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1 INTRODUCTION 

Biologists have long strived to understand what causes phenotypic 
differences between two individuals. This includes differences in 
morphology, disease susceptibility, and physiology as well as potential 
metabolic differences underlying these higher-order phenotypes. The 
diversity between individuals is partitioned into both environmental and 
genetic variation. Most genetic variation studied to date tends to be 
qualitative such that there are one or more distinct and non-overlapping 
phenotypic states. However, most phenotypic differences are quantitative 
such that there are numerous overlapping phenotypic states (Mackay, 2001; 
Flint et al., 2001; Lynch and Walsh, 1998; Mauricio, 2001). It has been 
known for nearly a century that the approximate genetic position of loci 
controlling these quantitative traits can be identified through associating 
marker and phenotype variation in a structured population (Sax, 1923). This 
association is the foundation for Quantitative Trait Locus (QTL) mapping 
experiments that attempt to identify the number, phenotypic impact and 
interaction of loci controlling a quantitative trait. 

The latest incarnation of the QTL experiment is genetical genomics that 
phenotypes genetic mapping populations with genomics technology (Jansen 
and Nap, 2001). The goal is to merge the genomics technologies high-
throughput and highly parallel phenotyping capacity, i.e., microarrays, 
proteomics, and metabolomics, with genetic segregation to test or generate 
specific hypothesis. The rationale is that a specific genes expression level is 
easier to quantify than the more complex developmental or physiological 
traits. Thus, by identifying loci controlling the differential gene expression 
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patterns for all an organism’s genes and comparing this to those loci 
controlling a specific physiological trait, the researcher could develop a 
systems biological understanding of more complex traits. Genetical 
genomics has predominantly utilized microarray analysis of stable mapping 
populations in a variety of species (Morley et al., 2004; Yvert et al., 2003; 
Brem and Kruglyak, 2005; Brem et al., 2002; Schadt et al., 2003). 

Microarrays present a basic fiscal problem in that it is expensive to 
phenotype all lines in a mapping population much less replicate the 
phenotyping. Thus, microarrays are fiscally limited to small, highly defined 
mapping populations and replication limited to genes with highly heritable 
expression differences. This is a serious limitation, as most complex 
physiological traits are moderate-to-low heritability and controlled by 
numerous loci that require large populations with replicated experimental 
designs for reliable detection. Therefore, fiscal limitations alone will hinder 
microarray use in genetical genomics to all but the very largest or well 
funded of laboratories. Metabolomics platforms may provide a more 
widespread entry into genetical genomics. Metabolomics is much cheaper 
per sample than transcriptomics, enabling large populations to be studied 
with sufficient replication for moderate-to-low heritability traits. 
Additionally, most metabolomics platforms are higher-throughput than 
transcriptomics, allowing for rapid analysis (Fiehn, 2001; Fiehn et al., 2000; 
Hall et al., 2002). 

Numerous studies have investigated QTL controlling plant metabolites 
but none with a metabolomics purview (Kliebenstein et al., 2002a; 
Kliebenstein et al., 2001a; Kliebenstein et al., 2002b; Monforte et al., 2001; 
Santos and Simon, 2002; Bushman et al., 2002; Thorup et al., 2000; 
McMullen et al., 1998; Byrne et al., 1996). This chapter’s goal is to help 
provide guidance in developing, designing, and interpreting metabolomics 
genetical genomic experiments. I will focus on three questions that are 
frequently asked by individuals starting a metabolite QTL project: (1) How 
do I design the experiment? (2) What traits/variables do I measure? (3) What 
will I find? This will draw on literature both involved with the theory of 
QTL formation as well as experimental analysis of metabolite QTL detection 
and interpretation. 

 

 

D.J. Kliebenstein



3. Metabolomics and QTL Analysis  31 

2 QTL QUESTIONS AND FINDINGS FOR 
METABOLOMICS 

2.1 How do I design the experiment? 

This question is best handled in three interrelated parts: population 
structure, population size, and replication. All three aspects are intertwined, 
such that population structure will influence the other two and vice versa, 
but I will deal with them separately. For more detailed information see the 
enclosed references (Mackay, 2001; Mauricio, 2001). 

2.1.1 Which population do I chose? 

For genetical genomics experiments, the optimal population structure is 
either Recombinant Inbred or Advanced Intercross lines. These populations 
allow for recombination and transgressive segregation similar to an F2 
population but are taken to homozygosity allowing independent replicated 
measurements of a given line. Homozygosity also increases the populations’ 
power by forcing each genomic position to only have one of the two 
opposing haplotypes instead of the three possibilities in F2 populations. 
Inbred line populations are not feasible in all systems due to generation time, 
inbreeding depression, or self-incompatability. In these species, the next best 
population structures are typically backcross populations as there are only 
two allelic classes at each locus, heterozygote, and one homozygote. 
Another factor that should be considered in determining the population is the 
availability of previously genotyped populations with phenotypic differences 
of interest. This is valuable as the majority of time and expense in any new 
population is not phenotyping but instead generating and genetically 
mapping the population. Thus, previously existing populations are highly 
desirable even if the structure is not optimal. 

2.1.2 What population size do I use? 

The next decision to resolve is the population’s size. The general rule in 
determining the optimum population size is the larger the better. Ideally, 
populations should contain at least 300 individuals or lines. Larger populations 
provide several benefits. The first is that they have more recombination events 
increasing precision in measuring a QTLs position. Secondly, larger 
populations have more power to separate closely linked QTL due to the 
increased recombination. The increased line numbers also allow for better 
capacity to detect two- and three-way epistatic interactions because there are 
more lines in each combinatorial class. Finally, the larger population sizes 
allow for higher replication in terms of number of lines with Allele X at 
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position Y. Populations with less than 300 individuals can be utilized but will 
have limited power for traits with more than a couple QTL or moderate-to-low 
phenotypic effect QTL. In genetical genomics experiments, most traits may be 
controlled by numerous QTL with predominantly low-to-moderate phenotypic 
effect and thus small populations should be avoided (Mackay, 2001; Lynch 
and Walsh, 1998; Brem and Kruglyak, 2005). 

2.1.3 How many replicates should I conduct? 

Once the population is chosen, the next question is how many replicate 
measurements per line should be conducted and how these should be 
organized. The key to deciding these issues is to measure the experimental 
sources of variation. This involves designing an experiment whereby several 
samples are taken per plant with multiple independent plants per parental 
genotype per replicate. Multiple independent replicates are conducted and all 
samples independently analyzed via metabolomics. Analysis of variance for 
this experiment will allow the researcher to estimate the variation from 
spatial differences within a plant, from differences between plants, from 
differences between replicate experiments, and from differences between 
genotypes as well as any interactions between the different levels. The 
optimum result is that most of the variance is genetic with the rest of the 
error being split between plants within a replicate or between replicates. If 
this is the case, it is best to take one measurement per plant with each line 
being represented by two or more plants per replicate. 

The analysis of parental variance also allows the researcher to obtain a 
very rough estimate of each traits heritability be estimating the variance due to 
genotype difference. There is a common perception that low heritability traits 
require high-replicate numbers to successfully map QTL. However, 
calculations show that even for traits with 30% heritability, only six replicates 
are required to diminish the error in the mean trait estimate to approximately 
10% (Denby et al., 2004). Thus, it should be possible to identify QTL for most 
traits with less than 10 and as few as 6 replicates per line. Metabolomics 
platforms are probably the best current technology for fiscally achieving this 
replication in large populations. The analysis of parental variance will allow 
the researcher to identify the heritability distribution for the metabolites and 
make an informed decision on replication. Previous metabolite profiling 
projects have found heritabilities that range from 20% to 90% with most being 
in the range of 50–70% (Kliebenstein et al., 2002a; McMullen et al., 1998; 
Byrne et al., 1996; Kliebenstein et al., 2001b).  

The ability to measure interactions in the above variance test is a key 
element of properly designing a QTL experiment. If there is a significant 
interaction between genotype and replicate, this suggests the presence of 
genotype × environment interactions. Previous metabolite profiling and 
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microarray QTL mapping projects have identified significant genotype × 
environment interactions (Brem and Kruglyak, 2005; Kliebenstein et al., 
2002a). One option to minimize this is that each line should be repeated 
enough times per replicate to allow for QTL analysis within each replicate as 
there could be different QTL identified depending upon environmental 
fluctuation. Additionally, the researcher could attempt to better control the 
environmental variance by controlling the growth conditions between 
replicates to minimize this difficulty. Alternatively, the researcher may only 
be interested in QTL that impact the trait in all environments and would thus 
conduct the analysis in multiple environments. 

The identification of a significant interaction of genotype with either 
within plant variance or between plant variance in the parental analysis 
suggests that there may be a developmental difference between the parents 
that is impacting the sampling. The best way to minimize this variance is to 
ensure that the same tissue at the same developmental stage is being sampled 
in all cases. A detailed analysis of the sources of variance before conducting a 
QTL mapping experiment will greatly enhance both the potential for success 
and the resulting QTL maps interpretability. This is especially important in a 
metabolomics genetical genomics experiment where thousands of traits will be 
analyzed simultaneously. 

3  WHAT TRAITS/VARIABLES DO I MEASURE? 

There are several aspects to this question. This includes what guidelines to 
use in deciding upon a metabolomics platform. Another important question to 
contemplate is which variables to use in the QTL mapping. Finally, should the 
data be altered to conform to the expectation of normality and what potential 
errors does this introduce? Each of these questions is dealt with below. 

3.1 Which metabolomics platform to utilize? 

The first decision is which metabolomics platform should be utilized. 
This involves a compromise between the analytical speed and information 
content per analysis. The optimum platform should have significant high-
throughput capacity to allow for the thousands of samples that are required 
for a statistically powerful QTL mapping experiment. In addition to high-
throughput the best technology would individually quantify specific 
compounds and provide identification where possible and structural 
information for all compounds detected. This optimum requirement for 
individual quantification and identification provides the maximal power in 
the downstream QTL analysis. A number of high-throughput platforms like 
IR and NMR platforms are limited in providing specific compound 
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information and do not measure as many compounds per sample as other 
platforms. Thus, when QTL are identified the researcher will not be fully 
sure of the phenotypes identification. Thus, the researcher will be challenged 
to develop specific hypothesis about the locus’s molecular function possibly 
even after cloning the underling gene. However, with platforms such as GC-
MS and the rapidly gaining (LC-MS)/monolithic columns, it is possible to 
quantify and identify hundreds if not thousands of compounds (Bino et al., 
2004; Tolstikov et al., 2003). Thus, when a QTL is found, the researcher will 
know the exact compound that locus is regulating and will be aided in 
developing specific hypothesis about the underlying molecular function.  

3.2 What variables should I use for mapping? 

The second part of this question is what aspects of the output are actually 
valid variables for QTL analysis. The most obvious variables are the actual 
amount of each individual compound. Considering that most metabolomics 
platforms can reliably detect hundreds of compounds, this creates a massive 
number of traits for QTL mapping. There are suggestions to decrease this 
dimensionality by using regression analysis to identify metabolite clusters, 
and then use an individual compound within each cluster to identify QTLs 
for that cluster. While this will decrease the computational power required, it 

in regression clustering is that if two compounds are 80% correlated, that the 
other 20% is due to measuring error. However, it is equally likely that this 
20% discrepancy is due to differences in the genetic control for the two 
compounds. Using a single compound per cluster would lose this genetic 
information. A better solution is to generate QTL software that can analyze 
1000s of traits on the same population and present the results in a coherent 
manner. A challenge that is equally present for genetical genomics 
experiments using transcriptomics and proteomics. 

Numerous variables/traits can be generated for QTL mapping using 

providing relational context to the metabolites (Figure 3-1A). This relational 
context provides the ability to generate variables interrogating the 
interrelation between compounds (Figure 3-1C–E) (Weckworth et al., 2004; 
Steuer et al., 2003). These variables can either be the sum of specific groups 
of metabolites, the ratio between specific metabolites, or the ratio between 
different groups (Kliebenstein et al., 2001a). For instance, the equations in 
Figure 3-1C sequentially ask about the loci controlling the accumulation of 
the whole pathway (A–H), the accumulation of only those compounds on the 
right side (F–H), and the accumulation of those on the left side (D, E). These  
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3-1B). Often times, there are known or predicted metabolic pathways 

will also decrease the experiments information content. The base assumption 

metabolomics data. The first is the absolute value of each variable (Figure
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Figure 3-1. Metabolomics Variables for QTL Mapping. 
A. A hypothetical biosynthetic pathway is shown. The letters refer to the individual 

compounds. The numbers refer to the enzymes. Enzyme 6a and 6b are two different 
alleles of the same enzyme that lead to two different compounds. Arrows represent the 
direction of the biochemical reaction. 

B. The first variable level is the individual compounds. 
C. The second variable level is the broad summation meant to represent different branches of 

the pathway. i = the amount of specific compounds. 
D. The third variable level is the ratio of two related compounds that may provide insight 

into particular enzymatic processes. 
E. The final variable level is the ratio of different biosynthetic branches that may provide 

insight into more global regulation. i = the amount of specific compounds. 
 

will identify a subset of common QTL as well as unique QTL. For example, it 
is possible to have a locus that has a 5% effect across the entire pathway. This 
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effect would most likely not be identified as QTL for any of the individual 
compounds but due to the smoothing impact of summing all of the compounds 
this effect may be seen at the pathway level. In addition to summations, ratios 

measures the level of D and E with regards to all compounds produced from 
C. This would test for the presence of loci that impact the decision to go from 
compound C to either D or F. However, there are some statistical difficulties 
introduced in the use of ratio statistics that will be discussed later. When 

provide powerful tools at querying the population for loci regulating whole 
branches or branch points in metabolic networks. 

3.3 Should I worry about normality? 

The final aspect before proceeding with the QTL analysis is data 
preparation. There is the underlying assumption that biological variables/traits 
should show a parametric distribution. This, however, presumes that the true 
biological distribution is in fact parametric and the skewing was technically 
introduced via the measurement. In metabolomics, this may not be the case 
especially in secondary metabolism (Kliebenstein et al., 2001a; McMullen 
et al., 1998; Byrne et al., 1996; Kliebenstein et al., 2001c; Yencho et al., 
1998). In Figure 3-2A and B, the parents of a recombinant inbred mapping 
population differ in their capacity to make specific compounds due to 
enzymatic polymorphisms. Parent 1 contains a null allele of enzyme 5 but a 
hidden “a” allele at enzyme 6 and thereby does not accumulate compounds F, 
G, or H. Parent 2, however, contains a functional enzyme 5 allele but only the 
“b” allele of enzyme 6, leading to the accumulation of F and G (Figure 3-2A). 
When these two parents are mated, the recombinant inbred progeny will 
represent a mixture of parental genotypes and two recombinant genotypes, 
recombinant 1 will phenotypically look like parent 1 due to the enzyme 5 null 
allele while recombinant 2 will be a transgressive segregant producing F and 
H due to the “a” allele at enzyme 6 (Figure 3-2B). When the accumulation of 
either H or G in the progeny is plotted on a histogram, it will be a bimodal 
distribution due to the epistatic interaction between variation at enzymes 5 and 
6 in controlling (Figure 3-2C). Normalization would destroy the information 
about both enzymes 5 and 6. The requirement for parametric distributions is a 
result of the QTL analysis algorithms. Most algorithms can handle skewed 
parametrics without normalization by using the bootstrapping methodology to 
empirically determine the significance threshold. Bimodal and true non-
parametric distributions should instead be handled using non-parametric QTL 
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regulation at specific branch points. For instance, the equation in Figure 3-1E 

guided by known or predicted metabolic linkages, ratios, and summations 

3-1D and E). These can allow the investigator to identify loci controlling 
are other potential variables derived from a metabolomics data set (Figure 
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analysis techniques to obtain the maximal information (Diao et al., 2004; 
Kruglyak and Lander, 1995). 

Metabolic pathway variation can generate other non-parametric 
distributions via transgressive segregation. The above epistasis example can 
generate non-parametric distributions if the enzyme 5 null allele hides 
functional enzymes such as 6b (Figure 3-2A). Another way for these non-
parametric distributions to occur is when the compound is present in levels 
near the level of detection. QTL segregation can generate lines with 
undetectable levels while other lines are readily measurable. A common 
impulse in these situations is to take the undetectable lines and record them 
as no data/measurement when it is actually valid to assume that they are less 
than the other lines. By recording these lines as no measurement, the 
researcher is lowering the QTL detection power by diminishing the number 
of lines available for QTL analysis. A potential remedy is to give all 
undetectable lines a value equal to the detection threshold for the compound 
in question. This allows the researcher to include the fact that these lines are 
lower than the rest in the QTL analysis. However, if a significant number of 
lines are below the detection threshold, this may create a skewed parametric 
or non-parametric distribution. The skewed parametrics can be handled by 
the bootstrapping methodology as described. There are algorithms to handle 
the non-parametric distributions but they are not typically included into the 
common QTL mapping packages (Diao et al., 2004). 

4  WHAT WILL I FIND IN THE QTLS? 

Upon generating the metabolomics data and variables for QTL mapping 
there are numerous software options available to map QTL that are 
discussed elsewhere (Basten et al., 1999). These generally rely on the same 
composite or multiple interval mapping algorithms (Doerge and Churchill, 
1996; Haley and Knott, 1992; Lander and Botstein, 1989; Zeng, 1994). Most 
programs, however, were not made to handle or present the massive number 
of traits generated in a standard genetical genomics experiment and thereby 
need to be modified to handle this data set. Once these hurdles are overcome 
and a QTL map is in hand for each trait, there are numerous questions to ask 
of the data. These include the size and number of QTLs for each trait, are the 
QTLs for different traits co-localized and is this because of a common 
polymorphism, as well as what is the level of epistasis and transgressive 
segregation in the population. I will briefly describe below what may be 
expected for each question. 
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Figure 3-2. The Control of Epistasis and Transgressive Segregation by Enzymatic Variation. 
A.  The genotype and chemical composition of the parents is shown. The letters refer to the 

compounds present in each parent. The numbers refer to the enzymes. Enzyme 6a and 6b 
are two different alleles of the same enzyme that lead to two different compounds. 
Arrows represent the direction of the biochemical reaction. The X’s indicate the presence 
of non-functional alleles for each enzyme. 

B.  The genotype and chemical composition of the recombinant individuals is shown. The 
letters refer to the compounds present in each genotypic class. The numbers refer to the 
enzymes. The X’s indicate the presence of non-functional alleles for each enzyme. 

C.  The distribution of compound G’s accumulation in the RIL population generated from 
crossing Parent 1 × Parent 2. 

D.  The QTL map generated for the accumulation of compound G in the RIL population 
generated from crossing Parent 1 × Parent 2. 

4.1 QTL number and phenotypic effect 

Recent analysis of a small yeast mapping population with 1 × replication 
via microarray has allowed a glimpse at what may be expected from a 
metabolomics genetical genomics experiment. This analysis found that most 
traits required at least 5 QTL’s to partially explain the variation (Brem and 
Kruglyak, 2005). This experiment, however, was limited to a small number 
of lines with 1 × replication and as such, the analysis was limited to those 
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genes with at least 69% heritability. Nevertheless, it shows that most 
variable traits are under highly complex genetic regulation (Brem and 
Kruglyak, 2005).  Metabolomics of higher-throughput and financial scale 
will allow for these experiments to be conducted with greater power, and 
therefore, to detect small to medium effect QTL. Thus, one could readily 
expect that the microarray indication is only the iceberg’s tip. 

One caveat should be made to the interpretation of both QTL number and 
phenotypic effect. Both the power to detect a QTL and the estimate of its 
phenotypic effect are dependent upon the populations’ background variation. 
There could be epistatic interactions with other loci in one population that 
are not present in another. Alternatively, if the QTL is the only locus 
impacting the trait in one population, it will have a large phenotypic effect, 
whereas if the QTL is one of many in another population, it may have a 
smaller phenotypic effect. Thus, it should not be expected that a QTL or its 
phenotypic effect would be identical amongst all populations in which it is 
variable. An excellent example of this is shown in a paper investigating the 
quantitative inheritance of chlorogenic acid and flavones in three different 
maize populations. These populations were chosen as they are a pyramid 
such that all pair wise crosses of three different inbred lines were 
investigated (Bushman et al., 2002). While numerous QTLs were identified 
in more than one population, their significance and phenotypic effect were 
dependent upon the population studied. For example, one QTL was 
identified in two populations and controlled 34% of the trait variance in one 
population but only 8% in another (Bushman et al., 2002). Thus, the 
phenotypic effect and power to detect a QTL is relational and not absolute 
when comparing populations (Mackay, 2001; Lynch and Walsh, 1998). 

4.2 QTL proximity – causality or proximity? 

After the QTLs for each trait have been identified and surveyed, the next 
goal is to identify those QTL that pleiotropically impact different 
metabolites and as such may have global metabolic impacts. There are 
several major difficulties in this analysis. The first deals with validating if 
overlapping QTL for two different traits are caused by the same locus or 
closely linked loci. There are two possible techniques to try and differentiate 
between these two distinct possibilities. The first is a statistical approach to 
testing the possibility that the two QTL positions overlap by chance and 
hence are probably due to closely linked loci (Lebreton et al., 1998; Varona 
et al., 2004). It is possible to take the QTL models for each trait, fix the 
position and effect of the non-overlapping QTL as well as the effect of the 
overlapping QTL. Then randomly modify the position of the overlapping 
QTL from the same genetic position to gradually larger unlinked distances. 
At each step, use every lines genotype and the QTL model to predict all of 
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lines trait value. Then test the predictive strength of the model at each 
distance from identical to unlinked position and identify the genetic distance 
that maximizes the predictive power of both traits model (Lebreton et al., 
1998; Varona et al., 2004). This would indicate whether the overlap is due to 
closely linked loci or a single locus. 

Even if there is statistical support for a single locus, it is still possible that 
the overlap is due to two extremely tightly linked loci. The only way to 
validate the single pleiotropic QTL hypothesis is to clone the underlying 
molecular polymorphism and confirm that it impacts the expected traits. 
This requires fine-scale recombinational mapping in conjunction with some 
form of transgenic confirmation of the phenotypic effect (Mackay, 2001). 
Thus, once a pleiotropic region is identified, there still remains significant 
work to validate the pleiotropic QTL hypothesis. A further potential 
difficulty with highly pleiotropic QTL is to understand the mechanism by 
which it works and differentiate between direct and indirect effects. For 
example, in Arabidopsis, the ERECTA locus impacts leaf morphology, root 
architecture, floral shape and size, silique shape and size, pathogen 
resistance and numerous other traits (Qi et al., 2004; Xu et al., 2003; 
Godiard et al., 2003; Shpak et al., 2003; Douglas et al., 2002). However, 
even though the gene is a known receptor kinase with global impact, little is 
known about what the primary and secondary impacts are and how it 
controls these traits. Thus, highly pleiotropic QTL may not be easily 
interpreted panaceas of biological information. 

4.3 Epistasis and transgressive segregation 

Variation in biosynthetic pathways can easily form epistatic interactions 
measurable in metabolomics QTL mapping projects. One potential epistasis 
interaction is when variation at a preceding enzymatic step controls the 
production of another variable enzymes substrate (Figure 3-2A). In the 
example shown, functional variation at enzyme 5 determines whether the 
functional variation at enzyme 6a is seen. Thus, the accumulation of 
compound G in the population will form a bimodal distribution where the 
low accumulating lines have either a non-functional enzyme 5 or enzyme 6a 
(Figure 3-2C). Only those lines with functional enzymes 5 and 6a will 
accumulate compound G. When the level of compound G is used for QTL 
mapping it will identify at least two locations that epistatically interact in 

pathways is if two proteins physically interact such that the variants from 
each parent prefer interacting with each other such as might occur in 
metabolic channeling. This will lead to any recombinant progeny between 
the loci having lower efficiencies and less compound accumulation. Taken 
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3-2E). Other ways in which epistatic interactions may occur in biosynthetic 
controlling the level of compound G, enzyme 5 and enzyme 6a, (Figure 
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together, this suggests that epistatic interactions should be expected in 
metabolomics QTL mapping projects. It will be interesting to compare 
microarray and metabolomics estimates on epistatic interaction frequencies 
to see if metabolism is more prone to such interactions than gene expression. 

In addition to epistasis, biosynthetic pathways readily generate 
transgressive segregation in both compound structure and amount. The 
easiest transgressive segregation to visualize is that impacting structure. In 
the example shown, the knockout in enzyme 5 hides the presence of the 
enzyme 6b allele. When recombination shuffles together a functional 
enzyme 5 and enzyme 6b, compound H is produced (Figure 3-2A and B). 
Compound H was not produced in either the parental genotype and is thus 
the product of transgressive segregation. This form of segregation has been 
identified in Plant Secondary Metabolite QTL projects (Kliebenstein et al., 
2002a; Kliebenstein et al., 2001a). In addition to structural transgressive 
segregation, there is also the likelihood of transgressive segregation in 
compound amounts. If, for example, one parent has a bottleneck at one step 
in a biosynthetic pathway while the other is bottlenecked at a different step, 
segregation will produce lines that have both bottlenecks and compound 
levels lower than either parent while other lines will have neither bottleneck 
nor compound levels higher than both parents (Figure 3-3). This also 
illustrates how two parents can be indistinguishable via compound 
accumulation yet the progeny have highly variable levels. Both forms of 
transgressive segregation have been readily found in metabolite profiling 
experiments and should be expected in metabolomics QTL mapping 
(Kliebenstein et al., 2002a; Kliebenstein et al., 2001a). Further, over half of 
the highly heritable transcripts in yeast showed evidence of transgressive 
segregation, again supporting the idea that this will be a common hallmark 
of genetical genomics experiments (Brem and Kruglyak, 2005). 

5  SUMMARY 

Combining genomics technologies with segregating populations is 
becoming an area of increasing interest. The first experiments in this area 
were conducted with microarrays but it is likely that metabolomics due to 
cost and throughput advantages will become the “omics” platform of choice 
for genetical genomics. The hope in these experiments is to combine the 
massive parallel capacity albeit still reductionist “omics” technologies in a 
systems biological approach to understand why two organisms are different. 
In the process, fundamental aspects of biology may be illuminated. 
However, these same projects and data sets can be used to address base 
issues of quantitative genetics such as; How many loci control each trait?  
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Figure 3-3. Transgressive Segregation Produced by Bottlenecks.  
The enzymatic flux for two parents with different bottlenecks is shown. The specific 
bottlenecks are marked as small underlined letters with diminished arrow size representing 
the decreased flux. The two potential recombinant inbred line recombinant progeny are 
shown. The number at the bottom of each biosynthetic pathway shows the relative amount of 
the final product produced in each line. 
 
What is the basis of the control, either additive or epistatic? Is there 
directionality in the parents with regards to the QTLs effect? Thus, it may be 
possible using QTL mapping and metabolomics to both understand key 
aspects of metabolic relationships as well as fundamental questions of 
quantitative genetics. 
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