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STATISTICAL ESTIMATION METHODS FOR EXTREME 
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Abstract- In this paper an overview is given of the statistical methods which 

are needed to analyse observed environmetric data with a particular interest 

for the extreme values. The methods for trend analysis, stationarity tests, 

seasonality analysis, long-memory studies will be presented, critically 

reviewed, applied to some existing datasets, and compared. 
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1. Introduction  

In designing civil engineering structures use is made of probabilistic 

calculation methods. Stress and load parameters are described by statistical 

distribution functions. The parameters of these distribution functions can be 

estimated by various methods. The main point of interest is the behaviour 

of each method for predicting p-quantiles (the value which is exceeded by 

the random variable with probability p), where p«1. The estimation of 

extreme quantiles corresponding to a small probability of exceedance is 

commonly required in the risk analysis of hydraulic structures.  Such 

extreme quantiles may represent design values of environmental loads 

(wind, waves, snow, earthquake), river discharges, and flood levels 

specified by design codes and regulations. 

In civil engineering practice many parameter estimation methods for 

probability distribution functions are in circulation. Well known methods 

are for example: 

      - the method of moments,

     - the method of maximum likelihood,

memory studies. 
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- the method of least squares (on the original or on the linearized data),

- the method of Bayesian estimation, 

- the method of minimum cross entropy, 

- the method of probability weighted moments, 

- the method of L-moments. 

These methods have been judged on their performance and critically 

reviewed in for instance, Van Gelder, 1999. It has been investigated which 

estimation method is preferable for the parameter estimation of a particular 

probability distribution in order to obtain a reliable estimate of the p-

quantiles. Particularly attention was paid to the performance of the 

parameter estimation method with respect to three different criteria; (i) 

based on the relative bias and (ii) root mean squared error (RMSE), (iii) 

based on the over- and underdesign. 

It is desirable that the quantile estimate be unbiased, that is, its expected 

value should be equal to the true value.  It is also desirable that an unbiased 

estimate be efficient, i.e., its variance should be as small as possible.  The 

problem of unbiased and efficient estimation of extreme quantiles from 

small samples is commonly encountered in the civil engineering practice.  

For example, annual flood discharge data may be available for past 50 to 

100 years and on that basis one may have to estimate a design flood level 

corresponding to a 1,000 to 10,000 years return period.

This paper will concentrate on the steps before fitting an analytical 

probability distribution to represent adequately the sample observations. 

These steps involve trend analysis, stationarity tests, seasonality analysis, 

and long-memory studies. After those steps, the distribution type can be 

judged from the data and parameters of the selected distribution type can be 

estimated.  Since the bias and efficiency of quantile estimates are sensitive 

to the distribution type, the development of simple and robust criteria for 

fitting a representative distribution to small samples of observations has 

been an active area of research. Van Gelder (1999) gives an overview of 

such considerations. This paper will start with the issues on trend analysis 

in Section 2, followed by stationarity tests in Section 3. Most environmetric 

data show seasonality behaviour. Methods to take this into account are 

discussed in Section 4. The last part of the paper (Section 5) is devoted to 

long memory studies of environmetric data.  The paper ends with a 

summary and list of references.

2. Trend Analysis 

Many hydrological time series exhibit trending behavior or 

nonstationarity. In fact, the trending behavior is a type of nonstationarity. 

But in this present study, they are treated separately. The purpose of a trend 
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test is to determine if the values of a series have a general increase or 

decrease with the time increase, whereas the purpose of stationarity test is 

to determine if the distribution of a series is dependent on the time. 

An important task in hydrological modeling is to determine if there is 

the existence of any trend in the data and how to achieve stationarity when 

the data is nonstationary. On the other hand, the possible effects of global 

warming on water resources have been the topic of many recent studies 

(e.g., Lettenmaier et al., 1999; Jain and Lall, 2001; Kundzewicz et al., 

2004). Thus, detecting the trend and stationarity in a hydrological time 

series may help us to understand the possible links between hydrological 

processes and changes in the global environment. The focus of the trend 

analysis and stationarity test in this study is not to detect the changes of 

regional or world-wide streamflow processes. As a matter of fact, the 

presence of trends and nonstationarity is undesirable in further analysis. 

Therefore, we should make sure whether there is the presence of trend and 

nonstationarity or not, and if the presence of trend and nonstationarity is 

detected, the appropriate pre-processing procedure should be applied. In 

this section the issue of trend analysis is studied, and the nonstationarity 

problem will be addressed in the following section. 

Non-parametric trend detection methods are less sensitive to outliers 

(extremes) than are parametric statistics such as Pearson’s correlation 

coefficient. In addition, nonparametric test can test for a trend in a time 

series without specifying whether the trend is linear or nonlinear. Therefore, 

A rank-based nonparametric method, the Mann-Kendall’s test (Kendall, 

1938; Mann, 1945), is applied in this study to annual and monthly series. 

2.1. TREND TEST FOR ANNUAL STREAMFLOW SERIES 

First of all, we test for the trend in annual series so as to get an overall 

view of the possible changes in streamflow processes. 

2.1.1. Mann-Kendall test 

Kendall (1938) proposed a measure tau to measure the strength of the 

monotonic relationship between x and y. Mann (1945) suggested using the 

test for the significance of Kendall’s tau where one of the variables is time 

as a test for trend. The test is well known as the Mann-Kendall’s test 

(referred to as MK test hereafter), which is powerful for uncovering 

deterministic trends. Under the null hypothesis H0, that a series {x1, …, xN}

come from a population where the random variables are independent and 

identically distributed, the MK test statistic is 
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and tau is estimated as: 
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The general principles of hypothesis testing are explained in Appendix 1. 

Kendall (1975) showed that the variance of S, Var(S), for the situation 

where there may be ties (i.e., equal values) in the x values, is given by 

2
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where m is the number of tied groups in the data set and ti is the number of 

data points in the ith tied group. 

Under the null hypothesis, the quantity z defined in the following 

equation is approximately standard normally distributed even for the 

sample size N = 10: 

( 1) / if 0

0 if 0

( 1) / if 0

s

s

S S

z S

S S

.                                      (4) 

It has been found that the positive serial correlation inflates the variance 

of the MK statistic S and hence increases the possibility of rejecting the null 

hypothesis of no trend (von Storch, 1995). In order to reduce the impact of 

serial correlations, it is common to prewhiten the time series by removing 

the serial correlation from the series through yt = xt -  xt-1, where yt is the 

prewhitened series value, xt is the original time series value, and  is the 

estimated lag 1 serial correlation coefficient. The pre-whitening approach 

has been adopted in many trend-detection studies (e.g., Douglas et al., 

2000; Zhang et al., 2001; Burn and Hag Elnur, 2002). 

2.1.2. MK test results 

The first step in time series analysis is visually inspecting the data. 

Significant changes in level or slope usually are obvious. The annual 

average streamflow series of the Yellow River at TNH and TG, the Rhine 

River at Lobith, the Umpqua River near Elkton and the Ocmulgee River at 

Macon are shown: 
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Figure 1. Annual average discharge series of the five rivers at six sites 

From the visual inspection, it seems that except for the annual flow 

series of the Yellow River at TG which exhibits obvious downward trend, 

other annual series have no obvious trend. The MK test results are 

displayed in Table 1. The results are in agreement with the heuristic result 

by the visual examination. 
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TABLE 1. Mann-Kendall tests on Annual average discharge series 

Streamflow Tau z statistic p-value 

TNH -0.1015 -0.9609 0.3366 

TG -0.3144 -2.7658 0.0057 

Danube 0 0 1 

Rhine 0.0467 0.6710 0.5022 

Ocmulgee 0.1025 1.2688 0.2045 

Umpqua -0.0258 -0.3665 0.7140 

Null hypothesis: tau = 0   

2.2. TREND TEST FOR MONTHLY STREAMFLOW SERIES 

The trend test for annual series gives us an overall view of the change in 

streamflow processes. To examine the possible changes occur in smaller 

timescale, we need to investigate the monthly flow series. Monthly 

streamflows usually exhibit strong seasonality. Trend test techniques for 

dealing with seasonality of univariate time series fall into three major 

categories (Helsel and Hirsh, 1992, pp 337-343): (1) fully nonparametric 

method, i.e., seasonal Kendall test; (2) mixed procedure, i.e., regression of 

deseasonalized series on time; (3) parametric method, i.e., regression of 

original series on time and seasonal terms. The first approach, namely, 

seasonal Kendall test will be used here. 

2.2.1. Seasonal Kendall test 

Hirsch et al. (1982) introduced a modification of the MK test, referred 

to as the seasonal Kendall test that allows for seasonality in observations 

collected over time by computing the Mann-kendall test on each of p

seasons separately, and then combining the results. Compute the following 

overall statistic S’: 

1

'

p

j

j

S S ,                                                  (5) 

where Sj is simply the S-statistic in the MK test for season j (j = 1, 2, ..., p)

(see Eq. 1 ). When no serial dependence exhibit in the time series, the 

variance of S’ is defined as

2

'

1

( )

p

S j

j

Var S .                                          (6) 
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When serial correlation is present, as in the case of monthly streamflow 

processes, the variance of S’ is defined as (Hirsch and Slack, 1984) 

1

2

'

1 1 1

( )

p p p

S j gh

j g h g

Var S ,                                (7) 

where gh denotes the covariance between the MK statistic for season g and

the MK statistic for season h. The covariance is estimated with the 

following procedures. 

Let the matrix 

11 12 1

21 22 2

1 2

p

p

n n np

x x x

x x x
X

x x x

                                       (8) 

denote a sequence of observations taken over p seasons for n years. Let the 

matrix

11 12 1

21 22 2

1 2

p

p

n n np

R R R

R R R
R

R R R

                                     (9) 

denote the ranks corresponding to the observations in X, where the n

observations for each season are ranked among themselves, that is, 

1

1
1 sgn( )

2

n

ij ij kj

k

R n x x .                              (10) 

Hirsch and Slack (1984) suggest using the following formula, given by 

Dietz and Killeen (1981), to estimate gh in the case where there are no 

missing values: 

2

1

1
ˆ 4 ( 1)

3

n

gh gh ig ih

i

K R R n n ,                         (11) 

where

1

1 1

sgn ( )( )

n n

gh jg ig jh ih

i j i

K X X X X .                    (12) 
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If there are missing values, 

1

1
1 sgn( )

2

j
n

ij j ij kj

k

R n X X ,                          (13) 

where nj denotes the number of observations without missing values for 

season j. And the covariance between the MK statistic for season g and

season h is estimated as 

1

1
ˆ 4 ( 1)( 1)

3

n

gh gh ig ih g h

i

K R R n n n

.              (14) 

Then the quantity z’ defined in the following equation is approximately 

standard normally distributed: 

'
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.                              (15) 

The overall tau is the weighted average of the p seasonal ’s, defined as 

1 1

p p

j j j

j j

n n ,                                    (16) 

where j is the tau for season j, estimated with Eq. 2. 

Seasonal Kendall test is appropriate for testing for trend in each season 

when the trend is always in the same direction across all seasons. However, 

the trend may have different directions in different seasons. Van Belle and 

Hughes (1984) suggested using the following statistic to test for 

heterogeneity in trend 

2 2 2

1

p

het j

j

z pz ,                                        (17) 

where zj denotes the z-statistic for the jth season computed as 

1/ 2
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and
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z z
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.                                               (19) 
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Under the null hypothesis of no trend in any season, the statistic defined in 

Eq. 17 is approximately distributed as a chi-square random variable with p -

1 degrees of freedom. 

2.2.2. Seasonal Kendall test results 

The six monthly streamflow processes are tested for the trend with the 

seasonal Kendall test which allows fort the serial dependence. And the 

heterogeneity in trend is also tested. The results are shown in Table 2. The 

results give the same conclusion as the test for annual series, that is, among 

5 series, only the streamflow of the Yellow River at TG exhibits significant 

downward trend. Meanwhile, it is found that while the streamflow 

processes at TG present downward trend in general, the trend directions of 

every month are heterogeneous. 

TABLE 2. Seasonal Kendall Tests on Monthly Series 

Streamflow tau z statistic trend p-value Het p-value 

TNH -0.0178 -0.2732 0.7847 0.3705 

TG -0.2431 -3.5561 0.0057 0.0039 

Danube -0.0084 -0.2010 0.8407 0.2558 

Rhine 0.0089 0.2047 0.8378 0.5125 

Ocmulgee -0.0101 -0.2078 0.8354 0.5105 

Umpqua -0.0129 -0.3120 0.7550 0.8185 

Null hypothesis of trend test: tau = 0 

Null hypothesis of trend homogeneity test: tau of all seasons are equal to 0. 

“Het” denotes the van Belle and Hughes heterogeneity test. 

Therefore, the trend of streamflows at TG in each month is further 

investigated with the MK test. The results are shown in Table 3. It is seen 

that, for the streamflows of the Yellow River at TG, the trends in December 

to April, and in June, are not significant, whereas in other months, there are 

obvious downward trends. This indicates that the discharges at TG in the 

summer and autumn are significantly decreased, but in winter, the change is 

not significant. One reason for such kind of behaviour is the similar change 

pattern in the monthly rainfall in the area along middles reaches of the 

Yellow River (Fu et al., 2004). Another reason may be the runoff regulation 

of about 10 dams over the main channel and thousands of reservoirs along 

the tributaries in this basin, which were mainly built over the last 50 years. 
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TABLE 3. Mann-Kendall Tests for streamflows at TG in each month 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Tau -.15 .031 .018 -.14 -.51 -.18 -.35 -.29 -.33 -.46 -.48 -.07 

p .183 .790 .885 .200 .000 .110 .002 .008 .003 .000 .000 .561 

3. Stationarity Test 

In most applications of hydrological modelling, we have an assumption 

of stationarity. It is thus necessary to test for stationarity for the justification 

of using those models. On the other hand, sometimes the investigation of 

nonstationarity may give us some insights into the underlying physical 

mechanism, especially in the context of global changes. Therefore, testing 

for stationarity is an important topic in the field of hydrology. 

3.1. TEST METHODS 

There are roughly two groups of methods for testing stationarity. The 

first group is based on the idea of analyzing the statistical differences of 

different segments of a time series (e.g., Chen and Rao, 2002). If the 

observed variations in a certain parameter of different segments are found 

to be significant, that is, outside the expected statistical fluctuations, the 

time series is regarded as nonstationary. Another group of stationarity tests 

is based on statistics for the full sequence. We adopt the second approach 

here.

The stationarity test is carried out with two methods in this present 

study. The first one is the augmented Dickey-Fuller (ADF) unit root test 

that is first proposed by Dickey and Fuller (1979) and then modified by 

Said and Dickey (1984). It tests for the presence of unit roots in the series 

(difference stationarity). The other one is the KPSS test proposed by 

Kwiatkowski et al. (1992), which tests for the stationarity around a 

deterministic trend (trend stationarity) and the stationarity around a fixed 

level (level stationarity). KPSS test can also be modified to be used as a 

unit root test, but it was shown by Shin and Schmidt (1992) that the KPSS 

statistic, designed for use as a test for stationarity, was not as good a unit 

root test as other standard test. In particular, its power is noticeably less 

than the power of the Dickey-Fuller test (or other similar tests) against 

stationary alternatives. 
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3.1.1. ADF test 

Dickey–Fuller unit-root tests are conducted through the ordinary least 

squares (OLS) estimation of regression models incorporating either an 

intercept or a linear trend. Consider the autoregressive AR (1) model 

xt = xt-1 + t, t = 1, 2, ..., N, (20)

where x0 = 0; | |  1 and t is a real valued sequence of independent random 

variables with mean zero and variance 
2
. If  = 1, the process {xt} is 

nonstationary and it is known as a random walk process. In contrast, if | | < 

1, the process {xt} is stationary. The maximum likelihood estimator of  is 

the OLS estimator 

1

2

1 1

2 2

ˆ

N N

t t t

t t

x x x

.                                    (21) 

Under the null hypothesis that  = 1, Dickey and Fuller (1979) showed that 

ˆ  is characterized by 

2 2

1 12
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ˆ( 1)
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tt
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,               (22) 

where

2 2 1/ 2

1 1
( , ) ( , 2 )

i i i ii i
Z Z ,                      (23) 

with

i = 2(-1)
i+1

/[(2i – 1) ],                                (24) 

and the Zi are i.i.d N(0,1) distributed random variables.

The result with Eq. 22 allows the point estimate ˆ  to be used by itself 

to test the null hypothesis of a unit root. Another popular statistic for testing 

the null hypothesis that  = 1 is based on the usual OLS t-test of this 

hypothesis,

ˆ

ˆ 1

ˆ
t ,                                                (25) 

where
ˆ

ˆ  is the usual OLS standard error for the estimated coefficient, 
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1/ 2
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t
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and se denotes the standard deviation of the OLS estimate of the residuals in 

the regression model with Eq. 20, estimated as 

2 2 2

1

2

1
ˆ( )

2

N

e t t

t

s x x
N

.                              (27) 

Dickey and Fuller (1979) derived the limiting distribution of the statistic t

under the null hypothesis that  = 1 as 

1/ 2 2
2 ( 1)

D
t .                                    (28) 

A set of tables of the percentiles of the limiting distribution of the statistic t

under  = 1 is available in Fuller (1976, pp. 371, 373). The test rejects  = 1 

when t is “too negative”. 

The unit root test described above is valid if the time series {xt} is well 

characterized by an AR(1) with white noise errors. Many hydrological time 

series, however, have a more complicated dynamic structure than is 

captured by a simple AR(1) model. The basic autoregressive unit root test 

can be augmented (referred to as ADF test) to accommodate general 

ARMA(p, q) models with unknown orders (Said and Dickey, 1984; 

Hamilton, 1994, pp 516-530). The ADF test is based on estimating the test 

regression

1

1

, 1, 2,...,

p

t t t j t j t

j

x D x x t N  ,              (29) 

where Dt is a vector of deterministic terms (constant, trend, etc.). The p

lagged difference terms, xt-j, are used to approximate the ARMA structure 

of the errors, and the value of p is set so that the error t is serially 

uncorrelated. Said and Dickey (1984) show that the Dickey-Fuller 

procedure, which was originally developed for autoregressive 

representations of known order, remains valid asymptotically for a general 

ARIMA(p, 1, q) process in which p and q are unknown orders. 

3.1.2. KPSS test 

Let {xt}, t = 1, 2, …, N, be the observed series for which we wish to test 

stationarity. Assume that we can decomposes the series into the sum of a 

deterministic trend, a random walk, and a stationary error with the 

following linear regression model
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t t t
x r t                                               (30) 

where rt is a random walk, i.e., rt = rt-1 + ut, and ut is iid N(0, u

2
); t is a 

deterministic trend; t is a stationary error. 

To test in this model if xt is a trend stationary process, namely, the series 

is stationary around a deterministic trend, the null hypothesis will be u

2
 = 

0, which means that the intercept is a fixed element, against the alternative 

of a positive u

2
. In another stationarity case, the level stationarity, namely, 

the series is stationary around a fixed level, the null hypothesis will be  = 

0. So that, under the null hypothesis, in the case of trend stationary, the 

residuals et (t = 1, 2, …, N) are from the regression of x on an intercept and 

time trend, et = t; whereas in the case of level stationarity, the residuals et

are from a regression of x on intercept only, that is et = xt – x .

Let the partial sum process of the et as 

1

t

t jj
S e ,                                                (31) 

and
2
 be the long-run variance of et, which is defined as 

2 1 2
lim

N
N E S .                                        (32) 

The consistent estimator of 
2
 can be constructed from the residuals et by 

(Newey and West, 1987) 

2 2

1 1 1

1 2
ˆ ( ) ( )

pN N

t j t t j

t j t j

p e w p e e
N N

,                      (33) 

where p is the truncation lag, wj( p) is an optional weighting function that 

corresponds to the choice of a special window, e.g., Bartlett window 

(Bartlett, 1950) wj( p) = 1 – j/(p+1).

Then the KPSS test statistic is given by 

2 2 2

1

ˆ ( )

N

t

t

KPSS N S p .                               (34) 

Under the null hypothesis of level stationary,

1
2

1
0

( )KPSS V r dr→ ,                                       (35) 

where V1(r) is a standard Brownian bridge: V1(r) = B(r) – rB(1) and B(r) is 

a Brownian motion process on r  [0, 1]. Under the null hypothesis of trend 

stationary,
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1
2

2
0

( )KPSS V r dr ,                                     (36) 

where V2(r) is the second level Brownian bridge, given by

V2(r) = 
1

2 2

0

( ) (2 3 ) (1) ( 6 6 ) ( )B r r r B r r B s ds .               (37) 

The upper tail critical values of the asymptotic distribution of the KPSS 

statistic are listed in Table 4, given by Kwiatkowski et al. (1992). 

TABLE 4. Upper tail critical values for the KPSS test statistic asymptotic distribution 

Upper tail percentiles Distribution

0.1 0.05 0.025 0.01 

1
2

1
0

( )V r dr 0.347 0.463 0.574 0.739

1
2

2
0

( )V r dr 0.119 0.146 0.176 0.216

3.2. RESULTS OF STATIONARITY TESTS RESULTS OF STATIONARITY 

TESTS

Because on the one hand both the ADF test and the KPSS test are based 

hand, the log-transformation can convert an exponential trend possibly 

An important practical issue for the implementation of the ADF test as 

well as the KPSS test is the specification of the truncation lag values of p in 

Eqs. 29 and 33. The KPSS test statistics are fairly sensitive to the choice of 

p, and in fact for every series the value of the test statistic decreases as p

increases (Kwiatkowski et al., 1992). If p is too small then the remaining 

serial correlation in the errors will bias the test toward rejecting the null 

hypothesis. If p is too large then the power of the test will suffer. The larger 

the p, the less likely was the null hypothesis to be rejected. Following 

Schwert (1989), Kwiatkowski et al. (1992) and some others, the number of 

lag length is subjectively chosen as p = int[x(N/100)
1/4

], with x = 4, 12 in 

the present study for streamflow processes at from monthly to daily 

timescales. For annual series, because the autocorrelation at lag one is very 

the stationarity tests. 

present in the data into a linear trend, therefore, it is common to take logs of 

et al., 1999). In this study, the streamflow data are also log-transformed before 

on the linear regression, which assumes a normal distribution; on the other 

the data before applying the ADF test and the KPSS test (e.g., Gimeno  
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low, so it is generally enough to exclude the serial correlation by choosing p

= 1. The function unitroot and stationaryTest implemented in S+FinMetrics 

version 1.0 (Zivot and Wang, 2002) are used to do the ADF test and KPSS 

test. Table 5 shows the results. 

The test results show that, except for the streamflow process of the 

Yellow River at TG which has significant downward trend at different 

timescales, all the other streamflow series appear to be stationary, since we 

cannot accept the unit root hypothesis with ADF test at 1% significance 

level and cannot reject the level stationarity hypothesis with KPSS test 

mostly at the 10% level or at least at the 2.5% level. In fact, the level 

stationarity is a major criterion in selecting streamflow series in the present 

study, while the use of the streamflow series at TG is for the purpose of 

comparison. For some series (such as the daily series of Rhine at Lobith, 

etc.) the hypothesis of trend stationarity is rejected by the KPSS test or just 

accepted at a low significance level, especially when the lag p is small. But 

this seems to be unreasonable, because the level stationarity can also be 

interpreted as the stationarity around a deterministic trend with a slope of 

zero. Therefore, we still consider these series stationary.

 TABLE 5. Stationarity test results for log-transformed streamflow series 

KPSS level stationary KPSS trend stationary   ADF unit root 

Station Series Lag 

results p-value results p-value Results p-value

Yellow 14 0.366 >0.05 0.366 <0.01 -7.6 4.03E-11 

(TNH)

Daily

42 0.138 >0.1 0.138 >0.05 -10.89 2.18E-23 

 8 0.078 >0.1 0.078 >0.1 -15.16 1.88E-40 1/3-montly

24 0.113 >0.1 0.113 >0.1 -8.369 2.49E-13 

 6 0.084 >0.1 0.084 >0.1 -14.2 1.26E-31 Monthly

18 0.115 >0.1 0.115 >0.1 -5.982 2.11E-06 

 Annual 1 0.186 >0.1 0.1797 >0.01 -4.689 2.53E-03 

Yellow Daily 13 8.6673 <0.01 0.6473 <0.01 -13.38 1.12E-34 

(TG)  41 3.5895 <0.01 0.2744 <0.01 -12.4 4.83E-30 

 1/3-montly 7 2.3768 <0.01 0.1861 >0.01 -12.55 5.86E-29 

  23 1.7241 <0.01 0.166 >0.025 -7.774 2.11E-11 

 Monthly 5 1.8194 <0.01 0.1567 >0.025 -8.661 2.08E-13 

  17 1.0985 <0.01 0.1239 >0.05 -4.7 7.69E-04 

 Annual 1 1.0367 <0.01 0.1277 >0.05 -4.665 3.17E-03 

Danube Daily 17 0.173 >0.1 0.1699 >0.025 -16.96 6.18E-53 

(Achleiten)  51 0.0737 >0.1 0.0724 >0.1 -14.32 1.93E-39 
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KPSS level stationary KPSS trend stationary ADF unit root Station Series Lag 

results p-value results p-value results p-value

 1/3-montly 9 0.0486 >0.1 0.048 >0.1 -15.71 9.98E-45 

  28 0.0539 >0.1 0.0533 >0.1 -9.263 1.20E-16 

 Monthly 7 0.0478 >0.1 0.0472 >0.1 -14.44 5.57E-36 

  21 0.0445 >0.1 0.0441 >0.1 -7.056 3.01E-09 

 Annual 1 0.0347 >0.1 0.0335 >0.1 -8.465 7.02E-10 

Rhine Daily 17 0.413 >0.05 0.394 <0.01 -19.23 6.58E-65 

(Lobith)  51 0.186 >0.1 0.178 >0.01 -14.54 1.64E-40 

 1/3-montly 9 0.119 >0.1 0.114 >0.1 -13.45 3.49E-34 

  29 0.076 >0.1 0.073 >0.1 -8.13 1.01E-12 

 Monthly 7 0.088 >0.1 0.081 >0.1 -10.18 1.97E-19 

  22 0.064 >0.1 0.059 >0.1 -6.573 5.71E-08 

 Annual 1 0.0702 >0.1 0.0496 >0.1 -8.57 3.23E-10 

Ocmulgee 16 0.543 >0.025 0.408 <0.01 -16.21 5.26E-49 

(Macon)

Daily

48 0.228 >0.1 0.171 >0.025 -11.61 1.39E-26 

 9 0.128 >0.1 0.1 >0.1 -13.5 4.11E-34 1/3-montly

27 0.121 >0.1 0.095 >0.1 -8.515 5.91E-14 

 6 0.097 >0.1 0.086 >0.1 -13.73 2.19E-32 Monthly

20 0.081 >0.1 0.072 >0.1 -5.473 2.33E-05 

 Annual 1 0.0773 >0.1 0.0749 >0.1 -6.311 6.27E-06 

Umpqua 17 0.254 >0.1 0.242 <0.01 -13.47 2.85E-35 

(Elkton)

Daily

51 0.101 >0.1 0.096 >0.1 -15.23 5.27E-44 

 9 0.061 >0.1 0.059 >0.1 -21.25 3.99E-71 1/3-montly

29 0.136 >0.1 0.133 >0.1 -9.894 4.94E-19 

 7 0.079 >0.1 0.08 >0.1 -20.1 2.66E-58 Monthly

22 0.133 >0.1 0.132 >0.05 -5.856 3.19E-06 

Annual 1 0.1334 >0.1 0.1328 >0.05 -7.124 1.11E-07 

Two issues should be noticed. Firstly, although no significant cycle with 

a period longer than one year is detected with spectral analysis for any 

streamflow series in the study (results are not shown here for saving space), 

as we will see later in Section 4, streamflow processes normally exhibit 

strong seasonality, therefore, have periodic stationarity, rather than the 

stationarity we talk about normally. According to the results shown in Table 

5, KPSS test is not powerful enough to distinguish the periodic stationarity 

from the stationarity in normal sense. Secondly, it is not clear how the 

presence of seasonality impacts the test of stationarity. Besides testing for 

nonstationarity in log-transfomed series, we have also tested the stationarity 

for the deseasonalized streamflow series. The deseasonalization is 

conducted by firstly taking log-transformation, then subtracting the 

seasonal (daily, 1/3-monthly or monthly) mean values and dividing by 
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seasonal standard deviations. The results are presented in Table 6, which 

show that all the test results are generally larger for KPSS test and “less 

negative” for ADF test. In consequence, the p-values decrease for KPSS 

test, indicating the increase of the probability of rejecting the hypothesis of 

stationariy, and increase for ADF test, indicating the increase of the 

probability (though still very small) of accepting the hypothesis of unit root. 

That is, the removal of seasonality in the mean and variance tends to make 

the streamflow series less stationary, or at least from the point of view of 

the KPSS test. This is an issue open for future investigation. 

TABLE 6. Stationarity test results for log-transformed and deseasonalized streamflow series 

KPSS level stationary KPSS trend stationary ADF unit root 

Station Series Lag 

results p-value results p-value results p-value

Yellow 14 2.4024 <0.01 2.3961 <0.01 -11.940  5.40E-28 

(TNH)

Daily

42 0.9972 <0.01 0.9946 <00.01 -8.869  2.05E-15 

 8 0.5581 >0.025 0.5579 <00.01 -6.842  9.75E-09 1/3-montly

24 0.266 >0.1 0.2659 <00.01 -5.133  1.06E-04 

 6 0.298 >0.1 0.297 <00.01 -5.005  2.14E-04 Monthly

18 0.1742 >0.1 0.1737 >0.025 -5.123  1.29E-04 

Yellow Daily 13 12.5127 <0.01 1.2348 <00.01 -16.66 4.60E-51 

(TG)  41 5.5909 <0.01 0.5794 <00.01 -11.220  8.30E-25 

 1/3-montly 7 3.3145 <0.01 0.3638 <00.01 -8.294  4.89E-13 

  23 1.5704 <0.01 0.1904 >0.01 -5.043  1.61E-04 

 Monthly 5 1.7948 <0.01 0.2086 >0.01 -6.385  2.66E-07 

  17 0.8977 <0.01 0.1203 >0.05 -4.833  4.53E-04 

Danube Daily 17 0.2835 >0.1 0.2892 <0.01 -21.79 3.07E-78 

(Achleiten)  51 0.1366 >0.1 0.1394 >0.05 -15.71 1.82E-46 

 1/3-montly 9 0.0934 >0.1 0.0951 >0.1 -12.59 2.94E-30 

  28 0.054 >0.1 0.0549 >0.1 -8.038 2.05E-12 

 Monthly 7 0.0577 >0.1 0.0589 >0.1 -8.712 2.81E-14 

  21 0.0407 >0.1 0.0415 >0.1 -6.307 2.73E-07 

Rhine Daily 17 0.5229 >0.025 0.5085 <0.01 -19.25 4.93E-65 

(Lobith)  51 0.2347 >0.1 0.2282 <0.01 -14.01 6.76E-38 

 1/3-montly 9 0.15 >0.1 0.1452 >0.05 -11.93 2.21E-27 

  29 0.0797 >0.1 0.0772 >0.1 -8.065 1.65E-12 

 Monthly 7 0.0966 >0.1 0.0897 >0.1 -8.369 3.38E-13 

  22 0.0657 >0.1 0.0611 >0.1 -6.463 1.09E-07 
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KPSS level stationary KPSS trend stationary ADF unit root 

Station Series Lag 

results p-value results p-value results p-value

Ocmulgee Daily 16 0.9316 <0.01 0.7318 <0.01 -21.160  7.05E-75 

 (Macon)  48 0.4387 >0.05 0.3449 <0.01 -12.460  1.92E-30 

 9 0.2471 >0.1 0.2002 >0.01 -9.924  4.76E-19 1/3-montly

27 0.1347 >0.1 0.1092 >0.1 -7.563  6.93E-11 

 6 0.1366 >0.1 0.1253 >0.05 -8.025  5.45E-12 Monthly

20 0.0836 >0.1 0.0766 >0.1 -4.864  3.65E-04 

Umpqua 17 1.2445 <0.01 1.2436 <0.01 -21.170  4.38E-75 

(Elkton)

Daily

51 0.5697 >0.025 0.5694 <0.01 -14.500  2.38E-40 

 9 0.3536 >0.05 0.355 <0.01 -12.830  2.24E-31 1/3-montly

29 0.2 >0.1 0.2009 >0.01 -7.936  4.31E-12 

 7 0.2109 >0.1 0.2151 >0.01 -9.110  1.19E-15 Monthly

22 0.1365 >0.1 0.1392 >0.05 -5.166  9.44E-05 

4. Seasonality Analysis 

4.1. SEASONALITY IN MEAN AND VARIANCE 

The dynamics of streamflow are often dominated by annual variations. 

How well the seasonality is captured is a very important criterion for 

assessing a stochastic model for streamflow. The seasonality of 

hydrological processes is often described in terms of the mean values, the 

variances, the extrema, and the probability distribution of the variable in 

each season (in general, a season may denote a day, a month, etc.). We will 

use the daily streamflow series to present the approaches we adopt here for 

analyzing the seasonality. The same approaches can be easily adapted to the 

cases of 1/3-monthly series and monthly series. 

To make it convenient to analyze the seasonality of a daily flow series 

of N years, we rewrite it as the following matrix form: 

1,1 1,2 1,365

2,1 2,2 2,365

,1 ,2 ,365

,

...

...

...
N N N

j i

x x x

x x x
X

x

x x x

,                                            (38) 

where the rows denote year 1 ~ N, the columns denote day 1 ~ 365. For 

simplicity, the 366th days of leap years are omitted. This would not 

introduce major errors when analyzing seasonality of daily flows. 
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Consequently, the mean value, standard deviation and coefficient of 

variation of each column of the matrix are the daily mean discharge, 

standard deviation and coefficient of variation (CV) of daily discharges for 

each day over the year. They are easily calculated as follows: 

Mean value:

,

1
N

i j i

j i

x x
N

;                                           (39) 

Standard deviation: 

1/ 2

2

,

1

1
( )

N

i j i i

j

s x x
N

  ;                               (40) 

Coefficient of variation: 

i

i

i

s
CV

x
   .                                            (41) 

Daily mean values and standard deviations of the six streamflow 

processes are shown in Figure 2 (a ~ f), and the daily variations in CVs are 

shown in Figure 3 (a ~c). It is shown that, days with high mean values have 

also high standard deviations, this is a property which has been well 

recognized (e.g., Mitosek, 2000). But two exceptional cases here are the 

streamflow processes of Danube and Ocmulgee. Danube has a clear 

seasonality in mean values, but no clear seasonality in variances. In 

consequence, it has a similar seasonal pattern in CVs to the Rhine River, as 

shown in Figure 3 (b). Ocmulgee has no clear seasonal variations in CVs 

although it has clear seasonality in means and variances. In June, 

thunderstorm activity results in high CV values in the daily streamflow 

process of Ocmulgee, as shown in Figure 3 (c).

Two special points should be noted about the variations in streamflow 

processes of the Yellow River: 

1. Streamflow processes of the Yellow River at both TNH and TG are 

characterized by a bimodal distribution. Extrema occur in July and 

September at TNH and in late March to early April and August at TG. 

However, the causes of bimodality of the two streamflow processes are 

different. The bimodality of the streamflow process at TNH exits 

mainly in response to the bimodal distribution of rainfall, whereas the 

first peaks of the streamflow process at TG is caused by snowmelt water 

and the break-up of the river-ice jam in spring and the second peak is 

due to concentrated rainfall. 
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2. Although the contributing area of TG is about as 5 times larger as that 

of TNH, the streamflow process at TNH changes much smoother than 

that at TG, as indicated by CVs shown in Figure 3. This is mainly 

because of less rainfall variability and much less anthropogenic 

disturbances in the watershed above TNH. 
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Figure 2. Variation in daily mean and standard deviation of streamflow processes 
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4.2. DETREND, NORMALIZATION AND DESEASONALIZATION 

After trend analysis and seasonality analysis, we can remove the trend 

component and seasonal components out of the original river flow series, 

and get an approximately stationary process, then further analyse 

autocorrelation properties and long-memory properties.

Because streamflow series are skewed and heavily tailed, whereas many 

models, such as regression models or autoregressive moving average 

(ARMA) models, require the time series data to be normally distributed, it 

is thus necessary to normalize the data to make them at least approximately 

normally distributed. The most popular approach is the Box-Cox 

transformation (Box and Cox, 1964): 

1
0[( ) 1]

0ln( )

x c
x

x c
  .                               (42) 

Usually we simply take logarithm to normalize the data. After log-

transformation, we can estimate the trend by fitting a regression models if 

the trend is present, and then subtract it out of the original series. 

The deseasonalization can be viewed as the standardization for each 

season (in the case of daily streamflow series, each season means each day). 

To do this, we use the daily mean 
i

x , standard deviation si given by Eqs. 

(39) and (40), then apply to each element xj,i in matrix (38) the following 

standardization transformation: 

i

iij

ij

s

xx
y

,

,
 .                                          (43) 

With the above pre-processing procedure, the seasonality in mean values 

and standard deviations in the streamflow series is removed. With such 

deseasonalized series, we go further to make autocorrelation analysis. 

4.3. SEASONALITY IN AUTOCORRELATION STRUCTURES 

Given a time series {xi}, i = 1, 2, …, n, the autocorrelation function 

(ACF) at lag k for the time series is given by (Box and Jenkins, 1976) 

0
ˆ ( )

k
k c c ,                                                    (44) 

where k = 0, 1, 2, …, and 
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1

1
( )( )

n k

k i i k

i

c x x x x
n k

.                                 (45) 

The ACF obtained in this way takes the whole time series into 

consideration, which reflects the overall autocorrelation property for the 

time series, but to examine the seasonal variation in the autocorrelation 

structure of a daily streamflow series, we need to calculate values of the 

autocorrelation coefficient between column vector Xi and Xi+k of matrix 

(Eq.38), where i = 1, 2, …, 365 and k = 0, 1, 2, …, kmax, ( kmax  365) 

(Mitosek, 2000), namely, 

, ,

1

1

, 1, 365 365

1

365

1
( )( )

, 365

ˆ ( )
1

( )( )
1

, 365

N

j i i j i k i k

j

i i k

i N

j i i j i k i k

j

i i k

x x x x
N

i k
s s

k

x x x x
N

i k
s s

    ,  (46) 

where
i

x  and si are the same as in Equation (39) and (40), N is the number 

of years, and 

1

365 1, 365

1

1

N

i k j i k

j i

x x
N

 ,                            (47) 

1/ 2

2

365 1, 365 365

1

1
)

1

N

i k j i k i k

j

s x x
N

.           (48) 

The result obtained by Equation 46 is the autocorrelation function on a 

day-by-day basis, referred to as daily autocorrelation function here. It is 

calculated after detrending (only for the case of the streamflow of the 

Yellow River at TG), log-transforming and deseasonalizing the raw series. 

The daily autocorrelations at different lags for the six daily streamflow 

processes are displayed in Figure 4 to 9. 

Similarly, we can deseasonalize the 1/3-monthly and monthly 

streamflow series, and then calculate their autocorrelations at different lags 

for the six 1/3-monthly and six monthly streamflow processes, as shown in 

Figure 10 and 11. 
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Figure 10. 1/3-monthly autocorrelations at different lags for 1/3-monthly flow 

series
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Figure 11. Monthly autocorrelations at different lags for monthly flow series 

By a visual inspection of Figure 4 to 11, we see that: 

1. There are more or less seasonal variations in the autocorrelation 

structures of all the daily, 1/3-monthly and monthly streamflow processes. 

In general, the autocorrelation is high for low-flow seasons and low for 

high flow seasons. However, there are some exceptions. For example, the 

daily flows of the Yellow River at TG have lower autocorrelations in late 
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November and December when discharges are lower than those in August 

to October. For the Danube, the autocorrelations in January and February 

are lower than those in June and July, although the flows are lower rather 

than those in June and July. In fact, the seasonal variation in the 

autocorrelation functions of streamflows processes has been observed by 

many researchers (e.g., Vecchia and Ballerini, 1991; Mcleod, 1994). With 

such kind of season dependence of the autocorrelation structure, the 

streamflow processes are not second-order stationary. Instead, they are 

periodic stationary (see the definition of the periodic stationarity in 

Appendix 2). 

2. Daily autocorrelations of the Yellow River at TNH are generally much 

higher than those at TG. In the period from the end of January to February 

and in November, the daily autocorrelations at TNH are especially high, 

which can still be as high as 0.9 at a lag of 20 days. In March, June and 

July, daily autocorrelations at TNH are low because of large volume of 

snowmelt water and heavy rainfall respectively. Daily autocorrelations at 

TG are generally much lower because the streamflow process changes 

much more irregularly than that at TNH. The daily autocorrelations at TG 

are especially low in March because river ice-jam breakup and in July and 

August because of over-concentrated rainfall. In these two periods, the 

autocorrelations between adjacent days are very low, for instance, lower 

than 0.5 in the end of March and the beginning of April, and lower than 0.6 

in the end of August.

5. Long-Memory Analysis 

5.1. INTRODUCTION TO LONG-MEMORY 

Long-memory, or long-range dependence, refers to a not negligible 

dependence between distant observations in a time series. Since the early 

work of Hurst (1951), it has been well recognized that many time series, in 

diverse fields of application, such as financial time series (e.g., Lo, 1991; 

Meade and Maier, 2003), meteorological time series (e.g., Haslett and 

Raftery, 1989; Bloomfield, 1992; Hussain and Elbergali, 1999) and internet 

traffic time series (see Karagiannis et al., 2004), etc., may exhibit the 

phenomenon of long-memory or long-range dependence. In the hydrology 

community, many studies have been carried out on the test for long-

memory in streamflow processes. Montanari et al. (1997) applied 

fractionally integrated autoregressive moving average (ARFIMA) model to 

the monthly and daily inflows of Lake Maggiore, Italy. Rao and 

Bhattacharya (1999) explored some monthly and annual hydrologic time 
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series, including average monthly streamflow, maximum monthly 

streamflow, average monthly temperature and monthly precipitation, at 

various stations in the mid-western United States. They stated that there is 

little evidence of long-term memory in monthly hydrologic series, and for 

annual series the evidence for lack of long-term memory is inconclusive. 

Montanari et al. (2000) introduced seasonal ARFIMA model and applied it 

to the Nile River monthly flows at Aswan to detect whether long-memory is 

present. The resulting model also indicates that nonseasonal long-memory 

is not present in the data. At approximately the same time, Ooms and 

Franses (2001) documented that monthly river flow data displays long-

memory, in addition to pronounced seasonality based on simple time series 

plots and periodic sample autocorrelations. 

Long-memory processes can be expressed either in the time domain or 

in the frequency domain. In the time domain, long-memory is characterized 

by a hyperbolically decaying autocorrelation function. In fact, it decays so 

slowly that the autocorrelations are not summable. For a stationary discrete 

long-memory time series process, its autocorrelation function (k) at lag k

satisfies (Hosking, 1981). 

2 1(1 )
( )

( )

dd
k k

d
  ,                                          (49) 

as k , where, d is the long-memory parameter (or fractional differencing 

parameter), and 0 < |d| < 0.5. 

In frequency domain, long-memory manifests itself as an unbounded 

spectral density at zero frequency. For a stationary discrete long-memory 

time series process, its spectral density at zero frequency satisfies 

f( ) C
1-2H

,                                                         (50) 

as  0+, for a positive, finite C. H is called the Hurst coefficient (or self-

similarity parameter), as originally defined by Hurst (1951), and it 

represents the classical parameter characterizing long-memory. H is related 

to the fractional differencing parameter d with a relationship: d = H – 0.5. 

A number of models have been proposed to describe the long-memory 

feature of time series. The Fractional Gaussian Noise model is the first 

model with long-range dependence introduced by Mandelbrot and Wallis 

(1969a). Then Hosking (1981) and Granger and Joyeux (1980) proposed 

the fractional integrated autoregressive and moving average model, denoted 

by ARFIMA(p, d, q). When –0.5 < d < 0.5, the ARFIMA (p, d, q) process 

is stationary, and if 0 < d < 0.5 the process presents long-memory 

behaviour.
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Many methods are available for testing for the existence of long-

memory and estimating the Hurst coefficient H or the fractional 

differencing parameter d. Many of them are well described in the 

monograph of Beran (1994). These techniques include graphical methods 

(e.g., classical R/S analysis; aggregated variance method etc.), parametric 

methods (e.g., Whittle maximum likelihood estimation method) and 

semiparametric method (e.g., GPH method and local whittle method). 

Heuristic methods are useful to test if a long-range dependence exists in the 

data and to find a first estimate of d or H, but they are generally not 

accurate and not robust. The parametric methods obtain consistent 

estimators of d or H via maximum likelihood estimation (MLE) of 

parametric long-memory models. They give more accurate estimates of d or 

H, but generally require knowledge of the true model which is in fact 

always unknown. Semiparametric methods, such as the GPH method 

(Geweke and Porter-Hudak, 1983), seek to estimate d under few prior 

assumptions concerning the spectral density of a time series and, in 

particular, without specifying a finite parameter model for the dth

difference of the time series. In the present study, two statistic tests: Lo’s 

modified R/S test which is a modified version of classical R/S analysis, and 

GPH test which is a semiparametric method will be used to test for the null 

hypothesis of no presence of long-memory. Besides, an approximate 

maximum likelihood estimation method is used to estimate the fractional 

differencing parameter d, but without testing for the significance level of 

the estimate.

In Section 5.2, we will use three heuristic methods, i.e., autocorrelation 

function analysis, classical R/S analysis, and the aggregated variance 

method to detect the existence of long-memory in the streamflow processes 

of the upper and middle Yellow River at TNH and TG (To save space, 

other streamflow processes are not analysed with heuristic methods). Then 

in the Section 5.3, two statistical test methods, i.e., Lo’s modified R/S test 

(Lo, 1991) and the GPH test (Geweke and Porter-Hudak, 1983), to test for 

the existence of long-memory in the streamflow processes of all the five 

rivers, and the maximum likelihood estimates of the fractional differencing 

parameter d will be made as well. To verify the validity of these statistical 

test and estimation methods, some Monte Carlo simulation results will also 

be presented in Section 5.3. 

5.2. DETECTING LONG-MEMORY WITH HEURISTIC METHODS 

5.2.1. Autocorrelation function analysis 

In the presence of long-memory, the autocorrelation function (ACF) of 

a time series decreases to 0 at a much slower rate than the exponential rate 
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implied by an short-memory ARMA model. So we can compare the sample 

ACF of the observed time series under investigation with the theoretical 

ACF (McLeod, 1975) of the ARMA model fitted to the time series. If the 

sample ACF of the observed series decays much slower than the ACF of 

the fitted ARMA model, then it probably indicates the existence of long-

memory.

First, we select the best fitting AR models for the streamflow series 

using the Akaike Information Criterion (AIC) (Akaike, 1973), which turns 

out to be an AR(38), AR(9) and AR(4) model for the daily, 1/3-monthly, 

and monthly streamflow series at TNH, and an AR(9), AR(5) and AR(15) 

model for the daily, 1/3-monthly, and monthly streamflow series at TG. The 

high autoregressive order for monthly series at TG arises from the 

remaining seasonality that has not been fully removed with the 

deseasonalization procedure. The sample ACF of the streamflow series and 

the theoretical ACF of the fitted models from lag 1 to lag 100 are plotted in 

Figure 12 and 13. 
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Figure 12. Sample ACF (vertical lines) and the theoretical ACF (curve line) of 

fitted AR models for (a) daily, (b) 1/3-monthly and (c) monthly streamflow at TNH 
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Figure 13. Sample ACF (vertical lines) and the theoretical ACF (curve line) of 

fitted AR models for  (a) daily, (b) 1/3-monthly and (c) monthly streamflow at TG 

Comparing the theoretical ACF of the fitted AR models with the sample 

ACF of the observed streamflow series, we can find that: 

1.The daily streamflow process is highly persistent and the autocorrelation 

remains significant from zero at lag 100. The theoretical autocorrelation 

closely matches the sample autocorrelation at short lags. However, for large 

lags, the sample ACF decays much slower than the theoretical ACF. 

2. The 1/3-monthly and monthly streamflow processes are much less 

persistent. For both 1/3-monthly flow series at TNH and TG, the sample 

autocorrelations are slightly larger than the theoretical autocorrelations for 

large lags. But for the monthly flow series, the sample ACF is basically at 

the same level as the theoretical ACF. 
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5.2.2. Classical R/S analysis 

The R/S statistic, or the "rescaled adjusted range" statistic, is the 

adjusted range of partial sums of deviations of a times series from its mean, 

rescaled by its standard deviation. It was developed by Hurst (1951) in his 

studies of river discharges, and suggested by Mandelbrot and Wallis 

(1969b) using the R/S statistic to detect long-range dependence. Consider a 

time series {xt}, t = 1, 2, …, N, and define the jth partial sum as

1

j

j ii
Y x ,                                            (51) 

j = 1, 2, …, N. Suppose to calculate the storage range of a reservoir between 

time t and t+k, and assume that: (1) the storage at time t and t+k is the 

same; (2) the outflow during time t and t+k is the same; and (3) there is no 

any loss of storage. Then the rescaled adjusted range, i.e., R/S statistic, is 

defined as (Beran, 1994): 

( , )
00

( , )

1
/ max ( ) min ( )
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where

1 2
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1

( )

t k

t k j t k

j t

S k x x ,                                          (53) 

and

1

, 1

t k

t k jj t
x k x .                                                 (54) 

The R/S statistic varies with the time span k. Hurst (1951) found that the 

R/S statistic for many geophysical records is well described by the 

following empirical relation: E[R/S] c1k
H
, as k , with typical values of 

H (the Hurst coefficient) in the interval (0.5, 1.0), and c1 a finite positive 

constant that does not depend on k.

The classical R/S analysis is based on a heuristic graphical approach. 

Compute the R/S-statistic in Equation 52 at many different lags k and for a 

number of different points, and plots the resulting estimates versus the lags 

on log-log scale. The logarithm of k should scatter along a straight line 

having a slope equal to H. The value of H can be estimated by a simple 
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least-squares fit. An H value equal to 0.5 means absence of long-memory. 

The higher the H is, the higher the intensity of long-memory.

The log-log plots of R/S versus different lags k for streamflow processes 

at both TNH and T are displayed in Figure 14 and 15. The slopes of the 

fitted lines are the estimates of values of H.

Figure 14. R/S plot of (a) daily, (b) 1/3-monthly and (c) monthly flow series at 

TNH

Figure 15. R/S plot of (a) daily, (b) 1/3-monthly and (c) monthly flow series at TG 

According to the R/S statistics obtained with the graphical approach, all 

the streamflow series have values of H larger than 0.5, indicating the 

presence of long-memory in all these streamflow series. The H values, 

which indicate the intensity of long-memory, decrease with the increase of 

timescales. Furthermore, at each timescale, the intensity of long-memory of 

the streamflow process at TNH is stronger than that at TG. 

To check the effectiveness of the R/S analysis for detecting long-

memory, we generate ten simulations of an AR(1) model, ten simulations of 
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an ARFIMA(0,d,0) model, and ten simulations of an ARFIMA(1,d,0)

model. The AR(1) model is of the form (1- B)xt = t with  =0.9, the 

ARFIMA(0,d,0) of form (1-B)
 d 

xt = t with d = 0.3, and the ARFIMA(1,d,0) 

of form (1- B) (1-B)
 d

 xt = t with  =0.9 and d = 0.3, where { t} are i.i.d 

standard normal, B is the backshift operator, i.e., Bxt = xt-1. Each of them 

has a size of 3000 points. The AR series and the ARFIMA series are 

produced by the arima.sim and arima.fracdiff.sim function built in S-Plus 

version 6 (Insightful Corporation, 2001). The estimated values of H are 

listed in Table 7. 

TABLE 7. Estimated H values with classical R/S analysis for simulated series 

Simulation AR(1) ARFIMA(0,d,0) ARFIMA(1,d,0)

1 0.83789 0.75434 0.91157 

2 0.79296 0.76044 0.89271 

3 0.78578 0.73048 0.90742 

4 0.78821 0.77499 0.87063 

5 0.82238 0.75269 0.88660 

6 0.82636 0.73367 0.87649 

7 0.77678 0.81083 0.89122 

8 0.83730 0.77748 0.91854 

9 0.77904 0.76316 0.89593 

10 0.83119 0.77612 0.90586 

Average 0.80779 0.76342 0.89570 

The simulation results show that, for a pure fractionally integrated 

process ARFIMA (0, d, 0), the estimate of H is very close to its true value 

0.8 (i.e., d + 0.5). But when a process is a mixture of short memory and 

long-memory, as the ARFIMA(1, d, 0) process, then the estimates of H are 

biased upwardly. Furthermore, classical R/S analysis gives estimated H

values (= d + 0.5) higher than 0.5 even for short memory AR (1) processes, 

which indicates its sensitivity to the presence of explicit short-range 

dependence.

5.2.3. Aggregated Variance Method 

For independent random variables x1, …, xN, the variance of sample 

mean is equal to 
2 1

var( )x N . But in the presence of long-memory, 

Beran (1994) proved that the variance of the sample mean could be 

expressed by

2 2
var( )

H
x cN ,                                (55) 

where c>0 and H is the Hurst coefficient. Correspondingly, Beran (1994) 

suggested the following method for estimating the Hurst coefficient H.
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1. Take a sufficient number (say m) of subseries of length k (2 k N/2),

calculate the sample means 
1 2
( ), ( ),..., ( )

m
x k x k x k  and the overall mean 

1

1

( ) ( )

m

j

j

x k m x k ;                                         (56) 

2. For each k, calculate the sample variance 
2
( )s k  of the m sample means: 

2 1 2

1

( ) ( 1) ( ( ) ( ))

m

j

j

s k m x k x k  ;                           (57) 

3. Plot log s
2
(k) against logk. For large values of k, the points in this plot are 

expected to be scattered around a straight line with negative slope 2H – 2. 

The slope is steeper (more negative) for short-memory processes. In the 

case of independence, the ultimate slope is -1. 

Figure 16. Variance plot of (a) daily, (b) 1/3-monthly and (c) monthly flow series 

at TNH 

Figure 17. Variance plot of (a) daily, (b) 1/3-monthly and (c) monthly flow series 

at TG 
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Comparing the variance plot for the streamflow processes at TNH and 

TG, displayed in Figure 16 and 17, we can find that the slopes of the fitted 

lines get more negative as the timescale increases (from day to month) for 

the streamflow processes at both TNH and TG, which indicates that, from 

the view of time series themselves, the H values, namely the intensity of 

long-memory, decreases with the increase of timescales. Furthermore, at 

each timescale, the intensity of long-memory in streamflow process at TNH 

is stronger than that at TG. 

Similarly to the assessment of the effectiveness of classical R/S analysis, 

we assess the effectiveness of variance analysis for detecting the long-

memory by estimating the H values for the generated simulations of the 

AR(1) model, ARFIMA(0,d,0) model and  ARFIMA(1,d,0) model. The 

estimated H values are listed in Table 8. The results show that, variance 

analysis is also sensitive to the presence of explicit short-range dependence, 

and generally it gives smaller estimate than the classical R/S analysis. 

TABLE 8. Estimated H values with variance analysis for simulated series Estimated H

values with variance analysis for simulated series 

Simulation AR(1) ARFIMA(0,d,0) ARFIMA(1,d,0) 

1 0.69158 0.78782 0.83284 

2 0.64412 0.71964 0.77195 

3 0.66903 0.67128 0.84894 

4 0.64130 0.80683 0.79878 

5 0.65846 0.78597 0.87033 

6 0.71512 0.71407 0.87689 

7 0.68218 0.80170 0.80999 

8 0.69148 0.72700 0.80335 

9 0.59842 0.64447 0.82691 

10 0.71557 0.72315 0.78931 

Average 0.67073 0.73819 0.82293 

Because both the R/S analysis method and variance plot method are 

sensitive to the presence of explicit short-range dependence, whereas the 

ACF analysis only gives us a heuristic suggestion without quantitative 

estimations, we need some formal statistical techniques for detecting long-

memory in the streamflow series. 

5.3. DETECTING LONG-MEMORY WITH STATISTICAL TEST METHOD 

AND MLE METHOD 

In this section, we will detect the presence of long-memory in the 

streamflow processes of streamflow processes with two statistical test 
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techniques, i.e., the Lo’s modified R/S test (Lo, 1991), and the GPH test 

(Geweke and Porter-Hudak, 1983). In addition we will try to detect the 

presence of long-memory by estimating the fractional differencing 

parameter d.

5.3.1. Lo’s modified R/S analysis 

As having been shown in Section 5.2, the classical R/S analysis is 

sensitive to the presence of explicit short-range dependence structures, and 

it lacks of a distribution theory for the underlying statistic. To overcome 

these shortcomings, Lo (1991) proposed a modified R/S statistic that is 

obtained by replacing the denominator S(t, k) in Eq. 52, i.e., the sample 

standard deviation, by a modified standard deviation Sq which takes into 

account the autocovariances of the first q lags, so as to discount the 

influence of the short-range dependence structure that might be present in 

the data. Instead of considering multiple lags as in Eq. 52, only focus on lag 

k = N. The Sq is defined as 

1/ 2
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1 1 1
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j j i j

S x x q x x x x
N N

,
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where
N

x  denotes the sample mean of the time series, and the weights j(q)

are given by wj( q) = 1 – j/(q+1), q < N. Then the Lo’s modified R/S statistic 

is defined by 
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 .                 (59) 

If a series has no long-range dependence, Lo (1991) showed that given the 

right choice of q, the distribution of N
1/2

QN,q is asymptotic to that of 

0 10 1

max ( ) min ( )
tr

W V r V r  ,                                  (60) 

where V is a standard Brownian bridge, that is, V(r) = B(r) rB(1), where B

denotes standard Brownian motion. Since the distribution of the random 

variable W is known as 

2 2
2 2 2

1

( ) 1 2 (1 4 )
x j

j

P W x x j e .                         (61) 
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Lo gave the critical values of x for hypothesis testing at sixteen 

significance levels using Eq. 61, which can be used for testing the null 

hypothesis H0 that there is only short-term memory in a time series at a 

significance level .

5.3.2. GPH test 

Geweke and Porter-Hudak (1983) proposed a semi-nonparametric 

approach to testing for long-memory. Given a fractionally integrated 

process {xt}, its spectral density is given by: 

2

( ) 2sin( / 2) ( )
d

u
f f ,                               (62) 

where  is the Fourier frequency, fu( ) is the spectral density 

corresponding to ut, and ut is a stationary short memory disturbance with 

zero mean. Consider the set of harmonic frequencies j = (2 j/n), j = 0, 1, 

…, n/2, where n is the sample size. By taking the logarithm of the spectral 

density f( ) we have 

2
ln ( ) ln ( ) ln 4sin 2

j u j j
f f d ,               (63) 

which may be written in the alternative form 

2
ln ( ) ln (0) ln 4sin ( / 2) ln ( ) (0)

j u j u j u
f f d f f .   (63) 

The fractional difference parameter d can be estimated by the regression 

equations constructed from Eq. 63. Geweke and Porter-Hudak (1983) 

showed that using a periodogram estimate of f ( j), if the number of 

frequencies used in the regression Eq. 63 is a function g(n) (a positive 

integer) of the sample size n where g(n) = n  with 0 <  < 1, the least 

squares estimate d̂ using the above regression is asymptotically normally 

distributed in large samples: 
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where

2
ln[4sin ( 2)]

j j
U                                            (65) 

and U  is the sample mean of Uj , j = 1, · · · , g(n) . Under the null 

hypothesis of no long-memory (d = 0), the t-statistic
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has a limiting standard normal distribution. 

5.3.3. Maximum likelihood estimation of fractional differencing 

 parameter d 

Let the observation X = (x1, …, xn)
t
 be the ARFIMA(p,d,q) process 

defined by 

( )(1 ) ( ) ( )
d

t t
B B x B ,                                  (67) 

where B is the backshift operator; (B) = 1 - 1B - … - pB
P
 and (B) = 1- 

1B - ... - qB
q
 represent the ordinary autoregressive and moving average 

components; t is a white noise process with zero mean and variance 
2
.

The Gaussian log-likelihood of X for the process (Eq. 67) is given by 

2 11 1
log ( , , ) log(2 ) log | |

2 2 2

tn
L X X ,             (68) 

where  = ( 1, …, p; d; 1, …, q) is the parameter vector;  denotes the n

n covariance matrix of X depending on  and 
2
, | | denote the 

determinant of . The maximum likelihood estimators ˆ  and 
2

ˆ  can be 

found by maximizing logL( ,
2
) with respect to  and 

2
.

In this study, the maximum likelihood estimation method implemented 

in S-Plus version 6 (referred to as S-MLE) is used to estimate the fractional 

differencing parameter d. S-MLE is implemented based on the approximate 

Gaussian maximum likelihood algorithm of Haslett and Raftery (1989). If 

the estimated d is significantly greater than zero, we consider it an evidence 

of the presence of long-memory. 

5.3.4. Monte Carlo simulation results for long-memory detection 

Before applying the Lo’s test, GPH test and S-MLE method to the 

streamflow processes, we perform an extensive Monte Carlo investigation 

in order to find out how reliable the Lo’s test, the GPH test and the S-MLE

are with AR and ARFIMA processes. We consider five AR(1) and six 

ARFIMA(1,d,0) processes. All AR(1) models are of the form (1- B)xt = t,

and all ARFIMA(1,d,0) of form (1- B) (1-B)
 d

 xt = t, where { t} are i.i.d 

standard normal, B is the backshift operator. For the AR models, large 

autoregressive coefficients, i.e.,  = 0.5, 0.8, 0.9, 0.95, 0.99, because these 

are the cases commonly seen in streamflow processes. For the ARFIMA 

models,  = 0, 0.5, 0.9 and d = 0.3, 0.45. We generate 500 simulated 
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realizations of with size 500, 1000, 3000, 10000 and 20000, respectively, 

for each model. The AR series and the ARFIMA series are produced by the 

arima.sim and arima.fracdiff.sim function built in S-Plus version 6 

(Insightful Corporation, 2001). 

For Lo's modified R/S test, the right choice of q in Lo's method is 

essential. It must be chosen with some consideration of the data at hand. 

Some simulation studies have shown  (Lo, 1991; Teverovsky et al., 1999) 

that, for any of these series, the probability of accepting the null hypothesis 

varied significantly with q. In general, for the larger sample lengths, the 

larger the q, the less likely was the null hypothesis to be rejected. One 

appealing data-driven formula (Andrews and Donald WK, 1991) for 

choosing q based on the assumption that the true model is an AR(1) model 

is given by

2 / 31/ 3

2

ˆ3 2

ˆ2 1

n
q  ,                                      (69) 

where [ ] denotes the greatest integer function, n is the length of the data, 

ˆ  is the estimated first-order autocorrelation coefficient. However, our 

simulation for AR processes and ARFIMA processes with different 

intensity of dependence indicate that this data-driven formula is too 

conservative in rejecting the null hypothesis of no long-memory, especially 

for cases where autocorrelations at lag 1 are high. After a trial-and-error 

procedure, we use the following modified formula to choose the lag q:

2 / 31/ 4

2

ˆ2

ˆ10 1

n
q .                                       (70) 

where ˆ  is the autoregressive function at lag 1, i.e., ACF(1). This modified 

formula is a trade-off between lowering the probability of wrongly rejecting 

the null hypothesis of no long-memory for AR processes, and reserving the 

power of correctly rejecting the null hypothesis for ARFIMA processes. 

The null hypothesis of no long-memory is rejected at a 5% significance 

level if QN,q is not contained in the interval [0.809, 1.862] (Lo, 1991). 

Similarly to the case with Lo’s test, for the GPH test, there is a choice of 

the number of frequencies g(n) used in the regression Eq. 63. This choice 

entails a bias-variance trade-off. For a given sample size, as g(n) is 

increased from 1, the variance of the d estimate decreases, but this decrease 

is typically offset by the increase in bias due to non-constancy of fu( ).

Geweke and Porter-Hudak (1983) found that choosing g(n) = n
0.5

 gave good 

results in simulation. We adopt such a criterion in the Monte Carlo 
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simulation study. The periodogram used for calculating GPH test statistic is 

smoothed with a modified Daniell smoother of length 5.The null hypothesis 

of no long-memory (d = 0) is rejected at a 5% significance level if t-statistic

is not contained in the interval [-1,960, 1.960]. 

When estimating the parameter d with the S-MLE method, we assume 

that the order p of the AR component for each simulated ARFIMA process 

is unknown before hand. Instead, we estimate the order p of the AR 

component by using the AIC criterion (Akaike, 1973).

The results of detecting long-memory in simulated AR and ARFIMA 

processes of sizes ranging from 500 to 20000 with Lo’s test, GPH test and 

the S-MLE estimates of d are reported in Table 9. For Lo’s test, we list the 

average values of the lags chosen with the data-driven formula (Eq. 70), 

their standard deviations (denoted as SD of lag), and the number of 

acceptance of the null hypothesis for 500 simulations. For GPH test, we list 

the average of the estimates of d, their standard deviations (denoted as SD 

of lag), and the number of acceptance of the null hypothesis for 500 

simulations. For the S-MLE method, we give the averages and standard 

deviations (SD) of the estimates of d. According to the results with 

simulated AR and ARFIMA processes, shown in Table 9, we have the 

following findings: 

(1) For AR processes, when the autocorrelation is less than 0.9, both the 

Lo’s R/S test and the GPH test work well, and the GPH test has a better 

performance. But when the autoregressive coefficient is higher than 0.9, the 

probability of committing Type I error with the GPH test increase very fast, 

and the GPH test gets useless for the cases when is as high as 0.95 or 

above, even for the size of 20000 points. In contrast, the probability of 

committing Type I error with the Lo’s R/S test still considerably lower even 

for AR processes with a  of as high as 0.99. But it seems that the lag 

chosen with formula (Eq. 8) tends to be too small for series of big size, 

whereas a little bit too large for series of small size for AR processes with 

large values of .

(2) For ARFIMA processes, the GPH technique yields downwardly 

biased estimates of d when an AR term of low autoregressive coefficient 

value (e.g.,  0.5) is present, whereas yields upwardly biased estimates of d

when an AR term of high autoregressive coefficient value (e.g., = 0.9) is 

present. This seems to be in contradiction with the results of Sowell (1992), 

who showed that, when the sample length is small, the GPH technique 

yieldsupwardly biased estimates of d when AR and MA terms are present. 

On the other hand, the power of GPH test increases with the increase of 

data size, the intensity of long-memory, and autocorrelations of their AR 

component. For cases where the data size is over 10000, the percentage of 

committing Type II error, i.e., false acceptance of the null hypothesis of no 
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long-memory, by GPH test is close to zero. In contrast, the Lo’s test only 

performs slightly better than the GPH test when the intensity of long-

memory is not strong and the value of in the AR component is low, but 

for the cases of strong intensity of long-memory and with a autoregressive 

component of strong autocorrelation, the Lo’s performs far less powerful 

than the GPH test. 

(3) Although S-MLE method does not provide a statistic test for the 

existence of long-memory, the estimates of d seems to give a good 

indication of whether or not the long-memory is present. It is shown by our 

simulation study that: 

a) For AR(1) processes, S-MLE gives basically correct estimates of d,

i.e., d = 0, even when the autoregressive coefficients are very high, 

although the estimates are slightly positively biased when the data 

size is small (e.g., 500 points). The estimates get more accurate 

(according to the averages) and more stable (according to the 

standard deviations) with the increase of sample size. 

b) For ARFIMA processes, S-MLE provides significantly downwardly 

biased estimates when the data size is small (e.g., less than 10
3
). The 

estimates of d given by S-MLE increase with increasing sample size 

and are basically correct when the data size is close to 10
4
. But the 

estimates of d get upwardly biased when the data size is too big 

(say, > 10
4
). This is in contradiction with the result of Kendziorskia 

et al (1999), who showed that S-MLE provided unbiased estimates 

of d for ARFIMA(0,d,0) processes of length 2
11

 (2048) or greater. 

(4) Data size has a significant impact on the power of all the three 

methods. The power of  Lo’s test and GPH test increases with the increase 

of data size, and the estimates of d with GPH test and S-MLE converge with

the increase of data size. Agiakloglou et al. (1993) found that GPH 

estimators performed poorly for AR(1) processes with   = 0.9 for sample 

size of 100 to 900. The simulation results of Hurvich and Beltrao (1993) 

also showed the poor performance of the GPH estimator when  = 0.9 for 

not only AR(1) processes but also ARFIMA(1,d,0) processes. In our 

simulation study, it is shown that, on one hand, the power of GPH test does 

decrease with the increase of the autoregressive coefficient; on the other 

hand, the power of GPH test increases with the increase of sample size. If 

we use a sample size of larger than 10
4
 points, GPH test still has very good 

performance for AR(1) processes with  = 0.9. But the use of GPH test is 

helpless when  is larger than 0.95, even with a data size of larger than 10
4
.

One possible solution could be to choose the number of frequencies used in 

the regression Eq. (63) more carefully (Giraitis et al., 1997; Hurvich and 

Deo, 1999). But the effectiveness of these methods is yet to be confirmed. 
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For example, as  increases, the estimates of d using the number of 

frequencies g(n) selected by the plug-in method proposed by Hurvich and 

Deo (1999) are much more positively biased than simply using g(n) = n
1/2

.

(5) Teverovsky et al. (1999) pointed out that, picking a single value of q

with Lo’s test to determine whether or not to reject the null hypothesis of no 

long-range dependence in a given data set is highly problematic. In 

consequence, they recommend that one always relies on a wide range of 

different q-values, and does not use Lo's method in isolation, instead, uses it 

always in conjunction with other graphical and statistical techniques for 

checking for long-memory, especially when Lo's method results in 

accepting the null hypothesis of no long-range dependence. While we agree 

that we should not use Lo's method in isolation, it is doubtful that using a 

wide range of different q-values may improve the test reliability. With a 

wide range of q-values, you are still not sure which one gives the right 

answer.

TABLE 9. Long-memory detection results for simulated AR and ARFIMA series 

Lo's R/S test GPH test S-MLE 

Model
Data

size
AVERAGE

LAG

SD of 

lag
accepted

 Average 

d

SD of d accepted 

 Average

 D

SD OF D

500 2.8  0.5  464 -0.0167  0.1302  495 0.0149  0.0350  

1000 3.2  0.4  454 -0.0123  0.1141  490 0.0189  0.0325  

3000 4.6  0.5  468 -0.0124  0.0772  490 0.0136  0.0220  

10000 6.1  0.2  455 -0.0119  0.0607  490 0.0093  0.0132  

AR(1)

ar = .5 

20000 7.8  0.4  469 -0.0078  0.0479  488 0.0057  0.0100  

500 6.7  0.8  428 0.1220  0.1388  470 0.0269  0.0669  

1000 8.0  0.7  442 0.0637  0.1110  489 0.0209  0.0419  

3000 10.8  0.5  441 0.0163  0.0827  490 0.0199  0.0322  

10000 14.7  0.5  441 -0.0016  0.0605  490 0.0114  0.0207  

AR(1)

ar = .8 

20000 17.6  0.5  454 -0.0036  0.0511  483 0.0079  0.0149  

500 11.3  1.6  431 0.3252  0.1342  268 0.0290  0.0566  

1000 13.5  1.4  408 0.2189  0.1135  326 0.0296  0.0632  

3000 18.1  1.1  414 0.0957  0.0851  436 0.0240  0.0488  

10000 24.6  0.8  441 0.0273  0.0600  483 0.0132  0.0236  

AR(1)

ar = .9 

20000 29.4  0.7  457 0.0107  0.0500  489 0.0081  0.0150  

500 18.7  3.6  451 0.5739  0.1395  24 0.0302  0.0497  

1000 22.4  3.1  429 0.4488  0.1154  34 0.0390  0.0801  

3000 29.6  2.4  426 0.2594  0.0800  91 0.0270  0.0535  

10000 40.3  1.8  416 0.1201  0.0601  300 0.0117  0.0284  

AR(1)

ar = .95 

20000 47.9  1.6  416 0.0665  0.0475  409 0.0065  0.0160  
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Lo's R/S test GPH test S-MLE 

Model
Data

size
AVERAGE

LAG

SD of 

lag
accepted

 Average 

  d 

SD of d accepted 

 Average

 D 

SD OF D 

500 52.9  20.3  494 0.9122  0.1617  0 0.0482  0.0674  

1000 65.3  19.3  484 0.8530  0.1226  0 0.0431  0.0780  

3000 86.8  14.7  399 0.7297  0.0826  0 0.0231  0.0442  

10000 119.7  11.9  389 0.5555  0.0583  0 0.0093  0.0211  

AR(1)

ar = .99 

20000 142.4  9.5  380 0.4478  0.0477  0 0.0068  0.0148  

500 2.2  0.5  129 0.2587  0.1360  353 0.2144  0.1100  

1000 2.8  0.5  61 0.2749  0.1157  228 0.2571  0.0829  

3000 3.8  0.5  15 0.2821  0.0826  68 0.2786  0.0646  

10000 5.2  0.4  0 0.2884  0.0572  2 0.3043  0.0201  

ARFIMA

d=0.3

20000 6.3  0.5  0 0.2900  0.0470  0 0.3072  0.0162  

500 7.1  1.4  255 0.2729  0.1402  333 0.1728  0.1346  

1000 8.6  1.3  139 0.2783  0.1130  233 0.2126  0.1165  

3000 11.4  1.2  63 0.2878  0.0919  83 0.2849  0.0675  

10000 15.6  1.0  8 0.2934  0.0604  4 0.3049  0.0363  

ARFIMA

ar=0.5

d=0.3

20000 18.6  0.9  5 0.2955  0.0493  0 0.3102  0.0202  

500 41.1  12.2  493 0.6375  0.1513  16 0.1683  0.1451  

1000 49.4  11.6  478 0.5213  0.1123  6 0.2035  0.1333  

3000 65.4  11.2  345 0.3964  0.0881  5 0.2397  0.1243  

10000 89.4  9.2  155 0.3316  0.0627  2 0.3103  0.0678  

ARFIMA

ar=0.9

d=0.3

20000 106.6  8.3  78 0.3145  0.0512  0 0.3281  0.0501  

500 7.0  4.0  130 0.4077  0.1506  157 0.3092  0.1572  

1000 8.5  4.4  56 0.4274  0.1237  53 0.3616  0.1309  

3000 11.2  5.2  11 0.4371  0.0873  0 0.4238  0.0620  

10000 15.4  6.0  0 0.4373  0.0613  0 0.4589  0.0173  

ARFIMA

d=0.45

20000 18.6  7.0  0 0.4371  0.0489  0 0.4676  0.0164  

500 19.1  10.1  346 0.4331  0.1515  133 0.2355  0.1628  

1000 22.9  10.6  204 0.4385  0.1164  33 0.3328  0.1311  

3000 31.0  12.2  66 0.4404  0.0893  3 0.4226  0.0668  

10000 42.4  14.6  11 0.4429  0.0635  0 0.4608  0.0228  

ARFIMA

ar=0.5

d=0.45

20000 50.2  16.2  4 0.4459  0.0507  0 0.4718  0.0170  

500 135.0  78.5  493 0.7956  0.1394  2 0.1306  0.1757  

1000 163.4  90.2  495 0.6733  0.1172  1 0.1712  0.1828  

3000 222.9  116.2  472 0.5539  0.0878  0 0.3128  0.1665  

10000 299.5  138.7  273 0.4856  0.0599  0 0.4464  0.0577  

ARFIMA

ar=0.9

d=0.45

20000 361.8  158.0  140 0.4666  0.0491  0 0.4748  0.0226  

Note: The Lo's R/S test and the GPH test are based on 500 replications. The S-MLE estimate of d

are based on 100 replications. 
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On the basis of the above findings, to obtain reliable test results on 

detecting the presence of long-memory, we have two suggestions: First, 

increase the size of test data, as we see that the power of Lo’s test and GPH 

test increases with the increase of data size, and the estimates of d with the 

GPH-test and S-MLE converge as the sample size increases, but notice that 

the estimate with S-MLE would be biased upwardly when the data size is 

above 10
4
; Second, use the detection results in combination with each other, 

as have been suggested by Teverovsky et al. (1999). Here we consider the 

combined use of Lo’s test, GPH-test and S-MLE. As shown in Table 9, the 

combined use of these three methods produces the following alternatives: 

a) Failure to reject by both the Lo’s test and the GPH-test, and low 

values of estimated d (e.g., <0.1) with S-MLE, provide evidence in 

favour of no existence of long-memory; 

b) Rejection by both Lo’s test and GPH test suggests, and high values 

of estimated d (e.g., >0.2) with S-MLE, support that the series is a 

long-memory process; 

c) In other cases, the data are not sufficiently informative with respect 

to the long-memory properties of the series. 

We especially recommend the combined use of GPH test and S-MLE to 

detect the existence of long-memory, and the most appropriate date size for 

estimating d with S-MLE is slightly less than 10
4
.

5.3.5. Long-memory test for streamflow processes 

According to what we found with the Monte Carlo simulations, we use 

the Lo’s R/S test, GPH test and S-MLE method jointly to detect the 

existence of long-memory in streamflow processes in this study. For Lo’s 

modified R/S test, we adopt the data-driven formula (Eq. 70) to choose the 

lag q. For GPH test, we choose the number of frequencies g(n) = n
0.5

 as 

suggested by Geweke and Porter-Hudak (1983). The null hypothesis of no 

long-term dependence is rejected if QN,q in Lo’s test is not contained in the 

interval [0.809, 1.862] (Lo, 1991), or if t-statistic in GPH test is not 

contained in the interval [-1,960, 1.960].  With the S-MLE method, we 

assume that the processes are ARFIMA(p,d,0) processes, and the order p of 

AR component is determined by using the AIC criterion (Akaike, 1973). 

All the streamflow series are log-transformed and deseasonalized. In 

addition, the streamflow series of the Yellow River at TG are detrended 

first. The test results for all streamflow series are listed in Table 10. The 

results show that, the intensity of long-memory decreases with the increase 

of timescale according to the results of all the three methods. All daily flow 

series exhibit strong long-memory, because the presence of long-memory is 

confirmed by all the three methods for 4 cases, and in another two cases 

(Danube and Rhine), it is confirmed by the GPH test and S-MLE method. 
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The presence of long-memory in 1/3-monthly series is confirmed in three 

cases (Yellow at TNH, Yellow at TG, and Umpqua), rejected in two cases 

(Danube and Rhine), and not conclusive in one case (Ocmulgee). For 

monthly series, the existence long-memory is rejected by both the GPH test 

and S-MLE method for four cases because the hypothesis of no long-

memory is accepted by the GPH test, and S-MLE give a estimate of d less 

than 0.2. But the monthly series of Yellow River at TG and Umpqua may 

exhibit long-memory. 

TABLE 10. Detecting the existence in streamflow series with Lo’s modified R/S test, GPH 

test and S-MLE method 

Lo’s test GPH test S-MLERiver

(station)

Timescale

Lag Statistic statistic d d 

Daily 94 2.5111* 7.7853 * 0.4720 0.4922 

1/3-monthly 11 2.2910 * 3.277 0* 0.3854 0.4518 
Yellow

(TNH)

Monthly 5 1.9644 * 1.4233 0.2357 0.0000 

Daily 39 3.06975 * 5.4234 * 0.3422 0.3561 

1/3-monthly 7 2.4679 * 2.9501 * 0.3636 0.3194 
Yellow

(TG)

Monthly 3 2.1437 * 1.3756 0.2415 0.3400 

Daily 63 1.7273 5.4564 * 0.2742 0.3865 

1/3-monthly 8 1.5512 0.8792 0.0848 0.0001 
Danube

(Achleiten)

Monthly 4 1.3044 -0.1307 -0.0176 0.0000

Daily 170 1.5288 6.5402 * 0.3229 0.4167 

1/3-monthly 11 1.6853 1.1944 0.1129 0.0000 
Rhine

(Lobith)

Monthly 5 1.4853 0.1528 0.0202 0.0000 

Daily 31 2.7826 * 7.1878 * 0.3821 0.4663 

1/3-monthly 6 2.0852 * 1.8812 0.1916 0.1956 
Ocmulgee

(Macon)

Monthly 4 1.6260 1.4253 0.2039 0.1368 

Daily 58 3.1110 * 5.6400 * 0.2785 0.4445 

1/3-monthly 8 2.6341 * 2.3899 * 0.2259 0.2189 
Umpqua

(Elkton)

Monthly 4 2.2376 * 2.5076 * 0.3313 0.1799 

Note: An asterisk indicates the rejection of the null hypothesis of no long-memory at the 0.05

significance level. 

A special concern here is the value of d for the daily streamflow process 

of the Yellow River at TNH, because we will model and forecast this 

streamflow process later. The estimates of d given by the GPH test and S-

MLE are 0.472 and 0.4922, respectively. In addition, with S-MLE, we 

know that the process also has an AR component of high autoregressive 
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coefficients. The size of the series is 16437 points. As we know from the 

results for simulation ARFIMA series, for a series of this size and strong 

autocorrelations, both GPH method and S-MLE method give positively 

biased estimates of d. Therefore, taking the results from the heuristic 

methods into account, we will consider a d of less than 0.4 when modeling 

the daily process at TNH. 

6. Conclusions 

There is no obvious trend in the average annual flow process of the 

upper Yellow River at TNH over the period 1956 to 2000, whereas the 

discharges recorded at a downstream station TG exhibit significantly 

declining trend. Fu et al. (2004) investigated the trend of annual runoffs at 

another three stations along the mainstream of the Yellow River. Put 

together the results, we find that the lower the reaches of the Yellow River, 

the more significant the declining trend. However, generally, there is no 

significant decline in the precipitation processes in the Yellow River basin 

(Fu et al., 2004). The phenomenon that the lower the reaches of the Yellow 

River, the more significant the downward trend is a clear indication of 

anthropogenic influence, because the lower the reaches, the more human 

intervention the river would suffer, including the expansion of irrigation 

areas, the regulation of thousands of reservoirs in both the main channel 

and tributaries, and the increase of water consumption with the fast growing 

industry and population. Although the impacts of global warming on water 

supply are widely concerned, in the case of the Yellow River basin, the 

impacts of warming on the river flow processes of the Yellow River seem 

far less significant than anthropogenic influences.

The Augmented Dickey-Fuller (ADF) unit root test (Dickey and Fuller, 

1979; Said and Dickey, 1984) and KPSS test (Kwiatkowski et al., 1992) are 

introduced to test for the nonstationarity in streamflow time series. It is 

shown that the smaller the timescale of the streamflow process, the more 

likely it tends to be nonstationary. 

Seasonal variations in the autocorrelation structures are present in all the 

deseasonalized daily, 1/3-monthly and monthly streamflow processes, 

albeit that such seasonal variation is less obvious for the streamflow of the 

Danube and the Ocmulgee. This indicates that, even after the 

deseasonalization procedure, the seasonality still shows itself, not in the 

mean and variance, but in the autocorrelation structure. 

The investigation of the long-memory phenomenon in streamflow 

processes at different timescales shows that, with the increase of timescale, 

the intensity of long-memory decreases. According to the Lo’s R/S tests 

(Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the maximum 
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likelihood estimation method implemented in S-Plus version 6 (S-MLE), all 

daily flow series exhibit strong long-memory. Out of six 1/3-monthly 

series, three series (Yellow River at TNH and TG, and Umpqua) exhibit 

long-memory, whereas two 1/3-monthly series (Danube and Rhine) seem to 

be short-memory series. Only one monthly flow series (Umpqua) may 

exhibit long-memory.

Comparing the stationarity test results and the long-memory test results, 

we find that these two types of test are more or less linked, not only in that 

the test results have similar timescale pattern, but also in that there is a 

general tendency that the stronger the nonstationarity, the more intense the 

long-memory. In fact, there are some attempts to use KPSS stationarity test 

to test for the existence of long-memory (e.g., Lee and Schmidt, 1996). It is 

worthwhile to further the investigation on the issue of the relationship 

between nonstationarity and the long-memory in the future. 
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APPENDIX 1 HYPOTHESIS TESTING 

Setting up and testing hypotheses is an essential part of statistical 

inference. In order to carry out a statistical test, it is necessary to define the 

null and alternative hypotheses; which describe what the test is 

investigating. In each problem considered, the question of interest is 

simplified into two competing claims / hypotheses between which we have 

a choice; the null hypothesis, denoted H0 (e.g., there is no significant 

change in the annual maximum flow series), against the alternative 

hypothesis, denoted H1 (e.g., the annual maximum flow is changing over 

time). In carrying out a statistical test one starts by assuming that the null 

hypothesis is true, and then checks whether the observed data are consistent 

with this hypothesis. The null hypothesis is rejected if the data are not 

consistent with H0.

To compare between the null and the alternative hypotheses a test 

statistic is selected and then its significance is evaluated, based on the 

available evidence. A test statistic is a quantity calculated from our sample 

of data subject to testing. Its value is used to decide whether or not the null 

hypothesis should be rejected in our hypothesis test. The choice of a test 

statistic will depend on the assumed probability model and the hypotheses 

under question. 

The significance level of a statistical hypothesis test is a fixed 

probability of wrongly rejecting the null hypothesis H0, if it is in fact true. It 

is the probability of a type I error. Usually, the significance level is chosen 

to be 0.05. 

The probability value (p-value) of a statistical hypothesis test is the 

probability of getting a value of the test statistic as extreme as or more 

extreme than that observed by chance alone, if the null hypothesis H0 is 

true. It is equal to the significance level of the test for which we would only 

just reject the null hypothesis. Small p-values suggest that the null 

hypothesis is unlikely to be true. The smaller it is, the more convincing is 

the rejection of the null hypothesis. 
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The diagram below represents four outcomes of the decisions we make, 

in terms of whether or not the null is true, and whether we reject the null or 

not.

Truth of Null 

Decision

True Not True 

Reject Null TYPE I POWER 

FTR Null CORRECT TYPE II 

As you see, FTR (failed to reject) the null when the null is true is a 

correct decision. However, we're usually interested in trying to find true 

differences, and therefore look to reject null hypotheses. Rejecting the null 

when it is really not true is a correct decision as well. More specifically, the 

probability a test has to do this is referred to as power. Power may be 

defined as the probability of correctly rejecting the null hypothesis. In other 

words, it is the probability of rejecting the null hypothesis given that the 

null is incorrect. Some people also refer to power as precision or sensitivity.

APPENDIX 2 STATIONARITY AND PERIODIC STATIONARITY 

Let {xt}, t = 1, …, N, be N consecutive observations of a seasonal time 

series with seasonal period s. For simplicity, assume that N/s = n is an 

integer. In other words, there are n full years of data available. The time 

index parameter t may be written t = t(r-m) = (r-1)s + m, where r = 1, …, n

and m = 1, …, s. In the case of monthly data s = 12 and r and m denote the 

year and month. 

If

( , )
( )

m t r m
E z

and

, ( , ) ( , )
cov( , )

l m t r m t r m l
z z

exist and depend only on l and m, zt is said to be periodically correlated or 

periodic stationary (Gladysev, 1961). Note that the case where m and t,m

do not depend on m reduces to an ordinary covariance stationary time 

series.
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A series {xt} is called stationary if, loosely speaking, its statistical 

properties do not change with time. More precisely, {xt} is said to be 

completely stationary if, for any integer k, the joint probability distribution 

of xt, xt+1, …,  xt+k-1 is independent on the time index t (see e.g., Priestley, 

1988, pp. 4-5). 




