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2Statistical Tools and Concepts

Abstract

Mineral resource estimation requires extensive use of statistics. In our context, statistics are 
mathematical methods for collecting, organizing, and interpreting data, as well as drawing 
conclusions and making reasonable decisions based on such analysis. This chapter presents 
essential concepts and tools required throughout the book.

2.1  Basic Concepts

A conventional presentation of statistics includes the no-
tion of a population that is the virtually infinite collection 
of values that make up the mineral deposit. A sample is a 
representative subset selected from the population. A good 
sample must reflect the essential features of the population 
from which it is drawn. A random sample is a sample where 
each member of a population had an equal chance of being 
included in the sample. The sample space is the set of all 
possible outcomes of a chance experiment, for example a 
drilling campaign. The event of a sample space is a group of 
outcomes of the sample space whose members have some 
common characteristic. Statistically independent events are 
such that the occurrence of one event does not depend on the 
occurrence of other events. Sampling mineral deposits rarely 
fits nicely in the framework of representative samples from a 
statistical population; nevertheless, many concepts and tools 
from conventional statistics are used routinely.

Inductive statistics or statistical inference is attempted if 
the sample is considered representative. In this case, conclu-
sions about the population can often be inferred. Since such 
inference cannot be absolutely certain, the language of prob-
ability is used for stating conclusions. Descriptive statistics is 
a phase of statistics that describes or analyses a given sample 
without inference about the population. Although our goal in 
mineral resource estimation is almost always inference, we 
use many descriptive statistics for viewing, understanding, 
and evaluating data.

An essential concept in statistics is stationarity, that is, our 
choice of data to pool together for common analysis. Chap-
ter 6 describes stationarity more formally, but the concept 

is that data must be grouped together before any statistical 
calculations are attempted. Ideally, a decision of how to 
group the data can be made on the basis of clear geological 
controls, as discussed in Chap. 4. Some of the statistical tools 
presented in this chapter are useful to help make a choice of 
stationarity, but most assume that the decision has already 
been made and the data have been assembled into reasonable 
groups.

In most cases we consider continuous variables that are 
mass or volume fractions, that can take any value between 
a minimum (0 %) and maximum (100 %). We sometimes 
consider categorical or discrete variables that can take spe-
cific values from a closed set. A typical categorical variable 
would be lithology or mineralization type.

Statistical tools are used for several reasons, including 
(1) an improved understanding of the data and the mineral 
deposit, (2) to ensure data quality, (3) to condense infor-
mation, and (4) to make inferences and predictions. In gen-
eral, we are not interested in the statistics of the samples. 
Our goal is to go beyond the limited sample to predict the 
underlying population. Additionally, creative visualization 
of data is an important component of mineral resource es-
timation, partly because of its usefulness as a tool to un-
derstand data, but also to help validate spatially distributed 
models.

There are many good references on basic statistics. One 
accessible reference is Lapin (1983). This book uses a few 
notation conventions. Lowercase  letters  ( x, y, z,…) denote 
actual values such as a measured value or a specified thresh-
old. Uppercase letters ( X, Y, Z,…) denote a random variable 
(RV) that is unknown. We characterize the uncertainty in a 
random variable with a probability distribution. A random 
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variable could be the grade at an unsampled location denoted 
Z(u) where u represents a location coordinates vector. A set 
of random variables is called a random function (RF). The 
set of grades over a stationary geologic population A is a 
random function {Z(u), u∈A}.

2.2  Probability Distributions

Probabilities are closely associated to proportions. A prob-
ability of 0.8 or 80 % assigned to an event means that the 
proportion of times it will occur, in similar circumstances, 
is 0.8 or 8/10 or 80 %. The similar circumstances relates to 
our decision of stationarity. In some cases we calculate the 
probabilities directly through proportions. For example, the 
probability for a mineral grade within a particular geologic 
unit to be less than a particular threshold could be calculated 
by counting the number of samples below the threshold and 
dividing by the total number of data.

There are many cases, however, when probabilities can-
not be calculated from proportions. This is particularly true 
for conditional probabilities, that is, probability values given 
certain a set of data events. Consider the probability that a 
mineral grade be less than a particular threshold given one 
measurement 50 m away that is twice the threshold and an-
other measurement 75 m away that is just below the thresh-
old. In such cases, we do not have multiple replications to 
calculate an experimental proportion. We must rely on prob-
abilistic models and well established probability laws.

Probability distributions are characterized as parametric 
or non-parametric. A parametric distribution model has a 
closed analytical expression for the probability, and is com-
pletely determined by a finite number of parameters, as for 
example the Gaussian distribution model with parameters 
mean (m) and standard deviation (s) that control the center 
and spread of the distribution, respectively.

It is common to consider probability distributions that 
relate to one continuous or categorical variable at a time. 
Such distributions are called univariate distributions. Two 
examples: (1) the probability for a continuous variable to be 
less than a particular threshold, or (2) the probability for a 
particular lithology to prevail at a certain location. When we 
consider probability distributions of more than one variable 
at a time, then we call them multivariate distributions. The 
distribution of two variables is a bivariate distribution. For 
example, the probability of one grade being less than one 
threshold and a second grade being less than another thresh-
old is a bivariate probability.

There are a large number of references for probability 
and basic statistics. Some general statistical ones and also 
some related to spatial data include Borradaile (2003); Davis 
(1986); Koch and Link (1986); Ripley (1987); and Rohatgi 
and Ehsanes Saleh (2000).

2.2.1  Univariate Distributions

The cumulative distribution function (CDF) is the universal 
way to express a state of incomplete knowledge for a con-
tinuous variable. Consider an RV denoted by Z. The CDF 
F(z) is defined as:

The lowercase z denotes a threshold. Prob{ · } denotes a 
probability or proportion. An example CDF is shown on 
Fig. 2.1; the z-variable is between 2 and 35 and is most prob-
ably between 20 and 30.

A cumulative histogram is an experimental CDF based on 
the data. It is useful to see all of the data values on one plot 
and sometimes can be used to isolate statistical populations. 
Cumulative histograms do not depend on a bin width, and 
can be created at the resolution of the data.

An important challenge is to determine how representa-
tive each sample is of the actual mineralization. This issue 
is discussed in more detail in Chap. 5. It is also important to 
determine whether the distribution of all samples adequate-
ly represents the actual grade distribution in the deposit, or 
whether certain weighting should be applied.

The interval probability of Z occurring in an interval from 
a to b (where b > a) is the difference in the CDF values eval-
uated at values b and a:

The probability density function (PDF) is the derivative of 
the CDF, if it is differentiable. Applying the fundamental 
theorem of calculus, the CDF can be obtained by integrating 
the PDF:

( ) { } [0,1]F z Prob Z z= ≤ ∈
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Fig. 2.1  Cumulative distribution of 2,993 data values. The cumulative 
frequency or probability is the probability to be less than the threshold 
value

 



132.2  Probability Distributions

The most basic statistical tool used in the analysis of data is 
the histogram, see Fig. 2.2. Three decisions must be made: 
(1) arithmetic or logarithmic scaling—arithmetic is appro-
priate because grades average arithmetically, but logarithmic 
scaling more clearly reveals features of highly skewed data 
distributions; (2) the range of data values to show—the mini-
mum is often zero and the maximum is near the maximum 
in the data; and (3) the number of bins to show on the histo-
gram, which depends on the number of data. The number of 
bins must be reduced with sparse data and it can be increased 
when there are more data. The important tradeoff is reduced 
noise (less bins) while better showing features (more bins).

The mean or average value is sensitive to extreme values 
(or outliers), while the median is sensitive to gaps or missing 
data in the middle of a distribution. The distribution can be 
located and characterized by selected quantiles. The spread 
is measured by the variance or standard deviation. The coef-
ficient of variation (CV) is the standard deviation divided 
by the mean; it is a standardized, unit-less measure of vari-
ability, and can be used to compare very different types of 
distributions. When the CV is high, say greater than 2.5, the 
distribution must be combining high and low values together 
and most professionals would investigate whether the pool of 
data could be subset based on some clear geological criteria.

Sample histograms tend to be erratic with few data. Saw-
tooth-like fluctuations are usually not representative of the 
underlying population and they disappear as the sample size 
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increases. There are techniques available for smoothing the 
distribution, which not only removes such fluctuations, but 
also allows increasing the class resolution and extending the 
distributions beyond the sample minimum and maximum val-
ues. Smoothing is only a consideration when the original set 
of data is small, and artifacts in the histogram have been ob-
served or are suspected. In practice, sufficient data are pooled 
to permit reliable histogram determination from the available 
data.

The graph of a CDF is also called a probability plot. 
This is a plot of the cumulative probability (on the Y axis) 
to be less than the data value (on the X axis). A cumula-
tive probability plot is useful because all of the data values 
are shown on one plot. A common application of this plot 
is to look at changes in slope and interpret them as dif-
ferent statistical populations. This interpretation should be 
supported by the physics or geology of the variable being 
observed. It is common on a probability plot to distort the 
probability axis such that the CDF of normally distributed 
data would fall on a straight line. The extreme probabilities 
are exaggerated.

Probability plots can also be used to check distribution 
models: (1) a straight line on arithmetic scale suggests a nor-
mal distribution, and (2) a straight line on logarithmic scale 
suggests a lognormal distribution. The practical importance 
of this depends on whether the predictive methods to be ap-
plied are parametric (Fig. 2.3).

There are two common univariate distributions that are 
discussed in greater detail: the normal or Gaussian and the 
lognormal distributions. The normal distribution was first 
introduced by de Moivre in an article in 1733 (reprinted in 
the second edition of his The Doctrine of Chances, 1738) in 
the context of approximating certain binomial distributions 
for large n. His result was extended by Laplace in his book 

Fig. 2.2  Histogram of 2,993 data values. The common representa-
tion of the histogram has constant bin widths; the number of data in 
each bin is labeled on this histogram

 

Fig. 2.3  An example of a probability plot. Data is lead concentration, 
on 2 m composites, on a logarithmic scale
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Analytical Theory of Probabilities (1812), and is now called 
the Theorem of de Moivre-Laplace. Laplace used the normal 
distribution in the analysis of errors of experiments. The im-
portant method of least squares optimization was introduced 
by Legendre in 1806. Gauss, who claimed to have used the 
method since 1794, justified it rigorously in 1809 by assum-
ing a normal distribution of the errors.

The Gaussian distribution is fully characterized by its two 
parameters, the mean and the variance. The standard normal 
PDF has a mean of zero and a standard deviation of one. 
The CDF of the Gaussian distribution has no closed form 
analytical expression, but the standard normal CDF is well 
tabulated in literature. The Gaussian distribution has a char-
acteristic symmetric bell shaped curve about its mean; thus 
the mean and median are the same, see Fig. 2.4.

The lognormal distribution is important because of its 
history in spatial statistics and geostatistics. Many earth 
science variables are non-negative and positively skewed. 
The lognormal distribution is a simple distribution that 
can be used to model non-negative variables with positive 
skewness. A positive random variable is said to be log-
normally distributed if X = ln(Y) is normally distributed 
(Fig. 2.5). There are many grade distributions that are ap-
proximately lognormal. These distributions are also charac-
terized by two parameters, a mean and a variance, although 
three-parameter lognormal distributions have been used in 
mining, see for example Sichel (1952). Lognormal distribu-
tions can be characterized by either their arithmetic or their 
logarithmic parameters.

The Central Limit theorem (see for example Lapin 1983) 
states that the sum of a great number of independent equally 
distributed (not necessarily Gaussian) standardized random 
variables (RV) tends to be normally distributed, i.e. if n RV’s 
Zi have the same CDF and zero means, the RV tends toward 

a normal CDF, as n increases towards infinity. The corollary 
of this is that the product of a great number of independent, 
identically distributed RV′s tends to be normally distributed. 
The theoretical justification of the normal distribution is of 
little practical importance; however, we commonly observe 
that the distribution of grades becomes more symmetric 
and normal-like as the volume of investigation becomes 
large—the randomness of the grades is averaged and the re-
sults tend to a normal distribution.

2.2.2  Parametric and Non-parametric 
Distributions

A parametric distribution model has an analytical expression 
for either the PDF or the CDF, as for the Gaussian density 
function and the Lognormal distribution. Parametric distribu-
tions sometimes relate to an underlying theory, as does the nor-
mal distribution to the Central Limit Theorem. There are many 
parametric distributions that are used in different settings in-
cluding the lognormal, uniform, triangular, and exponential 
distributions. Modern geostatistics makes extensive use of the 
Gaussian distribution because of its mathematical tractability. 
The lognormal distribution is important as well, but mostly 
from an historical perspective. In general, however, modern 
geostatistics is not overly concerned with other parametric 
distributions because data from any distribution can be trans-
formed to any other distribution including the Gaussian one if 
needed. Adopting a parametric distribution for the data values 
may be the only option in presence of very sparse data; a non-
parametric distribution is used when there are sufficient data.

There is no general theory for earth science related vari-
ables that would predict the parametric form for probabil-
ity distributions. Nevertheless, certain distribution shapes 
are commonly observed. There are statistical tests to judge 
whether a set of data values follow a particular parametric 
distribution. But these tests are of little value in resource es-
timation because they require that the data values all be inde-
pendent one from another, which is not the case in practice.

 

Fig. 2.4  A sketch of a normal or Gaussian distribution

   

 Fig. 2.5  A sketch of a lognormal distribution
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Parametric distributions have three significant advantages: 
(1) they are amenable to mathematical calculations, (2) the 
PDF and CDF are analytically known for all z values, and 
(3) they are defined with a few parameters. The primary dis-
advantage of parametric distributions is that, in general, real 
data do not conveniently fit a parametric model. However, 
data transformation permits data following any distribution 
to be transformed to any other distribution, thus capitalizing 
on most of the benefits of parametric distributions.

Most data distributions are often not well represented by 
a parametric distribution model. Sometimes distributions 
are characterized as non-parametric, that is, all of the data 
are used to define the distribution with experimental pro-
portions; a parametric model for the CDF or PDF is not re-
quired. In this case, the CDF probability distribution may be 
inferred directly from the data, and therefore non-parametric 
distributions are more flexible. The CDF is inferred directly 
as the proportion of data less than or equal to the threshold 
value z. Thus, a proportion is associated to a probability.

A non-parametric cumulative distribution function is a 
series of step functions. Some form of interpolation may 
be used to provide a more continuous distribution F( z) that 
extends to arbitrary minimum zmin and maximum zmax val-
ues. Linear interpolation is often used. More complex inter-
polation models could be considered for highly skewed data 
distributions with limited data.

2.2.3  Quantiles

Quantiles are specific Z values that have a probabilistic 
meaning. The p-quantile of the distribution F( z) is the value 
zp for which: F (zp) = Prob{Z ≤ zp} = p . The 99 quantiles 
with probability values from 0.01 to 0.99 in increments of 
0.01 are known as percentiles. The nine quantiles at 0.1, 0.2, 
…, 0.9 are called deciles. The 3 quantiles with probability 
values of 0.25, 0.5 and 0.75 are known as quartiles. The 0.5 
quantile is also known as the median. The cumulative distri-
bution function provides the tool for extracting any quantile 
of interest. The mathematical inverse of the CDF function is 
known as the quantile function:

The interquartile Range (IR or IQR) is the difference between 
the upper and the lower quartiles: IR = q(0.75) − q(0.25) and 
is used as a robust measure of the spread of a distribution. 
The skewness sign is the sign of the difference between the 
mean and the median (m-M) that indicates positive skewness 
or negative skewness.

Quantiles are used for comparing distributions in various 
ways. They can be used to compare the original data distri-
bution to simulated values, compare two types of samples, or 

1( ) ( )pz F p q p−= =

compare assay results from two different laboratories. A good 
way to do this is with a plot of matching quantiles, that is, a 
quantile-quantile (Q-Q) plot (Fig. 2.6). To generate a Q-Q 
plot, we must first choose a series of probability values pk, 
k = 1, 2, …, K; then, we plot q1(pk) versus q2(pk), k = 1, 2, …, K.

If all the points fall along the 45° line, the two distribution 
are exactly the same; if the line is shifted from the 45°, but 
parallel to it, the two distribution have the same shape but 
different means; if the slope of the line is not 45°, the two 
distributions have different variances, but similar shapes; 
and if there is a nonlinear character to the relationship be-
tween the two distributions, they have different histogram 
shapes and parameters.

The P-P plot considers matching probabilities for a series 
of fixed Z values. The P-P plot will vary between 0 and 1 (or 
0 and 100 %), from minimum to maximum values in both 
distributions. In practice, Q-Q plots are more useful because 
they plot the values of interest (grades, thicknesses, perme-
abilities, etc.), and it is therefore easier to conclude how the 
two distributions compare based on sample values.

2.2.4  Expected Values

The expected value of a random variable is the probability 
weighted average of that random variable:

The expected value of a random variable is also known as 
the mean or the first moment. The expected value can also 
be considered as a statistical operator. It is a linear operator.
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Fig. 2.6  An example of a Q-Q plot. The data is total copper, corre-
sponding to two different lithologies
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The expected value of the squared difference from the 
mean is known as the variance (σ2). It is written:

The square root of the variance is the standard deviation (σ 
or s). The standard deviation is in the units of the variable. It 
is common to calculate a dimensionless coefficient of varia-
tion (CV), that is, the ratio of the standard deviation divided 
by the mean.

As an approximate guide, a CV less than 0.5 indicates a 
fairly well behaved set of data. A CV greater than 2.0 or 2.5 
indicates a distribution of data with significant variability, 
such that some predictive models may not be appropriate.

There are additional measures of central tendency aside 
from the mean. They include the median (50 % of the data 
smaller and 50 % larger), the mode (the most common obser-
vation), and the geometric mean.There are also measures of 
spread aside from the variance. They include the range (dif-
ference between the largest and smallest observation), the 
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interquartile range (described above), and the mean absolute 
deviation (MAD). These measures are not used extensively.

2.2.5  Extreme Values—Outliers

A small number of very low or very high values may strong-
ly affect summary statistics like the mean or variance of the 
data, the correlation coefficient, and measures of spatial con-
tinuity. If they are proven to be erroneous values, then they 
should be removed from the data. For extreme values that are 
valid samples, there are different ways to handle them: (1) 
classify the extreme values into a separate statistical popula-
tion for special processing, or (2) use robust statistics, which 
are less sensitive to extreme values. These options can be 
used at different times in mineral resource estimation. As 
a general principle, the data should not be modified unless 
they are known to be erroneous, although their influence in 
spatial predictive models may be restricted.

Many geostatistical methods require a transformation of the 
data that reduces the influence of extreme values. Probabil-
ity plots can sometimes be used to help identify and correct 
extreme values, see Fig. 2.7. The values in the upper tail of 
the distribution could be moved back in line with the trend 
determined from the other data. An alternative consists of cap-
ping whereby values higher than a defined outlier threshold are 
reset to the outlier threshold itself. The high values could be in-

Fig. 2.7  Probability plot with 
outliers identified
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terpreted as a separate population altogether (see for example 
Parker 1991). There are a number of methods to deal with out-
liers at the time of variography and resource estimation.

In general, outliers or extreme values are considered on 
a case-by-case basis with sensitivity studies and considering 
their impact on local and global resource estimates.

2.2.6  Multiple Variable Distributions

Mineral resource estimation commonly considers multiple 
variables. The multiple variables could be geometric attri-
butes of the deposit or grades such as thickness, gold, silver, 
or copper grades. They could be the same grade sampled at 
different locations. Bivariate and multivariate statistics are 
used in these cases. There are many references to multivari-
ate statistics, such as Dillon and Goldstein (1984).

The cumulative distribution function and probability den-
sity function can be extended to the bivariate case. Let X 
and Y be two different RVs. The bivariate cdf of X and Y, 
FXY(x, y) and the pdf of X and Y  fXY(x, y) are defined as

We could also define a bivariate histogram, that is, divide the 
range of the X and Y variables into bins and plot bivariate fre-
quencies. It is more common to simply plot a scatterplot of 
paired samples on arithmetic or logarithmic scale. Figure 2.8 
shows an example from the oil sands in Northern Alberta, 
Canada, after transformation to a Gaussian variable.

The means and variances of each variable are used as 
summary statistics. The covariance is used to characterize 
bivariate distributions:

The unit of the covariance is the product of the units of the 
two variables, for example, g/t Au multiplied by thickness in 
meters. Since these units are hard to understand or interpret, 
it is common for the covariance to be standardized.

The covariance describes whether the bivariate relation-
ship is dominated by a direct or an inverse relationship, 
see Fig. 2.9. The product of [X − mX][Y − mY] is positive in 
quadrants II and IV; it is negative in quadrants I and III. The 
expected value is the average of the product over all pairs. 
The example of Fig. 2.9 has a positive covariance, while the 
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example in Fig. 2.8 has a negative covariance because the 
relationship is dominated by an inverse relationship.

The correlation coefficient between random variables X 
and Y is defined as the covariance between X and Y divided 
by the standard deviations of the X and Y variables:

The correlation coefficient is a dimensionless measure 
between  − 1  (a  perfect  inverse  linear  relationship)  and  + 1 
(a perfect direct linear relationship). Independence between 
the two variables means that the correlation coefficient is 
zero, but the reverse is not necessarily true. A covariance or 
correlation coefficient of zero means there is no dominant di-
rect or inverse relationship, but the variables may be related 
in a nonlinear manner.

Second order moments like the variance and covariance 
are significantly affected by outlier data. Some outlier pairs 
can destroy an otherwise good correlation or enhance an oth-
erwise poor correlation, see Fig. 2.10. The sketch on the left 
illustrates a case where some outliers would make an oth-
erwise good correlation appear low; the sketch on the right 
shows a case where a few outliers make an otherwise poor 
correlation appear high.

The rank correlation is more robust with respect to outli-
ers, and is obtained by calculating the correlation coefficient 
on the rank order of the data. Each data variable is replaced 
by its rank position in the dataset, and then the correlation 
coefficient is calculated using the rank positions.

It is common for both correlation coefficients to be shown 
on experimental cross plots as in Fig. 2.8 where a direct 
comparison of the two correlation coefficients can be made. 
Their difference highlights whether there are data features, 

ρXY =
Cov{X, Y }

σXσY

Fig. 2.8  Scatterplot of Bitumen vs. Fines Gaussian variables

2.2  Probability Distributions
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such as outliers, that render the linear correlation measure 
less useful. Classical least-squares regression requires tradi-
tional covariances and not those calculated on a transform of 
the data. Therefore, rank correlations should only be used for 
data exploration.

As with the univariate case, scatterplot smoothing is pos-
sible and sometimes necessary if the amount of original in-
formation is insufficient to characterize the bivariate distri-
bution.

2.3  Spatial Data Analysis

This section describes a series of tools used to better under-
stand spatial distributions. There are several tools that can be 
used, and are applied in the process called Exploratory Data 
Analysis, see for example Isaaks and Srivastava (1989).

Posting the data on a variety of cross-sectional or pro-
jection views provides clues as to the collection of the data 
and potential clustering. Posting the values colored differ-
ently for values above and below different grade thresholds 

provides an assessment as to the continuity of high and low 
grade trends.

Contour maps are used for understanding trends. These 
can be made by hand or the computer and are used to help 
in the description of trends. Contouring is typically done on 
two-dimensional planes defined according to the grid coor-
dinates in plan, cross-sectional, and longitudinal views. It is 
common to rotate the locations to a local coordinate system 
prior to any spatial analysis, such that the main coordinate 
axes are approximately matched with the general orientation 
of the deposit.

Symbol maps may be more convenient than grade post-
ing maps. A symbol represents some significant aspect of the 
data, for example drill hole data obtained in different cam-
paigns, by different drilling methods, or at different points 
in time.

Indicator Maps are a particular form of a symbol map, 
where a binary variable is used to observe the presence or 
absence of certain characteristics such as data above and 
below certain thresholds or presence or absence of specific 
geologic variables.

Fig. 2.9  Schematic cross plot with the mean of X drawn as a vertical line, the mean of Y drawn as a horizontal line and the four quadrants num-
bered

    

Fig. 2.10  Two schematic 
scatterplots where outlier data 
damage a good correlation or 
enhance a poor correlation
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192.3  Spatial Data Analysis

2.3.1  Declustering

Data are rarely collected randomly. Drill holes are often 
drilled in areas of greatest interest, for example high grade 
areas that will be mined early in the production schedule. 
This practice of collecting more samples in areas of high 
grade should not be changed because it leads to the greatest 
number of data in portions of the study area that are the most 
important. There is a need, however, to adjust the histograms 
and summary statistics to be representative of the entire vol-
ume of interest.

Declustering techniques assign each datum a weight 
based on closeness to surrounding data wi, i = 1, …, n. These 
weights are greater than 0 and sum to 1. The experimental 
distribution and all summary statistics are calculated with the 
weights instead of a constant 1/n.

The polygonal declustering method (Fig. 2.11; Isaaks 
and Srivastava 1989) is perhaps the simplest, and assigns 
each weight proportional to the area or volume of interest of 
each sample. Studies have shown that this approach works 
well when the limits to the area of interest are well defined 
and the ratio of the largest to smallest weight is less than 
10 to 1.

The nearest-neighbor declustering technique is com-
monly used in resource estimation, and is like the polygonal 
method. The difference is that it is applied to a regular grid 
of blocks or grid nodes. The closest datum of the set being 
declustered is assigned to each block. Because it works on 
the same blocks that are used to estimate resources, it is more 
practical in resource estimation.

The technique of cell declustering is another commonly 
used declustering technique (Journel 1983; Deutsch 1989). 
Cell declustering works as follows:
1. Divide the volume of interest into a grid of cells l = 1, …, L.
2. Count the occupied cells Lo and the number of data in 

each occupied cell nlo, lo = 1, …, Lo.
3. Weight each data according to the number of data falling 

in the same cell, for example, for datum i falling in cell l, 
the cell declustering weight is:

The weights are greater than zero and sum to one. Each oc-
cupied cell is assigned the same weight. An unoccupied cell 
simply receives no weight.

Figure 2.12 illustrates the cell declustering procedure. 
The area of interest is divided into a grid of L = 36 cells, with 
Lo = 33 occupied cells. The number of data in each occupied 
cell is established by arbitrarily moving data on the grid 
boundaries to the right and down.

The weights depend on the cell size and the origin of the grid 
network. It is important to note that the cell size for declustering 
is not the cell size for geologic modeling; it simply defines an 
intermediate grid that allows assigning a declustering weight.

When the cell size is very small, each datum is in its own 
cell and receives an equal weight. When the cell size is very 
large, all data fall into one cell and are equally weighted. 
Choosing the optimal grid origin, cell shape, and size re-
quires some sensitivity studies. It is common to choose the 
cell size so that there is approximately one datum per cell in 
the sparsely sampled areas or, if available, to choose it ac-
cording to an underlying, quasi-homogeneous sampling grid.

The sensitivity of the results to small changes in the 
cell size should be checked. If the results change by a large 
amount, then most likely the declustering weights are chang-
ing for one or two anomalously high or low grades.

Since it is generally known whether over-sampling oc-
curs in high- or low-valued areas, the weights can be selected 
such that they give the minimum or maximum declustered 
mean of the data. The declustered mean versus a range of 
cell sizes should be plotted, and the size with the lowest 
(Fig. 2.13, data clustered in high-valued areas) or highest 
(data clustered in low-valued areas) chosen. Care should 
be taken not to over-fit the minimum. The correct cell size 
should be approximately the spacing of the data in sparsely 
sampled areas. This qualitative check can be used to ensure 
that a too-large or too-small cell size is not chosen.

The shape of the cells depends on the geometric configu-
ration of the data, as it is adjusted to conform to the major 
directions of preferential sampling. For example, if the sam-
ples are more closely spaced in the X direction than in the Y 
direction, the cell size in the X direction should be reduced.

wi =
1

nl · Lo

Fig. 2.11  An example of 122 samples with their polygonal areas of 
influence
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The origin of the cell declustering grid and the number of 
cells L must be chosen such that all data are included within 
the grid network. Fixing the cell size and changing the ori-
gin often leads to different declustering weights. To avoid 
this artifact, a number of different origin locations should be 
considered for the same cell size. The declustering weights 
are then averaged for each origin offset.

Declustering assumes that the entire range of the true 
distribution has been sampled. If this is not the case, then 
the data is biased and debiasing techniques may be required. 

These techniques include trend modeling for debiasing and 
debiasing using qualitative data, subjects that are not cov-
ered in this book.

2.3.2  Declustering with Multiple Variables

Declustering weights are determined on the basis of the geo-
metric configuration of the data; therefore, only one set of 
declustering weights is calculated in presence of multiple 
variables that have been equally sampled. However, different 
declustering weights will need to be calculated when there is 
unequal sampling. For example, there are sometimes different 
sets of Copper and Molybdenum samples in a Cu-Mo porphyry 
deposit, which would require two sets of declustering weights.

Declustering weights are primarily used to determine a 
representative histogram for each variable; however, we also 
require the correlation between multiple variables. The same 
set of declustering weights can weight each pair contributing 
to the correlation coefficient (Deutsch 2002).

2.3.3  Moving Windows and Proportional Effect

Moving windows are used to understand the local spatial 
behavior of the data, and how it may differ from global statis-
tics. The process is to lay over the volume of interest a grid of 
cells, which may or may not be partially overlapping, mov-
ing them over the entire domain or deposit, and obtaining sta-
tistics within them. Overlapping windows are typically used 
when there are few data within the window to provide reli-
able statistics (Goovaerts 1997; Isaaks and Srivastava 1989). 

Fig. 2.12  Illustration of the 
cell declustering method
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The most common statistics analyzed are the mean and stan-
dard deviations of the data within the windows.

A plot of the mean versus standard deviation calculated 
from moving windows of data can be used to assess changes 
in local variability, see Fig. 2.14 for an example. General-
ly, positively skewed distributions will show that windows 
with higher local mean usually exhibits higher local stan-
dard deviation. This is the proportional effect described by 
various authors, for example David (1977) and also Journel 
and Huijbregts (1978). The proportional effect is due to a 
skewed histogram, but it may also indicate spatial trends or 
a lack of spatial homogeneity. Proportional effect graphs are 
sometimes used to help determine homogeneous statistical 
populations within the deposit (see Chap. 4).

2.3.4  Trend Modeling

Trend modeling is applied when a trend has been detected 
and is assumed to be well understood. While some geosta-
tistical estimation methods are quite robust with respect to 
the presence of trends, such as Ordinary Kriging (Chap. 8; 
Journel and Rossi 1989), there are many others, most notably 
simulation (Chap. 10) that are quite sensitive to trends.

The trend is modeled as a deterministic component plus 
a residual component. The deterministic component is re-
moved and then the residual component is modeled either 
through estimation or simulation techniques. Finally, the de-
terministic trend is added back. In such a model, the mean 
of the residual and the correlation between the trend and the 
residual should be close to 0.

The drill hole data is typically the source for trend de-
tection. In some cases where the geological environment is 
well understood, trends can be expected and modeled with-
out the drill hole data, but this should only be attempted 
when there is no other option. Large scale spatial features 
can be detected during several stages of data analysis and 
modeling. Sometimes a simple cross-plot of the data against 
elevation may show a trend, as in the example of Fig. 2.15. 
In other cases, simple contour maps on cross-sections, lon-
gitudinal sections, or plan views are enough to identify and 
model trends. Moving window averages can also provide 
an indication of whether or not the local means and vari-
ances are stationary. If there are notable changes in the local 
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mean and variance of reasonably large subdivisions within 
the domain, as in Fig. 2.14, then a spatial trend model may 
be required.

Although the identification of a trend is subjective, it is gen-
erally accepted that the trend is deterministic and should not 
have short scale variability. It should be identified from features 
that are significantly larger than the data spacing, i. e., domain-
wide. This sometimes can be evident from the experimental 
variogram that may show a trend in any one or more direc-
tions. The experimental variogram continues to increase above 
the variance of the data as the lag distance increases (Chap. 6; 
Journel and Huijbregts 1978). This usually indicates that the de-
cision of stationarity should be revisited, and consider whether 
the domain should be subdivided or a trend considered.

2.4  Gaussian Distribution and Data 
Transformations

Gaussian distributions are commonly used due to their con-
venient statistical properties. The Gaussian distribution is 
derived from the Central Limit Theorem, which is one of the 
most consequential theorems in statistics.

A univariate Gaussian distribution is fully characterized 
by its mean ( m) and standard deviation (σ). The probability 
density function is given by:

It is common to transform data to a Gaussian distribution. 
There are many instances where the prediction of uncertainty 
at un-sampled locations becomes much easier with a Gauss-
ian distribution.

The simplest method to transform any distribution into a 
Gaussian distribution is a direct quantile-to-quantile trans-
formation, whereby the CDF of each distribution is used to 
perform the transform. This is known as the Normal Scores 
(NS) transform, see Fig. 2.16. The NS transform is achieved 
by quantile transformation:

g(z) =
1

σ
√

2π
exp

[
−

1

2

(
z − m

σ

)2
]

The expected values should not be back transformed unless 
the distribution is symmetric.

A variable Z is non-standard Gaussian when the standard-
ized variable Y is standard Gaussian. A non-standard Gauss-
ian value is easily converted to/from a standard Gaussian 
value.

The normal score transform is rank preserving and revers-
ible. The disadvantages of performing such a transform are 
that the significance of the numbers themselves is less clear, 
more difficult to interpret, and also that the distribution 
parameters cannot be back transformed directly due to the 
nonlinearity of the process.

Spikes of constant values in the original distribution 
can cause problems. Gaussian values are continuous and 
ties (equal values) in the original distribution must be re-
solved prior to transforming the data. There are two differ-
ent methods commonly used to break the ties or despike. 
The simpler method is to add a small random component 
to each tie, which is the most common approach used in 
popular software packages, such as the GSLIB programs 
(Deutsch and Journel 1997). A better alternative is to add 
a random component based on local averages of the data 
(Verly 1984), which ranks the ties based on the local grades 
of nearby data. Although more onerous in terms of time and 
computer effort, it is justified when the proportion of origi-
nal data with the same values is significant. Typical drill 
hole data from Au epithermal deposits can show a signifi-
cant number of values at or below the laboratory’s detec-
tion limit, sometimes as much as 50 or 60 %, in which case 
despiking is better accomplished using the local averaging 
method. Of course, an alternative is to separate the barren or 
un-mineralized material into its own stationary population. 
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Fig. 2.16 Data transformation 
using Cumulative Distribution 
Functions
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This is reasonable when the spatial arrangement of the bar-
ren material is predictable.

2.5  Data Integration and Inference

The prediction of spatial variables requires consideration 
of multivariate distributions of values at different loca-
tions. Inference requires the combination of sample data 
to estimate at an unknown location. The calculation of 
conditional distributions is accomplished by application of 
Bayes’ Law, one of the most important laws in statistical 
theory.

Bayes’ Law provides the probability that a certain event 
will occur given that (or conditional to) a different event has 
already occurred. The mathematical expression for Bayes’ 
Law can be written as:

with E1 and E2 being the events, and P representing prob-
abilities.

If E1 and E2 are independent events, then knowing that E1 
occurred does not give additional information about whether 
E2 will occur:

Direct inference of multivariate variables is often difficult, 
which leads us to use the multivariate Gaussian model, most-
ly because it is straightforward to extend to higher dimen-
sion. The bivariate Gaussian distribution is defined as:

The relationship between the two variables is defined by a 
single parameter, the correlation coefficient, and in the XY 
cross-plot the probability contours are elliptical. The condi-
tional expectation of Y given an event for X is a linear func-
tion of the conditioning event:

The conditional expectation follows the equation of a line, 
y = mx + b, where m is the slope (correlation coefficient) and 
b is the intercept (mean).
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The conditional variance is independent of the condition-
ing event(s). This is an important consideration that will in-
fluence some of the geostatistical methods to be described 
later, and is written as:

For a standard bivariate Gaussian distribution (that is, both 
variables, X and Y have a mean = 0 and variance = 1.0) the 
parameters are:

The extension to multivariate distributions is straightfor-
ward, and can be written as:

where d is the dimensionality of x. Note that µ is a (d × 1) 
vector and Σ is a (d × d) positive definite, symmetric vari-
ance-covariance matrix. The expression |Σ| is the determinant 
of Σ. µ is the mean of the distribution and Σ is the covariance 
matrix. The i-th element of µ expresses the expected value 
of the i-th component in the random vector x; similarly, the 
( i, j) component of Σ expresses the expected value of xi xj 
minus µi µj. The diagonal elements of Σ are the variances of 
the corresponding component of x.

The multivariate (N-variate) Gaussian distribution possess-
es some extraordinary properties (Anderson 1958; Abramov-
itz and Stegun 1964):
1. All lower order N-k marginal and conditional distribu-

tions are Gaussian.
2. All conditional expectations are linear functions of the 

conditioning data:

3. All  conditional  variances  are  homoscedastic (data-values-
independent):

{ } ( )2 2
,1Y X YVar Y X x σ ρ= = −

{ }
{ }

,

2
,1

X Y

X Y

E Y X x x

Var Y X x

ρ

ρ

= = ⋅

= = −

( )

1

1
2

1
x; , exp

( 2 )

1
(x ) (x )

2

d

T

µ
π

µ µ
−

= ⋅

 − − −  

∑
∑

∑

N

{ }

( ) [ ]

i j j j j
j i

j i SK

E X X x j i x

x j i x

λ

ϕ
≠

∗

| = ,∀ ≠ =

= , ≠ =

∑

{ }
{ }

2

2

( )

( )

i j j j

i j

E X x j i X x j i

E X x j i

ϕ

ϕ

 − , ≠ | = ,∀ ≠ 

 = − , ≠ 

2.5  Data Integration and Inference



24

Conditional expectations are linear functions of the data. All 
linear combinations of Gaussian variables are also Gaussian, 
and in particular, averages are Gaussian. Also, conditional 
variances are data-values-independent, a property called ho-
moscedasticity.

In geostatistics, it is common to assume that the normal 
scores of grade variables are multivariate Gaussian within 
geologically defined domains. This is done for convenience 
since the simple (co)kriging method provides exactly the 
mean and variance of all conditional distributions, as de-
scribed in Chaps. 8–10.

Performing a univariate normal score transformation 
guarantees a univariate Gaussian distribution, but there is no 
guarantee of a multivariate Gaussian distribution. The trans-
formation does not remove nonlinearity or other constraints. 
The proportional effect and heteroscedasticity is largely re-
moved by the transformation, but then it is reintroduced by 
the back transformation. Transforming a multivariate distri-
bution is rarely done in mineral resource estimation because 
of the complexity and requirement for many data.

Categorical Variables The probability distribution of a dis-
crete or categorical variable is defined by the probability or 
proportion of each category, that is, pk, k = 1, …, K, where 
there are K categories. The probabilities must be non-negative 
and sum to 1.0. A table of the pk values completely describes 
the data distribution. Sometimes, however, it is convenient 
to consider a histogram and cumulative histogram as shown 
below (Fig. 2.17):

The cumulative histogram is a series of step functions 
for an arbitrary ordering of the discrete categories. Such a 
cumulative histogram is not useful for descriptive purposes 
but is needed for Monte Carlo simulation and data transfor-
mation. In general, but not always, the ordering does not 
matter. The cases where the ordering affects the results will 
be discussed later in the book.

Consider K mutually exclusive categories sk, k = 1, …, K. 
This list is also exhaustive; that is, any location u belongs 
to one and only one of these K categories. Let i(u; sk) be the 
indicator variable corresponding to category sk, set to 1 if 
location u in sk, zero otherwise, that is:

Fig. 2.17  PDFs and CDFs for 
categorical variables
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Mutual exclusion and exhaustivity entails the following rela-
tions:

The mean indicator for each category sk , k = 1, …, K is the 
proportion of data in that category:

The variance of the indicator for each category sk , k = 1, …, 
K is a simple function of the mean indicator (Journel 1983; 
Deutsch 2002):

The variance would be used to standardize variograms for 
quicker interpretation and comparison across different cat-
egories.

2.6  Exercises

The objective of this exercise is to review some mathemati-
cal principles, become familiar with some notation, work 
with some common probability distribution models and 
gain some experience with declustering. Some specific 
(geo)statistical software may be required. The functional-
ity may be available in different public domain or com-
mercial software. Please acquire the required software be-
fore beginning the exercise. The data files are available for 
download from the author’s website—a search engine will 
reveal the location.

 2.6.1 Part One: Calculus and Algebra

Question 1:   Consider  the  following  function  ( aX + bY)
( X + Y). Calculate the derivative of this func-
tion with respect to X and Y.

Question 2: Calculate the integral for the function below:
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Question 3: Consider the three matrices below:

What is the result of AB, ACT, and (AB)C?

 2.6.2 Part Two: Gaussian Distribution

Consider the standard Gaussian or normal distribution that 
is of extraordinary importance in statistics and geostatistics 
because it is the limit distribution of the central limit theorem 
and is mathematically tractable.
Question 1:   Verify that the sum of independent random 

variables tends toward a normal distribution. 
Consider (1) setting up a grid of 100 rows by 
10 columns in Excel with uniform random 
numbers between 0 and 1, (2) create an 11th 
column with the sum of the 10 first columns, 
(3) plot a histogram of the 11th column, and 
(4) comment.

Question 2:   What is the mean and variance of a probabil-
ity distribution that is uniform between 0 and 
1? The central limit theorem tells us that the 
mean of 10 values added together should be 
this mean multiplied by 10—check against 
Question 1 and comment. The central limit 
theorem would also tell us that the variance is 
multiplied by 10—check against Question 1 
and comment.

Question 3:   Create a 12th column in your spreadsheet with 
the sum (the 11th column) minus the mean 
divided by the standard deviation, that is, 
y12 = (y11 − m)/σ. Plot a histogram and calcu-
late the statistics of this standardized deviate. 
Comment on the results.

 2.6.3 Part Three: Uniform Distribution

Consider the uniform distribution specified below:

Question 1:   Write the definition and equation for the 
cumulative distribution function (cdf) of 
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2 3

2 3 4

   
= = =   

   
A B C

2.6  Exercises



26

the uniform distribution above. Draw the 
corresponding cdf to the probability density 
function (pdf) above.

Question 2:   What is the value of c that makes f(z) a licit 
probability distribution? Write your answer in 
terms of a and b.

Question 3:   What is the expected value (or mean) of the 
variable Z in terms of a, b, and c? Solve the 
integral.

Question 4:   What is the variance of the variable Z in 
terms a, b, and c? Solve for the expected 
value of Z2 and solve for the variance using 
σ2 = E{Z2} − [E{Z}]2.

Question 5:   What is the 90 % probability interval? Write 
out the function corresponding to the cdf and 
solve for the 5th and 95th quantiles.

The objective of this exercise is to become familiar with the 
different ways to use declustering to infer a representative 
probability distribution. Declustering software and the speci-
fied datasets are required.

 2.6.4 Part Four: Small Declustering

Consider the 2-D data in red.dat (see right). The 67 drill 
hole intersections have a hole ID, location, thickness, four grade 
values, and a rock type. The area is from 20,100 to 20,400 in 
the northing direction and –600 to 0 in elevation. The rock type 
is simply a flag that specifies below or above –300 m. There 
is a difference below that elevation that warrants our attention.
Question 1:   Plot a location map of the thickness and the 

gold grade. Plot a histogram of all the gold 
grades without any declustering weight.

Question 2:   Setup and run polygonal declustering to get a 
map that looks like the one to the right. Plot a 
declustered histogram of the gold grades.

Question 3:   Cell declustering is widely used because it 
is robust in 3-D and is less sensitive to edge 
effects. Run cell declustering for a range of 
cell sizes—explain your choice of param-
eters. Plot the declustered mean versus cell 
size, choose a cell size, and justify your 
choice. Compare results to those obtained 
above.

 2.6.5 Part Five: Large Declustering

Consider the 3-D Au/Cu data in largedata.dat. This 
data will be used in some subsequent exercises. We need de-
clustered distributions for the two variables in all rock types.
Question 1:   Consider cell declustering on a by-rock type 

basis and considering all of the data together. 
Compare the results and comment on the pre-
ferred approach. Prepare a reasonable set of 
plots to support your conclusions including 
the declustered mean versus cell size plot(s) 
and tables of declustered mean and standard 
deviation values.

Question 2:   Assemble the reference distributions for 
subsequent modeling (based on your chosen 
method).
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