as above. So we have that Lλ(x0)[x0] |= “τ is a
winning strategy for II in Ax0”, which is a contradiction. �

6.7 Remark. The proof relativizes to a real parameter to show ZF + DC +
Σ1

2(x)-determinacy implies that there is a real enforcing (in the strong sense
of Theorem 6.6) ODx-determinacy.

6.8 Corollary (Kechris and Solovay). Assume ZF. Suppose L[x] |= Δ1
2-

determinacy, where x ∈ ωω. Then L[x] |= OD-determinacy.

Proof. This follows by reflection. �

We will now extract an even stronger form of determinacy from Δ1
2-

determinacy. We begin by recalling some definitions. The strategic game
with respect to the basis B is the game SGB

I A0 · · · An · · ·
II f0 · · · fn · · ·

where we require

(1) A0 ∈ P(ωω) ∩OD, An+1 ∈P(ωω) ∩ODf0,...,fn and

(2) fn is a prestrategy for An that is winning with respect to B,

and II wins iff he can play all ω rounds. We say that strategic determinacy
holds with respect to the basis B (STB-determinacy) if II wins SGB .

In the context of L[S, x] we dropped reference to the basis B since it was
always understood to be {y ∈ ωω | L[S, y] = L[S, x]}. In our present lightface
setting we will have to pay more careful attention to B since (as we will see
in Theorem 6.12) Δ1

2-determinacy is insufficient to ensure that for a Turing
cone of x, L[x] |= STB-determinacy, where B = {y ∈ ωω | L[y] = L[x]}. We
will now be interpreting strategic determinacy in the local setting of models
Lλ[x] where x ∈ ωω and λ is a countable ordinal and the relevant basis will
be of the form C ∩ {y ∈ ωω | Lλ[y] = Lλ[x]} where C is a Π1

2 set of Lλ[x].
It is in the attempt to “localize” the proof of Theorem 5.14 that the need
for the Π1

2 set becomes manifest. The issue is one of “steering into the right
model” and can be seen to first arise in the proof of Claim 3 below.

Let RST-determinacy abbreviate the statement “There is a Π1
2 set C

such that C contains a Turing cone and STB-determinacy holds where B =
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C ∩ {y ∈ ωω | L[y] = V }”. Here ‘R’ stands for ‘restrictive’. We will be
interpreting this notion over models Lλ[x] that do not satisfy full Replace-
ment. In such a case it is to be understood that the statement involves the
Σ1 definition of ordinal definability.

6.9 Theorem. Assume ZF+DC+Δ1
2-determinacy. Then for a Turing cone

of x,
L[x] |= RST-determinacy.

Proof. We will actually prove something stronger: Assume ZF + V = L[x] +
Δ1

2-determinacy for some x ∈ ωω. Let T be the theory ZFC−Replacement+
Σ2-Replacement. Then there is a real z0 such that if Lλ[z] is such that
z0 ∈ Lλ[z] and Lλ[z] |= T then Lλ[z] |= RST-determinacy. The theorem
follows by reflection.

Assume for contradiction that for every real z0 there is a real z �T z0 and
an ordinal λ such that Lλ[z] |= T+¬RST-determinacy. The preliminary step
is to reduce to a local setting where we can apply Δ1

2-determinacy. By the
Löwenheim-Skolem theorem

∀z0 ∈ ωω ∃z �T z0 ∃λ < ω1 (Lλ[z] |= T + ¬RST-determinacy).

Since the condition on z in this statement is Σ1
2 and since we have OD-

determinacy (by Corollary 6.8) it follows (by the Cone Theorem (Theo-
rem 2.9)) that

∃z0 ∈ ωω ∀z �T z0 ∃λ < ω1 (Lλ[z] |= T + ¬RST-determinacy).

For z ∈ ωω, let

λ(z) =

{
μλ (Lλ[z] |= T + ¬RST-determinacy) if such a λ exists
undefined otherwise.

Thus, if λ(z) is defined, then for every (Π1
2)

Lλ(z)[z] set C that contains a
Turing cone, I wins the game

I A0 · · · An · · ·
II f0 · · · fn · · ·

where we require

(1) A0 ∈ ODLλ(z)[z], An+1 ∈ ODLλ(z)[z]

f0,...,fn
, and

(2) fn is a prestrategy for An that is winning with respect to C ∩{y ∈ ωω |
Lλ(z)[y] = Lλ(z)[z]}.

We now need to specify a particular (Π1
2)

Lλ(z)[z] set since (i) we want to get our
hands on a canonical winning strategy σz for I and (ii) we need to solve the
“steering problem”. The näıve approach would be to forget about the Π1

2 sets



2082 Koellner and Woodin / Large Cardinals from Determinacy

and just work with {y ∈ ωω | Lλ(z)[y] = Lλ(z)[z]}. The trouble is that for an
element y of this set we might have λ(y) < λ(z) and yet (when we implement
the proof of Theorem 5.13) we will need to ensure that Lλ(y)[y] = Lλ(z)[z]
and thus Ay = Az and for this we require that λ(y) = λ(z). So we will need
to intersect with a set C that “holds up the value of λ(y)”. A good candidate
is the following: For each z such that λ(z) is defined let

Cz = {y ∈ ωω | λ(y) is undefined}Lλ(z)[z].

This is a (Π1
2)

Lλ(z)[z]-set. It contains z (since in Lλ(z)[z] the ordinal λ(z)
is certainly undefined). We would like to ensure that it contains the cone
above z.

Claim 1. For a Turing cone of z,

(1) λ(z) is defined,

(2) for all reals y ∈ Lλ(z)[z], if y �T z then λ(y) = λ(z).

Proof. We have already proved (1). Assume for contradiction that (2) does
not hold on a Turing cone. Then (by OD-determinacy) for every real z there
is a real z′ �T z such that λ(z′) is defined and in Lλ(z′)[z′] there is a real
z′ ′ such that z′ ′ �T x′ and λ(z′ ′) < λ(z). But then, for each n < ω, we
can successively choose zn+1 �T zn such that λ(zn+1) < λ(zn), which is a
contradiction. �

For each z as in Claim 1 we now have that Cz contains the Turing cone
above z (since, by (2) of Claim 1, λ(y) = λ(z) and so Lλ(y)[y] = Lλ(z)[z] and
again in Lλ(z)[z] the ordinal λ(y) = λ(z) is undefined). Letting

Bz = {y ∈ Cz | Lλ(z)[y] = Lλ(z)[z]}

we have that
I wins (SGBz )Lλ(z)[z].

Moreover, since we have arranged that Lλ(z)[z] |= T, Player I has a canon-
ical strategy σz ∈ HODLλ(z)[z]. (This is because, since Lλ(z)[z] |= T, the
ODLλ(z)[z] sets of reals are sets (and not proper classes) in Lλ(z)[z]. So the
tree on which (SGBz )Lλ(z)[z] is played is an element of HODLλ(z)[z].) No-
tice also that σz depends only on the model Lλ(z)[z], in the sense that if
Lλ(y)[y] = Lλ(z)[z] then σy = σz.

Our aim is to obtain a contradiction by defeating σz for some z in the
Turing cone of Claim 1. We will do this by constructing a sequence of
games G0, G1, . . . , Gn, . . . such that I must win via σ0, σ1, . . . , σn, . . . and,
for a Turing cone of z, the winning strategies give rise to prestrategies
fz
0 , fz

1 , . . . , fz
n, . . . that constitute a non-losing play against σz in the game

(SGBz )Lλ(z)[z].
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Step 0. Consider (in L[x]) the game G0

I ε a, b
II c, d

where ε is either 1 or 2 and, letting p = 〈a, b, c, d〉, I wins iff

(1) p satisfies the condition on z in Claim 1 (so σp makes sense) and

(2) ε = 1 iff Lλ(p)[p] |= “a ∗ d ∈ Ap
0”, where Ap

0 = σp(∅).

In the plays of interest we will ensure that p is in the cone of Claim 1. So
clause (1) of the winning condition will be automatically satisfied and the
decisive factor will be whether in Lλ(p)[p] Player ε wins the auxiliary round
(via a and d) of Ap

0. This game is Σ1
2 (for Player I), hence determined.

Claim 2. I has a winning strategy σ0 in G0.

Proof. Assume for contradiction that I does not have a winning strategy
in G0. Then, by Σ1

2-determinacy, II has a winning strategy τ0 in G0. Let
z0 �T τ0 be such that for all z �T z0,

(1) z satisfies the conditions of Claim 1 and

(2) if λ and z are such that z0 ∈ Lλ[z] and Lλ[z] |= T then Lλ[z] |=
OD-determinacy (by Theorem 6.6).

Consider Az0
0 = σz0(∅). Since Lλ(z0)[z0] |= OD-determinacy, Lλ(z0)[z0] |=

“Az0
0 is determined”. We will use τ0 to show that neither player can win this

game. Suppose for contradiction that Lλ(z0)[z0] |= “σ is a winning strategy
for I in Az0

0 ”. Run G0 according to τ0, having Player I (falsely) predict that
Player I wins the auxiliary game, while steering into Lλ(z0)[z0] by playing
b = z0 and using σ to respond to τ0 on the auxiliary play:

I 1 (σ ∗ d)I , z0

II c, d

We have to see that Player I has indeed managed to steer into Lλ(z0)[z0],
that is, we have to see that Lλ(p)[p] = Lλ(z0)[z0], where p = 〈(σ ∗ d)I , z0, c, d〉.
Since σ, z0, τ0 ∈ Lλ(z0)[z0] and λ(z0) is additively closed, we have Lλ(z0)[p] =
Lλ(z0)[z0]. But λ(p) = λ(z0) since z0 satisfies Claim 1. Thus, Lλ(p)[p] =
Lλ(z0)[z0] and hence Ap

0 = Az0
0 . Finally, since τ0 is a winning strategy for II

in G0 and ε = 1, we have that Lλ(p)[p] |= “σ ∗ d �∈ Ap
0”, and hence Lλ(z0)[z0] |=

“σ ∗ d �∈ Az0
0 ”, which contradicts the assumption that σ is a winning strategy

for I. Similarly, we can use τ0 to defeat any strategy τ for II in Az0
0 . �

Since the game is Σ1
2 for Player I, Player I has a Δ1

3-strategy σ0, by The-
orem 6.5.
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Claim 3. For every real z �T σ0 in the Turing cone of Claim 1, there is
a prestrategy fz

0 such that fz
0 is definable in Lλ(z)[z] from σ0 and fz

0 is a
non-losing first move for II against σz in (SGBz )Lλ(z)[z].

Proof. Fix z �T σ0 as in Claim 1. Consider Az
0 = σz(∅). Let fz

0 be the
prestrategy derived from σ0 in Lλ(z)[z] by extracting the response in the
auxiliary game, that is, for y ∈ (ωω)Lλ(z)[z] let fz

0 (y) be such that for d ∈
(ωω)Lλ(z)[z], fz

0 (y) ∗ d = a ∗ d where a is such that (σ0 ∗ 〈y, d〉)I = 〈ε, a, b〉.
fz
0 is clearly definable in Lλ(z)[z] from σ0. We claim that fz

0 is a non-losing
first move for II against σz in (SGBz )Lλ(z)[z].

To motivate the need for the Π1
2 set, let us first see why fz

0 need not be
a prestrategy for II in Az

0 that is winning with respect to {y ∈ (ωω)Lλ(z)[z] |
Lλ(z)[y] = Lλ(z)[z]}. Consider such a real y and an auxiliary play d ∈
(ωω)Lλ(z)[z]. By definition fz

0 (y) is such that fz
0 (y) ∗ d = a ∗ d where a is

such that (σ0 ∗ 〈y, d〉)I = 〈ε, a, b〉. Assume first that ε = 1. Since σ0 is a win-
ning strategy for I in G0, fz

0 (y) ∗ d = a ∗ d ∈ Ap
0 where p = 〈a, b, y, d〉. What

we need, however, is that fz
0 (y) ∗ d = a ∗ d ∈ Az

0. The trouble is that we
may have Lλ(p)[p] = Lλ(y)[y] � Lλ(z)[z] because although Lλ(z)[y] = Lλ(z)[z]
we might have λ(y) < λ(z). And if this is indeed the case then we cannot
conclude that Ap

0 = Az
0. If ε = 0 then fz

0 (y) ∗ d = a ∗ d �∈ Ap
0 but again what

we need is that fz
0 (y) ∗ d = a ∗ d �∈ Az

0 and the same problem arises.
The above problem is solved by demanding in addition that y ∈ Cz, since

then λ(y) = λ(z) and so ε = 1 iff Lλ(z)[z] |= “fz
0 (y) ∗ d = a ∗ d ∈ Ap

0 = Az
0” as

desired. Thus fz
0 is a non-losing first move for II against σz in (SGBz )Lλ(z)[z].

�

Step n+1. Assume that we have defined (in L[x]) games G0, . . . , Gn with
winning strategies σ0, . . . , σn ∈ HOD such that for all z �T 〈σ0, . . . , σn〉 in
the Turing cone of Claim 1 there are prestrategies fz

0 , . . . , fz
n such that fz

i

is definable in Lλ(z)[z] from σ0, . . . , σi (for all i � n) and fz
0 , . . . , fz

n is a
non-losing partial play for II in (SGBz )Lλ(z)[z].

Consider (in L[x]) the game Gn+1

I ε a, b
II c, d

where ε is 1 or 2 and, letting p = 〈a, b, c, d, σ0, . . . , σn〉, I wins iff

(1) p satisfies the condition on z in Claim 1 (so σp makes sense) and

(2) ε = 1 iff Lλ(p)[p] |= “a ∗ d ∈ Ap
n+1”, where Ap

n+1 is I’s response via σp

to II’s partial play fp
0 , . . . , fp

n.

If p satisfies condition (1) then, since p �T 〈σ0, . . . , σn〉, we have, by the
induction hypothesis, prestrategies fp

0 , . . . , fp
n such that fp

i is definable in
Lλ(p)[p] from σ0, . . . , σi (for all i � n) and fp

0 , . . . , fp
n is a non-losing partial



6. Definable Determinacy 2085

play for II in (SGBp)Lλ(p)[p]. Thus, condition (2) in the definition of the game
makes sense.

This game is Σ1
2(σ0, . . . , σn) (for Player I) and hence determined (since

σ0, . . . , σn ∈ HOD and we have OD-determinacy, by Theorem 6.6).

Claim 4. I has a winning strategy σn+1 in Gn+1.

Proof. Assume for contradiction that I does not have a winning strategy.
Then, by OD-determinacy, II has a winning strategy τn+1. Let zn+1 �T

〈τn+1, σ0, . . . , σn〉 be such that for all z �T zn+1,

(1) z satisfies the conditions of Claim 1 and

(2) if λ and z are such that zn+1 ∈ Lλ[z] and Lλ[z] |= T then Lλ[z] |=
ODσ0,...,σn -determinacy (by the relativized version of Theorem 6.6).

It follows that
Lλ(zn+1)[zn+1] |= A

zn+1
n+1 is determined,

where A
zn+1
n+1 = σzn+1(〈fzn+1

0 , . . . , f
zn+1
n 〉). This is because A

zn+1
n+1 is an ele-

ment of HODLλ(zn+1)[zn+1](σ0, . . . , σn) (as all of the ingredients σzn+1 , f
zn+1
0 ,

. . . , f
zn+1
n used to define A

zn+1
n+1 are in this model) and we arranged that

Lλ(zn+1)[zn+1] satisfies ODσ0,...,σn -determinacy.
[The enforcement of the parameterized version of OD-determinacy in (2)

appears to be necessary. The point is that even though, in Step 1 for example,
σ0 is Δ1

3 and σ0 ∈ Lλ(z)[z] we have no guarantee that in Lλ(z1)[z1], σ0 satisfies
this definition. If we did then we would have that Az

1 is in HODLλ(z1)[z1] and
hence just enforce OD-determinacy.]

We will use τn+1 to show that neither player can win this game. The argu-
ment is exactly as in Step 0 except with the subscripts ‘0’ replaced by ‘n+1’:
Suppose for contradiction that Lλ(zn+1)[zn+1] |= “σ is a winning strategy for
I in A

zn+1
n+1 ”. Run Gn+1 according to τn+1, having Player I (falsely) predict

that Player I wins the auxiliary game, while steering into Lλ(zn+1)[zn+1] by
playing b = zn+1 and using σ to respond to τn+1 on the auxiliary play:

I 1 (σ ∗ d)I , zn+1

II c, d

We have to see that Player I has indeed managed to steer into Lλ(zn+1)[zn+1],
that is, we have to see that Lλ(p)[p] = Lλ(zn+1)[zn+1], where p is the set
〈(σ ∗ d)I , zn+1, c, d〉. Since σ, zn+1, τn+1 ∈ Lλ(zn+1)[zn+1] and λ(zn+1) is ad-
ditively closed, we have Lλ(p)[p] = Lλ(zn+1)[zn+1]. Since p �T zn+1 and
zn+1 satisfies the condition of Claim 1, λ(p) = λ(z), and so Lλ(p)[p] =
Lλ(zn+1)[zn+1] and hence Ap

n+1 = A
zn+1
n+1 . Finally, since τn+1 is a winning

strategy for II in Gn+1 and ε = 1, we have that Lλ(p)[p] |= “σ ∗ d �∈ Ap
n+1”,

and hence Lλ(zn+1)[zn+1] |= “σ ∗ d �∈ A
zn+1
n+1 ”, which contradicts the assump-

tion that σ is a winning strategy for I. Similarly, we can use τn+1 to defeat
any strategy τ for II in A

zn+1
n+1 . �
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Since the game is Σ1
2(σ0, . . . , σn) for Player I, Player I has a Δ1

3(σ0, . . . , σn)
strategy σn+1, by the relativized version of Theorem 6.5.

Claim 5. For every real z �T 〈σ0, . . . , σn〉 as in Claim 1, there is a pre-
strategy fz

n+1 that is definable in Lλ(z)[z] from σ0, . . . , σn+1 and such that
fz
0 , . . . , fz

n+1 is a non-losing first move for II against σz in (SGBz )Lλ(z)[z].

Proof. The proof is just like the proof of Claim 3. Fix z �T 〈σ0, . . . , σn〉 as in
Claim 1 and consider Az

n+1 = σz(〈fz
0 , . . . , fz

n〉). Let fz
n+1 be the prestrategy

derived from σn+1 in Lλ(z)[z] by extracting the response in the auxiliary
game, that is, for y ∈ (ωω)Lλ(z)[z] let fz

n+1(y) be such that for d ∈ (ωω)Lλ(z)[z],
fz

n+1(y) ∗ d = a ∗ d where a is such that (σn+1 ∗ 〈y, d〉)I = 〈ε, a, b〉. Clearly,
fz

n+1 is definable in Lλ(z)[z] from σ0, . . . , σn+1. We claim that fz
n+1 is a

non-losing first move for II against σz in (SGBz )Lλ(z)[z]. Again the point
is that for y ∈ Bz, Lλ(y)[y] = Lλ(z)[z], hence Ay

n+1 = Az
n+1. Thus, ε = 1

iff Lλ(z)[z] |= “fz
n+1(y) ∗ d = a ∗ d ∈ Ap

n+1 = Az
n+1” as desired. Hence

〈fz
0 , . . . , fz

n+1〉 is a non-losing play for II against σz in (SGBz )Lλ(z)[z]. �

Finally, letting z∞ be such that z∞ �T zn for all n and z∞ is as in Claim 1,
we have that fz∞

0 , . . . , fz∞

n , . . . defeats σz∞
in (SGBz∞ )Lλ(z∞)[z

∞], which is
a contradiction. �

6.10 Theorem. Assume ZF + DC + Δ1
2-determinacy. Then for a Turing

cone of x,
HODL[x] |= ZFC + ω

L[x]
2 is a Woodin cardinal.

Proof. For a Turing cone of x, L[x] |= RST-determinacy, by Theorem 6.9.
Let x be in this cone. We have to meet the conditions of the Generation
Theorem. Let ΘM = ω

L[x]
2 . Since L[x] satisfies GCH and L[x] = ODL[x]

x ,

ω
L[x]
2 = sup{α | there is an ODL[x] prewellordering of length α},

in other words, ωL[x]
2 = (Θ0)L[x]. Let A = 〈Aα | α < ω

L[x]
2 〉 be such that Aα is

the ODL[x]-least prewellordering of length α. Since L[x] |= OD-determinacy,
it follows (by Theorem 3.9) that ω

L[x]
2 is strongly inaccessible in HODL[x]. So

there is a set H ⊆ ω
L[x]
2 coding HODL[x] ∩ V

ω
L[x]
2

. Let T ′ be in P(ωL[x]
2 ) ∩

ODL[x] and let T ∈ P(ωL[x]
2 ) ∩ ODL[x] code T ′ and H. Let B be as in the

statement of RST-determinacy.
Let

M = (LΘM
(R)[T,A,B])L[x],

where ΘM , T , A, B are as above. Conditions (1)–(5) of the Generation
Theorem are clearly met and condition (6) follows since L[x] satisfies RST-
determinacy, M is OD in L[x] and M contains the reals of L[x]. Thus,

HODM
T,A,B |= ZFC + There is a T -strong cardinal.
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Since, by arrangement, HODM
T,A,B = HODL[x] ∩ V

ω
L[x]
2

, it follows that

HODL[x] |= ZFC + There is a T -strong cardinal.

Since T ′ was arbitrary, the theorem follows. �

We close with four limitative results. The first result motivates the need
for the notion of strategic determinacy by showing that strategic determinacy
does not follow trivially from OD-determinacy in the sense that for some OD
basis there are OD prestrategies.

6.11 Theorem. Assume ZF. Then for each non-empty OD set B ⊆ ωω,
there is an OD set A ⊆ ωω such that there is no OD prestrategy in A which
is winning with respect to the basis B.

Proof. Assume for contradiction that there is a set B ⊆ ωω which is OD
and such that for all OD sets A ⊆ ωω there is an OD prestrategy fA in A
which is winning with respect to B. We may assume OD-determinacy since if
OD-determinacy fails then the theorem trivially holds (as clearly one cannot
have a prestrategy which is winning with respect to a non-empty basis for a
non-determined game).

We shall need to establish three claims.

Claim 1. Assume ZF. Then
⋂{

A ⊆ ωω | A ∈ OD, A is Turing invariant,

and A contains a Turing cone
}

= ∅.

Proof. For each α < ω1, let

Aα = {z ∈ ωω | ∃x, y ∈ ωω such that
x ≡T y �T z and x codes α}.

Notice that Aα is OD, Turing invariant, and contains a Turing cone. But
clearly ⋂

α<ω1
Aα = ∅

since otherwise there would be a real z which recursively encodes all countable
ordinals. �

Claim 2. Assume ZF + OD-determinacy. Then

HOD |= There is a countably complete ultrafilter on ωV
1 .

Proof. Since we are not assuming ACω(R), the proof of Theorem 2.12 does
not directly apply. To see this note that ωV

1 may not be regular in V —in
fact, we do not even know whether ωV

1 is regular in HOD. Nevertheless, we
will be able to implement some of the previous arguments by dropping into
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an appropriate model of ACω(R). In the case of countable completeness an
additional change will be required since without ACω(R) we cannot choose
countably many strategies as we did in the earlier proof. Let

μ = {S ⊆ ωV
1 | S ∈ HOD and I has a winning strategy in G(S)},

where G(S) is the game from Theorem 2.12.

Subclaim 1. HOD |= μ ∩HOD is an ultrafilter.

Proof. It is clear that ωV
1 ∈ μ and ∅ /∈ μ. It is also clear that if S ∈ μ and

S′ ∈ HOD ∩P(ωV
1 ) and S ⊆ S′ then S′ ∈ μ.

Suppose that S ∈ HOD ∩P(ωV
1 ) and that II has a winning σ strategy

in G(S). We claim that I has a winning strategy in G(ωV
1 � S). Suppose

for contradiction that I does not have a winning strategy. Then, by OD-
determinacy, II has a winning strategy σ′. Now work in L[σ, σ′]. Using
Σ∼

1
1-boundedness, by the usual arguments, one can construct a play x for I

which is legal against both σ and σ′ and in each case has the same associated
ordinal α < ω

L[σ,σ′]
1 . This is a contradiction.

We now show that if S1, S2 ∈ μ then S1 ∩ S2 ∈ μ. Let σ1 be a winning
strategy for I in G(S1) and let σ2 be a winning strategy for I in G(S2).
Suppose for contradiction that S1∩S2 /∈ μ. Since S1∩S2 is OD, G(S1∩S2) is
determined and so II has a winning strategy in G(S1∩S2), which implies that
I has a winning strategy σ in G(ωV

1 � (S1 ∩ S2)). Work in L[σ1, σ2, σ]. The
strategy σ1 witnesses (by the usual argument using Σ∼

1
1-boundedness) that

S1 ∩ ω
L[σ1,σ2,σ]
1 contains a club. Likewise, σ2 witnesses that S2 ∩ ω

L[σ1,σ2,σ]
1

contains a club and σ witnesses that (ωV
1 � (S1 ∩ S2)) ∩ ω

L[σ1,σ2,σ]
1 contains

a club. This contradiction completes the proof of Subclaim 1. �

Subclaim 2. HOD |= μ ∩HOD is countably complete.

Proof. Suppose for contradiction that the subclaim fails. Let 〈Si | i < ω〉 ∈
HOD be such that for each i < ω, Si ∈ μ and

⋂
i<ω Si = ∅. Consider the

game
I i y(0) y(1) . . .
II x(0) x(1) . . .

where II wins if and only if x ∗ y is a winning play for I in G(Si). The idea is
that Player I begins by specifying a set Si in our fixed sequence and then the
two players play an auxiliary round of G(Si), with Player I playing as Player
II and Player II playing as Player I.

Notice that this game is OD, hence determined. We claim that II has a
winning strategy. Suppose for contradiction that I has a winning strategy σ.
In the first move the strategy σ produces a fixed k. Since σ is winning for I,
for each x ∈ ωω, x ∗ σ is a win for II in G(Sk). But this is impossible since
Sk ∈ μ and so I has a winning strategy τk in G(Sk); thus, by following τk in
the auxiliary game, II (playing as I) can defeat σ.
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Let τ be a winning strategy for II. Work in L[τ ]. We claim that in L[τ ],
τ witnesses that for all i < ω, Si ∩ ω

L[τ ]
1 contains a club. For our purposes

we just need a single α ∈
⋂

i<ω Si. The point is that Player I can play any
i as the first move and then use Σ∼

1
1-boundedness to produce a real y such

that for all i < ω, iy is a legal play and in each case the ordinal produced
in the auxiliary game is some fixed α < ω

L[τ ]
1 . This contradiction completes

the proof of Subclaim 2. �

Thus,

HOD |= μ ∩HOD is a countably complete ultrafilter on ωV
1 ,

which completes the proof. �

It follows that ZF + OD-determinacy proves that

HOD |= ∃κ � ωV
1 (κ is a measurable cardinal)

(as witnessed by letting κ be the completeness of the ultrafilter), and hence
that R ∩ HOD is countable. Let α < ω1 be the length of the canonical well-
ordering of R ∩ HOD. Let t code α. Then in HODt there is a real y∗ such
that for all z ∈ R ∩HOD, z �T y∗. Let y∗ be such a real.

Claim 3. Suppose z ∈ B. Suppose A is OD, A is Turing invariant, and A
contains a Turing cone. Then A contains the Turing cone above 〈y∗, z〉.

Proof. By our original supposition for contradiction recall that we let fA be
an OD prestrategy which is winning with respect to B. Since A contains a
Turing cone fA must be winning for Player I. This means that for all z ∈ B,
for all y ∈ ωω, fA(z) ∗ y ∈ A. Now let y �T 〈y∗, z〉. We wish to show that
y ∈ A. The point is that

y ≡T fA(z) ∗ y ∈ A

and since A is Turing invariant, this implies that y ∈ A. �

Claim 3 contradicts Claim 1, which completes the proof. �

The second result motivates the need for restricted strategic determi-
nacy by showing that V = L[x] + Δ1

2-determinacy does not imply STB-
determinacy, where B is the constructibility degree of x. Thus, in The-
orem 6.9 it was necessary to drop down to a restricted form of strategic
determinacy. It also follows from the theorem that something close to Δ∼

1
2-

determinacy is required to establish that STB-determinacy holds with respect
to the constructibility degree of x since the statement “Δ∼

1
2-determinacy” is

equivalent to the statement “for every y ∈ ωω there is an inner model M
such that y ∈M and M |= ZFC + There is a Woodin cardinal”.
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6.12 Theorem. Assume ZF + V = L[x] for some x ∈ ωω. Suppose STB-
determinacy, where B = {y ∈ ωω | L[y] = L[x]}. Suppose there exists an
α > ω

L[x]
1 such that Lα[x] |= ZFC. Then for every y ∈ ωω there is a transitive

model M such that y ∈M and M |= ZFC + “There is a Woodin cardinal”.

Proof. Let

A0 = {y ∈ ωω | ¬∃M (M is transitive ∧ y ∈M

∧M |= ZFC + There is a Woodin cardinal)}.

Suppose for contradiction that A0 �= ∅. Let t ∈ A0. It follows that A0

contains a Turing cone of reals. Let Player I play A0 in SGB and let f0 be
II’s response. Since Player I can win a round of A0 by playing t, f0 is winning
for I with respect to B, that is, for all y ∈ B, f0(y) ∈ A0. We will arrive at
a contradiction by constructing a real y ∈ B such that f0(y) /∈ A0.

We claim that

HODLα[x]
f0

|= ZFC + There is a Woodin cardinal.

First note that
L[x] |= STf0-determinacy.

Since Lα[x] is ordinal definable in L[x] (as α > ω
L[x]
1 and so Lα[x] = Lα[x′]

for any real x′ such that V = L[x′]) it follows that

Lα[x] |= STf0 -determinacy.

Thus, by the relativized version of Theorem 6.10,

HODLα[x]
f0

|= ZFC + There is a Woodin cardinal.

Therefore f0 �∈ A0.
By Σ1

2(f0)-absoluteness, L[f0] satisfies that there is a countable transitive
model M such that f0 ∈M and

M |= ZFC + There is a Woodin cardinal.

Since Lα[x] |= “f#
0 exists” (by the effective version of Solovay’s Theorem

(Theorem 2.15) there is a countable ordinal λ such that Lλ[f0] satisfies ZFC+
“M is countable”. In Lλ[f0] let P be a perfect set of reals that are Cohen
generic over M . Since P is perfect in Lλ[f0] there is a path c ∈ [P ] which
codes x in the sense that c �T x.

Our desired real y is 〈f0, c〉. To see that 〈f0, c〉 ∈ B note that Lλ(〈f0, c〉)
can compute x and hence Lω1 [〈f0, c〉] = Lω1 [x]. To see that f0(〈f0, c〉) �∈ A0

note that since c is Cohen generic over M , the model M [c] is a transitive
model containing f0(〈f0, c〉) satisfying ZFC + “There is a Woodin cardinal”.
This is a contradiction. �
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The third result shows that Martin’s “lightface form” of Third Periodicity
(Theorem 6.3) does not generalize to higher levels. In fact, the result shows
that even ZFC + OD-determinacy (assuming consistency of course) does not
imply that for every Σ1

4 game which Player I wins, Player I has a Δ1
5 strategy

(or even an OD strategy). The reason that the “lightface form” of Third
Periodicity holds at the level of Σ1

2 but not beyond is that in Third Periodicity
boldface determinacy is used to get scales but in ZF + DC we get Scale(Σ∼

1
2)

for free.

6.13 Theorem. Assume ZF+V = L[x]+OD-determinacy for some x ∈ ωω.
There is a Π1

2 set of reals which contains a Turing cone but which does not
contain a member in HOD.

Proof. Consider the set

A = {y ∈ ωω | for all additively closed λ < ω1,

for all z �T y, if x ∈ ODLλ[z] then x �T y}.

This is a Π1
2 set. Notice that each y ∈ A witnesses that R ∩ HODL[z] is

countable for each z �T y.

Claim 1. A contains a Turing cone.

Proof. For y ∈ ωω and α such that ω < α < ω1, let Rα,y be the set of reals
which are ordinal definable in Lα[y] and let <α,y the canonical well-ordering
of Rα,y, where we arrange that <α,y is an initial segment of <α′,y when
α < α′. For y ∈ ωω, let Ry =

⋃
{Rα,y | ω < α < ω1} and let <y be the

induced order on Ry (where we order first by α and then by <α,y). Let zy
α

be the αth real in <y and let ϑy be the ordertype of <y. Notice that Rα,y,
Ry, <α,y, <y, zy

α and ϑy depend only on the Turing degree of y.
Our strategy is to “freeze out” the values of Ry and <y on a Turing cone

of y. For α < ω1, the set

Aα = {y ∈ ωω | ϑy > α}

is OD and hence, by OD-determinacy, either it or its complement contains
a Turing cone. Moreover, if Aα contains a Turing cone and ᾱ < α then Aᾱ

contains a Turing cone. Thus,

A′ = {α < ω1 | Aα contains a Turing cone}

is an initial segment of ω1. For each α ∈ A′, and for each y ∈ ωω, the
statement “ϑy > α and zy

α(n) = m” is an OD-statement about y. So, by
OD-determinacy, the value of zy

α is fixed for a Turing cone of y. We write
zα for this stable value. It follows that 〈zα | α ∈ A′〉 is a definable well-
ordering of reals and hence, by OD-determinacy, A′ must be countable (by
the effective version of Solovay’s theorem (Theorem 2.15) and the argument
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in the Claim in Theorem 5.9). Let ϑ = sup{α + 1 | α ∈ A′}. Finally, let
R∞ = {zα | α < ϑ} and <∞= {(zα, zβ) | α < β < ϑ}. We claim that for a
Turing cone of y, Ry = R∞. To see this let y ∈ L[x] be such that x �T y (so,
in particular L[x] = L[y]) and y belongs to all of the (countably many) cones
fixing zα for α ∈ A′. Then ϑy = ϑ and Ry = R∞. (In fact, Ry = R

HOD.)
Let z0 be such that for all z �T z0, Rz = Rz0 = R∞. Since R∞ is

countable, we can choose y0 �T z0 such that R∞ �T y0. Then for all
z �T y0, Rz = R∞ �T y0, that is, y0 ∈ A. Likewise, if y �T y0, then
y ∈ A. �

Claim 2. A ∩HODL[x] = ∅.

Proof. Suppose for contradiction that y ∈ A ∩ HODL[x]. Since y ∈ A, y
witnesses that Rz is countable for all z �T y. Let z be such that

Rx = Rz.

Then since y ∈ HODL[x],

HODL[x] |= R is countable,

which is impossible. �

This completes the proof. �

The final result is a refinement of a theorem of Martin [5, Theorem 13.1].
It shows that ZF+DC+Δ1

2-determinacy implies that for a Turing cone of x,
HODL[x] has a Δ1

3 well-ordering of reals and hence that for a Turing cone of
x, Δ1

2-determinacy fails in HODL[x].

6.14 Theorem. Assume ZF+V = L[x]+Δ1
2-determinacy, for some x ∈ ωω.

Then in HOD there is a Δ1
3-well-ordering of the reals.

Proof. For y ∈ ωω and α such that ω < α < ω1, let Rα,y, <α,y, zy
α, Ry,

<y, and ϑy be as in the proof of Theorem 6.13. Let A′ and R∞ be as in
the proof of Theorem 6.13. The argument of Claim 1 of Theorem 6.13 shows
that R∞ = RHOD: To see this let x′ ∈ L[x] be such that x �T x′ (so, in
particular L[x] = L[x′]) and x′ belongs to all of the (countably many) cones
fixing zα for α ∈ A′. Then ϑx′ = ϑ and R∞ = Rx′ = R ∩HODL[x′] = RHOD.

Notice that

∃y0∀y �T y0∀ω < α < ω1 (Rα,y ⊆ R∞ ∧<α,y � <∞),

where � denotes ordering by initial segment; x′ as above is such a y0. Since
R∞ and <∞ are countable they can be coded by a real. Let y0 be the base
of the above cone and let a be a real coding 〈y0, R∞, <∞〉. The statement
“a codes 〈y0, R∞, <∞〉 and for all y �T y0, for all α < ω1, Rα,y ⊆ R∞ and
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<α,y � <∞” is a Π1
2 truth about a. Writing ψ(a) for this statement we have

the following Π1
3 definitions (in L[x]) of ωω ∩HOD and <∞:

z ∈ R∞ ↔ ∀a [ a codes (z,R,<) ∧ ψ(a)→ z ∈ R ]

and
z0 <∞ z1 ↔ ∀a [ a codes (z,R,<) ∧ ψ(a)→ z0 < z1 ] .

We now look at things from the point of view of HOD. Fix ξ < ϑ. We
claim that ξ is countable in HOD. Consider the game

I a, b
II c

where I wins iff there is an α < ω1 such that zξ ∈ Rα,〈b,c〉 and a codes
the ordertype of <α,〈b,c〉�zξ. This game is Σ1

2(zξ) (for Player I) and since
zξ ∈ HOD the game is determined. Moreover, I must win (since I can play
b = y0 and an a coding ξ). By (the relativized version of) Theorem 6.5,
Player I has a winning strategy σ ∈ HOD. It follows that ξ is less than the
least admissible relative to σ, which in turn is countable in HOD.

Thus, we can let z be a real in HOD coding <∞�zξ. Consider the game
G(z, zξ)

I a
II b

where I wins iff there exists an α such that zξ ∈ Rα,〈a,b〉 and <α,〈a,b〉�zξ = z.
This game is Σ1

2(〈z, zξ〉), hence determined. Moreover, I must win. So I has
a winning strategy σξ ∈ HOD.

Finally, notice the following: If y �T σξ then y ≡T σξ ∗ y and

∀α (ω < α < ω1 ∧ zξ ∈ Rα,y → <α,y�zξ = <∞�zξ).

So the following is a Σ1
3 calculation of <∞ in HOD:

x <∞ y ↔ ∃a ∈ ωω coding (y0, <, z) such that
< is a linear ordering of its domain, dom(<),
x, y, z ∈ dom(<),
x < y and y < z, and
∀y′ �T y0 ∀α (ω < α < α1

∧ z ∈ Rα,y′ → <α,y′ �z = <�z).
This completes the proof, since clearly a Σ1

3 total ordering is also Π1
3. �

Putting everything together we have that ZF + DC + Δ1
2-determinacy

implies that for a Turing cone of x, HODL[x] is an inner model with a Woodin
cardinal and a Δ1

3 well-ordering of reals. It follows that Δ1
2-determinacy fails

in HODL[x] for a Turing cone of x.
Some interesting questions remain. For example: Does HODL[x] satisfy

GCH, for a Turing cone of x? Is HODL[x] a fine-structural model, for a
Turing cone of x? We will return to this topic in Sect. 8.
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6.2. Boldface Definable Determinacy

In this section we will work in ZF + AD. Our aim is to extract the optimal
amount of large cardinal strength from boldface determinacy by constructing
a model of ZFC that contains ω-many Woodin cardinals.

We shall prove a very general theorem along these lines. Our strategy is to
iteratively apply Theorem 5.43. Recall that this theorem states that under
ZF + AD, for a Y -cone of x,

HODY,a,[x]Y |= ω
HODY,a,x

2 is a Woodin cardinal,

where
[x]Y = {z ∈ ωω | HODY,z = HODY,x}.

We start by taking a to be the empty set. By Theorem 5.43, there exists an
x0 such that for all x �Y x0,

HODY,[x]Y |= ω
HODY,x

2 is a Woodin cardinal.

To generate a model with two Woodin cardinals we would like to apply The-
orem 5.43 again, this time taking a to be [x0]Y . This gives us an x1 �Y x0

such that for all x �Y x1,

HODY,[x0]Y ,[x]Y |= ω
HODY,[x0]Y ,x

2 is a Woodin cardinal

and we would like to argue that

HODY,[x0]Y ,[x]Y |= ω
HODY,x0
2 < ω

HODY,[x0]Y ,x

2 are Woodin cardinals.

But there are two difficulties in doing this. First, in the very least, we need
to ensure that

ω
HODY,x0
2 < ω

HODY,[x0]Y ,x

2

and this is not immediate. Second, in moving to the larger model we need
to ensure that we have not collapsed the first Woodin cardinal; a sufficient
condition for this is that

P(ωHODY,x0
2 ) ∩HODY,[x0]Y ,[x]Y = P(ωHODY,x0

2 ) ∩HODY,[x0]Y ,

but again this is not immediate. It turns out that both difficulties can be
overcome by taking x to be of sufficiently high “Y -degree”. This will be
the content of an elementary observation and a “preservation” lemma. Once
these two hurdles are overcome we will be able to generate models with n
Woodin cardinals for each n < ω. We shall then have to take extra steps to
ensure that we can preserve ω-many Woodin cardinals. This will be achieved
by shooting a Prikry sequence through the Y -degrees and proving an associ-
ated “generic preservation” lemma.
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6.15 Remark. It is important to note that in contrast to Theorem 5.42
here the degree notion in Theorem 5.43 does not depend on a and this is
instrumental in iteratively applying the theorem to generate several Woodin
cardinals. In contexts such as L(R) where HOD “relativizes” in the sense
that HODa = HOD[a], one could also appeal to Theorem 5.42, since in such
a case HODY,a,[x]Y,a

= HODY,a,[x]Y . Our reason for not taking this approach
is twofold. First, it would take us too far afield to give the argument that
HODa = HOD[a] in, for example, L(R). Second, it is of independent interest
to work in a more general setting.

We shall be working with the “Y -degrees”

DY = {[x]Y | x ∈ ωω}.

Let μY be the cone filter over DY . As noted earlier, the argument of Theo-
rem 2.9 shows that μY is an ultrafilter. Also, by Theorem 2.8 we know that
μY is countably complete.

6.16 Lemma (Preservation Lemma). Assume ZF + AD. Suppose Y is a
set, a ∈ H(ω1), and α < ω1. Then for a Y -cone of x,

P(α) ∩HODY,a,[x]Y = P(α) ∩HODY,a.

Proof. The right-to-left direction is immediate. Suppose for contradiction
that the left-to-right direction fails. For sufficiently large [x]Y , let

f([x]Y ) = least Z ∈ P(α) ∩HODY,a,[x]Y � HODY,a,

where the ordering is the canonical ordering of ODY,a,[x]Y . This function is
defined for a Y -cone of x and it is ODY,a. Let Z0 ∈ P(α) be such that

ξ ∈ Z0 iff ξ ∈ f([x]Y ) for a Y -cone of x.

Since α is countable and since μY is countably complete Z0 = f([x]Y ) for
sufficiently large x. Thus, Z0 ∈ HODY,a, which is a contradiction. �

We are now in a position to iteratively apply Theorem 5.43 to generate a
model with n Woodin cardinals.

Step 0. By Theorem 5.43, let x0 be such that for all x �Y x0,

HODY,[x]Y |= ω
HODY,x

2 is a Woodin cardinal.

Step 1. Recall that ωV
1 is strongly inaccessible in any inner model of ZFC,

by the Claim of Theorem 5.9. It follows that ω
HODY,x0
2 < ωV

1 and so when
we choose x1 �Y x0 we may assume that x1 codes ω

HODY,x0
2 . Thus, there

exists an x1 �Y x0 such that for all x �Y x1,

ω
HODY,x0
2 < ω

HODY,[x0]Y ,x

2 ,
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and, by the Preservation Lemma (taking a to be [x0]Y ),

P(ωHODY,x0
2 ) ∩HODY,[x0]Y ,[x]Y = P(ωHODY,x0

2 ) ∩HODY,[x0]Y ,

and, by Theorem 5.9 (taking a to be [x0]Y ),

HODY,[x0]Y ,[x]Y |= ω
HODY,[x0]Y ,x

2 is a Woodin cardinal.

It follows that

HODY,[x0]Y ,[x1]Y |= ω
HODY,x0
2 < ω

HODY,[x0]Y ,x1
2 are Woodin cardinals.

Step n + 1. It is useful at this stage to introduce a piece of notation: For
x0 �Y · · · �Y xn+1, let

δ0(x0) = ω
HODY,x0
2

and
δn+1(x0, . . . , xn+1) = ω

HODY,〈[x0]Y ,...,[xn]Y 〉,xn+1
2 .

Suppose that we have chosen x0 �Y x1 �Y · · · �Y xn such that

HODY,〈[x0]Y ,...,[xn]Y 〉 |= δ0(x0) < · · · < δn(x0, . . . , xn)
are Woodin cardinals.

Again, since ωV
1 is strongly inaccessible in any inner model of ZFC, it follows

that each of these ordinals is countable in V and so when we choose xn+1 �Y

xn we may assume that xn+1 collapses these ordinals. Thus, there exists an
xn+1 �Y xn such that for all x �Y xn+1,

δn(x0, . . . , xn) < δn+1(x0, . . . , xn, x)

and, by the Preservation Lemma (taking a to be 〈[x0]Y , . . . , [xn]Y 〉),

P(δn(x0, . . . , xn)) ∩ HODY,〈[x0]Y ,...,[xn]Y 〉,[x]Y

= P(δn(x0, . . . , xn)) ∩HODY,〈[x0]Y ,...,[xn]Y 〉

and, by Theorem 5.43 (taking a to be 〈[x0]Y , . . . , [xn]Y 〉),

HODY,〈[x0]Y ,...,[xn]Y 〉,[x]Y |= δn+1(x0, . . . , xn, x) is a Woodin cardinal.

It follows that

HODY,〈[x0]Y ,...,[xn]Y 〉,[x]Y |= δ0(x0) < · · · < δn+1(x0, . . . , xn, x)
are Woodin cardinals.

We now need to ensure that when we do the above stacking for ω-many
stages, the Woodin cardinals δn(x0, . . . , xn) are preserved in the final model.
This is not immediate since, for example, if we are not careful then the
reals x0, x1, . . . might code up a real that collapses supn<ω δn(x0, . . . , xn).
To circumvent this difficulty we implement the construction relative to a
“Prikry sequence” of degrees [x0]Y , [x1]Y , . . . .
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6.17 Definition (The forcing PY ). Assume ZF + AD. Suppose Y is a
set. Let DY and μY be as above. The conditions of PY are of the form
〈[x0]Y , . . . , [xn]Y , F 〉 where F : D<ω

Y → μY . The ordering on PY is:

〈[x0]Y , . . . , [xn]Y , [xn+1]Y , . . . , [xm]Y , F ∗〉 �PY
〈[x0]Y , . . . , [xn]Y , F 〉

if and only if

(1) [xi+1]Y ∈ F (〈[x0]Y , . . . , [xi]Y 〉) for all i � n and

(2) F ∗(p) ⊆ F (p) for all p ∈ D<ω
Y .

The point of the following lemma is to avoid appeal to DC.

6.18 Lemma. Assume ZF + AD. Suppose ϕ is a formula in the forcing
language and 〈p, F 〉 ∈ PY . Then there is an F ∗ such that 〈p, F ∗〉 �PY

〈p, F 〉
and 〈p, F ∗〉 decides ϕ. Moreover, F ∗ is uniformly definable from 〈p, F 〉 and ϕ.

Proof. Fix ϕ a formula and 〈p, F 〉 ∈ PY . Let us use ‘p’ and ‘q’ for “lower
parts” of conditions—that is, finite sequences of DY —‘F ’ and ‘G’ for the
corresponding “upper parts”, and ‘a’ for elements of DY . Write q � p to
indicate that p is an initial segment of q. Set

Z0 = { q | q � p and ∃G 〈q,G〉 �PY
〈p, F 〉 and 〈q,G〉 � ϕ },

Zα+1 = { q | { a | qa ∈ Zα } ∈ μY }, and
Zλ =

⋃
α<λZα for λ a limit.

Let Dα
q = {a | qa ∈ Zα}. So Zα+1 = {q | Dα

q ∈ μY }. We claim that for
each α,

(1) if q ∈ Zα, then Dα
q ∈ μY , and hence

(2) Za ⊆ Zα+1.

The proof is by induction on α: For α = 0 suppose q ∈ Z0 and let G witness
this. So G(q) ∈ μY . Notice that for each a ∈ G(q),

〈qa,G〉 �PY
〈q,G〉

and so qa ∈ Z0, i.e. G(q) ⊆ {a | qa ∈ Z0} = D0
q and so D0

q ∈ μY and
Z0 ⊆ Z1. Assume (1) holds for α + 1. It follows that Zα+1 ⊆ Zα+2. Suppose
q ∈ Zα+2. Then, by the definition of Zα+2, Dα+1

q ∈ μY . However, since
Zα+1 ⊆ Zα+2, it follows that Dα+1

q ⊆ Dα+2
q . So Dα+2

q ∈ μY . For λ a limit
ordinal suppose q ∈ Zλ. Then q ∈ Zα for some α < λ. So, by the induction
hypothesis, Dα

q ∈ μY . Since Zα ⊆ Zλ, Dα
q ⊆ Dλ

q and so Dλ
q ∈ μY .

Now define a ranking function ρ : D<ω
Y → On ∪ {∞} by

ρ(q) =

{
least α such that q ∈ Zα if there is such an α

∞ otherwise.



2098 Koellner and Woodin / Large Cardinals from Determinacy

We begin by noting the following three persistence properties which will aid
us in shrinking F so as to decide ϕ. First, if ρ(q) = ∞ then set

Aq = {a | ρ(qa) = ∞}

and notice that Aq ∈ μY since otherwise we would have {a | ρ(qa) ∈ On} ∈
μY (as μY is an ultrafilter) and letting β = sup{ρ(qa) | ρ(qa) ∈ On} we
would have q ∈ Zβ+1, a contradiction. Second, if ρ(q) ∈ On � {0} then set

Bq = {a | ρ(qa) < ρ(q)}

and notice that Bq ∈ μY since ρ(q) is clearly a successor, say α + 1, and
q ∈ Zα and so (by our claim) Dα

q ∈ μY ; but Dα
q ⊆ Bq. Third, if ρ(q) = 0

then set
Cq = {a | ρ(qa) = 0}

and notice that Cq ∈ μY since clearly q ∈ Z0 and so, by the claim, D0
q ∈ μY ;

but D0
q ⊆ Cq.

Now either ρ(p) = ∞ or ρ(p) ∈ On.

Claim 1. If ρ(p) = ∞ then there is an F ∗ such that 〈p, F ∗〉 �PY
〈p, F 〉 and

〈p, F ∗〉 � ¬ϕ.

Proof. Define F ∗ as follows:

F ∗(q) =

{
F (q) ∩Aq if ρ(q) = ∞
F (q) otherwise.

Suppose that it is not the case that 〈p, F ∗〉 � ¬ϕ. Then ∃〈q,G〉 �PY
〈p, F ∗〉

such that 〈q,G〉 � ϕ. But then q is such that ρ(q) = 0. However, F ∗ witnesses
that in fact ρ(q) = ∞: Suppose q = pa0

 · · ·ak. Since ρ(p) = ∞ and
a0 ∈ F ∗(p), we have that a0 ∈ Ap and so ρ(pa0) = ∞. Continuing in this
manner, we get that ρ(q) = ∞. This is a contradiction. �

Claim 2. If ρ(p) ∈ On then there is an F ∗ such that 〈p, F ∗〉 �PY
〈p, F 〉 and

〈p, F ∗〉 � ϕ.

Proof. Define F ∗ as follows:

F ∗(q) =

⎧
⎪⎨

⎪⎩

F (q) ∩Bq if ρ(q) ∈ On � {0}
F (q) ∩ Cq if ρ(q) = 0
F (q) otherwise.

We claim that 〈p, F ∗〉 � ϕ. Assume not. Then ∃〈q,G〉 �PY
〈p, F ∗〉 such that

〈q,G〉 � ¬ϕ. Since 〈q,G〉 �PY
〈p, F ∗〉 and ρ(p) ∈ On we have that ρ(q) ∈ On

(by an easy induction using the definition of F ∗). We may assume that 〈q,G〉
is chosen so that ρ(q) is as small as possible. But then ρ(q) = 0 as otherwise
there is an a such 〈qa,G〉 �PY

〈q,G〉, 〈qa,G〉 � ¬ϕ and ρ(qa) < ρ(q),
contradicting the minimality of ρ(q). Now since ρ(q) = 0, q ∈ Z0 and so
∃G′〈q,G′〉 � ϕ. But this is a contradiction since 〈q,G′〉 is compatible with
〈q,G〉 and 〈q,G〉 � ¬ϕ. �
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This completes the proof of the lemma. �

We can now obtain the following “generic preservation” lemma.

6.19 Lemma (Generic Preservation Lemma). There exists an F such
that if G ⊆ PY is V -generic and 〈∅, F 〉 ∈ G and 〈[xi]Y | i < ω〉 is the generic
sequence associated to G, then, for all i < ω,

P(δi(x0, . . . , xi))V [G] ∩ HODV [G]
Y,〈[xj ]Y |j<ω〉,V

= P(δi(x0, . . . , xi)) ∩HODV
Y,〈[x0]Y ,...,[xi]Y 〉.

Proof. We need the following extension of Lemma 6.18: Suppose 〈ϕξ | ξ < α〉
is a countable sequence of formulas in the forcing language (evaluated in a
rank initial segment) and 〈p, F 〉 ∈ PY is a condition. Then there is an F ∗

such that 〈p, F ∗〉 �PY
〈p, F 〉 and 〈p, F ∗〉 decides ϕξ, for each ξ < α, and F ∗

is uniformly definable from 〈ϕξ | ξ < α〉 and 〈p, F 〉. For each ξ < α, let Fξ be
as in Lemma 6.18 (where it is denoted F ∗). Letting F ∗ be the “intersection”
of the Fα—i.e., such that F ∗(q) =

⋂
α<β Fα(q) for each q ∈ D<ω

Y —we have
that 〈p, F ∗〉 decides ϕξ for each ξ < α and that F ∗ is uniformly definable
from 〈ϕξ | ξ < α〉 and 〈p, F 〉.

Suppose a ∈ H(ω1) and α < ω1. We claim that we can definably associate
with a and α a function Fa,α : D<ω

Y → μY such that 〈∅, Fa,α〉 forces

P(α)V [G] ∩HODV [G]
Y,a,〈[xi]Y |i<ω〉,V = P(α) ∩HODV

Y,a.

Let ϕ be the formula in the forcing language that expresses the displayed
statement. By Lemma 6.18 there is an ODY,a condition 〈∅, G〉 deciding ϕ.
Suppose for contradiction that this condition forces ¬ϕ. Since right-to-left
inclusion holds trivially (as we are including V as a parameter) it must be
that the left-to-right inclusion fails. Let A ⊆ α be <ODV [G]

Y,a,〈[xi]Y |i<ω〉,V -least
such that

A ∈ HODV [G]
Y,a,〈[xi]Y |i<ω〉,V � HODV

Y,a.

Now, for each ξ < α let ϕξ be the statement expressing “ξ ∈ A”. In an ODY,a

fashion we can successively shrink 〈∅, G〉 to decide each ϕξ. But then A is
ODY,a and hence in HODV

Y,a, which is a contradiction.
We now define a “master function” F : D<ω

Y → μY such that for all
〈[x0]Y , . . . , [xn]Y 〉 ∈ D<ω

Y ,

F (〈[x0]Y , . . . , [xn]Y 〉) = F〈[x0]Y 〉,δ0(x0) ∩ · · · ∩ F〈[x0]Y ,...,[xn]Y 〉,δn(x0,...,xn).

Suppose 〈∅, F 〉 ∈ G. Suppose 〈p,H〉 ∈ G and p�i + 1 = 〈[x0]Y , . . . , [xi]Y 〉.
It follows that 〈p,H ∧ F 〉 ∈ G, where, by definition, H ∧ F is such that
(H ∧ F )(q) = H(q) ∩ F (q) for each q. But

〈p,H ∧ F 〉 �PY
〈p�i + 1, H ∧ F 〉

�PY
〈p�i + 1, H ∧ Fp� i+1,δi(x0,...,xi)

〉

�PY
〈∅, Fp� i+1,δi(x0,...,xi)

〉,
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(using the definition of F for the second line) and so 〈∅, Fp� i+1,δi(x0,...,xi)
〉 ∈

G. Finally, by the definition of Fp� i+1,δi(x0,...,xi)
, this condition forces

P(δi(x0, . . . , xi))V [G] ∩ HODV [G]
Y,〈[x0]Y ,...,[xi]Y 〉,〈[xi]Y |i<ω〉,V

= P(δi(x0, . . . , xi)) ∩HODV
Y,〈[x0]Y ,...,[xi]Y 〉,

which completes the proof. �

6.20 Theorem. Assume ZF + AD. Then there is a condition 〈∅, F 〉 ∈ PY

such that if G ⊆ PY is V -generic and 〈∅, F 〉 ∈ G, then

HODV [G]
Y,〈[xi]Y |i<ω〉,V |= ZFC + There are ω-many Woodin cardinals,

where 〈[xi]Y | i < ω〉 is the sequence associated with G.

Proof. Let 〈∅, F, 〉 be the condition from the Generic Preservation Lemma
(Lemma 6.19). We claim that

HODV [G]
Y,〈[xi]Y |i<ω〉,V |= δ0(x0) < · · · < δn(x0, . . . , xn) < · · ·

are Woodin cardinals.

By the Generic Preservation Lemma it suffices to show that for each n < ω

HODY,〈[x0]Y ,...,[xn]Y 〉 |= δ0(x0) < · · · < δn(x0, . . . , xn)
are Woodin cardinals,

which follows by genericity and the argument for the finite case. �

As an interesting application of this theorem in conjunction with the De-
rived Model Theorem (Theorem 8.12), we obtain Kechris’ theorem that under
ZF + AD, DC holds in L(R). This alternate proof is of interest since it is
entirely free of fine structure and it easily generalizes.

6.21 Theorem (Kechris). Assume ZF + AD. Then L(R) |= DC.

Proof Sketch. Work in ZF + AD + V = L(R). Let Y = ∅ and let N =
HODV [G]

〈[xi]Y |i<ω〉,V where G and [xi]Y are as in the above theorem. By gener-
icity, the Woodin cardinals δi of N have ωV

1 as their supremum. By Vopěnka’s
theorem (see the proof of Theorem 7.8 below for the statement and a sketch
of the proof), each x ∈ R

V is N -generic for some P ∈ N ∩ VωV
1

. Thus,
N(RV ) is a symmetric extension of N . The derived model of N(RV ) (see
Theorem 8.12 below) satisfies DCR and therefore DC since N |= AC. Fur-
thermore N(RV ) contains L(R) and cannot contain more since then L(R)
would have forced its own sharp. (This follows from AD+ theory: Assume
ZF+DCR +AD+V = L(P(R)). Suppose A ⊆ R. Then either V = L(A,R)
or A# exists. See Definition 8.10 below.) Thus, L(R) |= AD + DC. �
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7. Second-Order Arithmetic

The statement that all Δ1
2 sets are determined is really a statement of second-

order arithmetic. So a natural question is whether the construction culmi-
nating in Sect. 6.1 can be implemented in this more limited setting. In this
section we show that a variant of the construction can be carried out in this
context. We break the construction into two steps. First, we show that a
variant of the above construction can be carried out with respect to an object
smaller than ω

L[x]
2 , one that is within the reach of second-order arithmetic.

Second, we show that this version of the construction can be carried out in
the weaker theory of second-order arithmetic.

The need to alter the previous construction is made manifest in the fol-
lowing result:

7.1 Theorem. Assume ZF+V = L[x]+Δ1
2-determinacy, for some x ∈ ωω.

Suppose N is such that

(1) On ⊆ N ⊆ HODL[x] and

(2) N |= δ is a Woodin cardinal.

Then δ � ω
L[x]
2 .

However, it turns out that ω
L[x]
1 can be a Woodin cardinal in an inner

model that overspills HODL[x].

7.2 Theorem. Assume ZF+V = L[x] +Δ1
2-determinacy, for some x ∈ ωω.

Then there exists an N ⊆ L[x] such that

N |= ZFC + ω
L[x]
1 is a Woodin cardinal.

Moreover, this result is optimal.

7.3 Theorem. Assume ZF + Δ1
2-determinacy. Then there is a real x such

that

(1) L[x] |= Δ1
2-determinacy, and

(2) for all α < ω
L[x]
1 , α is not a Woodin cardinal in any inner model N

such that On ⊆ N .

In Sect. 7.1 we prove Theorem 7.2. More precisely, we prove the following:

7.4 Theorem. Assume ZF+DC+Δ1
2-determinacy. Then for a Turing cone

of x,
HODL[x]

[x]T
|= ZFC + ω

L[x]
1 is a Woodin cardinal.
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This involves relativizing the previous construction to the Turing degree
of x, replacing the notions that concerned reals (for example, winning strate-
gies) with relativized analogues that concern only those reals in the Turing
degree of x.

In Sect. 7.2 we show that the relativized construction goes through in the
setting of second-order arithmetic.

7.5 Theorem. Assume that PA2 + Δ1
2-determinacy is consistent. Then

ZFC + “On is Woodin” is consistent.

Here PA2 is the standard axiomatization of second-order arithmetic (with-
out AC). The statement that On is Woodin is to be understood schematically.
Alternatively, one could work with the conservative extension GBC of ZFC
and the analogous conservative extension of PA2. This would enable one to
fuse the schema expressing that On is Woodin into a single statement.

7.1. First Localization

To prove Theorem 7.4 we have to prove an analogue of the Generation Theo-
rem where ω2 is replaced by ω1. The two main steps are (1) getting a suitable
notion of strategic determinacy and (2) getting definable prewellorderings for
all ordinals less than ω1.

For x ∈ ωω we “relativize” our previous notions to the Turing degree
of x. The relativized reals are Rx = {y ∈ ωω | y �T x}. Fix A ⊆ Rx.
A relativized strategy for I is a function σ :

⋃
n<ω ω2n → ω such that σ ∈ Rx.

A relativized strategy σ for I is winning in A iff for all y ∈ Rx, σ ∗ y ∈ A. The
corresponding notions for II are defined similarly. A relativized prestrategy is a
continuous function f such that (the code for) f is in Rx and for all y ∈ Rx,
f(y) is a relativized strategy for either I or II. We say that a relativized
prestrategy f is winning in A for I (II ) with respect to B ⊆ Rx if in addition
we have that for all y ∈ B, f(y) is a relativized winning strategy for I (II)
in A. (In our present setting our basis B will always be [x]T .) We say
that a set A ⊆ Rx is determined in the relativized sense if either I or II
has a relativized winning strategy for A. Let OD-[x]T -determinacy be the
statement that for every OD[x]T subset of Rx either Player I or Player II has
a relativized winning strategy.

The strategic game relativized to [x]T is the game SG-[x]T

I A0 · · · An · · ·
II f0 · · · fn · · ·

where we require

(1) A0 ∈ P(Rx) ∩OD[x]T , An+1 ∈ P(Rx) ∩OD[x]T ,f0,...,fn
and

(2) fn is a relativized prestrategy that is winning in An with respect to
[x]T ,
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and II wins if and only if II can play all ω rounds. We say that strategic de-
terminacy relativized to [x]T holds (ST-[x]T -determinacy) if II wins SG-[x]T .

We caution the reader that in the context of the relativized notions we
are dealing only with definable versions of relativized determinacy such as
OD-[x]T -determinacy and SG-[x]T -determinacy. In fact, full relativized de-
terminacy can never hold. But as we shall see both OD-[x]T -determinacy
and SG-[x]T -determinacy can hold.

7.6 Theorem. Assume ZF + DC + Δ1
2-determinacy. Let T be the theory

ZFC − Replacement + Σ2-Replacement. There is a real x0 such that for all
reals x and for all ordinals λ if x0 ∈ Lλ[x] and Lλ[x] |= T, then Lλ[x] |=
OD-[x]T -determinacy.

Proof. The proof is similar to that of Theorem 6.6. Assume for contradiction
that for every real x0 there is an ordinal λ and a real x such that x0 ∈ Lλ[x]
and Lλ[x] |= T + ¬OD-[x]T -determinacy, where T = ZFC − Replacement +
Σ2-Replacement. As before, by the Löwenheim-Skolem theorem and Σ1

2-
determinacy the ordinal

λ(x) =

{
μλ (Lλ[x] |= T + ¬OD-[x]T -determinacy) if such a λ exists
undefined otherwise

is defined for a Turing cone of x. For each x such that λ(x) is defined, let
Ax ⊆ Rx be the (OD[x]T )Lλ(x)[x]-least counterexample.

Consider the game
I a, b
II c, d

where, letting p = 〈a, b, c, d〉, I wins iff λ(p) is defined and Lλ(p)[p] |= “a ∗ d ∈
Ap”, where a and d can be thought of as strategies. This game is Σ1

2, hence
determined.

We arrive at a contradiction by showing that neither player can win.

Case 1: I has a winning strategy σ0.

Let x0 �T σ0 be such that for all x �T x0, λ(x) is defined. We claim
that Lλ(x0)[x0] |= “I has a relativized winning strategy σ in Ax0”, which is a
contradiction. The relativized strategy σ is derived as follows: Given d�n ∈
ωn have II play x0�n, d�n in the main game. Let a�n, b�n be σ0’s response
along the way and let a(n) be σ0’s next move. Then set σ(d�n) = a(n).
(Clearly, σ is continuous, and the real a = σ(d) it defines is to be thought of
as coding a strategy for Player I.) This strategy σ is clearly recursive in σ0,
hence it is a relativized strategy.

It remains to show that for every d ∈ Rx0 , σ ∗ d ∈ Ax0 . The point is
that for d ∈ Rx0 , p ≡T x0, where p = 〈a, b, x0, d〉 is the play obtained
by letting 〈a, b〉 = (σ0 ∗ 〈x0, d〉)I . It follows that λ(p) = λ(x0) and hence
Lλ(p)[p] = Lλ(x0)[x0] and Ap = Ax0 . Thus, Lλ(x0)[x0] |= “σ(d) ∗ d ∈ Ax0”.
So Lλ(x0)[x0] |= “σ is a relativized winning strategy for I in Ax0”.
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Case 2: II has a winning strategy τ0.

Let x0 �T τ0 be such that for all x �T x0, λ(x) is defined and λ(x) �
λ(x0). Given a�(n + 1) ∈ ωn+1 have I play a�(n + 1), x0�(n + 1) in the main
game. Let c�n, d�n be τ0’s response along the way. Then set τ(a�n) = d(n).
This strategy is clearly recursive in τ0, hence it is a relativized strategy, and,
as above, Lλ(x0)[x0] |= “τ is a relativized winning strategy for II in Ax0”. �

7.7 Theorem. Assume ZF+DC+Δ1
2-determinacy. Then for a Turing cone

of x,
L[x] |= ST-[x]T -determinacy.

Proof. The proof is a straightforward variant of the proof of Theorem 6.9. In
fact it is simpler. We note the major changes.

As before we assume that V = L[x] and show that there is a real z0 with the
feature that if z0 ∈ Lλ[z] and Lλ[z] |= T, then Lλ[z] |= ST-[x]T -determinacy.

Assume for contradiction that this fails. For z ∈ ωω, let

λ(z) =

{
μλ (Lλ[z] |= T + ¬ST-[x]T -determinacy) if such a λ exists
undefined otherwise.

The following is immediate.

Claim 1. For a Turing cone of z, λ(z) is defined.

For each z in the cone of Claim 1 Player I has a canonical strategy σz that
depends only on the Turing degree of z, the point being that if y ≡T z then
Lλ(y)[y] = Lλ(z)[z].

As before our aim is to obtain a contradiction by defeating σz for some
z in the Turing cone of Claim 1. We do this by constructing a sequence of
games G0, G1, . . . , Gn, . . . such that I must win via σ0, σ1, . . . , σn, . . . and, for
a cone of z, the winning strategies give rise to prestrategies fz

0 , fz
1 , . . . , fz

n, . . .
that constitute a non-losing play against σz in (SG-[x]T )Lλ(z)[z].

Step 0. Consider (in L[x]) the game G0

I ε a, b
II c, d

where ε is either 1 or 2 and, letting p = 〈a, b, c, d〉, I wins iff

(1) p satisfies the condition on z in Claim 1 (so σp makes sense) and

(2) ε = 1 iff Lλ(p)[p] |= “a ∗ d ∈ Ap
0”, where Ap

0 = σp(∅).

Claim 2. I has a winning strategy σ0 in G0.

Proof. Assume for contradiction that I does not have a winning strategy
in G0. Then, by Σ1

2-determinacy, II has a winning strategy τ0 in G0. Let
z0 �T τ0 be such that for all z �T z0,
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(1) z satisfies the conditions of Claim 1 and

(2) if λ and z are such that z0 ∈ Lλ[z] and Lλ[z] |= T then Lλ[z] |=
OD-[x]T -determinacy (by Theorem 7.6).

Consider Az0
0 = σz0(∅). Since Lλ(z0)[z0] |= OD-[x]T -determinacy, assume

without loss of generality that Lλ(z0)[z0] |= “σ is a relativized winning strat-
egy for I in Az0

0 ”. We use τ0 to defeat this relativized strategy. Run G0

according to τ0, having Player I (falsely) predict that Player I wins the aux-
iliary game, while steering into Lλ(z0)[z0] by playing b = z0 and using σ to
respond to τ0 on the auxiliary play:

I 1 (σ ∗ d)I , z0

II c, d

The point is that p ≡T z0 (since σ, τ0 ∈ Rz0) and so λ(p) = λ(z0). Thus
the “steering problem” is immediately solved and we have a contradiction as
before. �

Since the game is Σ1
2 for Player I, Player I has a Δ1

3 strategy σ0, by
Theorem 6.5.

Claim 3. For every real z �T σ0 there is a prestrategy fz
0 such that fz

0 is
recursive in σ0 as in Claim 1 and fz

0 is a non-losing first move for II against
σz in (SG-[x]T )Lλ(z)[z].

Proof. Fix z �T σ0 as in Claim 1 and consider Az
0 = σz(∅). Let fz

0 be
the prestrategy derived from σ0 as follows: Given y�n and d�n have II play
y�n, d�n in G0. Let ε, a�n, b�n be σ0’s response along the way and let a(n)
be σ0’s next move. Then let fz

0 (y�n) = a(n). We have that fz
0 is recursive

in σ0 �T z and for y ∈ [z]T , fz
0 (y) ∈ Rz. It remains to see that for y ∈ [z]T ,

fz
0 (y) is a relativized winning strategy for I in Az

0. The point is that since
y ∈ [z]T , λ(y) = λ(z) and so Lλ(y)[y] = Lλ(z)[z] and Ay

0 = Az
0. For d ∈ Rz, by

definition fz
0 (y) ∗ d = a ∗ d where a is such that (σ0 ∗ 〈y, d〉)I = 〈ε, a, b〉. So,

letting p = 〈a, b, y, d〉 we have p ≡T y. Thus, ε = 1 iff Lλ(z)[z] |= “fz
0 (y) ∗ d ∈

Az
0”. �

Step n + 1. Assume that we have defined (in L[x]) games G0, . . . , Gn

with winning strategies σ0, . . . , σn ∈ HOD such that for all z �T 〈σ0, . . . , σn〉
as in Claim 1 there are prestrategies fz

0 , . . . , fz
n such that fz

i is recursive in
〈σ0, . . . , σi〉 (for all i � n) and fz

0 , . . . fz
n is a non-losing partial play for II in

(SG-[x]T )Lλ(z)[z].
Consider (in L[x]) the game Gn+1

I ε a, b
II c, d

where ε is 1 or 2 and, letting p = 〈a, b, c, d, σ0, . . . , σn〉, I wins iff
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(1) p satisfies the condition on z in Claim 1 (so σp makes sense) and

(2) ε = 1 iff Lλ(p)[p] |= “a ∗ d ∈ Ap
n+1”, where Ap

n+1 is I’s response via σp

to II’s partial play fp
0 , . . . , fp

n.

This game is Σ1
2(σ0, . . . , σn) (for Player I) and hence determined (since

σ0, . . . , σn ∈ HOD and we have OD-determinacy).

Claim 4. I has a winning strategy σn+1 in Gn+1.

Proof. The proof is as before, only now we use the relativized version of
Theorem 7.6 to enforce ODσ0,...,σn -[x]T -determinacy. �

Since the game is Σ1
2(σ0, . . . , σn) for Player I, Player I has a Δ1

3(σ0, . . . , σn)
strategy σn+1, by the relativized version of Theorem 6.5.

Claim 5. For every real z �T 〈σ0, . . . , σn〉 there is a prestrategy fz
n+1 such

that fz
n+1 is recursive in 〈σ0, . . . , σn+1〉 and fz

0 , . . . , fz
n+1 is a non-losing first

move for II against σz in (SG-[x]T )Lλ(z)[z].

Proof. The proof is just like the proof of Claim 3. �

Finally, letting z∞ as in Claim 1 be such that z∞ �T zn for all n we
have that fz∞

0 , . . . ,fz∞

n , . . . defeats σz∞
in (SG-[x]T )Lλ(z∞)[z

∞], which is a
contradiction. �

7.8 Theorem. Assume ZF + DC. Then for every x ∈ ωω and for every
α < ω

L[x]
1 there is an OD[x]T surjection ρ : [x]T → α.

Proof. First we need to review Vopěnka’s theorem. Work in L[x] and let
d = [x]T . Let

B
′
d = {A ⊆ d | A ∈ ODd},

ordered under ⊆. There is an ODd isomorphism π between (B′
d,⊆) and a

partial ordering (Bd,�) in HODd.

Claim 1. (Bd,≤) is complete in HODd and every real in d is HODd-generic
for Bd.

Proof. For completeness consider S ⊆ Bd in HODd. We have to show that∨
S exists. Let S′ = π−1[S]. Then

∨
S′ =

⋃
S′ ∈ B

′
d as this set is clearly

ODd. So
∨

S = π(
∨

S′).
Now consider z ∈ d. Let G′

z = {A ∈ B
′
d | z ∈ A} and let Gz = π[G′

z]. We
claim that Gz is HODd-generic for Bd. Let S ⊆ Bd be a maximal antichain.
So

∨
S = 1. Let S′ = π−1[S]. Note

∨
S′ = d. Thus there exists a b ∈ S such

that z ∈ π(b). So Gz is HODd-generic for Bd. Now the map f : ω → Bd,
defined by f(n) = π({x ∈ d | n ∈ x}), is in HODd. Moreover, n ∈ z iff
f(n) ∈ Gz. Thus z ∈ HODd[Gz]. �



7. Second-Order Arithmetic 2107

Notice that HODd[G] = L[x] for every G = Gz that is HODd-generic
(where z ∈ d) since such a generic adds a real in [x]T . Thus, if HODd �= L[x]
then Bd is non-trivial. This is a key difference between our present setting
and that of Vopěnka’s—in general our partial order does not have atoms.

If L[x] = HODd then clearly for each α < ω
L[x]
1 there exists a surjection

ρ : d → α such that ρ ∈ ODd. So we may assume that L[x] �= HODd. Thus,
for every z ∈ d

ω
L[x]
1 = ω

HODd[Gz ]
1 .

Claim 2. Assume ZFC. Suppose l is an uncountable regular cardinal, B is
a complete Boolean algebra, and V B |= λ = ω1. Then for every α < λ there
is an antichain in B of size |α|.

Proof. If λ is a limit cardinal then since B collapses all uncountable cardinals
below λ it cannot be λ̄-c.c. for any uncountable cardinal λ̄ < λ.

Suppose λ = λ̄+. We need to show that there is an antichain of size λ̄. If
λ̄ > ω then this is immediate since B collapses λ̄ and so it cannot be λ̄-c.c. So
assume λ̄ = ω. There must be an antichain of size ω since not every condition
in B is above an atom. �

Letting λ = ω
L[x]
1 , we are in the situation of the claim. So, for every α < λ

there is an antichain Sα in B of size |α|. Letting S′
α = π−1[Sα] we have that

S′
α is an ODd subset of B

′
d consisting of pairwise disjoint ODd subsets of d.

Picking an element from each set we get an ODd-surjection ρ : d→ α. �

7.9 Theorem. Assume ZF+DC+Δ1
2-determinacy. Then for a Turing cone

of x,
HODL[x]

[x]T
|= ω

L[x]
1 is a Woodin cardinal.

Proof. For a Turing cone of x, L[x] |= OD[x]T -determinacy (by the relativized
version of Theorem 6.6) and L[x] |= ST-[x]T -determinacy (by Theorem 7.7).
Let x be in this cone and work in L[x]. Let d = [x]T . Since L[x] |= OD[x]T -
determinacy, ω

L[x]
1 is strongly inaccessible in HODd. Let H ⊆ ω

L[x]
1 code

HODd ∩ V
ω

L[x]
1

. Fix T ∈ P(ωL[x]
1 ) ∩ODd and let T0 ⊆ ω

L[x]
1 code T and H.

Let A = 〈Aα | α < ω
L[x]
1 〉 be such that Aα is an ODd prewellordering of

length greater than or equal to α (by Theorem 7.8). Let B = d. Consider
the structure

M =
(
L

ω
L[x]
1

(R)[T0, A,B]
)L[x]

.

We claim that

HODM |= There is a T0-strong cardinal,

which completes the proof as before. The reason is that we are in the sit-
uation of the Generation Theorem, except with ω

L[x]
1 replacing ω

L[x]
2 and

ST-[x]T -determinacy replacing STB-determinacy. The proof of the Gener-
ation Theorem goes through unchanged. One just has to check that all of
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the operations we performed before (which involved definability in various
parameters) are in fact recursive in the relevant parameters. �

7.2. Second Localization

We now wish to show that the above construction goes through when we
replace ZF + DC with PA2. Notice that if we had Δ∼

1
2-determinacy then this

would be routine.

7.10 Theorem. Assume PA2 +Δ∼
1
2-determinacy. Then for all reals x, there

is a model N such that x ∈ N and

N |= ZFC + There is a Woodin cardinal.

Proof. Working in PA2 if one has Δ∼
1
2-determinacy then for every x ∈ ωω, x#

exists. It follows that for all x ∈ ωω, there is an ordinal α < ω1 such that
Lα[x] |= ZFC. Using Δ∼

1
2-determinacy one can find a real x0 enforcing OD-

determinacy. Thus we have a model Lα0 [x0] satisfying ZFC + V = L[x0] +
OD-determinacy and this puts us in the situation of Theorem 6.10. �

The situation where one only has Δ1
2-determinacy is bit more involved.

7.11 Theorem. Assume that PA2 + Δ1
2-determinacy is consistent. Then

ZFC + “On is Woodin” is consistent.

Proof Sketch. First we pass to a theory that more closely resembles the theory
used to prove Theorem 7.9. In PA2 one can simulate the construction of
Lω1 [x]. Given a model M of PA2 and a real x ∈ M , there is a definable
set of reals A coding the elements of Lω1 [x]. One can then show that the
“inner model” Lω1 [x] satisfies ZFC−Power Set+V = L[x] (using, for example
Comprehension to get Replacement). Thus, ZFC− Power Set + V = L[x] is
a conservative extension of PA2.

Next we need to arrange a sufficient amount of definable determinacy.
The most natural way to secure Δ1

2-determinacy is to let x encode winning
strategies for all Δ1

2 games. However, this approach is unavailable to us since
we have not included AC in PA2 and, in any case, we wish to work with OD-
determinacy (understood schematically). For this we simultaneously run (an
elaboration of) the proof of Theorem 6.6 while defining Lω1 [x]. In this way,
for any model M of PA2, there is a real x and an associated definable set of
reals A which codes a model Lω1 [x] satisfying ZFC−Power Set+V = L[x]+
OD-determinacy.

Working in ZFC− Power Set + V = L[x] + OD-determinacy we wish now
to show that

HOD[x]T |= ZFC + On is Woodin.

So we have to localize the construction of the previous section to the structure
〈Lω1 [x], [x]T 〉. The first step is to show that

〈Lω1 [x], [x]T 〉 |= ST-[x]T -determinacy for n moves,
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for each n. Here by ST-[x]T -determinacy we mean what we meant in the
previous section. However, there is a slight metamathematical issue that
arises when we work without Power Set, namely, at each stage of the game
the potential moves for Player I are a proper class from the point of view of
〈Lω1 [x], [x]T 〉. So in quantifying over these moves we have to use the first-
order definition of OD in 〈Lω1 [x], [x]T 〉. The winning condition for the n-move
version of the game is first-order over 〈Lω1 [x], [x]T 〉 but since the complexity
of the definition increases as n increases the full game is not first-order over
〈Lω1 [x], [x]T 〉. This is why we have had to restrict to the n-move version.

The proof of this version of the theorem is just like that of Theorem 7.7,
only now one has to keep track of definability and verify that there is no
essential use of Power Set (for example, in the proof of Third Periodicity).
The proof of Theorem 7.8 goes through as before. Finally, as in the proof of
Theorem 7.9, the proof of the Generation Theorem gives a structure M such
that

HODM
[x]T |= ZFC + On is T -strong,

for an arbitrary OD〈Lω1 [x],[x]T 〉
[x]T

class T of ordinals, which implies the final
result. �

This raises the following question: Are the theories PA2 +Δ1
2-determinacy

and ZFC + “On is Woodin” equiconsistent? We turn to this and other more
general issues in the next section.

8. Further Results

In this section we place the above results in a broader setting by discussing
some results that draw on techniques that are outside the scope of this chap-
ter. The first topic concerns the intimate connection between axioms of
definable determinacy and large cardinal axioms (as mediated through in-
ner models). The second topic concerns the surprising convergence between
two very different approaches to inner model theory—the approach based
on generalizations of L and the approach based on HOD. In both cases the
relevant material on inner model theory can be found in Steel’s chapter in
this Handbook.

8.1. Large Cardinals and Determinacy

The connection between axioms of definable determinacy and inner models of
large cardinals is even more intimate than indicated by the above results. We
have seen that certain axioms of definable determinacy imply the existence
of inner models of large cardinal axioms. For example, assuming ZFC + Δ∼

1
2-

determinacy, for each x ∈ ωω, there is an inner model M such that x ∈ M
and

M |= ZFC + There is a Woodin cardinal.
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And, assuming ZFC + ADL(R), in L(R) there is an inner model M such that

M |= ZFC + There is a Woodin cardinal.

In many cases these implications can be reversed—axioms of definable de-
terminacy are actually equivalent to axioms asserting the existence of inner
models of large cardinals. We discuss what is known about this connection,
starting with a low level of boldface definable determinacy and proceeding
upward. We then turn to lightface determinacy, where the situation is more
subtle. It should be emphasized that our concern here is not merely with
consistency strength but rather with outright equivalence (over ZFC).

8.1 Theorem. The following are equivalent:

(1) Δ∼
1
2-determinacy.

(2) For all x ∈ ωω, there is an inner model M such that x ∈ M and
M |= There is a Woodin cardinal .

8.2 Theorem. The following are equivalent:

(1) PD (Schematic).

(2) For every n < ω, there is a fine-structural, countably iterable inner
model M such that M |= There are n Woodin cardinals.

8.3 Theorem. The following are equivalent:

(1) ADL(R).

(2) In L(R), for every set S of ordinals, there is an inner model M and an
α < ω

L(R)
1 such that S ∈M and M |= α is a Woodin cardinal .

8.4 Theorem. The following are equivalent:

(1) ADL(R) and R
# exists.

(2) M#
ω exists and is countably iterable.

8.5 Theorem. The following are equivalent:

(1) For all B, V B |= ADL(R).

(2) M#
ω exists and is fully iterable.

The above examples concern boldface definable determinacy. The situation
with lightface definable determinacy is more subtle. For example, assuming
ZFC + Δ1

2-determinacy, must there exist an α < ω1 and an inner model M
such that α is a Woodin cardinal in M? In light of Theorem 8.1 one would
expect that this is indeed the case. However, since Theorem 8.1 also holds
in the context of PA2 one would then expect that the theories PA2 + Δ1

2-
determinacy and PA2 + “There is an α < ω1 and an inner model M such
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that M |= α is a Woodin cardinal” are equivalent , and yet this expectation is
in conflict with the expectation that the theories PA2 + Δ1

2-determinacy and
ZFC + “On is Woodin” are equiconsistent. In fact, this seems likely, but the
details have not been fully checked. We state a version for third-order Peano
arithmetic, PA3, and second-order ZFC. But first we need a definition and
some preliminary results.

8.6 Definition. A partial order P is δ-productive if for all δ-c.c. partial
orders Q, the product P×Q is δ-c.c.

8.7 Theorem. In the fully iterable, 1-small, 1-Woodin Mitchell-Steel model
the extender algebra built using all extenders on the sequence which are strong
to their length is δ-productive.

This is a warm-up since in the case of interest we do not have iterability.
It is unknown if iterability is necessary.

8.8 Theorem. Suppose δ is a Woodin cardinal. Then there is a proper class
inner model N ⊆ V such that

(1) N |= δ is a Woodin cardinal and

(2) N |= There is a complete δ-c.c. Boolean algebra B such that

NB |= Δ1
2-determinacy.

Let ZFC2 be second-order ZFC.

8.9 Theorem. The following are equiconsistent :

(1) PA3 + Δ1
2-determinacy.

(2) ZFC2 + On is Woodin.

We now turn from theories to models and discuss the manner in which
one can pass back and forth between models of infinitely many Woodin car-
dinals and models of definable determinacy at the level of ADL(R) and be-
yond. We have already dealt in detail with one direction of this—the trans-
fer from models of determinacy to models with Woodin cardinals—and the
other direction—the transfer from models with Woodin cardinals to models
of determinacy—was briefly discussed in the introduction, but the situation
is much more general. To proceed at the appropriate level of generality we
need to introduce a potential strengthening of AD.

A set A ⊆ ωω is ∞-borel if there is a set S ⊆ On, an ordinal α, and a
formula ϕ such that

A = {y ∈ ωω | Lα[S, y] |= ϕ[S, y]}.

It is fairly straightforward to show that to say that A is ∞-borel is equivalent
to saying that it has a “transfinite borel code”. Notice that under AC every
set of reals is ∞-borel.
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8.10 Definition. Assume ZF + DCR. The theory AD+ consists of the
axioms:

(1) Every set A ⊆ ωω is ∞-borel.

(2) Suppose λ < Θ and π : λω → ωω is a continuous surjection. Then for
each A ⊆ ωω the set π−1[A] is determined.

8.11 Conjecture. AD implies AD+.

It is known that the failure of this implication has strong consistency
strength. For example, AD + ¬AD+ proves Con(ADR).

The following theorem—the Derived Model Theorem—is a generalization
of Theorem 1.5, mentioned in the introduction.

8.12 Theorem. Suppose that δ is a limit of Woodin cardinals. Suppose that
G ⊆ Col(ω,< δ) is V -generic and let RG = ∪{RV [G�α] | α < δ}. Let ΓG be
the set of A ⊆ RG such that

(1) A ∈ V (RG),

(2) L(A,RG) |= AD+.

Then L(ΓG,RG) |= AD+.

There is a “converse” to the Derived Model Theorem, the proof of which
is a generalization of the proof of Theorem 6.20.

8.13 Theorem. Assume AD+ and V = L(P(R)). There is a partial order
P such that if H is P-generic over V then there is an inner model N ⊆ V [H]
such that

(1) N |= ZFC,

(2) ωV
1 is a limit of Woodin cardinals in N ,

(3) there is a g which is Col(ω,< ωV
1 )-generic over N and such that

(a) R
V = Rg,

(b) Γg = P(R)V ,

where Rg and Γg are as in the previous theorem with N in the role of V .

Thus, there is an intimate connection between models with infinitely many
Woodin cardinals and models of definable determinacy at the level of ADL(R)

and beyond. Moreover, the link is even tighter in the case of fine-structural
inner models with Woodin cardinals. For example, if one first applies the
Derived Model Theorem to Mω (the Mitchell-Steel model for ω-many Woodin
cardinals) and then applies the “converse” theorem to the resulting derived
model L(R∗) then one recovers the original model Mω.
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8.2. HOD-Analysis

There is also an intimate connection between the two approaches to inner
model theory mentioned in the introduction—the approach based on gener-
alizations of L and the approach based on HOD.

As mentioned in the introduction, the two approaches have opposing ad-
vantages and disadvantages. The disadvantage of the first approach is that
the problem of actually defining the models that can accommodate large
cardinals—the inner model problem—is quite a difficult problem. However,
the advantage is that once the inner model problem is solved at a given level
of large cardinals the inner structure of the models is quite transparent and
so these models are suitable for extracting the large cardinal content inher-
ent in a given statement. The advantage of the approach based on HOD is
that this model is trivial to define and it can accommodate virtually every
large cardinal. The disadvantage—the tractability problem—is that in gen-
eral the inner structure of HOD is about as tractable as that of V and so it is
not generally suitable for extracting the large cardinal content from a given
statement.

Nevertheless, we have taken the approach based on HOD and we have
found that ADL(R) and Δ1

2-determinacy are able to overcome (to some extent)
the tractability problem for their natural models, L(R) and L[x] for a Turing
(or constructibility) cone of x. For example, we have seen that under ADL(R),

HODL(R) |= ΘL(R) is a Woodin cardinal,

and that under Δ1
2-determinacy, for a Turing cone of reals x,

HODL[x] |= ω
L[x]
2 is a Woodin cardinal.

Despite this progress, much of the structure of HOD in these contexts is far
from clear. For example, it is unclear whether under Δ1

2-determinacy, for
a Turing cone of reals x, HODL[x] satisfies GCH, something that would be
immediate in the case of “L-like” inner models.

Since the above results were first proved, Mitchell and Steel developed the
fine-structural version of the “L-like” inner models at the level of Woodin
cardinals. These models have the form L[ �E] where �E is a sequence of
(partial) extenders and (as noted above) their inner structure is very well
understood—for example, they satisfy GCH and many of the other com-
binatorial properties that hold in L. A natural question, then, is whether
there is any connection between these radically different approaches, that is,
whether HOD as computed in L(R) under ADL(R) or in L[x], for a Turing
cone of x, under Δ1

2-determinacy, bears any resemblance to the L[ �E] models.
The remainder of this section is devoted to this question. We begin with
HODL(R) and its generalizations (where a good deal is known) and then turn
to HODL[x] (where the central question is open). Again, the situation with
lightface determinacy is more subtle.



2114 Koellner and Woodin / Large Cardinals from Determinacy

The theorems concerning HODL(R) only require ADL(R) but they are sim-
pler to state under the stronger assumption that ADL(R) holds in all generic
extensions of V . By Theorem 8.5, this assumption is equivalent to the state-
ment that M#

ω exists and is fully iterable.
The first hint that HODL(R) is a fine-structural model is the remarkable

fact that
HODL(R) ∩ R = Mω ∩ R.

The agreement between HODL(R) and Mω fails higher up but HODL(R) agrees
with an iterate of Mω at slightly higher levels. More precisely, letting N be
the result of iterating Mω by taking the ultrapower ωV

1 -many times using the
(unique) normal ultrafilter on the least measurable cardinal, we have that

HODL(R) ∩P(ωV
1 ) = N ∩P(ωV

1 ).

Steel improved this dramatically by showing that

HODL(R) ∩ V(δ
˜
2
1)

L(R)

is the direct limit of a directed system of iterable fine-structural inner models.

8.14 Theorem (Steel). HODL(R) ∩ Vδ is a Mitchell-Steel model, where δ =
(δ∼

2
1)

L(R).

For a proof of this result see Steel’s chapter in this Handbook. As a
corollary one has that HODL(R) satisfies GCH along with the combinatorial
principles (such as ♦ and �) that are characteristic of fine-structural models.

The above results suggest that all of HODL(R) might be a Mitchell-Steel
inner model of the form L[ �E]. This is not the case.

8.15 Theorem. HODL(R) is not a Mitchell-Steel inner model.

Nevertheless, HODL(R) is a fine-structural inner model, one that belongs
to a new, quite different, hierarchy of models. Let

D =
{
L[ �E]

∣
∣ L[ �E] is an iterate of Mω by a countable tree

which is based on the first Woodin cardinal

and has a non-dropping cofinal branch
}
.

Any two structures in D can be compared and the iteration halts in countably
many steps (since we have full iterability) with iterates lying in D. So D is a
directed system under the elementary embeddings given by iteration maps.
By the Dodd-Jensen lemma the embeddings commute and hence there is a
direct limit. Let L[ �E∞] be the direct limit of D. Let 〈δ∞

i | i < ω〉 be the
Woodin cardinals of L[ �E∞].

8.16 Theorem. Let L[ �E∞] be as above. Then
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(1) L[ �E∞] ⊆ HODL(R),

(2) L[ �E∞] ∩ Vδ = HODL(R) ∩ Vδ, where δ = δ∞
0 ,

(3) ΘL(R) = δ∞
0 , and

(4) (δ∼
2
1)

L(R) is the least cardinal in L[ �E∞] which is λ-strong for all λ < δ∞
0 .

To reach HODL(R) we need to supplement L[ �E∞] with additional inner-
model-theoretic information. A natural candidate is the iteration strategy.
It turns out that by folding in the right fragment of the iteration strategy
one can capture HODL(R). Let

T ∞ =
{
T
∣
∣ T is a maximal iteration tree on L[ �E∞] based on δ∞

0 ,

T ∈ L[ �E∞], and length(T ) < sup{δ∞
n | n < ω}

}

and

P =
{
〈b, T 〉

∣
∣ T ∈ T ∞ and b is the true branch through T

}
.

8.17 Theorem. Let L[ �E∞] and P be as above. Then

HODL(R) = L[ �E∞, P ].

In fact, there is a single iteration tree T ∈ T ∞ such that if b is the branch
through T chosen by P then

HODL(R) = L[ �E∞, b].

This analysis has an interesting consequence. Notice that the model L[ �E∞]
is of the form L[A] for A ⊆ δ∞

0 . Thus, although the addition of P does not
add any new bounded subsets of ΘL(R) it does a lot of damage to the model
above ΘL(R), for example, it collapses ω-many Woodin cardinals. One might
think that this is an artifact of L[ �E∞] but in fact the situation is much more
general: Suppose L[ �E] is ω-small, fully iterable, and has ω-many Woodin
cardinals. Let P be defined as above except using the Woodin cardinals of
L[ �E]. Then L[ �E, P ] ∩ Vδ = L[ �E] ∩ Vδ, where δ is the first Woodin cardinal
of L[ �E], and L[ �E] � L[ �E, P ] � L[ �E#]. For example, applying this result to
L[ �E] = Mω, one obtains a canonical inner-model-theoretic object between
Mω and M#

ω . In this way, what appeared to be a coarse approach to inner
model theory has actually resulted in a hierarchy that supplements and refines
the standard fine-structural hierarchy.

The above results generalize. We need a definition.

8.18 Definition (Mouse Capturing). MC is the statement: For all x, y ∈
ωω, x ∈ ODy iff there is an iterable Mitchell-Steel model M of the form
L[ �E, y] such that x ∈M .
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The Mouse Set Conjecture, MSC, is the conjecture that it is a theorem of
AD+ that MC holds if there is no iterable model with a superstrong cardinal.
There should be a more general version of MC, one that holds for extensions
of the Mitchell-Steel models that can accommodate long extenders. And this
version of MC should follow from AD+. However, the details are still being
worked out. See [12].

8.19 Theorem. Assume AD+ +V = L(P(R))+Θ0 = Θ+MSC. Then the
inner model HODL(P(R)) is of the form L[ �E∞, P ], with the key difference
being that L[ �E∞] need not be ω-small.

8.20 Theorem. Assume AD+ + V = L(P(R)) + Θ0 < Θ + MSC. Then

(1) Θ0 is the least Woodin cardinal in HOD,

(2) HOD ∩ VΘ0 is a Mitchell-Steel model,

(3) HOD ∩ VΘ0+1 is not a Mitchell-Steel model, and

(4) HOD∩VΘ1 is a model of the form L[ �E∞, P ] (assuming the appropriate
form of the Mouse Set Theorem).

One can move on to stronger hypotheses. For example, assuming AD+

and V = L(P(R)), ADR is equivalent to the statement that Ω (defined at
the beginning of Sect. 5) is a non-zero limit ordinal. There is a minimal
inner model N of ZF+ADR that contains all of the reals. The model HODN

has ω-many Woodin cardinals and these are exactly the members of the Θ-
sequence. This model belongs to the above hierarchy and has been used
to calibrate the consistency strength of ADR in terms of the large cardinal
hierarchy. This hierarchy extends and a good deal is known about it.

We now turn to the case of lightface determinacy and the setting L[x] for
a Turing cone of x. Here the situation is less clear. In fact, the basic question
is open.

5 Open Question. Assume Δ1
2-determinacy. For a Turing cone of x, what

is HODL[x] from a fine-structural point of view?

We close with partial results in this direction and with a conjecture. To
simplify the discussion we state these results under a stronger assumption
than is necessary: Assume Δ1

2-determinacy and that for all x ∈ ωω, x#

exists.
It follows that M1 and M#

1 exist. Let x0 ∈ ωω be such that M#
1 ∈ L[x0].

Let κx0 be the least inaccessible of L[x0] and let G ⊆ Col(ω,< κx0) be
L[x0]-generic. The Kechris-Solovay result carries over to show that

L[x0][G] |= OD-determinacy.

Furthermore,

HODL[x0][G] = HODL(R)L[x0][G]
and ω

L[x0][G]
2 = ΘL(R)L[x0][G]

.
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Thus, the model L(R)L[x0][G] is a “lightface” analogue of L(R). In fact the
conditions of the Generation Theorem hold in L[x0][G] and as a consequence
one has that

HODL[x0][G] |= ω
L[x0][G]
2 is a Woodin cardinal.

For a model L[ �E] containing at least one Woodin cardinal let δ
�E
0 be the least

Woodin cardinal. Let

D =
{
L[ �E] ⊆ L[x0][G]

∣
∣ L[ �E] is an iterate of M1 and δ

�E
0 < ω

L[x0][G]
1

}
.

Let L[ �E∞] be the direct limit of D. Let δ∞ be the least Woodin of L[ �E∞]
and let κ∞ be the least inaccessible above δ∞. Let

T ∞ =
{
T
∣
∣ T is a maximal iteration tree on L[ �E∞],

T ∈ L[ �E∞], and length(T ) < κ∞}

and

P =
{
〈b, T 〉

∣
∣ T ∈ T ∞ and b is the true branch through T

}
.

8.21 Theorem. Let L[ �E∞, P ] be as above. Then

(1) HODL[x0][G] ∩ Vδ∞ = L[ �E∞] ∩ Vδ∞ ,

(2) HODL[x0][G] = L[ �E∞, P ], and

(3) ω
L[x0][G]
2 = δ∞.

A similar analysis can be carried out for other hypotheses that place one
in an “L(R)-like” setting. For example, suppose again that x0 is such that
M#

1 ∈ L[x0]. One can “generically force” MA as follows: In L[x0] let P be
the partial order where the conditions 〈Bα | α < γ〉 are such that (i) for each
α < γ, Bα is c.c.c., (ii) |Bα| = ω1, (iii) if α � β < γ then Bα is a complete
subalgebra of Bβ , and (iv) γ < ω2, and the ordering is by extension. The
forcing is <ω2-closed. Let G ⊆ P be L[x0]-generic and let BG be the union
of the algebras Bα appearing in the conditions in G. It follows that BG is
c.c.c in L[x0][G]. Now, letting H ⊆ BG be L[x0][G]-generic, we have that
L[x0][G][H] satisfies MA. The result is that

HODL[x0][G][H] = L[ �E∞, P ]

for the appropriate �E∞ and P . However, in this context

HODL[x0][G][H] |= ω
L[x0][G][H]
3 is a Woodin cardinal.

In the case of L(R) the non-fine-structural analysis showed that (δ∼
2
1)

L(R)

is λ-strong in HODL(R) for all λ < ΘL(R) and the HOD-analysis showed



2118 Koellner and Woodin / Large Cardinals from Determinacy

that in fact (δ∼
2
1)

L(R) is the least ordinal with this feature. In the case of
L[x0][G] the non-fine-structural analysis shows that some ordinal δ is λ-strong
in HODL[x0][G] = HODL(R)L[x0][G]

for all λ < ω
L[x0][G]
2 = ΘL(R)L[x0][G]

. Nu-
merology would suggest that δ is δ∼

1
2 as computed in L[x0][G]. It turns out

this analogy fails: the least cardinal δ that is λ-strong in HODL[x0][G] for all
λ < ω

L[x0][G]
2 is in fact strictly less δ1

2 as computed in L[x0][G].
But there is another analogy that does hold. First we need some defini-

tions. A set A ⊆ ωω is γ-Suslin if there is an ordinal γ and a tree T on ω× γ
such that A = p[T ] = {x ∈ ωω | ∃y ∈ γω ∀n (x�n, y�n) ∈ T}. A cardinal κ
is a Suslin cardinal if there exists a set A ⊆ ωω such that A is κ-Suslin but
not γ-Suslin for any γ < κ. A set A ⊆ ωω is effectively γ-Suslin if there is an
ordinal γ and an OD tree T ⊆ ω × γ such that A = p[T ]. A cardinal κ is an
effective Suslin cardinal if there exists a set A ⊆ ωω such that A is effectively
κ-Suslin but not effectively γ-Suslin for any γ < κ.

In L(R), δ∼
2
1 is the largest Suslin cardinal. Since L[x0][G] is a lightface

analogue of L(R) one might expect that in L[x0][G], δ1
2 is the largest effective

Suslin cardinal in L[x0][G]. This is indeed the case.
There is one more advance on the HOD-analysis for L[x] that is worth

mentioning.

8.22 Theorem. Assume Δ∼
1
2-determinacy. For a Turing cone of x there is

a predicate A such that

(1) HODL[x]
A has the form L[ �E, P ] where P is a fragment of the iteration

strategy,

(2) HODL[x]
A |= ω

L[x]
2 is a Woodin cardinal,

(3) HODL[x]
A is of the form L[ �E] below ω

L[x]
2 ,

(4) L[x] |= ST-determinacy, and

(5) HODL[x] ∩ Vδ = HODL[x]
A ∩ Vδ where δ is the least cardinal of HODL[x]

A

that is λ-strong for all λ < ω
L[x]
2 .

Moreover, there exists a definable collection of such A and the collection has
size ω

L[x]
1 .

This provides some evidence that HODL[x] is of the form L[ �E] below ω
L[x]
2

and that HODL[x] is not equal to a model of the form L[ �E].

8.23 Conjecture. HODL[x] is of the form L[ �E, P ] where P selects branches
through all trees in L[ �E] based on the Woodin cardinal and with length less
than the successor of the Woodin cardinal.
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The Axiom of Determinacy (AD) is the statement that all integer games of
perfect information of length ω are determined. This statement contradicts
the Axiom of Choice, and presents a radically different view of the universe
of sets. Nonetheless, determinacy was a subject of intense study by the
late 1960s, with an eye towards the possibility that some inner model of set
theory satisfies AD (see, for example, the introductory remarks in [32]). Since
strategies for these games can be coded by real numbers, the natural inner
model to consider is L(R), the smallest model of Zermelo-Fraenkel set theory
containing the reals and the ordinals. This approach was validated by the
following theorem of Woodin (see [14, 19]), building on work of Martin and
Steel [25] and Foreman, Magidor and Shelah [7].

0.1 Theorem. If there exists a measurable cardinal which is greater than
infinitely many Woodin cardinals, then the Axiom of Determinacy holds in
L(R).

This theorem is established in Neeman’s chapter in this Handbook.
A companion to Theorem 0.1, also due to Woodin (see [19]) and building

on the work of Foreman, Magidor and Shelah [7], shows that the existence of
a proper class of Woodin cardinals implies that the theory of L(R) cannot be
changed by set forcing. By Theorem 0.1, the Axiom of Determinacy is part
of this fixed theory for L(R).

0.2 Theorem. If δ is a limit of Woodin cardinals and there exists a measur-
able cardinal greater than δ, then no forcing construction in Vδ can change
the theory of L(R).

Theorem 0.2 has the following corollary. If P is a definable forcing con-
struction in L(R) which is homogeneous (i.e., the theory of the extension
can be computed in the ground model), then the theory of the P -extension
of L(R) also cannot be changed by forcing (i.e., the P -extensions of L(R)
in all forcing extensions of V satisfy the same theory). This suggests that
the absoluteness properties of L(R) can be lifted to models of the Axiom of
Choice, as Choice can be forced over L(R).

In [35], Steel and Van Wesep made a major step in this direction, forcing
over a model of a stronger form of determinacy than AD to produce a model of
ZFC satisfying two consequences of AD, that δ∼

1
2 (the supremum of the lengths

of the Δ∼
1
2-definable prewellorderings of the reals) is ω2 and the nonstationary

ideal NSω1 on ω1 is saturated. Woodin [38] later improved the hypothesis to
ADL(R).

This theorem is proved in [5, Sect. 5.11].
In the early 1990’s, Woodin proved the following theorem, showing for

the first time that large cardinals imply the existence of a partial order forc-
ing the existence of a projective set of reals giving a counterexample to the
Continuum Hypothesis. The question of whether ZFC is consistent with a
projective witness to c ≥ ω3 remains open.

0.3 Theorem. If NSω1 is saturated and there exists a measurable cardinal,
then δ∼

1
2 = ω2.
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One important point in this proof is the fact that if NSω1 is saturated
then every member of H(ω2) (recall that H(κ) is the collection of sets of
hereditary cardinality less than κ) appears in an iterate (in the sense of the
next section) of a countable model of a suitable fragment of ZFC. Since these
countable models are elements of L(R), their iterations induce a natural
partial order in L(R). With certain technical refinements, this partial order,
called Pmax, produces an extension of L(R) whose H(ω2) is the direct limit of
the structures H(ω2) of models satisfying every forceable theory (and more).
In particular, the structure H(ω2) in the Pmax extension of L(R) (assuming
ADL(R)) satisfies every Π2 sentence φ (in the language with predicates for
NSω1 and each set of reals in L(R)) for H(ω2) such that for some integer n the
theory ZFC + “There exist n Woodin cardinals” implies that φ is forceable.
Furthermore, the partial order Pmax can be easily varied to produce other
consistency results and canonical models.

The partial order Pmax and some of its variations (and many other related
issues) are presented in [39]. The aim of this chapter is to prepare the reader
for that book. First, we attempt to give a complete account of the basic
analysis of the Pmax extension of L(R), relative to published results. Then
we briefly survey some of the issues surrounding Pmax, in particular Pmax

variations and forcing over larger models of determinacy. We also briefly
introduce Woodin’s Ω-logic, in order to properly state the maximality prop-
erties of the Pmax extension. For the most part, though, our focus is primarily
on the Pmax extension of L(R), and secondarily on Pmax-style forcing con-
structions as a means of producing consistency results. For other topics, such
as the Ω-conjecture and the relationship between Ω-logic and the Continuum
Hypothesis, we refer the reader to [42, 40, 41, 43, 3].

The material in this chapter is due to Woodin, except where noted oth-
erwise. The author would like to thank Howard Becker and John Steel for
advising him on parts of the material in Sects. 4 and 9 respectively. He would
also like to thank Andrés Caicedo, Neus Castells and Teruyuki Yorioka for
making numerous helpful suggestions. The author was supported in part by
the Fields Institute, FAPESP (Grant # 02/11551-3, University of São Paulo)
and the Centre de Recerca Matemàtica of the Institut d’Estudis Catalans.

1. Iterations

The fundamental construction in the Pmax analysis is the iterated generic
elementary embedding. These embeddings can have many forms, but we
will concentrate on the following case. Suppose that I is a normal, uniform,
proper ideal on ω1 (so I is a proper subset of P(ω1) containing all the count-
able subsets, and such that whenever A is an I-positive set (i.e., in P(ω1)\I)
and f : A → ω1 is a regressive function, f is constant on an I-positive
set; notationally, we are going to act as though “proper” and “uniform” are
contained in the definition of normal ideal, and similarly for “measure” and
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“ultrafilter”). Then forcing with the Boolean algebra P(ω1)/I gives rise to
a V -normal ultrafilter U on ωV

1 . By convention, we identify the wellfounded
part of the ultrapower Ult(V, U) with its transitive collapse, and we note that
this wellfounded part always contains ωV

2 . The corresponding elementary em-
bedding j : V → Ult(V, U) has critical point ωV

1 , and since I is normal, for
each A ∈ P(ω1)V , A ∈ U if and only if ωV

1 ∈ j(A). Under certain circum-
stances, the corresponding ultrapower of V is wellfounded; if every condition
in P(ω1)/I forces this, then I is precipitous. See [5] for a general analysis of
generic elementary embeddings.

For the most part, we will be concerned only with models of ZFC, but
since occasionally we will want to deal with structures whose existence can
be proved in ZFC, we define the fragment ZFC◦ to be the theory ZFC −
Power Set − Replacement + “P(P(ω1)) exists” plus the following scheme,
which is a strengthening of ω1-Replacement: every (possibly proper class)
tree of height ω1 definable from set parameters has a maximal branch (i.e.,
a branch with no proper extensions; in the cases we are concerned with, this
just means a branch of length ω1). By the Axiom of Choice here we mean that
every set is the bijective image of an ordinal. We will use ZFC◦ in place of the
theory ZFC∗ from [39], which asserts closure under the Gödel operations (see
[10, p. 178]) plus a scheme similar to the one above. One advantage of using
ZFC∗ is that it holds in H(ω2). On the other hand, it raises some technical
points that we would rather avoid here. Some of these points appear in
Woodin’s proof of Theorem 0.3. Our concentration is on Pmax, but we hope
nonetheless that the reader will have no difficulty in reading the proofs of
that theorem in [5, 39] after reading the material in this section.

With either theory, the point is that one needs to be able to prove the
version of �Loś’s theorem asserting that ultrafilters on ω1 generate elementary
embeddings, which amounts to showing the following fact. The fact follows
immediately from the scheme above.

1.1 Fact (ZFC◦). Let n be an integer. Suppose that φ is a formula with
n + 1 many free variables and f0, . . . , fn−1 are functions with domain ω1.
Then there is a function g with domain ω1 such that for all α < ω1,

∃xφ(x, f0(α), . . . , fn−1(α)) =⇒ φ(g(α), f0(α), . . . , fn−1(α)).

If M is a model of ZFC and κ is a cardinal of M of cofinality greater than
ωM

1 (in M), then H(κ)M satisfies ZFC◦ if it has |P(P(ω1))|M as a member.
Suppose that M is a model of ZFC◦, I ∈M is a normal ideal on ωM

1 and
P(P(ω1))M is countable. Then there exist M -generic filters for the partial
order (P(ω1)/I)M . Furthermore, if j : M → N is an ultrapower embedding
of this form, then P(P(ω1))N is countable, and there exist N -generic filters
for (P(ω1)/j(I))N . We can continue choosing generics in this way for up to
ω1 many stages, defining a commuting family of elementary embeddings and
using this family to take direct limits at limit stages.

We use the following formal definition.
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1.2 Definition. Let M be a model of ZFC◦ and let I be an ideal on ωM
1

which is normal in M . Let γ be an ordinal less than or equal to ω1. An
iteration of (M, I) of length γ consists of models Mα (α ≤ γ), sets Gα

(α < γ) and a commuting family of elementary embeddings jαβ : Mα →Mβ

(α ≤ β ≤ γ) such that

• M0 = M ,

• each Gα is an Mα-generic filter for (P(ω1)/j0α(I))Mα ,

• each jαα is the identity mapping,

• each jα(α+1) is the ultrapower embedding induced by Gα,

• for each limit ordinal β ≤ γ, Mβ is the direct limit of the system
{Mα, jαδ : α ≤ δ < β}, and for each α < β, jαβ is the induced embed-
ding.

If 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 is an iteration of a pair (M, I) and each
ωMα

1 is wellfounded, then {ωMα
1 : α < ω1} is a club subset of ω1. Note also

that if 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉 is an iteration of a pair (M, I), then
j“OnM0 is cofinal in OnMγ .

The models Mα in Definition 1.2 are called iterates of (M, I). If M is a
model of ZFC◦ then an iteration of (M,NSM

ω1
) is called simply an iteration

of M and an iterate of (M,NSM
ω1

) is called simply an iterate of M . When
the individual parts of an iteration are not important, we sometimes call the
elementary embedding j0γ corresponding to an iteration an iteration itself.
For instance, if we mention an iteration j : (M, I) → (M ∗, I∗), we mean that
j is the embedding j0γ corresponding to some iteration

〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉

of (M, I), and that M ∗ is the final model of this iteration and I∗ = j(I).
If M and I are as in Definition 1.2, then the pair (M, I) is iterable if every

iterate of (M, I) is wellfounded. In this chapter, we are in general interested
only in iterable pairs (M, I). When checking for iterability it suffices to
consider the countable length iterations, as any iteration of length ω1 whose
final model is illfounded contains an illfounded model at some earlier stage.
The following two lemmas show that if

• M is a transitive model of ZFC◦+ Power Set containing ωV
1 ,

• |P(P(ω1)/I)|M is countable,

• κ is a cardinal of M greater than |P(P(ω1)/I)|M with cofinality greater
than ωM

1 in M ,

• I ∈M is a normal precipitous ideal on ωM
1 ,
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then the pair (H(κ)M , I) is iterable. In particular, Lemma 1.6 below shows
that every such pair (M, I) is iterable, and then Lemma 1.5 shows that
(H(κ)M , I) is iterable, as every iterate of (H(κ)M , I) embeds into an iterate
of (M, I). This argument is our primary means of finding iterable models.

1.3 Remark. Often in these notes will we use recursive codings of elements
of H(ω1) by subsets of ω. The following coding is sufficient in all cases: fixing
a recursive bijection π : ω × ω → ω, we say that x ⊆ ω codes a ∈ H(ω1) if

〈ω, {(n,m) | π(n,m) ∈ x}〉 ∼= 〈{a} ∪ tc(a),∈〉,

where tc(a) denotes the transitive closure of a. Under this coding, the re-
lations “∈” and “=” are both Σ1

1, since permutations of ω can give rise to
different codes for the same set.

1.4 Remark. The statement that a given pair (M, I) is iterable is Π1
2 in any

real x recursively coding the pair. One way to express this (not necessarily
the most direct), is: for every countable model N of ZFC◦ with x as a mem-
ber and every object J ∈ N such that N |= “J is an iteration of (M, I)” and
every function f from ω to the “ordinals” of the last model of J , either N
is illfounded (i.e., there exists an infinite descending sequence of “ordinals”
of N) or f(n + 1)“ �∈”f(n) for some integer n, where “�∈” is the negation of
the ∈-relation of the last model of J . Therefore, whether or not (M, I) is
iterable is absolute between models of ZFC◦ containing the countable ordi-
nals. Furthermore, assuming that x# exists and letting γ denote ω

L[x#]
1 , any

transitive model N of ZFC◦ containing Lγ [x#] is correct about the iterability
of (M, I), as L[x#] is correct about it, and N thinks that LωN

1
[x#] is correct

about it. Similarly, if γ and δ are countable ordinals coded by reals y and z,
then the existence of an iteration of (M, I) of length γ which is illfounded is
a Σ1

1 fact about x and y, and the existence of an iteration of (M, I) of length
γ such that the ordinals of the last model of the iteration have height at least
(or, exactly) δ is a Σ1

1 fact about x, y and z.

The first lemma is easily proved by induction. The last part of the lemma
uses the assumption that N is closed under ωM

1 -sequences in M (this is the
main way in which the lemma differs from the corresponding lemma in [39]
(Lemma 3.8)). In our applications, N will often be H(κ)M for some cardinal
κ of M such that M |= cf(κ) > ωM

1 , in which case H(κ)M is indeed closed
under ωM

1 -sequences in M .

1.5 Lemma. Suppose that M is a model of ZFC◦ and I ∈ M is a nor-
mal ideal on ωM

1 . Let N be a transitive model of ZFC◦ in M containing
P(P(ω1)/I)M and closed under ωM

1 -sequences in M . Let γ ≤ ω1 be an ordi-
nal and let

〈Nα, Gβ , jαδ : β < α ≤ δ ≤ γ〉
be an iteration of (N, I). Then there exists a unique iteration

〈Mα, G∗
β , j∗

αδ : β < α ≤ δ ≤ γ〉
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of (M, I) such that for all β < α ≤ γ, Gβ = G∗
β and

P(P(ω1)/I)Nα = P(P(ω1)/I)Mα .

Furthermore, Nα = j∗
0α(N) for all α ≤ γ.

Given ordinals α, β, the partial order Col(α, β) is the set of partial func-
tions from α to β whose domain has cardinality less than that of α, ordered
by inclusion. In particular, Col(ω, β) makes β countable. Given ordinals
α and β, Col(α,<β) is the partial order consisting of all partial functions
p : β × α → β of cardinality less than α, such that for all (δ, γ) ∈ dom(p),
p(δ, γ) ∈ δ, ordered by inclusion (we will not use this definition until the next
section).

The proof of the following lemma is a modification of standard arguments
tracing back to Gaifman and Solovay ([5] contains a variation of the lemma).

1.6 Lemma. Suppose that M is a transitive model of ZFC◦+ Power Set +
Choice + Σ1-Replacement and that I ∈ M is a normal precipitous ideal
on ωM

1 . Suppose that j : (M, I) → (M ∗, I∗) is an iteration of (M, I) whose
length is in (ωV

1 + 1) ∩M . Then M ∗ is wellfounded.

Proof. If j and M ∗ are as in the statement of the lemma, then M ∗ is the
union of all sets of the form j(H(κ)M ), where κ is a regular cardinal in M ,
and for each such κ > |P(P(ω1))|M , j�H(κ)M is an iteration of (H(κ)M , I).
If the lemma fails, we may let (γ̄, κ̄, η̄) be the lexicographically least triple
(γ, κ, η) such that

• κ is a regular cardinal in M greater than |P(P(ω1)/I)|M ,

• η < κ,

• there is an iteration 〈Nα, Gβ , jαδ : β < α ≤ δ ≤ γ〉 of (H(κ)M , I) such
that j0γ(η) is not wellfounded.

Since I is precipitous in M , γ̄ is a limit ordinal, and clearly η̄ is a limit
ordinal as well. Fix an iteration 〈Nα, Gβ , jαδ : β < α ≤ δ ≤ γ̄〉 of (H(κ̄)M , I)
such that j0γ̄(η̄) is not wellfounded, and let 〈Mα, Gβ , j′

αδ : β < α ≤ δ ≤ γ̄〉
be the corresponding iteration of M as in Lemma 1.5. By the minimality of
γ̄ we have that Mα is wellfounded for all α < γ̄. Since Nγ̄ is the direct limit
of the iteration leading up to it, we may fix γ∗ < γ̄ and η∗ < j0γ∗ (η̄) such
that jγ∗γ̄(η∗) is not wellfounded. By Lemma 1.5, j′

γ∗,γ̄(η∗) = jγ∗,γ̄(η∗) and
j′
γ∗,γ̄(η̄) = j′

γ∗,γ̄(η̄).
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The key point is that if N is a model of ZFC◦, J is a normal ideal on ωN
1

in N , γ is an ordinal and η is an ordinal in N , then the statement positing an
iteration of (N, J) of length γ whose last model is illfounded below the image
of η is a Σ1

1 sentence in a real parameter recursively coding N , η and γ, and
so this statement is absolute between wellfounded models of ZFC◦ containing
such a real. In particular, if

• N is a transitive model of ZFC◦ + Power Set,

• J is a normal ideal on ωN
1 in N ,

• κ is a regular cardinal in N greater than |P(P(ω1))|N ,

• η < κ and γ are ordinals in N and β ∈ N is an ordinal greater than or
equal to max{(2κ)N , γ},

then if G is N -generic for Col(ω, β), then N [G] satisfies the correct answer for
the assertion that there exists an iteration of (H(κ)N , J) of length γ whose
last model is illfounded below the image of η. Let φ(γ, κ, η, J) be the formula
asserting that

• J is a normal ideal on ω1,

• κ is a regular cardinal greater than |P(P(ω1))|,

• η < κ,

• letting β = max{2κ, γ}, every condition (equivalently, some condition)
in Col(ω, β) forces that there exists an iteration of (H(κ), J) of length
γ whose last model is illfounded below the image of η.

Then, in M , (γ̄, κ̄, η̄) is the lexicographically least triple (γ, κ, η) such that
φ(γ, κ, η, I) holds. Furthermore, since j′

0γ∗ is elementary, in Mγ∗ ,

(j′
0γ∗ (γ̄), j′

0γ∗ (κ̄), j′
0γ∗ (η̄))

is the least triple (γ, κ, η) such that φ(γ, κ, η, j′
0γ∗ (I)) holds. However, the

tail of the iteration 〈Nα, Gβ , jαδ : β < α ≤ δ ≤ γ̄〉 starting with Nγ∗ is an
iteration of

(H(j0γ∗ (κ̄))Mγ∗ , j0γ∗ (I))

(note that j′
0γ∗ (H(κ̄)M ) = j0,γ∗ (H(κ̄)M )) of length less than or equal to γ̄

which in turn is less than or equal to j′
0γ∗ (γ̄). Furthermore, η∗ < j′

0γ(η̄) =
j0γ(η̄), and jγ∗γ̄(η∗) is not wellfounded, which, by the correctness property
mentioned above (using the fact that Mγ∗ is wellfounded) contradicts the
minimality of j′

0γ∗ (η̄). �

1.7 Example. Let M be any countable transitive model of ZFC in which
there exists a measurable cardinal κ and a normal measure μ ∈M on κ such
that all countable iterates of M by μ are wellfounded. Iterating M by μ ω1
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times, we obtain a model N of ZFC containing ω1 such that (Vκ)M = (Vκ)N .
Now suppose that I is a normal precipitous ideal on ωM

1 in M . By Lemmas 1.5
and 1.6, ((Vκ)M , I) iterable.

Before moving on, we prove an important fact about iterations of iterable
models which will show up later (in Lemmas 3.3, 6.2 and 7.4). This fact is a
key step in Woodin’s proof of Theorem 0.3.

1.8 Lemma. Suppose that M is a countable transitive model of ZFC◦ and
I ∈ M is a normal ideal on ωM

1 such that the pair (M, I) is iterable. Let x
be a real coding the pair (M, I) under some recursive coding. Let

I = 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉

be an iteration of (M, I). Then every countable ordinal γ such that Lγ [x]
satisfies ZFC is on the critical sequence of I.

Proof. Fix a countable ordinal γ such that Lγ [x] |= ZFC. We want to see
that for every η < γ there is a δ < γ such that the ordinals of the final
model of every iteration of (M, I) of length η are contained in δ. To see
this, fix η and let g ⊆ Col(ω, η) be Lγ [x]-generic. Then Lγ [x][g] |= ZFC,
and in Lγ [x][g], the set of ordertypes of the ordinals of iterates of (M, I)
by iterations of length η is a Σ1

1 set in a real coding (M, I) and g. By the
boundedness lemma for Σ∼

1
1 sets of wellorderings (see [26]), then, there is a

countable (in Lγ [x][g]) ordinal δ such that all of these ordertypes are less
than δ. Furthermore, the nonexistence of an iteration of (M, I) of length η
such that δ can be embedded in an order-preserving way into the ordinals of
the final model is absolute between Lγ [x][g] and V , by Σ∼

1
1-absoluteness. �

Lemma 1.8 has the following useful corollary. The case where γ is count-
able follows immediately from Lemma 1.8. The case where γ = ω1 follows
by applying the countable case to a forcing extension where ω1 is collapsed.

1.9 Corollary. Suppose that M is a countable transitive model of ZFC◦,
I is normal ideal on ωM

1 in M , (M, I) is iterable and x is a real coding
(M, I). Suppose that γ is an x-indiscernible less than or equal to ω1, and let
j : (M, I) → (M ∗, I∗) be an iteration of (M, I) of length γ. Then the ordinals
of M ∗ have height less than the least x-indiscernible above γ.

We note one more useful fact about sharps. The fact can be proved directly
using the remarkable properties of sharps, or by noting that the two functions
implicit in the fact necessarily represent the same ordinal in any generic
ultrapower.

1.10 Fact. Let x be a real and let γ be the least x-indiscernible above ω1.
Let π : ω1 → γ be a bijection. Then the set of α < ω1 such that the ordertype
of {π(β) : β < α} is the least x-indiscernible above α contains a club.
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1.11 Remark. If there exists a precipitous ideal on ω1, then A# exists for
every A ⊆ ω1. To see this, note first of all that the existence of a precipitous
ideal implies that for each real x there is an nontrivial elementary embedding
from L[x] to L[x] in a forcing extension, which means that x# exists already
in the ground model. Furthermore, if I is a precipitous ideal on ω1 and
j : V → M is the generic embedding derived from a V -generic filter G ⊆
P(ω1)/I, then P(ω1)V ⊆ H(ω1)M . Therefore, for every A ∈ P(ω1)V , A ∈M
and M |= “A# exists”. Since M and V [G] have the same ordinals, V [G] and
V then must also satisfy “A# exists”.

Similarly, if (M, I) is an iterable pair, then M is correct about the sharps
of the reals of M , since M is elementarily embedded into a transitive model
containing ω1, and thus M is correct about the sharps of the members of
P(ω1)M . In particular, if (M, I) is an iterable pair and A is in P(ω1)M , then
P(ω1)L[A] ⊆M , so M correctly computes ω

L[A]
1 .

2. Pmax

We are now ready to define the partial order Pmax. We will make one mod-
ification of the definition given in [39] and require the conditions to satisfy
ZFC◦ instead of the theory ZFC∗ defined in [39]. Our Pmax is a dense subor-
der of the original; furthermore, the basic analysis of the two partial orders is
the same, though the proofs of Lemma 7.6 and Theorem 7.7 are less elegant
than they might otherwise be.

Recall that MAℵ1 is the version of Martin’s Axiom for ℵ1-many dense sets,
i.e., the statement that whenever P is a c.c.c. partial order and Dα (α < ω1)
are dense subsets of P there is a filter G ⊆ P intersecting each Dα.

2.1 Definition. The partial order Pmax consists of all pairs 〈(M, I), a〉 such
that

1. M is a countable transitive model of ZFC◦+ MAℵ1 ,

2. I ∈M and in M , I is a normal ideal on ω1,

3. (M, I) is iterable,

4. a ∈ P(ω1)M ,

5. there exists an x ∈ P(ω)M such that ωM
1 = ω

L[a,x]
1 .

The order on Pmax is as follows: 〈(M, I), a〉 < 〈(N, J), b〉 if N ∈ H(ω1)M and
there exists an iteration j : (N, J)→ (N ∗, J ∗) such that

• j(b) = a,

• j,N ∗ ∈M ,

• I ∩N ∗ = J ∗.
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We say that a pair (M, I) is a (Pmax) pre-condition if there exists an a
such that 〈(M, I), a〉 is in Pmax.

2.2 Remark. If 〈(M, I), a〉 is a Pmax condition, then M is closed under
sharps for reals (see Remark 1.11), and so a cannot be in L[x] for any real
x in M . Therefore, a is unbounded in ωM

1 , and this in turn implies that the
iteration witnessing that a given Pmax condition 〈(M, I), a〉 is stronger than
another condition 〈(N, J), b〉 must have length ωM

1 .

2.3 Remark. To see that the order on Pmax is transitive, let j0 be an itera-
tion witnessing that 〈(M1, I1), a1〉 < 〈(M0, I0), a0〉 and let j1 be an iteration
witnessing that 〈(M2, I2), a2〉 < 〈(M1, I1), a1〉. Then j0 is an element of
M1, and it is not hard to check that j1(j0) witnesses that 〈(M2, I2), a2〉 <
〈(M0, I0), a0〉.

2.4 Remark. The requirement that the models in Pmax conditions satisfy
MAℵ1 is used for a particular consequence of MAℵ1 known as almost disjoint
coding [12]. That is, it follows from MAℵ1 that if Z = {zα : α < ω1} is a
collection of infinite subsets of ω whose pairwise intersections are finite (i.e.,
Z is an almost disjoint family), then for each B ⊆ ω1 there exists a y ⊆ ω such
that for all α < ω1, α ∈ B if and only if y ∩ zα is infinite. This will be used
to show that if 〈(M, I), a〉 is a Pmax condition, then any iteration of (M, I)
is uniquely determined by the image of a (see Lemma 2.7), so that there is a
unique iteration witnessing the order on each pair of comparable conditions.
One can vary Pmax by removing condition (5) and the requirement that MAℵ1

holds, and replace a with a set of iterations of smaller models into M , as in the
definition of the order, satisfying this uniqueness condition. Alternately, one
can require that the models satisfy the statement ψAC (see Definition 6.1 and
Remark 6.4), which implies that the image of any stationary, co-stationary
subset of ω1 under an iteration determines the entire iteration.

2.5 Remark. Instead of using ideals on ω1, we could use the stationary
tower Q<δ (see [19]) to produce the iterations giving the order on conditions.
This gives us another degree of freedom in choosing our models, since in
this case a small forcing extension of a condition is also a condition, roughly
speaking. The resulting extension is essentially identical.

2.6 Remark. Given a real x, x† (“x dagger”) is a real such that in L[x†]
there exists a transitive model M of ZFC containing ωV

1 ∪{x} in which some
ordinal countable in L[x†] is a measurable cardinal (see [14]; this fact about
x† does not characterize it, but it is its only property that we require in
this chapter). By [11], if there exists a measurable cardinal, then there is
a partial order forcing that NSω1 is precipitous. By [22, 13], c.c.c. forcings
preserve precipitousness of NSω1 . Essentially the same arguments show that
if κ is a measurable cardinal and P is a c.c.c. forcing in the Col(ω,<κ)-
extension, then there is a normal precipitous ideal on ω1 (which is κ) in the
Col(ω,<κ) ∗ P -extension. By Lemmas 1.5 and 1.6, then, the statement that
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x† exists for each real x implies that every real exists in the model M of some
Pmax condition, and, by Lemma 2.8 below, densely many. However, the full
strength of Pmax will require the consistency strength of significantly larger
cardinals.

We will now prove two facts about iterations which are central to the Pmax

analysis.

2.7 Lemma. Let 〈(M, I), a〉 be a Pmax condition and let A be a subset of ω1.
Then there is at most one iteration of (M, I) for which A is the image of a.
Furthermore, this iteration is in L[〈(M, I), a〉, A], if it exists.

Proof. Fix a real x in M such that ωM
1 = ω

L[a,x]
1 , and let Z = 〈zα : α < ωM

1 〉
be the almost disjoint family defined recursively from the constructibility
order in L[a, x] on P(ω)L[a,x] by letting zα be the constructibly (in L[a, x])
least infinite z ⊆ ω almost disjoint from each zβ (β < α) such that for no
finite a ⊆ α does

⋃
{zβ : β ∈ a} contain the complement of z (modulo finite).

Suppose that
I = 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉

and
I ′ = 〈M ′

α, G′
β , j′

αδ : β < α ≤ δ ≤ γ′〉
are two iterations of (M, I) such that j0γ(a) = A = j′

0γ′ (a). Then j0γ(Z) =
j′
0γ′ (Z) (this uses Remark 1.11 to see that the constructibility order on reals

in L[A, x] is computed correctly in Mγ and M ′
γ′ ). Let 〈zα : α < j0γ(ωM

1 )〉
enumerate j0γ(Z).

Without loss of generality, γ ≤ γ′. We show by induction on α < γ that,
for each such α, Gα = G′

α. This will suffice. Fix α and suppose that

{Gβ : β < α} = {G′
β : β < α}.

Then Mα = M ′
α. For each B ∈ P(ω1)Mα , B ∈ Gα if and only if ωMα

1 ∈
jα(α+1)(B), and B ∈ G′

α if and only if ωMα
1 ∈ j′

α(α+1)(B). Applying almost
disjoint coding, fix x ∈ P(ω)Mα such that for all η < ωMα

1 , η ∈ B if and only
if x∩ zη is infinite. Then B ∈ Gα if and only if x∩ zωM

1
is infinite if and only

if B ∈ G′
α.

For the last part of the lemma, note that the argument just given gives a
definition for each Gα in terms of A, x and the iteration up to α. �

One consequence of Lemma 2.7 is that, if G ⊆ Pmax is an L(R)-generic
filter, and A =

⋃
{a | 〈(M, I), a〉 ∈ G}, then L(R)[G] = L(R)[A]. Therefore,

the Pmax extension of L(R) satisfies the sentence “V = L(P(ω1))” (see the
discussion at the beginning of Sect. 5).

2.8 Lemma (ZFC◦). If (M, I) is a pre-condition in Pmax and J is a normal
ideal on ω1 then there exists an iteration j : (M, I) → (M ∗, I∗) such that
j(ωM

1 ) = ω1 and I∗ = J ∩M ∗.
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Proof. First let us note that if 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 is any iteration
of (M, I), then j0ω1(I) ⊆ J ∩Mω1 . To see this, note that if E ∈ j0ω1(I), then
E ∈ Mω1 and E = jαω1(E

′) for some α < ω1 and E′ ∈ j0α(I). Then for all
β ∈ [α, ω1), jαβ(E′) �∈ Gβ , so ω

Mβ

1 �∈ E. Therefore, E is nonstationary, so
E ∈ J by the normality of J .

Now, noting that J is a normal ideal, let {Aiα : i < ω, α < ω1} be a
collection of pairwise disjoint members of P(ω1) \ J . We build an iteration
〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 by recursively choosing the Gβ ’s. As we do
this, for each α < ω1 we let the set {Bα

i : i < ω} enumerate P(ω1)Mα \j0α(I).
Given

〈Mα, Gβ , jαδ : β < α ≤ δ ≤ γ〉,

then, for some γ ≤ ω1, if ω
Mγ

1 ∈ Aiα for some i < ω and α ≤ γ, then (noting
that there can be at most one such pair (i, α)) we let Gγ be any Mγ-generic
filter for (P(ω1)/j0γ(I))Mγ with jαγ(Bα

i ) as a member. If ω
Mγ

1 is not in Aiα

for any i < ω and α ≤ γ, then we let Gγ be any Mγ-generic filter.
To see that this construction works, fix E ∈ P(ω1)Mω1 \ j0ω1(I). We

need to see that E is not in J . We may fix i < ω and α < ω1 such that
E = jαω1(B

α
i ). Then F = (Aiα ∩ {ωMβ

1 : β ∈ [α, ω1)}) ⊆ E. Since F is the
intersection of a club and set not in J , F is not in J , so E is not in J . �

The construction in the proof of Lemma 2.8 appears repeatedly in the
analysis of Pmax. In order to make our presentation of Pmax more modular
(i.e., to avoid having to write out the proof of Lemma 2.8 repeatedly), we
give the following strengthening of the lemma in terms of games. We note
that the games defined here (and before Lemmas 3.5 and 5.2 and at the end
of Sect. 10.2) are not part of Woodin’s original presentation of Pmax.

Suppose that (M, I) is a pre-condition in Pmax, let J be a normal ideal on
ω1 and let B be a subset of ω1. Let G((M, I), J, B) be the following game of
length ω1 where Players I and II collaborate to build an iteration

〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉

of (M, I) of length ω1. In each round α, if α ∈ B, then Player I chooses a
set Aα in P(ω1)Mα \ j0α(I) and then Player II chooses an Mα-generic filter
Gα contained in (P(ω1)/j0α(I))Mα with Aα ∈ Gα. If α �∈ B, then Player II
chooses any Mα-generic filter Gα ⊆ (P(ω1)/j0α(I))Mα . After all ω1 many
rounds have been played, Player I wins if j0ω1(I) = J ∩Mω1 .

The proof of Lemma 2.9 is almost identical to the proof of Lemma 2.8.

2.9 Lemma (ZFC◦). Suppose that (M, I) is a pre-condition in Pmax, let J
be a normal ideal on ω1, and let B be a subset of ω1. Then Player I has a
winning strategy in G((M, I), J, B) if and only if B �∈ J .

Using Remark 2.6 and Lemmas 2.7 and 2.8, we can show that Pmax is
homogeneous and countably closed. By homogeneity we mean the following
property: for each pair of conditions p0, p1 in Pmax there exist conditions q0, q1
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such that q0 ≤ p0, q1 ≤ p1 and the suborders of Pmax below the conditions
q0 and q1 are isomorphic. The importance of this property is that it implies
that the theory of the Pmax extension can be computed in the ground model.

2.10 Lemma. If x† exists for each real x, then Pmax is homogeneous.

Proof. Let p0 = 〈(M0, I0), a0〉 and p1 = 〈(M1, I1), a1〉 be conditions in Pmax.
By Remark 2.6, we can fix a pre-condition (N, J) with p0, p1 ∈ H(ω1)N .
Applying Lemma 2.8 in N , we may fix iterations j0 : (M0, I0) → (M ∗

0 , I∗
0 )

and j1 : (M1, I1) → (M ∗
1 , I∗

1 ) in N such that I∗
0 = J ∩M ∗

0 and I∗
1 = J ∩M ∗

1 .
Letting a∗

0 = j0(a0) and a∗
1 = j1(a1), then,

q0 = 〈(N, J), a∗
0〉

and
q1 = 〈(N, J), a∗

1〉
are conditions in Pmax and j0 and j1 witness that q0 ≤ p0 and q1 ≤ p1

respectively.
Now, if q′

0 = 〈(N ′, J ′), a′〉 is a condition below q0, then there is an it-
eration j′ : (N, J) → (N ∗, J ∗) witnessing this. Then a′ = j′(a∗

0), and
q′
1 = 〈(N ′, J ′), j′(a∗

1)〉 is a condition below q1. Let π be the map with do-
main the suborder of Pmax below q0 which sends each 〈(N ′, J ′), a′〉 to the
corresponding 〈(N ′, J ′), j′(a∗

1)〉 as above. By Lemma 2.7, this map is an
isomorphism between the suborders below q0 and q1 respectively. �

In order to show that Pmax is countably closed, we must define a new class
of iterations.

3. Sequences of Models and Countable Closure

For each i < ω, let pi = 〈(Mi, Ii), ai〉 be a Pmax condition, and for each such
i let ji(i+1) : (Mi, Ii) → (M ∗

i , I∗
i ) be an iteration witnessing that pi+1 < pi.

Let {jik : i ≤ k < ω} be the commuting family of embeddings generated by
the ji(i+1)’s. Let a =

⋃
{ai : i < ω}. By Lemma 2.7, for each i < ω there is a

unique iteration jiω : (Mi, Ii) → (Ni, Ji) sending ai to a. Since each (Mi, Ii)
is iterable, each Ni is wellfounded, and the structure (〈(Ni, Ji) : i < ω〉, a)
satisfies the following definition.

3.1 Definition. A limit sequence is a pair (〈(Ni, Ji) : i < ω〉, a) such that
the following hold for all i < ω:

1. Ni is a countable transitive model of ZFC◦,

2. Ji ∈ Ni and in Ni, Ji is a normal ideal on ω1,

3. ωNi
1 = ωN0

1 ,

4. for all k < i, Nk ∈ H(ω2)Ni ,
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5. for all k < i, Jk = Ji ∩Nk,

6. a ∈ P(ω1)N0 ,

7. there exists an x ∈ P(ω)N0 such that ωN0
1 = ω

L[a,x]
1 .

A structure 〈(Ni, Ji) : i < ω〉 is a pre-limit sequence if there exists a set a
such that (〈(Ni, Ji) : i < ω〉, a) is a limit sequence.

If we write a sequence as 〈Nk : k < ω〉 (as we will in Sect. 10.1), the ideals
are presumed to be the nonstationary ideal on ω1.

If pi (i < ω) is a descending sequence of Pmax conditions, then the limit
sequence corresponding to pi (i < ω) is the structure

(〈(Ni, Ji) : i < ω〉, a)

defined above. In this case each 〈(Ni, Ji), a〉 is a condition in Pmax.
If 〈(Ni, Ji) : i < ω〉 is a pre-limit sequence, then a filter

G ⊆
⋃
{P(ω1)Ni \ Ji : i < ω}

is a
⋃
{Ni : i < ω}-normal ultrafilter for the sequence if for every regressive

function f on ωN0
1 in any Ni, f is constant on some member of G. Given such

G and 〈(Ni, Ji) : i < ω〉, we form the ultrapower of the sequence by letting
N ∗

i be the ultrapower of Ni formed from G and all functions f : ωN0
1 → Ni

existing in any Nk (this ensures that the image of each Ni in the ultrapower
of each Nk (k > i) is the same as the ultrapower of Ni). As usual, we identify
the transitive parts of each N ∗

i with their transitive collapses. If (for each
i < ω) we let j∗

i be the induced embedding of Ni into N ∗
i then for each

i < k < ω, j∗
i = j∗

k�Ni, so we can let j∗ =
⋃
{j∗

i : i < ω} be the embedding
corresponding to the ultrapower of the sequence.

3.2 Definition. Let 〈(Ni, Ji) : i < ω〉 be a pre-limit sequence, and let γ be an
ordinal less than or equal to ω1. An iteration of 〈(Ni, Ji) : i < ω〉 of length γ
consists of pre-limit sequences 〈(Nα

i , Jα
i ) : i < ω〉 (α ≤ γ), normal ultrafilters

Gα (α < γ) and a commuting family of embeddings jαβ (α ≤ β ≤ γ) such
that

• 〈(N0
i , J0

i ) : i < ω〉 = 〈(Ni, Ji) : i < ω〉,

• for all α < γ, Gα ⊆
⋃
{P(ω1)Nα

i \ Jα
i : i < ω} is a normal ultrafilter

for the sequence 〈(Nα
i , Jα

i ) : i < ω〉, and jα(α+1) is the corresponding
embedding,

• for each limit ordinal β ≤ γ, 〈(Nβ
i , Jβ

i ) : i < ω〉 is the direct limit of
the system {〈(Nα

i , Jα
i ) : i < ω〉, jαδ : α ≤ δ < β} and for each α < β

jαβ is the induced embedding.
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As with iterations of single models, we sometimes describe an iteration of
a pre-limit sequence by fixing only the initial sequence, the final sequence and
the embedding between them. An iterate of a pre-limit sequence p̄ is a pre-
limit sequence appearing in an iteration of p̄. If every iterate of a pre-limit
sequence is wellfounded, then the sequence is iterable.

By Lemma 1.8 and Corollary 1.9, pre-limit sequences derived from de-
scending chains {〈(Mi, Ii), ai〉 : i < ω} in Pmax satisfy the hypotheses of the
following lemma, letting xi be any real in Mi+1 coding Mi. Yet another way
to vary Pmax is to replace the model M in the definition of Pmax conditions
with sequences satisfying this hypothesis. This approach is used for the order
Q

∗
max defined in Sect. 10.1.

3.3 Lemma. Suppose that p̄ = 〈(Ni, Ji) : i < ω〉 is a pre-limit sequence, and
suppose that for each i < ω there is a real xi ∈ Ni+1 such that x#

i ∈ Ni+1

and

• the least xi-indiscernible above ωN0
1 is greater than the ordinal height of

Ni,

• every club subset of ωN0
1 in Ni contains a tail of the xi-indiscernibles

below ωN0
1 .

Then p̄ is iterable.

Proof. First we will show that any iterate of p̄ is wellfounded if its version
of ω1 is wellfounded. Then we will show that the ω1 of each iterate of p̄ is
wellfounded.

For the first part, if 〈(N ∗
i , J ∗

i ) : i < ω〉 is an iterate of p̄, then by elementar-
ity the ordinals of each N ∗

i embed into the least xi-indiscernible above ω
N ∗

0
1 .

So, if ω
N ∗

0
1 is actually an ordinal (i.e., is wellfounded), then N ∗

i+1 constructs
this next xi-indiscernible correctly, and so N ∗

i is wellfounded.
We prove the second part by induction on the length of the iteration,

noting that the limit case follows immediately, and the successor case follows
from the case of an iteration of length 1. What we want to see is that if G
is a normal ultrafilter for p̄ and j is the induced embedding, then j(ωN0

1 ) =⋃
{Ni ∩ On : i < ω}. Notice that for each xi, if fi : ωN0

1 → ωN0
1 is defined

by letting fi(α) be the least xi-indiscernible above α, then j(fi)(ωN0
1 ) is the

least indiscernible of xi above ωN0
1 . Thus

j(ωN0
1 ) ≥ sup{j(fi)(ωN0

1 ) : i < ω} =
⋃
{Ni ∩On : i < ω} .

For the other direction, let h : ωN0
1 → ωN0

1 be a function in some Ni. Then
the closure points of h contain a tail of the xi-indiscernibles, which means
that fi > h on a tail of the ordinals below ωN0

1 , so [fi]G > [h]G. Thus
j(ωN0

1 ) =
⋃
{Ni ∩On : i < ω}. �

The following lemma has essentially the same proof as Lemma 2.8, and
shows (given that x† exists for each real x) that Pmax is countably closed. The
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point is that if 〈pi : i < ω〉 is a descending sequence of Pmax conditions, letting
p̄ = (〈(Ni, Ji) : i < ω〉, a) be the limit sequence corresponding to 〈pi : i < ω〉,
if (M, I) is a Pmax pre-condition with {pi : i < ω}, p̄ ∈ H(ω1)M , then by
letting j∗ be an iteration of p̄ resulting from applying Lemma 3.4 inside of M ,
the embedding j∗(jiω) (where jiω is as defined in the first paragraph of this
section) witnesses that 〈(M, I), j∗(a)〉 is below pi in Pmax, for each i < ω.

3.4 Lemma (ZFC◦). Suppose that 〈(Ni, Ji) : i < ω〉 is an iterable pre-limit
sequence, and let I be a normal ideal on ω1. Then there is an iteration

j∗ : 〈(Ni, Ji) : i < ω〉 → 〈(N ∗
i , J ∗

i ) : i < ω〉

such that j∗(ωN0
1 ) = ω1 and J ∗

i = I ∩N ∗
i for each i < ω.

Suppose that 〈(Ni, Ji) : i < ω〉 is an iterable pre-limit sequence, let I be a
normal ideal on ω1, and let B be a subset of ω1. Let

Gω(〈(Ni, Ji) : i < ω〉, I, B)

be the following game of length ω1 where Players I and II collaborate to build
an iteration of 〈(Ni, Ji) : i < ω〉 consisting of pre-limit sequences 〈(Nα

i , Jα
i ) :

i < ω〉 (α ≤ ω1), normal ultrafilters Gα (α < ω1) and a family of embeddings
jαβ (α ≤ β ≤ ω1), as follows. In each round α, let

Xα =
⋃
{P(ω1)Nα

i \ Jα
i : i < ω} .

If α ∈ B, then Player I chooses a set A ∈ Xα, and then Player II chooses
a
⋃
{Nα

i : i < ω}-normal filter Gα contained in Xα with A ∈ Gα. If α
is not in B, then Player II chooses any

⋃
{Nα

i : i < ω}-normal filter Gα

contained in Xα. After all ω1 many rounds have been played, Player I wins
if Jω1

i = I ∩Nω1
i for each i < ω.

Lemma 3.4 can be rephrased in terms of games as follows.

3.5 Lemma (ZFC◦). Suppose that 〈(Ni, Ji) : i < ω〉 is an iterable pre-limit
sequence, let I be a normal ideal on ω1 and let B be a subset of ω1. Then
Player I has a winning strategy in Gω(〈(Ni, Ji) : i < ω〉, I, B) if and only if
B �∈ I.

At this point, we have gone as far with the Pmax analysis as daggers can
take us.

4. Generalized Iterability

The following definition gives a generalized iterability property with respect
to a given set of reals. In the Pmax analysis, these sets of reals often code
Pmax-names for sets of reals.
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4.1 Definition. Let A be a set of reals. If M is a transitive model of
ZFC◦ and I is an ideal on ωM

1 which is normal and precipitous in M , then
the pair (M, I) is A-iterable if

• (M, I) is iterable,

• A ∩M ∈M ,

• j(A ∩M) = A ∩M ∗ whenever j : (M, I) → (M ∗, I∗) is an iteration of
(M, I).

4.2 Remark. The definition of A-iterability in [39] is more general than this
one, in ways which we will not require.

In order to achieve the full effects of forcing with Pmax over a given model
(for now we will deal with L(R)) we need to see (and in fact it is enough
to see) that for each A ⊆ R in the model there exists a Pmax pre-condition
(M, I) such that

• (M, I) is A-iterable,

• 〈H(ω1)M , A ∩M〉 ≺ 〈H(ω1), A〉.

As it turns out, the existence of such a condition for each A ⊆ R in L(R) is
equivalent to ADL(R)(see [39, pp. 285–290]).

There are two basic approaches to studying the Pmax extension. One can
think of V as being a model of some form of determinacy, and use determinacy
to analyze the Pmax forcing construction and its corresponding extension.
Alternately, one can assume that Choice holds and certain large cardinals
exist and use these large cardinals to analyze the Pmax extension of some
inner model of ZF satisfying determinacy. Accordingly, the existence of A-
iterable conditions (for a given set A) can be derived from determinacy or
from large cardinals. We give here an example of each method, quoting some
standard facts which we will briefly discuss.

The proof from large cardinals uses weakly homogeneous trees (see
[26, 14] for more on the concepts reviewed briefly below). Recall that a tree on
ωk×Z (for some integer k and some set Z) is a subset of the set of sequences
of length k+1 whose first k elements are members of ωn (for some integer n)
and whose last element is in Zn (as usual we require that if 〈a1, . . . , ak, u〉 ∈ T
and m is less than the length of a1, then 〈a1�m, . . . , ak�m,u�m〉 ∈ T ). Given
such a tree T , the projection of T is the set of 〈x1, . . . , xk〉 ∈ (ωω)k for which
there exists a z ∈ Zω such that for all integers n,

〈x1�n, . . . , xk�n, z�n〉

is in T .
Very briefly, a countably complete tower is a sequence of measures 〈σi :

i < ω〉 such that each σi is a measure on Zi for some fixed underlying set
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Z and for every sequence {Ai : i < ω} of sets such that each Ai ∈ σi there
exists a function g ∈ Zω such that g�i ∈ Ai for all i < ω. Given a set Z, an
integer k and a cardinal δ, a tree T on ωk × Z is δ-weakly homogeneous if
there exists a countable family Σ of δ-complete measures on Z<ω such that
for each 〈x1, . . . , xk〉 ∈ (ωω)k, 〈x1, . . . , xk〉 ∈ p[T ] if and only if there exists a
sequence of measures {σi : i < ω} ⊆ Σ such that

• for all i < ω, {z ∈ Zi | 〈x1�i, . . . , xk�i, z�i〉 ∈ T} ∈ σi,

• 〈σi : i < ω〉 forms a countably complete tower.

A set of k-tuples of reals A is δ-weakly homogeneously Suslin if there exists
a δ-weakly homogeneous tree T whose projection is A, and weakly homoge-
neously Suslin if it is δ-weakly homogeneously Suslin for some uncountable
ordinal δ. For each integer k one can naturally code k-tuples of reals by
single reals by interleaving coordinates. This induces an association of sets of
k-tuples of reals to sets of reals which respects the property of being δ-weakly
homogeneously Suslin for a given cardinal δ. This allows us to simplify no-
tion in what follows and talk about weakly homogeneously Suslin sets of
reals, knowing that these facts imply the same results for sets of k-sequences
of reals.

The following fact is standard.

4.3 Theorem. Let θ be a regular cardinal, suppose that T ∈ H(θ) is a weakly
homogeneous tree on ω × Z for some set Z. Let δ ≥ 2ω be an ordinal such
that there exists a countable collection Σ of δ+-complete measures witnessing
the weak homogeneity of T . Then for every elementary submodel Y of H(θ)
of cardinality less than δ with T,Σ ∈ Y there is an elementary submodel X
of H(θ) containing Y such that X ∩ δ = Y ∩ δ, and such that, letting S be
the image of T under the transitive collapse of X, p[S] = p[T ].

Proof. Fixing θ, T , Σ and δ as in the statement of the theorem, the theorem
follows from the following fact. Suppose that Y is an elementary submodel
of H(θ) with T,Σ ∈ Y and |Y | < δ, and fix an x ∈ p[T ]. Fix a count-
ably complete tower {σi : i < ω} ⊆ Σ such that for all i < ω, {a ∈ Zi :
(x�i, a) ∈ T} ∈ σi, and for each i < ω, let Ai =

⋂
(σi ∩ Y ). Then since

{σi : i < ω} is countably complete, there exists a z ∈ Zω such that for all
i < ω, z�i ∈ Ai. Then the pair (x, z) forms a path through T , and, letting

Y [z] = {f(z�i) | i < ω ∧ f : Zi → H(θ) ∧ f ∈ Y },

Y [z] is an elementary submodel of H(θ) containing Y and {z�i : i < ω}, and,
since each σi is δ+-complete, Y ∩ δ = Y [z] ∩ δ. Repeated application of this
fact for each real in the projection of T proves the theorem. �

Proofs of the following facts about weakly homogeneous trees and weakly
homogeneously Suslin sets of reals appear in [19]. Some of these facts follow
directly from the definitions, and none are due to the author. Theorem 4.6
derives ultimately from [23].
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4.4 Fact. For every cardinal δ, the collection of δ-weakly homogeneously
Suslin sets of reals is closed under countable unions and continuous images.

4.5 Theorem (Woodin). If δ is a limit of Woodin cardinals and there exists
a measurable cardinal above δ then every set of reals in L(R) is <δ-weakly
homogeneously Suslin (i.e., γ-weakly homogeneously Suslin for all γ < δ).

4.6 Theorem. If δ is a cardinal and T is a δ-weakly homogeneous tree, then
there is a tree S such that p[T ] = ωω \p[S] in all forcing extensions by partial
orders of cardinality less than δ (including the trivial one).

4.7 Theorem (Woodin). If δ is a Woodin cardinal and A is a δ+-weakly
homogeneously Suslin set of reals, then the complement of A is <δ-weakly
homogeneously Suslin.

If S and T are trees whose projections are disjoint, then they remain
disjoint in all forcing extensions, as there is a ranking function on the tree
of attempts to build a real in both projections (likewise, the projection of a
tree being nonempty is absolute to inner models containing the tree). This
fact plus Theorem 4.6 gives the following corollary.

4.8 Corollary. If δ is a cardinal and T0 and T1 are δ-weakly homogeneous
trees with the same projection, then T0 and T1 still have the same projection
in all forcing extensions by forcings of cardinality less than δ.

Given a set of reals A, a set of reals B is projective in A if it can be
defined by a projective formula (i.e., all unbounded quantifiers ranging over
reals) with A as a parameter. Fact 4.4 and Theorem 4.7 together imply that
if δ is a limit of Woodin cardinals then the set of <δ-weakly homogeneously
Suslin sets of reals is projectively closed. We separate out the following part
of the proof of Theorem 4.10.

4.9 Lemma. Let A be a set of reals, and suppose that M is a transitive
model of ZFC such that for each set of reals B projective in A there exists a
tree S ∈M such that p[S] = B. Then

〈H(ω1)M ,∈, A ∩M〉 ≺ 〈H(ω1),∈, A〉.

Proof. Let C denote the set of reals which code elements of H(ω1) under
our fixed coding (this set is Π1 and hence absolute). Given a real x in C,
let c(x) be the element it codes. For each integer n and each formula φ in
the language with one additional unary predicate with n free variables, the
following are equivalent.

1. For all a1, . . . , an ∈ H(ω1)M , 〈H(ω1),∈, A〉 |= φ(a1, . . . , an) if and only
if 〈H(ω1)M ,∈, A ∩M〉 |= φ(a1, . . . , an).

2. For all x1, . . . , xn ∈ (C ∩ M), 〈H(ω1),∈, A〉 |= φ(c(x1), . . . , c(xn)) if
and only if 〈H(ω1)M ,∈, A ∩M〉 |= φ(c(x1), . . . , c(xn)).
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3. For all trees S ∈M projecting in V to the set

{〈x1, . . . , xn〉 ∈ Cn | 〈H(ω1),∈, A〉 |= φ(c(x1), . . . , c(xn))},

p[S] ∩M = {〈x1, . . . , xn〉 ∈ (C ∩M)n |
〈H(ω1)M ,∈, A ∩M〉 |= φ(c(x1), . . . , c(xn))}.

We show by induction on the complexity of formulas that these sentences
hold for every formula in our language. Let Ȧ be the additional unary pred-
icate in this language. Then the sentences above clearly hold for the ba-
sic formulas a ∈ b, a = b and Ȧ(a). The induction steps for ∧, ∨ and ¬
are likewise immediate. For the quantifier ∃, suppose that φ has the form
∃ż1ψ(ż1, . . . , żn), and let x2, . . . , xn be elements of C ∩M such that 〈H(ω1),
∈, A〉 |= φ(c(x2), . . . , c(xn)). Let S be a tree in M projecting in V to the
set of 〈y1, . . . , yn〉 ∈ (C ∩M)n such that 〈H(ω1),∈, A〉 |= ψ(c(y1), . . . , c(yn)).
The existence of a real x1 such that 〈x1, . . . , xn〉 ∈ p[S] is absolute between
M and V , which means that there is a real x1 ∈ C ∩ M witnessing that
〈H(ω1)M ,∈, A ∩M〉 |= φ(c(x2), . . . , c(xn)). �

The following theorem is a generalized existence result which is useful in
analyzing variations of Pmax.

4.10 Theorem. Let γ be a strongly inaccessible cardinal, let A be a set of
reals, and suppose that θ is a strong limit cardinal of cofinality greater than ω1

such that every set of reals projective in A is γ+-weakly homogeneously Suslin
as witnessed by a tree and a set of measures in H(θ). Let X be a countable
elementary submodel of H(θ) with γ,A ∈ X, and let M be the transitive
collapse of X ∩ H(γ). Let N be any forcing extension of M in which there
exists a normal precipitous ideal I on ωN

1 . Let j : (N, I) → (N ∗, I∗) be any
iteration of (N, I). Then

• N ∗ is wellfounded,

• N ∩A ∈ N ,

• j(N ∩A) = N ∗ ∩A,

• 〈H(ω1)N ∗
, A ∩N ∗,∈〉 ≺ 〈H(ω1), A,∈〉.

Proof. Let {Ai : i < ω} be a listing in X of the sets of reals projective in A
(with A0 = A), and let {Ti : i < ω} and {Σi : i < ω} be sets in X such that
each Ti is a γ+-weakly homogeneous tree (as witnessed by Σi) projecting
to Ai. By the proof of Theorem 4.3, there is an elementary submodel Y of
H(θ) containing X such that X ∩ H(γ) = Y ∩ H(γ) and such that, letting
M+ be the transitive collapse of Y , and letting, for each i < ω, Si be the
image of Ti under this collapse, p[Si] = Ai. Since there are sets projective in
A which are not the projections of countable trees, ω1 ⊆ M+. Now, let N
be a forcing extension of M with I a normal precipitous ideal on ωN

1 in N ,
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and let N+ be the corresponding extension of M+. Let j : (N, I) → (N ∗, I∗)
be an iteration of (N, I). By Lemmas 1.5 and 1.6, j extends to an iteration
of (N+, I) (which we will also call j), and N ∗ is wellfounded. Furthermore,
for each i < ω there is a j < ω such that Si and Sj project to complements.
Then

• p[Si] ⊆ p[j(Si)],

• p[Sj ] ⊆ p[j(Sj)],

• p[j(Si)] ∩ p[j(Sj)] = ∅,

which means that p[Si] = p[j(Si)], so j(N ∩Ai) = N ∗ ∩Ai.
The last part of the theorem follows from Lemma 4.9. �

Alternately, we can derive the existence of A-iterable conditions from de-
terminacy. The proof from determinacy requires the following fact: if AD
holds and Z is a set of ordinals, then there is an inner model of ZFC con-
taining the ordinals with Z as a member in which some countable ordinal is
a measurable cardinal. A tree of finite sequences of ordinals can easily be
coded as a set of ordinals (see [27], for instance).

The following theorem of Woodin (see [15, Theorem 5.4]) is more than
sufficient, but in the spirit of completeness we will not use it, since its proof is
well beyond the scope of this chapter. Given a model M and a set X, HODM

X

is the class of hereditarily ordinal definable sets (using X as a parameter), as
computed in M . It is a standard fact that this model satisfies ZFC.

4.11 Theorem. Assume AD. Suppose that Z is a set of ordinals. Then
there exists a real x such that for all reals z with x ∈ L[Z, z], ω

L[Z,z]
2 is a

Woodin cardinal in HODL[Z,z]
{Z} .

The following theorem is sufficient for our purposes.

4.12 Theorem. Assume AD. For every subset Z of L, there is an inner
model N of ZFC containing {Z} and the ordinals such that some countable
ordinal is measurable in N .

Proof. For each increasing function f : ω → ω1, let s(f) be the supremum of
the range of f , and let F (f) be the filter on s(f) consisting of all subsets of
s(f) which contain all but finitely many members of the range of f . For each
such f , let N(f) be the inner model L[Z,F (f)]. We will find an f such that
the restriction of F (f) to N(f) is a countably complete ultrafilter in N(f),
i.e., such that

(+) Every function from s(f) to ω in N(f) is constant on a set in F (f).

Note the following facts.
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1. If f0 and f1 are functions from ω to ω1 whose ranges are the same
modulo a finite set, then F (f0) = F (f1) and so not only are the models
N(f0) and N(f1) the same, but their canonical wellorderings are the
same also.

2. Using the canonical wellordering of each N(f), there is a function G
choosing for each increasing f : ω → ω1 a function G(f) : s(f) → ω
failing condition (+) above, if one exists.

The key consequence of AD is the partition property ω1 → (ω1)ω
ωω (see [9]

or [14, pp. 391–396]), which says that for every function from the set of
increasing ω-sequences from ω1 to ωω (the set of functions from ω to ω)
there is an uncountable E ⊆ ω1 such that the function is constant on the set
of increasing ω-sequences from E.

Now, for each increasing f : ω → ω1, let P (f) be the constant function 0
if F (f) satisfies condition (+) in N(f). If f fails condition (+) in N(f), then
let P (f)(0) be 1 and let P (f)(n + 1) = G(f)(f(n)) for all n ∈ ω. Let E
be an uncountable subset of ω1 such that P (f) is the same for all increasing
f : ω → E. We show that the constant value is the constant function 0. If
the constant value corresponds to a failure of (+), then there is an i : ω → ω
such that for all increasing f : ω → E, for all n ∈ ω, G(f)(f(n)) = i(n).
Then i must be constant, since if n ∈ ω is such that i(n) �= i(0), then if f
is an increasing function from ω to E and g : ω → E is defined by letting
g(m) = f(m+n), then G(f) �= G(g), contradicting the fact that F (f) = F (g).
But if i is constant, then for every increasing f : ω → E, G(f) is constant on
a set in F (f), contradicting the failure of (+). �

4.13 Theorem. Assume ADL(R), and let A be a set of reals in L(R). Then
there exists a condition 〈(M, I), a〉 in Pmax such that

• A ∩M ∈M ,

• 〈H(ω1)M , A ∩M〉 ≺ 〈H(ω1), A〉,

• (M, I) is A-iterable.

• if M+ is any forcing extension of M and J is a normal precipitous
ideal on ωM+

1 in M+ then A ∩M+ ∈ M+ and (M+, J) is A-iterable,
and if j : (M+, J) → (M ∗, J ∗) is any iteration of (M+, J), then

〈H(ω1)M ∗
, A ∩M ∗〉 ≺ 〈H(ω1), A〉.

Proof. Work in L(R). If there is an A ⊆ R which is a counterexample to
the statement of the theorem, then we may assume that there exists such
an A which is Δ∼

2
1. This follows from the Solovay Basis Theorem (see [9]),

which says (in ZF) that every nonempty Σ∼
2
1 collection of sets of reals has

a member which is Δ∼
2
1. We give a quick sketch of the proof. Note first of



2144 Larson / Forcing over Models of Determinacy

all that for any ordinal α the transitive collapse any elementary submodel of
Lα(R) containing R is a set of the form Lβ(R) for some ordinal β ≤ α. Now,
if α is any ordinal, there exist (in L(R)) an elementary submodel X of Lα(R)
containing R and a surjection π : R → X, so if α is the least ordinal such
that a member of a given Σ∼

2
1 set exists in Lα+1(R) then there is a surjection

(in L(R)) from R onto Lα+1(R), and a formula φ and a real x such that some
member of the set is defined over Lα(R) by φ from x. By the minimality
of α, that member has Σ∼

2
1 and Π∼

2
1 definitions using x and incorporating φ.

Towards a contradiction, fix a Δ∼
2
1 counterexample A. By [24], the point-

class Σ2
1 has the scale property in L(R), which means that every subset of

R×R which is Δ∼
2
1 in L(R) is the projection of a tree in L(R) on the product

of ω and some ordinal, and can be uniformized by a function which is Δ∼
2
1 in

L(R). (We refer the reader to [9, 14, 26] for a discussion of scales and their
corresponding trees. Briefly, if B ⊆ R × R is the projection of a tree T on
ω × ω × γ (for some ordinal γ) then for each real x such that there exists
a y with (x, y) in B, we can recursively define functions f(x) : ω → ω and
g(x) : ω → γ as follows: if (m,α) is the lexicographically least pair in ω × γ
such that there exist a real y and a function a : ω → γ such that

• y extends f(x)�n and y(n) = m,

• a extends g(x)�n and a(n) = α,

• (x, y, a) is a path through T ,

then f(x)(n) = m and g(x)(n) = α. Then f uniformizes B, and if T is the
tree corresponding to a Σ∼

2
1 scale on B, then f is Δ∼

2
1.) Now, Δ∼

2
1 is closed

under complements, projections and countable unions, so there exists a Δ∼
2
1

set B ⊆ R × R such that whenever F : R → R is a function uniformizing B
and N is a transitive model N of ZF closed under F ,

〈H(ω1)N , A ∩N,∈〉 ≺ 〈H(ω1), A,∈〉.

Fix such B and F , both Δ∼
2
1. Let S, S∗, T, T ∗ be trees (on ω × γ, for some

ordinal γ) in L(R) projecting to A, the complement of A, F and the com-
plement of F respectively. Note that any transitive model of ZF with T as a
member is closed under F .

Now by Theorem 4.12, we may fix a transitive model N of ZFC and a
countable ordinal γ such that N contains the ordinals, S, S∗, T and T ∗ are
elements of N and γ is a measurable cardinal in N . Since N ⊆ L(R) and L(R)
satisfies AD, ωV

1 is a limit of strongly inaccessible cardinals in N . Let δ be any
strongly inaccessible cardinal in N between γ and ωV

1 . Recall (Remark 2.6)
that if we choose an N -generic filter G for the forcing consisting of Col(ω,<γ)
followed by the standard c.c.c. iteration to make Martin’s Axiom hold, as
defined in N , then if we let I be the normal ideal generated by an ideal in N
dual to a fixed normal measure on γ in N , I is a precipitous ideal in N [G] and
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(Nδ[G], I) is iterable, by Lemmas 1.5 and 1.6. It suffices now to fix a forcing
extension M+ of Nδ[G] in which there exists a normal precipitous ideal J

on ωM+

1 and to show that the second part of the conclusion of the theorem
holds for M+ and J . Let N+ be the corresponding forcing extension of N [G].
Since S ∈ N+, A∩M+ ∈M+. Fix an iteration j : (M+, J) → (M ∗, J ∗). By
Lemma 1.6 there is an iteration j∗ : (N+, J) → (N ∗, J ∗) such that j∗�M+ =
j. Now, p[S] ⊆ p[j∗(S)] and p[S∗] ⊆ p[j∗(S∗)], and further, by absoluteness
p[j∗(S)]∩ p[j∗(S∗)] = ∅, so p[S] = p[j∗(S)]. Similarly, p[T ] = p[j∗(T )]. Then
N ∗ is closed under F , so we have that

〈H(ω1)M ∗
, A ∩M ∗,∈〉 ≺ 〈H(ω1), A,∈〉.

Furthermore, j(A ∩ M+) = p[j∗(S)] ∩ M ∗, so j(A ∩ M+) = A ∩ M ∗.
This shows that A is not in fact a counterexample to the statement of the
theorem. �

Suppose that A is a set of reals and x is a real coding a condition p in
Pmax by some recursive coding, and let B be the set of reals coding members
of A× {x}. Then if (M, I) is a B-iterable pair such that

〈H(ω1)M , B ∩M,∈〉 ≺ 〈H(ω1), B,∈〉,

then (M, I) is A-iterable and p ∈ H(ω1)M . Therefore, the existence, for each
A ⊆ R in L(R), of an A-iterable pair (M, I) such that

〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉

implies that for each A ⊆ R in L(R) the set of 〈(M, I), a〉 in Pmax such that
(M, I) is A-iterable and 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉 is dense.

5. The Basic Analysis

With the existence of A-iterable conditions (for all sets of reals A in L(R)) in
hand, we can now prove the most important fact about the Pmax extension,
that every subset of ω1 in the extension is the image of a member of the
generic filter under the iteration of that member induced by the generic filter.

Formally, if G ⊆ Pmax is a set of pairwise compatible conditions, then since
the elementary embedding witnessing the order on a pair of Pmax conditions
has critical point the ω1 of the smaller model, for each 〈(M, I), a〉, 〈(N, J), b〉
in G, a ∩ γ = b ∩ γ, where γ = min{ωM

1 , ωN
1 }. For any such G, we let

AG =
⋃
{a | ∃(M, I) 〈(M, I), a〉 ∈ G}.

By Lemma 2.7, for any such G, for any member 〈(M, I), a〉 of G there is a
unique iteration of (M, I) sending a to AG. Using this fact, we define P(ω1)G

to be the collection of all E such that there exists a condition 〈(M, I), a〉 ∈ G
and a set e ∈ P(ω1)M such that j(e) = E, where j is the unique iteration of
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(M, I) sending a to AG. Likewise, we define IG to be the collection of all E
such that there exists a condition 〈(M, I), a〉 ∈ G and a set e ∈ I such that
j(e) = E, where j is the unique iteration of (M, I) sending a to AG.

We state the following theorem from the point of view of the ground model
(so in particular, the universe V in the statement of the theorem does not
satisfy AC). We have seen that large cardinals and determinacy each imply
that the hypothesis of the theorem is satisfied in L(R), but as we shall see,
it can hold in other models as well.

5.1 Theorem (ZF). Assume that for every A ⊆ R there exists a Pmax con-
dition 〈(M, I), a〉 such that (M, I) is A-iterable and

〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.

Suppose that G ⊆ Pmax is a V -generic filter. Then in V [G] the following
hold.

(a) P(ω1) = P(ω1)G.

(b) NSω1 = IG.

(c) δ∼
1
2 = ω2.

(d) NSω1 is saturated.

Before proving Theorem 5.1, we prove another iteration lemma in terms
of games in order to separate out some commonly needed details.

Suppose that p is a Pmax condition, let J be a normal ideal on ω1 and
let B be a subset of ω1. Let Gω1(p, J,B) be the game where Players I and
II collaborate to build a descending ω1-sequence of Pmax conditions pα =
〈(Mα, Iα), aα〉 below p, where in round α < ω1, I chooses pα if α �∈ B,
and II chooses pα if α ∈ B. At the end of the game, II wins if, letting
A =

⋃
{aα : α < ω1} and letting jα : (Mα, Iα) → (M ∗

α, I∗
α) (for each α < ω1)

be the iteration of (Mα, Iα) sending aα to A, jα(Iα) = J ∩M ∗
α holds for each

α < ω1.

5.2 Lemma (ZFC◦). Suppose that x† exists for every real x. Let p be a
condition in Pmax, let J be a normal ideal on ω1 and let B be a subset of ω1.
Then Player II has a winning strategy in Gω1(p, J,B) if and only if B �∈ J .

Proof. The interesting direction is showing that II has a winning strategy if
B �∈ J , and for this direction it suffices to consider the case where B consists
entirely of limit ordinals (we have no use for the other direction and leave
its proof to the reader). The strategy for II uses the usual trick. Partition
B into J-positive sets {Bα

i : α < ω1, i < ω}, and as the pα are chosen, let
{Eα

i : i < ω} enumerate P(ω1)Mα \ Iα for each α.
Fix a ladder system {hα : α ∈ B} (so each hα is an increasing function

from ω to α with cofinal range). Having constructed our sequence of pα’s up
to some limit stage β in B, let

(〈(Nβ
i , Jβ

i ) : i < ω〉, a∗
β)
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be the limit sequence corresponding to the descending sequence

〈phβ(i) : i < ω〉,

and for each i < ω let j′
iβ be the unique iteration of (Mhβ(i), Ihβ(i)) sending

ahβ(i) to a∗
β . Since x† exists for each real x, we may fix a Pmax pre-condition

(Mβ , Iβ) with
(〈(Nβ

i , Jβ
i ) : i < ω〉, a∗

β) ∈ H(ω1)Mβ .

As in Lemma 3.4 (more precisely, using Lemma 3.5), we let j′
β be an iteration

of 〈(Nβ
i , Jβ

i ) : i < ω〉 in Mβ such that

j′
β(Jβ

i ) = Iβ ∩ j′
β(Nβ

i )

for each i < ω, with the extra stipulation that if

ω
Nβ

0
1 ∈ Bγ

k

for some γ < β and k < ω, then, letting i′ be the least element i of ω such
that hβ(i) ≥ γ,

j′
i′β(jγhβ(i′)(E

γ
k ))

is in the normal filter corresponding to the first step of this iteration of
〈(Nβ

i , Jβ
i ) : i < ω〉 (note that j′

i′β(jγhβ(i′)(E
γ
k )) is Jβ

i′ -positive by the agree-
ment of ideals imposed by the Pmax order). Then, letting aβ = j′

β(a∗
β), we

have that
ω

Nβ
0

1 ∈ jγβ(Eγ
k ).

Since for each i < ω and α < ω1 the set of β ∈ Bα
i such that ω

Nβ
0

1 = β is
J-positive, by playing in this manner Player II ensures that the image of each
Eα

i is J-positive. �

We separate out the following standard argument as well.

5.3 Lemma. Suppose that x† exists for every real x, and let G ⊆ Pmax be
an L(R)-generic filter. Let p0 = 〈(M, I), a〉 be a Pmax condition in G, and
suppose that P ∈ M is a set of Pmax conditions such that p ≥ p0 for every
p ∈ P . Let j be the unique iteration of (M, I) sending a to AG. Then every
member of j(P ) is in G.

Proof. Let 〈Mα, Gβ , j∗
αδ : β < α ≤ δ ≤ ω1〉 be the iteration corresponding

to j, and fix q = 〈(N0, J0), b0〉 in j(P ). Fix α0 < ω1 such that q ∈ j∗
0α0

(P ),
and let jq (in Mα0) be the iteration of (N0, J0) sending b0 to j∗

0α0
(a). By the

genericity of G there is a condition p1 = 〈(N1, J1), b1〉 in G such that p1 ≤ p0

and α0 < ωN1
1 . Then 〈Mα, Gβ , j∗

αδ : β < α ≤ δ ≤ ωN1
1 〉 is in M

ω
N1
1

and is the
unique iteration of (M, I) sending a to b1. Since

jq(J0) = j∗
0α0

(I) ∩ jq(N0)
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and
j∗
0ω

N1
1

(I) = J1 ∩M
ω

N1
1

,

j∗
α0ω

N1
1

(jq) witnesses that q ≥ p1. �

Proof of Theorem 5.1. (a) Let τ be a Pmax-name in L(R) for a subset of ω1,
and let A be the set of reals coding (under some fixed recursive coding) the
set of triples (p, α, i) such that p ∈ Pmax, α < ω1, i ∈ 2 and, if i = 1 then
p� α̌ ∈ τ , otherwise p� α̌ �∈ τ. Let p = 〈(N, J), d〉 be any condition in Pmax

and let (M, I) be an A-iterable pre-condition such that

• p ∈ H(ω1)M ,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.

Applying Lemma 5.2 in M , there exists a descending sequence of Pmax

conditions pα = 〈(Nα, Jα), dα〉 (α < ωM
1 ) such that

(1) p0 = p,

(2) each pα+1 decides the sentence “α̌ ∈ τ”,

(3) letting D =
⋃
{dα : α < ωM

1 }, for each α < ω1, jα(Jα) = I ∩ jα(Nα),
where jα is the unique iteration of (Nα, Jα) sending dα to D.

Conditions (1) and (2) are easily satisfied, using the fact that 〈H(ω1)M ,
A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉, and we may apply Lemma 5.2 (letting B be the
set of countable limit ordinals) inside M to meet Condition (3) since in M ,
x† exists for each real x.

Now, letting D be as in Condition (3) above, 〈(M, I), D〉 is a Pmax con-
dition below each pα. Let e be the subset of ωM

1 in M such that for each
α < ω1, α ∈ e if and only if pα+1 � α̌ ∈ τ .

Suppose that p′ = 〈(M, I), D〉 ∈ G, and let

〈Mα, Gβ , j∗
αδ : β < α ≤ δ ≤ ω1〉

be the unique iteration of (M, I) sending D to AG. We want to see that
j∗
0ω1

(e) = τG. Let 〈qα : α < ω1〉 = j∗
0ω1

(〈pα : α < ωM
1 〉). By the elementarity

of j∗
0α∗ and the A-iterability of (M, I), for each γ < ω1, qγ+1 � γ̌ ∈ τ if

γ ∈ j0α∗ (e) and qγ+1 � γ̌ �∈ τ if γ �∈ j0α∗ (e). By Lemma 5.3, each qγ is in G,
so j∗(e) = τG.

(b) The fact that IG = NSω1 follows almost immediately. If E ∈ IG, then
there is a condition 〈(M, I), a〉 in G, an e ∈ I and an iteration j of (M, I)
sending e to E. Then E is disjoint from the critical sequence of this iteration
and therefore nonstationary. On the other hand, if E is a nonstationary
subset of ω1 in V [G], then there is a club C disjoint from E and a condition
〈(M, I), a〉 in G, sets e, c ∈ P(ω1)M and an iteration j of (M, I) sending e
and c to E and C respectively. Then c must be a club subset of ωM

1 in M ,
so e ∈ I, which means that E is in IG.
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(c) That δ∼
1
2 = ω2 also follows almost immediately, using Corollary 1.9 and

the standard fact that if x# exists for every real x, then δ∼
1
2 is equivalent to

u2, the second uniform indiscernible (the least ordinal above ω1 which is an
indiscernible of every real) (see [36, 39]). So, showing that δ∼

1
2 = ω2 then

amounts to showing that for every γ < ω2 there is a real x such that the least
x-indiscernible above ω1 is greater than γ. Working in V [G], fix γ ∈ [ω1, ω2)
and a wellordering π of ω1 of length γ. By the first part of this theorem,
we may fix a condition 〈(M, I), a〉 ∈ G and an e ∈ P(ω1 × ω1)M such that
j(e) = π, where j is the iteration of (M, I) sending a to AG. Then γ is in
j(M), and so is less than the least indiscernible above ω1 of any real coding
(M, I), by Corollary 1.9.

(d) To show that NSω1 is saturated in V [G], we show that for any set
D ⊆ P(ω1)\NSω1 which is dense under the subset order, there is a subset D′

of D of cardinality ℵ1 whose diagonal union contains a club. So, following
the proof of the first part of this theorem, let τ be a name for such a set D.
Let A be the set of reals coding (by a fixed recursive coding) the set of pairs
(p, e) such that p = 〈(M, I), a〉 is a condition in Pmax, e ∈ P(ω1)M \ I and
p forces that j(ě) ∈ τ , where j is the unique iteration of (M, I) sending a
to AG.

Let p = 〈(N, J), b〉 be any condition in Pmax and let (M, I) be an A-iterable
pre-condition such that

• p ∈ H(ω1)M ,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.

Fix a partition {Bα
i : α < ω1, i < ω} in M of pairwise disjoint I-positive sets

whose diagonal union is I-large. Fix also a function g : ωM
1 × ω → ωM

1 in M
such that g(α, i) ≥ α for all (α, i) ∈ dom(g).

Working in M , we are going to build a descending sequence of Pmax con-
ditions pα = 〈(Nα, Jα), bα〉 (with the order on conditions witnessed by a
commuting family of embeddings jαβ), enumerations {eα

i : i < ω} in M of
each set P(ω1)Nα \ Jα and sets dα (α ≤ β ≤ ωM

1 ) such that

(4) p0 = p,

(5) each dα ∈ P(ω1)Nα+1 \ Jα+1 and, if α = g(β, i) for some β ≤ α and
i < ω, then dα ⊆ jβ(α+1)(e

β
i ) and (pα+1, dα) is coded by a real in A,

(6) for each (β, i) ∈ dom(g), Bα
i \ j(g(β,i)+1)ωM

1
(dg(β,i)) is nonstationary.

Conditions (5) and (6) together imply that our sequence will satisfy Condition
(3) from part (a) of this proof. Furthermore, Conditions (4) and (5) here are
easily achieved, by the assumptions on τ . In particular, for each α < ωM

1 ,
by the assumptions on τ there exists a pair (p∗, d∗) such that p∗ ≤ pα and
Condition (5) holds with p∗ in the role of pα+1 and d∗ in the role of dα, and
we let (pα+1, dα) be any such pair. Condition (6) implies that the diagonal
union of the sets j(g(β,i)+1)ωM

1
(dg(β,i)) will be I-large.
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Condition (6) is achieved in almost exactly the same way as Condition (3)
in the first part of the proof (but not exactly the same way; unfortunately
we cannot quote Lemma 5.2). Fix a ladder system {hα : limit α < ω1}
in M . Having constructed our sequence of pα’s up to some limit stage β, let
(〈(Nβ

i , Jβ
i ) : i < ω〉, b∗

β) be the limit sequence corresponding to the descending
sequence 〈phβ(i) : i < ω〉, and again for each i < ω let j′

iβ be the unique
iteration of (Nhβ(i), Jhβ(i)) sending bhβ(i) to b∗

β . Fix a pre-condition (Nβ , Jβ)
in M with

(〈Nβ
i : i < ω〉, b∗

β) ∈ H(ω1)Nβ .

As in Lemma 3.4, we let j′
β be an iteration of 〈(Nβ

i , Jβ
i ) : i < ω〉 in Nβ such

that
j′
β(Jβ

i ) = Jβ ∩ j′
β(Nβ

i )

for each i < ω, with the extra stipulation that if

ω
Nβ

0
1 ∈ Bγ

k

for some γ < β and k < ω with g(γ, k) < β, then, letting i′ be the least i ∈ ω
such that hβ(i) ≥ g(γ, k),

j′
i′β(j(g(γ,k)+1)hβ(i′)(dg(γ,k)))

is in the filter corresponding to the first step of this iteration of the sequence
〈(Nβ

i , Jβ
i ) : i < ω〉, ensuring (once we let bβ = j′

β(b∗
β)) that

ω
Nβ

0
1 ∈ j(g(γ,k)+1)β(dg(γ,k)).

Then since {ωNβ
0

1 : limit β < ω1} is a club subset of ωM
1 , Condition (6) is

satisfied.
Now, letting B =

⋃
{bα : α < ωM

1 }, 〈(M, I), B〉 is a Pmax condition below
each pα. For each α < ω1 and i < ω, let d′

αi = j(g(α,i)+1)ωM
1

(dg(α,i)). Then
the diagonal union of

A = {d′
αi : α < ωM

1 , i < ω}

contains an I-large subset of ωM
1 in M .

Suppose that 〈(M, I), B〉 ∈ G, and let 〈Mα, Gβ , j∗
αδ : β < α ≤ δ ≤ ω1〉 be

the unique iteration of (M, I) sending B to AG. Then the diagonal union of
j∗
0ω1

(A) contains the critical sequence of j∗
0ω1

, which is a club. We want to
see that j∗

0ω1
(A) ⊆ τG.

Let 〈qα : α < ω1〉 = j∗
0ω1

(〈pα : α < ωM
1 〉). By Lemma 5.3, each qα is in G.

Since (M, I) is A-iterable, each member of j∗(A) is forced to be in τG by
some qα, so j∗(A) ⊆ τG. �

5.4 Remark. It is shown in [18] that, under the hypothesis of Theorem 5.1,
Todorcevic’s Open Coloring Axiom [37] holds in the Pmax extension. The
proof in that paper can be greatly simplified by using Lemmas 5.2 and 5.3
to separate out the standard details.
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6. ψAC and the Axiom of Choice

We have not yet shown that the Pmax extension of L(R) satisfies the Axiom
of Choice. We shall do this by showing (assuming ADL(R)) that the following
axiom holds there.

We let ot(X) denote the ordertype of a linear order X.

6.1 Definition. ψAC is the statement that for every pair A,B of stationary,
co-stationary subsets of ω1, there exists a bijection π between ω1 and some
ordinal γ such that the set {α < ω1 | α ∈ A ⇐⇒ ot(π[α]) ∈ B} contains a
club.

Using a partition {Aα : α < ω1} of ω1 into stationary sets, ψAC allows us
to define an injection from 2ω1 into ω2. Since the Pmax extension of L(R)
satisfies the sentence “V = L(P(ω1))”, this is enough to see that AC holds
there. Let B∗ be any stationary, co-stationary subset of ω1. For each X ⊆ ω1,
let AX =

⋃
{Aα : α ∈ X}, and let γX be the ordinal given by ψAC, where

AX is in the role of A, and B∗ is in the role of B. Let X0 and X1 be distinct
subsets of ω1, and let E be the (stationary) symmetric difference of AX0

and AX1 . Supposing towards a contradiction that γX0 = γX1 , let π0 and
π1 be bijections and C0 and C1 club subsets of ω1 witnessing ψAC for the
pairs AX0 , B

∗ and AX1 , B
∗ respectively. Then there is a club subset D of

ω1 such that ot(π0[α]) = ot(π1[α]) for all α ∈ D. Then E ∩ C0 ∩ C1 ∩ D
is nonempty, which gives a contradiction, since α ∈ AX0 ⇐⇒ ot(π0[α]) ∈
B ⇐⇒ ot(π1[α]) ∈ B ⇐⇒ α ∈ AX1 for all α ∈ C0 ∩ C1 ∩ D. Therefore,
ψAC implies that 2ω1 = ω2. In fact, it also implies that 2ω = 2ω1 , but we
will not take the time to show this (it follows from a result of Shelah proved
in [39, Sect. 3.2]); we already know from Theorem 5.1 that the Continuum
Hypothesis fails in the Pmax extension (assuming ADL(R)).

That ψAC holds in the Pmax extension follows from part (a) of Theorem 5.1
and the following lemma.

6.2 Lemma (ZFC◦). Suppose that (M, I) is a pre-condition in Pmax, and
let A,B ∈M be I-positive subsets of ωM

1 whose complements in ωM
1 are also

I-positive. Let J be a normal ideal on ω1. Then there exist an iteration
j : (M, I) → (M ∗, I∗) of (M, I) of length ω1, an ordinal γ < ω2, and a
bijection π : ω1 → γ such that I∗ = J ∩M ∗ and

{α < ω1 | α ∈ j(A) ⇐⇒ ot(π[α]) ∈ j(B)}

contains a club.

Proof. Let x be a real coding (M, I). Using Fact 1.10, it suffices to construct
an iteration 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 such that for every α which is a
limit of countable x-indiscernibles, j0α(A) ∈ Gα if and only if j0α∗ (B) ∈ Gα∗ ,
where α∗ is the least x-indiscernible above α. By the proof of Lemma 1.8,
ω

Mγ

1 = γ for each x-indiscernible γ, so in particular, each such γ is on the
critical sequence.
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We construct our iteration using the winning strategy for Player I in G(ω1\
E) from Lemma 2.9, where E is the set of countable ordinals of the form α∗

as above, where α is a limit of x-indiscernibles. This ensures that j0ω1(I) =
J ∩ Mω1 . To complete the construction, we recursively choose each Gα∗

(α∗ ∈ E) in such a way that j0α∗ (B) ∈ Gα∗ if and only if j0α(A) ∈ Gα.
Fact 1.10 implies that any iteration satisfying these conditions satisfies the
conclusion of the lemma. �

Stated in the fashion of Theorem 5.1, we have shown the following.

6.3 Theorem (ZF). Assume that for every A ⊆ R there exists a Pmax con-
dition 〈(M, I), a〉 such that (M, I) is A-iterable and

〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉.

Suppose that G ⊆ Pmax is a V -generic filter. Then ψAC holds in V [G].

6.4 Remark. Suppose that A,B are stationary, co-stationary subsets of ω1,
π : ω1 → γ is a bijection (for some γ < ω2) and the set

{α < ω | α ∈ A⇐⇒ ot(π[α]) ∈ B}

contains a club subset of ω1. Then for any normal ideal I on ω1, A is the
Boolean value in the partial order P(ω1)/I that γ ∈ j(B), where j is the
induced embedding. It follows that if (M, I) is any iterable pair with M a
countable transitive model of ZFC◦+ ψAC and B is any stationary, costation-
ary subset of ωM

1 in M , then the image of B under any iteration of (M, I)
determines the entire iteration. This in turn implies that one can replace
MAℵ1 with ψAC in the definition of Pmax without significantly changing the
corresponding analysis; in some cases the analysis is easier with ψAC.

7. Maximality and Minimality

In this section we will show that if certain large cardinals exist in V then the
Pmax extension of the inner model L(R) is maximal, in that all forceable Π2

sentences for H(ω2) hold there, and that it is minimal, in that every subset
of ω1 added by the generic filter for Pmax generates the entire extension. We
will also show that a certain form of this maximality characterizes the Pmax

extension.
To show that the Pmax extension is Π2-maximal, we will use the following

theorem of Woodin (see [8, 6, 30, 39]; Foreman, Magidor and Shelah originally
proved the theorem from the existence of supercompact cardinal [7]). An
ideal I on ω1 is presaturated if for any A ∈ P(ω1) \ I and any sequence
〈Ai : i < ω〉 of maximal antichains in P(ω1) \ I there exists a B ∈ P(A) \ I
such that there are at most ℵ1 many X ∈

⋃
{Ai : i < ω} such that X ∩

B �∈ I. It is straightforward to check that normal presaturated ideals on ω1

are precipitous.
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7.1 Theorem. If δ is a Woodin cardinal, then every condition in the partial
order Col(ω1, <δ) forces that NSω1 is presaturated.

7.2 Definition. Given a cardinal κ, a set of reals A is κ-universally Baire
if there exist trees S and T (contained in ω × Z for some set Z) such that
p[S] = A and S and T project to complements in all extensions by forcing con-
structions of cardinality less than or equal to κ. The set A is <κ-universally
Baire if it is γ-universally Baire for all γ < κ.

Theorem 4.6 shows that for any cardinal κ, κ+-weakly homogeneously
Suslin sets of reals are κ-universally Baire.

If κ is a cardinal, A is a κ-universally Baire set of reals and V [G] is an
extension of V by a forcing construction of cardinality less than or equal to
κ, then we let A(G) be the union of all sets of the form (p[S])V [G], where S
is a tree in V whose projection in V is contained in A. (The notation AG

is often used here, but we are already using that for something else.) For
any pair of trees S and T in V witnessing that A is κ-universally Baire (i.e.,
such that p[S] = A and S and T project to complements in all extensions by
forcing constructions of cardinality less than κ), (p[S])V [G] = A(G).

The following theorem is an immediate consequence of part (a) of Theo-
rem 5.1, and it implies in particular that MAℵ1 holds in the Pmax extension.

7.3 Theorem. Suppose that δ is a limit of Woodin cardinals, and κ > δ is
measurable. Let A be a set of reals in L(R). Suppose that φ is a Π2 sentence
in the expanded language with two additional unary predicates, and that P is
a partial order in Vδ forcing that φ holds in the structure 〈H(ω2),∈, A(G)〉.
Then φ holds in the structure 〈H(ω2),∈ A〉 in the Pmax extension of L(R).

Proof. Suppose that φ has the form ∀X∃Y ψ(X,Y ). By part (a) of The-
orem 5.1, it suffices to show that for every Pmax condition 〈(M, I), a〉 and
every x ∈ H(ω2)M there exists a Pmax condition q = 〈(N, J), b〉 such that

• q ≤ p,

• (N, J) is A-iterable,

• if j : (M, I) → (M ∗, I∗) is the unique iteration of (M, I) sending a to
b, then

〈H(ω2)N , J, A ∩N,∈〉 |= ∃y ψ(j(x), y).

Let Z be a countable elementary submodel with 〈(M, I), a〉, A, P and δ as
a members, and let N be the transitive collapse of Z. By Theorem 4.10,
any forcing extension of M in which the nonstationary ideal is precipitous
will be A-iterable with respect to the nonstationary ideal. Let N [g0] be a
forcing extension of N by P , and let j : (M, I) → (M ∗, I∗) be an iteration of
(M, I) in N [g0] such that I∗ = NSN [g0]

ω1
∩M ∗. Since φ holds in the structure

〈H(ω2)N [g0],∈, A∩N [g0]〉, there is a y ∈ H(ω2)N [g0] such that ψ(j(x), y) holds
there (and in the structure 〈H(ω2)N ∗

,∈, A∩N ∗〉 of every outer model N ∗ of
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N [g0] which agrees with N [g0] about stationarity for subsets of ω1. In N [g0]
there exists a Woodin cardinal γ, so let N [g1] be a Col(ω1, <γ)-extension of
N [g0]. Finally, let N [g2] be a c.c.c. forcing extension of N [g1] in which MAℵ1

holds. Then 〈(N [g2],NSN [g2]
ω1

), j(a)〉 is the desired condition q. �

Theorem 7.8 below is a sort of converse to Theorem 7.3. First we will
show that every new subset of ω1 in the Pmax extension generates the entire
generic filter (Theorem 7.7).

The conclusion of the following lemma corresponds to Condition 5 in the
definition of Pmax.

7.4 Lemma. Suppose that x† exists for each real x. Let 〈(M ′, I ′), a′〉 be a
Pmax condition and let e be an element of P(ω1)M ′

. Then there exist a Pmax

pre-condition (N, J) with (M ′, I ′) ∈ H(ω1)N and an iteration j : (M ′, I ′) →
(M ∗, I∗) in N such that

• j(ωM ′

1 ) = ωN
1 ,

• I∗ = J ∗ ∩M ∗,

and either

1. for some x ∈ P(ω)N , j(e) ∈ L[x], or

2. for some x ∈ P(ω)N , ωN
1 = ω

L[j(e),x]
1 .

Proof. Fix a limit sequence (〈(Mi, Ii) : i < ω〉, a) corresponding to any de-
scending ω-sequence in Pmax starting with 〈(M ′, I ′), a′〉, and let (N, J) be a
Pmax pre-condition with {(M ′, I ′), (〈(Mi, Ii) : i < ω〉, a)} ∈ H(ω1)N . Let j′

be the iteration of (M ′, I ′) sending a′ to a. Now one of two things must hold.
Either there exist i < ω, γ < ωMi

2 and a bijection f : ωM0
1 → γ in Mi such

that {α < ωM0
1 : ot(f“α) ∈ j′(e)} and {α < ωM0

1 : ot(f“α) �∈ j′(e)} are both
Ii-positive subsets of ωM0

1 in Mi, or there are no such i, γ, f .
If there is no such triple, then the image of j′(e) is the same under every

iteration of 〈(Mi, Ii) : i < ω〉 of length ωN
1 . Let x be a real in N coding

〈(Mi, Ii) : i < ω〉. There exist iterations of 〈(Mi, Ii) : i < ω〉 of length ωN
1

in forcing extensions of L[x] by the partial order Col(ω,<ωN
1 ), and since this

partial order is homogeneous, this fixed image of j′(e) exists in L[x]. Letting
j be any suitable (for example, using a strategy for Player I in G(ω1) as in
Theorem 3.5) such iteration in N of length ωN

1 , then, j(j′) is an iteration of
(M ′, I ′) satisfying the first conclusion of the lemma.

If there is such a triple, note that there is a real y in Mi+1 such that γ
is definable in Mi+1 (absolutely, in fact) from ωM0

1 and y (for instance, we
could let y be the sharp of any real whose least indiscernible above ωM0

1 is
greater than γ). In particular, we may fix a ternary formula φ such that γ is
the unique ordinal such that φ(γ, y, ωM0

1 ) holds in L[y]. Let

A = {α < ωM0
1 : ot(f“α) ∈ j′(e)}.
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Then A is the Boolean value of the statement that γ is in the image of j′(e).
Let x be a real in N coding (〈(Mi, Ii) : i < ω〉, a). Then just as in the proof
of Lemma 1.8, the indiscernibles of x are on the critical sequence of any
iteration of 〈(Mi, Ii) : i < ω〉. Fix a set B ⊆ ωN

1 in N such that ωN
1 = ω

L[B]
1 .

Working in N , build an iteration j (with partial iterations jαβ (α ≤ β ≤ ωN
1 )

and normal filters Gα (α < ωN
1 )) of 〈(Mi, Ii) : i < ω〉, using a winning

strategy for Player I in the game G(ωN
1 \ E) from Theorem 3.5, where E is

the set of countable x-indiscernibles which are not limits of x-indiscernibles
(note that x# ∈ N , as (N, J) is iterable, so N contains the sharps for all its
reals). When j0α(ωM0

1 ) is in E, we put j0α(A) in the normal filter Gα if and
only if η ∈ B, where j0α(ωM0

1 ) is the ηth successor x-indiscernible. Having
completed the construction of our iteration, we have that B is constructible
from j(j′(e)), y and x#: B is the set of η < ωN

1 such that, letting ιη be the
η-th successor x-indiscernible, the unique ordinal γ∗ satisfying φ(γ∗, y, ιη) in
L[y] is in j(j′(e)). Then j(j′) is an iteration of (M ′, I ′) satisfying the second
conclusion of the lemma. �

For the rest of this section we fix the following notation: if B is a subset
of ω1, we let FB be the set of conditions 〈(M, I), b〉 in Pmax such that there
exists an iteration j : (M, I) → (M ∗, I∗) such that j(b) = B and I∗ =
NSω1 ∩M ∗.

Woodin defines the following axiom.

7.5 Definition. Axiom (∗) is the statement that AD holds in L(R) and
L(P(ω1)) is a Pmax extension of L(R).

The proofs of Theorems 7.7 and 7.8 use the following lemma.

7.6 Lemma. Assume that axiom (∗) holds, and let B be a subset of ω1 such
that there exists a real z such that ω1 = ω

L[z,B]
1 . Then the set FB is a filter.

Proof. Fix an L(R)-generic filter G ⊆ Pmax such that L(P(ω1)) = L(R)[G].
Fix a real x such that ω1 = ω

L[x,AG]
1 . As in the proof of Lemma 2.7, let {aα :

α < ω1} be the almost disjoint family of subsets of ω constructed in L[x,AG]
by recursively taking aα to be the first real in the L[x,AG] constructibility
order almost disjoint from each aβ (β < α). Now let y ⊆ ω be such that for
all α < ω, aα ∩ y is infinite if and only if α ∈ B. Let

p0 = 〈(M0, I0), b0〉 and p1 = 〈(M1, I1), b1〉

be members of FB , as witnessed by iterations j0 and j1 respectively, and let
C0 and C1 be the respective critical sequences of j0 and j1. Let 〈(N, J), a〉
be a member of G with x, y, z, p0, p1 ∈ H(ω1)N and sets c0 and c1 in P(ω1)N

such that, for j the unique iteration of (N, J) sending a to AG, j(c0) = C0

and j(c1) = C1. Then c0 = C0 ∩ ωN
1 , c1 = C1 ∩ ωN

1 , and c0 and c1 are both
club subsets of ωN

1 . Since ω
L[z,B]
1 = ω1, ω

L[z,b0]
1 = ωM0

1 and ω
L[z,b1]
1 = ωM1

1 .
Since x ∈ N , {aα : α < ωN

1 } is in N (it satisfies the same definition in N
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relative to x and a that {aα : α < ω1} satisfies relative to x and AG). Since
y ∈ N , B ∩ ωN

1 ∈ N , and the unique iterations

j∗
0 : (M0, I0) → (M ∗

0 , I∗
0 )

and
j∗
1 : (M1, I1) → (M ∗

1 , I∗
1 )

sending b0 to B ∩ ωN
1 and b1 to B ∩ ωN

1 respectively are in N , and furthermore
j(B ∩ ωN

1 ) = B. Once we see that I∗
0 = J ∩M ∗

0 and I∗
1 = J ∩M ∗

1 we will
be done. The two proofs are the same. For (M0, I0), if E ∈ J ∩M ∗

0 , then
since E ∈ J , j(E) ∈ NSL(R)[G]

ω1
. Now, j(j∗) is an iteration of (M0, I0) sending

b0 to B, and so it is equal to j0. Then j(E) is the image of E under the
tail of the iteration j0 starting with (M ∗

0 , I∗
0 ). So j(E) ∈ j0(M0), and since

j0(I0) = NSL(R)[G]
ω1

∩ j0(M0), j(E) ∈ j0(I0), and so E ∈ I∗
0 . �

If G ⊆ Pmax is an L(R)-generic filter, then F(AG) is a filter containing G,
and so by the genericity of G, F(AG) = G.

Now we show that any new subset of ω1 added by forcing with Pmax

generates the entire extension.

7.7 Theorem. Assume that axiom (∗) holds. Then for every B ∈ P(ω1) \
L(R), FB is an L(R)-generic filter for Pmax, and L(P(ω1)) = L(R)[FB].

Proof. By Lemma 7.4, there is a real z such that L[z,B] correctly com-
putes ω1. By Lemma 7.6, FB is a filter. Now, let 〈(M, I), a〉 be a condition
in G such that z ∈ M and for some b ∈ P(ω1)M , j(b) = B, for j the unique
iteration of (M, I) sending a to AG. As in Lemma 2.10, the mapping π send-
ing each condition 〈(N, J), c〉 below 〈(M, I), a〉 to the condition 〈(N, J), b∗〉,
where b∗ is the image of b by the iteration of (M, I) sending a to c, is an
isomorphism. The image of G under π, FB , is then an L(R)-generic filter in
Pmax. Furthermore, π is in L(R), so G is in L(R)[FB]. �

7.8 Theorem. Assume ADL(R)and that for every Π2 sentence φ in the lan-
guage with two additional unary predicates, if A ∈ P(R) ∩ L(R) and

〈H(ω2), A,NSω1 ,∈〉L(R)Pmax |= φ

then
〈H(ω2), A,NSω1 ,∈〉 |= φ .

Then for every B ∈ P(ω1) \ L(R), FB is an L(R)-generic filter and

H(ω2) = H(ω2)L(R)[FB ].

Proof. Let P denote P(ω1)\
⋃
{L[x] : x ∈ R} (under ADL(R) this is the same

as P(ω1) \ L(R), but we want to make the relevant syntax more explicit).
The sentence asserting that FB is a filter for every B ∈ P is Π2 in H(ω2) with
parameters for NSω1 and the set of Pmax conditions, and by Lemma 7.6, this
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sentence holds in the Pmax extension of L(R). If X ∈ L(R) is a dense subset
of Pmax, then the statement that FB ∩ X is nonempty for every B ∈ P is
Π2 in H(ω2) with parameters for §ω1 , X and the set of Pmax conditions, and
this sentence holds in the Pmax extension of L(R) by Theorem 7.7. Thus, for
every B ∈ P , FB is L(R)-generic. Finally, the following statement is Π2 in
H(ω2) with parameters for NSω1 and the set of Pmax conditions, and holds
in the Pmax extension: for every E ⊆ ω1 and for every B ∈ P there is a
Pmax condition 〈(M, I), b〉 and an iteration j : (M, I) → (M ∗, I∗) such that
E ∈ P(ω1)M ∗

, j(b) = B and I∗ = NSω1 ∩M ∗. Fixing a set B ∈ P , then,
since {x,B} ∈ L(R)[FB], H(ω2) ⊆ H(ω2)L(R)[FB ]. �

Theorem 7.7 gives us another way to characterize the Pmax extension of
L(R), this time without mention of Pmax. For the definition below, we fix
the following notation. If g is a filter contained in Col(ω,<ω1), then for each
α < ω1 we let

Sg
α = {β | ∃p ∈ g p(0, β) = α}

and, for each τ ⊆ ω1 × Col(ω,<ω1), we let

Ig(τ) = {α | ∃p ∈ g (α, p) ∈ τ}.
7.9 Definition. Axiom (∗

∗) is the statement that x# exists for every real
number x and if X is a nonempty subset of P(ω1) which is definable from
real and ordinal parameters then there exists a real x and a set

τ ⊆ ω1 × Col(ω,<ω1)

such that τ ∈ L[x] and such that for all filters g ⊆ Col(ω,<ω1), if g is
L[x]-generic and if for each α < ω1, Sg

α is stationary, then Ig(τ) ∈ X.

The converse of the following theorem also holds (see [39, Sects. 5.7, 5.8]),
though its proof is beyond the scope of this chapter.

7.10 Theorem. Axiom (∗) implies that axiom (∗
∗) holds in L(P(ω1)).

Proof. First note that AD implies that the sharp of every real exists. Now let
G be an L(R)-generic filter such that L(P(ω1)) = L(R)[G], and fix a set X as
in the statement of axiom (∗

∗). Let p = 〈(M, I), a〉 be a condition in G such
that for some b ∈ P(ω1)M , p forces that j(b) ∈ X, for j the unique iteration
of (M, I) sending a to AG. Let x be a real such that 〈(M, I), a〉 ∈ H(ω1)L[x].
Now, if g ⊆ Col(ω,<ω1) is L[x]-generic, then as in the proof of Lemma 2.8,
in L[x][g] there is an iteration

{Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1}

of (M, I) such that for each β < ω1 and each set e ∈ P(ω1)Mβ \j0β(I) there is
an α < ω1 such that Sg

α \ jβω1(e) is nonstationary. Let σ be an Col(ω,<ω1)-
name in L[x] for the embedding j0ω1 corresponding to such an iteration, and
let τ be the set of pairs (α, p) ∈ ω1×Col(ω,<ω1) such that p� α̌ ∈ σ(b̌). Now
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suppose that g ⊆ Col(ω,<ω1) is L[x]-generic and that each Sg
α is stationary.

Then σg is an iteration of (M, I), and since there exists a real z such that

ω
L[z,σg(a)]
1 = ω1,

σg(a) is not in L(R). Then Theorem 7.7 implies that Gσg(a) (as in the
statement of that theorem) is an L(R)-generic filter for Pmax. Since each Sg

α

is stationary, σg witnesses that 〈(M, I), a〉 is in Gσg(a), which means that
σg(b) is in X. Since σg(b) = Ig(τ), we are done. �

Theorem 7.10 has the following immediate corollary. By a perfect subtree
of 2<ω1 we mean a tree of height ω1 such that every node is extended by a pair
of incompatible nodes, and such that every countable increasing sequence has
a node extending it.

7.11 Corollary. Assume ADL(R), and let G ⊆ Pmax be an L(R)-generic
filter. Let φ be a unary formula with parameters for elements of L(R) and
suppose that there exists a subset of ω1 in L(R)[G] \L(R) satisfying φ. Then
there is a perfect subtree T of 2<ω1 such that every subset of ω1 corresponding
to a path through T satisfies φ.

Given an ordinal β, Martin’s Maximum+β (MM+β , derived from [7]) is
the statement that whenever P is a partial order such that forcing with P
preserves stationary subsets of ω1, 〈Dα : α < ω1〉 is a sequence of dense
subsets of P and 〈τα : α < β〉 is a sequence of P -names for stationary subsets
of ω1, there is a filter G ⊆ P such that G ∩Dα is nonempty for each α < ω1

and {γ < ω1 | ∃p ∈ G p� γ̌ ∈ τα} is stationary for each α < β.
It is shown in [17] that MM+ω does not imply axiom (∗), if the existence of

a supercompact limit of supercompact cardinals is consistent with ZFC. The
question of whether MM+ω1 implies axiom (∗) remains open. We mention
the following two test cases, consequences of axiom (∗) which have not been
shown from large cardinals to be provably forceable by a semi-proper partial
order. We omit the proofs, as they appear in full in [39] (Theorem 7.12
appears in [39] as Theorem 5.74(5) and Theorem 7.15 appears as Theorem
6.124).

7.12 Theorem. Suppose that axiom (∗
∗) holds. Then for every A ⊆ ω1 which

is not constructible from a real, there exist a real x and an L[x]-generic filter
g ⊆ Col(ω,<ω1) such that L[x][g] = L[x,A].

The statement of Theorem 7.15 requires the following definitions.

7.13 Definition. A tree T ⊆ {0, 1}<ω1 is weakly special if for all countable
X ≺ 〈H(ω2), T,∈〉, if b : ω1 ∩ X → {0, 1} is a cofinal branch of TX not
in MX , then there is a bijection π : ω → ωMX

1 definable in the structure
〈MX , TX , b,∈〉, where 〈MX , TX ,∈〉 is the transitive collapse of X.

7.14 Definition. Φ+
♦ is the statement that for each A ⊆ ω1 there exists a

B ⊆ ω1 such that, letting TB = {0, 1}<ω1 ∩ L[B],
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• A ∈ L[B],

• TB is weakly special,

• every branch of TB is in L[B].

7.15 Theorem. Axiom (∗) implies Φ+
♦.

One consequence of Theorem 7.15 is that there are no weak Kurepa trees
(subtrees of {0, 1}<ω1 of cardinality ℵ1 with ℵ2 many cofinal branches) in
any Pmax extension.

8. Larger Models

The forcing construction Pmax can be applied to larger models than L(R), if
they satisfy (ostensibly) stronger forms of determinacy.

8.1 Definition. A set of reals A is ∞-borel if there exists a set of ordinals
S, an ordinal α and a binary formula φ such that

A = {y ∈ R | Lα[S, y] |= φ(S, y)}.

The ordinal Θ is defined to be the least ordinal which is not a surjective
image of R. The notion of continuity in the definition below refers to the
discrete topology on λ, not the interval topology. Dependent Choice (DC) is
a weak form of the Axiom of Choice saying that every tree of height ω with
no terminal nodes has a cofinal branch; Dependent Choice for Sets of Reals
(DCR) is the restriction of DC to trees on the reals.

8.2 Definition (ZF + DCR). AD+ is the conjunction of the following two
statements.

• Every set of reals is ∞-borel .

• If λ < Θ and π : λω → ωω is a continuous function, then π−1(A) is
determined for every A ⊆ ωω.

It is an open question whether AD implies AD+, though it is known that
AD+ holds in all models of AD of the form L(A,R), where A is a set of reals
(some of the details of the argument showing this appear in [9]).

The following consequences of AD+ are enough to prove that Pmax condi-
tions exist in suitable generality.

8.3 Theorem (ZF + DCR). If AD+ holds and V = L(P(R)) then

• the pointclass Σ2
1 has the scale property,

• every Σ2
1 set of reals is the projection of a tree in HOD,

• every true Σ1-sentence is witnessed by a Δ∼
2
1 set of reals.
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Adapting the proof of Theorem 4.13, then, we have the following.

8.4 Theorem. Suppose that Γ ⊆ P(R) is a pointclass closed under contin-
uous preimages and that L(Γ,R) |= DCR + AD+. Then for every set of reals
A in L(Γ,R) there is a Pmax precondition (M, I) such that

• A ∩M ∈M ,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1), A,∈〉,

• (M, I) is A-iterable.

The corresponding parts of the proof of Theorem 5.1 then go through to
give the following.

8.5 Theorem. Suppose that Γ ⊆ P(R) is a pointclass closed under contin-
uous preimages such that L(Γ,R) |= DCR + AD+. Suppose that G ⊆ Pmax is
L(Γ,R)-generic. Then the following hold in L(Γ,R)[G]:

• P(ω1) = P(ω1)G,

• IG is the nonstationary ideal,

• δ∼
1
2 = ω2,

• IG is saturated.

If there is no surjection in L(Γ,R) from R × On onto Γ, then Γ is not
wellordered in the Pmax extension of L(Γ,R). Producing a model of Choice
then requires the following step, which appears with proof in [39] as Theo-
rem 9.36. The statement ω2-DC says that <ω2-closed trees of height ω2 with
no terminal nodes have cofinal branches.

8.6 Theorem. Suppose that Γ ⊆ P(R) is a pointclass closed under contin-
uous preimages such that L(Γ,R) |= DCR + AD+ + “Θ is regular”. Suppose
that G ⊆ Pmax is L(Γ,R)-generic. Then L(Γ,R)[G] |= ω2-DC.

The axiom ADR is the statement that all two player games of perfect
information of length ω where the players play real numbers are determined.
This statement easily implies DCR and in the context of DC is properly
stronger than AD+. Theorem 8.7 below lists some properties of the Pmax

extension of a model of ADR + “Θ is regular”. Many of the corresponding
proofs proceed by finding a Pmax condition satisfying axiom (∗) and satisfying
the conclusion of Theorem 8.4 for a suitable set A. We emphasize that the
first conclusion of Theorem 8.7 says that in the Pmax extension of L(Γ,R),
L(P(ω1)) is a Pmax extension of L(R), not (merely) L(Γ,R).

Martin’s Maximum++(c) is the restriction of Martin’s Maximum+ω1 to
partial orders of cardinality the continuum, which it implies is ℵ2. (The
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notation comes from Woodin [39, p. 36], where MM+ω1 is called Martin’s
Maximum++.) The statement ♦(Sω2

ω ) says that there is a sequence

{Aγ : γ < ω2 ∧ cf(γ) = ω}

such that each Aγ is a subset of γ and such that for every B ⊆ ω2, the set of
α < ω2 of countable cofinality such that B ∩ α = Aα is stationary. Woodin
shows in [39, Sect. 5.2] that ♦(Sω2

ω ) follows from Martin’s Maximum. Part (4)
of the conclusion of Theorem 8.7 is due to Daniel Seabold [28]. Chang’s
Conjecture is the statement that for each function F : [ω2]<ω → ω2 there
exists an X ⊆ ω2 of ordertype ω1 such that F“[X]<ω ⊆ X (i.e., that the set
of subsets of ω2 of ordertype ω1 is stationary, in the sense of [19]). It is an open
question whether Chang’s Conjecture holds in the Pmax extension of L(R)
whenever L(R) satisfies AD. This question has been resolved (negatively) for
Qmax (see Remark 10.7).

Parts (5), (6) and (7) of Theorem 8.7 show that Pmax can be used to
produce consistency results at ω2 as well as at ω1. We let NSω

ω2
denote the

nonstationary ideal on ω2 concentrating on the ordinals of cofinality ω. The
ideal NSω

ω2
is weakly presaturated if for every S ∈ P(ω2) \ NSω

ω2
and every

function f : S → ω2 there exist a ordinal γ < ω3 and a bijection π : ω2 → γ
such that

{α ∈ S | f(α) < ot(π[α])} �∈ NSω
ω2

.

A normal ideal I on ω2 is semi-saturated if whenever U is a set generic V -
normal ultrafilter on ω2 contained in P(ω2) \ I, Ult(V, U) is wellfounded.

8.7 Theorem. Suppose that Γ ⊆ P(R) is a pointclass closed under con-
tinuous preimages such that L(Γ,R) |= ADR + “Θ is regular”. Suppose that
G ⊆ Pmax is L(Γ,R)-generic, and let

H ⊆ Col(ω3, H(ω3))L(Γ,R)[G]

be an L(Γ,R)[G]-generic filter. Then the following hold in L(Γ,R)[G][H]:

1. Axiom (∗),

2. Martin’s Maximum++(c),

3. ♦(Sω2
ω ),

4. Chang’s Conjecture,

5. NSω
ω2

is precipitous,

6. NSω
ω2

is weakly presaturated,

7. there is a normal semi-saturated ideal on ω2 containing NSω
ω2

.
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9. Ω-Logic

In this section we will briefly describe the relationship between Pmax and
Woodin’s Ω-logic as presented in [39] (our presentation of Ω-logic, however,
will follow the one in [44]; many basic facts about Ω-logic are proved in [1]).
Let T be a set of sentences and let φ be a sentence, both in the language of
set theory. Then T |=Ω φ (φ is ΩT -valid) if for every forcing construction
P and every ordinal α, if V P

α |= T then V P
α |= φ. We will define below the

conjectured proof-theoretic complement to this model-theoretic notion.
A set of reals A is universally Baire if it is κ-universally Baire for all

cardinals κ (see Definition 7.2). Woodin has shown that if δ is a limit of
Woodin cardinals, then a set of reals is <δ-universally Baire if and only if
it is <δ-weakly homogeneously Suslin (a proof is given in [19]). Given a
universally Baire set of reals A, a transitive model N of ZFC is said to be
A-closed if, whenever P is a partial order in N and G ⊆ P is V -generic (not
just N -generic), then N [G] ∩ A(G) is in N [G]. Lemmas 9.2 and 9.3 give
useful reformulations of A-closure, and are relatively easy to prove (see [1]).
The proof of Lemma 9.2 uses the following fact, which will show up again in
the proof of Theorem 9.4 and in Sect. 10.1. For a proof of Theorem 9.1, see
[10, p. 516] or [19, Appendix].

9.1 Theorem (McAloon). If P is a partial order and forcing with P makes
P countable, then P is forcing-equivalent to Col(ω, |P|).

Theorem 9.1 implies that every partial order P regularly embeds into
Col(ω, |P|), which is forcing-equivalent to P× Col(ω, |P|).

9.2 Lemma. Given a universally Baire set of reals A, a model M of ZFC
is A-closed if and only if for all ordinals γ ∈ M , the set of pairs (τ, p) ∈
H(|γ|+)M such that τ is a Col(ω, γ)-name in M for a real, p is a condition
in Col(ω, γ) and p forces in V that the realization of τ is in A(G) is in M .

Lemma 9.3 shows that for countable models, it is not necessary to consider
V -generic filters. The point is that, even without assuming the existence of
large cardinals, if

• A is a universally Baire set of reals,

• M is a countable transitive model of ZFC,

• P is a partial order in M ,

• p is a condition in P , and

• τ is a P -name in M for a real number

then p forces in V that τG is in A(G) if and only if there exists (in V ) a
collection {Di : i < ω} of dense subsets of P such that τg ∈ A for every
M -generic filter g ⊆ P containing p and intersecting each Di.
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9.3 Lemma. Let A be a universally Baire set of reals and let M be a count-
able transitive model of ZFC. Then M is A-closed if and only if for each
partial order P in M there exists (in V ) a collection {Di : i < ω} of dense
subsets of P such that M [G] ∩ A ∈ M [G] for every M -generic filter g ⊆ P
intersecting each Di.

By Lemma 9.3 (and the fact that the set of wellfounded ordinals of an
illfounded model of ZFC is not an element of the model), if A is the set
of reals coding wellorderings of ω (under some fixed recursive coding), then
(expanding to the class of ω-models of ZFC) A-closure is equivalent to well-
foundedness.

Let T be a theory containing ZFC and let φ be a sentence, both in the
language of set theory. Then T �Ω φ (T implies φ in Ω-logic) if there exists
a set of reals A such that

• L(A,R) |= DCR + AD+,

• every set of reals in L(A,R) is universally Baire,

• for every countable A-closed model M and every ordinal α ∈M , if V M
α

satisfies T then V M
α satisfies φ.

A sentence φ is ΩZFC-consistent if ZFC ��Ω ¬φ. The first two conditions
above ensure that the set of reals A is sufficiently canonical, and hold of all
universally Baire sets of reals in the presence of a proper class of Woodin
cardinals. The third condition says that A serves as a sort of proof of φ, in
the sense that φ holds in all models which are closed under a certain function
corresponding to A.

The following theorem shows that statements which can be forced to
hold (along with ZFC) in suitable initial segments of the universe are ΩZFC-
consistent. The proof shows the stronger fact that for every universally Baire
set of reals A, all forceable statements hold in models N which are A-closed
in the stronger sense that N [G] ∩A ∈ N [G] for all N -generic filters G.

9.4 Theorem. Suppose that A is a universally Baire set of reals and that
κ is a strongly inaccessible cardinal. Then any forcing extension (in V ) of
any transitive collapse of any elementary submodel of Vκ containing A is
A-closed.

Proof. Since A is universally Baire and κ is strongly inaccessible, A is uni-
versally Baire in Vκ. To see this, fix a partial order P in Vκ and trees S and
T witnessing the universal Baireness of A for P . Let ρ be a P -name in Vκ

for all the reals of the P -extension, let θ be a regular cardinal greater than
|S<κ|, |T<κ| and κ and let X be an elementary submodel of H(θ) of cardi-
nality less than κ containing {S, T} and the transitive closure of ρ. Then the
images of S and T under the transitive collapse of X are in Vκ and witness
the universal Baireness of A for P .
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Now let X be an elementary submodel of Vκ with A as an element, and
let M be the transitive collapse of X. Let P be a partial order in X, let
P̄ be the image of P under the transitive collapse of X, and let g ⊆ P̄ be
an M -generic filter. Let τ be a P -name in X for a partial order, and let τ̄
be the image of τ under the transitive collapse of X. We want to see that
whenever h ⊆ τ̄g is a V -generic filter, then M [g][h] ∩A(h) is in M [g][h]. Let
γ ∈ X ∩ κ be a cardinal greater than |P ∗ τ | and let S and T be trees in X
witnessing the universal Baireness of A for Col(ω, γ). Then S and T project
to complements in any forcing extension of V by either P ∗ τ or τ̄g.

Let σ be a τ̄g-name in M [g] for a real. Let S̄ and T̄ be the images of S
and T under the transitive collapse of X. Let h ⊆ τ̄g be V -generic. Then σh

is in exactly one of (p[S])V [h] and (p[T ])V [h], and by the elementarity of the
collapsing map, σh is in exactly one of (p[S̄])M [g][h] and (p[T̄ ])M [g][h]. Since
(p[S̄])M [g][h] ⊆ (p[S])V [h] and (p[T̄ ])M [g][h] ⊆ (p[T ])V [h], and since A(h) =
(p[S])V [h], σh is in A(h) if and only it is in (p[S̄])M [g][h]. Putting all of this
together, we have that

M [g][h] ∩A(h) = (p[S̄])M [g][h],

which shows that M [g] is A-closed. �

Woodin has shown that the axiom (∗) is ΩZFC-consistent.

9.5 Theorem. Suppose that there exists a proper class of Woodin cardinals
and that there is an inaccessible cardinal which is a limit of Woodin cardinals.
Then the theory

ZFC + (∗)

is ΩZFC-consistent.

The proof of Theorem 9.5 requires one to force axiom (∗) over larger models
than L(R), in particular, models of the form L(S,R), where for some strongly
inaccessible limit of Woodin cardinals κ, S is a <κ-weakly homogeneous tree.
A proof that such models can satisfy AD+ appears in [19]. It is not known
whether there are large cardinals whose existence implies that one can force
over V to make axiom (∗) hold. Woodin has conjectured that (ordertype) ω2

many Woodin cardinals are sufficient. Of course, if MM+ω1 implies axiom
(∗) (we discussed this question in Sect. 7) then one supercompact cardinal is
sufficient.

9.6 Definition. Woodin’s Ω Conjecture asserts that if there exist proper
class many Woodin cardinals then for every sentence φ, ∅ |=Ω φ if and only
if ∅ �Ω φ.

Recall that for a set x, x† is a set of the same cardinality as x coding a
theory extending ZFC + “There exists a measurable cardinal” with constants
for each member of x and for two classes of indiscernibles (above and below
the measurable cardinal). If there exist proper class many Woodin cardinals,



9. Ω-Logic 2165

then the set D of reals coding (under some fixed recursive coding) pairs
(x, i), where x is a real number, i is an integer and i ∈ x† is universally
Baire. Any D-closed model M then has the property that for any set x,
x† exists in any forcing extension of M where x is countable, which since
x† is unique means that x† exists in M already (an easy way to say this
uses the fact that Col(ω, |x|) is homogeneous, though this is not necessarily
the most direct way). Thus for every ordinal α ∈ M , there exist an inner
model N of M containing V M

α (definable in M), an ordinal κ > α which is
a measurable cardinal in N and a set μ which is a κ-complete nonprincipal
measure on κ in N such that all iterates of N by μ are wellfounded. As in
Example 1.7, then, if M is a D-closed model and I is a normal precipitous
ideal on ωM

1 in M , then every rank initial segment of M satisfying ZFC◦ is a
rank initial segment of a model N such that (N, I) is iterable, and so (M, I) is
also iterable. Using this we have that every Π2 sentence for 〈H(ω2),NSω1 ,∈〉
which is ΩZFC-consistent with the existence of a precipitous ideal on ω1 holds
in the Pmax extension. Using the canonical inner models for Woodin cardinals
one can do more, however.

9.7 Theorem. If there is a proper class of Woodin cardinals, then for every
set of reals A in L(R), every ΩZFC-consistent Π2 sentence for 〈H(ω2),NSω1 ,
A,∈〉 holds in the Pmax extension of L(R).

In the next few paragraphs we will sketch a proof of Theorem 9.7 (an actual
proof is beyond the scope of this chapter). This will require introducing some
concepts from inner model theory (see [34, 27], for instance).

Given a set of reals A such that A = L(A)∩R, A# is a set of reals coding
the theory of L(A) in the language with constants for each real and ω many
ordinal indiscernibles (see [33]; again, this is not a characterization of A#,
which is unique if it exists). If R

# exists then each set of reals in L(R) is
definable in L(R) from a real and a finite set of these indiscernibles.

The following theorem (due to Woodin) is proved in [19].

9.8 Theorem. Suppose that δ is a limit of Woodin cardinals below a measur-
able cardinal. Then R

# is <δ-weakly homogeneous, and if M is any forcing
extension of V by a forcing construction in Vδ then (R#)V = (R#)M ∩ V .

For each set a, let M(a) denote the minimal model of ZFC + “There
exist infinitely many Woodin cardinals below a measurable cardinal”. (i.e.,
the unique fine structural, fully iterable model of this theory which comes
out shorter in comparison with every other such model of this theory). This
theory implies that R

# is <λ-weakly homogeneously Suslin, and so there
exist in M(a) trees S and T on ω × λ witnessing in M(a) that R

# and its
complement are <λ-universally Baire. Furthermore, from the point of view
of V , S and T project to a subset of R

# and a subset of R\R
#, respectively.

The property of M(a) that we need is the following: if δ is a Woodin
cardinal in M(a) below λ, γ is an ordinal below δ and y is a subset of ω, then
there exist a partial order P (this partial order was discovered by Woodin
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and is usually called the extender algebra) of cardinality δ in M(a) and an
elementary embedding j : M(a) →M ′ with critical point greater than γ such
that

• y is M ′-generic for j(P ),

• p[j(S)] ⊆ R
#,

• p[j(T )] ⊆ R \ R#.

There is a universally Baire function f taking a real x coding an a in H(ω1)
to a real f(x) coding M(a). If x and y code the same element of H(ω1) then
f(x) and f(y) code the same model. If B is the set of reals coding pairs (x, i)
such that i ∈ f(x), then, every B-closed model of ZFC contains M(a) for
every set a in M .

Now let φ be a Π2 sentence for H(ω2) (of the form ∃X∀Y ψ(X,Y )) with
predicates for NSω1 and a given set of reals A in L(R). Let z be a real
number coding a given Pmax condition and a real which codes A relative to
R

#. Suppose that N is a countable B-closed model of ZFC satisfying φ and
containing z. Let a be a wellordering of H(ω2)N in N . Then H(ω2)M(a) =
H(ω2)N . Let γ be the least strongly inaccessible cardinal in M(a) above
the least Woodin cardinal. Let S and T be trees in M(a) witnessing the
<λ-universal Baireness of R

# and its complement, where λ is the least limit
of Woodin cardinals in M(a). We want to see that whenever we make NSω1

precipitous by any forcing in V
M(a)
γ (getting a generic filter g) and then

iterate V
M(a)[g]
γ by NSω1 , we iterate correctly for R#. Given this, if g is

such a generic filter for a forcing preserving stationary subsets of ω
M(a)
1 then

V
M(a)[g]
γ is an A-iterable model such that ∃Y ψ(X,Y ) holds in H(ω2)V M(a)[g]

γ

for all X ∈ H(ω2)V M(a)
γ , and by a density argument then, φ holds in the Pmax

extension.
Towards a contradiction, choose a bad generic filter g and bad iteration k.

Let j : M(a) → M ′ be an embedding (with critical point above γ) such
that we can add g and k to M ′ by forcing with the extender algebra for the
image of the least Woodin cardinal in M(a) above γ. Then M ′[g, k] has a
bad iteration of V

M(a)[g]
γ in it, and by Lemma 1.5 this iteration extends to

an iteration of M ′[g] (which we will also call k), which means that

k(R# ∩ V M(a)[g]
γ ) = p[k(j(S))] ∩ k(V M(a)[g]

γ )

and
k((R \ R

#) ∩ V M(a)[g]
γ ) = p[k(j(T ))] ∩ k(V M(a)[g]

γ ).

But j(S) and j(T ) are <j(λ)-universally Baire in M ′, so they project to
complements in M ′[g, k]. Furthermore,

p[j(S)] ⊆ R
#
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and
p[j(T )] ⊆ R \ R

#.

Since p[j(S)] ⊆ p[k(j(S))] and p[j(T )] ⊆ p[k(j(T ))], p[j(S)] = p[k(j(S))] and
p[j(T )] = p[k(j(T ))], contradicting that k is a bad iteration. This completes
our sketch of the proof of Theorem 9.7.

Another strengthening of Theorem 0.2, using the absoluteness of R
#, is

the following.

9.9 Theorem. Suppose that there exists a proper class of Woodin cardinals.
Then for every sentence φ, either ZFC �Ω L(R) |= φ or ZFC �Ω L(R) �|= φ.

Since Pmax is a homogeneous forcing extension of L(R), this gives the
following.

9.10 Theorem. Suppose that there exists a proper class of Woodin cardinals.
Then for every sentence φ, either

ZFC + (∗) �Ω L(P(ω1)) |= φ

or
ZFC + (∗) �Ω L(P(ω1) �|= φ.

Since R
# is not in L(R), the Continuum Hypothesis (plus the existence of

R
#) implies that L(P(ω1)) is not contained in a forcing extension of L(R).

Moreover, Woodin has shown (see Theorem 10.183 of [39]) that if ψ is any
sentence for which Theorem 9.10 holds with ψ in the place of axiom (∗), then
ZFC + ψ implies in Ω-logic that the Continuum Hypothesis is false.

10. Variations

The Pmax method is fairly flexible, and the partial order Pmax can be varied
in a number of ways. We present here two types of variations. The first
is an example of the utility of Pmax for manipulating ideals on ω1. The
second illustrates a method for producing extensions which are Π2-maximal
for H(ω2) relative to a fixed Σ2 sentence. Several other variations appear in
[39, 45]. Still others appear in [4, 20].

10.1. Variations for NSω1

An ideal I on ω1 is ℵ1-dense if the Boolean algebra P(ω1)/I has a dense
subset of cardinality ℵ1. In unpublished work, Woodin showed that starting
from a huge cardinal one can force the existence of a normal ℵ1-dense ideal
on ω1. Shelah later showed [29] that, starting from a supercompact cardinal,
one can force that the nonstationary ideal restricted to a fixed stationary
subset of ω1 is ℵ1-dense. The Pmax variation Q∗

max discussed here, when
applied to a model of the form L(R) satisfying AD, produces a model of ZFC
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in which NSω1 is ℵ1-dense; by unpublished work of Woodin, this shows that
the Axiom of Determinacy and the ℵ1-density of NSω1 are equiconsistent.
To date, Pmax variations are the only known means for producing models in
which NSω1 is ℵ1-dense.

Using the result of Shelah mentioned above, the partial order Qmax below
can be used to obtain the ℵ1-density of NSω1 from a supercompact cardinal
below ω Woodin cardinals below a measurable. This hypothesis is not opti-
mal, but unlike with Q

∗
max, we can give all the details here (aside from one

argument, we have already done so).
By Theorem 9.1, the ℵ1-density of a σ-ideal on ω1 is witnessed by a func-

tion from ω1 to H(ω1) of the following form.

10.1 Definition. Given a normal ℵ1-dense ideal I on ω1, YCol(I) is the set
of functions f : ω1 → H(ω1) satisfying the following conditions (where for
each p ∈ Col(ω, ω1) we let Sf

p = {α < ω1 | p ∈ f(α)}):

• for each α < ω1, f(α) is a filter in Col(ω, 1 + α)

• for each p ∈ Col(ω, ω1), Sf
p �∈ I,

• for each S ∈ P(ω1)/I, there exists a condition p ∈ Col(ω, ω1) such that
Sf

p \ S ∈ I.

10.2 Definition. The partial order Qmax consists of the set of pairs of the
form 〈(M, I), f〉 satisfying the following conditions:

1. M is a countable transitive model of ZFC◦,

2. I is a normal ℵ1-dense ideal on ωM
1 in M ,

3. (M, I) is iterable,

4. f ∈ (YCol(I))M .

The order on Qmax is as follows: 〈(N, J), g〉 < 〈(M, I), f〉 if M ∈ H(ω1)N

and there exists an iteration j : (M, I) → (M ∗, I∗) such that

• j(f) = g,

• j,M ∗ ∈ N ,

• I∗ = M ∗ ∩ J .

If 〈(M, I), f〉 is a Qmax condition, then by the normality of I in M , the
image of f under any iteration of (M, I) determines the entire iteration.

The only new argument we need to give in the Qmax analysis is the fol-
lowing. The corresponding versions for iterating sequences of models and for
building descending ω1-sequences of conditions are essentially the same.

10.3 Lemma. Suppose that J is a normal ℵ1-dense ideal on ω1, and let g be
a function in YCol(J). Suppose that 〈(M, I), f〉 is a condition in Qmax. Then
there is an iteration j : (M, I) → (M ∗, I∗) of length ω1 such that
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• {α < ω1 | j(f)(α) �= g(α)} ∈ J ,

• I∗ = M ∗ ∩ J .

Proof. The second conclusion follows from the first. Let

〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉

be any iteration of (M, I) satisfying the condition that whenever β < ω1

is such that j0β(ωM
1 ) = β and g(β) is Mβ-generic for Col(ω, β), then Gβ

is the corresponding filter in P(ω1)Mβ/j0β(I), i.e., for each p ∈ Col(ω, β),
S

j0β(f)
p ∈ Gβ if and only if p ∈ g(β). It is immediate that Gβ is Mβ-generic,

and that the choice of Gβ makes j0(β+1)(f)(β) = g(β). It remains to see that
the set of β < ω1 such that g(β) is not Mβ-generic for Col(ω, β) is in J . To
see this, let A be subset of ω1 coding 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ ω1〉 under
some fixed recursive coding. Then for club many η < ω1, j0η(ω1)M = η
and 〈Mα, Gβ , jαδ : β < α ≤ δ ≤ η〉 ∈ L[A ∩ η]. Every condition in P(ω1)/J
forces that (letting k be the induced elementary embedding) k(g)(ωV

1 ) is a V -
generic (and thus L[A]-generic) filter in Col(ω, ωV

1 ), which means that the set
of η < ω1 such that g(η) is not L[A ∩ η]-generic is in J . Since Mη ∈ L[A ∩ η]
for club many η, we are done. �

Theorem 4.10 plus the result of Shelah mentioned above gives the follow-
ing.

10.4 Theorem. Suppose that there exists a supercompact cardinal below in-
finitely many Woodin cardinals below a measurable cardinal. Then for every
set of reals A in L(R) there exists a Qmax condition 〈(M, I), f〉 such that

• A ∩M ∈M ,

• (M, I) is A-iterable,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1, A,∈〉 .

The proof of the following is essentially the same as for Pmax. The ℵ1-
density of IG follows immediately from P(ω1) = P(ω1)G and the definition
of Qmax (letting IG and P(ω1)G have the definitions here analogous to those
used for Pmax).

10.5 Theorem (ZF). Suppose that for every set of reals A there exists a
Qmax condition 〈(M, I), f〉 such that

• A ∩M ∈M ,

• (M, I) is A-iterable,

• 〈H(ω1)M , A ∩M,∈〉 ≺ 〈H(ω1, A,∈〉 .

Then Qmax is ω-closed and homogeneous. Furthermore, if G is an V -generic
filter for Qmax, then the following hold in V [G]:



2170 Larson / Forcing over Models of Determinacy

• P(ω1) = P(ω1)G,

• NSω1 = IG,

• ψAC,

• δ∼
1
2 = ω2,

• NSω1 is ℵ1-dense.

To obtain the ℵ1-density of NSω1 from the optimal hypothesis, we can use
the partial order Q

∗
max below. Conditions in Q

∗
max are similar to the limit

sequences used in the Pmax analysis. The utility of this approach here is that
the existence of Q

∗
max conditions does not require the existence of a model

with an ℵ1-dense ideal on ω1. The analyses of Q
∗
max and Qmax are the same,

once we show that Q
∗
max conditions exist in suitable generality. Showing this,

however, is beyond the scope of this chapter.

10.6 Definition. Q
∗
max is the set of pairs (〈Mk : k < ω〉, f) such that the

following hold.

1. The set f is a function from ωM0
1 to M0 in M0 such that for all α < ωM0

1 ,
f(α) is a filter in Col(ω, 1 + α).

2. Each Mk |= ZFC◦.

3. Each Mk ∈Mk+1.

4. For all k < ω, ωMk
1 = ωM0

1 .

5. For all k < ω, NSMk+1
ω1

∩Mk = NSMk+2
ω1

∩Mk.

6. The sequence 〈Mk : k < ω〉 is iterable.

7. For each p ∈ Col(ω, ωM0
1 ), {α < ωM0

1 | p ∈ f(α)} �∈ NSM1
ω1

.

8. For each k < ω and for each a ⊆ ωM0
1 such that a ∈Mk \NSMk+1

ω1
, there

exists a p ∈ Col(ω, ωM0
1 ) such that

{α < ωM0
1 | p ∈ f(α)} ∩ (ωM0

1 \ a) ∈ NSMk+1
ω1

.

The ordering on Q
∗
max is given by letting

(〈Nk : k < ω〉, g) < (〈Mk : k < ω〉, f)

if 〈Mk : k < ω〉 ∈ H(ω1)N0 and there exists an iteration

j : 〈Mk : k < ω〉 → 〈M ∗
k : k < ω〉

in N0 such that
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• j(f) = g,

• NS
M ∗

k+1
ω1 ∩M ∗

k = NSN1
ω1
∩M ∗

k for all k < ω.

Condition (5) above says that the models in the sequence need not agree
about stationary sets, but rather, each subset of ωM0

1 in each Mk which is
stationary in Mk+1 is stationary in all further Mj ’s. This extra degree of
freedom is essential in constructing Q

∗
max conditions without presupposing

the existence of Qmax conditions. Conditions (7) and (8) ensure that if

G ⊆
⋃
{P(ωM0

1 )Mk \NSMk+1
ω1

: k < ω}

is a
⋃
{Mk : k < ω}-normal filter, then (letting j be the induced embedding)

j(f)(ωM0
1 ) is a filter in Col(ω, ωM0

1 ) meeting every dense set in each Mk, and
vice-versa: if g is a filter in Col(ω, ωM0

1 ) meeting every dense set in each Mk,
then there is a

⋃
{Mk : k < ω}-normal filter G contained in

⋃
{P(ωM0

1 )Mk \
NSMk+1

ω1
: k < ω} such that j(f)(ωM0

1 ) = g.

10.7 Remark. If Γ is a pointclass closed under continuous images such that
L(Γ,R) |= ADR +“Θ is regular”, then the Qmax extension of L(Γ,R) satisfies
Chang’s Conjecture. However, for consistency strength reasons one cannot
prove that Chang’s Conjecture holds in the Qmax extension of L(R) from the
assumption ADL(R)(see [39, p. 651]).

The utility of the Pmax approach for manipulating ideals on ω1 is applied in
other several ways in [39], notably to create a model in which the saturation
of NSω1 can be destroyed without adding a subset of ω1. In [20], a variation
of Pmax is used to produce a model in which the saturation of NSω1 can be
destroyed by forcing with a Suslin tree. As far as we know, these results have
not been reproduced by other methods.

10.2. Conditional Variations for Σ2 sentences

As we saw in Sect. 7, the Pmax extension of L(R) (assuming that there exists
a proper class of Woodin cardinals) satisfies all forceable Π2 sentences for
H(ω2) with parameters for NSω1 and sets of reals in L(R). In some cases,
one can fix a Σ2 sentence for this structure and produce a model satisfying
all Π2 sentences forceably consistent with it (and in some cases one cannot).
If φ is a Σ2 sentence of the form ∃A∀Bψ(A,B), where all quantifiers in ψ are
bounded, the optimal iteration lemma for φ is the following statement: if

• M is a countable transitive model of ZFC◦,

• I is normal ideal on ωM
1 in M ,

• (M, I) is iterable,

• a ∈ H(ω2)M and H(ω2)M |= ∀bψ(a, b),
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• H(ω2) |= ∃A∀Bψ(A,B),

• J is a normal ideal on ω1,

then there exists an iteration j : (M, I) → (M ∗, I∗) of length ω1 such that

• I∗ = J ∩M ∗,

• H(ω2) |= ∀Bψ(j(a), B).

Roughly, the optimal iteration lemma for φ says that given a countable
transitive iterable model of φ and a fixed witness for φ in this model, in
order to prove that there is an iteration of this model mapping this witness
to a witness for φ is V , we need assume only that φ holds in V . Since this
assumption is necessary, in the cases where the lemma holds, it is optimal.
In [31], the optimal iteration lemma is proved for the following sentences (the
first four of which are defined in [2]; we direct the reader to [31] for the other
two).

• The dominating number (d) is ℵ1.

• The bounding number (b) is ℵ1.

• The cofinality of the meager ideal is ℵ1.

• The cofinality of the null ideal is ℵ1.

• There exists a coherent Suslin tree.

• There exists a free Suslin tree.

Given a Σ2 sentence φ as above, we can define the Pmax variation P
φ
max

as follows. Since φ may contradict MAℵ1 , we remove the requirement that
the models satisfy MAℵ1 and ensure the uniqueness of iterations directly
(alternately, we can usually replace MAℵ1 with ψAC). The partial order
Pφ

max is defined recursively on the ω1 of the selected model M .

10.8 Definition. The partial order P
φ
max consists of all pairs 〈(M, I), a,X〉

such that

1. M is a countable transitive model of ZFC◦,

2. I ∈M and in M , I is a normal ideal on ω1,

3. (M, I) is iterable,

4. a ∈ P(ω1)M and H(ω2)M |= ∀bψ(a, b),

5. X ∈M and X is a set (possibly empty) of pairs (〈(N, J), b, Y 〉, j) such
that

• 〈(N, J), b, Y 〉 ∈ P
φ
max ∩H(ω1)M ,



10. Variations 2173

• j is an iteration of (N, J) of length ωM
1 such that j(J) = I ∩ j(N)

and j(b) = a,
• j(Y ) ⊆ X,

with the property that for each p ∈ Pφ
max there is at most one j such

that (p, j) ∈ X.

The order on P
φ
max is implicit in the conditions on X:

〈(M, I), a,X〉 < 〈(N, J), b, Y 〉

if there exists a j such that (〈(N, J), b, Y 〉, j) ∈ X.

For φ as above, we have games Gφ
ω and Gφ

ω1
which are strictly analogous

to the games Gω and Gω1 for Pmax.
For Gφ

ω , suppose that 〈(Ni, Ji) : i < ω〉 is an iterable pre-limit sequence (in
the sense of Pmax) and that there exists an a ∈ P(ω1)N0 such that H(ω2)Ni |=
∀bψ(a, b) for each i < ω. Then given a normal ideal I on ω1 and a set E ⊆ ω1,
we define Gφ

ω(〈(Ni, Ji) : i < ω〉, I, E) to be the following game of length ω1

where Players I and II collaborate to build an iteration of 〈(Ni, Ji) : i <
ω〉 consisting of pre-limit sequences 〈(Nα

i , Jα
i ) : i < ω〉 (α ≤ ω1), normal

ultrafilters Gα (α < ω1) and a commuting family of embeddings jαβ (α ≤
β ≤ ω1), as follows. In each round α, let

Qα =
⋃
{P(ω1)Nα

i \ Jα
i : i < ω} .

If α ∈ E, then Player I chooses a set A ∈ Qα, and then Player II chooses
a
⋃
{Nα

i : i < ω}-normal filter Gα contained in Qα with A ∈ Gα. If α
is not in E, then Player II chooses any

⋃
{Nα

i : i < ω}-normal filter Gα

contained in Qα. After all ω1 many rounds have been played, Player I wins
if H(ω2) |= ∀Bψ(j0ω1(a), B) and if Jω1

i = I ∩Nω1
i for each i < ω.

Similarly, given a P
φ
max condition p = 〈(M, I), a,X〉, a normal ideal J on

ω1 and a subset of ω1 E, we let Gφ
ω1

(p, J, E) be game of length ω1 where
players I and II collaborate to build a descending ω1-chain of conditions
pα = 〈(Mα, Iα), aα, Xα〉 (α < ω1) of P

φ
max conditions below p as follows. In

each round α, all pβ (β < α) have been defined. If α is a successor ordinal
(or 0), Player II chooses a condition pα < pα−1 (< p). If α is a limit ordinal,
then Player I picks a condition pα below each pβ (β < α). Then, letting
jαβ (α < β ≤ ω1) be the induced commuting family of embeddings (and
letting j be the embedding witnessing that p0 < p), Player I wins the game if
H(ω2) |= ∀Bψ(j0ω1(j(a)), B), and if for all α < ω1, jαω1(Iα) = J∩jαω1(Mα).

The arguments in [31] show that ♦ω1 implies that Player I has a winning
strategy in each game Gφ

ω(〈(Ni, Ji) : i < ω〉, I, E) and each game Gφ
ω1

(p, J, E)
for each of the sentences listed before Definition 10.8 (typically these argu-
ments are essentially the same as the proof of the corresponding optimal
iteration lemma).

The proof of the following theorem then is a straightforward generalization
of the arguments we have given for Pmax.
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10.9 Theorem. Assume ADL(R), and let φ be an ΩZFC-consistent Σ2 sen-
tence for H(ω2). Suppose that the optimal iteration lemma for φ holds, and
that the following sentences are ΩZFC-consistent:

• for all iterable pre-limit sequences 〈(Ni, Ii) : i < ω〉 and for all normal
ideals I on ω1, Player I has a winning strategy in

Gφ
ω(〈(Ni, Ji) : i < ω〉, I, ω1);

• for all P
φ
max conditions p and for all normal ideals J on ω1, Player I

has a winning strategy in Gω1(p, J, ω1).

Let G ⊆ Pφ
max be L(R)-generic. Then in L(R)[G] the following hold:

• φ,

• P(ω1) = P(ω1)G,

• NSω1 = IG,

• NSω1 is saturated.

Furthermore, for every set of reals A in L(R), L(R)[G] satisfies every Π2-
sentence for the structure 〈H(ω2),NSω1 , A,∈〉 which is ΩZFC-consistent with φ.

The variation P
φ
max where φ asserts the existence of a coherent Suslin tree

is studied in [16, 21].
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els. Fundamenta Mathematicae, 168(1):77–104, 2001.

[22] Menachem Magidor. Precipitous ideals and Σ1
4 sets. Israel Journal of

Mathematics, 35(1–2):109–134, 1980.
[23] Donald A. Martin and Robert M. Solovay. A basis theorem for Σ1

3 sets
of reals. Annals of Mathematics (2), 89:138–159, 1969.

[24] Donald A. Martin and John R. Steel. The extent of scales in L(R). In
Alexander S. Kechris, Donald A. Martin, and Yiannis N. Moschovakis,
editors, Cabal Seminar 79–81, volume 1019 of Lecture Notes in Mathe-
matics, pages 86–96. Springer, Berlin, 1983.

[25] Donald A. Martin and John R. Steel. A proof of projective determinacy.
Journal of the American Mathematical Society, 2(1):71–125, 1989.

[26] Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies
in Logic and the Foundations of Mathematics. North-Holland, Amster-
dam, 1980.

http://dx.doi.org/10.1007/978-1-4020-5764-9_22
http://dx.doi.org/10.1007/978-1-4020-5764-9_24


2176 Larson / Forcing over Models of Determinacy

[27] Ralf Schindler and Martin Zeman. Fine structure. Chapter 9 in this
Handbook. 10.1007/978-1-4020-5764-9 10

[28] Daniel E. Seabold. Chang’s Conjecture and the non-stationary ideal.
The Journal of Symbolic Logic, 66(1):144–170, 2001.

[29] Saharon Shelah. Proper and Improper Forcing. Perspectives in Mathe-
matical Logic. Springer, Berlin, 1998. Second edition.

[30] Saharon Shelah and W. Hugh Woodin. Large cardinals imply that every
reasonably definable set of reals is Lebesgue measurable. Israel Journal
of Mathematics, 70(3):381–394, 1990.
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homogeneous, 404, 427
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analytic set, 8, 305, 1758
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1687
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d-approachable, 1271
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special, 220
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relatively complete subalgebra,

116
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Borel reducibility, 300
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mapping, 233
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complete embedding, 791
completely proper poset, 376
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constructible set, 1451
constructible universe, 15
continuity point, 905
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conceptual definition, 1491
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Dodd-Jensen, 1457, 1498,
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1554, 1558
history of, 1489
properties of, 1490

correct type, 1782
correctness, 1718

Σ1
3, 1508, 1718

countable chain condition (c.c.c.),
434

countable completeness
extender, 1882
tower of measures, 1904
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countably certified construction,
1688

countably closed
cardinal, 1541, 1721
set, 1519, 1543
weak covering property, 1541

Covering Lemma
for KDJ, 51, 1498
for L, 49, 570, 652, 1498
for L[U ], 1499
for Sequences of Measures,

1566
for Short Extenders, 1586
Magidor’s, 1503, 1551
Strong, 1502
to 0¶, 1587
Weak, 1501, 1716, 1721

for Kc, 1561
to a Woodin cardinal, 1588

covering number
of an ideal (cov), 400, 493
of category, 420, 440, 456,

459, 470
of measure, 410

covering property, 50
countable, 1171
weak, 49, 1450, 1501

countably closed, 1541
covering set, 1565
critical point (ordinal), 738,

782, 896, 1454, 1956
cumulative hierarchy, 11

D
decisive ideal, 1119
Dee-complete poset, 380
definability property, 1697
demanding projection, 1928

generalized, 1928
dense in lower topology, 426
Dependent Choice, 1966, 2159

for Sets of Reals, 1966, 2159
derived model, 1941
Derived Model Theorem, 1958,

2112

description, 1851
generalized trivial, 1822
higher, 1836, 1849
level-1, 1808
trivial, 1808

determinacy
AD+, 2100, 2111, 2112, 2115,

2116
ADL(R), 45, 1879, 1953, 2160
ADR, 1955
Axiom of Determinacy (AD),

45, 1754, 1878, 1952
definable determinacy, 1953,

2074–2100
absolute, 1953
boldface, 1953, 2094–2100
lightface, 1953, 2075–2093

Δ1
2-determinacy, 1954

OD-determinacy, 1953
OD(R)-determinacy, 1953
ordinal determinacy, 1779
Projective Determinacy (PD),

45, 1953
Σ∼

1
n+1-determinacy, 1958

strategic determinacy
STB

P0,...,Pk
-determinacy,

2039
RST-determinacy, 2080
ST-[x]T -determinacy, 2103

Turing determinacy, 1968
diagonal intersection, 95, 111, 901
diagonal union, 95, 901
diamond principles

♦(S), 100, 921, 1296
♦(A), 551
♦, 38
♦∗(S), 1296
♦∗

club(κ, δ), 997
♦+

κ , 1165
♦−

κ , 1221
♦κ, 38, 921
♦ω1,λ(S), 1012

diamond-friendly set, 1297
direct limit, 800, 1888

embeddings, 1888
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in an iteration tree, 1889
direct (or Prikry) extension, 1353
directed partial ordering, 1235
disjointing property, 898

bounded, 956
disjointness property, 2018, 2059
disjunction of relations, 412
distributivity number (h), 426, 443
Dodd

parameter and projectum,
1734

solidity and amenability, 1735
Dodd-Jensen Lemma, 1626–1628

for sequence of measures,
1536

Weak, 1628–1630
dominating

family of functions, 398
number (d), 398, 432, 433, 443,

445, 451, 455
partition, 401

Downward Extension of
Embeddings Lemma, 621,
667, 1513

general, 634
dual of a relation, 409, 443
Duality Theorem, 1024

general versions, 1029

E
Easton forcing, 565

coherent, 575
long, 567
reverse, 568, 811

Easton support, 565, 801
Easton support iteration, 801, 1433
Easton’s Lemma, 793
Eberlein compactum, 223
Effros Borel structure, 300
elastic type, 1899
elementary embedding, 22, 25, 781
elementary submodel of H(χ)

τ -closed, 1263
weakly τ -closed, 1263

endhomogeneous set, 134

engulf a chopped real, 419
equivalence relation

countable Borel, 303
essentially countable Borel,

303
hyperfinite, 304
smooth, 303
treeable, 305

Erdős cardinal, 592
Erdős-Hajnal graph, 985
Erdős-Rado Theorem, 131, 140

balanced, 136, 144
generalizations, 140, 160
limitations, 140
unbalanced, 139, 147

evasion number (e), 458
unbounded (eubd), 458

eventual domination, 147, 172
eventually different functions, 420
exact upper bound, 1155, 1236
extender, 642, 786, 1473, 1597,

1881, 2048
algebra, 1659
α-strong, 1885
background certificate, 1639
close to M, 1610, 1615
coherent sequence, 1596, 1599
compatible extenders, 1618
countably complete, 1475,

1882
critical point of, 1882
fine sequence, 1599–1603
fragment, 1724
generator, support, 1599,

1612, 1620
λ-complete, 649
long, 1680, 1723
model, 1596
pre-extender, 1882, 2048
short, 642, 1881
strength of, 1885
superstrong, 1723
ultrapower by, 1597, 1609,

1884
extender algebra, 1659
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extender-based Prikry forcing,
1371

extender-based Radin forcing,
1419

F
F -Cohen real, 227
F -Souslin real, 227
factor iteration, 802
feeble filter, 447
fiber through a sequence, 1881
filter, 12, 777, 893, 1152

κ-complete, 12, 778
feeble, 447
proper, 778

filter dichotomy, 452
filter (for Chap. 6), 446
filtration, 848, 937
Fine Structural Ultrapower

Theorem, 678
finitely additive measure, 521
First Periodicity Theorem, 1765
flat condition trick, 836
Fodor’s Lemma (Theorem), 19, 95
Fodor’s Set Mapping Theorem, 140
forbidden intervals, 1007
forcing notion, see notion of forc-

ing
forcing poset (for Chap. 12), 790
forcing poset (for Chap. 5), 335
free family of sets, 1306

κ-free, 1306
full code of a walk, 218
full lower trace of a walk, 218
fusion, 475

G
Galois-Tukey connection, 408, 410
Galvin-Hajnal norm, 98
Γ-norm, 1762
Γ-scale, 1764
Gap-n Transfer Theorem, 732
generalized large cardinal, 1124
generalized projection, 1918
Generation Theorem, 1960, 1961,

2032, 2043–2066

applications, 2067–2100
generator (for pcf), 1180, 1237
generic coding function, 1862
generic condition

(M,P )-generic, 341, 873
completely, 376
strongly, 873

M -generic, 925
generic elementary embedding,

809, 927
generic filter

D-generic, 434
(M,P )-generic, 340
(V, P )-generic, 335

generic iteration, 952
generic ultrapower, 97, 894
generically n-huge cardinal, 1128
generically supercompact

cardinal, 1129
genericity iteration, 1657–1666,

1936
Glimm-Effros dichotomy, 307
good code, 2050
good elementary

substructure, 929, 1071,
1093

good parameter, 620, 632
good point, 1281
good sequence of measures, 1526
good set, 2046
Grigorieff forcing, 455
groupwise dense family, 433, 444,

447
groupwise density number (g), 433,

443, 451

H
Hajnal-Máté graph, 374
half-Cohen real, 422
Hausdorff gap, 229, 234
Hechler forcing, 460, 477, 483
height of a tower, 1090
hereditarily ordinal definable

(HOD) set, 23
HOD-analysis, 2113–2118
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HODL(R), 2114, 2115
HODL[x], 2116–2118

HODL(R), 1668–1681
and GCH, 1677, 1678
and regular cardinals, 1678,

1679
direct limit of mice, 1670,

1675, 1677
homogeneity system, 1905
homogeneous set, 132, 403
homogeneous tree, 1837, 1904
homogeneously Suslin set, 1906

weakly, 1927, 2139
honest set, 1862
huge cardinal, 41, 787
hull property, 1697
hyperfine structure, 672
hyperfinite equivalence relation,

304

I
I-condition, 846
ideal, 12, 777, 893, 1151

(κ, η, λ)-saturated, 932
(κ, λ)-centered, 932
κ-complete, 13, 778, 893
κ-dense, 107, 932
κ-linked, 932
κ-presaturated, 934
κ-preserving, 934
κ-saturated, 31, 98, 106, 894
bounded, 911, 1009
cardinal preserving, 934
decisive, 1119
fine, 901
indecisive, 1121
induced, 927
ineffable, 924
layered, 937
master condition, 835, 926
meager, 417, 1061
non-diamond, 921
non-weak diamond, 922
nonstationary, 19, 94

nonstationary
(for Chap. 13), 917

normal, 901, 2123
null, 417, 1061
pre-precipitous, 927, 1113
precipitous, 48, 109, 832, 896,

2124
presaturated, 934, 2152
prime, 893
proper, 778, 893, 1152
selective, 908
semi-saturated, 2161
strongly layered, 937, 1087
uniform, 894
uniformization, 923
very strongly layered, 1053
weakly normal, 904
weakly presaturated, 2161

inaccessible cardinal, 12
incompressible function, 943
indecisive ideal, 1121
indecomposable ultrafilter, 1245
independence number (i), 445
independent family, 444, 448
indestructibly generically

supercompact cardinal,
1129

indiscernible sequence, 1571, 1577
indiscernibles

assignment function for, 1500
for extenders, 1586
from iterated ultrapowers,

1471
local, 1903
remarkable, 1459
Silver, 570, 1459
system of, 1565

ineffable ideal, 924
infinitely equal functions, 420
∞-borel set of reals, 2111, 2159
inner model, 15
internally approachable (IA)

chain, 1234
set, 121, 919
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Interpolation Lemma, 691
Generalised, 692

interval partition, 401, 433
invariant in the codes, 1830
inverse limit, 800
iterable (for Chap. 24), 2125, 2136
iterable model/premouse, 1616,

1890
(k, α, θ)-, 1626
weakly, 1891
weakly (k, ω)-, 1653

iterate (for Chap. 11), 742
pure, 742

iterate (for Chap. 24), 2125, 2136
iterated ultrapower, 35, 1455

for sequence of measures,
1530

iteration, 800
countable support, 339, 470
Easton support, 801, 1433
two-step, 336
with amalgamation, 861
with prediction, 871

iteration (for Chap. 24), 2125,
2135

iteration game, 1612–1617, 1669,
1889

iterates correctly, 1669
weak, 1653, 1890, 1891

iteration strategy, 1616, 1626,
1890

(k, α, θ)-, 1626
(k, θ)-, 1616
pullback Σπ of Σ, 1626
unique, 1630, 1656
weak (k, ω)-, 1653

iteration tree, 1611–1617, 1888
k-bounded, 1625
k-maximal, 1615
k-normal, 1615
π-realizable branch, 1643
bad, 1713
branch, 1889
branch existence, 1642
branch uniqueness, 1645

cofinal branch, 1614, 1889
continuously illfounded, 1892
copied tree πT , 1622, 1625,

1892
correct, 1669
degree of nodes, 1616
maximal branch, 1642
on a phalanx, 1709
on a phalanx of protomice,

1727
putative, 1642
wellfounded branch, 1614,

1889

J
J-structure, 611

n-solid, 641
n-sound, 634, 1512
acceptable, 616, 660
reduct of a, 620
sound, 634

Jensen matrix, 269
Jónsson algebra, 915, 992, 1329
Jónsson cardinal, 915, 961, 1231,

1329
is Ramsey in K, 1504, 1552

K
Kc-construction, 1640

iterability conjecture, 1641
maximal, 1649

Kechris-Martin Theorem, 1829
killing a stationary set, 797
Kleene-Brouwer ordering, 1759,

1906
Knaster property, 793
Kőnig’s Lemma, 18
Kunen tree, 1807, 1808
Kunen-Martin Theorem, 1764
Kunen-Paris Theorem, 811
Kurepa family, 266

cofinal, 268
compatibility, 268
extendibility, 268

Kurepa tree, 18, 795
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L
L(R) generic absoluteness, 1666
L[U ]

satisfies GCH, 1457
uniqueness, 1456

ladder system, 2146
λ-approximating sequence, 1234
λ-filtration sequence, 1235
Laver forcing, 455, 478, 483
Laver indestructibility, 865, 875
Laver table, 763
Laver-Steel theorem, 750
layered ideal, 937

strongly, 937, 1087
very strongly, 1053

layering sequence, 937
LD-expansion, 757
LD-monoid, 741
LD-system, 741
Leaning’s forcing, 1432
least stable ordinal, 1978
Lebesgue measure, 397, 417
left-most branch, 1759
Levy class, 1775
Levy collapse, 792, 892, 1240
Levy-Solovay Theorem, 808
lifting an elementary embedding,

806
lightface class, 1758
limit sequence (in Pmax), 2134
linked partial ordering, 436
Lipschitz reducibility, 1758
local orbit, 311
long Easton forcing, 567
long game, 1955
Löwenheim-Skolem

Theorem, 435, 438
lower topology, 426

M
M -ultrafilter, 1463
Magidor iteration, 1424
Magidor’s trick, 819
Mahlo cardinal, 97, 101, 244, 567

α-Mahlo, 106, 108

greatly, 103
Mahlo operation, 103
Martin measure, 1786
Martin tree, 1843
Martin-Solovay tree, 1909
Martin’s Axiom (MA), 438, 444,

455, 470, 482
statement, 435

Martin’s Maximum (MM), 59,
118, 1086, 1123

Martin’s Maximum++(c), 2160
Martin’s Maximum+β , 2158
Martin’s Theorem (on normal

measures), 1836, 1842,
1843

master condition, 814, 925, 1016
strong, 1018

master condition ideal, 835, 926
match a chopped real, 418
Mathias forcing, 428, 437, 444,

478, 483
maximal almost disjoint

(MAD) family, 429
maximal weight of a walk, 221
Maximum Principle, 792
meager ideal, 417, 1061
meager set, 6, 417, 433, 447
measurable cardinal, 12, 787,

1454, 1885, 1956
measure (for Chap. 12), 778

normal, 778
measure (for Chap. 21), 1760

atomic normal, 1872
canonical, 1847
semi-normal, 1847

measure (for Chap. 22), 1882
κ-complete, 1885
non-principal, 1885
normal, 1906
seed of, 1885

Miller forcing, 479
minimal degree, 1086
minimal walk, 217, 236
minimally obedient sequence, 1192
Mitchell ordering �, 35, 788, 1465
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morass, 724, 733
coarse, 731
gap-1, 725
higher gap, 730
simplified, 732

morphism of relations, 410, 494
mouse, 1526, 1616

A0-sound, 1700
added by forcing, 1539
condensation, 1631–1636
correctness, 1660–1666, 1674
definable wellorder, 1621,

1665
Dodd-Jensen, 1457
for sequence of measures,

1526
full, 1669
ordinal definability, 1621,

1656, 1662
the mice Mω and M#

ω , 1651
Mouse Capturing, 2115
Mouse Set Conjecture, 1667, 2116
mutually stationary sequence,

1012

N
n-embedding, 641
n-huge cardinal, 41
n-solid J-structure, 641
n-sound J-structure, 634
nth projectum, 631
nth reduct, 631
nth standard code, 631
nth standard parameter, 636
nth standard reduct, 636
Namba forcing, 844
near k-embedding, 1625
near coherence of filters (NCF),

453
non-regular ultrafilter, 982
nonstationary ideal, 19, 94
nonstationary ideal

(for Chap. 13), 917
norm of a relation, 409
norm on a set of reals, 1762

regular, 1762
normal ultrafilter, 26

for a sequence, 2135
normality preservation, 1021
notion of forcing, 790

(κ,∞)-distributive, 793
κ-c.c., 792
κ-closed, 793
κ-directed closed, 793
non-trivial, 790
separative, 790
trivial, 790

null ideal, 417, 1061

O
Ω-logic, 2162

Ω Conjecture, 2164
ΩZFC-consistency, 2163

ω-model, 1969
ωω-bounding poset, 72, 352, 537
ωω-bounding poset

almost, 363
weakly, 72, 361

one-element Prikry forcing, 1359
One-Step Lemma, 1901
open in lower topology, 426
optimal iteration lemma, 2171
order of a stationary set, 104
ordinal partition relation, 176, 187
ordinary partition symbol, 130
orthogonal set, 233, 234

P
P-ideal, 233, 512

dichotomy, 233
P-point ultrafilter, 454
parameter

good, 620, 632
standard, 636
very good, 620, 632

partial ordering
centered, 436
directed, 1235
linked, 436
reasonable, 968
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partial square, 1287
partition calculus, 130
partition relation, 130

ordinal, 176, 187
polarized, 133, 167
strong, 88, 1783
weak, 88, 1783

pcf (possible cofinalities), 65, 1173,
1237, 1443

perfect product space, 1757
perfect set, 3

property, 3
perfect tree forcing, 475
persistently cofinal sequence, 1154,

1190
phalanx, 1709

Kc based, 1713
of protomice, 1727
W based, 1730

pointclass, 1757
Steel, 1776

polarized partition relation, 133,
167

Polish
G-space, 305
group, 305
space, 71, 298

potential premouse (ppm), 1603
active, 1603
n-solid, 1607
n-sound, 1607
n-universal, 1607
type of, 1603

power (left, right), 742
pre-condition (in Pmax), 2131
pre-extender, 1882, 2048
pre-limit sequence (in Pmax), 2135

iterable, 2136
iterate of a, 2136
iteration of a, 2135

pre-precipitous ideal, 927, 1113
precipitous ideal, 48, 109, 832, 896,

2124
precipitous tower, 955
prediction, 458

constant, 468
global, 462
infinite, 462
local, 462
(non-)adaptive, 462

predictor, 458
premouse, 1526, 1608

α-strong, 1708
ω-small, 1651
n-solid, 1607
n-sound, 1607
n-universal, 1607
active, 1603
countably certified, 1639
for sequence of measures,

1526
iterable, 1527, 1530
n-sound, 1526
solidity witness, 1528, 1535

initial segment of, �, 1608
iterable, 1616
potential (ppm), 1603

n-solid, 1607
n-sound, 1607
n-universal, 1607
active, 1603
type of, 1603

properly small, 1652, 1714
tame, 1648
type of, 1603
universal, 1560

preorder, 334
presaturated ideal, 934, 2152
presaturated tower, 1090
prestrategy, 2039
prewellordering, 1762
prewellordering property, 1762
Prikry condition, 1357
Prikry forcing

and iterated ultrapowers,
1471

basic, 42, 1352
extender-based, 1371
one-element, 1359
strongly compact, 1364
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supercompact, 1362
through degrees, 2097
tree, 1356

Prikry-type forcing notion, 1424
product of sets

(for Chap. 22), 1881
progressive set, 1175, 1237
projection

of a notion of forcing, 335,
791, 1441

of a stationary set, 112
of a tree, 1904, 2138

demanding, 1928
generalized, 1918
generalized demanding,

1928
of an ideal, 941, 1019

projective hierarchy, 9, 1758
projective ordinal, 47, 1772
projective set, 8, 1758, 1904
Projective Stationary

Reflection (PSR), 120
projective stationary set, 120
Proper Forcing Axiom (PFA), 55,

388, 442, 872
properness, 872, 1018

α-properness, 369, 541
complete, 376
definition of, 341
equivalent form of, 350
preservation of, 344

Properness Isomorphism
Condition (p.i.c.), 390

protomouse, 1724
pseudo-generic tower, 1030
pseudo-ultrapower, 685
pseudobase, 449, 450
pseudointersection, 425

number (p), 431, 438, 441,
455, 459

pseudopower, 1238
pullback of a generic object, 828

Q
Q-formula, 615

Q-point ultrafilter, 454
Q-structure Q(b, T ), 1646–1648
quasi R-admissible ordinal, 597
quasi-strategy, 1760
quotient forcing, 792
quotient poset of a preordering,

789

R
r-partition, 132
rΣn+1 elementary, 635

weakly, 635
rΣn+1 ultrapower, 647
rΣn+1 ultrapower map, 647
Radin forcing, 1400

and iterated ultrapowers,
1472

extender-based, 1419
ramification method, 134, 135

double ramification, 168, 172
Ramsey cardinal

is absolute for K, 1504
Ramsey ultrafilter, 454
Ramsey’s Theorem, 17, 130, 134,

403, 454
random forcing, 400, 443, 444, 455,

473, 482, 483
rare ultrafilter, 454
RCS iteration, 844
real-valued measurable

cardinal, 1016, 1061,
1117

realizable sequence, 753
reaping number, see

unsplitting number
reasonable cardinal, 1783
reasonable partial ordering, 968
Recursion Theorem, 1761, 1988

Uniform, 1991
reduct of a J-structure, 620
refining number, see

unsplitting number
reflected generator, 2051
reflection filter, 2006, 2008, 2046
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Reflection Principle
(for stationary sets), 118

Reflection Principle (for ZF), 23
Reflection Theorem

(for Chap. 23), 2003,
2008, 2029, 2047

regressive function, 94
regular embedding

of partial orders, 892
regularity property, 7
relation (for Chap. 6), 408
relativized prestrategy, 2102
relativized reals, 2102
relativized strategic game, 2102
relativized strategy, 2102
relevant forcing, 558
reliable ordinal, 1862
repeat point, 1411

(ω, δ), 855
weak, 1472, 1507

Resemblance, Axiom of, 1129
reshaped set, 578
responses of a relation, 409
reverse Easton forcing, 568, 811
right lexicographical ordering, 219
robust stationary set, 1075
rudimentary

function, 607
relation, 607

Rudin-Keisler ordering, 454, 941,
1366

S
S-condition, 845
S-cone, 2035
S-degree, 2035
Sacks forcing, 448, 470, 475
Sacks property, 475
saturation of an ideal, 894
saturation preservation, 1026
scale for a cardinal, 1280

better, 1319
good, 1309
very good, 1317

scale for a set of reals, 1763

Γ-scale, 1764
excellent, 1763
good, 1763
very good, 1763

scale of functions, 400, 993
scale property, 1764
Second Periodicity Theorem, 1765
second-order arithmetic, 20, 2101–

2109
selective ultrafilter, 454
self-generic elementary

substructure, 929, 1071,
1107

selfdual
pointclass, 1758
set, 1774

semi-Borel morphism, 417
semi-saturated ideal, 2161
semi-scale, 1763

excellent, 1763
good, 1763
very good, 1763

semiproperness, 1081
separative quotient, 790
sequential composition of

relations, 412
sequential fan, 259
Shelah Weak Hypothesis, 1443
shooting a club, 99
Σ∗ formula, 661
Σ∗ ultrapower, 673
Σ∗(M) relation, 662
Σ0 ultrapower, 647
Σ1 projectum, 619, 1510, 1606
Σ1-Skolem function, 613, 1510
Σn core Cn(M), 1606, 1608
Σn-elementary, 37
Σ(n)

0 formula, 661
Σn projectum, 1606–1608
Σ(n)

1 (M) relation, 662
Σ(n)

1 -Skolem function, 669
Σ(n)

1 -Uniformisation Theorem,
668

σ-centered partial ordering, 436
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σ-linked partial ordering, 436
σ-unsplitting number (rσ), 406
Silver collapse, 861, 1032
Silver machine, 671
Silver’s Theorem, 48, 98, 1170
simple set, 1814, 1827
Singular Cardinal

Hypothesis (SCH), 29,
1498

strength of negation, 1441,
1504, 1579

Singular Cardinals Problem, 29,
1352, 1443

situation, 1812, 1824
skipping cardinals, 1037
slalom, 422, 436
small set of reals, 417
s-m-n Theorem, 1761
smooth equivalence relation, 303
solidity witness, 638, 670
Solovay Basis Theorem, 1779
solve a Borel relation, 469
sound J-structure, 634
Souslin (Suslin) real, 227
Souslin (Suslin) tree, 18, 220
special Aronszajn tree, 220
special square sequence, 256
special tree, 244
splitting

family, 402
number (s), 364
number (s), 402, 444, 458

square principles
�κ, 38, 101, 261, 653, 714,

1242
�(S), 715
� with scales, CS, 716
�κ(T ), 715
global �, 694
weak square principles

�κ,λ, 1867
�∗

κ, 716, 1290
�<λ

κ , 716, 1292
�λ

κ, 1292
Improved-�<λ

κ , 716

square sequence (for Chap. 3), 252
special, 256

square-bracket operation [αβ], 237
stack (of normal trees), 1626
standard Borel G-space, 305
standard Borel space, 299
standard code, 620
standard parameter, 636, 1510,

1606–1608
solidity, 1607, 1636–1638
universality, 1607, 1636–1638

standard witness, 639
stationary set, 19, 94

canonical, 104
robust, 1075
weakly, 113, 912

stationary set preservation, 810
stationary set reflection

for S ⊆ λ, 101, 811, 823, 1230
full, 105

for S ⊆ [λ]ℵ0 , 118
for S ⊆ H(λ), 1072

stationary tower, 1099
stationary tower forcing, 121, 1880

and core model, 1492
Steel pointclass, 1776
step, 217
Stepping Up Lemma

Negative, 131, 137
Positive, 131, 136

Strategic Branches
Hypothesis (SBH), 1747,
1890

strategic closure, 794
strategic game, 2039
strength

of an embedding, 1885
of an extender, 1885

strict genericity, 594
strong cardinal, 787, 1473, 1886,

1956
α-strong, 57, 1473, 1886, 1956

strong club guessing sequence, 718
strong embedding, 625
strong finite intersection
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property (SFIP), 431, 447
strong master condition, 814, 1018
strong non-reflection, 825
strong normality, 2011–2027, 2056
strong partition property (relation),

88, 1783
Strong Reflection Principle (SRP),

119
strongly closed unbounded

(club) set, 112, 911
strongly compact

Prikry forcing, 1364
strongly compact cardinal, 24, 787,

1239
γ-strongly compact, 1240,

1362
strongly increasing sequence, 1281
strongly layered ideal, 937
strongly nonstationary ideal, 912
subcompact cardinal, 722
suitable for κ set, 137
suitable set, 1519, 1543
supercompact

Prikry forcing, 1362
supercompact cardinal, 41, 787,

1239, 1488
γ-supercompact, 41, 1239,

1362
generically, 1129, 1248
indestructibly generically,

1129
Laver indestructible, 865, 875
Woodinized, 1106

supercompactness measure, 788,
1864

superperfect tree forcing, 479
superstrong cardinal, 1377, 1488,

1886, 1957
superstrong embedding, 1886
support of a condition, 800
support of a map, 234
support of an embedding, 787
Suslin cardinal, 88, 1762, 2118

effective, 2118
limit, 1790

successor, 1790
Suslin (Souslin) real, 227
Suslin set, 21, 1762, 1906
Suslin (Souslin) tree, 18, 220
Suslin’s Hypothesis (SH), 18
symmetric collapse, 1940

T
tail club guessing filter, 920, 1067
tail computation, 2021, 2061
tame forcing, 565
tcf (true cofinality), 1154, 1236
Technical Hypothesis, 1688
termspace forcing, 865, 1045
thick class of ordinals, 1561
thick set, 1696
Third Periodicity Theorem, 1767,

2077, 2091
three parameters, 887, 989
tightness of a point, 259
tower forcing, 1089
tower of ideals, 941

height of, 1090
precipitous, 955
presaturated, 1090
stationary, 1099

tower of measures, 1904
countably complete, 1904,

2138
tower of subsets of ω, 425

number (t), 425, 461
trace filter, 276
trace of a stationary set, 103
trace of a walk, 218, 236

full lower, 218
lower, 218
upper, 218

transfer of a generic object, 828
transitive map, 228, 285
transversal, 1306
tree of uniform cofinalities, 1817,

1820
tree on an ordinal, 255
tree on X × Y , 21, 1903, 2138
tree order, 1888
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tree Prikry forcing, 1356
tree property, 18, 869
treeable equivalence relation, 305
Trichotomy Theorem, 1014, 1169,

1313
Tukey embedding, 493
turbulence, 311
Turing

cone, 1967
cone filter, 1786, 1968
degrees, 1967
determinacy, 1968

type (for Chap. 22), 1897
(κ, n)-type, 1897
domain, 1897
elastic, 1899
exceeds, 1898
projection, 1897
realizable, 1897
stretch, 1899
subtype, 1898
u−, 1898

type I, II, III, IV hierarchy, 1775
type of a function, 1818

U
Ulam’s problem, 933, 1001
ultrafilter, 12, 778, 893

indecomposable, 1245
non-regular, 982
normal, 26, 778

for a sequence, 2135
P-point, 454
principal, 778
Q-point, 454
Ramsey, 454
rare, 454
selective, 454

ultrafilter (for Chap. 6), 446
ultrafilter number (u), 448
ultrapower, 25, 784, 1885

by extender, 1597, 1609, 1884
unbounded family

of functions, 398
of sets, 273

unbounded function on [κ+]2, 282
strongly, 282

uniform cofinality
S, 1782
ω, 1782

uniformity
of an ideal (non), 400, 493
of category, 459

uniformization ideal, 923
Unique Branches

Hypothesis (UBH), 1747
universal collapse, 861
universal sequence, 1180
universal set, 1761

good, 1762
universally Baire set, 1926, 1927,

2153, 2162
unsplittable family, 406, 448
unsplitting number (r), 406
Upward Extension of Embeddings

Lemma, 625, 1516
general, 634

V
very good parameter, 620, 632
very strongly layered ideal, 1053
Very Weak Square (VWS), 1302

W
Wadge

degree, 1774
reducibility, 1758

Wadge’s Lemma, 1758
walk, 70, 217
weak k-embedding, 1622
weak Chang’s Conjecture, 286
weak covering property, 49, 1450,

1501
countably closed, 1541

weak partition property (relation),
88, 1783

weakly (λ, κ)-saturated ideal, 934
weakly ω1-uniform set, 948
weakly rΣn+1 elementary, 635
weakly ωω-bounding poset, 72, 361
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weakly approachable
structure, 1075

weakly compact cardinal, 24, 823,
829, 991

weakly compact filter, 924, 991
weakly homogeneous tree, 1838,

2139
weakly homogeneously Suslin set,

1927, 2139
weakly iterable model/premouse,

1653, 1891
weakly presaturated ideal, 2161
weakly stationary set, 113, 912
weasel, 1689

thick, 1696
universal, 1694

weight
of a step, 217
of a walk, maximal, 221

well-ordering, 3
Well-Ordering Theorem, 5
wellfounded part wfp, 1690
width of an embedding, 786
Woodin cardinal, 62, 1102, 1487,

1644, 1649, 1900, 1956
Woodinized supercompact

cardinal, 1106
Woodin’s towers, 1101

Z
Zermelo set theory, 5
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