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Chapter 9 

CARBON METABOLISM IN PLANT SYSTEMS 
Isotope Labeling Analysis 

V. V. Iyer1, G. Sriram2 and J. V. Shanks1 
1Department of Chemical and Biological Engineering, Iowa State University,  Ames, IA 
50011, USA; 2Department of Human Genetics and Department of Chemical and 
Biomolecular Engineering, UCLA, Los Angeles, CA 90095, USA 

Abstract: Metabolic flux analysis (MFA) quantifies carbon flow in a biological system, 
which is an important characteristic reflective of physiology. Nodal rigidity of 
the metabolic network at branchpoints can be assessed from flux ratios to 
compare genetic and environmental variants and identify targets for potential 
genetic manipulations. MFA coupled with systems-wide tools such as 
transcriptomics and metabolomics have significant potential for building 
predictive models of plant metabolism. This chapter aims to explain the 
methodology behind MFA using carbon labeling experiments (CLE), nuclear 
magnetic resonance spectroscopy and a comprehensive mathematical 
framework (NMR2Flux) for a better understanding of central carbon 
metabolism in plants. 

1 INTRODUCTION 

Genetic engineering marked the advent of modifying specific enzymatic 
reactions using recombinant DNA technology. Early genetic engineering 
manipulations showed that a single gene transformation can result in 
unexpected changes in the metabolic pathways and phenotypic behavior and 
gave credence to a systems-level understanding of physiology. Consequently, 
the field of metabolic engineering emerged, which dealt with a systematic 
approach towards pathway modification to understand the underlying 
physiology (Stephanopoulos et al., 1998). The significance of metabolic 
engineering lay in the fact that the metabolic network was considered in its 
entirety as opposed to a single reaction.  
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Figure 9-1. Metabolic network for central carbon metabolism in embryos of soybean (Glycine 
max). Parallel pathways for glycolysis and the pentose phosphate pathway exist in the cytoplasm 
and the plastid and communication between them occur through three transporters: glucose 6-
phosphate (g6pT), pentose 5-phosphate (p5pT), and triose 3-phosphate (t3pT). The thickness of 
the arrows is directly proportional to the flux values.  Reprinted from Sriram et al. (2004) with 
permission of the American Society of Plant Biologists. 

 
The importance of metabolic fluxes as a fundamental determinant of cell 

physiology was promoted by metabolic engineering (Stephanopoulos, 1999). 
Metabolic flux is defined as the net rate of conversion of a precursor 
metabolite to a product in a metabolic pathway. The quantification of 
intracellular metabolite fluxes in a network of metabolic pathways is termed 
as metabolic flux analysis (MFA). In particular, MFA has been applied to 
network models of central carbon metabolism due to it importance in 
cellular physiology (Stephanopoulos, 1999). Central carbon MFA calculates 
steady-state intracellular fluxes using a stoichiometric model supplemented 
with extracellular measurements such as substrate intake and effluxes of 
metabolites. In larger network models for which additional measurements 
are required, constraints in the form of labeling data from Nuclear Magnetic 
Resonance (NMR) spectroscopy or Mass Spectroscopy (MS) can be applied 
(Section 2 of this chapter). The result of MFA is a metabolic flux map 
(Figure 9-1) which indicates the steady-state fluxes through various 
reactions of the metabolic pathway. Such metabolic flux maps can be 
effectively used for comparing flux differences in genetic or environmental 
variants. Subsequently, once the effect of a genetic or environmental 
manipulation is analyzed, further hypotheses are developed and tested 
(genetic modification followed by analysis) in an interactive cycle to further 
characterize the cellular physiology (Nielsen, 1998).  
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Figure 9-2. Parallel glycolytic and pentose phosphate pathways in cytosol and plastid. 
Transporters facilitate plastidic and cytosolic interactions.  
 

Although the application of MFA in central carbon metabolism in 
microbes has been appreciable, unfortunately the same cannot be said in 
plants. Metabolic networks are more complex to analyze in plants than in 
microbes. One of the major factors contributing to the complexity of plant 
networks is compartmentation. In plants, the same reaction pathway may 
occur in more than one compartment as shown in Figure 9-2. Transporters 
facilitate the exchange of metabolites between compartments thus making 
intracellular transport processes important. Hence, the quantification of 
fluxes in parallel compartments becomes vital (Shanks, 2000). Additionally, 
higher plants are separated on various levels such as the tissue (roots, stems, 
and leaves) and cellular levels within a tissue. Furthermore, the topology of 
plant networks is often incomplete.  

As a result of aforementioned complexity of plant metabolic networks, 
the few “flux” labeling studies in plants have focused on either the 
identification of metabolic network topology (Glawschnig et al., 2002; 
Krook et al., 1998; Schwender et al., 2004) or flux quantification using 
analytical or a highly simplified 13C NMR constrained analysis (Dieuaide-
Noubhani et al., 1995; Rontein et al., 2002; Schwender et al., 2003). Plant 
systems biology has reemphasized the importance of fluxes (Girke et al., 
2003; Stitt and Fernie, 2003; Sweetlove et al., 2003) in achieving the “in 
silico” plant (Minorsky, 2003). Thus, it has become more essential that 
application of MFA to different plant systems be promoted. Toward this 
goal, a comprehensive flux analysis tool for central carbon metabolism, 
NMR2Flux, was developed using recent mathematical advances from our 
research group (Sriram et al., 2004). This chapter aims at explaining the 
theoretical background and the methodology that NMR2Flux employs in the 
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evaluation of intracellular fluxes using the example of the developing 
soybean embryo. 

2 METABOLIC FLUX ANALYSIS 

Metabolic flux analysis (MFA) involves the quantification of intracellular 
steady-state fluxes in the cell, using metabolite balances and extracellular 
measurements. 

2.1 Stoichiometric flux analysis 

Metabolic flux analysis relies on the principle of conservation of mass: 
mass cannot be created or destroyed. Stoichiometric MFA is the most basic 
approach of metabolic flux analysis and requires details of the reaction 
stoichiometry. Consequently, mass balances around each intracellular meta-

 dX /dt = r - µX  (1) 

where, X represents the concentration of the metabolite under consideration; 
r, the rate of formation of the metabolite and µ is the biomass growth rate. 
Assuming a pseudo-steady-state, where the rate of turnover of X (left-side of 
equation (1)) is smaller than the sum of the rate of metabolite formation and 
dilution due to cell growth (right-hand side of equation (1)), we have, 
 

 r - µX = 0    (2) 
 

The dilution due to biomass growth is generally small and the second term 
can be neglected and we have, 
 

 r = GT. v = 0    (3) 
 

where, v is the vector containing the fluxes and G is the stoichiometric 
matrix. If the network model has J reactions and K internal metabolites, the 
degrees of freedom F, is represented by, 
 

 F = J – K    (4) 
 

Hence, to solve for the intracellular fluxes, some measurements such as 
substrate consumption, metabolite effluxes etc. have to be supplied. Thus, 
the measured and calculated fluxes can be partitioned into vm and vc, 
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respectively. Correspondingly, the stoichiometric matrix can be partitioned 
into Gm and Gc.  Thus, knowing vm and G, we can calculate vc, the set of 
unmeasured intracellular fluxes. If the number of supplied measurements is 
same as F, it is an exactly determined system; if greater than F, an 
overdetermined system; and if less than F, an underdetermined system. The 
exactly determined and overdetermined systems will have a unique solution 
for the distribution of fluxes through the metabolic network. In addition, for 
an overdetermined system, the extra measurements can be used to check the 
validity of the metabolic network. 

On the other hand, to solve an underdetermined system, cofactor 
balances (NADPH/NADH) may need to be supplemented as additional 
constraints (Varma and Palsson, 1994). However, the NADPH, NADH and 
ATP balances are not closed in reality due to futile cycles and incomplete 
pathway knowledge. Stoichiometric MFA also fails in certain cases of 
parallel pathways and metabolic cycles (Wiechert, 2001). It is hence 
essential to provide further information and also elucidate flux distribution at 
branchpoints. For larger networks with an increase in the number of 
reactions, flux analysis becomes more difficult as the number of 
measurements required correspondingly increases. Consequently, 13C labe-
ling experiments can be used to complement stoichiometric balancing and 
extracellular measurements, thereby providing a rigorous alternative to 
traditional flux analysis. 

2.2 13C metabolic flux analysis 

Carbon labeling experiments (CLE) involve feeding a combination of 
labeled (13C or 14C) substrates along with 12C substrates such as glucose or 
sucrose to the biological system of interest. The label gets distributed 
throughout the network when the substrate is assimilated into metabolites. 
The labeling pattern of various metabolites depends on the network topology 
and the intracellular fluxes. The labeling patterns can be detected by Nuclear 
Magnetic Resonance (NMR) spectroscopy (Marx et al., 1996; Szyperski, 
1995) or Mass Spectroscopy (MS) (Christensen and Nielsen, 1999) or a 
combination of the two (Klapa et al., 1999). The labeling data can be 
translated into flux information, using the concept of isotopomers as 
explained in Section 3.3 (Klapa et al., 1999; Schmidt et al., 1997).  

Plant systems exemplify complex metabolic networks due to 
compartmentation issues, futile cycling, and anaplerotic reactions. 
Consequently, additional measurements are required in plant systems and the 
number of isotopomer balances increases, further increasing the 
computational burden. Due to the mathematical burden required for 
quantification of flux, most papers that have reported labeling studies in 
plants have focused on the identification of metabolic network topology 
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rather than flux quantification (Glawschnig et al., 2002; Krook et al., 1998). 
In an elegant example of the use of labeling for network topology, 
Schwender et al. demonstrated the use of labeling studies to identify a new 
pathway in Brassica napus embryos (Schwender et al., 2004). They 
characterized the role of Rubisco in the absence of Calvin cycle in 
improving the efficiency of carbon utilization during oil synthesis. Earlier 
studies of flux quantification in plants have used analytical or a highly-
simplified 13C NMR constrained analysis (Dieuaide-Noubhani et al., 1995; 
Rontein et al., 2002; Schwender et al., 2003). These simplified analyses may 
lead to erroneous fluxes – a comprehensive analysis from an abundance of 
data is needed to verify the assumptions (Sauer, 2004). Recently, we have 
been able to execute comprehensive flux analysis of central carbon 
metabolism in plant tissues (Sriram et al., 2004). Section 3 of this chapter 
describes our analysis methodology in detail. 

3 FLUX EVALUATION METHODOLOGY 

Fluxes in a biological system can be quantified from isotopomer 
abundances, extracellular measurements, and biomass accumulation data 
coupled with a mathematical framework, using the evaluation methodology 
as explained below. 

3.1 Experimental design 

The selection of the type of labeled substrate, i.e., selective or uniformly 
labeled is a fundamental component of experimental design (Schmidt et al., 
1999). In addition, it is essential that the relative extents of the labeled and 
unlabeled substrate be decided a priori to get adequate information from the 
NMR data (Stephanopoulos et al., 1998; Szyperski, 1995). In the case of 
selectively labeled substrates, a large percentage of labeling (as high as 90%) 
has to be used to obtain meaningful data (Park et al., 1999). On the other 
hand, when a mixture of uniformly labeled and unlabeled substrates is used, 
carbon bond-bond connectivities are traced as opposed to fractional 
enrichments. Hence, percentages of uniformly labeled substrate required are 
much lower (approximately 10%) for adequate NMR data (Szyperski, 1995).  

Once the type of labeled substrate and their extents are decided, the cells 
are cultured with the mixture of labeled and unlabeled substrate. The 
experiment is carried out at metabolic (the rate of change of intracellular 
metabolite concentrations is much less than that of fluxes in and out of the 
metabolite) and isotopic (labeling patterns of the metabolites do not change 
with time) steady-states. Finally, the biomass from the plant tissue is extracted 
and broken down into its corresponding components. Depending on the 
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network topology and intracellular fluxes, different labeling patterns of the 
metabolites will be reflected from the biomass components (e.g., protein or 
starch sample), which can be detected using NMR or MS (Christensen and 
Nielsen, 1999; Klapa et al., 1999; Szyperski, 1995). The conversion of NMR 
data to fluxes using both type of substrates involve the concept of isotopomers 
as explained in section 3.3. Details of the experimental setup for labeling 
studies in developing soybean embryos and NMR sample preparation have 
been discussed in our recent work (Sriram et al., 2004). 

3.2 NMR spectroscopy 

NMR spectroscopy has proved to be an efficient analytical technique to 
gain significant insights into plant metabolism (Ratcliffe and Shachar-Hill, 
2001). In an NMR measurement, the spin of the 13C nucleus is detected and 
gives rise to a signal. The signal to noise ratio (S/N) in an NMR experiment 
depends directly on the concentration of the nuclei (C) and the number of 
scans (Ns). 

 s
0.5S/ N * ( )C N∝     (5) 

 
The accumulation time (Ta) for the signal depends on Ns and the pulse 

interval Tp (Shanks, 2000),  
 
 Ta = Tp * Ns

    (6) 
 
Tp is given by the following equation, 
 
 Tp = tp + Tacq + Trd

    (7) 
 

where, tp is the length of radiofrequency pulse, Tacq is the acquisition time 
and Trd is the relaxation delay (Shanks, 2000). Hence, for example, to double 
S/N, the number of scans needs to be increased four times. Also, Ta depends 
directly on Ns and will increase proportionately. Thus, it is essential to 
balance the parameters Ta, Ns and S/N to keep the NMR analysis cost at a 
reasonable limit without compromising on the S/N ratio. Using the 
developing soybean embryo system as an example, some of the key 
parameters for the NMR analysis have been discussed below and two 
dimensional (2D) experiments for detection of labeling patterns have been 
suggested. 

In the soybean in vitro experiment, only 10% uniformly labeled sucrose 
was fed to the soybean cotyledons. Assuming this 10% labeling randomly 
distributes through the network, the probability that two adjacent atoms are 
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Figure 9-3. 2D [13C, 1H] HSQC spectrum of protein hydrolysate from soybean cotyledons 
cultured on sucrose (10% w/w U-13C) and glutamine. Cross peaks represent carbon atoms of 
hydrolysate constituents (proteinogenic amino acids and hydrolysis products of sugars from 
glycosylated proteins – 5-hydroxymethyl furfural (HMF) and levulinic acid (LVA)). 
Reprinted from Sriram et al. (2004) with permission of the American Society of Plant 
Biologists. 
 
labeled, is about 1% and the probability that two adjacent atoms originating 
from the same metabolite are labeled is 10% (Szyperski, 1995). From the 
specifications of the 500 MHz spectrometer, the minimum concentration for 
a 2D NMR analysis was determined to be 1 mM. The amino acid with the 
lowest concentration in the soybean protein hydrolysate was methionine (2 
mol%). Hence, for a 20–22 hour [1H, 13C] Heteronuclear Single Quantum 
Correlation (HSQC) experiment, taking the aforementioned parameters into 
consideration, the minimum amount of soybean protein required for an 
adequate S/N ratio was 20 mg.  

Two experiments, the HSQC and [1H, 1H] Total Correlation Spectros-
copy (TOCSY) were performed on a Bruker Avance DRX 500 MHz 
spectrometer at 298 K on the soybean protein hydrolysate. For more details 
on the parameters of the NMR experiment, the reader is referred to our 
previous work (Sriram et al., 2004). The HSQC analysis determines the 
labeling pattern between the adjacent carbon atoms (Szyperski, 1998). Also, 
since we have unlabeled glutamine as a carbon source in addition to the 
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labeled sucrose, there is a dilution of 13C in the system. The 2D TOCSY 
analysis detects the protons attached to 12C and 13C, thus providing the 
enrichment of each carbon atom of amino acids.  

NMR spectra were acquired and processed using the Xwinnmr (Bruker) 
software. Peak assignments were verified using 2D [1H, 1H] TOCSY and 3D 
[13C, 1H, 1H] TOCSY (Braunschweiler and Ernst, 1983) experiments on 
100% labeled protein sample, with a pH of 1.0. Hence, the pH of the 
soybean sample was also adjusted to 1.0 to avoid a change in the chemical 
shift data caused by the environmental variation. The 2D HSQC spectrum of 
the hydrolyzed soybean protein with peak assignments of the carbon atoms 
of amino acids is shown in Figure 9-3. The HSQC and TOCSY spectra were 
analyzed using the free software NMRview (Johnson and Blevins, 1994). 
The deconvolution of the multiplet peaks was carried out using software 
based on the spectral processing proposed by van Winden et al. (van Winden 
et al., 2001). The isotopomer theory employed to convert the NMR data to 
intracellular fluxes using the software NMR2Flux (Sriram et al., 2004) is 
explained below. 

3.3 Isotopomer theory 

The concept of isotopomers arises from a combination of the terms 
isotope and isomers, which represent various labeling patterns of a given 
metabolite. For example, for a three carbon metabolite, there are 23 = 8 
isotopomers possible (Figure 9-4). Hence for a metabolite with n carbons, 
there are 2n labeling patterns possible. As mentioned before, 2D HSQC 
detects the labeling patterns of adjacent carbon atoms. The peak fine 
structure obtained from the HSQC experiment shows multiplet patterns 
proportional to the isotopomer abundances (Figure 9-5). The labeling data is 
converted to flux data by comparing the experimental data with simulated  
 

Figure 9-4. Isotopomers of a three carbon metabolite from a mixture of uniformly labeled and 
unlabeled sucrose. 
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isotopomer abundances generated using isotopomer mapping matrices 
(IMM). Assuming a set of intracellular fluxes, IMM uses the concept of 
isotopomer distribution vectors (IDV) and reaction stoichiometry to generate 
the simulated isotopomer abundances (Schmidt et al., 1997). The “best” set 
of intracellular fluxes satisfies the reaction stoichiometry and also shows the 
least mean square error between experimental and simulated isotopomer 
abundances. IMM are analogous to the Atom Mapping Matrices (AMM) 
used to calculate the TCA flux ratios in a hybridoma cell line (Zupke and 
Stephanopoulos, 1994).  

3.4 Additional measurements 

In addition to NMR labeling data, extracellular measurements such as 
substrate intake, product effluxes, and fluxes contributing to biomass 
accumulation are essential inputs to the model. The substrate intake and 
product effluxes can be measured by carrying out a high performance liquid 
chromatography (HPLC) of the culture media. It is also required that the 
biomass composition be known so that the carbon balance of the system is 
adequately accounted for. For example, in the soybean embryo culture, in 
addition to protein, lipids, and starch, a major constituent of the biomass 
were seed coat carbohydrates. The sugars that contributed to the 
carbohydrates were estimated from literature values (Mullin and Xu, 2000). 
The dry weight of the embryo and the fractions of protein, lipids, and starch 
were measured using standard protocols (Sriram et al., 2004). The fatty acid 
composition of the lipid fraction was estimated from literature (Dey and 
Harborne, 1997). When the molecular formula of the biomass is known, it 
can be used to close the carbon balance more efficiently.  

The external fluxes contributing to protein were determined from the 
amino acid HPLC analysis, coupled with the precursor-amino acid 
stoichiometry (Szyperski, 1995). To elucidate, let us consider the synthesis 
of the amino acid phenylalanine (Phe) from erythrose-4-phosphate (E4P) 
and phosphoenolpyruvate (PEP),  

 
 1 mole E4P + 2 moles PEP → 1 mole Phe   (8) 

 
Thus, from protein data and HPLC analysis of the amino acids, the total 
number moles of Phe in the sample are known. Consequently, from equation 
(8) total moles of the precursor metabolite PEP required for synthesis of Phe 
can be calculated. Additionally, we know that tyrosine (Tyr) and tryptophan 
(Trp) are the other amino acids synthesized from PEP. Hence, the total 
external flux from PEP can be calculated from the sum of the moles of PEP 
required for synthesis of the corresponding three amino acids (Tyr, Trp, and 
Phe). Similar analysis can be carried out for remaining precursor metabolites 
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(for example, Pyr, OAA, P5P, etc.) associated with the synthesis of amino 
acids.  

3.5 Metabolic reaction network  

It is essential that a metabolic network mimicking the underlying 
physiology be proposed to convert the labeling data to intracellular fluxes. 
Figure 9-1 shows a metabolic network that describes sucrose metabolism in 
developing soybean embryos. The fluxes in a reaction network are 
stoichiometrically related to each other and can be expressed in terms of flux 
parameters. The selection of flux parameters is important to solve the 
metabolic network (Sriram et al., 2004). Some potential candidates for flux 

parallel reactions (Szyperski, 1995). Product effluxes, substrate 
consumption, and biosynthetic reactions are additional essential extracellular 
measurements required for accounting for complete carbon balance, thereby 
providing a better estimate of the intracellular fluxes.  

Further, labeling data which give key information about branchpoints are 
additional important inputs. In the event that the labeling data does not 
satisfy the proposed reaction network, certain reactions may need to be 
added or removed from the proposed network to satisfy the labeling data. 
Also, sometimes the error in the experimental NMR data can translate to a 
very high probability distribution of the flux, leading to “identifiability” 
problems (Wiechert et al., 2001). For example, flux analysis of the 
 

Figure 9-5. Peak fine structure of Aspβ. The multiplet intensities are proportional to the 
isotopomer abundances. Reprinted from Sriram et al.  (2004) with permission of the 
American Society of Plant Biologists. 

et al., 1998), reversibilities of key reactions and also scrambling extents of 
parameters are the independent reactions of the network (Stephanopoulos  
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reversibilities of the transketolase and transaldolase reactions in the pentose 
phosphate pathway depend primarily on the labeling information obtained 
from the PEP family of the amino acids and histidine. If the NMR data is not 
sufficient to estimate these fluxes or if the error in the measurements is large, 
then the fluxes become “structurally unidentifiable”. The problem of 
structural identifiability can be solved by increasing the number of external 
measurements pertaining to that particular part of the metabolic network or 
providing low error NMR data. However, in some cases, the relationship 
between the NMR measurements and the fluxes are highly nonlinear. In such 
cases, the fluxes become “statistically unidentifiable” and a very low noise 
level can translate into large probability distributions of the corresponding 
fluxes. Thus, in the case of a statistically unidentifiable flux, the model 
cannot estimate the flux irrespective of redundant measurements pertaining 
to that flux. Such issues need to be studied in detail in the course of 
developing the experimental design of the biological system.  

3.6 Mathematical modelling of the reaction network 

The metabolite balances from the metabolic network coupled with the 
carbon skeleton rearrangements are fundamental in enumerating the 
isotopomers of the metabolites in the network. Both analytical approaches 
(Klapa et al., 1999; Park et al., 1999; Rontein et al., 2002) and numerical 
solutions (Schmidt et al., 1999; Wiechert and De Graaf, 1997a; Wiechert  
et al., 1999; Zupke and Stephanopoulos, 1994) have been used to solve 
isotopomer abundances for calculating intracellular fluxes. A generic 
software using the concept of isotopomer balancing for flux analysis is also 
available (Wiechert et al., 2001).  

More recently, a generic tool NMR2Flux (Figure 9-6) has been 
developed in our lab by employing recent mathematical advances, that can 
be extended to complex plant systems (Sriram et al., 2004). The tool chooses 
an initial set of flux parameters (independent net fluxes, reversibilities, and 
scrambling extents) that are stoichiometrically feasible (Sriram et al., 2004; 
Stephanopoulos et al., 1998). From the feasible set of flux parameters, the 
remaining fluxes can be calculated. These fluxes are converted to 
isotopomer distributions using a recently developed efficient Boolean 
function mapping method (Figure 9-7), coupled with explicit solution 
methods (Wiechert and Wurzel, 2001). Boolean function mapping is a novel 
method of simulating isotopomer distributions. Carbon skeletal rearrange-
ment steps are modeled as Boolean or arithmetic operations on the decimal 
representation of an isotopomer. The Boolean function mapping method is 
based upon the fact that all reactions in a metabolic network can be 
represented as occurring between two reactants (R1, R2) to give two  
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Figure 9-6. Flux evaluation methodology. 
 
products (P1, P2), i.e., they can be represented as “bi–bi” reactions (Wiechert 
and Wurzel, 2001).  Reactions steps in this schema can be described as a 
function of four different “moves”: fragmentation, reversal, transposition, 
and condensation. The simulated and experimental (from NMR data) 
isotopomer abundances are compared and the error between them is 
minimized using a global optimization routine (employing simulated 
annealing).  

The reduction in computation time achieved using the Boolean function 
mapping method allows additional statistical analysis of fluxes. The errors in 
the NMR input intensities are used to perform multiple Monte Carlo 
estimation of fluxes (Press et al., 1992); thereby generating probability 
distribution of the intracellular fluxes (Sriram et al., 2004). For further 
information on the tool and comprehensive explanation of the mathematical 
details, refer our recent work (Sriram et al., 2004).  

case of single carbon substrate experiments only. Bondomers are similar to 
isotopomers except that the bonds instead of the carbon atoms are being 
followed (Sriram and Shanks, 2002; van Winden et al., 2002). Bondomers 
are molecules of the same metabolite, which have different bond integrities 
for different carbon–carbon bonds (Sriram and Shanks, 2004). Bondomer 
analysis is advantageous in plant tissue cultures that require only sucrose or 
glucose as a carbon source. 

4 INSIGHTS FROM MFA INTO PLANT 
METABOLISM  

Metabolic fluxes form the most important link in translating transcript 
and metabolite information to the existing physiology (Sauer, 2004). Flux 

Recently, a new concept, bondomer was introduced which can be used in 



138

 

Figure 9-7. Boolean function mapping. 

ratios can be used to analyze different nodes in the reaction network where 
there is a partitioning of the flux into multiple branches. The node under 
consideration can be either rigid or flexible. A node is said to be “flexible” if 
the ratio of the carbon flow into multiple reactions changes with a change in 
the incoming flux. In the case of flexible nodes, the distribution of the pre-
cursor metabolite can be modified inherently by the system without the need 
of any major genetic modification. For a “rigid” node, the ratio of the carbon 
flow into multiple branches remains the same irrespective of changes to the 
total flux coming into the node.  Subsequently, genetic modifications will 
prove more effective in altering the metabolic flow in the desired direction in 
the case of rigid nodes (Stephanopoulos and Vallino, 1991). Network 
topology is less understood in plants as compared to microbes and the 
application of MFA can help elucidate plant reaction pathways. Examples of 
application of flux analysis in revealing network topology has been 
discussed below.  

4.1 Segregation of pathways 

As mentioned before, plant metabolism is compartmented, and features 
multiple copies of the same reaction of a pathway in different subcellular 
compartments. A classic example is the glycolysis/pentose phosphate 
pathway subnetwork, which exists in both the cytosol and the plastid in plant 
cells. In our flux analysis, it was therefore, critical to determine if these 
pathways were in equilibrium (i.e., they exchanged metabolites so rapidly 
that for all practical purposes, they could be considered one consolidated 
pathway) or were segregated (the fluxes through the cytosolic and plastidic 
pathways are significantly different, and the pathways did not rapidly 
exchange metabolites). 

The segregation or equilibration of cytosolic and plastidic pathways can 
be ascertained by examining isotopomer abundances or 13C enrichments of 
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metabolites synthesized in those compartments. Previously, Krook et al. 
have also reported significantly different 13C enrichments of cytosolic and 

showed that cytosolic and plastidic pathways were segregated. However, 
hexose phosphate pools were found to be in equilibrium in tomato cells 
(Rontein et al., 2002) and B. napus embryos (Schwender et al., 2003), which 
showed that the cytosolic and plastidic pathways were in equilibrium. 

In our work, on comparing the isotopomer abundances of the carbon atoms 
of glucosyl units from protein hydrolysate (which are derived from the 
cytosolic  glucose-6-phosphate  pool (G6Pc) and starch hydrolysate (which are 
derived from the plastidic glucose-6-phosphate pool, (G6Pp) from soybean 
embryos, we found that they were significantly different, and not in 
equilibrium (Sriram et al., 2004). In contrast, we did find that the isotopomer 
abundances of Ala α and Phe α in soybean embryos were similar. Phe α is 
obtained from the second carbon atom of PEP and is exclusively synthesized 
in the plastid; whereas Ala α is synthesized in all three compartments, cytosol, 
plastid, and mitochondrion, respectively from the second carbon atom of 
pyruvate. From biochemistry, we know that the three carbon atoms of PEP 
translate to the three carbon atoms of pyruvate without any rearrangement. 
This result indicated that the T3P pools in the plastid and cytosol were 
exchanging rapidly between the two compartments (Sriram et al., 2004).  

To account for the above observations, we developed a compartmented 
model of the metabolic network, with separate glycolysis and pentose 
phosphate pathways in the cytosol and plastid. This model, when used in 
conjunction with NMR2Flux, was able to explain the observed isotopomer 
abundances well (see Sriram et al., 2004). Additionally, a fructose-1,6-
bisphosphatase reaction had to be included in the plastid to fully account for 
the experimental isotopomer abundances (see below). Thus, labeling-based 
flux analysis is competent in segregating pathways in multiple compartments 
thereby accounting for complex compartmentation inherent in plant systems.  

4.2 Identification of new pathways  

In the case of the pyruvate family of amino acids the δ1 carbon of Leu, 
the β carbon of alanine and γ1 carbon of Val reflect the same carbon atom of 
pyruvate respectively (Szyperski, 1995). Hence, the multiplet intensities 
should be similar for these carbon atoms in the above-mentioned amino 
acids. However, our recent soybean work (Sriram et al., 2004) indicated that 
the δ1 carbon of Leu shows a 30% difference from Ala and Val. This 
disparity in the isotopomer abundances of the Pyr family of amino acids has 
been observed in our labeling experiments on another plant system, 
Catharanthus roseus hairy roots as well (Sriram, G., and Shanks J. V.,  
 

plastidic hexose pools in Daucus carota cells (Krook et al., 1998), which 
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Figure 9-8. Identification of fructose-1, 6-bisphosphatase in the plastid. White bars are the 
experimental isotopomer abundances of levulinic acid atom 2 (LVA #2) from starch 
hydrolysate. This atom reflects the isotopomer abundances around carbon #3 of plastidic 
glucose-6-phosphate. Grey bars are simulated isotopomer abundances from a compartmented 
model with glycolysis and pentose phosphate pathways in the cytosol and plastid that 
included no plastidic fructose-1, 6-bisphosphatase. Black bars are from a similar 
compartmented model that included plastidic fructose-1, 6-bisphosphatase.  

unpublished data). Its cause still remains a mystery and we believe that it 
may involve a currently unknown reaction or pathway related to Leu 
metabolism. 

In addition, we identified the fructose-1,6-bisphosphatase (F16BP) 
reaction, which converts T3P to F6P, in the plastid. Although acompart-
mented model with separate glycolysis and pentose phosphate pathways in 
the cytosol and plastid accounted for most of the isotopomer abundances of 
the glucosyl units from protein and starch hydrolysates, we found that the 
isotopomer abundances around levulinic acid atom 2 (LVA #2) were not 
accounted for (compare white and grey bars in Figure 9-8). LVA #2 is 
derived from atom 3 of plastidic glucose-6-phosphate pool (G6Pp), and the 
above observation hinted that some pathway or reaction that significantly 
affects atom 3 of G6Pp was absent in our initial compartmented model. This 
led us to hypothesize that a significant flux from T3P to F6P may be present 
in our system. Since such a reaction would cause two three-carbon T3P 
molecules to form a six-carbon F6P (and eventually a G6P) molecule in the 

V.V. Iyer et al. 

plastid, it may result in isotopomer patterns different from those resulting 
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Figure 9-9. Identification of fructose-1,6-bisphosphatase in the plastid: Effect of the inclusion 
of plastidic fructose-1,6-bisphosphatase (f16bpp, catalysing F6P → T3P in the plastid), and 
corresponding cytosolic enzyme, pyrophosphatase (pfpc, catalysing F6P → T3P in the 
cytosol), on the χ2 error.  
 
due to the presence of the pentose phosphate pathway alone. Such a reaction 
is usually not present in nonphotosynthetic plant tissues. However, on 
including this reaction into our compartmented model, we found that 
observed isotopomer abundances for LVA #2 were well-accounted for 
(compare white and black bars in Figure 9-8). 

Figure 9-9 depicts the improvement in the χ2 error between experimental 
and simulated isotopomer abundances, due to the inclusion of plastidic 
F16BP and the corresponding cytosolic reaction, pyrophosphatase (pfpc). 
Only the plastidic conversion of T3P is evident in our system, and the 
cytosolic flux may be small or negligible as it does not significantly improve 
the χ2 error. The example of fructose-1,6-bisphosphatase illustrates a 
systematic approach to pathway identifiability. More recently, Schwender et 
al. characterized the role of Rubisco in the absence of Calvin cycle 
(Schwender et al., 2004). They found that Rubisco improves the carbon 
efficiency during the formation of oil synthesis in Brassica napus embryos 
using an alternative pathway. 
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5 SUMMARY 

The flux evaluation methodology described in this chapter is a promising 
powerful tool for understanding plant physiology. We expect that the generic 
computer program NMR2Flux (Sriram et al., 2004) available for calculating 
fluxes from the labeling data encourages the applicability of flux analysis in 
plants. Furthermore, once the methodology is established for a particular 
plant system, the tool can be used to compare the plants environmental and 
genetic variants. Currently, flux analysis of both environmental and genetic 
variants of plants is in progress in our laboratory. The ability of the labeling 
method to establish key regulatory nodes of metabolism thereby enabling 
identification of potential targets for genetic manipulations makes MFA 
important from a metabolic engineering perspective (Stephanopoulos and 
Vallino, 1991). Quantification of fluxes thus is an important tool, which 
when complemented with metabolite, transcript, and genomic data can 
contribute toward an overall correct picture of plant physiology (Sanford  
et al., 2002; Sauer, 2004; Schwender et al., 2004). 
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