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Preface

Multibody Dynamics represents a challenging area of mechanical engineering both
from the point of view of mathematical and computer models as well as from that of
the applications. During the last years there have been significant contributions in the
field, due to which increased maturity has been reached in theoretical models as well
as in the availability of efficient commercial software. Furthermore, important im-
provements have been achieved in the coupling with Computer Aided Design (CAD)
software, as well as with Finite Element Methods (FEM). Nevertheless, important
contributions remain to be performed by the scientific and engineering community.
Within the topics related to methods and models, open development areas include
contact and impact, control and mechatronics, real-time simulation, optimization,
flexible multibody systems, time integration schemes and software development. As
regards applications, current areas of interest include robotics and walking machines,
vehicle dynamics, aerospace, biomechanics, multidisciplinary applications and, fi-
nally, education.

The ECCOMAS Thematic Conference Multibody Dynamics 2005 was held
in Madrid from the 21st to the 24th of June, representing the second edition of
a series which began in Lisbon 2003. The conference was held under the aus-
pices of the European Community on Computational Methods in Applied Sciences
ECCOMAS (www.eccomas.org). This conference provided a forum for discussion
of several topics, through the participation of 161 researchers from 29 countries,
mostly Europeans but also from Africa, America and Asia.

This book contains the revised and extended versions of selected conference
communications, representing the state-of-the-art in the advances on computational
multibody models, from the most abstract mathematical developments to practical
engineering applications. We feel that this book will be highly valuable for those
experienced researchers that want to keep updated on the details of the latest driving
ideas in this field, but also to researchers approaching the field for the first time,
since it provides a useful overview of the most active areas and the efforts devoted
by many prominent research groups worldwide.

vii

Juan Carlos García-Orden, José María Goicolea and Javier Cuadrado
June 2006



Modelling Multi-Body Systems Using the
Master–Slave Approach

Gordan Jelenić1 and José J. Muñoz2

1Department of Civil Engineering, University of Rijeka, Rijeka, Republic of Croatia;
E-mail: gordan@gradri.hr
2Department of Applied Mathematics III, Polytechnic University of Catalonia, Barcelona,
Spain; E-mail: j.munoz@upc.edu

Abstract. Many engineering structures involve some type of kinematic joints. Modelling
such structures therefore represents a static or dynamic multi-body problem, be it deployment
and retraction of roofs, domes, satellite aerials or rocket wings [25, 27, 28, 30, 41, 49, 55, 63],
actuation of serial robot arms and parallel platforms and dynamics of rotating machinery
[8, 20, 42, 43, 47, 61, 64, 65], operation of flexible mechanisms including suspension sys-
tems, steering mechanisms, railway collecting pantographs [23, 39, 40, 46, 54], or some other
engineering multi-body problem.

Traditionally, these problems are analysed using specialist rigid-body mechanism codes,
which often import flexibilities from finite element codes, but nowadays it is becoming ex-
ceedingly popular to employ non-linear finite element packages and enhance them so that
they can handle this additional level of kinematic complexity. In this work, a particular tech-
nique within this approach has been applied to model a variety of simple and more complex
joint types. The same method can be also employed to model general contact problems of
elastic bodies, as a numerical example included at the end of this chapter demonstrates.

1 Introduction

Within the finite-element method, modelling the kinematics of joints by using the
method of Lagrange multipliers [10, 21, 22, 26, 44, 62] is very popular. This tech-
nique generates certain difficulties, however, such as constraint violation [3] and the
Lagrange multipliers pose as extra degrees of freedom, different in their physical
character as well as their order of magnitude from the existing (kinematical) degrees
of freedom. The resulting matrix of coefficients for such a mixed system is not neces-
sarily well-posed and positive definite even in a stable region, which makes the oc-
currence of divergence-type instabilities less obvious. The extra degrees of freedom
are avoided if the joints are simulated using a penalty-type approach [12, 15, 16, 42],
but such a procedure is necessarily approximate, depending on the magnitude of the
penalty parameters and is prone to numerical ill-conditioning. The two techniques
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can be advantageously combined in the so-called augmented Lagrange method (e.g.
[2]), which eliminates the approximate character of the penalty method while, for a
suitably chosen penalty parameter, it retains the advantage of providing a positive
definite Hessian at a stable equilibrium. Additional improvement follows by apply-
ing another constant scaling in order to eliminate the problem of different orders of
magnitude for the unknown degrees of freedom. The augmented Lagrangian method
thus eliminates most of the above problems at the expense of introducing two sets of
problem-dependent constant parameters.

If, on the other hand, we introduce the joint kinematics at a node prior to the
assembly of the finite element mesh, we arrive at the so-called minimum set method,
also called the master–slave method [33, 34, 45], and the parent–child method [48].
This technique has many similarities with the projection methods in [1], the joint co-
ordinates in [38], or the constraint elimination in [6]. In the terminology of Rosen-
berg [4], in this approach the constraints are embedded within the equilibrium equa-
tions, whereas with the Lagrange multipliers the constraints are adjoined to the equi-
librium equations. A method originally employing the Lagrange multipliers, which
are subsequently eliminated from the equilibrium equations by means of the basis
matrix of the null space of the constraint Jacobian, called the null-space method [17],
the orthogonal complementary method [31] or the projection method [19] leads to
equivalent results.

Let us note that the term “master–slave" is also extensively used in the context
of contact mechanics for denoting the surfaces in contact. Here, however, this term
should be understood as the technique of embedding the joint constraints into the
equilibrium equations.

In addition to the complexities associated with the non-linear character of joints,
standard implicit time-integration strategies (which are generally considered as suit-
able for the long-term analysis in structural dynamics) cannot always be considered
as reliable in the analysis of flexible mechanisms. Earlier work [24, 37, 59] has
shown that the algorithms from the well-known Newmark family [53] and its Hilber–
Hughes–Taylor generalisation [32], which are often used in commercial non-linear
finite element codes, are not unconditionally stable when applied to problems of
non-linear dynamics. In order to address this difficulty, new formulations have been
proposed during the past decade, which are designed to preserve the energy and mo-
menta for an ideal Hamiltonian problem with symmetries.

This work has been based on the use of standard three-dimensional beam ele-
ments which necessarily include rotations as variables. For the finite-element solu-
tion procedure to be successful when applied to problems of flexible multi-body
mechanisms, a rigorous kinematic description of not only the joints, but also the
beam model, is a must.

In the first part of this work, the method is used to formulate a mechanical model
for a variety of joint types, including revolute and prismatic joints (joints with a
single released degree of freedom); cylindrical, universal and spherical joints (joints
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with multiple independent degrees of freedom); and screw, rack-and-pinion and cam
joints (joints with dependent degrees of freedom). These joints are defined at fixed
points, which are taken to coincide with the finite-element nodes, and such a formu-
lation is therefore named the node-to-node approach. The formulation presented in
this part can be applied to any beam model with rotational degrees of freedom.

In the second part of the work, a specific problem of modelling a sliding joint
on a deformable surface, named the node-to-element approach, is investigated. This
problem introduces a range of complexities in comparison to the problem of model-
ling a simple prismatic or cylindrical joint moving along a rigid axis [13, 14], which
result in the expansion of the null-space matrix [7] and require specially designed
procedures to handle the transition of a contact point between elements [51]. In or-
der to address the key ingredients of the approach, we will describe the method on
a reduced model with no rotational degrees of freedom. Formulations for geomet-
rically exact 3D beams, which include these degrees of freedom, can be found in
[51, 52]. The first of these references shows that this approach is in fact applicable
to the problems of modelling bilateral point-on-surface contact in 3D continua, and
the numerical example included here illustrates this.

2 Node-to-Node Approach

2.1 Standard variational approach in analysis of flexible multi-body problems

The essence of the master–slave technique lies in the specific method in which inter-
element kinematics is introduced into the finite-element process: the technique forms
a module, where the kinematic releases that may exist at an inter-element connec-
tion are accounted for by defining the specific kinematic relationship between the
elemental degrees of freedom at the connection. If the joint were not present at the
connection, the degrees of freedom for each element at the connection would be
simply made equal to each other. In this way, the mesh assembly – a standard oper-
ation within the finite-element methodology – is conveniently used to eliminate the
algebraic constraint conditions. When a joint exists at a point different than a finite-
element nodal point, for example in the case of sliding contact conditions, the mesh
assembly is less straightforward, but it nonetheless follows the same basic principles
as explained in Section 3 (see also [51]).

2.1.1 Kinematics of joints

Figure 1(a) shows a so-called prismatic joint, where a released variable s is the
amount of translation, the direction of which is constrained to a continually mov-
ing axis, rigidly attached to the end of one of the elements. Let us name this end
the master node, and the element to which it belongs the master element. A unit
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vector along this axis is one of the orthogonal vectors rigidly attached to the mas-
ter node, which form an orthonormal master triad �m ∈ SO(3) | �−1

m = �T
m and

det �m = +1 with an associated master rotation vector θm ∈ R3 | exp θ̂m = �m,
where ∀ v,w ∈ R3 ∃ v̂, ŵ ∈ so(3) | v × w = v̂w = −ŵv [11, 57]. The orientation
of the master node is defined by �m (or θm) and its position is defined by the position
vector rm ∈ R3 as shown in Figure 1(c).

For a revolute joint in Figure 1(b), the released joint variable is the rotation θ

about a continuously moving axis of the master triad. Consequently, in an imagin-
ary general case of a joint with all the degrees of freedom released, these released
degrees of freedom will include the released displacement vector rr ∈ R3 and the
released rotation vector θ r ∈ R3 | exp θ̂ r = �r ∈ SO(3) as shown in Figure 1(c).
The position and rotation of the node attached to the end of the other element in
Figure 1(c) are denoted as rs ∈ R3 and θ s ∈ R3 | exp θ̂ s = �r ∈ SO(3), and are
named the slave position and rotation, and their node the slave node.

The position and rotation of the master and slave nodes are initially shared by
two (or more) elements but, since they are not fully connected to each other, in the
deformed configuration they are no longer completely shared and from Figure 1(c)
we establish the relations

rs = rm + rr (1)

�s = �r�m ⇐⇒ exp θ̂ s = exp θ̂ r exp θ̂m. (2)

When modelling real joints, the master variables rm and θm are not entirely in-
dependent of the slave variables rs and θ s . Depending on the type of joint, some
of the components of the position vectors rm and rs , or the parameters defining the
rotation vectors θm and θ s , can be the same. As shown in Figure 1, different types of
joints are defined by releasing displacements and rotations with respect to the relev-
ant axes. Since these axes rotate with the structure, the components of the released
displacement or rotation need to be defined with respect to these continually rotating
axes and for this reason it is necessary to introduce the material forms of the released
degrees of freedom defined as

rR = �T
mrr (3)

θR = �T
mθ r , (4)

where the material vector of released displacements rR , and the material released
rotation vector θR have zero components in non-released directions.

Following on from this discussion, (1) and (2) may be rewritten as

rs = rm + �mrR (5)

�s = �m exp θ̂R ⇐⇒ exp θ̂ s = exp θ̂m exp θ̂R. (6)

More detail on the kinematics of the master–slave method can be found in [34, 37].
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Fig. 1. Kinematics of joints: (a) prismatic joint, (b) revolute joint, (c) degrees of freedom.

2.1.2 Variational approach

For a static analysis, the principle of virtual work may be used to obtain the weak
form of the structural equilibrium. Central to this is the application of the variational
calculus in order to obtain the virtual displacements, in particular the virtual master,
slave and released degrees of freedom which, as we know now, are not independent
from one another. In particular, we aim to express δβs ∈ R3, associated with the
variation of �s , in terms of δβm ∈ R3, associated with the variation of �m, and
δβR ∈ R3, associated with the variation of exp θ̂R . In order to alleviate the notation,
from now on we will drop the index “s” from the description of the slave variables.

The variation of the slave rotation matrix � can be expressed in terms of the
variation δβ as [57]

δ� = δ̂β�, (7)

and, in conjunction with (6), this results in [34]

δβ = δβm + �mδβR, (8)

where δβ, δβm, δβR are often referred to as the spin slave, master and released
variables (in contrast to δθ , δθm, δθR , referred to as the additive slave, master and
released rotational variations). In the same way, (5) may be varied to obtain

δr = δrm + �mδrR − �̂mrRδβm, (9)

The relation between the master and the released variations on the right-hand side
and the slave variations on the left-hand side can be now written in a matrix form as

{
δr

δβ

}
=
[
�m 0 I −�̂mrR

0 �m 0 I

]⎧⎪⎪⎨⎪⎪⎩
δrR

δβR

δrm

δβm

⎫⎪⎪⎬⎪⎪⎭ . (10)
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In practice, not all of the “releasable” variables will be really released: some of
them will be instead set to zero, so that most often there will be only one non-zero
component in δrR or δβR . For each node i on a beam finite element, (10) can be
rewritten in a compact form as

δpi = Ni δpRm,i, (11)

where δpT
i = {δrT

i δβT
i }, δpT

Rm,i = {δrT
R,i δβT

R,i δrT
m,i δβT

m,i} and

Ni =
[
�m,i 0 I −�̂m,irR,i

0 �m,i 0 I

]
. (12)

Application of the principle of virtual work to a general N-noded beam element
leads to the relationship

N∑
i=1

δpi · (qi − f i ) = 0, (13)

where qi and f i are respectively the internal and the external load vectors at node i

and qi − f i is the static residual vector at this node.
Inserting (11) into (13) now leads to the virtual work equation

N∑
i=1

δpRm,i · NT
i (qi − f i ) = 0, (14)

and, as this equation must hold for any virtual variables, δpRm,i (i = 1, . . . , N), we
obtain the vector equilibrium at every node i as

NT
i (qi − f i ) = 0. (15)

A different approach in obtaining this result is given in [17], where it comes as a
last step in the process of modelling the joints as the kinematic constraints introduced
into the equilibrium equation through the Lagrange multipliers, and subsequently
eliminating them through the equivalent premultiplication of the result by the null-
space matrix NT

i .

2.1.3 Application to end-point dynamics

Extending the method to cater for dynamic problems is remarkably straightforward:
the transpose of the linear operator (the null-space matrix) between the variations of
the kinematic variables in joints, should now act on the vector of dynamic, rather than
the static residuals. In this way, the standard end-point approaches like Newmark’s
[53] and Hilber, Hughes and Taylor’s α-method [32] can be immediately applied.

6
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Fig. 2. Joints with dependent degrees of freedom.

The formulation has been here applied only to a particular type of rotational vari-
ations – the spin variables δβ – and, therefore, any nodal dynamic residual can be
processed within the present master–slave methodology provided it is work conjug-
ate to δpT

i = {δrT
i δβT

i }. In the case of isoparametric beams based on the Reissner–
Simo theory [56], the dynamic residuals given in [35, 36, 58, 60], among others, may
all be used. Subject to the above condition on the variations of the slave degrees of
freedom, co-rotational formulations, e.g. [24], are equally applicable. In all of these
elements the integration in time has been performed by employing the Newmark
trapezoidal rule [53] or its α-generalisation [32], but other time-stepping schemes
are also applicable.

2.2 Joints with dependent degrees of freedom

To consider practical problems of rotating machinery, steering mechanisms and sus-
pension systems, more complex joint models than those given earlier are needed. Ex-
amples include the eccentric cam joint depicted in Figure 2(a), the rack-and-pinion
joint depicted in Figure 2(b) and the screw joint depicted in Figure 2(c).

In these joints the released displacement and rotation vectors are not independent
of one another. For the cam joint in Figure 2(a) with a given cam-lobe profile func-
tion, the released displacement rR , for example, depends on an independent rotation
θR. For the rack-and-pinion joint in Figure 2(b) and the screw joint in Figure 2(c),
the released displacement rR is again dependent, even though this time linearly, on
the independent released rotation θR . All of them, therefore, have only one independ-
ent degree of freedom: rotation θR. A similar approach can also be applied to worm
gears, bevel gears, and helical gears [5].

Incorporating the joints with several mutually dependent released degrees of free-
dom into the presented master–slave method comes as very natural: the relationship
between the released degrees of freedom simply serves to reduce the dimension of
the transpose of the linear operator (the null-space matrix) between the kinematic
variables in joints [50]. As a special case, a rigid segment also falls into the category
of joints with dependent degrees of freedom [33].

7



G. Jelenić and J.J. Muñoz

Fig. 3. Scheme of the screw joint and the rack-and-pinion joint.

2.2.1 Kinematics of joints with dependent degrees of freedom

Setting the released displacement rR as the dependent variable and the released ro-
tation θR as the independent variable, the relationship between the two of them may
be written through a function rR = f (θR).

In the joints commonly considered, only one component of the released rotation
will be non-zero, in which case θR and δβR are coaxial. Therefore δθR = δβR , and

the variation of rR = f (θR) reads δrR = ∂f (θR)

∂θR
δβR . Replacing δrR into (9) the

matrix N turns into

N =
[

0 �m
∂f (θR)

∂θR
I −�̂mrR

0 �m 0 I

]
. (16)

2.2.2 Screw joint and rack-and-pinion joint

These joints have important common features that enable defining them in a unique
manner. In both cases there exists a released rotation around axis tφ (see Figure 3),
and a released displacement with components along axes tr (attached to the master
node) and tr × tφ . For the screw joint (sc) axes tr and tφ are coincident, while in the
rack-and-pinion joint (rp) they are perpendicular to each other. The latter also has a
non zero initial displacement (the radius of the pinion) in a direction perpendicular
to t r and tφ .

The particular form of rR = f (θR) for these joints can be written using the
scalar parameters b and c as

rR = f (θR)sc = f (θR)rp = b(tr ×tφ)+c(θR ·tφ)tr = b̂tr tφ+c(tr ⊗tφ)θR, (17)

where b is the radius of the pinion and c has a different meaning for the two joints.
In the rack-and-pinion joint c = b and in the screw joint it corresponds to the pitch
of the thread. Note that since t r and tφ have the same direction in the screw joint, the

8
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constant term bt̂r tφ in this case vanishes. Differentiating the kinematic relation (17)
gives rise to the terms

∂f (θR)

∂θR

∣∣∣∣
rp

= ∂f (θR)

∂θR

∣∣∣∣
sc

= ctr ⊗ tφ (18)

needed in (16) and subsequently in (14) and (15).

2.2.3 Rigid segment

Within the master–slave approach, a rigid segment (rs) can be formulated using the
definition of the rack-and-pinion joint in which the rack is fixed to the pinion. This
is equivalent to setting c = 0 in (17), in which case the master and the slave node
remain at a fixed distance b throughout the motion with the relative orientation of

one with respect to the other also fixed. In this case ∂f (θR)

∂θR

∣∣∣
rs

= 0, which inserted

in (16) defines the linear operator N at the node.

2.2.4 Cam joint

Let us consider a cam joint with a simple eccentric cam-lobe profile as shown in
Figure 4. By setting the upper node of the rotating element B as the slave node
and the left-end node of the element A as the master node, the relation between the
released translational displacement rR and the released rotation θR may be written
as

rR = f (θR)cam = (R cos |θR| − R − a)tr , (19)

where a and 2R + a are the minimum and maximum released displacements of the
arm A and t r is the unit vector attached to the master node (direction in which the

relative translation takes place). The term ∂f (θR)

∂θR
for the cam joint is computed as

∂f (θR)

∂θR

∣∣∣∣
cam

= −R sin |θR|tr ⊗ tφ, (20)

which is needed in (16) in order to define the linear operator N at the node.

2.3 Numerical stability and conservative integration

In order to avoid the problems with numerical stability in the standard end-point nu-
merical integration of equations of motion, a different, conservative, class of methods
for numerical integration can be applied to the problem. For a conservative force-free
class of dynamical problems, this procedure introduces an energy- and momentum-
conserving transformation which relates the finite changes of the slave and the mas-
ter/released variables over a time step rather than the variations of the slave and

9
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Fig. 4. Scheme of the cam joint.

the master/released variables, utilised in the original formulation [33, 37]. The the-
ory is quite involved and, rather than presenting it in a general case, a simple model
problem will be studied in the next section, where it will be also shown how an
energy-momentum conserving linear operator (the null-space matrix) can be derived
for a sliding joint.

3 Node-to-Element Approach

The master–slave approach will be now extended to enable the modelling of sliding
joints. The theory is relevant for the analysis of mechanisms [48], but also for the
modelling of more general node-on-segment contact [51, 52].

In order to emphasise the key ingredients of the method, we will describe the
node-to-element approach with the help of reduced models depicted in Figure 5.
Although the additional complexities of the rotational degrees of freedom are cir-
cumvented, the example contains the essence of the master–slave approach for this
kind of joints. References [51, 52] contain a more complete description of sliding
joints with rotational variables.

On this example we will also demonstrate how the master–slave technique can
be applied to obtain the necessary matrices used in the null-space or the orthogonal
complementary method [17, 31]. In order to point out the similarities and differences
between these methods and the master–slave method, we will give a brief description
of the Lagrange multipliers technique first.

3.1 Variational approach

In order to derive the equilibrium equations of the model depicted in Figure 5(b),
let us first express the total energy of the system. Mass 2 is connected to mass 1
via a massless spring of initial length �0. Mass 1 is forced to satisfy the constraint

10
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equation r1 = r̄, where r̄ ∈ Rndim is a smooth C2 curve, and ndim is the number of
dimensions of the problem (2 or 3). If no external loads are applied, the total energy
is given as E = T + V , where the kinetic and elastic energy, T and V , are given by

T = 1

2
m1ṙ1 · ṙ1 + 1

2
m2ṙ2 · ṙ2,

V = 1

2
k(|r2 − r1| − �0)

2. (21)

We will assume throughout this section that |r2 − r1| �= 0.

3.1.1 Equations of the unconstrained model

The equilibrium equations can be derived by resorting to the principle of conserva-
tion of energy and setting Ė = 0, which leads to

ṙ1 · (m1r̈1 + k̄(r1 − r2)
)+ ṙ2 · (m2r̈2 + k̄(r2 − r1)

) = 0, (22)

with k̄ = k(|r2−r1|−�0)|r2−r1| . In case of an unconstrained system (model in Figure 5(a)),
the velocities ṙ i are independent from one another, and thus the following dynamic
equilibrium equations are obtained:

m1r̈1 + k̄(r1 − r2) = 0,

m2r̈2 + k̄(r2 − r1) = 0. (23)

By defining the matrices M12 =
[

m1I 0
0 m2I

]
and K12 = k̄

[
I −I

−I I

]
, with I the

ndim × ndim unit matrix, we can rewrite Ė in (22) as

Ė = ṙ · (M12r̈ + K12r) = 0, (24)

where rT = {rT
1 rT

2 } is the vector of global displacements. It has ndof components,
and in our case ndof = 2 × ndim. The dynamic equilibrium equations in (23) can
then be written for short in the following standard form:

M12r̈ + K12r = 0, (25)

where, owing to the presence of k̄, K12 is non-constant and must not be mistaken for
a tangent stiffness matrix.

3.1.2 Equations of the constrained model

By defining the constraint function Φ := r1 − r̄, the equilibrium of the constrained
system can be obtained by simultaneously solving equations

11
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Fig. 5. Reduced (a) unconstrained model, (b) single-element constrained model and (c) two-
element constrained model.

M12r̈ + K12r = 0, (26a)

Φ = 0, (26b)

i.e. a system of differential and algebraic equations (DAE). It can be interpreted as
the restriction of the solution of (25) to the constraint Φ = 0. The constrained sys-
tem can be basically solved by two groups of techniques: by adding the constraint
equation (26b) to the solution of (26a), or by rewriting the differential equation (26a)
as a different differential equation, the solution of which remains by construction
such that Φ = 0. The first group is equivalent to the use of Lagrange multipliers,
penalty methods or augmented Lagrangian technique [2, 6]. The second group is
representative of the master–slave approach which, as mentioned in the introduction,
has similarities with other methods (embedding constraint technique, coordinate par-
titioning, joint or relative coordinates and the null-space method). Although we aim
to explore the latter group of methods, it is helpful to write the equilibrium equations
using Lagrange multipliers first.

3.1.3 Lagrange multipliers

Let us assume that in a general case we have c constraint equations, which implies
that Φ ∈ Rc (in our reduced model, c = ndim). The total energy of the system is
now extended by using a vector of Lagrange multipliers λ ∈ Rc as

E = T + V + λ · Φ.

The new dynamic equilibrium equations now follow as

M12r̈ + K12r + CT λ = 0,

Φ = 0, (27)

where the matrix C = ∂Φ
∂r = ∇Φ is for the reduced model given by

C =
[

∂Φ
∂r1

0c×ndim

]
c×ndof

.

12
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The rows of C define a basis cT
i = { ∂�i

∂r1
01×ndim} ∈ Rndof , i = 1, . . . , c, of the

space where the constraint forces act. The Lagrange multipliers are the components
of these constraint forces in this basis, in our case acting on mass m1. Note that the
algebraic equation Φ = 0 remains in the system, and thus the method must still solve
a system of differential and algebraic equations.

3.1.4 Master–slave and null-space methods

Null-space methods are based on the projection of governing equations (26) onto
a space orthogonal to vectors ci . Such an orthogonal space is spanned by a set of
vectors pi ∈ Rndof , which can be collected within a matrix PT = [

p1 . . . pndof−c

]
.

This space is in the literature also called the orthogonal complement or the null-space
of C, i.e. range(P) = null(C). It then follows that PT CT = 0 and CP = 0 and,
premultiplying equations (27) by PT , we obtain the following system of equations:

PT (M12r̈ + K12r) = 0,

Φ = 0.

Several methods have been proposed to obtain a suitable expression of matrix P
[17, 18]. The master–slave method provides a direct way to construct such a matrix,
and it is based in the fact that the slideline, given in the implicit form as Φ = 0, can
be also written in a parametric form as r1 = r̄(s). The variation of r1 in time can be
then obtained as

ṙ1 = ∂ r̄(s)

∂s
ṡ. (28)

The parameter s determines the displacement of mass m1 along the slideline. In
the master–slave context, this displacement is referred to as the released displace-
ment. We introduce the global vector of degrees of freedom rT

Rm = {s rT
2 }, which

contains the minimum set of independent degrees of freedom of the system. From
equation (28), we can derive a transformation matrix that relates δr to δrRm as

ṙ = NṙRm; N =
[

∂r̄
∂s

0
0 I

]
. (29)

By noting that ∂r̄ (s)
∂s

is tangent to the slideline and thus ∂Φ
∂r · ∂r̄ (s)

∂s
= 0, it follows

that NT CT = 0 and CN = 0, and therefore matrix N is a suitable choice for the
null-space matrix P mentioned above and the new set of equations can be written
using the minimum set of degrees of freedom as

NT (M12r̈ + K12r) = 0. (30)

It is obvious that this equation has the same form as the equilibrium equation
derived for the node-to-node master–slave approach in statics in (15). Note that the

13
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condition Φ = 0 has been removed because the slave displacements are computed
using the parameter s as r1 = r̄(s), and thus Φ = 0 is satisfied by construction.
Alternatively, the previous equation can be obtained directly by inserting (29) into Ė

in (24), which gives rise to

Ė = ṙRm · NT (M12r̈ + K12r) = 0. (31)

It is worth noting that while in the unconstrained system the global displacements
in r are arbitrary, in the constrained system they are not due to r1 = r̄(s). In other
words, the components of ṙ1 must satisfy ∂Φ

∂r ṙ1 = 0. However, no relation between
the components of ṙRm exists in (31), and therefore (30) is implied by (31).

3.2 Incremental approach: Conserving time-integration algorithms

The system of differential equations in (30) can be solved using a number of methods
described in the literature, the previously mentioned Newmark and generalised HHT-
α method being among them. Owing to their improved numerical stability, specially
attractive are the so-called conserving schemes, which algorithmically preserve some
of the constants of motion, such as the total energy (in conservative systems) and the
linear and angular momenta (in force-free systems). The design of such algorithms
involves a different system of equations, which in fact parallel the steps described
in the previous section. Instead of setting the dynamic equilibrium from the conser-
vation law defined over an infinitesimal period of time Ė = 0, we will apply this
law over a finite period of time, �E = 0 where, for a quantity (•), �(•) denotes a
change of this quantity in time, i.e. �(•) = (•)n+1 − (•)n.

In what follows we will use the conservative constraint model shown in Fig-
ure 5(c) with springs of equal stiffnesses. Mass 1 is constrained to slide along the
line defined by the position of masses m3 and m4. In the master–slave context, nodes
3 and 4 are the master nodes belonging to the master element, and node 1 is the slave
node, whose coordinates depend on the positions of the master nodes and a released
displacement.

3.2.1 Equations for the unconstrained model

From the definitions of the kinetic and elastic energy in (21), the increments of these
energies between the times tn and tn+1 can be written as

�T =
4∑

i=1

mivi,n+ 1
2

· �vi ,

�V = ξ12(�r2 − �r1) · (r2,n+ 1
2

− r1,n+ 1
2
) (32)

+ ξ34(�r4 − �r3) · (r4,n+ 1
2

− r3,n+ 1
2
),
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with

(•)
n+ 1

2
= 1

2
((•)n+1 + (•)n) ,

ξ12 = 2�V12

�2
12,n+1 − �2

12,n

, ξ34 = 2�V34

�2
34,n+1 − �2

34,n

,

�12 = |r2 − r1|, �34 = |r4 − r3|,
V12 = k

2
(�12 − �0)

2, V34 = k

2
(�34 − �0)

2

and vi the algorithmic velocity vector at node i. By defining the algorithmic mid-
point velocity as vn+ 1

2
= �r

�t
, and defining the vector of global positions as rT =

{rT
1 rT

2 rT
3 rT

4 }, the total energy change over a time step �E = �T + �V can be
written as

�E = �r ·
(

M�v
�t

+ Kr
n+ 1

2

)
, (33)

with M and K now defined as

M =
[

M12 0
0 M34

]
and K =

[
X12 0

0 X34

]
, (34)

where

M12 =
[

m1I 0
0 m2I

]
, M34 =

[
m3I 0

0 m4I

]
,

X12 = ξ12

[
I −I

−I I

]
and X34 = ξ34

[
I −I

−I I

]
.

If the algorithmic energy is to be conserved at any discrete point in time, (33) needs
to be zero for arbitrary �r , which requires

M
vn+1 − vn

�t
+ Kr

n+ 1
2

= 0. (35)

3.2.2 Lagrange multipliers

The incremental version of (27) is given by [17],

M
vn+1 − vn

�t
+ Kr

n+ 1
2

+ C̄T λ = 0, (36a)

Φn+1 = 0, (36b)

where matrix C̄ is a discrete version of C = ∂Φ
∂r . It can be expressed as C̄ = ∇̄Φ ,

where ∇̄ is a discrete derivative [29], defined in such way that it satisfies the property
∇̄Φ ·�r = Φn+1 −Φn, where in this case the right-hand side vanishes due to (36b).
However, the system of equations in (36) is still a system of differential and algebraic
equations.
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3.2.3 Master–slave and null-space methods

As before, within the null-space method it is necessary to construct a matrix P̄ as an
orthogonal complement of C̄, i.e. such that P̄T C̄T = 0. This route is investigated in
[17] for non-sliding joints.

Again, the master–slave technique allows us to construct a matrix equivalent to
P̄ directly: we define the vector of independent (i.e. master and released) degrees of
freedom rT

Rm = {s rT
2 rT

3 rT
4 }, and we derive a matrix N̄ such that

�r = N̄�rRm. (37)

Inserting this relationship into the increments of energy in (33), and noting that the
incremental master and released displacements �rRm are independent and arbitrary,
the conservation of energy is implied by the following equation:

N̄T

(
M

�v

�t
+ Kr

n+ 1
2

)
= 0. (38)

We will now presume that �r1 can be expressed as:

�r1 = Ĩ 3�r3 + Ĩ 4�r4 + A�s, (39)

where Ĩ 3, Ĩ 4 is a pair of shape functions and A is an ndim vector to be determined in
the following paragraphs. The previous expression allows us to write the following
general form for matrix N̄ as

N̄ =

⎡⎢⎢⎣
A 0 Ĩ 3I Ĩ 4I
0 I 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎦ . (40)

We will next describe two definitions of Ĩ 3, Ĩ 4 and A that have been implemented
and tested for geometrically exact 3D beams in bilateral sliding contact [52].

Contact condition consistent with finite element interpolation

Using the standard finite element nodal interpolation functions, the points on the
slideline between the master nodes 3 and 4 are obtained as Iαrα , α = 3, 4 (sum-
mation convention implied). Therefore, the discrete form of the contact condition is
expressed as r1,n = Iα

n rα,n. The slave displacement increments �r1 can be then
interpolated via a parameter γ in the following way:

�r1 = Iα
γ �rα + �Iαrα,1−γ , (41)

where (•)γ = γ (•)n + (1 − γ )(•)n+1. The shape functions Ĩ α and matrix A in (39)
are then given by:
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Ĩ α = Iα
γ (42a)

A = �Iα

�s
rα,1−γ . (42b)

It is demonstrated in Appendix A that for the conservation of the angular momentum,
the shape functions Ĩ α must satisfy equation (48), which according to the current
expressions in (42a) turns into

r1,n+ 1
2

= I 3
γ r3,n+ 1

2
+ I 4

γ r4,n+ 1
2
. (43)

This condition clearly violates the finite element interpolation of the slideline, and
thus, the algorithm does not conserve the angular momentum. However, a good ap-
proximation of the angular momentum condition is obtained for γ = 1

2 [9].

Contact condition not consistent with finite element interpolation

An algorithm that conserves the angular momentum can be built by respecting con-
dition (48) in Appendix A with Ĩ α = Iα

γ , which is equivalent to using (43). The
coordinates of the slave node r1,n+1 are then given by

r1,n+1 = 2I 3
γ r3,n+ 1

2
+ 2I 4

γ r4,n+ 1
2

− r1,n. (44)

An expression with the general form in (39) can be now written as

�r1 = I 3
γ �r3 + I 4

γ �r4 + 2
Iα
γ rα,n − r1,n

�s
�s, (45)

which gives rise to the following definitions of the components of N̄:

Ĩ α = Iα
γ

A = 2
(γ�Iα + Iα

n+1)rα,n − r1,n

�s
. (46)

Note that when �s → 0 we have �r1 = γ Iα ′rα,n + lim�s→0
Iα
n rα,n−r1,n

�s
, which

may become singular. Alternatively, we can compute r1
n+1 according to (43) and

keep expression for A in (42) which is not singular when �s → 0. In this later
case though, energy conservation is lost at the expense of conserving the angular
momentum. Nonetheless, numerical experiments with the geometrically exact beams
show that the energy increments remain relatively small [9, 52].

4 Numerical Example

The node-to-element master–slave approach has been applied to the static analysis of
a semi-spherical shell being pushed against a rigid surface, which has been modelled
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Fig. 6. Deformed configurations of a semi-sphere approaching a rigid plane.

as a single rigid element. The nodes at the surface parallel to the rigid plane have
their coordinate perpendicular to the rigid plane prescribed. The shell has been made
of as an isotropic hyperelastic material.

The model requires the definition of coupling elements, which include the dis-
placements of the master element and the slave element (see [51] for details). Al-
though details have been omitted here due to space limitations, we mention that in
this problem this definition is configuration dependent. A kinematic based contact
detection algorithm has been implemented, which updates the coupling elements.
Figure 6 shows a sequence of deformed configurations of one quarter of the shell.

A Conservation of Angular Momentum

Let us for each node i define the vectors q i
m and qi

k as the kinetic and elastic (internal)
part of the dynamic nodal residual vector, respectively, as qi

m = mi
�vi

�t
and qi

k =
(Kr

n+ 1
2
)i .

With these definitions and the general form of N̄ in (40) at hand, we can rewrite
equilibrium equation (38) as

AT (q1
m + q1

k) = 0

q2
m + q2

k = 0

q3
m + q3

k + Ĩ 3(q1
m + q1

k) = 0 (47)

q4
m + q4

k + Ĩ 4(q1
m + q1

k) = 0.

On the other hand, the angular momentum for the current model is defined as J =∑
i r̂ imivi . The increment of J per time step then reads �J

�t
= ∑

i r̂
i,n+ 1

2
mi

�vi

�t
=∑

i r̂
i,n+ 1

2
qi

m, where the first identity follows from the algorithmic mid-point ve-

locity vn+ 1
2

= �r
�t

. Using the equilibrium equations in (47), and noting that

r̂1,n+ 1
2
q1

k + r̂2,n+ 1
2
q2

k = 0 and r̂3,n+ 1
2
q3

k + r̂4,n+ 1
2
q4

k = 0, �J
�t

can be rewritten
as
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�J

�t
= r̂1,n+ 1

2
q1

m − r̂2,n+ 1
2
q2

k − (Ĩ 3̂r3,n+ 1
2

+ Ĩ 4r̂4,n+ 1
2
)(q1

m + q1
k)

=
(̂
r1,n+ 1

2
− (Ĩ 3̂r3,n+ 1

2
+ Ĩ 4r̂4,n+ 1

2
)
)

(q1
m + q1

k).

It then follows that the angular momentum is conserved if the following condition is
satisfied:

r1
n+ 1

2
= Ĩ 3r3,n+ 1

2
+ Ĩ 4r4,n+ 1

2
(48)

Acknowledgements

This work was supported by Engineering and Physical Sciences Research Council
of Great Britain under grants GR 04171/01 and AF/1000089.

References

1. García de Jalón J, Bayo E (1994) Kinematic and Dynamic Simulation of Multibody Sys-
tems – The Real-Time Challenge. Springler-Verlag, New York

2. Géradin MA, Cardona A (2001) Flexible Multibody Dynamics. A Finite Element Ap-
proach. John Wiley & Sons, New York

3. Hairer E, Wanner G (1996) Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer-Verlag, Berlin

4. Rosenberg RM (1977) Analytical Dynamics of Discrete Systems. Plenum Press
5. Shigley JE, Uicker JJ (1995) Theroy of Machines and Mechanisms. McGraw-Hill, New

York
6. Wriggers P (2002) Computational Contact Mechanics. John Wiley & Sons, New York
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Abstract. This paper, first of all, explains briefly some of the well-known and frequently
used methods for contact treatment through finite element methods and multibody systems
dynamics and gives a short description of their computational aspects in applications dealing
with contact problems. Then, as the core of this paper, a formulation for considering unilateral
contact of constrained and non-constrained planar deformable bodies in a multibody system
leading to Linear Complementarity Problems (LCPs) is presented. In doing so, kinematic re-
lationships governing the behavior of contact are formulated in a way that they consider the
effect of deformations. As a general approach for flexible multibody systems, the moving
frame of reference approach and modal coordinates are used to describe deformable bodies.
In this formulation the effects of deformation are taken into account starting from the relat-
ive velocity of contact points in the normal and tangential direction and then the procedure is
followed by introducing the relative acceleration of contact points which includes all the ne-
cessary terms needed for considering deformations. Then, the complementarity relations are
reformulated following the same procedure as for rigid bodies contact. Therefore, the main
difference of this algorithm compared to the rigid body case is in the formulation of the kin-
ematics of contact. This formulation just considers the continual contact case of deformable
bodies and for impact calculation this formulation has to be extended.

1 Introduction

There are many applications dealing with contact problems which are simulated by
multibody systems in industry and engineering and make their modeling an essen-
tial and very demanding topic in multibody dynamics. Therefore, a lot of research
focuses on this topic and many theoretical and mathematical methods are developed
for considering contact.

With increasing availability of fast computers, special attention was paid to the
numerical investigation of contact problems and their application. Meanwhile, more
and more approaches have been developed and taken into service. These approaches
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are based on the physics of contact and take into account some assumptions in order
to model the contact problem physically correct.

The numerical approaches which are being used widely in contact analysis can
be divided into two main groups: first Finite Element Methods (FEM) [4, 36–38] and
second approaches based on Multi-Body System dynamics (MBS) [4, 7, 12, 16, 24].
The FEM is without doubt the most powerful numerical method in the field of
contact modeling. Although it is well suited for particularly high accuracy require-
ments, its very high computational effort for contact treatment causes some practical
difficulties such as very long simulation times for computations over a long period
of time. In such situations, MBS can often already model the contact with acceptable
accuracy and considerably less computational effort compared to the FEM.

In general the problem of contact modeling in multibody systems consists of two
major parts, see [6, 15, 16]:

1. Search for contact between moving bodies which is often named collision detec-
tion.

2. Computation of the contact forces and/or impulses which are the results of con-
tact between bodies.

Collision detection is an important aspect of contact modeling of moving bodies,
i.e., to find when, where and which bodies are in contact and therefore, plays an
essential role. It is the main task of collision detection to check if potential contact
bodies are in contact or not but not to take any action to prevent penetration. In
general, contact objects have complicated geometries and, therefore, the requirement
for efficient and fast methods of collision detection is inevitable. The accuracy of the
results will depend on the accuracy and smoothness of the geometry definition of the
contacting bodies.

After detecting the region of contact on the contacting bodies, contact forces
and/or impulses have to be determined based on the area of this region, the geomet-
ric and material properties and the relative velocity of the bodies. From the modeling
methodology point of view, several different methods have been introduced in the
literature during the past two decades for the modeling of contact. In the next sec-
tion, among all these methods the most well-known and frequently used ones are
explained briefly and then, some application features of contact modeling in granu-
lar media and geared systems are mentioned. Then, in Section 3 as the core of our
work in this paper, the continual contact modeling of rigid bodies formulated as a lin-
ear complementarity problem in [12, 24] is extended for planar deformable bodies,
see also [5, 6]. The paper ends with a conclusion and a list of references.

2 Contact Treatment in Multibody Systems

In this section some well-known and frequently used formulations in finite element
methods and multibody system dynamics which are applied to incorporate the con-
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tact constraints into the governing equations of the system are introduced briefly.
Among all possible and implemented procedures, herein the penalty technique, the
Lagrange multiplier method, their combination which is known as augmented Lag-
range multipliers method and finally procedures yielding Linear Complementarity
Problems (LCPs) are explained. Furthermore, some special formulations used in
multibody system dynamics such as the impulse-based approach, the Polygonal Con-
tact Model (PCM) and time-stepping methods are also introduced shortly. Each ap-
proach has some advantages and some disadvantages and depending on the system
in which the contact problem occurs, an appropriate procedure has to be chosen.

2.1 The penalty approach

Since contact events yield a dependency between coordinates of the contacting bod-
ies, their corresponding constraints have to be imposed in the system. The formu-
lation of this procedure starts with considering the weak form of equilibrium equa-
tions for contacting bodies and inserting contact contributions. In doing so, from the
equilibrium equations using a weighted residual approach its corresponding weak
form which is equivalent to the principle of virtual work has to be derived. Then,
one has to follow a discretization process to reach a discretized form of equations.
These obtained equations contain nonlinearities arising from constitutive equations,
geometrical nonlinearities and unilateral contact conditions. Consequently, their lin-
earization is required in order to be solvable numerically. Contact problems may
usually be interpreted as solving an optimization problem in which the total poten-
tial energy P(u) of the system subjected to unilateral contact constraints gN(u) ≥ 0
has to be minimized. This condition states that the normal gap between the possible
contact regions on the contacting bodies as a function of displacement fields vector
u must not become negative. In other words, no penetration in the normal direction
is allowed.

Let us first consider the formulation of contact in normal direction and without
friction. Then, the total potential energy from the penalty approach with considering
contact contributions as the result of the virtual work principle may be considered as

PPen(u) = P(u) +
∫

�C

1

2
εg2

N(u) dA, (1)

see [4, 36, 37], in which the potential energy corresponding to the penalty force is
considered in the integral and P(u) corresponds to the potential energy without con-
sidering contact forces. The integration is taken over the contact surface �C . In fact,
the term εgN(u) can be interpreted as the force of a spring element with stiffness ε

and deformation gN(u). The variational form of Equation (1) as our objective func-
tion for minimization yields

δPPen(u) = δP (u) +
∫

�C

εgN(u)δgN(u) dA = 0. (2)
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This continuous form has to be transformed to a discretized FE form and then must
be linearized. Therefore, instead of the continuous field variable δu one deals with
the variations of the nodal displacements δU

δ
 + δU · ε(CT · gN) = 0, (3)

where δ
 arises from the discretization of δP (u) and C = ∂gN/∂U. Then, one can
write the linearized form of the above equation

δU · (KT · �U − r) + δU · ε

(
CT · gN + ∂(CT · gN)

∂U
· �U

)
= 0. (4)

Here the tangential stiffness matrix KT and the residuum r are terms arising from
the linearization of δ
, see [4]. After introducing KT NP = ∂(CT · gN)/∂U and re-
arrangement of this equation and due to the independence of δU our penalty iteration
may be formulated as

(KT + εKT NP ) · �U = r − εCT · gN. (5)

Now, utilizing the Newton–Raphson iteration this equation can be solved iteratively
for the displacements U. The iteration will start by choosing a penalty factor ε and
assigning initial values of vector U. Then, at each iteration step the active sets which
are in contact have to be found. Solving Equation (5) and increasing the displace-
ments leads the new values of U and then the norm of r−εCT ·gN has to be checked
for convergence. Eventually the penalty parameter may be updated for better conver-
gence.

In the case of frictional contact, two cases of either sliding or sticking may hap-
pen. The procedure will be the same as discussed for normal contact but the contact
contributions coming from tangential contact have to be considered, too. One can
find a detailed description of this formulation in [4, 36].

The penalty formulation prevents any penetration when the penalty parameter
approaches infinity, ε → ∞, and consequently fulfills exactly the unilateral contact
constraints. However, this introduces some severe difficulties in the numerical solu-
tion process. Choosing large values for ε increases the condition number of the cor-
responding stiffness matrix and, therefore, leads to ill-conditioned problems. There
are some proposed approaches from which a proper penalty factor for normal con-
tact may be chosen. One possibility is to relate the penalty factor with the material
properties of contacting bodies including Young’s modulus, Poisson’s ratio and a
so-called elastic layer thickness, see [18]. Another approach presented in [23] ap-
proximates the penalty factor based on an error analysis considering round-off errors
as well as penalty approach errors.

The penalty approach for contact in multibody systems may also be known as the
surface compliance method. In fact, this method is a widely used method in contact
modeling of multibody systems with multiple contacts between complex objects. In
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this approach each contact region is modeled with a spring-damper element. The
magnitudes of stiffness and deflection of the spring-damper element are computed
based on the penetration, material properties and surface geometries of the colliding
bodies, see [16, 18]. The normal force calculation prevents penetration and is done
by determination of the elastic and damping shares. The elastic share based on the
elastic foundation model is described by

Fek = clAkunk, (6)

where cl is the combined layer stiffness, Ak is the area of the contact element and unk

is the penetration. Here, the indices ’e’ for elastic, ’l’ for layer, ’n’ for normal direc-
tion and ’k’ for the k-th contact element are used. The damping share is determined
by

Fdk =
{

dlAkvnk for unk ≥ ud ,

dlAkvnk
unk

ud

for unk < ud . (7)

In this equation dl is the areal layer damping factor, vnk is the normal component of
the relative velocity of the contacting bodies at the contact element position and ud

is a given transition depth.
In contrast to kinematic constraint methods like the Lagrange multiplier method,

see Section 2.2, in which the contact is considered by contact constraints, in the
surface compliance method no explicit kinematic constraint is considered. Instead,
the resulting contact forces impose this condition only approximately.

As another feature of this approach, it can be pointed out that friction forces are
considered as well. In addition to these features, contact objects with all complicated
geometries involved can be treated. However, this method requires precise contact
detection in order to apply the contact forces to contact regions and subsequently it
imposes costly numerical calculations due to collision detection. At each time step
of the simulation, contact forces in the normal and tangential directions (which are
defined based on the contact plane) are computed. Based on the magnitude and dir-
ection of the contact forces, the new positions and velocities of the contacting bodies
are computed and the collision detection process for the current condition is imple-
mented. This procedure is performed until the end of simulation.

2.2 The Lagrange multiplier approach

In order to impose the contact constraints in the system, instead of the penalty method
one can use the Lagrange multiplier method in which contact forces are handled
by introducing some additional quantities, see [4, 36, 38]. Utilizing this approach
the unilateral contact constraints can be fulfilled exactly. The starting point of this
formulation is the same as for the penalty method but instead, the total potential
energy has to be defined as follows
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PLag(u) = P(u) +
∫

�C

λNgN(u) dA, (8)

where λN denotes the normal contact force and is an additional unknown. Similar
to the penalty formulation, the formulation of normal contact is given here. For the
formulaion of frictional contact one can refer to [4, 36]. Analogous to Equation (1)
the variational form of PLag(u) leads to

δPLag(u) = δP (u) +
∫

�C

(δλgN(u) + λδgN(u)) dA = 0, (9)

and its discretized form can be written as

δ
 + (δλ · gN(u) + δU · (CT · λ)) = 0. (10)

Following the same procedure as used in [4] and due to the independence of variables
δU and δλ, its linearized form yields

(KT · �U − r) + (CT · λ + KT NL · �U + CT · �λ) = 0,

gN + C · �U = 0, (11)

in which �U and �λ arise from the linearization and KT NL = ∂(CT · λ)/∂U has
been substituted. Finally, one may summarize these equations in a matrix form[

KT + KT NL CT

C 0

]
·
[

�U
�λ

]
=
[

r − CT · λ
−gN

]
. (12)

The solution of that problem can be obtained by solving Equation (12) iteratively
for the unknowns �U and �λ using the Newton–Raphson iteration. The iteration
starts by assigning initial values of U and λ. The iteration procedure is the same as
described for the penalty approach.

The Lagrange multiplier method after linearization leads to a coefficient matrix
whose diagonal components associated with the Lagrange multipliers are zero, as
it can be seen from Equation (12), and this is not desirable numerically. Therefore,
another special formulation, which is known as the perturbed Lagrange method, a
combination of both the penalty and the Lagrange multiplier methods has been de-
veloped.

The formulation described above is sometimes used in finite element formulation
of contact problems. However, in multibody systems a simpler formulation may be
offered keeping the same idea. In this approach for all contact possibilities between
bodies, kinematic constraint equations are derived and appended to the system of
equations of motion in multibody systems, see e.g. [29]. There, situations of con-
tinuous contact are modeled well since contact constraints are already considered in
the equations of motion and so they are fulfilled in each evaluation of the system
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dynamics. Examples of such situations are e.g. contact between a rolling ball and the
ground, or contact between wheel and rail in railway vehicles.

Apart from the above situation, this method cannot be used easily in the case of
contact modeling between bodies with complicated geometries since in this method
body surfaces should be described in such a way that it would be possible to derive
the contact constraints for the contact between these surfaces. Another situation that
causes some difficulties in the implementation of this method is the case of non-
continuous contact. Due to these reasons, kinematic constraint equations of contact
are almost impossible to be formulated in many practical cases.

2.3 The augmented Lagrange multiplier approach

Both the penalty and the Lagrange multiplier methods have some advantages and
disadvantages. In order to overcome the drawbacks of each approach and to gain their
advantages, the augmented Lagrange method as an idea mixing both approaches has
been constructed [36–38].

Then, following the same procedure as for penalty and Lagrange approaches,
the final equations will be summarized in a matrix form which can be solved by
Newton–Raphson iteration and using Uzawa’s algorithm [36, 37]. This algorithm
consists of two iteration loops where in the inner loop the penalty factor and the
Lagrange multipliers are kept constant and the displacements vector is calculated
iteratively till convergence. Then, in the outer loop they are updated and used for a
new iteration in the inner nested loop. This procedure can considerably improve the
convergence.

2.4 The impulse-based approach

The concept of an impulse-based approach to contact problems has been utilized e.g.
by Mirtich [21]. The fundamental idea of this approach is to define a relationship
between the relative velocities of contact points before and after contact through
the coefficient of restitution. The main advantage of this approach is its capability
to handle different types of contact under a common formulation. This approach
can easily be implemented for contact between free contacting bodies with simple
geometries. In addition, no contact coherence is required and it is computationally
robust. The other advantages such as strict enforcement of non-penetration condi-
tions, natural handling of colliding contact and decoupling of bodies during dynam-
ics integration may also be mentioned. However, this approach has some drawbacks
compared to constraint-based approaches like the Lagrange multiplier method. E.g.,
it cannot exactly handle situations where sticking contact appears. Poor handling of
continuous and simultaneous contacts is another problem of using this approach.

Critical components of these approaches are the following steps:
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1. Collision detection: For each pair of contacting bodies a maximum time step
must be determined in such a way that no collision between them occurs. Then,
at the end of the time interval usually only a pair of bodies which is known as
critical pair must be checked for collision.

2. Dynamic evolution: The system of contacting bodies is simulated by integration
of the equations of motion for each body.

3. Collision response: Detection of the collision between critical pair of bodies is
done. If any collision is detected, then collision impulses are applied to them.

2.5 Polygonal Contact Model

The Polygonal Contact Model (PCM) is an algorithm for contact modeling between
objects with complicated geometries in multibody dynamics based on a penalty
method. The original implementation of PCM is described in [15, 16] where this
algorithm is proposed as a general algorithm for contact modeling between rigid bod-
ies with polygonal surfaces. In the course of our work, this algorithm was modified
and extended, so that elastic bodies may be considered, too, see [7, 8].

PCM is based on some facts:

• The geometry of the contacting bodies is described by a polygonal approxima-
tion.

• An areal discretization of the contact patch results in contact elements.
• Contact forces are computed by the elastic foundation model.

A polygonal surface is defined by a set of polygons in three dimensional space. In
order to define polygons, the vertex coordinates and the faces which contain these
vertices have to be available. This information is given to PCM in the format of wave-
front object files [35]. Polygonal surfaces that PCM uses must not contain duplicated
vertices and their polygons have to be oriented consistently. The polygons have to
be connected but no closed surface is required. This kind of representation is widely
used in computer graphics, computational geometry and computer vision.

Contact analysis in PCM consists of three basic steps:

1. Collision detection based on a hierarchical bounding volumes (BVs) represent-
ation,

2. construction of the intersection areas and discretization of the corresponding
contact patches, and

3. calculation of the contact forces of each contact element and their application to
the contacting bodies.

From the multibody dynamics point of view, PCM behaves as a force element
which is going to be used as a user-defined routine in the commercial MBS code
SIMPACK [31] without requiring internal changes. The approach used in PCM
for calculation of contact forces is based on the penalty approach and uses spring-
damper elements for contact force computation, see Section 2.1.
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PCM implements an exact and efficient algorithm based on BV hierarchies [39].
The collision detection process is done at each time step and checks if two surfaces
intersect for a given relative position and orientation. The BV trees which are used in
the collision detection are created only once for every surface during preprocessing.
In doing so, PCM takes the polygonal surface of each body as input and creates
the BV tree based on the axis aligned bounding box approach, see [14, 39]. PCM
follows the top-down approach and starts to create the BV tree from the root element
and splits it up into two sub-volumes. Then it follows this procedure recursively to
the leaf elements.

Because of the technical importance of contact problems for elastic bodies, con-
siderable effort has been made in the investigation of this topic. Therefore, the ex-
tension of PCM for elastic bodies is very desirable and has been investigated [7, 8].

The rigid body version of PCM cannot be used directly for elastic bodies but
served as a reliable basis for further developments. In doing so, following steps have
been performed to modify the original PCM for the consideration of elastic bodies,
too:

1. Data object modification,
2. determination of the geometry of elastic bodies,
3. updating the bounding volumes trees,
4. recalculating normal vectors, areas and barycenter positions,
5. modification of the relative velocities of contact elements, and
6. modification of the implementation of contact forces.

2.6 Contact treatment yielding complementarity problems

There exist other contact modeling approaches which avoid penetration and yield a
mathematical formulation based on the kinematics of contacting bodies in a comple-
mentarity form. For planar systems linear complementarity problems (LCPs) must
be solved yielding the exact solution to the contact problem, see e.g. [24, 25].

Many researchers use this type of formulation for contact modeling of rigid bod-
ies due to its capabilities in handling of frictional contact, including many slip/stick
contact transitions. In this approach, two subproblems must be formulated, the con-
tinual contact and impact.

Mathematicians are interested to investigate the occurring LCPs from the math-
ematical point of view and treat aspects like necessary conditions for existence and
uniqueness of the solutions. In some of their formulations, the basic theory of con-
volution complementarity problems is given in which it deals with impact problems
for elastic bodies with Coulomb friction, see e.g. [33].

Some others are more interested to investigate the implementation of contact in
LCP form and its applications in engineering. As a result, some algorithms were de-
veloped based on unilateral constraints of the kinematics of contact points. Initially,
only planar relative contact kinematics was considered and then this algorithm was
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extended for the case of spatial contact yielding sometimes nonlinear complement-
arity problems, see [12].

LCPs give mathematically the exact solution to the contact problem. Other ad-
vantages of these methods are that they do not result in stiff equations of motion and
they show a lower effort for time integration compared to applying a brute force Lag-
range multiplier method. However, their implementation and formulation of contact
specially in the presence of friction is not trivial and needs high efforts and skills.
Other disadvantages that can be mentioned are the neglection of the contact patch
deflection, extreme simplification of complex physical phenomena and open prob-
lems in frictional impact theory. In Section 3 a formulation for continual contact of
planar deformable bodies as the core of this paper will be presented.

2.7 Time-stepping techniques

In the presence of impulsive forces which are exerted during a very short period
of time and as well in the presence of friction, the problem of discontinuities may
frequently occur and, therefore, many difficulties can arise during the simulation of
frictional contact in multibody systems. Among all approaches to overcome these
problems, also time-stepping methods [1, 34] may be mentioned by which the equa-
tions of motions are discretized and then reformulated in a linear complementarity
formalism. In this formulation, a linear complementarity relationship holds between
the system generalized velocities and the impulsive forces.

In this framework, the integration process is combined with the equations of mo-
tion in order to reach a discretized formulation of equations of motion. Unfortunately,
most time-stepping approaches use the Euler integration method which normally re-
quires choosing a very small time step size and additionally is not suitable for hand-
ling impact problems of stiff multibody systems and multibody systems including
deformable bodies. Therefore, almost all time-stepping approaches are developed
for the case of rigid bodies impact and there is only a very limited number of re-
searches which focus on their implementation for stiff multibody systems [2] and
deformable bodies, see e.g. [32].

2.8 Applications of contact modeling in multibody systems

Contact events can frequently happen in multibody systems and in many cases the
functionality of mechanical systems is based on them. Contact between tire and road
in automobiles, wheel and rail in railway vehicles, contact in robotics and grasp-
ing machines, power transmission systems like geared systems, cam and follower,
chain and gear, contact in granular media, ... are common examples of systems in
which contact events play an essential and inevitable role. Among all these systems,
here just a very brief reference of contact in granular media and geared systems as
applications the authors are dealing with is given.
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Fig. 1. Contact in granular media and geared systems.

An important feature of contact modeling deals with particles and granular media
where the motion of many bodies is investigated by means of molecular dynamics,
but usually no real consideration of flexibility is taken into account [22]. For effi-
cient simulation of granular media, the techniques which are being used in molecu-
lar dynamics and multibody systems have to be combined. The particles are usually
considered as being rigid and small overlaps are allowed. The contact formulation is
based on simple models in order to keep the computational times within a feasible
range. For an example, see Figure 1 (left).

Different approaches may be followed for finding neighboring objects of each
body to reduce the high computational effort which is required for collision detec-
tion. Some of them divide the regions occupied by particles into small subregions and
consider all particles within the same subregion as neighbors. In others, a bounding
box will surround each particle and then the neighboring particles are found by de-
tecting the collision between bounding boxes. For this purpose, in [22] three methods
namely the Verlet-neighbor list (VL), Linked cell method (LC) and Linked linear list
(LLL) are compared. The results presented in [22] show a desirable performance of
VL approach for systems with only a small number of particles. However, for large
systems the LC and LLL approaches should be used to handle such situations with
better performance and efficiency.

After the neighboring pairs have been identified, they have to be checked for col-
lision. Although this step may be done easily for spherical particles, dealing with
polygonal-shaped particles is a sophisticated task which requires following some
special algorithms in order to find the regions of contact [22]. Once the amount of
penetration is found, normal contact forces arising from contact between particles
are modeled utilizing spring-damper elements which corresponds to the penalty ap-
proach.

As another aspect, contact of meshing gear wheels may be mentioned. In many
applications in mechanical engineering gear wheels are used to transmit power
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between rotating shafts and, therefore, the ability to incorporate them into multibody
systems and to simulate contact between them, has become an essential topic in
multibody dynamics, see Figure 1 (right). Contact modeling of gear wheels has
some special difficulties which arise from, e.g., the nonlinear behavior of the tooth
stiffness, backlash, gear geometric parameters, see e.g. [19].

Contact modeling of geared systems can be performed by defining a force ele-
ment between each gear pair which takes the geometry, initial rotational angle and
rotational velocity of meshing gears as input and calculates forces and moments act-
ing on gear wheels as output [20]. This force element is connected between two body
fixed markers located on the axis of rotation of gear wheels and may take into ac-
count some important points such as involute meshing teeth, backlash and addendum
modification, tip relief factor, changes in axes distance, relative axial movement of
gear pairs and parabolic behavior of the tooth stiffness. The calculation of contact
forces is also performed here using the penalty method and uses spring-damper ele-
ments located on teeth surfaces in order to apply appropriate forces according to the
amount of penetration and relative velocities in the normal and tangential directions.
The algorithm and implementation of contact modeling of rigid gear wheels [20] is
based on three main steps

1. calculation of basic parameters related to the gear geometry,
2. calculation of contact geometry,
3. determination of contact forces and resulting torques.

However, in advanced applications where the flexibility of gear bodies and mesh-
ing teeth cannot be neglected, rigid gear contact modeling cannot achieve realistic
results and in some situations the simulation results based on this approach might
have a big difference to real measurements. Therefore, as a compromise between the
fully rigid modeling and the fully elastic FEM approaches, an extension of the ri-
gid modeling approach of [20] by considering elastic elements between single teeth
and the gear body for each gear wheel may be proposed [9]. In this approach, the
tangentially movable teeth and the body of each gear wheel are still rigid but they
are connected to each other by elastic elements. The required steps for doing these
extensions are

1. introducing teeth coordinates as new force states into the equations of motion,
2. considering elastic elements between teeth and gear body,
3. utilizing a new search algorithm for finding contact situations and
4. modification of applying contact forces and resulting torques.

Simulation of several numerical examples shows a considerable improvement in the
results of this approach which are closer to the accurate results of FEM compared to
the fully rigid gear wheel. For getting such results, the new procedure will not need
much more computational effort compared to the rigid modeling and can be used for
simulation of contact of multibody geared systems over a long period of simulation
time with several revolutions of the gears which is almost impossible using FEM.
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3 LCP Formulation for Continual Contact of Planar Deformable
Bodies

In applications where the flexibility of contacting bodies is not negligible, rigid body
contact modeling cannot be used and the deformability of contacting bodies must be
taken into account.

Therefore, it has been tried to develop an approach by reformulating the kin-
ematic equations governing rigid body contact in order to be able to consider the
deformation of contacting bodies too, see also [5, 6]. In doing so, the moving frame
of reference approach is utilized in order to introduce the elastic coordinates into the
equations of motion, see [28, 30]. It is important to emphasize that this paper just
considers the continual contact of deformable bodies and for impact calculation this
formulation has to be extended.

This procedure starts by reformulating the kinematics of contact for flexible bod-
ies and introduces this in the complementarity form known from rigid body formu-
lations. Then, a comparison between the presented formulation and the rigid body
formulation is given. Finally, some results of a simulated example will be presented
in order to show the feasibility of the described approach.

3.1 Contact formulation

Deformable bodies are modeled here using the well-known moving frame of refer-
ence approach [28, 30]. By introducing rigid and elastic coordinates, the movement
of bodies is separated in two independent parts, the rigid body movement and the
small elastic deformations. In this approach the deformation of bodies is assumed to
be small compared to the dimension of bodies, but not negligible.

3.1.1 Kinematics of contact points

In Figure 2 two deformable bodies i and j are depicted, which are in contact in
point k. In order to describe the position and orientation of these deformable bodies
with respect to the global coordinate system, two sets of generalized coordinates
qi = (Ri , θ i , qfi ) and qj = (Rj , θ j , qfj ) including the rigid (R, θ) and elastic
(qf ) generalized coordinates are used. The rigid ones specify the position R and
orientation θ of the body reference coordinate systems with respect to the global
coordinate system. In addition, the elastic coordinates are defined with respect to
the body reference coordinate systems and are supposed to specify the position and
orientation of any point on the bodies locally. Later all generalized coordinates are
summarized in q. However, q is not a vector of minimal coordinates since constraints
from joints, . . . must be considered by Lagrange multipliers additionally.

Considering the deformable body i, one can calculate the velocity of each arbit-
rary point pi located on the body i from
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Fig. 2. Contact between two deformable bodies.

vpi = Ṙi + Ȧi · ūi + Ai · ˙̄ui , (13)

where Ai denotes the transformation matrix of body i and ūi is the position vec-
tor of the point pi in the reference coordinate system of body i in the deformed
configuration, see [28]. By substituting the velocities ˙̄ui = Si · q̇f , this equation can
also be written as

vpi = Ṙi + Ȧi · ūi + Ai · Si · q̇f . (14)

In this relation, Si is the shape matrix of body i which is independent of time. One
can write the second term of the right hand side of this equation in terms of the
derivative of the orientation θ i with respect to time as

Ȧi · ūi = Bi · θ̇ , (15)

where Bi is a 2×1 matrix in the case of planar flexible bodies. It is defined in terms of
the partial derivative of the transformation matrix Ai times the local position vector
ūi of the point pi with respect to the rotational coordinates θ i , see [28],

Bi = ∂

∂θ i
(Ai · ūi ) = ∂

∂θ i
(Ai · (ū0i + Si · qf i)). (16)

In this relation, the vector ū0i denotes the position of point pi on the undeformed
body i. Using Equation (15), Equation (14) can be written in terms of the generalized
velocity vector q̇i as

vpi = Lpi

i · q̇i . (17)

In this relation, the vector q̇i includes rigid and elastic generalized velocities q̇i =
(Ṙi , θ̇ i , q̇fi ) and Li is a matrix which projects the generalized velocity vector q̇i to
the velocities in the global coordinate system
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Li = [
I Bi Ai · Si

]
, (18)

where I is the 2 × 2 identity matrix.
According to Figure 2 and noticing that at any contact point k the normal vectors

(ni , nj ) and tangential vectors (ti, tj ) of body i and body j are aligned with each
other, the relative velocities in normal and tangential directions for contact point k

can be written as

ġk
Nij

= nk
i · (Lk

i · q̇i − Lk
j · q̇j ) , ġk

Tij
= tki · (Lk

i · q̇i − Lk
j · q̇j ) . (19)

According to these relationships, for any contact point k between bodies i and j , the
matrices Lk

i and Lk
j must be calculated since they depend on the positions.

The relative accelerations in the normal and tangential directions for contact point
k are calculated by taking the derivative of the relative velocities

g̈k
Nij

= (Wk
N)Tij · q̈ij + (wk

N )Tij · q̇ij , g̈k
Tij

= (Wk
T )Tij · q̈ij + (wk

T )Tij · q̇ij , (20)

where

q̇ij =
[

q̇i

q̇j

]
, q̈ij =

[
q̈i

q̈j

]
, (Wk

N )ij =
[

(nk
i · Lk

i )
T

−(nk
i · Lk

j )
T

]
, (Wk

T )ij =
[

(tki · Lk
i )

T

−(tki · Lk
j )

T

]
,

(wk
N)ij =

[
(ṅk

i · Lk
i + nk

i · L̇k
i )

T

−(ṅk
i · Lk

j + nk
i · L̇k

j )
T

]
, (wk

T )ij =
[

(ṫki · Lk
i + tki · L̇k

i )
T

−(ṫki · Lk
j + tki · L̇k

j )
T

]
.

It is clear that effects of deformations are introduced to the kinematic relation of the
relative normal and tangential accelerations g̈N and g̈T of contact point k through the
matrices Lk

i and Lk
j . Although Equation (20) looks similar to the rigid body case, its

computation is very different. This equation which holds for contact point k can be
used to obtain the matrix form of the relative normal and tangential accelerations g̈N

and g̈T for all nc contact points between nb bodies

g̈N = WT
N · q̈ + wT

N · q̇ , g̈T = WT
T · q̈ + wT

T · q̇, (21)

where WN , WT , wN and wT consist of submatrices which are calculated for the
corresponding contact pairs from Equation (20) and the vectors q̇ and q̈ are the gen-
eralized velocities and accelerations of the system.

Next, the relative accelerations g̈N and g̈T and the equations of motion of flexible
bodies will be used together in order to form the complementarity relationships
between the contact forces and the relative accelerations.

3.1.2 Deformable bodies in multibody systems

In this section, first the equations of motion of the flexible body i taking into account
the contact forces in a system of interconnected rigid and flexible bodies are written
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and then the equations of motion of flexible multibody systems are given in matrix
form.

Considering the flexible body i, one can write its nonlinear equations of motion
as

Mi · q̈i + Ci · q̇i + Ki · qi + (
∂c
∂qi

)T · λc = Fexti + Fvi + Fci . (22)

Here Mi is the mass matrix of body i without considering constraints, Ci and Ki are
the damping and stiffness matrices arising from the elastic coordinates, ∂c/∂qi is the
Jacobian matrix containing the derivatives of all constraints c = 0 except the contact
constraints, λc are the Lagrange multipliers corresponding to the constraint forces,
Fexti is the vector of generalized external forces, Fvi is the vector of generalized
Coriolis forces and Fci is the vector of generalized contact forces. These equations
can be summarized for the whole system together with the second derivatives of the
constraints in matrix form for flexible multibody systems including constrained and
non-constrained bodies, see [28],(

M CT
q

Cq 0

)
︸ ︷︷ ︸

Mc

·
(

q̈
λc

)
︸ ︷︷ ︸

q̈c

=
⎛⎝ Fext + Fv − C · q̇ − K · q

−∂(
∂c
∂q

· q̇)/∂q · q̇ − 2
∂2c
∂q∂t

· q̇ − ∂2c
∂t∂t

⎞⎠
︸ ︷︷ ︸

hc

+
(

Fc

0

)
.

(23)
When two bodies come in contact, normal and tangential contact forces arise as

the result of the collision. Therefore, the contact force Fc in Equation (23) for nc

contact points can be supposed to be the summation of normal and tangential forces
which is written in terms of two different vectors λN and λT , for details refer to [24],

Fc = (
W1

N . . . Wnc

N

) ·
⎛⎜⎝ λ1

N
...

λ
nc

N

⎞⎟⎠+ (
W1

T . . . Wnc

T

) ·
⎛⎜⎝ λ1

T
...

λ
nc

T

⎞⎟⎠
= WN · λN + WT · λT . (24)

By separating the tangential contact forces into the sliding and sticking contacts, one
can rewrite Equation (24) to get

Fc = (
WN1 + WG1 · µG1

. . . WNnc
+ WGnc

· µGnc

)︸ ︷︷ ︸
WN + WG · µG

·λN +

(
WH1 . . . WHnc

)︸ ︷︷ ︸
WH

·λH . (25)

In this equation WG and WH are matrices extracted from the matrix WT which
correspond to the sliding and sticking parts, respectively.
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The equations of motion (23) can be reformulated by substituting the contact
forces from Equation (25)

Mc · q̈c − hc −
(

WN + WG · µG WH

0 0

)
︸ ︷︷ ︸

WNH

·
(

λN

λH

)
︸ ︷︷ ︸

λ

= 0. (26)

Now the equations of motion for multibody systems including constrained and non-
constrained rigid and flexible bodies in terms of contact forces (which are denoted
by λN and λH ) have been obtained and this form of equations will be used in the
next section to construct the complementarity form of the equations of motion with
contact.

3.1.3 Construction of the complementarity form

In this section, it has been tried to summarize a similar procedure as described in [24]
by constructing the complementarity equations for continual contact of deformable
bodies utilizing the equations obtained in the previous sections. Maybe at the first
view, these equations seem to be very similar to the rigid ones but as it was poin-
ted out before, all effects of deformabilities are taken into account in the kinematic
quantities and the calculation procedure of these quantities is totally different.

Starting from Equation (26), supposing that there is no redundant constraint in
the system such that Mc is a regular matrix, we can find the acceleration q̈c as a
function of the Lagrange multipliers λ

q̈c = M−1
c · hc + M−1

c · WNH · λ. (27)

Then, Equation (21) is rewritten for the sliding and sticking contacts

g̈NH =
[

g̈N

g̈H

]
= [

WN WH

]T · q̈ + [
wN wH

]T · q̇. (28)

The vector wH is the part of the vector wT which corresponds to the sticking contact.
By inserting the Lagrange multipliers λc, which denote the constraint forces (except
contact forces), into the unknown variables as we did for the generation of equations
of motion in Equation (23), the above relation is rewritten as

g̈NH =
[

g̈N

g̈H

]
=
[

WT
N 0

WT
H 0

]
︸ ︷︷ ︸

WT

·
[

q̈
λc

]
︸ ︷︷ ︸

q̈c

+
[

wT
N · q̇

wT
H · q̇

]
︸ ︷︷ ︸

w

. (29)

In the next step, the vector q̈c from Equation (27) can be substituted in this equation

g̈NH = WT · M−1
c · hc + WT · M−1

c · WNH · λ + w . (30)
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By following the same procedure as described in [24] and by using Equation (30)
one can construct the complementarity form of the equations of motion and then
simulate the continual contact problem of deformable bodies, too. In doing so and
in order to handle the condition of switching between sliding and sticking contact,
the tangential part of the contact forces must be decomposed into two different parts
and, thereby, the frictional case of contact will be handled appropriately.

The final form of the complementarity equations based on our notation and ac-
cording to the above mentioned points is[

g̈
λH0

]
=
[

WT · M−1
c · WNH IT

NH − I 0

]
·
[

λ

z

]
+
[

WT · M−1
c · hc + w
0

]
,[

g̈
λH0

]
≥ 0 ,

[
λ

z

]
≥ 0 ,

[
g̈

λH0

]
·
[

λ

z

]
= 0. (31)

The parameters λH0, NH and z in this equation are chosen in the same way as in [24]
and have the same meaning. These parameters are used in order to formulate the
complementarity form of the equations in such a way to handle switching between
sliding and sticking cases of contact.

3.2 Comparison between the elastic and the rigid formulation

The presented formulation in this paper is applicable for continual contact of
all planar multibody systems including constrained and non-constrained rigid and
flexible bodies supposing that the deformations are small. In the case of rigid bod-
ies, this formulation leads to the same results as the formulation developed for rigid
bodies in [24].

For a comparison between the obtained formulation for g̈ for deformable bod-
ies and the case of rigid bodies, one can start from the presented relationships and
reach to the formulations in [24] by setting the elastic coordinates to zero coordinates
which denotes that there is no deformation in the system.

Considering two rigid bodies i and j and referring to Equation (20), we have

g̈k
Nij

= (Wk
N )Tij · q̈ij + (wk

N )Tij · q̇ij . (32)

For simplicity and without loss of generality, we suppose that one of the bodies, for
example body j , is the ground and therefore, its corresponding coordinates vanish
from the above equation. With this assumption, the above equation can be expanded
in terms of its parameters

g̈k
Nij

= nk
i · Lk

i · q̈i + (nk
i · L̇k

i + ṅk
i · Lk

i ) · q̇i . (33)

Since the body i is assumed as being rigid for this comparison, all its elastic coordin-
ates vanish and from Equation (16) it remains only Bi = ∂(Ai · ū0i )/∂θ i . In the case
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of rigid planar systems, the matrix Lk
i is a 2 × 3 matrix and θ i is replaced with the

scalar variable θi . Therefore, the above equation is simplified to

g̈k
Nij

= nk
i · (R̈i + θ̈iBk

i + θ̇iḂk
i )︸ ︷︷ ︸

part 1

+ ṅk
i · (Ṙi + θ̇iBk

i )︸ ︷︷ ︸
part 2

= nk
i · ak

i + ṅk
i · vk

i . (34)

From this equation it is clear that the relative normal acceleration g̈N for any contact
point k consists of two parts. The first part is due to the acceleration of that point in
the direction of the normal vector nk

i and the second part is due to the variation of
the direction of the normal vector.

This procedure can be followed exactly in the same way for the relative tangential
accelerations g̈k

T of the contact point k and then extended for all contact points

g̈k
T = tki · Lk

i · q̈i + (tki · L̇k
i + ṫki · Lk

i ) · q̇i

= tki · (R̈i + θ̈iBk
i + θ̇iḂk

i ) + ṫki · (Ṙi + θ̇iBk
i ) = tki · ak

i + ṫki · vk
i . (35)

Therefore, one can easily verify that the presented relationships for relative ac-
celerations result in the accelerations of rigid bodies when deformations of flexible
bodies are set to zero. Compared to the continual contact of rigid bodies, these four
matrices are the most important quantities which have to be reformulated in a way
to lead to a correct formulation for the continual contact of deformable bodies. The
results shown in the following section confirm the validity of this procedure as well.

3.3 Numerical example: sliding and sticking of an elastic rectangular block

The presented formulation is implemented and examined here, see also the results
in [5]. With due attention to the numerical results, one can verify the validity and
feasibility of the described approach. In this examples, the continual contact of an
elastic rectangular block on a rigid foundation is investigated. The elastic rectangular
block slides on the foundation and after a while due to the effect of the friction
force sliding contact changes to sticking contact. The shape of the rigid foundation is
chosen in such a way to activate all the important terms in the presented formulation.
The elastic block and the rigid foundation are depicted in Figure 3. According to this
figure, the foundation consists of three parts: two inclined straight parts and a curved
part which is an arc of a circle with radius r = 10 m. The length of each inclined
part is 10 m and the inclination angle is α = 30 Deg. The simulation is done for
tend = 10 s and for friction coefficient µ = 0.2. Some results of this simulation are
illustrated in Figure 5.

In Figure 4 the elastic rectangular block in an arbitrary position and orientation
with respect to the global coordinate system O is shown. The coordinate system Oi

is attached rigidly to node 4 of the elastic block and is considered to be the block
reference coordinate system. The x-axis is aligned to edge (4, 1). Thus, the rigid co-
ordinates R and θ of the block are calculated from the position and orientation of this
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Fig. 3. Sliding and sticking contact of a non-constrained elastic block on a rigid foundation.

Fig. 4. An elastic block in the undeformed and deformed cases.

coordinate system. Therefore, the position of any arbitrary point on the elastic block
can be calculated with respect to the coordinate system Oi through the coordinates of
the nodes. The selection of elastic coordinates is qf = (qf 1x , qf 2x , qf 2y , qf 3x , qf 3y )

since they have to be compatible with the rigid coordinates [27]. Rigid and elastic
coordinates have to lead to a unique description of position and orientation of the
elastic block. This means that node 1 can only move in the x direction with respect
to the coordinate system Oi . The vector of generalized coordinates for this example
can be considered as q = (Rx,Ry, θ, qf 1x , qf 2x , qf 2y , qf 3x , qf 3y ).

The shape matrix of this elastic block is given by

S =
[

N1 N2 0 N3 0
0 0 N2 0 N3

]
, (36)

where N1, N2 and N3 are shape functions defined in terms of the length L and the
height H of the block
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N1 = x

L

(
1 − y

H

)
, N2 = x

L

y

H
, N3 =

(
1 − x

L

) y

H
. (37)

These shape functions have the usual property that they take the value one at their
corresponding nodes and the value zero at the other nodes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

at node 1: N1 = 1, N2 = 0, N3 = 0,

at node 2: N1 = 0, N2 = 1, N3 = 0,

at node 3: N1 = 0, N2 = 0, N3 = 1,

at node 4: N1 = 0, N2 = 0, N3 = 0.

(38)

Based on the selected coordinates and the described shape matrix, one can con-
struct the matrix Lk and start to generate the kinematical relationships of contact for
an arbitrary contact point k. After some mathematical manipulations, the matrix Lk

for contact point k can be given as

Lk =
[

1 0 −x sin θ − y cos θ N1 cos θ N2 cos θ −N2 sin θ N3 cos θ −N3 sin θ

0 1 x cos θ − y sin θ N1 sin θ N2 sin θ N2 cos θ N3 sin θ N3 cos θ

]
.

(39)
In the next step, the derivative of this matrix with respect to time has to be taken

and then the matrix L̇k can be generated. Afterwards, following Equation (20) all
necessary parameters for contact between the elastic block and the rigid foundation
are obtained.

After formulating the kinematical relationships of Equation (20), the equations of
motion of the elastic block have to be generated. Since there is no explicit constraint
in this system, the second row of the system of equations in Equation (23) vanishes
and this equation can be rewritten as

M · q̈ + C · q̇ + K · q = Fext + Fv + Fc. (40)

The components of the damping matrix cff in matrix C which correspond to the
elastic coordinates can often be chosen as Rayleigh damping in terms of the mass
matrix mff and the stiffness matrix kff associated with the elastic coordinates and
using two constant parameters α and β, see [26],

cff = αmff + βkff . (41)

The quantities in Equation (40) are derived following the procedure in [28]. The con-
tact force vector Fc can be calculated based on the relations in Section 3.1.2 in terms
of the Lagrange multipliers λN and λH . In the last step, the complementarity form
of the equations of motion is derived and by solving this complementarity equations,
the contact of the elastic block on the rigid foundation can be simulated.

In this work, the linear complementarity equations are solved by the PATH solver
which is an algorithm for mixed complementarity problems, see [3, 11]. In order
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Fig. 5. Contact simulation of the elastic block for µ = 0.2.

to overcome common problems of instability in the integration process of flexible
bodies, the equations of motion are integrated using the RADAU5 code [13].

For simulation of this academic test example, the elastic block initially is located
according to Figure 3 and the following material and geometrical properties are used:

material: E = 1000 N/m, ν = 0.3, ρ = 2 kg/m2,

geometry: H = 1 m, L=2 m (defined in Figure 4) .

According to Figures 5a and 5b it reaches the lowest point of the curved path at
t = 3 s but it cannot enter the right inclined part since θ does not reach the constant
value of 0.523 rad which is the inclination angle of the right inclined part. Instead,
it starts to move in the opposite direction at t = 4 s. In the end, it comes to rest
somewhere on the curved part at t = 7.6 s and at this time due to the friction sliding
contact switches to sticking one and the block will not have any movement after this
time. The trajectory of motion of the elastic block and the elastic coordinates are
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shown in Figures 5c and 5d. It can be seen that even in the sticking phase there are
still some elastic vibrations of the block.

4 Conclusion

In this paper, first some of the most well-known and frequently used formulations in
finite element methods and multibody systems dynamics which are applied to incor-
porate the contact constraints into the governing equations of the system were intro-
duced briefly. Among them, the penalty technique, the Lagrange multiplier method,
the augmented Lagrange multiplier method and linear complementarity problem
(LCP) formulations were explained. Some special formulations used in multibody
system dynamics such as impulse-based approaches, the polygonal contact method
and time-stepping methods were also mentioned. Then, a brief reference of contact
in granular media and geared systems is given as applications the authors are dealing
with.

In Section 3 as the core of this paper a formulation leading to linear complement-
arity problems for continual contact of planar deformable bodies was presented. The
procedure of this formulation started by formulating the kinematics of an arbitrary
contact point for an arbitrary pair of contacting bodies. In doing so, relative accelera-
tions of the contact point in normal and tangential direction were used. The effect of
deformations was taken into account during the formulation of these accelerations.

In the next step, deformable bodies were modeled by utilizing the well-known
moving frame of reference approach assuming small deformations, see [28, 30]. In
the last step of this formulation, the complementarity form of the equations of motion
was constructed by following the same procedure as described in [24] for rigid body
contact.

For validation of the described procedure, the presented formulation was ex-
amined through an example. Here, continual contact of a non-guided elastic block
on the rigid foundation is investigated and at the end, the results obtained from sim-
ulation of this example were given. See also another example in [5] for continual
contact of a guided elastic block on a half-circular rigid foundation. At the end, we
emphasize once again that this formulation just considers the continual contact case
of deformable bodies and for impact calculation this formulation has to be extended
[10].
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1 Introduction

Several considerations are important if we try to carry out fast and precise simu-
lations in multibody dynamics: the choice of modeling coordinates, the choice of
dynamical formulations and the numerical integration scheme along with the numer-
ical implementation. All these matters are very important in order to decide whether
a specific method is good or not for a particular purpose.

Some of the most robust methods for real-time dynamics in multibody systems
make use of natural or fully Cartesian coordinates in the modeling [11], which are
dependent by nature. Different formulations used to solve the equations of motion
with dependent coordinates have been developed, such as the widely known method
of Lagrange multipliers, the penalty and augmented Lagrangian schemes [4], or ve-
locity transformations [23, 27]. Some of them set a system of differential-algebraic
equations (DAE) [8], others set system of ordinary differential equations (ODE).

Generally, it can be said that the dynamic formulation determines the choice of
the numerical integrator. In this direction different authors proposed several options
to successfully integrate the equations arising from constrained multibody systems,
using integrators coming from the field of structural dynamics [9, 11]. Formulations
based on penalty and augmented Lagrangian methods have the advantages of being
very simple, computationally inexpensive and very robust in the presence of singular
configurations or redundant constraints [3].

In [5, 9] the authors proposed the use of augmented Lagrangian techniques with
penalty only at position level along with the trapezoidal rule. In order to guarantee
the correct satisfaction of constraints, different kinds of velocities and acceleration
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projections were proposed. More recently, in [10] the use of augmented Lagrangian
techniques with other integrators of the generalized-α family along with projections
was proposed, which provides very good behavior for real-time applications. The
advantages of the projections are the simplicity and the variety of integrators which
can be used with them, since the projections are responsible for maintaining the
stability of the formulation.

On the other hand, other authors [12, 17, 18] developed a formulation based on
an energy conserving penalty formulation, enforcing constraints at the position level,
and applied it to the dynamics of multibody systems parametrized with Cartesian
coordinates. In this case, the use of penalty at position level has the advantage of
permitting to derive the constraint forces from a potential function: the constraint
energy. The formulation includes the employment of an energy-momentum method
as integration scheme [19, 25], so that the conservation of the total energy of the
system is imposed by construction of the algorithm. Here, the stabilization of the
equations of motion arises in a natural manner from the integration scheme.

The outline of this work is as follows. First, and overview of the most common
formulations employed for the representation of the dynamics of constrained mech-
anical systems are presented. Next, the numerical difficulties that pose the different
formulations are discussed. These issues prepare the context for the presentation of
two proposed methods in the next sections, one of them based on the use of a standard
ODE integrator with projections, the other on a conservative scheme. The following
section analyzes with more detail their behaviour in terms of the discrete energy
balance, and draws some interpretations about their stabilization features. Finally, a
representative numerical example is presented, illustrating the most relevant issues
introduced in the previous sections.

2 Dynamics of Constrained Mechanical Systems

In this section, we consider the formulation and the numerical solution of the dy-
namics of a constrained mechanical system; for instance, a set of rigid and deform-
able bodies linked by joints (represented by a vector of r holonomic constraints
0 = �(q, t) ∈ R

r ), being q ∈ R
n a set of Cartesian coordinates.

In this work we focus on the different methods to impose constraints, which lead
to different formulations for the equations of motion. Several strategies can be used
to solve these equations, each of them posing special numerical difficulties that will
be addressed with more detail in the following sections.

The three basic formulations considered here are based on Lagrange multipliers,
penalty and augmented Lagrangian respectively. Following, a brief review of these
three formulations is presented, along with a short description of the methods most
commonly used to solve them.
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2.1 Lagrange multiplier method

This method leads to an index-3 DAE system, given by:

Mq̈ + �T
qλ = Q, � = 0, (1)

M being the mass matrix, λ ∈ R
r the vector of Lagrange multipliers, Q(q, q̇, t) the

applied force vector, and denoting by �q
def= ∂�/∂q.

There are several methods that can be employed to solve the equation system (1):

1. Direct solution with a DAE solver. Backward Differentiation Formula (BDF),
Implicit Runge–Kutta (IRK) and collocation methods are examples of numerical
integration algorithms that are very efficient on the direct solution of these type
of systems [8].

2. Index reduction (index-2). Differentiation of the constraint equation reduces the
index by one, resulting in the following index-2 DAE system:

Mq̈ + �T
qλ = Q, �̇ = 0, (2)

which, again, can be solved directly by a suitable DAE solver.
3. Index reduction (index-1). Two differentiations of the constraint equation re-

duces the index by two, resulting in the following index-1 DAE system:

Mq̈ + �T
qλ = Q, �̈ = 0. (3)

If desired, a further index reduction may be performed, eliminating the Lagrange
multiplier vector λ and obtaining a standard ODE system. This can be done tak-
ing into account the differential system in (3) and the expression for the second

derivative of the constraint �̈ = �qq̈ + �̇qq̇ + �̇t , with �t
def= ∂�/∂t; after

some algebraic manipulations an ODE system results, given by:

Mq̈ = Q − �T
q
(
�qM−1�T

q
)−1(

�qM−1Q + �̇qq̇ + �̇t

)
, (4)

which can be solved with any ODE solver.

2.2 Penalty method

This method leads to an ODE system given by:

Mq̈ + �T
q(α�) = Q, (5)

α being the penalty matrix, which is often defined with a single penalty parameter α,
such that α = α1, 1 being the unit matrix.

This formulation can be interpreted as the perturbed DAE problem given by (1),
verifying � → 0 as α → ∞, and can be solved by a suitable ODE integrator.
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Formulation (5) penalizes the constraint at position level only (�), but it may
include also the constraint at velocity and acceleration levels (�̇ and �̈ respectively),
taking the more general form:

Mq̈ + �Tα
(
�̈ + 2ξω�̇ + ω2�

) = Q, (6)

where ω and ξ can be interpreted as the natural frequency and damping ratio of the
penalized constraint [11].

2.3 Augmented Lagrangian method

It can be understood as a compromise between the Lagrange multiplier and the pen-
alty method, and leads to and index-3 DAE system given by:

Mq̈ + �T
qλ∗ + �T

q(α�) = Q, � = 0, (7)

where λ∗ represents the Lagrange multiplier vector. This formulation is commonly
set, from an algorithmic point of view, by the Uzawa method, which introduces an it-
erative scheme for the multipliers. This algorithmic approach, in practice, transforms
the DAE system into an ODE system, defining an update for the multipliers given
by λ∗

(k+1) = λ∗
(k) + α�, verifying λ∗ → λ as iteration in λ∗ progresses, being λ the

exact Lagrange multiplier vector.
Different strategies can be followed to solve the formulation (7). All of them

assume the use of Uzawa’s method, thus effectively leading to the application of
an ODE solver. The basic difference among them is the index of the original DAE
system to be solved.

1. Direct solution of the index-3 DAE system (7), applying Uzawa’s method and a
suitable ODE integrator.

2. Index reduction (index-2), introducing the first derivative of the constraint equa-
tion and obtaining:

Mq̈ + �T
qλ∗ + �T

qα(2ξω�̇ + ω2�) = Q , 2ξω�̇ + ω2� = 0 (8)

to be solved applying Uzawa’s method and a suitable ODE integrator.
3. Index reduction (index-1), introducing the second derivative of the constraint

equation and obtaining:

Mq̈ +�T
qλ∗ +�T

qα(�̈+ 2ξω�̇+ω2�) = Q , �̈+ 2ξω�̇+ω2� = 0 (9)

to be solved applying Uzawa’s method and a suitable ODE integrator.

All these formulations pose numerical difficulties, which are going to be explored
with more detail in the following section, and they will motivate the search for im-
provements, particularly regarding stability issues.
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3 Stability Problems of the Numerical Solution

As previously pointed out, the formulation of the dynamics of a constrained mech-
anical system pose numerical difficulties. These difficulties are, in general, different
for each formulation and solution method, but they are typically related to stability
properties of the numerical scheme, and they are going to be briefly exposed in the
following paragraphs.

• Direct integration of DAEs of index higher than 1 (formulations (1), (2), (7) and
(8) ) is usually not recommended for stability reasons. Actually, there are index-2
and index-3 DAEs for which all of the multistep (including BDF) and Runge–
Kutta methods are unstable, as pointed out in [8]. In the particular case of a
constrained mechanical system described by the index-3 DAE given by (1),1 or
the augmented version (7), direct integration has been reported to show instability
problems [9].

• The analytical differentiation of the constraint equations is an unstabilized index
reduction (formulations (2), (3), (8) and (9)). Constraints on position, velocity
or acceleration levels define invariant manifolds, where the exact solution lies.
However, the numerical solution may depart from them, and indeed it usually
does due to the referred unstable reduction.
On the other hand, several numerical experiments by different authors suggest
than the solution is more stable on the manifold than off it. This fact justifies
the search for methods that enforce the solution to be on the constraint manifold,
thus enhancing the stability of the resulting numerical scheme.

• ODE integrators may exhibit severe numerical instabilities for stiff systems, such
as those resulting from a penalty formulation (5) or (6), where large penalty para-
meters are required in order to get a satisfactory constraint enforcement.
Some integration schemes are better suited for these type of problems, such as
implicit Runge–Kutta and BDF methods [20]. However, these methods usually
introduce a significant amount of numerical damping, which can be unaccept-
able for long term simulations. In the context of Hamiltonian systems, energy-
momentum methods [19] exhibit very good stability for stiff systems, while ex-
actly conserving the total energy, and are actually a very adequate choice for
robust long-term simulations.

These numerical problems motivate the interest in developing algorithms capable
of providing stable and accurate solutions for reasonable time steps. Several meth-
ods have been proposed in the literature to alleviate these problems for the different
formulations (e.g. [1, 2, 7, 8]). To collect and discuss all these different methods is
not a simple task, because they are numerous and sometimes application-dependent,
and it is out of the scope of this paper.

1 This is a special DAE form, known in the literature as Hessenberg index-3 type.
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Here we restrict ourselves to the analysis of two methods, both of them based
on the augmented Lagrangian formulation (7), and discuss their stabilizing proper-
ties. The first proposed approach is a coordinate projection method, the second is a
conservative formulation, and both will be outlined in the sections that follows.

4 Augmented Lagrangian with Projections

The point of departure of this approach is the index-3 DAE given by expression (7),
repeated here for the sake of clarity:

Mq̈ + �T
qλ∗ + �T

q(α�) = Q, � = 0.

As stated in Section 2, a numerical solution can be obtained combining an ODE in-
tegrator with an update formula for the Lagrange multipliers, in a procedure referred
to as the Uzawa method, or method of multipliers. Now, for non-linear problems,
it is possible to define two main alternatives for the multipliers update scheme in a
single time step:

• Nested iteration, setting two nested loops; an outer loop for the multiplier λ, and
an interior loop that solve the ODE for a fixed value of the multiplier. This is the
most common implementation of this method, originally introduced in the con-
text of constrained optimization [6] and applied in many engineering problems,
as contact mechanics [21, 28].

• Simultaneous iteration sets only one loop, where the multiplier update is done
simultaneously with the iterations required by the ODE solver. This implement-
ation may exhibit stability problems in some applications, caused by the non-
differentiability of the update [21], but nevertheless it has been successfully ap-
plied to multibody systems [4, 9].

This augmented Lagrangian formulation leads to an exact fulfillment of the ori-
ginal position constraints (� = 0), but usually exhibits an unstable behaviour for
moderate time step sizes, even with ODE integrators suited to stiff systems.

As mentioned in Section 3, based on previous results in the literature, the nu-
merical solution of a constrained mechanical system seems to be more stable on the
constraint manifold than off it. Based on this fact, the exact enforcement of the con-
straint not only at position level, but also at velocity and acceleration levels (�̇ = 0
and �̈ = 0 respectively), which is not accomplished by the augmented Lagrangian
formulation presented here, is foreseen to stabilize the numerical solution.

This enforcement can be accomplished by different methods; one of them is the
so-called coordinate projection technique, which is the one selected in this work, and
will be outlined in the next paragraphs.

In case of a velocity projection, the velocities computed with the ODE integrator
(q̇∗) are projected onto the velocity constraint manifold to obtain new velocities (q̇),
solving a constrained minimization problem given by:

54



Stabilizing Properties of Energy-Momentum Integrators and Coordinate Projections

min
q̇

1

2
(q̇ − q̇∗)TA(q̇ − q̇∗) such that �̇ = 0, (10)

being A a definite positive matrix. This constrained minimization problem can be
solved with different methods; one of the simplest is penalty, which leads to the
solution for q̇ of a linear algebraic system given by:(

A + α�T
q�q

)
q̇ = Aq̇∗, (11)

being α a penalty parameter.
In case of a acceleration projection, the accelerations computed with the ODE

integrator (q̈∗) are projected onto the acceleration constraint manifold to obtain new
accelerations (q̈), solving a constrained minimization problem given by:

min
q̈

1

2
(q̈ − q̈∗)TA(q̈ − q̈∗) such that �̈ = 0, (12)

A being a definite positive matrix.2 Again, this constrained minimization problem
can be solved with penalty, which leads to the solution for q̈ of a linear algebraic
system given by: (

A + α�T
q�q

)
q̈ = Aq̈∗ − α�T

q�̇qq̇. (13)

5 Conserving Augmented Lagrangian Formulation

The point of departure of this approach is the algorithmic expression of the energy-
momentum method [19, 24] applied to a conservative mechanical system given by
(5), which enforces a set of holonomic constraints �(q) with the penalty method
[12, 17]:

M
(
q̇n+1 − q̇n

)+ �t�T
qn+β

α�n+ 1
2

= 0, (14)

1

2
(q̇n+1 + q̇n) = 1

�t
(qn+1 − qn),

where it has been assumed, with no loss of generality for the following discussion,
that will focus on the constraint forces, that the applied forces are null (Q = 0), and

denoting (·)
n+ 1

2

def= [(·)n+(·)n+1]/2 and (·)n+β evaluation at qn+β
def= qn+β(qn+1−

qn).
The parameter β ∈ [0, 1] has to be computed at each time step, imposing that

the dot product between the gradient of the constraint and the increment in position
verify:

2 Not necessarily the same employed for the velocity projection.
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β; �qn+β (qn+1 − qn) = �n+1 − �n. (15)

Note that when constraints are exactly fulfilled the gradient of the constraint (in other
words, the constraint force) is orthogonal to the increment in position. As it will be
shown later in Section 6, this condition leads to the exact algorithmic nullity of the
work performed by the constraint forces, thus leading to exact conservation of total
energy. If the constraint is at most quadratic, it is straightforward to see that β = 1/2.
Besides, if the constraint is generally expressed in terms of an scalar variable (e.g.
the distance between points), the constraint force term in (14) can be formulated in a
closed form without any additional parameter [12].

In order to obtain a conservative augmented Lagrangian formulation, it is con-
venient to read (14) as a second order approximation of an integral balance of linear
momentum between n and n + 1:∫ tn+1

tn

Mq̈ dt +
∫ tn+1

tn

�T
qα� dt = 0. (16)

Equations (14) and (16) reveal that the term α� is evaluated as α�n+ 1
2

in order to
calculate this integral, that leads to the conserving formulation.

On the other hand, it is also possible to understand the augmented Lagrangian
method (7) as an extended penalty method, where the penalized constraint α� is
corrected at each time step by a set λ∗ of Lagrange multipliers, which are updated
with a scheme given by λ∗(k+1) = λ∗(k) + α� with a nested or simultaneous iteration
strategy, as discussed in Section 4.

Taking into account these considerations, it is possible to define a conserving
algorithm that incorporates the augmented term:

M(q̇n+1 − q̇n) + �t
[
�T

qn+β
α�

n+ 1
2

+ �T
qn+β

λ∗] = 0 (17)

1

2
(q̇n+1 + q̇n) = 1

�t
(qn+1 − qn)

and accordingly sets an update scheme for the set of multipliers, given by:

λ∗(k+1)

n+1 = λ∗(k)

n+1 + α�
n+ 1

2
. (18)

The proposed algorithm given by (17) and (18) achieve exact conservation of
total energy (see [15] for more details) and exact fulfillment of the position con-
straints, as the augmented Lagrange multipliers set λ∗

n+1 converge to the true Lag-
range multipliers set λn+1 when its iteration progresses.

Finally, note that the coordinate projection technique described in Section 4 can
be applied here too in order to enforce the constraints at the velocity and/or acceler-
ation levels at each time step, but then the energy is no longer conserved. The energy
can grow or diminish depending on the way the projection is carried out, which is
one of the main topics discussed in the following section.
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6 Energetic Considerations

For ODE systems arising from the dynamics of mechanical systems, the stability
properties of the numerical methods used to solve them are typically related to the
concept of energy. Actually, in the linear case, exact algorithmic energy conserva-
tion and unconditional stability are directly related, as it happens, for instance, with
the trapezoidal rule, which has both features [16]. However, this direct relationship
does not hold for the non-linear case [22], which is the case of the equations res-
ulting from practical multibody systems. Nevertheless, exact conservation of energy
(or unconditional energy dissipation) has revealed extremely useful in the design of
robust integration schemes, with excellent stability in the non linear case (see [26]
and references therein).

With these arguments in mind, it is interesting to analyze how the two proposed
methodologies behave in terms of discrete energy balance. As it will be shown next,
it comes out that both methods actually controls the energy (thus providing a jus-
tification for their stabilization properties) but they do it differently; the projection
method provides a means for conserving or dissipating energy, and the conservative
approach exactly conserves it.

In order to study both cases from a common point of departure, let us consider
a constrained mechanical system, parametrized with a set of coordinates q ∈ R

n,
subjected to a set of r holonomic constraints �(q) ∈ R

r and with no applied forces.
The dynamics of this system is represented by the differential equation:

Mq̈ + Q�(q) = 0, (19)

Q� being the constraint force vector, which in the case of the augmented Lagrangian
method is given by Q� = �T

qλ∗ + �T
q(α�). Note that the dynamical system repres-

ented by (19) is conservative (the total mechanical energy remains constant), since
the work performed by holonomic constraints which do not depend explicitly on time
is null. This fact does not pose any practical limitation for our purposes and helps the
understanding of the developments presented in the rest of the section.

Using an ODE integrator to calculate the solution from tn to tn+1, combined
with the proper Lagrange multiplier update scheme, a solution qn+1 that exactly
satisfies the position constraint can be obtained. Consequently, the constraint force
at tn+1 takes the value Q�n+1 = �T

qn+1
λn+1, being λn+1 the vector of exact Lagrange

multipliers.
A velocity vector q̇∗

n+1 is also obtained but, in general, the velocity constraint
�̇n+1 is not exactly satisfied. In order to move the solution back to the velocity
manifold, let us assume that a velocity projection is performed at the end of each
time step as explained in Section 4, obtaining a new velocity vector q̇n+1.

The total energy balance �E between tn and tn+1 is given by:

�E = 1

2
q̇T

n+1Mq̇n+1 − 1

2
q̇T

nMq̇n. (20)
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Note that the total energy balance �E given by (20) equals the kinetic energy balance
�T , which means that �V = 0. This is due to the fact that there are not applied
forces, the position constraints are exactly satisfied and the position qn+1 does not
change under the projection.

Adding and subtracting a term (1/2)q̇∗T

n+1Mq̇∗
n+1 to equation (20), the following

relation is obtained:

�E = 1

2
q̇∗T

n+1Mq̇∗
n+1 − 1

2
q̇T

nMq̇n︸ ︷︷ ︸
�Ei

+ 1

2
q̇T

n+1Mq̇n+1 − 1

2
q̇∗T

n+1Mq̇∗
n+1︸ ︷︷ ︸

�Ep

, (21)

where �Ei is the energy variation introduced by the ODE integrator, and �Ep the
energy variation introduced by the velocity projection.

It is possible to calculate the energy variation introduced by any ODE integrator
employing the following preliminary equation:

�Ei = 1

2
(q̇∗

n+1 + q̇n)
TM(q̇∗

n+1 − q̇n) (22)

and using the algorithmic expressions of the method with the original system (19).
For instance, for the trapezoidal rule the following relations hold:

q̇∗
n+1 + q̇n = 2

�t
(qn+1 − qn) (23)

q̇∗
n+1 − q̇n = −�t

2
M−1(Q�n + Q�n+1

)
(24)

which introduced in expression (22) gives:

�Ei = −(qn+1 − qn)
T Q�

n+ 1
2

, (25)

where the notation (·)
n+ 1

2

def= [(·)n + (·)n+1]/2 introduced already in Section 5 has

been employed again.
Other example is the implicit midpoint rule, that introduces an energy variation

given by:
�Ei = −(qn+1 − qn)

T Q�
n+ 1

2
, (26)

where (·)
n+ 1

2
denotes evaluation at the midpoint. Note that, in a general non linear

case, Q�
n+ 1

2

�= Q�
n+ 1

2
and �Ei �= 0 can be positive or negative. Note from (25)

and (26) that both numerical schemes are the same and exactly conserve energy
(�Ei = 0) if the constraints are linear.

Finally, using relation (15), it can be shown that the energy variation of the con-
serving method is null, given by:
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�Ei = −(qn+1 − qn)
T�T

qn+β
λn+1 = 0. (27)

Other expressions similar to (25), (26) and (27) can be obtained for other integ-
rators, but this exhaustive description falls out of the scope of the work presented
here. It is important to remark that the sign of the energy contribution �Ei may
not be constant along the simulation, thus increasing or decreasing the total energy,
which can in turn affect the numerical stability.

The second contribution to the energy variation is �Ep, associated with the ve-
locity projection described in Section 4, and can be obtained solving a minimization
problem with a definite positive matrix A with a penalty method. This leads to the
solution for q̇n+1 of the linear algebraic equation system (11), given by:

q̇n+1 = P−1 q̇∗
n+1 with P =

(
1 + αA−1�T

q�q

)
. (28)

Introducing the first expression in (28) in the following relation for �Ep:

�Ep = 1

2
(q̇n+1 + q̇∗

n+1)
TM(q̇n+1 − q̇∗

n+1), (29)

the following expression is obtained for the energy variation introduced by the velo-
city projection:

�Ep = q̇T
n+1Dq̇n+1 with D = 1

2
(1 + P)TM(1 − P). (30)

Therefore, the effect of projection upon the energy depends of the properties of mat-
rix D, which is the matrix associated to the quadratic form �Ep, and governs the
damping behaviour of the projection. If this matrix is semidefinite negative, artificial
energy growth is avoided in any case, and a significant improvement of the stability
of the overall numerical scheme would be expected.

A detailed analysis of the quadratic form (30) can be performed [13], providing
a practical assessment about the adequate selection of the projection matrix A, such
that artificial energy growth is unconditionally avoided. One preliminary and inter-
esting result of this analysis is that the selection A = M introduces unconditional
dissipation to any incompatible velocity field (which is a velocity field that falls out
of the velocity manifold �̇ = 0). This property, and the impact that it has over the
stability of the resulting numerical algorithm will be observed in the numerical ex-
periment performed in the next section, and perfectly agrees with results previously
reported by other authors [5].

7 Numerical Simulation

To better understand the behavior of the formulations presented in Sections 4 and
5, let us present a simple but representative example that poses the essential numer-
ical difficulties typically associated to the constrained dynamics of more complex
mechanical systems.
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Fig. 1. Numerical simulation: an spherical compound pendulum.

Let us consider a spherical compound pendulum [14], shown in Figure 1 with two
particles with masses m1 = m2 = 1 kg, placed at distances l1 = 1 m and l2 = 1 m
on a rigid massless rod of total length l1+l2. The system is released from the position
ϕ1 = 0, ϕ2 = π/2 rad with initial velocities ϕ̇1 = 0.5 and ϕ̇2 = 0 rad/s. The system
has two degrees of freedom and it is modeled with six coordinates (q ∈ R

6), which
are the absolute Cartesian coordinates of both particles. There are five constraint
equations; two of them express that distances l1 and l2 are constant, and the other
three express the alignment of the two segments connecting the particles through a
cross product. Note that one of these three equations is redundant, which means that
the system has 2 degrees of freedom.

We will use this example to illustrate the main issues discussed in the previous
sections; namely:

• the effect of different implementations of the augmented Lagrangian scheme
(nested and simultaneous simulation);

• the numerical difficulties associated to the augmented Lagrangian approach when
used with a standard ODE integrator, without stabilization;

• the comparison in terms of stability between the conservative integration scheme
and the use of a standard ODE integrator with projections;

• the evaluation of a conservative scheme with projections, that will allow to take a
deeper look to the energy balance of the projection technique and its effect over
stability.

In all the following cases the simulation is carried out for 20 seconds and integrated
with 0.025 s of time step. The penalty factor is set to 107.
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7.1 Augmented Lagrangian schemes: Nested and simultaneous iteration

As explained in Section 4, there are two different possibilities for implementing the
augmented Lagrangian schemes in a non linear case:

• Nested iteration, with an outer iteration for the Lagrange multipliers and an inner
Newton–Raphson iteration.

• Simultaneous iteration: with an unique iteration loop for Newton–Raphson,
which includes the update of the Lagrange multipliers.

It is observed that the first scheme, in general, leads to a slower convergence
and needs more number of iterations. Moreover, small differences in the fulfillment
of the constraints are obtained depending on the tolerances imposed to the outer
iteration of the first scheme. But this differences have no significance on the response
of the solution, or the conservation of energy. If we pay attention to the stability
of the methods, it is neither observed a better performance of the nested iteration
implementation, since the maximum time steps achieved are similar.

Finally, note that in the nested iteration we have an additional uncertain parameter
to take into account: the outer iteration tolerance, which should be supplied by the
user and directly determines the accuracy of the constraint fulfillment.

7.2 Stability problems of the index-3 augmented Lagrangian scheme with a
standard integrator

To illustrate the problems exhibited by the augmented Lagrangian formulation (7) if
no stabilization method is used, the example of the compound pendulum is solved
using the trapezoidal rule without projections.

Figure 2 shows the behavior of the energy, and the quadratic norm of the con-
straints at position ||�||, velocity ||�̇||, and acceleration ||�̈|| levels along time.

Note that the instability is characterized by the unbounded growth of the viol-
ation of the constraint equations at velocity and acceleration levels, together with
the unbounded growth of the vibrating energy associated to the constraints. Other
integration schemes, such as implicit Runge–Kutta or BDF, better suited for stiff
ODE systems than the trapezoidal rule, exhibit qualitatively the same behaviour with
slightly larger time steps.

7.3 Augmented Lagrangian stabilized formulations: Coordinate projection vs.
conservative formulation

We analyze here two methods, both based on the augmented Lagrange formulation
and presented in Sections 4 and 5. These two methods are designed to overcome the
stability problems, explained in Section 3 and illustrated in Section 7.2, associated
to the numerical solution of the DAE representing the system’s dynamics.

61



J.C. García Orden and D. Dopico Dopico

Fig. 2. Index-3 augmented Lagrangian with trapezoidal rule, without projections.

Figure 3 shows that the scheme with coordinate projections better fulfills the
constraint equations at velocity and position levels than expected, while the conser-
vative scheme achieves the exact conservation of the total energy. Nevertheless, the
important remark to be made is that both schemes provide an adequate stabilization
to the equations, while enforcing accurately the constraints at position level. Note
from Figure 3 that a stable simulation is carried out up to 20 s, while Figure 2 shows
severe instabilities after the first 3.5 s for the same time step.

If we try to achieve the highest possible time step for a stable simulation during
20 s, we find similar situations for both schemes. In the case of trapezoidal rule with
coordinate projection, we can achieve a maximum time step of 0.25 s, while in the
case of the conservative formulation we achieve a maximum time step of 0.20 s.
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Fig. 3. Comparison between trapezoidal rule with projections and the energy conserving
scheme.

7.4 A conservative scheme with projections

As pointed out at the end of Section 5, the conserving augmented Lagrangian formu-
lation and the projection technique are not incompatible at all. When combined, the
resulting scheme has two important features:

• It introduces two stabilization effects; the energy-momentum integrator stabilizes
the equations keeping the energy on the system bounded, while the projection
stabilize the equations maintaining the solution onto the constraints manifold, at
velocity and acceleration levels. As a result, a more stable algorithm is obtained.

• It allows to appreciate clearly the effect of the projections over the energy bal-
ance, represented by the contribution �Ep in expression (21), since the other
contribution �Ei is null for the conserving scheme.
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Fig. 4. Effect of projections over the trapezoidal rule and the conserving scheme.

Figure 4 shows a comparison between the results obtained applying coordinate
projections on both the trapezoidal rule and the conserving scheme, using as a pro-
jection matrix the system mass matrix M.

Note that energy decreases in both cases, but it does it monotonically only with
the conservative method. This result agrees with the theoretical results discussed
in Section 6, since the energy dissipation observed in the conserving case entirely
comes from the projection phase, which unconditionally dissipates energy when the
mass matrix is used to perform the projection. For the trapezoidal rule, the decrease
of energy is not monotonic because the contribution of the integration scheme �Ei ,
which takes positive and negative values along the simulation.
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8 Conclusions

The main conclusions that can be drawn from the results presented in this work are:

• Several formulations may be used to represent the dynamics of constrained mech-
anical systems. These formulations differs on the method employed to enforce
constraints, commonly based on the Lagrange multiplier, penalty and augmented
Lagrangian methods. All these formulations pose numerical difficulties, mainly
related to stability; some of these difficulties come from an unstable index reduc-
tion of the original index-3 DAE, and some arise from the intrinsic characteristics
of the solution method.

• Two methods that alleviate these stability problems have been presented; the use
of a standard ODE integrator (such as the trapezoidal rule) with projections, and a
conservative integrator. Both exhibit excellent stability characteristics, both com-
ply with the constraints at position level, and are very adequate to carry out robust
long term simulations.

• The stability properties of the conserving method can be understood as an ef-
fect of the control over the energy. This idea comes as a natural extrapolation of
the situation observed in linear conservative systems, where energy conservation
implies unconditional stability. This property no longer holds in the nonlinear
regime, but nevertheless provides a valid intuitive justification for the observed
improvement in the stability performance of conservative schemes.

• The stability properties of the projection (combined with a standard integrator
such as the trapezoidal rule or with the conservative scheme) can be understood
in two different manners.
The first is related with its effect over the energy; it has been justified that un-
der some assumptions (mainly based on the selection of the projection matrix)
no growth of energy, even unconditional dissipation, can be guaranteed for the
projection, justifying its stabilization effect.
The second interpretation is based on the observation, supported by different
studies at the literature, that the numerical solution is more stable on the con-
straint manifold than off it. Thus, exact fulfillment of the constraints at all levels
(position, velocity, acceleration) is expected to improve the overall stability of
the algorithm, which is indeed observed at the numerical simulation presented at
this work.

• The combination of the conservative scheme with the coordinate projection tech-
nique results is a very stable algorithm, very adequate for long term simulations.
Besides, provides an optimal framework for a deeper study of the energy control
provided by projections, that is naturally related to their stabilization effect, and
may lead to obtain practical assessments on the projection matrix selection.

• The two alternative implementations of the Uzawa method for the augmented
Lagrangian formulation (nested and simultaneous iteration) lead to similar results
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with moderate time steps, with no significant impact on the overall algorithm’s
stability.
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1 Introduction

A posteriori error estimators are useful tools in general purpose numerical compu-
tations because they provide an automatic, quantitative assessment of the accuracy
of the results. Without some sort of error estimation the validity of any numerical
results relies solely on the analyst experience and good judgment. While these are
also necessary, they fail to be quantitative and are thus prone to mistakes.

In dynamic computations, the ones of interest in this work, error estimators have
a second, very practical, application. By estimating the error in every step of the
solution, the time step size can be varied in order to be as large as possible while
keeping the errors small enough. In large scale simulations of transient multibody
systems it is mandatory to use some kind of adaptive time stepping. It is hence crucial
to base them on error estimators as accurate and robust as possible.

A posteriori error estimation methods for ordinary differential equations are
standard and are treated in many texts on the topic (see, for example, [1] and also
the review article [2]). While these techniques are fairly general, we are mostly in-
terested in methods tailored for the second order differential equations that arise in
solid, structural, and multibody dynamics. Literature for these specific application is
less abundant but can be found, among elsewhere, in the works of [3–10]. Among all
the available techniques for error estimation in ODEs, the aforementioned references
are all based in asymptotic methods. These seek to compute an approximation to the
error made in every step of the calculation by comparing the numerical solution with
another, high order accurate approximation to the exact problem. This approach will
also be employed in the present article.
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Most of the work on error estimators mentioned above focuses on the formula-
tion of accurate local error estimates. That is, approximations of the error made in
one single time step of the integration. This information suffices for constructing ad-
aptive time stepping strategies but provides little knowledge about the global error,
the difference between the real and computed solutions. This is the most important
error from the point of view of the final results. Much information about it can be
obtained, at least for the linear case, as will be described in the present work. While
nonlinear problems are of course the most important ones, error estimators which
are most effective for linear problems will most likely perform well in nonlinear
situations.

In fact, a detailed study of the errors made in the time integration and the relation
between local errors and global errors allows to clearly state the necessary and suf-
ficient conditions that any error estimator must satisfy in order to produce accurate
global error estimations. As will be explained, this global point of view reveals that
considerations based only on local errors do not suffice, and that some of the exist-
ing error estimators can provide inaccurate estimations for this reason, even in linear
problems.

The analysis we present serves to identify the conditions that guarantee the ac-
curacy of a given error estimator of the asymptotic type. Moreover, it provides the
guidelines to formulate new, accurate, and robust estimators. As an example, a new
error estimator is proposed for the time integration with Newmark’s and HHT meth-
ods. The article contains the key ideas that can be employed in order to develop error
estimators for other time marching algorithms. Details omitted in the proofs of this
article can be found in our previous work [11, 12].

An outline of the rest of the article is as follows. In Section 2, the problem of
interest is described and formulated mathematically. The errors made in one time
step of the integration, i.e., the local errors, are defined and studied in Section 3. This
concept is employed in Section 4 to discuss the global errors made in a complete
numerical solution. Next, in Section 5, new error estimators are presented for New-
mark’s and HHT method, explaining how they are obtained by using the ideas of
the previous sections. The performance of these algorithms is illustrated in Section 6
by means of several numerical computations. The article ends in Section 7 with a
summary of results and conclusions.

2 Problem Statement

In this work we focus on the numerical analysis and a posteriori error estimation of
the equations of flexible multibody systems with no constraints. They can be for-
mulated as a system of ordinary differential equations of dimension N where the
independent variable is the time t ∈ [0, T ]:

70



Analysis and Improved Methods for Error Estimation

MÜ(t) + Fint (U(t), U̇(t)) = F(t) , t ∈ (0, T ),

U(0) = Uo, (1)

U̇(0) = Vo.

The vector U contains the unknown displacements; F, Fint are, respectively, the ex-
ternal and internal force vector; M is the mass matrix, and Uo, Vo are the initial
displacement and velocity vectors.

Among all the numerous time stepping methods that exist to integrate (1) we will
concentrate on a class of methods designed specifically for second order systems of
stiff equations and originally formulated in the context of structural mechanics. To
define this time marching strategy, consider a partition of the time interval [0, T ] in
N subintervals of the form In = [tn, tn+1] of length �tn = tn+1 − tn, where 0 ≡
to < t1 < t2 · · · < tN ≡ T . Given algorithmic approximations of the displacement,
velocity, and acceleration at time tn and denoted respectively Un, Vn, An, we solve
for the same quantities at the next instant tn+1 by solving the following algebraic
equations:

MAn+1 + Fint (Un+α, Vn+α) = Fn+α,

Un+1 = Un + Vn�tn + �t2
n

2
((1 − 2β)An + 2βAn+1), (2)

Vn+1 = Vn + �tn((1 − γ )An + γ An+1).

In the previous equations, and for the rest of the article, the notation (·)n+α with
0 < α < 1 is used to denote the convex combination (1 − α)(·)n + α(·)n+1. The
system of equations (2) must be supplemented with the value of the acceleration at
time t = 0 which is defined to be:

Ao = M−1(F(0) − Fint (Uo, Vo)). (3)

The three parameters α, β, and γ allow to select among different members of the
family, each one with different algorithmic properties. Two specific choices will be
of major interest. The two-parameter method resulting by selecting α = 1 is known
as the Newmark method [13]. The one parameter method that follows from imposing
β = (1 − α/2)2, γ = 3/2 − α, 0.7 ≤ α ≤ 1, is the Hilber–Hughes–Taylor (HHT)
algorithm [14].

3 A Posteriori Local Error Estimates

We start our analysis by presenting the type of asymptotic error estimations that
can be performed to approximate the error made in one time step of the numerical
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integration of (1). First, we must establish the norm that will be employed to measure
the size of vectors in the analysis.

The most natural way of measuring the size of the quantities that appear in our
analysis is to employ the energy norm. This norm combines the strain energy of the
displacements and kinetic energy of the velocity to give a non-negative real number
that measures their combined size. In linear problems, it can be shown that this norm
is a natural norm equivalent to certain Sobolev norm. In order to define the energy
norm, we gather displacements and velocities at one instant in one single vector of
dimension 2N . For example, if we define the vectors z(tn) y z̃n that hold, respectively,
the solutions to problems (1) and (2) at time tn we can write:

z(tn) =
{

U(tn)

U̇(tn)

}
, z̃n =

{
Un

Vn

}
, (4)

and we can define their energy norms as:

‖z(tn)‖2
E := 1

2
U(tn) · KoU(tn) + 1

2
U̇(tn) · MU̇(tn) ,

‖z̃n‖2
E := 1

2
Un · KoUn + 1

2
Vn · MVn .

(5)

In both of these equations we have defined the initial tangent stiffness matrix

Ko = ∂Fint (U, U̇)

∂U

∣∣∣∣∣
(U,U̇)=(Uo,Vo)

, (6)

to measure the strain energy contribution from the displacements. The tangent stiff-
ness matrix is not constant except for linear problems. However, in order to use the
same norm at every instant and, furthermore, save computational time, we will only
employ the initial stiffness for the energy norm computation.

To correctly assess the error made by the integration scheme in one single time
step – and thus separating it from the error that might have accumulated in previous
steps – we define the following initial value problem in the time interval of interest:

Mü[n](t) + Fint (u[n](t), u̇[n](t)) = F(t) , t ∈ In,

u[n](tn) = Un,

u̇[n](tn) = Vn.

(7)

In this problem, the initial values of displacement and velocity are the one calcu-
lated by the numerical scheme in the previous time step. Gathering as before the
solution of each local problem and its time derivative in a single vector y[n](t) =
〈u[n](t), u̇[n](t)〉, we define the local error as the quantity

en+1 := y[n](tn+1) − z̃n+1. (8)
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Local errors, as simple as they might seem, cannot be computed exactly. For
that, it would be necessary to exactly know the solution at the end of every single
time step. However, by induction, this amounts to solving exactly the original prob-
lem (1). Nevertheless, most of the times it suffices to have a good approximation of
the error, or its norm, and this can be accomplished by means of an a posteriori error
estimation.

A common strategy to obtain useful error estimates consists in replacing
y[n](tn+1) in equation (8) with a numerical solution of the local problem (7) obtained
using a numerical method of a high order of accuracy and small computational cost.
The high order solution of the local problem at the end of the interval In will be
denoted ỹ[n]

n+1, and we will later explain how to obtain it for particular situations.
If the time integration algorithm that is employed to solve (1) has order of accur-

acy k, the local errors must be of order k + 1, that is:

‖en+1‖E = ‖y[n](tn+1) − z̃n+1‖E = O(�tk+1
n ). (9)

The high order solution to the local problem must be significantly more accurate than
the time integration algorithm that is being used to solve (1). The approximation ỹ[n]

n+1
that we need to provide must be, at least, one order of �t closer to y[n](tn+1) than
z̃n+1. If this condition is met the local error in one time step could be approximated
(making only an error of size �tk+2) by

en+1 = y[n](tn+1) − z̃n+1︸ ︷︷ ︸
O(�tk+1)

= y[n](tn+1) − ỹ[n]
n+1︸ ︷︷ ︸

O(�tk+2)

+ ỹ[n]
n+1 − z̃n+1︸ ︷︷ ︸
O(�tk+1)

≈ ỹ[n]
n+1 − z̃n+1.

(10)
The error vector

θn+1 := ỹ[n]
n+1 − z̃n+1 (11)

in an order �tk+2 approximation of the true local error en+1 but, in contrast with the
later, can be explicitly computed. On the other hand, the quantity

ηn+1 := y[n](tn+1) − ỹ[n]
n+1 (12)

has an unknown value. However, its energy norm is known to be of size O(�tk+2)

and thus negligible when added to the error estimate θn+1.
To sum up, in order to obtain an a posteriori local error estimate of the type

considered, all that is needed is an algorithm that computes a solution ỹ[n]
n+1 to every

local problem such that:

• it is a high order approximation of the exact solution of the local problem
y[n](tn+1) and,

• it can be computed with a small computational cost.
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4 A Posteriori Global Error Estimates

The local error estimates – as presented in Section 3 – are useful quantities, especially
for devising adaptive time stepping strategies. However, in most cases, the analyst is
even more interested in knowing, or at least having an approximation of, the real error
made by the numerical integration scheme at the end of a whole simulation. This
error is referred to as the global error. If one employs asymptotic error estimators
as the ones previously described, in most situations there is very little that can be
done to assess the global error apart from accumulating the local ones. Nevertheless,
in linear problems more information can be inferred from local errors and accurate
estimations of global errors can be given.

Linear problems are characterized by having an internal force vector which is
proportional to displacement and velocity and thus can be written as:

Fint (U, U̇) = CU̇ + KU. (13)

The constant matrices C and K are, respectively, the damping and stiffness matrices
of the system which are symmetric, positive semidefinite. The system of ordinary
equations (1) together with the specific form of the internal force (13) has special
properties among which is the following stability result:

Theorem 1. The energy norm of the global error En := z̃n − z(tn) due to the nu-
merical approximation of a linear problem of type (1) is bounded by the sum of the
norms of the local errors en = y[n−1](tn) − z̃n, i.e.,

‖EN‖E ≤
N∑

n=1

‖en‖E. (14)

The proof of this result can be found in [11]. This property depends solely on the
stability of the continuous equations and is independent of the numerical method
employed. From the practical point of view, it is a result that cannot be employed, at
least directly, to calculate the global error. The previous bound depends on the local
errors which, as explained in Section 3, cannot be computed.

The strategy for deriving useful approximations of the global error consists in
employing the local error estimates described in Section 3 to approximate the last
error bound. If a procedure is found to compute a posteriori local errors with suf-
ficient accuracy, they can replace the exact local errors in equation (14). While the
computed quantity will no longer be a guaranteed upper bound of the global error, it
will be a good estimate for it.

To be more specific, let us assume that we are dealing with a numerical method
of the type considered which is of order k. This means that, for smooth enough
solutions of the differential equations (1), the local errors made by the method are
order k + 1 and the global error has an order k norm. If the local error of bounds in
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(14) are replaced by error estimates θn which are order k + 2 approximations to the
true error then the global error bound will be approximate by a quantity which is no
longer a bound, but is an order k + 1 approximation to it. Since the method itself is
only order k the approximated error would be a very good estimate not only of the
global error itself, but of a bound for it. Using the notation of Section 3 we have:

‖EN‖E ≤
N∑

n=1

‖en‖E =
N∑

n=1

‖θn + ηn‖E ≤
N∑

n=1

‖θn‖E +
N∑

n=1

‖ηn‖E ≈
N∑

n=1

‖θn‖E.

(15)
The error estimation obtained by adding up local error estimates is, in contrast to

the true global error, computable by numerical means. If the cost of the local error
estimate is small compared to the cost of a step in the numerical solution, the cost
of the global error estimate will also be small in comparison with the overall cost of
the simulation. Moreover, as stressed before, the error estimate computed in this way
will be a good approximation to a bound of the true global error. From the point of
view of the analyst, this is a desirable property because the reported error assessment
will fall in the safe side, never underestimating it.

At the heart of a reliable global error estimator lies an accurate local estimator,
one with the properties put forward in Section 3. In the next section we will explain
how such an estimator can be computed for the general class of integrators (2).

5 A Procedure for Computing Accurate Error Estimators

In the previous two sections, we have stressed the importance of formulating local
error estimates that are both accurate and computationally cheap. As explained, this
is necessary both for formulating time adaptive strategies as well as to obtain useful
global error estimations.

Within the class of asymptotic error estimates that we are considering in this
work, the task of obtaining local error estimators amounts to finding a way to easily
compute numerical solutions to the local problems (7) which are at the same time
highly accurate. Several alternatives have been proposed in the literature to tackle
this problem [3–5, 8]. They differ among each other in their computational cost,
their accuracy, and especially their range of applicability. As studied in [11], not
all of them are equally valid for general purpose situations. In particular, some of
them require that the exact solution of the continuous problem is very smooth, an
assumption which is over restrictive and which rules out many interesting mechanical
problems.

In this section we present a methodology to obtain error estimators for prob-
lem (1) that satisfy the requirements for accuracy, robustness, and cost explained
in the previous section. Furthermore, the only smoothness requirement on the ex-
act solution is that it must be two times continuously differentiable. This condition
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is automatically satisfied by the solution of (1) and thus poses no restriction on the
kind of problems that the proposed estimator can be used for.

For the construction of the local error estimator, we restrict ourselves to the nu-
merical integrators of the type (2). The ideas, however, are fairly general and the
formulas proposed can be extended to other methods.

Before proceeding, we note that the family of algorithms (2) includes first and
second order methods and we need to consider them independently. The main idea
is as follows. As explained in Section 3, the only requirement for formulating an
accurate error estimator is a method to approximate y[n](tn+1), the solution of the
local problem (7). By the fundamental theorem of calculus this function satisfies:

y[n](tn+1) = y[n](tn) +
∫ tn+1

tn

ẏ[n](τ ) dτ. (16)

In the last expression, y[n](tn) is known exactly and its value is the solution obtained
by the integrator in the previous time step, i.e., z̃n. Thus, in order to approximate
y[n](tn+1), we can use (16) and approximate the integral in that expression. For an
order k methods of the ones considered, we propose to find a quadrature Qn+1

n , as
simple as possible, that verifies:∥∥∥∥Qn+1

n −
∫ tn+1

tn

ẏ[n](τ ) dτ

∣∣∣∣
E

= O(�tk+2). (17)

If we are able to find such rule, an approximation of order �tk+2 to the solution to
the local problem could be easily defined as:

ỹ[n]
n+1 = z̃n + Qn+1

n . (18)

This approximation, if found, is one order more accurate to the solution of the local
problem than the solutions provided by any method of the family (2), either first
order of second order. Thus, for any of the methods considered, we have

‖ηn+1‖E = ‖ỹ[n]
n+1 − y[n](tn+1)‖E = O(�tk+2). (19)

If indeed we can compute efficiently the quadrature described then, the vector

θn+1 = ỹ[n]
n+1 − z̃n+1 = z̃n + Qn+1

n − z̃n+1, (20)

will be and order �tk+2 estimation of the true local error.
It remains to provide a methodology for the construction of such a quadrature

in the context of any of the methods considered. The method should take advantage
of the data already available from the time integration so that unnecessary compu-
tations are avoided. In order to do this, different approaches must be considered for
Newmark and HHT solutions.
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5.1 An error estimator for Newmark’s method

Newmark’s method has, among all the algorithms of type (2), the advantage that it
provides, with no additional cost, approximations for the displacement, velocity, and
acceleration at every time instant tn of accuracy O(�tk+1), k being the order of the
method. This is in contrast with the HHT method as will be explained later.

Let us consider first the case of k = 2. This corresponds to the second order
members of the family that can be shown to be the ones with γ = 1

2 (see, for ex-
ample, [15]). According to equation (17), the quadrature that we must find has to be
an order 4 approximation to the integral of expression (16). Making use of the fact
that the vectors Un+1, Vn+1, An+1 are themselves third order approximations to the
displacement, velocity, and acceleration, respectively, at time tn+1 we can construct
the required quadrature as summarized in Box 1.

Given the solutions of Newmark’s method Un, Vn, An and Un+1, Vn+1, An+1 at in-
stants tn and tn+1, respectively:

1. Compute the auxiliary vectors:

U∗
n+1/2 = Un + �tn

2
Vn + �t2

n

8
An

V∗
n+1/2 = Vn + 3�tn

8
An + �tn

8
An+1

A∗
n+1/2 = M−1(F(tn+1/2) − Fint (U

∗
n+1/2, V∗

n+1/2)

(21)

and the quadrature rule:

Qn+1
n = �tn

6

{
Vn

An

}
+ 4�tn

6

{
V∗

n+1/2
A∗

n+1/2

}
+ �tn

6

{
Vn+1
An+1

}
. (22)

2. Compute the high order approximation to the solution of the local problem:

ỹ[n]
n+1 = z̃n + Qn+1

n . (23)

3. Finally, compute the error estimate

θn+1 = ỹ[n]
n+1 − z̃n+1. (24)

Box 1: Implementation of the local error estimate for Newmark’s method.

The auxiliary vectors U∗
n+1/2, V∗

n+1/2, and A∗
n+1/2 are, respectively, third order

approximations to the displacement, velocity, and acceleration of the local prob-
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lem (7) at time tn+1/2. In this way, the quadrature (22) is a modified Gauss-Lobatto
rule whose order of accuracy is �t4, as desired.

For the first order accurate members in the Newmark family, the required order
of accuracy for the quadrature Qn+1

n in the error estimator is 3. The same algorithm
described in Box 1 can be used. Now the auxiliary vectors would be only second
order approximations to the corresponding quantities at time tn+1/2 because the dis-
placement, velocity, and acceleration at tn+1 are only second order accurate. Hence,
the quadrature (22) will now have third order of accuracy, which is enough for es-
timating the error of a first order method.

We must remark that the specific quadrature rule employed is irrelevant as long
as the accuracy requirements for each method are met. For any of the methods of
the Newmark family the values of the displacement, velocity, and acceleration at the
endpoints of the interval [tn, tn+1] do not provide enough information to construct an
accurate quadrature and hence, additional auxiliary points must be computed at the
midpoint tn+1/2. The formulas (21) provide accurate enough approximations with a
minimum computational cost.

The computation of the error estimator proposed involves a small computational
cost. Only the mass matrix M needs to be factorized in order to compute the ac-
celeration A∗

n+1/2. This factorization can be done just once at the beginning of the
simulation, even in nonlinear problems. An interesting alternative would be to em-
ploy a lumped mass.

5.2 An error estimator for the HHT method

Constructing an error estimate for the HHT method is not as simple as in the case of
the Newmark method. The problem with the former is that, as it is well documented
in the literature (see, e.g. [16]), the acceleration vector An+1 provided by the HHT
method is not a third order approximation of the acceleration at the end of a local
problem (7).

The strategy to construct an error estimator for the HHT method is almost
identical to that employed for second order Newmark methods. Formulas in Box 1
would all be valid if we had good approximations for the acceleration at times tn, tn+1
of each integration interval. However, as explained above, this is not the case and
we need to construct such approximations from available data. Denoting by Anew

n

the third order accurate approximations of the acceleration, we propose a recursive
procedure to compute them using only previous values and the acceleration vectors
provided by the method itself. The iterative scheme is as follows:

Anew
o = Ao, Anew

n+1 = 1

α

(
An+1 − (1 − α)Anew

n

)
. (25)

This formula was proposed in [17] where a proof of its accuracy can be found.
Using the modified acceleration vectors Anew

n in Box 1 instead of the algorithmic
ones An yields an error estimator of the desired accuracy for the HHT method.

78



Analysis and Improved Methods for Error Estimation

Fig. 1. Triangular loading function.

6 Numerical Simulations

In this section we show a few numerical examples to illustrate the accuracy and
robustness of the proposed error estimators. Simulations will be carried out using
the trapezoidal rule (Newmark method with β = 0.25 and γ = 0.5) and the HHT
method summarized in Section 2. In the case of the trapezoidal rule, we shall com-
pare error estimations provided by the algorithm introduced in Section 5 with exist-
ing error estimators of the literature such us the ones proposed by Wiberg and Li [5]
and Hulbert and Jang [8]. On the other hand, literature about error estimators for the
HHT method is scant and the existing ones, e.g. the one described in Geradin and
Cardona [9], take only into account the error in displacements, neglecting the con-
tribution of the velocities. Hence, in the case of the HHT method the error estimates
will only be compared, when possible, with the exact errors.

6.1 One degree of freedom spring-mass system

The first example is a simple linear model of one degree of freedom, but it is enough
to characterize completely the properties of the error estimator in the context of linear
problems. The spring-mass system we have chosen has mass M = 1 Kg, stiffness
K = 6 N/m, and initial displacement U(0) = 1 m. The initial value problem that
describes the behavior of this system is thus:

Ü(t) + 6U(t) = F(t) , t ∈ [0, 5],
U(0) = 1 , U̇(0) = 0.

(26)

We consider that the loading function F(t) has a triangular shape as depicted in
Figure 1. The problem is solved with the trapezoidal rule and the HHT method with
α equal to 0.8.
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Fig. 2. One dimensional problem. Local error with time step size �t = 0.05 s (top: trapezoidal
rule; bottom: HHT with α = 0.8).

On the top of Figure 2, we show the time evolution of the local errors estimated
by the three methods compared and also the true local errors when the trapezoidal
rule is employed. The exact local errors can be computed because the problem is
very simple but in general it is either impossible or impractical. The error estimator
of Wiberg and Li exhibits sharp jumps in the estimated error at instants where the
loading function is not differentiable. The error estimator of Hulbert and Jang un-
derestimates the true errors. If the HHT is used (see Figure 2, at bottom), the new
estimator computes a local error slightly larger than the true one, keeping a great
resemblance.
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Fig. 3. One dimensional problem. Global error estimates with �t = 0.05 s (top: trapezoidal
rule; bottom: HHT with α = 0.8).

Note that true local errors of the top part of Figure 2 are not equal from the ones
in the bottom, since the numerical methods used have been different and, thus, the
resulting local problems are different too (the initial conditions change).

In the case of the Newmark method, limitations in the computations of the local
errors pointed out above affect the evaluation of the global errors, as can be observed
in Figure 3. In contrast, the error estimation method proposed gives an accurate error
estimation which, moreover, is an upper bound. If the loading function had been
a differentiable function, the error estimator of Wiberg and Li would have given
equally good results (see [11] for an explanation of these results).

Figure 4 depicts the convergence of the global errors (in the problem studied)
estimated by each of the methods compared. The error estimator of Wiberg and Li
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Fig. 4. One dimensional problem. Global errors at instant t = 5 s (left: trapezoidal rule; right:
HHT with α = 0.8).

exhibits an order of accuracy lower than required for the trapezoidal rule. The error
estimator of Hulbert and Jang captures the correct order of accuracy, but underes-
timates the error for all time step sizes. The new error estimate shows the correct
order of accuracy and returns upper bounds in all tests and for both time integration
methods employed.

6.2 Dynamic behavior of a car suspension

The second example is a more realistic three dimensional multibody system with
several degrees of freedom. This mechanism simulates a car suspension and it is
composed of five deformable bars, a coil spring and a damper. More concisely, four
bars form two parallel isosceles triangles (AEB and CFD) joined by the vertical bar
EF. In Figure 5, the exact geometry of the model and position of each point is shown.

The bars undergo large displacements and, thus, the resulting problem is non-
linear. The points A, B, C, D and H are fixed, but they allow rotation around them.
Between the points H and F there is a coil spring and a damper, with stiffness k =
104 N/m and damping c = 103 Ns/m, respectively. All bars are supposed to be
deformable with the following mechanical properties: axial stiffness per unit length
EA = 2.1 · 1010 N/m, Poisson coefficient ν = 0.3 and density ρ = 7890 kg/m3.
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Fig. 5. Geometry of a car suspension (positions of points are expressed in meters).

Fig. 6. Evolution in time of external load applied to the car suspension.

In the point F, a vertical external load is applied in the z-direction. Initially, the
car suspension is charged up to 500 N. Then, from time t = 1 s to t = 2 s three
consecutive peaks of 1000 N are introduce. Evolution in time of this external load is
plotted in Figure 6.

Several transient analysis will be carried out by means of HHT method with
three different values for parameter α (0.95, 0.90 and 0.80) and a constant time step
�t = 0.01 s.
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Fig. 7. Car suspension. Local error with time step size �t = 0.01 s.

Figure 7 depicts the evolution of local errors computed using the estimator de-
tailed in Section 5.2. It can be observed that smaller the value of parameter α is,
larger the local error obtained by the estimator is.

Next, estimates for the global error are compared with “exact” ones obtained
solving the problem with a much smaller time step �t = 0.00001 s. On the top
of Figure 8, the evolution of global error estimates is plotted. Just like in the case of
local errors, simulation performed with the HHT method with α equals 0.95 provides
more accurate results. Global error estimations for the three different simulations are
upper bounds of exact errors, which are presented on the bottom of Figure 8.

In Figure 9 it is shown the order of convergence of global errors. All of them
overestimate the exact error being, thus, safe bounds. Also, they present a correct
second order of convergence

6.3 Transient simulation of an elastic ball bouncing inside a rigid box

The last simulation describes a more complex nonlinear, elastic system. It describes
the motion of a hollow elastic sphere of external radius of 1 m and thickness 0.05 m
bouncing inside a square box with rigid walls. The sphere is placed initially in the
center of the box, and is released from this position with an initial velocity of 0.2 m/s
in a direction that forms a 30 degrees angle with the vertical axis x3. The box has
dimensions (L1, L2, L3) = (12, 12, 8) m. The material of the sphere is nonlinear
elastic with Neohookean model of Young’s modulus E = 106 Pa and Poisson ratio
ν = 0.3. The finite element model of the sphere has 1106 nodes, 3370 tetrahedral
elements for a total of 3318 degrees of freedom. The constraints that keep the sphere
within the box boundaries are imposed with a penalty method.
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Fig. 8. Car suspension. Global error with time step size �t = 0.01 s (top: estimated errors;
bottom: exact errors).

The simulated motion consists of the uniform, straight movement of the ball and
its impacts against the box walls. Since the ball is elastic, every impact against a wall
makes the ball vibrate in addition to modifying its trajectory.

The numerical method chosen to solve this problem is the HHT integrator with
parameter α = 0.7 and the error estimation is performed with the method described
in Section 5.2. The motion is simulated for 100 seconds with several time step sizes.
Figure 10 shows the evolution of the estimated local errors when the solution is
computed employing a time step of size �t = 0.5 s. It can be seen that local errors
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Fig. 9. Car suspension. Global errors at instant t = 2.5 s. (Left top: HHT with α = 0.80; right
top: HHT with α = 0.90; bottom: HHT with α = 0.95).

Fig. 10. Elastic ball inside rigid wall. Local errors made by the HHT method with fixed time
step size �t = 0.5 s, estimated with the proposed error estimator.

are relatively small except for a few time instants that correspond to the ball im-
pact against the walls. Figure 11 depicts the values of the global errors accumulated
during this same simulation. As a result of the large local errors in the impacts, the
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Fig. 11. Elastic ball inside rigid wall. Global error with time step size �t = 0.5 s (top:
estimated errors; bottom: exact errors).

global error exhibits large growths in these instants, with a negligible increase during
the rectilinear motion inside the box.

To evaluate the accuracy of the proposed estimating method we also plot in Fig-
ure 11 the evolution of the global error computed by taking as reference value a
numerical solution obtained with the HHT but with a much smaller time step size
�t = 0.01s. The estimated error is quite larger than the “exact” one, but serves as
a conservative estimate that can be useful to bound the true error and to guide an
adaptive process.
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7 Summary and Conclusions

In this work we have presented a class of error estimators suitable for the accuracy as-
sessment of numerical time integration of nonlinear multibody dynamics. The point
of departure is a description of the type of errors that appear in the numerical integ-
ration of the equations of interest, and their relation. The main conclusion obtain is
that, for general purpose, nonlinear problems, the crucial point is the computation of
accurate local error estimators which remain valid without demanding unreasonable
smoothness of the exact solution.

We have proposed local error estimators for Newmark’s and HHT integration
schemes. These are two widely employed integration schemes for which there
already exist a handful of error estimators. The ones proposed in this work are as
accurate as the most advanced ones, with the additional virtue of being valid for
solutions without high smoothness. These properties make them very suitable for
general purpose multibody simulations.

The analysis presented in this work is not only valid for the two methods studied.
In fact, the same ideas could be employed to develop error estimators for other time
integration schemes. In the case of linear multistep methods of the type employed in
Computational Mechanics, the modifications required to adapt the proposed method
to others should be minimal.

Numerical simulations shown demonstrate the good properties of the proposed
estimators and their suitability for general purpose multibody simulations.
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Abstract. The dynamic behavior and control of cranes executing prescribed motions of 
payloads are strongly affected by the underactuated nature of the robotic systems, in which 
the number of control inputs/outputs is smaller than the number of degrees-of-freedom. The 
outputs are specified in time load coordinates, which, expressed in terms of the system 
states, lead to servo-constraints on the system. The problem can then viewed from the per-
spective of constrained motion. It is noticed however that servo-constraints differ from pas-
sive constraints in several aspects. Mainly, they are enforced by means of control forces 
which may have any directions with respect to the servo-constraint manifold, and in the ex-
treme (some of them) may be tangent. A specific methodology must be developed to solve 
the ‘singular’ inverse dynamics problem. In this contribution, a theoretical background for 
the modeling of the partly specified/actuated motion is given. The initial governing equa-
tions, arising as index five differential-algebraic equations, are transformed to a more trac-
table index three form by projecting the dynamic equations into the orthogonal and tangent 
subspaces with respect to the servo-constraint manifold in the crane velocity space. A sim-
ple numerical code for solving the resultant differential-algebraic equations, based on 
backward Euler method, is then proposed. The feedforward control law obtained this way is 
enhanced by a closed-loop control strategy with feedback of the actual errors in load posi-
tion to provide stable tracking of the required reference load trajectory in presence of per-
turbations. A rotary crane executing a load prescribed motion serves as an illustration. 
Some results of numerical experiments/simulations are reported. 

1 Introduction 

Cranes are widely used in transportation and construction. In the industrial prac-
tice they are predominantly operated manually, and automatic cranes are compara-
tively rare. In the crane’s conventional mode of operation, the operator actuates 
different joints, by joysticks and/or buttons, so that to move the load (or hook) 
from its initial position to its desired final destination in its working space along a 
trajectory, avoiding obstacles and sway. Even though almost the same paths are 
often repeated, which allows the operator to ‘learn’ the maneuver, the cycle time 
is usually relatively large since the operator has to perform the maneuvers slowly 
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in order to avoid inertia-induced excitations, and a considerable percentage of the 
time is spent on maneuvering the load close to the target point. The latter is usu-
ally a trial-and-error process, based on feedback provided by the operator’s own 
vision and assessment, and/or hand signals or radio communication from an assis-
tant at the work zone [1]. Automated cranes, after being ‘taught’ a safe and effi-
cient route between a fixed locations of the source and the target, have a potential 
to play back that route much faster and more accurately than repeated manual cy-
cles. The high potential of rationalization offered by automatic control systems 
stimulated an increasing interest and substantial progress in research on modeling 
and control of cranes [2].  

Cranes belong to a class of underactuated/underconstrained systems – the con-
trolled mechanical systems in which the number of control inputs/outputs is 
smaller than the number of degrees of freedom. Due to the rope flexibility, the un-
desirable load swing cannot be directly actuated, and advanced feedback control 
techniques are needed to suppress the swing; see e.g. [2 4]. On the other hand, the 
control problem of cranes can also be viewed from the perspective of the concept 
of flat systems [5]. The important property of a flat system is that all the state 
variables and the control inputs can be algebraically expressed in terms of the out-
puts and their time derivatives up to a certain order. This provides a feedforward 
control law for sufficiently smooth output functions, and gives guidelines for con-
structing feedback control schemes [6, 7]. Though such a solution to control prob-
lem is theoretically attainable if only the system is controllable, it may be difficult 
to achieve for more complicated underactuated/underconstrained systems. 

In this contribution the problem of dynamics and control of cranes executing 
prescribed motions of payloads is viewed from the perspective of constrained mo-
tion. The control outputs, expressed in terms of the system states, lead to servo-
constraints on the system [8, 9]. It is noticed however that servo-constraints differ 
from passive constraints in several aspects. Mainly, they are enforced by means of 
control forces, which may have any directions with respect to the manifold of 
servo-constraints, and in the extreme (some of them) may be tangent. Such a situa-
tion arises in the load trajectory tracking control of cranes, and a specific method-
ology must be developed to solve the ‘singular’ inverse dynamics problem. A 
theoretical background for the modeling of the partly specified/actuated motion is 
given. The initial governing equations, arising as index five differential-algebraic 
equations, are transformed to a more tractable index three form by projecting the 
dynamic equations into the orthogonal and tangent subspaces with respect to the 
servo-constraint manifold in the crane velocity space. A simple numerical code for 
solving the resultant differential-algebraic equations, based on backward Euler 
method, is proposed. The feedforward control law obtained this way is then en-
hanced by a closed-loop control strategy with feedback of the actual errors in load 
position to provide stable tracking of the required reference load trajectory in 
presence of perturbations. A rotary crane executing a load prescribed motion 
serves as an illustration. Some results of numerical simulations are reported. 
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2 Crane Dynamics and Servo-Constraints 

Lumped-mass models of cranes are most often used. The hoisting line is treated as 
a massless cable, the payload is lumped with the hook and modeled as a point 
mass, and the cable-hook-payload assembly is modeled as a (spherical) pendulum 
which is suspended from a point on the support mechanism (trolley-girder, trolley-
jib, or a boom, respectively for gantry/overhead, rotary and boom cranes), see e.g. 
[2,10-14]. The support mechanism moves the suspension point of the line, while 
the hoisting mechanism changes its length (lifts and lowers the payload). The 
modeling result is then an n-degree-of-freedom crane model whose position is de-
scribed by generalized coordinates T

nqq ][ 1q , and which is enforced, in 
addition to the applied forces, by m actuator forces/moments T

muu ][ 1u ,
where nm  (the system is underactuated). The crane dynamic equations can be 
written in the following generic matrix form  

uBqqfqqdqqM T),(),()(  (1) 

where M is the nn  generalized mass matrix, d and f are n-vectors of generalized 
dynamic and applied forces, and TB  is the mn  matrix of influence of control 
inputs u on the generalized actuating force vector uBf T

u . For the 3D crane 
models considered in this paper, n and m values are respectively 5 and 3 (for 2D 
models n and m are 3 and 2). 

The desired performance goal of the considered crane model is a desired load 
trajectory, i.e. the 3m  control outputs are desired (specified in time) load coor-
dinates T

dddd tztytxt ])()()([)( , where x, y and z are the load coordinates in 
the inertial coordinate system XYZ (for 2D models T

ddd tytxt ])()([)(  and 
2m ) . The outputs, expressed in terms of coordinates q as

0qqc )()(),( tt d  (2) 

can be treated as m constraints on the system, called servo-constraints [9] (also 
called control constraints [8,15] or program constraints [16]) as distinct from pas-
sive (or contact) constraints in the classical sense. After twice differentiating the 
initial constraint equations with respect to time, the constraint conditions at the ac-
celeration level arise as 

0qq,qqCc ),()( t  (3) 

where qC  is the nm  matrix of servo-constraints, and qCd  is 
the m-vector of constraint induced accelerations. 

Equation (2) is mathematically equivalent to m time-dependent (rheonomic) 
holonomic constraints on the system, 0qc ),( t . The resemblance of the load tra-
jectory tracking control problem to the constrained motion case may however be 
misleading. Assumed Equation (2) represents passive constraints, the generalized 
actuating force uBf T

u  in the Equation (1) would be replaced by the general-
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ized constraint reaction force Cf T
c , where C is the constraint matrix defined 

in Equation (3). While the reactions of (ideal) passive constraints are by assump-
tion orthogonal to the instantaneous manifold of passive constraints 0qc ),( t
embedded in the n-space related to velocities q  [17], the actuating forces may 
have arbitrary directions with respect to the instantaneous servo-constraint mani-
fold 0qc ),( t , and in the extreme (some of them) may be tangent [8,16]; see 
Figure 1 for illustration. In the latter case, qualitatively, not all of the desired out-
puts can directly be actuated by the control inputs. A measure of the ‘control sin-
gularity’ is the deficiency in rank of the mm  matrix TBMCP 1  which repre-
sents the inner product of the constrained and controlled subspaces in the n-space 
of crane velocities, 

pT )(rank 1BMC  (4) 

For a more detailed discussion on the problem of realization of servo-constraints 
and the relevant geometrical interpretations the reader is referred to [8]. 

passive
constraint

fc

tangent

orthogonal

manifold
manifold
servo-constraint

f

tangent

orthogonalu

Fig. 1. The reaction of passive constraints and the actuation force with respect to  
the constraint manifold. 

In the case of considered crane models, both 3D and 2D ones, 1)(rank pP ,
and this means that only one task requirement can be directly (in the orthogonal 
way) actuated by the available control (the tension force in the rope influenced 
mainly by the winch torque changing the rope length). The realization of two other 
task requirements is indirect (tangent), achieved by moving the suspension point 
of the rope and, in this way, producing the appropriate changes in swing angles. In 
other words, the direct (orthogonal) control regulates the tension force value in the 
rope, and the indirect (tangent) control changes its space orientation, and in this 
(orthogonal-tangent) way the required reactions on the load in all three directions 
can be produced. The appropriate changes in rope swing angles, due to the tangent 
realization of servo-constraints, can be viewed as two additional restrictions on the 
crane configuration, and in this sense the five-degree-of-freedom system is ‘fully’ 
specified by three servo-constraints (2), and can explicitly be actuated by three 
control inputs u. The inference corresponds with the aforementioned concept of 
flat systems. Nevertheless, the methodology developed in the sequel for solving 
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the dynamics and control of cranes executing a load prescribed motion differs sub-
stantially from the formulations that use the flatness concept [5 7]. Prior to the 
presentation of the new methodology, let us first illustrate the hitherto formula-
tions with an example.  

3 Illustration – A Three-Dimensional Rotary Crane 

Let us consider the rotary crane model seen in Figure 2. This is a five-degree-of-
freedom system, 5n , whose position is described by Tls ][ 21q ,
where  is the angle of rotation of the girder bridge, s describes the trolley posi-
tion on the girder, l is the hoisting rope length, and 1  and 2  are the swing angles 
as defined in Figure 2. The control inputs are the torque bM  regulating the girder 
rotation angle , the force F actuating the trolley position s, and the winch torque 

wM  changing the rope length l, T
wb MFM ][u . In this meaning, , s and l

can be regarded as controlled coordinates, while 1  and 2  can be called uncon-
trolled coordinates. The number m of control inputs u is equal to the number of 
outputs T

dddd tztytxt ])()()([)( , 3m , and it is smaller than the number of 
degrees of freedom of the system, nm . We deal thus with an underactuated 
system in a partly specified motion [8, 16].  

1

wMbM

bJ
dx (t)

y (t)d

X

s

F

Z

X'

prescribed
trajectory

z (t)

m
2

l

d

mt

Y

Fig. 2. The rotary crane model. 

The derivation of equations of motion for the rotary crane is not a trivial task. 
An effective method for the derivation is the projection method described in [17]. 
The starting point are the dynamic equations in 8n  dependent coordinates 

T
ttt zyxzyx ][p , where , x, y and z are as defined above, tx , ty

and tz  are the trolley coordinates in XYZ frame, and  is the winch rotation an-
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gle. Treating initially the bridge, trolley, winch (only its rotation) and load uncon-
strained from each other, their dynamic equations are simply: 

bb MDJ  (5a) 

F
gm

sD
sD

z
y
x

m

t

s

s

t

t

t

t

0
sin
cos

sin
cos

(5b) 

ww MDJ (5c) 

gmz
y
x

m 0
0

(5d) 

where bJ  and wJ  are the moments of inertia of the bridge and winch relative their 
axes of rotation, tm  and m are the trolley and load masses, g is the gravitational 
acceleration, and D , D  and sD  are the viscous damping coefficients. The ini-
tial dynamic equations in p can be gathered in the following generic matrix form 

uBfpM T  (6) 

where M  is the (diagonal) 88  generalized mass matrix, f  is the 8-vector of 
generalized applied forces, both related to p, and TB  is the 58  control matrix 
( uBf T

c  is the 8-vector of generalized control forces related to p). The explicit 
forms of M , f  and TB  are easy to deduce from Equations (5). 

Three constraints are imposed on the separated subsystems due to the bridge-
trolley and winch-load connections. Starting from the above dynamic equations in 
the dependent coordinates p, the constraint equations given explicitly [17,18] are 
required for the derivation of the dynamic equations in independent coordinates q.
The explicit constraint equations are the relations between the 8n  dependent 
coordinates and the 5n  independent coordinates,  

)(qhp  (7) 

where the difference 358nn  stands for the number of constraints, more 
often given implicitly as 0p)(  (not required in the sequel), and 0qh )]([
(the implicit constraint equations are satisfied identically when expressed in q). 
The explicit constraint conditions at the velocity and acceleration levels are then: 

qqHp )(  (8) 

),()( qqqqHp  (9) 

where qhH  and qH . For the case at hand, the 8n  relations of 
Equation (7) and the nn  ( 58 ) matrix H defined in Equation (8) are:  
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sin
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s
s

w

H (11) 

where: cossincossin)sin( 12261 llsH ,
sinsincoscossin 12263H ,

sincoscos 1264 lH ,
sinsinsincoscos 12265 llH ,

sinsincoscos)sin( 12271 llsH ,
cossincossinsin 12273H ,

coscoscos 1274 lH ,
cossinsinsincos 12275 llH ,

1283 coscosH ,
1284 sincoslH ,
1285 cossinlH .

The expressions for the 8-vector qH  are rather complex, and will not be re-
ported here for shortness.  

Having the explicit constraint equations defined, the 5n  dynamic equations 
of the rotary crane in q can easily be formulated. Namely, the ingredients of Equa-
tion (1) are [17,18]: 

HMHM T ; MHd T ; fHf T ; BHB TT  (12) 

It is worth noting that only M , h  and TB  from the initial dynamic equations, 
and H and  from the explicit constraint equations are required to formulate the 
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crane dynamic equations in q as defined in Equation (1). In applications, M, d, f
and TB  need not to be obtained in analytical forms, or symbolic computer ma-
nipulations can be used for their derivation. Here, we will limit ourselves to the 
general matrix forms as in Equation (12), and demonstrate only the control distri-
bution matrix TB  which will be of some use in the sequel, 

000
000
/100
010
001

w
T rB (13) 

The servo-constraint equations and the constraint matrix C defined in Equa-
tions (2) and (3) are: 

0c
)(
)(
)(

coscos
cossincossin)sin(
sinsincoscos)sin(

12

122

122

tz
ty
tx

l
lls
lls

d

d

d

(14) 

858483

75747371

65646361

00
sin
cos

HHH
HHHH
HHHH

C (15) 

where 8561 ,, HH  are as defined in Equation (11). Again, the analytical expres-
sion for qCd  is rather complex and will not be reported here for shortness. 

Due to the problem complexity it is impossible to demonstrate plainly that 
1)(rank 1 pTBMC , which can eventually be proved computationally. The 

physical interpretation of the result, discussed already in Section 2, is the follow-
ing. The desired load position T

dddd tztytxt ])()()([)(  in all three directions 
is regulated by the tension force in the rope, whose value and space orientation 
must change appropriately. Only the force value can directly be actuated by the 
available control (mainly by the winch torque wM , and for 01  and 02
solely by wM ), which is mathematically expressed by the fact that the rank of the 

33  matrix TBMCP 1  is reduced to one. Due to the rope flexibility, the re-
quired space orientation of the tension force can not be directly actuated by the 
crane control inputs – it can be actuated only indirectly by adjusting the location 
of the rope suspension point with respect to the load location )(td . In the case of 
the rotary crane, the desired suspension point location is achieved by appropriate 
changes in  and s values, actuated then by bM  and F, respectively. Similar ob-
servations relate to the 3D overhead crane model developed in [12], characterized 
by 5n , 3m  and 1p , and its simplified 2D version studied in [8], which 
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can also be viewed as a rotary crane with  and 1  ‘frozen’, characterized by 
3n , 2m  and 1p .

4 Governing Equations and the Solution Code 

The initial governing equations of the crane motion in the prescribed motion are 
formed by n kinematic relations vq , n dynamic equations, rearranged with the 
use of the kinematic relation to uBvqfvqdvqM T),(),()( , and m servo-
constraint equations 0qc ),( t . All state together mn2  differential-algebraic 
equations (DAEs) in the same number of 2n state variables q and v (differential 
variables), and m control variables u (algebraic variables). The problem with the 
DAEs formulated this way is that their index is equal to five [19-23], which is a 
measure of singularity/complexity of a DAE system and determines difficulty in 
its numerical treatment. In the following a scheme for transforming the initial in-
dex-five DAEs to equivalent, numerically more tractable index-three DAEs, is 
thus developed. An assumption for the further developments is that 

kpmmn  (16) 

which can easily be verified for the rotary crane model described in Section 3 
( 2k ), the 3D overhead crane model reported in [12] ( 2k ), and the plane 
crane model studied in [8] ( 1k ).

Following the projection method [17], the crane dynamic equations can be pro-
jected into two complementary subspaces in the crane velocity space, the con-
strained (specified) and unconstrained (unspecified) ones, defined respectively by 
the nm  constraint matrix C introduced in Equation (3) and its orthogonal com-
plement, an kn  matrix D such that  

0CD0DC TT  (17) 

For a given nm  ( nm ) matrix C, its orthogonal complement, an kn
( mnk ) matrix D satisfying Equation (17) can sometimes be guessed (usually 
for simple cases only) or determined following a numerically oriented code like 
the scheme followed from the coordinate partitioning method [24]. Namely, as-
sumed C is of maximal row-rank, m)(rank C , it can always be factorized to 

][ WUC  so that U and W are the km  and mm  matrices, respectively, 
and 0)det(W . The orthogonal complement D to C can then be found as 

UW
I

D 1 (18) 

where I is the kk  identity matrix. 
The projection formula of the dynamic equations is [17] 
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0uBfdvM
MC
D

)(1
T

T

(19) 

The projection into the unconstrained subspace, uBDfDdDvMD TTTTT ,
represents k differential equations. The projection into the constrained subspace, 
after using the servo-constraint conditions at the acceleration level defined in 
Equation (3), leads to 0uBMCdfMC T11 )( , which represents m alge-
braic equations in the system states q and v, and m control inputs u. Since 

mpT )(rank 1BCM , these m algebraic equations impose only p independent 
conditions on u, however, and pmk  additional restrictions on the crane mo-
tion, supplementary to the m original requirements as in Equation (1). They corre-
spond to the discussed before conditions on the value of tension force in the rope 
and the location of the rope suspension point. In other words, due to the mixed or-
thogonal-tangent realization of the servo-constraints [8,16], the total number of the 
original and supplementary motion specifications is nkm , and thus, in this 
indirect way, the motion is fully specified. The situation corresponds to flatness 
[5-7] of the underactuated system in the partly specified motion – all the state 
variables and control inputs can be expressed in terms of the outputs )(td  and 
their time derivatives. Such an analytical solution, though theoretically attainable, 
is very difficult to obtain (if possible at all) for the case of a crane. 

Using the results of the projection, the governing equations for the crane exe-
cuting a load prescribed motion can be formed as the following mmkn  (for 
the 3D rotary crane: )133325  DAEs in mnn  (for the rotary crane: 

)13355  variables q, v and u:

d

T

TTTT

q0
uBMCdfMC0

uBDdfDvMD
vq

)(
)(

)(
11     

),(
),,,(
),,,()(

t
t
t

qc0
uqqb0
uqqhvqH

vq

(20) 

The index of the DAEs is equal to three, and their solution are variations in time 
of state variables of the crane executing the load prescribed motion, )(tdq  and 

)(tdv , and the control )(tdu  that ensures the realization of motion. The solution 
encompasses thus both the dynamic analysis and the synthesis of control of the 
crane executing a load prescribed motion.  

A range of DAE solvers has been described in the literature, see e.g. [19-23]. In 
this paper the simplest possible algorithm, using Euler backward differentiation 
approximation method, is proposed to solve DAEs (20), in which the derivatives 
q  and v  at time ttt nn 1  are approximated by their backward differences, 
respectively tnn /)( 1 qq  and tnn /)( 1 vv , where t  is the integration time 
step. Namely, given nq  and nv  at time nt  (note that nu  is not involved), the val-
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ues 1nq , 1nv  and 1nu  at time ttt nn 1  can be found as a solution to the 
following nonlinear algebraic equations:  

0qc
0uqvb

0uqvhvvqH

0vqq

),(
),,,(

),,,()(

11

1111

1111
1

1

1
1

nn

nnnn

nnnn
nn

n

n
nn

t
t

t
t

t

(21) 

and in this way the solution can be advanced from time nt  to ttt nn 1 .
It is worth noting that, due to the original servo-constraint equations 0qc ),( t

are involved in Equations (20), the solution obtained according to the scheme of 
Equation (21) is free from the constraint violation problem, and the truncation er-
rors do not accumulate in time. More strictly, as said before, m algebraic equations 

0uqvb ),,,( t  impose p independent conditions on u, and pmk  conditions 
on the system motion, and in particular on its position q. Therefore, the mm  al-
gebraic equations 0uqvb ),,,( t  and 0qc ),( t  represent nmk  explicit 
equations on the n coordinates q, and thus the solution )(tdq  is determined with a 
numerical accuracy of solving the algebraic equations. Then, only )(tdv  and 

)(tdu  are determined with an error followed from the rough backward difference 
method, which does not accumulate however as the approximation is based on the 
numerically exact solutions )(tdq . The proposed simple code leads thus to rea-
sonable and stable solutions.  

The inverse simulation control )(tdu  obtained as a solution to Equations (20) 
can be used as a feedforward control for the crane executing a load prescribed mo-
tion. It should then be enhanced by a feedback control in order to provide stable 
tracking of the load trajectory in presence of external perturbations and/or model-
ing inconsistencies. One possibility is to introduce, instead of 0c , a stabilized 
form of the servo-constraint conditions, 0cccc dt , where ,  and 
 are the gain values. Then, after replacing the requirement ),,,( tuvqb0  in 

Equations (20) by its stabilized form 

),,,()( 11 tdt stab
T uqvbcccuBMCdfMC0 (22) 

a hybrid control can be synthesized from such modified DAEs, using the same so-
lution code as in Equation (21). The idea for the crane control with the use of the 
scheme is shown in Figure 3. 
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Fig. 3. The idea of the hybrid control scheme. 

5 Load Trajectory Modeling 

During operation, a duty cycle of a crane consists of moving the load from its ini-
tial position to its desired final destination in its working space along a trajectory, 
avoiding obstacles and sway. This requires motion planning for the load. In the 
present formulation, the load coordinates in the fixed Cartesian frame XYZ need to 
be specified in time, T

dddd tztytxt ])()()([)( , with )(txd , )(tyd  and )(tzd
being appropriately smooth functions of time. A “rest-to-rest” maneuver is usually 
required [1,2], i.e. 0)()( 0 fdd tt  and 0)()( 0 fdd tt , where 0t  and ft
denote the initial and final times, respectively. One possibility is to synchronize 
the outputs using a reference function )(ts ,

)()()( 00 tst fd  (23) 

where fttt ,0 , and Tzyx ][ 0000  and T
ffff zyx ][  are respec-

tively the start and target load positions at time 0t  and ft . Having )(ts  and its 
time derivatives, the current values )(td  and )(td  used in the mathematical 
model can be found as )()()( 0 tst fd  and )()()( 0 tst fd . For 
longer traveling distances, the maneuver is often divided into the acceleration (I), 
steady velocity (II) and deceleration (III) phases. The durations of phases I and III 
are usually determined by some maximum acceleration/jerk limitations, while the 
duration of phase II may be consequent to a maximum load velocity limitation. A 
reasonable proposition for )(ts  can be found in [25]. Following the idea contained 
there, the function )(ts  used in this paper was proposed as  
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where 0tt f , and 0  is the acceleration/deceleration time. Given s 20  and 
s 50 , the reference function defined in Equation (24), and its first and second 

time derivatives are illustrated in Figure 4.  
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Fig. 4. The reference function and its time derivatives. 

The synchronized time functions defined in Equation (23) for the reference load 
coordinates result in a straight line trajectory from the start to target points. For a 
rotary crane, the trajectory line cannot cross or pass too close to the tower, how-
ever. Therefore, for the tasks in which the start and target load positions are at the 
opposite sides of the tower, the shape function )(ts  should rather specify the load 
cylindrical coordinates, i.e. )()()( 00 tst fd , )()()( 0 tst fd  and 

)()()( 0 tst fd , where Tzr ][ , and r and  are the polar coordi-
nates. The values )(td , )(td  and )(td  required in the model can then be de-
termined following )(cos)()( ttrtx ddd  and )(sin)()( ttrty ddd , and the time 
derivatives of these relations. The two trajectories, the straight line one resulting 
from Equation (23) and the curvilinear one after imposing )(ts  on the polar coor-
dinates, are illustrated in Figure 5. 
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6 Numerical Simulations 

The rotary crane model described in Section 3 served for the simulation purposes 
and numerical experiments for testing the robustness of developed control strate-
gies. The data used in computations were the following: kg 100m , kg 10tm ,

2mkg 1.0wJ , m 1.0wr , and 2mkg 480bJ , and the task requirement was to 
move the load from the start position m ]505[0

T  to the target position 
m ]222[ T

f , while s 20  and s 50 . The time integration step used 
in simulations was s 01.0t .

6.1 Inverse simulation study 

Two “rest-to-rest” maneuvers were considered: Maneuver 1 along a curvilinear 
trajectory followed from imposing the reference function from Equation (24) on 
cylindrical coordinates, and Maneuver 2 along a straight line according to Equa-
tion (23). The two reference load trajectories are seen in Figure 5.  

-2 0 2 4 6
0
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4

Start

x [m]

  y
[m]

Target

Maneuver 1

Maneuver 2

Fig. 5. The straight line and curvilinear trajectories. 

Selected results of numerical simulations are seen in Figure 6, obtained for no 
damping in the system ( 0DD , 0sD ). Note that only the variations of 

)(tl  and )(tM w  are almost the same for the two maneuvers. All the other motion 
and control characteristics are qualitatively and quantitatively different. The 
(nominal) control obtained from the inverse simulation was then used for the di-
rect simulation. The motion pattern of the crane and the load trajectory was re-
peated with a numerical accuracy. 
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Fig. 6. Crane motion and control of the crane executing Maneuvers 1 and 2. 

6.2 Robustness of the hybrid control in perturbed motion 

The robustness of the hybrid control proposed in this paper was first tested by ap-
plying the inconsistent starting position of the load at 0t , which was placed m 5.0
above its reference position. Moreover, in the mathematical model used for the di-
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rect dynamic simulation, the damping related to s and l motions were added, re-
spectively Ns/m 75sD  and Ns 15D , which were set to zero in the model 
used for the determination of control. The motion disturbed this way was then sta-
bilized along the reference motion by using the hybrid control. The gain values 
used assure the critical damping for a PID scheme, i.e. 82 , 32  [26], 
and a good choice for  with s 01.0t  was 10 .
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Fig. 7. Simulation of Maneuver 1 in motion perturbed by inconsistent initial  
load position and the modeling inconsistencies.  
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Selected results of simulation of Maneuver 1 in the perturbed motion are pre-
sented in Fig. 7. It can be seen that there is almost no difference in )(t , )(ts ,

)(1 t  and )(2 t  between the perturbed and reference motions, and the command 
)(tM b  is not changed either. The initial difference in the vertical load position is 

quickly damped to the reference values, and this is achieved by an appropriate 
abrupt change in wM  value at the beginning of simulation. Then, the modeling in-
consistency (additional damping in s and l motions) is compensated by appropriate 
differences in )(tF  and )(tM w  relative the reference control, and the differences 
vanish at the target point when 0s  and 0/ wrl  (the additional damping 
vanishes). 

As seen from Equation (22), the feedback control enhanced in the hybrid con-
trol is aimed at minimizing the violations of servo-constraints. The initial inconsis-
tency in the load vertical position is thus effectively damped to zero. By contrast, 
the compensation of the modeling inconsistencies requires some constraint viola-
tion to produce the additional control commands related to dtccc .
Both, the damping features and the range of constraint violations required to over-
come modeling inconsistencies are closely related to the values of gain coeffi-
cients. In the present experiments the same gain values for all three outputs were 
used, and as said 82  and 32 . In Figure 8 the effect of different gain 
values used is seen. The bigger the gain values, the realization of the perturbed 
motion is closer to the reference motion. On the other hand, too large gain values 
lead to instability in simulation, which is a well-known effect in the stabilization 
of passive constraints as well [26]. The gain values limits and/or their optimal val-
ues are dependent mainly on the integration time step t , and smaller integration 
time steps allow for bigger gain values. They are also closely related the system 
complexity/dimensionality and the type of motion/perturbations simulated. The 
choice of appropriate gain values is often a trial-and-error process, and disparate 
gain values for particular outputs are usually involved. 

The other numerical experiment relates to external perturbations caused by an 
additional force applied to the load in the negative sense of X direction, not con-
sidered in the model used for the determination of control. The force time-profile, 
which can be regarded as a rough model of a wind blow loads on the payload, is 
seen in Figure 9. The motion disturbed this way was stabilized along the reference 
motion of maneuver 2 by using the hybrid control. The gain values used were 

82 , 32 , and 30  was chosen. 
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Fig. 8. The differences in the load position in the perturbed motion  
for different gain values. 
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Fig. 9. The perturbation force profile. 

The simulation results seen in Figure 10 show that the ‘wind load’ resF  causes 
the rope bends accordingly, and the trolley position and bridge rotation angle dif-
fer slightly from the reference values so that to compensate the rope additional 
bend and to execute the load prescribed motion. The same happens at the target 
load position, the rope is out of plumb, and the final trolley position and bridge ro-
tation angle differ from their reference values. The ‘wind loads’ effects are com-
pensated by appropriate changes in the control commands, which cause that the 
servo-constraints are realized with a limited accuracy. More strictly, the constraint 
violations in Y and Z directions do not exceed m 0004.0  during the whole mo-
tion, while the violation in X direction, required to produce the required feedback 
control commands, is a up to cm 3.3 . This inaccuracy in the load position can be 
enlarged/diminished by applying smaller/bigger gain values, see Figure 11. 
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Fig. 10. Simulation of Maneuver 2 in motion perturbed by the “wind load”. 

7 Conclusions 

This work presents a mathematical model for the dynamic analysis and control 
synthesis of cranes executing prescribed motions of payloads. The developed 
DAE formulation holds good for a variety of cranes (overhead cranes, rotary 
cranes, boom cranes) in which the payload is modeled as a point mass suspended 
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by a massless and inextensible cable. The cranes belong to underactuated me-
chanical systems, in which the number of control inputs is smaller than the num-
ber of degrees of freedom.  
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Fig. 11. The difference in the load x-position in the wind-affected motion. 

The problem of realization of the load prescribed motion is viewed from the 
perspective of constrained motion. The m control outputs (specified in time load 
coordinates), expressed in terms of the n system coordinates, are treated as servo-
constraints on the system. Mixed orthogonal-tangent realization of the servo-
constraints by the available crane control is discovered, and the tangent realization 
leads to mn  additional conditions on the crane motion. In this sense, the motion 
of the cranes can be explicitly prescribed by the m outputs, and explicitly con-
trolled by the available m control inputs.  

The governing equations for the dynamics and control of the crane executing a 
load prescribed motion are formulated as index-three DAEs in the crane state vari-
ables and control variables. An simple, effective and stable method for solving the 
governing DAEs were proposed and tested through numerical experiments.  

The solution to the governing DAEs are motion characteristics of the crane 
executing the prescribed load trajectory and the control commands ensuring the 
motion realization. The obtained feedforward control law was then enhanced by a 
closed-loop control strategy with feedback of the actual errors in the load position. 
The hybrid control law is determined using the governing DAEs modified slightly 
to the stabilized form involving a PID scheme for the load position errors.  

The imposed load trajectory are specified in time load coordinates, modeled as 
a rest-to-rest maneuver with the use of time dependent reference function )(ts . A 
possible extension of the approach is to sketch the trajectory with a set of succes-
sive points in space and then to interpolate/approximate it by spline functions, us-
ing )(ts  as a specified time-function of the arc length parameter. 

The developed mathematical model was tested through numerical simulations. 
It was shown that the proposed codes enable one for effective inverse simulation 
studies related to a wide range of load trajectories. Robustness of the hybrid con-
trol law in the motion perturbed by an inconsistent initial load position, some 
modeling inconsistencies, and some external perturbations, was proved. 
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Abstract We propose a methodology for extending the applicability of multibody-based com-
prehensive analysis codes to the maneuvering regime, with specific application to the flight of
rotorcraft vehicles.

Maneuvers are here mathematically described in a concise yet completely general form
as optimal control problems, each maneuver being defined by a specific form of the cost func-
tion and by suitable constraints on the vehicle states and controls. In principle, by solving the
maneuver optimal control problem, one could determine the trajectory and the control time
histories that steer the vehicle model, while minimizing the cost and satisfying the constraints.
Unfortunately, optimal control problems are prohibitively expensive to solve for detailed com-
prehensive models of rotorcraft vehicles denoted by a large number of structural degrees of
freedom and possibly sophisticated aerodynamics.

In order to make the problem computationally tractable, our formulation makes use of
two models of the same vehicle. A coarse level flight mechanics model is used for solving
the trajectory optimal control problem. Being based on a reduced model of the vehicle with
only a few degrees of freedom, the resulting non-linear multi-point boundary value problem is
computationally feasible. Next, the fine scale comprehensive model is steered in closed loop,
tracking the trajectory computed at the flight mechanics level using a receding horizon model
predictive controller. This amounts to a standard time marching problem for the comprehen-
sive model, which is therefore also computationally feasible. The flight mechanics model is
iteratively updated for ensuring close matching of the trajectories flown by the two models, by
resorting to a neural adaptive element. This two-level procedure enables the simulation using
comprehensive models of arbitrary complexity of maneuvers of possibly long duration, with
general constraints on the vehicle inputs and outputs.

The new procedures are demonstrated with the help of numerical applications.

1 Background and Motivation

Modern comprehensive rotorcraft modeling tools are geared towards the evaluation
of performance, vibrations, loads, stability and response of rotorcraft systems. These
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solution procedures provide computer implementations of high fidelity aeroelastic
mathematical models of the vehicle, which are useful for solving simulation prob-
lems relevant to all phases of the design and testing processes [1, 17, 20, 25]. Great
progress has been made in recent years towards the comprehensive simulation of ro-
torcraft, mainly due to the continuous advancement in the structural dynamics and
aerodynamics computational kernels. State of the art procedures are now based on
non-linear dynamics formulations, such as multibody finite element based methods,
which provide the ability to model in detail the most complex part of the vehicle, the
rotor system. Furthermore, modern codes implement a variety of specific rotorcraft
aerodynamic models, including wake and stall models, unsteady aerodynamics and
multiple lifting surface interactions. Computational fluid dynamics (CFD) tools are
also attracting increasing interest.

These high fidelity aeroelastic mathematical models of rotorcraft systems are cur-
rently primarily focused on the analysis of the hover and forward flight regimes. For
example, detailed aeroelastic models can be used for evaluating the flutter boundaries
and the vibratory levels in steady trimmed flight. Specialized procedures are avail-
able to determine the constant-in-time control inputs that trim the aircraft model,
typically either in wind-tunnel or free-flight modes [13]. On the other hand, the
study and simulation of maneuvering flight is typically performed only with flight
mechanics models [10, 16]. These models have far fewer degrees of freedom than
the aeroelastic models. In fact, the vehicle is often modeled as a rigid body and the
rotor is typically described using blade element theory with wake corrections. The
aeroelastic and flight mechanics models are two mathematical idealizations of the
same physical system, that however differ on the scale resolution. While the high
fidelity aeroelastic models are able to render fine scale details of the solution, as
for example the time response of each single blade, the flight mechanics models are
blind to these small scales. However, they still capture the coarser scales of the phys-
ical processes involved in the gross motion of the vehicle, and in this sense are able
to synthesize its flight mechanics characteristics.

Helicopters and tilt-rotors perform complex, highly dynamic and often three-
dimensional maneuvers, both in normal operating conditions and during emergen-
cies. Maximum loads and other limiting factors ranging from vibrations to noise are
often encountered when operating in the unsteady regime or near the boundaries of
the flight envelope, as shown for example in [14] with respect to the noise emission
characteristics. More often than not, the critical quantities of interest in maneuvering
flight are captured only on fine scale (aeroelastic) models, rather than coarse (flight
mechanics) ones. However, current comprehensive codes have very limited capabil-
ities in their ability to fly specific maneuvers. Therefore, there is a need to extend the
applicability of comprehensive codes to the unsteady flight regime.

Two main areas need to be substantially improved for enabling accurate simula-
tion of maneuvering rotorcraft:
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1. Comprehensive codes need to be coupled with time-accurate airload models that
can capture, among other effects, the distortion of the wake geometry caused
by the maneuver, the interaction of the shed vortex filaments with the fuselage
and the tail rotor, dynamic stall effects on the retreating blade, etc. The recent
work of Ribera and Celi [24] goes exactly in this direction, proposing the cou-
pling of the time-accurate free-wake model of Bhagwat and Leishman [5] with
a flexible blade comprehensive code [26]. A free-wake model applicable to ma-
neuvering flight is also described in [27], and has been included in CHARM [17].
First principle CFD approaches would also be appropriate for capturing the rel-
evant aerodynamic effects during maneuvers, although the computing cost of
fully resolved time-accurate simulations for the hundreds or thousands of rotor
revolutions that take place during a typical maneuver are still prohibitive and
unrealistically large to be profitably used in the design process.

2. Comprehensive multibody-based codes need to be augmented with procedures
for computing the controls that pilot the virtual model along a given maneuver
(Maneuvering Multibody Dynamics, MMBD [9]). In fact, presently these codes
are primarily intended for the sole computation of the system response result-
ing from known time histories of the control inputs. For example, time march-
ing simulations of an arrested descent and of a roll reversal were described in
[24], in both cases using prescribed values of the stick inputs. Similarly, Brent-
ner et al. [14] simulated a pull-up using CAMRAD [20], again with given con-
trol inputs. Simulations based on pre-assigned inputs can produce invaluable
information on the transient behavior of the vehicle, and perfectly answered the
specific goals of the cited references, but it is clear that this approach is some-
what limited to fairly simple maneuvers. In fact, time dependent control inputs
that fly high fidelity virtual models of rotorcraft along complex, aggressive and
three-dimensional maneuvers are, in general, very difficult if not impossible to
determine based on simple, trial and error procedures. The use of known, exper-
imentally measured controls might alleviate but will not solve this problem. In
fact, due to inevitable inaccuracies present in even the most sophisticated simu-
lations, the rotorcraft model will not be capable of following the trajectory flown
by the actual rotorcraft during the flight test. This fact is by now well known
for the case of steady forward flight: when comparing predictions with experi-
mental data, better correlation is obtained when the model is trimmed, i.e. when
the model produces the same forces and moments as the actual rotor, than when
identical control inputs are used.

Since comprehensive codes are primarily design and testing tools, the lack of spe-
cific maneuver modeling capabilities represents a significant limitation of the current
state of the art of rotorcraft computer assisted simulation. In the present work, we try
to address this problem, exclusively with respect to the latter of the two central is-
sues mentioned above, by proposing a general procedure for the determination of the
time dependent control inputs that will fly an aeroelastic rotorcraft model along a
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maneuver. The proposed methodology is general and is applicable to any aeroelastic
rotorcraft simulation tool, although it will be here demonstrated for the multibody
finite element approach of Bauchau et al. [1]. Furthermore, the same framework can
be applied to maneuvering multibody dynamics problems involving vehicles other
than rotorcraft, such as for example fixed wing aircrafts, automobiles, motorcycles
or sailboats.

2 Solution Procedures for Maneuvering Flight

In order to design computational procedures for the problem of maneuvering flight, it
is first necessary to provide a way of mathematically defining maneuvers. To address
this problem, we define here a maneuver as a time history of control inputs and the
resulting associated time history of vehicle states that take the vehicle model from
an initial state to a final one, the latter possibly known only in part, according to
some criterion and while satisfying the equations of dynamic equilibrium and all the
necessary input and output constraints (limits on actuator authority, flight envelope
boundaries, etc.).

The controls that will fly a maneuver are a-priori unknown and need to be de-
termined. A constructive way of accomplishing this goal is through the solution of
an optimal control problem [15]. The optimal control problem is defined in terms
of a cost function, which is typically a vehicle performance index, that specifies the
criterion used for flying the maneuver (minimum power, minimum time, etc.). The
equations of motion of the vehicle are regarded as constraints of the problem, which
is in general also subjected to various additional input and output constraints that
complete the definition of the maneuver, and, for example, translate the flight enve-
lope limitations of the aircraft and all the necessary safety and operational require-
ments. The solution of this optimal control problem yields the control time histories
that fly the vehicle according to the prescribed criteria, together with the complete
flight path. A possible example would be the determination of a 30 degree turn in
minimum time (which represents the cost function, in this case), without exceeding
the operational limits of the aircraft and without exceeding a given loss of altitude
(which, together with the equations of motion of the vehicle, represent the problem
constraints). Another cost function that is often used in flight mechanics for the pur-
pose of defining maneuvers is some norm of the control deflections from a trim state;
this situation would correspond to a maneuver with minimum “control effort”.

This approach provides a general procedure for defining arbitrary maneuvers and,
at the same time, computing time histories of vehicle states which are compatible
with the associated control time histories. The solution of optimal control problems is
however potentially expensive, especially if detailed models of high dimensionality
are used. Therefore this approach, although perfectly suited for studying maneuvers
in a purely flight mechanics setting as done, for example, in [16, 10], is not directly
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applicable per se to high fidelity aeroelastic models of rotorcraft systems. Further-
more, controllability issues might lead to ill-posed problems, for example when the
system is elastic.

To address these issues, we propose here the Multi-Model Steering Algorithm
(MMSA). This approach blends the technology of comprehensive multibody-based
codes with flight mechanics models. In fact, two models of the same vehicle are used:
the coarse scales are represented by a “reduced” flight mechanics model, while the
fine scales are captured by an aeroelastic comprehensive model of the same aircraft.
The maneuver optimal control problem is solved at the coarse flight mechanics level,
and it is therefore inexpensive. Since steering in open-loop is prone to instabilities,
we use a receding horizon formulation of MMSA, that can be interpreted as an ap-
plication of model-based predictive control [18]. The idea is to track the trajectory
generated at the flight mechanics level with the aeroelastic model. To this effect, an
open-loop optimal control problem is solved over a finite horizon using the coarse
model. The resulting control policy is implemented in the aeroelastic model for a
short period of time, until a new optimization problem is solved again on a time-
shifted horizon. The repeated application of open-loop optimal control brings feed-
back into the system, allowing the aeroelastic model to track the computed trajectory.
Since at the fine level the control time histories are known from the solution of the
coarse problem over the prediction window, the fine level solution becomes a classi-
cal forward dynamics integration, and it is therefore also of acceptable computational
cost. The coarse reduced model is progressively adapted in order to guarantee small
tracking errors. Adaption is based on the on-line training of a neural element that is
used to augment the reduced model.

In the receding horizon formulation of MMSA, the reduced flight mechanics
model plays a double role: it is used at the motion planning level for producing the
reference trajectory, and it is also used at the trajectory tracking level for implement-
ing the model predictive controller. Notice that arbitrary input and output constraints
can be handled in a straightforward manner at both of these stages of the solution.
This decomposition of the problem in two layers, path planning and path tracking,
mimics the architecture of modern control systems [19], and enables the simulation
of complex maneuvers of long duration in the proximity of the flight envelope.

This work is organized as follows. At first we describe the vehicle models in
Section 3; the reduced flight mechanics model is presented in Section 3.1, the fine
scale aeroelastic model in Section 3.2, and the relationship between the two in Sec-
tion 3.3. Next, Section 4 discusses the solution of maneuver optimal control prob-
lems using flight mechanics models by means of a direct transcription approach.
Section 5 presents the MMSA, while in Section 6 we discuss the on-line adaption
of the reduced model of Section 3.1 to improve its predictive capabilities. Finally, a
numerical example in Section 7 and conclusions and outlook in Section 8 complete
the paper.
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3 Maneuvering Rotorcraft Models

3.1 Flight mechanics models of rotorcraft vehicles

In this work we consider the two-dimensional longitudinal flight mechanics model
described in detail in [11]. The model is valid for both helicopters and tilt-rotors and,
being purely longitudinal, it is clearly limited to null or low turn rates. The dynamic
equilibrium conditions expressed in a fixed inertial system write

V̇X = 1

m
(NrFXMR + FXTR + FXA), (1a)

V̇Z = 1

m
(NrFZMR + FZTR + FZA + mg), (1b)

q̇ = 1

I
(NrMYMR + MYTR + MYA), (1c)

Ẋ = VX, (1d)

Ż = VZ, (1e)

�̇ = q, (1f)

where X, Z (positive downward) are the components of the position vector of the
vehicle center of gravity, VX and VZ their time rates, � (positive nose up) is the pitch
angle and q the pitch rate, while m and I are the aircraft mass and pitch moment of
inertia, respectively, and g is the acceleration of gravity. FXMR , FZMR , MYMR are the
components of the forces and moments generated by each of the Nr main rotors, i.e.
rotors that generate thrust in the longitudinal plane of the aircraft. Similarly, FXTR ,
FZTR , MYTR are the force and moment components of the tail rotor. For a helicopter
Nr = 1, while for a tilt-rotor Nr = 2 and FXTR = FZTR = MYTR = 0. Finally,
FXA , FZA and MYA are the forces and moment generated by all other aerodynamic
surfaces of the vehicle.

For helicopters it is necessary to include the effects of the tail rotor thrust to bal-
ance the main rotor torque, in order to accurately evaluate the total power required
for flight. To this end, the helicopter model is enriched by three (approximate) alge-
braic equations expressed in the body attached frame (x, y, z) that enforce roll, yaw
and lateral equilibrium of the vehicle:

FyMR + FyTR + mg sin � = 0, (2a)

MzMR + MzTR + MzV = 0, (2b)

MxMR + MxTR + MxV = 0, (2c)

where � is the aircraft bank angle.
The vehicle equations of equilibrium (1a–1f, 2a–2c) are augmented by a power

balance equation, that writes
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ω̇ = ηMR

Jp

(
1

Nr

P

ω
− QMR

ηMR

− rt
QTR

ηTR

)
, (3)

where ω is the main rotor angular velocity and Jp its polar moment of inertia, P(t) is
the power produced by the engine(s) at time t . QMR , QTR are the torques due to the
generic main and tail rotors, respectively, and ηMR, ηTR the mechanical efficiency
of their transmissions; finally, rt is the ratio between tail and main rotor rotational
speeds. Clearly, for a tilt-rotor, we set QTR = 0.

The rotor forces and torques are expressed in terms of the piloting controls using
classical blade element theory [21]. The detailed expressions of these quantities are
here omitted for brevity, but can be found in [11]. These aerodynamic constitutive
equations complement the equations of equilibrium and the power balance equations,
and allow one to write the reference model of the vehicle in compact form as

f ref(ẏ, y,u) = 0, (4)

where y ∈ R
ns,FM is the set of flight mechanics state variables, u ∈ R

nu,FM are
the flight mechanics controls, and f ref : R

ns,FM × R
ns,FM × R

nu,FM → R
ns,FM . The

vehicle state vector is defined as y = (X,Z,�,VX, VZ, q, ω), ns,FM = 7, while the
controls are represented for a helicopter by u = (θ0MR, θ0TR , A1, B1, P ), nu,FM = 5.
For a tilt-rotor we have the additional controls δH for the horizontal stabilizer and im
for the nacelle tilt, but no tail rotor collective θ0TR , so that nu,FM = 6 in this case.

The analytical model expressed by equation (4) is here termed a reference model,
in the sense that it can be used for computing a first approximation to the flight me-
chanics behavior of the fine scale aeroelastic model described in the next section. The
reference model will be later on augmented in Section 6 with an adaptive element,
with the goal of improving its prediction capabilities.

3.2 Multibody modeling of rotorcraft vehicles

In this work, the fine scale aeroelastic modeling of rotorcraft is based on the compre-
hensive multibody dynamics analysis code described in [1]. The formulation is cast
within the framework of non-linear finite element based multibody dynamics meth-
ods, and the element library includes rigid and deformable bodies, joint elements,
including unilateral contact conditions, active element models, including engine and
actuator models, and sensors and controls [2, 3, 7, 8].

The finite element formulation of flexible structural elements includes both non-
linear models and modal-based approaches. The formulations of beams and shells
are composite-ready, i.e. they support the modeling of complex cross sections made
of laminated composite materials, and are geometrically exact, i.e. they account for
arbitrarily large displacements and finite rotations, but are limited to small strains
[2]. Structural modes can be imported from external general finite element codes and
can be connected with the rest of the multibody model.
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The equations of equilibrium are written in a Cartesian inertial frame. Constraints
are modeled using the Lagrange multiplier technique, which leads to systems of
equations that are highly sparse, although not of minimal size. The crucial advantage
of this approach is that it can treat arbitrarily complex aircraft configurations. After
spatial discretization of the flexible components using the finite element method, the
equations of dynamic equilibrium can be written as

d(Mw)

dt
− f i − c,qλ − f e = 0, (5a)

Nq̇ − w = 0, (5b)

c = 0, (5c)

where q ∈ R
nq are the generalized coordinates, w ∈ R

nq the velocities, p =
M(q)w : R

nq ×R
nq → R

nq the system momenta, f i (q,w) : R
nq ×R

nq → R
nq the

discretized internal and inertial forces, f e(q,w,u, t) : R
nq ×R

nq ×R
nq ×R+ → R

nq

the external forces, that also include the effects of the system controls u ∈ R
nu ,

c(q, t) : R
nq × R+ → R

nc are the holonomic constraints that model the mechanical
joints of the system, and finally λ ∈ R

nc the associated Lagrange multipliers. The
generalized coordinates are composed of linear displacements d ∈ R

nl and rotation
parameters r ∈ R

nr , q = (dT , rT )T , nl + nr = nq . Similarly, the generalized ve-
locities are w = (vT ,ωT )T , where v ∈ R

nl are the linear velocities and ω ∈ R
nr the

angular velocities. Then matrix N is defined as

N =
[

I 0
0 S

]
, (6)

where S is a parameterization dependent matrix that for each node in the system
relates the time rates of the rotation parameters r to the angular velocities ω. The
case of non-holonomic constraints is not covered here for the sake of brevity, but can
be easily addressed.

The code includes several solution procedures, including static analyses under
steady external, aerodynamic and inertial loads, dynamic response from given initial
conditions and prescribed loads and control inputs u(t), stability and flutter, and trim
analyses. The numerical integration in time of the equations of motion (5a, 5c) is
based on an energy decaying scheme that ensures unconditional numerical stability
in the non-linear regime, a numerical property that gives superior robustness to the
procedures [8].

The software implements models for computing aerodynamic contributions to
f e, both through built-in features and through interfaces to external codes. Airloads
can be computed by simple lifting line models based on two-dimensional wing the-
ory and table-look-up procedures, and include classical corrections for sweep, un-
steady motion and stall. Wake effects are based on the dynamic inflow model of
Peters [22]. Prescribed airloads, as obtained from experimental measurements, can
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also be used. Furthermore, interfaces to external airloads computation modules are
provided.

The finite element based multibody dynamics formulation implemented in the
code provides a general and flexible paradigm for the modeling of maneuvering he-
licopters. In particular, the modular nature of the code allows for the development of
hierarchies of models providing increasing levels of detail, as required by the analy-
sis, and has the flexibility to describe novel configurations of arbitrary topology. This
formulation can accommodate variable rotor speeds, non-periodic responses and
large elastic motions. Furthermore, it allows for the modeling of fuselage/rotor/tail
rotor interactions in conventional rotorcraft configurations, and rotor/wing/fuselage
dynamics in tilt-rotor configurations, through the coupling of fully non-linear rotor
models with linearized, modal-based fuselage models.

3.3 Notation and relationships between the models

To ease the notation, it is convenient to rewrite the multibody equations (5a–5c) in a
more compact fashion as

d

dt
(Bx̃) − b(̃x,λ, ũ) = 0, (7a)

c(̃x) = 0, (7b)

where

B =
[

M 0
0 N

]
, b = ((f i + c,qλ + f e)

T ,wT )T . (8)

The multibody state vector is now defined as x̃ = (wT , qT )T ∈ R
ns,MB = R

2nq , and
the multibody controls are ũ ∈ R

nu,MB . Here and in the following we will use the
symbol (̃·) to distinguish quantities of the multibody model from quantities of the
flight mechanics model.

For future reference, it is important to note the following facts related to states
and controls of the two models.

First of all, it is clear that there are in general many more multibody than flight
mechanics states, i.e. R

ns,MB � R
ns,FM . From the multibody states x̃ it is always pos-

sible to compute some quantities (here termed multibody outputs) ỹ ∈ R
ns,FM , that

have the same physical meaning of the flight mechanics states y (recall, representing
the rigid body generalized positions, generalized velocities and the rotor angular ve-
locity). The actual form of this mapping from the multibody to the flight mechanics
models will depend on the specific details of the former, but here it will suffice to
formally indicate this operation as

ỹ = S(̃x). (9)

For example, if the fuselage is modeled as a rigid body in the multibody model, then
the operator S(·) will be a simple boolean identification of the fuselage rigid body

121



C.L. Bottasso et al.

degrees of freedom within the state vector x̃. On the other hand, if a more refined
flexible fuselage model is used, then the same operator will compute some form of
average position, orientation and velocity of the vehicle. Later on we will use the
outputs ỹ to verify whether or not the multibody and flight mechanics models fly the
same maneuver, i.e. to check whether ỹ ≈ y.

Regarding the controls, it should be noted that their number in the two models
will typically be the same, i.e. R

nu,MB = R
nu,FM . Nonetheless, the controls in the

two models might have a different physical meaning. For example, the main rotor
collective θ0MR that appears among the flight mechanics controls u might correspond
in the multibody control vector ũ to the linear translation of an actuator connected
to the swash-plate. Here again, it is not possible to specify this mapping further
without knowing the specific details of the models. It will suffice, however, to simply
formally write this mapping between the controls as

ũ = C(u). (10)

4 Computation of Rotorcraft Trajectories Using Flight
Mechanics Models

In this work, we base the definition of a rotorcraft maneuver on the formulation
of an optimal control problem, as discussed in the introduction. Numerical solution
procedures for computing rotorcraft trajectory optimization problems are described
in detail in [10], and are more concisely reviewed in the present section.

4.1 Formulation of the optimal control problem for rotorcraft trajectories

The flight mechanics equations of dynamic equilibrium and accompanying kinematic
equations for a rotorcraft can be written as

f (ẏ, y,u,p∗) = 0. (11)

Note that, compared to the equations of the reference flight mechanics model that we
gave in (4), we have added here the dependence of the equations on some parameters
p∗ ∈ R

np . These parameters are obtained by adaptation of the model, as discussed
later on in Section 6, in order to guarantee close matching between the trajectories
flown by the flight mechanics and aeroelastic models.

The rotorcraft maneuver is defined over the temporal domain � = (T0, T ) ⊂ R

with boundary � = {T0, T }, where the final time T is often unknown. The problem
of optimal control is to determine the controls u, the states y and possibly the final
time T that minimize a cost function

J = φ(y,u, t)
∣∣
T

+
∫ T

T0

L(y,u, t) dt, (12)
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subject to the state equations (11) and to various possible additional constraints, as re-
quired by the problem at hand. The exact nature of the constraint conditions depends
on the maneuver. For example, they might specify initial and/or final conditions, or
might provide operational and flight enveloped limits. Collectively, a specific form
of the cost function (12) and of the accompanying constraints effectively defines a
certain maneuver. In general, the constraints can be classified as boundary conditions

ψ(y(T0)) ∈ [ψ0min
,ψ0max

], (13a)

ψ(y(T )) ∈ [ψTmin
,ψTmax

], (13b)

constraints on states and controls

g(y,u, t) ∈ [gmin,gmax], (14)

integral conditions on states and controls∫
T

h(y,u, t) dt ∈ [hmin,hmax], (15)

and upper and lower bounds

y ∈ [ymin, ymax], (16a)

u ∈ [umin,umax]. (16b)

For generality, all these conditions are expressed as inequality constraints in the form
x ∈ [xmin, xmax], i.e. xmin ≤ x ≤ xmax. Equality constraints are enforced by simply
selecting xmin = xmax.

In certain cases, the total range � can be broken into p sequential phases (sub-
domains), T0 < T1 < . . . < Tp−1 < Tp ≡ T , p ≥ 1. The generic phase i is defined
on the interval �i = [Ti, Ti+1], i = 0, . . . , p − 1, while Tj , j = 1, . . . , p − 1, is the
generic internal event. In each phase, different system governing equations and/or
constraints might apply. Furthermore, the final time and the event locations might
be unknown. An example involving a multi-phase problem will be discussed in the
section on numerical applications. For clarity, we consider here a single phase prob-
lem, and drop the phase-dependent notation. However, all the following discussion
is easily extended to the more general multi-phase case.

4.2 Transformation of the optimal control problem into a parameter
optimization problem via the finite element method

The governing equations of optimal control could be obtained by first augmenting
the cost function J with the equations of motion (11) and the constraints (13a–
15) through the use of Lagrange multipliers, and then imposing the stationarity of
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the augmented cost [15]. The resulting two-point boundary value problem could be
solved with a suitable discretization method.

This is however nor necessary nor desirable. In fact, practical methods for opti-
mal control are currently based on a discretization process that renders the problem
finite-dimensional, followed by a parameter optimization problem. Therefore, in-
stead of deriving first the equations of optimal control and then discretizing them
with a suitable numerical method, the process is in effect reversed: first one dis-
cretizes the equations of equilibrium, the constraints and the cost function, so that
the problem from infinite dimensional becomes finite dimensional; next, one opti-
mizes the discrete problem. This approach, called the direct method, is simpler than
the one based on the derivation of the optimal control equations, since these never
need to be computed. Furthermore, this approach also presents a number of numeri-
cal advantages which generally make it more robust than other strategies [4].

The temporal discretization of the problem can be obtained with initial value
(shooting and multiple shooting) or boundary value techniques. In this work we use
the latter approach, since it can be used even if the system to be controlled is inher-
ently unstable. This is important in the present context, since rotorcraft vehicles are in
fact usually unstable. Using a boundary value approach, elements (time steps) are as-
sembled in order to cover the whole temporal domain. For this purpose, here we use
the Discontinuous Petrov–Galerkin (DPG) finite element method [12]. This formu-
lation enjoys desirable numerical properties, being of maximal order, algebraically
stable and symplectic for Hamiltonian problems [6]. The lowest order member of
this family of methods is the familiar second-order (implicit symmetric) mid-point
rule.

To define the discrete equations, we let Th be a grid of �, K denoting a generic
element. More precisely, we consider a partition T0 ≡ t0 < t1 < . . . < tn−1 <

tn ≡ T composed of n ≥ 1 intervals T i = [ti , ti+1] of size hi , i = 0, . . . , n − 1.
Since T itself can be unknown in general, it is convenient to introduce a mapping
of time onto a fixed domain parameter s, i.e. s : (T0, T ) �→ (0, 1); for example,
we can choose s = t/(T − T0), 0 ≤ s ≤ 1, so that the generic step length is now
hi = (T − T0)(si+1 − si ), i = 0, . . . , n − 1.

Using the finite element method, the infinite dimensional solution fields y(t)

and u(t) are approximated with functions yh and uh chosen within suitable finite
dimensional spaces. The same functions restricted to the generic element K are noted
yh|K and uh|K . The functions yh and uh can be expressed in terms of finite element
shape functions and of discrete (nodal) finite element degrees of freedoms yd and
ud . In the following, having chosen a member of the finite element family and hence
having chosen the shape functions, we will regard yh and uh as sole functions of the
nodal values, so that the functional dependencies yh = yh(yd), uh = uh(ud) are
understood.

By applying the DPG finite element method, the system governing equations (11)
are transformed into a set of residual equations over each grid element, i.e.
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ξh(yh|K,uh|K,p∗, T ) = 0, ∀K ∈ Th, (17)

equations that can be collectively written as

ξh(yh,uh,p
∗, T ) = 0 on Th. (18)

The functional dependence of these equations on T reflects the fact that the time step
size hK is unknown for an unknown final time problem, as previously recalled.

Through this process, the system dynamic equations (11) are transcribed into
constraints of the parameter optimization problem. All other problem constraints
and bounds, equations (13a–15), (16a, 16b), are expressed in terms of the same finite
dimensional functions yh and uh and are appended to equation (17) as additional
linear, non-linear or bound constraints, as appropriate. All these constraint conditions
can be collectively written as

ϕh(yh,uh,p
∗, T ) ∈ [ϕmin,ϕmax] on Th. (19)

Finally, the cost function J defined in (12) is expressed in terms of the discrete prob-
lem unknowns, yielding the discrete objective Jh = Jh(yh,uh, T ). This procedure
defines a finite-dimensional non-linear programming (NLP) problem:

min
yd ,ud ,T

Jh, Jh = φ(yh,uh, t)
∣∣
T

+
∫ T

T0

L(yh,uh, t) dt,

s.t.: ϕh(yh,uh,p
∗, T ) ∈ [ϕmin,ϕmax].

(20)

Using this approach, the optimality conditions of the discrete NLP problem con-
verge to the optimality conditions of the optimal control problem as the grid is re-
fined (h → 0) and the number of discrete optimization variables goes to infinity
(n → ∞) [4].

4.3 Additional implementation issues

A refinement procedure is used for “boot-strapping” the solution, alleviating the need
for accurate initial guesses. At first, a rough initial guess is associated to a crude
grid, and the corresponding NLP problem is solved. The computed solution is then
projected onto a finer grid, and used as initial guess for the subsequent NLP problem.
The procedure is continued until sufficient grid refinement has been achieved to yield
converged results. This procedure is used because on coarse grids fine scale details
of the solution are not captured; this will usually imply a faster convergence of the
NLP problem, especially if the initial guess is poor, i.e. the tentative solution is far
from the converged one. If a fine grid is used starting from a poor initial guess, the
fine details captured by the grid will tend to slow down or even prevent convergence.

An additional robustness issue is related to the scaling of unknowns in the numer-
ical optimization procedures. These are in fact notoriously sensitive to badly scaled
problems. To address this issue, we rewrite the governing equations (11) as

125



C.L. Bottasso et al.

f̄ (ȳ′, ȳ, ū,p∗) = 0, (21)

where (·)′ = d · /dt̄ indicates a derivative with respect to a non-dimensional time
t̄ = St t , while ȳ and ū are scaled states and controls, respectively, that are defined as

ȳ = Syy, (22a)

ū = Suu, (22b)

and where
f̄ (·, ·, ·, ·) = Sy−1

f (StSy−1 ·,Sy−1 ·,Su−1 ·, ·). (23)

In the previous relations, Sy = diag(S
y
i ), i = 1, . . . , ns,FM , is a (diagonal) ma-

trix of weights that scale the state variables with respect to one another. Similarly,
Su = diag(Su

i ), i = 1, . . . , nu,FM is the analogous scaling matrix for the controls.
The scaling coefficients are chosen so as to obtain states and controls that are all
approximatively of order O(1).

Without proper corrective actions, the control time histories computed through
the optimal control problem often tend to show a somewhat rough (e.g., bang-bang)
behavior, jumping from one saturation bound to the other. This implies infinite or
very high, and therefore unrealistic, actuation speed and actuation power. This is
due to the fact that the flight mechanics models are quasi-steady in the controls,
i.e. the controls u are purely algebraic variables that lack proper dynamics. This
lack of modeling detail is desirable in many flight mechanics applications, and is
justifiable on the grounds of a time scale separation argument. At the same time, the
procedures are now blind to the intrinsic limitations of real actuators, such as for
example limited control velocities, limited actuation power, etc. In order to ensure
smooth computed control time histories, techniques for incorporating approximate
knowledge on the actuator dynamics can be used, as proposed in [11]. The most
straightforward way of obtaining smooth controls is by using control velocities as
part of the optimization constraints and objective function. This derived field can be
obtained through a Galerkin projection [11].

5 The Multi-Model Steering Algorithm

The multibody and flight mechanics models of the vehicle described in the previous
section are now combined into a single algorithm, whose final goal is to compute the
controls that steer the multibody model according to a user-specified criterion.

At first, the discrete maneuver optimal control problem (20) is solved using the
flight mechanics model of the aircraft. The solution is not expensive to compute,
since a coarse model with relatively few degrees of freedom is used. This problem
yields a to-be-tracked time history of flight mechanics states y∗

h.
Next, this trajectory is tracked with the aeroelastic model. The tracking problem

is formally identical to the maneuver defining optimal control problem described in
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Figure 1. Receding horizon formulation of the multi-model steering algorithm.

the previous section, except for two facts: first, it is defined over a prediction window
rather than the full maneuver, and second the optimization cost is a function of the
tracking error, i.e. of the distance between to-be-tracked and predicted states. As the
simulation proceeds, the window shifts forward in time, as depicted in Figure 1. This
approach is known in the controls literature as model predictive or receding horizon
control [18]. As a matter of fact, we can interpret here the aeroelastic model as the
“real” system to be controlled (the plant), the reduced flight mechanics model as the
plant non-linear model, while the trajectory generated by solving the global optimal
control problem is the tracking output for the receding horizon controller.

The idea of using a receding horizon approach is particularly attractive here, since
it allows for the feed-back stabilization of the system without the need to develop ad-
ditional computational tools and without the need to derive linearized models of the
vehicle. In fact, the same code which solves the optimal control planning problem is
used for solving the optimal control tracking one. Furthermore, a model predictive
controller can handle in a straightforward manner actuator limitations and other in-
put and output constraints, which are of critical importance here and that would be
difficult to account for with other approaches.

As the aeroelastic model tracks the planned trajectory, its reduced model is
adapted on-line, as described below. Hence, as the predictions based on the reduced
model improve thanks to its on-line adaption, the tracking error of the aeroelastic
model decreases. Once the planned trajectory has been fully tracked by the aeroelas-
tic model, the global tracking error is evaluated:

ε =

∫ T

T0

‖ y∗
h − ỹh ‖ dt∫ T

T0

‖ y∗
h ‖ dt

, (24)
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Figure 2. Planning/tracking-steering/adaption iterations.

where ‖ · ‖ is some dimensionally consistent norm, or simply the 2-norm if one
uses the non-dimensionalization expressed by equation (21). If the error ε is greater
than a given tolerance, a new iteration of the MMSA is initiated. This time, using the
updated value of the parametric reduced model, the trajectory optimization problem
is now solved a second time and re-tracked. The whole procedure is continued until
convergence of the tracking error below a user-prescribed tolerance, as schematically
depicted in Figure 2.

6 Adaptive Reduced Model

In order to fly a rotorcraft virtual prototype with a predictive controller along a given
track, as previously discussed, one needs a reduced model that is capable of repre-
senting the system behavior as accurately as possible. Following [9] and [13], we
augment the reference flight mechanics model (4) with an adaptive neural element,
whose role is to model the error between reference model and plant.

Using this approach, the analytical reference model (4) is augmented as follows

f ref(ẏ, y,u) − d(y(n), . . . , y,u) = 0, (25)

where y(n) indicates the derivative of order n of the reduced model states with respect
to time (here limited to n = 1 at present). The unknown function d represents the
defect of the reference model when u = ũ and y = ỹ.
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Figure 3. Helicopter obstacle avoidance problem.

Function d belongs to an infinite-dimensional class of non-linear functions,
which is here approximated with a single-hidden-layer feedforward neural network:

d(ẏ, y,u) ≈ dp(ẏ, y,u,p) = WT σ (V T x + a) + b, (26)

where x = (ẏT , yT ,uT )T are the network inputs, σ a vector of sigmoid activation
functions, and the reduced model parameters are defined as the synaptic weights
and biases of the network, p = (. . . ,Wij , . . . , Vij , . . . , ai, . . . , bi, . . .)

T . Using (26)
and (25), the parametric reduced model (11) is found to be

f (ẏ, y,u,p) = f ref(ẏ, y,u) − dp(ẏ, y,u,p) = 0. (27)

The network is trained on-line using the local information provided at each steering
of the plant by the error between predicted and effectively realized values of the
outputs. An updated value of the parameters is obtained by using the steepest-descent
search direction.

7 Numerical Application to an Obstacle Avoidance Maneuver

We consider an All Engines Operative (AEO) maneuver for a helicopter flying in
proximity of the ground in a hostile environment. The vehicle is in straight level flight
at 30 m/s and must avoid an obstacle of 30 m of height, going back to its original
low altitude flight condition in minimum time, in order to minimize its exposure to,
for example, enemy fire. The overall maneuver is therefore composed of a violent
pull-up followed by a similarly violent pull-down, as shown in Figure 3.

The problem can be formulated as a multi-phase optimal control problem on the
domain � = (T0, T ), with unknown final time T . The unknown internal event T1,
T1 ∈ [T0, T ], corresponds to the instant where the vehicle passes over the obstacle.
The cost function for this problem can be written as

J = T + w
1

T − T0

∫ T

T0

(
Ḃ2

1 + θ̇2
0MR

)
dt . (28)

The first term enforces the minimum time condition, while the second term penalizes
high cyclic and collective rates. The weight w is the tunable factor, which for this
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problem is assumed to be w = 100. The cost function of the tracking problem was
defined as

J t =
∫ TW

TI

(
(X − X∗)2 + (Z − Z∗)2 + (� − �∗)2

)
dt

+
∫ TW

TI

(
(VX − V ∗

X)2 + (VZ − V ∗
Z)2 + (q − q∗)2

)
dt

+ wt

∫ TW

TI

(
Ḃ2

1 + θ̇2
0MR

)
dt, (29)

where the starred quantities denote the to-be-tracked states, while the last integral
term penalizes large control rates. Bounds on states, controls and control rates were
also enforced during the tracking problem, which is one of the key features of this
predictive control scheme.

The initial conditions at time T0 for the optimization problem are given by
the trim conditions at 30 m/s. Throughout the maneuver we impose bounds on
the angular velocity ω ∈ [207, 207] rpm, on the controls θ0MR ∈ [−5◦, 20◦],
θ0TR ∈ [−10◦, 30◦], A1 ∈ [−12◦, 12◦], B1 ∈ [−20◦, 20◦], and on the control rates
θ̇0MR , θ̇0TR , Ḃ1, Ȧ1 ∈ [−16◦ s−1, 16◦ s−1]. Furthermore, the maximum available
power is limited as Pmax = 2500 hp, and the power rate is limited according to
Ṗ (t) ≤ 500 hp s−1.

The solution to the planning problem was computed on a grid of 80 time el-
ements, generated by successive uniform refinement of an initial 20 element grid.
Tracking and steering windows were selected of length 2 and 0.2 s, respectively. The
activation frequency of the controller is small enough to capture the short period
mode of the vehicle, which is approximately equal to 1 s.

Figure 4 illustrates the effect of the local adaption on the final compatibility
between the planned trajectory and the effectively realized one. The procedure is
ended after 7 planning/tracking-steering/adaption iterations, since no further model
improvement is realized at this point. Figure 5 show the fuselage pitch vs. time before
and after the iterations. Lines marked with the � symbol correspond to the solution
of the planning problem, while the solid lines correspond to the one realized by the
multibody model.

Both figures clearly indicate the convergence of planned and tracked solutions.
Notice that the final solution is quite different, for example even in terms of duration,
from the first one, indicating that a substantial error in planning is possible with
the initial (reference) reduced model. Excellent tracking performance is obtained at
convergence, illustrating the success of the overall procedure.
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Figure 4. Helicopter obstacle avoidance maneuver. Trajectory flown by the reduced (� sym-
bols) and multibody (solid line) models, before (top), after (bottom) 7 planning/tracking-
steering/adaption iterations.

8 Conclusions

It is well known that steady flight analysis of rotorcraft requires good trim procedures
in order to produce accurate results. In this work, we have argued that similar time
dependent trim processes are required for maneuvering flight simulation. We have
here proposed a methodology that meets this need by blending aeroelasticity, flight
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Figure 5. Helicopter obstacle avoidance maneuver. Fuselage pitch for the reduced (� sym-
bol) and multibody (solid line) models, before (top), after (bottom) 7 planning/tracking-
steering/adaption iterations.

mechanics, trajectory optimization and optimal control, and that provides a general
and flexible paradigm. The algorithms described herein expand the applicability of
comprehensive aeroelastic codes towards the unsteady flight regimes, moving be-
yond the sole steady flight case. The ability to study maneuvering flight could be of
importance in certain applications, especially for high-performance aggressive vehi-
cles, since maximum loads, vibratory levels, noise and other critical design parame-
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ters are often encountered in this flight regime. The methodology was demonstrated
on specific flight mechanics and aeroelastic models, but it is general and could be
applied to models other than the ones here described.

The work conducted so far seems to be promising. The preliminary examples that
were presented indicate that the multi-model procedures are indeed capable of com-
puting control time histories that fly an aeroelastic model along unsteady maneuvers.
In particular, the use of a coarse flight mechanics model allows one to solve a trajec-
tory optimization problem without incurring in overwhelming computational costs.
Furthermore, the receding horizon formulation of the algorithm provides a relatively
straightforward way of tracking the planned path, while accounting for output and
input constraints.

Improvements to this methodology could and should be pursued in several areas.
From the modeling point of view, more sophisticated unsteady aerodynamic mod-
els should be used in maneuvering flight for accounting for the distortion processes
undergone by the wake. Here again a hierarchical approach of increasing modeling
complexity could be used, for example employing the reduced order models of dy-
namic wake distortion of Prasad et al. [23] at the flight mechanics level, while the
time-accurate free-wake models of Bhagwat and Leishman [5] could be used at the
aeroelastic level.
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Abstract. It is often perceived that one key issue in the development of modern, high-
performance numerical software is the need to find a good trade-off between modularity, ex-
tensibility and performance requirements. This paper discusses how the need to add real-time
simulation capabilities to an existing general-purpose multibody analysis software, and the
resulting need for performance improvements, pushed an overall performance improvement
and capability extension within an existing modular generic programming environment.

1 Introduction

This chapter discusses significant computational aspects of general-purpose
multibody simulation, in the light of modern programming techniques and of the
experience gained with the free multibody analysis software MBDyn [14]. General-
purpose multibody analysis software, as opposed to specialized software, means that
a single software tool is able to perform rather different types of analysis and to ad-
dress rather different problems. Examples are: real-time hardware-in-the-loop simu-
lation for robotics [2], large multidisciplinary interactional problems involving CFD
aerodynamics [20], trajectory optimization [3], and more.

As a consequence, it is worthless to address efficiency by specializing the soft-
ware only for a given application; on the contrary, given the importance of software
reuse and commonality of tools, efficiency must be pursued despite the inevitable
trade-offs dictated by flexibility of use.

As a matter of fact, it is often perceived that one key issue in the development
of modern, high-performance numerical software is the need to find a good trade-
off between modularity, extensibility and performance requirements. Fortran code is
believed to be very fast, possibly at the expense of extensibility. On the other side,
C++ and Object-Oriented (OO) codes can be designed to be easily extensible, but
this can impact performances. However, recent, and even not-so recent achievements
in compiler technology [8], together with a better understanding of the potentiality
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offered by some C++ programming paradigms, as the metatemplate programming
[25], have shown that flexible, high-performance numerical code can be developed
in C++. Some key point in OO programming are

• code reuse: the use of templates and/or inheritance allows to easily use the same
codebase for different tasks;

• template metaprogramming [26]: allows to overcome some of the limitations of
the OO languages, and to reduce the number of temporaries;

• expressiveness: it is possible to code complex tensorial or matrix formulæ
without the need to explicitly call Basic Linear Algebra Subroutines (BLAS)-
like functions, to allocate memory and/or to write explicit loops;

• classes, inheritance and virtual methods: a class allows to define an abstract
concept; this, together with virtual inheritance, eases the task of building lib-
raries of different objects, all derived from the same base class and offering a set
of standard, well-defined services; an example can be a base class that defines
the basic interface of a linear solver, and of many derived classes that wraps
existing solvers; if the interface is well-designed, the code can use any of the
available solvers, without the need to rebuild the application, to change the code,
and without any impact on run-time performance;

• exception handling: it is possible to deal with unusual conditions without clutter-
ing the code;

Successful examples of scientific, object-oriented codes are the Deal II finite element
library [4], the Overture code framework [10], and the pioneering Diffpack library [1,
6]. The multibody code MBDyn is another successful example of an object-oriented
scientific code.

Key aspects recently addressed in the enhancement of the MBDyn software are
described in this paper. Among these, the implementation of different

a. linear solution strategies
b. assembly strategies
c. nonlinear solution strategies
d. parallelization strategies

under a common object-oriented framework, allows to use the optimal combination
of the above based on the properties of the problem under analysis, resulting in very
efficient solution of highly demanding problems, like:

• real-time hardware-in-the-loop simulation, with scheduling and interprocess
communication delegated to the Real-Time Application Interface (RTAI,
http://www.rtai.org/) patch for the Linux OS; key issue is to minimize the
worst-case solution for the single time step;

• path-planning and optimization in general; key issue is to minimize the overall
solution time, and the need to interact with external modules for control (e.g.
Scicos, Simulink and so on);
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• “rapid prototyping”, i.e. the capability to quickly implement and efficiently
analyze incomplete problems, where configuration dependent forces are only
modeled as residuals, thus losing the second-order convergence properties of dir-
ect solvers; the presented success story shows the effectiveness of matrix-free
nonlinear solution algorithms when solving the tire-ground interaction problem
of a landing aircraft [9].

The discussed features have been implemented with minimal impact on the structure
of the code, resulting in outstanding solution efficiency improvements for all the
different target problems.

The problems of interest can be split in three categories: dense (1 to 50 equations;
typically best dealt with by dense matrices and solvers), very small (50 to 2000; fill-
in ≤ 10% ) and small (2000 to 20000; fill-in ≤ 5%). Much larger problems greatly
benefit from classical sparse problem handling, but are definitely out of the scope of
typical multibody analysis.

2 The General-Purpose Real-Time Challenge

Real-time simulation poses very stringent requirements on participating software.
As a consequence, it may not be trivial to provide real-time capabilities to existing
software.

A preliminary requirement is related to the capabilities of the operating system
(OS), which must be able to provide deterministically bounded worst case schedul-
ing latencies. This is not the case for many, if not all, general-purpose OSes, despite
occasional claims of somewhat limited real-time capabilities. One remarkable ex-
ample is the Linux OS, at least up to version 2.4 of the kernel; in any case, even later
versions do not provide very stringent scheduling latencies, of the order of a few
tens of microseconds, as required by very specialized applications, like high-speed
machinery control.

Simulation software may not have such stringent requirements, unless very spe-
cialized applications are addressed. However, hardware-in-the-loop simulation re-
quires the simulation software that emulates the experiment to match the same
scheduling requirements of the rest of the system (e.g. A/D, D/A adapters, control
systems and so).

Recently, the RTAI extension to the Linux OS, also developed at the “Diparti-
mento di Ingegneria Aerospaziale” of the University “Politecnico di Milano” and
distributed as free software under the GPL license, has gained sufficient maturity to
find a clear position in the implementation of industrial scale real-time control sys-
tems. It provides a framework consisting in native, as well as POSIX system calls
within a reliable worst-case latency well below a hundred microseconds (typically
20÷25).
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Fig. 1. Distributed real-time network layout.

Usually, the real-time simulation is addressed by means of dedicated software
because of its intrinsic needs of speed performances and constant worst-case time
step computational costs. This approach may suffer from lack of generality, because
dedicated formulations may not allow a wide variety of model libraries and require
specific implementation of features typically available in general purpose software.

In the present work the opposite approach is illustrated, consisting in real-
time enabling a general-purpose software [2, 19]. The multibody analysis software
MBDyn [14, 15], also developed at the “Dipartimento di Ingegneria Aerospaziale”
of the University “Politecnico di Milano”, has been used.

MBDyn is implemented in C++, and may link a considerable number of standard
mathematical libraries, especially linear solvers. Since RTAI delegates some kernel-
related operations to the Linux kernel upon request by the task under execution, to al-
low MBDyn to be run without incurring in non real-time scheduling all direct system
calls had to be disabled or, if essential, they had to be wrapped by the corresponding
RTAI interfaces.

In detail, the results writes on disk have been disabled, and memory allocation
has been anticipated so that it is completed and locked before entering the real-
time scheduling loop, or, whenever convenient, it has been moved to pre-allocated
memory pools.

Finally, essential I/O with other real-time tasks, usually dealt with by regular sys-
tem sockets in non real-time simulations, has been delegated to RTAI native mail-
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boxes. Despite the naming analogy with UNIX native mailbox infrastructure, the
RTAI mailboxes implicitly take care of remote process communication, much like
UNIX sockets do. As a consequence, an inter-process communication enabled task
can transparently interact with local as well as remote processes, and thus particip-
ate in distributed real-time simulations, as illustrated in Figure 1. Local scheduling
and communication is entirely handled by RTAI; remote real-time communication
occurs via ethernet (most 100Mbit interfaces suffice) and may require an additional
layer provided by RTNet (http://www.rts.uni-hannover.de/rtnet/).

The remaining changes related to real-time enabling consisted in adding few se-
lected calls to enter hard real-time mode and to synchronize with the rest of the tasks
participating in the simulation, either by direct kernel scheduling or by means of
semaphores triggered by other processes.

The challenge, to make the real-time solution useful with realistic models, con-
sists in obtaining as much performance as possible in the worst-case scenario,
without impacting the versatility of the general purpose software. A significant spin-
off is that performance improvements are appreciated also for non real-time runs;
this side-advantage is obtained if the performances improvements can be exploited
also by the batch runs. It is anticipated that most of the directions explored within
this work were beneficial, in terms of performances, for non real-time runs; only few
of them, however, gave appreciable advantages to real-time simulations.

3 Computational Issues and Selected Improvements

The software MBDyn has been designed from the beginning in a modular manner,
because one of its purposes is to allow independent researchers to investigate new
solution approaches by designing and interchanging software components: the prob-
lem, by designing new elements; linear and nonlinear solvers, integration schemes,
and more. The time integration of nonlinear problems is delegated to a sequence of
layers consisting in:

• a “nonlinear problem data manager” (DM); actually, this is split into a nonlinear
problem, i.e. an object that defines problems of the form

F (x) = 0,

and a data manager, i.e. the object that contains and handles the model, because
the latter has been specialized to different parallelization strategies described in
Section 3.4;

• a “nonlinear solver” (NLS), initially based on the Newton–Raphson iterative pro-
cedure, but later extended to include iterative, matrix-free solution approaches;

• a “step solver” (SS), which takes care of advancing the solution step by step, pre-
dicting the new guess and controlling the convergence of the nonlinear problem
solution;
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NLS::Solve() {
// Newton-Raphson
while (true) {

if (DM->Residual()->Test()) {
return;

}
if (this->NewJacobian()) {

DM->Jacobian();
}
LS->Solve();
DM->Update();

}
}

SS::Advance() {
SS->Predict();
NLS->Solve();

}

Fig. 2. Newton–Raphson nonlinear solver inner loop.

• a “linear solver” (LS), which takes care of the linear algebra involved in either
the iterative solution of the direct nonlinear solver, or in the preconditioning for
the iterative nonlinear solvers.

Figure 2 illustrates the main inner loop in pseudo-code when the Newton–Raphson
nonlinear solver is used. During its evolution, the need to improve the performances
in terms of problem size and complexity, and of solution time led to the development
of different components for each layer; the different step solvers are not addressed in
this work.

3.1 Linear solution strategies

An abstract layer for the solution of linear equations has been designed from the
beginning. The interface, specified by the LS abstract class illustrated in Figure 3,
only defines the methods that are required to access and, possibly, modify, the matrix
and the right hand side and solution vectors.

The reference problems required sparse linear solvers to efficiently handle the
very sparse problems from a few hundreds to a few thousands of equations that typ-
ically result from models of deformable mechanical and multidisciplinary systems
formulated with a Redundant Coordinate Set approach, leading to a differential al-
gebraic set of equations (DAE).

Eight different sparse solvers (ten considering the parallel version of two of them)
are currently supported, and the neutral, generic programming interface allows to
easily add new ones. Some have only historical value, and may only be useful as
guidelines for further software integration. The “workhorse” is Umfpack, from the
University of Florida [7], which is the standard sparse solver used by Matlab and
other numerical packages.
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class LS {
public:

// constructor
LS(void);
// destructor
virtual ~LS(void);
// reset the matrix
virtual void MatrReset(void) = 0;
// solve the linear system
virtual void Solve(void) = 0;
// access to the matrix handler
virtual MatrixHandler* pMatHdl(void) const = 0;
// access to the right hand side
virtual VectorHandler* pResHdl(void) const = 0;
// access to the solution (may return the pResHdl())
virtual VectorHandler* pSolHdl(void) const = 0;

};

Fig. 3. Linear solution manager basic interface.

Each specialized solver uses its dedicated MatrixHandler and VectorHandler
classes; for example, the Lapack solver uses the FullMatrixHandler, while most
of the sparse solvers may use any of the sparse matrix representations presented in
Section 3.2.

The need to address very specific problems, significantly very small ones
(100÷200 equations) within the very tight scheduling required by real-time simu-
lation forced into looking for as much efficiency as possible. For this purpose, sup-
port for the LAPACK dense LU solver has been added to the suite of linear solvers
supported by MBDyn. In most of the applications, this outperforms Umfpack when
addressing problems up to 100 equations with a fill-in of 25% and above.

Nonetheless, since the typical problem fill-in was limited enough to make sparse
matrix handling appealing, and the need to address slightly larger problems (up to
200 equations) with the same stringent requirements, suggested the possibility to
design a very specific solver, indicated as the “naïve” solver, which combines the
minimal access cost of dense matrices with the minimal computational cost of sparse
matrix factorization and substitution [17]. This specialized solver outperforms all the
linear solvers that were considered in most cases, based on the sparsity of the matrix
and on the sparsity pattern, up to 1500÷2000 equations, as illustrated in [17, 19] and
discussed later in the applications.

3.2 Assembly strategies

3.2.1 Sparse matrix handling

The use of sparse matrices may dramatically reduce the factorization and substitution
time when efficient linear solvers are used. However, they introduce a cost when
the coefficients of the matrix are accessed to add or modify a coefficient during the
problem assembly.
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typedef std::map<int, double> row_cont_type;
std::vector<row_cont_type> col_indices;

double& operator()(int i_row, int i_col)
{

row_cont_type::iterator i;
row_cont_type& row = col_indices[i_col];

i = row.find(i_row);
if (i == row.end()) {

return row[i_row] = 0.;
}
return i->second;

}

Fig. 4. Sparse map data structure for sparse matrices.

Sparse matrix handling in MBDyn, for use with Umfpack and other sparse solv-
ers, is based on C++ STL containers. The matrix, called “sparse map”, is designed
as a vector of associative containers (maps) that contain the real-typed value with
the related row index, as illustrated1 in Figure 4. The sparse map matrix provides a
method that packs the matrix in column-compressed form when it is passed to the
sparse linear solver. The packing must be repeated before each matrix factorization.

3.2.2 Column compressed (CC) storage

An interesting evolution is represented by the “column compressed” sparse matrix
handling. It consists in directly accessing the matrix in the column compressed form
obtained prior to factorization, under the assumption that the shape of the matrix non-
zeroes does not change between assemblies. The column-compressed form is made
of a vector of reals containing the non-zeroes, a vector of integers containing the
row indices of the non-zeroes, sorted throughout each column, and another vector
of integers pointing to the beginning of the columns. A generic non-zero can be
accessed by directly accessing a column with the column index, and performing a
binary search across it for the row index. If it is not present, the symbolic structure
of the sparse matrix changed; this is handled by throwing an exception that causes
the matrix to return into the sparse map form, and the assembly to restart.

In typical problems, the sparsity pattern of the matrix is usually preserved for
most of the iterations; as a consequence, the use of the column-compressed sparse
matrix allows to entirely save the packing phase, while the cost of the binary search
required to access the generic coefficient is comparable to that of accessing the sparse
map.

1 Note that the (pseudo-)code of Figure 4 actually fills the matrix of zeroes if, for example,
the matrix is accessed by means of the operator ( ) for read; a different operator must be
designed for read operations.
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std::vector<double>& values;
const std::vector<int>& row_indices;
const std::vector<int>& column_start;

double& operator()(int i_row, int i_col)
{

int row_begin = column_start[i_col - 1];
int row_end = column_start[i_col] - 1;
int idx;
int row;

if (OutOfRange(i_row)) {
// out of range: rebuild
throw ErrRebuildMatrix();

}

// binary search
while (row_end >= row_begin) {

idx = (row_begin + row_end)/2;
row = row_indices[idx];
if (i_row < row) {

row_end = idx - 1;
} else if (i_row > row) {

row_begin = idx + 1;
} else {

return values[idx];
}

}

// not found: rebuild
throw ErrRebuildMatrix();

}

Fig. 5. Compressed-column data structure for sparse matrices.

3.2.3 Specialized sparse + dense storage (“naïve”)

The specialized structure of the “naïve” solver [17] represents yet another radical
change in matrix structure. In this latter case, a dense matrix is used to store the val-
ues, while the row and column indices to non-zeroes are stacked in other two dense
matrices. This approach is quite memory intensive, and quickly loses efficiency when
the problem size grows not only because of physical memory constraints, but also,
and essentially, because large memory buffers quickly destroy CPU cache locality.

3.3 Nonlinear solution strategies

As for the linear solvers, different nonlinear solvers can be cast under a common
framework. Basically, a nonlinear solver must be able to solve a nonlinear problem,
provided in form of a pointer to a NonlinearProblem data type.

3.3.1 Direct methods: Newton–Raphson

The original solution method used by MBDyn is based on Newton–Raphson itera-
tions. This method requires the factorization of the Jacobian matrix and, for large
problems, it can be computationally intensive. In the current implementation, the
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modified Newton iteration reuses the same Jacobian matrix factorization for a fixed
number of iterations, and at least one new Jacobian matrix is computed for each time
step. This approach is recommended, for instance, when performing simulations in
real-time, because a fresh Jacobian matrix factorization is assumed to yield a faster
convergence, so the cost of each time step is almost constant without the dramatic
increase resulting when the worst case of a Jacobian matrix re-computation and re-
factorization occurs.

3.3.2 Indirect methods: Iterative methods

It is well known that the linear equation resulting from the Newton method can be
solved in an approximate manner. The resulting methods are usually called Inexact
Newton and see broad applications in computational mechanics and other fields [12].
Among them, iterative Newton methods represent a very interesting class, where
basically the linear equation is solved for each step using an approximate iterative
solution. Typically, the nonlinear iteration generates a sequence, called outer itera-
tion, and the linear iteration that generates the approximation for each step, called
inner iteration. Krylov methods are usually adopted as iterative inner solvers, like
the Generalized Minimum RESidual (GMRES) or the BiCGStab [24]. They basic-
ally require, during each inner iteration, a simple multiplication of the Jacobian tan-
gent matrix of the problem with a vector, plus the adoption of a preconditioner. The
product of the Jacobian matrix J times a generic vector w can be approximated by a
finite difference formula using the residual vector r as

J(x)w = ‖w‖
r

(
x + hw

‖x‖
‖w‖

)
− r(x)

h‖x‖ . (1)

In this expression h is the amplitude of the finite difference step, which must be al-
ways as small as possible, although compatible with the sensitivity of the problem
and the round-off errors. For this reason the selected step is usually scaled keeping
into account the differences between the scale of the solution vector x and the test
vector w. This attenuates the need to have a precise approximation of the Jacobian
matrix for the equations that are solved; it is only required to be able to assemble the
residual vector r for perturbations of the state x in different testing directions. The
resulting methods are denominated matrix free since no tangent matrix is required.
The preconditioner is used to accelerate the convergence of the inner iterative solu-
tion. Ideally, if the preconditioner is the exact approximation of the inverse of the
Jacobian matrix, convergence will be reached in just one step; so it is necessary to
build an approximation of this matrix, for example adopting the inverse of the matrix
assembled using the elements for which the tangent matrix can be easily derived.
To make the problem less computationally intensive, the preconditioner may be re-
tained, until the number of inner iteration to converge grows past a specific threshold.
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Finally, the inner iteration does not need to converge with high accuracy, so the solu-
tion can be approached in a faster manner by relaxing the convergence criteria. The
application of this method can be crucial for all those complex elements for which the
generation of the analytical tangent matrix is either extremely complex or impossible
(see for example [9]).

3.4 Parallelization strategies

3.4.1 Domain decomposition: Schur complement

A coarse-grained parallelization of the analysis can be obtained by partitioning the
problem into subdomains that are solved separately on different CPUs, while the in-
terface problem is solved at the end, based on the contributions from each subprob-
lem. It is apparent that a small interface is key to the effectiveness of this “divide
et impera” approach, because the size of the interface problem governs the amount
of data that needs be transmitted and, since it is performed after the solution of the
subproblems, it represents a bottleneck and inevitably reduces to a dense problem,
with cubic solution cost.

The computational domain � is first split into the s subdomains �i by means
of an element-based partition (Figure 6). This means that no element must be split
between two subdomains, i.e. all the information related to a given element is
mapped to the same processor. As a result, there is no need for information exchange
while the assembly phases are performed. Anyway, it is worth noting that while the
elements can belong to one subdomain only, nodes may belong to multiple subdo-
mains. By reordering the unknowns to label the interface nodes at the end, the linear
system associated with the problem assumes the structure:

Fig. 6. Element-based partition.
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where the Bi are the local subdomain matrices, C is the interface matrix and Ei ,
Fi are the coupling matrices. Each xi is a vector containing the internal unknowns
of the subdomain �i , and y is the vector of the interface unknowns; fi and g are the
corresponding right-hand terms. In a more compact form the system can be expressed
as (

B E
F C

)(
x
y

)
=
(

f
g

)
. (3)

Provided B is non-singular, the unknown x can be expressed as

x = B−1(f − Ey). (4)

By substituting Equation (4) into the second block-row of equation (3), the following
reduced system is obtained:

Sy = g − FB−1f. (5)

where the matrix S is called the Schur complement matrix, also known as substruc-
turing in structural analysis software; it assumes the form:

S = C − FB−1E. (6)

After assembling all the elements that belong to subdomain �i , a local sub-matrix
results with the structure: (

Bi Ei

Fi Ci

)
. (7)

By calling Ri the restriction operator to the local interface values, so that Riy = yi ,
the Schur matrix is obtained as

S =
s∑

i=1

[RiCiRT
i − RiFiB

−1
i EiRT

i ] =
s∑

i=1

RiSiRT
i . (8)

A solution method based on this approach involves five steps:

1. The local matrices Bi are factored, fully exploiting any natural sparsity.
2. The local parts of the right-hand side of the reduced system Equation (5) are as-

sembled and transmitted to a “master” processor that will deal with the interface
problem.

3. The local parts of the Schur complement matrix are assembled and transmitted
as well.

148



Computational and Design Aspects in Multibody Software Development

4. The reduced system is solved.
5. The other unknowns are computed by the back-substitution shown in Equa-

tion (4).

Only the 4th step cannot be performed concurrently in a parallel environment, so it
must be considered the bottleneck phase. Furthermore, when a modified Newton–
Raphson method is used, since the Jacobian matrix is not updated at each iteration,
steps (1) and (3) must be performed only at the beginning of the iterative solution, and
many of the operations required during the assembly phase (2) need to be performed
only once as well.

Usually, the direct substructuring method described here is not considered feas-
ible for large structural problems, because the size of the interface problem grows
rapidly; moreover, the Schur matrix presents a lower grade of sparsity than the ori-
ginal system, so an iterative inner solver should be considered, which does not re-
quire the explicit assembly of matrix S. On the contrary, this strategy can be very
effective when some special conditions are met. This is the case of complex systems
with a peculiar topology of the computational domain that allows the generation of a
partition with very small interfaces [5]. Many common mechanical problems show a
topology that meets this requirement; a clear example is represented by the rotorcraft
analysis models described later in the results section.

It is not easy to define an appropriate dimension for the computational domain
that is analyzed with a multibody multidisciplinary simulator. The multidisciplinarity
requirement obviously does not allow any structure in the domain, because structur-
able, i.e. physical space related, and non-structurable, i.e. abstract, unknowns coexist
in the solution space. Anyway a typical problem can be usually thought as quasi-
monodimensional, with some multiple paths or closed-circuits. This is basically true
because the underlying structure is usually made of rigid bodies connected by algeb-
raic constraints, which are the irreducible parts of the computational domain. As a
consequence, the computational grid can be subdivided into parts with an optimal ra-
tio between internal and interface nodes. Clearly, the search for a minimal-interface
partition is crucial, so this task cannot be performed manually; it is delegated to
standard partitioning tools (for example, METIS [11]).

3.4.2 Multithread assembly/factorization

Another parallelization approach has been explored in view of its application to
real-time simulation. In essence, the availability of sparse matrix storage schemes
that result in very compact mapping of the non-zeroes, like the previously discussed
column-compressed form, suggested to address the parallelization of the assembly
on SMP architectures by allowing multiple concurrent assembly threads to access the
elements in a competitive manner, without any prior model partitioning, by way of
a specifically designed concurrency-aware element iterator. Each thread assembles
its portion of problem on its local compressed buffer, accessing in read-only mode

149



P. Mantegazza et al.

for (int row = thr; row < N; row += Nthr) {
for (int t = 1; t < Nthr; t++ ) {

A[0][row] += A[t][row];
}

}

Fig. 7. Contribution of thread thr to parallel assembly of buffers, where thread #0 buffer is
used as the main storage.

the common structure of the indices as described in Figure 5. At the end, the threads
sum their buffers in a single storage. This operation can be performed concurrently
as well, because the buffers exactly map on the same coefficients, so, for instance,
each thread may safely add a specific portion of the coefficients of all buffers, as
illustrated in Figure 7.

This approach relies on the fact that assembly may account for up to 30% of
the execution time, especially when multiple connections exist between a relatively
limited set of nodes. This is the case, for instance, of aeroelastic problems, where
elastic, inertial and aerodynamic elements contribute to the same equations and some
of these elements may require intensive operations (e.g. table lookups for aerody-
namic forces). Unfortunately the parallel assembly did not bring all the expected
advantages, because the impact of assembly on the overall simulation cost reduced
dramatically when the column-compressed form, which is essential for the multith-
read assembly, was introduced. Only very limited additional speedups were obtained,
and the overhead related to task scheduling makes the parallel assembly ineffective
or even adverse for very small models, so it is not applicable to real-time simulation.

Among the directions for future development, there remain few combinations of
the above described improvements that are currently unsupported. Some of them may
be of interest; for instance, the possibility to exploit multithreaded parallelization of
assembly on SMP machines in conjunction with Schur parallelization on remote
machines in a cluster may allow to exploit both performance gains simultaneously
when addressing very large problems, in a staggered distributed solution layout.

4 Applications

4.1 Landing gear simulation

The problem addresses the simulation of the gear-walk phenomenon, as described in
[9]: an instability related to the interaction of the Automatic Braking System (ABS)
with the deformability of the landing gear.

The modeling of the forces that the tire exchanges with the ground represents a
crucial point in this type of problems. The tire and shock absorber models imple-
mented in MBDyn were inherited from an already validated software program, but
they did not provide any Jacobian matrix, and some of the empirical functions they
were based on could not be easily differentiated analytically. Furthermore, during
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Fig. 8. Tire normal force and iterations during landing and braking maneuver.

the landing phase, the wheel, the shock absorber and the gear deformable structure
are subjected to very high, impulsive loads, and the wheel and the shock absorber
showed a very high stiffness that increased with gear compression. As a result, the
default Newton–Raphson solver is not able to successfully integrate the equations
of motion, even with the smallest time step that would appear reasonable for the
problem at hand (1e−3 ÷ 1e−4 s).

The iterative matrix-free solver proved to be a valid alternative to the numerical
differentiation of that specific user-defined elements, and allowed to efficiently simu-
late the whole landing and braking phases with fairly reasonable time steps. Figure 8
shows the iterations count as opposed to the tire normal force during a landing impact
followed by braking in a manner that initiates the gear walk instability phenomenon.
Note that the number of iterations remains limited and fairly independent from the
changes in ground forces. The time step is 0.5e−3 s.
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4.2 Real-time simulation

The real-time simulation of robots and rotorcraft wind-tunnel models has been ad-
dressed by means of MBDyn [2, 13, 18, 19]. In all cases, the modeling needs could
not be satisfied by models with less than 120–150 equations; thus the performances
of the analysis were essentially dictated by the need to find an acceptable trade-off
between the highest possible sample rate, requested by accuracy needs (e.g. a min-
imal number of steps per rotor revolution) or by interaction requirements with other
tasks participating in the simulation (e.g. the controller process). Remember that, as
already mentioned, the needs of the real-time simulation were the actual drivers of
many of the performance-oriented speculations described in this paper.

Significant achievements, illustrated in [18], were:

a. rigid robots with up to 120 equations (6 DoF manipulator), with friction in the
joints, have been simulated in real-time at up to 2 kHz sampling rate;

b. rigid-blade wind tunnel rotorcraft models with up to 180 equations have been
simulated in real-time at realistic rotational speeds with a realistic, accuracy dic-
tated number of steps per revolution at up to 900 Hz; issues remain for small
scale (i.e. high rpm) models with a large number of blades;

c. rigid-blade, non-optimized helicopter models with up to 280 equations have been
simulated in real-time with a realistic, accuracy dictated number of steps per
revolution; in this case, the very same model used for fluid-structure interaction
investigations was run, which exemplifies the versatility of the software and the
potential for code and model reuse.

All the results illustrated above have been obtained with off-the-shelf, relatively
inexpensive hardware: the multibody software was running on an Athlon 64 3000+
(2 GHz) single CPU, 64 bit architecture, with a 512 kB L2 cache.

One of the main points of speculation was the capability to exploit Symmet-
ric Multi Processor (SMP) architectures to split the easily parallelizable portions of
the solution into multiple threads of execution. Unfortunately, no appreciable suc-
cess was obtained by spreading the Jacobian matrix and residual vector assembly,
or by parallelizing the factorization and the back substitution with the “naïve” solver
described in [17]. The most significant improvements, apart from an overall “squeez-
ing” of the code, came from the “naïve” solver in scalar form.

4.3 Rotorcraft simulation

The parallelization of Jacobian matrix and residual vector assembly partially gave
the expected improvements when addressing much larger models. For rotorcraft dy-
namics analysis, typical models [16, 22, 23] consisting in deformable rotor blades,
detailed rotor hub and control system kinematics and, for tiltrotors, deformable wing
dynamics, result in 600-2000 equations, with hundreds of beam, inertia and aerody-
namics elements, and dozens of joints. The problem is very sparse, so the solution
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Fig. 9. Deformable rotor model.

by means of efficient sparse solvers, ranging from Umfpack to the built-in “naïve”
solver, result in very fast analysis. Nonetheless, the factorization and back substitu-
tion, namely the linear solution, still accounts for a vast majority of the analysis time,
while assembly reduces to at most 30% of the overall solution time, despite the high
elements versus equations ratio.

The use of the column-compressed form of the sparse matrix storage showed
dramatic reductions in computational time; this indicates that the cost of creating the
sparse maps and then packing them into the form required by the solver accounts for
a significant amount of the simulation time.

The parallelization of the assembly phase, on dual Athlon CPU systems, showed
further reductions in the solution time of about 3÷4%, thus indicating that the actual
cost of the elements assembly lies between 6 and 10% of the overall computational
time; this is consistent with results from standard profiling software.

Tables 1–3 show some figures about computational time reductions for the tilt-
rotor model described in [22]. The model of the rotor is illustrated in Figure 9; in
the two cases, it consists in respectively about 900 and 1500 equations that describe
the dynamics of the deformable rotor of a tiltrotor aircraft, supported by a deform-
able wing. The integration occurs with a fixed time step of 2.5e−4 that is required to
capture the dynamics of the blades with the desired accuracy.

As a comparison, the performances related to two benchmarks, respectively made
of about 1450 and 2900 equations, representing a string of beams clamped at one
end and excited by an impulsive force at the other end, are illustrated in Tables 4 and
5. The assembly is required only every 5 residuals; as each step converges in 2–3
iterations, only one Jacobian matrix per time step is assembled. The figures above
change dramatically if the Jacobian matrix is re-factored during each iteration, as
shown in Table 6; note that in that case, the reference time is slightly more than 2.5
times that of Table 4. The advantages of the parallel assembly are essentially eaten up
by the time spent in factorization; on the contrary, the enormous savings in creating
and packing the sparse matrix are preserved almost untouched. The “naïve” solver
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Table 1. Rotorcraft dynamics analysis: 890 equations (coarse model, realistic).

Feature Time

Baseline 1.00
Column-compressed (CC) 0.81
Assembly parallelization + CC (2 CPU) 0.78
Naïve solver 0.71

Table 2. Rotorcraft dynamics analysis: 1455 equations (refined model, realistic).

Feature Time

Baseline 1.00
Column-compressed (CC) 0.83
Assembly parallelization + CC (2 CPU) 0.80
Naïve solver 0.78

Table 3. Rotorcraft dynamics analysis: 2415 equations (over-refined model, unrealistic).

Feature Time

Baseline 1.00
Column-compressed (CC) 0.83
Assembly parallelization + CC (2 CPU) 0.79
Naïve solver 0.75

magnifies its performances, thanks to its great factoring efficiency, while the Schur
solver does not improve as well, because the transmissions related to Jacobian matrix
assembly and partial factorization impact on the performance reductions.

This benchmark may not be considered representative of a realistic analysis for
many reasons. First of all, it appears that the “naïve” solver performs better than
Umfpack with an even larger problem; however, realistic applications show the op-
posite. Also, the Schur parallelization appears to behave quite well, since it gives a
quasi-linear scaling; this behavior is not confirmed by realistic applications, where
the interface is larger (it is exactly 1 node in the above example) and the partition-
ing is not exactly symmetric. The above results have been obtained using Umfpack
as local subproblem linear solver and LAPACK as interface linear solver. Better per-
formances are expected when using the “naïve” solver for the subproblems, although
some more refinement is needed. Unfortunately, no significant scalings appear for the
rotor essentially because no optimal partitioning on two CPUs can be determined.
However, earlier analysis on a 8 CPU SMP architecture showed interesting perform-
ances also on realistic cases, as discussed in [21]; note however that the optimistic
results obtained in that work were partially related to less than ideal scalar perform-
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Table 4. Structural dynamics of beam benchmark: 1452 equations; modified Newton.

Feature Time

Baseline 1.00
Column-compressed (CC) 0.80
Assembly parallelization + CC (2 CPU) 0.77
Naïve solver 0.66
Solution parallelization (Schur; 2 CPU) 0.58

Table 5. Structural dynamics of beam benchmark: 2892 equations; modified Newton.

Feature Time

Baseline 1.00
Column-compressed (CC) 0.82
Assembly parallelization + CC (2 CPU) 0.78
Naïve solver 0.69
Solution parallelization (Schur; 2 CPU) 0.61

Table 6. Structural dynamics of beam benchmark: 1452 equations; full Newton.

Feature Time

Baseline 1.00
Column-compressed (CC) 0.77
Assembly parallelization + CC (2 CPU) 0.77
Naïve solver 0.50
Solution parallelization (Schur; 2 CPU) 0.53

ances. However, the above figures should give an idea of the capabilities brought in
by all the approaches considered in order to speed-up the analysis of models that,
although “small” from the point of view of linear solution, can be considered “large”
from the point of view of multibody analysis.

5 Conclusions

The paper discussed some of the strategies recently applied to the multibody software
MBDyn to further reduce its execution time. Generally beneficial improvements have
been sought, although mainly focusing on the most promising for the types of prob-
lems commonly addressed by this software.
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Apart from the dramatic improvements obtained by designing a specialized linear
solver for small and very small sparse systems, described in a companion paper,
significant improvements have been obtained by addressing the assembly of sparse
matrices, which is now performed in parallel on SMP architectures, and reusing as
much as possible the sparsity patterns across different assembly iterations and time
steps.

The introduction of inexact, iterative matrix-free solvers allowed to efficiently
solve very stiff problems with incomplete Jacobian matrix.

A coarse-grained topological parallelization scheme for the solution of the non-
linear problem has been revitalized for the very specific class of almost tree-like
problems that are typical of rotorcraft dynamics simulation.

Only some of the developments investigated in this work were beneficial for
the purpose of improving the performances when running simulations in real-time.
Nevertheless, the versatility and the overall efficiency of the software as a whole was
improved, and very promising real-time simulation capabilities have been obtained,
along with better overall performances in batch simulations.

The enhancements discussed in this paper may serve as guidelines for the im-
provement and optimization of general-purpose software of the same class, and in
general for numerical software with similar requirements.
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Abstract. This chapter of the book is devoted to teaching the discipline of Multibody Dy-
namics. This discipline concerns young students (baccalaurean) as well as more senior stu-
dents (master’s degree, and even PhD degree). The first part of this chapter is strongly inspired
by various opinions, which are also those of the authors of this chapter. In particular, some
of the comments already expressed in [1] are rigorously reproduced in this part, as well as
various comments which have also already been published [2, 3]. The content of this first
part of the chapter also greatly benefits from the opinions expressed at the occasion of the
round-table during the session on “Education of multibody dynamics” of the International
ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics (Uni-
versidad Politecnica de Madrid, Spain, June 21–24, 2005). The continuation of the chapter
gives an example of the experiment lived at the Université Catholique de Louvain (Belgium)
[3, 4] with undergraduate students, experience which has also been successively reproduced
in Equator (University of Quito) [5] with graduate students.

1 Introduction

Even at the present time, Multibody Dynamics is often still considered as a research
topic rather than an established subject for mandatory university courses in the edu-
cation curriculum of mechanical engineers. The current situation is somewhat similar
to the pre-finite elements period. During the sixties, structural dynamics was mainly
a theoretical subject and students were trained to solve problems by means of analyt-
ical methods. But thanks to the evolution of computer facilities, today no university
offers a degree in mechanical or civil engineering without a mandatory course in
finite elements and various projects based on commercial finite elements computer
codes. This matter obviously responds to an industrial demand.

Similarly today, multibody dynamics simulation packages are more and more
used in industries. Most of these software are distributed by commercial companies
and issue from various research teams who previously published scientific papers

159

J.C. Garcı́a Orden et al. (eds), Multibody Dynamics. Computational Methods and
Applications, 159–178.
© 2007 Springer. Printed in the Netherlands.



P. Fisette and J.-C. Samin

describing the details of their methods. However, software implementation pack-
ages without a detailed theoretical manual are unfortunately not rare and the training
courses organized by these companies focus on the working features of their own
codes and not on the theoretical bases. As a consequence, there is a real danger of
practical engineers misusing a multibody code because they are not aware of the
underlying hypothesis and/or limitations included in the code. Facing this situation,
and since the number of engineers which are potential users of such software is grow-
ing, there is a real need for including the field of Multibody Dynamics (MBD) in a
standard engineering education curriculum.

As already said, teaching multibody dynamics to engineering students responds
to a specific industrial demand. But in addition to this, and thanks to the very large
class of practical applications covered by this field, MBD can also be very useful
in the global engineering education context. In particular, two basic domains are
immediately concerned: classical mechanics and mathematics.

At the undergraduate level, courses of “classical mechanics” generally treat the
kinematics of rigid bodies, Newton–Euler dynamical equations, etc. Unfortunately,
these mechanical concepts are generally illustrated by pure academic examples be-
cause of the relatively poor means at student’s disposal: paper and pencil. For the
same reason, student’s exercises are strictly limited: for instance a ball rolling on a
plane, a simple or double pendulum, this kind of application is obviously not very at-
tractive and students may naturally ask “equations of motion, what for in a practical
and realistic situation”?

Concerning various courses of mathematics (linear algebra, numerical analysis,
and computational methods), all teachers face the same problem, i.e. the difficulty
of finding attractive and realistic applications of their fields. As for the domain of
classical mechanics, the MBD domain offers a large class of potential illustrations.

2 General Considerations

2.1 Computer programming

MBD is based on different theoretical bases, like for instance: choice of gener-
alized coordinates (e.g. Euler angles, Cardan angles, Euler parameters, Denavit–
Hartenberg, dual numbers) and methodologies for the systematic description of kin-
ematic constraints (e.g. method of constraints, loop-closure equations) in mech-
anical systems. Moreover, equations of dynamics may be deduced from different
approaches (Newton–Euler, Lagrange, Gibbs–Appell, d’Alembert principle, Gauss,
graph theory). As a consequence, engineers who deal with MBD models must
build their skills on firm physical, mathematical and numerical foundations. For this
reason, lessons learned must be applied to realistic models to reach a deep under-
standing of these concepts.
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At this point, we think that it is necessary to distinguish between undergraduate
and graduate levels of engineering education.

2.1.1 Undergraduate level

The learning of MBD principles does not require any specific programming skill,
but the development of even simple MBD software implies non-trivial programming
knowledge, which may not be strictly related to the wider curriculum of mechanical
engineers. For educational purposes at the undergraduate level, it is thus unneces-
sary and unrealistic to expect students to write even elementary MBD software from
scratch. On the other hand, when inspecting the contents of equations of motion
(whatever the underlying formalism used to produce them), a major part (from 50%
for a few d.o.f. systems to more than 95% for large systems) is of a pure calculating
nature and thus represents more student perspiration than inspiration. Thus, confer-
ring this part (but only this part!) to an MBD generator allows students to concentrate
on far more relevant tasks (e.g., implementation of a specific wheel/ground model,
use of a kinematic Jacobian) and also to dealing with realistic applications.

Using “computer aided” MBD, even at the undergraduate level, raises several
questions. Indeed the interest in using a multibody program to model realistic ap-
plications (car, truck, motorbike, bicycle, walking robot, etc.) might be questionable
with respect to educational objectives. Let us think about programs for which user
intervention is restricted to “clicking and dragging the mouse” to selecting user-
friendly menus and entering data. Such “black-box” programs, while quite suitable
and powerful for research projects and industrial applications, may be inappropriate
or even “anti-pedagogical” for teaching fundamental mechanics to beginning stu-
dents. Thus even at this stage, students must have normal skills of computer pro-
gramming in some higher level language of their choice (MATLAB, C, etc.) and they
should be required to develop software for assembling different modules: data input
and output, automatic build up of equations and numerical solutions. Through the
computer assembling of a “methodology”, the students usually reach a deep under-
standing of the subject. For this reason computer programming is strongly recom-
mended in basic multibody dynamics classes, but pieces of code that students may
use during the development of their own software should be made available. This
will help students avoid getting lost in coding all the software, instead of concen-
trating on the overall structure of the program. Students should also be encouraged,
as in other fundamental courses, to use professionally tailored linear algebra and nu-
merical integration subroutines available in packages such as MATLAB, MAPLE, and
MATHEMATICA, etc.

Depending on the strategy adopted by the teacher, different levels of MBD basic
tools can be put at the student’s disposal. The “lowest level” consists in a library of
elementary functions allowing them to construct the elementary kinematic proper-
ties of the system and in defining, in great detail, all the forces and moments acting
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on the system. This approach was for instance adopted early on by Kane with his
AUTOLEV software [6, 7] and by Nikravesh in his book [8] and its companion library
of sub-routines. Both were based on the assembly of elementary FORTRAN modules
dealing with vector manipulations, elementary kinematics, transformation matrices,
etc. Presently this approach is still adopted by some educators, but using progresses
in computer languages. A good example is provided by the EASYDYN software
[9] developed at FPMs (Faculté Polytechnique de Mons, Belgium): it is a symbolic
software for which students only define on their own the relative positions and ori-
entations of the bodies constituting the system in terms of independent (relative) gen-
eralized coordinates. If they are, for instance, facing a closed-loop mechanism, they
also have to give the explicit equations relating the dependent coordinates in term of
the independent ones. Students must then describe all interacting forces and torques,
without forgetting fundamental principles like Newton’s third principle of action and
reaction. Then, by symbolic manipulations, EASYDYN automatically produces all
the requested expressions for the linear and angular velocities and accelerations, thus
saving all student perspiration over tedious computations. The software is based on
the d’Alembert variation principle and thus also automatically produces the dynam-
ical residual equations needed by the implicit Newmark integration scheme which,
in turn, is also provided in the code as a sub-routine.

Without any doubt, this type of “low level” MBD approach presents several ad-
vantages for undergraduate students: in particular, it is obvious that to use this com-
puter tool students must first dominate the fundamentals of classical mechanics be-
fore being able to tackle practical and realistic problems. One disadvantage comes
from the fact that the simulation code generated by students cannot be computation-
ally optimized, but everybody should accept that this is not an important educational
matter at the undergraduate level: the unique practical consequence is a limit to the
size and complexity of the mechanical systems which can be simulated within a
reasonable computer time.

Also using the symbolic computation capabilities of recent computer languages
like (C and C++), ROBOTRAN [10–12], which will be illustrated in Sections 4 and 5
is to be considered as a “medium level” MBD software from the educational point of
view. Based on the same philosophy as EASYDYN [9], the main difference lies in the
fact that it also offers a suitable tool for training graduate students in more sophist-
icated problems in terms of numbers of bodies, loop non-linearities, etc., as well as
complicated geometry (for instance, the wheel-rail contact in railway dynamics, the
contact patch in cam-follower systems).

2.1.2 Graduate level

In multibody dynamics there is a wide variety of theoretical approaches. Which kin-
ematic formulation and dynamical principle is the most effective for teaching at the
graduate level? Although this is a key question, a definite answer cannot be given
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and the final choice depends on the instructor’s personal judgment and preferences.
However, teaching the dynamical formulations adopted in commercial software is
recommended in at least a few introductory lectures. The student will thus have a
better understanding of the theoretical bases, performances and possible limitations
of these software.

Students may also gain more confidence in any MBD program if they first use
it on academic examples for which they have previously written the equations “by
hand”. They then accept using a “toolbox” MBD optimized program for more soph-
isticated systems, whose equations’ complexity only comes from a large amount of
“trivial” computation.

2.2 Learning physical “modeling” and “analysis”

To learn how to effectively model a mechanical system, and then to correctly analyze
the results constitutes an objective impossible to reach by means of classical lectures.
In particular, choosing reasonable hypotheses (not too restrictive but still retaining
enough detail as to be able to tackle the physical phenomena one is interested in) is
really difficult. Nevertheless, it is the teacher’s duty to transmit his own experience to
young students intent on becoming engineers as best he can. In the academic world,
it is unanimously recognized that this transmission can be made only by the channel
of projects and the personal contacts between student and teacher those imply.

3 Project-Based Learning

The Project-based Learning approach (PBL) is now more and more recognized to
be very effective and profitable for student education in various disciplines, such as
mechanical design, system modeling, robotics, mechatronics [13]. In addition to the
fact that student projects allow them to develop their capability in working together,
in managing a group and in scheduling work over a rather long period (i.e. several
weeks), such projects exhibit two interesting characteristics:

• Contrary to a problem or an exercise, a project starts from realistic applications or
phenomena, such as those students will regularly encounter during their profes-
sional career. Moreover, the project is formulated under the form of open ques-
tions to answer, which reflect a real engineering problem to solve (for example,
the design of a small robot to automatically clean windows or the modeling and
understanding of “truck jacknifing” phenomena).

• The above-mentioned scope and range of student projects unavoidably make
them multidisciplinary and this is of course a very feature of enrichment and
appeal in the modern and up-to-date thinking of engineering education.
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Fig. 1. Multibody families.

In view of the previous considerations, it is obvious that the MBD discipline is a
perfect candidate for fulfilling the above requirements of the PBL approach in terms
of scope, range, application and multi-disciplinarity.

Regarding the applications, we can assert that the domain is outstandingly rich
and very varied. We need only think about the multibody families of applications:
cars and trucks, motorbikes, trains, cranes, manipulators, walking and rolling robots,
mechanisms, machine tools, carnival equipment (see, for instance, Figure 1). Going
one step further, even inside a given family there exist numerous problems which
can lead to interesting project definition. For instance in cases of cars and trucks, one
can study suspension kinematics, the stability of a truck with trailer, the comfort of
a car or the handling of a sport car, etc. In some sense, it is really a “gift of God”
for a teacher to be involved in the field of MBD, when he has to set up projects in
the field of virtual engineering, with no problem whatsoever in “imagining” a new
theme every year!

In terms of multi-disciplinarity, the same positive conclusion can be drawn. In-
deed, as we shall see in more detail in the next sections, the modeling and analysis
of a multibody system involve various topics (and thus, practically, various courses),
namely: 3-D geometry, body kinematics and dynamics, linear algebra and numer-
ical methods. Depending on the project scale and ambition, one can also resort to
programming methods and Computer-Aided-Drawing.

Thus, for setting up a project, one can easily conclude from this that the room for
maneuver is large in terms of applications to propose, problems to solve and discip-
lines to involve. From our point of view, this has a direct consequence on the type of
student such projects can be organized for. After more than ten years of experience,

164



Engineering Education in Multibody Dynamics

we can assert that a multibody project can be proposed not only at the graduate level
but also at the undergraduate one, just by “scaling” the project’s scope and ambition
accordingly: this will be the subject of Section 4. In the past two years, we have even
set up a multibody project for “technical-commercial engineering” graduate students,
within the framework of their course in mechanics, to improve their understanding
of Newton–Euler laws via modeling and analysis of real examples.

4 Multibody Projects at Undergraduate Level

From our teaching experience, we realize that students in engineering require suc-
cessive learning “layers” (e.g., lectures, projects, student theses) to acquire sufficient
expertise in a given field. In particular, as a sequel to the undergraduate lecture in
classical mechanics (which covers, as far as we are concerned, rigid body motion:
theory and exercises), student capabilities are limited to applications proposed within
the lecture framework (planar pendulum, small cart, winch, etc.). Further to these ob-
servations, we decided to set up a project in multitbody dynamics (length: 11 weeks,
groups of 6–8 students) which takes place after the main course.

After a few years of experience, we can claim that this multi-disciplinary project
really improves the student’s skills in the field of multibody system modeling, in-
cluding a timid but existing engineer attitude with respect to the work they produce.
This attitude will be of course more deeply developed during subsequent learning
”layers” at graduate level, and later on.

Let us highlight the students learning problems on the basis of the academic
example of Figure 2, issuing from a final examination in classical mechanics.

The system consists of a planar one-degree of freedom pendulum sustained by
rollers constrained to roll without slip on a circular ring. The unique equation of
motion (to be found) is:

(Ml2 + 3mb2)ϕ̈ + (Ml + 2mb cos α)g sin ϕ = 0. (1)

The following observations deserve to be emphasized.

1. Although the system appears to be quite simple and somewhat “artificial” (that
is, with respect to realistic applications), obtaining the correct equation of motion
is not a trivial task for undergraduate students because frequent mistakes appear
at various steps of the modeling process, such as:
• wrong definition of frames and/or vectors
• wrong sign of sine/cosine functions
• non-exhaustive inventory of forces (often!)
• wrong inertia computation
• hazardous use of the Newton–Euler equations or d’Alembert principle
• etc.
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Fig. 2. Classical mechanics course: example of examination problem.

2. The artificial character of the system is not only a question of number of bodies
involved but also comes from the rather restrictive nature of the modeling hy-
potheses with respect to reality: perfect joints (no backlash, no friction), perfect
rolling, perfect bodies, unlimited motion, etc. With this respect, let us distinguish
two kinds of student attitude. The first one “feels” the restrictive nature of the
hypotheses and is generally – and logically – frustrated thinking to real applica-
tions that he will encounter as a future engineer. The other one, being too much
“immersed” into the perfect word of system modeling could naïvely liken real
applications to academic ones and this is a rather poor – or even dangerous –
engineering attitude.

3. The final comment relates to the equation of motion itself: once obtained (correct
or not) – what to do with this equation and how to do it? If students are already a
bit familiar with numerical methods (for example, time integrators) and if teach-
ers think about establishing a connection between “equations of motion” and
“numerical time integration” for instance, then students can probably accept –
and even appreciate – their investment when writing differential equations of
motion.

In the above considerations, there is no attempt to discredit the contents of the
course in classical mechanics: the difficulty in learning it, requires a rather slow and
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long process based on academic and progressive applications, starting from spring-
mass pendulum to systems like that of Figure 2. Precisely, the major conclusion is
that this long – but indispensable – learning process deserves to be “crowned” with an
interesting activity which will exploit fresh students skills in mechanics, numerical
methods and – to a lesser degree – in computer science: this is the purpose of the
modeling project, whose methodology is the subject of the next section.

4.1 Student background and pedagogical objectives

Before to take up the project, the students have a theoretical background which is
given by two courses in classical mechanics covering the following topics respect-
ively:

• Fundamental physics and dynamics of particles
– Kinematics: position, velocity and acceleration vectors
– Frames, inertial frames
– Linear and angular momentum vectors
– Newton’s three laws of fundamental mechanics
– Energy, power, conservative motions.

• Dynamics of rigid bodies (based on the first two chapters of [14])
– Frames, transformation matrices, Euler and Tait–Bryan angles
– Angular velocity vector
– Geometry of masses (center of mass, inertia matrix)
– Newton–Euler equations for rigid bodies
– Generalized coordinates, holonomic and non-holonomic constraints, degrees

of freedom
– Principle of virtual power and Lagrange multipliers technique for constrained

systems.

The new learning layer of the project aims to answer the following questions and
expectations:

• At the close of the course in classical mechanics, both the nature of the exercises
(often 2D “academic” problems) and the associated results (analytical equations
of motion) are often perceived by students as a weak “return on investment”.
Roughly speaking: equations for what purpose?

• A very important point relates to the modeling hypotheses: which ones and how
to formulate them? This aspect is generally not covered by standard exercises
since all the modeling hypotheses are often included in the problem formulation
itself.

Obtaining equations of motion is an important and crucial phase but analytical
equations are intrinsically useless: a numerical post-process (for example, equilib-
rium solution, modal analysis, time integration), which is generally tackled in an-
other undergraduate course, is necessary to study the system motion and – this is
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not negligible – to promote an actual multi-disciplinary activity. Additionally in our
case, a CAD course also participates actively, as a third partner, to ensure the 3D
animation of the mechanical system under consideration.

In Figure 3, these disciplines are illustrated for the modeling and analysis of a
sidecar skidding (project of the academic year 2002–2003), successively:

Mechanics for the modeling phase:

• Estimation and/or computation of dynamical data (centers of mass, inertia
matrices)

• Suspension characteristics – constitutive laws
• Tire/ground force – constitutive laws

Computer science:

• Elaboration of a well-structured algorithmic process
• Development of a numerical simulation program

Numerical methods:

• Use or implementation of the Newton–Raphson method (equilibrium search)
• Use or implementation of a Runge–Kutta method (time integration)
• Implementation of interpolation techniques (for data fitting, results, etc.)

Computer Aided Drawing:

• 3D Drawing of mechanical components
• Implementation of a camera and a target in a 3D scene for animation.

4.2 Project methodology

The envisaged project consists of the understanding, modeling, simulation, 3D anim-
ation and – elementary – analysis of a multibody system in a given situation and/or
environment. Recent projects are illustrated in figure 4; they dealt with the dimen-
sioning of a merry go round, the stability of a careless cyclist, the guidance capabil-
ities of a railway bogie, the lateral skid of a sidecar, the motorbike wheeling, etc.

The subjects are carefully chosen to match the above-mentioned objectives: they
represent realistic applications where the necessary data must be collected and pre-
processed by the students; they are suitable for formulating relevant hypotheses and
for observing some numerical method limits and performances (for example, the
“stiff” mathematical character of a lateral wheel/ground slip model); they absolutely
require a computer program to be developed by the students, as well as a 3D anima-
tion which is helpful for interpreting the simulation results.

Here below the main steps of the project are briefly explained in a chronological
way (project length: 11 weeks).
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Fig. 3. Multibody dynamics, a real multi-disciplinary activity.

4.2.1 Understanding of the system to analyze

Obviously, the first task asked to the students is to find a practical example of the
proposed system (the motorbike of a cousin, the ATV of a sports association, a bogie
of a railway company, etc.) and to understand it from a geometrical, topological
(set of bodies and joints) and dynamical (masses, compliant elements, etc.) point
of view. Indeed, they need to match the real system with the multibody modeling
requirements.

4.2.2 Getting familiar with the computer tools

Since the project will involve various computer tools, i.e. a symbolic program (see
below), a numerical environment (for example, MATLAB) and a CAD program for
3D animation, a pre-project based on the single example shown in Figure 5 is pro-
posed to the students, for which hypotheses, data and results are given: they – only –
have to make the multibody model, the simulation program and a simplified anima-
tion.
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Fig. 4. Examples of recent project applications.

Fig. 5. A simplified vehicle suspension (pre-project).

4.2.3 Project planning

Being aware of the problem to analyze, of the full-project objectives and of its final
deadline(!), each group of students must properly schedule their 11 weeks project, in
a dynamic manner, using a PERT (Program Evaluation and Research Task) diagram
in which all the tasks are listed in advance (but not allotted). An example, illustrated
in Table 1, is delivered to the students for the first three weeks of the “pre-project”
in which they familiarize with the computer tools for simple examples (i.e., spring-
masses and simplified suspension systems).
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Table 1.

Fig. 6. Double wishbone suspension (ATV suspension).

4.2.4 Formulation of relevant modeling hypotheses

In this task, the students must select and justify the modeling hypotheses they will
take for their model. Sometimes, the justification can only be done a posteriori, i.e.
at the end of the project, but this is not a real problem pedagogically speaking. From
our point of view, selecting and justifying the hypotheses is the most relevant and
important tasks in an engineering context. Let us give some examples.

Neglecting the internal engine motion is a valid hypothesis for a “motorbike
wheeling” and it is rather clear for most of the students. But replacing a double wish-
bone suspension (Figure 6) by the simplified one of Figure 5 for a pure dynamical
analysis is more difficult to accept, while being valid too in most situations.
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Fig. 7. Multibody model representation.

4.2.5 Symbolic multibody model

Once the hypotheses have been taken and unanimously accepted by the group, the
multibody model can be drawn and described in terms of bodies, joints, degrees of
freedom, position vectors, existence of internal/external forces and torques. Figure 7
shows the so-called “reference configuration” of a multibody system as required by
ROBOTRAN [12], precisely for the simplified suspension depicted in Figure 5.

Since the model that ROBOTRAN will generate on the basis of this configuration
is fully symbolic, it is not yet vital to have all the numerical data at one’s disposal
at this level. Moreover, as regards the internal/external forces whose constitutive law
will represent a key task in the project (see below), only their existence must be
indicated at this level (i.e., on which points of which bodies they must be applied).

4.2.6 Data acquisition and/or computation

Numerical data are of different natures and must also be collected (or computed)
with an engineering “feeling” to avoid unnecessary work (see model hypotheses).
Beside the geometrical data that students can obtain quite easily (data sheet, direct
measurements, etc.), they must compute the center of mass and the inertia matrix of
the various bodies. Once again, more than applying formulae for computing those
elements (involving complex integrals), an important aspect of the project relates to
the way students “feel” which are the mechanical devices which have a significant
contribution in computing the center of mass and the inertia matrix of a body (for
example, for a motorbike frame: the engine, the tubular chassis, etc.) and which
elementary shape and density to confer to them, for sake of simplicity.
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Fig. 8. A specific constitutive law: the lateral tire/ground force.

4.2.7 Understanding and computation of environment forces

This is also a crucial point for which the symbolic generation process (see below) is
really helpful since it provides the students with most of the kinematic ingredients
required for the introduction of these forces: absolute position, orientation, velocity
of a body, etc., whose computation really require more perspiration than inspiration
and are thus not really interesting, pedagogically speaking.1

Thus, having those kinematic ingredients at their disposal, students have to un-
derstand a specific constitutive law (for example, the transverse tire/ground slip force
shown in Figure 8), to adapt it to the symbolic model and finally to introduce it in
their simulation program.

4.2.8 Numerical program and first simulations

This indispensable task – performed in the MATLAB environment – can start as soon
as the previous steps related to system modeling are completed, i.e. with equations
“ready to be programmed”. Let us point out that, thanks to the symbolic ingredients
(i.e. full kinematics and full dynamics of the multibody system, but with no force de-
scription neither kinematic constraints resolution) provided by ROBOTRAN under the
form of MATLAB functions with suitable i/o arguments, the number of statements of
the simulation program (including data and post-processing) is rather low (between
50 and 100) whatever the size of the system (a bicycle, a bogie, etc.). This avoids that
the project be too much programming-oriented. In fact, it is just the opposite since
the most part of the work is to assemble a few blocks: some symbolic ROBOTRAN

outputs, a couple of user functions, an algebraic system solver, a Runge–Kutta in-
tegration method, etc. In spite of that, unfortunately, undergraduate students skills in

1 On two accounts: first because this has already be done during the previous course,
secondly because the size of the proposed systems is too large for manual kinematic com-
putations.
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computer science often lack for rigor and/or practice, sometimes leading to a rather
long debugging phase.

Close of this work, simulation can take place, the first step being generally to
find the equilibrium of the system (for example, the vehicle at rest) with a Newton–
Raphson (N–R) type method. This, apparently simple, task could also be detailed
here for various reasons. Let us only mention some interesting features, mainly re-
lated to vehicle applications:

• Non-linearties such as the normal intermittent tire/ground contact can be simply
disregarded during the N–R iterative process, by artificially considering a ground
that is able to pull a wheel vertically. Using this trick, the correct equilibrium will
be iteratively found far more straightforwardly.

• Wheel spin rotation to which a generalized variable corresponds is ignorable for
vehicle equilibrium; if one does not care, the N–R iterative matrix will be singular
being insensitive to these variables.

• N–R algorithm requires a valuable initial guess to converge: in case of vehicle os-
cillating suspensions with high stiffness spring, good estimates are indispensable
to avoid unrealistic (often funny!) equilibrium of the system.

4.2.9 System analysis and parameterization

From a pure engineering point of view, we could say that the interesting part of the
project only starts2 at this level, i.e. to answer the original questions by perform-
ing the appropriate simulations (e.g., ATV side slipping, motorbike wheeling) and
parameterizations. Depending on the quality of the group and of their tasks planning
during weeks 8 to 10, the following analyses can be performed and discussed in the
final report:

• Influence of the suspension parameters (stiffness, damping) on the vehicle dy-
namical performance;

• Comparison of different integration schemes in terms of accuracy, CPU time, etc;
• Modeling of a more realistic model by disregarding some of the hypotheses (re-

lated to locked motions, to constitutive laws, to the environment, etc.);
• Comparison of systems issuing from the same family: e.g. a bogie with rigid

axles and the same with independent wheels;
• etc.

4.2.10 Project report, presentation and evaluation

Without entering into details, a final report is asked in which all the previous points
must be detailed. Emphasize is made during the oral presentation on the analysis
phase for which students, sometimes a bit clumsily, give their own interpretation of

2 This is hopefully not true from the pedagogical aspect.
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Fig. 9. Snapshots of 3D animation.

a specific phenomenon (e.g., a peak or a high frequency in a variable time history).
3D animations (see snapshots in Figure 9) help them to illustrate their simulation
observations.

The project is then evaluated taking into account all the previous aspects, but
without weighting the analysis phase too much, recalling that undergraduate students
are not yet mature engineers!

5 Symbolic Generation

For such a project, an important question relates to the multibody model: how to
avoid the trap of a “press-button” black-box multibody program which would be
completely useless for undergraduate students, pedagogically speaking? From the
modeling point of view, the answer relies on our conviction that extrapolating kin-
ematic and dynamical computations of 2–3 interconnected bodies (as done in the
course) to a larger multibody system (10–15 bodies) requires, as already mentioned,
more “perspiration than inspiration” to develop rotation matrices, absolute velocit-
ies, accelerations, etc. Entrusting these “low-level” tasks to a multibody symbolic
program like ROBOTRAN [12] for various ingredients such as sub-chain kinematics,
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constraints Jacobian matrix, system mass matrix, etc., allow students to spend their
time in a more enriching way, with respect to the pedagogical objectives. Namely:

• They have to translate the real system in terms of bodies and joints in a correct
manner, including the formulation of pertinent hypotheses regarding the pro-
posed topology and environment. Of course, they must end up with a model
description which must be in accordance with the symbolic program conventions
(see Figure 7 for instance).

• They must compute – and introduce – the internal/external forces and torques
applied to the system: this range from a single spring/dashpot element to a
wheel/ground model. Since 90% of the necessary kinematics can be generated
symbolically from the ROBOTRAN program; the students can focus on more fun-
damental points: interpretation of the wheel slip angle, geometrical contact on a
profiled ground, etc.

• Once the necessary symbolic ingredients have been collected and the model com-
pleted (forces, driven joints, sensors, . . . ), students can implement an algorithm
for the numerical simulation phase. For that purpose, they directly manipulate the
symbolic output and the user functions they developed in completing the model.

• Finally, once their model, their simulation and animation are ready, students have
time and thus the opportunity to tackle a more “noble” objective, namely the
critical analysis of the model and the system behavior: validity or limit of some
hypotheses, influence of given parameters, time integrator performance, etc.

6 Conclusions

A few decades after the advent of the finite elements method, the MBD field arrives
today at a stage where it also becomes necessary to include it in the engineering
educational curriculum. This not only meets a request of an industrial world using
MBD software more and more. Indeed we illustrated in this chapter that MBD is ex-
tremely rich from the teaching point of view. Indeed, the room of manoeuver is large
in terms of applications, problems to solve and disciplines to involve. This is true
of course for the graduate level of study, but also for the undergraduate level. After
more than 10 years of experience, we can claim that a multi-disciplinary project in
multibody dynamics can really improve the undergraduate student’s skills in the field
of system modeling, including a timid but existing engineering attitude with respect
to the work they produce. Of course, this behavior must be more deeply developed
during subsequent learning “layers” at the graduate level for students in mechanical
engineering, eventually on the occasion of their master’s theses and, later on, in their
professional activities. From this point of view, the potentialities offered by an open
symbolic MBD software like ROBOTRAN make it possible to take students by the
hand from the beginning of their studies to their PhD or professional degree.
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Abstract. Passive safety systems in vehicles, which are directly responsible for the optimal
passenger protection in the case of an accident, are critical factors in contemporary vehicle
development. Rollover maneuvers, e.g. rides over an embankment or a ramp, are considered
to be especially hazardous, as they always involve a high risk of injury or even death and of
vehicle damage. Today, for reasons of cost and development time, computer simulations play
an important role in the development of such safety systems.

For simulating the vehicle dynamics, the vehicle is realized as a complex multibody sys-
tem, as a base for the mechanical part, and which is combined with additional non-mechanical
components like hydraulics, sensors, driver and environment into an overall mechatronical
system. This concept is realized within the three-dimensional vehicle dynamic simulation en-
vironment FASIM_C++. The central issue in this paper is the modeling of the vehicle ground
contact, which may occur between the underbody and the ground during embankment and
ramp maneuvers. Finally, the results from test drives for a cabriolet, which has been selected
by the car manufacturer from simulations with FASIM_C++, show a good coincidence between
simulations and experiment.

1 Introduction

In order to increase the safety in road traffic, more and more active and passive
safety systems, as typical examples of mechatronic systems, are integrated into the
vehicles. While the active safety systems, such as antilock braking system (ABS),
traction control system (TCS) and electronic stability program (ESP), support the
driver to prevent an accident, the passive safety systems are activated only when an
accident is occurring. In this connection, the occupant protection systems, such as
airbags and seat-belt tighteners, should reduce the risk of injury to the passengers,
which are especially high in accidents with rollover tendency. In the case of cabri-
olets, the passengers should be further protected using rollover bars during a rollover
maneuver.
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Fig. 1. Vehicle dynamic simulations to support the development of controllers for restraint
systems.

Before activating the occupant protection systems, the rollover tendency of the
vehicle has to be detected (Figure 1) [8]. Hence, the different rollover behaviors of
vehicles have to be considered, as this plays a critical role in developing the control-
ler. For these vehicle specific controller designs, measurements such as the rolling
and vertical accelerations, at the time of vehicle rollover are required. For invest-
igating the rollover behavior, in the past, embankment and ramp maneuvers were
well-proven methods. Before performing the actual test drive, which are technically
complex and expensive, it is thus suggested to exhaustively simulate and analyze
the rollover behavior of vehicles on different embankment and ramp maneuvers in
the computer [3]. Based on these results specific driving maneuvers can be chosen,
limiting to only a few the number of experiments.

To simulate the vehicle dynamics, the mechanics of the vehicle is modeled
as a multibody system and together with the non-mechanic components, such as
hydraulics, sensors, driver and environment combined to a complete mechatronic
vehicle model, inside the three-dimensional vehicle dynamics simulation environ-
ment FASIM_C++ [5]. The concept behind FASIM_C++ is presented in Section 2.

During the simulation of embankment and ramp maneuvers of sport cabriolets,
hitting the ground of the vehicle underbody has to be considered due to the low
ground clearance of the chassis. Hence, the vehicle dynamics simulation environ-
ment FASIM_C++ has to be extended (Section 3).

Modeling the ground contact by means of a mathematical substitution model for
the vehicle underbody and for the embankment or ramp, their relative position to
each other is investigated. The surface load acting on the undercarriage contact is
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Fig. 2. Modular structure of a passenger car in FASIM_C++.

modeled as a concentrated force, and the mathematical algorithm to calculate the
point of application of the force is explained. Finally, the determination of the ex-
ternal forces and moments that act on the vehicle in-between the vehicle carriage
and embankment or ramp contact, as well as, the integration of the equations of mo-
tion are presented.

In Section 4, the simulation results for a sports cabriolet are presented, which
show the influence of modeling the ground contact to the simulation results. A com-
parison of the simulation results with the measured data from actual test-drives il-
lustrate the influence of the undercarriage contact to the dynamic behavior of the
vehicle.

2 Vehicle Dynamic Simulation with FASIM_C++

Development of vehicle controllers requires an appropriate model of the vehicle dy-
namics built into a versatile simulation environment [2]. This simulation environment
has to be able to simulate different vehicle types or models without any recompil-
ation. The vehicle model has to have a modular form so that single component of
the vehicle may be exchanged, depending on the simulation task. Thus, models of
the vehicle dynamics with differing levels of complexity can be defined covering
correspondent physical effects with the desired accuracy. The modular structure of a
vehicle model in FASIM_C++ is shown in Figure 2 using the example of a passenger
car.

The structure presented does not show the construction details of the modules,
e.g. which kind of front suspension is used. During initialization this is not import-
ant, because the required information for generating the equations of motion is part
of the modules and only at the beginning of simulation it is evaluated. As an ex-
ample, the topology of an all-wheel driven upper class passenger car, showing the
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Fig. 3. Kinematic topology of an all-wheel driven upper class passenger car.

kinematic coupling of the individual modules, is shown in Figure 3. For reasons of
clarity the modules engine hydraulics (braking system), driver and environment are
not shown. Using this modeling technique it is possible to decide during runtime
which configuration of a vehicle is used without any recompilation of the program.

FASIM_C++ contains a large library of different vehicle modules such as suspen-
sions, tire models, drive trains, engines, engine mounts, controllers, sensors, elast-
icities, a rigid or flexible car body, several hydraulic braking systems, a driver and
an environment model. The structure of the modules makes it easy to expand the
library by adding new modules. The equations of motion are based on d’Alembert’s
principle:

nB∑
i=1

(mi r̈Si − fSi ) · δrSi + (�Si ω̇i + ωi × �Si ω̇i − τSi ) · δϕi = 0, (1)

where nB is the number of mass-endowed bodies, mi , �Si are the mass and inertia
tensor of body i, r̈Si the acceleration of center of gravitation, fSi , τ Si the applied
force and torque, and δrSi , δϕi are the virtual linear and angular displacement.

Due to the constraints in the system, the virtual displacements are not independ-
ent. To generate the equations of motion in minimal coordinates the choice of n inde-
pendent generalized coordinates q = [q1, q2, . . . , qn]T , is necessary, corresponding
to the number of degrees of freedom (d.o.f.) in the system. The equations of motion
of the mechanical system in minimal coordinates can then be written as:
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M(q)q̈ + b(q, q̇) = Q(q, q̇, t), (2)

with the notations and dimensions:

n : number of d.o.f.,
q : (n × 1)-vector of generalized coordinates,

M : (n × n)-mass matrix,
b : (n × 1)-vector of generalized Coriolis, centrifugal and gyroscopic forces,
Q : (n × 1)-vector of generalized applied forces.

With help of the method of kinematical differentials developed by Kecskeméthy,
the elements of the equations of motion can be calculated using the pseudo velocities
ˆ̇r(j)

i , ω̂
(j)
i and the pseudo accelerations ˆ̈ri , ˆ̇ωi [6]. The elements gets the form

Mj,k =
nB∑
i=1

[
mi

ˆ̇r(j)

i · ˆ̇r(k)

i + ω̂
(j)
i · (�S i ω̂

(k)
i

)]
, (3)

bj =
nB∑
i=1

[
mi

ˆ̇r(j)

i · ˆ̈ri + ω̂
(j)

i · (�S i
ˆ̇ωi + ωi × �S iωi

)]
, (4)

Qj =
nB∑
i=1

[ ˆ̇r(j)

i · fSe
i + ω̂

(j)
i · τS

e
i

]
. (5)

The vectors, which are bookmarked with the symbol “̂ ”, are called pseudo velocities
and pseudo accelerations, respectively. They result from the analysis of the global
kinematics with the pseudo input velocities

ˆ̇q(j)

i =
{

1 for i = j

0 for i �= j
, i, j = 1, . . . , n, (6)

and are defined by

ˆ̇r(j)

i = ṙi

∣∣∣∣∣q̇ = ˆ̇q(j) = ∂ri

∂qj

,

ˆ̈ri = r̈i

∣∣∣∣q̈ = ˆ̈q = 0
=

f∑
j=1

f∑
k=1

∂2ri

∂qj ∂qk

q̇j q̇k ,

ω̂
(j)
i = ωi

∣∣∣∣∣q̇ = ˆ̇q(j) = ∂ωi

∂q̇j

,

ˆ̇ωi = ω̇i

∣∣∣∣q̈ = ˆ̈q = 0
=

f∑
j=1

f∑
k=1

∂2ωi

∂q̇j ∂q̇k

q̇j q̇k .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)
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Based on the modular structure of the vehicle model (Figure 2), the equation of
motion can be written for every module separately. So, the matrices and vectors of
the equations of motion show also a modular structure. Their elements can easily be
calculated from the corresponding modules. For this reason the terms for the mass
matrix M, the generalized Coriolis, centrifugal and gyroscopic forces b, and gener-
alized applied forces Q have to be rewritten [7]. They are now subdivided into an
inner sum, inside the module l considering all its bodies nBl and in an outer sum
considering all modules nM :

Mj,k =
nB∑
l=1

nB l∑
i=1

[
mi

ˆ̇r(j)

i · ˆ̇r(k)

i + ω̂
(j)
i · (�S iω̂

(k)
i

)]
, (8)

bj =
nB∑
l=1

nB l∑
i=1

[
mi

ˆ̇r(j)

i · ˆ̈ri + ω̂
(j)
i · (�S i

ˆ̇ωi + ωi × �S iωi

)]
, (9)

Qj =
nB∑
l=1

nB l∑
i=1

[ ˆ̇r(j)

i · fSe
i + ω̂

(j)
i · τ S

e
i

]
(10)

with the pseudo velocities ˆ̇r(j)

i , ω̂
(j)

i and the pseudo accelerations ˆ̈ri , ˆ̇ωi from Equa-
tion (7).

3 Modeling of the Ground Contact

In vehicles with low ground clearance, a further difficulty may arise during embank-
ment and ramp maneuvers, as the vehicle underbody may hit the ground, which signi-
ficantly influences the vehicle dynamics. This effect will be considered by modeling
the vehicle dynamics, especially for sports cabriolets.

Before calculating the contact forces and moments at the time of ground con-
tact, it should first be detected, if there is any contact between the vehicle and the
road, in this case with the embankment or the ramp. Hence, the actual position of
the vehicle underbody relative to the embankment or the ramp is investigated for
every discrete time-interval of the simulation. The mathematical substitution model
of the vehicle underbody, the embankment and the ramp, respectively, required for
the investigation, are introduced next.

3.1 Substitute model for the vehicle underbody

The underbody of the vehicle is simplified as a rectangular planar surface, whose
position in the inertial system KI is calculated from the current position and ori-
entation of the vehicle system KV (Figure 4). The vehicle system is placed in the
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Fig. 4. Geometry of the vehicle underbody.

Fig. 5. Plane of the vehicle underbody.

mid-point of the front axle. The position of the vehicle underbody relative to the
vehicle system and its parameters are fixed by the geometric measures a, b, c and l,
where l describes the total length of the vehicle, a refers to the distance of the front
axle from the front end of the vehicle, along the length of the vehicle, b refers to the
width of the vehicle and c the distance of the vehicle underbody from the front axle
along the vertical of the vehicle system.

With the help of these parameters, the position vectors of the corners P1, P2 and
P3 (Figure 5), in the vehicle system, can be calculated:
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V P1 =
⎡⎣ a

− b
2

c

⎤⎦ , V P2 =
⎡⎣ a

b
2
c

⎤⎦ , V P3 =
⎡⎣ a − l

b
2
c

⎤⎦ . (11)

These three points clearly describe the plane of the vehicle underbody, and one
can set up the planar equations of the vehicle underbody:

V P : V xP = V P2 + µ(V P1 − V P2) + ν(V P3 − V P2) (12)

=
⎡⎣ a

b
2
c

⎤⎦+ µ

⎡⎣ 0
−b

0

⎤⎦+ ν

⎡⎣−l

0
0

⎤⎦ , µ, ν ∈ R. (13)

For µ, ν ∈ [0, 1] all the points V xP = V xP (µ, ν) lie within the vehicle underbody,
and for all other values µ, ν they lie outside the vehicle underbody:

V U : V xU = V xP (µ, ν), µ, ν ∈ [0, 1]. (14)

To describe the plane of the vehicle underbody in the inertial system, the position
and orientation of the vehicle system and that of the inertial frame have to be known.
With the transformation matrix

I TV =
⎡⎣ cθ cψ sϕ sθ cψ − cϕ sψ cϕ sθ cψ + sϕ sψ

cθ sψ sϕ sθ sψ + cϕ cψ cϕ sθ sψ − sϕ cψ

−sθ sϕ cθ cϕ cθ

⎤⎦ (15)

(c := cos, s := sin), where ψ is the yaw angle, θ the pitch angle and ϕ the roll
angle, and with the position vector

rV = I rV =
⎡⎣ I xV

I yV
I zV

⎤⎦ (16)

the equation for a plane is set up in the inertial system as given below:

I P : I xP = I TV
V xP + I rV (17)

= I TV

⎡⎣ a − νl
b
2 − µb

c

⎤⎦+
⎡⎣ I xV

I yV
I zV

⎤⎦ , µ, ν ∈ R. (18)

Analogous to Equation (14) it applies in the inertial system:

IU : I xU = I xP (µ, ν), µ, ν ∈ [0, 1]. (19)
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Fig. 6. Nomenclature of embankment geometry.

3.2 Embankment and ramp geometry

Besides the plane equation of the vehicle underbody, the geometric descriptions of
the embankment and the ramp, respectively, are required for the contact calculations.
For simulation purposes, the sharp edges of the embankment and the ramp, as they
occur on the test track, are replaced by radii, to guarantee that each wheel has only
one contact point on the track. This deviation in the model is also valid for the cal-
culation of the contact points between the vehicle underbody and the track.

The upper and lower embankment edges run parallel to the x-axis of the inertial
system and the embankment shall stretch the entire length of the track. Thus the
height of the embankment z- is only dependent on the y-coordinate:

zembankment (x, y) = zembankment (y) (20)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , y ≤ �ybegin

�zbegin +
√

r2
b − (y − �ybegin)2 ,�ybegin < y < y1begin

h
l
(ybegin − y) , y1begin ≤ y ≤ y1end

�zend −√
r2
e − (y − �yend)2 , y1end < y < �yend

−h , �yend ≤ y

. (21)

In contrast, the ramp has limited dimensions. The track height, depending on x

and y, is thus given by:
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Fig. 7. Nomenclature of ramp geometry.

zramp(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�zbegin

−
√

r2
b − (x − �xbegin)2 ,

{�xbegin < x < x1begin

ybegin ≤ y ≤ yend

h
l
(x − xbegin) ,

{
x1begin ≤ x ≤ x1end

ybegin ≤ y ≤ yend

�zend

+√
r2
e − (x − �xend)2 ,

{
x1end < x < �xend

ybegin ≤ y ≤ yend

0 , otherwise

. (22)

3.3 Center point of the contact surface

The surface loads, acting on the contact surface during the ground contact, should be
modeled as a concentrated force. The point of application of the force is determined
from the center point, which is here the center of the contact surface.

3.3.1 Contact during embankment maneuvers

Before determining the actual point of application of the force in the vehicle chassis,
the position of the vehicle underbody relative to the embankment top surface has to
be examined. The following four cases are possible:

1. the vehicle underbody does not touch the embankment at all (Figure 8a),
2. the vehicle underbody touches the embankment surface at one point (Figure 8b),
3. the vehicle underbody touches the embankment surface along a straight line

(Figure 8c) or
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Fig. 8. Comparison of the positions of the vehicle underbody relative to the embankment.

4. the vehicle underbody penetrates the embankment (Figure 8d), i.e. the vehicle
underbody rectangle cuts the embankment top surface, while in the real vehicle,
the vehicle underbody deforms elastically due to the embankment contact. It is
stretched over the embankment edge. The depth of penetration can be used as a
measure for the elastic deformation.

To summarize, in the first case there is no contact between the vehicle underbody
and the embankment, whereas there exists a contact in the remaining three cases.

In order to generalize the contact definition, the different positions of the vehicle
underbody relative to the embankment will not be considered. On the basis of the
points of intersection between the vehicle underbody and the embankment top sur-
face, as well as the corner points that lie under the embankment top surface, the shape
of the contact is approximately described. Hence there exists no need to differentiate
between a point, a line or a surface contact.

The position of the corner points of the vehicle underbody with respect to the
inertial system results from the Equation (19) for the following pairs of parameters

(µC, νC) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. (23)

The corner point

I xUC = I xU(µC, νC) := [xU(µC, νC), yU (µC, νC), zU (µC, νC)]T

lies exactly on or already inside the embankment, if its components satisfy the fol-
lowing inequality

zU (µC, νC) ≤ zembankment (xU(µC, νC), yU (µC, νC)). (24)
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In order to define the points of intersection of the vehicle underbody with the
embankment, using each of these µI = 0, µI = 1, νI = 0 and νI = 1, the following
equations need to be solved

zU (µI , νI ) = zembankment (xU (µI , νI ), yU (µI , νI )). (25)

If the calculated µI or rather νI lie inside the interval [0, 1], then the point
I xUI = I xU(µI , νI ) lies on the border of the vehicle underbody and on the em-
bankment top surface.

All the points that were thus calculated

{Si}i∈N := {
I xU C : Equation (24) applies

} ∪ {I xUI : Equation (25) applies
}

(26)

represent the boundary points of the contact surface of the vehicle underbody. Here
it should be observed, that because of the separate examination of the corner points,
and because of rounding errors, a few points are duplicated. These should later be
eliminated.

3.3.2 Contact during ramp maneuvers

Analogous to defining the points of contact between a vehicle underbody and the em-
bankment (Section 3.3.1), the contact between the vehicle underbody and the ramp
can, during ramp maneuvers, also be divided into four different cases:

1. the vehicle underbody does not touch the ramp at all (Figure 9a),
2. the vehicle underbody touches the ramp-edge at one point (Figure 9b),
3. the vehicle underbody touches the ramp-edge in a straight line (Figure 9c) or
4. the vehicle underbody penetrates the ramp (Figure 9d), which means, the rect-

angle of the vehicle underbody cuts the ramp top surface, whereas the real
vehicle underbody will be elastically deformed by the ramp. It will stretch it-
self over the ramp edge. The penetration depth defines the strength of the elastic
deformation.

Hence, in the first case there is no contact between the vehicle underbody and the
ramp, while in the other three cases there exists a ground contact.

When hitting the ramp, the chassis always compresses its lateral edges of the
vehicle underbody the most. Therefore, it is sufficient to determine the points of
intersection between the side edges of the underbody and the side surface of the
ramp. For which, using each of the following µI = 0, µI = 1, νI = 0 und νI = 1,
the subsequent two equations have to be solved:

yU (µI , νI ) =
{

ybegin

yend
. (27)

If the calculated µI or rather νI lie inside the interval [0, 1], then the point
I xUI = I xU(µI , νI ) lies on the border of the vehicle underbody. It also applies
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Fig. 9. Comparison of the different positions between vehicle underbody and the ramp.

zU (µI , νI ) ≤ zramp(xU(µC, νC), yU(µC, νC)), (28)

hence, I xUI is a point of intersection of the vehicle underbody edge with the ramp
side. All the calculated points of intersection

{Si}i∈N := {
I xU I : Equation (27) and (28) apply

}
(29)

represent the corner points of the ground contact surface. Duplicated points are not
considered.

3.3.3 Center point of contact surface

Out of the multitude of the pair-wise different points of intersection S1, . . . , Sn

(Equation (26) or (29)) the center point or the surface center of mass M (Figure 10)
is determined using

M = 1

n

n∑
i=1

Si . (30)

3.4 Point of application of the force

The center point M, which was calculated in Sections 3.3.1 and 3.3.2, respectively,
is also the point A of application of the force of the reaction forces on the vehicle
underbody, if it lies exactly on top of the embankment top surface

I Mz = zembankment (
I Mx, I My), (31)

or on the side of the ramp edge, as the case may be,

I Mz = zramp(I Mx, I My). (32)

The vehicle underbody touches the embankment, or the ramp, at only one point or a
straight line.
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Fig. 10. Center point of the contact surface.

If the center point M is lying under the embankment top surface, or under the
side wall of the ramp, it is no longer the required point A of application of the force.
Based on the assumption that the vehicle underbody is elastic, the distance between
the calculated midpoint and the embankment top surface, or for that matter the top
ramp edge, gives the deformation of the vehicle underbody (Figures 11 and 12, re-
spectively).

3.4.1 Point of application of the force on the embankment

The midpoint M, which is presently under the embankment top surface, and the
calculated point A of application of the force shall both lie on a line, parallel to the
zV -axis:

V g : V xg = V M + λ

⎡⎣ 0
0
1

⎤⎦ , λ ∈ R. (33)

Here, the parameter λA is chosen in such a way that the point A of application of
the force lies on the top surface of the embankment. With the help of the numerical
integration routine Regula Falsi, the parameter λA is approximated. With this, the
point of application of the force can finally be determined from

V A = V xg(λA) . (34)

3.4.2 Point of application of the force on the ramp

If the midpoint M of the contact surface lies within the side of the ramp, it must then
be moved to the top edge of the ramp. Thus a point A of application of the force is
obtained by a translation along the zI -axis:
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Fig. 11. Point of application of the force on the embankment.

I A =
⎡⎣ I Mx

I My

zramp(I Mx, I Mx)

⎤⎦ . (35)

Fig. 12. Point of application of the force on the ramp.

3.5 Reaction forces in the ground contact

When the vehicle underbody hits the embankment or the ramp, it slides over the
embankment top surface and ramp top surface, respectively. As a consequence, there
is friction in the contact surface. The surface loads are summarized into one force
acting on the surface center of mass. The point of application of the force was already
calculated in Section 3.4. In the following, the reaction forces, which act on the
ground contact, are determined.
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Fig. 13. Reaction forces and moments at the point of application of the force.

Fig. 14. Normal force on the ground contact (normalized).

3.5.1 Normal force

The applied normal force of the vehicle chassis, at the time of ground contact, is
orthogonal to the vehicle underbody (Figure 13). It is positive in zV -direction. The
magnitude of the normal force is dependent on the deformation of the vehicle un-
derbody. The stronger the compression of the vehicle underbody during contact with
the embankment, or ramp, in other words the higher the point A of application of the
force lies inside the vehicle, the higher must be the normal force to generate this de-
formation. To model the quick increase in the normal force from the time of contact,
so that the vehicle can react quickly to the situation, a declining normal variation
is chosen (Figure 14). If there is no contact between the vehicle underbody and the
embankment, or the ramp, there exists no normal force, i.e. it is zero. This yields for
the normal force:

fN =
{

0 , d < 0
fdeg(d) , d ≥ 0

, (36)

where fdeg is a degressive function, depending on the distance d = V Az − c .

3.5.2 Friction force

The friction force is calculated, with the help of the Coulomb friction law, from the
above determined normal force:

fR = µRfN, (37)
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where µR is the friction coefficient between the vehicle underbody and the embank-
ment, or the ramp as the case may be.

The friction force acts tangentially to the normal force, hence it lies on the
xV , yV -plane, and acts opposite to the direction of motion (Figure 13). Based on
the relative kinematics, the velocity of the point A of application of the force can be
determined:

V vA = V vV + V ωV × V A. (38)

With this, the components xV und yV of the friction force can be set up as:

fR = −fR

[
cos β

sin β

]
with β = arctan(vAy, vAx) . (39)

3.6 Integration in the equations of motion

The above calculated reaction force on the ground contact

fGC =
⎡⎣ fRx

fRy

fN

⎤⎦ (40)

induces a moment with respect to the vehicle center of mass S:

τGC = rSA × fGC = (rA − rS) × fGC. (41)

The reaction force and the resulting moment will be considered as acting on the
center of mass:

QGCj = ˆ̇r(j)

S · fGC + ω̂
(j)
S · τGC , j = 1, . . . , nch, (42)

with the pseudo velocities ˆ̇r(j)

S , ω̂
(j)

S and the pseudo accelerations ˆ̈rS, ˆ̇ωS in accord-
ance with Equation (7). This vector of the generalized ground contact forces com-
pletes the right hand side of the equations of motion of the vehicle chassis (according
to Equation (2)):

Mch(qch)q̈ch + bch(qch, q̇ch) = Qch(qch, q̇ch) + QGC, (43)

where qch ∈ R
nch is the vector of generalized coordinates, Mch ∈ R

nch×nch the
generalized mass matrix, bch ∈ R

nch is the vector of generalized Coriolis, centrifugal
and gyroscopic forces, and Qch ∈ R

nch is the vector of generalized applied forces
(without the generalized ground contact forces).
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Fig. 15. Construction of a test drive.

Fig. 16. Measurements of the test vehicle.

4 Simulation Results

The results from Sections 2 and 3 shall be tested by an embankment maneuver with
a sports cabriolet. The simulation results obtained, with and without ground contact,
will be compared with the actual measurements from test drive.

The embankment begins at ybegin = 2.5 m and is h = 1.8 m high. Based on
an embankment angle of 40◦, an embankment length of l = 2.2 m results. At the
begin of the embankment the radius is chosen as rb = 0.3 m, and re = 0.6 m for the
end radius. The vehicle shall drive onto the embankment with an initial velocity of
V vx = 10 m/s and an approach angle of 15◦. Thus for the vehicle coordinate system
in the front axle of the vehicle at start time t = 0 s, its position is given by

I xV 0 = 50.000 m , I yV 0 = 0.999 m and I zV 0 = 0.298 m , (44)

and its orientation is given by a yaw angle ψ , a pitch angle θ and a roll angle ϕ:

ψ0 = 165.00◦, θ0 = −0.17◦ and ϕ0 = 0.00◦. (45)

For the investigation, whether a contact takes place between the vehicle under-
body and the embankment, the geometric measurements of the vehicle underbody
are required:

196



Rollover Tendency with Ground Contact

Fig. 17. Comparison of simulation results and measurements.

l = 4.547 m , a = 0.921 m , b = 1.766 m and c = −0.120 m . (46)

The normal force that exists during the ground contact is modeled as a declining
force depending on the elastic vehicle underbody deformation, as explained in Sec-
tion 3.5.1 (Figure 14). To calculate the friction force, the friction coefficient is given
by µR = 0.3.
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Fig. 17. (Continuation)

The diagrams in Figure 17 show how much the simulation results are influenced
by considering the ground contact. Here, the solid graph represents the measure-
ments from the test drive, the dotted graph represents the simulation results without
considering the ground contact, and the dashed graph shows the simulation results
considering the ground contact. The function has calculated a contact between the
vehicle underbody and the embankment in the gray time interval.

Compared to the simulation results without considering the ground contact, a
relevant improvement towards the measured values of the test drive is obtained with
considering the ground contact. It shows, that the computed ground contact lies ex-
actly in the time interval where vibrations of the measured y- und z-accelerations oc-
cur, which are caused by the contact between vehicle underbody and embankment.
Furthermore, it can be noted from the time history that the simulated pitch angle
shows a reaction similar to that of the test vehicle. The vehicle bounces back a little
when hitting the ground. During the simulation without consideration of ground con-
tact, the roll angle does not show a rollover tendency at the end of the maneuver. But
with consideration of ground contact, the gradient of the simulated roll angle agrees
with the one from the measurement. In analogy to the experiment, the simulation
with consideration of ground contact yields a rollover maneuver.
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5 Conclusions and Outlook

The simulation of vehicle dynamics provides a very cost efficient tool, by which
different test maneuvers can be exactly duplicated with minimum effort in changes
and exact boundary conditions. Thus, one can eliminate the necessity for dangerous,
complex and vehicle sacrificing testing maneuvers. Hence, simulation of vehicle dy-
namics is introduced in the development of sensors or electronic control units (ECU),
illustrated here by the rollover sensor that is responsible for the activation of occu-
pant protection systems, like airbags, seat-belt tighteners and rollover bars.

In this connection, the three dimensional vehicle dynamics simulation envir-
onment FASIM_C++ has been presented, in which the mechanics of the vehicle is
modeled as a multibody system, together with the non-mechanic components, such
as hydraulics, sensors, driver and environment assembled to a complete mechatronic
vehicle model. Special consideration was given to the modeling of the ground con-
tact, which has a significant influence on the vehicle dynamics in vehicles with a low
ground clearance. Finally some of the simulation results were presented and com-
pared with results from actual test drives.

Future experiments should optimize and finally validate the contact model with
the help of measured data from different test drives, a calculation of the point of
application of the force dependant on the position of the vehicle center of mass, and
to include a modeling of the impact behavior that occurs while the vehicle underbody
hits the ground.
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Abstract. The paper presents three case studies of dynamic analysis of aircraft during land-
ing manoeuvre using two basic formalisms encountered in rigid and flexible multibody sys-
tem (MBS) modelling.  In the first case a formulation in natural coordinates has been used 
to analyze the dynamics of a medium size aircraft. Equations of motion have been formu-
lated and solved using velocity transformation method. The aircraft has been modelled as 
consisting of rigid bodies connected by  universal joints with springs. Aerodynamic forces 
have been taken into account by applying the Vortex Lattice Method (VLM) to the calcula-
tions performed. The effect of ground proximity on the results (ground effect) has been ana-
lyzed. In the second case, a dynamic analysis of a glider during the landing manoeuvre has 
been carried out from the point of view of stress recovery by means of various methods. 
Body positions and orientations have been written in absolute coordinates with floating 
frame approach for flexible bodies. Finite element method (FEM) and component mode 
synthesis has been used to model the flexibility of the bodies. A comparison of stress re-
sults obtained for different computation methods has been carried out. In the third analysis 
a MBS model of the Su-22 military airplane main landing gear has been presented. The ab-
solute coordinates and the differential algebraic equations (DAE) formulations were used in 
all calculations. The whole landing gear model includes individual models of hydraulic ac-
tuators, shock absorber, flexible tire and contacts between some landing gear parts. Several 
types of simulations like landing gear extension and selected ground manoeuvres were per-
formed. On that basis values of the forces which will allow to assess fatigue and durability 
of landing gear in future experiments were obtained. The received results were compared to 
the experimental measurements which were carried out on a real military airplane. The key 
issues of that comparison and general remarks were formulated. In the final part of the pa-
per general conclusions regarding application of various computation MBS methods to dy-
namical analyses of aircrafts have been presented. 

1 Introduction 

In the early stage of the airplane design the static and dynamic analyses of the 
whole airplane and many subsystems play a significant role. Many of these analy-
ses are usually devoted to forces and stresses evaluation appearing in subsystems 
of the airplane. Particularly forces which come from ground in manoeuvres like 
landing, taxiing or taking off [1] in the presence of aerodynamic forces must be 
determined.  There exist many publications with respect to the simulation of air-
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overview of computer simulation of aircraft and landing gear is given by Doyle 
[2]. Shepherd, Catt and Cowling [3] describe a program founded by British Aero-
space for the analysis of aircraft landing-gear interaction with a high level of de-
tails with flight tests involving ground contact. Two publications of International 
Association for Vehicle System Dynamics, Hitch in 1981 [4] and Kruger et al. [5] 
in 1997 and one of NASA Langley Research Center [6] provide state of the art of 
aircraft ground simulations. 

One of common techniques used in some airplane subsystems modelling is 
MBS formalism. Several MBS formulations exist. Two common ones are based 
on the body kinematics written in natural coordinates [7] and in absolute coordi-
nates [8]. Also, the flexibility of aircraft elements is being modelled in various 
ways [9, 10]. In some cases, flexible parts are modelled as rigid bodies intercon-
nected by kinematic pairs which include elastic elements whereas in others their 
flexibility effects are modelled by means of a mixed formulation – MBS and FEM 
[11].  

This work presents three cases of aircraft dynamics analysis during the landing 
manoeuvre. In the first case, a medium-size aircraft is modelled in natural coordi-
nates. It has been assumed that the system consists only of rigid bodies intercon-
nected by universal joints. Element flexibility is taken into account by introducing 
elastic (springs) elements. Aerodynamic forces are calculated by means of the 
VLM [12]. Equations of motion have been formulated in the dependent variable 
system. They have been integrated afterwards by means of the velocity transfor-
mation method. As a result, a set of ordinary differential equations (ODE) has 
been achieved. The presented model has been used to illustrate the dynamics of an 
aircraft during its landing with the ground effect taken into account.  

In the second case, the dynamics analysis has been carried out for a glider dur-
ing landing. The presented model has been used to perform a comparison of stress 
results obtained with different computation methods. This time, the aerodynamic 
forces have been neglected and the element flexibility has been taken into account 
by means of the FEM. Motion equations in the form of DAE [13] have been built 
using absolute coordinates. The system can be reduced to a system of a smaller 
size using the Component Mode Synthesis.  

In the third case the virtual model of the Su-22 main landing gear [14] has 
been built which could be used to conduct variety of dynamic analysis. The main 
reason of investigation of existing construction (usually landing gear simulations 
and laboratory tests are being performed in the early design stage) is an attempt to 
predict forces, fatigue effects and reliability of the landing gear due to the lack of 
these data. In the second step simulation results were compared to experimental 
measurements carried out on board of the real airplanes during various maneuvers 
on the ground. These measurements have been carried out in the project by cour-
tesy and with cooperation of the Polish Air Force Institute of Technology [14]. 
The aim of the measurements was to obtain stress, strains and forces results be-
tween the landing gear parts during specific manoeuvres like taxiing, landing and 
taking off.  

craft ground manoeuvres and whole aircraft modelling. For example an early 
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2 Dynamic Analysis of Aircraft in Natural and Joint 
Coordinates

A three dimensional medium size aircraft model is used in this investigation [15]. 
The aircraft MBS under consideration consists of three main components, fuse-
lage, wing and landing gear. In the present analysis, the aircraft MBS consists of 
rigid bodies interconnected by flexible joints. Natural coordinates will be used to 
describe each body, the interconnection between different bodies and their mo-
tions. 

2.1 Multibody model of the aircraft 

The three dimensional aircraft model used in this research is shown in Figure 1. 
The system has fifteen rigid bodies and two identical suspensions which represent 
the landing gear. Body 1 is the aircraft fuselage, and bodies 2-7 and 9-14 represent 
both wings of the aircraft while bodies 8 and 15 are the landing gear. The suspen-
sion mass is assumed to be concentrated at the wheel centre. The total aircraft 
weight is (72x103 kg) which represents the aircraft weight during landing. 

The fuselage of the aircraft is considered to be a single body (body 1) with its 
coordinate frame fixed to the mass centre. The mass of the body represents the to-
tal weight of the fuselage, the aircraft engines, passengers, fuel etc. 

Fig. 1. Three dimensional aircraft model. 

The wings of the aircraft, which represent the lifting surface of the system, have 
been modelled as two identical flexible cantilever beams discretized by a series of 
rigid bodies joined by elastic joints. Each joint is of a universal type and its flexi-
bility is represented by springs (the type of the joint chosen allows for bending and 
torsion of each body). It is assumed that each body has the same cross section but 
with different dimensions. 

The landing gear is modelled by two identical suspensions. The masses of the 
two suspensions are assumed to be concentrated at the wheel centres. Elasticity of 
the landing gear is introduced by means of a nonlinear spring and damper ele-
ments. The total mass of landing gear components is lumped at bodies 8 and 15 
(Figure 1). 

203



2.2 External and aerodynamic forces 

The forces and moments acting on the MBS model can result from air pressure, 
gravity or others such as those caused by springs, dampers or contact with the
ground. The calculation of the aerodynamic force seems to be most interesting. 
The aerodynamic force is a result of motion of air around the wing which pro-
duces pressure and velocity differences. The elementary concepts of how these 
forces and moments are produced are presented in many texts dealing with aero-
dynamics (e.g. [12]). We make basic assumptions about symmetric flow action on
the aircraft wing, and only the lift and drag forces together with the pitching mo-
ments are taken into account. For such assumptions, several methods have been
developed to compute the flow about a wing which is operating at a small angle of 
attack, so that the resultant flow may be assumed to be inviscid,  irrotational and 
incompressible. A lifting surface theory known as the Panel Method has been used
in this paper for aerodynamic force calculations [14]. 

Fig. 2. Panels and vortex rings model for a thin lifting surface 

In this method the surface of the body is covered by a finite number of small 
areas called panels, each of which has distributed singularities of a certain kind 
that have an undetermined uniform density. The distributed singularities are used 
to deflect the oncoming stream so that it will flow around the body. In general,
source panels are used on the nonlifting surfaces, and vortex panels are used on
the lifting surfaces of a body.  The requirement for the oncoming flow to be tan-
gent to every panel at a particular location gives a set of equations, which is used
to compute the singularity densities on the panels. In this approach, the differential 
equation is converted to an integral over the configuration surface by means of 
Green's theorem. This integral equation is then solved by the discretization proc-
ess. Thus, the overall flow consisting of a uniform flow and a flow induced by the 
singularities on a finite number of panels, becomes determined and the velocity
and pressure at any point in the flow field can be calculated.  

The evaluations of the aerodynamic lift, drag and moment coefficients are all 
based on the proper integration of the pressure coefficient on the lifting surface. 
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the calculation of aerodynamic forces on lifting surfaces undergoing complex un-
steady 3D motion. It is assumed that all considerations are restricted to low an-
gles of attack. 

From a theoretical point of view it is assumed that the problem to be solved is 
described by the Laplace equation for the velocity potential: 

02  (1) 

where is a velocity potential.  
For an irrotational and inviscid flow a velocity potential can be defined such 

that: 

V  (2) 

where  is the gradient operator. If the free stream Mach number is significantly 
small, the flow may also be considered incompressible. The principle of mass con-
servation for an incompressible flow has the form: 

0V  (3) 

Equation (1) follows immediately from equations (2) and (3). 
In order to complete the problem proper boundary conditions on the body sur-

face, its image at the trailing edge and at infinity must be defined. At first, two 
conditions should be satisfied. One is for the velocity normal to the wing surface 
and to the ground to be equal to zero, and the other is for the velocity to have a fi-
nite value: 

0n  (4) 

where n is a unit vector normal to the body and ground plane surfaces  respec-
tively). 

The third condition requires that the influence of the wing on the flow field 
should vanish at large distances from the wing. The fourth requires the Kelvin 
condition to be fulfilled for both the body and the wake. 

It should be pointed out that aerodynamic characteristics of an aircraft are in-
fluenced by ground proximity during takeoff and landing. The interaction of the 
aircraft with the ground is known in the literature as the “ground effect” [15]. The 
flow during takeoff and landing is inherently unsteady even if the aircraft is mov-
ing at constant velocity. These phases are among the most dangerous phases of 
flight and they are included in the aerodynamic modelling presented in this paper. 

The VLM is described in detail from a theoretical and computational point of 
view in a majority of books dealing with aerodynamics [12]. Therefore only the 
main steps of computations of unsteady aerodynamic loads are mentioned in this 
paper:

The Panel Method is solved numerically by means of a very common modified
Vortex Lattice Method [12] which is an extension to the classical VLM used for 
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1. Define geometry, 
2. Calculate panel coordinates, vortex rings coordinates, etc. 
3. Define ground effect, 
4. Select flight parameters 
5. Calculate influence coefficients and wake influence, 
6. Calculate momentary right hand side vector 
7. Solve matrix equation  
8. Wake roll up, 
9. Calculate pressure and load. 

Steps from 5 to the 9 are repeated in a time loop. As mentioned before, the 
wing of the aircraft is modelled as consisting of small bodies. The aerodynamic 
forces and moments are calculated for each body. The point of action of these 
forces and moments is placed in the intersection point between the quarter of the 
mean aerodynamic chord line of each body and the line dividing the body into two 
equal halves. 

2.3 Equations of motion 

Natural coordinates corresponding to a three-dimensional MBS are used to de-
scribe the position of each body by means of the Cartesian coordinates of the basic 
points distributed throughout the elements and by means of the Cartesian com-
ponents of several unit vectors. The body motion is defined through the motion of 
its points and vectors. Each body of the system should have a sufficient number of 
points and vectors linked to it, so that their motions completely define the motion 
of the body.  

Fig. 3. Panels and vortex rings model for a thin lifting surface 

The details of calculations and constraint equations formulation in natural co-
ordinates are given in [7].  Figure 3 shows the complete system and the set of 
points and vectors used to define the MBS model of the aircraft.  

The equations of motion of the MBS can be derived and expressed in a variety 
of forms depending on the type of formalism used. Probably the most commonly 
used with MBS are Newton-Euler methods and Lagrangian methods [10]. Also the 
principle of virtual power [7] which leads to a direct formulation of the inertial 
forces and avoids the differentiation process inherent in Lagrange’s equations can 
be encountered. 
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One of the final forms of the equation of motion of the MBS in natural coordi-
nates (which are in general dependent coordinates) obtained for instance by using 
the principle of virtual power can be written in a general, well known DAE  [7] 
form: 

0q
qqQqqM q

),(
),,(),(

t
ttT

(5) 

where q is a vector of generalized natural coordinates, Q is a vector of external 
(including aerodynamic) and velocity-dependent (Coriolis and centrifugal) forces, 

 is a vector of Lagrange multipliers responsible for magnitude of constraints re-
action forces,  is a vector of constraints equations (usually vector  represents 
scleronomic constraints). 

2.4 Numerical approach – velocity transformation.  

It is well known that from a numerical  point of view equation (5) is in general a 
index-3 DAE equation [13]. It can be numerically integrated directly or in a modi-
fied form in dependent coordinates (DAE equation) or after transformation to in-
dependent coordinates (ODE equation). Introduction to these methods is given in 
detail in [13]. 

In case the equations of motion are integrated in dependent coordinates, then 
BDF (Gear) algorithms can be applied directly to index-3 formulation or to a for-
mulation having a lower index (2 or 1). Usually in integration of DAE equations 
having an index 2 or 1 formulation constraints stabilization methods have to be  
applied in order to avoid drifting effects and problems with numerical stability 
(i.e. projection methods, Baumgarte or GGL algorithms). Independently, aug-
mented Lagrangian methods are proposed as well as algorithms based on promis-
ing IRK methods [13]. 

In this paper the method of integration, which actually belongs to the second 
group of integration algorithms based on transformation equation (5) to formula-
tion in independent coordinates has been applied. The method known as velocity 
transformation has also been applied [8]. In general, velocity transformation fol-
lows from the fact that dependent velocities can be represented by independent (or 
simply alternative) ones: 

zRq  (6) 

In case the constraints are scleronomic the matrix R is orthogonal to the Jaco-
bian matrix, i.e. 

0Rq  (7) 
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Substituting (6) (and its time derivative) into equation (5) (assuming scleronomic 
constraints), multiplying by TR , then using (7) yields: 

)zMR(QRzMRR TT  (8) 

Equation (8) is ODE and can be integrated using classical predictor-corrector, 
BDF or RK methods [13]. It should be pointed out that numerical efficiency of the 
mentioned integration method is strongly influenced by the proper choice of ma-
trix R. In the general case, there exist various methods for matrix R calculation 
based on projections algorithms, SVD or QR algorithms. 

In the velocity transformation method the vector of joint coordinates is taken as 
the vector z. In such case, for a kinematical loop having a tree structure and typi-
cal joints, matrix R can be calculated very efficiently. Details of calculations used 
in this paper are given e.g. in [8]. 

2.5 Simulation results 

The aircraft model developed in this paper is solved numerically. At first, the mo-
tion equations of the wing MBS are integrated in time using a numerical integra-
tion method. To validate this model, a case study is performed by investigating the 
dynamic characteristics of a wing flying in subsonic flow near and far from the 
ground. Finally, the whole aircraft MBS is introduced through the investigation of 
the effect of touchdown impact on the aircraft’s response during its landing opera-
tion for different study cases. 

In one of the first simulation experiment the aircraft wing shown in Figure 3 
is rigidly fixed to the ground, thus simulating a root fixed condition representative 
of the wing-fuselage connection on the actual aircraft. This wing is divided into 
six small bodies. These bodies are interconnected by elastic joints consisting of 
universal joints and springs. The system has ten degrees of freedom. Natural coor-
dinates are used to describe the position of each body in the system. The Unsteady 
VLM (vortex rings singularities) is used to calculate the aerodynamic loads acting 
on the wing with ground effect taken into account. These calculated loads are fi-
nally determined in terms of natural coordinates. The constraint equations and 
equations of motion are first determined in natural coordinates (dependent coordi-
nates), and then transformed into  independent coordinates (the system's degrees 
of freedom) using the velocity transformation process. To validate this model, a 
case study to predict the dynamic characteristics of real aircraft wing flying in 
subsonic flow near and far from the ground was performed. 

The wing MBS resembles a cantilever beam, its different shape modes are well 
known in dynamics literature. In this case, the wing behaviour has been investi-
gated for different flow airspeeds with the angle of attack kept constant (5 de-
grees). Different speeds of the airflow are used as input - external excitation of the 
wing structure. Vertical displacements of each body were determined at each air-
speed. Afterwards, these vertical displacements were plotted against the wing half 
span. The wing MBS was excited in a velocity range between 200 and 600 m/s, 
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each excitation case data was acquired for a period of one minute and several 
cases were performed.  

In Figure 4a the exemplary first mode shape of the discretized wing near and 
far from the ground has been shown. As can be seen, the ground has a great effect 
on the response of the wing MBS.  

In the second simulation, a case study of investigating the effect of the touchdown 
impact on the aircraft response during its landing is chosen. The formulations pre-
sented are used to simulate the impact between the landing gear and the ground.  

a)     b) 

Fig. 4. a) First mode shape of the discretized wing near and far from ground b) Vertical 
displacement of the right wing tip point with and without lift changes. 

The response of the aircraft was investigated for two different situations. In the 
first one, it has been assumed that the aircraft landed in normal conditions, i.e. no 
wake, wind shear (calm atmosphere) or any external disturbances were present. 
The lift coefficient has been set equal to the ground steady-state value (CLs=1.84) 
determined in earlier simulation, representing the landing configuration with the 
ground effect included. In the second situation, it has been assumed that the aircraft 
landed in the presence of sudden changes in its lift coefficient (caused for instance by 
“wake vortices” or due to a wind-shear caused side gust). In this case the steady-
state value of the lift coefficient with the ground effect (CLa=1.84) included is as-
sumed to drop to a value of 0.34 (CL 0.2CLa).

In Figure 4b the vertical response of the tip deflection of the right wing rela-
tive to the coordinate system of the two joints connecting the wing to the fuselage 
(rigid joints) has been presented. The results are plotted from the time of release of 
the model (t=0s) through impact (t=0.51s), rebound of the landing gear (t=0.86s)
and secondary impact (t = 1.41s).  

Figure 4b shows that significant differences which can be observed in tip vibra-
tion between two cases of landing – with lift changes and without lift changes. It is 
clear that the force induced on the suspension system of the aircraft landing gear at 
the time of impact significantly affects the dynamic response of the wing and the 
entire aircraft. If these forces are high, they will be transmitted to the wing through 
the suspension. Therefore, these forces excite the deformation modes of the wing, 
thus producing oscillations that can significantly affect the dynamic response and 
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passenger’s ride comfort of the aircraft. This is a clear indication that the sudden 
changes (drop) in the lift coefficient are very dangerous to the aircraft.  

It should be pointed out that the presented model built using MBS proved also 
to be useful for simulation of other dangerous situation arising during landing such 
as landing on one wheel or rolling motion. 

3 Dynamical Analysis of a Glider Using FEM and MBS Methods 

In this section a dynamic analysis of a glider during the landing manoeuvre is pre-
sented and discussed from the point of view of stress estimation by means of vari-
ous methods. A comparison of results obtained for different computation methods 
has been carried out. For the glider dynamics calculations body positions and ori-
entations have been written in absolute coordinates. FEM and component mode 
synthesis has been used to model the flexibility of the bodies. The most frequent 
landing variant was tested - landing on the main wheel with the front wheel just 
above the ground. During the landing approach phase, the glider should have the 
proper rate of descent, which is defined in international regulations concerning the 
design and operation of JAR-22 gliders - the velocity amounts to 1.5 m/s. In the 
study, the rate of descent was established at 1.955m/s in order to test the behaviour 
of the glider. The total simulation time of the glider’s landing manoeuvre equals 
2s. The gear-ground contact phase lasts approximately 1.8s. 

3.1 The MBS and FEM model of the PW-6 glider 

To perform the analysis of the glider’s dynamics during the landing manoeuvre, a 
calculation model was developed based on the MBS method. The floating frame 
approach algorithm and absolute coordinates formulation were used. In the FEM 
models employed here, the tacit assumption has been made which idealized that 
single grid connections between system components can be made. Within the dif-
ferent calculation variants, a comparison of different methods of stress estimation 
was performed.  

The glider’s fuselage [16] (Figure 5a) was modelled in an FEM software [20] 
environment using quad shell elements (2125 elements) and rigid body elements 
(RBE) to model external fixing points [17]. The model of the front and main (rear) 
suspension was prepared using the MBS method. 

The calculations of the glider’s dynamics (kinematical parameters) were per-
formed using both the MBS method and the floating frame approach [10]. FEM
was used to estimate stresses using various methods. 

The calculations were performed with the simplifying assumption that the ma-
terial of the fuselage is duralumin. In fact, the fuselage of the PW-6 glider is made 
of glass/epoxy composite. For this material the floating frame approach methods 
could not be applied. 
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a)     b)

Fig. 5. a) FEM model of the PW-6 glider fuselage b) Model of rear suspension and simpli-
fied rigid model of pilots. 

The front suspension consists only of the front wheel, which is directly fixed to 
the glider’s fuselage. The rear suspension consists of the main wheel, bellcrank 
and the shock absorber, which are connected with each other and with the fuselage 
by means of kinematical pairs (Figure 5b). Simplified models of the two pilots are 
added to the glider’s model with front and rear suspensions (Figure 5b). It was as-
sumed that during the flight and landing manoeuvre the pilots are not in motion.

3.2 Equation of motion. Numerical integration 

If a system of rigid bodies is modelled by means of the floating frame approach in 
the range of small deformations, the equations of motion in absolute nodal coordi-
nates can be written in the form analogous to equation (5)  [10]: 
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where: Qz – vector of external forces applied to a flexible body, Qv - vector of cen-
trifugal, Coriolis and other forces resulting from differentiation of the kinetic en-
ergy with respect to time and each of the coordinates. The above matrices can be 
obtained by means of classical FEM algorithms used in linear range. 

In order to reduce the number of degrees of freedom, the system of equations 
(9) is usually written in the form: 
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The matrix can be obtained through different modal synthesis techniques. 
The elastic deformations of all degrees of freedom are approximated by a linear 
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combination of suitable modes. The component modes contain the static and dy-
namic behaviour of the structure and consist of two families of modes: constraints 
modes and normal modes. In order to get a decoupled set of modes the constraint 
modes and normal modes are often transformed into a set of orthogonalised com-
ponent modes [7], in consequence it is not possible to distinguish between pure 
static and pure dynamic modes. Equation (10) was integrated numerically using 
direct integration method in index-1 formulation with index stabilization. 

It should be pointed out, that the inertia matrix in equation (10) is a function of 
a few invariant matrices [7]. Through omitting or including some of them it is pos-
sible to control the analysis type and the numerical complexity. 

According to the size of displacements or forces obtained after integration of 
the equations (6), the stresses in flexible bodies can be estimated. The values of 
the obtained stresses can vary significantly depending on the calculation method. 
The issue of stress evaluation for different estimation methods will be discussed 
on the basis of the PW-6 glider.  

3.3 Stress recovery methods 

In order to estimate stresses in selected parts of the glider’s structure, the follow-
ing evaluation methods were used [17, 18]: 
A. Rigid body stress recovery – force based. Neglecting body deformations, it is 

possible to calculate forces and accelerations of the studied system, and then 
the stresses using FEM software, with a statically determinate support. 

B. Flexible body stress recovery – force based. The estimation of stresses is per-
formed as above but all the bodies are treated as flexible. Then, using FEM 
software, static calculations of the system, with statically determinate sup-
ports, were performed. Calculated reaction forces are used to evaluate the cor-
rectness of computations (force values should be numerically close to zero). 

C. Flexible body stress recovery – force based – inertia relief. Basing on the in-
ertia and gravity forces calculated in a MBS analysis, the system is kept in ki-
netostatic equilibrium.  

D. Modal stress recovery. During the modal basis generation phase in the FEM 
code, additional information can be also precomputed in order to later com-
bine the modal coordinates to the FE stresses. This so-called modal stress ten-
sor identifies the stress component associated with each orthogonalized mode 
shape. All calculations for stress evaluations are carried out in MBS software. 

E. Deformation based stress recovery. Stresses are calculated based on node dis-
placements obtained from calculations in MBS software. This can be done us-
ing FEM analysis by stress estimation based on node displacement in con-
secutive time steps. 

The methods mentioned above were used for stress evaluation of different ele-
ments of the glider in many different places of the fuselage. 
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Fig. 6. Location of nodes 1072 (high stresses area) and 915 (moderate stresses area). 

The further part of this study presents selected results of the stress analysis car-
ried out for a chosen time interval in the neighbourhood of two selected nodes - 
node 1072 and node 915 (Figure 6). Node 1072 is located in the place on the wing 
of the glider where high levels of stresses are observed whereas node 915 is placed 
on the rear wall of the cabin of the glider in the area of moderate stresses.  

3.4 Stress recovery methods. Results 

The comparisons of different stress recovery methods in the form of stress trajec-
tories calculated in the time interval <0.19s,0.5s>  in nodes 1072 and 915 with 
methods A through E are presented in Figures 7a and 7b respectively.  

In the area of stress concentration (Figure 7a) in the first phase of landing (ap-
proximately from 0.2s to 0.3s) the representation of the flexible structure as rigid 
(method A) as well as the force methods for stress recovery (B,C) lead to stress 
overestimation in comparison to displacement and modal methods (D,E). In the 
second phase (from 0.3s to 0.5s), the displacement methods give significantly 
higher stress levels. 

a)     b) 

Fig. 7. Stress trajectories in node 1072 (a) and node 915 (b). 

However, the maximal values of stresses calculated with force based methods 
in this time interval are underestimated in comparison with methods D and E. 
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A similar situation is observed in case of stress evaluation in the node 915 
(moderate stress area). However, the relative discrepancy between maximal values 
is greater than in the previous case and climbs to 30 %. In case of strength evalua-
tion or durability analysis such difference can make several analyses useless. 

Significant differences between stresses calculated using different methods are 
also observed at time 0.49s. The stress levels obtained using methods D and E are 
significantly greater than in force based methods. These differences are attribut-
able to the fact, that the modal and displacement stress recovery methods include 
the modal acceleration effects in the inertial terms of the system differential equa-
tions, which the force based approach does not. 

Finally, it should be pointed out that in method B several variants of statically 
determinate supports have always been investigated. 

4 Multibody Model of the Military Aircraft Main Landing Gear

In this section a third case study - MBS model of the Su-22 military aircraft main 
landing gear - is presented [14]. The whole landing gear model includes individual 
models of hydraulic actuators, shock absorber, flexible tire and contacts between 
some landing gear parts. The absolute coordinates and the DAE formulations and 
algorithms were used in all calculations [7]. Several types of simulations like land-
ing gear extension and selected ground manoeuvres were performed. On that basis 
values of the forces which will allow to assess fatigue and durability of landing 
gear in future experiments were obtained. The received results were compared to 
the experimental measurements which were carried out on a real military airplane.  

4.1 Su-22 landing gear – basic information. Multibody model 

The Su-22 aircraft, which is shown in Figure 8a, is equipped with three-strut land-
ing gear. The main landing gear is attached directly to the wings. The nose landing 
gear is attached to the front part of fuselage. The main landing gear retracts to the 
recesses which are located in the wings near the fuselage. 

The struts of the main landing gear are equipped with oleo-pneumatic shock 
absorbers. In addition the struts are connected to the two hydraulic actuators, 
which are in charged of retraction end extension of the main landing gear. The hy-
draulic actuators use the hydraulic installation which is controlled by the electro-
hydraulic valve to retract and to extend the landing gear. 

The diagram taken from the technical documentation of the Su-22 main landing 
gear is shown in Figure 8b [14]. On the basis of technical documentation and 
some landing gear parts’ measurements the model was built using one of the CAD 
packages [19]. Figure 9 describes the main parts and kinematical scheme of the 
Su-22 landing gear right strut. 
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a)     b) 

Fig. 8. Military aircraft during take off (a) and technical details of the main landing gear (b). 

Fig. 9. The kinematics structure of the right strut of the Su-22 main landing gear. 

The MBS model of the landing gear was built using rigid MBS formalism. All 
redundant constraints were eliminated in the modelling process in order to obtain 
reliable results of joint reactions evaluations and friction forces estimations in dy-
namical conditions. 

Both right and left main strut has six degrees of freedom when the gear is re-
traced or extended. During landing and taxiing the side brace is blocked and the 
right and left strut has four degrees of freedom. Due to the fact that some elements 
of the landing gear adjoin each other in some phases of gear motion the contact of 
these part was modelled using theory of contact for rigid bodies.  

4.2 The shock absorber and tire model. Equation of motion 

There are two basic types of shock absorbers in landing gears [5]. The first one 
uses a spring usually made of steel or rubber. The second type of shock absorber 
uses a fluid spring of gas or oil, or a mixture of those therefore is called as oleo-
pneumatic. Nowadays, most landing gear shock absorber contains a mixture of gas 
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and oil. The shock absorber of the aircraft main landing  gear is a kind of oleo-
pneumatic element. 

The Su-22 main landing gear shock absorber is tightly closed. Its volume is di-
vided into three smaller chambers which are called A, B and C. Inside the shock 
absorber there is 1700 cm3 of oil AMG-10 which fulfils a role of damping in sys-
tem. In upper “A” chamber there is a pressurized nitrogen which acts as a spring. 
The gas pressure for fully extended strut is 8,33 MPa. 

Before landing the landing gear is extended and the strut is fully extended due 
to pressurized nitrogen. When the tire touches the ground the vertical load starts 
acting on the piston and the strut stroke increases. In shock absorber the oil is 
forced from the lower “B” chamber to the upper “A” chamber through the main 
orifice. The oil flows from “A” chamber to “C” chamber. However this need only 
be a hole in the main orifice plate, the hole area is often changed by the varying-
diameter metering pin. It is important that the oil not only flows through the main 
orifice but also through numerous orifices in orifice support tube and upper sleeve. 
Consequently in upper “A” chamber the pressure of nitrogen increases because of 
decreasing the gas chamber volume. The energy is absorbed by “pushing” a 
chamber of oil against chamber of dry nitrogen and then the gas and oil is com-
pressed. After an initial impact, the rebound is controlled by the nitrogen pressure 
forcing the oil to flow back from “C” chamber to “B” chamber through orifices. It 
is worth knowing that when the oil flows back the upper sleeve is mechanically 
decreased the number of small orifices from 42 to 2. As a result of that the oil has 
got smaller area to flows back. Because of that the oil flow speed increases as well 
as its temperature. In this way the work of external loads is being dissipated. 

Fig. 10. Main landing gear oleo-pneumatic shock absorber and force model [20]. 
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The oleo-pneumatic element is modelled as single point to point force acting 
between two points which belong to two different parts i and j. The parts (i and j
points) move toward or away from each other [20]. 

The force of oleo-pneumatic element can be calculated from the formula: 

)()()( _ sorisspinFLAirAMBAirOLEO AAPAAPAPPF  (11) 

The AMBP  is an ambient pressure and the other pressures like sAir PPP ;;  are 
the pressures acting on the specific areas in shock absorber which are denoted as 

sorispinFLAir AAAAA _;;;; .
Equation (11) is the result of the summing of the axial pressure forces (pres-

sures action on surfaces normal to the shock strut centreline) on the strut piston 
shown in Figure 10. It should be pointed out that the strut reaction forces, the 
bearing force, and the friction force are not included in that type of solution. 

The nitrogen pressure can be calculated using equation of the polytropic change 
however pressures in fluid chambers can be calculated using formulas based on 
Bernoulli’s equations. Detailed calculations are given in [14]. 

Contact forces between tire and the ground are the major importance for the 
dynamic behaviour of the aircraft during the landing and taxiing. To model real 
driving conditions during landing and taxiing it is important to choose the proper 
tire model [21]. Variety of models which describe the tire forces generated at 
braking, driving, sliding, etc are applied in communicated research. Some of them 
are theoretical which means that they describe the physical model of tire. Others 
are empirical which means that the forces are generated by the functional ap-
proximations and experimental data. The theoretical models require usually many 
parameters which are difficult to obtain. 

In this research, to model the tire forces behaviour of the Su-22 main landing 
gear, the one of the simplest, Fiala Handling Force Model was applied. Detailed 
calculations for this model can be found in [20] and [21]. 

Equation of motion of a rigid MBS can be written with the use of absolute co-
ordinates in index-3 DAE formulation (descriptor form) analogous to the formula 
(5). In the paper Gear (BDF) algorithms were used (index-3, and stabilized index 
1 formulations) for numerical integration of the equations of motion. All models 
(tire, shock absorbers, and MBS model) described in previous sections were in-
cluded into equations of motion in the form of external forces Q or in the form of 
additional kinematical and driving constraints.

4.3 Simulation analyses. Results 

The MBS model of the main landing gear was used in simulations of many differ-
ent manoeuvres of the airplane on the ground during taxiing, taking off and under 
landing impact. The results obtained were validated using experimental measure-
ments. In order to obtain stress, strains and forces in the landing gear parts the 
number of strain gauges were installed on these parts.  
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Fig. 11. The axial force of the right lower side brace during taxiing (“eight” manoeuvre). 

The strains were measured and recorded in real time by digital data acquisition 
system mounted on board for specific manoeuvres of the aircraft during taxiing, 
landing and taking off. The forces and stresses were calculated off line after meas-
urement experiments. 

Figure 11 illustrates exemplary comparison of the real and simulation results of 
axial force in right lower side brace (Figure 9) during the Su-22 aircraft “eight” 
manoeuvre performed on the ground (the sequence of two turns, right and left 
similar to printed eight figure). 

Despite some small differences which are observed in Figure 11 the results are, 
in general still acceptable. However it seems the discrepancies are caused by two 
reasons. The first follows from the fact that due to lack of precise data concerning 
mass moments of inertia of the aircraft they were obtained using CAD software 
and very simple geometrical model of the Su-22 airframe. 

The second reason of differences is a simplification in simulation of aircraft 
motion. In the real conditions a pilot steers an aircraft on the ground by engine 
thrust and using brakes. However the precise values of the engine trust and the 
forces on the brakes were unknown during ground manoeuvres. Moreover, the real 
“eight” manoeuvre was performed as precisely as it was possible but the constant 
velocity and the constant radius during test remain a assumption. To model the 
constant velocity during the “eight” manoeuvre the motion element attached to the 
nose landing gear with constant radial velocity was used. Having the constant ra-
dial velocity the airplane has got almost (because of the tire friction) constant lin-
ear velocity. 
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5 Conclusions 
The following, general conclusions, regarding various MBS formulae in applica-
tion to dynamical analysis of aircrafts during various manoeuvres can be formu-
lated:  

The presented use of fully Cartesian coordinates (natural) for a aircraft MBS 
system allows for a simple and efficient formulation. They allow for a simple 
formulation of constraints, efficient formulation of Jacobian matrix and the 
equations of motion. The method proposed is reliable and economic in terms 
of computer resources, as it has been proved with the test example that corre-
sponds to real system.  
For flexible but not slender bodies which are not exposed to very high angular 
motion, the process of discretizing of a flexible body into small bodies instead 
of the FEM is less complex in determining the MBS equations of motion and 
reduces their numbers in comparison to the FEM. This is expected to reduce 
the computer time and improve the numerical efficiency as well. Therefore, 
better results can be achieved. Aerodynamics forces can be included using 
classical vortex methods. Various aerodynamic effects (like ground) effect 
can be modelled using this method.  
In case of analyses of real subsystems of the airplanes like landing gear fixed 
to flexible structures of the airplanes FEM and MBS seems the very conven-
ient way of modelling. In case of stress evaluation, durability assessment etc. 
the consequences of the method of stress calculation must be taken into ac-
count. The examples given in the paper (glider analysis) suggest that modal 
and deformation based stress recovery are recommended methods. 
All formulae presented in the paper lead to DAE of motion. In the first case 
DAE equation was solved using velocity transformation method. This method 
leads to ODE. In two other cases it was solved using GEAR algorithm applied 
directly to index-3 and stabilized index-1 equation. In case of stress estima-
tion significant differences between results obtained with GEAR algorithm 
applied to index-3 and stabilized index-1 equations were not observed in most 
cases.
Natural coordinates with velocity transformation seem to be a less physical 
formulation than the absolute coordinates formulation but in many cases it 
proves to be more efficient. It is communicated in many references. However, 
in case of using fast computer calculations this disadvantage does not seem to 
be a strong argument against using absolute coordinates for general purpose 
MBS packages [20] used in aircraft simulations. 
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Abstract. This paper analyses the problem of modelling joint friction in robotic manipulators
with gear transmissions in the sliding regime, i.e. at joint velocities varying from close to zero
until their maximum appearing values. It is shown that commonly used friction models that
incorporate Coulomb, (linear) viscous and Stribeck components are inadequate to describe
the friction behaviour for the full velocity range. A new friction model is proposed that re-
lies on insights from tribological models. The basic friction model of two lubricated discs in
rolling-sliding contact is used to analyse viscous friction and friction caused by asperity con-
tacts inside gears and roller bearings of robot joint transmissions. The analysis shows different
viscous friction behaviour for gears and pre-stressed bearings. The sub-models describing the
viscous friction and the friction due to the asperity contacts are combined into two friction
models; one for gears and one for the pre-stressed roller bearings. In this way, a new fric-
tion model is developed that accurately describes the friction behaviour in the sliding regime
with a minimal and physically sound parametrisation. The model is linear in the parameters
that are temperature dependent, which allows to estimate these parameters during the inertia
parameter identification experiments. The model, in which the Coulomb friction effect has
disappeared, has the same number of parameters as the commonly used Stribeck model. The
model parameters are identified experimentally on a Stäubli Rx90 industrial robot.

Key words: Joint friction modelling, helical gear pair, pre-stressed roller bearing, non-linear
viscous friction, asperity friction, Stribeck curve, gear transmission, industrial robot.

1 Introduction

Experimental identification of the inertia parameters of robotic manipulators imposes
high demands on the accuracy of the applied friction models as friction contributes
significantly to the measured joint torques. The friction models commonly used in
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Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Fig. 1. Stäubli Rx90B six-axes indus-
trial robot. Courtesy of Stäubli, Faverges,
France.

Fig. 2. Schematic representation of the
gear transmission inside the joint as-
sembly.

robot literature for this purpose, so-called classical friction models, incorporate Cou-
lomb, (linear) viscous and Stribeck components [1]. These models establish that the
friction torque is a function of the joint velocity. However, it will be shown in this
paper that these models are inadequate to describe the non-linear viscous friction
behaviour at high velocities. The models can be improved ad hoc by including ex-
tra (non-linear) terms with extra parameters in the friction model, but the physical
meaning of such additions is unclear.

This paper analyses the problem of modelling joint friction in industrial robots
in the sliding regime, i.e. at velocities varying from close to zero up to the maximum
appearing values. In order to get an understanding of friction in the joints of industrial
robots, a closer look is taken at the gear transmissions inside the joint assemblies of
the Stäubli Rx90 robot, see Figure 1. The first four joints of the robot, see Figure 2,
are equipped with a so-called JCS (Stäubli Combined Joint), which is a sophisticated
assembly that includes both a cycloidal transmission and the joint bearing support.
The cycloidal transmission is driven by a servo motor via a helical gear pair. The
gears and bearings in the cycloidal transmission are prestressed in order to eliminate
any backlash or play. Both the cycloidal transmission and the helical gear pair are
lubricated by means of an oil bath in order to reduce friction losses and to minimise
wear. Naturally, all joints are equipped with roller bearings. The remaining two joints
in the robot’s wrist will not be discussed in this paper as they have a different set-up.

A new friction model is proposed that relies on insights from tribological models.
The basic friction model of two lubricated discs in rolling-sliding contact is used to
analyse viscous friction and friction caused by asperity contacts inside gears and
roller bearings of the robot joints. The sub-models that describe the viscous friction
and friction due to the asperities are combined into two friction models: one for
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gears and one for pre-stressed roller bearings. In this way a new friction model is
developed that accurately describes the friction behaviour observed in the Stäubli
Rx90 industrial robot.

A brief description of the classical friction models and their applicability in in-
dustrial robot identification is given in Section 2. In Section 3, the friction phenomena
of a single lubricated contact is discussed on the basis of two lubricated discs in a
rolling-sliding contact; expressions for the friction forces due to lubricant viscosity
and asperity contacts are presented. These expressions are applied to model friction
forces arising in two typical transmission components like the helical gear pair and
the pre-stressed roller bearing in Section 4. In Section 5 these models are combined
into a friction model that accounts for friction in a single joint. The unknown friction
parameters of the friction model are identified by means of experiments in Section 6.
It will be shown that the friction model is linear in the parameters that depend on the
temperature of the robot joint, which makes it very suitable to use the friction models
in inertia parameter identification experiments.

2 Friction Modelling at System Level

2.1 Classical friction models

Most friction models in robot literature are combinations of the classical friction
models, see Figure 3. For modelling of friction in robots with revolute joints, friction
is usually modelled as a joint torque T

(f )

j which is a function of its angular joint
speed q̇j . The subscript j denotes the joint number. The most elementary model is
the Coulomb friction model:

T (f ) = sign(q̇) T (f,C), (1)

where T (f,C) is the Coulomb friction torque and q̇ is the angular speed. The Cou-
lomb friction model originates to the friction between sliding dry surfaces which
generally produce large friction forces. Note that sign(q̇) is not defined for zero ve-
locities. This means that the model is not able to describe the friction torque for a
velocity equal to zero. The application of a lubricant between the surfaces results in
the presence of a viscous term in the friction model:

T (f ) = sign(q̇) T (f,C) + c(v)q̇, (2)

where c(v) is the viscous friction parameter, see Figure 3(a). Viscous friction is, in
this model, taken as a linear function of the angular joint speed.

It was found by the Swiss scientist Euler (1707–1783) that a higher force was
needed to bring the surfaces in a sliding motion than there is needed to keep the
surfaces in motion, see Figure 3(b). This so-called static friction effect is taken into
account as
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Fig. 3. Classic friction models.

T (f ) =
{

|T (f )| ≤ T (f,s) if q̇ = 0 ,

sign(q̇) T (f,C) + c(v)q̇ if q̇ �= 0 ,
(3)

where T (f,s) is the static friction torque and T (f,C) < T (f,s). Note that this model
gives a non-unique solution for the coefficient of friction for zero velocities and
that it shows discontinuous behaviour in a transition from zero velocity to non-zero
velocity.

Stribeck [2] discovered that the drop from static friction to Coulomb friction
is not discontinuous for lubricated surfaces but that it is a continuous function of
the velocity, see Figure 3(c). Therefore, the graph representing the relation between
friction and velocity will hereafter be referred to as the Stribeck curve. A well known
model describing the Stribeck effect has been developed by Bo and Pavelescu [3],
which has an exponentially decrease from the static friction to the Coulomb friction:

T (f ) = sign(q̇)
(
T (f,C) + (T (f,s) − T (f,C))e−|q̇/q̇(s)|δ), (4)

where q̇(s) is known as the Stribeck velocity, which indicates the velocity range in
which the Stribeck effect is effective. According to [3] the empirical exponent δ

ranges from 0.5 to 1 for different material combinations.
Armstrong-Hélouvry [4] adopted this Stribeck model and added a viscous term

c(v)q̇:

T (f ) = sign(q̇)
(
T (f,C) + (T (f,s) − T (f,C))e−|q̇/q̇(s)|δ)+ c(v)q̇. (5)

This friction model has been applied by many authors, e.g. [1, 5, 6], for the modelling
of sliding friction in robotic systems. In the next section, the applicability of this
model in the modelling of joint friction in an industrial robot is investigated. The five
unknown parameters, T (f,C), T (f,s), q̇(s), δ and c(v), are determined experimentally.
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Fig. 4. Stribeck curve for joint 1 of the Stäubli Rx90 industrial robot as function of the joint
speed. The dots (•) represent the measurements. Note the non-linear viscous behaviour at high
velocities. Model 1 (− −) is estimated in the full velocity range whereas model 2 ( ) is
estimated in the range from 0 to 0.5 rad/s.

2.2 Stribeck curve measurement

In order to determine the unknown parameters, a Stribeck curve measurement of the
first joint of the Stäubli Rx90 is carried out. For this purpose the joint friction torques
have to be measured as functions of the joint speed. Experimentally, it appears that
the friction torque also depends on e.g. the temperature of the joints and the joint
angle [7]. To have an identical temperature during the experiments an initial warmup
motion is executed before the actual measurements. The influence of the position
and noise are minimised by averaging the measured joint torques during the constant
velocity part of a trapezoidal velocity profile. Figure 4 shows the joint torques of one
joint that are obtained this way for a number of chosen values of the joint speed q̇.
The joint torques are normalised with the maximum joint torque. The Stribeck effect
is clearly visible in the detailed Figure 4(b). Note that the Stribeck velocity parameter
q̇(s) does not necessarily coincide with the joint speed where the friction torque has
its minimum.

The friction model is a non-linear function of two of the unknown parameters,
namely q̇(s) and δ. In order to estimate all five parameters at once, one has to rely on
non-linear optimisation techniques. It is commonly known that non-linear optimisa-
tion techniques may lead to local optima in which non-physical parameter values are
found. Non-linear optimisation techniques can be applied successfully in cases for
which the model is consistent with the observed behaviour combined with a proper
first estimate of the parameter values.

To prevent difficulties with non-linear estimation techniques, a linear least
squares optimisation technique is used to obtain the values for the parameters T (f,C),
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T (f,s) and c(v) which are linear in the model. Values for the parameters q̇(s) and δ

are selected manually and are assumed to be constant.
In this way the parameters are identified in three steps. In the first step, the para-

meters for the Stribeck effect q̇(s) and δ have been given a reasonable value. In step

two, the remaining parameters p(f ) = [
T (f,s) T (f,C) c(v)

]T
are estimated with a

linear least square optimisation, which implies minimising the �2-norm

p̂(f ) = arg min
p(f )

∥∥T − A(f )p(f )
∥∥2

2, (6)

where T = [
T1 · · · Tn

]T is the vector of measured friction torques and matrix A(f )

is defined as

A(f ) =

⎡⎢⎢⎢⎢⎣
e
−
∣∣∣q̇1/q̇

(s)
∣∣∣δ

1 − e
−
∣∣∣q̇1/q̇

(s)
∣∣∣δ

q̇1
...

...
...

e
−
∣∣∣q̇n/q̇(s)

∣∣∣δ
1 − e

−
∣∣∣q̇n/q̇(s)

∣∣∣δ
q̇n

⎤⎥⎥⎥⎥⎦ , (7)

for n measured velocity values. The least squares estimates p̂(f ) from Equation (6)
can be expressed mathematically as

p̂(f ) = (
A(f )T A(f )

)−1A(f )T T . (8)

The last and third step is to fine-tune the manually chosen values for δ and q̇(s).
This is an iterative process where the chosen values are changed slightly before the
second step is repeated. By inspection of the fit between the modelled Stribeck curve
and the measured Stribeck curve the values δ = 0.33 and q̇(s) = 0.024 rad/s have
been obtained.

In this way, two different parameter sets are estimated; one for the full velocity
range from 0 to 4 rad/s and one for a low velocity range from 0 to 0.5 rad/s. As can
be observed from Figure 4(a), the models 1 and 2 show different behaviour for the
low velocity (below 0.5 rad/s) and high velocity (above 0.5 rad/s) range.

Model 1 is estimated for the full velocity range and shows better performance
at higher velocities. The low velocity behaviour is clearly not modelled correctly, as
a value for the static friction torque is found which is lower than the value for the
Coulomb friction. This is caused by the fact that for higher velocities a lower viscous
friction parameter shows a better fit. The mismatch for the viscous friction behaviour
at low velocity is compensated by a negative Stribeck effect.

Model 2 on the other hand shows to be quite accurate for the low velocity range,
the Stribeck effect is described accurately, but then the extrapolation into the high
velocity range is poor. It appears that linear viscous behaviour of the model in Equa-
tion (5) does not confirm with the actual viscous behaviour of the robot joint.

From the fact that a poor fit is obtained, it can be concluded that the model is not
capable to describe the friction phenomena for the full velocity range in the sliding
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Fig. 5. Two lubricated discs in a rolling–sliding contact (a) and the velocity diagram (b) in
which the velocity state (•) of a lubricated contact can be indicated.

regime. The fit can be improved by including extra (non-linear) terms with extra
parameters in the friction model [8], but the physical meaning of such additions in
unclear.

3 Friction Modelling at Contact Level

In this section the friction phenomena of a single lubricated contact are studied. On
system level, the friction is accounted for as a joint torque T (f ). On contact level,
it is more convenient to consider friction as a force f (f ). Analogously, the surface
velocity u is considered in stead of the joint speed q̇.

The main components in a robot joint are bearings and gears. In tribology, friction
inside gears and bearings is often represented by two lubricated discs in a rolling–
sliding contact [9, 10]. The motivation for this representation is that friction in both
the roller–raceway contact in roller bearings and the contact between two teeth in a
helical or spur gear wheel pair can be represented by the friction behaviour of two
lubricated discs in a rolling–sliding contact.

3.1 Two lubricated discs in a rolling–sliding contact

In Figure 5(a), an illustration is given of two lubricated discs in a rolling–sliding
contact. The friction force between both discs is defined as f (f ). The surface velo-
cities of both discs are defined as u1 and u2, respectively. The velocity state of the
lubricated contact can be expressed as a function of these surface velocities. It is,
however, more convenient to express the velocity state of the contact as a function
of the sliding velocity and the sum velocity, see the velocity diagram in Figure 5(b).
The sliding velocity is the difference of both velocities
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u(−) = u1 − u2 (9)

and the sum velocity u(+) is defined as

u(+) = u1 + u2. (10)

Another frequently used quantity to express the velocity state is the slip ratio s, which
is defined as the ratio between the sum and the sliding velocity

s = u(−)

u(+)
. (11)

With these definitions, three typical situations for the velocity state can be distin-
guished:

i. Perfect rolling. Both velocities, u1 and u2, are equal in magnitude and direction.
Then the sliding velocity u(−) equals zero and, consequently, there is zero slip.
This velocity state is indicated by the u(+)-axis.

ii. Full sliding. Both velocities, u1 and u2, are equal in magnitude and opposite in
direction. Then the sum velocity u(+) equals zero, resulting in infinite slip. This
velocity state is indicated by the u(−)-axis.

iii. Constant slip. The ratio s between the sum and sliding velocity remains constant.
This velocity state is indicated by e.g. the dashed line in Figure 5(b). In fact, it
may be any line that crosses the origin O.

In Section 4.1 it will be shown that the frictional behaviour of contacts inside gear
transmissions and roller bearings may be characterised by a constant slip ration. The
friction behaviour as function of velocity at a constant slip ratio is expressed by the
so-called Stribeck curve. As the Stribeck curve is defined for a constant slip ratio,
the curve may be plotted as a function of either the sum velocity u(+) or the sliding
velocity u(−). Schipper [11] defines a lubrication number

L = η0u
(+)

pavRa
, (12)

where η0 is the viscosity, pav is the average pressure and Ra is the combined surface
roughness. Plotting the Stribeck curve as a function of this lubrication number L
yields a so-called generalised Stribeck curve.

The Stribeck curve is characterised by three lubrication regimes: Boundary
Lubrication (BL), Mixed Lubrication (ML) and Elasto-Hydrodynamic Lubrication
(EHL). In Figure 6, these lubrication regimes are indicated in a typical Stribeck curve
for an arbitrary lubricated contact. In the BL regime, at very low velocity, the fric-
tion force is mainly caused by the metallic contact between the surface asperities.
The height of the lubricant film between the surfaces is in the same order as the
height of the surface summits. As the velocity increases, the lubricant film grows
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Fig. 6. A typical Stribeck curve for an arbitrary lubricated contact as function of the lubrication
number L and for a constant slip ratio s.

and less asperities are in contact, resulting in a reduction of the friction force caused
by the surface summits. On the other hand, viscous friction caused by the lubricant
is increasing. This regime is known as the ML regime. Finally, in the EHL regime,
the lubricant film has grown such that the surface summits are fully separated. The
friction force is the force needed to shear the lubricant film. In Figure 6 three differ-
ent Stribeck curves are plotted. The curves range from full Newtonian behaviour to
full non-Newtonian behaviour of the lubricant. Curve (a) shows a typical Newtonian
behaviour of the lubricant at high velocity. In curve (b) the lubricant is mainly New-
tonian, but at high velocity the lubricant shows non-Newtonian behaviour. Curve (c)
corresponds with full non-Newtonian behaviour. It appears that the viscous proper-
ties of the lubricant plays a central role in the friction behaviour in the EHL regime.

3.2 Friction force in the lubrication regimes

In the boundary lubrication regime, the friction force is mainly determined by the
friction force due to the asperity contacts, denoted by f (a). On the other hand, in
the elasto-hydrodynamic lubrication regime, the friction force f (v) due to the vis-
cosity of the lubricating film is dominant. In the mixed lubrication regime both the
asperity contacts and the lubricant viscosity determine the total friction force. As a
consequence, the total friction force f (f ) is assumed to be the sum of the friction
force due to the asperity contacts f (a) and a friction force due to the hydrodynamic
component f (v) [12]. This leads to the expression for the total friction force

f (f ) = f (a) + f (v) =
n(a)∑
i=1

∫ ∫
A

(a)
i

τ
(a)
i dA

(a)
i +

∫ ∫
A(H)

τ (s)dA(H), (13)

where n(a) is the number of asperities in contact, A
(a)
i denotes the area of contact

of a single asperity i, τ
(a)
i represents the shear stress at the asperity contact i, τ (s)
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is the shear stress of the hydrodynamic component and A(H) is the effective area of
contact of the hydrodynamic component. In order to model the total friction force,
both the friction force due to the asperity contacts f (a) and the friction force due to
hydrodynamic component f (v) will be investigated next.

3.2.1 Friction force due to the hydrodynamic component

The force needed to shear a fluid film resembles the sliding friction between two
lubricated surfaces. The fact that a force is needed to shear a fluid film was first
proposed by Sir Isaac Newton (1642–1727). Newton states that the shear stress τ (s)

is proportional to the shear rate γ̇ in the film

τ (s) = η γ̇ , (14)

where η is known as the viscosity. A lubricant behaviour is called Newtonian when
the shear stress–shear rate relation is according to Equation (14) and consequently
has a viscosity which is shear rate independent.

Many lubricants, however, show non-Newtonian behaviour at increasing shear
rates and show a limiting shear stress for high shear rates. The limiting shear stress
implies that the lubricant behaves like a plastic solid for high shear rates. The lim-
iting shear strength is a function of temperature and pressure; it increases at higher
pressures and at lower temperature. Furthermore, the value of the shear rate at which
the viscous–plastic transition occurs increases with a decrease in pressure and an in-
crease in temperature. At high pressures, such as in roller bearings, most lubricants
behave as plastic solids at relative low shear rates.

The model presented in [10] is used to describe the shear stress as a function of
the shear rate for a full non-Newtonian fluid,

τ (s) = τ
(s)
l

(
1 − e

−η0γ̇

τ
(s)
l

)
, (15)

where η0 the viscosity at reference temperature and pressure and τ
(s)
l is the limiting

shear stress. Assuming that the sliding velocity u(−) is a continuous linear function of
the height h of the lubricating film and that there is no slip at the interface between
the fluid film and the solid surfaces, the shear rate γ̇ in the lubricating film may be
approximated by

γ̇ = u(−)

h
. (16)

The friction force f (v) due to the hydrodynamic component can be be approximated
by considering a constant average film height h over a certain hydrodynamic area of
contact A(H), yielding

f (v) =
∫ ∫
A(H)

τ (s)dA(H) ≈ τ (s)A(H). (17)
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For the Newtonian case, substitution of Equations (14) and (16) into Equation (17),
yields the following expression for the friction force due to the hydrodynamic com-
ponent:

f (v) = ηA(H) u
(−)

h
. (18)

For non-Newtonian situations, substitution of Equations (15) and (16) into Equa-
tion (17) yields

f (v) = A(H)τ
(s)
l

(
1 − e

−η0u
(−)

τ
(s)
l h

)
. (19)

Inspection of the above relations shows a dependency of the hydrodynamic friction
force on the height h of the lubricating film. It appears that h strongly depends on
the sum velocity u(+), as will be outlined in more detail next.

Height of the lubricating film

The calculation of the lubricant film height has been studied intensively in Elasto–
Hydrodynamic Lubrication (EHL) research [9, 13, 14, 15, 16]. It was found that the
film height depends on six independent variables:

R the radius of the roller pair, E the elastic modulus of a roller pair,
η0 the viscosity, w the load per unit width,
α the pressure exponent of the lubric-

ant; η = η0e
αp, with pressure p,

u(+) the sum velocity.

The film height is then expressed as a function:

h

R
= f

(
w

ER
,
u(+)η0

ER
,αE

)
, (20)

where the above variables are grouped into four dimensionless parameters. These
dimensionless parameters are:

H = h
R

the relative film height, W = w
ER

the load parameter,

U = u(+)η0
ER

the velocity parameter, G = αE the material parameter.

It has been found analytically by Dowson and Higginson [9] that the minimum
film thickness can fairly accurate be represented by

Hmin = 1.6G0.6U0.7

W 0.13 . (21)

The equation shows that the influence of the material parameter G is quite large.
However, G can be considered as constant for a specific combination of materials
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and lubricant. Furthermore, it can be observed that the load parameter W only weakly
influences the film height. The velocity parameter U is clearly the most significant
parameter. From expression (21) follows a proportionality between the film height
and the sum velocity, expressed as

h ∝ (u(+))0.7. (22)

However, according to experimental results by Crook [14], the film height shows a
proportionality to the sum velocity u(+) given by

h ∝ (u(+))0.5. (23)

This indicates that the power in which the film height relates to the sum velocity does
not have an unique value, but varies between 0.5 and 0.7 depending on the details of
the specific contact. Therefore, it has to be determined for the specific application at
hand.

With these observations, it is possible to express the film height h as a function
of the sum velocity u(+) as

h = h(s)

(
u(+)

u(s)

)δ

, (24)

where the proportionality constant h(s) represents the reference film height, which is
a function of the load parameter W , the material parameter G and the radius R. In
order to keep proper dimension, a scaling velocity u(s) is introduced, which relates
to the lubricant viscosity η, the elastic modulus E and the radius R. From Eqs. (22)
and (23) it follows that the power δ can range from 0.5 to 0.7.

With expression (24) and Equation (18) or (19) the viscous friction force f (v) can
be described as function of both the sum velocity u(+) and the sliding velocity u(−).
The film height of the lubricant also plays a significant role in the friction force due
to the asperity contacts.

3.2.2 Friction force due to asperity contacts

In this section, a relation for the friction force due to the asperity contacts in the
boundary lubrication regime will be derived. The normal load acting on a lubricated
contact is shared between the hydrodynamic component and the interacting asper-
ities of the surfaces. So as the carrying capacity due to the hydrodynamic action
increases as function of the film height, the load carried by the asperities decreases.
Greenwood and Williamson [17] introduced an approach to the modelling of the
friction caused by the asperities which is based on the statistics of the surface rough-
ness of the surfaces in contact. The height distribution of the surface summits can
be considered to be Gaussian, but, according to Greenwood and Williamson [17], an
exponential distribution shows to be a fair approximation for the uppermost 25% of
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the asperities of most surfaces. Using the exponential distribution gives the advant-
age that a fairly simple expression for the number of asperities n(a) in contact can be
used. The expression is given by

n(a) = d(a)A(a) e−λ(s)

, (25)

where d(a) is the asperity density and A(a) the total area of contact. Exponent λ(s) is
known as the separation which is the ratio between the film height h and the standard
deviation of the height of the surface summits σ (s), defined as

λ(s) = h

σ (s)
. (26)

Using the relation for the film height of Equation (24), the separation can be written
as a function of the sum velocity u(+)

λ(s) = h(s)

σ (s)

(
u(+)

u(s)

)δ

. (27)

Then the total friction force due to n(a) asperities can be approximated as

f (a) =
n(a)∑
i=1

∫ ∫
A

(a)
i

τ
(a)
i dA

(a)
i ≈ n(a)f (a,0), (28)

where f (a,0) is the average force needed to break a single asperity i.
Substitution of Equations (25) and (27) into Equation (28) yields the expression

for the friction force f (a) due to the asperity contacts as a function of the sum velocity

f (a) = f (a,0)d(a)A(a) exp

(
− h(s)

σ (s)

(
u(+)

u(s)

)δ
)

. (29)

Note the correspondence of Equation (29) with the exponential part in the model
presented by Bo and Pavelescu [3], Equation (4).

4 Friction Models of Elementary Transmission Components

In Sections 3.2.1 and 3.2.2, expressions for the friction force due to lubricant vis-
cosity and due to the asperities for a lubricated contact between two rolling–sliding
discs have been presented. In this section, these expressions are applied to model the
friction forces arising in the two elementary components; a helical gear-pair and a
pre-stressed roller bearing.
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Fig. 7. Schematic representation of a gear pair.

4.1 Friction model of a helical gear pair

In Figure 7 a schematic representation of a helical gear pair is depicted. Here, the
lower gear wheel drives the upper gear wheel. The figure shows that several teeth
are in contact at the same instance in a gear pair. Furthermore, since the gear pair is
of the helical type, a single teeth is in contact over the full width of the gear wheel
along a large part of the contact line lc.

The two surface velocities u1 and u2 are depicted in the teeth contact as illustrated
in Figure 7. At the point where the contact line lc crosses the pitch circle the velocities
u1 and u2 are equal in magnitude which results in a pure rolling motion (u(−) = 0).
However, at all other points along the contact line, the velocities are not equal in
magnitude, leading to a non-zero sliding velocity. At the moment of interconnection
of the teeth, the surface velocity u1 associated with the driving gear is lower in mag-
nitude compared with u2. Towards the pitch circle they become gradually equal in
magnitude. After the moment of pure rolling, u1 gets larger in magnitude compared
with u2. Consequently, there is a large part during the interconnecting phase where
there is a non-zero sliding velocity.

Since the contact pressures in a helical gear pair are sufficiently low, it is assumed
that the lubricant behaviour will be Newtonian. Consequently, the expression for the
viscous friction, Equation (18), derived in Section 3.2.1, will be applied. The film
height is highly dependent on the sum velocity, as was shown in Section 3.2.1. So
substitution of the expression for the film height, Equation (24), into Equation (18)
yields the viscous friction force for Newtonian behaviour of the lubricant

f (v) = ηA(H)u(−)

h(s)

(
u(s)

u(+)

)δ

. (30)

According to Equation (13), summation of the viscous friction force, Equation (30)
and the friction force due to the asperities, Equation (29), leads to the combined
friction force in a single teeth contact
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f (f ) = f (a) + f (v)

= f (a,0)d(a)A(a) exp

(
− h(s)

σ (s)

(
u(+)

u(s)

)δ
)

+ ηA(H)u(−)

h(s)

(
u(s)

u(+)

)δ

.
(31)

The next step is to derive an expression for the total joint friction torque that is
caused by the friction in a gear pair as function of the joint speed q̇ . The angular
velocity ω1 of the driving gear can be related to the joint speed q̇ as

ω1 = nq̇, (32)

where n is the gear ratio of the transmission. With this relation the sum velocity u(+)

in a single teeth contact is approximated according to Waiboer [7] by

u(+) = rq̇, (33)

where
r = 2nR

(p)

1 sin α. (34)

Here R
(p)

1 is the radius of the pitch circle of the driving gear and α is the pressure
angle of the gear pair. The sliding velocity u(−) varies during the messing phase.
In the interconnecting phase u(−) is negative, it increases to zero at the point where
the pressure line crosses the pitch circle and in the separating phase u(−) becomes
positive. According to Equation (30) the viscous friction force depends linearly on
u(−). Therefore, since the friction force is dissipative, an averaged positive sliding
velocity u(−), defined by [7]

u(−) = s0rq̇, (35)

may be used to describe the viscous friction force for a single teeth contact. Here s0
is an averaged constant slip factor. This implies that the viscous friction inside gear
transmissions may be approximated by a Stribeck curve.

The total friction torque T (f ) can be derived by multiplying the averaged friction

force f
(f )

with constant r and the number of teeth k in contact. Accordingly, sub-
stitution of the Equations (33) and (35) for the sum and averaged sliding velocity in
Equation (31), respectively, yields the expression for the friction torque of a helical
gear pair

T
(f )

gear = T (a) + T (v) = T (a,0) e
−
(
q̇/q̇(s)

)δ
︸ ︷︷ ︸

asperities

+ c(v)q̇(1−δ)︸ ︷︷ ︸
viscosity

. (36)

with the parameters
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Fig. 8. A typical Stribeck curve for a gear pair.

T (a,0) = rkf (a,0)d(a)A(a), (37a)

q̇(s) = u(s)

r

(
σ (s)

h(s)

)1/δ

, (37b)

c(v) = r2ks0ηA(H)

h(s)

(
u(s)

r

)δ

. (37c)

A typical Stribeck curve for a helical gear pair, computed by the model in Equa-
tion (36) with an arbitrary parameter set, is illustrated in Figure 8. The contributions
to the friction torque from both the asperity contacts and the hydrodynamic compon-
ent are also depicted. It shows clearly that the asperity contacts are responsible for
the friction force in the BL regime and that the hydrodynamic component dominates
the friction force in the EHL regime.

4.2 Friction model of a pre-stressed roller bearing

In Figure 9, a single lubricated roller bearing is illustrated. The bearing is a assembly
of two concentric circular raceways, the inner ring and the outer ring. The difference
in velocity between the inner ring and the outer ring is covered by the rolling of the
rollers in between these raceways. Small differences between the velocities (u1, u2),
and also between the velocities (u′

1, u
′
2) cause friction forces in the contact surfaces

between a roller and both the inner and outer rings. These friction forces form a
torque that brings the roller in motion. Since the bearing is highly pre-stressed the
lubricant behaviour will be non-Newtonian, even for small slip ratios [18].

The friction force can be computed as the sum of the viscous friction and the
friction force caused by the asperities. Due to the non-Newtonian behaviour of the
lubricant in the bearing, Equation (19) is used to compute the viscous friction force.
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Fig. 9. Schematic representation of a roller bearing.

Equation (29) will account for the friction force due to the asperity contact. Com-
bining these equations yields an expression for the friction force in a single contact
between a roller and a raceway inside a bearing

f (f ) = f (a) + f (v)

= f (a,0)d(a)A(a) e
− h(s)

σ (s)

(
u(+)

u(s)

)δ
+ A(H)τ

(s)
l

(
1 − e

− η0u(−)

τ
(s)
l

h

)
.

(38)

The sum velocity u(+) depends on the average raceway radius R and the angular velo-
city ω of the inner ring, see Figure 9. This angular velocity ω in turn depends linearly
on the joint speed q̇ . According to Waiboer [7] these relations can be combined to
express the velocities u(+) and u(−) as functions of the angular joint velocity q̇

u(+) ≈ rq̇, u(−) ≈ rs0q̇, (39)

where a constant slip ratio s0 is assumed and r is a constant.
The total friction torque T (f ) generated by a prestressed roller bearing is con-

sidered as the sum of all torques generated by the friction forces at all roller–raceway
contacts, which is achieved by multiplying the friction force in Equation (38) with
the constant r and the number of rolling elements k. Substitution of the velocity ex-
pressions (39) into Equation (38) yields the expression for the friction torque of a
pre-stressed roller bearing

T
(f )

bearing = T (a) + T (v) = T (a,0) e−(q̇/q̇(s)
)δ︸ ︷︷ ︸

asperities

+ T (l,∞) (1 − e−q̇/q̇(l)

)︸ ︷︷ ︸
viscosity

. (40)

with the parameters
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Fig. 10. A typical Stribeck curve for a pre-stressed roller bearing.

T (a,0) = rkf (a,0)d(a)A(a), q̇(s) = u(s)

r

(
σ (s)

h(s)

)1/δ

, (41a)

T (l,∞) = rkτ
(s)
l A(H), q̇(l) = τ

(s)
l hl

rs0η0
. (41b)

A typical Stribeck curve for an arbitrary prestressed roller bearing represented
by the model in Equation (40) is illustrated in Figure 10. The curves for the friction
torque generated by the asperity contacts and the friction torque due to lubricant
viscosity are also plotted separately. Note that the friction torque decreases from the
static friction torque T (a,0) towards the (limiting shear stress) viscous friction torque
T (l,∞).

The film height h is not included as a function of the rolling velocity in the ex-
pression for the viscous friction force in Equation (40). This simplification is intro-
duced since the dependency of the film height on the rolling velocity only influences
the shape of the exponential function associated with the non-Newtonian behaviour.
Furthermore, in the velocity region where the exponential function has an effect,
the friction torque is dominated by the friction torque due to the asperity contacts.
Therefore, the film height h for the viscous part can in this case be approximated by
a constant film height hl .

5 The Joint Friction Model

In Sections 4.1 and 4.2, friction models for both a gear pair and a prestressed roller
bearing have been derived. It is shown that the frictional behaviour may be char-
acterised by a constant slip ratio and may be represented by a Stribeck curve. The
models are based on physical models from tribology literature in which elementary
variables such as lubricant viscosity, contact topology and material properties have
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been taken into account. These elementary variables have been combined into a new
set of parameters, some of which are constant for a specific contact, while others may
change during operation, e.g. due to temperature variations. The number of model
parameters is the minimal number that is required to describe the Stribeck behaviour
associated with the modelled transmission component. With the derived models it
has been shown that it is possible to calculate Stribeck curves for both the gear pair
and the pre-stressed roller bearing.

The next step is to combine these sub-models into friction models that account
for the friction that arises in a single robot joint. The joint friction model can be con-
sidered to be a combination of the friction models associated with the joint transmis-
sion components. However, summation of all sub-models will lead to a large friction
model which includes many parameters. Instead, only the friction characteristics of
the components will be evaluated and only the most significant effects will be taken
into account.

The first four robot joints are constructed according to the schematic representa-
tion given in Figure 2. The assembly contains three main components: a helical gear
pair, a cycloidal transmission and the joint bearings. The joint bearings are highly
pre-stressed and therefore it is expected that the bearings are responsible for the
main part of the asperity friction torque.

The viscous friction torque of the bearings, however, is much lower than its asper-
ity friction torque, as can be observed from the Stribeck curve of the roller bearing,
see Figure 10. Taking into account that the helical gear pair in the joint is operating
at a high angular velocity due to the high transmission ratio, it can be expected that
its viscous friction torque will be dominant with respect to the viscous friction torque
of the bearing.

The cycloidal gears are operating at a low angular velocity and are prestressed
as well. This will results in a small viscous friction torque in comparison with the
helical gear pair. Furthermore, the friction behaviour at low velocity will be similar
to the asperity friction behaviour of a roller bearing.

The final joint friction model will be a combination of the asperity part of the
model of a roller bearing, Equation (40), and the viscous part of the model model of
a helical gear pair, Equation (36). This yields then the combined friction model for
joint j :

T
(f )

j = T (a,0)
j e

−(q̇j /q̇
(s)
j )

δ
(a)
j + c

(v)
j q̇

(1−δ
(v)
j )

j . (42)

Note the different values for δ
(a)
j and δ

(v)
j as the friction torque from the asperities

and the viscous friction torque are generated at different elements and may therefore
show a different film height–velocity behaviour.

For each joint j , there are five unknown parameters; the static asperity friction
torque T (a,0)

j , the Stribeck velocity q̇
(s)
j , the Stribeck velocity power δ

(a)
j , the viscous

friction coefficient c
(v)
j and δ

(v)
j denotes the viscous friction power. The parameters
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δ
(a)
j , δ

(v)
j and the Stribeck velocity q̇

(s)
j depend on the configuration of the friction

contacts. As the configuration of these contacts is assumed to be time-invariant, these
parameters are assumed to be constant. The viscous friction coefficient c

(v)
j depends

on the lubricant viscosity η and as a result it depends on temperature. The values
for all unknown parameters will be obtained by means of experimental identifica-
tion. It appears that the static asperity friction torque T (a,0)

j only slightly depends on
temperature [7].

Comparing the friction model in Equation (42) with the “classical” friction model
of [4] as presented in Equation (5), two main differences can be noticed. The first
difference is shown in the viscous friction part, where the new model shows a non-
linear velocity–viscous friction relation in terms of c(v)q̇(1−δ), as opposed to a linear
velocity relation expressed by c(v)q̇ . The second item in which the new model differs
from the standard model is that the Coulomb friction term has disappeared. This is
due to the fact that the new friction model is based on lubricated surfaces and that
Coulomb friction generally is associated with dry contacts.

6 Friction Parameter Estimation

The values of the parameters are estimated based on the measured values of the
Stribeck curve. The measured values are the mean friction torques at constant joint
speed. Three measurements series are used in which the measurements at each robot
joint are carried out after an initial warmup motion of the robot.

All friction models are non-linear functions of the parameters δ(a), q̇(s) and δ(v),
and linear functions of the temperature dependent parameters T (a,0) and c(v). Es-
timating these parameters in a single optimisation requires a non-linear optimisation
technique. However, non-linear optimisation techniques may lead to local optima in
which non-physical parameter values are found, as was already concluded in Sec-
tion 2.2. To prevent difficulties with non-linear estimation techniques, the values are
obtained in four steps by means of linear least squares techniques. These four steps
are concisely described below. For a more detailed description of the identification
steps, the reader is referred to [7].

The first step of the identification process is to determine the power 1 − δ(v)

and the magnitude c(v) of the viscous part. Taking the natural logarithms of the joint
torques and the joint speeds allows for the application of a linear least squares estim-
ation technique to find the viscous friction parameters. Since only the high velocity
region, from 0.5 to 4.5 rad/s, is considered, the influence of the asperity friction
torques may be neglected.

The second step involves the selection of a proper value for the power δ(a). As a
logical fist estimate, it is set to the same value as δ(v). Additionally, a value for the
Stribeck velocity q̇(s) needs to be chosen. A good first estimate is a value close to the
joint speed where the friction torque is at its minimum.
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Fig. 11. Measured (•) and modelled ( ) Stribeck curve for joint 1. The sample standard
deviation s of the measured values is indicated by (· · · ).

During the third step, the magnitude of the static asperity friction torque T (a,0) is
determined by means of a linear least squares estimation analogue to the estimation
technique described in Section 2.2. For best model fits, the magnitude of the viscous
friction coefficient c(v) will again be included in the estimation, which can be done
because c(v) is linear in the model.

During the fourth and final step, the manually chosen values for δ(a) and q̇(s)

are manually fine-tuned in an iterative process. The resemblance between the mod-
elled Stribeck curve and the measured Stribeck curve is inspected visually and by
modifying the values for δ(a) and q̇(s), a set of appropriate vales is obtained.

Figure 11 shows the measured Stribeck curve as well as the estimated Stribeck
curve. Note that the measured Stribeck is obtained by averaging the joint friction
torques T (f ) from N = 3 measurements at each joint speed. In Figure 11(a) the full
velocity range is shown and in Figure 11(b) a detail of the low (Stribeck) velocity
range is shown. In both figures also the sampled standard deviation s of the meas-
urements is also plotted. In Figure 11(c), both the measured and modelled Stribeck
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curves for joint 1 are plotted on logarithmic scales. It shows that the relative errors
between the model and the measurements are equally small across the full velocity
range. Consequently, the model accurately describes joint friction for both the low
and the high velocity range.

7 Conclusions

In this paper it is shown that classical friction models, commonly used in robot lit-
erature, are inadequate to model the viscous friction behaviour for the full velocity
range with sufficient accuracy. Therefore, a new joint friction model is developed that
relies on insights from sophisticated tribological models. The basic friction model of
two lubricated discs in a rolling–sliding contact is used to analyse the different con-
tacts inside the gears and bearings of the robot joint transmissions.

It is shown that the film height of the lubricant is a function of the sum velocity,
which causes a non-linear relation between the joint angular speed and the viscous
friction torques. The analysis shows different behaviour for gears and pre-stressed
bearings. In agreement with Greenwood and Williamson [17], it is shown that friction
torques caused by the asperity contacts depend on the ratio between lubricant film
height and the height distribution of the surface summits. Increasing the joint speed
leads to a decrease of the asperity friction torque.

Sub-models for the viscous friction and the friction due to the asperity contacts
are combined into two friction models; one for gears and one for prestressed roller
bearings. The sub-models describing the asperity part of the roller bearings and the
viscous friction part of the helical gear pair are combined into a joint friction model.
In this way, a new friction model is developed that accurately describes the friction
behaviour in the sliding regime with a minimal and physically sound parametrisation.

The model is linear in the parameters that are temperature dependent, which al-
lows to estimate these parameters during the inertia parameter identification. The
model, in which the Coulomb friction effect has disappeared, has exactly the same
number of unknown parameters as the commonly used Stribeck model [5].
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Abstract. The human motion analysis, for gait or for most of other activities, relies mostly 
on the use of multibody formulations applied as kinematic or dynamic tools. In many 
biomechanical applications to gait analysis the choice between using direct or inverse 
dynamics to obtain the solution of the problem, even in pure kinematics, only depends on 
the personal preference of the user and not in any particular form of the data available or 
structure of the equations to be solved. In this work the structure of the equations of a 
multibody system are reviewed for direct and inverse dynamic analysis. It is shown that if 
the time dependencies of all degrees-of-freedom of the system are known the inverse 
dynamics is equivalent to a direct dynamics problem. This equivalence is particularly useful 
when the problem of the biomechanical analysis consists in finding the muscle forces in an 
over-actuated biomechanical model that leads to a prescribed motion, which is obtained by 
using video data acquisition or simply by designing such motion. The problem can then be 
solved by using optimization procedures in which the objective functions are physiological 
criteria and, eventually, a measure of matching the prescribed motion. If not used as part of 
the objective function the prescribed motion is introduced in the optimization problem as 
nonlinear constraints. The variables of the optimization problem are, for all type of 
analysis, the muscle forces, directly, or their corresponding muscle activations. It is shown 
that the natural choice for design variables of the optimal problem is the muscle activations. 
Two representations of the time history of the muscle actuation are tested in this work: the 
input sampling where the activations are found in a finite number of time instants and then 
linearly interpolated in between; the smooth exponential function approach where the 
actuation is described by a sum of exponential functions being the width and the size of the 
bumps of each of the functions the unknown quantities. Then the muscle forces are simply 
obtained by using a Hill type muscle model where the state of force-velocity and the force-
length relations are obtained directly from the kinematics of the biomechanical model. The 
methods presented in this work are demonstrated and discussed in the framework of two 
problems associated to the human locomotion apparatus. 

1 Introduction 
To support traditional diagnostics and therapy planning, surgeons are seeking 
computer tools that allow for the prediction of therapy consequences prior to their 
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cise machines and of prosthesis equipment also look into numerical tools that al-
low optimizing the athletes’ performance or the equipment. The growing number 
applications of the human motion analysis, new demands computer planned surgi-
cal interventions and rising quality standards require a better understanding of the 
methodologies used and the improvement of their reliability and efficiency. 

The analysis of the pathological gait associated to cerebral palsy is an example 
where the need for computer tools to support the medical intervention is of major 
importance. Typical effects of the cerebral palsy are pathologic motion 
performances due to range restrictions caused by muscle shortening and/or 
constant muscle contraction and/or joint acampsia. A surgical intervention, such as 
(1) tendotomy (lengthening of tendons), myotomy (notching of muscle tissue) and 
tendon transfer (change of muscle origin and/or insertion points) in order to 
release a dynamical or fixed contraction of muscle tissue, (2) neurotomy (cutting 
specific nerves) to completely relax a spastic palsy irreversibly and (3) ostetomy 
(manual deformation of bones) if the grade of relaxation of muscle tissue achieved 
by tendotomy and/or myotomy is insufficient, is chosen if classical therapies 
failed or are assumed to be insufficient. Most of the surgical approaches are 
irreversible which creates the need for methods that help surgeons to assess a 
priori the consequences of changes in the biological system either leading to 
alternative therapy approaches avoiding a surgical intervention or, if intervention 
is unavoidable, reducing stress for the patient by an optimized operation planning 
[1]. Current diagnosis methods have such a large tolerance interval (approx. 30%-
40%), that computer simulations can provide a major contribution if dynamics can 
be predicted with tolerances of 10%-20%. In this setting, methods for providing a 
first rough estimate of muscle activation profiles that can be refined in further 
optimization stages would render a tool with which typical medical decisions 
could be already supported better than by conventional methods. Certainly, this 
situation is illustrative of what aims to be achieved with more flexible, reliable and 
efficient numerical tools for biomechanical analysis. 

The construction of the biomechanical models suitable to the human motion 
analysis requires the use of a formulation to describe their dynamic equilibrium 
equations. Multibody formulations such as those based on Cartesian coordinates 
[2], natural coordinates [3], joint coordinates [4], Kane’s formalisms [5] are all 
suitable for applications to biomechanical modeling, being most of the codes used 
in biomechanical analysis based on these approaches [6 9]. However, the type of 
dynamic analysis that are required for different application cases to human motion 
may not be available in the computer implementations provided by normal com-
mercial codes. Most of these codes only allow for direct dynamic analysis to be 
used and if, for instance, an inverse dynamics analysis needs to be carried the only 
solution is to drive kinematically all degrees of freedom of the model with a pre-
scribed motion. An important limitation of the application of the standard com-
mercial computer codes to biomechanics studies that involve redundant muscle ac-
tions concerns the impossibility of their use in the framework of optimization. 

application to the specific patient. Trainers, sports specialists, designers of exer-
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rigid bodies are associated to it. The anatomical joints are represented either by 
kinematic joints or by contact joints in the multibody model, depending on the ob-
jectives of the analysis. The ligaments and other passive tissues required to pro-
vide stability or stiffness to the anatomical joints are typically represented as 
spring-damper elements with linear or nonlinear characteristics. The muscles of 
the locomotion apparatus need also to be represented in the models. In particular, 
the use of a detailed description of the muscles is required for the calculation of 
the redundant forces produced by the muscle apparatus. Finally, the use of multi-
body biomechanical models for gait analysis also requires a comprehensive de-
scription of the contact between the different segments of the models and external 
objects, such as the ground. 

A purpose of this work to present multibody based methodologies that, together 
with the use of optimization procedures, allow for the calculation of the redundant 
muscle forces, generated in a particular muscle apparatus of the human body. A 
whole body biomechanical model is constructed using rigid bodies interconnected 
by revolute and universal joints. The biofidelity of the model is improved using 
the subject’s anthropometric link lengths together with biomechanical information 
regarding the physical characteristics of the anatomical segments.  This informa-
tion is collected from a general database and scaled for the subject dimensions and 
total body mass [10, 11]. 

The biomechanical model is driven through an acquired motion by two 
different types of kinematic constraints: joint actuators, that drive the degrees-of-
freedom of the biomechanical model associated with joints, and muscle actuators 
that drive the degrees-of-freedom of the joints crossed by the muscles. When the 
aim of the analysis is to calculate net moments-of-force of particular joints only 
the joint actuators need to be used and the solution to the dynamics problem is 
unique and non-redundant [12]. When the aim is to evaluate the muscle forces it is 
required the use of muscle actuators in the biomechanical models and the system 
becomes redundant, i.e., it contains more unknown forces than the equations 
available to solve them. Note that the redundant or determined nature of the 
solution does not depend on the use of direct or of inverse dynamic analysis. 

The problem of finding the internal forces of the biomechanical system that 
lead to a prescribed motion can be defined as an optimal problem where the 
objective is to find joint net-moments-of force or muscle forces that lead to a 
target motion. In this case a direct dynamic analysis is carried and the objective is 
to minimize the distance between the obtained and the prescribed motion of the 
biomechanical model, and eventually to minimize some physiological criteria. 
Alternatively, the same problem can be solved by an inverse dynamic analysis 
where the objective is simply to minimize the physiological criteria, being the 
motion matching implicitly ensured by the type of analysis used. However, if the 
objective is to find the best motion for a given task the problem is defined as an 

The biomechanical models applied on the study of the human locomotion re-
quire that the major anatomical segments of the lower part of the human body are 
represented. The multibody description of each segment requires that one or more 
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tion of the muscle activation, maximum isometric peak force, muscle length and 
muscle rate of shortening. The equations of motion of the biomechanical system 
and the performance criteria used in de optimization procedure are expressed in 
terms of muscle activations instead of muscle forces. Different types of activation 
functions are used here to describe the muscle activation profiles. In particular, an 
approach for the parameterization of muscle activation profiles based on smooth 
C  base functions that can be combined to mimic typical activation profiles of leg 
muscles during gait is explored in this work [1]. 

The approaches presented here are demonstrated through applications to cases 
of gait analysis. In both application examples described the motion is prescribed. 

2 Multibody Formulations for Biomechanical Modeling 
A multibody system is a collection of bodies that is acted upon by forces and mo-
ments. The rigid bodies are interconnected to each other by kinematic joints that 
constrain their relative motion in different forms. The human body is a multibody 
system where the anatomical segments are the rigid bodies, the muscles, tendons, 
ligaments are responsible for some of the internal forces, and the anatomical joints 
are modeled either as kinematic joints or as force transmitting elements with com-
pliance. The biomechanical model defined as a multibody system is acted upon by 
external forces such as the ground reaction forces during walking. To describe this 
multibody system different formulations may be used, with relative advantages 
and disadvantages among them [2-5,16]. However, because the objective here is to 
emphasize the needs for biomechanical modeling and analysis, the use of Carte-
sian coordinates is implied in the formulation that follows. 

For a constrained multibody system the kinematic joints can be described by a 
set of algebraic equations in the form 

( , )tq 0  (1) 

where q is the generalized coordinates vector and t is the time variable. The 
anatomical joints are typically modeled as time independent constraints while the 
prescribed motion of the joints or the length variation of the muscles are typical 
examples of time dependent constraints in the multibody models presented here. 

Differentiating Equation (1) with respect to time yields the velocity constraint 
equation. After a second differentiation with respect to time the acceleration 
constraint equation is obtained, 

qq  (2) 

optimization of a direct dynamics case and the criteria used may be physiological 
or other, but not that of motion matching. 

The muscle actuators are associated to a muscle model that simulates their acti-
vation-contraction dynamics [13 15]. Here a Hill type muscle model is applied, 
being the force produced by the muscle contractile element calculated as a func-
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Mq g  (3) 

where M is the global system mass matrix, containing the mass and moments of 
inertia of all bodies, and g is the generalized force vector that contains all external 
forces and moments applied on the system and all internal forces that are not due 
to kinematic constraints. Ground reaction forces exemplify external forces while 
ligament and contact between anatomical segments exemplify internal forces.  

Using the Lagrange multipliers technique the constraint equations (1) are added 
to the equations of motion (3). The equations of motion are written together with 
the second time derivative of constraint equations (2) yielding a system of 
equations written as, 

T
q

q

M q g
0

(4) 

where  is the vector of Lagrange multipliers, which physically are related to the 
joint reaction forces. The reaction forces, owing to the kinematic joints are 
expressed as [2], 

( ) Tc
qg  (5) 

If a direct dynamics solution is used to solve Equation (4) the set of 
differential-algebraic equations has to be solved and the resulting accelerations 
integrated in time. However, these do not explicitly use the position and velocity 
constraint equations allowing for drifts in the system constraints to develop. The 
Baumgarte stabilization technique, the Augmented Lagrangian formulation or the 
coordinate partition method are some of the procedures that can be employed to 
keep the constraint violations under control during the numerical integration [17]. 
By using the Baumgarte stabilization Equation (4) is modified as, 

22

T
q

q

M q g
0

(6) 

where  and  are prescribed positive constants that represent the feedback con-
trol parameters for the velocities and positions constraint violations [18]. The dy-
namic response of multibody systems involves the evaluation of the vectors g and 

, for each time step. Then, Equation (6) is solved for the system accelerations q .
These accelerations together with the velocities q  are integrated in order to obtain 
the new velocities q  and positions q for the time step. This process is repeated 
until the complete description of system motion is obtained. 

in which q is the Jacobian matrix of the constraint equations, q  is the 
acceleration vector and  is the right hand side of acceleration equations, which 
contains the terms that are exclusively function of velocity, position and time. 

The translational and rotational equations of motion for an unconstrained 
multibody system of rigid bodies are written as, 

q
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model is a joint actuator, such as that represented for the knee in Figure 1, where 
the angle between two adjacent bodies about the axis of the joint is a function of 
time. The kinematic constraint associated to the joint moment-of-force is 

( int,1) ( , ) cos
i j i j

jo T
P P P Pt tq s s s s 0 (7) 

where vectors 
iPs  and 

jPs  are fixed to the adjacent bodies of the joint and (t)
may be a prescribed function of time, such as for the case of its application in 
inverse dynamics problems, or a unknown function of time that is calculated 
during the solution of a direct dynamics analysis. 

Body i

Body j

jPs

P

iPs

t

Body i

Body j

jPs

P

iPs

t

Fig. 1. Joint actuator associated with the knee joint. 

The moments-of-force are obtained from the definition of the kinematic con-
straint through their relation with the Lagrange multipliers expressed by Equation 
(5). Due to this relation between joint angles and joint moments any biomechani-
cal analysis that requires that torques between adjacent bodies are applied can be 
described by using equivalent joint actuators instead. 

2.2 Kinematic constraint to model muscle actions 

Muscles are introduced in the equations of motion of the multibody system as 
point-to-point kinematic driver actuators, also designated by myoactuators. Two 
of the muscles of the lower extremity muscle apparatus are shown Figure 2 to 
illustrate different complexities in their path. The semimembranosus is a two-point 
muscle, the origin and insertion points, and the tensor fasciae latea is a muscle 
defined by multiple points for an accurate characterization of its curvature. 

2.1 Kinematic constraint to model joint moments-of-force 

A joint moment-of-force is a simplified representation of the lumped moment 
caused by all muscles that cross a particular anatomical joint. Its mechanical 
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Tensor 
Fasciae 
LataeSemimembranosus

Tensor 
Fasciae 
Latae

Fig. 2. Muscle actuators defined with two or more points. 

A constraint equation that forces the distance between two generic points of 
different rigid bodies to change according to a length-time function is associated 
to each muscle.  Considering a two-point muscle actuator, with an origin located 
in point n of rigid body i, and an insertion located in point m of rigid body j, as 
depicted by Figure 3, the kinematic constraint is  

( ,1) 2( , ) ( ) 0TMA
m n m n nmt L tq r r r r  (8) 

where rm and rn are the global position vectors of the origin and insertion points of 
the muscle, respectively, and Lnm(t) is the muscle total length, calculated for each 
time step of the analysis.  

A Lagrange multiplier is associated to each muscle actuator of the locomotion 
apparatus through Equation (5). The physical dimension of this multiplier, used in 
the context of these actuators, is a force per unit of length. Muscle actuators de-
fined with more than two points are introduced in the Jacobian matrix of the con-
straints as a sum of several two-point muscle actuators. Consider, for example, the 
muscle tensor fasciae latea presented in Figure 4. This muscle is described using 
three two-point muscle actuators, labeled respectively m1, m2 and m3 in Figure 7. 
The Lagrange multipliers m1, m2 and m3 , calculated by using equation (4)  and 
appearing in the reaction force equation (5), are associated to muscle actuators m1,
m2 and m3, respectively. 

m

n

body 

body 
O

Z

X
Y

rn

rm

Body i

nr L t

mr

Body j

m

n

body 

body 
O

Z

X
Y

rn

rm

Body i

nr L t

mr

Body j

Fig. 3. Muscle actuator defined between points n and m of rigid bodies i and j.
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m1

m2

m3

Om1

Im1 = Om2

Im2 = Om3

Im3

Fig. 4. Describing more complex muscle actuators. 

With the information presented before, the term qT  of Equation (4) is 
assembled for muscle actuators m1, m2 and m3, and written as: 

1 2 3

1
3 3

1 2
4 14 4

( )( ) ( ) 2 3
5 25 5

6 3
3

7 5

                    

m

m m
m

muscle muscle T m m
m

m
m

m m m

c
q

q q 0 0
q q q 0

g q 0 q q
q 0 0 0
q 0 0 q

(9) 

where q3 to q7 mean the rows of the Jacobian matrix and represent the set of 
coordinates defining the rigid bodies interconnected by the muscle, and mi/ qj are 
the partial derivatives of muscle actuator equation mi with respect to coordinates qj.

Because a muscle must have a constant force per unit of length from its origin 
to its insertion the Lagrange multipliers associated with each segment of the 
muscle must be equal. In the tensor fasciae latea the Lagrange multipliers must be 

m1 = m2 = m3 = TFL  (10) 

Substituting Equation (10) in Equation (9) leads to the expression for a single 
myoactuator of a curved muscle, written as 

1 2 3

1
33( )( ) ( ) 1 2

4 4 4
2 3

5 5 5

6
3

7 5

m

muscle muscle T m m
TFL

m m

m

m m m

c
q

q 0 0q
g q q q 0

q 0 q q
q 0 0 0
q 0 0 q

(11) 

In a biomechanical model the muscle actions in some joints may be represented 
with the joint actuator while the myoactuators may be used in other joints. 

252  J.A.C. Ambrósio and A. Kecskeméthy 



Multibody Dynamics of Biomechanical Models for Human Motion via Optimization  

3 Solution Methods: Forward versus Inverse Dynamics 

Many of the biomechanical problems that involve the human motion require the 
use of optimization methods that are set differently for various types of dynamic 
analysis. The solution of a biomechanical problem by optimization that requires 
the use of inverse dynamics is designated by static optimization, while if direct 
dynamics analysis is used in the optimal problem the procedure is designated by 
dynamic optimization. Problems for which the target is to find the best motion for 
a particular task exemplify typical applications for dynamic optimization proce-
dures. Problems for which the target is to find the internal forces of the biome-
chanical system when developing a prescribed motion provide typical applications 
for static optimization approaches. 

3.1 Direct dynamics  

The direct dynamic analysis requires the solution of Equation (4) or (5) and the 
integration of the resulting accelerations and of the velocities of the system 
forward in time to obtain the new velocities and positions for the next time step. 
The process continues until the motion of the system during the complete analysis 
period is calculated. The direct dynamic analysis flowchart is depicted by Figure 
5.
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Fig. 5. Flowchart for the direct dynamic analysis. 

Most of the biomechanical models for which a direct dynamic analysis is used 
have a number of independent kinematic constraints lower than the number of 
coordinates. Not all degrees-of-freedom of the biomechanical models are guided 
and the motion obtained is the one that results from the known forces applied to 
the system No particular change on the solution of the equations of motion is 
required for this type of analysis when redundant muscle forces are involved. The 
work by Pandy and Anderson [19] exemplifies the use of direct dynamics 
procedures in biomechanical studies of the human motion. 
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3.2 Inverse dynamics 

Inverse dynamics procedures are used in the solution of biomechanical problems 
when the motion is completely known and only the forces that cause such motion 
have to be found. The motion of the biomechanical model is generally acquired 
using experimental techniques based on video imaging [20] or is defined by some 
other criteria. In this work it is assumed that the reader is familiar with the motion 
acquisition techniques, which are described in some detail in [21]. 

To set up the inverse dynamics problem let it be assumed that the prescribed 
motion of the model is fully known and consistent with the kinematic constraints 
of the biomechanical model. Furthermore, let it be assumed that the force vector is 
partitioned into a vector of know forces gknown and unkown forces gunknown.  Let the 
vector of unknown forces be represented by 

T
unknown unknowng C f  (12) 

where matrix C is used to map the space of the forces into the space of coordinates 
that describes the system and, consequently, its structure is dependent on the par-
ticular type of force applied. In Equation (4) the only unknowns are the Lagrange 
multipliers � and the unknown applied forces funknown. Therefore, the first line of 
Equation (4) is now re-written in the form 

 +T T
known

unknown
q C Mq g

f (13) 

The solution of Equation (13) is obtained for a finite number of time instants 
which depends on the sampling required for the solution and, eventually, on the 
sampling of the system kinematics. The solution obtained for a particular time in-
stant is fully independent from the solution obtained for any other time instant. 
Furthermore, this form of the inverse dynamic analysis requires that any unknown 
moment is applied about known axis. Therefore, the modeling of anatomical joints 
through spherical joints is not possible when using this formulation. The use of 
this type of approaches is exemplified by the work of Silva [15]. 

The solution of the linear system of Equations (13) is unique if the number of 
independent kinematic constraints and unknown forces is equal to the number of 
coordinates of the biomechanical system. Otherwise, the solution is not unique 
due to the redundant set of forces and/or constraints used and the solution of the 
problem has to be obtained by defining suitable criteria and using optimization 
methodologies. It must be noted that the joint moments-of-force and the muscle 
actions can be introduced in Equation (13) either as kinematic constraints, as de-
fined by Equations (7) and (8), or by using directly the vector of unknown forces. 
In what follows it is always assumed that the muscle actions and joint moments-
of-force are represented by kinematic constraints. 
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3.3 Inverse dynamics through direct dynamics 

The solution of the inverse dynamics problem may be obtained by using a direct 
dynamics approach provided that all degrees-of-freedom of the system are driven 
by suitable joint or muscle actuators. The procedure in this case starts by acquiring 
the motion of the biomechanical model, as in the case of inverse dynamics. Then 
the time history of all joint or muscle actuators is defined. The procedure used for 
the direct dynamics analysis can now be applied as illustrated in Figure 5. The use 
of this approach is exemplified in the work Strobach et al. [1]. 

It can be shown that in the case of a biomechanical model fully driven by joint 
and myoactuators the results of the analysis by direct and inverse dynamics are 
generally the same [22]. However, some caution must be used when applying this 
procedure for cases in which the biomechanical system is inherently unstable, 
such as in gait analysis, because the resulting motion of the model may differ visi-
bly from the target motion [23].  

4 Biomechanical Modeling of the Locomotion Apparatus 

A biomechanical model suitable for human motion analysis requires that the dif-
ferent anatomical segments and their relative mobility are described, the muscle 
activation and corresponding forces are represented and that the skeletal-muscle 
apparatus is included in the model. In what follows a description of each part of 
the biomechanical model is provided. 

Table 1. Physical characteristics of anatomical segments and rigid bodies for the 50th-
percentile human male. The dimensions and positions of the center of mass locations, with 
respect to the proximal joint with reference to Figure 6. 

Description Body Length CM Location Mass (Kg) Moments of Inertia (10-2 Kg.m2)
i Li (m) di (m) di (m) mi (Ixx/Iyy/Izz)i

Lower Torso 1 0.275 0.064 0.094 14.200 26.220/13.450/26.220 
Upper Torso 2 0.294 0.101 0.161 24.950 24.640/37.190/19.210 
Head 3 0.128 0.020 0.051 4.241 2.453/2.249/2.034 
R Upper Arm 4 0.295 0.153 - 1.992 1.492/1.356/0.248 
R Lower Arm 5 0.250 0.123 - 1.402 1.240/0.964/0.298 
Hand 13 0.185 0.093 0.045 0.489 0.067/0.146/0.148 
L Upper Arm 6 0.295 0.153 - 1.992 1.492/1.356/0.248 
L Lower Arm 7 0.376 0.180 - 1.892 1.240/0.964/0.298 
Hand 14 0.185 0.093 0.045 0.489 0.067/0.146/0.148 
R Upper Leg 8 0.434 0.215 - 9.843 1.435/15.940/9.867 
R Lower Leg 9 0.439 0.151 - 3.626 1.086/3.830/3.140 
Foot 15 0.069 0.271 0.035 1.182 0.129/0.128/2.569 
L Upper Leg 10 0.434 0.215 - 9.843 1.435/15.940/9.867 
L Lower Leg 11 0.439 0.151 - 3.626 1.086/3.830/3.140 
Foot 16 0.069 0.271 0.035 1.182 0.129/0.128/2.569 
Neck 12 0.122 0.061 - 1.061 0.268/0.215/0.215 
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4.1 Skeleton Model 

The biomechanical model of the human body is defined using 16 anatomical seg-
ments and their corresponding rigid bodies is presented in Table 1 and illustrated 
in Figure 6. Considering this kinematic structure, an open loop topology can be 
identified, with a base body described by rigid body number 1, and 5 kinematic 
branches defined by the 4 limbs and the head/neck.  The model has 44 degrees-of-
freedom that correspond to 38 rotations about 26 revolute joints and 6 universal 
joints, plus 6 degrees-of-freedom that are associated with the free body rotations 
and translations of the base body. 
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Fig. 6. Biomechanical model with 16 anatomical segments: (a) Topology of the model; (b) 
Reference for the length and center of mass of each anatomical segment. 

This is a general-purpose biomechanical model that can be applied to any type 
of kinematic or dynamic analysis. Due to the kinematic structure, where no 
spherical joints is used it can be applied in inverse dynamic analysis. The model 
presented is only one of many that can be used to the biomechanical analysis of 
different human motion tasks. However, its application to a particular individual 
requires that its anatomical segments are properly scaled. In the present work, the 
scaling procedure used calculates for each anatomical segment, non-dimensional 
scaling factors, based on measured data from the subject and equivalent data from 
the 50th percentile human male. These scaling factors are defined as [10]: 

2
50 50

; ;
th th

th thi i i i i

n n
i i

L m I m L
i i

L m
L m

(14) 

where 
iL ,

im  and 
iI  are respectively the scaling factors of the length, mass 

and moments of inertia calculated for segment i.  It should be noted that if the 
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length and mass of each segment of the subject are not available, the calculation of 
iL  and 

im  can be performed using the ratio between heights and the ratio be-
tween total body weights, respectively.  The length scaling factor is used to scale 
all the dimensions, including the location of each center-of-mass. This procedure 
should only be used to scale subjects of the same gender and with anthropometric 
characteristics not far from the reference model. 

4.2 Muscle Model 

The dynamics of muscle tissue can be divided into activation dynamics and 
muscle contraction dynamics [13], as schematically indicated in Figure 7. The 
activation dynamics generates a muscle tissue state that transforms the neural ex-
citation produced by the central nervous system, into activation of the contractile 
apparatus. The activation dynamics, although not implemented in this work, 
describes the time lag between neural signal and the corresponding muscle 
activation [15]. 

Muscle Contraction 
Dynamics 

Muscle Force Activation 
Dynamics 

Neural Signal Muscle Activation

Fig. 7. Dynamics of muscle tissue. 

The muscle contraction dynamics requires that a mathematical model of the 
muscle is introduced. In the present work the Hill muscle model is applied to the 
simulation of the muscle contraction dynamics. The model, depicted in Figure 8, 
is composed of an active Hill contractive element (CE) and a passive element 
(PE).  Both elements contribute to the total muscle force Fm(t). In the present 
work, the series elastic element (SEE), usually associated with cross-bridge 
stiffness, is not included in the model since it can be neglected in coordination 
studies not involving short-tendon actuators [13]. 

In the Hill muscle model, the contractile properties of the muscle tissue are 
controlled by its current length lm(t), rate of length change ( )ml t  and activation 
am(t). The force produced by the active Hill contractile element, for muscle m, is 

0

( ( )) ( ( ))
( ( ), ( ), ( )) ( )

m m m m
lm m m m ml

CE m

F l t F l t
F a t l t l t a t

F
(15) 

where 0
mF  is the maximum isometric force and ( ( ))m m

lF l t  and ( ( ))m m
lF l t  are two 

functions that represent the muscle force-length and force-velocity dependency, 
respectively [13,15].  These two functions are approximated analytically by [15] 
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and
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where 0
ml is the muscle resting length and 0

ml  is the maximum contractile velocity 
above which the muscle cannot produce force. The passive element is independent 
of the activation and it only starts to produce force when stretched beyond its 
resting length l0

m. The force produced by the passive element is approximated by 
[15]: 

0
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2 ( ) 1.63

m m
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m m m m m m m

PE m

m m m
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F

F l t l l l l t l
l
F l t l

(18) 

Equation (18) shows that the force produced by the passive element is only a 
function of the muscle length. The force produced by the passive element is not 
unknown being treated as an external force directly applied to the rigid bodies 
interconnected by the muscle. The forces produced by the contractile element are 
the only unknown forces. A muscle actuator equation associated to each 
contractile element is accomplished multiplying each actuator equation by a 
proper scalar factor, so that the Lagrange multiplier associated to the actuator, 
represents muscle force or muscle activation.  The factors for the muscle force and 
activation are  

01/ 2 ; / 2m m m m m m m
l ll F F F lC C (19) 

As the Lagrange multiplier represents muscle activation the associated muscle 
force is calculated using Equation (11). 

)(),(),( tLtLta mmm

Input

PE 

Lm

CE 

)(tF m

Output 
)(tF m

Output 

Contraction Dynamics 

Fig. 8. Contraction dynamics using a Hill-type muscle model. 
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4.3 Skeleton-muscle model of locomotion apparatus 

A muscle locomotion apparatus, with thirty-five muscle actuators can be used to 
simulate the right lower extremity intermuscular coordination. The muscle 
apparatus and a brief description of each muscle action [24] are presented in Table 
2. The physiological information regarding the muscle definition is obtained from 
the literature [25,26] and compiled in a muscle database. This information consists 
in the maximum isometric force, resting length, attachment points, wrap-around 
bodies and the local coordinates of the origin, insertion and via points.  The whole 
muscle apparatus is presented in Figure 9. 

Table 2. List and description of the lower extremity muscle apparatus [27]. 

No Muscle Name Muscle Action 

1 Adductor Brevis Adducts, flexes and helps to laterally rotate the thigh. 
2 Adductor Longus Adducts and flexes the thigh; helps to laterally rotate the hip. 
3 Adductor Magnus Thigh adductor; superior horizontal fibers also help to flex the 

thigh, while vertical fibers help extend the thigh. 
4 Biceps Femoris 

(long head) 
Flexes the knee, and rotates the tibia laterally; long head extends 
the hip joint. 

5 Biceps Femoris  
(short head) 

Flexes the knee, and rotates the tibia laterally; long head extends 
the hip joint. 

6 Extensor Digitorum 
Longus 

Extend toes 2 – 5 and dorsiflexes ankle. 

7 Extensor Hallucis 
Longus 

Extends great toe and dorsiflexes ankle. 

8 Flexor Digitorum 
Longus 

Flexes toes 2 – 5; also helps in plantar flexion of ankle. 

9 Flexor Hallucis 
Longus 

Flexes great toe, helps to supinate ankle; weak plantar flexor of
ankle.

10 Gastrocnemius  
(lateral head) 

Plantar flexor of ankle. 

11 Gastrocnemius  
(med. head) 

Plantar flexor of ankle. 

12 Gemellus  
(inf. and superior) 

Rotates the thigh laterally and helps to abduct the flexed thigh. 

13 Gluteus Maximus Major extensor of hip joint; rotates laterally the hip; superior
fibers abduct the hip; inferior fibers tighten the iliotibial band. 

14 Gluteus Medius Abductor of thigh; anterior fibers help to rotate hip medially;
posterior fibers help to rotate hip laterally 

15 Gluteus Minimus Abducts and medially rotates the hip joint. 
16 Gracilis Flexes the knee, adducts the thigh, helps to medially rotate the

tibia on femur. 
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Table 2. List and description of the lower extremity muscle apparatus [27] (continued). 

No Muscle Name Muscle Action 

17 Iliacus Flexes the torso and thigh with respect to each other. 
18 Pectineus Adducts the thigh and flexes the hip joint. 
19 Peroneus Brevis Everts foot and plantar flexes ankle. 
20 Peroneus Longus Everts foot and plantar flexes ankle; helps to support the 

transverse arch of the foot. 
21 Peroneus Tertius Dorsiflexes, everts and abducts foot. 
22 Piriformis Lateral rotator of the hip joint; helps abduct the hip if it is flexed. 
23 Psoas Flex the torso and thigh with respect to each other. 
24 Quadratus Femoris Rotates the hip laterally; also helps adduct the hip. 
25 Rectus Femoris Extends the knee. 
26 Sartorius Flexes and laterally rotates the hip joint and flexes the knee. 
27 Semimembranosus Extends the thigh, flexes the knee, and also rotates the tibia 

medially, especially when the knee is flexed. 
28 Semitendinosus Extends the thigh and flexes the knee, and also rotates the tibia 

medially, especially when the knee is flexed. 
29 Soleus Powerful plantar flexor of ankle. 
30 Tensor Fasciae Lata Helps stabilize and steady the hip and knee joints by putting 

tension on the iliotibial band of fascia. 
31 Tibialis Anterior Dorsiflexor of ankle and invertor of foot. 
32 Tibialis Posterior Principal invertor of foot; adducts foot, plantar flexes ankle, 

helps to supinate foot. 
33 Vastus Intermedius Extends the knee. 
34 Vastus Lateralis Extends the knee. 
35 Vastus Medialis Extends the knee. 

A set of data for the muscles described in Table 2, including the coordinates of 
their insertion points, the physiological cross section area and the coordinates for 
the via points of curved muscles, are found on the work by Carhart [26]. 

5 Solution of the Force Redundant Problem by Optimization 

The human muscle system is highly redundant, being possible to identify several 
muscles that guide the same degree-of-freedom of the same anatomical joint. Inde-
terminate systems have an infinite set of possible solutions, being the aim of opti-
mization techniques to find, from all the possible solutions, the one that minimizes 
a prescribed objective function, subjected to a certain number of restrictions or 
constraints. Mathematically, the optimization problem is stated as: 

260  J.A.C. Ambrósio and A. Kecskeméthy 



Multibody Dynamics of Biomechanical Models for Human Motion via Optimization  

Fig. 9. Lower extremity muscle apparatus. 
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where the vector of the unknown parameters, or design variables, is b with the 
components bi bounded respectively by blower and bupper, 0 ( )bF  is the objective or 
cost function to minimize and ( )jf b  are constraint equations that restrain the state 
variables.  In Equation (20), nsv represents the total number of design variables and 
ntc the total number of constraint equations in which nec are of the equality type. 

The minimization of cost functions simulates the criteria adopted when 
deciding which muscles to recruit and defines the level of activation that produce 
the adequate motion or posture for a specific task. The selection of the most 
appropriate criterion to use in the optimization process resides upon several as-
pects such as the type of motion under analysis, the objectives to achieve or the 
presence of any type of pathology. 

5.1 Objective functions associated to prescribed motion 

Assume that the objective of the analysis of a given human movement task is to 
find the muscle forces that are developed in order to achieve a given motion that is 
experimentally acquired. The problem can be set as the minimization of an 
objective function that measures the distance between the motion obtained and the 
acquired target motion, i.e., the minimization of the sum of the squares of the 
differences between the motions evaluated at a given number of time instants 
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where the target angle ( )t
it  is obtained by sampling the measured angle ( )t

at m discrete instants in time. Likewise, the computed angle ( , )c
it b  is obtained 

by performing a forward dynamics simulation of the complete model and 
sampling this function at the prescribed output points in time ti. Appropriate 
penalty functions can be added to the objective function represented in Equation 
(21) on either the design variables directly, to facilitate the optimization process, 
or on the behavior of the biomechanical system, such as a physiological criteria. 

5.2 Objective functions associated to physiological criteria 

A cost function must reflect the inherent physical activity or pathology and to 
include relevant physiological characteristics and functional properties, such as the 
maximum isometric force or the electromyographic activity [28].  From the 
computational point of view, a cost function must be numerically stable and fast to 
evaluate. Some of the most commonly used cost functions are: 
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Designated by sum of the square of the individual muscle forces, when applied to 
the study of human locomotion this cost function is considered to fulfill the 
objective of energy minimization. This cost-function does not include any 
physiological or functional capabilities [28]; 
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man

m
CE

m
bF (23) 

Known as sum of the cube of the average individual muscle stress this cost func-
tion, introduced by Crowninshield and Brand [29], is based on a quantitative 
force-endurance relationship and on experimental results. It includes physiological 
information, namely the value of the physiological cross sectional area of each 
muscle and it is reported to predict co-activation of muscle groups in a more 
physiologically realistic manner [28]. The interested reader may find a list of other 
suitable objective functions and their description in  [27, 28]. 

5.3 Optimization methods 

Different optimization packages can be used in the solution of the optimization of 
the redundant muscle forces: DOT 5.0 [30], DNCONG from IMSL Library [31], 
NAG library [32] and MMA – Method of Moving Asymptotes [33] are examples 
of some of these packages.  The first three methods use successive quadratic 
programming algorithms, while the fourth one uses the globally convergent 
method of moving asymptotes with inner and outer iterations. In all cases the op-
timization problem is subject to linear and/or nonlinear constraints. 
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5.4 Parameterization of the activation profile 

In the optimization problems described here the muscle activations are the design 
variables used to find the optimal muscle forces. Measurement data suggests that 
an activation curve typically involves a limited number of maxima during full gait 
cycle, typically 1-2 bumps [29,34]. Because the signal strength in surface 
electromyography is related to several factors such as subdermal muscle depth, 
skin preparation and interference of crossing muscles, its use to draw conclusions 
on exact muscle activation profiles is strongly limited. However, this observation 
can be used to reduce the complexity of the function search space. A procedure to 
discretize activation profiles is to sample the functions at given points and 
interpolating the values between sampling points by piecewise linear functions, 
leading to 

1
1

1

( ) , 0, ; ,i i
i i i i

i i

A A
a t A t t i n t t t

t t (24) 

where ti are the sampling times, Ai are the sampling values and a(t) is the resulting 
activation function. By using the sampled values Ai as design parameters, the op-
timization routine can find the best fit such that the resulting motion matches pre-
scribed values. This approach, shown in Figure 10(a), is called input sampling. 
Equation (24) provides a large flexibility to the problem solution due to an arbi-
trary number of design variables Ai. However, the same large number n of design 
parameters can prevent the optimizer of converging. 

Another approach, proposed by Strobach et al. [1], employs a limited number 
of exponential functions that render smooth bump behavior. The goal of the 
optimization is to determine location, amplitude and width of these exponential 
bumps, and therefore using them as design parameters. For a n-bump activation 
profile the activation function is written as 

22 2
11 1 2 1 ( )( ) ( )

1 2( ) nC t TC t T C t T
na t A e A e A e (25) 

This approach is denoted as C  in what follows. The principle of this 
parameterization is depicted in Figure 10(b). 

(a) (b) 

Fig. 10. Parameterization of muscle activation by (a) input sampling, i.e., discretization and 
linear interpolation and (b) smooth exponential function approach C .
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6 Application to Cases of Human Locomotion 

To appraise the different types of dynamic analysis of biomechanical systems pre-
sented in this work and their use in the framework of the human locomotion two 
application cases are presented. The use of inverse dynamics analysis in human 
motion to study an exercise of jumping is presented and discussed. This applica-
tion is based on [35]. To illustrate the use of the direct dynamics analysis in gait 
analysis a case of the extension and flexion of a leg, based on [1], is presented and 
discussed. In both cases the muscle redundancy is taken into account in the models 
and the muscle activation levels are used as the unknown parameters that have to 
be calculated in order to find the individual muscle forces. 

6.1 Inverse dynamics analysis of a jumping exercise 

The methodology proposed here is applied to solve the muscle force distribution 
problem in the supported leg during the take-off phase to aerial trajectories in a 
ballistic motion. A 1.68 m male with a body mass of 68 kg performed a jump, rep-
resented in Figure 11 by two frames that coincide with the beginning and end of 
the take-off phase of the motion. The ground reaction forces are measured using a 
Kistler 9281B force platform with a sampling frequency of 1000 Hz, while the 
body motion is videotaped at 50 Hz by 4 synchronized cameras [35]. 

Fig. 11. Beginning and ending of the take-off phase of a jumping exercise. 

The time characteristics of the ground reaction forces measured in the trial are 
shown in Figure 12. The data differ from typical gait data both in the shapes and 
magnitudes of the force curves. The maximal vertical reaction is almost four times 
larger than for its gait counterpart, and the peak value of the medial-lateral 
component is seven times larger than for its corresponding in a gait trial [15]. 

The inverse dynamic analysis of the biomechanical model is carried out firstly 
to find the net moments-of-force in the anatomical joints of the lower extremities. 
The results obtained in the inverse dynamic analysis of the jump, presented in 
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Figure 13, show a considerable loading of the ankle joint of the supporting leg. As 
expected, a strong activity of the plantar-flexors muscles spanning this joint is also 
observed. A large peak of the net torque at the hip joint occurring at the beginning
of the contact phase of the foot with the ground, i.e., at t = 0.08 s is observed. An
oscillating time-force characteristic for some of the muscles that span the knee and 
hip joints can be anticipated as a consequence of this behavior. 
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Fig. 12. Vertical (Rz), anterior-posterior (Rx) and medial-lateral (Ry) components of the 
ground reaction force measured in the force platform. The markers denote the time instants
for which the video frames are available. 

The results of the optimization procedure are the activations of the muscles of
the locomotion apparatus. The forces observed in each muscle are calculated by 
using the individual muscle characteristics and the respective muscle force-length
and force-velocity curves. The force versus time characteristics of the selected 
muscle forces obtained are presented in Figure 14. Some of the force time histo-
ries refer to groups of muscles obtained by lumping muscles with similar func-
tionalities. Muscle groups that result from the lumping process are the iliopsoas, 
which results from the iliacus and the psoas, the hip adductors, which include the
adductor longus, adductor brevis and adductor magnus, the hamstrings that ac-
count for the semimembranosus, semitendinosus and biceps femoris long head, the
vasti muscles, which include the vastus medialis, vastus intermedius and vastus
lateralis, and the triceps surae that is the lumping of the gastrocnemius lateral, gas-
trocnemius medial and soleus. 
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Fig. 13. Resultant net torques at the anatomical joints of the lower extremity. 
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Fig. 14. Forces of selected muscles of the supporting leg of the jumper during the trial. The 
vertical dashed lines indicate the supporting phase of the jump. The markers represent the 
results obtained at the time frames. 

The analysis of the trial starts with the jumper in the air, when his trunk is in a 
forward-lean position. The hamstrings, the short head of the biceps femoris (with a 
small time delay) and the gluteus maximus are therefore working at a maximum 
force to raise the trunk to an upright position, which is achieved when a foot 
touches the ground. At this moment, very strong contractions of glutei and vasti 
muscles occur to neutralize impact ground reaction forces. The gluteus maximus 
works as a hip extensor and the vasti group extends the knee joint. The rectus 
femoris, which spans two joints, is not involved in this action. A considerable 
activity of the hamstrings, which stabilize the movement with their antagonistic 
action to the knee extensors, can also be noticed. Simultaneously, the triceps surae 
generates a powerful ankle plantar flexion to push the body forward. The common 
action of all these muscles stretches out the lower leg, which is very useful when 
carrying the maximal ground force reactions in the middle of the support phase. A 
remarkable excitation of hip adductors at this time stabilizes the movement of the 
jumper and helps to put the legs together in the air later. The final activity of the 
glutei, biceps femoris (short head), iliopsoas and hamstrings causes knee bending 
and thigh uprising that allow the body to achieve an appropriate airborne position. 
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The activation levels of selected knee flexors and extensors are depicted in Fig-
ure 15. Not shown in this figure, the characteristics of the sartorius and gracilis, 
which are the remaining knee flexors, are similar in shape to the ones presented. 
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Fig. 15. Activation level of the knee flexors, semimembranosus, semitendinosus and biceps 
femoris and of the knee extensors, rectus femoris and vasti muscles. 

During the take-off phase there are considerable changes in activation levels of 
muscles spanning the knee joint. Two peaks of force occur in the beginning and in 
the middle of the support phase, which match those already observed in Figure 14. 
The first peak corresponds to the steep increase of the resultant ground reaction 
force, whereas the other one is associated to the maximal vertical ground reaction. 
The period of time used to increase the activation of a muscle is estimated to be on 
the order of 10 ms, while that for deactivation is on the order of 50 ms [13]. It is 
rather unlikely that semitendinosus has been fully activated/deactivated within 40 
ms, which corresponds to the first peak in Figure 15.  

Fast deactivation of some muscles is a consequence of the static optimization 
procedure used where the calculation of the activations that lead to the 
minimization of the cost function at a single instant of time is unrelated to what 
happens in other instants of time. Several models of the muscle apparatus of the 
lower limb have been used in the solution of the redundant problem, starting from 
a 35 muscles structure. It has been observed that models using a lower number of 
muscles lead to larger oscillations for the force-time response of the muscles. The 
general trend observed is that a larger number of muscles involved in the solution 
of the redundant problem leads to smoother results for the muscle force time be-
havior. 

6.2 Direct dynamics in gait analysis 

The case presented here to illustrate the use of the procedure for a case where di-
rect dynamics is used in the framework of a gait analysis, consists of a two-joint 
subsystem of the right leg, comprising pelvis (fixed in space), femur, tibia and 
fossa pedis [1]. The model is driven by two pairs of antagonistic muscles, adduc-
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tor longus, gluteus maximus, biceps femoris caput brevis, vastus intermedius. The 
hip and knee joint are assumed to supply one degree of freedom for flexion-
extension each, as presented in Figure 16. The time interval for the integration was 
set to T=3 s.. The biometric data of the leg concerns a 1.78 m tall male specimen 
of 77.9 kg. The mass and inertia properties are scaled from that provided in Table 
1 and the muscle origins, insertions and geometry are reported in [25]. 
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Fig. 16. Two-joint subsystem of hip and knee and prescribed target motion for the hip and 
knee angles. 

The fulfillment of a prescribed target extension and flexion motion of the leg is 
the objective of the analysis. The objective function is given by 

2 21 1
0 2 2

1 1
, ,

m m
c c

h i h i k i k i
i i

t t t tb b bF (26) 

where , , ,c
h i k i h it t t b  and ,c

k it b  denote the sampled target angles for 
hip and knee and the simulated joint angles for hip and knee for a design parame-
ter set b for the m time instants during the optimization process, respectively. Note 
that in the objective function described in Equation (26) no physiological criteria 
is used for the purpose of this example. A more general objective function may 
use a measure of the precision of the motion obtained with respect to the target 
motion and a physiological criterion, represented by Equations (22) or (23). Al-
though the influence of the output sampling step size has been included in the 
analysis all results reported here concern a sampling step of �t= 0.1 s. The num-
ber of muscles included in the system lead to 16 design parameters in case of the 
smooth exponential function C  approach, with two bumps, where the muscle ac-
tivation is represented by Equation (25). When the input sampling approach is 
used, being the muscle activations described by Equation (24), a total of 40 design 
parameters are required when the number of amplitudes per muscle is set to 10. 

To assess quality of matching between target and simulated functions, the ob-
jective function is divided by the number of output sampling points, leading to a 
normalized objective function defined by * * /f f mb b , where b* is the set 
of design parameters at the optimum point and m=T/(�t+1).  The performance of 
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the methodology is measured as the CPU time used in the analysis. Figure 18 
shows the computation time and normalized final cost function for the cases in 
which the input sampling and the smooth exponential function C  are used. 
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Fig. 17. Optimization results, measured in terms of the hip and knee angles, for the biome-
chanical system shown in Fig. 16 for: (a) hip flexion using the input sampling; (b) hip flex-
ion using the C  function; (c) knee flexion using the input sampling; (d) knee flexion using 
the C  function 

Both in terms of the CPU time and value of the optimum the smooth 
exponential function C  renders better results as observed in Figure 18.  These 
conclusions are consistent with the observation of Figure 17 where the target 
angles for both anatomic joints are better matched in the procedure using the 
smooth function. 
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7 Conclusions 

Multibody dynamics methodologies for developing biomechanical models and for 
analyzing them have been presented and discussed here in the framework of hu-
man motion activities, with emphasis in human gait analysis. It has been shown 
that although both direct and inverse dynamic approaches can be used to analyze 
biomechanical problems with prescribed motion they pose different requirements 
for the development of biomechanical models. The definition of the biomechani-
cal analysis as an optimal problem is the only form to solve the muscle force re-
dundancy problem in general. It was shown that to solve the problem, regardless 
being defined as a static or a dynamic optimization, the muscle actuations are bet-
ter design variables than the muscle forces directly. Furthermore, it was shown 
that for cases of prescribed motion the minimization of objective functions that re-
flect the distance between the actual motion of the biomechanical model and such 
target motion allows for the solution of a problem where inverse dynamics meth-
ods are typically applied by direct dynamics methods. Furthermore, when the ana-
lyst adds to the distance objective function the physiological criteria not only the 
biomechanical analysis leads to a motion equal or similar to the prescribed one but 
also the muscle forces are shared in a optimal form from the physiological point of 
view. All the optimization procedures are more efficient and more robust when 
proper descriptions of the activation profiles are used. It has been shown that the 
use of smooth exponential functions to describe the muscle activation profiles has 
advantages over the traditional piecewise linear interpolation both in terms of pre-
cision and computational effort.  All procedures described have been exemplified 
by human motion activities with the locomotion apparatus. 
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From Multibody Dynamics to Multidisciplinary
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Abstract. With the increasing integration of mechanical, electrical and hydraulical compon-
ents in advanced engineering systems, the integrated analysis of coupled physical phenomena
and coupled technical systems gets more and more important. The methods and software tools
of multibody dynamics are used successfully as integration platform for these multidisciplin-
ary investigations. The present paper summarizes some multidisciplinary applications in the
context of multibody dynamics and considers common problems and solution strategies. A
novel modal multifield approach for coupled field effects like thermoelasticity is discussed in
more detail.

1 Introduction

In the early days of technical simulation, the analysis of coupled physical phenom-
ena was restricted to high-end applications like aeroelastic problems that require
the investigation of fluid-structure interaction. Sophisticated models for the coupled
problems were studied using highly developed specialized simulation tools on the
most powerful computer hardware being available at that time.

Today, the state-of-the-art is characterized by substantially improved and stand-
ardized methods for model setup and numerical solution and by the dramatically
improved power of modern computer hardware. Multidisciplinary applications in-
volving coupled technical systems and coupled physical problems are handled by
adapting and extending standard simulation tools on standard PC or workstation
hardware. Nevertheless, there are still challenging open problems and a large po-
tential to study multidisciplinary problems as robustly and efficiently as classical
monodisciplinary ones.

The trend from monodisciplinary to multidisciplinary applications in technical
simulation was strongly pushed by the increasing integration of mechanical, elec-
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trical and hydraulical components in advanced engineering systems and by the in-
creasing success of linear and nonlinear model-based control devices.

Block-oriented approaches like Matlab/Simulink1 or Modelica2 [1] play an im-
portant part in network based modelling strategies for coupled problems. On the
other hand, the standard tools for coupled field effects that are distributed in space
are based on finite element discretizations [2].

Therefore, it might be surprising that also methods and software tools for clas-
sical monodisciplinary applications like multibody dynamics are very successfully
used in the analysis of multidisciplinary problems. Furthermore, in several discip-
lines a common network approach is used for the modelling of complex systems.
Monodisciplinary network models of system components may be combined to one
large model of a multidisciplinary problem that is analysed by block-oriented tools
or following a co-simulation approach. These topics will be discussed in more detail
in Section 2.

The numerical methods of multibody dynamics require much less computational
effort than methods that are based on finite elements. The discussion of a modal
multifield approach for thermoelastic problems in Section 3 illustrates that well ap-
proved numerical methods from multibody dynamics can be carried over to more
complex multidisciplinary applications including coupled field effects. In Section 4
the new approach is applied to a high-performance machine tool with thermal loads
caused by linear induction drives.

The material of Sections 3 and 4 is the condensed and revised version of a paper
that both authors contributed to the ECCOMAS Thematic conference “Multibody
Dynamics 2005” in June 2005 in Madrid [3].

2 Methods and Software Tools of Multibody Dynamics in
Multidisciplinary Applications

The term “multidisciplinary” is used to characterize applications that are beyond the
bounds of classical monodisciplinary methods and tools for modelling and for system
analysis. Because of the continuous development of monodisciplinary methods and
tools, these bounds are not fixed a priori.

2.1 Classical multibody dynamics

Multibody dynamics may be considered as a typical example for continuous devel-
opment and extension of monodisciplinary methods and tools. In its most simple

1 Matlab and Simulink are trademarks of The MathWorks, Inc.
2 Modelica is a trademark of the Modelica Association.
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form, the multibody system consists of N rigid bodies that are connected by (mass-
less) joints and by force elements. The equations of motion form a second order
differential-algebraic equation (DAE) of the general form [4]

M(p, t) p̈(t) = h(p, ṗ, t) − G�(p, t)λ, (1a)

0 = g(p, t), (1b)

with (unknown) position coordinates p(t). The matrix M(p, t) represents the sym-
metric inertia matrix of the multibody system. The generalized Coriolis forces and
the applied forces are summarized in h(p, ṗ, t).

In general, the position coordinates p(t) ∈ R
np have to satisfy nλ < np holo-

nomic constraints (1b) that are coupled to the dynamical equations (1a) by constraint
forces −G�(p, t)λ with Lagrangian multipliers λ(t) ∈ R

nλ and the constraint mat-
rix G(p, t) := (∂g/∂p)(p, t). For a minimum set of generalized coordinates p(t),
there are no constraints (1b) and therefore (1) simplifies to the second order ordinary
differential equation (ODE)

M(p, t) p̈(t) = h(p, ṗ, t) (2)

with nλ = 0.

2.2 Force elements with inner state variables

The compact form of the equations of motion (1) is favourable for textbook presenta-
tions and is used, e.g., throughout the textbook literature on time integration methods
for constrained mechanical systems, see [5].

However, none of the multibody system simulation tools that are used in real-life
applications has ever been restricted to the pure mechanical behaviour of conservat-
ive rigid N-body systems [6], see also [7]. Standard extensions are dissipative forces
h(p, ṗ,λ, t) that may depend linearly or nonlinearly on the constraint forces −G�λ
(joint friction) and force elements with inner state variables z(t) describing, e.g.,
the state of electrical or hydraulical system components [8]. The numerical solvers
of state-of-the-art industrial multibody system tools are therefore tailored to model
equations that combine constrained second order differential equations (1) with first
order differential equations for z = z(t), see [8, 9]:

M(p, t)p̈(t) = h(p, ṗ, z,λ, t) − G�(p, t)λ, (3a)

ż(t) = c(p, ṗ, z,λ, t), (3b)

0= g(p, t). (3c)

vector p of position coordinates has to be extended by the coordinates that describe
the deformation of the elastic bodies [10], see also Section 3 below.

Equations (3) are not restricted to rigid bodies. For flexible multibody systems, the
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2.3 Analysis of mechatronic systems by multibody system tools

The problem class that results in model equations (3) covers not only rigid and flex-
ible multibody systems but also many mechatronic systems combining mechanical,
electrical and hydraulical components [11]. Formally, the methods and software tools
of multibody dynamics are monodisciplinary ones but in practice they provide also a
powerful integration platform for the solution of these multidisciplinary problems.

The number of library elements for non-mechanical system components is, how-
ever, much smaller than for the classical mechanical ones. Often, tailormade force
elements (user elements) have to be developed and implemented. Another common
problem are interfaces for data import (model setup) and data export (postprocessing
of simulation data, visualization) for non-mechanical components.

In principle, the above comments on model setup and simulation of “non-
mechanical” components apply as well to any (mechanical or non-mechanical)
system component that is beyond the classical fields of application of industrial
multibody system tools (vehicle dynamics, dynamics of machines and mechan-
isms, robotics). For a typical and challenging high-end application in biomechanics
the interested reader is referred to the PCM (polygonal contact model) website at
http://pcm.hippmann.org, see also [12].

2.4 Network models and block-oriented tools

In more complex multidisciplinary applications, the extension of one existing mono-
disciplinary tool by additional user elements that handle the system components from
all other disciplines is a very time-consuming approach that is furthermore prone to
errors and software bugs. It is much more favourable to bundle the methods, software
tools and model libraries of several disciplines in a unified framework.

The combination of model components from various disciplines is less compli-
cated than one might expect at first sight. Most simulation tools in technical simula-
tion are strongly influenced by the methods of linear and nonlinear system dynamics
and follow a common network approach to set up models for complex technical sys-
tems [13].

The models are composed of fairly simple basic elements that are made available
in model libraries. The basic elements are connected to each other by their inputs
and outputs. There are physical laws and phenomenological and empirical rules that
describe the behaviour of the individual elements. The behaviour of the full system is
furthermore determined by conservation laws like conservation of energy, mass and
momentum.

In multidisciplinary applications, network models from several disciplines are
combined to one large model for the full system. In a first step, the multidisciplinary
problem is decomposed into several monodisciplinary subproblems. Then, each of
these subproblems is modelled separately following the network approach of this
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Fig. 1. Typical interfaces between multibody system tools and CACE tools [14].

specific discipline. Connecting inputs and outputs of the subsystems, the model for
the full coupled system is obtained in a final third step.

In this block-oriented approach the multidisciplinary model is composed of
monodisciplinary submodels (“blocks”) and their connections.

In classical block-oriented tools like Matlab/Simulink the definition of inputs
and outputs is part of the block definition itself (causal modelling). More advanced
methodologies like the modelling language Modelica [1] are non-causal. They are
simply based on blocks with interfaces. Input-output relations between blocks may
be defined later and individually for each simulation task. The separate definition of
blocks and input-output relations gives greater flexibility and offers a large potential
for the re-use of well approved model components in model libraries.

2.5 Example: Controller design in vehicle system dynamics

From the view point of system dynamics, the modelling of monodisciplinary sub-
systems as blocks that are implemented as S-functions in Simulink and the analysis
of the coupled system by Matlab/Simulink solvers is a very natural approach. The
network approach is however not restricted to this implementation.

As a typical example, Figure 1 shows a simulation environment for the design
and optimization of control structures in vehicle system dynamics [14], see also the
detailed discussion of the controller design for a heavy duty truck with semi-active
axle and cabin suspensions in [15].

The truck on the left hand side symbolizes a vehicle or vehicle component that is
modelled as multibody system in an industrial multibody system tool that provides
powerful model libraries and a CAD like 3D user interface for model setup and
visualization of simulation data.

Modelling elements for standard controllers are available in multibody system
tools. The optimization of more complex controller structures and the optimal choice
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of controller parameters would, however, be a very time consuming task in the work-
ing environment of a multibody system tool. Therefore it is performed in a block-
oriented Computer aided control engineering (CACE) tool like Matlab/Simulink.

The first line in Figure 1 shows as most simple interface between multibody
system and CACE tool the linearization of the equations of motion (3) and the export
of the system matrices A, B , C, D to the CACE tool. In the second line, this interface
is extended to nonlinear model equations (3) exporting the FORTRAN source code
of the multibody system model. In both cases the time integration for the full system
including multibody system model and controller is performed in the CACE tool.

Since the solvers of CACE tools are not tailored to the differential-algebraic
model equations (3) it is often more attractive to perform the time integration of
the full system including the controller in the multibody system tool. State-of-the-
art CACE tools support this approach by a code export interface. A typical example
is the Real-Time Workshop of The MathWorks, Inc., that generates and executes
stand-alone C code for developing and testing algorithms modelled in Simulink.

As an alternative to code export the tools of multibody system analysis and CACE
may be coupled as well by a function call interface that evaluates during time integ-
ration repeatedly the right hand sides of the model equations for various given input
data, see [14] for a more detailed discussion. All these approaches have in common
that the full set of model equations is solved numerically in one simulation tool by
one solver.

The last line in Figure 1 indicates, that the modular structure of the coupled
problem may also be exploited by coupling the multibody system tool and the CACE
tool for model setup and for time integration (co-simulation or simulator coupling).

Co-simulation

Co-simulation is a rather general approach for the analysis of multidisciplinary prob-
lems [16]. As before, the coupled problem is decomposed into a set of monodiscip-
linary subproblems. Well established monodisciplinary tools are used for the model
setup of the subproblems. Additionally, these monodisciplinary tools are coupled by
a co-simulation interface to handle each subproblem during time integration by its
own solver in its own monodisciplinary tool. Therefore the subproblems are solved
by different solvers and each solver may be tailored to its specific subproblem.

The communication between subsystems is restricted to discrete synchronization
points Tj . For each subsystem all necessary information from other subsystems has
to be provided by interpolation or – if data for interpolation have not yet been com-
puted – by extrapolation from t ≤ Tj to the current macro step Tj → Tj+1. Typical
macro stepsizes H = Tj+1 − Tj are in the range of 1.0 ms.

From a practical viewpoint, co-simulation is very attractive for teams of special-
ists who are experts in their individual monodisciplinary tools because each expert
may remain in his usual working environment. From the numerical viewpoint, the

278



From Multibody Dynamics to Multidisciplinary Applications

separate time integration of subsystems in a co-simulation framework needs special
care.

The additional errors that are introduced by the interpolation and extrapolation
steps for data exchange between subsystems have to be kept small, e.g., by higher
order inter- and extrapolation schemes and sufficiently small macro stepsizes H .
Furthermore, the extrapolation steps make the time integration method in part expli-
cit. Special stabilization techniques have been proposed to avoid numerical instabil-
ity [16, 17].

3 A Modal Multifield Approach for Thermoelastic Problems

Coupled field effects are a classical application of the finite element (FE) method
[2, 18]. A typical example are thermoelastic effects like the elastic deformation of a
body due to thermal expansion.

State-of-the-art FE tools provide all necessary elements and tools for model
setup, numerical solution and pre- and postprocessing of thermoelastic problems.
The computational effort is, however, in the typical range of a FE analysis. Further-
more, the modelling of joints for connecting bodies is substantially more compli-
cated than in multibody dynamics [19] and the coupling to force elements with inner
state variables z(t) resulting in additional first order differential equations (3b) is
less straightforward than in network models, see also [20] for ongoing research in
this field.

The key to the efficient simulation of flexible multibody systems are low dimen-
sional modal representations that describe the elastic deformation of the bodies [10].
The positive experience with this approach motivates the development of a modal
multifield representation for the distributed phenomenon thermoelasticity [21], see
also [3].

3.1 Thermoelastic problems in multibody systems

From the thermodynamic point of view, the deformations of a flexible body in
multibody simulation are usually assumed to proceed isothermally and adiabatic-
ally. Even though this concept is thermodynamic contradictory, it proved to be an
adequate description for most problems in multibody dynamics.

However, if a mechanical process is associated with a remarkable heat gener-
ation or load, the validity of these premises has to be reviewed. In a wide range
of applications such as friction brakes, thermal buckling phenomena, machine tools
with thermal loads, micro-mechanical devices with resistive heating, the heat energy
flow and the thermoelastic coupling cannot be ignored or are even of major concern.
Elaborate simulation environments are required for these applications.
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The design of high performance machine tools is an appropriate example that
will be considered in more detail in Section 4 below. Working tasks in this field com-
bine high speed motion with high demands on the accuracy. But the unavoidable
losses in power transmission and the heat generation due to the working task neces-
sarily lead to thermal loads. Industrial experience shows that beyond a specific level
additional quality improvements require a combined elastic and thermal description
of the system.

It has been state-of-the-art to investigate the coupled thermal and thermoelastic
behaviour in elaborate finite element studies that provide high resolution results and
give essential information on the design of machine components. However, the large
computational effort prevents the application of the finite element method for a sys-
tem dynamical analysis of the complete system. And looking one step further, a
control setup which accounts for thermally induced tool center point displacements
can only be built up on an efficient multifield description.

3.2 Material constitution and weak field equations

Thermoelasticity deals with two physical fields, each one specified by a pair of field
variable terms. The mechanical state of a material particle is quantified by its stress
tensor σ and its strain tensor ε and the thermal state by its temperature � and entropy
density η.

In order to describe the properties and the influence of the material, it is presumed
that the thermodynamic state of the material only depends on the current values of
the field variables but not on their histories. The constitutive relation between the
four field terms is supposed to define the thermodynamic state of a material point
uniquely, no matter which process, which change of state variables has led to the
current configuration.

Consequently it makes sense to base the material constitution on a thermodyna-
mic potential. If strain ε and temperature � are chosen as independent variables, the
free energy F arises as associate function

dF = σ�dε − η d�,

see [22]. In practice, the introduction of a new variable ϑ , replacing the absolute
temperature � by the increment w.r.t. the linearisation temperature �0 proved to be
advantageous:

ϑ = � − �0.

The free energy, approximated by its second order Taylor expansion at a natural state,
in which ϑ and ε vanish, enables the formulation of a linear constitutive equation in
matrix form: (

σ

η

)
=
(

H c −H�
λ

H λ H a

)(
ε

ϑ

)
= H

(
ε

ϑ

)
. (4)
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The main diagonal blocks of H specify the material properties of the monodisciplin-
ary effects. H c can be identified as the classical 6 by 6 elasticity tensor relating stress
to strain. H a = �c/�0 involves the specific heat capacity c, the density � and �0 to
relate temperature and entropy density.

In most of the usual engineering applications, the influence of the mechanical
on the thermal state, the so-called Gough–Joule effect [23], may be neglected. Then
the first row of (4) may be rewritten to extract the isotropic thermal strain εϑ , see
Equation (4.26) in [2, Vol. 1]:

σ = H c(ε − εϑ) with εϑ = H−1
c H�

λ ϑ = (α α α 0 0 0)�ϑ. (5)

Here, α denotes the thermal expansion coefficient.
The weak equation for the absolute position of a particle r(c, t) as function of

the Lagrange coordinate c and time t may be deduced from d’Alembert’s principle,
see, e.g., Equation (1.6) in [2, Vol. 2]:∫

V

[−�δr�r̈ − σ�δε + f �
V δr] dV +

∮
B

f �
Bδr dB = 0. (6a)

f V and f B denote external forces acting on the volume element dV or boundary
element dB, respectively.

The weak equation of the temperature field results from the principle of virtual
temperature [24]∫

V

[−(∇δ�)�q + (�η̇ − S)δ�] dV +
∮

B

q�
BnBδ� dB = 0, (6b)

where q denotes the heat flow, S symbolises the heat source density and qB repres-
ents the heat flow at the boundary element dB with the outer unit normal vector nB .
BIOT referred to (6b) as the complementary variational principle in heat transfer [25].

On first sight the equations (6a) and (6b) look like two uncoupled field descrip-
tions from monodisciplinary engineering textbooks. But the coupling becomes obvi-
ous by eliminating the dependent field variables using (4).

3.3 A modal multifield approach for thermoelastic problems

The kinematical description is based on a floating frame of reference formula-
tion [10] and gets the form

r = rR + c + u. (7)

The position vector r is decomposed into the absolute position vector of the floating
frame of reference rR , the Lagrange coordinate of a particle c and its displacement u.
All vectors in (7) are resolved w.r.t. the body’s frame of reference.
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The displacement u = u(c, t) is described with separated variables as product
of time independent modal functions �u(c) and coefficients zu(t). Within this ap-
proximation the evaluation of the strain field is feasible by means of the differential
operator ∇u, see Equation (6.9) in [2, Vol. 1]:

u = �uzu, ε = ∇uu = (∇u�u)zu = Buzu. (8)

The analogous approach is chosen for the scalar temperature field. According to
Fourier’s law of heat conduction, a ∇-operation multiplied by the thermal conduct-
ivity matrix � leads to the heat flux vector q, see [26]:

ϑ = �ϑzϑ , ∇ϑ = (∇�ϑ)zϑ = Bϑzϑ ⇒ q = −�Bϑzϑ . (9)

Now matrices Kuu and Kuϑ are introduced for volume dependent integrals which
can be preprocessed and accessed during time integration:

Kuu :=
∫

V

B�
u H cBu dV, Kuϑ :=

∫
V

B�
u H�

λ �ϑ dV. (10)

From the mechanical point of view the thermal field generates internal, distributed
mechanical loads. Obviously there is no direct influence on the inertia properties of
the body. That is why the mass, gyroscopic and centripetal terms within the equations
of motion can be adopted from literature.

3.4 Model equations for a thermoelastic body

The generalised Newton–Euler equations for the unconstrained motion of a defor-
mable body that undergoes large reference displacements are given in [10] and [27].
A comparison of (6a) with these references yields the extended equations of motion⎛⎜⎝Maa Maα Mau

Mαα Mαu

sym. Muu

⎞⎟⎠
⎛⎝ aR

αR

z̈u

⎞⎠ =
⎛⎝ha

hα

hu

⎞⎠+
⎛⎝ 0

0
−Kuuzu + Kuϑzϑ

⎞⎠. (11)

The mass matrix on the left hand side of (11) is formulated as 3 × 3 block matrix
with submatrices that specify the inertia coupling between the translational acceler-
ation aR of the body’s reference frame, the angular acceleration αR of the reference
frame and the second time derivative of the elastic coordinates z̈u. The right hand
side terms ha , hα and hu summarise all inertia, damping and external forces.

The added term Kuϑzϑ represents the influence of the thermal field on the equa-
tions of motion. It may be interpreted as modal force acting on the elastic body.

Although the thermal loads do not influence the inertia quantities in (11), the
displacements caused by these loads do, since the mass matrix and the vectors ha

and hα depend on the deformation state of the body.
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The model equations (11) of the elastic body are extended by the thermal equa-
tion that describes the changes of the thermal state variables zϑ(t). In (6b), the natural
boundary conditions are represented by the heat flux through the boundary surface.
It depends on the physical circumstances how this term has to be introduced into the
thermal equation.

For Neumann conditions the boundary heat flux qB is given explicitly. If con-
vection occurs on the boundary surface, a Robin or mixed boundary condition is
imposed, specified by the film coefficient hf and the bulk temperature ϑ∞ of the
fluid [26]. Although this list is not complete, we confine ourselves to these two cases:

q�
BnB = −qB − hf (ϑB − ϑ∞). (12)

In addition to the thermal-mechanical coupling matrix Cϑu = �0K
�
uϑ , the fol-

lowing notations are used for geometric integrals:

Cϑϑ :=
∫

V

�0�
�
ϑ H a�ϑ dV , KϑR :=

∮
B

hf ��
ϑ �ϑ dB, QϑR :=

∮
B

��
ϑ hf dB,

Kϑϑ :=
∫

V

B�
ϑ �Bϑ dV , QϑS :=

∫
V

��
ϑ dV , QϑN :=

∮
B

��
ϑ dB.

With these notations, the coupled linearised thermal equation is given by

Cϑϑ żϑ + Cϑużu + (Kϑϑ + KϑR)zϑ = QϑS Su + QϑN qB + QϑR ϑ∞. (13)

The generalised velocities żu in (13) indicate that the temperature field depends on
the displacements and the strains. Whereas the thermal effect on the displacements
is well-established and widely accounted for in finite element analysis, the feedback
from displacements on temperatures (Gough–Joule effect) is frequently neglected,
see the above comment on (5) and the more detailed discussion in [3].

Equations (11) and (13) are the model equations for a general elastic and heat
conducting body ( )(j). Compared to a pure mechanical description, the model setup
of a thermoelastic body requires the definition of one additional, uniquely assigned
element. The thermal element reflects (13) and evaluates the thermal state of the
body presuming that the thermal field of body ( )(j) does not interfere with those of
other bodies. If the thermal fields of two bodies interact, the mutual influence has to
be modelled explicitly defining appropriate boundary conditions (12).

Based on (11) and (13), the model equations (3) of a multibody system with
thermoelastic bodies may be assembled by the classical algorithms of multibody
dynamics, see, e.g., [28]. In (3), the vector p of position coordinates contains the
position coordinates of all rigid bodies and the position coordinates of the reference
frames and the elastic coordinates zu for all (thermo-)elastic bodies. The thermal
state variables zϑ of all thermoelastic bodies are components of the vector z of first
order state variables in (3b), see (13).

283



M. Arnold and A. Heckmann

3.5 Thermal response modes

The proper selection of modal functions �u(c) and �ϑ(c) in (8) and (9) is essen-
tial for accuracy and efficiency of the modal multifield approach. Classical mode
functions �u of flexible multibody dynamics like eigenmodes, static modes and fre-
quency response modes [29] have to be accompanied with modal functions that con-
sider the coupling of displacement and temperature field in a thermoelastic body.

A detailed investigation of the thermoelastic coupling motivates substantial sim-
plifications, see [21] and Section 3 of [3]. The first simplification is the separate con-
sideration of the thermal eigenvalue problem and the mechanical eigenvalue prob-
lem. Furthermore, all inertia terms that correspond to deflections due to thermal loads
may be neglected.

These considerations lead to a specific modal reduction scheme that assigns
to each temperature mode ϑi(c), i.e., to each column of �ϑ = [ . . . ϑi(c) . . . ], a
displacement mode ui (c) in �u = [ . . . ui (c) . . . ]. These thermal response modes
ui (c) have to satisfy

∇uui (c) = H−1
c H�

λ ϑi(c) = (α α α 0 0 0)�ϑi(c), (14)

see (5) and (8). Each thermal response mode corresponds to exactly one temperature
mode and represents the related particular thermoelastic displacement solution. The
strain field of this mechanical mode reflects the thermal strain field that corresponds
to the related thermal mode.

For bodies with “simple” geometry, the evaluation of �u with columns ui sat-
isfying (14) could in principle be performed analytically. For bodies with complex
geometry, the thermal mode functions ϑi(c) and the corresponding thermal response
modes ui (c) are computed by a finite element analysis in a preprocessing step, see
[21, Section 3.2.2].

In this approach, the only remaining crucial point is the definition of the thermal
mode functions ϑi(c) that has to be tailored to the specific modelling task. The evalu-
ation of the corresponding thermal response modes ui (c) by a finite element analysis
and the computation of the system matrices Kuu, . . . in (10) are straightforward and
may be organized as an automated process.

The accuracy and the convergence properties of the modal multifield represent-
ation rely on an appropriate thermal field approximation. On the other hand, a sub-
stantial reduction of the number of degrees of freedom may be achieved that way.
We refer again to [21] for more details on the definition of thermal response modes
and some verification examples that demonstrate their application.

In the present paper the definition of thermal response modes is illustrated by
the finite element model of a circular disc shown in Figure 2 that has been selected
as sample structure. Figure 3 shows the thermal response modes by the deformed
mesh compared to the undeformed outer circle contour. For this sample structure,
the thermal response modes turned out to be orthogonal and a mechanical frequency
ω̄i could be assigned to each thermal response mode.
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Fig. 2. Finite element model illustrating the definition of thermal response modes.

Fig. 3. Thermal modes and thermal eigenvalues κi , thermal response modes and associated
mechanical frequencies ω̄i of the sample structure in Fig. 2.

4 Case Study: A Machine Tool with Thermoelastic Deformations

Modern machine tool drives show excellent dynamical properties and allow high
accelerations of slides and tool heads. However, for point-to-point working tasks
the accumulation of high power inputs near frequently used start and stop positions
cannot be avoided for physical reasons. Due to performance losses localised thermal
loads may be generated and result in an inhomogeneous temperature field of the
machine base or other machine components.

The corresponding inhomogeneous thermal expansion causes tool centre point
displacements that are difficult to be measured. In industrial applications these
thermally induced displacements are either accepted to be unavoidable or costly
cooling devices are designed to ensure a homogeneous thermal state of the machine.
However, with increasing demands on the economic efficiency and the accuracy there
is a necessity for smart, mechatronic concepts to handle this problem for future gen-
erations of high accuracy machine tools.

As a first step towards such a mechatronic concept, an industrial multibody sim-
ulation environment has been extended to deal with the thermoelastic deformation of
machine tools. Therefore, the methodological base is provided to develop new meas-
urement and control strategies that account for thermally induced displacements.
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Fig. 4. 3D visualization of the machine tool in SIMPACK.

4.1 Simulation scenario

The feasibility study was defined in cooperation with an industrial partner who
provided a finite element model of the machine base. The welded construction of
the machine is sketched in the SIMPACK model in Figure 4.

The machine is symmetric w.r.t. a vertical plane and is assembled with two canti-
lever arms, one at each side. Each cantilever arm is driven by a linear induction device
and moves along a magnet liner which is parallel to the y-axis of the machine. The
cantilever carries x- and z-drives and the tool head with the tool centre point (TCP) at
its tip. The flat workpiece on the machine table in Figure 4 demonstrates the position
of the work plane.

This study is based on the assumption that the working task of the machine is
repeated very often and varies periodically. The objective of the study is to reproduce
a constant thermal operating state of the machine that is reached after a sufficiently
large time span. This is a frequently observed operating condition in the industrial
use of machine tools.

Figure 5 shows the positioning loop of the cantilever arm along the y-axis that
was predefined and taken as the starting point of the feasibility study.

In order to model the thermal behaviour, a heat source of intensity q̄ at the posi-
tion ȳ = ȳ(t) is considered to move along an isotropic one-dimensional continuum,
described by the coordinate y. For mathematical representation, the formulation of
a point source by means of the Dirac function d(y − ȳ), see [22], is extended by a
term that accounts for the geometrical dimensions of the heat source, i.e., the drive
head on the cantilever arm. The heat flux is assumed to be distributed as a Gaussian
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Fig. 5. Predefined positioning loop ȳ = ȳ(t) and its time derivatives (normalised).

bell shaped curve with a parameter a that reflects the length of the drive head:

−�ϑ,yy + �cϑ̇ = Q(t, y, ȳ) =
{

q̄ d(y − ȳ) point source,

q̄
√

a
π

exp(−a(y − ȳ)2) distributed source.
(15)

For stationary hot running conditions the time dependent terms in (15) have to
vanish. The localised heat supply q = q(y) is obtained as time average over one
positioning loop with period T :

q̄(t) = q̄(t + nT )

ȳ(t) = ȳ(t + nT )

n → ∞

⎫⎪⎬⎪⎭ ⇒ −�ϑ,yy ≈ 1

T

∫ T

0
Q(t, y, ȳ) dt = q(y). (16)

Since the specific design of the cantilever suspension involves only very small
frictional forces, the mechanical power is almost completely invested into the kinetic
energy of the cantilever arm and may be easily described based on the predefined
kinematic scenario in Figure 5. It is assumed, that a constant share of the consumed
electrical power is transformed into heat energy and conducted to the surface of
the machine base. Then, the localised heat supply q = q(y) is completely defined
by (16).

Figure 6 presents the mechanical power consumption versus the relative position
of the cantilever arm on the magnet liner with the time as curve parameter. The start
and stop positions are denoted by the relative position 0 and 1 respectively.

The power consumption, specified by the instantaneous product of mass m, ve-
locity ˙̄y and acceleration ¨̄y from Figure 5, has distinct maxima in the neighbourhood
of start and stop positions. Therefore, the quasi-stationary heat flux accumulates at
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Fig. 6. Mechanical power consumption and quasi-stationary heat flux.

specific positions on the magnet liner. On the other hand, there are no heat loads
at those parts of the magnet liner at which the cantilever arm moves with constant
velocity.

4.2 Finite element analysis

The thermal finite element model of the machine base consists of 20 641 tetrahed-
ral shaped elements of type Solid90 [30] with 40 471 nodes or thermal degrees of
freedom, respectively.

A steady state heat transfer FE analysis has been performed using the analytical
heat source introduced above as quasi-stationary load. The solid curve in Figure 6 is
taken as heat flux distribution in y-direction along the upper surface of the magnet
liner, which is visualised in Figure 7. In the ξ -direction on the upper surface, the
heat flux is modelled to be constant. Robin boundary conditions are defined on the
complete surface of the machine base with two different film coefficients to reflect
different cooling conditions due to the air-stream forced by the moving cantilever.

The heat transfer analysis is performed separately for each cantilever drive at
both sides of the machine. Since the thermal as well as the subsequent mechanical
structural analysis are linear, the solutions may be superimposed. That way the model
definition is open to consider any linear load combination caused by the two canti-
lever drives. For ease of interpretation the results to present from now on refer to a
single load scenario, i.e., the second cantilever drive on the backside of the machine
is assumed to be out of use.

Figure 7 presents the results of one heat transfer FE analysis. Since the temper-
atures mainly vary on the magnet liner while the other elements of the machine base
show only small temperature differences, Figure 7 only visualises the temperature
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Fig. 7. Temperature field at the magnet liner, obtained by finite element analysis.

field of the magnet liner. Two distinct temperature maxima on the magnet liner are
clearly visible.

The two FE temperature field solutions of the complete machine base have been
applied as separate thermal loads on the mechanical finite element model of the base
structure, which uses the same mesh as the thermal FE-model. However, the mesh
now specifies 20 641 elements of type Solid95 [30] with 121 413 mechanical degrees
of freedom. The solutions of these steady state FE analysis yield the displacement
fields of the machine base caused by the temperature fields and are interpreted as
thermal response modes according to Section 3.

Figure 8 plots the thermal displacements of a reference point on the deformed
surface of the magnet liner, which moves along the motion path of the cantilever arm
with constant velocity from its start to its stop position. The FE results along the
motion path are compared with the corresponding multibody deformations modelled
by thermal response modes.

In addition to the steady state analysis, a finite element eigenvalue analysis is
performed and 27 eigenmodes of the machine base are obtained. That way, the dy-
namical properties of the mechanical structure up to the frequency of 400 Hz are
considered.

A unified set of modes consisting of 27 mechanical eigenmodes and two thermal
response modes has been used to reduce the finite element description of the machine
base by the modal multifield representation according to Section 3. Eigenmodes and
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Fig. 8. Kinematic comparison of the thermal displacements as evaluated by FEM and the
corresponding thermal response mode used for multibody simulation (MBS).

thermal response modes are only weakly coupled, but the unified set of modes is
not orthogonal with respect to the mass and the stiffness matrix. In view of the fact
that both groups of modes contain a different physical information which is worth to
be retained, the unified set of modes has not been orthogonalised for the multibody
simulation.

On a trial basis a supplementary orthogonalisation of the 29 modes has been per-
formed yielding 1 694 Hz and 2 368 Hz as additional frequencies due to the thermal
response modes.

4.3 Multibody simulation

Figure 4 shows the principle structure of the multibody model and the FE mesh of
the magnet liner. Also the complete machine base originates from the FE model and
is mechanically represented as flexible body in modal representation.

Since the machine base rests on six feets, which are not fixed to the foundation,
its reference frame has three degrees of freedom that allow a plane motion of the
machine base frame w.r.t. the inertial frame. Six stick-slip force elements reflect the
dry friction conditions between machine base and ground.

The suspension of the cantilever arm is modelled by spring-damper elements,
which connect the deformed magnet liner and the base of the cantilever arm. The
cantilever arm itself is assumed to be rigid. Since the arm moves along the liner, so
called moved markers [31] have been defined that represent the working points of
the suspension forces at the machine base. A moved marker is used as well to model
the reference point for Figure 8.

In order to simulate the working task of the machine tool, a controller for the
y-drive is modelled. The kinematic scenario from Figure 5 serves as target specific-
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Fig. 9. Displacements at the tool center point (TCP) in solid lines and at the reference point
P2 on the magnet liner in dashed lines. �r... denotes the absolute displacement parallel to the
work plane, �z... is measured normal to the work plane. The third couple of curves in dotted
lines visualises the TCP displacements in a simulation without any thermal loads (ϑ = 0).

ation of the control loop, which is adjusted in such a way that the positioning error
induced by the drive control is at least one order of magnitude smaller than the other
displacements and cannot falsify the results.

In Figure 9 three different measurements are compared. All results represent dis-
placements w.r.t. the workpiece on the table of the machine tool.

The dotted curves give the tool centre point (TCP) displacements of a multibody
simulation without any thermal loads and serve as a reference. These displacements
are only caused by the response of the machine base structure and the cantilever
suspension to the dynamical loads given by the predefined kinematic scenario.

The other two measurement types in Figure 9 additionally involve the displace-
ments which are induced by the temperature field of the machine base.

The dashed curves plot the displacements of the reference point P2 on the magnet
liner, which moves with the cantilever arm. The solid curves again give the displace-
ments of the TCP at the tip of the cantilever arm. The difference between the P2- and
TCP-displacements are caused by the kinematic amplification of the cantilever arm.

The thermally induced displacements influence the motion of the TCP mostly
in the neighbourhood of the start position at the beginning and at the end of the
simulation. However, since the working task consists of a point-to-point job, these
deviations are not crucial in this case. More important are the deflections at the stop
position, which is reached several times in the time interval between 0.4 s and 0.9 s.
The dotted and the solid curves differ here by about 10 µm to 20 µm, which is a
relevant error concerning the accuracy requirements of machine tools.
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Besides the thermal deflection, the response of the machine base structure cor-
responds mainly to the acceleration curve in Figure 5 and is of static nature. The
vibrations in Figure 9 primarily originate from the compliance of the cantilever sus-
pension. This statement could be verified by an accompanying simulation, for which
the compliance of the cantilever suspension is neglected. The structural damping
of the machine base has also no significant influence (Lehr’s damping coefficient
d = 0.004).

The time integration has spent 3 580 CPU-s on a HP 9000/785 workstation with
3 GB memory. This high computational effort is caused by the high frequency
band width of the multibody model. Since the inertia terms that correspond to the
thermal response modes have not been neglected for this simulation, frequencies up
to 2 400 Hz are present, which leads to a very stiff system [5].

5 Summary

The rapidly growing interest in multidisciplinary applications is motivated by the
increasing importance of coupled physical effects and strongly coupled technical
components in the design and optimization of advanced engineering systems. The
positive experience with methods and tools of multibody dynamics shows that multi-
disciplinary problems may often be analysed efficiently by suitable extensions of
classical monodisciplinary simulation tools or by the combination of two or more
monodisciplinary tools in a block-oriented simulation environment.

Furthermore, modal reduction methods that are well approved in the analysis of
flexible multibody systems have been generalized to a modal multifield approach
that is successfully used in the analysis of thermoelastic problems. Its practical use
has been illustrated by an advanced case study that considers positioning errors of a
high-performance machine tool being caused by thermal loads.
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