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12Uncertainty and Risk

Abstract

This chapter shows how multiple realizations can be used to support the assessment of 
uncertainty and risk.

12.1 � Models of Uncertainty

All estimates have some error or uncertainty. Predictions are 
always inaccurate, with errors stemming from widely spaced 
data, geological variability, lack of knowledge to determine 
the best parameters for estimation, approximations made in 
the estimation procedure, and limitations of the models used.

Although the error will never be known except at 
locations where data are collected in the future, traditional 
statistics and geostatistics provide models of uncertainty. 
Chapters  8–10 discussed estimation, estimation variances, 
and methods to obtain a conditional distribution of uncer-
tainty for a random variable:

� (12.1)

Equation 12.1 is a complete description of uncertainty in the 
variable z based on our random function model. Obtaining 
reliable models for the conditional distributions denoted in 
Eq. 12.1 has proven difficult, particularly for small volumes 
(one block at a time), as opposed to large deposit-scale vol-
umes.

Early attempts in geostatistics to characterize uncer-
tainty relied on the kriging variance, typically in the form 
of confidence intervals attached to each estimated block 
grade:

� (12.2)

where d is the difference from the average value that defines 
the confidence level. For example, d = 2*σ (twice the standard 
deviation of the random variable) represents the 95 % confi-
dence level if the distribution has a Gaussian shape (Chap. 2).
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The minimized estimation variance or kriging variance 
can only be equated to a local estimation error if the error dis-
tribution is Gaussian and the estimation error does not depend 
on the actual sample values, a property called homoscedastic-
ity, discussed in Chap. 8. In this case, the estimation variance 
could be associated to the variance of the error distribution. 
This is seldom found in practice because most grade distri-
butions are positively skewed and the local uncertainty will 
depend on the local grades; more uncertainty will be expected 
in high grade areas. The estimation variance does not provide 
a reliable uncertainty model for small blocks.

The kriging variance may be used in instances where the 
distribution is likely to be Gaussian. This may apply if very 
large volumes of material are considered, since most spatial 
distributions will tend to become more symmetric, and there-
fore become more Gaussian-like as more small scale values 
are averaged together. The reasonable limits of application 
are not known ahead of time, see Davis (1997) among others.

Other, more recently developed techniques, have attempt-
ed to introduce local measures of uncertainty by making the 
kriging estimation variance data dependent. Most of these 
techniques have been applied in the context of resource clas-
sification (for example, Arik 1999).

Non-linear geoestatistical techniques rely on data trans-
formation to obtain a probabilistic estimate that carries 
uncertainty (Chap. 9). Except for the case of the indicator 
transform, the uncertainty model is developed in the trans-
formed space, most commonly Gaussian.

Conditional simulation provides a model of uncertainty at 
each location by a set of simulated realizations. The uncer-
tainty is better described when a large number of realizations 
are available, but a relatively small number (say 100) is suf-
ficient to provide a reasonable approximation.
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Simulation techniques and the resulting models of un-
certainty rely heavily on stationarity; trends and departures 
from stationarity significantly affect the model of uncer-
tainty and its quality and usefulness. A model of uncertainty 
based on simulation depends on the Random Function model 
used. In certain deposits, a Gaussian-based model may be 
appropriate, while for others a non-parametric technique 
such as indicator simulations may be preferable. The model 
of uncertainty will also depend on the number and statistical 
characteristics of the conditioning data. Therefore, the model 
of uncertainty is not unique, nor is there an objective or true 
model of uncertainty: uncertainty is model-dependent. This 
has been discussed in Journel and Kyriakidis (2004) and 
Goovaerts (1997) among others.

Typically, simulations models cannot capture all possible 
sources of uncertainty that exist in a resource model. In this 
sense, they are incomplete descriptions of the space of un-
certainty, and thus it is relevant to discuss how appropriate 
the conditional simulation model is with respect to the prob-
lem at hand. 

A practical consequence of the dependence on a model 
is that the simulation method should be simulated from the 
same RF model used to obtain the resource model. It is im-
portant that they both share the same basic assumptions and 
implementation parameters; otherwise, the base case re-
sources could be different and the models incompatible.

�Sources of Uncertainty  Resource models will include 
uncertainty from many sources. There are several factors that 
contribute to the overall uncertainty, and they do not necessar-
ily cancel each other out. The sample values themselves have a 
degree of uncertainty, partly coming from the intrinsic hetero-
geneity of the material being sampled; however, most sampling 
errors are due to the sampling process itself. Sampling theory 
deals with the development of procedures for minimizing sam-
pling variances, although there will always be an error that can-
not be fully eliminated. Sample collection, sample preparation, 
the chemical analysis itself, and the overall data handling are 
all sources of uncertainty.

The amount of drill hole information available depends 
on the geology and the project’s development stage. Typi-
cally, when additional data is included in the model, the un-
certainty will tend to decrease. Geologic models are also a 
major source of uncertainty. Based on sparse drilling, they 
are representations of mineralization controls but still car-
rying a degree of uncertainty stemming from mapping and 
logging; data handling; the interpretative process itself; and 
the development of the computerized model. Often, the geo-
logic model’s uncertainty has the most important impact on 
the resource model since it heavily conditions the estimated 
tonnages above cutoff (Fig. 12.1).

There is uncertainty related to the process of grade inter-
polation including data spacing, kriging method chosen, var-

iogram model and kriging plan. In addition, a correct amount 
of dilution must be included in order to predict tonnages 
and grades available at the time of mining. The prediction 
of recoverable resources and reserves is another significant 
source of uncertainty for resource models.

The model of uncertainty can also change when differ-
ent implementation parameters of the geostatistical models 
are used, as discussed in Chap.  11 and also Rossi (2003), 
among others. Seemingly minor decisions, such as whether a 
random path or a multiple grid search for simulating values 
is used, can impact the resulting uncertainty model. Other 
parameters typically considered are search radii, number 
of original data used, number of previously simulated data 
used, the number of simulations to be run, and the kriging 
method to be used, among others. One alternative is to assess 
the uncertainty related to implementation criteria by choos-
ing bounds or “best” and “worst” cases, although the process 
is subjective and difficult to justify.

There is limited information with large, unsampled areas 
between data points. There is uncertainty in the statistical 
parameters such as the overall mean of the deposit. A model 
of parameter uncertainty is also subjective, but may lead 
to a more realistic assessment. Some possible approaches 
to quantify parameter uncertainty include using an analyti-
cal model, the conventional bootstrap method or the spatial 
bootstrap method.

Bootstrapping is a name generically applied to statistical 
resampling schemes that allow uncertainty in data statistical 
parameter to be assessed from the data used to calculate the 
same parameter in the first place. The basic procedure is to 
draw n values from the original data with replacement, cal-
culate the statistic from the bootstrapped sample, and repeat 
a number of times to build up a distribution of uncertainty. 
It is assumed that the input distribution is representative of 
the overall distribution. If the drawing is done using Monte-
Carlo simulation (MCS), then there is an additional assump-
tion that the data are independent.

Assuming that the sample data are independent is not 
realistic when they are known to be correlated. The spatial 
bootstrap simulates at the data locations. The uncertainty 
generally decreases as the number of drawn values ( n) in-
creases. The spatial bootstrap requires a variogram for the 
data set, simulation, and then computation of the mean for 
each simulated set of data.

12.2 � Assessment of Risk

An uncertainty model can be used to characterize risk. It is 
important to distinguish uncertainty and risk, since large un-
certainties, in some cases, may not lead to significant risks. 
In other situations, small uncertainties may correspond to 
unacceptable risk.
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Risk considers the impact of uncertainty on the applica-
tion being assessed. The concept is summarized as a “Trans-
fer Function” (TF, Matheron 1976), which conceptualizes all 
processes required to obtain the final product. For example, 

the TF can represent a pit or a stope optimizer and a produc-
tion or mine scheduler, used to define mineable reserves. If 
the uncertainty model is carried through the TF, then the risk 
of not delivering to the mill the expected number of tons 

Fig. 12.1   Multiple 
realizations represent a model 
of uncertainty of the original 
variable, while an estimated 
map does not have an attached 
uncertainty model
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at the appropriate grades can be assessed. From this assess-
ment, risk mitigation measures can be developed. The con-
cept is illustrated in Fig. 12.2.

Sensitivity analyses are commonly carried out by mining 
engineers. The impact of the commodity price or change in 
the estimated grades is assessed. If the different commodity 
price or grades result in significant changes in the designed 
pit walls, for example, then the material in question may be 
marginal. It is also important to identify areas of the pit that 
are extracted to contain few erratic or highly uncertain zones 
of mineralization. Engineers developing mine plans will usu-
ally consider simple sensitivity analyses, for example by ad-
justing the block model grades + 10 % and − 10 %. A similar 
approach is used to analyze the sensitivity of the project to 
metal prices, operating costs, and other relevant variables. 
But there are no standard procedures for this purpose.

A full risk assessment requires that the complete un-
certainty model (all realizations) be processed through the 
transfer function; this may involve a full mine planning ex-
ercise, including scheduling of ore through the mill for cer-
tain periods of the mine life (Jewbali and Dimitrakopoulos 
2009). In practice, certain shortcuts are possible, such as 
processing only the best, worst, and most likely scenarios. 
These shortcuts have their own pitfalls, including the criteria 
to rank the realizations.

Producing a detailed mine design from an optimized pit 
outline involves smoothing the outlines to provide minable 
shapes, while deviating as little as possible from the optimal 
outline. This process is manual, and the decisions made re-
garding the location and width of accesses, ramps, berms, and 
other geometric parameters required to make the mining op-
erational can be significant. Probability maps by bench and 
by phases can be used as guides during the final smoothing 
and design of the pit and definition of the ramp positions. 
Figure 12.3 (taken from Van Brunt and Rossi 1999) shows a 
bench map of the probability of each block being mined ac-
cording to the mine plan developed from the resource model. 
Developing conditional probability maps such as the one in 
Fig. 12.3 gives the mine planning engineer an advantage over 
conventional planning. Risks resulting from highly variable 
mineralization can be mitigated through the addition of inter-
mediate phases and modifying the position of the pit walls. 
Also, these maps can be used to target additional infill drilling.

Grade control is an application where risk analysis is used 
directly to make an economic decision. In this case, the con-
sequences of grade uncertainty are directly evaluated and 
the optimal choice is made based on the maximum profit or 
minimum loss choice.

The decision to recover and send to the mill or not a 
certain panel in the open pit is typically based directly or 
indirectly on grade estimates, z*(x). The loss function L(e) 
(Journel 1988; Isaaks 1990; Rossi 1999) is a mathematical 
expression that attaches an economical value (impact or loss) 
to each possible error, measured in, for example, dollars. 
By applying a loss function to the conditional probability 

Fig. 12.3   Bench mining probability map. Blocks are coded by prob-
ability of being mined. Magenta, blue, and maroon colors indicate the 
position of the intermediate and final mining walls. (From Van Brunt 
and Rossi 1999)
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Fig. 12.2   The Transfer Function for estimated and simulated models

 

12  Uncertainty and Risk



21312.3 � Resource Classification and Reporting Standards

distribution (Eq. 12.1) derived from the realizations, the ex-
pected loss can be found by:

�

(12.2)

where Nreal is the number of realizations and z* is the re-
tained estimate.

The minimum expected loss can then be found by sim-
ply calculating the conditional expected loss for all possible 
values of the estimates z*, and retaining the estimate that 
minimizes the expected loss. As explained in Isaaks (1990), 
the expected conditional loss is a step function whose value 
depends on the assumed costs of each bad decision, and the 
relative costs of misclassification. This implies that the ex-
pected conditional loss depends only on the classification of 
the estimate z*(u), not on the estimated value itself, as long 
as all benefits and costs are constant with respect to grade.

The Loss Function thus quantifies the consequences of 
false positives and false negatives, weighs the probability 
and relative impact of each, and then provides the minimum 
cost solution under the loss model used. For example, the 
loss incurred when an ore grade panel is sent to the waste 
dump is a type of lost opportunity cost, measured by the 
profit that should have been realized. If the same panel is 
waste, but is sent to the mill, the loss is a combination of the 
loss incurred in processing material that does not produce the 
metal to pay for itself, plus the loss derived from the oppor-
tunity lost in processing payable material, if any.

Loss functions are in general asymmetrical, since the con-
sequences of under- or overestimation have different costs. 
In metal mining, where small volumes of ore may have high 
value, it is typically costlier to send ore to the waste dump 
than to process waste. Precious and most base metals mines 
have this characteristic, which is more notable if high eco-
nomic cutoffs are used. There are other cases where the op-
posite is true, such as high volume, direct-shipping iron ore 
mines, who prefer to avoid dilution in the shipment.

Optimal estimates can be derived for a Loss Function if 
the conditional distribution of the random variable is avail-
able. The uncertainty model as described by the realizations 
provides all the information required to optimize decision-
making under uncertainty.

When assessing uncertainty and risk it is also important 
to consider the scale of interest, i.e., the volume of mate-
rial being assessed. There are differences between a global, 
deposit-wide geologic confidence assessment and a more 
local, mine production-oriented risk assessment. A global 
confidence measure cannot be used for local, block-by-
block risk assessments. A typical example is the resource 
classification scheme, often used by mining engineers as a 
measure of confidence on mine schedules, for example on a 
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monthly basis. Resource classification, as discussed below, 
is generally meant to be a global guideline of confidence, 
meant mostly for the benefit of shareholders and investors, 
and should not be used as an uncertainty model to provide a 
detailed risk assessment of the mine schedule.

Figures 12.4 and 12.5 illustrate how risk may change as 
a function of the volumes considered. Figure 12.4 shows the 
monthly probability intervals of Cu grades for an operating 
copper mine. The graph shows the two values that corre-
spond to the P90 (90th percentile) and P10 (10th percentile) 
of the conditional distribution derived from the conditional 
simulations. It also shows the resource model grade for the 
same period, as well as the Mine Plan grade, which is gen-
erally a lower value than the resource model grade. This 
is because the mine planner sometimes adds dilution and a 
safety factor to the grade predicted by the resource model, 
typically on a monthly basis, not block by block. Mine plan-
ners may consider the monthly average grade provided by 
the resource model as risky, thus penalizing in some fashion 
the estimate. But the practice is variable and no standard 
methodology exists. It is dependent on the experience and 
prejudices of the engineer that defines the budgeted grade.

Figure 12.5 shows a similar graph for yearly periods of a 
5-Year Mine Plan. Note that Year 1 in Fig. 12.5 is obtained 
by simply averaging the grades of the 12 months shown in 
Fig. 12.4.

Note how Fig.  12.4 shows much more variability than 
Fig. 12.5. As expected, the smaller volumes represented by 
the 12 months in Fig.  12.4 are more variable than grades 
averaged over a yearly volume (Year 1, Fig. 12.5). Also, it is 
interesting to note that the grades predicted by the resource 
model and the mine plan do no necessarily fall within the in-
terval defined by the P90 and P10 limits. This occurs both for 
monthly and yearly volumes, and more so when considering 
periods further away in time. This is to be expected, since 
periods further away in time are likely to have less drilling 
and thus be more uncertain.

The risk of not achieving the predicted production for 
each period can be mitigated through further infill drilling. 
The infill drilling can be directed to those areas with higher 
uncertainty. A global confidence measure as used on most 
resource classification schemes would not allow optimiza-
tion of the infill drilling to that level of detail.

12.3 � Resource Classification and Reporting 
Standards

Public disclosure of estimated resources requires that re-
source estimates be classified according to degrees of con-
fidence and allocated as measured, indicated and inferred. 
Reserves must be classified as either proven or probable re-
serves, derived under certain rules from resource categories. 
Different resource classification standards are used in differ-
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ent countries; while fairly similar in intent and form, each has 
its own particularities. The resource classification schemes 
are mostly intended to provide protection to the investor, and 

so are typically enforced by Securities Commissions or other 
appropriate government agency in each country.

Resource classification guidelines have been developed 
mostly as a response to the need for transparency in the 
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disclosure of mineral resources. As such, resource classifi-
cation is not necessarily a technical issue, but rather a self-
regulated response of the mining industry for conveying 
investment risk, and also as a response to some notorious 
fraud cases. The codes have been developed according to 
specific needs for each jurisdiction, although all have a gen-
eral common thread that makes them similar in spirit and in 
the application of its main concepts. Given the global nature 
of the mining industry, this commonality has led for a long-
standing effort towards internationalization of the codes, 
unifying some of the details of application, to define a set of 
worldwide accepted set of definitions, namely the Interna-
tional Standards (Miskelly 2003).

Although the most commonly used codes have attached 
guidelines to them, they are non-prescriptive in all that re-
lates to technical issues. Thus, the responsibility for the 
appropriateness of the disclosure is left to the technical 
competency of the individual(s) signing off on the resource 
calculations and classification, defined as the Competent or 
Qualified Person (CP or QP). In this context, the published 
Guidelines that accompany the different Codes are used to 
set minimum standards for practice, and are not intended to 
be used as enforcement tools.

The most widely used codes are the Joint Ore Reserves 
Committee (JORC, www.jorc.org); the CIM guidelines used 
in National Instrument 43-101: Standards of Disclosure for 
Mineral Projects (NI43-101) in Canada (www.cim.org); 
the Securities and Exchange Commision’s Industry Guide 
7 in the United States (www.sec.gov/about/forms/indus-
tryguides.pdf); the SAMREC code in South Africa (www.
saimm.co.za/samrec.asp); and the Pan-European Union 
and United Kingdom’s Reporting Code (www.crirsco.com/
PERC_REPORTING_CODE_jan2009.pdf).

The JORC code has received broad international accep-
tance. In Canada, most Provincial Securities Commissions 
and the Toronto Stock Exchange (TSE) have adopted NI 
43-101, which applies to all oral statements and written dis-
closure of scientific or technical information, including dis-
closure of a mineral resource or mineral reserve. NI 43-101 
defers to the Canadian Institute of Mining, Metallurgy and 
Petroleum (CIM) for definitions and guidelines. The Coun-
cil of Mining and Metallurgical Institutes (CMMI), of which 
CIM is a member, have developed a Resource/Reserve clas-
sification, definition and reporting system that is also widely 
accepted.

In recent years there has been an increased emphasis on 
the concept of a qualified (QP) or competent (CP) person. 
The professionals preparing resource models and statements 
are required to be experts in the field and also in the type 
of deposit being modeled. Typical requirements are that the 
individual(s) be members in good standing of recognized 
professional associations, which includes having approved 
a State or Provincial-sponsored professional exam, and have 

no less than 5 years experience modeling the same type of 
mineral deposits.

As an example, the 2010 CIM guidelines adopted in the 
National Instrument 43-101 of Canada allows classifying 
mineralization or other natural material of economic inter-
est as a Measured Mineral Resource by the Qualified Person 
when the nature, quality, quantity and distribution of data are 
such that the tonnage and grade of the mineralization can be 
estimated to within close limits and that variation from the 
estimate would not significantly affect potential economic 
viability. This category requires a high level of confidence 
in, and understanding of, the geology and controls of the 
mineral deposit.

Mineralization may be classified as an Indicated Mineral 
Resource by the Qualified Person when the nature, quality, 
quantity and distribution of data are such as to allow confi-
dent interpretation of the geological framework and to rea-
sonably assume the continuity of mineralization. The Quali-
fied Person must recognize the importance of the Indicated 
Mineral Resource category to the advancement of the feasi-
bility of the project. An Indicated Mineral Resource estimate 
is of sufficient quality to support a Preliminary Feasibility 
Study which can serve as the basis for major development 
decisions.

Mineralization is classified as Inferred Mineral Resource 
if the quantity and grade or quality can be reasonably as-
sumed, but not necessarily verified. Due to the uncertainty 
that may be attached to Inferred Mineral Resources, it cannot 
be assumed that all or any part of an Inferred Mineral Re-
source will be upgraded to an Indicated or Measured Mineral 
Resource as a result of continued exploration. Confidence in 
the estimate is insufficient to allow the meaningful applica-
tion of technical and economic parameters or to enable an 
evaluation of economic viability worthy of public disclosure. 
Inferred Mineral Resources must be excluded from estimates 
forming the basis of feasibility or other economic studies.

A Mineral Reserve is the economically mineable part of 
a Measured or Indicated Mineral Resource demonstrated 
by at least a Preliminary Feasibility Study. This Study must 
include adequate information on mining, processing, metal-
lurgical, economic and other relevant factors that demon-
strate, at the time of reporting, that economic extraction can 
be justified. A Mineral Reserve includes diluting materials 
and allowances for losses that may occur when the material 
is mined.

A Proven Mineral Reserve is the economically mineable 
part of a Measured Mineral Resource demonstrated by at 
least a Preliminary Feasibility Study. This Study must in-
clude adequate information on mining, processing, metallur-
gical, economic, and other relevant factors that demonstrate, 
at the time of reporting, that economic extraction is justified.

A Probable Mineral Reserve is the economically mine-
able part of an Indicated, and in some circumstances a Mea-
sured Mineral Resource demonstrated by at least a Prelimi-

12.3 � Resource Classification and Reporting Standards
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nary Feasibility Study. This Study must include adequate 
information on mining, processing, metallurgical, economic, 
and other relevant factors that demonstrate, at the time of 
reporting, that economic extraction can be justified.

Reporting Codes and corresponding Guidelines use 
vague language in its definitions, as it is difficult to provide a 
general Guideline applicable to all different types of mineral 
deposits and resource estimation practices. There is a gen-
eral tendency to suggest the use of some form of statistical 
description of uncertainty, if only as an accompanying tool 
that would clarify the degree of uncertainty.

All guidelines discuss geologic and grade continuity as 
key components of the classification criteria, sometimes add-
ing modifying factors to adjust to local conditions. It is the 
QP’s decision as to what an acceptable evidence of that con-
tinuity is, which may be partly dependent on the QP’s prior 
experience with that type of deposits. In practice, resource 
classification is often reduced to deciding the criteria to be 
applied, including continuity, and then finding a method to 
classify the resources that best captures that basic criteria. A 
common misconception is that resource classification meth-
ods provide an objective assessment of confidence; in fact, 
the classification is an expression of a QP’s opinion.

A common practice is to use some form of distance of 
drill holes to the estimated blocks. The choice of geometric 
criteria should be based on common practice for the deposit 
type, site-specific considerations and an expert judgment of 
other factors. The benefits of using simple distance measures 
are that the criteria can be simply stated, it is a transparent 
and easy-to-understand process, and leaves little room for 
mischief. Also, it does not depend on the estimation method 
chosen. Some of the most common concerns stated against 
these types of methods are that they are overly simplistic, as 
they fail to fully capture geologic confidence.

Geometric methods for classification generally do not 
give an actual measure of uncertainty, and if so, only for very 
large volumes, as with the kriging variance. There is an in-
creasing interest in quantifying uncertainty at different vol-
umes (block by block, if possible), which leads to relevant 
risk assessments.

Other alternatives encountered in practice include krig-
ing variances, commonly applied early on in geostatistical 
resource estimation (Blackwell 1998; Diehl and David 1982; 
Froidevaux 1982; Royle 1977); a combination of distances 
to drill holes (in a certain pattern); the number of drill holes 
used to estimate each block; multiple-pass kriging estima-
tion plans to account for density of information and other 
geologic factors; and possible combinations of these, as well 
as hand-contouring and smoothing, usually as a post-pro-
cessing step to any of the above.

There has been a move toward systematic and standard 
methods to evaluate and present uncertainty (Dohm 2005). 
Common aspects of uncertainty reporting include specifica-
tion of the population or sample being considered, measure 

of the “ + /-” uncertainty, probability to be withing the “ + /-” 
measure of uncertainty, and a list of assumptions and com-
ponents of uncertainty. There are three aspects to consider in 
resource classification. They are volume, measure of “ + /-” 
uncertainty, and probability to be within the “ + /-” measure 
of uncertainty. The format for uncertainty reporting is clear 
and understandable. For example, H.M. Parker (personal 
comminucation) proposes to classify as measured resources 
those monthly production volumes for which the true grade 
is predicted to be within 15 % of the estimated grade 90 % of 
the time. Quarterly production volumes where the true grade 
will be within 15 % of the predicted grade 90 % of the time 
are defined as indicated. There are no established rules or 
guidelines to decide on these three parameters; this remains 
in the hands of the qualified person.

Figure 12.6 highlights the three parameters often used in 
probabilistic classification schemes: (1) volume related to 
a production period, typically a month or a quarter, (2) the 
required precision, and (3) the probability to be within the 
specified precision. The volume need not be a contiguous 
block, but for simplicity it is often chosen as a simple vol-
ume. This can be a significant limitation, because production 
for any given period will generally come from different areas 
of the mine, areas that will likely present different geological 
characteristics, and have been estimated with uneven uncer-
tainty. The second two parameters summarize uncertainty, 
which can be understood as proportions over a defined 
population. The probabilistic statement that there is a 90 % 
probability that the grade of a monthly production volume 
be within 15 % of the estimated grade means that 90 out of 
100 true grades of similarly classified monthly production 
volumes will be within their estimate plus or minus 15 %.

Another alternative is to fix the volume of interest, for ex-
ample a quarter’s production, and then decrease the number 
of times the true value is expected to fall within the intervals, 
as shown in the schematic of Fig. 12.7. In this figure measured 

Fig. 12.6   Schematic illustration of the three parameters often used in 
probabilistic classification schemes: (1) volume related to a produc-
tion period, (2) precision, and (3) probability to be within the specified 
precision
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resources are those for which the expected monthly produc-
tion is within   ± 15 % of the true value 95 % of the time. Indi-
cated resources are those for which the condition is relaxed to 
80 % of the time, while Inferred only requires that 50 % of the 
time (or production months) the true value be within ± 15 %.

Uncertainty predictions can be from geostatistical or more 
traditional methods. If geostatistical procedures are used to 
construct probability distributions of uncertainty the param-
eters vary locally and within domains. There are a number of 
techniques that can be used, but conditional simulation is the 
best option, since the uncertainty of any parameter of interest 
can be predicted at different scales by simply averaging up 
the simulated values.

The uncertainty model can be checked by predicting the 
uncertainty at locations where there is information from 
drillholes or past production data. The probability intervals 
are constructed, counting the number of times that the true 
values fall within those intervals, thus determining if the pre-
dicted percentage is verified.

In any resource estimation work, the purpose of classify-
ing the estimated resources should be clearly stated, and also 
a clear distinction between geologic confidence (i.e., resource 
classification) and mining risk assessment should be made. It 
is tempting to use resource categories as a means to obtain a 
mine production risk assessment, although they are intended 
for geologic confidence assessment in a very global sense.

There is no consistent scheme for resource classification 
for all deposits, although certain common practices can be 
identified.

12.3.1 � Resource Classification based on Drill 
Hole Distances

Multiple variants of this concept have been used, but in its 
most simple form the resource is classified based on the dis-
tance from the centroid of the estimated block to be to the 
nearest sample used in the interpolation. Estimated blocks 
that have close samples nearby will have a higher confidence 
assigned to them. This is considered a very simplistic method.

Another alternative is to otain the average weighted dis-
tance of all samples used to estimate the block. This dis-
tance could be anisotropic, following the variogram model 
ellipsoid and/or the shape of the search neighborhood. It may 
appear as a reasonable option since all samples used in the 
estimation are considered. This could potentially avoid arti-
facts related to assigning high confidence to a block estimat-
ed with one very close sample and many others much fur-
ther away. But there are drawbacks with this system, again 
related to the lack of uncertainty measures and the simple 
criteria used.

The actual classification of the resources should depend 
on the distances chosen to characterize confidence, which in 
turn should be based on geology, drilling density and vario-
gram ranges. Commonly, different estimation domains will 
have different classification parameters applied to them. 
Also, a minimum number of samples and drilling density 
measures are sometimes used, as well as differences in the 
geologic characteristics in different areas of the deposit.

12.3.2 � Resource Classification Based on Kriging 
Variances

The kriging variance is an index of data configuration. As 
such, it can be used to rank the resource model blocks based 
on how much information is used to estimate each block. It 
can be standardized, for example, to a local mean, such that 
the resulting relative kriging variance can be used across dif-
ferent grade mineralization zones.

The values for kriging variances that define resource cat-
egories are usually related to a pre-specified drill hole con-
figuration, as exemplified in Fig.  12.8. This is an example 
taken from a porphyry copper deposit in northern Chile. After 
obtaining a variogram model for each of the three main cop-
per mineralization types present in the deposit, two standard 
drill hole configurations were used as references to deter-
mine resource categories. The kriging variance values for the 
5-composite configuration (Case B) defines the limit between 
measured and indicated for each mineralization type, while 

         95%                                                 80%                                                 50%Probability
to be within

                   

Fig. 12.7   Probability intervals 
for classification
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the corresponding kriging variances for the 4-composite con-
figuration (Case A) define the limit between the indicated and 
the inferred categories. Note that the kriging variances are al-
ways used as relative thresholds, since the values themselves 
do not have any physical or geological meaning.

Other alternatives for defining resource categories can in-
clude visual inspection of the kriging variances, although rare-
ly there will be a clear break or indication of kriging variances 
that can be related to resource classes. Therefore, it is highly 
dependent on the subjective criteria to define the thresholds 
for each category. Because of this, the method can be consid-
ered equivalent to the distance to the drill hole-based methods, 
just developed with in a more formal geostatistical framework.

12.3.3 � Resource Classification Based  
on Multiple-Pass Kriging Plans

Another option is to derive the resource classification from 
multiple kriging passes. Several kriging iterations are done 
to estimate the model grades using different levels of restric-
tions, that is, from a more to a less constrained kriging.

The constraints are defined in terms of requisites for an 
estimate to occur; in the more constrained case, a higher min-
imum number of samples combined with a larger minimum 
number of drill holes, and shorter search radii may be used. A 
smaller number of blocks will be estimated in the more con-
strained pass, but they will be better informed than blocks 
estimated in later estimation passes. If the estimation passes 
are set based on geologic and geostatistical criteria, a flag for 
each block indicating in which pass it was estimated could be 
used as an initial indicator for resource classification.

12.3.4 � Resource Classification Based  
on Uncertainty Models

Conditional simulation provides realizations that provide 
models of uncertainty in a global as well as local sense. These 
realizations are applicable to both resource classification and 

mine production risk analysis; however, the use of realiza-
tions from which probability intervals can be obtained and 
used for resource classification is not yet widespread. The 
resource classification codes, beginning with the JORC code, 
encourage quantification of uncertainty whenever possible, 
but they do not mandate it, nor do the corresponding Guide-
lines suggest specific methodology for such quantification.

Deutsch et  al. (2006) argue that the uncertainty models 
derived from conditional simulations should only be used as 
a backup to other more simple, geometric methods, such as 
drill hole distance. Several reasons are given in the paper for 
this recommendation mostly because the probability inter-
vals are shown to be sensitive to the definition of some of 
the parameters used to obtain them, as well as the overall 
model dependency. The uncertainty model is dependent on 
the specifics of the implementation parameters used in the 
simulations (Rossi 2003).

Probabilities can be checked using actual proportions, 
and, whenever possible, this check should be made. Operat-
ing mines will generally maintain sufficiently good produc-
tion records to be able to check actual production tonnages 
and grades. If the modeled uncertainty can be verified by 
actual production, then there are several good reasons to rely 
on the uncertainty model for resource classification: (1) the 
magnitude of the grades and the local configuration of data 
are accounted for, (2) the mining volume is explicitly ac-
counted for, and (3) uncertainty is perceived as more objec-
tive and transportable to different deposits.

The probability used to define measured, indicated, and 
inferred resources depends on the mining company’s prac-
tice. Many will simplistically translate the kind of precision 
required of other engineering studies and cost estimates 
during pre-feasibility or feasibility studies into resource 
classification. Typically, a measured resource would be a 
quarter known within ± 15 %, 90 % of the time; an indicat-
ed resource, within ± 30 %, 90 % of the time; and inferred, 
within ± 30 % and ± 100 %, 90 % of the time. Material known 
within more than ± 100 % will not qualify as resource, and 
may be flagged (but not publicly reported) as blue sky or 
potential mineralization.

Fig. 12.8   Schematic example  
of resource classification through 
kriging variances for reference 
drill hole configurations

 

12  Uncertainty and Risk



219

12.3.5 � Smoothing and Manual Interpretation  
of Resource Classes

Since resource classification is usually performed on a block 
by block basis, most of the non-probabilisitic methods men-
tioned above will generally require a posterior smoothing of 
the resulting volumes, mostly because of the common accepted 
idea that the classified material should be fairly homogeneous, 
without intermixing of resource classes over short distances.

This is mostly an aesthetic issue, since classification 
schemes are meant to provide global indicators of confi-
dence, and not necessarily smooth block-to-block images. 
Any of the methods described above will likely produce vol-
umes for each resource class that are consistent with the cri-
teria used to specify them. It is common to see in areas with 
heterogeneous drill hole spacings, variable geologic charac-
teristics and abrupt transitions between the resource classes.

If smooth and contiguous volumes are desired, then 
manually interpreting the zones, based on the initial definition, 
is probably one of the most practical means to achieving this. 
Alternatives could include running a smoothing algorithm 
that would transform, based on windows of certain sizes, 
the resource classification of the blocks within to produce 
more homogeneous volumes. In any case, this should be 
done with care, not to bias or significantly alter the global 
volumes defined by the criteria established. There should 
only be minor corrections for consistency and what may be 
deemed inconsistent classification classes based on geologic 
or geostatistical knowledge. It is good practice to check the 
overall grade-tonnage curves by resource class before and 
after the smoothing process, to understand the degree of 
changes introduced.

Figure  12.9 shows an example of smoothing through 
hand-contouring done at Cerro Colorado, BHP Billiton’s 
porphyry copper operation in Northern Chile. The smooth-
ing was done by interpretating on benches and smoothing 
out the edges and, in some cases, the intermixing of resource 
classes. The red outline defines the measured volume, the 
bright green outline the indicated volume, and the remaining 
material is classified as inferred. Note how some of the mate-
rial originally classified as indicated is inside the red outline 
(central-East portion of the bench), and thus finally classi-
fied as measured. Also, there is a small area in this bench to 
the Northeast of the picture where measured runs directly 
into inferred, due to a change in the geologic environment.

12.4 � Summary of Minimum, Good and Best 
Practices

Minimum practice for the development of uncertainty mod-
els requires the application of simple and more traditional 
statistical techniques. The scope of application of these 
models is relatively small, and can only be attached to large 
volumes. The two most common examples include Resource 
Classification (for all the methods described, with the excep-
tion of conditional simulations), and global confidence inter-
vals derived from the variance of averages for large volumes. 
Risk assessments are thus limited, and normally qualitative.

Good practice requires, in addition to the above, the de-
velopment of conditional simulation to obtain realizations 
of an uncertainty model. This model should be reasonably 
comprehensive, in the sense of including as many sources of 
uncertainty as possible, but principally geologic and grade 

Fig. 12.9   Resource classification 
contours, Bench 2440m, Cerro 
Colorado 2003 Resource Model, 
Northern Chile. Red encloses 
measured material, green outline 
encloses indicated material. 
Courtesy of BHP Billiton
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estimation uncertainties. Within these, issues related to di-
lution should be emphasized, as well as an assessment of 
the information effect. The resulting model of uncertainty 
should be checked against actual production, if available, or 
against some resource model taken as reference or base case. 
Risk assessments should be fully developed, validated, and 
documented, with clearly stated objectives.

Best practice consists of, in addition to the above, full 
modeling of all recognized and quantifiable uncertainties, in-
cluding those attached to the data, to the sampling and assay-
ing procedures, to the geologic model and simulation domain 
definition (as above), and the modeling of grade. Conditional 
simulations should thus be used to provide both global and 
local uncertainty measures, and a full description of the re-
source model. However, the exclusive use of probabilities 
for resource classification is not recommended. An arbitrary 
choice of probabilistic criteria will often lead to unreason-
ably large or small volumes in each category. It is however 
advisable to apply geometric criteria for resource classifica-
tion, with or without smoothing out the zones with mixing 
of resource classes, and provide further support through a 
probabilistic analysis. The probabilistic analysis may cause 
the competent person to reconsider their geometric criteria, 
but the geometric criteria are used for disclosure.

If, however, the possibility exists of reliably validating 
the uncertainty model obtained from the conditional simula-
tions through mine production, then it is reasonable to use 
the probabilistic intervals as basic definition for resource 
classification.

12.5 � Exercises

The objective of this exercise is to review aspects of uncer-
tainty and risk assessment together with loss functions and 
decision making. Some specific (geo)statistical software 
may be required. The functionality may be available in dif-
ferent public domain or commercial software. Please acquire 
the required software before beginning the exercise. The data 
files are available for download from the author’s website—
a search engine will reveal the location.

12.5.1  Part One: Sampling Uncertainty

The objective of this exercise is to experiment with different 
uncertainty sampling and sensitivity assessment approaches. 
Available methods for these two purposes can vary great-
ly depending on whether one is interested in sampling ef-
ficiency and/or realistic uncertainty assessment accounting 
for dependency structures. The set of tools we will explore 
in this exercise applies different methods that satisfy these 

two features in varying degrees. Consider a simple calcula-
tion of oil in place (OIP) that depends only on a few input 
parameters:

where GRV is the gross rock volume, φ is the porosity, Sw is 
the water saturation, and FVF is the formation volume factor. 
The constant 6.2898 is a metric conversion factor to relate 
cubic metres to stock tank barrels. Suppose that each of the 
input variables can be described as a random variable: All 
variables are normally distributed with the following mean 
and variance values:

Variable Mean Variance

GRV 79 million cubic meters 5 million cubic meters
φ 17 % 5 %2

SW 11 % 9 %2

FVF 1.3 0.2

Question 1:	 Using Monte Carlo simulation, draw 100 real-
izations for each input parameter and then 
calculate the corresponding OIP for each real-
ization. Plot the distribution of uncertainty 
about OIP.

Question 2:	 Consider now partitioning each of the input 
distributions into ten different partitions (you 
can set the thresholds at the deciles). Apply 
latin hypercube sampling (LHS) and calculate 
OIP (you should only need to draw 10 realiza-
tions for each input and ensure that you only 
draw from each partition once). Plot and com-
ment on this distribution of OIP.

Question 3:	 Suppose now that there is a relationship 
between φ and Sw, which can be described 
as bivariate Gaussian with correlation of 0.5. 
Given that there is no longer independence 
between all the input variables, describe 
how you would implement a Monte Carlo 
approach (similar to Question 1) to account 
for the impact this relationship has on uncer-
tainty in OIP. If you have time, you may wish 
to implement this and compare against the 
distribution in Question 1.

Question 4:	 Perhaps the most common approach to sen-
sitivity analysis is the vary one at a time 
approach. This requires keeping all the input 
variables at the base case value (usually the 
mean), and then for one input variable, choose 
say the p10 and p90 of that input variable and 

OIP 6.2898 GRV (1* Sw) / FVF* *= −ϕ
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evaluate the impact on OIP. Plot this impact as 
a tornado chart by ordering the input variables 
in descending order of impact.

Question 5:	 Consider now varying each input variable 
(keep all other variables at the base case) by 
changing its value by ± 5 % increments from 
the base case value until say ± 20 %. For each 
case evaluate the change in OIP, and plot this 
as a spidergram.

Question 6:	 Rather than changing each input variable by 
a percentage difference from the base case, 
change each input by a set of percentages. 
For this, consider evaluating OIP as you 
change an input variable based on its deciles. 
Now plot this result in a similar format to a 
spidergram, and comment on any differences 
you notice from the spidergram in the previ-
ous question.

12.5.2  Part Two: Loss Functions

The consequences of over and under estimation are often 
not the same. The two common loss functions, however, are 
symmetric.
Question 1:	 Prove that the mean of a distribution always 

minimizes the mean squared error loss func-
tion, that is, a loss function where the loss 
increases as a square of the error for both over 
and under estimation.

Question 2:	 Prove that the median of a distribution always 
minimizes the mean absolute error loss func-
tion, that is, a loss function where the loss 
increases as the absolute value of the error for 
both over and under estimation.

Question 3:	 The L-optimal value is a specific quantile of 
the distribution of the penalty for over and 
under estimation is both linear with different 
slopes. The 0.5 quantile or median is optimal 
if the slopes are the same. What is the quan-
tile for arbitrary (different) slopes for over and 
under estimation?
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