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PREFACE 
 
 
Metabolomics is a word that progress in science forces linguists to invent in order to 
keep up with emerging technologies. The word is a hybridization of two words, 
metabolites and genomics, and it reflects a shift in biological research that is now 
possible in an era in which the entire genetic blueprint of an organism is available 
for scientific research. Although the concepts of metabolomics are in the scientific 
literature since the 1970s, the word “metabolomics” was first used in the title of a 
scientific publication in 2001. Since then, the field of metabolomics has expanded 
and is becoming an integral sector of post-genomic research in biology. 
 
Analogous to genomics, which defines all genes in a genome irrespective of their 
functionality, metabolomics seeks to profile “all” metabolites in a biological sample 
irrespective of the chemical and physical properties of these molecules. Despite the 
fact that this is probably an unachievable goal, the ability to profile an ever-
increasing proportion of the metabolome (the set of all metabolites of a sample) has 
many applications is solving biological problems. These range from the expansion 
of the tradition of natural products chemistry, to the finding of metabolic markers of 
disease states in humans and animals. 
 
In the field of plant biology, metabolomics has a key role as a fundamental tool in 
basic research for elucidating gene functions that are currently undefined. Thus, 
metabolomics has the potential of defining cellular processes as it provides a 
measure of the ultimate phenotype of an organism, as defined by the collage of 
small molecules, whose levels of accumulation is altered in response to genetic and 
environmentally induced changes in gene expression. 
 
As an emerging field of science, new developments will greatly change the practice 
of metabolomics; these will likely occur in the area of improvement in analytical 
technologies and computational integration and interpretation of data. We hope that 
this book will present a guide for new practitioners of metabolomics, providing 
insights as to its current use and applications. These chapters are derived from 
presentations made at the 3rd International Congress of Plant Metabolomics, which 
was held in 2004 at Iowa State University, Ames, Iowa. We are grateful to the 
National Science Foundation, the National Research Initiative program of the US 
Department of Agriculture, and the Office of Basic Science of the Department of 
Energy, for financial support of this meeting. Finally, we would like to acknowledge 
the contributors to this volume, for their patience and efforts to ensure a high 
scientific quality. Specifically, we acknowledge the professional editing provided by 
Ms. Julie Lelonek, her help was invaluable in getting this volume completed. 
 

Basil J. Nikolau 
Eve Syrkin Wurtele 

November 2006 
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Chapter 1 

VALIDATED HIGH QUALITY AUTOMATED 
METABOLOME ANALYSIS OF ARABIDOPSIS  
THALIANA LEAF DISKS 
Quality Control Charts and Standard Operating Procedures 

Oliver Fiehn 
UC Davis Genome Center, Health Sci. Drive, Davis, CA 95616, USA 

Abstract: Plants readily respond to changes in environmental conditions by alterations in 
metabolism. In addition, breeding processes as well as modern molecular tools 
often target at or result in constitutive changes in metabolite levels or metabolic 
pathways. These properties render metabolomics an ideal tool to characterize the 
degree of impact of genetic or environmental perturbation. In agronomic and 
agrobiotechnology, but also in some areas of fundamental plant biology research, 
this leads to experimental designs of genotype × environment (G×E) plots, which 
results in huge numbers of individual plants to be grown, harvested, processed, 
and analyzed. The benefit to add metabolomics is then to utilize analyses of 
metabolic events to better understand biochemical or regulatory mechanisms by 
which the plant responded to the G×E perturbations. However, technical 
challenges are still imminent regarding the complexity of plant metabolism and 
the need for high quality control in large projects. This chapter details how even 
larger projects with thousands of analyses can be managed in an academic 
laboratory while still keeping control over the total process by use of Standard 
Operating Procedures (SOP) and continuous Quality Control (QC) measures. 
This process is exemplified by SOP and QC implementations used for a larger 
study on effects of abiotic treatments on select Arabidopsis ecotype accessions. 

1 INTRODUCTION 

1.1 Theoretical considerations 

Metabolomics aims at achieving qualitative and quantitative metabolite 
data from biological samples grown under a specific set of experimental 
conditions (Fiehn et al., 2000; Bino et al., 2004). In order to interpret and  
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reuse data (via metabolomic databases), the sources of quantitative 
variability of data must be accurately described. Technical errors of the 
analytical process must be controlled and minimized in order to distinguish 
such variance in data (noise) from the inherent biological variability within 
and between the populations that are subjected to a certain experimental 
design. This chapter describes why and how Standard Operating Procedures 
and Quality Control charts are needed for larger metabolomic projects.  

1.2 No data without metadata 

The process of metabolomic analysis involves many steps from the actual 
experimental design of the biological trial to the conditions of plant growth 
and potential treatments by external factors such as changes in abiotic or 
biotic stressors, and following plant responses within temporal or spatial 
patterns, e.g., over plant organ development or within diurnal cycles. 
Reproducibility and reusability of metabolomic data sets therefore 
necessitate capturing this underlying information about the details of the 
total experimental design: without this, no data set can be understood and 
interpreted in a correct way. Such “data about the data” are called 
“metadata” in computing sciences and are at least in parts described and 
collated in the “materials and methods” sections of plant journals. However, 
in such sections plant biologists tend to focus on the novel parts of their 
experimental setup and do not give fully precise descriptions on more 
standard growth specifications. For example, unless researchers carry out 
specific light treatment studies, the light qualities (emission spectra) within 
green houses or climate chambers are usually not detailed out. The same is 
most often true for the type and dimensions of the climate chamber used, 
although it is known that each climate chamber has its own specifics with 
respect to air circulation conditions, which will ultimately affect water 
evaporation rates from the soil and by this, plant metabolic rates. One might 
argue that such description is overly detailed, but on the other hand, for each 
institution such information would only need be recorded once and then 
deposited as an object number in a database for future experiments.  

The need to accompany metabolic data with exact experimental metadata 
is also given by the fact that each plant species and even each organ 
comprises a wealth of unannotated or unknown metabolites which will only 
reveal their specific importance when tracing back their relative levels under 
a multitude of conditions. Unlike other cellular components such as primary 
and secondary gene products (transcripts and proteins), most metabolites do 
not carry annotated biological functions which relate to well-described 
unique biological roles. For a few secondary metabolites like auxins or 
glucosinolates such roles are known for controlling plant growth or  
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herbivore defense but for most, especially for primary metabolites, multiple 
functions must be assumed. The complementary addition of (experimental) 
metadata is therefore a very important and necessary element when 
metabolomic data sets are to be stored in public repositories. One aspect of 
the results reported here is the development of required and optional 
metadata entries for typical plant metabolomic experiments, with the 
ultimate aim to enhance public access and reusability of such data sets. 

1.3 Metabolomic methods require validation 

The other aspect is to elaborate the details of the experimental procedures 
between the point of plant harvests and the result data output. Just like 
details in plant growth affect interpretation of results, so do also differences 
in the sample processing workflow impair comparisons between sets of data. 
Differences in equipment render it difficult to result in fully identical results 
between laboratories, but at least the process within a specific laboratory 
must be tightly defined and monitored to allow high reproducibility and re-
usability of data. It is difficult to achieve long-term reproducibility due to a 
number of reasons: different staff may be responsible for sample work-up, 
each performing the dues somewhat differently, protocols may be 
understood and used in different ways (pointing to lack of training and 
supervision), suppliers of solvents, reagents, and consumables may lack tight 
specifications or change product characteristics without notification, the 
analytical instrumentation itself may be subjected to contamination or 
instability of sensitivity and selectivity (pointing to lack of ruggedness), and 
eventually data processing may be carried out in unexplained or varying 
ways, which may be the case for both, “relative” and “absolute” values. 
Most of these points are not relevant for small demonstration studies that 
only involve some 50 samples, since such projects will not take longer than a 
week and will be carried out by a single scientist. However, if hundreds of 
recombinant inbred lines or other genetic populations are to be compared 
and results are to be disseminated via public databases, far more rigid 
constraints have to be imposed. These constraints call for “validation” of the 
total process.  

Validation in itself is a term that is often misunderstood. Krull and 
Swartz (1999) clarified that validation of (analytical) processes is needed not 
only for industry but equally important for the academic laboratory. The 
point is that validation means “valid for a purpose”, and a valid method 
therefore needs first and for all a clear description of the purpose for which it 
is intended to be used. In many scientific papers, the difference is not made 
clear between method development and method validation: method 
development describes the steps which have been taken to evolve a process 
that led to a specific (analytical) result and ultimately to a protocol. 
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However, validation means more than that: a valid method would require 
that a certain result is always gained if defined processes are applied to a 
specified problem.  

Similar to the difference between a developed and a validated method is 
the distinction between a laboratory protocol and so-called ‘Standard 
Operating Procedures’ (SOPs). Protocols may lack a number of details 
because the protocol developers deemed these to be common sense, or 
because they were unaware of their importance which is more often the case. 
For example, a protocol suggests adding 200 µL of a buffer solution to a 
tube. An SOP, however, would detail that these 200 µL need be taken by a 
pipette that has undergone a defined calibration check at regular intervals, 
and that signatures are required that these calibration checks have actually 
taken place. In fact, pipette volume accuracy is a critical factor that is often 
underestimated, and also the staff skills to routinely and correctly estimate 
such volumes. Even without going as far as an SOP, it is good laboratory 
practice to exercise calibrations (by weighing the volume of pure water at 
defined temperature) in regular terms by all staff members and for all 
pipettes. For the 200 µL buffer example given above, an SOP would further 
detail how the buffer solution was prepared: the water quality and its source, 
the manufacturers and brands of the buffer components, and the actual 
preparation procedure. 

It is important to mention, however, that SOPs (a) must not be over-
detailed and (b) that they must undergo regular inspection and checks 
against the real laboratory practices. This means that only the parts of the 
procedures are detailed that may actually hamper the overall results – which 
is determined through the “validation” process. Therefore, it is important to 
accurately check all aspects of the developed (analytical) method with 
respect to ruggedness, i.e., how smaller or larger deviations from the details 
of the procedure affect the result data. For example, a protocol may say a 
sample is shaken for 20 s by a vortexer. An SOP might even be less rigid by 
detailing that this mixing could take place between 10 s and 30 s (because 
the actual mixing time would cause no significant difference to the results), 
but it might add that the mixing would need be done at room temperature 
between 18°C and 28°C (and not, say, in the 4°C cold room). Furthermore, 
results may indicate after a certain time that an SOP needs revision, or the 
laboratory manager discovers that a certain laboratory practice has never 
been mentioned before. Then, a new SOP is written which supersedes the 
old one and which explains which parts have been altered. 

1.4 Quality Control of data acquisition (QC) 

Many metabolomic research papers emphasize the details of a specific 
instrument, e.g., the type of mass spectrometer or NMR instrument used for 
data acquisition. In fact, however, this should be less important than details 
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how the quality of measurements were ensured. For example, relative levels of 
amino acids can be analyzed by various means such as HPLC-fluorescence 
detection or 1H-NMR or GC-MS, if the chosen data acquisition method 
suffices the specified sensitivity and selectivity. However, independent from 
the type of analytical instrument that is used are routines to ensure and prove 
long-term data precision. Some instruments may undergo a systematic drift in 
sensitivity over time; others may lose specificity for only certain compounds 
without affecting other metabolites, and certain instrumentation may simply 
lack robustness, producing highly oscillatory and hardly controllable 
measurements. All such errors cannot be evaluated in a single analytical 
sequence, be it 10 measurements or 100. Such trends will only be observable 
if identical samples are continuously subjected over long periods to (a) the 
total result of plant metabolome comparisons, (b) the total analytical method, 
or (c) the data acquisition process only. These three criteria are independent 
from each other. For example, an instrument may be perfectly in-control 
whereas sample preparation (grinding of leaf tissue followed by extraction, 
fractionation, drying, and derivatization) might cause high deviations. Going 
further, even the sample preparation step may be fully robust but plant growth 
conditions in the greenhouse or climate chamber might be altered by external 
factors (e.g., exchange of light bulbs, watering frequencies, temperature 
control, etc.). Depending on the purpose defined in the validation terms, 
different strategies may be adopted for maintaining robustness of the 
analytical results. In each case, the results must be monitored in so-called 
Quality Control charts that allow observing trends over time and deviations 
from upper and lower intervention limits: within these limits, the analytical 
process is in-control, but once these limits are crossed (out-of-control), results 
must be marked as unreliable and measures must immediately be taken (such 
as instrument maintenance or staff training) to bring the process back to 
control. 

1.4.1 Quality Control calibration curves 

Firstly, it must be ensured that the instrument itself does not cause 
systematic or large random deviations from routinely acquired data. In 
metabolomics, this can be ensured using compound mixtures covering all 
chemical classes of the typically analyzed metabolites (which were defined 
in the analytical scope before the validation process took place). If important 
classes of compounds cannot be analyzed within a given validated process, 
than the results by definition cannot be termed “metabolomics” but rather 
“metabolite profiling”. In addition to the requirement of selectivity of a 

equally important to control the analytical sensitivity, i.e., the increase in 
signal intensity upon increase in metabolite levels. The best way to perform 

metabolomic (or metabolite profiling) method, hence the ability to dis-
tinguish individual metabolites from other (matrix) components, it is 
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such quality control tests is by (daily) acquisitions of internal calibration 
curves, i.e., spiking a mixture of compound into a given matrix at 
concentrations spanning the whole range of typically detected levels in 
plants. Obviously, these compounds must not be present in the matrix 
before. This criterion can best be met using stable isotope labelled 
metabolites. If these are not available, alternatively external calibration 
curves may be employed by determining the instrument’s sensitivity by 
analyzing varying QC mixture levels alone, without matrix. Such QC 
mixture analyses need be accompanied by reagent blank controls, i.e., 
measurements that only comprise the containers, reagents, or solvents used 
directly in conjunction with the analysis. Such reagent blank controls qualify 
which analytical signals may be assigned as “blank contaminants”. Ideally, 
not a single peak should be detectable in such blanks. However, reality 
shows that this is generally not the case due to chemical impurities of 
reagents or ubiquitous (laboratory) contamination such as phthalate plastic 
additives originating, e.g., from pipette tips. 

1.4.2 Plant sample “reference design” 

The above-mentioned QC mix and reagent blank controls do not control 
for differences in sample preparation over time. Given the need to monitor 
this part of the process, a small set of identical plant specimen may be 
subjected to the homogenization, extraction, and fractionation procedure 
every day. However, as plant physiologists understand, there are no two 
fully identical plants. Even individual plants of homozygous lines grown 
under controlled standard growth conditions will show deviations from an 
assumed ideal mean (sometimes called “steady state”). Numerous factors 
account for this phenomenon, among which can be named small differences 
during germination (which may cause slight differences in growth rates and 
thus metabolism), subtle deviations of climate conditions (e.g., caused by 
position effects within the growth location) and, theoretically more 
fundamental, the basic properties of metabolic networks themselves which 
have been shown to amplify small oscillations of metabolic levels (e.g., 
external glucose fed into glycolysis) to larger metabolic deviations 
downstream along the pathways (Steuer et al., 2003; Weckwerth et al., 
2004). For this reason, it is not easy to obtain identical plant specimen to 
control for potential sample preparation errors. One way to remedy this is by 
referring each metabolite value of experiments against data of a mixture of a 
control plant specimen that is always grown concomitant with the 
experiments, independent from the actual experiment design. The problem 
here is the large difference between (Arabidopsis) accessions. If, for 
example, C24 was chosen as “reference line”, compounds that only occur in 
Ler or Cvi could not be referred to. On the other hand, such a reference  
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design would not only account for differences in sample preparation but also 
for larger differences in plant growth conditions, and in this, be helpful for 
inter-laboratory comparisons.  

1.4.3 Plant sample “master mix” design 

An alternative is to utilize “master mixtures” of plant extracts that all 
originate from a specific (large) experiment. The idea would be here to 
aliquot a small fraction (e.g., 10 µL) of each plant extract into a larger 
container that would pool all processed samples of each day. A plant 
specimen randomization schema is then needed to dictate that each 
Arabidopsis ecotype accession (natural variant) included in the larger 
experiment would be included in this daily “master mix”. Quality Control 
charts of these pools would then monitor deviations of the analytical results 
from these pool mixtures and compare them to the errors caused by the 
analytical instrument itself. The advantages of this procedure against a true 
“reference design” given above are threefold: (a) The total analytical error 
can be factored out into two distinct parts, the instrument error and the 
sample handling error. This facilitates decision making in where to put 
further emphasis in method refinements. (b) All metabolites (above a certain 
signal/noise threshold) would be monitored that are included in the 
Arabidopsis ecotype metabolomes under study. This alleviates the problem 
of using a specific accession that may not even be relevant for the 
experiment under study. (c) The largest advantage is that such a master mix 
design allows analysing plant samples that were grown elsewhere, i.e., 
where the (biological) design was not under control of the metabolomic 
laboratory. Such a situation is a daily reality in academia where colleagues 
ask the metabolomics specialist for collaboration in a certain project for 
which the growth is already complete or for which use of a specific 
reference accession would cause unacceptable complications.  

Whatever chosen for a specific setting, i.e., either “reference design” or 
“master mix design”, in any case method control blanks must be added. Such 
method control blanks are defined by utilizing all utilities, instruments, 
solvents, containers, and procedures in exactly the same way like the plant 
samples are treated, just without any sample in it. Method blank controls 
qualify which analytical signals may be assigned as “method blank 
contaminants” by comparison with the reagent blank controls. Ideally, not a 
single peak should be detectable in such blanks that are not also present in 
the reagent blank controls. However, reality shows that this is generally not 
the case due to the additive nature of laboratory contaminations (such as 
dishwasher detergents) and differences in lot qualities of solvents, tips, and 
glassware. 
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2 PRACTICAL IMPLEMENTATION OF QC  
AND SOP  

2.1 ArMet database framework 

Aforementioned considerations may be regarded as general 
recommendations for plant metabolomics experiments which may be subject 
to individual realizations depending on the biological focus or the techniques 
employed in a specific (academic) setting. Recently, an overall data model 
on how to capture the different components of such experiments has been 
suggested in order to enhance comparability and reusability of data, called 
ArMet (Architecture for Metabolomics). ArMet consists of nine basic 
modules (Jenkins et al., 2004): 
1. Administration: Informal experiment description and contact details. 
2. Biological Source: Genotype, provenance and identification data for 

items of biological source material. 
3. Growth: Description of the environments in which the biological 

material developed. 
4. Collection: Procedures followed for gathering samples from items of 

biological source material. 
5. Sample Handling: Handling and storage procedures following 

collection. 
6. Sample Preparation: Protocols for preparing samples for presentation to 

analytical instruments. 
7. Analysis Specific Sample Preparation: Protocols specific to particular 

analytical technologies. 
8. Instrumental Analysis: Process description of the chemical analysis of 

samples, including descriptions of analytical instruments and their 
operational parameters, quality control protocols, and references to 
archive copies of raw results. 

9. Metabolome Estimate: The output from the analytical instruments after 
it has been processed from raw data to produce a metabolome description 
and metadata about its processing. 
This model lays out the basic framework which general components need 

to be addressed and how ArMet compatible databases need to be structured. 
However, nothing has been standardized so far with respect to ontologies or 
controlled vocabularies to be used, and even less is agreed on which specific 
SOPs or QC measures need to be taken. In subsequent paragraphs, an 
example is given how this specific information content was implemented. 
All the metadata need to be acquired before the actual metabolomic analyses 
start. 

 

O.  Fiehn 
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2.1.1 Administration 

Usually, more than one staff and often, more than one principal 
investigator (PI) participates in a larger biological experiment. The 
Administration component may include all investigators and staff involved, 
however, this is impractical in daily routines and may not even been fully 
known in all cases. The philosophy here is to enable back tracing the origins 
of samples and potential observations after data sets have been (statistically) 
evaluated. A useful implementation might therefore ask for the main 
biological “owner” of the experiment with full name, affiliation and email 
address and the responsible chief staff in the PI’s laboratory who actually 
monitored plant growth and sample collection. 

2.1.2 Biological source 

In this component the genotype and pedigree of the plant sample is 
described. For the case of published mutants, database accessions must be 
given. For ecotype accessions (natural variants), reference to commonly 
used names are suitable. Further details of origins are required if the seeds 
were not garnered in the PI’s growth locations but sent from elsewhere, e.g., 
germplasm seed stocks or collaborating institutions. For the case of mutants, 
the parental genetic background line must be given. For crosses and 
recombinant inbred lines, both parent lines need be named. For other lines 
(which may evolve in complex cultivar breeding programs), the closest 
isogenic relative(s) or cultivar identification codes must be given. 

2.1.3 Growth 

Plant growth is a complex, lengthy, and often variable process. It is 
almost impossible to capture all details along the development of individual 
plants. Furthermore, if all imaginable growth metadata were required to be 
collected and stored, collaborative efforts in large research consortia would 
likely be hampered. Ultimately, the details of the growth component often 
comprise a large part of the experimental design which could eventually 
involve many fragmented steps. Therefore, a single and inflexible metadata 
import schema is inadequate. A useful implementation may therefore require 
only very basic objects which should be relevant to >90% of typical plant 
biology experiments and ask for more details to be placed in string text. 

(b) Sowing and transplanting date (mm-dd-yyyy). 
(c) Standard growth conditions before treatment: Medium (GS standard soil 

or Agar, etc.), Temperature (20°C day, 18°C night), Light (16/8 H, 240 
µMOL M−2 S−1), and Humidity (80%). 

(a) Name of growth location e.g. (InstituteGreenhouse#01). 
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(d) Treatment specifics, if applicable: when the treatment was performed 
(PLANT GROWTH STAGE, DATE and TIME), what kind of treatment 
was applied (string text such as “4°C cold acclimation”) and how long 
the treatment was applied (DD-HH).  

the treatment specifics into (non-queryable) string text comment fields. 

cold stress – abiotic perturbation, Cook et al., 2004) in database curation, but 
are not required before the metabolome experiment starts. 

2.1.4 Collection 

The collection component necessitates three entries: 

immediate freezing in liquid nitrogen”).  
For the harvested organ descriptions, automatic spelling corrections, 

and public ontologies are needed (such as www.plantontology.org). The 
harvesting procedures may best be described using an SOP which was not 

2.1.5 Sample handling 

The original metabolic composition must be ensured from the time of 
harvest to the actual analysis. Both biological and physicochemical factors 
may alter the metabolome during storage and handling:  
(a) Chemists tend to underestimate the metabolic turnover rates of enzymes. If 

plant tissues are kept unfrozen, and even if they are partly thawed during 
sample preparation, enzymatic activity is rescued and metabolism starts. 
Therefore, samples need be kept deep-frozen at all times until extraction. 
No reports are published about how long Arabidopsis leaf metabolome 
integrity is preserved during storage. As general precautionary measure, 
samples should not be stored longer than 4 weeks at −80°C or longer than 
2 weeks at −20°C.  

(b) Biologists tend to underestimate the effects of oxidation and light treatment. 
Oxygen is a diradical that will act independently from enzymes and 
therefore also in the frozen state. Samples must thus be stored under argon or 

minor importance is prevention from (excessive) light. Some molecules such 
as catecholamines or aromatic amines will undergo conformation changes or 
oligomerization when treated with light. Catecholamines are not found in 

O.  Fiehn 

These details may later be collated to higher levels of hierarchies (such as 

The current suggestion leaves the details of the overall experiment and 

b)  harvested organ(s) and organ specifications (LEAF, ROSETTE). 

employed for the example experiment. 

c)  harvesting procedure (string text such as “cork borer 4 mm id., 

a)  harvest date and time (mm-dd-yyyy, hh). 

as cysteine/cystine, asorbate/dehydroascorbate, or glutathione/GSSG). Of 
nitrogen in order to preserve internal redox state metabolite markers (such
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Arabidopsis leaves but in Solanum tuberosum leaves, however, in principle 
some Arabidopsis metabolites might also be affected. 

2.1.6 Sample preparation 

The details of sample preparation will undoubtedly affect metabolomic 
readouts. However, it should be kept in mind that there is no optimal or final 
single metabolomic method: metabolomic methods try to be as comprehensive 
as possible despite the vastly different chemical properties of primary and 
secondary metabolites. Therefore, the chosen sample preparation method can 
only be regarded as good compromise that fulfills its scope and which can 
therefore be validated for a given purpose. One of the most important criteria 
in the validation process is comprehensiveness (the breadth of different 
chemical compound classes being detected) and precision (the repeatability of 
analytical results), but not accuracy (correctness of a specific metabolite in 
absolute concentrations). Therefore, a sample preparation method may be 
valid despite its lack of recovery of, for example, a specific plant hormone. If 
this specific compound needs to be included, either a specific “metabolite 
target” method is developed or the existing metabolomic method is altered 
(which may eventually result in loss of other compounds).  

For homogenization and extraction of Arabidopsis leaf metabolites, the 
following SOP is used at the metabolomics core of the UC Davis Genome 
Center. Note, that procedures for sample collection are documented but not 
solely allowed in connection with this SOP. 

2.1.7 Analysis-specific sample preparation 

In principle, sample extracts from the extraction SOP can be used for 
different analytical instruments such as NMR or GC-MS. Therefore, any 
further sample preparation steps must be regarded separate from the 
extraction. Subsequent steps such as “derivatization for GC-MS measure-
ments” need again be detailed in an SOP. Many of the derivatization 
parameters do not have a dramatic influence on the overall result in GC-MS, 
if the conditions and parameters are hardly controlled. However, this is 
usually not the case. In all GC-MS instrument setups reported so far, 
samples were manually derivatized in batches and then placed on 
autosamplers prior to injection. The time between addition of GC-MS 
reagents and the actual measurements therefore remained uncontrolled, 
although it is known that certain compounds (especially amines and amino 
acids) undergo further reactions during this time. In a more tightly controlled 
SOP it is therefore reasonable to use a robotic system for automatic 
derivatization and injection. Such a system also allows automatic addition of  
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Table 1-1. Example SOP for ‘extraction of Arabidopsis leaf tissue disks’ 
 

 
UC Davis 

Metabolomics Core  
 

 
SOP 

Standard Operating Procedure  

 

date: 01/15/2004 Extraction of Arabidopsis leaf 
tissue disks  

Code no.: 002_2005a 

Issued:         01-15-2005 
Valid from: 01-16-2005 

Validity area: UC Davis 
- Metabolomics Core - 

Responsible: Tobias Kind  
This SOP supersedes: SOP 002_2003a MPI Golm  Checked: Oliver Fiehn 

Extract ion  of  Arabidops is  l eaf  t i s sue  d isks  

1. References:  Weckwerth W., Wenzel K., Fiehn O. Process for the integrated 
extraction, identification and quantification of metabolites, proteins and RNA to reveal 
their co-regulation in biochemical networks Proteomics 2004, 4, 78–83 

2. Starting material: 
15-30 mg fresh weight, 1-3 mg dry weight Arabidopsis leaf disk, approx. 4 mm I.D. 

Sample collection leaf tissue  
Before sampling, take digital photo of plants to be harvested, indicating the target 
sample ID#. Take one or two disks of a fully mature rosette leaf from the leaf center by 
using the cork borer (diameter of cylinder will depend on the targeted amount of leaf 
material). Transfer the disk(s) immediately to an Eppendorf tube, equipped with a 
grinding metal ball and labeled by sample ID #. Close the Eppendof quickly and place it 
in liquid nitrogen. 

Samples may be taken in other ways but procedures need be documented and accessible.  

3. Equipment:  
• Grinder (ball mill MM 200, Retsch corp.)  
• Centrifuge Eppendorf 5417 C  
• calibrated pipette 1000 µl (check conformity SOP 007_2005a) 
• cork borer (diameter related to target disk weight. 4 mm I.D. appropriate for 

Arabidopsis leaves.)  
• metal balls for grinder  
• fine balance accuracy ± 0.1 mg  
• Safe lock micro test tubes 2 mL, uncolored, (order no. Eppendorf corp.0030 120.094) 
• Crimp V-vials glas 1ml, (order no. Fisher Scientific corp. 3102008) 
• Julabo corp. cooling bath  
• Vortex mixer/ stirrer, Scientific Industries corp. 
• Thermo mixer HLC  TM 130-6 
• Speed vacuum concentration system, Heto corp.  
• Large tweezers  

4. Chemicals 
• Methanol LC-MS Chromasolv, SAF order no. 34966 
• Chloroform Chromasolv, SAF order no. 25685 
• pure water “Purelab Plus” (Alternatively take LC-MS Chromasolv water SAF order 

no. 39253) 
 

O.  Fiehn 
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UC Davis 

Metabolomics Core  
 

 
SOP 

Standard Operating Procedure  

 

 

• two dewar vessels filled with liquid nitrogen 
• pH paper 1-14, Macherey-Nagel order no. 92110  

5. Procedure 

5.1. Preparation of extraction mix and material before experiment: 

paper, then one drop of solvent. Attention: this is not an accepted pH measurement by 
pH definition but suffices quality check here. 
⇒ H2O, MeOH, CHCl3 is mixed in volumes in proportion 1 : 2,5 : 1. 
⇒ rinse the extraction solution mix for 5 min with argon or gaseous nitrogen with small 
bubbles, for example using HPLC-solvent filters or pumice stones for home fish tanks. 
⇒ switch on bath to pre-cool at –15°C to –20°C (validity temperature range). 

5.2. Homogenization and extraction 
Pre-chill two Eppendorf tube holders in liquid nitrogen for > 60 s. Then, take out six 
Eppendorf sample tubes from liquid nitrogen and place these into the Eppendorf-holder 
of the grinder, each three samples per tube holder. Take care to compensate for weight, 
maintaining equilibrium. Shake holders for 30 s with a frequency of 25 s-1. Afterwards, 
immediately place Eppendorf tubes back into the second liquid nitrogen dewar. When 
all samples are ground and homogenized, take the tubes one by one out of the liquid 
nitrogen using the long tweezers and immediately add 1 ml of pre-chilled extraction 
solvent mixture (-15 to -20°C). Even partial thawing of samples must be prevented. 
Vortex for 10-20 s and shake for 4-6 min at 4°C (use thermo shaker in the 4°C cooling 
room). Samples may be stored on crushed ice (chilled at <0°C with NaCl) between 
vortexing and chilling for up to 10 min. After shaking, centrifuge samples for 2 min at 
20,200 cfg at room temperature. Take out 800 µl supernatant into a labeled Eppendorf 
tube and vortex the tube for 5-10 s. (The remainder residue containing cell debris is 
discarded.) Take out 10 µl aliquot into the ‘master mix pool’. Take out 400 µl into a 
round bottom 1 ml crimp glass vial. Store the residue aliquot under argon or nitrogen at  
-80°C. Dry the 250 µl sample aliquot in the speedvac concentrator to complete dryness. 
Once dry, store samples in darkness under argon or nitrogen at -20°C prior to analysis. 
Don’t store longer than 6 weeks. 

6. Problems 
In order to prevent contamination, disposable material is used. Check pH of extraction 
solvent mix! Take care that Eppendorf tubes are completely closed before placing them 
in liquid nitrogen. Otherwise, liquid nitrogen will immerse into the tube and cause 
disruption once put back to room temperature.  

7. Quality assurance 
The method is invalid without at least one method blank control per 40 samples to which 
the total procedure was applied  (i.e., employing all steps, materials and plastic ware), 
just leaving out the leaf tissue disk.  

8. Waste disposal  
Collect all chemicals in appropriate bottles and follow the disposal rules. 

 

⇒ check pH of MeOH, CHCl3, and water (pH7) by adding one drop of pure water to pH 

Table 1-1. (continued) 
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internal standards to control for injection errors and retention time shifts. A 
suitable SOP might use the following procedure: For derivatization and 
injection, use a robotic system with ovens, syringes, and manifolds to handle 
reagents and vials. Add 1 µL of a mixture of retention time standards and 
isotope labeled standards to the dried sample and immediately afterwards, 10 
µL methoxyamine in pyridine (40 mg/mL). The solution is shaken at 28°C 
for 90 min before 90 µL MSTFA is added. The reaction solution is shaken at 
37°C for 30 min and placed back to a waiting tray at room temperature. Each 
sample is injected exactly 3.5 h after addition of MSTFA. A macro program 
ensures that all steps are intimately linked. 

2.1.8 Instrumental analysis 

The ArMet database framework suggests distinguishing between the

different parts of the SOP can surely point to different database objects. The 

 
 

 

 
 

Figure 1-1. Image of a robotic system for sample derivatization, liner exchange, and gas 
chromatography/time-of-flight mass spectrometry (GC-TOF).  
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analysis specific sample preparation and the instrumental analysis. In 
the demonstration case presented here this is obviously not needed, but the

instrumental setup used here is specialized in that it also allows an automatic 
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liner exchange and cold injection into the GC-MS instrument. This ensures 
that each sample is subjected to a clean liner in order to avoid matrix carry 
over between samples. Especially for unsaturated free fatty acids but also for 
aromatics and phenolic compounds such a setup is needed for high-quality 
contamination-free analyses. Usual liners include some glass wool to prevent 
involatile material reach the chromatography column. The specialized liners 
used here include a microvial in which 1.5 µL of sample is injected at 40°C. 
Subsequent flash heating vaporizes all volatile components which are 
subsequently separated by gas chromatography, whereas all involatile 
components remain at the bottom of the microvial. The liner is then 
automatically exchanged against a new liner (with microvial) for the next 
injection. After use, microvials are discarded whereas liners are cleaned and 
reused. 

The injection is the most critical part in GC-MS. Most other settings such 
as heat ramping rate, the actual separation column used, and even the type 
of mass spectrometer will usually not dramatically affect the overall 
metabolomics aims, i.e., comprehensiveness and precision. However, the 
injection process may do so as is outlined in the next section. The last ArMet 
component, the Metabolome Estimate, will also be discussed in brief in this 
section. 

Figure 1-2. Long-time quality control chart for QC mix in GC-TOF mass spectrometry. 
Absolute values for ribitol (filled circles, left axis) and putrescine (open triangles, right axis) 
are notified in daily injections for absolute intensities at m/z 174+319. Dotted lines: upper 
intervention limit, mean, and lower intervention limit.  
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2.2 Quality control charts to monitor system suitability 

The different SOPs outlined above are a result of monitoring the overall 
system performance over long times. The instrument Quality Control 
mixture contains 28 compounds (amines, amino acids, aromatics, hydroxy 
acids, mono- , di- and trisaccharides, sugar alcohols, and sterols) which are 
used for immediate recognition of some of the more frequent problems in 
high throughput GC-MS. This QC mix is daily analysed in six dilution steps. 
(a) Detector response is monitored by absolute peak areas, e.g., ribitol and 

putrescine. These two chemically very different compounds elute in the 
midrange of the chromatogram and are not affected by injector boiling 
point discriminations. An example QC chart is given in Figure 1-2. Note 
that a lag time was used to get experience for suitable intervention limits. 
These limits were calculated by two-sigma standard deviations of the 
absolute peak areas during 100 subsequent days of operation, half a year 
after the instrument had been installed. Whenever the intervention limits 
were crossed, maintenance measures were taken to bring the process 
back into control, and no plant samples were run at that time. 

(b) System selectivity is monitored by three different parameters: (i) ratios of 
putrescine to ribitol. Amine-silyl bonds are far weaker and decompose 

contamination). In dramatic cases, and especially at low levels, amines 
may completely get lost, but before, problems become imminent by altered 

immediately affected by any kind of column contamination (fig. 1-4). A 
suitable maintenance measure is to cut the column by 10 cm. Therefore, 
10 m empty guard columns are used in conjunction with the separation 
column. (iii) peak asymmetry of alanine. Low boiling point compounds 
are adversely affected by alterations in injector pressure regulation, 
especially when binary solvent systems are used like pyridine/MSTFA. 

(c) System sensitivity is monitored for all compounds by alterations in 
slopes of the calibration curves. This may point to problems with liner lot 
quality delivered by the manufacturer. 

 3 CONCLUSIONS 

Many research groups and initiatives have been started in the area of 
(plant) metabolomics but yet, comprehensive databases and metainformation 
are still to come. In this chapter, reasons have been outlined why this may be 
 
 

O.  Fiehn 

more easily in case any problem with injector quality occur (e.g., dirt, 

ratios of amines to carbohydrates (e.g., putrescine to ribitol, fig. 1-3). 
(ii) peak height of maltotriose. High boiling point compounds are
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Figure 1-3. Quality control chart for liner discrimination of low abundant amines. Normalized 
relative ratios of putrescine/ribitol from injection sequence 3266–3274. Black dotted lines: 
upper intervention limit, mean, and lower intervention limit.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1-4. Quality control chart for discrimination of high boiling (maltotriose, mto) against 
mid boiling compounds (ribitol, rbt) caused by matrix depositions in injector, liner and/or 
column. Black dotted lines: upper intervention limit, mean, and lower intervention limit. 
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the case and which steps can be taken to circumvent, monitor, and control 
problems. As an example case, capture of metadata, and Arabidopsis leaf 
disk extraction prior to GC-MS analysis was taken, but similar long-time 
procedure checks and quality controls need be taken in other instrumental 
approaches. Eventually, databases giving access to experimental data will 
need to be accompanied by information on both biological and analytical 
metadata. Only by such measures can comparability and exchange of data be 
ensured, which is certainly true not only for metabolomics but also related 
areas such as proteomics and transcriptomics. 
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Chapter 2 

GC-MS PEAK LABELING UNDER ARMET 

Helen Jenkins1, Manfred Beckmann2, John Draper2, and Nigel Hardy1 
1Department of Computer Science and 2Institute of Biological Sciences, University of Wales, 
Aberystwyth, Ceredigion, Wales, UK, SY23 3DB 

1 INTRODUCTION 

ArMet (Jenkins and Hardy, 2004) is a data model for plant metabolomics. 
It provides a framework for representing the data associated with 
metabolomics research. A metabolome is the set of metabolites produced by 
an organism (Oliver and Winson, 1998), where metabolites are the end 
products of cellular regulatory processes (Fiehn, 2002). MIAMET (Bino and 
Hall, 2004) is a suggested checklist of the information necessary to provide 
context for metabolomics data but is not a formal description of a data model, 
such as is necessary to develop supportive data handling systems. ArMet is 
such a model and may be used in a variety of ways, including as a basis for the 
design of systems to store or transport data on metabolomics experiments. It 
may also serve to establish and promote standards for metabolomics 
experiment description. Similar initiatives in the microarray (Brazma and 
Hingamp, 2001) and proteomics (Orchard and Hermjakob, 2003; Taylor and 
Paton, 2003) (http://psidev.sourceforge.net/gps/) communities have already 
yielded some of these benefits. The ArMet designs and example imple-
mentations are freely available (http://www.armet.org/). 

ArMet encompasses the timeline of metabolomics experiments from 
descriptions of the biological source material through to the results of 
chemical analyses. It describes not only the results of chemical analysis of a 
sample, but also data on the experimental context of those results (metadata). 
This metadata is an important part of experiment description as it enables 
correct interpretation of experimental results and meaningful comparison of 
experiments and their results across laboratories. 

 
 

B.J. Nikolau and E. Syrkin Wurtele (eds.), Concepts in Plant Metabolomics, 19–28.  
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To provide a flexible and expandable data model ArMet has a component-
based architecture. Each component describes part of the metabolomics 
process by way of a set of core data items. These are relevant to all 
experiments and serve as a minimal description. In addition to the core, each 
component may have zero or more alternative sub-components (detailed 
extensions), which support the core data plus additional data to describe 
particular methodologies and technologies in more detail. The opportunity to 
define sub-components means that the architecture may provide customized 

A range of different analytical instruments may be used to gain insight into 
the metabolomes of organisms. Gas Chromatography-Mass Spectrometry 
(GC-MS) is seen to have great potential in this area and there are many 
demonstrated examples of its use, (e.g., Fiehn and Kopka, 2000; Roessner and 
Wagner, 2000). Here we propose sub-components for the ArMet Metabolome 
Estimate component to support the results of certain types of metabolomics 
experiments carried out using GC-MS. 

2 METABOLOME ANALYSIS 

Before Metabolome Estimate subcomponents can be built an under-

required. Fiehn (2002) describes four analytical approaches: 
• 

• 

• 

H. Jenkins et al. 

comparability of data sets from different origins through the core data. 
ArMet comprises nine components. Eight of these describe the context of 
experiments: Admin; Biological Source; Growth; Collection; Sample Handling;
Sample Preparation; Analysis Specific Sample Preparation; Instrumental
Analysis (Jenkins and Hardy, 2004) (http://www.armet.org for details). The
ninth component, Metabolome Estimate, describes output from analytical

support to particular experiments or laboratories whilst maintaining the 

instruments after raw data has been processed to produce metabolome
descriptions appropriate for statistical analysis and data mining. While the
core data for the eight components will stand alone as a minimal description
the Metabolome Estimate component is abstract (in the computing sense) and
requires sub-components to be meaningful; i.e. the core component is too
general to represent any specific data in a useful way. 

Targeted analysis. Detection and precise quantification of a single or
small set of target compounds in a sample.  

standing of the types of metabolome analysis that may be carried out is 

Metabolite profiling. Detection and approximate quantification of a large 
set of target compounds in a sample. The target compounds will either
have known chemical identities or will be reproducible between samples 
but be chemically unidentified.  
Metabolomics. Detection, approximate quantification and tentative 
identification of as many of the compounds in a sample as possible. 
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metabolites. 
• 

without regard for the individual compounds that it contains. 
This paper considers data collected under the metabolite profiling and 

metabolomics approaches using GC-MS. 

2.1 Metabolite profiling and metabolomics  
using GC-MS 

The output of metabolite profiling or metabolomics is a quantified list of 
metabolites. The series of mass spectra output by GC-MS requires 
processing to produce such a list. Much work has been done to automate this 
processing. Many of the methods developed either implement or build on the 
work of Biller and Biemann (1974) or Dromey and Stefik (1976), whose 
methods are based on individual mass to charge ratio profiles across the 
scans. We identify the following stages of processing for both types of 
metabolome analysis: 

processing are required: 

Quantification is typically based on calculation of the area under each 
peak. Effective noise removal, peak detection, and peak deconvolution to 
facilitate proper understanding of peak shapes are a prerequisite for this. 

Labels may be chemical identities but, in profiling where a peak is 
reproducible between samples but has not been chemically identified or in 
metabolomics where there may be novel peaks, it must be some other 
identifier.  Determination of a peak label may be performed on the basis of 
its mass spectrum. Each compound has a characteristic fragmentation pattern 
which may be sought in the reference list of target compounds (for profiling) 
or in mass spectrum libraries. Such lookup depends upon the ability to 
compare spectra. Common methods for this are the dot-product approach 
(Stein and Scott, 1994), probability-based matching (Pesyna and 
Venkataraghavan, 1976), and similarity indices (Hertz and Hites, 1971).  

The retention time for a compound depends on its interaction with the 
stationary phase in the chromatograph column and is another attribute that is 
characteristic of chemical identity.  Since the absolute retention time may be 
affected by analytical variability and instrument drift between runs, it is 
 

Metabolomics has the potential to discover previously undetected 

Fingerprinting. Generation of a signature for a metabolome sample 

• Noise removal: Removal of noise introduced by the analytical method 
• Peak detection: Location of compound peaks in the elution profile 
• Peak deconvolution: Data analysis to separate co-eluting compounds. 

• 
• peak labeling. 

peak quantification; 

These stages establish the compound peaks. Two further stages of 
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common to convert it to a relative value or an index so that it may be used 
more reliably for peak labeling. Retention times may be expressed relative to 
times for internal or external standards. If temperature, stationary phase, and 
standard compounds are known relative retention times can be reproduced 
and used for identification (Willett, 1987). The retention index for an 
unknown is calculated by comparing its absolute retention time with those of 
a series of standard compounds. Retention indices are reproducible provided 
that the same temperature and stationary phase are used (Sewell and Clarke, 
1987). 

2.2 Understanding GC-MS metabolome descriptions 

Understanding the types of metabolome analysis that may be carried out 
and how the resulting data sets may be produced from raw GC-MS output 
enables us to determine the data that should be supported by GC-MS 
subcomponents of the Metabolome Estimate component. The importance of 
contextual metadata, as outlined above should be emphasized.  

All subcomponents of the Metabolome Estimate component must support 
its core data items. Figure 2-1 illustrates the core in a Unified Modeling 
Language (UML) (Booch and Rumbaugh, 1999) class diagram. UML 
enables us to model objects in an implementation-independent way. In the 
diagram, two classes represent the entities about which we wish to store 
data: Output models the data set as a whole and its processing to convert the 
raw instrument output to a metabolome description; DataPoint models a 
point in the processed results. The line between the two classes represents an 
association between them. The value “0..*” indicates that each Output is 
optionally associated with one or more DataPoint. The value “1..*” 
indicates that each DataPoint must be associated with one or more Output. 
The sparse nature of this model illustrates the abstract nature of the core data 
for the Metabolome Estimate component. 

Figure 2-1. Metabolome Estimate component core.  

H. Jenkins et al. 

1..* 0..* dataPointID
Contains

Output DataPoint

dateTimeProcessed
dataProcessor

outputID



2. GC-MS Peak Labeling Under ArMet  23 

2.3 Modeling peak labels 

The metabolome descriptions produced from GC-MS for both metabolite 
profiling and metabolomics comprise lists of labeled metabolite peaks.  

For metabolite profiling, labeling is performed by comparison of the 
mass spectra for peaks found in a sample with those in a reference list of 
target metabolites. The sample peaks are labeled with either a chemical 
identity, where peaks have previously been identified, or a unique identifier 
where they have not. The complete peak label for a metabolite in a 
metabolite profiling experiment is, therefore, an identity and a quantity 
measurement that may be relative or absolute. Figure 2-2 depicts a data 
model, extending the core, to support this data. DataPoint has been 
extended to model an entry in a profiling data set as described above. Output 
supports two additional data items, dataProcComments for any notes that the 
data processor wishes to attach to the data set and quantityType which 
indicates whether the quantity measurements are relative or absolute. 
(ProcessingProtocol and associated classes are described in Section 2.4). 

For metabolomics, peak labeling is performed by comparison of the 
peaks found in a sample with those in a library. Studies have shown (Stein 
and Scott, 1994; McLafferty and Zhang, 1998) that the best comparison 
algorithms may achieve only around 75% accuracy, so automatic lookup of 
chemical identity will provide only tentative identification. Therefore the 
model for metabolomics must support multiple candidate identities for each 
peak. Figure 2-3 depicts such a data model. Again it extends the core 
Metabolome Estimate data. ChemicalID supports the possible identities for a 
data point. To provide context for an association between a chemical identity 
and a data point the following metadata, which is represented in the model as 
attributes of the association, is required: 
• The name and version number of the software/algorithms used to 

perform mass spectral lookup. 
• The parameters to the software/algorithms. 
• The name and version number of the mass spectral library used. 
• A confidence value for the chemical identification. 

The model allows zero or more chemical identities to be associated with 
each metabolite list entry (the 0..*:0..* label between DataPoint and 
ChemicalID). Therefore, the chemical identity cannot act as a unique label 
for a peak. As all chemical identities for metabolomics data points are only 
tentative a useful unique label would be one that allows third parties to 
perform their own tentative chemical identification. Mass spectral data and 
retention data are typically used for this purpose (see Sect. 2.2). Therefore, a 
metabolomics data point is modeled as: 
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• A measurement of the quantity of the metabolite present in the sample; 

either absolute or relative. 
• A retention value for the peak that represents the metabolite in the TIC 

chromatogram; either absolute retention time, relative retention time or a 
retention index. 

• A maximum of 20 mass to charge ratio/ion abundance pairs from the 
mass spectrum for the peak that represents the metabolite in the TIC 

These descriptions are supported by DataPoint and MZValue. Output 
supports (in addition to dataProcComments), quantityType and 
retentionTimeType, which indicate whether the quantity measurements are 

Figure 2-3 shows that the model supports a maximum of 20 peaks for 
each data point. McLafferty and Stauffer (1999) looked at the number of 
peaks required for successful comparison of mass spectra in the context of 
library lookup. The study used probability based matching and found that 15 
peaks were 87% as effective as 150 peaks and 18 peaks were 97% as 
effective as 150 peaks. On this basis, and to yield the benefit of reduced data 
storage requirements in any implementation of the model, a representative 
mass spectrum with a maximum of 20 peaks is supported. Tong and Cheng 
(1999) compared three techniques for identifying the most significant peaks 
for spectral comparison and it is suggested that such approaches may be a 
basis for automatic selection of peaks for storage. 

 
 

 

 

Figure 2-2. Metabolome Estimate subcomponent for metabolite profiling. 
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2.4 Data processing metadata 

Producing a metabolite list from raw GC-MS output involves the 
processes described in Sect. 2.1. For both approaches the first four processes 
(noise removal and peak detection, deconvolution and quantification) can be 
characterized by: 
• The name and version number of the software/algorithms used to 

perform the process 
• The parameters to the software/algorithms 
• A description of any manual procedures employed to perform or adjust 

the output from the automated part of the process 
In both Fig. 2-2 and Fig. 2-3 ProcessingProtocol and ProcessingStage 

provide support for these descriptions. 
Metadata to describe the fifth process (peak labeling) for metabolomics 

data sets is included in the data point description. If relative retention times 
or retention time indices are used, it is necessary to support metadata to 
describe their calculation. This may be done in the same terms as noise 
removal, etc. and can be supported by the ProcessingStage entity. In 
addition, metadata to describe internal standards added to a sample to 
facilitate the calculation of approximate absolute quantities would be part of 
the sample preparation metadata supported by other ArMet components.  

For metabolite profiling datasets the model should support additional 
metadata about the target compound reference list and the comparison 

Figure 2-3. Metabolome Estimate sub-component for metabolomics. 
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process used in peak labeling. While the comparison process may be 
described in the same terms as noise removal, etc. using ProcessingStage, 
the metadata to describe target compound reference lists should be sufficient 
to enable a third party to reproduce the results of an experiment, including 
details about the target compounds, i.e., mass spectral data and retention 
data. The data to describe a metabolite profiling reference list are 
characterized as a description of the provenance of the list (i.e., how it was 
compiled) and the following items for each target compound: 
• Either a chemical identity or a unique identifier. 
• Where the target compound has a chemical identity, a reference to further 

information on the compound in an external library or database. 
• An expected absolute retention time for the compound. 
• A maximum of 20 mass to charge ratio/ion abundance pairs from its 

mass spectrum. 
This data will allow third parties to use the list with their own samples 

and provide input for chemical identification of unknown compounds. In 
Figure 2-2, a reference list is modelled by TargetList and associated 
classes. 

3 CONCLUSIONS AND DISCUSSION 

We propose a structure for the data required to describe GC-MS based 
metabolite profiling and metabolomics. It has been developed in the context of 
ArMet and consists of two subcomponents for its Metabolome Estimate 
component. Alternative models for the two analytical approaches and to 
support targeted analysis and fingerprinting are possible. Equally possible are 
combined models to support data collected under more than one approach 
(Jenkins and Hardy, 2004).  Standard representations of GC-MS experiments 
for metabolome analysis may be used in a number of ways: to provide the 
basic design for systems to manage the output of such experiments; expressed 
in a data definition language such as XML and used to enforce data integrity 
when transporting data sets; as a standard for presentation and exchange of 
data sets, enabling cross-laboratory collaboration. 

Metadata to provide experimental context for the data sets has been 
identified and is accommodated. The metadata required to describe the 
production of data sets from raw GC-MS output has also been identified and 
included in the models. This will enable data users to interpret the results of 
experiments, reproduce data sets, and identify data sets that may be 
meaningfully compared.  We note that metadata and metabolome estimate 
data in an ArMet compliant system may be extracted and presented in the 
form suggested by Bino and Hall (2004) for “naming unknowns”.  

H. Jenkins et al. 
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These representations are not offered as an alternative to established and 
emerging standards for the representation of complete GC-MS data sets 
(Lampen and Hillig, 1994; Davies and Lampen, 2003) (http://animl.source 
forge.net/). Our intention is to model higher level metabolomics data for 
subsequent analysis and mining. We hope that our proposal will form the 
basis of discussions aimed at developing a standard for experiment 
descriptions in this area. 
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Chapter 3 

METABOLOMICS AND PLANT QUANTITATIVE 
TRAIT LOCUS ANALYSIS – THE OPTIMUM 
GENETICAL GENOMICS PLATFORM? 

Daniel J. Kliebenstein 

Department of Plant Sciences, Mail Stop 3, University of California, One Shields Ave, Davis, 
CA 95616, USA 

1 INTRODUCTION 

Biologists have long strived to understand what causes phenotypic 
differences between two individuals. This includes differences in 
morphology, disease susceptibility, and physiology as well as potential 
metabolic differences underlying these higher-order phenotypes. The 
diversity between individuals is partitioned into both environmental and 
genetic variation. Most genetic variation studied to date tends to be 
qualitative such that there are one or more distinct and non-overlapping 
phenotypic states. However, most phenotypic differences are quantitative 
such that there are numerous overlapping phenotypic states (Mackay, 2001; 
Flint et al., 2001; Lynch and Walsh, 1998; Mauricio, 2001). It has been 
known for nearly a century that the approximate genetic position of loci 
controlling these quantitative traits can be identified through associating 
marker and phenotype variation in a structured population (Sax, 1923). This 
association is the foundation for Quantitative Trait Locus (QTL) mapping 
experiments that attempt to identify the number, phenotypic impact and 
interaction of loci controlling a quantitative trait. 

The latest incarnation of the QTL experiment is genetical genomics that 
phenotypes genetic mapping populations with genomics technology (Jansen 
and Nap, 2001). The goal is to merge the genomics technologies high-
throughput and highly parallel phenotyping capacity, i.e., microarrays, 
proteomics, and metabolomics, with genetic segregation to test or generate 
specific hypothesis. The rationale is that a specific genes expression level is 
easier to quantify than the more complex developmental or physiological 
traits. Thus, by identifying loci controlling the differential gene expression 
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patterns for all an organism’s genes and comparing this to those loci 
controlling a specific physiological trait, the researcher could develop a 
systems biological understanding of more complex traits. Genetical 
genomics has predominantly utilized microarray analysis of stable mapping 
populations in a variety of species (Morley et al., 2004; Yvert et al., 2003; 
Brem and Kruglyak, 2005; Brem et al., 2002; Schadt et al., 2003). 

Microarrays present a basic fiscal problem in that it is expensive to 
phenotype all lines in a mapping population much less replicate the 
phenotyping. Thus, microarrays are fiscally limited to small, highly defined 
mapping populations and replication limited to genes with highly heritable 
expression differences. This is a serious limitation, as most complex 
physiological traits are moderate-to-low heritability and controlled by 
numerous loci that require large populations with replicated experimental 
designs for reliable detection. Therefore, fiscal limitations alone will hinder 
microarray use in genetical genomics to all but the very largest or well 
funded of laboratories. Metabolomics platforms may provide a more 
widespread entry into genetical genomics. Metabolomics is much cheaper 
per sample than transcriptomics, enabling large populations to be studied 
with sufficient replication for moderate-to-low heritability traits. 
Additionally, most metabolomics platforms are higher-throughput than 
transcriptomics, allowing for rapid analysis (Fiehn, 2001; Fiehn et al., 2000; 
Hall et al., 2002). 

Numerous studies have investigated QTL controlling plant metabolites 
but none with a metabolomics purview (Kliebenstein et al., 2002a; 
Kliebenstein et al., 2001a; Kliebenstein et al., 2002b; Monforte et al., 2001; 
Santos and Simon, 2002; Bushman et al., 2002; Thorup et al., 2000; 
McMullen et al., 1998; Byrne et al., 1996). This chapter’s goal is to help 
provide guidance in developing, designing, and interpreting metabolomics 
genetical genomic experiments. I will focus on three questions that are 
frequently asked by individuals starting a metabolite QTL project: (1) How 
do I design the experiment? (2) What traits/variables do I measure? (3) What 
will I find? This will draw on literature both involved with the theory of 
QTL formation as well as experimental analysis of metabolite QTL detection 
and interpretation. 
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2 QTL QUESTIONS AND FINDINGS FOR 
METABOLOMICS 

2.1 How do I design the experiment? 

This question is best handled in three interrelated parts: population 
structure, population size, and replication. All three aspects are intertwined, 
such that population structure will influence the other two and vice versa, 
but I will deal with them separately. For more detailed information see the 
enclosed references (Mackay, 2001; Mauricio, 2001). 

2.1.1 Which population do I chose? 

For genetical genomics experiments, the optimal population structure is 
either Recombinant Inbred or Advanced Intercross lines. These populations 
allow for recombination and transgressive segregation similar to an F2 
population but are taken to homozygosity allowing independent replicated 
measurements of a given line. Homozygosity also increases the populations’ 
power by forcing each genomic position to only have one of the two 
opposing haplotypes instead of the three possibilities in F2 populations. 
Inbred line populations are not feasible in all systems due to generation time, 
inbreeding depression, or self-incompatability. In these species, the next best 
population structures are typically backcross populations as there are only 
two allelic classes at each locus, heterozygote, and one homozygote. 
Another factor that should be considered in determining the population is the 
availability of previously genotyped populations with phenotypic differences 
of interest. This is valuable as the majority of time and expense in any new 
population is not phenotyping but instead generating and genetically 
mapping the population. Thus, previously existing populations are highly 
desirable even if the structure is not optimal. 

2.1.2 What population size do I use? 

The next decision to resolve is the population’s size. The general rule in 
determining the optimum population size is the larger the better. Ideally, 
populations should contain at least 300 individuals or lines. Larger populations 
provide several benefits. The first is that they have more recombination events 
increasing precision in measuring a QTLs position. Secondly, larger 
populations have more power to separate closely linked QTL due to the 
increased recombination. The increased line numbers also allow for better 
capacity to detect two- and three-way epistatic interactions because there are 
more lines in each combinatorial class. Finally, the larger population sizes 
allow for higher replication in terms of number of lines with Allele X at 
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position Y. Populations with less than 300 individuals can be utilized but will 
have limited power for traits with more than a couple QTL or moderate-to-low 
phenotypic effect QTL. In genetical genomics experiments, most traits may be 
controlled by numerous QTL with predominantly low-to-moderate phenotypic 
effect and thus small populations should be avoided (Mackay, 2001; Lynch 
and Walsh, 1998; Brem and Kruglyak, 2005). 

2.1.3 How many replicates should I conduct? 

Once the population is chosen, the next question is how many replicate 
measurements per line should be conducted and how these should be 
organized. The key to deciding these issues is to measure the experimental 
sources of variation. This involves designing an experiment whereby several 
samples are taken per plant with multiple independent plants per parental 
genotype per replicate. Multiple independent replicates are conducted and all 
samples independently analyzed via metabolomics. Analysis of variance for 
this experiment will allow the researcher to estimate the variation from 
spatial differences within a plant, from differences between plants, from 
differences between replicate experiments, and from differences between 
genotypes as well as any interactions between the different levels. The 
optimum result is that most of the variance is genetic with the rest of the 
error being split between plants within a replicate or between replicates. If 
this is the case, it is best to take one measurement per plant with each line 
being represented by two or more plants per replicate. 

The analysis of parental variance also allows the researcher to obtain a 
very rough estimate of each traits heritability be estimating the variance due to 
genotype difference. There is a common perception that low heritability traits 
require high-replicate numbers to successfully map QTL. However, 
calculations show that even for traits with 30% heritability, only six replicates 
are required to diminish the error in the mean trait estimate to approximately 
10% (Denby et al., 2004). Thus, it should be possible to identify QTL for most 
traits with less than 10 and as few as 6 replicates per line. Metabolomics 
platforms are probably the best current technology for fiscally achieving this 
replication in large populations. The analysis of parental variance will allow 
the researcher to identify the heritability distribution for the metabolites and 
make an informed decision on replication. Previous metabolite profiling 
projects have found heritabilities that range from 20% to 90% with most being 
in the range of 50–70% (Kliebenstein et al., 2002a; McMullen et al., 1998; 
Byrne et al., 1996; Kliebenstein et al., 2001b).  

The ability to measure interactions in the above variance test is a key 
element of properly designing a QTL experiment. If there is a significant 
interaction between genotype and replicate, this suggests the presence of 
genotype × environment interactions. Previous metabolite profiling and 
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microarray QTL mapping projects have identified significant genotype × 
environment interactions (Brem and Kruglyak, 2005; Kliebenstein et al., 
2002a). One option to minimize this is that each line should be repeated 
enough times per replicate to allow for QTL analysis within each replicate as 
there could be different QTL identified depending upon environmental 
fluctuation. Additionally, the researcher could attempt to better control the 
environmental variance by controlling the growth conditions between 
replicates to minimize this difficulty. Alternatively, the researcher may only 
be interested in QTL that impact the trait in all environments and would thus 
conduct the analysis in multiple environments. 

The identification of a significant interaction of genotype with either 
within plant variance or between plant variance in the parental analysis 
suggests that there may be a developmental difference between the parents 
that is impacting the sampling. The best way to minimize this variance is to 
ensure that the same tissue at the same developmental stage is being sampled 
in all cases. A detailed analysis of the sources of variance before conducting a 
QTL mapping experiment will greatly enhance both the potential for success 
and the resulting QTL maps interpretability. This is especially important in a 
metabolomics genetical genomics experiment where thousands of traits will be 
analyzed simultaneously. 

3  WHAT TRAITS/VARIABLES DO I MEASURE? 

There are several aspects to this question. This includes what guidelines to 
use in deciding upon a metabolomics platform. Another important question to 
contemplate is which variables to use in the QTL mapping. Finally, should the 
data be altered to conform to the expectation of normality and what potential 
errors does this introduce? Each of these questions is dealt with below. 

3.1 Which metabolomics platform to utilize? 

The first decision is which metabolomics platform should be utilized. 
This involves a compromise between the analytical speed and information 
content per analysis. The optimum platform should have significant high-
throughput capacity to allow for the thousands of samples that are required 
for a statistically powerful QTL mapping experiment. In addition to high-
throughput the best technology would individually quantify specific 
compounds and provide identification where possible and structural 
information for all compounds detected. This optimum requirement for 
individual quantification and identification provides the maximal power in 
the downstream QTL analysis. A number of high-throughput platforms like 
IR and NMR platforms are limited in providing specific compound 
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information and do not measure as many compounds per sample as other 
platforms. Thus, when QTL are identified the researcher will not be fully 
sure of the phenotypes identification. Thus, the researcher will be challenged 
to develop specific hypothesis about the locus’s molecular function possibly 
even after cloning the underling gene. However, with platforms such as GC-
MS and the rapidly gaining (LC-MS)/monolithic columns, it is possible to 
quantify and identify hundreds if not thousands of compounds (Bino et al., 
2004; Tolstikov et al., 2003). Thus, when a QTL is found, the researcher will 
know the exact compound that locus is regulating and will be aided in 
developing specific hypothesis about the underlying molecular function.  

3.2 What variables should I use for mapping? 

The second part of this question is what aspects of the output are actually 
valid variables for QTL analysis. The most obvious variables are the actual 
amount of each individual compound. Considering that most metabolomics 
platforms can reliably detect hundreds of compounds, this creates a massive 
number of traits for QTL mapping. There are suggestions to decrease this 
dimensionality by using regression analysis to identify metabolite clusters, 
and then use an individual compound within each cluster to identify QTLs 
for that cluster. While this will decrease the computational power required, it 

in regression clustering is that if two compounds are 80% correlated, that the 
other 20% is due to measuring error. However, it is equally likely that this 
20% discrepancy is due to differences in the genetic control for the two 
compounds. Using a single compound per cluster would lose this genetic 
information. A better solution is to generate QTL software that can analyze 
1000s of traits on the same population and present the results in a coherent 
manner. A challenge that is equally present for genetical genomics 
experiments using transcriptomics and proteomics. 

Numerous variables/traits can be generated for QTL mapping using 

providing relational context to the metabolites (Figure 3-1A). This relational 
context provides the ability to generate variables interrogating the 
interrelation between compounds (Figure 3-1C–E) (Weckworth et al., 2004; 
Steuer et al., 2003). These variables can either be the sum of specific groups 
of metabolites, the ratio between specific metabolites, or the ratio between 
different groups (Kliebenstein et al., 2001a). For instance, the equations in 
Figure 3-1C sequentially ask about the loci controlling the accumulation of 
the whole pathway (A–H), the accumulation of only those compounds on the 
right side (F–H), and the accumulation of those on the left side (D, E). These  
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3-1B). Often times, there are known or predicted metabolic pathways 

will also decrease the experiments information content. The base assumption 

metabolomics data. The first is the absolute value of each variable (Figure



3. Metabolomics and QTL Analysis  35 

Figure 3-1. Metabolomics Variables for QTL Mapping. 
A. A hypothetical biosynthetic pathway is shown. The letters refer to the individual 

compounds. The numbers refer to the enzymes. Enzyme 6a and 6b are two different 
alleles of the same enzyme that lead to two different compounds. Arrows represent the 
direction of the biochemical reaction. 

B. The first variable level is the individual compounds. 
C. The second variable level is the broad summation meant to represent different branches of 

the pathway. i = the amount of specific compounds. 
D. The third variable level is the ratio of two related compounds that may provide insight 

into particular enzymatic processes. 
E. The final variable level is the ratio of different biosynthetic branches that may provide 

insight into more global regulation. i = the amount of specific compounds. 
 

will identify a subset of common QTL as well as unique QTL. For example, it 
is possible to have a locus that has a 5% effect across the entire pathway. This 
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effect would most likely not be identified as QTL for any of the individual 
compounds but due to the smoothing impact of summing all of the compounds 
this effect may be seen at the pathway level. In addition to summations, ratios 

measures the level of D and E with regards to all compounds produced from 
C. This would test for the presence of loci that impact the decision to go from 
compound C to either D or F. However, there are some statistical difficulties 
introduced in the use of ratio statistics that will be discussed later. When 

provide powerful tools at querying the population for loci regulating whole 
branches or branch points in metabolic networks. 

3.3 Should I worry about normality? 

The final aspect before proceeding with the QTL analysis is data 
preparation. There is the underlying assumption that biological variables/traits 
should show a parametric distribution. This, however, presumes that the true 
biological distribution is in fact parametric and the skewing was technically 
introduced via the measurement. In metabolomics, this may not be the case 
especially in secondary metabolism (Kliebenstein et al., 2001a; McMullen 
et al., 1998; Byrne et al., 1996; Kliebenstein et al., 2001c; Yencho et al., 
1998). In Figure 3-2A and B, the parents of a recombinant inbred mapping 
population differ in their capacity to make specific compounds due to 
enzymatic polymorphisms. Parent 1 contains a null allele of enzyme 5 but a 
hidden “a” allele at enzyme 6 and thereby does not accumulate compounds F, 
G, or H. Parent 2, however, contains a functional enzyme 5 allele but only the 
“b” allele of enzyme 6, leading to the accumulation of F and G (Figure 3-2A). 
When these two parents are mated, the recombinant inbred progeny will 
represent a mixture of parental genotypes and two recombinant genotypes, 
recombinant 1 will phenotypically look like parent 1 due to the enzyme 5 null 
allele while recombinant 2 will be a transgressive segregant producing F and 
H due to the “a” allele at enzyme 6 (Figure 3-2B). When the accumulation of 
either H or G in the progeny is plotted on a histogram, it will be a bimodal 
distribution due to the epistatic interaction between variation at enzymes 5 and 
6 in controlling (Figure 3-2C). Normalization would destroy the information 
about both enzymes 5 and 6. The requirement for parametric distributions is a 
result of the QTL analysis algorithms. Most algorithms can handle skewed 
parametrics without normalization by using the bootstrapping methodology to 
empirically determine the significance threshold. Bimodal and true non-
parametric distributions should instead be handled using non-parametric QTL 
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regulation at specific branch points. For instance, the equation in Figure 3-1E 

guided by known or predicted metabolic linkages, ratios, and summations 

3-1D and E). These can allow the investigator to identify loci controlling 
are other potential variables derived from a metabolomics data set (Figure 
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analysis techniques to obtain the maximal information (Diao et al., 2004; 
Kruglyak and Lander, 1995). 

Metabolic pathway variation can generate other non-parametric 
distributions via transgressive segregation. The above epistasis example can 
generate non-parametric distributions if the enzyme 5 null allele hides 
functional enzymes such as 6b (Figure 3-2A). Another way for these non-
parametric distributions to occur is when the compound is present in levels 
near the level of detection. QTL segregation can generate lines with 
undetectable levels while other lines are readily measurable. A common 
impulse in these situations is to take the undetectable lines and record them 
as no data/measurement when it is actually valid to assume that they are less 
than the other lines. By recording these lines as no measurement, the 
researcher is lowering the QTL detection power by diminishing the number 
of lines available for QTL analysis. A potential remedy is to give all 
undetectable lines a value equal to the detection threshold for the compound 
in question. This allows the researcher to include the fact that these lines are 
lower than the rest in the QTL analysis. However, if a significant number of 
lines are below the detection threshold, this may create a skewed parametric 
or non-parametric distribution. The skewed parametrics can be handled by 
the bootstrapping methodology as described. There are algorithms to handle 
the non-parametric distributions but they are not typically included into the 
common QTL mapping packages (Diao et al., 2004). 

4  WHAT WILL I FIND IN THE QTLS? 

Upon generating the metabolomics data and variables for QTL mapping 
there are numerous software options available to map QTL that are 
discussed elsewhere (Basten et al., 1999). These generally rely on the same 
composite or multiple interval mapping algorithms (Doerge and Churchill, 
1996; Haley and Knott, 1992; Lander and Botstein, 1989; Zeng, 1994). Most 
programs, however, were not made to handle or present the massive number 
of traits generated in a standard genetical genomics experiment and thereby 
need to be modified to handle this data set. Once these hurdles are overcome 
and a QTL map is in hand for each trait, there are numerous questions to ask 
of the data. These include the size and number of QTLs for each trait, are the 
QTLs for different traits co-localized and is this because of a common 
polymorphism, as well as what is the level of epistasis and transgressive 
segregation in the population. I will briefly describe below what may be 
expected for each question. 
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Figure 3-2. The Control of Epistasis and Transgressive Segregation by Enzymatic Variation. 
A.  The genotype and chemical composition of the parents is shown. The letters refer to the 

compounds present in each parent. The numbers refer to the enzymes. Enzyme 6a and 6b 
are two different alleles of the same enzyme that lead to two different compounds. 
Arrows represent the direction of the biochemical reaction. The X’s indicate the presence 
of non-functional alleles for each enzyme. 

B.  The genotype and chemical composition of the recombinant individuals is shown. The 
letters refer to the compounds present in each genotypic class. The numbers refer to the 
enzymes. The X’s indicate the presence of non-functional alleles for each enzyme. 

C.  The distribution of compound G’s accumulation in the RIL population generated from 
crossing Parent 1 × Parent 2. 

D.  The QTL map generated for the accumulation of compound G in the RIL population 
generated from crossing Parent 1 × Parent 2. 

4.1 QTL number and phenotypic effect 

Recent analysis of a small yeast mapping population with 1 × replication 
via microarray has allowed a glimpse at what may be expected from a 
metabolomics genetical genomics experiment. This analysis found that most 
traits required at least 5 QTL’s to partially explain the variation (Brem and 
Kruglyak, 2005). This experiment, however, was limited to a small number 
of lines with 1 × replication and as such, the analysis was limited to those 
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genes with at least 69% heritability. Nevertheless, it shows that most 
variable traits are under highly complex genetic regulation (Brem and 
Kruglyak, 2005).  Metabolomics of higher-throughput and financial scale 
will allow for these experiments to be conducted with greater power, and 
therefore, to detect small to medium effect QTL. Thus, one could readily 
expect that the microarray indication is only the iceberg’s tip. 

One caveat should be made to the interpretation of both QTL number and 
phenotypic effect. Both the power to detect a QTL and the estimate of its 
phenotypic effect are dependent upon the populations’ background variation. 
There could be epistatic interactions with other loci in one population that 
are not present in another. Alternatively, if the QTL is the only locus 
impacting the trait in one population, it will have a large phenotypic effect, 
whereas if the QTL is one of many in another population, it may have a 
smaller phenotypic effect. Thus, it should not be expected that a QTL or its 
phenotypic effect would be identical amongst all populations in which it is 
variable. An excellent example of this is shown in a paper investigating the 
quantitative inheritance of chlorogenic acid and flavones in three different 
maize populations. These populations were chosen as they are a pyramid 
such that all pair wise crosses of three different inbred lines were 
investigated (Bushman et al., 2002). While numerous QTLs were identified 
in more than one population, their significance and phenotypic effect were 
dependent upon the population studied. For example, one QTL was 
identified in two populations and controlled 34% of the trait variance in one 
population but only 8% in another (Bushman et al., 2002). Thus, the 
phenotypic effect and power to detect a QTL is relational and not absolute 
when comparing populations (Mackay, 2001; Lynch and Walsh, 1998). 

4.2 QTL proximity – causality or proximity? 

After the QTLs for each trait have been identified and surveyed, the next 
goal is to identify those QTL that pleiotropically impact different 
metabolites and as such may have global metabolic impacts. There are 
several major difficulties in this analysis. The first deals with validating if 
overlapping QTL for two different traits are caused by the same locus or 
closely linked loci. There are two possible techniques to try and differentiate 
between these two distinct possibilities. The first is a statistical approach to 
testing the possibility that the two QTL positions overlap by chance and 
hence are probably due to closely linked loci (Lebreton et al., 1998; Varona 
et al., 2004). It is possible to take the QTL models for each trait, fix the 
position and effect of the non-overlapping QTL as well as the effect of the 
overlapping QTL. Then randomly modify the position of the overlapping 
QTL from the same genetic position to gradually larger unlinked distances. 
At each step, use every lines genotype and the QTL model to predict all of 
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lines trait value. Then test the predictive strength of the model at each 
distance from identical to unlinked position and identify the genetic distance 
that maximizes the predictive power of both traits model (Lebreton et al., 
1998; Varona et al., 2004). This would indicate whether the overlap is due to 
closely linked loci or a single locus. 

Even if there is statistical support for a single locus, it is still possible that 
the overlap is due to two extremely tightly linked loci. The only way to 
validate the single pleiotropic QTL hypothesis is to clone the underlying 
molecular polymorphism and confirm that it impacts the expected traits. 
This requires fine-scale recombinational mapping in conjunction with some 
form of transgenic confirmation of the phenotypic effect (Mackay, 2001). 
Thus, once a pleiotropic region is identified, there still remains significant 
work to validate the pleiotropic QTL hypothesis. A further potential 
difficulty with highly pleiotropic QTL is to understand the mechanism by 
which it works and differentiate between direct and indirect effects. For 
example, in Arabidopsis, the ERECTA locus impacts leaf morphology, root 
architecture, floral shape and size, silique shape and size, pathogen 
resistance and numerous other traits (Qi et al., 2004; Xu et al., 2003; 
Godiard et al., 2003; Shpak et al., 2003; Douglas et al., 2002). However, 
even though the gene is a known receptor kinase with global impact, little is 
known about what the primary and secondary impacts are and how it 
controls these traits. Thus, highly pleiotropic QTL may not be easily 
interpreted panaceas of biological information. 

4.3 Epistasis and transgressive segregation 

Variation in biosynthetic pathways can easily form epistatic interactions 
measurable in metabolomics QTL mapping projects. One potential epistasis 
interaction is when variation at a preceding enzymatic step controls the 
production of another variable enzymes substrate (Figure 3-2A). In the 
example shown, functional variation at enzyme 5 determines whether the 
functional variation at enzyme 6a is seen. Thus, the accumulation of 
compound G in the population will form a bimodal distribution where the 
low accumulating lines have either a non-functional enzyme 5 or enzyme 6a 
(Figure 3-2C). Only those lines with functional enzymes 5 and 6a will 
accumulate compound G. When the level of compound G is used for QTL 
mapping it will identify at least two locations that epistatically interact in 

pathways is if two proteins physically interact such that the variants from 
each parent prefer interacting with each other such as might occur in 
metabolic channeling. This will lead to any recombinant progeny between 
the loci having lower efficiencies and less compound accumulation. Taken 
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3-2E). Other ways in which epistatic interactions may occur in biosynthetic 
controlling the level of compound G, enzyme 5 and enzyme 6a, (Figure 
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together, this suggests that epistatic interactions should be expected in 
metabolomics QTL mapping projects. It will be interesting to compare 
microarray and metabolomics estimates on epistatic interaction frequencies 
to see if metabolism is more prone to such interactions than gene expression. 

In addition to epistasis, biosynthetic pathways readily generate 
transgressive segregation in both compound structure and amount. The 
easiest transgressive segregation to visualize is that impacting structure. In 
the example shown, the knockout in enzyme 5 hides the presence of the 
enzyme 6b allele. When recombination shuffles together a functional 
enzyme 5 and enzyme 6b, compound H is produced (Figure 3-2A and B). 
Compound H was not produced in either the parental genotype and is thus 
the product of transgressive segregation. This form of segregation has been 
identified in Plant Secondary Metabolite QTL projects (Kliebenstein et al., 
2002a; Kliebenstein et al., 2001a). In addition to structural transgressive 
segregation, there is also the likelihood of transgressive segregation in 
compound amounts. If, for example, one parent has a bottleneck at one step 
in a biosynthetic pathway while the other is bottlenecked at a different step, 
segregation will produce lines that have both bottlenecks and compound 
levels lower than either parent while other lines will have neither bottleneck 
nor compound levels higher than both parents (Figure 3-3). This also 
illustrates how two parents can be indistinguishable via compound 
accumulation yet the progeny have highly variable levels. Both forms of 
transgressive segregation have been readily found in metabolite profiling 
experiments and should be expected in metabolomics QTL mapping 
(Kliebenstein et al., 2002a; Kliebenstein et al., 2001a). Further, over half of 
the highly heritable transcripts in yeast showed evidence of transgressive 
segregation, again supporting the idea that this will be a common hallmark 
of genetical genomics experiments (Brem and Kruglyak, 2005). 

5  SUMMARY 

Combining genomics technologies with segregating populations is 
becoming an area of increasing interest. The first experiments in this area 
were conducted with microarrays but it is likely that metabolomics due to 
cost and throughput advantages will become the “omics” platform of choice 
for genetical genomics. The hope in these experiments is to combine the 
massive parallel capacity albeit still reductionist “omics” technologies in a 
systems biological approach to understand why two organisms are different. 
In the process, fundamental aspects of biology may be illuminated. 
However, these same projects and data sets can be used to address base 
issues of quantitative genetics such as; How many loci control each trait?  
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Figure 3-3. Transgressive Segregation Produced by Bottlenecks.  
The enzymatic flux for two parents with different bottlenecks is shown. The specific 
bottlenecks are marked as small underlined letters with diminished arrow size representing 
the decreased flux. The two potential recombinant inbred line recombinant progeny are 
shown. The number at the bottom of each biosynthetic pathway shows the relative amount of 
the final product produced in each line. 
 
What is the basis of the control, either additive or epistatic? Is there 
directionality in the parents with regards to the QTLs effect? Thus, it may be 
possible using QTL mapping and metabolomics to both understand key 
aspects of metabolic relationships as well as fundamental questions of 
quantitative genetics. 
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Chapter 4 

DESIGN OF METABOLITE RECOVERY

PROFILING PROTOCOL 

Claudia Birkemeyer and Joachim Kopka 
Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-
Golm, Germany 

Abstract: More than 670 GC-MS metabolite profiles were performed in the course of 3 
years in an effort to probe robustness and reproducibility of metabolite 
profiling and to design metabolite recovery as well as the range of metabolite 
classes which are finally submitted to GC-MS based metabolite profiling. 
Experiments were performed with two important plant organs, namely root 
and leaf, using the model plant tobacco, Nicotiana tabacum L. var. Samsun 
NN (SNN). We investigated solvent composition, pH, and temperature during 
metabolite extraction and subsequent liquid partitioning of extracts. All 
permutations of the metabolite profiling protocol were directly compared to 
the initially published standard protocol. In agreement with the fundamental 
approach of profiling analyses, results were reported relative to this standard 
condition. Thus the consistency of results was maintained in the course of 
years. The resulting set of chromatograms was screened for mass spectral tags 

(http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html). Cluster analyses and 
multivariate statistical techniques were applied to obtain insight into general 
trends of protocol variants. A choice of representative metabolites was 
analysed in depth for potential analytical improvement and final protocol 
optimization.  

Key Words: gas chromatography mass-spectrometry (GC-MS); metabolite extraction; 
metabolite partitioning; metabolite profiling; protocol variation; recovery; 
retention time index; mass spectral library. 
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BY VARIATIONS OF THE METABOLITE 

(MSTs), which represent identified as well as still unidentified metabolites. 
A non-supervised mass spectral and retention time index library (MSRI_NS) 
of these MSTs that was constructed for the future discovery of hitherto
unidentified metabolic components will be made available at GMD
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1 INTRODUCTION 

The essence of metabolite profiling is the screening of biological samples 
for changes of metabolite levels relative to reference samples (Fiehn et al., 
2000b; Sumner et al., 2003). The use of reference samples in biological 
experimentation and throughout relative quantitative analysis allows control 
of arbitrary changes in apparent metabolite levels. This approach of profiling 
analyses is essential because unwanted influences cannot always be avoided. 
For example, experimental investigations of biological systems often cannot 
exactly be reproduced in all aspects, and recovery artefacts of the chemical 
analysis are a common experience. In consequence, it can be argued that – 
provided the profiling approach is chosen – any type of comparative 
chemical analysis or experiment may be performed, if (i) reference samples 
are included and if (ii) these references and the samples under investigations 
are treated identically throughout the complete analytical process. Thus in-
depth analyses aimed to optimize metabolite recovery may be deemed 
unnecessary for optimization of profiling analyses and thus only a small 
number of investigations have been performed so far (e.g. Fiehn et al., 
2000b; Roessner et al., 2000; Roessner-Tunali et al., 2003; Gullberg et al., 
2004). However, metabolite profiling may be described as the art of making 
as many metabolites as possible amenable to simultaneous analysis. This 
aspect is and will for a long time be one of the key aspects for improved 
metabolite profiling analyses. Two strategies allow extension and 
modulation of the scope of GC-MS based metabolite profiling: (i) the choice 
of chemical derivatization and (ii) the method of metabolite preparation.  

We compared routine chemical derivatization by N-methyl-N-(trimethylsilyl)- 
trifluoroacetamide reagent (MSTFA) with tert.-butlydimethylsilylation  
using the N-methyl-N-(tert.-butyldimethylsilyl)-trifluoroacetamide reagent 
(MTBSTFA). The total data set comprises 1354 GC-MS experiments. Only 
half of the experiments were included in the present report: we focused on 
chemical derivatization by MSTFA only and, furthermore, kept subsequent 
GC-MS analysis invariable. As a consequence, the crucial factor for the 
modulation of chemical metabolite classes and the dynamic range of 
metabolite concentrations was the selected extraction and prefractionation 
protocol. To further our understanding of possibly more efficient variants of 
profiling analyses, we investigated temperature, pH, solvent composition 
and liquid partitioning. We first generated an inventory of identified 
metabolites which were present under the respective profiling regimes and 
constructed a mass spectral and retention time index (MSRI) library for 
future qualitative investigations of hitherto unidentified components 
(Wagner et al., 2003; Kopka et al., 2005; Schauer et al., 2005). We selected 
key metabolites, which represented the predominant metabolite classes 
covered by routine GC-MS based metabolite profiling and performed 
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exemplary analyses on metabolite recovery and robustness of analysis. In 
agreement with the general principle of metabolite profiling, all investiga-
tions were performed in direct comparison with standard, or in other words, 
reference samples. These reference samples were in this investigation 
defined to be samples, which were analysed in-parallel using the initially 
published protocol of GC-MS based metabolite profiling for plant material 
(Roessner et al., 2000; Fiehn et al., 2000b).  

2 EXPERIMENTAL 

2.1 Plant material 

Nicotiana tabacum L. var. Samsun (SNN) plants were cultivated on 
quartz sand under 16/8 h long day conditions as described previously 
(Birkemeyer et al., 2003). Plant organs of 12 simultaneously grown plants 
were harvested 3 months after germination. All mature, non-senescent leafs 
were immediately shock-frozen in liquid nitrogen. The root systems were 
washed sand-free under tap water, shortly dried on filter paper, and 

permanently being kept under liquid nitrogen. Aliquots of 50 mg each were 
prepared and stored for up to 3 years at –80°C until further processing.  

2.2 Extraction 

The general extraction scheme started with ball-mill homogenization of the 
deep-frozen plant material in 2 mL microvials as described earlier (Fiehn       
et al., 2000a; Fiehn et al., 2000b; Roessner et al., 2000). Non-sample controls 
were entered into analysis at this step of the protocol. Extraction was 
performed in three steps: (i) the first extraction step was initiated by adding a 
300 µL volume of pre-cooled polar water-miscible solvent, which contained 
the internal standard substances, ribitol, D(-)-isoascorbic acid for monitoring 
the recovery of GC-separated, oxidation-sensitive vitamin C, L(+)-ascorbic 
acid, and 2,3,3,3-D4 alanine, to the deep-frozen powder without removal of the 
steel ball, (ii) after initial incubation a 200 µL volume of chloroform was 
added and shortly incubated 5 min at 37°C (iii) finally, polar and lipid phases 
were separated by adding 400 µL of bi-distilled water 1 min vigorous mixing 
and 10 min centrifugation at room temperature in a microvial centrifuge set to 
maximum speed. Cellular debris accumulated mainly below the bottom 
chloroform layer and to a small extent at the interphase boundary. Two 80, 
120, or 160 µL aliquots were carefully drawn from the top (polar) and the 
bottom (lipid) layers of each experiment. One replicate was analysed by 

of 12 plants were homogenized separately in precooled mortars while 
subsequently frozen in liquid nitrogen. The complete root and leaf batches
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trimethylsilylation the other using dimethyl-tert.-butyl-silylation. The aliquot 
volumes, which were dried by vacuum centrifugation and submitted to 
chemical derivatization, were adjusted to obtain an optimal number of analyte 
peaks.  In general, we aimed to avoid overloading of the major components 
(Wagner et al., 2003). The representative total volumes of each liquid fraction 
from all protocol variations were determined. 

Four protocol variations were performed. In the following we use a four 
character code to address respective variants and a “L_” or “R_” prefix to 
distinguish between leaf and root matrix, respectively. Each position of the 
code characterizes one altered parameter. The codes are compiled and 
briefly explained in Table 4-1. We modified (i) the major polar solvent of 
the first extraction step from pure methanol to acetone:water (2:1, v:v), first 
position code characters “m” and “a”. (ii) The pH of the first solvent was 
either not adjusted, or acidified by 1.67% formic acid, or adjusted to basic 
pH by saturation with solid sodium carbonate, second position code 
characters “n”, “a”, and “b”. (iii) Incubation of the first extraction step was 
either hot, i.e., 15 min at 70°C, or cold, over night at –20°C, third position 
code character, “h” or “c”. (iv) Extraction was performed including a liquid 
partitioning into a polar and lipid phase, fourth position code characters “p” 
and “l”, or phase separation was omitted, missing last code character. The 
preparations without liquid partitioning are in the following called 
“combined”.  The reference protocol was defined as the polar fraction of the 
hot methanol extraction without pH adjustment, protocol code mnhp. 

2.3 Chemical derivatization 

Dried extracts were derivatized in two consecutive steps as described 
earlier (Wagner et al., 2003). Carbonyl-moieties were converted into metho-
xyamine groups (MEOX) by 90 min incubation at 30°C with 40 µL freshly 
prepared methoxyamine hydrochloride (Sigma, Munich, Germany) which 
was dissolved at 20 mg mL–1 in pure pyridine (Merck, Darmstadt, Germany). 
Subsequently exchangeable protons were substituted by trimethylsilyl- 
groups (TMS) using N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA, 
Macherey & Nagel, Düren, Germany). Silylation was performed by adding  
a 70 µL volume of MSTFA followed by 30 min incubation at 37°C.  
Samples were subsequently kept at room temperature on the GC-MS injector 

trifluoroacetamide reagent (MTBSTFA, Macherey & Nagel, Düren, 
Germany) was used to derivatize a second equal aliquot of each extract 
preparation with 45 min incubation at 65°C (data not shown). Retention time 
index standard mixture was added in a 10 µL volume prior to silylation. n-
Alkanes were dissolved in pyridine at a final concentration of 0.22 mg mL–1 
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tray for 2–12 h. Alternately the N-methyl-N-(tert.-butyldimethylsilyl)-
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each, i.e., n-dodecane (RI 1200; CAS 112-40-3), n-pentadecane (RI 1500; 
CAS 629-62-9), n-octadecane (RI 1800; CAS 593-45-3), n-nonadecane (RI 
1900; CAS 629-92-5), n-docosane (RI 2200; CAS 629-97-0), n-octacosane 
(RI 2800; CAS 630-02-4), n-dotriacontane (RI 3200; CAS 544-85-4),         
n-hexatriacontane (RI 3600; CAS 630-06-8). All above substances were 
obtained from Sigma, Munich, Germany, if not otherwise indicated. 

2.4 GC-MS analysis 

A MD 800 quadrupole GC-MS system (ThermoQuest, Manchester, UK) 
was equipped with a RTX-5Sil MS capillary column, 30 m length, 0.25 mm 
inner diameter, 0.25 µm film thickness and a 10 m IntegraGuard precolumn 
(Restek GmbH, Bad Homburg, Germany). The system was operated in 
constant flow mode with 1 mL min–1 Helium 5.0 carrier gas (Air Liquide, 
Magdeburg, Germany). GC-MS analysis was essentially as described earlier 
(Fiehn et al., 2000a; Fiehn et al., 2000b; Roessner et al., 2000; Roessner-
Tunali et al., 2003; Colebatch et al., 2004). Injection was 1 µL in split-less 

min isothermal time at 70°C, a 6 min ramp to 76°C, a 45 min ramp to 350°C, 
1 min isothermal at 350°C, and further isothermal heating for 10 min at 
330°C. The quadrupole mass selective detector was operated with electron 
impact ionization. The transfer line was set to 250°C, and the ion source 

–1

2.5 Mass spectral tags for analysis of metabolite 
recovery 

In GC-MS metabolite profiling analyses, metabolites are represented by 
mass spectra of metabolite derivatives which occur in highly reproducible 
retention time index windows. Thus, in a more precise phrasing, an analyte, in 
other words a chemical derivative, is quantified by GC-MS and not the endo-
genous metabolic chemical. Exceptions are those metabolites which are not 
susceptible to derivatization and are volatile, for example nicotine. The 
majority of analytes comprising GC-MS profiles is still not identified.       
For these cases we created the expression “mass spectral tag” or MSTs 
(Colebatch et al., 2004). MSTs are defined by mass spectrum and retention 
behaviour and can thus be reproducibly deconvoluted and identified without 
knowledge about the chemical nature of the underlying metabolite. Each 
analyte or MST can be quantified by fragments which constitute respective 
full mass spectra of MSTs. In electron impact ionization analyses the relative 
intensities of fragments from a single compound are constant and independent 
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40–600.  

mode at 230°C with a 2 min delay. The temperature program comprised 1 

 operated at 200°C. Scan rate was 2 spectra s , with the m/z range set to
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S/N QM Recovery analysis

MPIMP-IDh Metabolite Expected Deviation Simple Reverse m/z
TMS MEOXb

176002-101 Aconitic acid, cis- 3 1762.8 -0.2 33 84 40 229|285|375|211|215 x
188005-101 Adenine 2 1872.4 -0.1 44 88 110 264|279|192|165|237  - 
151006-101 Adipic acida 2 1509.0 2.5 80 90 64 275|111|141|172|159  - 
144001-101 Alanine, beta- 3 1431.4 0.5 86 93 131 248|290|174|160|100 x
138002-101 Alanine, DL- 3 1363.9 -0.2 96 99 52 188|262|290|100|114 x
138002-211 Alanine, DL-, 2,3,3,3-D4-

i 3 1359.9 0.6 96 99 440 192|266|294|104|117  - 
167002-101 Arabinose 4 1 1675.3 0.7 93 99 185 307|217|160|103|189 x
168001-101 Asparagine, DL- 3 1683.3 0.9 88 97 176 116|188|231|258|159  - 
152002-101 Aspartic acid, DL- 3 1525.0 1.4 76 99 255 232|218|306|202|334 x
128003-101 Benzoic acida 1 1256.7 -1.6 65 95 109 179|105|135|77|194 x
164003-101 Benzoic acid, 4-hydroxy- 2 1639.5 -0.4 83 93 157 267|223|282|193|126  - 
184001-101 Benzoic acid, p-amino- 2 1841.1 -0.4 40 87 26 266|281|222|192|126  - 
117002-101 Butyric acid, 2-amino-, DL- 2 1169.9 2.5 67 89 28 130|204|218|232|142  - 
153003-101 Butyric acid, 4-amino- 3 1530.7 0.4 98 100 397 174|304|216|246|100 x
126002-101 Butyric acid, 4-hydroxy- 2 1242.6 2.3 49 84 48 233|117|204|143|133  - 
214001-101 Caffeic acid, trans- 3 2141.4 -0.8 81 95 157 396|381|219|307|205 x
311001-101 Caffeoylquinic acid, 3-trans- 6 3126.0 -2.3 76 98 1293 345|255|397|324|219 x
317001-101 Caffeoylquinic acid, 4-trans- 6 3188.8 -4.1 79 100 840 307|489|324|255|219 x
319001-101 Caffeoylquinic acid, 5-trans- 6 3209.8 -2.5 68 89 1407 307|447|345|255|219 x
329001-101 Campesterol 1 3262.1 0.4 97 99 506 472|382|343|367|129  - 
319002-101 Cholesterol 1 3156.9 -1.6 97 98 415 458|368|353|329|129  - 
148001-101 Citramalic acid, D(-)- 3 1473.8 -0.2 66 96 194 247|349|259|321|203 x
182004-101 Citric acid 4 1827.8 0.5 98 100 375 273|375|211|183|257 x
184011-101 Citric acid, 2-methyl-, DL- 4 1841.9 -1.6 43 67 66 287|479|389|197|225  - 
194005-101 Coniferylalcohol, trans- 2 1945.7 0 84 97 64 324|293|235|309|219  - 
195001-101 Coumaric acid, p-, trans- 2 1944.6 1.8 51 89 27 249|293|308|219|179  - 
156002-101 Cysteine, DL- 3 1560.7 0.6 72 95 82 294|220|218|100|116  - 
144002-101 Cysteine, S-methyl-, DL- 2 1427.3 0 54 77 36 162|218|236|100|115  - 
147004-101 Decanoic acid, n-a 1 1462.1 2.3 67 89 81 229|244|117|201|145  - 
185002-101 Dehydroascorbic acid, dimerc  + 1852.6 -1.1 79 86 121 316|173|157|245|231 x
166003-101 Dodecanoic acid, n-a 1 1662.5 2.2 90 99 96 257|272|117|201|145  - 
245001-101 Eicosanoic acid, n- 1 2456.3 -0.2 72 96 186 369|384|117|201|145  - 
150002-101 Erythritol 4 1510.2 1.8 91 98 221 217|293|307|205|320 x
154001-101 Erythronic acid 4 1548.7 1.6 97 100 605 292|220|117|319|205  - 
146002-101 Erythrose 3 1 1459.1 2.5 28 75 24 205|117|161|233|262  - 
128002-101 Ethanolamine 3 1269.1 0.7 70 97 52 174|86|100|188|262  - 
210001-101 Ferulic acid, trans- 2 2098.6 2.4 33 89 29 338|249|323|293|308  - 
187002-101 Fructose 5 1 1874.6 1 97 100 684 307|217|277|364|335 x
232002-101 Fructose-6-phosphate 6 1 2321.4 -0.6 80 99 161 459|315|357|217| x
175001-101 Fucose 4 1 1746.5 -1.4 89 92 77 117|160|364|277|321 x
137001-101 Fumaric acid 2 1359.8 1.8 92 99 333 245|115|217|143| x
299002-101 Galactinol 9 2993.5 -2.5 80 96 226 204|191|433|305|169 x
194001-101 Galactitol 6 1941.8 0.1 32 73 41 319|307|157|217|331  - 
199002-101 Galactonic acid 6 1997.9 -0.3 95 99 404 333|292|319|305|157 x
189003-101 Galactono-1,4-lactone, DL- 4 1890.5 1.2 54 65 524 217|451|466|334|305  - 
188001-101 Galactose 5 1 1892.3 0.1 96 99 534 160|319|229|343|305  - 
194003-101 Galacturonic acid 5 1 1946.9 -2.5 34 77 37 333|160|423|292|364 x
283004-101 Gentiobiose 8 2828.3 -0.5 89 95 112 160|480|390|204|361  - 
200001-101 Gluconic acid 6 2002.7 -1.5 88 99 334 333|292|319|305|157  - 
189008-101 Gluconic acid-1,5-lactone 4 1887.9 1.2 68 86 68 220|229|319|451|129  - 
190007-101 Glucopyranoside, 1-O-methyl-, beta-D- 4 1898.3 4.7 59 73 239 133|204|377|231|290  - 
189002-101 Glucose 5 1 1897.3 0.4 96 100 594 160|319|229|343|305 x
172001-101 Glucose, 1,6-anhydro-, beta-D- 3 1715.1 0.3 96 99 164 204|217|333|243|317  - 
233002-101 Glucose-6-phosphate 6 1 2334.5 -1.4 92 99 120 160|387|299|471|357 x
193004-101 Glucuronic acid 5 1 1937.4 -1.6 85 98 288 333|160|423|292|364 x
163001-101 Glutamic acid, DL- 3 1631.4 0.6 89 99 1183 246|363|128|348|156 x
178001-101 Glutamine, DL- 3 1785.1 -0.4 96 99 482 156|245|347|362|203  - 
143001-101 Glutaric acid 2 1414.6 1.6 53 87 37 158|261|233|116|186  - 
158004-101 Glutaric acid, 2-oxo- 2 1 1588.7 0.9 91 99 302 198|288|304|186|229  - 
135003-101 Glyceric acid, DL- 3 1339.6 1.9 99 99 365 292|189|307|205|133  - 
129003-101 Glycerol 3 1282.5 1.6 97 99 237 293|205|117|103| x
174002-101 Glycerol-2-phosphate 4 1741.3 1.2 52 77 47 243|299|389|211|445  - 
177002-101 Glycerol-3-phosphate, DL- 4 1775.1 1.1 86 100 621 357|445|299|315|211  - 
133001-101 Glycine 3 1311.9 0 91 99 216 174|248|276|100|86 x
214002-101 Guanine 4 2132.7 2.7 71 97 56 352|367|264|202|99 x
278001-101 Guanosine 5 2781.8 -0.3 81 91 76 324|245|280|368|410  - 
196001-101 Gulonic acid 6 1964.2 -2.2 79 95 70 333|292|423|433|319  - 
205001-101 Hexadecanoic acid, n- 1 2050.2 0.1 98 100 1041 313|328|117|201|145 x
106001-101 Hexanoic acid, n-a 1 1064.0 -2.3 70 88 69 173|188|117|129|145  - 
146001-101 Homoserine, DL- 3 1454.0 1.8 52 89 38 218|128|292|230|202 x
209002-101 Inositol, myo- 6 2091.9 -1.8 83 100 756 305|265|318|191|507 x
243003-101 Inositol-phosphate, myo- 7 2429.0 -2.2 69 99 199 299|318|387|315|217 x
182003-101 Isocitric acid 4 1831.6 -2.1 82 96 254 245|319|390|83| x
132002-101 Isoleucine, DL- 2 1300.6 0.8 75 100 91 158|232|218|102|260 x
291002-101 Isomaltose 8 1 2907.0 -3.8 67 78 52 160|480|204|319|361  - 
135004-101 Itaconic acid 2 1351.7 2 65 87 37 259|215|133|147|230  - 
105001-101 Lactic acid, DL-a 2 1048.9 -0.2 94 99 173 219|117|191|133|234  - 

Table 2. List of 146 identified metabolites from leaf or root extracts of Nicotiana tabacum L.  SNN. Identification was performed by automated comparison with the MSRI_ID library of 
identified mass spectra available at http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html using AMDIS software (MPIMP-ID; analyte identifier). Thresholds for accepting identifications 
were, signal to noise (S/N) > 20, reverse mass spectral match (Match) > 65 and retention time index (RI) deviation < 5.0. Relative quantitative analysis of changes in metabolite recovery 
(Recovery analysis) was performed on a subset of metabolites which were present under all tested protocol regimes. All suggested quantifying masses (QM) for quantitative metabolite 
analysis are indicated.

Analyte

Derivative

RI Match
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S/N QM

MPIMP-IDh Metabolite Expected Deviation Simple Reverse m/z
TMS MEOXb

129002-101 Leucine, DL- 2 1278.8 0.9 54 100 294 158|232|102|260|  - 
192003-101 Lysine, DL- 4 1920.8 -0.1 86 98 325 156|174|317|230|434  - 
133003-101 Maleic acida 2 1314.7 0.9 96 100 490 245|147|170|215| x
137003-101 Maleic acid, 2-methyl- 2 1358.0 -2.5 58 83 31 259|184|122|157|231  - 
149001-101 Malic acid, DL- 3 1492.3 1.1 97 99 495 233|245|335|307|217 x
122003-101 Malonic acid 2 1211.4 -0.1 96 99 333 233|248|147|133|109  - 
284001-101 Maltitol 9 2839.2 -1.6 74 77 99 204|361|345|525|305  - 
277002-101 Maltose 8 1 2768.4 -0.8 81 95 136 160|204|361|319|271 x
355003-101 Maltotriose 11 1 3550.2 -0.8 65 91 38 204|361|217|480|169  - 
193002-101 Mannitol 6 1928.8 -2 94 99 161 319|307|157|217|331 x
189001-101 Mannose 5 1 1899.5 -2.2 43 79 1389 160|319|229|343|305  - 
231001-101 Mannose-6-phosphate 6 1 2323.5 -0.4 35 76 24 160|471|387|357|299 x
346001-101 Melezitose 11 3475.7 -1.2 84 95 202 361|451|271|204|217 x
290002-101 Melibiose 8 1 2903.5 2.3 66 89 52 160|480|204|319|361 x
152001-101 Methionine, DL- 2 1521.2 0.6 95 99 128 176|128|250|293|202  - 
259003-101 Nicotianamine 4 2606.3 -1.3 74 89 74 186|218|246|345|232  - 
139002-101 Nicotine 1357.5 0.1 95 99 290 84|133|161|162|92 x
133004-101 Nicotinic acid 1 1303.7 1.7 83 95 85 180|136|106|78|195  - 
138003-101 Nonanoic acid, n-a 1 1369.2 2.1 73 97 89 215|230|117|129|145  - 
231003-101 Octadecadienoic acid 1 2315.1 0.4 78 85 108 337|352|262|129|117  - 
221003-101 Octadecadienoic acid, 9,12-(Z,Z)- 1 2211.1 0.1 83 99 802 337|352|262|129|117  - 
225002-101 Octadecanoic acid, n- 1 2247.0 -0.2 98 100 431 341|356|117|129|145 x
222003-101 Octadecatrienoic acid, 9,12,15-(Z,Z,Z)- 1 2219.1 -0.6 98 99 450 335|350|93|129|117  - 
223003-101 Octadecenoic acid 1 2225.1 -0.4 56 65 108 339|354|117|129|145  - 
222001-101 Octadecenoic acid, 9-(Z)- 1 2217.4 0.4 48 84 55 339|354|117|129|145  - 
127006-101 Octanoic acid, n-a 1 1270.6 2.4 65 87 54 201|216|117|129|145  - 
182002-101 Ornithine, DL-d 4 1821.9 -1.3 60 91 79 142|174|420|200|258 x
195004-101 Pentadecanoic acid, n-a 1 1949.0 0 48 95 92 299|314|117|201|145  - 
164001-101 Phenylalanine, DL- 2 1635.4 -1.5 88 97 338 192|266|218|91|294 x
129001-101 Phosphoric acid 3 1281.9 0 95 100 665 314|299|211|283|225 x
348004-101 Phyllodihydroquinone 2 3487.2 -2.3 63 77 201 596|591|331|356|371  - 
132003-101 Proline, DL- 2 1303.4 0 95 99 180 142|130|117|244 x
175002-101 Putrescinee 4 1741.6 -2 98 100 232 174|361|214|100|200 x
114003-101 Pyridine, 3-hydroxy-a 1 1137.0 -0.3 59 84 35 152|167|136|122|92  - 
153002-101 Pyroglutamic acidf 2 1528.1 0.9 90 98 102 156|258|230|140|273 x
104002-101 Pyruvic acid 1 1 1036.6 2.5 78 76 65 174|189|115|89|158  - 
185001-101 Quinic acid 5 1862.7 -1.1 86 100 1048 255|345|334|537|419 x
337002-101 Raffinose 11 3396.0 -4.7 94 99 110 437|451|361|217|204  - 
172002-101 Rhamnose 4 1 1727.8 -0.4 87 93 113 117|160|364|277|321  - 
173001-101 Ribitoli 5 1734.7 0.1 92 99 1359 319|307|422|217|205  - 
168002-101 Ribose 4 1 1690.9 0 92 99 255 307|217|160|103|189 x
138001-101 Serine, DL- 3 1369.3 1.6 98 100 542 204|218|278|306|100 x
181002-101 Shikimic acid 4 1820.9 -0.8 84 98 492 204|462|372|255|357 x
209005-101 Sinapyl alcohol 2 2094.6 -1.2 80 97 119 354|234|323|339|293  - 
338002-101 Sitosterol, beta- 1 3355.5 -1.6 79 91 810 396|357|486|471|129  - 
193001-101 Sorbitol 6 1935.8 -1.1 80 91 102 319|307|157|217|331 x
226002-101 Spermidine 5 2252.6 -1.3 77 94 187 174|144|156|116|491  - 
332001-101 Stigmasterol 1 3289.8 1.1 98 99 899 484|394|255|129|379  - 
171007-101 Suberic acid 2 1710.8 0.7 44 79 34 187|303|169|117|129  - 
134001-101 Succinic acid 2 1326.0 -0.2 97 100 360 247|172|147|262|129 x
264001-101 Sucrose 8 2653.4 0.3 90 89 1811 437|451|361|319|157 x
284005-101 Tetracosanoic acid 1 2838.7 0.7 70 90 211 425|440|117|132|145  - 
185004-101 Tetradecanoic acid, n-a 1 1852.6 0.4 91 98 179 285|300|117|201|145  - 
149002-101 Threitol 4 1501.7 2.5 77 94 130 217|293|307|205|320  - 
156001-101 Threonic acid 4 1568.2 3.5 98 100 492 292|220|205|217|245 x
140005-101 Threonic acid-1,4-lactone 2 1382.5 2.2 96 99 166 247|147|262|217|101 x
140001-101 Threonine, DL- 3 1394.0 1.2 98 100 358 219|291|218|117|320  - 
147008-101 Threose 3 1 1459.7 1.9 29 78 24 205|117|161|233|262  - 
142006-101 Thymineg 2 1407.7 3.1 50 74 89 255|270|113|239|140  - 
316001-101 Tocopherol, alpha- 1 3145.3 -0.9 88 99 759 502|503|236|237|277  - 
300002-101 Tocopherol, gamma- 1 3002.9 1.7 42 95 110 488|489|222|223|263  - 
274002-101 Trehalose 8 2749.1 0.3 65 87 151 191|169|361|243|331 x
223001-101 Tryptophan, DL- 3 2218.6 -1 89 99 452 202|291|218|303|130  - 
191004-101 Tyramine 3 1910.4 -0.8 84 96 258 174|338|86|100|264 x
194002-101 Tyrosine, DL- 3 1941.4 -0.8 87 98 283 218|280|354|179|100 x
156004-101 Undecanoic acid, n-a 1 1559.9 2.8 33 68 22 243|117|129|132|145  - 
136001-101 Uracil 2 1346.6 2.1 40 94 34 241|255|99|113|126  - 
127002-101 Urea 2 1260.1 0.7 60 99 122 189|204|171|87|99  - 
247002-101 Uridine 3 2468.0 0.7 46 77 47 217|259|243|230|169  - 
122001-101 Valine, DL- 2 1220.2 -0.2 97 99 126 144|218|156|246|100 x
171001-101 Xylitol 5 1717.6 -0.9 78 75 157 307|319|332|217|205  - 
166001-101 Xylose 4 1 1669.2 0.1 91 99 390 307|217|160|103|189 x
a May occur in non-sample controls.
b Methoxyamines form E- and Z- isomers in stable ratios; only the major isomer is reported.
c In the presence of ambient air dehydroascorbic acid dimer may be generated from ascorbic acid.
d Arginine and Citrulline may decompose and form ornithine.
e Agmatine may decompose and form putrescine.
f Glutamine and to a lesser extent glutamic acid may cyclize and form pyroglutamic acid.
g Thymidine readily decomposes and forms thymine.

i Internal standard compounds.

h Detailed mass spectral infomation may be obtained by submitting the MPIMP-ID at http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html (Kopka et al. 2005).
   The first six characters of MPIMP-ID identify the chemical compound, the last three characters the respective mass isotopomers.

Table 2. continued.

Derivative

Analyte RI Match

 
 
of concentration, except if mass detectors are operated beyond the linear 
range of detection. We analysed each analyte and MST using multiple 
fragment masses as noted in Table 4-2.  
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2.6 Response calculations 

Peak areas, X, of selected ion traces were retrieved using the find 
algorithm of the MassLab software 1.4 (ThermoQuest, Manchester, UK). 
For each metabolite a single, specific and selective fragment mass was 
selected from a choice of analysed fragments (Table 4-2). Correct peak 
integration was monitored manually. Peak areas with low intensity were 
rejected. The resulting peak area values were defined to be what we call 
fragment responses (Xi of fragment i).  Fragment responses were normalized 
to the fresh weight of the sample. In this investigation we did not use the 
internal standard substance, ribitol, for volume correction. Instead we 
determined the final volume of each extract variation and performed 
numerical correction to ensure analysis of equal fresh weight equivalents 
from all extraction regimes (Ni = Xi * extract volume–1 * fresh weight–1).  In 
a further step, the relative response of a fragment, Ni, is divided by the 
averaged relative response of the same fragment, which was analysed in-
parallel according to the initially developed standard protocol, mnhp (Ri = Ni 
* avgNi(mnhp)

–1). The resulting quotient is subsequently called response ratio 
Ri. Ri describes the x-fold change in metabolite recovery relative to the 
standard extraction protocol. Response ratios are calculated separately for 
root and leaf samples. As a consequence, leaf and root mnhp will exactly 
overlap in PCA analyses and indicate the origin of these plots (Figures 4-1 
and 4-4). 

Each protocol variation, p, was analysed in 5–20 fold replication (Table 
4-1). In order to reduce the complexity of the data set we averaged the 
response ratios for the replicate analyses of each protocol, avgRi,p. 
Fragments and underlying metabolites which exhibited high relative 
standard deviation (RSD), i.e., >35%, when applying the standard protocol 
to leaf samples, leaf mnhp, were excluded from further analysis. We 
observed increased RSD of all metabolites between early and late replicate 
experiments performed in the course of the 3-year storage period of our 
sample batches. For this reason, we had to accept a 35% threshold rather 
than the reported 10% average analytical RSD of all analytes, which was 

were frequently missed by the MassLab find algorithm. For these cases we 
required successful peak finding in more than 50% of the replicate standard 
analyses. 

Finally all avgRi,p were combined into a single matrix that described the 
complete set of changes in metabolite recoveries under the different 
extraction regimes employed in this experiment. The majority of metabolites 
which exclusively occurred in only one plant matrix or only under specific 
conditions, except for dehydroascorbic acid, were excluded from the present 
 
 

 

reported for shorter storage periods and GC-TOF-MS profiles (Gullberg  et al.,
2004; Weckwerth et al., 2004). Some fragments exhibited low RSD but 
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Figure 4-1. PCA analysis of the currently compiled data set of 64 analytes which represent 
those metabolites which were observed in GC-MS metabolite profiles of all tested protocol 
variations. Component scores are plotted in A. Ranked analyte loadings are shown in B. 
Comp. 1: 225002, octadecanoic acid, n-; 205001, hexadecanoic acid, n-; 185002, 
dehydroascorbic acid; 140005, threonic acid-1,4-lactone; 175002, putrescine and 194003, 
galacturonic acid. Protocol codes are as listed in Table 4-1 with L_- or R_-prefix to indicate 
leaf and root preparations. Circles indicate positions of the standard protocol mnhp (closed 
circle) and mnhl (dotted circle) of leaf and root. Lipid preparations (small, normal font), polar 
preparations (intermediate, italic font), and combined preparations (large, underlined font). 
The arrow indicates the position of basic pH protocols.  

version of our comparative investigation. The currently available set of 
analysed metabolites is reported in Table 4-2. 

Principal component analysis (PCA) using the covariance model (PCA) 
and hierarchical cluster analysis (HCA) using complete linkage of a 
Euclidian distance matrix (HCA) was performed without log10 transfor-
mation of the avgRi(protocol) matrix. The S-Plus 2000 software package 
standard edition release 3 (Insightful, Berlin Germany) was used for HCA, 
PCA, and visualization. 

 

C. Birkemeyer and J. Kopka 



4. Design of Metabolite Recovery  55 

2.7 Mass spectral and retention time index libraries 

deconvolution software AMDIS (http://chemdata.nist.gov/mass-spc/amdis/; 
National Institute of Standards and Technology, Gaithersburg, USA) (Stein, 
1999).  Mass spectra were collected with component width 20, adjacent peak 
subtraction set to 2, low resolution and shape requirement and medium 
sensitivity. The currently processed chromatograms and resulting number of 
MSTs are listed in Table 4-1. RIs of all MSTs were determined and thus 
annotated MSTs were uploaded into a non-supervised custom NIST02 mass 
spectral library (NIST02, mass spectral search program, http://chemdata.nist. 
gov/mass-spc/Srch_v1.7/index.html; National Institute of Standards and 
Technology, Gaithersburg, USA) (Ausloos et al., 1999). The approach of 
constructing non-supervised mass spectral libraries and applications of these 
libraries were described by Wagner et al. (2003).  

2.8 Automated mass spectral identification 

All chromatograms which were processed for MST library construction 
were also screened for already known analytes using AMDIS software and 
our Q_MSRI_ID library. This library contains repeatedly observed MSTs 
and those analytes which were identified by standard addition experiments. 
The Q_MSRI_ID mass spectral library is made available at http://csbdb. 
mpimp-golm.mpg.de/csbdb/gmd/gmd.html (Kopka et al., 2005). Identifica-
tions were automated using the AMDIS option to generate tab separated 
report files. Thresholds for acceptance of positive identifications were 
signal-to-noise (S/N) >20, reverse mass spectral match (Match) >65 and 
retention time index (RI) deviation <5.0 (Table 4-2). 

3 RESULTS AND DISCUSSION 

3.1 Inventory of analytes and MSTs 

Automated and reliable mass spectral identification of deconvoluted mass 
spectra is one of the major challenges in GC-MS based metabolite profiling, 
not least because this process is prerequisite for the discovery of those MSTs 
and analytes which have hitherto not been found in a specific type of  
 
 
 
 

deconvolution of GC-MS chromatograms using the publicly available 
Mass spectral metabolite tags (MSTs) were generated by automated
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biological sample or have not yet been archived in mass spectral and retention 
time index libraries (MSRI). We applied the concept of non-supervised mass 
spectral libraries (MSRI_NS) (Wagner et al., 2003) and our library of 

components found in different extracts of the model plant tobacco, Nicotiana 
tabacum L. var. Samsun NN (SNN). We manually selected 16 diverse and 
representative GC-MS chromatograms of polar and lipid fractions from non-
pH-adjusted and basic extraction protocols including 8 complementary non-
sample controls (Table 4-1). In total we obtained 16374 MSTs using AMDIS 
deconvolution. In agreement with earlier reports (Wagner et al., 2003, 

sample controls is required for the profiling of these compounds –, and 
unavoidable side products of the chemical reagents, which are used for GC-
MS profiling. Besides immediate side products of the reagents, for example, 
hydroxylamine, the majority of contaminations, >50%, belonged to the class 
of linear and cyclic polysiloxanes. These compounds accumulate over time in 
MSTFA reagent, when exposed to traces of ambient air, but are also mobilized 
by MSTFA from GC-MS septum and crimp cap material. Capillary GC 
columns are an additional source of MSTFA mobilized polysiloxanes, 
especially toward end of column lifetime, and may contain mixed methyl-
phenyl- or methyl-aryl-poly siloxanes.  

When analysing the complexity of plant extracts, we found significant 
differences in retrieved numbers of MSTs. The following results were 
obtained after adjustment of major peaks to the upper detection limit. As a 
rule of thumb, these dominant components did not exhibit peak deformation 
due to chromatographic overloading, but may in cases exhibit slight mass 
spectral distortions due to saturation of the quadrupole mass detector used in 
this investigation. A few general trends were observed (Table 4-1). Profiles 
of root material had less components compared to leaf samples, a tendency 
which in general was more obvious for the lipid than for polar fractions. 
Acetone appeared to yield less lipid components as compared to methanol 
extracts. Other trends such as differences caused by pH adjustment or 
temperature may be revealed after further in-depth analysis. 

The identification process resulted in 470 identified analytes and MSTs. 
We choose S/N threshold >20, a setting which drastically reduced false 
positives but unavoidably created a small fraction of false negative 
identifications. A RI deviation of ±5.0 units was applied based on the two 
observations that (i) the amount of an analyte may influence RI by 
approximately 2.5 units and (ii) the batch-to-batch reproducibility plus aging 
processes of the chosen capillary column had an approximately equal 

C. Birkemeyer and J. Kopka 

et al., 2005), which were developed in the course of recent years, to identify 
identified metabolites and frequently observed MSTs (MSRI_ID) (Kopka

183 MSTs per chromatogram, which comprised some laboratory contami- 
nations, such as benzoic acid or lactic acid and a range of short-to-long

Gullberg et al., 2004) non-sample controls of our experiments had on average 

chain fatty acids (refer to Table 4-2 for details) – correction by non-
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contribution to the variability of absolute RI. Setting mass spectral match 
thresholds faced a fundamental problem which was caused by the 
observation that mass spectral deconvolution unavoidably results in 
increasing numbers of chimeric results when the complexity of samples 
increases. In addition GC-MS systems with low mass spectral scanning 
rates, such as quadrupole or ion-trap type of systems, are also prone to 
chimeric deconvolution, in other words a mixed mass spectra of a major 
compound and a co-eluting trace compound. In order to accommodate this 
inherent problem we choose the reverse match to be >65 on a scale of 100, 
because reverse matching allows identification of known mass spectra in 
chimeric MSTs. In addition, we report but do not threshold respective simple 
match values, to distinguish between hits based on perfect deconvolution 
and hits based on chimeric deconvolution (Table 4-2). As a final result of 
automated identification, we currently know 172 analytes and 298 MSTs 
from the extracts of, Nicotiana tabacum L. var. Samsun NN (SNN). In Table 
4-2, we report only one major analyte for each of the identified 147 
metabolites and two of 11 added internal standard compounds. Additional 
information on these compounds can be accessed using the MPIMP-ID 
identifiers or analyte names reported in Table 4-2 with our web query pages 

For the subsequent investigations of this report we focused on 
metabolites which were – at least in detectable traces – present in all 
prepared fractions. We avoided those compounds which were close to 
detection limits in our reference protocol, mnhp, and those compounds 
which were frequently missed by the peak finding algorithm we used. 
Furthermore, most analytes were excluded which were specific for root, leaf, 
polar or lipid extracts under the conditions of our reference protocol, mnhp. 
We followed the reasoning of Roessner et al. (2001) for a generalized 
comparative analysis, which may be biased by condition specific 
components, and concentrated on common analytes for detecting general 
trends of protocol variants. Analysis and discovery of known metabolites 
and novel analytes which occur only under specific protocol regimes is of 
course a major aspect of this project and one of the prerequisites for the 
development and optimum design of extended and diverse complementary 
GC-MS profiles from single samples. Estimation and identification of novel 
analytes is an ongoing project in our laboratory (data not shown).  

3.2 General trends caused by modifications of extraction 

We tested five possible influences which may change qualitative and 
quantitative composition of metabolite profiles. For the protocol codes 
please refer to Table 4-1 and experimental Section 2.2. (i) The effect of 

at the Golm metabolome data base (GMD; http://csbdb.mpimpgolm.mpg.de/
csbdb/gmd/gmd.html) (Kopka et al., 2005).   
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different biological matrices is well known in chemical analysis. Different 
types of biological samples may not only contain specific sets of 
metabolites, but in addition to this rather obvious fact, may influence the 
recovery of metabolites and thus introduce – without proper analytical 
standardization – apparent changes in metabolite levels, which are artefact 
and not due to in vivo effects. Here we compared root to leaf samples.        
(ii) The choice of solvent exerts effects on metabolite extraction and enzyme 
inactivation. We compared the polar-protic solvent methanol with polar-
aprotic acetone, which is completely water-miscible and known to 
effectively precipitate proteins at high and low temperatures. (iii) pH is 
known to stabilise metabolites or induce acid and base catalysed hydrolysis 
of labile compounds. The initial protocol of metabolite profiling used non-
pH-adjusted organic solvents. We tested acidified solvents similar to 
classical Bieleski mixtures (Bieleski, 1964) and carbonate saturated basic 
medium. (iv) Two general temperature regimes exist for the extraction of 
labile compounds. One regime uses hot short extraction for highly effective 
inactivation of enzymes in organic solvents and short exposure of 
temperature labile metabolites to heat. The second regime uses cold but long 
extraction to avoid loss of temperature labile compounds and reduce enzyme 
activity. Cold extraction has slow extraction kinetics and usually requires 
extended extraction times. This requirement, as a trade-off, allows for an 
influence of residual enzyme activity, an effect which has been described 
previously for sucrose cleavage in plant material possibly due to residual 
invertase activity (Gullberg et al., 2004; Weckwerth et al., 2004). We tested 
15 min at 70°C vs –20°C over night. (v) The polarity of extraction and liquid 
partitioning allows differentiation into polar and lipophilic fractions (Fiehn 
et al., 2000b; Weckwerth et al., 2004). Combined analysis of both fractions 
should effectively increase the complexity of metabolite profiles (Gullberg 
et al., 2004) and avoid effects of irreproducible partitioning of amphipolar 
compounds. We tested separated lipid and polar liquid layers with combined 
extracts which can easily be obtained by omitting liquid partitioning from 
the standard protocol.  

We currently have accessed data on 64 metabolites (Table 4-2). The 
derivatized GC-MS analytes of these metabolites were selected according to 
the criteria stated above (Section 2.6). PCA was performed on the complete 
data set and the two first principal components are shown for a first 
overview and general insight into the main variance within the data set 
(Figure 4-1). Figure 4-2 demonstrates the major profile classes observed 
with root and leaf extracts and the high similarity of classification between 
these two biological matrices. Separate PCA analyses of on one hand the 
lipid extracts (Figure 4-3) and on the other hand polar and combined extracts 
(Figure 4-4) not only demonstrated specific trends but also revealed the 
underlying analytes which contributed the major variance to each of the 
calculated principal components.   

C. Birkemeyer and J. Kopka 
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Figure 4-2. HCA analysis of the leaf subset of analyses A compared to the root subset B. 
Protocol codes are as listed in Table 4-1 with a L_- or R_-prefix to indicate leaf and root 
preparations. Circles indicate positions of the standard protocol mnhp (closed circle) and 
protocol mnhl (dotted circle) of leaf and root.  

3.2.1 Influence of biological matrix 

Influences of the biological matrix on metabolite profiles must be avoided 
(Kopka et al., 2004). In our analysis we used the leaf and root standard prepara-
tions for normalizing the analyte responses obtained from all other extracts 
(Section 2.6). Root and leaf standard preparations, R_mnhp and L_mnhp, 
therefore, co-localize and are centred to the origin within PCA analyses. The 
matrix effects on protocol variations can only be estimated relative to these 
preparations (Figures 4-1A, 4-3A, and 4-4A). The lipid fraction clearly 
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Figure 4-3. PCA analysis of the lipid subset of protocols. Component scores are plotted in A. 
Ranked analyte loadings are shown in B. Comp. 1: 225002, octadecanoic acid, n-; 205001, 
hexadecanoic acid, n-; 346001, melezitose; 193002 mannitol; 299002, galactinol and 319001, 

prefix to indicate leaf and root preparations. Circles indicate positions of the lipid fraction of 
leaf and root analysed with the standard protocol, mnhl (dotted circle). Cold preparations (small), 
hot preparations (large), leaf preparations (underlined font), and root preparations (normal font). 
 
exhibited a systematic difference between root and leaf samples, for 
example, L_mnhl and R_mnhl (Figure 4-3A). Acidified cold and hot acetone 
extracts appeared to have smaller matrix effects on the lipid fractions. 

In contrast, the majority of polar fractions did not separate, i.e., these 
fractions were subject to the same leaf and root matrix effects which occur 
under the conditions of our standard preparation. Caution is, however,  
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caffeoylquinic acid, 5-trans-; Comp. 2: 346001, melezitose; 243003 inositol-phosphate, myo-;
274002, trehalose; 225002, octadecanoic acid, n-; 205001, hexadecanoic acid, n- and 
319001, caffeoylquinic acid, 5-trans-. Protocol codes are as listed in Table 4-1 with a L_- or R_-
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Figure 4-4. PCA analysis of the subset of polar and combined protocols. Component scores 
are plotted in A. Ranked analyte loadings are shown in B. Comp. 1: 185002, dehydroascorbic 
acid; 205001, hexadecanoic acid, n-; 153002, pyroglutamic acid; 243003, inositol-phosphate, 
myo-; 153003, butyric acid, 4-amino- and 274002, trehalose; Comp. 2: 205001, 
hexadecanoic acid, n-; 153002, pyroglutamic acid; 185002, dehydroascorbic acid; 140005, 
threonic acid-1,4-lactone; 153003, butyric acid, 4-amino- and 317001, caffeoylquinic acid,   
4-trans-; Comp. 3: 139002, nicotine; 140005, threonic acid-1,4-lactone; 311001, caffeoylquinic 
acid, 3-trans-; 317001, caffeoylquinic acid, 4-trans-; 176002, aconitic acid, cis- and 214001, 
caffeic acid, trans-. Protocol codes are as listed in Table 4-1 with a L_- or R_-prefix to indicate 
leaf and root preparations. Circles indicate positions of the standard protocol mnhp (closed 
circle). Polar preparations (small), combined preparations (large), non-pH-adjusted preparations 
(underlined font), acidic preparations (normal font), and basic preparations (italic font). The 
arrow indicates the position of basic-pH protocols.  
 
recommended when combined lipid and polar fractions of leaf and root are 
analysed. Cold extracts were most diverse when analysed in combined mode. 
In addition we found evidence for a clear matrix effect on dehydroascobic 
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acid. Dehydroascorbic acid was – with a few infrequent exceptions – absent 
from root extracts (data not shown). Further examples of matrix-specific 
metabolite recovery are to be expected from our future analyses.  

3.2.2 Influence of extract polarity 

Predominance of the influence of extract polarity was as expected 
independent of the biological matrix (Figure 4-2). Extract polarity was the 
major influence in our experiments (Figure 4-1A). Highly lipophilic compounds, 
such as octadecanoic and hexadecanoic acid, had the strongest influence on 
sample partitioning in PCA (Figure 4-1B). Interestingly, dehydroascorbic 
acid, threonic acid-1,4-lactone, and putrescine also ranked among those 
compounds which were sensitive to polarity changes of the extraction 
protocol. Combined analysis of polar and lipid fractions were similar to 
polar fractions, but unexpectedly did not result in an intermediate behaviour 
between lipid and polar fractions. For example, dehydroascorbic acid was 
strongly increased in combined analyses of leaf samples. Especially, 
combined analyses of leaf samples differed considerably as was demonstrated 
by Figure 4-4A. Component 1 and 2 (Figure 4-4) allowed clear different-
tiation of combined analyses of leafs, L_anc, L_mnc, L_anh, and L_mnh, 
from respective root and non-combined preparations. Metabolite loadings 
indicated strong influences on the recovery of dehydroascorbic acid, hexa-
decanoic acid, pyroglutamic acid, inositol-phosphate, butyric acid, 4-amino-, 
and threonic acid-1,4-lactone (Figure 4-4B). Interestingly the combined but 
hot variations of the standard protocol, L_mnh and R_mnh, were least 
affected, and were in the case of root samples highly similar (Figure 4-4A). 

3.2.3 Influence of pH 

One of the controversial features of the metabolite profiling protocol may 
have been the absence of buffering during extraction. All tested buffer 
substances interfered with either chemical derivatization or chromatographic 
performance. Determination of the native pH of extracts demonstrated, 
however, an almost constant pH at approximately pH 6.3. Because slightly 
acidic pH is the most favourable condition for many pH labile compounds 

procedure. Here, we show that only minimal differences are caused by 
acidifying extracts. In contrast, basic pH introduced a clear difference 
(Figures 4-1A and 4-4A). Substances which respond to basic conditions 
were revealed by component 3 (Figure 4-4B), i.e., nicotine, threonic acid-
1,4-lactone, caffeoylquinic acids, aconitic acid, and caffeic acid. In lipid 
analyses acidic pH appeared to be even beneficial. In general acidification 
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4-3A).  

we deemed non-pH-adjusted metabolite profiling to be an acceptable 

introduced less variance as compared to non-adjusted or basic pH (Figure 
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Figure 4-5. Recovery pattern of nicotine (MPIMP-ID: 139002-101). Leaf preparations (A, B), 
root preparations (C, D), methanol preparations (A, C), acetone preparations (B, D), n.d. (not 
detectable). Star indicates standard preparation set to response ratio 1.0.  
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Figure 4-6. Recovery pattern of myo-inositol (MPIMP-ID: 209002-101). Leaf preparations 
(A, B), root preparations (C, D), methanol preparations (A, C), acetone preparations (B, D), 
n.d. (not detectable). Star indicates standard preparation set to response ratio 1.0.  
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Figure 4-7. Recovery pattern of myo-inositol-phosphate (MPIMP-ID: 243003-101). Leaf 
preparations (A, B), root preparations (C, D), methanol preparations (A, C), acetone prepara-
tions (B, D), n.d. (not detectable). Star indicates standard preparation set to response ratio 1.0.  
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3.2.4 Influence of temperature 

Temperature had only a minor influence on the pattern of metabolite 
recovery. Strong temperature effects were only observed in lipid profiles 
(Figure 4-3). In this case cold extractions were, as a rule of thumb, less 
variable than hot extractions. In our hands the previously described 
hydrolysis of sucrose during prolonged cold extraction in methanol 
(Weckwerth et al., 2004) was minor except for acidified acetone extractions 

stability of invertase(s). Arabidopsis thaliana was used in the previous study, 
whereas this study inherently tested the homologous enzyme(s) from 
tobacco.  

3.2.5 Influence of primary solvent 

criteria for the choice of primary solvents. 

4 ANALYSIS OF METABOLITE RECOVERY 

We choose three metabolites, i.e., nicotine, myo-inositol, and myo-
inositol-phosphate, which may serve as examples for the detailed analyses of 
metabolite recovery, which was made possible through our project. 

The alkaloid, nicotine, while present in all polar fractions, was almost 
excluded from the basic polar fractions (Figure 4-5). Instead nicotine 
accumulated in the basic lipid fractions and was partially present in non-pH-
adjusted lipid fractions. Cold extraction had the potential to improve nicotine 
partitioning into the lipid phase. Because partitioning into the lipid layer did 
rarely correlate with reduced presence in the polar layer, we concluded that 
basic pH acted on both extraction from the sample and liquid partitioning of 
nicotine. Increased nicotine recovery in R_mbhp (Figure 4-5C) was contrary 
to the generally observed trends. Thus a hitherto elusive factor was 
indicated, which may influence nicotine recovery.  

myo-Inositol, as expected, exhibited clear partitioning into the polar 
fractions (Figure 4-6). Recovery was almost constant and robust. Tempe-
rature and pH effects were small. Improved recovery appeared to be possible 
by combined analysis of lipid and polar fractions.  

C. Birkemeyer and J. Kopka 

The choice of primary solvent, i.e., methanol or acetone, did not funda- 
mentally affect metabolite recovery patterns (Figures 4-5, 4-6, and 4-7).

(data not shown). This observation may be explained by a difference in the 

More detailed analyses of single metabolites may, however, reveal better 
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this observation as possible breakdown of phosphatidylinositol lipids, 
especially under hot basic or non-pH-adjusted conditions. 

5 CONCLUSION 

Investigations of extraction conditions were clearly proven to be highly 
useful for obtaining detailed information on the analysis of metabolites in 
complex mixtures. Information on metabolite recovery, as was previously 
suggested and analysed for other plant matrices (Fiehn et al., 2000b; 
Roessner et al., 2000; Roessner-Tunali et al., 2003; Gullberg et al., 2004), is 
essential for metabolite profiling and a deeper understanding of designing 
increasingly robust and complex extracts for metabolite profiling. As 
cautionary remarks, we would like to stress that analysis of any novel 
biological matrix or change to a novel protocol has to be closely checked for 
possibly arising matrix effects (Kopka et al., 2004). Our investigation clearly 
demonstrated that these effects may unexpectedly occur and introduce major 
variances as shown for most of the analyses of lipid fractions (Figure 4-3A).  

Unfortunately, we had at the beginning of this project only restricted 
means to test the matrix effect of root vs leaf material under standard 
conditions, for example, by adding stable isotope labelled internal standard 
compounds. We suggest improvement of the quantitative standardization of 
metabolites by internal standardization using complex mixtures of stable 
isotope-labelled metabolites. The use of synthetic internal standards was 
recommended earlier (Fiehn et al., 2000b; Gullberg et al., 2004). For 
discussion of an extended standardization concept and of the potential of in 
vivo stable isotope labelling, we would like the reader to refer  Birkemeyer 
et al. (2005). The partial 13C-labelling of yeast for use in yeast metabolomics 
studies (Mashego et al., 2004) and the in vivo labelling of metabolites by 15N 
(Harada, et al., 2004) represent promising first applications. 

Finally we expect that the subsequent in-depth analysis of our data set, 
especially the inventory and identification of novel and condition-specific 
analytes, will yield further valuable insight into improved range of 
metabolite classes, potential breakdown of complex metabolites, possible 
designs of GC-MS profiles with improved robustness, and the comple-
mentary design of multiple GC-MS profiles as compared to the standard 
protocols of polar and lipid GC-MS metabolite profiles, which are currently 
in use. 

myo-Inositol-phosphate exhibited unexpected partial or even dominant 
presence in lipid fractions (Figure 4-7A). Recovery of this compound 
consistently increased in combined hot analyses (Figure 4-7). We interpret 
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Chapter 5 

UNCOVERING THE PLANT METABOLOME: 
CURRENT AND FUTURE CHALLENGES 

Australian Centre for Plant Functional Genomics, School of Botany, University of 
Melbourne, Victoria 3010, Australia 

Abstract: Within the plant kingdom, it has been estimated that several hundred thousand 
different metabolic components may be produced, with abundances varying 
through of six orders of magnitude. The goal of metabolomics is a 
comprehensive and non-targeted analysis of metabolites in a biological 
system. Any valid metabolomic approach must be able to unbiasedly extract, 
separate, detect and accurately quantitate this enormous diversity of chemical 
compounds. These requirements dictate the challenges that are continually 
addressed in the field of plant metabolomics. To date, both gas- and liquid-
based chromatography systems, in combination with various MS detection 
technologies, have been employed to analyse complex mixtures of extracted 
metabolites. In addition, nuclear magnetic resonance spectroscopy has been 
used to fingerprint plant systems, but will be not discussed in this context and 
has been reviewed elsewhere. 

 Although the technologies employed in metabolomic analyses are uncovering 
a huge amount of new knowledge in biology, a range of challenges are still to 
be faced. One bottleneck in metabolomic analysis is the identification of novel 
compounds. Additionally, in order to allow greatest spatial resolution, the 
sensitivity and selectivity of currently available technologies has to be 
increased. Multi-parallel and high-throughput analyses result in large data sets 
which need be evaluated, extracted, and interpreted. As a result, automated 
algorithms have to be developed. One of the major future challenges in the 
metabolomics field will be the integration of metabolic data with genomic and 
proteomic data sets. The ultimate goal is to comprehensively describe complex 
biological systems and as such, metabolomics has become an important player 
in systems biology. In the following text each of these challenges concurrently 
being connected with metabolomic analyses will be discussed. 

Key Words: plant metabolome; chromatography; mass spectrometry; data analysis; data 
interpretation. 
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1 INTRODUCTION 

The development of tools to characterize genetic diversity in plant 
systems has made enormous progress over the last few years. Transgenic 
knockout populations, transposon insertions, and highly efficient ways to 
genotype single nucleotide polymorphisms within large populations have 
paved the way to a much broader base of diversity than imagined a few years 
ago. Furthermore, these developments have occurred in tandem with the 
elucidation of complete genomes and the rapid development of multiparallel 
technologies designed to access and describe the properties of biological 
systems (Celis et al., 2000). Most prominent amongst these new tech-
nologies has been the establishment of protocols for the determination of the 
expression levels of many thousands of genes in parallel (for review see 
Hardiman, 2004) and the detection, identification, and quantification of the 
protein complement (for review see Heazlewood and Millar, 2003). The logical 
progression from the large-scale analysis of transcripts to proteins is the 
determination of metabolite profiles in cells, tissues, and organisms. 
Importantly, the improvement of analytical instrumentations, such as mass 
spectrometry, has opened up the possibilities of determining and identifying 
a large number of metabolic compounds in parallel and in a high-throughput 
manner. The term metabolomics describes the comprehensive, non-targeted 
detection, and quantification of all compounds derived from a biological 
system. 

2 ANALYTICAL TECHNOLOGIES FOR 
METABOLITE ANALYSES IN PLANT TISSUES 

2.1 GC-MS 

To date, both gas- and liquid-based chromatographic systems in 
combination with various mass spectrometry (MS) detection technologies, as 
well as nuclear magnetic resonance spectroscopy (NMR), have been employ-
yed to analyse complex mixtures of extracted metabolites. Due to its overall 
robustness, gas chromatography coupled to electron impact ionization mass 
spectrometry (GC-EI-MS) has played a major role in high-throughput 
metabolite analyses (for review see Roessner et al., 2002). The use of GC 
allows separation of mixtures of compounds with high separation efficiency 
and sensitivity. In combination with MS, it also provides very accurate, 
sensitive and selective identification and quantification of separated 
compounds by their specific mass spectrum. Moreover, MS analysis further 
increases the resolution of the chromatography used as two co-eluting 
substances can be separated by their fragmentation pattern. Off-the-shelf 

Ute Roessner
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instruments are now able to rapidly and quantitatively detect up to 500 
compounds simultaneously in crude plant extracts, depending on tissue and 
extraction procedure. In the past, GC-MS technology has been applied and 
optimized for simultaneous analyses of metabolites in many different plant 
species, such as Arabidopsis thaliana (Fiehn et al., 2000), Solanum 
tuberosum (Roessner et al., 2000), Medicago truncatula (Duran et al., 2003), 
Lycopersicon esculentum (Roessner-Tunali et al., 2003), Saccharum 

(Colebatch et al., 2004), and Cucubita maxima (Fiehn, 2003). 
In many of these detailed characterizations, it was shown that a one-

dimensional GC separation approach does not resolve all compounds in 
high-complex extracts of plants. Recently a new approach has been taken, in 
which a second dimension of GC is applied to further separate the mixtures. 
GC × GC-TOF-MS has been already successfully applied to highly resolve 
volatile compounds of roasted coffee beans (Ryan et al., 2004). In the future, 
this technology will allow a more complete definition of the chemical 
composition of plants. 

Despite the many advantages that GC-EI-MS has in metabolomics 
applications, there are also limitations of this technology. One of these is that 
GC can only be used for low molecular weight (<1000 Da) compounds, 
which are either volatile at relatively low temperatures, or which can be 
chemically transformed into volatile derivates. Thus, for a comprehensive 
analysis of a greater range of plant metabolites, complementary techniques 
have to be established (Kopka et al., 2004). 

2.2 LC-MS 

One complementary approach to GC-EI-MS in metabolite analyses is the 
application of liquid chromatography coupled to electrospray ionization 
mass spectrometry (LC-ESI-MS). The main advantages of LC-ESI-MS are 
twofold. Firstly, compounds do not have to be chemically altered prior to 
analysis and secondly, highly polar, thermo-unstable and high-molecular 
weight compounds, such as oligosaccharides or lipids, are able to be 
separated and quantified. LC in combination with an ultraviolet or visible 
light (UV/VIS) or diode-array detection (DAD) has been applied for many 
years in plant metabolite analyses. An enormous range of different columns 
and elution procedures exist for the separation and detection of many 
different classes of compounds. When coupled to MS, these provide further 
selectivity, unbiased detection, and most importantly, information about the 
structure of detected compounds. This multidimensional approach has been 
successfully applied for the analysis of a wide range of primary and 
secondary metabolites in plant tissues (Tolsitkov and Fiehn, 2002; Huhmann 
and Sumner, 2002). Recently, the use of a monolithic column enabled the 
separation of several hundred chromatographic peaks derived from extracts 

officinarum (S. Bosch, personal communication), Lotus japonicus 
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of Arabidopsis (Tolstikov et al., 2003). Another research group has reported 
the detection of 1,400 components (based on mass-to-charge ratios) by direct 
injection of Arabidopsis extracts into a quadrupole time-of-flight (QTOF) 
hybrid mass spectrometer (von Roepenack-Lahaye et al., 2004). The 
resolution and selectivity of mass detection can be dramatically increased to 
up to 5,000 signals from a single plant extract by application of Fourier-
transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as 
shown by Aharoni et al. (2002). In the future, this technique will play an 
increasing role in metabolic fingerprinting approaches where large mutant 
collections are screened for metabolic alterations following random 
mutations. 

2.3 Increasing sensitivity 

An additional challenge in metabolite analyses is the development of 
technologies for the isolation and detection of metabolites from very small 
samples sizes in order to increase spatial resolution in single cell or tissue-
specific investigations. These techniques have to be designed to combine 
high sensitivity with selectivity. First remarkable reports have been given on 
the determination of the distribution of IAA in Arabidopsis plants (Muller 
et al., 2002) or even the distribution of ATP in Vicia faba embryos (Borisjuk 
et al., 2003). Future research has now to face multiparallel analyses of 
metabolites on a cell and organ level. One attractive technology to increase 
sensitivity is capillary electrophoretic separation techniques in combination 
with laser-induced fluorescence (CE-LIF) or mass spectrometric detection 
(CE-MS), which has been already proven to give promising results. For 
example, CE-LIF allowed the separation and quantification of a large range 

presented.  
In the past decade many new technologies have been established which 

are currently used in novel biological information discovery in plant 
physiology and functional genomics. In summary, if the working definition 
for metabolomics means the analysis of all metabolites in a biological 
system, it requires a platform of complementary analytical technologies for 
comprehensive selectivity and sensitivity. 

of amino acids and sugars in approximately 50 pL of phloem sap or in five 
pooled mesophyll cells of Cucurbita maxima (Arlt et al., 2001; S. Brandt, 

metabolites belonging to glycolysis, photorespiration or the oxidative pentose 
phosphate pathway could be analysed in rice leaf extracts (Sato et al., 2004). 
It has to be especially noted that in this study, the ability to analyse many
unstable substances in parallel, which only occur in low concentrations in
planta, such as fructose-1,6-bisphosphate or ribulose-1,5-bisphosphate, was 
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3 IDENTIFICATION OF UNKNOWN 
COMPOUNDS 

Non-targeted metabolite detection in plant tissue results in a large 
number of chromatographic peaks and mass spectra, which cannot be 
identified easily with respect to the chemical nature of the compound. It has 
been shown in many metabolomic approaches that, for example, up to 70% 
of all peaks in a typical GC-MS chromatogram of a plant extract still remain 
unidentified. The interpretation of mass spectra following GC-EI-MS 
analysis is very difficult for two reasons. Firstly, derivatization dramatically 
alters the chemical structure of the compounds. Secondly, the use of electron 
impact (EI) to ionize the compounds is a very harsh method that leads to 
complex fragmentation patterns. As a result, two strategies are used to 
identify the chemical nature of as many peaks as possible. Firstly, the spectra 
of all resolved peaks are compared to commercially available EI mass 

compounds, that are assumed to be present at detectable levels within plant 
tissues, are analysed. A reference library containing both the retention time 
of these compounds (as determined under the same conditions) and the 
corresponding mass spectrum can be created (Wagner et al., 2003). 
Identification by retention time is verified by co-chromatography of each 
standard substance with substances obtained in the plant extract. A major 
problem of this approach is that most plant compounds are not commercially 
available, especially the enormous number of secondary metabolites. 
Recently the publication of the first “biological” public domain GC-MS 
mass spectra library (MSRI; http://csbdb.mpimp-golm.mpg.de/gmd.html) 
was described (Kopka et al., 2005; Schauer et al., 2005). This library 
contains a large number of identified and unknown, but repeatedly observed 
EI-mass spectra of many different plant species and organs. A feature of this 
library is its compatibility with the NIST software and GC-MS evaluation 
software packages, such as automated mass spectral deconvolution and 
identification system (AMDIS) (see below). Further references to this mass 
spectral and retention time index library and its applications may be found in 
Chapter 4X by C. Birkemeyer and J. Kopka. 

For LC-MS signal identification the situation is much more difficult. 
Mass spectra generated by LC-MS are typically instrument dependent and 
therefore, standard reference LC-MS spectral libraries are of limited use. 
The minimum information acceptable for the identification of novel organic 
compounds or metabolites has been traditionally defined by the scientific 
 

of Standards and Technology, Gaithersburg, USA). However, although 
these libraries contain over 350,000 entries, the majority of these are
non-biological compounds. In a second approach, commercial standard 

spectrum libraries such as NIST (http://www.nist.gov/: National Institute
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literature criteria and often includes elemental analysis, NMR and MS 
spectral data for the isolated compound. One method for preliminary 
identification of unknowns appears to be the use of multidimensional 
instrumental techniques (based on combinations of GC-MS, LC-MS, 
MS/MS, or MS/NMR), which enable both comparative profiling and 
structural elucidation. For example, LC-QTOF-MS/MS (liquid chromato-
graphic quadrupole tandem time-of-flight mass spectroscopy) has the potential 
to provide accurate mass and product-ion information of chromato-
graphically separated metabolites. Experimental mass data can then be used 
for the calculation of an elemental composition and be compared with 
available mass information in, e.g., the NIST or KEGG database for possible 
structure suggestions. Further stepwise fragmentation by tandem MS (MSn) 
leads to product-ion information, which can be used to determine/confirm 
structure. Although this gives much information about the potential structure 
of the compound, the final confirmation of the identity of the compound has 
to be done by either analysis of an authentic standards substance or by 
analysis of the purified sample using NMR. 

The method of choice for unambiguous peak identification is NMR, 
which offers high chemical selectivity. In combination with LC and MS 
(LC-MS-NMR), it represents the ultimate technology for peak identification 
and structure elucidation (Wolfender et al., 2003) although the in-line 
version of this combination to date is still highly limited by the low 
sensitivity of the NMR instrument. 

4 AUTOMATION OF DATA EVALUATION 

Once an analytical platform is established a large number of samples can 
be analysed very quickly. This makes it an impractical and tedious task to 
manually extract information of each single chromatogram. One challenge of 
multitargeted compound analysis is the development of automated 
chromatogram evaluation. Many software packages delivered with the GC- or 
LC-MS system (Xcalibur, ThermoElectron, Austin, USA or HP Chemstation, 
Agilent, Palo Alto, USA) are able to use either self-created or commercial 
mass spectra libraries for peak detection, identification, and integration. The 
limitation of these software packages are that they search and integrate only 
targets, which the researcher has to know and enter into the search lists. This 
situation as been improved recently with the development of novel software 
packages for untargeted chromatogram evaluation based on mass spectral 
deconvolution. Deconvolution means the separation of corresponding 
fragments to one mass spectrum and thus for a single compound. This can be 
either achieved in an automated fashion by the software packages provided 
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with the GC-MS instrument (Pegasus, Leco, St. Jospehs, USA) or separate 
software can be applied, such as AMDIS (http://chemdata.nist.gov/mass-
spc/amdis/; National Institute of Standards and Technology, Gaithersburg, 
USA). Recently other helpful commercial and free software packages have 
become available. Examples include MSFacts for GC-MS (Duran et al., 2003) 
or MetAlign for GC- and LC-MS (www.metalign.nl), which automatically 
import, reformat, align, correct the baseline and export large chromatographic 
data sets to allow more rapid visualization and interrogation of metabolomic 
data. To date, these software packages are indispensable for unambiguous data 
extraction. Very recently a novel software package named AnalyzerPro 
(www.spectralworks.com; Runcorn, Cheshire, UK) has been made available 
which meets the high requirements of an automatic GC-MS and also LC-MSn 
chromatogram evaluation. In addition to signal deconvolution, mass spectra 
library matching and quantification, the implementation of retention time 
indices (RI) for improved signal identification are beneficial. Retention times 
of eluted substances following chromatographic separation do change 
dramatically over time. Retention time indices include for their calculation a 
range of added time references (e.g., long-chain alkanes) and therefore provide 
a better prediction of the absolute retention time of the analytes. In addition, 
retention time indices are very stable both within and between systems, 
allowing valid system to system comparisons, provided that injection, 
separation and ionization parameters are kept similar (Schauer et al., 2005). 

5 DATA INTERPRETATION  
AND VISUALIZATION 

As mentioned above, high-throughput analysis of a collection of samples 
results in large data sets, which have to be interpreted in a biological context. 
To date, statistical tools for pattern-recognition, such as hierarchical clustering 
(HCA) or principle component analysis (PCA), are routinely used for ease of 
comparison, and visualization of similarities and differences between data sets 
by definition of clusters (Fiehn et al., 2000; Roessner et al., 2001a, 2001b). 
Another approach is to detect dependencies and connections between 
metabolites and more recently, between genes, proteins, and metabolites by 
using pair-wise analysis of linear correlations (Urbanczyk-Wochniak et al., 
2003; Steuer et al., 2003). Interestingly, when significant correlations are 
connected, the construction of regulatory networks becomes possible. The 
comparison of network connectivity between different genotypes allows not 
only the identification of novel pathways, it also represents a way of 
uncovering “silent” mutations, which do not show any obvious phenotype in 
any of the parameters under analysis (Weckwerth et al., 2004). 
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6  COMBINATION OF STEADY-STATE 
METABOLOMICS WITH METABOLIC FLUX 
ANALYSIS 

The measurement of steady-state levels of metabolites, as described in 
this review, gives new insights into metabolic networks at a given time. But 
the real behaviour of plant metabolism can be only understood by 
determination of the dynamics of metabolism. The basis of metabolic flux 
analysis (MFA) is a combination of stable isotope labelling under steady-
state conditions and NMR or MS-based detection systems to follow the 
distribution of label. This technique has been applied in detail in micro 
organism research but will play an increasingly important role in plant 
research (for review see Schwender et al., 2004). The application of a 
multiparallel detection method such as GC-or LC-MS allows determination 
of isotope label in very many metabolites in one experiment and therefore 
gives the opportunity to calculate metabolic fluxes of many different 
pathways simultaneously (Schwender et al., 2003; Roessner-Tunali et al., 
2004). The power of this method becomes striking when it is incorporated 
with steady-state metabolite level determinations. This has been 
demonstrated by Foerster et al. (2002), showing in silico pathway analysis 
using stoichiometric models in yeast, which were constructed from 
knowledge of biochemical reaction networks in the cells. By further 
implementation of available genomic, biochemical, and physiological 
information, these authors reported the reconstruction of a genome-scale 
metabolic network from S. cerevisiae (Famili et al., 2003), which produced 
computed predictions for phenotypes following in silico mutation and 
therefore allowed gene function identification. In conclusion, a metabo-
lomics approach in combination with stable isotope metabolic flux analysis 
will provide important insights in plant functional genomics studies. Another 
obvious use of this information will be in more rational approaches in 
metabolic engineering of novel, valuable biotech-crops (Sweetlove et al., 
2003). 

7 DEVELOPMENT OF DATABASES  
FOR METABOLOMICS-DERIVED DATA 

In the past it has been noted by several scientists, that the large data sets 
generated by post-genomics technologies have to be transmitted, stored safely 
and be made available in convenient and accessible formats (Goodarce et al., 
2004). The implementation of relational databases for data storage requires 
well-designed data standards. The DNA microarray community has agreed on 
the development of a minimum information about a microarray experiment 
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(MIAME, Brazma et al., 2001) and its structure has been widely accepted. 
Similar initiatives are underway for the proteomics community (PEDRo, 
Taylor et al., 2003). Whilst metabolic databases such as the KEGG system 
(Goto et al., 2002) or MetaCyc (Krieger et al., 2004) provide detailed 
information about metabolic pathways and enzymes of a variety of organisms, 
the development of a data standard equivalent to MIAME and PEDRo 
describing metabolomics data in their experimental context has been proposed 
only very recently (MIAMET, Bino et al., 2004; ArMet, Jenkins et al., 2004). 
On the other hand it will be not only important to store metabolic profiling 
data but to also integrate these data with metabolic pathway information which 
will be the future source of knowledge discovery. Recently, a database has 
been developed, which assembles information about different Arabidopsis 

arabidopsis.org:1555/expression.html) has been enabled, which in an easy and 
powerful manner paints experimental data onto the biochemical pathway map. 
Another example for such “mapping” tool is MapMan (Thimm et al., 2004), 
which allows users to visualize comparative metabolic and also transcriptional 
profiling data sets on existing metabolic templates and design their own 
templates. For a holistic integration of numeric multiparallel genomic, 
proteomic and metabolomic data sets a data managing system for editing and 
visualization of biological pathways was developed, which on a publicly 
available domain will be very important for data-mining in the functional 
genomics field (MetNetDB, Syrkin Wurtele et al., 2003; PaVESy, Luedemann 
et al., 2004). These software tools henceforth will become important to map 
novel findings onto metabolic pathways and fully understand the function of 
each gene, encoded protein and metabolite. 

8 FROM TECHNOLOGY TO BIOLOGY 

Once a robust metabolite analysis platform has been established and 
reliable data can be produced, the range of plant research applications is 
enormous. These can vary from answering simple biological questions, i.e., 
what are the metabolic differences between two cultivars, to investigations 
regarding complex metabolic networks. For example, a metabolomics 
approach can be used to determine the influence of transgenic and 
environmental manipulations on the metabolite profile as demonstrated by a 
detailed characterization of the metabolic complement of a number of 

metabolic pathways (AraCyc) and provides diagrams showing metabolites 
and genes encoding the enzymes in each pathway (Mueller et al., 2003). 
For a holistic integration of numerous multiparallel genomic, proteomic, 
metabolomic, and metabolic flux analysis data sets with metabolic path-
way information the “Pathway Tools Omics Viewer” (http://www.

transgenic potato tubers altered in their starch biosynthetic pathway and wild  
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Figure 5-1. Comparison of a specific region of a GC-MS chromatogram of wild type potato 
tuber (WT, lower line) compared to tubers expressing a yeast invertase in the cytosol (INV, 
upper line). 1: sucrose; 3: maltose TMS; 4: maltose MEOX1; 5: trehalose TMS; 6: maltose 
MEOX2; 7: maltitol TMS; 12: isomaltose MEOX1; 13: isomaltose MEOX2, 2, 8, 9, 10,11, 
14, 15 and 16 are not identified, mass spectra suggest they are sugars or sugar derivatives. 
 

 
type tubers incubated in different sugars using GC-MS (Roessner et al., 
2001a, 2001b). Due to this non-targeted approach, many unintended 
differences of transgenic tubers compared to wild type were detected 
(Roessner et al., 2001a; Figure 5-1). This study showed that using a 
metabolomic approach, it is possible to easily phenotype genetically and 
environmentally diverse plant systems. 

Another useful application of metabolomics is in the field of functional 
genomics, which aims to identify of gene functions using high-throughput 
phenotyping technologies, as for example in investigations of responsible 
genes and their products in plant adaptations to different abiotic stresses. 
Often the role of certain metabolites in stress response could be assigned, as 
for example proline plays a major role in salt stress adjustments in rice 
(Garcia et al., 1997). The detailed characterization of metabolic adaptations 
to low and high temperatures in Arabidopsis thaliana has already 
demonstrated the power of this approach (Kaplan et al., 2004; Cook et al., 
2004). Interestingly, it could be shown that low temperatures have more 
profound effects than heat, and novel findings of metabolic adaptation to 
temperature stress were identified (Kaplan et al., 2004). Another important 
report on using metabolomics as a tool in investigating metabolic responses 
of Medicago truncatula cell cultures to biotic and abiotic elicitors has 
revealed both elicitor-specific responses of metabolite levels as well as more 
generic responses in which similar metabolites responded independently of 
the type of stress (Broeckling et al., 2004). Nutrient deficiencies and 
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toxicities represent another example of common stress situations, e.g., it has 
been already demonstrated that the availability of inorganic nitrogen can 
reprogram carbohydrate metabolism (Stitt et al., 2002). This has been 
recently verified in more detail by a metabolomic investigation of the effects 
on tomato leaf metabolism grown in saturated, replete, and deficient nitrogen 
supplement conditions (Urbanczyk-Wochniak et al., 2005), showing the 
impact of nitrogen levels in the growth solutions on a wide range of 
metabolites. Similar striking effects on metabolite levels have been found 
when barley plants were grown in conditions where other inorganic nutrients 
are unavailable, e.g., phosphate or zinc (Roessner-Tunali, unpublished 
results). In the future, this approach will lead to the determination of the role 
of both metabolites and genes in stress tolerance and thus provide new ideas 
for genetic engineering of novel stress-resistant crops. 

The next step of interpretation of metabolomic data sets can be achieved 
when they are integrated with other “omics” data such as transcriptomic or 

(Urbanczyk-Wochniak et al., 2003). A co-response analysis of both data sets 
has resulted in a large number of significant correlations between mRNA 
transcripts and metabolites. Some of these could be explained easily with 
existing biochemical knowledge but most were found to be novel, and thus 
highlighted the power of these integrated approaches for gene and metabolite 
function identifications. A similar investigation simultaneously analysed 
transcripts and metabolite levels in Lotus japonicus nodules to study 
symbiotic nitrogen fixation in detail (Colebatch et al., 2004). This report has 
shown clear interrelationships between transcript and metabolite responses 
dependent on a physiological event. 

Last but not least, it has to be noted that a detailed characterization of the 
metabolome of a biological organism plays an integral role in a systems 
biology approach (Weckwerth, 2003). The aim of the emerging area of 
systems biology is to investigate the dynamics of all genetic, regulatory and 
metabolic processes in a cell and to understand the complexity of cellular 
networks (Kitano, 2002). Further this will give the opportunity to investigate 
the behaviour of biological systems with respect to the environment. 
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Abstract: Electrospray ionization tandem mass spectrometry in the precursor and neutral 
loss scanning modes is utilized to obtain profiles of the complex, polar lipids 
of plants.  This method is rapid, accurate, and sensitive.  The technique is 
being used to determine the metabolic functions of known genes, to implicate 
new metabolic pathways, and to help identify mutant genes from their 
functions. 

Key Words: lipidomics; lipid profiling; electrospray ionization; mass spectrometry; 
phospholipids; galactolipids. 

1 INTRODUCTION 

Metabolomics may be viewed as a comprehensive strategy to study the 
function and levels of metabolites in relation to the function of genes and 
their proteins.  In this context, lipidomics can be considered the branch of 
metabolomics in which non-water-soluble metabolites are studied. 

The aims of our group’s lipidomic strategies are to determine the role of 
gene products involved in lipid metabolism and to determine the importance 
of specific genes and specific lipid compositional changes in plant responses 
to stress and hormones.  To determine the role. of gene products, mutants 
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that lack the function of genes encoding lipid metabolic enzymes and 
putative lipid metabolic enzymes are being examined.  Comparison of the 
metabolic responses of these mutants with the responses of wild-type plants 
allows identification of gene function, including identification of in vivo 

made at the levels of specific tissues, cell types, or subcellular fractions.  To 
understand the role of particular lipid compositional changes that may be 
brought about by particular genes, the lipid composition of mutant plants can 
be correlated with physiological responses to stress or hormones. 

2 LIPID PROFILING METHODOLOGY 

Traditional, chromatographic analysis of polar, complex lipids is a time-
consuming process that involves separation of the lipids into classes, 
derivatization, and analysis of the fatty acyl chains.  In contrast, mass 
spectrometry (MS)-based lipid analysis is a rapid process that produces a 
detailed profile of lipid molecular species.  We are currently offering mass-
spectrometry-based lipid analysis through the Kansas Lipidomics Research 
Center, which is described on the web at www.k-state.edu/lipid/lipidomics/.  
The lipid profiling process involves (1) solvent extraction of tissues from 

(Brügger et al., 1997; Welti et al., 2002, 2003). This process produces 
spectra from which hundreds of lipid molecular species can be identified by 
head group and mass.  The mass can be interpreted as the total number of 
acyl carbons and total number of acyl double bonds. A lipid profile can be 
obtained from a small amount of material, such as a few percent of an 
Arabidopsis leaf. 

The lipid profiling methodology utilizes a tandem mass spectrometer 
(“triple quad” or MS/MS) with a collision cell, where fragmentation occurs, 
between the two mass spectrometers and a detector after the second mass 
spectrometer in the ion path. Our sample introduction is electrospray 
ionization (ESI). No preseparation is used. The sample is introduced by 
continuous infusion in solvent into the ESI source.  Lipid molecular ions are 
produced from the lipid molecules. Phosphatidylcholine (PC) and phos-
phatidylethanolamine (PE) are analyzed as singly charged positive [M+H]+ 
ions, phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidic acid 
(PA), and phosphatidylserine (PS) are analyzed as singly charged negative 
[M–H]– ions, and monogalactosyldiacylglycerol (MGDG) and digalacto-
syldiacylglycerol (DGDG) are analyzed as singly charged positive [M+Na]+ 
ions.  

R. Welti et al.

substrates and products of the gene products.  Such comparisons can be 

wild-type and/or mutant organisms, (2) addition of a mixture of phospho-
lipid and/or galactolipid internal standards and appropriate solvents, and
(3) analysis by electrospray ionization tandem mass spectrometry (ESI-MS/MS) 
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The lipidomic technology utilizes precursor and neutral loss scanning to 
allow detection of individual lipid molecular species in extracted biological 
samples that contain complex mixtures of non-water-soluble compounds that 
produce molecular ions with essentially every unit mass up to over 1,000 

components are being simultaneously infused and ionized.  To perform 
“precursor” scanning, the second mass spectrometer is set to allow only ions 
with a mass that corresponds to a charged fragment, characteristic of a 
particular head group class, to move to the detector. When scanning occurs 
in the first mass spectrometer, the second mass spectrometer effectively acts 
as a “filter”, so that signal is recorded at the detector only when a molecular 
ion from the first mass spectrometer produces the characteristic head group 
fragment. Thus, the spectrum (mass of molecular ions scanned by the first 
mass spectrometer vs signal detected after the second mass spectrometer) 
that is collected shows only the lipid molecular ions of those species that can 
produce the head group fragment. Usually this corresponds to the lipids in 
one head group class.  A neutral loss spectrum also depicts the lipids in a 
single class; neutral loss scanning is performed when the charge does not 
localize to the lipid head group fragment after fragmentation. This is the case 
with PE and PS. In these lipids, the fragment ions containing the two acyl 
species vary in mass as a function of the molecular ion acyl composition, but 
the difference in mass between the molecular ion and the charged diacyl-
containing fragment is constant (corresponding to the mass of the neutral 
head group fragment). Thus, when the second mass spectrometer scans in 
synchrony with the first mass spectrometer with an offset that corresponds to 
the mass of the neutral head group fragment, signal at the detector is again 
observed only when the first mass spectrometer is at the mass of a molecular 
ion that generates the characteristic neutral loss of the head group.  

In a lipid profiling experiment, a series of precursor and neutral loss 
scans are executed sequentially (Table 6-1).  The signal for each molecular 
species is corrected for isotopic overlap of the lipid species with other 
species and then compared in magnitude with the signals of the internal 
standards (Welti et al., 2002).  Currently, this methodology allows routine 
analysis of 144 polar plant lipid molecular species in eight head group 
classes.  As mentioned, these species are identified in terms of total carbon 
number and total double bonds.  More detailed information about the acyl 
species can be determined separately via product ion analysis of the 
molecular ions in the negative mode (Welti et al., 2002). 

 

 

a separate spectrum for each class of polar lipids, while many other 
amu.  Precursor and neutral loss scanning modes allow the user to obtain 
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Table 6-1. Precursor and neutral loss scans for analysis of lipid species from plants 
 

Time (min) Scan 
mode 

Fragment detected Classes analyzed 

3a + Precursor of 184+ LysoPC/PC  
2 + Neutral loss of 141 LysoPE/PE  
4 - Precursor of 153- LysoPG/PG/PA  
2 - Precursor of 241- PI  
3 - Neutral loss of 87 PS  
5 + Precursor of 243+ MGDG  
5 + Precursor of 243+ DGDG  

The first five scans are performed on an aliquot of extract dissolved in chloroform/ 
methanol/water (300:665:35) containing 10.5 mM ammonium acetate, while the MGDG and 
DGDG scans are performed on a second aliquot of extract that is dissolved in 
chloroform/methanol/water (300:665:35) containing 1.75 mM sodium acetate.  Spectra are 
acquired sequentially by scanning in the listed modes for the indicated time period.  

3 USES OF LIPID PROFILING TECHNOLOGY 

Lipid profiling technology has been utilized to determine the metabolic 
functions of genes involved in lipid metabolism (Welti et al., 2002; Nandi 
et al., 2003, 2004; Abbadi et al., 2004; Li et al., 2004), to examine lipid 
changes during developmental processes (Fauconnier et al., 2003), to 
implicate new metabolic pathways (Welti et al., 2002), and to help identify 
mutant genes from their functions (Nandi et al., 2003).  One example of 
determination of the metabolic function of a gene was for phospholipase 
Dα1, one of the 12 Arabidopsis gene products that encode phospholipase Ds.  
Lipid profiles of rosettes sampled before and after freezing stress from wild-
type Arabidopsis were compared with similarly treated samples from 
Arabidopsis deficient in phospholipase Dα1.  This comparison showed that 
phospholipase Dα1 accounts for about half of the PA formed upon freezing.  
These lipid profiles also showed that phospholipase Dα1 acts on PC, rather 
than PE or PG.  

Lipid profiles of wild-type Arabidopsis during freezing suggested the 
existence of a previously undescribed pathway leading from MGDG to PA. 
During freezing, a molecular species of PA that is not detectable before 
freezing is formed.  This species, 34:6 PA, is likely to be derived from 
MGDG, the only diacyl lipid class that contains large amounts of 34:6 
diacylglycerol. The metabolic steps and the gene products involved in this 
pathway await elucidation.  

An example of how lipid profiling expedited the identification and cloning 
of genes affecting biochemical processes via a candidate gene approach is 
provided by SFD1. Lipid profiling of the ssi2 sfd1 mutant plants suggested 

R. Welti et al.
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The profile suggested a lipid composition similar to that described by Miquel 
et al. (1998) for a mutant involved in glycerol phosphate metabolism. A 
survey of genes near the map location of SFD1 identified a gene (At2g40690) 
that putatively encoded a DHAP reductase. Sequencing of sfd1 mutant alleles 
confirmed that there were mutations in At2g40690. Finally, genetic 
complementation and studies of the SFD1 gene expressed in Escherichia coli 
confirmed the identity of SFD1. 

4 LONG-TERM GOALS 

The long-term goals of our group are to determine the roles of genes and 
enzymes that are involved and potentially involved in lipid metabolism in 

provide high-throughput, sensitive, and accurate lipid profiling and analysis.  
Finally, we will continue to develop mass-spectrometry-based lipid profiling 
strategies. 
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1 INTRODUCTION 

In the conventional analysis of a biological system, its response to a 
particular perturbation was usually monitored from the change in 
macroscopic physiological properties and, at the molecular level, from the 
expression of few genes and/or the concentration of few proteins or 
metabolites. Relying on a small number of markers was imposed primarily 
by limitations in the available measurement techniques. Therefore, the 

conclusions or models derived from such analysis depended on how 
sensitive sensors of the examined process the selected measurements were. 
Moreover, any simultaneously occurring phenomena that could not be 
observed from the selected markers, risked being missed. 

Advances in the computational and robotic techniques, along with better 
understanding of biological processes, allowed for the development of the 
high-throughput (OMICS) techniques. These techniques enabled researchers 
to obtain detailed and comprehensive information about the state of a 
biological system at the molecular level. In contrast to the conventional 

B.J. Nikolau and E. Syrkin Wurtele (eds.), Concepts in Plant Metabolomics, 93–110. 

on which the macro- and microscopic markers had to be selected. Any 
conventional analysis had to heavily count on an initial hypothesis based 

Short-Term Response of Arabidopsis thaliana Primary 
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analysis, high-throughput relies less on an initial hypothesis. Moreover, 
different phenomena can be observed simultaneously and thereby connected 
in the context of the system’s physiology. Hence, high-throughput 
techniques can significantly upgrade the information, which is obtained 
about a biological system. 

Transcriptional profiling using cDNA microarrays (Schena et al., 1995) 

throughput analysis in the post-genomic era. However, it is becoming 
increasingly clear that comprehensive analysis of a complex biological 
system requires the quantitative integration of all cellular fingerprints: 
genome sequence, maps of gene and protein expression, metabolic output, 

perturbed cellular system, such integration could provide insight about the 
function of unknown genes, the metabolic regulation and even the 

Before, however, such integrated analysis can be carried out, the 
challenges of quantitative high-throughput analysis at each individual level 
of cellular function need to be resolved. These range from limitations in the 
available experimental protocols to lack of data normalization and analysis 
techniques for upgrading the information content of the acquired 
measurements. These challenges at each of the genomic and metabolic levels 
and in their integration, along with suggestions for their resolution are 
discussed in the next sections. All issues are presented in the context of the 
time-series integrated metabolomic and transcriptomic analysis of the short-
term response of the Arabidopsis thaliana primary metabolism to elevated 
levels of CO2 in its growth environment. The need for integrated molecular 
analyses becomes apparent through the discussion of the obtained results. 

2 EXPERIMENTAL DESIGN AND DATA 
NORMALIZATION 

2.1 Selection of the system/perturbations 

Always, the selection of the system depends on the specific aims of the 
study. In the case of integrated genomic and metabolic studies, which are 
still at their infancy, we believe that appropriate model systems and easily 
observable physiological changes should be, respectively, used and targeted, 
as a means of justifying this new systems biology approach and validating 

and in vivo enzymatic activity (Ideker et al., 2001). For a systematically 

measurements that can lead to useful results (Ideker et al., 2001).  

2003). It is, therefore, very important to carefully design experiments that
can provide comparable gene expression and proteomic/metabolomic

or Genechip® (Pease et al., 1994) has been the most widely used high-

reconstruction of the gene regulation network (Klapa and Quackenbush,

algorithms developed for the combination of the data (Klapa and Quackenbush, 
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In this context, the selection of A. thaliana liquid culture as the system, 
and elevated CO2 levels in its growth environment as the perturbation under 
investigation in the case study, was based on the following reasons: 
• Plants are complex eukaryotic organisms; besides then any functional 

insight that might be gained through the study, it is anticipated that 

of systems biology principles that will have broader applicability than 
studies in yeast or prokaryotic systems. 

• A. thaliana is considered the model system of plant physiology, because 
of its short growth cycle and a small genome of five chromosomes, 
which has been fully sequenced (Arabidopsis Genome Initiative, 2000). 

• Liquid compared to soil cultures provide a controllable growth 
environment, ensuring that all plants in all experiments receive the same 
nutrients. 

• In liquid cultures, any signaling molecule/growth hormone added to the 
media is uniformly distributed. 

• Each liquid culture comprises of 50–80 plants. Therefore, a large 
number of replicates are harvested at the same time, increasing, thereby, 
the confidence in the statistical significance of the acquired 
measurements. In the case of time-series analysis, this might help in 
partially overcoming the trade-off between number of replicates and 
number of timepoints (see further discussion in following section). 

• CO2 is the main carbon source for plants; thereby, any change in its 
concentration in the plants’ growth environment is expected to have 
direct implications in the activity of its central carbon metabolism and 
amino acid biosynthesis. The latter are considered a good model 
framework for integrated metabolic and genomic analyses, because: 
o There exists extensive information about their function both at the 

metabolic and genomic levels. 
o The majority of the involved metabolic pathways have been well 

characterized in plants. 
o The regulation of these pathways has been extensively investigated, 

at least in prokaryotic systems.  
o At the genomic level, the majority of the genes related to these 

pathways have already been identified and annotated.  
 
 
 
 

analysis of multitissue organisms will also contribute to the development 

2003). Moreover, the experiments should be designed in such a way that the

applied perturbations (Klapa and Quackenbush,  2003).  
observed changes in the molecular profiles could be attributed only to the 
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2.2 Metabolomic analysis  

The metabolomic profile of a biological system – referring to the 
concentration profile of all its free small metabolite pools (Roessner et al., 
2000; Fiehn et al., 2000) – provides a phenotypic equivalent of the high-
throughput transcriptional and proteomic profiles (Fiehn et al., 2000). To 
date, metabolomic profiling in plants has been mainly used to differentiate 

and/or identify an environmental or genetic phenotype (Fiehn et al., 2000; 
Roessner et al., 2001; Taylor et al., 2002; Weckwerth et al., 2004). 

the technique of choice for most quantitative high-throughput metabolomic 
profiling analyses, of polar metabolites, in particular (Roessner et al., 2000; 

2003; Sakai et al., 2004; Roessner et al., 2001; Taylor et al., 2002; 
Weckwerth et al., 2004).  More detailed comparison of the 3 techniques and 
their specific advantages/disadvantages in the context of metabolomic 
analysis can be found in Fiehn (2001) and Kopka (2004). Taking into 
consideration this information, GC-MS was selected for the acquisition of 
the metabolomic profiles in the case study. The main objective of the latter 
was the analysis of the primary metabolism of the plant liquid cultures, 
which comprises mainly polar metabolites.  

A typical metabolomic analysis using GC-MS consists of the following 
four distinct stages: 
1. Metabolite extraction: In the case study, part of the homogenized ground 

sample was used in the metabolomic analysis, while the rest in the 
trascriptomic analysis. Polar metabolites are obtained from the homo-
genized ground plant sample through methanol-water extraction (Roessner 

2. Metabolite derivatization: Derivatization is imperative for the conversion 
of the small metabolites to volatile, nonpolar, and stable derivatives 
through their reaction with a particular derivatization agent. The most 
commonly used derivatization method in metabolomics analysis involves 
the original metabolites’ conversion into their trimethylsilyl (TMS) and 
Methoxime (MEOX) derivative(s) (Roessner et al., 2000). To ensure 
accuracy of the metabolomic analysis, the derivatization time should be 

Magnetic Resonance (NMR) Spectroscopy. Among these, GC-MS has been 

et al., 2005; Noguchi et al., 2003; Sakai et al., 2004; Hirai et al., 2004) 

(or Liquid) Chromatography - Mass Spectrometry (GC/LC-MS) or Nuclear 
Identification and quantification of small metabolites is possible by Gas 

Kanani, 2004; Cook et al., 2004; Broeckling et al., 2005; Noguchi et al., 

between metabolic states (Kanani, 2004; Cook et al., 2004; Broeckling 

et al., 2000; Kanani, 2004), while nonpolar through chloroform extraction
(Fiehn et al., 2000; Weckwerth et al., 2004). If used in combination,
the entire metabolome could be obtained. 

optimized (see Kanani and Klapa, 2007, for the optimization strategy). 
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3. GC-(electron ionization (EI)) MS analysis: Gas chromatography enables 
the separation of the metabolites, while their identification and 
quantification is based on the acquired mass spectra. In the case study, 
GC-(ion trap) MS (GCQ, Thermo-Finnigan) was used because of the 
significant reported advantages of ion-trap MS (Klapa et al., 2003). 
Details concerning the actual GC-MS operating conditions are provided 
in Kanani (2004).  

4. Metabolite identification and quantification: First, the acquired mass 
spectra undergo peak de-convolution (Stein, 1999). The identification of 
(known or putative) metabolite peaks is based on the retention time and 

MS the actually measured metabolomic profile is the derivative profile. In 
this case, metabolomic analysis is based on the assumption that the 
concentration of each metabolite in the original sample is in one-to-one 
directly proportional relationship with the peak area of its marker ion (or the 
sum of the peak areas of its marker ion(s)). Biases, however, introduced at 
each of the four steps of the GC-MS data acquisition process might affect 
this proportionality, hindering the comparison between data from different 
experiments/batches. In this case, appropriate normalization is required 
before any data analysis is attempted. The potential biases in GC-MS 
metabolomic analysis can be divided into three categories, for each of which 
a specific normalization strategy is suggested: 

Errors that affect all metabolites equally: These biases, e.g., unequal 
division of a sample into replicates, injection errors, different split ratios, are 
expected to change the proportionality ratio between a metabolite’s original 
concentration and the peak area of its marker ion to the same fold-extent for 
all metabolites. Therefore, barring any other type of biases, the relative 
composition of the measured derivative metabolomic profile should be the 
same as that of the original sample. To account for this bias and render the 
results from different experiments/batches comparable Internal Standard 
Normalization is required. The selected internal standard should not be 
produced – at least not to the extent that it distors the acquired data – by the 
biological system (ribitol or isotopes of known metabolites have been the 
most commonly used, Roessner et al., 2000; Fiehn et al., 2000). It is added 
just before the initiation of the four-step process described above. Each 
metabolite is then quantitatively characterized by the ratio of the peak area 
of its marker ion(s) to the peak area of the marker ion(s) of the internal 
standard. Detailed explanation of internal standard normalization is provided 

mass spectra standards available in public (http://www.mpimpgolm.
mpg.de/mms-library/details-e.html), commercial (Ausloos et al., 1999)

2007). Each metabolite is quantified from the peak area of its marker 
or prepared in each laboratory libraries (Kanani, 2004; Kanani and Klapa

Because of the derivatization step, in metabolomic analysis using GC-
ion/s (Roessner et al., 2000; Kanani and Klapa 2007).  
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in Kanani (2004). The peak area ratio thus obtained is referred to as “relative 
peak area” of the metabolite.  

Errors that affect specific metabolites: These biases are expected to 

for the various metabolites in the sample. They concern the derivatization 
process and time, e.g., incomplete derivatization of a metabolite, formation 

The extent of this type of bias introduced in a particular metabolite’s 
measurement depends on the molecular structure and/or concentration of the 
metabolite. These errors should be identified in the measured profile and 
properly accounted for, because if not, they could change the relative 
composition of the measured derivative metabolomic profile with respect to 
that of the original sample. In this case, changes in the profile that are due 

biases.  
Process/setup or Biological Outliers: To potentially enable identification 

of these outliers through clustering analysis (Kanani, 2004), at least three 
biological (if allowed from the experimental setup/resources) and 
experimental (i.e., parts of the same sample or different injections of the 
same sample) replicates should be acquired. The identified outliers should be 
removed from the rest of the analysis as not representing the true metabolic 
state of the plant sample to avoid the distortion of the attained 
results/conclusions. 

These three data normalization steps are necessary in any metabolomic 
analysis using GC-MS. In addition, in the case when different 
experiments/perturbations of the same biological system/setup are conducted 
on different days, the potential change in the initial/control conditions (e.g., 
ambient air composition, different batch of seeds, and/or media) between the 
various experiments should also be taken into consideration for the 
experiments to be comparable. In the case of a time-series analysis at which 
time zero represents the initiation of each perturbation, the change in control 
conditions between the experiments is represented by the difference in their 
metabolomic profiles at time zero. To account for this variation and to scale 
the metabolomic data around the value of 1 (log2[1] = 0), the metabolomic 
profiles of all timepoints of an experiment could be normalized with respect 
to the metabolomic profile of its time zero. Then, any identified difference 

applied perturbation(s). Similar normalization strategy has also been used in 
snapshot analysis involving comparison between different genotypes, grown 
on different days (Roessner et al., 2001). The metabolomic profiles as 

centration and the peak area of its marker ion to a different fold-extent 

of multiple derivatives or changes in GC-MS conditions that lead to 

change the proportionality ratio between a metabolite’s original con- 

variations in a metabolite’s fragmentation pattern (Kanani and Klapa, 2007). 

only on chemical and/or setup reasons could be attributed biological 

Kanani and Klapa (2007) propose a normalization strategy for this type of 
significance leading to erroneous conclusions (Kanani and Klapa, 2007). 

between the metabolomic profiles of the experiments is due only to the 

H. Kanani et al. 
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obtained after this four-step data normalization and validation procedure 
could now be used in further data analysis.  

2.3 Transcriptional profiling analysis 

High-throughput transcriptional profiling analysis using DNA 
microarrays is based on the principle of the highly specific affinity between 
complementary DNA/RNA strands. There exist two widely used microarray 
platoforms: the Affymetrix GeneChip® is prepared using photolithographic 
technology (Pease et al., 1994), while the spotted array using robotic printing 
technology (Schena et al., 1995). Selection of either platform has been based 

technique of choice of most academic laboratories.  
A typical transcriptomic analysis using spotted microarray consists of 

three distinct stages: 
Slide printing

used. Each of these arrays comprised 27,648 spots, each corresponding to a 
particular gene or EST. The array design and fabrication protocol can be 
obtained from Hegde (2000). 

Total RNA and mRNA extraction: Total RNA can be extracted from the 
ground plant samples using trizol (http://atarrays.tigr.org/arabprotocols.html). 
mRNA is then obtained from the total RNA via the amplification of RNAs 

Hybridization and scanning: mRNA from two different samples (query 

During a typical transcriptomic analysis, errors in the acquired DNA 
microarray data could be mainly originated from:  
• Unequal quantities of starting mRNA in the query and reference samples. 
• Difference in the labeling efficiencies of the Cy3 and Cy5 dyes.  
• Difference in the sensitivity of the scanner for the two dyes.  
• Variation of intensity between the spots due to variation between the 

slide printing pins. 
To eliminate these errors, various normalization methods have been 

proposed, among which total intensity normalization (Quackenbush, 2002), 
standard deviation regularization (Yang et al., 2002a), lowess (Yang et al., 
2002a; Yang et al., 2002b) and flip-dye analysis (Quackenbush, 2002) were 

arabprotocols. html). 
with a polyA tail through reverse transcription (http://atarrays.tigr.org/

: In the described case study, full-genome A. thaliana 
spotted arrays printed at The Institute for Genomics Research (TIGR) were 

and reference) is reverse transcribed to produce cDNA, which is attached to
two different Cy3 and Cy5 dyes by biochemical reactions. The samples are
then hybridized on a microarray slide followed by scanning (http://atarrays.
tigr.org/PDF/Probehyb.pdf). The relative intensities of the two different 
dyes provide a measure of the relative amount of mRNA present in the
query vs the reference sample.  

mainly on the available resources. To-date, spotted array has been the 
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used in this sequence in the case study. Previous studies in the group of Dr. 
Quackenbush have validated this normalization sequence as generally valid 
for the normalization of spotted arrays. After this normalization, outlier 
analysis and, in the case of time-series analyses, time zero normalization 
should be carried out in a similar manner and for the same reasons as 
described in metabolomic analysis. 

2.4 Time-series vs snapshot analysis 

The response of a complex biological system, such as plants, to 
perturbations in its environment is inherently a temporal process. When cells 
are exposed to a new condition (treatment or stress), they respond to the 
situation by modifying their gene expression and/or altering protein activity. 
Usually, the cascade of molecular events is initiated through the activation of 
transcription factor(s), which, in turn, induce(s) the expression of genes 
encoding proteins necessary to respond to the new conditions. The proteins 
are the catalysts and regulators of (almost) all cellular functions, including 
signaling and metabolic reaction networks. In the latter, metabolic regulatory 
mechanisms might alter the enzymatic activity leading to a certain 
redistribution of metabolic fluxes. If a snapshot of the new conditions is 
compared with the old one, a set of variables (genes/proteins/metabolites) 
that undergo change in expression can be found. However, in order to 
determine the “trend” of change, it is preferable to obtain expression data 
over a certain period of time. In this way, knowledge not only about the 
difference between two states, but also about the pathways involved in the 
physiological change, could be obtained (Joseph, 2004). One additional 
argument in favor of time-series analysis is that, in the case of integrated 
genomic and metabolic analyses, it is the metabolic flux redistribution that is 
directly integratable with the gene expression data (Klapa and Quackenbush, 
2003), because it characterizes the change in the degree of enzymatic 
engagement in a conversion process (Klapa and Quackenbush, 2003). 
However, metabolic flux analysis requires extensive knowledge of the 
biochemical reaction network and is to date limited to steady-state 
conditions (Klapa and Quackenbush, 2003). In this case, the time-series 
metabolomic profiles, which inherently contain information about the flux 
distribution, could provide the metabolic fingerprint of a biological system 
in high-throughput integrated analyses when steady- or pseudo-steady state 
conditions are a risky assumption to make.  

To design a time-series integrated metabolomic and transcriptomic 
analysis, the following two issues should be addressed: 

Number of timepoints Vs number of bioreplicates: For a given 
experimental setup and set of resources, the experimental design should 
optimize between the number of timepoints at which the biological system 

H. Kanani et al. 
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should be sampled and the number of biological replicates at each timepoint. 
Both are desired to increase the information content and statistical 
significance of the analysis.  

Selection of timepoints/duration of sampling time: If there is large time 
difference between samples, intermediate key events of shorter timescale 
might be missed. However, for a given number of sampling times due to 
the available resources as described above, decreasing the time difference 
between consecutive samples will result in shorter duration of the 
experiment. This might lead to missing important physiological events that 
are activated at a later stage after the initiation of the perturbation. Thus, 
there exists a trade-off between the frequency of sampling and the duration 
of the experiment. Moreover, in the case of integrated analyses, the selection 
of sampling times should take into consideration the difference in the 
timescale of response between the transcriptional and the metabolic 
processes. In this context, adapting a particular time-course experiment from 
one organism to another might prove cumbersome, since the rates at which 
similar biological processes take place differ across organisms and 
environmental and/or genetic conditions (Joseph, 2004; Spellman et al., 
1998).  

2.5 Case study 

Taking into consideration all the issues regarding the design of a time-
series integrated high-throughput metabolomic and transcriptomic study as 
described above, the short-term effect of elevated CO2 on the physiology of 
A. thaliana was studied based on the following experiment:  

Two sets of 19 and 20, respectively, A. thaliana (Columbia strain) liquid 
shake cultures were grown under constant light (80–100 µmole/cm2 s), 
relative humidity (60%) and temperature (23°C) at ambient air conditions for 
12 days; of note, each set was grown on different days (see Kanani (2004) 
for detailed description of the experimental setup). At the beginning of the 
13th day, 3 and 4 cultures from each set, respectively, were harvested to 
account for the reference physiological state (time 0 h). Immediately 
afterwards, each set of the 16 remaining plants was fed continuously (i.e., at 
constant rate) for 23 h with air of ambient composition and 1% CO2, 
respectively. Two cultures from each set were harvested at each of the 0.5 h, 
1 h, 1.5 h, 3 h, 6 h, 12 h, and 23 h after initiation of the perturbation. The 
harvested samples were frozen using liquid nitrogen and stored at –80°C for 
further analysis. Each frozen plant was subsequently ground, homogenized 
and separated into two sections used in each of the analyses. The data 
normalization strategy followed for each of the obtained metabolomic and 
transcriptomic data sets are shown in parallel in Figure 7-1.  
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Figure 7-1. The steps of the data normalization of the transcriptional and metabolomic 
profiles; the specific numbers of files and vector sizes refer to the described case study. 

Gene expression profiling
 using full genome cDNA microarrays

2 x 2 x (19+20) TIFF images
(27648 spots each)

2 x (19+20) text files
Average number of  nonzero spots:

18202 (control) // 22118 (perturbed)

TIGR TM4 MIDAS [32]
  

Filtering of biological outliers //  geometric  mean of remaining replicates at
each timepoint 

 
  

2 x 9 text files 
  average number of nonzero spots: 

10207 (control) // 12422 (perturbed)

2 x 9 text files 
  average number of nonzero spots: 

9416 (control) // 9228 (perturbed)

9  text files (ratio)  average “nonzero” spots: 7192

TIGR TM4 Spotfinder [32]

2 x (19+20) text files
average number of nonzero spots:

12211 (control) // 14922 (perturbed)

Normalization of the gene/metabolite expression profile of the perturbed plant set with 
respect to that of the control

3 x (19+20) vectors
(212 peak areas each)

3 x (19+20) vectors
(212 relative peak areas each)

Accounting for multiple derivative forms & 
Filtering of  non consistent peaks  

  Filtering of injection and biological outliers // 
arithmetic mean of remaining replicates at 

each timepoint 

2 x 9 vectors 
(150 normalized  peak areas each)

2 x 9 vectors
(150 peak areas each)

Normalization with internal standard

3 x (19+20) vectors
(150 relative peak areas each)

9  vectors (150 peak areas each ) 

Integrated Analysis

Metabolomic profiling 
using GC - (ion trap) MS 

Division of the profile at each time point with the profile at time 0h (in each plant set)

H. Kanani et al. 



7. Time-Series Integrated Analysis in Plants  103 

3 MULTIVARIATE DATA ANALYSIS 

3.1 Identification of different physiological states 

Clustering techniques, like Principal Component Analysis (PCA) and 
Hierarchical Clustering (HCL) have been used in metabolomic and genomic 
analysis to identify different physiological states, representing genetic 
mutation(s), environmental perturbation(s), or external treatment(s). 
Typically, such analysis is carried out for the comparison between snapshots 
(Fiehn et al., 2000; Hirai et al., 2004; Roessner et al., 2001; Taylor et al., 
2002), where presence of clusters represents different states. Figure 7-2 
shows the results of applying PCA analysis (Saeed et al., 2003) in the time-

2 
concentration) and the perturbed (1% CO2) plant sets at both the metabolic 

2

shape of the majority of the metabolites’ and genes’ expression profiles over 
time, indicated difference in the plant’s response between the shorter vs the 
longer CO2

setup that was causing changes in the ambient pressure of the plants during 

3.2 Identification of significant genes and metabolites  

One of the main objectives of high-throughput analysis is the 
identification of these biological variables that characterize the difference 
between physiological states. In most of the reported snapshot “-omic” 
studies (Fiehn et al., 2000; Cook et al., 2004; Roessner et al., 2001) this has 
been achieved through t-test or fold change (FD) analysis. These methods, 
however, do not include any distinct threshold characterizing significance.  

 

They indicated significant difference between the control (ambient CO
series metabolomic and transcriptional profiling data of the case study. 

ment. This difference validated the choice of the system and perturbation 
during the experimental design. However, the clustering pattern, reflecting the 

 treatment. The large fluctuations observed over the first 2
hours of treatment in the metabolomic and transcriptional profile indivi-

of the plants to slight changes in their environment, and (b) the experimental 

each harvesting, the initial timepoints (0.5h–2 h) were removed from further

(Kanani, 2004) and transcriptional (Dutta, 2004) levels even for short CO  treat-

dually, even in the control plant sets, have to be attributed to factors other
then the applied perturbation. Taking into consideration (a) the high sensitivity 

data analysis as not directly reflecting the physiological consequences of 
the applied treatment. Moreover, the experimental setup was accordingly
modified to avoid this problem in following experiments (Dutta et al., 2006).  
This is an example of how the results of one experiment could contribute in 
further optimising the design of future studies. 
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Figure 7-2. Identifying the short-term effect of elevated CO2 on the transcriptional and 
metabolic response of the A. thaliana liquid cultures (case study)  using PCA analysis on the  
(A) Transcriptional (Euclidean distance) and (B) Metabolomic (Pearson correlation) profiles. 
Only the first 3 principal components are shown, encountering, respectively, for 75% and 

called Significance Analysis of Microarrays (SAM) was recently developed 
and used for the comparison of different experimental conditions (Hirai 
et al., 2004; Tusher et al., 2001; Xiang et al., 2004). SAM was further 
modified to allow one-to-one pairing between corresponding samples in 
each compared class and this method is known as two-class paired-SAM to 
be differentiated from the original unpaired. In both paired and unpaired 
SAM analyses, the probability of genes being falsely assigned significance 
(referred to as False Detection Rate (FDR)) is calculated at each significance 
level (referred to as delta value). Thus, when comparing multiple data sets, 
instead of using a fixed limit of significance as in traditional analysis (p-
value in t-test, FC value in fold change), SAM allows comparison between 
the same FDR values, which is determined based on the overall variation in 
each data set.  

In the CO2 case study, two-class paired (between the corresponding 
timepoints) SAM analysis was used on both the transcriptional and 
metabolomic profiles to identify genes and metabolites, respectively, that 
exhibited significant change in their expression between the control and the 

Perturbed
System

Control
system

0.5-2hr

0.5-2hr

3-23hr

3-23hr
6h and 23hr 
of perturbed 
system

12hr of perturbed,
6hr of control system

12hr - 23 hr 
of control system

0.5hr- 3hr 
of control system

0.5h - 3 hr
of perturbed

system
Perturbed
System

Control
system

0.5-2hr

0.5-2hr

3-23hr

3-23hr
6h and 23hr 
of perturbed 
system

12hr of perturbed,
6hr of control system

12hr - 23 hr 
of control system

0.5hr- 3hr 
of control system

0.5h - 3 hr
of perturbed

system

To overcome this problem in DNA microarray analysis, a methodology 

65% of the variation in the data. (Kanani, 2004; Dutta, 2004).

perturbed plant sets. The analysis identified ~900 significant out of ~9000
genes (Dutta, 2004) and ∼45 significant out of 150 metabolites (Kanani, 2004)
(see Figure 7-1).  
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Taking into consideration that the identification of the significant 
biological variables in time-series analysis is based on multiple snapshots of 
the perturbed vs the control state compared to the single “picture” of the 
system in snapshot analysis, the former could be considered more “robust” 
than the latter. However, the available and employed statistical tests (SAM, 
t-test, FC) compare the profiles at the various timepoints as simply different 

time history, in terms of their specific order and the time difference between 
them. Hence, there exists currently a need for extension of these analytical 

become(s) available, the experimental design should opt for equal time 
intervals between consecutive samplings.  

3.3 Data interpretation in biological context  

phenomena concerning the system and the applied perturbation.  In the CO2 

3.3.1 Transcriptional profiling 

• Increase in the expression of genes involved in cell division and 

• 

• Decrease in the expression of the gene encoding the nitrate reductase 

3.3.2 Metabolomic profiling 

• Significant increase in the concentration of metabolic intermediates 

• Significant decrease in the concentration of the nitrogen storage and 

• Significant decrease in the concentration of metabolites involved and 

the statistical results and (b) determine new interactions, relations, and 

snapshots of the physiological state, without taking into consideration their 

The identified significant genes and metabolites have to be discussed

of the particular biological system. This is necessary in order to (a) validate 

techniques into time-series analysis. Until, however, such method(s) 

in the context of the existing knowledge about the physiology and regulation 

case study, such analysis indicated following physiological changes.

Increase in the expression of multiple genes involved in the Calvin Cycle 
cell/plant wall synthesis (Dutta, 2004);

enzyme; the latter catalyzes the first step of the nitrogen assimilation 

required for the synthesis of structural carbohydrates (Kanani, 2004); 

transport amino acids (Kanani, 2004); 

usually characterizing the activity of the photorespiration pathway 
(Kanani, 2004). 
In combination, the obtained transcriptional and metabolic measurements 

suggested, (1) inhibition of the inorganic nitrogen assimilation; this result 

pathway (Dutta, 2004). 

(carbon fixation) & the chlorophyll production pathway (Dutta, 2004);  

agreed with previous studies (Smart et al., 1998; Bloom et al., 2002),
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These results illustrate the advantages of time-series integrated high-
throughput transcriptional and metabolomic profiling analyses. It becomes 
clear that the latter enhance the quality and quantity of the information 
obtained about a biological system. Moreover, the “concrete” picture that 
was obtained about the physiology of A. thaliana provided strong support to 
the selected experimental design, data normalization, and analysis strategy 
as were described throughout this chapter. Specifically: 
• The selected duration of the treatment and the integrated high-throughput 

nature of the analysis allowed for the short-term effect of elevated CO 2 
on young, healthy plants, i.e., their growth, to be observed. Such effect of 
the CO2  treatment had never been reported in earlier studies, because 
they referred to longer treatments. In addition, the former studies not 
being high-throughput had to focus on the measurement of specific 
class(es) of molecules and/or genes based on particular hypotheses. 
Therefore, phenomena, e.g., increase in the concentration of structural 
carbohydrates that might have been taking place at the same time, but 
had not been associated with the considered hypotheses, could not have 
been captured by the acquired data. 

• If only one of the two analyses had been employed to describe the 
physiological state of the system, some of the currently derived 
conclusions would have remained at the level of speculation, if even 
observed. For example, most metabolites in the Calvin cycle and 
chlorophyll production are not identified by GC-MS; therefore 

competes with the Calvin cycle (Coshigano et al., 1998; Siedow and Day, 

 

2

2

2

2

cell/plant wall to accommodate the increased cell division. Of note, this is 
the first time that the CO  effect on plant physiology has been associated 
with increase in the concentration of structural vs nonstructural 
carbohydrates (Idso and Idso, 2001; Paul and Foyer, 2001; Hui et al., 2002). 
Taking into consideration that most of the to date reported studies referred to 
long-term CO  effect, it is speculated that the first response of young, 
healthy plants to elevated CO  would be to grow instead of storing it in the 
form of nonstructural carbohydrates.  

conclusion (2) above is primarily based on the genomic data, and only by 

2001), was observed primarily at the metabolomic level; the competi-
tion between the two pathways originates in the enzyme kinetics level,
due to their common reaction sites in RubisCO. 

(2) increase in the photosynthesis and the CO  fixation rate and (3) increase 
in the production of structural carbohydrates required for the formation of 

its association to the nitrogen assimilation inhibition, on the metabolomic 
data. Similarly, the inhibition of the photorespiration pathway, which 
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4 SUMMARY AND FUTURE CHALLENGES  

Time-series integrated metabolomic and transcriptional profiling 
analyses can provide a comprehensive picture of the examined biological 
system. Therefore, they should be preferred over the studies that are based 
on only one level of cellular function. However, there are still several 
challenges associated with this type of analyses in general and in the study 
of plants in particular that need to be addressed. 

Systematic perturbations/data submission protocols: The detailed 
analysis of the molecular mechanisms that determine the physiological state 
of a biological system and the development of theoretical models that 
describe and predict cellular function must be based on integrated data from 

Data normalization: A systematic and widely accepted strategy (Kanani 

metabolomic data. Software tools similar to those existing for the 

Data analysis: Extension of the currently available for the analysis of 
high-throughput data sets statistical hypothesis testing methods to account 
for the time history in time-course measurements is required.  

Integrated data visualization and interpretation: There is a clear need for 
development of integrated data visualization and mining software tools that 
can be used to infer the relationships that exist between the various data sets 
in the context of the known and expected cellular physiology. 
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normalization of transcriptional profiling data (e.g., TIGR MIDAS, Saeed 
et al., 2003) should be developed for the metabolomic measurements as well 
as for the parallel processing of multiple data types. 

a large number of experiments/systematic perturbations. As the microarray 
community has come to realize, this will require the development of protocols
(see MIAME protocol, Brazma et al., 2001) for describing experimental
conditions and for submitting (any type of biolgical) data to public
databases.  

and Klapa, 2007) is required for the normalization of the high-throughput 
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Chapter 8 

MULTICELLULAR ORGANISM 

M. Ann D.N. Perera and Basil J. Nikolau 
W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA 

Abstract: Electrospray ionization tandem mass spectrometry in the precursor and neutral 
loss scanning modes is utilized to obtain profiles of the complex, polar lipids 
of plants.  This method is rapid, accurate, and sensitive.  The technique is 
being used to determine the metabolic functions of known genes, to implicate 
new metabolic pathways, and to help identify mutant genes from their 
functions. 

Key Words: lipidomics; lipid profiling; electrospray ionization; mass spectrometry; 
phospholipids; galactolipids. 

1 INTRODUCTION 

The emerging field of metabolomics seeks to globally identify the low 
molecular weight (<1,000 Da) biochemical constituents of biological materials 
(Hall et al., 2002; Bino et al., 2004). These molecules are primarily either 
metabolites of intermediary metabolism or end products of metabolism.  These 
molecules therefore represent the final level at which most genes express their 
functionality (Fiehn et al., 2000; Fiehn, 2002; Weckwerth and Fiehn, 2002).  
Hence, one of the many potential utilities of metabolomics data is in the field 
of functional genomics, which seeks to identify the biochemical and 
physiological function of all genes in a genome (Weckwerth and Fiehn, 2002; 
Bino et al., 2004).  The application of metabolomics data to functional 
genomics faces a number of inherent limitations.  One of these is the fact that 
many individual metabolites are common to different metabolic processes.  
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Thus, unlike proteomics and transcriptomics, where there is a one-to-one 
correspondence between individual molecules (proteins and mRNAs) and 
individual genes, no such correlation exists for individual metabolite 
molecules (Oliver et al., 2002).  Another limitation of metabolomics, at least 
as currently practiced for eukaryotic multicellular organisms, is the lack of 
discrimination of metabolites from different cellular and subcellular compart-
ments. Namely, because metabolomic analyses are usually conducted on 
metabolite extracts made by the homogenization of a number of different 
tissue types and subcellular compartments, data concerning the spatial 
arrangement of metabolites is lost.  This is of particular significance in the 
case of metabolites that are common to different metabolic processes that 
occur in distinct cellular and subcellular compartments (e.g., acetyl-CoA; (Ke 
et al., 2000; Fatland et al., 2005)).   

Cuticular waxes are constituents of the cuticle that coat all aerial organs 
of terrestrial plants (Martin and Juniper, 1970; Post-Beittenmiller, 1996; 
Kunst and Samuels, 2003).  Because cuticular waxes are products of the 
metabolism of a single cell layer of plants (i.e., the epidermis), their 
metabolomic analysis offers a convenient system for evaluating the utility of 
metabolomics in functional genomics in the absence of the complexity 
associated with cellular compartmentalization of metabolites.  Furthermore, 
because cuticular waxes are extracellular and they are not covalently bound 
to the organism, they are a readily extracted and analyzed. Thus, the 
“exometabolome” of the aerial organs of terrestrial plants has the potential 
of assessing the metabolic status of the epidermis.    

The biological function of the cuticle is complex and not precisely 
defined (Martin and Juniper, 1970).  It has been implicated as having a role 
in plant–water relationships, and in responses of plants to biotic and abiotic 
stimuli.  Although biochemical studies have provided the skeleton of the 
metabolic processes that underlie the biosynthesis of this lipid mixture, the 
genetic and molecular regulation of this process is poorly understood (Post-
Beittenmiller, 1996; Kunst and Samuels, 2003). A number of mutant 
collections that affect the normal accumulation of cuticular waxes are 
available for elucidating the molecular genetics of cuticular wax 
biosynthesis. These include an extensive mutant collection in Arabidopsis 
(the cer mutants; (Jenks et al., 1995; Jenks et al., 1996), in barley (the cer-
que mutants; von-Weittstein-Knowles, 1986), and in maize (the glossy 
mutants; (Schnable et al., 1994)).  Additional, but less extensive collections 
have also been generated in cabbage (Eigenbrode et al., 1995), pea (Macey 
and Barber, 1970), and sorghum (Jenks et al., 2000). Each of these 
collections offers unique opportunities for combined biochemical and 
genetic studies that should reveal different aspects of a very complex 
metabolic process.  This chapter presents the procedures that have been 
developed for the metabolomics analysis of the cuticular waxes of maize and 
Arabidopsis.   
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2 MATERIALS AND METHODS 

2.1 Plant materials 

The maize (Zea mays) inbred line B73 was used in all the studies 
presented herein. Seeds were germinated in a sand-bench maintained in a 
greenhouse whose temperature was maintained at 25 C. Plants were 
illuminated for 16 hours per day with natural sunlight, supplemented with 
artificial lighting, at a level of 210 µmol m-2 s-1.  Seedlings at the 2-leaf stage 
(7-9 days old) were harvested at between 4- and 6-hours after the start of the 
illumination period, by cutting seedlings at ground level.  The coleoptile was 
removed from the harvested seedling and cuticular waxes were immediately 
extracted. 

The Columbia ecotype of Arabidopsis thaliana was used in all the studies 
reported herein.  Seeds were germinated in soil (professional growing mix 
Sun Gro LC1) and plants were grown in a growth-chamber, which was 
maintained at constant illumination level of 60-80 µmol m-2 s-1, at a 
temperature of 22 C, and 75% relative humidity.  Waxes were extracted 
from the bolt, when it was approximately 15 cm tall.  

2.2 Extraction of cuticular waxes 

The harvested plant material was transiently immersed in chloroform for 
60 seconds. The chloroform extract was filtered through a plug of glass wool 
and the filtrate was dried under reduced pressure in a rotary evaporator at 
30 C.  The dried wax sample was dissolved in a small volume (250 mL) of 
chloroform and analyzed via HPLC or GC-MS.  

2.3 HPLC separation of cuticular waxes 

Cuticular wax extracts were separated into their chemical classes by 
reverse phase HPLC. Chromatography was conducted with a 53 mm x 7 mm 
(3 µm particle size) Adsorbosphere C18 (12% C) column (Altech, Deerfiled, 
IL), using a Beckman 110B HPLC system.  The flow rate was at 1.0 mL/min.  
Elution was monitored with an evaporative light scattering detector (ELSD 
11A, Varex, Maryland).  The nebulizer and the evaporator of the detector 
were set at 70 C. For maize cuticular waxes the HPLC solvent gradient 
system was: 0-10 min, 100% THF; 10-20 min, linear gradient to heptane:THF 
(70:30); 20-25 min at THF:heptane (70:30); 25-36 min, 100% heptane; 36-
40 min, 100% THF. For Arabidopsis cuticular waxes the HPLC solvent 
gradient system was: 0–7 min, 100% THF; 7–17 min, linear gradient to 
THF:heptane:hexane) (70:15:15); 17–25 min, pentane:hexane (50:50), 25–
31 min, linear gradient to 100% THF.  Fractions containing constituents of 

°

°

°

°
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different chemical classes (i.e., alkanes, alkenes, alcohols, aldehydes, esters, 
fatty acids, and ketones) were collected using a fraction collector. All 
chemical standards used in these studies were purchased from Altech 
(Deerfield, IL, USA).   

2.4 Gas chromatography-mass spectrometric analysis 

Chromatographic analysis was performed with a Model 6890 series gas 
chromatograph (Agilent Technologies, Palo Alto, CA, USA) equipped with 
a Model 5973 mass detector (Agilent Technologies, Palo Alto, CA, USA).  
Chromatography was conducted with a 30 m length, 0.25 mm I.D. HP-5MS 
cross-linked (5%)-diphenyl-(95%)-dimethyl polysiloxane column, using 
helium as the carrier gas. The injection temperature was at 300 C. The 
column oven temperature was initially at 80 C and was increased to 260 C at 
a rate of 5 C/min. After holding this temperature for 10 minutes, it was 
ramped to 320 C at a rate of 5 C/min and held at this temperature for 30 
min, and finally cooled to the starting temperature (80 C) over a 5-minute 
interval. Using the HP enhanced chemical analysis software G1701BA 
version B.01.00 with Windows NTTM operating system facilitated peak 
identification.  

2.5 Analysis of unsaturated metabolites 

The position of carbon–carbon (C–C) double bonds in unsaturated 
components was determined by the GC-MS analysis of dimethyl disulfide 
adducts.  Isolated cuticular waxes (∼1 mg) were dissolved in 20 mL of 
heptane, and incubated overnight at 40°C C with 50 mL dimethyl disulfide, 
and 5 mL 0.06% (w/v) I2 in diethyl ether.  The reaction was stopped by the 
addition 50 mL heptane, and 25 mL aqueous solution of (5% w/v) sodium 
thiosulfate.  The organic phase was recovered and concentrated prior to GC-
MS analysis. 

3 RESULTS AND DISCUSSION 

To facilitate the complete identification of cuticular wax constituents, 
extracted cuticular waxes were separated to chemical class components via 
HPLC.  Figure 8-1A shows the fractionation of maize waxes into the five 
major chemical class constituents (aldehydes, alcohols, ketones, esters, and 
alkanes), and Figure 8-1B shows the similar fractionation of Arabidopsis 
waxes.  The identity of each peak was based on the co-elution with known 
standard mixtures for each chemical class.  These standards were n-alkanes 
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Figure 8-1. The HPLC fractionation of cuticular waxes.  Cuticular waxes were extracted from 
9-day-old maize seedling leaves (A) and rosette leaves of 21-days old Arabidopsis seedling 
(B), and fractionated by reverse phase HPLC coupled to an evaporative light scattering 
detector.   

 
(between 12- and 26-carbons), alcohols (1-octacosanol, 1-octadecanol and 1-
docosanol), ketones (2-heptadecanone, 14-heptacosanone, and 6-tricosanone), 
esters (docosanyl eicosanoate, docosanyl docosanoate, and docosanyl 
hexacosanoate), aldehydes (octadecanal, decanal, and dodecanal) and n-fatty 
acid acids (mixture of 16–20 carbon chain lengths). 

The fractionated chemical classes were collected, and each fraction was 
then analyzed via GC-MS. By comparing the total ion chromatographic 
(TIC) profile of the unfractionated cuticular wax extract with that of the TIC 
of each fraction, it was possible to classify each individual cuticular wax 
constituent to a chemical class. Thus, this HPLC pre-fractionation, 
simplified the identification of the cuticular wax constituents prior to GC-
MS analysis.  Figures 8-2A–C illustrates the application of this strategy for 
identifying the alcohol and aldehyde constituents of maize cuticular waxes.  
These analyses identified aldehydes of between 16 and 32 carbon chain 
lengths (Figure 8-2A), and alcohols of similar chain length distribution 
(Figure 8-2C).  Figure 8-3 illustrates the identification of the cuticular wax 
components isolated from bolts and siliques of Arabidopsis. 

Verification of the chemical identity of each metabolite was achieved by 
the interpretation of the mass spectra obtained from the electron-impact (EI) 
ionization/fragmentation of each metabolite. The interpretation of these 
mass-spectra is illustrated with an example of a metabolite for each chemical 
class. Figure 8-4A presents the mass spectrum of the 29-carbon n-alkane.  
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Figure 8-2. Identification of cuticular wax components by combined HPLC and GC 
fractionation. Isolated maize cuticular waxes were separated into an alcohol and aldehyde 
fractions by HPLC. The purified alcohol (A) and aldehyde fractions (C) were analyzed by 
GC, and the resultant chromatograms are compared to the chromatograms of the isolated 
cuticular waxes (B).  

 
Typical of linear hydrocarbons the spectrum is composed of clusters of 
fragmentation products that differ from each other by 14 m/z mass units, 
which represents loss of (CH2)nCH3 groups from the molecular ion.  The m/z 
value of the molecular ion (408 units), which confirms the identity of this 
alkane as an alkane of 29-carbons.  Primary alcohols are identified by the 
signature loss of a water molecule from the molecular ion, which leads to the 
increased abundance, relative to that of the molecular ion, of an ion of 18  
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Figure 8-3. GC chromatography of Arabidopsis cuticular waxes.  Insert B, is an expanded 
view of the chromatogram between 35 and 41 minutes of elution time.  Peaks were identified 
as: 1, hexadecanoic acid; 2,octadecanoic acid; 3, 1-tetracosanol; 4, heptacosane; 5, 13-
heptacosanone; 6, nonacosane; 7, hexacosanoic acid; 8, secondary alcohol of hexacosanol; 9, 
1-octacosanol; 10, 15-nonacosanone; 11, octacosanal; 12, 1- triacontanol; 13, hentriacosane; 
14, triacontanal; 15, amyrin; 16, C44 ester. 

 
m/z units less than the molecular ion.  Thus, as illustrated in Figure 8-4B, the 
molecular ion of 466 m/z units, in combination with the water-loss fragment 
of 448 m/z units, identifies this metabolite as a primary alcohol of 32 carbon 
chain length.  

The signature base-ion facilitates the mass-spectroscopic identification 
of aldehydes (Figure 8-4C).  This fragmentation ion is due to the loss of a 
CHO group resulting in an ion that is 29 m/z units smaller than the molecular 
ion. However, identification of aldehydes based solely on such a frag-
mentation pattern is complicated by the fact that alkanes also generate such a 
fragmentation pattern by the loss of a CH2–CH3 group. This complication 
was clarified by the fact that we had pre-fractionated the alkanes and 
aldehydes via HPLC (Figures 8-1A and B), and thus could independently 
identify these two classes of metabolites.   

Esters are the only molecules present in cuticular waxes that are “hybrid” 
molecules, being composed of an alcohol and acid moieties. Thus, their 
characterization required the identification of both moieties. Depending on 
the combination of these two moieties, each ester at a defined carbon chain 
length could consist of several isomers, i.e., C44 esters could be isomers of 
C20 acid + C24 alcohol, C22 acid + C22 alcohol, C24 acid + C20 alcohol etc.  
Our strategy of pre-fractionating the cuticular wax extract via HPLC, 
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Figure 8-4. Mass-spectra of cuticular wax components.  Characteristics of the mass spectra 
that lead to the identification of alkanes (A), alcohols (B), aldehydes (C) and esters (D) are 
illustrated with nonacosane, dotriacontanol, dotriacontanal, and C40 ester, respectively.  
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Figure 8-5. Mass-spectra of cuticular wax components.  Characteristics of the mass spectra 
that lead to the identification of methylketones (A), symmetrical ketone (B), and alkenes (C) 
are illustrated with 2-nonacosanone, 15-nonacosanone, and dimethyl disulfide adduct of  
4-heptacosene, respectively. 
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enabled us to identify these metabolites, however, the fractionation of these 
esters via GC fractionates these metabolites only on the basis of their total 
carbon number. Ester isomers with the same total carbon number, but 
differing in their acid and alcohol moieties were identified via the 
characteristic protonated acid fragmentation ions (Reiter et al., 1999).  
Figure 8-4D, illustrates such an analysis of the C40 ester (identified as such 
by the m/z value of the molecular ion), which is a mixture of three isomers 
that are each composed of C20 acid + C20 alcohol, C22 acid + C18 alcohol, and 
C24 acid + C16 alcohol.  

Once the identity of the ketones was established by the HPLC 
fractionation, GC-MS analyses identified the carbon chain length of these 
molecules and the position of the carbonyl group.  The former could be 
calculated from the m/z value of the molecular ion; for example, Figure 8-5 
illustrates two isomers of 29-carbon ketones, both of which display a 
molecular ion of 422 m/z units.  However, these isomers display distinct 
fragmentation patterns that reveal the different position of the carbonyl 

is at the C-2 position (i.e., they are methyl ketones) generating a 
characteristic ion that is 43 m/z units less than the molecular ion due to the 
loss of a CO–CH3 group (Figure 8-5A).  In contrast, the Arabidopsis ketones 
have a centrally located carbonyl group, which fragment to generate stable 
base-ions as illustrated in Figure 8-5B.  Thus, the Arabidopsis cuticular 
waxes contain symmetric ketones. 

The cuticular waxes of some maize organs, particularly silk and pollen 
contain unsaturated components.  These were identified as alkenes, dienes, 
aldehydes, and methyl ketones.  The position(s) of the carbon-carbon double 
bonds on these metabolites was identified by the GC-MS analysis of 
dimethyl disulfide adducts.  Upon MS analysis, such adducts preferentially 
fragment at the bond between the carbon atoms that have been derivatized, 
yielding two substantial fragment ions that identify the positions of the 
carbon atoms involved in the carbon-carbon double bond.  Figure 8-5C, 
illustrates the mass spectrum of the dimethyl disulfide adduct of 4-
heptacosene (a 27-carbon alkene, with the double bond at the 4th position), 
which upon fragmentation generates substantial fragment ions of 103 and 
369 m/z units.   

In total these analyses identified 232 metabolites from the cuticular 
waxes of maize and Arabidopsis (Table 8-1). Associated with each 
metabolite is a high-quality mass-spectrum, measured on a double-focusing 
sector field spectrometer (70 eV EI). In addition, each metabolite is 
identified via retention indices from a nonpolar stationary phase column 
(HP5, Agilent Technologies, Palo Alto, CA, USA).  The resulting database 
has been useful in the characterization of plants that carry cuticular wax 
mutations (Nikolau et al., 2002, ; Nikolau et al., 2003; Dietrich et al., 2005; 
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Perera et al., 2005). Moreover, this database has been used to discover new 
genes in new biosynthetic pathways (Perera et al., 2005). 
 
 
Table 8-1. Cuticular wax constituents 
 

Carbon chain lengthsa 
Chemical class 

Maize Arabidopsis 

Saturated aldehydes 

Unsaturated aldehydes 

Primary alcohols 

Secondary alcohols 

Alkanes 

Alkenes 

Dienes 

Methyl ketones 

Symmetric ketones 

Unsaturated ketones 

Esters 

Esterified alcohols 

Esterified acids 

Free fatty acids 

C22, C24, C26, C28, C30, C32 

C26, C28, C30 

C16, C18, C20, C24, C26, C30, C32 

none 

C15, C19, C23, C29, C31 

C19, C23, C25, C27, C29, C31 

C25, C27, C29, C31 

C17, C23, C25, C27, C31 

none 

C21, C25, C27, C29, C31 

C40, C42, C44, C46, C48, C52 

C16, C18, C20, C24, C26, C28, C30, C32 

C16, C18, C20, C24, C26 

Trace 

C26, C28, C30 

none 

C24, C28 

C27, C29 

C27, C29, C31 

none 

none 

C25, C27, C29  

C25, C27, C29  

none 

C42, C44 

C16, C18, C20 

C18, C20, C24  

C16, C18, C24, C30 
 

aIn each chemical class, the carbon chain length of the most abundant metabolite is identified 
in bold-text. 
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Chapter 9 

CARBON METABOLISM IN PLANT SYSTEMS 
Isotope Labeling Analysis 

V. V. Iyer1, G. Sriram2 and J. V. Shanks1 
1Department of Chemical and Biological Engineering, Iowa State University,  Ames, IA 
50011, USA; 2Department of Human Genetics and Department of Chemical and 
Biomolecular Engineering, UCLA, Los Angeles, CA 90095, USA 

Abstract: Metabolic flux analysis (MFA) quantifies carbon flow in a biological system, 
which is an important characteristic reflective of physiology. Nodal rigidity of 
the metabolic network at branchpoints can be assessed from flux ratios to 
compare genetic and environmental variants and identify targets for potential 
genetic manipulations. MFA coupled with systems-wide tools such as 
transcriptomics and metabolomics have significant potential for building 
predictive models of plant metabolism. This chapter aims to explain the 
methodology behind MFA using carbon labeling experiments (CLE), nuclear 
magnetic resonance spectroscopy and a comprehensive mathematical 
framework (NMR2Flux) for a better understanding of central carbon 
metabolism in plants. 

1 INTRODUCTION 

Genetic engineering marked the advent of modifying specific enzymatic 
reactions using recombinant DNA technology. Early genetic engineering 
manipulations showed that a single gene transformation can result in 
unexpected changes in the metabolic pathways and phenotypic behavior and 
gave credence to a systems-level understanding of physiology. Consequently, 
the field of metabolic engineering emerged, which dealt with a systematic 
approach towards pathway modification to understand the underlying 
physiology (Stephanopoulos et al., 1998). The significance of metabolic 
engineering lay in the fact that the metabolic network was considered in its 
entirety as opposed to a single reaction.  
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Figure 9-1. Metabolic network for central carbon metabolism in embryos of soybean (Glycine 
max). Parallel pathways for glycolysis and the pentose phosphate pathway exist in the cytoplasm 
and the plastid and communication between them occur through three transporters: glucose 6-
phosphate (g6pT), pentose 5-phosphate (p5pT), and triose 3-phosphate (t3pT). The thickness of 
the arrows is directly proportional to the flux values.  Reprinted from Sriram et al. (2004) with 
permission of the American Society of Plant Biologists. 

 
The importance of metabolic fluxes as a fundamental determinant of cell 

physiology was promoted by metabolic engineering (Stephanopoulos, 1999). 
Metabolic flux is defined as the net rate of conversion of a precursor 
metabolite to a product in a metabolic pathway. The quantification of 
intracellular metabolite fluxes in a network of metabolic pathways is termed 
as metabolic flux analysis (MFA). In particular, MFA has been applied to 
network models of central carbon metabolism due to it importance in 
cellular physiology (Stephanopoulos, 1999). Central carbon MFA calculates 
steady-state intracellular fluxes using a stoichiometric model supplemented 
with extracellular measurements such as substrate intake and effluxes of 
metabolites. In larger network models for which additional measurements 
are required, constraints in the form of labeling data from Nuclear Magnetic 
Resonance (NMR) spectroscopy or Mass Spectroscopy (MS) can be applied 
(Section 2 of this chapter). The result of MFA is a metabolic flux map 
(Figure 9-1) which indicates the steady-state fluxes through various 
reactions of the metabolic pathway. Such metabolic flux maps can be 
effectively used for comparing flux differences in genetic or environmental 
variants. Subsequently, once the effect of a genetic or environmental 
manipulation is analyzed, further hypotheses are developed and tested 
(genetic modification followed by analysis) in an interactive cycle to further 
characterize the cellular physiology (Nielsen, 1998).  
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Figure 9-2. Parallel glycolytic and pentose phosphate pathways in cytosol and plastid. 
Transporters facilitate plastidic and cytosolic interactions.  
 

Although the application of MFA in central carbon metabolism in 
microbes has been appreciable, unfortunately the same cannot be said in 
plants. Metabolic networks are more complex to analyze in plants than in 
microbes. One of the major factors contributing to the complexity of plant 
networks is compartmentation. In plants, the same reaction pathway may 
occur in more than one compartment as shown in Figure 9-2. Transporters 
facilitate the exchange of metabolites between compartments thus making 
intracellular transport processes important. Hence, the quantification of 
fluxes in parallel compartments becomes vital (Shanks, 2000). Additionally, 
higher plants are separated on various levels such as the tissue (roots, stems, 
and leaves) and cellular levels within a tissue. Furthermore, the topology of 
plant networks is often incomplete.  

As a result of aforementioned complexity of plant metabolic networks, 
the few “flux” labeling studies in plants have focused on either the 
identification of metabolic network topology (Glawschnig et al., 2002; 
Krook et al., 1998; Schwender et al., 2004) or flux quantification using 
analytical or a highly simplified 13C NMR constrained analysis (Dieuaide-
Noubhani et al., 1995; Rontein et al., 2002; Schwender et al., 2003). Plant 
systems biology has reemphasized the importance of fluxes (Girke et al., 
2003; Stitt and Fernie, 2003; Sweetlove et al., 2003) in achieving the “in 
silico” plant (Minorsky, 2003). Thus, it has become more essential that 
application of MFA to different plant systems be promoted. Toward this 
goal, a comprehensive flux analysis tool for central carbon metabolism, 
NMR2Flux, was developed using recent mathematical advances from our 
research group (Sriram et al., 2004). This chapter aims at explaining the 
theoretical background and the methodology that NMR2Flux employs in the 
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evaluation of intracellular fluxes using the example of the developing 
soybean embryo. 

2 METABOLIC FLUX ANALYSIS 

Metabolic flux analysis (MFA) involves the quantification of intracellular 
steady-state fluxes in the cell, using metabolite balances and extracellular 
measurements. 

2.1 Stoichiometric flux analysis 

Metabolic flux analysis relies on the principle of conservation of mass: 
mass cannot be created or destroyed. Stoichiometric MFA is the most basic 
approach of metabolic flux analysis and requires details of the reaction 
stoichiometry. Consequently, mass balances around each intracellular meta-

 dX /dt = r - µX  (1) 

where, X represents the concentration of the metabolite under consideration; 
r, the rate of formation of the metabolite and µ is the biomass growth rate. 
Assuming a pseudo-steady-state, where the rate of turnover of X (left-side of 
equation (1)) is smaller than the sum of the rate of metabolite formation and 
dilution due to cell growth (right-hand side of equation (1)), we have, 
 

 r - µX = 0    (2) 
 

The dilution due to biomass growth is generally small and the second term 
can be neglected and we have, 
 

 r = GT. v = 0    (3) 
 

where, v is the vector containing the fluxes and G is the stoichiometric 
matrix. If the network model has J reactions and K internal metabolites, the 
degrees of freedom F, is represented by, 
 

 F = J – K    (4) 
 

Hence, to solve for the intracellular fluxes, some measurements such as 
substrate consumption, metabolite effluxes etc. have to be supplied. Thus, 
the measured and calculated fluxes can be partitioned into vm and vc, 
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respectively. Correspondingly, the stoichiometric matrix can be partitioned 
into Gm and Gc.  Thus, knowing vm and G, we can calculate vc, the set of 
unmeasured intracellular fluxes. If the number of supplied measurements is 
same as F, it is an exactly determined system; if greater than F, an 
overdetermined system; and if less than F, an underdetermined system. The 
exactly determined and overdetermined systems will have a unique solution 
for the distribution of fluxes through the metabolic network. In addition, for 
an overdetermined system, the extra measurements can be used to check the 
validity of the metabolic network. 

On the other hand, to solve an underdetermined system, cofactor 
balances (NADPH/NADH) may need to be supplemented as additional 
constraints (Varma and Palsson, 1994). However, the NADPH, NADH and 
ATP balances are not closed in reality due to futile cycles and incomplete 
pathway knowledge. Stoichiometric MFA also fails in certain cases of 
parallel pathways and metabolic cycles (Wiechert, 2001). It is hence 
essential to provide further information and also elucidate flux distribution at 
branchpoints. For larger networks with an increase in the number of 
reactions, flux analysis becomes more difficult as the number of 
measurements required correspondingly increases. Consequently, 13C labe-
ling experiments can be used to complement stoichiometric balancing and 
extracellular measurements, thereby providing a rigorous alternative to 
traditional flux analysis. 

2.2 13C metabolic flux analysis 

Carbon labeling experiments (CLE) involve feeding a combination of 
labeled (13C or 14C) substrates along with 12C substrates such as glucose or 
sucrose to the biological system of interest. The label gets distributed 
throughout the network when the substrate is assimilated into metabolites. 
The labeling pattern of various metabolites depends on the network topology 
and the intracellular fluxes. The labeling patterns can be detected by Nuclear 
Magnetic Resonance (NMR) spectroscopy (Marx et al., 1996; Szyperski, 
1995) or Mass Spectroscopy (MS) (Christensen and Nielsen, 1999) or a 
combination of the two (Klapa et al., 1999). The labeling data can be 
translated into flux information, using the concept of isotopomers as 
explained in Section 3.3 (Klapa et al., 1999; Schmidt et al., 1997).  

Plant systems exemplify complex metabolic networks due to 
compartmentation issues, futile cycling, and anaplerotic reactions. 
Consequently, additional measurements are required in plant systems and the 
number of isotopomer balances increases, further increasing the 
computational burden. Due to the mathematical burden required for 
quantification of flux, most papers that have reported labeling studies in 
plants have focused on the identification of metabolic network topology 
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rather than flux quantification (Glawschnig et al., 2002; Krook et al., 1998). 
In an elegant example of the use of labeling for network topology, 
Schwender et al. demonstrated the use of labeling studies to identify a new 
pathway in Brassica napus embryos (Schwender et al., 2004). They 
characterized the role of Rubisco in the absence of Calvin cycle in 
improving the efficiency of carbon utilization during oil synthesis. Earlier 
studies of flux quantification in plants have used analytical or a highly-
simplified 13C NMR constrained analysis (Dieuaide-Noubhani et al., 1995; 
Rontein et al., 2002; Schwender et al., 2003). These simplified analyses may 
lead to erroneous fluxes – a comprehensive analysis from an abundance of 
data is needed to verify the assumptions (Sauer, 2004). Recently, we have 
been able to execute comprehensive flux analysis of central carbon 
metabolism in plant tissues (Sriram et al., 2004). Section 3 of this chapter 
describes our analysis methodology in detail. 

3 FLUX EVALUATION METHODOLOGY 

Fluxes in a biological system can be quantified from isotopomer 
abundances, extracellular measurements, and biomass accumulation data 
coupled with a mathematical framework, using the evaluation methodology 
as explained below. 

3.1 Experimental design 

The selection of the type of labeled substrate, i.e., selective or uniformly 
labeled is a fundamental component of experimental design (Schmidt et al., 
1999). In addition, it is essential that the relative extents of the labeled and 
unlabeled substrate be decided a priori to get adequate information from the 
NMR data (Stephanopoulos et al., 1998; Szyperski, 1995). In the case of 
selectively labeled substrates, a large percentage of labeling (as high as 90%) 
has to be used to obtain meaningful data (Park et al., 1999). On the other 
hand, when a mixture of uniformly labeled and unlabeled substrates is used, 
carbon bond-bond connectivities are traced as opposed to fractional 
enrichments. Hence, percentages of uniformly labeled substrate required are 
much lower (approximately 10%) for adequate NMR data (Szyperski, 1995).  

Once the type of labeled substrate and their extents are decided, the cells 
are cultured with the mixture of labeled and unlabeled substrate. The 
experiment is carried out at metabolic (the rate of change of intracellular 
metabolite concentrations is much less than that of fluxes in and out of the 
metabolite) and isotopic (labeling patterns of the metabolites do not change 
with time) steady-states. Finally, the biomass from the plant tissue is extracted 
and broken down into its corresponding components. Depending on the 
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network topology and intracellular fluxes, different labeling patterns of the 
metabolites will be reflected from the biomass components (e.g., protein or 
starch sample), which can be detected using NMR or MS (Christensen and 
Nielsen, 1999; Klapa et al., 1999; Szyperski, 1995). The conversion of NMR 
data to fluxes using both type of substrates involve the concept of isotopomers 
as explained in section 3.3. Details of the experimental setup for labeling 
studies in developing soybean embryos and NMR sample preparation have 
been discussed in our recent work (Sriram et al., 2004). 

3.2 NMR spectroscopy 

NMR spectroscopy has proved to be an efficient analytical technique to 
gain significant insights into plant metabolism (Ratcliffe and Shachar-Hill, 
2001). In an NMR measurement, the spin of the 13C nucleus is detected and 
gives rise to a signal. The signal to noise ratio (S/N) in an NMR experiment 
depends directly on the concentration of the nuclei (C) and the number of 
scans (Ns). 

 s
0.5S/ N * ( )C N∝     (5) 

 
The accumulation time (Ta) for the signal depends on Ns and the pulse 

interval Tp (Shanks, 2000),  
 
 Ta = Tp * Ns

    (6) 
 
Tp is given by the following equation, 
 
 Tp = tp + Tacq + Trd

    (7) 
 

where, tp is the length of radiofrequency pulse, Tacq is the acquisition time 
and Trd is the relaxation delay (Shanks, 2000). Hence, for example, to double 
S/N, the number of scans needs to be increased four times. Also, Ta depends 
directly on Ns and will increase proportionately. Thus, it is essential to 
balance the parameters Ta, Ns and S/N to keep the NMR analysis cost at a 
reasonable limit without compromising on the S/N ratio. Using the 
developing soybean embryo system as an example, some of the key 
parameters for the NMR analysis have been discussed below and two 
dimensional (2D) experiments for detection of labeling patterns have been 
suggested. 

In the soybean in vitro experiment, only 10% uniformly labeled sucrose 
was fed to the soybean cotyledons. Assuming this 10% labeling randomly 
distributes through the network, the probability that two adjacent atoms are 
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Figure 9-3. 2D [13C, 1H] HSQC spectrum of protein hydrolysate from soybean cotyledons 
cultured on sucrose (10% w/w U-13C) and glutamine. Cross peaks represent carbon atoms of 
hydrolysate constituents (proteinogenic amino acids and hydrolysis products of sugars from 
glycosylated proteins – 5-hydroxymethyl furfural (HMF) and levulinic acid (LVA)). 
Reprinted from Sriram et al. (2004) with permission of the American Society of Plant 
Biologists. 
 
labeled, is about 1% and the probability that two adjacent atoms originating 
from the same metabolite are labeled is 10% (Szyperski, 1995). From the 
specifications of the 500 MHz spectrometer, the minimum concentration for 
a 2D NMR analysis was determined to be 1 mM. The amino acid with the 
lowest concentration in the soybean protein hydrolysate was methionine (2 
mol%). Hence, for a 20–22 hour [1H, 13C] Heteronuclear Single Quantum 
Correlation (HSQC) experiment, taking the aforementioned parameters into 
consideration, the minimum amount of soybean protein required for an 
adequate S/N ratio was 20 mg.  

Two experiments, the HSQC and [1H, 1H] Total Correlation Spectros-
copy (TOCSY) were performed on a Bruker Avance DRX 500 MHz 
spectrometer at 298 K on the soybean protein hydrolysate. For more details 
on the parameters of the NMR experiment, the reader is referred to our 
previous work (Sriram et al., 2004). The HSQC analysis determines the 
labeling pattern between the adjacent carbon atoms (Szyperski, 1998). Also, 
since we have unlabeled glutamine as a carbon source in addition to the 

V.V. Iyer et al. 
 

 



133 

labeled sucrose, there is a dilution of 13C in the system. The 2D TOCSY 
analysis detects the protons attached to 12C and 13C, thus providing the 
enrichment of each carbon atom of amino acids.  

NMR spectra were acquired and processed using the Xwinnmr (Bruker) 
software. Peak assignments were verified using 2D [1H, 1H] TOCSY and 3D 
[13C, 1H, 1H] TOCSY (Braunschweiler and Ernst, 1983) experiments on 
100% labeled protein sample, with a pH of 1.0. Hence, the pH of the 
soybean sample was also adjusted to 1.0 to avoid a change in the chemical 
shift data caused by the environmental variation. The 2D HSQC spectrum of 
the hydrolyzed soybean protein with peak assignments of the carbon atoms 
of amino acids is shown in Figure 9-3. The HSQC and TOCSY spectra were 
analyzed using the free software NMRview (Johnson and Blevins, 1994). 
The deconvolution of the multiplet peaks was carried out using software 
based on the spectral processing proposed by van Winden et al. (van Winden 
et al., 2001). The isotopomer theory employed to convert the NMR data to 
intracellular fluxes using the software NMR2Flux (Sriram et al., 2004) is 
explained below. 

3.3 Isotopomer theory 

The concept of isotopomers arises from a combination of the terms 
isotope and isomers, which represent various labeling patterns of a given 
metabolite. For example, for a three carbon metabolite, there are 23 = 8 
isotopomers possible (Figure 9-4). Hence for a metabolite with n carbons, 
there are 2n labeling patterns possible. As mentioned before, 2D HSQC 
detects the labeling patterns of adjacent carbon atoms. The peak fine 
structure obtained from the HSQC experiment shows multiplet patterns 
proportional to the isotopomer abundances (Figure 9-5). The labeling data is 
converted to flux data by comparing the experimental data with simulated  
 

Figure 9-4. Isotopomers of a three carbon metabolite from a mixture of uniformly labeled and 
unlabeled sucrose. 
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isotopomer abundances generated using isotopomer mapping matrices 
(IMM). Assuming a set of intracellular fluxes, IMM uses the concept of 
isotopomer distribution vectors (IDV) and reaction stoichiometry to generate 
the simulated isotopomer abundances (Schmidt et al., 1997). The “best” set 
of intracellular fluxes satisfies the reaction stoichiometry and also shows the 
least mean square error between experimental and simulated isotopomer 
abundances. IMM are analogous to the Atom Mapping Matrices (AMM) 
used to calculate the TCA flux ratios in a hybridoma cell line (Zupke and 
Stephanopoulos, 1994).  

3.4 Additional measurements 

In addition to NMR labeling data, extracellular measurements such as 
substrate intake, product effluxes, and fluxes contributing to biomass 
accumulation are essential inputs to the model. The substrate intake and 
product effluxes can be measured by carrying out a high performance liquid 
chromatography (HPLC) of the culture media. It is also required that the 
biomass composition be known so that the carbon balance of the system is 
adequately accounted for. For example, in the soybean embryo culture, in 
addition to protein, lipids, and starch, a major constituent of the biomass 
were seed coat carbohydrates. The sugars that contributed to the 
carbohydrates were estimated from literature values (Mullin and Xu, 2000). 
The dry weight of the embryo and the fractions of protein, lipids, and starch 
were measured using standard protocols (Sriram et al., 2004). The fatty acid 
composition of the lipid fraction was estimated from literature (Dey and 
Harborne, 1997). When the molecular formula of the biomass is known, it 
can be used to close the carbon balance more efficiently.  

The external fluxes contributing to protein were determined from the 
amino acid HPLC analysis, coupled with the precursor-amino acid 
stoichiometry (Szyperski, 1995). To elucidate, let us consider the synthesis 
of the amino acid phenylalanine (Phe) from erythrose-4-phosphate (E4P) 
and phosphoenolpyruvate (PEP),  

 
 1 mole E4P + 2 moles PEP → 1 mole Phe   (8) 

 
Thus, from protein data and HPLC analysis of the amino acids, the total 
number moles of Phe in the sample are known. Consequently, from equation 
(8) total moles of the precursor metabolite PEP required for synthesis of Phe 
can be calculated. Additionally, we know that tyrosine (Tyr) and tryptophan 
(Trp) are the other amino acids synthesized from PEP. Hence, the total 
external flux from PEP can be calculated from the sum of the moles of PEP 
required for synthesis of the corresponding three amino acids (Tyr, Trp, and 
Phe). Similar analysis can be carried out for remaining precursor metabolites 
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(for example, Pyr, OAA, P5P, etc.) associated with the synthesis of amino 
acids.  

3.5 Metabolic reaction network  

It is essential that a metabolic network mimicking the underlying 
physiology be proposed to convert the labeling data to intracellular fluxes. 
Figure 9-1 shows a metabolic network that describes sucrose metabolism in 
developing soybean embryos. The fluxes in a reaction network are 
stoichiometrically related to each other and can be expressed in terms of flux 
parameters. The selection of flux parameters is important to solve the 
metabolic network (Sriram et al., 2004). Some potential candidates for flux 

parallel reactions (Szyperski, 1995). Product effluxes, substrate 
consumption, and biosynthetic reactions are additional essential extracellular 
measurements required for accounting for complete carbon balance, thereby 
providing a better estimate of the intracellular fluxes.  

Further, labeling data which give key information about branchpoints are 
additional important inputs. In the event that the labeling data does not 
satisfy the proposed reaction network, certain reactions may need to be 
added or removed from the proposed network to satisfy the labeling data. 
Also, sometimes the error in the experimental NMR data can translate to a 
very high probability distribution of the flux, leading to “identifiability” 
problems (Wiechert et al., 2001). For example, flux analysis of the 
 

Figure 9-5. Peak fine structure of Aspβ. The multiplet intensities are proportional to the 
isotopomer abundances. Reprinted from Sriram et al.  (2004) with permission of the 
American Society of Plant Biologists. 

et al., 1998), reversibilities of key reactions and also scrambling extents of 
parameters are the independent reactions of the network (Stephanopoulos  

 

9. Metabolic Flux Quantification of Plant Systems 



136

reversibilities of the transketolase and transaldolase reactions in the pentose 
phosphate pathway depend primarily on the labeling information obtained 
from the PEP family of the amino acids and histidine. If the NMR data is not 
sufficient to estimate these fluxes or if the error in the measurements is large, 
then the fluxes become “structurally unidentifiable”. The problem of 
structural identifiability can be solved by increasing the number of external 
measurements pertaining to that particular part of the metabolic network or 
providing low error NMR data. However, in some cases, the relationship 
between the NMR measurements and the fluxes are highly nonlinear. In such 
cases, the fluxes become “statistically unidentifiable” and a very low noise 
level can translate into large probability distributions of the corresponding 
fluxes. Thus, in the case of a statistically unidentifiable flux, the model 
cannot estimate the flux irrespective of redundant measurements pertaining 
to that flux. Such issues need to be studied in detail in the course of 
developing the experimental design of the biological system.  

3.6 Mathematical modelling of the reaction network 

The metabolite balances from the metabolic network coupled with the 
carbon skeleton rearrangements are fundamental in enumerating the 
isotopomers of the metabolites in the network. Both analytical approaches 
(Klapa et al., 1999; Park et al., 1999; Rontein et al., 2002) and numerical 
solutions (Schmidt et al., 1999; Wiechert and De Graaf, 1997a; Wiechert  
et al., 1999; Zupke and Stephanopoulos, 1994) have been used to solve 
isotopomer abundances for calculating intracellular fluxes. A generic 
software using the concept of isotopomer balancing for flux analysis is also 
available (Wiechert et al., 2001).  

More recently, a generic tool NMR2Flux (Figure 9-6) has been 
developed in our lab by employing recent mathematical advances, that can 
be extended to complex plant systems (Sriram et al., 2004). The tool chooses 
an initial set of flux parameters (independent net fluxes, reversibilities, and 
scrambling extents) that are stoichiometrically feasible (Sriram et al., 2004; 
Stephanopoulos et al., 1998). From the feasible set of flux parameters, the 
remaining fluxes can be calculated. These fluxes are converted to 
isotopomer distributions using a recently developed efficient Boolean 
function mapping method (Figure 9-7), coupled with explicit solution 
methods (Wiechert and Wurzel, 2001). Boolean function mapping is a novel 
method of simulating isotopomer distributions. Carbon skeletal rearrange-
ment steps are modeled as Boolean or arithmetic operations on the decimal 
representation of an isotopomer. The Boolean function mapping method is 
based upon the fact that all reactions in a metabolic network can be 
represented as occurring between two reactants (R1, R2) to give two  
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Figure 9-6. Flux evaluation methodology. 
 
products (P1, P2), i.e., they can be represented as “bi–bi” reactions (Wiechert 
and Wurzel, 2001).  Reactions steps in this schema can be described as a 
function of four different “moves”: fragmentation, reversal, transposition, 
and condensation. The simulated and experimental (from NMR data) 
isotopomer abundances are compared and the error between them is 
minimized using a global optimization routine (employing simulated 
annealing).  

The reduction in computation time achieved using the Boolean function 
mapping method allows additional statistical analysis of fluxes. The errors in 
the NMR input intensities are used to perform multiple Monte Carlo 
estimation of fluxes (Press et al., 1992); thereby generating probability 
distribution of the intracellular fluxes (Sriram et al., 2004). For further 
information on the tool and comprehensive explanation of the mathematical 
details, refer our recent work (Sriram et al., 2004).  

case of single carbon substrate experiments only. Bondomers are similar to 
isotopomers except that the bonds instead of the carbon atoms are being 
followed (Sriram and Shanks, 2002; van Winden et al., 2002). Bondomers 
are molecules of the same metabolite, which have different bond integrities 
for different carbon–carbon bonds (Sriram and Shanks, 2004). Bondomer 
analysis is advantageous in plant tissue cultures that require only sucrose or 
glucose as a carbon source. 

4 INSIGHTS FROM MFA INTO PLANT 
METABOLISM  

Metabolic fluxes form the most important link in translating transcript 
and metabolite information to the existing physiology (Sauer, 2004). Flux 

Recently, a new concept, bondomer was introduced which can be used in 
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Figure 9-7. Boolean function mapping. 

ratios can be used to analyze different nodes in the reaction network where 
there is a partitioning of the flux into multiple branches. The node under 
consideration can be either rigid or flexible. A node is said to be “flexible” if 
the ratio of the carbon flow into multiple reactions changes with a change in 
the incoming flux. In the case of flexible nodes, the distribution of the pre-
cursor metabolite can be modified inherently by the system without the need 
of any major genetic modification. For a “rigid” node, the ratio of the carbon 
flow into multiple branches remains the same irrespective of changes to the 
total flux coming into the node.  Subsequently, genetic modifications will 
prove more effective in altering the metabolic flow in the desired direction in 
the case of rigid nodes (Stephanopoulos and Vallino, 1991). Network 
topology is less understood in plants as compared to microbes and the 
application of MFA can help elucidate plant reaction pathways. Examples of 
application of flux analysis in revealing network topology has been 
discussed below.  

4.1 Segregation of pathways 

As mentioned before, plant metabolism is compartmented, and features 
multiple copies of the same reaction of a pathway in different subcellular 
compartments. A classic example is the glycolysis/pentose phosphate 
pathway subnetwork, which exists in both the cytosol and the plastid in plant 
cells. In our flux analysis, it was therefore, critical to determine if these 
pathways were in equilibrium (i.e., they exchanged metabolites so rapidly 
that for all practical purposes, they could be considered one consolidated 
pathway) or were segregated (the fluxes through the cytosolic and plastidic 
pathways are significantly different, and the pathways did not rapidly 
exchange metabolites). 

The segregation or equilibration of cytosolic and plastidic pathways can 
be ascertained by examining isotopomer abundances or 13C enrichments of 
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metabolites synthesized in those compartments. Previously, Krook et al. 
have also reported significantly different 13C enrichments of cytosolic and 

showed that cytosolic and plastidic pathways were segregated. However, 
hexose phosphate pools were found to be in equilibrium in tomato cells 
(Rontein et al., 2002) and B. napus embryos (Schwender et al., 2003), which 
showed that the cytosolic and plastidic pathways were in equilibrium. 

In our work, on comparing the isotopomer abundances of the carbon atoms 
of glucosyl units from protein hydrolysate (which are derived from the 
cytosolic  glucose-6-phosphate  pool (G6Pc) and starch hydrolysate (which are 
derived from the plastidic glucose-6-phosphate pool, (G6Pp) from soybean 
embryos, we found that they were significantly different, and not in 
equilibrium (Sriram et al., 2004). In contrast, we did find that the isotopomer 
abundances of Ala α and Phe α in soybean embryos were similar. Phe α is 
obtained from the second carbon atom of PEP and is exclusively synthesized 
in the plastid; whereas Ala α is synthesized in all three compartments, cytosol, 
plastid, and mitochondrion, respectively from the second carbon atom of 
pyruvate. From biochemistry, we know that the three carbon atoms of PEP 
translate to the three carbon atoms of pyruvate without any rearrangement. 
This result indicated that the T3P pools in the plastid and cytosol were 
exchanging rapidly between the two compartments (Sriram et al., 2004).  

To account for the above observations, we developed a compartmented 
model of the metabolic network, with separate glycolysis and pentose 
phosphate pathways in the cytosol and plastid. This model, when used in 
conjunction with NMR2Flux, was able to explain the observed isotopomer 
abundances well (see Sriram et al., 2004). Additionally, a fructose-1,6-
bisphosphatase reaction had to be included in the plastid to fully account for 
the experimental isotopomer abundances (see below). Thus, labeling-based 
flux analysis is competent in segregating pathways in multiple compartments 
thereby accounting for complex compartmentation inherent in plant systems.  

4.2 Identification of new pathways  

In the case of the pyruvate family of amino acids the δ1 carbon of Leu, 
the β carbon of alanine and γ1 carbon of Val reflect the same carbon atom of 
pyruvate respectively (Szyperski, 1995). Hence, the multiplet intensities 
should be similar for these carbon atoms in the above-mentioned amino 
acids. However, our recent soybean work (Sriram et al., 2004) indicated that 
the δ1 carbon of Leu shows a 30% difference from Ala and Val. This 
disparity in the isotopomer abundances of the Pyr family of amino acids has 
been observed in our labeling experiments on another plant system, 
Catharanthus roseus hairy roots as well (Sriram, G., and Shanks J. V.,  
 

plastidic hexose pools in Daucus carota cells (Krook et al., 1998), which 
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Figure 9-8. Identification of fructose-1, 6-bisphosphatase in the plastid. White bars are the 
experimental isotopomer abundances of levulinic acid atom 2 (LVA #2) from starch 
hydrolysate. This atom reflects the isotopomer abundances around carbon #3 of plastidic 
glucose-6-phosphate. Grey bars are simulated isotopomer abundances from a compartmented 
model with glycolysis and pentose phosphate pathways in the cytosol and plastid that 
included no plastidic fructose-1, 6-bisphosphatase. Black bars are from a similar 
compartmented model that included plastidic fructose-1, 6-bisphosphatase.  

unpublished data). Its cause still remains a mystery and we believe that it 
may involve a currently unknown reaction or pathway related to Leu 
metabolism. 

In addition, we identified the fructose-1,6-bisphosphatase (F16BP) 
reaction, which converts T3P to F6P, in the plastid. Although acompart-
mented model with separate glycolysis and pentose phosphate pathways in 
the cytosol and plastid accounted for most of the isotopomer abundances of 
the glucosyl units from protein and starch hydrolysates, we found that the 
isotopomer abundances around levulinic acid atom 2 (LVA #2) were not 
accounted for (compare white and grey bars in Figure 9-8). LVA #2 is 
derived from atom 3 of plastidic glucose-6-phosphate pool (G6Pp), and the 
above observation hinted that some pathway or reaction that significantly 
affects atom 3 of G6Pp was absent in our initial compartmented model. This 
led us to hypothesize that a significant flux from T3P to F6P may be present 
in our system. Since such a reaction would cause two three-carbon T3P 
molecules to form a six-carbon F6P (and eventually a G6P) molecule in the 

V.V. Iyer et al. 
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Figure 9-9. Identification of fructose-1,6-bisphosphatase in the plastid: Effect of the inclusion 
of plastidic fructose-1,6-bisphosphatase (f16bpp, catalysing F6P → T3P in the plastid), and 
corresponding cytosolic enzyme, pyrophosphatase (pfpc, catalysing F6P → T3P in the 
cytosol), on the χ2 error.  
 
due to the presence of the pentose phosphate pathway alone. Such a reaction 
is usually not present in nonphotosynthetic plant tissues. However, on 
including this reaction into our compartmented model, we found that 
observed isotopomer abundances for LVA #2 were well-accounted for 
(compare white and black bars in Figure 9-8). 

Figure 9-9 depicts the improvement in the χ2 error between experimental 
and simulated isotopomer abundances, due to the inclusion of plastidic 
F16BP and the corresponding cytosolic reaction, pyrophosphatase (pfpc). 
Only the plastidic conversion of T3P is evident in our system, and the 
cytosolic flux may be small or negligible as it does not significantly improve 
the χ2 error. The example of fructose-1,6-bisphosphatase illustrates a 
systematic approach to pathway identifiability. More recently, Schwender et 
al. characterized the role of Rubisco in the absence of Calvin cycle 
(Schwender et al., 2004). They found that Rubisco improves the carbon 
efficiency during the formation of oil synthesis in Brassica napus embryos 
using an alternative pathway. 
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5 SUMMARY 

The flux evaluation methodology described in this chapter is a promising 
powerful tool for understanding plant physiology. We expect that the generic 
computer program NMR2Flux (Sriram et al., 2004) available for calculating 
fluxes from the labeling data encourages the applicability of flux analysis in 
plants. Furthermore, once the methodology is established for a particular 
plant system, the tool can be used to compare the plants environmental and 
genetic variants. Currently, flux analysis of both environmental and genetic 
variants of plants is in progress in our laboratory. The ability of the labeling 
method to establish key regulatory nodes of metabolism thereby enabling 
identification of potential targets for genetic manipulations makes MFA 
important from a metabolic engineering perspective (Stephanopoulos and 
Vallino, 1991). Quantification of fluxes thus is an important tool, which 
when complemented with metabolite, transcript, and genomic data can 
contribute toward an overall correct picture of plant physiology (Sanford  
et al., 2002; Sauer, 2004; Schwender et al., 2004). 
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Abstract: 

platform features graph visualization, interactive displays, graph theoretic 
computations for determining biological distances, a unique multivariate display 
and statistical analysis tool, graph modeling using the open source statistical 
analysis language, R, and versatile text mining.  The use of these tools is 

1 INTRODUCTION 

Plant composition, form, and function are the ultimate consequences of 
gene expression. High-throughput detection and measurement of changes in 
the accumulation of tens of thousands of cellular components – RNAs, 
proteins, and metabolites, and metabolic flux information, lead to complex, 
valuable data sets (Oliver et al., 2002; Sriram et al., 2004; Fernie et al., 2005; 
Nikiforova et al., 2005).  Each data set has the potential to contribute to our 
understanding of cellular function, and combined experimental data sets 
impart an added potential to understand and predict the behaviour of a cell.  
Comparative analysis of mRNA and proteins can provide insights into the 
processes that affect mRNA accumulation (gene transcription and/or mRNA 
stability) and protein accumulation (mRNA translation and/or protein 
stability), but do not give direct information on metabolism. Metabolite 
profiling gives information about the accumulation of metabolites, but does 

B.J. Nikolau and E. Syrkin Wurtele (eds.), Concepts in Plant Metabolomics, 145–157.  

illustrated with data from the bio1 mutant of Arabidopsis. 

MetNet (http://metnetdb.org) is an emerging open-source software platform
for exploration of disparate experimental data types and regulatory and meta-
bolic networks in the context of Arabidopsis systems biology. The MetNet 
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not reveal which pathways produced those metabolites; however, in 
combination with microarray and proteomics pathways may be surmised. 
Techniques for metabolomic flux analysis in plants are becoming more 
sophisticated (Sriram et al., 2004; Ratcliffe and Shachar-Hill, 2005), and 
these data can contribute information on the flow through specific metabolic 
pathways and when combined with “omics” data can provide clues about 
regulatory mechanisms. Other data sets for plants that could provide 
additional information for analysis of cellular systems, such as protein-
protein or protein-DNA interactions, are on the horizon. 

Due to the complexity of each data set, a human mind cannot 
comprehend data of a single type, let alone the data sets en toto. Also, the 
data sets are flawed. Even for the model plant species Arabidopsis, the 
majority of genes are not yet well annotated, and current technologies to 
identify metabolites and proteins yield incomplete data sets. Furthermore, 
most interactions between the biomolecules, as well as most of the kinetics 
of the established interactions, are not yet known. Even given the availability 
of comprehensive “omics” data sets, and a full understanding of the 
interactions and kinetics of a cell, there are not yet modeling methods 
capable of predicting the behaviour of such a complex system (Du et al., 
2005; Ma’ayan et al., 2005; Lee et al., 2005; Xiong et al., 2004).  

Thus, the challenge in prediction of a biological network is complex, and 
requires consideration of a variety of factors: (1) How to represent a 
biological network; (2) How to evaluate data sets that have only part of their 
constituents determined and a subset of the possible interactions elucidated; 
(3) How to model processes that have wide-ranging kinetics parameters, 
most of which are not yet determined.  

MetNet is being designed to provide an integrated, open-source platform 
to develop hypotheses about which genes and proteins might be involved in 
a process, which pathways and interactions might be important under 
particular conditions, and ultimately how the biological system functions.  
We discuss MetNet, and illustrate its use with data from an experiment 
designed to analyse the biotin metabolic network. Biotin is required as a 
cofactor by all living organisms. It is synthesised almost exclusively by 
photosynthetic organisms, is an essential cofactor for several key enzymes in 
plants (Nikolau et al., 2003). It is also a potential metabolic regulator 
(Che et al., 2002, 2003).  Understanding the multiple functions of this 
metabolite presents a formidable challenge in systems biology.  
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2 RESULTS 

2.1 MetNetDB contains an integrated metabolic and 
regulatory map of Arabidopsis interactions 

The MetNetDB database contains a repository of curated expert-created 
regulatory and metabolic pathways, as well as processed information from 
repositories of metabolic-only pathways for Arabidopsis: AraCyc (Mueller 
et al., 2003), and in the near future, BioPathAt (Lange and Ghassemian, 
2005), and MapMan (Thimm et al., 2004).  Expansion of the MetNetDB 
database is ongoing. Biomolecules that can be represented in MetNetDB 
include metabolites, genes, RNAs, polypeptides, and protein complexes; 
interactions that can be represented include catalysis, conversion, transport, 
and a wide variety of regulatory interactions (e.g., allosteric inhibition, 
transcriptional inhibition, and covalent modification). Because the 
concentration of each biomolecule, as well as the interactions it is able to 
participate in, vary across subcellular compartments, MetNetDB includes 
subcellular location information. Thus, multiple entries are permitted for 
each biomolecule (e.g., a metabolite can participate in more than one 
reaction, and can be located in more than one subcellular compartment). The 
MetNetDB curator interface is designed for curation of biomolecules, 
interactions, and associated information about subcellular location, synonyms, 
and references. The interface includes a simple graphic representation of the 
pathways in which biological interactions and complexes can be viewed, 
created, or modified.   

The network is stored in a MYSQL (www.mysql.org) relational database. 
We have constructed an XML file format that accurately encodes the 
network topology information from MetNetDB.  The network itself is 
designed for analysis with experimental data, using tools such as MetNet in 
Cytoscape and ExploRase, which currently receive network information in 
XML format. A versatile XML file-builder (http://metnetdb.gdcb.iastate.-
edu/MetNet/MapBuilder.html) can be used to export current data from the 
MetNetDB database network. 

2.2 Statistical and visualization software tools 

ExploRase provides a multivariate approach to detect patterns in gene 
expression, and to explore connections between “omics” data sets and the 
known and hypothesized regulatory and metabolic network of Arabidopsis. 
ExploRase is built on the open-source statistical analysis software R 
(http://www.R-project.org), and the open-source data visualization software, 
GGobi (http://www.ggobi.org), and includes a user-friendly interface for 
both. ExploRase also adds a spreadsheet with TAIR annotations about each 
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gene, links to literature, menus of analysis and visualization options, and an 
interface to lists of genes in MetNetDB pathways. Common statistical 
analyses are provided through GUIs. Alternatively, code for new fun-
ctionality can be written using R commands. Thus, the GUIs in ExploRase 
make the R functionality transparent for the novice, but allow a more 
advanced user to do more sophisticated analysis.  

ExploRase has a highly interactive graphics system, designed specifically 
for exploratory mining of high-dimensional data. It has multivariate graphics 
including parallel coordinate plots and tours (rotations of high-dimensional 
scatterclouds). Users can label elements of the plots by clicking on genes, 
proteins, and/or metabolites of interest. Metabolic and regulatory networks 
can be displayed using the add-on package GGVis.  Users can layout a 
network (in 2, 3 or higher dimensions), or read in a layout from another 
package such as MetNet in Cytoscape. 

To elucidate the biotin network of plants from a systems biology 
viewpoint, we have been analysing mutants blocked, overexpressed, or 
underexpressed in steps of this network. One such step is encoded by the 

third step in the synthesis of biotin from pimelic acid (Patton et al., 1996). A 

however, the seedlings appear normal for several days, due to a residue of 

et al., 1996; Che et al., 2003).   
One aspect of ExploRase is illustrated with an example of microarray 

data from a portion of a larger experiment (Figure 10-1). In this experiment, 
seeds of homozygous mutants for the bio1 gene are grown in medium with 
and without biotin.  The upper part of Figure 10-1A shows a dialog window 
with information on each mRNA. This includes Affy8k ID, Locus ID, TAIR 
annotations and other descriptions. On the left, is a list of available chips 

biotin.WT.02, indicating, that a data error might have occurred on the chip 
biotin.WT.02.  

E. Syrkin Wurtele et al.

homozygous mutation in BIO1 is lethal without addition of exogenous biotin; 

BIO1 gene, which encodes 7,8-diaminopelargonic acid aminotransferase, the 

biotin originally supplied to the parent plants (Weaver et al., 1996; Patton 

the chips were normalized using a quantiles’ normalization and a robust
median is used for the expression value. Below the dialogs are two plots:
a scatterplot and a parallel coordinate plot.  The scatter plot shows a compa-
rison of transcript accumulation between two replicates of WT seeding
grown without biotin. The two RNAs marked by the user in yellow, both
chloroplast encoded transcripts, are seen to accumulate at a much higher
level in the second replication than in the first. The yellow highlight marking
is automatically shown on the parallel coordinate plot on the right, and on
the annotation list. Both genes exhibit a similar pattern: they are expressed
at a high but fairly stable level for all of the chips except for biotin.WT.02

(eg., biotin.WT.02, biotin.WT.B1, biotin.WT.B2). Prior to this visualization,
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Figure 10-1. Visualization of microarray data by ExploRase. (A) Examining data quality. A 
scatter plot analysis of data from microarray replicates of two biological samples quickly 
reveals a problem with values for two plastid-encoded genes inherent in one of the replicates; 
these RNAs are simultaneously highlighted in a parallel coordinate plot view of the data.  The 
raw data had previously been normalized, using R functions in ExploRase (not shown). (B) 
Differentially expressed genes. Scatterplots show data from the bio1 mutant with added biotin 
compared to without added biotin. Several genes appear differentially expressed in the scatter 
plot, and were selected by the user (blue or pink highlights); the corresponding parts of the 
parallel coordinate plot are simultaneously highlighted; the annotation for these genes is also 
displayed. Results of statistical analyses can also be superimposed on the visualization results 
(not shown). The y-axis of the parallel coordinate plot has a log scale. 
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Figure 10-1(continued). 
 

To identify patterns of co-accumulation of RNAs associated with biotin, 
the user selected a parallel coordinate plot, gene annotation list, and a scatter 
plot, and displayed data from the bio1 genotype grown with and without 
biotin (Figure 10-1B). There are numerous RNAs, visible in the scatter plot, 
that accumulate to similar levels. Clicking on outliers in the scatter plot 
(those accumulating at higher levels in the bio1 mutant with added biotin 
were colored in blue; those with decreased accumulation when biotin is 
absent are colored orange) links to the same genes in the parallel coordinate 
plot and the highlighted genes are also displayed in the gene annotation list. 
For comparison, two genes that are not outliers in the scatter plot were 
highlighted in yellow. Using this approach identified At2g02500 (encoding 
4-diphosphocytidyl-2C-methyl-D-erythritol synthase (ISPD)) and 
At4g15560 (encoding putative 1-deoxy-D-xylulose 5-phosphate synthase 
(DXPS), both genes of isoprenoid synthesis.  At2g02500 and At4g15560 
were upregulated 7 and 2-fold, respectively in the bio1 mutant plus biotin as 
compared to the bio1 mutant without biotin.    

E. Syrkin Wurtele et al.
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2.3 

MetNet in Cytoscape (Figure 10-2A) uses the Cytoscape (http://www.-
cytoscape.org/) a Java program, together with plug-ins specialized for 
MetNet and its database, to dynamically display complex biological 
networks and analyse their structure (Wurtele et al., 2003; Du et al., 2005). 
Data from experiments (i.e., microarray, proteomics, or metabolomics) can 
be directly overlayed on the network. An interface to R allows the user to 
analyse “omics” data in R, cluster biomolecules that behave similarly, search 
for biomolecules with significant changes, and to custom-write R scripts and 
apply them to experimental data. 

MetNet in Cytoscape uses graph theoretic methods to display and analyse 
biological networks, such as those in MetNetDB. Graphs can be visualized 
by employing the P-neighborhood function around nodes or reactions of 
interest; in this mode, the user selects any group of biomolecules or 
pathways in the MetNetDB network, and extends the network in all 
directions by a user-designated number of steps. Graphs also can be 
dynamically displayed as pathways and cycles. (A simple cycle could 
include a gene transcribed to a protein which, when that protein was over-
accumulated, would inhibit the gene’s transcription.) For example, a user 
could display the network that includes all genes that are differentially 
expressed between bio1 seedlings grown with and without biotin, and find 
pathways in that network. Different pathways might indicate multiple 
mechanisms for control of a process. Common steps among pathways may 
reflect critical paths in the network.  

By displaying all pathways containing genes identified as differentially 
expressed using ExploRase, the user obtained a very complex network 
(the insert at upper left of in Figure 10-2A shows a portion of this network); 
the network was pared down so that only steps connecting biotin with 
the At2g02500 and At4g15560 proteins remained (Figure 10-2A). Both 
these encode enzymes that are early in the plastidic methylerythritol 4-
phosphate (MEP) isoprenoid pathway. Pyruvate is a common substrate for 
both plastidic fatty acid synthesis and the MEP pathway. Biotin is required 
for acetyl-CoA carboxylase activity; therefore the carbon needed for the 
formation of plastidic malonyl-CoA (indirectly from plastidic pyruvate via 
acetyl-CoA) could be limited in the bio1 mutant when grown without added 
biotin.  A decrease in the flux through the fatty acid biosynthetic pathway 
due to decreased acetyl-CoA carboxylase activity might influence the flux of 
pyruvate towards MEP, and provide a signal that alters gene expression in 
the MEP pathway.  This potential interconnection between the fatty acid and 
MEP pathway could be explored further by experimentation and by 
modeling (e.g., Du et al., 2005). 

in Cytoscape) 
Metabolic network display and modeling (MetNet
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containing pathways of central metabolism, including isoprenoid metabolism and starch 
metabolism, and a subset of the upregulated genes was selected (insert box in upper left). 
Clicking within this graph identified a subgraph that includes both biotin and the MEP 

correlations across 1000 Arabidopsis ATH1 chips in the NASCArrays database, comparing 
the expression pattern of At2g02500 to that of the other 22,746 genes on the chip.  The genes 
most similar to At2g02500 are At5g45930 and At1g32990 (87% and 86% correlation, 
respectively).  Both of these genes are involved in plastid function.  At5g45930 encodes a 
magnesium-chelatase subunit, ChlI, which is required for biosynthesis of the isoprenoid-
porferin hybrid molecule, chlorophyll. (C) PathBinder was used to explore interconnections in 
the literature between biotin and isoprenoids. 

 

A 
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Figure 10-2. Exploration of genes whose expression increases in response to biotin in the biol 
mutants. (A) MetNet in Cytoscape (previously FCM) was used to explore possible interrelation-
ships between a suboptimal level of biotin and changes in gene expression as revealed by
global microarray analysis. This example focuses on the increase in accumulation of two RNAs
in the methylerythritol phosphate (MEP) pathway of plastidic isoprenoid synthesis. A graph 

differentially expressed genes. (B) MetaOmGraph was used to determine the Pearson 
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Figure 10-2 (continued).  

genes across large data sets. Unlike other analysis programs, which store all 

 

 

 

 

 

 

B

C

2.4 MetaOmGraph 

MetaOmGraph is a JAVA program designed to analyse co-expressed 

the data in memory all the time, MetaOmGraph uses the RandomAccessFile 
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class to read and store data only as it’s needed.  This allows the program to 
work with extremely large sets of data while requiring relatively little 
memory. The program comes with a set of Arabidopsis data (both 
experimental data and metadata) from NASCArrays (http://arabidopsis.info/) 
that we have selected as being high quality and normalized. It is also simple 
to analyse a microarray data set from any species (or indeed any other type 

expression value and metadata information. 

differentially expressed genes At2g02500 and At4g15560, across 1000 chips 
from the NASCArrays database. At2g02500 and At4g15560 have a 63% 
correlation with each other across all the chips (not shown). This corres-
ponds to a p-value below 1.4e-45. Among the 22,746 genes on the 
Affymetrix ATH1chip, the most similar expression profiles to that of 
At2g02500 are those of At5g45930 and At1g32990 (87% and 86% 
correlation respectively) (Figure 10-2B).  At5g45930 encodes a magnesium-
chelatase subunit, ChlI, which is required for chlorophyll biosynthesis.  
At1g32990 encodes plastidic ribosomal protein L11.  These results suggest a 
possible relationship between the plastidic biosynthetic processes of 
isoprenoid synthesis and photosynthesis. 

2.5 Text mining 

PathBinder(http://www.public.iastate.edu/~mash/MetNet/MetNet_PathBi
nder.htm) is a text-mining tool designed specifically to explore metabolic 
and regulatory interactions in plants.  The tool queries the MEDLINE 
database and retrieves sentences that contain two terms of interest; each 
sentence is a clickable link pointing to the original online PubMed citation. 
PathBinder contains an extensive set of synonyms from MetNetDB, many 
tailored to plant biology, which are co-searched when a term is selected. An 
API (applications programming interface) is provided so that the PathBinder 
text-mining tool can be integrated into other analysis tools. The API has 
been used to incorporate PathBinder into the MetNetDB database, and in the 
future could automatically extract references for interactions, which could 
then be manually curated. We have created a novel “hidden links” tool to 
identify and explore potential intermediate links in networks. Given 
biomolecules A and C that do not co-occur in any sentence, the tool will find 
biomolecules B that co-occur in sentences both with A and with C. In Figure 
10-2C, the user explored possible literature connections between isoprenoids 

chose isopentenyl diphosphate as biomolecule A, and biotin [an automati-
cally-selected synonym was vitamin H] as biomolecule C, and selected the 
Hidden Links algorithm. Two hundred and eleven biomolecule B terms 

E. Syrkin Wurtele et al.

and biotin. These two terms did not co-occur in any sentence. The user 

of data set) using MetaOmGraph.  Graphs can be sorted according to the 

MetaOmGraph was used to determine the Pearson correlations of the 



10. MetNet Systems Biology Software 155 

co-occurred independently in sentences with both isopentenyl diphosphate 
and with biotin. The user clicked on LEUCINE; a single sentence containing 
isopentenyl diphosphate and LEUCINE, and 34 sentences containing biotin 
and LEUCINE were retrieved. Here, a second possible connection between 
biotin and isoprenoids is suggested, as leucine catabolism requires the 
biotin-enzyme methylcrotonyl-CoA carboxylase.   

2.6 Major venues for improvement and expansion of the 
MetNet platform 

Expansion of the MetNet platform is in progress. The software tools will 
be further integrated such that the users will be able to access all tools from a 
single platform.  A node- and edge-labeled graph model for the database will 
be implemented. This model will address a major database challenge: 
tracking changes in biological network data, as such data are being 
continuously revised and expanded.  By broadening the current MetNetDB 
relational database to a node- and edge-labeled graph model format, 
information about the date and person (or web source) for each data entry 
must be captured, to track data revisions and new biological knowledge, as 
well as to provide automated methods for addition of large-scale data-dumps 
from online resources such as AraCyc. This model would enable addition of 
several features not present in other databases. In particular it would provide 
a flexible method for tracking changes.  Such a model would also enable 
researchers to create their own version of networks to test, model and 
compare with other networks. In addition, the database would be able to 
model, as well as store, the data. 

MetNet can be modified for analysis of species other than Arabidopsis; 
in particular, we are beginning to expand the MetNet platform to soybean. 

3 CONCLUSION 

The MetNet platform is designed for the exploration of diverse data sets, 
and formulation of hypotheses based on this data in the context of known 
Arabidopsis regulatory and metabolic interactions.  
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Chapter 11 

IDENTIFICATION OF GENES INVOLVED  
IN ANTHOCYANIN ACCUMULATION BY 
INTEGRATED ANALYSIS OF METABOLOME 
AND TRANSCRIPTOME IN PAP1-
OVEREXPRESSING ARABIDOPSIS PLANTS 

, Masami Yokota Hirai , Mitsuru 
Yano1, Jun-ichiro Nakajima1, Motoko Awazuhara1, Eri Inoue , Hideki 
Takahashi , Dayan B. Goodenowe5, Masahiko Kitayama , Masaaki Noji1, 
Mami Yamazaki1 and Kazuki Saito  
1Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical 
Sciences, Chiba University; 2

Baba, Uwajima-shi, Ehime, 798-0025, Japan; CREST, JST (Japan Science and Technology 

Abstract: The PAP1 gene, which encodes an MYB transcriptional factor, up-regulates 
the flavonoid biosynthetic gene expression. We studied an integrated analysis 
of metabolomics and transcriptomics with wild-type, pap1-D mutant, and 
PAP1-overexpressing transgenic plant, to elucidate a detailed anthocyanin 
accumulation mechanism and to identify the novel gene functions involved in 
flavonoid biosynthesis. The flavonoid-targeted analysis by high-performance 
liquid chromatography-mass spectrometry, indicated the specific over-
accumulation of cyanidin derivatives and quercetin glycosides in PAP1-
overexpressing leaves. The transcriptome analysis on a DNA microarray 
revealed the upregulation of 38 genes by ectopic PAP1-overexpression. In 
addition to well-known genes involved in anthocyanin production, several 
genes with unidentified functions or annotated with putative functions have 
been upregulated. From the enzymatic activity of their recombinant proteins  
in vitro and the analysis of anthocyanins in the respective T-DNA-inserted 
mutants, two putative glycosyltransferase genes (At5g17050 and At4g14090) 
induced by PAP1-overexpression were confirmed to encode flavonoid 3-O-
glucosytransferase and anthocyanin 5-O-glucosyltransferase, respectively. Our 
approach by integration of transcriptomics and metabolomics provides an 
innovative way for comprehensive identification of genes involved in plant 
metabolism. 
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1 INTRODUCTION 

Plants have always been the most important resource for novel 
medicines, flavours, and industrial materials as alternatives for fossil 
resources. Plants are considered to produce ~200,000 natural products, 
involved in their wide chemical diversity (Dixon and Strack, 2003). After 
the determination of the whole genome sequence of Arabidopsis thaliana 
(Arabidopsis Genome Initiative, 2000), it is now possible to elucidate gene-
to-metabolite correlation through the comprehensive analysis of gene 
expression (transcriptomics) and metabolite accumulation (metabolomics) 
(Fiehn, 2002; Sumner et al., 2003; Weckwerth, 2003; Bino et al., 2004; 
Kopka et al., 2004). For non-targeted metabolome analysis, it is necessary to 
combine several different analytical technologies, particularly those based 
on mass spectrometry such as gas chromatography-mass spectrometry (GC-
MS) (Fiehn et al., 2000; Weckwerth et al., 2004), high-performance liquid 
chromatography-mass spectrometry (LC-MS) (Yamazaki et al., 2003; 
Roepenack-Lahaye et al., 2004), and Fourier-transform ion-cyclotron mass 
spectrometry (FT-MS) (Aharoni et al., 2002). The integration of the 
transcriptomics and metabolomics or detailed targeted chemical analysis 
would be a breakthrough in identifying the function of unknown genes and 
determining all gene-to-metabolite correlations in the plant cells. Only a 
limited number of reports, however, have been available on successful 
identification of novel gene functions by this approach (Aharoni et al., 2002; 
Guterman et al., 2002; Goossens et al., 2003; Mathews et al., 2003; Mercke 
et al., 2004; Hirai et al., 2004).  

The pap1-D mutant is a T-DNA activation-tagged line overproducing 
anthocyanins by the ectopic overexpression of the PAP1 gene. The PAP1 
gene encodes a MYB transcriptional factor by the action of an enhancer 
from the promoter of the cauliflower mosaic virus 35S transcript in the 
inserted T-DNA (Borevitz et al., 2000). In the pap1-D mutant, some 
structural genes for anthocyanin biosynthesis are expressed constitutively, 
and the accumulation of some phenylpropanoid derivatives such as 
anthocyanins is significantly enhanced (Borevitz et al., 2000). However, the 
transcriptome and metabolome have not been extensively characterized in 
this mutant, and elucidated the whole cellular process. The PAP1-
overexpressing plants are an ideal model system for elucidating the whole 
cellular mechanisms at both transcriptome and metabolome levels under the 
expression of a single transcriptional factor.  

The structures of flavonoids and their biosynthetic genes in A. thaliana 
have not yet been completely elucidated. Recently, the structures of several 
anthocyanin derivatives (Bloor et al., 2002) and flavonol glycosides (Veit  
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et al., 1999; Graham, 1998) have been reported. However, no genes encoding 
glycosyltransferase and acyltransferase for the modification of anthocyanin 
aglycones have been identified yet. For the identification of such genes 
involved in the production and modification of terminal metabolites in 
biosynthetic pathways, the combined analysis of transcripts and metabolites is 
a powerful technology (Jones et al., 2003). Here, we studied metabolomics by 
LC-MS for the targeted metabolite analysis of ~17 compounds combined with 
FT-MS for the non-targeted metabolite profiling of ~1,800 putative 
metabolites, and transcriptomics using the DNA microarrays covering 22,810 
genes of the Arabidopsis genome. We could show that a set of genes involved 
in anthocyanin accumulation were upregulated together with the production of 
cyanidin derivatives and quercetin glycosides; thus we determined induced 
gene functions in production of these compounds. Subsequently, two genes 
coding for flavonoid glucosyltransferases were identified by in vitro study 
using recombinant proteins and by the anthocyanin analysis of T-DNA-
inserted mutants. The present study shows a novel means of studying 
functional genomics through the integral analyses of the transcriptome and 
metabolome in plants. 

2 COMBINED METABOLOME ANALYSIS 

Metabolome analysis was carried-out by combination of flavonoid-
targeted analysis by LC-MS, and non-targeted large-scale metabolite 
analysis by FT-MS. 

2.1 Flavonoid-targeted analysis by LC-MS 

Flavonoid accumulation profiles were analysed by HPLC/photodiode 
array/detection/electrospray ionization mass-spectrometry (HPLC/PDA/ESI-
MS). The metabolites were identified by their UV-visible absorption spectra 
and mass fragmentation pattern of tandem MS spectroscopy in comparison 
with the authentic compounds in laboratory stock, and reported data (Bloor 
et al., 2002; Veit et al., 1999; Graham, 1998). In total, 17 peaks (A1-A11 
and F1-F6) were identified in the leaves and roots (Figure 11-1). 

In the PAP1-overexpressing lines (pap1-D mutant and PAP1 cDNA-
overexpressing transgenic plant), 11 anthocyanin pigments (A1-A11) and 3 
quercetin glycosides (F4-F6) were accumulated in leaves. In leaves, the total 
anthocyanin accumulation in pap1-D mutant in leaves is 50 times (grown on 
agar plate) as high as in wild-type plant. The major anthocyanin in leaves, 
A11, is the most highly modified anthocyanin with 4 glycosides and 3 acyl-
moieties attached in its molecule. In roots, on the other hand, 5 anthocyanins 
(A1, A2, A3, A5 and A8) were accumulated in the roots grown on the agar 
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plate. The total anthocyanin in the roots of the pap1-D mutant (grown on 
agar plate) is 14 times as high as that in the roots of the wild-type plant. The 
anthocyanins attached with sinapoyl moiety (A4, A7, A9, A10 and A11) 
were not detected in roots. In contrast to leaves, no significant differences 
with the amounts of quercetin glycosides were observed in roots of wild-
type plant and pap1-D mutant.  

2.2 Non-targeted analysis by FT-MS  

Non-targeted FT-MS metabolite analysis was conducted on the leaf and 
root samples of the wild-type plant, pap1-D mutant, and PAP1 cDNA-
overexpressing transgenic plant grown on either agar or vermiculite. To 
decide the key determinant factors of the metabolome, principal component 
analysis (PCA) was conducted with ~1800 peaks of non-targeted FT-MS 
analysis (data not shown). 

The first component of the PCA results (76% variance) predominantly 
reflects the difference in the type of organ (leaf or root), and the second 
component (9% variance) primarily indicates a difference in growth 
conditions (agar or vermiculite) as well as a secondary reflection of the total 
anthocyanin content (wild or pap1-D). Two major clusters (leaf on 
vermiculite and root on agar) formed two separate groups each reflecting 
two different genotypes (wild and pap1-D). This is presumably due to the 
small but significant difference in total anthocyanin content between the 
wild-type and pap1-D plants as detected by FT-MS, supporting the results of 
LC-MS analysis. Altogether, these results suggest that the major determinant 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11-1. Cyanidin derivatives and flavonol glycosides accumulated in PAP1 
overexpressing Arabidopsis. 
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factors of the metabolome were the type of organ (leaf or root) and growth 
condition (agar or vermiculite). This implies that the global metabolome 
profiles of PAP1-overexpressing lines are relatively similar to those of wild-
type plants despite the marked difference in total anthocyanin observed. 

The PCA results of the anthocyanin-targeted analysis (data not shown) 
indicate that the major determinant factor of anthocyanin patterns is the 
genotype of plants reflected to the first component (68% variance). The 
PAP1-overexpressing lines form three distinct clusters: (1) root on agar;  
(2) leaf on agar; and (3) leaf on vermiculite. In contrast, the wild-type plants 
form a single cluster regardless of the type of organ and growth condition, 
exhibiting only slightly affected anthocyanin patterns. These results suggest 
that the PAP1 gene regulates anthocyanin accumulation in a relatively 
specific manner, causing only a small change in the metabolome. 

3 TRANSCRIPTOME ANALYSIS 

3.1 Upregulated expression of novel genes by PAP1 

The transcript levels of 22,810 genes on Affymetrix Arabidopsis Genome 
ATH1 GeneChip array were determined. Four different sets of comparisons 
were made to sort out the candidate genes responsible for anthocyanin 
accumulation in PAP1-overexpresing lines. To identify the genes exhibiting 
the reproducible changes of expression, the genes expressing more than 1.5-
fold in the comparisons of pap1-D leaf exp.1 vs wild-type leaf exp.1, PAP1, 
cDNA-overexpressing plant exp.1 vs wild-type leaf exp.1, and pap1-D leaf 
exp.2 vs wild-type leaf exp.2 were selected as induced genes. Thirty-nine 
upregulated genes in leaf including PAP1 (Table 11-1) were resulted. Eight iIn 
the 39 upregulated genes in leaves 8 were annotated as encoding well-known 
anthocyanin biosynthetic enzymes or regulatory proteins characterized 
previously; TT3, TT4, TT5, TT7, PAP1, TT8, TTG2 and TT19. Besides these 
well-known anthocyanin biosynthetic genes, those that are putatively 
annotated to anthocyanin biosynthetic genes such as At5g05270 (CHI 
homologue), At4g22870 (ANS homologue), and At1g20490 (4CL1 
homologue) were also upregulated. These paralogous genes are presumably 
involved also in anthocyanin biosynthesis in addition to the previously 
characterized genes. In addition, the comparison of pap1-D root vs wild-type 
root was conducted. Out of 39 genes upregulated in leaves, 17 genes encoding 
well-known anthocyanin biosynthetic enzymes, glycosyltransferases, and 
acyltransferases were also induced in roots. 

Combing with the results of metabolite profiling, these results suggest 
that PAP1 gene induces specifically the gene expression of involved in 
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anthocyanin production or in accumulation leading to specific accumulation 
of anthocyanins. 

4 INTEGRATION OF METABOLOMICS  
AND TRANSCRIPTOMICS 

4.1 Global changes of metabolome and transcriptome 
incited by the expression of PAP1 

With metabolome analysis, it was observed that the ectopic PAP1-
overexpression resulted in remarkable over-accumulation of cyanidin-type 
anthocyanins and quercetin-type flavonols. Metabolic profiling indicated 
that the alteration in metabolite patterns is specific to flavonoids. With 
transcriptome analysis, being coordinated with those metabolome changes, 
PAP1-overexpression resulted in upregulation of almost all genes encoding 
anthocyanin biosynthesis enzymes (Table 11-1). All these metabolome and 
transcriptome data suggested that PAP1 regulates specifically flavonoid 
biosynthetic genes causing specific accumulation of cyanidin- and quercetin-
type flavonoids. 

From the results of metabolome and transcriptome analysis, we could 
putatively assign the function of upregulated genes. Besides known 
anthocyanin biosynthetic genes as indicated above, several genes of uncon-
firmed in particular gene families were upregulated: two acyltransferase-
family genes (At1g03940 and At3g29590), three glycosyltransferase-family 

accumulation of specific molecular species of anthocyanins in PAP1-
overexpresing plants, the functions of those up regulated genes can be 
  

 
Table 11-1. Upregulated genes by ectopic PAP1-overexpression 

 
 Gene family Gene name Number   
   >1.5-folds 
Upregulated Flavonoid pathway TT3, TT4, TT5, TT7  4 
 Putative flavonoid pathway   3 
 Glycosyltransferase   4 
 Acyltransferase   2 
 Glutathione S-transferase TT19  3 
 Transcription factor PAP1, TT8, TTG2  4 
 Sugar transporter protein   2 
 Ca2+ binding protein   2 
 Others   7 
 Unknown   8 
 Total   39 
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S-transferase-family genes (At1g02930 and At1g02940). Considering 
genes (At5g54060, At4g14090 and At5g17050), and two glutathione 
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putatively assigned to be related to the production of specific anthocyanin 
derivatives for their modification and transport. 

4.2 Flavonoid acyltransferases 

In the Arabidopsis genome, ca.∼70 genes related to acyl-CoA dependent 
acyltransferase are contained (Dudareva et al., 2000). Two putative 
acyltransferase genes, At1g03940 and At3g29590, were upregulated by the 
PAP1 expression. The most extensively modified anthocyanin A11 contains 
three acyl groups, i.e., sinapoyl, p-coumaroyl and malonyl. Taking into 
accounts the distinct expression patterns of the two genes and the 
accumulation of anthocyanin molecules in leaves and roots, At1g03940 and 
At3g29590 would be the candidates of either malonyltransferase or p-
coumaroyltransferase. 

4.3 Networks of transcription factors  

Recently, a network model of TTG1-dependent transcriptional pathway 
was proposed including anthocyanin accumulation, seed coat pigmentation, 
and initiation of trichomes (Zhang et al., 2003). In the present study of 
PAP1-overexpressing plants, three transcription factor genes, TT8 (bHLH 
protein), TTG2 (WRKY protein) and At5g61600 (an AP2 domain factor), 
were upregulated in addition to PAP1. The other well-known transcription-
factor genes were not changed. These results demonstrated that PAP1 was 
responsible for anthocyanin-specific downstream of the transcription 
network. 

4.4 Functional identification of two flavonoid 
glycosyltransferases 

Three glycosyltransferase genes, At5g54060, At4g14090, and 
At5g17050, were induced in PAP1-overexpression plants, suggesting the 
involvement of these three proteins in modification of sugar moieties of 
anthocyanins. Besides, in the Arabidopsis genome, 107 UDP-sugar-
dependent glycosyltransferase genes are present (Bowles, 2002). In 
Arabidopsis 107 UDP-glycosyltransferase gene, three induced glycosyl-
transferase genes (Table 11-1) in our present investigation, one other gene, 

possible participation of this protein in the production of accumulated 
anthocyanins in PAP1-overexpressing plants. Due to weak induction of 
At3g21560 by PAP1, this gene is not listed in Table 11-1; however, the 
induction in pap1-D was reproducible. Figure 11-2 shows the molecular 
phylogenetic tree of the amino acid sequences of the flavonoid 
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At3g21560, was induced in PAP1-overexpressing leaves. It is suggesting 



glycosyltransferases. Since the most extensively modified anthocyanin 
molecule A11 possesses, in addition to 3-O- and 5-O-glucose, a xylose 
residue attached to C2-position of 3-O-glucoside and a glucose residue 
attached to p-position of coumaroyl moiety. The phylogenetic tree shows 
that At5g17050 belongs to the subfamily of 3GT, At4g14090 belongs to the 

does not belong to these subfamilies. 
Considering the different patterns of anthocyanin accumulation and of 

gene expression profiles between leaves and roots, At3g21560 was sug-

tree of glycosyltransferase family is also consistent with these assumptions. 
Two of them, At5g17050 and At4g14090, were functionally identified as 

coding for flavonoid 3-O-glucosyltransferase (3GT) and anthocyanin 5-O-
glucosyltransferase (5GT), respectively. In the gene knockout mutant of 
At5g17050, the levels of 4 flavonol glycosides (F2, F3, F5 and F6) with 
glucose attached at 3-position were reduced. In contrast, the slight increases 
were observed with the levels of 2 flavonol glycosides (F1 and F4) with 
rhamnose residue attached at 3-position. These results indicate that 
At5g17050 protein is responsible for glucosylation of 3-positions of both 
anthocyanins and flavonols. Moreover, with recombinant protein of 
At5g17050, flavonoid 3-O-glucosyltransferase activity was detected. Three 
anthocyanidins (cyanidin, pelargonidin, and delphinidin) and three flavonols 
(kaempferol, quercetin, and myricetin) were tested for substrates of the  
 

Figure 11-2. Cyanidin derivatives accumulated in Arabidopsis leaf and root, and Molecular 
phylogenetic tree of the amino acid sequences of the flavonoid glycosyltransferases. 
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gested the p-coumaroyl glucosyltransferase. The clustering in phylogenic 
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reaction by the recombinant protein of At5g17050. All these results indicate 
that the protein of At5g17050 catalyses glucosylation at 3-position of both 
cyanidins and flavonols in planta as UDP-glucose; flavonoid 3-O-
glucosyltransferase. 

The gene knockout mutant of At4g14090 exhibited the altered 
anthocyanin pattern, accumulating six new anthocyanins, which are not 
produced in the wild-type plant. Detailed investigation of mass spectra using 
MS2 analysis indicated that six cyanidin derivatives are de-glucosylated 
anthocyanins at 5-position of A1, A5, A4, A8, A7 and A11, respectively, 
suggesting complete lack of 5-glucosylation activity of anthocyanin in this 
mutant. These results clearly indicated the protein of At4g14090 is a 
functional UDP-glucose: anthocyanin 5-O-glucosyltransferase.  
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OF ENZYMES OF PLANT VOLATILE 
BIOSYNTHESIS WITH THE HELP  
OF METABOLIC PROFILING 
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Abstract: Ongoing efforts in metabolic profiling of both cultivated and wild plants 
continue to identify new plant compounds, many of them unique to a single 
species or found only in closely related species. Such compounds are defined 
as specialized, or secondary, metabolites and they play many physiological 
and ecological roles, including in plant-insect and plant-pathogen interactions. 
To date, only a few of the enzymatic reactions leading to the synthesis of such 
compounds have been elucidated and the enzymes responsible identified. Our 
group has concentrated on the biosynthesis of plant volatiles. We present 
several examples in which metabolic profiling together with gene expression 
profiling and biochemical methods have led to the identification of enzymes 
responsible for the synthesis of volatile terpenes in Arabidopsis flowers, 
benzenoid esters in Arabidopsis leaves, and terpenes and methylated 
phenylpropenes in glands of sweet basil. 

Key Words: Secondary metabolites; gene expression profiling; bacterial expression system; 
biochemical assays; methylation; terpenes; esters; phenylpropenes. 

1 INTRODUCTION 

Achieving the goal of cataloguing all the components of the cell – genes, 
enzymes (surely the majority of the cellular proteins), and other types of 
proteins, and metabolites – and elucidating all the causal relationships 
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among them will require a vast effort. While most biological research to date 
has been the piecemeal elucidation of components and causal relationships 

approaches have been based on “systems biology” in which a very large 
number of components are catalogued and statistical methods are used to try 
to infer correlations, which in turn suggest further types of investigation 
(Fiehn and Weckwerth, 2003; and see this volume). This approach has been 
most prominent in the sequencing of whole genomes, including two plant 
genomes (Arabidopsis and rice) followed by computer analysis of the coding 
information of these genomes, and the analysis of the expression of the 
entire set of genes by means of DNA microarrays. 

DNA, RNA, and proteins each constitute a class of compounds with 
some structural properties in common, thus allowing for the development of 
analytical methods that apply to basically all members of the class. As 
pointed out by Trethewey (2004), the metabolites found in the cell have no 
shared chemical features on which general, combined isolation-separation-
identification methods can be based – at least, no such features have been 
recognized so far. Analysis of metabolites typically starts with some method 
of extraction from the tissue, and different methods have to be used to 
extract different classes of compounds. In the next steps, compounds have to 
be separated and identified, and these processes too may involve different 
methodologies for different groups of compounds. Current metabolic 
profiling techniques are primitive and allow for the extraction and separation 
of only a small fraction of plant metabolites and only a fraction of those have 
been identified. Thus, it is not surprising that at present we have probably 
not yet identified the majority of compounds of plant primary metabolism, 
and our knowledge of specialized (secondary) metabolism in any species is 
either severely limited or non-existent. 

2 PLANT VOLATILES: CHEMISTRY  
AND FUNCTION 

Plant volatiles constitute a small segment of the total plant metabolite 
output, and they do share chemical properties – mainly their volatility – that 
allows us to apply common analytical techniques. Plant volatiles are organic 
molecules (typically less than 300 Da) that often contain oxygen functiona-
lities and sometimes nitrogen or sulfur (Figure 12-1). These compounds are 
lypophylic in nature and although their boiling point is typically above 
ambient temperature, they have high vapour pressure and therefore easily 
vaporize.  

Plant volatiles serve many functions (Pichersky and Gershenzon, 2002; 
Dudareva et al., 2004). Many floral scents are emitted to attract pollinators, 
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of a very small and circumscribed subset of cellular pathways, several recent 
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Figure 12-1. Examples of plant volatiles. 
 
 
mostly but not only insects, although some odours may be used to deter 
unwanted visitors. Volatiles in fruits may directly attract animals, insects, or 
birds that eat the fruit and thereby disperse the seeds, or they may constitute 
a reward by contributing to the flavour. In vegetative tissues, volatiles are 
emitted following injuries inflicted during insect herbivory, and the emitted 
volatiles can attract predators of the herbivores. Some data even suggest that 
neighbouring plants are capable of detecting such “distress signals” and turn 
their own defense systems on. Finally, some volatiles are simply toxic 
compounds (and may be stored in specialized vegetative tissues or cells, 
such as glands), and exert their effect on herbivores after they are ingested 
when the herbivores feed on the plant. Some compounds can serve as both 
attractants and repellants/toxins, depending on which insect/animal is 
involved and even whether the same insect/animal is interacting with them 
through the olfactory or the digestive systems. 
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3 PLANT VOLATILES ARE DERIVED FROM  
A FEW BASIC PATHWAYS BY A LIMITED 
NUMBER OF MODIFICATION REACTIONS 

Little is known about the pathways leading to the synthesis of the 
majority of plant volatiles. Our laboratories have focused on identifying and 
characterizing the enzymes that make volatiles and the genes encoding these 
enzymes. Our long-term goal has been to understand how the myriad species 
of the plant kingdom have evolved the ability to make so many different 
volatile compounds, estimated to be in the thousands. Our results, and the 
results from several other laboratories, have shown that while volatiles are 
diverse chemicals, most are derived from just a few modified biochemical 
pathways.  

One such pathway is the terpene pathway in which a carbon skeleton is 
built up first into isoprene diphosphate (C5) units that are condensed into C10 
or C15 diphosphate intermediates, which are finally converted into mono-
terpene (C10) and sesquiterpene (C15) volatiles, respectively, by enzymes 
encoded by a large family of genes termed terpene synthases (Figure 12-2) 
(larger terpenes are also produced in other branches of the pathway, but they 
are not generally volatiles). In contrast to the biosynthetic terpene pathway, 
most other volatile compounds are derived from two other classes of 
compounds, phenylpropanoids and fatty acids, through the shortening of a 
carbon skeleton, often followed by further modification, or simply by 
modification of the existing carbon skeleton. Compounds that are already 
somewhat volatile may also be modified, resulting in enhanced volatility or 
changed olfactory properties. The majority of these modifications involve the 
reduction or removal of carboxyl groups, the addition of hydroxyl groups, and 
the formation of esters and ethers (Figure 12-2). Each type of modification is 
catalysed by a group (or several groups) of related enzymes constituting 
protein families. Typically, these protein families contain enzymes involved in 
the synthesis of both volatile and non-volatile compounds. Some of our 
investigations into the identification of the enzymatic functions of specific 
members of such families are described below. 

4 IDENTIFICATION OF THE ENZYMATIC 
FUNCTION OF MEMBERS OF THE TERPENE 
SYNTHASE FAMILY IN ARABIDOPSIS 
THALIANA 

Until recently it was believed that Arabidopsis thaliana, a small weedy 
plant that is used as a model plant organism, produces only a few secondary  
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Figure12- 2. Some reactions catalysed by representatives of enzyme families. 

 
metabolites. In particular, because it is believed to be mostly self-pollinating, 
it was thought to produce no floral volatiles, and casual sniffing of the flowers 
by the human nose does not indeed detect a noticeable bouquet. However, the 
recent determination of the complete genome sequence of Arabidopsis 
revealed about 30 genes with sequence similarity to known terpene synthases 
(TPSs) from other species (Aubourg et al., 2002). This observation prompted 
us to search more carefully for possible emission of floral volatiles. Using 
highly sensitive collection and detection methods, we were able to show that 
Arabidopsis flowers emit several monoterpenes (e.g., linalool, myrcene and 

The total emission of terpene volatiles is in the range of a few nanogram per 
hour per gram fresh weight of flowers, which is 2–3 orders of magnitude 
lower than the emission rate of some highly scented flowers (Raguso and 
Pichersky, 1995). Moreover, the human nose is not particularly sensitive to 
sequiterpenes. These two observations explain why humans cannot easily 
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detect the scent of Arabidopsis flowers. Nonetheless, some insects might 
be able to detect these flowers by olfactory cues, and in fact Arabidopsis 

limonene) and as many as 20 different sesquiterpenes (Figure 12-3A and B) 
(Chen et al., 2003a). The major floral volatile is β-caryophyllene, a sesquiterpene. 



 
Figure 12-3. Identification of the products of two Arabidopsis terpene synthases. A. Gas 
chromatographic separation of the monoterpenes emitted by Arabidopsis flowers. B. Gas 
chromatographic separation of the sesquiterpenes emitted by Arabidopsis flowers. The 
amount of the internal standard (IS) is the same in both A and B chromatographs, showing the 
amount of the monoterpenes is much lower than the amount of sesquiterpenes. The peak 

the product of the Arabidopsis TPS enzyme encoded by gene At1g61680, indicating that the 
enzyme catalyses the formation of the monoterpene S-linalool. D. Gas chromatographic 
analysis of the product of the Arabidopsis TPS enzyme encoded by gene At5g23960, 
indicating that the enzyme catalyses the formation of the four sesquiterpenes α-copaene, α-

are present in the control reactions as well. 
 

Having established that Arabidopsis flowers do synthesize and emit 
terpenes, we next examined which of the members of the TPS gene family 
are involved. A set of RT-PCR experiments were carried out on all TPS 
genes in Arabidopsis and several genes were found to be expressed almost 
exclusively in the flowers. Complete cDNAs of these genes were isolated, 
spliced into a bacterial expression vector, and expressed in E. coli. The 
resulting proteins were assayed for activity with the substrate geranyl 

2A). These biochemical experiments identified three monoterpene synthases 
and two sesquiterpene synthases that are responsible for almost all of the 
Arabidopsis floral terpene volatiles. That only a small number of Arabi-
dopsis TPS genes account for all the floral terpenes is explained by the 
observation that while some of these enzymes produced a single product (the 

produce multiple products. For example, one Arabidopsis TPS gene turned 
out to encode a sesquiterpene synthase that catalyses the formation of four 

sesquiterpene synthase is responsible for the synthesis of as many as 15 
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labelled “a” in A is octanal, “b” is 2-ethyl-hexanol, “c” is nonanal and “d” is decanal. The 

et al., 2003). 
flowers growing in the wild are visited by many types of insects (Hoffman 
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peaks labeled with astericks in B are all sesquiterpenes. C. Gas chromatographic analysis of 

elemene, β-caryophyllene, and α-humulene. Unlabelled peaks in C and D are not terpenes, and 

diphosphate (GPP), the universal precursor of monoterpenes, and farnesyl 
diphosphate (FPP), the universal precursor of sesquiterpenes (Figure 12-

linalool synthase is one such enzyme, Figure 12-3C), other enzymes can 

sesquiterpenes (Figure 12-3D), and another florally expressed Arabidopsis 
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compounds (unpublished). That some TPSs produce multiple products had 
been previously observed (Chen et al., 2003a). 

In this investigation, we started with the observation that the coding 
capacity of the Arabidopsis genome contained potential TPS genes, but no 
prior information was available about terpene synthesis in Arabidopsis 
flowers or in any other organs (with the exception of the synthesis of 
gibberellins, which are diterpenes). The metabolic profiling results indicated 
that some of the TPS enzymes encoded in the Arabidopsis genome were 
likely to be active in floral scent biosynthesis. However, a simple 
comparison of these TPS sequences with functionally defined TPS proteins 
from other species was not sufficient to identify which Arabidopsis protein 
corresponds to each volatile (or volatiles), since an extensive body of 
research has demonstrated that rapid convergent evolution occurs in the 

similar to each other and instead are more similar to other monoterpene 
synthases from the same lineage. Thus, the linalool synthase from 
Arabidopsis, for example, could not be identified based simply on sequence 
similarity to linalool synthases from other species, and the biochemical 
experiments were therefore crucial in identifying enzymatic functions. 

5 IDENTIFICATION OF A BENZOIC 
ACID/SALICYLIC ACID 
METHYLTRANSFERASE IN A. THALIANA 

We investigated a similar situation with regards to the biosynthesis of 
benzenoid methylesters in Arabidopsis. Methylsalicylate (MeSA) and 
methylbenzoate (MeBA) are two benzenoid methylesters that are commonly 
found in floral volatiles of diverse taxa, although not in flowers of 
Arabidopsis. The genes encoding salicylic acid methyltransferase (SAMT) 
and benzoic acid methyltransferase (BAMT) were first identified in flowers of 
Clarkia breweri and snapdragons, respectively (Ross et al., 1999; Murfitt  
et al., 2000), and were recognized to constitute a new type of 
methyltransferase family, designated the SABATH methyltransferase family 
(D’Auria et al., 2002). In Arabidopsis, there are 24 related genes (D’Auria et 
al., 2002; Chen et al., 2003b). 

MeSA had been reported to be emitted from vegetative tissues of many 
plant species, including Arabidopsis, during herbivory (Van Poecke et al., 
2001) or viral infection (Shulaev et al., 1997). Given that the Arabidopsis 
genome has 24 genes with homology to C. breweri SAMT, it was likely that 

comparisons did not identify a single Arabidopsis gene among these 24  
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terpene synthase gene family in separate plant lineages, so that, for example, 
the various linalool synthases known from distally related species are not very 

at least one of them encodes a SAMT. However, protein sequence 



 Figure12-4. Metabolic profiling and gene expression profiling to identify the AtSABATH 
gene involved in benzenoid methyl ester formation. A. Gas chromatograph analyses of plant 
samples under different conditions. B. RT-PCR gene expression profiling of all AtSABTH 
genes under same conditions. Circles show increased transcript levels in conditions eliciting 
emission of benzenoid methylesters compared with control conditions where no such 
emission was observed. The gene denoted with an asterisk is the one encoding the enzyme 
benzoic acid/salicylic acid methyltransferase (BSMT), as proven by subsequent in vitro 
enzyme assays with the purified protein. 

 
SABATH genes which was more similar to C. breweri SAMT than to any 
other Arabidopsis gene in this family, and no Arabidopsis SABATH gene 
exhibited >50% identity to C. breweri SAMT.  

Therefore, to identify the Arabidopsis SABATH gene(s) responsible for 
the synthesis of MeSA, we chose a combined approach of gene expression 
profiling with metabolic profiling. We first searched for conditions under 
which MeSA is emitted from Arabidopsis leaves. We examined herbivory in 
detail, and found out that when Arabidopsis leaves are attacked by the 
specialized herbivore Plutella xylostella, not only is MeSA emitted but also 

MeSA (but not MeBA) is emitted from detached Arabidopsis leaves treated 
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some MeBA is also released (Figure 12-4A). In addition, we established that 



12. Identifying Substrates and Products  

with alamethicin, a fungal elicitor, but not from detached leaves treated with 

We next examined by RT-PCR the expression of the 24 Arabidopsis 
SABATH genes under these conditions, using specific oligonucleotide 
primer pairs for each gene. While several SABATH genes were induced 
during herbivory, and a few other SABATH genes were induced during 
alamethicin treatment, only two SABATH genes were induced under both of 

genes had previously been identified as jasmonic acid methyltransferase 
(JMT) (Seo et al., 2001). A full-length cDNA of the other gene was 
obtained, expressed in E. coli, and the protein shown to have the ability to 
catalyse the methylation of both SA and BA. 

6 ENZYMES INVOLVED IN THE BIOSYNTHESIS 
OF PHENYLPROPENES AND TERPENES  
IN BASIL GLANDS 

The two examples above deal with A. thaliana, where the task of 
identifying candidate genes is made easier due to the availability of the full 
genome sequence. However, the majority of investigations into the 
biosynthesis of plant volatiles, and plant secondary metabolites in general, 

information is available. In such systems, metabolic profiling is still very 
important. In fact, metabolic profiling is usually done first as a surveying 
tool to identify plants of interests – those that may have interesting floral 
bouquets or desirable herbal spices (which are volatiles that impart distinct 
flavours to our foods). Once such volatiles are detected, several sets of tools 
are developed to make the identification, isolation, and characterization of 
genes possible. An example is illustrated below with our investigation into 
the biosynthesis of volatile flavour compounds in basil. 

Basil plants have been used since antiquity to spice up food. Many 
cultivars of basil with distinct aromas have been bred. Basil (Ocimum 
basilicum) is in the Lamiaceae family, and is known for containing both 
terpenes and phenylpropenes (Figure 12-5). We have investigated in depth 
three such varieties, known as EMX1, SW, and SD. Metabolic profiling, 
done initially on material extracted from whole leaves, showed that EMX1 is 
particularly rich in methylchavicol (and has some methyleugenol as well), 
SW is rich in eugenol and linalool, and in SD the predominant volatile is 
citral, a mixture of geranial and neral. 

Lamiaceae species, including basil, have numerous glandular trichomes, 
or glands, on the surface of their leaves. A very common type of gland in 
basil, called a peltate gland, consists of four cells connected to the epidermal  
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water alone (Figure 12-4A). 

these treatments, and not induced in the controls (Figure 12-4B). One of these 

are carried out in species for which very little genetic and genomic 



 
 

Figure 12-5. Some terpenes (A) and phenylpropenes (B) found in basil glands. 
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cell layer by a short-stalk cell. The four cells of the gland are covered by a 
thick cuticle that can expand into a “sac” to contain material secreted from 
the gland cells (Figure 12-6). Since previous reports showed that the volatile 
terpenes found in the mint plant, also in the Lamiaceae family, are 
synthesized and stored in the leaf peltate glands (Gershenzon et al., 2000), 
we examined the volatile contents of basil peltate glands by directly 
extracting material from individual sacs with a micropipette and analysing 
the material by gas chromatography-mass spectrometry (GC-MS) (Gang  
et al., 2001). This analysis showed that the volatiles stored in the glands 
were the same as those detected from whole leaf, whereas leaves devoid of 
peltate glands did not contain these volatiles, indicating that basil peltate 
glands, like mint glands, were the site of storage, and possibly synthesis, of 
these volatiles.  

As outlined above, our basic goal is to identify the enzymes and genes 
responsible for the volatile biosynthesis in plants. But since no gene sequence 
information was available from basil plant, such information had to be 
obtained first. However, a genome sequencing approach is currently not 
feasible for every plant. To circumvent this problem, we chose to obtain 
sequence information from basil in a way that maximized the information on 
the desired genes and minimized the investment in obtaining sequence 
information that was not relevant to our particular interest. This was done by 
obtaining sequence information on genes that are specifically expressed in 
 

 
Figure 12-6. Scanning electron micrograph of a 4-celled peltate gland and a 2-celled capitate 
gland from the surface of a basil leaf. 
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the glands. To do so, we first adopted a procedure originally developed for 
isolating mint peltate glands to isolate basil peltate glands. Our procedure 
yielded intact 4-cell basil peltate glands that were completely separated from 
the rest of the leaf and from other types of glands, as well as devoid of gland 
stalks. RNA was extracted from peltate gland cells of each of the three basil 
cultivars, and cDNA libraries were constructed. Then, the DNA sequences 
of several thousand cDNAs from each library were determined and analysed 
for protein coding information, creating expressed sequence tag (EST) 
databases (Gang et al., 2001; Iijima et al., 2004). 

Basil cultivar SD is rich in citral, which is the product of the oxidation of 
geraniol (Figure 12-2) (Iijima et al., 2004). Geraniol itself is a monoterpene 
alcohol, an isomer of linalool, and like linalool was believed to be 
synthesized from GPP, although no geraniol synthase had been identified. 
Examination of the EST databases of the three cultivars identified many 
potential terpene synthases, including several sequences that were uniquely 
found in the SD database. Each of the unique SD TPS sequences was 

found to be geraniol synthase, catalysing the exclusive formation of geraniol 
from GPP (Iijima et al., 2004). 

To examine the synthesis of methylchavicol and methyleugenol in 
EMX1, the EST database of EMX1 was examined (Gang et al., 2002) for 
sequences with homology to known methyltransferases, including the 
enzyme that can methylate eugenol and isoeugenol in C. breweri flowers 
(Wang et al., 1997). Several sequences were identified based on this 
criterion, and in addition these sequences were not prevalent in the other two 
EST databases. Enzymatic assays of E. coli-produced proteins showed one 
of them to be eugenol methyltransferase, and another to be chavicol 
methyltransferase. Both proteins were highly similar to each other (>90% 
identical), but while they had some sequence similarity to C. breweri 
isoeugenol/eugenol methyltransferase (and no similarity at all to SAMT), 
they were more similar to other methyltransferases such as isoflavone 
methyltransferase. This observation indicates that the enzymes that 
methylate phenylpropenes in basil and C. breweri must have evolved their 
substrate specificity independently. 

7 CONCLUSIONS 

Metabolic profiling of whole plants or selected tissues and even cell 
types, combined with detailed information on the sequence of specific genes 
whose expression is correlated with the production of specific metabolites, is 
a powerful approach to identifying candidate genes involved in the 
biosynthesis of such metabolites. However, final identification of enzymatic 
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expressed in E. coli and tested for enzymatic activity. One of them was 
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function must be achieved by biochemical experiments in which the 
candidate proteins are shown to possess the postulated catalytic activities. 
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PROFILING DIURNAL CHANGES IN 
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Abstract: The availability of sequence data is contributing immensely to the 
development of gene-expression resources, in parallel to these advances, 
several methods have been established for systematic analysis of metabolite 
composition. In this chapter, we illustrate the utility of parallel transcript and 
metabolic profiling analysis to study metabolic regulation during the day/night 
cycle. Recently we presented a gas chromatography-mass spectrometry-based 
metabolic profiling protocol, alongside spectrophotometric techniques, to 
follow changes in a broad range of potato leaf metabolites throughout the 
day/night cycle (Urbanczyk-Wochniak et al., 2005). In tandem, we profiled 
transcript levels using both a custom array containing approximately 2,500 
cDNA clones representing predominantly transcripts involved in plant 
metabolism, and commercially available arrays containing approximately 
12,000 cDNA clones that gave coverage of transcript levels over a broader 
functional range. The levels of many metabolites and transcripts varied during 
the day/night cycle. Whilst a large number of the differences might be 
expected based on earlier data, several novel changes were seen. Here we 
present novel description of changes in metabolites and genes associated with 
secondary metabolism. Profiling of diurnal patterns of metabolite and 
transcript abundance in potato leaves suggests that specific sets of metabolic 
pathway are strongly transcriptionally regulated, but revealed that the majority 
of the metabolic network is primarily under post-transcriptional control.  

1 INTRODUCTION 

Diurnal regulation of plant metabolism has been studied for many years, 
especially as regards metabolites such as carbohydrates like sucrose and 
starch (Geiger and Servaites, 1994; Kruger, 1997; Fernie and Willmitzer, 

IN POTATO LEAVES 
METABOLITE AND TRANSCRIPT LEVELS
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2004) or key compounds in carbon–nitrogen interactions like 2-oxoglutarate, 
glutamate, and asparagine (Ferrario-Mery et al., 2001; Stitt and Fernie, 2003; 
Masclaux-Daubresse et al., 2002). Recently, transcript profiling has been 
used to analyse diurnal regulation at a more global level (Harmer et al., 
2000; Thain et al., 2002). Whilst many light cycle-associated differences 
have been observed in these studies (e.g., phenylpropanoid metabolism, 
starch degradation, and cell wall elongation), the main focus has been on 
identifying genes associated with circadian rhythm maintenance. 
Furthermore, whilst several studies have examined the levels of specific leaf 
metabolites throughout the day/night cycle (Scheible et al., 2000; Stitt and 
Fernie, 2003), the development of broad-range approaches have not yet been 
widely documented for this purpose.  

In a recent study, we performed a comprehensive characterization of 
changes in potato leaf metabolism throughout the diurnal period (Urbanczyk-
Wochniak et al., 2005). To achieve this we used a gas chromatography-mass 
spectrometry (GC-MS)-based method to profile key primary metabolites and 
some secondary metabolites in leaf samples harvested at time points through a 
24 h period. In addition, we used a custom-made Solanaceous macroarray, in 
combination with commercially available cDNA microarrays to profile 
changes in transcript levels in a subset of the samples used for metabolic 
profiling. The levels of many metabolites and transcripts varied during the 
diurnal period with 56 significant differences observed in metabolite contents 
and 832 significant differences in transcript levels. When analysed together, 
these results suggest that whilst some minor metabolites appear to correlate 
closely to changes in transcript levels of associated genes, the majority of tight 
metabolite regulation is exerted at the post-transcriptional level. 

2 RESULTS AND DISCUSSION 

For the analysis of metabolites and transcripts, samples of wild type, 
greenhouse-grown potato plants (Solanum tuberosum cv. Desiree) were 
harvested over a 24 h period (Urbanczyk-Wochniak et al., 2005). To classify 
a broad range of metabolites we utilized an established gas chromatography, 
mass spectrometry (GC-MS) protocol (Roessner-Tunali et al., 2003), with 
which we were able to quantify the content of over 70 metabolites. Diurnal 
changes in major and minor carbohydrates and amino and organic acids 
were found to be largely similar to those previously documented for tobacco 
or Arabidopsis plants (Masclaux-Daubresse et al., 2002; Carrari et al., 2005). 
Furthermore, we were able to analyse a few secondary metabolites, such as 
caffeate and chlorogenate. 
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13. Diurnal Cycles in Metabolomics  

 
Figure 13-1.  Principal component analysis (PCA) of metabolite profiles of samples harvested 
from wild-type potato leaves during a diurnal period. The distances between these populations 
were calculated as described in Roessner et al. (2001). The percentage of variance explained 
by each component is shown in parenthesis. Samples representing leaves collected at 07:00 
(white and medium grey circle), 12:00 (dip dark grey circle), 19:00 (medium striped grey 
circle), 00:00 (light dotted grey circle), and 03:00 (black circle). Each data point represents an 
independent sample. With kind permission of the publisher Springer-Verlag GmbH 
(permission applied for). 

 
In addition to point-by-point analysis of metabolites, the statistical tool, 

principal component analysis (PCA) was applied to the complete data set 
(Figure 13-1). As could be expected, two sets of samples harvested at the 
same time on consecutive days clustered together. Also, samples harvested 
at different time points, especially those collected during the light period 
(12:00 and 19:00), are easily resolved from samples harvested during the 
dark period (24:00 and 03:00) and indeed periodicity can be observed. This 
result suggests a tight coordination of metabolism throughout the diurnal 
period.  

Having established the pattern of diurnal changes in metabolite levels in 
potato leaf, attention was turned to assessing transcript levels by 
performance of two sets of microarray experiments on identical plant 
material from a subset of the samples described above (Urbanczyk-
Wochniak et al., 2005). In the combined data set, 455 clones were 
upregulated at 03:00 (146 of which were exclusively expressed at this time 
point); 18 of these clones are associated with amino acid metabolism, 36 
with carbohydrate metabolism, 17 with cell wall metabolism, 42 with 
photosynthesis, and 14 with secondary metabolism. Conversely, 377 clones 
were downregulated (79 being exclusively expressed in the light period), 
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including 6 associated with amino acid metabolism, 10 with carbohydrate 
metabolism, 14 with cell wall metabolism, 53 with photosynthesis, and 5 
with secondary metabolism).  

As mentioned above, diurnal changes in amino acid contents observed 
here in potato were largely consistent with those previously found in tobacco 
(Matt et al. 1998; Ferrario-Mery et al., 2002), tomato (Carrari et al., 2003) and 
Arabidopsis (Carrari et al., 2005), with the majority of amino acids increasing 
during the day and decreasing during the dark period. As one might expect, 
the patterns of increase or decrease were largely conserved within those meta-
bolites sharing common precursors. The majority of amino acid metabolism 
associated genes that displayed altered transcript levels were upregulated 
during the night. However, in general, changes in gene expression did not 
result in detectable increases in the abundance of associated amino acids. 

The observed diurnal variations in carbohydrate content were typical for 
growth under a long-day regime in a range of species (see for example Matt 
et al., 1998; Lytovchenko et al., 2002; Ferrario-Mery et al., 2002; Chia et al., 
2004). Variations in minor carbohydrate levels largely mirrored the pattern 
of the major sugars with significant increases in arabinose, mannose, fucose, 
ribose, rhamnose, and xylose during the light period. Furthermore, although 
the pattern of change in pool size of the minor carbohydrates was highly 
varied, all carbohydrates declined during the dark period.  

Organic acids also showed similar trends to those reported previously 
(Scheible et al., 2000; Müller et al., 2001), with a tendency toward 
increasing organic acid contents upon the induction of the trycarboxylic acid 
cycle (TCA cycle) in the dark period. This is not true, however, for all 
organic acids; malate levels, for example, showed a completely different 
diurnal pattern.  

In addition to the data discussed above, some secondary metabolites also 
display diurnal variation (Figure 13-2). Application of our GC-MS profiling 
method allowed the evaluation of changes in the levels of a handful of 
soluble secondary metabolites to be tracked throughout the course of the 
experiment. Despite quite some interest in these compounds (see for 
example Howles et al., 1996; Guo et al., 2001; Chen et al., 2003), such data 
has not been previously reported. This analysis revealed a minor, but 
statistically significant increase in the levels of chlorogenate, the major 
soluble phenylpropanoid in Solanaceous species (Matt et al., 2002), and of 
caffeate during the dark period. Conversely, levels of quinate and glycerate 
went down during the dark period (however, caution must be taken in 
integrating this data since glycerate levels determined by our method could 
include a large proportion of dephosphorylated 3-phosphosphoglycerate). 

We next evaluated changes in the genes associated with secondary 
metabolism (Figures 13-3 and 13-4) and found that far more of them were 
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upregulated rather than downregulated in the dark period (Urbanczyk-

Figure 13-2. Diurnal changes in metabolites: chlorogenate (A), caffeate (B), quinate (C), 
glycerate (D), phenylalanine (E), tryptophan (F). Metabolites were determined as described in 
Urbanczyk-Wochniak et al. (2005). At each time point, samples were taken from mature 
source leaves and the data represent the mean ± SE of measurements of six plants. 
*Represents values that are significantly different from the first sampling point. 

 

Whilst we could not ascribe a direct mechanism for the changes in 
metabolite pool sizes through the course of the experiment, analysis of the 
differences in metabolite and transcript levels between the day and night 
allow us to construct several hypotheses. 

First, these modulations may merely reflect the relative availability of 
precursor metabolites or cofactors during the course of the experiment. In 
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keeping with this interpretation, levels of phenylalanine and tryptophan peak  

Wochniak et al., 2005). Transcripts encoding the enzymes cinnamic acid 

phenylpropanoid metabolism were elevated in the dark, as were those
encoding the essential enzymes in the carotenoid biosynthetic pathway – 
namely, phytoene synthase and isopentenyl diphosphate isomerase.

4-hydroxylase and phenylalanine ammonia-lyase which are involved in

 



 
Figure 13-3. Ratio of transcription of selected genes between 3 A.M. determined by 
microrarray analysis. A) relative expression level of acyltransferase B) relative expression 
level of anthocyanin 3’-glucosyltransferase); C) relative expression level of caffeic acid O-
methyltransferase; D) relative expression level of glucosyl transferase (signal was detected 
exclusively only at that particular time point); E) relative expression level of orcinol O-
methyltransferase (signal was detected exclusively only at that particular time point) F) 
relative expression level of phenylalanine ammonia-lyase; G) relative expression level of 
phytoene synthase. 

 

 
Figure 13-4. Ratio of transcription of selected genes between 12 P.M. determined by 
microrarray analysis. A) relative expression level of 4-hydroxyphenylpyruvate dioxygenase; 
B) relative expression level of chalcone synthase; C) relative expression level of gamma 
hydroxybutyrate dehydrogenase; D) relative expression level of neoxanthin synthase; E) 
relative expression level of uroporphyrinogen decarboxylase, chloroplast precursor. 
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at the end of the light period directly preceding the minor increases in 
caffeate and chlorogenate. Second, these changes could be direct effects of 
up- or downregulation of anabolic or catabolic pathways of phenylpropanoid 
metabolism. Such changes have been reported previously for several genes 
associated with circadian clock regulation (Harmer et al., 2000). Similarly, 
in this study, the observed changes in secondary metabolism-associated 
transcript levels included genes from the phenylpropanoid pathway (clones 
encoding phenylalanine ammonia-lyase and cinnamic acid 4-hydrolase), as 
well as two different clones encoding phytoene synthase. A third possibility 
is that the changes in these metabolites are an indirect effect of the 
modulation of transcript levels from a closely associated pathway during the 
night. One possible candidate would be transketolase, which is upregulated 
in the night, since it has been demonstrated previously that the activity of 
this enzyme is positively correlated to the chlorogenate content in the 
illuminated leaves of transgenic plants (Henkes et al., 2001). Given that 
transgenic experiments in tobacco have indicated that phenylalanine 
ammonia-lyase exhibits a large degree of control in the synthesis of 
chlorogenate (Howles et al., 1996), we tend to favour the second 
explanation. However, it is clear that further investigations are required to 
elucidate the exact mechanisms underlying the temporal changes in these 
metabolite levels. 

3 CONCLUSION 

There are still only a few applications of metabolomics and 
transcriptomic studies to plant metabolism of using both approaches in 
parallel (Urbanczyk-Wochniak et al., 2003; Hirai et al., 2004; Oksman-
Caldentey et al., 2004). The data presented previously (Urbanczyk-
Wochniak et al., 2005) and above provide a relatively comprehensive, 
although by no means complete, analysis of changes in metabolite and 
transcript levels over a diurnal period. Although a full genome chip has 
recently been described for rice (Zhu et al., 2003), no such tool is available 
yet for Solanaceous species. Given the obvious limitations of an incomplete 
array here we decided to characterize metabolite levels in parallel in order to 
give us greater confidence in the data obtained from the transcript profiling 
experiments. Qualitative comparison of the combined data sets obtained 
from the parallel analysis of transcripts and metabolites suggests that 
relatively few changes in transcript levels correlate strongly with changes in 
metabolite levels during the day/night cycle. The changes that occur are 
associated primarily with central metabolism. In contrast, principal 
component analysis of metabolite profiles revealed that the levels of many 
metabolites change progressively throughout the day/night cycle. These 
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results suggest that although leaf metabolism is regulated tightly throughout 
the cycle, this regulation is exerted primarily at the post-transcriptional level. 
Intriguingly, this appears to be a common motif in nature with similar 
patterns of regulation being observed in Escherichia coli (Almaas et al., 
2004) and Saccharomyces cerevisiae (Daran-Lapujade et al., 2004). 
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Chapter 14 

GENE EXPRESSION AND METABOLIC 
ANALYSIS REVEAL THAT THE PHYTOTOXIN 
CORONATINE IMPACTS MULTIPLE 
PHYTOHORMONE PATHWAYS IN TOMATO 

Srinivasa Rao Uppalapati and Carol L. Bender 
Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 
74078, USA 

Abstract: Coronatine (COR) is a phytotoxin produced by several pathovars of 
Pseudomonas syringae and consists of coronafacic acid (CFA), an analogue of 
methyl jasmonic acid (MeJA), and coronamic acid (CMA), which resembles 
1-aminocyclopropane-1-carboxylic acid (ACC), a precursor to ethylene. An 
understanding of how COR functions, is perceived by different plant tissues, 
and the extent to which it mimics MeJA remain unclear. In this study, COR 
and related compounds were examined with respect to structure and function. 
cDNA microarrays were utilized to understand the molecular processes that 
are regulated by MeJA, COR, CFA, and CMA in tomato leaves. A comparison 
of COR- and MeJA-regulated transcriptomes revealed that COR regulated 
35% of the MeJA-induced genes. There was significant overlap in the number 
of COR and CFA-regulated genes with CFA impacting the expression of 
39.4% of the COR-regulated genes. Collectively, our results demonstrate that: 
(1) the intact COR molecule impacts signaling in tomato via the jasmonic acid, 
ethylene, and auxin pathways; (2) CMA does not function as a structural 
analogue of ACC; (3) COR has a broader range of functions than either CFA 
or CMA; and (4) COR and MeJA share similar, but not identical activities and 
impact multiple phytohormone pathways in tomato. 

1 INTRODUCTION 

Coronatine (COR) is a non-host-specific phytotoxin produced by several 
pathovars of Pseudomonas syringae (Bender et al., 1999; Mitchell, 1982).  
The toxin acts as a virulence factor in P. syringae pv. tomato, allowing the 
pathogen to obtain higher population densities and develop larger lesions 
than COR-defective strains (Bender et al., 1987; Brooks et al., 2004; Mittal 
and Davis, 1995). In addition to chlorosis, COR induces a wide array of 
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effects in plants including anthocyanin production, alkaloid accumulation, 
ethylene emission, accumulation of proteinase inhibitors, tendril coiling, 
inhibition of root elongation, and hypertrophy (Bender et al., 1999; Feys  
et al., 1994; Lauchli and Boland, 2003; Weiler et al., 1994).  

COR consists of the polyketide coronafacic acid (CFA) (Parry et al., 
1994), and coronamic acid (CMA), a cyclized derivative of isoleucine 
(Mitchell, 1985). CFA and CMA function as biosynthetic intermediates and 
are joined together by an amide linkage to form the parent compound, COR 
(Ichihara et al., 1977) (Figure 14-1a). CMA is a structural analogue of 1-
aminocyclopropane-1-carboxylic acid (ACC) (Figure 14-1b), an inter-
mediate in the pathway to ethylene in higher plants (Ecker, 1995). It has also 
been noted that COR is a structural and functional analogue of jasmonic acid 
(JA) and related signalling compounds such as methyl jasmonate (MeJA) 
and 12-oxo-phytodienoic acid (12-OPDA), the C18 precursor of JA/MeJA 
(Feys et al., 1994; Weiler et al., 1994). OPDA, JA, MeJA (Figure 14-1b), 
and other octadecanoids impact the regulation of diverse plant responses 
including biotic stress (Farmer et al., 2003), wounding (Howe and 
Schilmiller., 2002), abscission (Burns et al., 2003), and volatile production 
(Weber, 2002). The identification of the Arabidopsis coi1 (coronatine 
insensitive) and a JA insensitive mutant (jai1) of tomato mutant further 

Although COR is involved in various physiological responses, we do not 
understand how COR is perceived in different tissues, precisely how it  
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Figure 14-1. Structures of COR derivatives and analogues discussed in the text. (a) CFA, 
coronafacic acid; CMA, coronamic acid; and COR, coronatine. (b) MeJA, methyl jasmonate; 
OPDA, 12-oxo-phytodienoic acid; and ACC, 1-aminocyclopropane-1-carboxylic acid. 
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et al., 1994; Li et al., 2004).  
supports the hypothesis that COR is a functional analogue of MeJA (Feys 
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functions, and to what extent it mimics MeJA. Previous reports have 
documented the production of ethylene in COR-treated tissue (Ferguson and 
Mitchell, 1985; Kenyon and Turner, 1992), a response that may be attributed 
to the structural similarities between CMA and ACC. In the present study, 
we investigate whether each component of COR has biological function in 
planta. We set out to answer these questions using cDNA microarrays to 
identify the molecular responses associated with COR, CFA and CMA. 

2 RESULTS 

2.1 Visual observations of treated tomato leaves 

COR-treated (20 nmol) leaves exhibited moderate to severe yellowing with 
chlorosis spreading 5–10 mm from the application site five days after 
treatment.  Plants treated with CMA or ACC showed slight burning at the 
inoculation site, but were not chlorotic. No chlorosis or burning was observed 
on plants treated with H2O, CFA, or MeJA (Table 14-1). Previously, it was 
reported that COR inhibits root growth and induces anthocyanin accumulation 
in Arabidopsis (Feys et al., 1994). We wondered whether this response was 
unique to Arabidopsis, or whether it also occurs in tomato. COR, CFA, and 
MeJA each inhibited root growth and induced anthocyanin accumulation in 
seedlings (Table 14-1; Uppalapati et al., 2005). ACC induced root inhibition 
and a typical “triple response” in tomato seedlings (reduced elongation, 
thickened hypocotyl, and thickened apical hook) at 0.2 and 200 µmol (Table 
14-1; Uppalapati et al., 2005). Unlike ACC, CMA did not inhibit root growth 
or induce a triple response (Table 14-1).  

In summary, COR was much more effective in inhibiting root growth and 
inducing anthocyanin accumulation than CFA and MeJA. In contrast, CMA 
and ACC were relatively ineffective in stimulating anthocyanin accumu-
lation (Table 14-1; Uppalapati et al., 2005). ACC (but not CMA) inhibited 
root growth but only at levels 10,000-fold higher than COR (Table 14-1; 
Uppalapati et al., 2005), suggesting that CMA does not behave as a 
functional analogue of ACC in these assays.  

2.2 cDNA microarray analysis of COR, CFA CMA,  
and MeJA treated tomato leaf tissues  

The identification of COR, CFA, CMA, and MeJA-responsive genes 
offers an opportunity for studying the potential functions of these 
compounds; therefore, we conducted gene expression profiling in tomato 
tissue treated with these compounds. 
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Table 14-1. Effects of COR derivatives and analogues on tomato leaf tissue and seedlings 
 

Compound Chlorosisa Root          
inhibitionb 

Anthocyanin 
accumulationc 

COR +++ +++ +++ 
CFA ND ++ ++ 

MeJA ND ++ ++ 
CMA ND none – 
ACC ND +++ – 

 
a +++, chlorotic zone was 5–10 mm in diameter; and ND, no detectable chlorosis. 
b (+++) ≥ 70% and (++) ≥ 40% root growth inhibition in comparison to untreated controls. 
c (+++) ≥ 7% and (++) ≥ 5% anthocyanin accumulation/mg fresh weight in comparison to 
untreated controls. 
 

The 12 h time point was chosen because maximal differential expression 
was observed at this time point when compared to H2O-inoculated control 
tissue. Differential regulation of gene expression in COR, CFA, and CMA-
treated tissue was compared using Venn diagrams (Figure 14-2). The 
complete list of genes and expression ratios are presented elsewhere 
(Uppalapati et al., 2005). When a twofold induction (P < 0.05) relative to the 
control was used, 256, 231, and 143 genes were identified as induced by 
COR, CFA, and CMA, respectively (Figure 14-2). The largest set of 
upregulated genes were those induced by COR (256 genes; Figure 14-2). 

The identification of genes downregulated by COR, CFA, and CMA is 
equally important in understanding the response to these compounds. When 
a twofold decrease (P < 0.05) in expression was applied as a cut-off, 274, 
292, and 176 genes were identified as downregulated by COR, CFA, and 
CMA, respectively (Figure 14-2).  

These results indicate the greatest degree of overlap exists between COR- 
and CFA-regulated genes. However, COR was more active in regulating the 
genes investigated in this study, and the COR holo-toxin regulates a greater 
array of genes in tomato than CFA or CMA. 

Our observations using cell biology demonstrated that COR induces 
chlorosis and alters the structure of the chloroplast (Table 14-1, Uppalapati 
et al., 2005). Consistent with our observations, COR downregulated a large 
number of genes belonging to chloroplast metabolism (e.g., genes encoding 
chlorophyll a/b binding proteins, nicotinamide adenine dinucleotide 
phosphate-oxidase (NADPH):protochlorophyllide oxidoreductase, thylakoid 
luminal proteins) (Figure 14-3, group I). Interestingly, MeJA did not induce 
any visible chlorosis (Table 14-1) and was less active than COR and CFA in 
repressing genes involved in chloroplast metabolism (Figure 14-3, group I).  
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Figure 14-2. Venn diagrams showing the number of COR, CFA, and CMA (12 h post-
treatment) regulated genes. Numbers in bold font denote the total number of genes regulated 
by each compound. 

 
 
JA biosynthesis is known to be regulated by a JA-mediated positive 

feedback loop (Sasaki et al., 2001; Stenzel et al., 2003). Consistent with 
observations in Arabidopsis, MeJA positively stimulated genes involved in 
JA biosynthesis and JA responsiveness in tomato (Figure 14-3, groups II and 
III). COR was more active than MeJA, CFA, or CMA in upregulating JA 
biosynthesis genes, including lipoxygenase (LOXD), allene oxide cyclase 
(AOC), and oxophytodienoate reductase (OPR3) (Figure 14-3, group II).  

Several JA/wound responsive genes were induced by MeJA, COR, CFA, 
and CMA (e.g., wound-inducible serine proteinase inhibitors I and II) (Figure 
14-3, group III). However, CMA was generally less active in inducing this 
group of genes, especially polyphenol oxidase and multicystatin.  

COR stimulates ethylene production in both bean and tobacco, leading to 
speculation that the CMA portion might stimulate ethylene production 
(Ferguson and Mitchell, 1985; Kenyon and Turner, 1992). COR strongly 
induced genes involved in ethylene biosynthesis and/or ethylene-
responsiveness (Figure 14-3, group IV), suggesting that the holotoxin can 
directly stimulate ethylene production. In contrast, these genes were not 
modulated by CMA. These results indicate that CMA does not stimulate 
ethylene production or functionally mimic ACC. Furthermore, our cDNA 
microarray experiments identified genes that were not previously known to 
be regulated by COR. For example, COR induced the expression of a set of 
auxin-related genes, including IAA-conjugate hydrolases (e.g., IAR3) and an 
auxin-regulated protein (Figure 14-3). 
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Figure14-3. Expression diagram of selected genes that are differentially regulated by MeJA, 
COR, CFA, or CMA. Functional groups discussed in text include: group I, genes belonging to 
chloroplast metabolism; group II, genes involved in oxylipin biosynthesis; group III, JA 
and/or wound-responsive genes; group IV, genes involved in ethylene biosynthesis. 

 
 
 

 S.R. Uppalapati and C.L. Bender198



14. Gene Expression and Metabolic Analysis  

2.3 Metabolic analysis of COR-treated tomato leaf 
tissues 

Our transcriptional profiling studies have shown that COR imparts 
multiple phytohormones in tomato leaf tissues. To further confirm these 
results we have utilized metabolic analysis. In this study, we observed that 
treatment with COR stimulates the accumulation of endogenous levels of JA 
in tomato leaves (Figure 14-4). Thus both COR and endogenous MeJA may 
modulate genes involved in JA biosynthesis. Simultaneously, increased 
accumulation of COR and MeJA were previously reported during infection 
of Arabidopsis by P. syringae pv. tomato (Schmelz et al., 2003). 

Furthermore, we show that the treatment of tomato leaves with COR 
stimulated the accumulation of endogenous levels of IAA in tomato leaves 
(Figure 14-4). These results suggest that COR may increase the free IAA 
levels within the plant to increase virulence. Taken together, transcriptional 
and metabolic analysis showed that COR impacts multiple phytohormone 
pathways in tomato. 

2.4 Transcriptional profiling of COR and MeJA  
in tomato leaf tissues 

To further investigate to what extent COR modulates gene expression in 
a manner similar to MeJA, transcriptome analysis of MeJA-treated tissues 
was performed and compared with COR-treated tomato tissue. A total of 256 
and 320 genes were identified as induced by COR and MeJA, respectively 

 

Figure 14-4. Changes in levels of SA, JA, and IAA in tomato leaf tissue treated with COR 
(mean ± SD, n = 3). 
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(Figure 14-5a). Approximately 40% (128) of the MeJA-induced genes were  



Figure 14-5. Transcriptional profiles of COR- and MeJA-treated tomato leaf tissues. (a) Venn 
diagram showing the total number of genes regulated by COR and MeJA at 12 h. Numbers 
represent genes with ≥twofold induction or repression in response to COR or MeJA. Bold 
font indicates the total number of genes regulated by each compound. (b) Hierarchical 
clustering of COR or MeJA inducible gene expression patterns in treated leaf tissues at 12 h 
post-inoculation.  
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also induced by COR, and 30.7% (124) of the MeJA-repressed genes were 
downregulated by COR (Figure 14-5a).  

In addition to identifying many unknown genes as MeJA/COR-
responsive (Figure 14-5b; Uppalapati et al., 2005), our results correlate well 
with previously reported JA or wound-regulated transcriptomes (Schenk  
et al., 2000; Sasaki et al., 2001; Cheong et al., 2002; Goossens et al., 2003). 
Based on average linkage hierarchical clustering, we selected four groups for 
further comparison of COR- and MeJA-induced genes (Figure 14-5b, A–D). 
Cluster A (A1–A4) consists of genes induced by both COR and MeJA. This 
group consisted of genes involved in JA responsiveness and JA biosynthesis 
(Figure 14-5b) and includes genes encoding leucine aminopeptidase, wound-
inducible serine proteinase inhibitors I and II, multicystatin, polyphenol 
oxidase, threonine deaminase, AOC, and OPR3. Interestingly, many genes 
implicated in wound and/or cellular signalling also clustered with the JA-
responsive genes. 

Both COR and MeJA induced a gene encoding cysteine protease (Figure 
14-5b, A4), an enzyme implicated in pathogen-induced cell death (Navarre 
and Wolpert., 1999). This may be relevant in the context of nutrient pools in 
the apoplast; for example, the release of nutrients from dying cells may 
facilitate pathogen multiplication in the necrogenic stage of its life cycle. 
Furthermore, COR and MeJA impacted the expression of genes involved in 
polyamine biosynthesis (Figure 14-5b, clusters A3 and A4). Similarly, MeJA 
is known to alter polyamine metabolism in barley (Walters et al., 2002). 
Cluster B consisted of genes induced by COR that were either suppressed or 
not differentially expressed in response to MeJA, including genes encoding 
lipoxygenase, auxin-related protein, NAC domain protein (NAC2), JA 
transcription factor 2, receptor-like protein kinase, homeobox protein 1, and 
abnormal inflorescence meristem 1. Cluster C consisted of genes induced by 
MeJA, but repressed in COR-treated tissues; this cluster included AIR12, 
which is involved in lateral root development, and a tuberization-related 
gene. Cluster D consisted of genes that were induced by COR and were not 
differentially regulated by MeJA. This cluster contained genes potentially 
involved in the ubquitin-proteasome pathway, including ubiquitin-related 
protein (RUB1) and ubiquitin-conjugating enzyme. Genes involved in 
ethylene (ACO1) and auxin metabolism (IAR3) were also represented in this 
cluster.  

tomato leaf tissues showed substantial overlap with respect to genes 
involved in JA biosynthesis and JA signaling, ethylene biosynthesis, and 
auxin metabolism. Functional analysis and determination of the biological 
relevance of the novel genes identified in this study will help us understand 
how COR and MeJA function in tomato. 

201

To summary, the transcriptional profiles of MeJA and COR-treated 



3 DISCUSSION 

3.1 Comparison of CFA, CMA, COR, and MeJA: 
tomato seedling assays and transcript profiling 

In biological assays with tomato leaf tissue and seedlings, CFA and 
MeJA induced proteinase inhibitors (Uppalapati et al., 2005), stimulated 
anthocyanin production, and inhibited root growth in tomato (Table 14-1). In 
transcript profiling experiments, we observed that MeJA and CFA regulated 
most of the JA-responsive genes (Figure 14-3), but were generally less 
active than COR in inducing the above-mentioned activities (Table 14-1; 
Figure 14-3). 

In this study, COR and MeJA, but not CMA, induced genes involved in 
ethylene biosynthesis and ethylene responsiveness (Figure 14-3). Ethylene 
plays an important role in the symptoms associated with bacterial speck of 
tomato and soybean (Lund et al., 1998; Weingart et al., 2001). In our 
transcript profiling experiments, COR induced genes associated with 
ethylene biosynthesis and responsiveness (Figure 14-3), suggesting that 
COR may modulate ethylene as a virulence strategy. 

COR also induced the expression of a set of auxin-related genes (Figure 
14-3), implying that auxin levels also play an important role in pathogenesis 
(Kunkel et al., 2004). In a study using potato tubers and mung bean 
hypocotyls, Sakai et al. (1979) concluded that auxin and COR have different 
primary sites of action but ultimately target the same physiological activities. 
Similarly, our results suggest that the COR-induced JA pathway may 
positively regulate auxin responses in tomato. This is consistent with the 
hypothesis that JA and auxin may function via a common signaling 
intermediate that modulates response to multiple plant hormones (Devoto 
and Turner, 2003).  

Our results show that COR modulates genes involved in the pathways to 
JA, ethylene, and auxin. This raises an interesting question: should COR be 
considered a phytotoxin or a phytohormone mimic? It is not surprising that 
COR targets these particular phytohormone pathways, as both ethylene and 
JA are known to positively regulate susceptible interactions between 
tomato/Arabidopsis and P. syringae (Kunkel and Brooks, 2002). A popular 
hypothesis is that COR may act as a suppressor of defence response(s), 
possibly by suppressing salicylic acid-dependent defences in Arabidopsis 
and tomato (Kloek et al., 2001; Zhao et al., 2003) Mutual antagonism 
between JA- and SA-mediated defense pathways is well documented 
(Kunkel and Brooks, 2002); consequently, COR may stimulate the JA 
pathway at the expense of SA-dependent defense responses. 
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3.2 Comparison of COR- and MeJA-regulated 
transcriptional changes 

One outcome of the present study was the identification of gene sets that 
respond differentially to COR and MeJA, supporting the contention that they 
have different activities based on the comparison of the expression profiles 
at a single time-point (Figures 14-3 and 14-5). Interpretation of these 
changes is complicated due to the differences in the kinetics of induction and 
by the fact that both primary and secondary transcriptional changes occur 
following exposure to MeJA or COR. For example, two recent reports 
document the existence of JA-modifying enzymes, including a MeJA 
esterase and a JA amino acid synthetase (Staswick and Tiryaki, 2004; 
Stuhlfelder et al., 2004). Presumably, a MeJA esterase could cleave 
exogenous MeJA to form JA, which could be further metabolized by a JA 
amino acid synthetase to form JA amino acid conjugates. These metabolized 
products of MeJA, along with the other MeJA-induced phytohormones (e.g., 
ethylene, IAA) could contribute to the secondary transcriptional changes in 
MeJA-treated leaves. This process may enable plant cells to “fine tune” the 
chemical signals that regulate plant growth and help maintain jasmonate 
homeostasis (Staswick and Tiryaki., 2004). However, it remains unclear 
whether COR is metabolized and forms conjugates with amino acids  
in planta. There are very striking differences in the structure of COR and 
MeJA (Figure 14-1a and d), and these changes might enable COR to 
“evade” MeJA-modifying enzymes. If COR is not further metabolized, this 
could lead to perturbations in JA homeostasis and result in phytotoxicity. 
Clearly, there are many unresolved questions regarding the activity of COR 
in modulating phytohormone pathways. Experiments are underway to 
further analyze COR/MeJA-responsive genes and the metabolites modulated 
by these compounds, which will help elucidate the mechanism of action for 
both COR and MeJA. 

4 EXPERIMENTAL PROCEDURES 

4.1 Plant material  

Lycopersicon esculentum Mill. cv. Glamour was used in all experiments. 
Plants were grown from seed in a peat:soil mix in 10 cm diameter plastic 
pots and maintained in growth chambers (25oC, 40–70% RH, 12 h 
photoperiod, photon flux density 150–200 µmol m–2 sec–1). Plants were 
approximately four weeks old at the time of treatment. 

203



4.2 Isolation and synthesis of coronatine-related 
compounds 

COR, CFA, and CMA were prepared as described previously (Jones  
et al., 1997). Methyl jasmonate was obtained from Bedoukian Research Inc. 
(Danbury, CT, USA), and ACC was obtained from Sigma (St. Louis, MO, 
USA). 

4.3 Plant treatments and RNA extraction  
for microarray analysis 

COR, CFA, and CMA (0.2 nmol per inoculation site) and MeJA (100 µM 
in 0.001% ethanol) were suspended in H2O, and 8 droplets were applied in 2 
µL aliquots onto tomato leaves. Sterile distilled H2O was applied to tomato 
leaves as a mock treatment. Two leaves per plant were harvested 12 h post-
treatment (hpt). Total RNA was purified with TRIzol™ reagent (Invitrogen, 
Carlsbad, CA, USA) according to the instructions of the manufacturer. 
Approximately 50 µg of RNA from each biological replicate was reverse-
transcribed to synthesize cDNA using Superscript II™ reverse transcriptase 
(Invitrogen).  

Tomato cDNA microarrays (Tom1 arrays) were obtained from the Center 
for Gene Expression Profiling, Cornell University (Ithaca, NY, USA). A 
brief description of the Tom1 array architecture, EST source and the 
complete list of the spotted genes (gene ID file) are provided (Alba et al., 
2004; Uppalapati et al., 2005). cDNA was hybridized to individual slides 
using a modified “2-step protocol” using the 3DNA™ Submicro Kit 
(Genisphere). Pre-processing of data was accomplished using GenePix 
Autoprocessor (GPAP) (P. Ayoubi, unpublished results). This analysis 
included: (1) removal of data points where signal was less than the 
background plus two standard deviations in both channels; (2) removal of 
poor quality spots; (3) removal of spots where the ESTs failed quality 
control; (4) log transformation of the background subtracted Cy3/Cy5 
median ratios; and (5) averaging the technical replicates within and across 
the replicates. Following pre-processing, the expression results were 
normalized using global LOWESS normalization (Yang et al., 2002). 
Normalized ratio values for each probe were averaged across valid signals 
obtained from three or more replicates. For each probe, the fold-change, 
moderated t-statistics (Smyth, 2004) and P values were determined. A 
candidate list of differentially expressed genes was then generated using a 
5% false discovery rate (FDR) and greater than twofold change between 
treatments. A total of six experiments were conducted. Expression images 
and average hierarchical gene clustering were generated using Genesis 
software, Release 1.4.0 (Sturn et al., 2002). 
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4.4 Phytohormone quantification 

Tomato leaves (~350 mg) were extracted and analyzed for SA, JA, and 
IAA using methods described by Schmelz et al., (2004). This method uses a 
quadropole MS system (5890 GC, Agilent, Palo Alto, CA, USA) connected 
to a 5989B Mass Selective Detector (Agilent) with electron spray ionization 
and selective-ion monitoring (selected ion ± 0.5 mass unit). The analytes 
were separated on a DB-5 column (30 m × 0.25 mm × 0.25 mm, Agilent) 
using the conditions described by Schmelz et al., (2004). The retention times 
and mass units of the methyl esters analyzed were: SA-ME, 8.35 min, 152; 
JA, trans 12.30 min/cis 12.54 min, 224; and IAA, 13.63 min, 189. Internal 
standards used were: [2H6]SA-ME (8.33 min, 156), dhJA-ME (trans 12.31 
min, cis 12.53 min, 226), and [2H5]IAA-ME (13.62 min, 191). The 
[2H5]IAA-ME was converted to [2H2]IAA-ME to produce a parent ion with a 
mass unit of 191. Isotopically labeled internal standards were purchased 
from CDN Isotopes (Pointe-Claire, Quebec, Canada), while dhJA was 
prepared from methyl dihydrojasmonate (Bedoukian Research Inc.) by 
alkaline hydrolysis. 
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PROFILING OF METABOLITES AND 
VOLATILE FLAVOUR COMPOUNDS 
FROM SOLANUM SPECIES USING 

Tom Shepherd, Gary Dobson, Rhoda Marshall, Susan R. Verrall, Sean 
Conner, D. Wynne Griffiths, Derek Stewart, and Howard V. Davies 

Abstract:  Methods are described for analysis of metabolites in potato tubers using GC-
 time-of-flight (TOF) MS and for analysis of flavour volatiles released from 
 raw and cooked potato tubers by automated thermal desorption (ATD)-GC-
 MS.  
 
Key Words:  flavour; gas chromatography; mass spectrometry; metabolites; potato tuber; 
 thermal desorption; time-of-flight; volatiles. 

1 INTRODUCTION 

We are using high throughput profiling techniques linked to automated 
data processing to study substantial equivalence and unintended effects of 
genetic modification in Solanum species. In addition, metabolite variation 
within Solanum germplasm collections is being measured with the objective 
of exploring phytochemical diversity. An example of this is the investigation 
of the role of tuber metabolites and volatile compounds in relation to the 
organoleptic properties of potato as characterised by specialist taste panels. 

Flavour molecules formed when potatoes and other foods are cooked 
arise from several sources (Maarse, 1991). Some compounds including 
aldehydes, alcohols and alkyl furans originate from lipids via enzymatic and 
non-enzymatic processes (Figure 15-1).  Aldehydes are also derived from 
amino acids and dicarbonyl compounds via the Strecker reaction.  
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Heterocyclic compounds are formed from carbohydrates and amino 
compounds via the Maillard reaction under more forcing conditions such as 
baking or roasting. 

Here we outline the methods we developed to study the relationship 
between potato tuber metabolites and flavour compounds. The method for 
analysis of polar and non-polar metabolites using gas chromatography-time-
of-flight mass spectrometry (GC-(TOF)-MS) was adapted from Roessner et al. 
(2000). Volatiles were collected using an entrainment system based on that of 
Robertson et al. (1993), and were analysed using automated thermal 
desorption (ATD) coupled with GC-MS. 

2 MATERIAL AND METHODS 

2.1 Plant material 

Potato tubers (6 or 7, average size) selected at random from storage were 

(Griffiths et al., 2001), immediately immersed in liquid N2 and bulked by 

fitted with a 1 mm screen and stored in the dark at −20°C until used for 
metabolite analysis. The remaining segments were used in the cooking 
experiments. 
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Figure 15-1. Origin of flavour volatiles released from cooked potato.  Precursor metabolites
are shown at the top, the main products formed on boiling are shown in solid boxes. 
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replicate. The sample was freeze-dried (FD), ground in a laboratory mill 

Two opposite eighths from each tuber were taken for freeze-drying
washed, blotted dry with tissue paper, weighed, and cut into eighths. 



2.2 Preparation and derivatization of tuber metabolites 

Powdered FD tuber (100 mg) plus the internal standards (IS) for polar 
–1) and non-polar (100 µL methanolic 

methyl nonadecanoate, 0.2 mg mL–1) components were shaken at 30ºC for 
30 min each with methanol (3 mL), water (0.75 mL) and chloroform (6 mL) 
in a glass culture tube. Water (1.5 mL) was added; the mixture was shaken 
by hand and separated on a centrifuge into upper (polar) and lower (non-
polar) fractions. 

An aliquot (250 µL) of the polar fraction was evaporated to dryness and 
oximated with methoxylamine hydrochloride in pyridine (80 µL, 20 mg mL–1) 
at 50ºC for 4 h and then silylated at 37ºC for 30 min with 80 µL of MSTFA 
(N-methyl-N-(trimethylsilyl)trifluoroacetamide). A subsample (40 µL) was 
taken and added to an autosampler vial containing an alkane retention index 
(Rt) mixture (compositional details are shown in Figure 15-4). After dilution 
(1:1) with pyridine the sample was analysed by GC-(TOF)-MS. 

The non-polar fraction was evaporated to dryness and transesterified at 
º

sodium chloride (5 mL, 5%) and chloroform (3 mL) the mixture was shaken 
and left to separate into two layers. The lower chloroform layer was shaken 
with potassium bicarbonate (3 mL, 2%) and then passed through a short 

chloroform and the combined chloroform fractions were evaporated to 
dryness and silylated with MSTFA (80 µL), chloroform (50 µL) and 
pyridine (10 µL) at 37ºC for 30 min. A subsample (40 µL) was prepared for 
analysis by GC-(TOF)-MS as described for the polar fraction. 

2.3 Analysis of tuber metabolites by GC-TOF-MS 

Polar and non-polar samples were analysed similarly using a Thermo 
Finnigan Tempus GC-(TOF)-MS system.  Samples (1 µL) were injected into a 
programmable temperature vaporizing (PTV) injector with a split of 167:1. 
The PTV conditions were injection temperature 132ºC for 1 min, transfer rate 
14.5ºC s–1, transfer temperature 320ºC for 1 min, clean rate 14.5ºC s–1, and 

MS column (15 m x 0.25 mm x 0.25 µm) using helium (He) at 1.5 mL min–1 
(constant flow). The GC temperatures were 100ºC for 2.1 min, 25ºC min–1 to 
320ºC then isothermal for 3.5 min. The GC-MS interface temperature was 
250ºC. MS acquisition conditions were electron impact (EI) ionisation at 70 
eV, solvent delay 1.3 min, source 200ºC, mass range 35–900 a.m.u. at 4 
spectra s–1. Data were acquired using the Xcalibur software package. 
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clean temperature 400ºC for 2 min. Chromatography was effected on a DB5-

(100 µL aqueous ribitol, 2 mg mL

50 C overnight with methanolic sulfuric acid (2 mL, 1%). After addition of 

column of anhydrous sodium sulfate. The column was washed with more 



 

2.4 Preparation and collection of flavour volatiles 

pyrex saucepan were heated on a 400 W hotplate for about 30 min at the 
maximum setting until the water started to boil. The tubers were simmered at 
reduced heat and periodically checked to assess the degree of cooking. 
Solanum tuberosum required a further 10 min, whereas S. phureja was ready 
for sampling after the initial 30 min. Water was drained off and six one 
eighth segments were taken for freeze drying. The remaining material was 
mashed and transferred to the entrainment vessel (Figure 15-2) which was 
sealed and allowed to cool for 1 h. A stainless steel ATD tube containing the 
porous polymer Tenax TA was connected to the system and filtered air was 
passed through at 100 mL min–1 for up to 24 h. The ATD tube was removed 
and back flushed with dry nitrogen at 25 mL min–1 for 30 min and then 
loaded onto the ATD autosampler for analysis by GC-MS. 

2.5 Analysis of flavour volatiles by ATD-GC-MS 

Full details of instrumentation and analytical conditions are given in 
Robertson et al. (1993). The ATD tube was heated at 200°C for 15 min in a 
flow of He and volatiles released from the tube were cryofocused at –25oC 
onto a cold trap containing Tenax-TA. Volatiles were then transferred to the 
GC by very rapid heating of the cold trap to 240oC. Chromatography was  

Figure15-2. Apparatus for entrainment of flavour volatiles from boiled potato tubers.
Filtered air was drawn through the glass collection vessel and sample then through the
stainless steel  ATD tube via PTFE tubing.  The vessel was sealed with PTFE tape at all
connections.
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Tuber segments (approximately 0.5 – 1.0 kg) and distilled water (1L) in a 



 

performed on a J & W DB 1701 column (60 m × 0.25 mm × 1.0 µm) with a 
GC oven temperature programme from 40°C to 240°C at 5° min-–1, followed 
by a 20 min isothermal period. The GC-MS interface temperature was 
250ºC, the source temperature was 200ºC. Data were acquired over the mass 
range 20–400 a.m.u at 1 scan s–1 using the MassLab software package.  

2.6 Data analysis  

Representative examples of Xcalibur raw data files for polar and non-
polar metabolites were used with the AMDIS software package to verify the 
presence of individual analytes, to deconvolute co-eluting peaks and to help 
identify ions(s) characteristic of each. Having selected suitable ion(s) for 
compound detection, data processing methods were created using Xcalibur. 
Time windows were defined for each component, including an appropriate 
IS, relative to an adjacent Rt standard. For each metabolite a selected ion 
chromatogram (SIC) was generated within the appropriate time window. 
The use of this method to deconvolute three co-eluting amino acids in the 
polar metabolite fraction is shown in Figure 15-3. Response ratios were 
calculated for each analyte relative to the IS using the calculated SIC areas 
for both components. These values were used directly during subsequent 
data analysis. 

After initial acquisition using Masslab, data for flavour volatiles was 
analysed using HP MS ChemStation after conversion from Masslab using 
the MassTransit file conversion software. Compositional analysis was based 
on integration of individual total ion chromatogram (TIC) peaks, and data 
for each component was expressed as a percentage of the total. Identification 
of compounds was based on the analysis of standards, comparison with MS 
libraries and literature data, and by extrapolation from known compounds. 
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Figure 15-3. Total ion chromatogram (TIC) and selected ion chromatogram (SIC) traces for
three co-eluting amino acid derivatives extracted from tubers of Solanum tuberosum.
Glutamine TMS3, m/z = 246; phenylalanine TMS2, m/z = 218; asparagine TMS3, m/z = 188. 
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Figure 15-4. Representative TIC of the polar (A) and non-polar (B) fractions of potato tuber 
extract including alkane Rt standards (C11–C38) and an IS, with selected metabolites named. 
Polar metabolites are silylated and additionally some sugars are also oximated. Fatty acids are 
present as methyl esters. Long-chain alcohols (alc), phytosterols, etc. are silylated.  
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Processed data was subject to appropriate statistical treatment such as 

3 RESULTS AND DISCUSSION 

3.1 Tuber metabolites 

In its final developed form, the profiling method was used to characterize 
a total of about 200 major and minor polar and non-polar metabolites in 
potato tubers (Figure 15-4), of which 50% could be identified. During 
derivatization of non-polar components, methyl oximes of aldose and ketose 
sugars such as fructose and glucose are formed from the condensation 
reaction between the carbonyl group of the acyclic form of the sugar and 
methoxylamine hydrochloride. This locks the sugar in the acyclic form to 
give two positional isomers per sugar and in theory avoids the formation of 
anomeric furanose and pyranose forms. In practice, the extent of oximation 
is temperature and time dependent. The presence of appreciable amounts of 

Figure 15-5. Effects of: (A) temperature on oximation of potato tuber sugars for 45 minutes
and (B) time on oximation at 50ºC, followed by silylation with MSTFA.  Derivatives shown
are fructose O-methyloxime (TMS)5; fructose (TMS)5; glucose O-methyloxime (TMS)5;
glucose (TMS)5; sucrose (TMS)8.  The arrow indicates optimum oximation conditions. 
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unoximated derivatives complicates both the chromatography and data  

principal components analysis (PCA) or analysis of variance (ANOVA). 
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(B) standards relative to the internal standard, ribitol. All metabolites as TMS derivatives. 

 
analysis. An additional consideration is the stability of other metabolites, in 
particular sucrose, which degrades to glucose and fructose under more 
extreme conditions. Therefore we investigated the effects of temperature 
(Figure 15-5A) and time (Figure 15-5B) on oximation to find optimal 
conditions. At lower temperatures and shorter times the reaction is income-

essentially complete but sucrose degrades. Optimum conditions were found 
to be 50oC for 4 h. 

(Figure 15-6). Measurements were made relative to a fixed quantity of IS. 

3.2 Flavour volatiles 

Of the 83 compounds identified in the potato volatile profile, the major 
components included straight (n-) and branched-chain (br)- aldehydes and 
alcohols, acetone, hexanoic acid, sulphur compounds, benzaldehyde, and 
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Figure 15-6. Linearity of response ratio for polar metabolites in (A) potato extracts and in 

The linearity of the profiling method was shown in two ways. Individual 

were conducted of extracts made from different amounts of FD potato 

plete. At higher temperatures and longer times oxime formation is 

compounds were analysed at a range of concentrations, and the analyses



 
 
Figure 15-7. (A) TIC trace of potato flavour volatiles entrained on Tenax TA showing the 
structures of the major components. (B) Composition of Volatiles from cooked unpeeled 
(UP), cooked peeled (P), and raw unpeeled (R) tubers of Solanum tuberosum cv. Montrose. 
Compounds originate from: lipid oxidation (L); amino acids via the Strecker reaction (S); 
various sources (V). Sniff test characterisations are base on published literature data (see main 
text).  Relative totals are based on combined TIC peak areas. 
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Figure 15-8. Accumulation of potato flavour volatiles from cv. Montrose with time. 

alkyl-furans (Figure 15-7A). The distribution of such compounds varied 
between cooked (peeled and unpeeled) and raw (unpeeled) tubers (Figure 
15-7B). Volatiles were entrained directly from raw tuber segments by 
omitting the cooking step. Cooked material generated relatively more pen-

5 6 n-
aldehydes, whereas hexanoic acid and the longer n-C7 and n-C8 aldehydes 
were characteristic of raw tubers. It is of note that in the sniff test evaluation 
of potato flavour by specialist panels, 3-methylthiopropanal and hexanoic 
acid were characterised as smelling of cooked and raw potato respectively 
(Petersen et al., 1998; Ulrich et al., 2000). Considerably more volatile 
compounds were released from cooked and mashed tubers than from raw 

were peeled prior to cooking. The relative abundance of br-aldehydes and 
alcohols was significantly greater from unpeeled tubers, suggesting that the 
precursor metabolites may be particularly associated with regions close to 
the outer epidermis. 

In a series of test experiments, similar quantities of volatiles accumulated 
during entrainment over each of the periods 0–2 h, 2–6 h, and 6–24 h 
(Figure 15-8) indicative of reduced rates of volatile production with time. 
Although the overall composition remained similar, the abundance of some 
components, such as hexanal, increased over the 6–24 hour period, 
indicating that some processes generating volatiles were still active. 
Consequently, entrainment for 24 h was selected for definitive experiments. 
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tubers, and the quantities generated from cooked material was greater if they 
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tylfuran, 3-methylthiopropanal and more of the shorter C  and C

In Chapter 19 we report how the methodology described here was
used to study phytochemical diversity between two solanum species in
terms of their tuber metabolites and flavour volatiles (Dobson  et al., 2007).
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Chapter 16 

METABOLOMIC ANALYSIS OF LOW  
PHYTIC ACID MAIZE KERNELS 

Jan Hazebroek, Teresa Harp, Jinrui Shi, and Hongyu Wang 
Pioneer Hi-Bred International, Inc., a DuPont company, P.O. Box 1004, Johnston, IA 50131-
1004 USA 

Abstract: Phytic acid, or hexaphosphorylated myo-inositol, is the major storage form of 
phosphorous (P) in maize kernels. Phytic acid in foods or animal feeds can 
complex with proteins and mineral cations resulting in reduced bioavailablility 
of important nutrients. Classic mutation breeding has been used to develop 
maize plants that produce kernels with significantly less phytic acid. An 
extensive survey of the low phytate phenotype in different maize genetic 
backgrounds grown in five field locations revealed that an increase in 
inorganic P correlated with a decrease in phytic acid P, but the increased 
amount of inorganic P did not consistently account for the P reduction noted in 
the low phytate lines. There were no quantitative phosphorous differences in 
phospholipids or starch. In follow-up experiments using a metabolomics 
approach, both mutant and wild type kernels were obtained from a single 
segregating ear, minimizing variability. Individual mature kernels were 
lyophilized and ground. Kernel phenotype was determined by using a simple 
colorimetric test for inorganic P content. Kernels of similar phenotype were 
pooled and extracted in aqueous methanol and partitioned into polar and 

and raw data was processed using the Leco ChromaTof peak deconvolution 
software. Compounds were identified via coelution and/or mass spectrum 
matching with authentic standards. Each of these metabolites was semi-
quantified by calculating the ratio of the peak area of a characteristic extracted 
ion against that of the internal standard and correcting for sample weight.  
P-containing metabolites were recognized easily by a prominent m/z 299. 
Several P-containing metabolites were more abundant in low phytic acid 
kernels, although it is unlikely that they are responsible for the reduced yield 
associated with this phenotype. 

1 INTRODUCTION 

Phytic acid (myo-inositol 1,2,3,4,5,6-hexakisphosphate, Figure 16-1) is a 
very abundant molecule in the seeds of many cereals and legumes (Shi et al.,  
 

nonpolar fractions. Metabolites were derivatized and subjected to GC/TOF/MS, 
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Figure 16-1. Phytic acid, or hexaphosphorylated myo-inositol. 

2003). The negatively charged molecule is associated in planta with cations 
such as K+, Mg2+, and Ca2+. As such, phytic acid is a major storage form of 
myo-inositol, phosphate as well as, several mineral cations, all needed to 
sustain seedling development. Phytic acid is also believed to be central to the 
control of inorganic phosphate levels in both developing seeds and growing 
seedlings (Strother, 1980). 

The unique chemical properties of phytic acid have significant 
consequences for human and animal nutrition. Phytic acid absorption by the 
digestive track depends largely on microbial phytase activity, which is 
essentially lacking in nonruminant animals, including humans (Holm, 2002). 
Furthermore, the intact phytic acid molecule will interfere with absorption of 
nutritionally important minerals such as iron, zinc, and magnesium, resulting 
in suboptimal animal weight gain, or affect adversely human nutrition in 
communities dependent on a high grain diet (Zhou and Erdman, 1995). For 
this reason, phytic acid can be categorized as an anti-nutritional component 
in many maize-based foods and feeds. Of great concern to the livestock 
industry is the potential for substantial amounts of phosphorous (P) in the 
form of undigested phytate to be excreted in animal manure, contributing to 
environmentally damaging levels of P in runoff from high density livestock 
operations (Cromwell and Coffey, 1991). Clearly, reducing the amount of 
seed phytic acid in cereal grains commonly fed to animals and/or people 
while maintaining the amount required for normal seed and seedling 
development could be advantageous.  

To address these needs, mutant and transgenic low phytic acid maize, 
barley, rice, wheat, and soybean have been developed (Larson et al., 1998; 
Wilcox et al., 2000; Hitz et al., 2002; Raboy, 2002; Guttieri et al., 2004).  
Low phytic acid (lpa1) maize is a chemically (EMS) induced mutant with a  
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Figure16-2. Putative phytic acid biosynthesis in maize.  mi1ps, 1D-myo-inositol-1-phosphate 
synthase; Ins(3)P, myo-inositol-3-phosphate; Ins(1,4,5)P3, myo-inositol-1,4,5-triphosphate; 
IP, myo-inositol-phosphate; IP2, diphosphorylated myo-inositol-phosphate; IP3, triphos-
phorylated myo-inositol-phosphate; IP4, tetraphosphorylated myo-inositol-phosphate; IP5, 
pentaphosphorylated myo-inositol-phosphate; imp, myo-inositol monophosphatase; MI, myo-
inositol; PI, phosphatidylinositol; PIP, phosphatidylinositol-phosphate; PIP2, phosphate-
dylinositol-diphosphate.  
 
65% reduction in seed phytic acid content and about a tenfold increase in 

than six esterified phosphates (“lower myo-inositol phosphates”) do not 
accumulate. We have determined that the lpa1 mutation essentially does not 
change the amounts of total P, oil, protein, starch, K+, Mg2+, Ca2+, Mn2+, 
Zn2+, and Fe3+. Although lpa1 seed development, seed desiccation, seed 
germination, seedling development, and seedling vigor are all normal, there 
is typically up to 15% unexplainable loss of kernel dry weight (yield). 

The LPA1 gene has been mapped to Chromosome 1 (Raboy et al., 2000) 
but its function is not known. Other low phytic acid maize traditional 
mutants have been isolated subsequently. Kernels of the lpa2 mutant 
accumulate significant amounts of myo-inositol-P3, myo-inositol-P4, and 
myo-inositol-P5 (Shi et al., 2003). A third mutant (lpa3), like lpa1, does not 
accumulate the lower myo-inositol phosphates in their seeds (unpublished 
observation).  

The genetics and biochemistry of phytic acid synthesis in maize is 
incompletely understood despite intensive analyses of several lpa mutants 
(Raboy et al., 2000; Shi et al., 2003). It is clear that the first step in 
committed phytic acid biosynthesis is the conversion of glucose-6-P to myo-
inositol-3-P catalyzed by myo-inositol-P synthase (Milps, Figure 16-2).  In 
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free inorganic phosphorous (Pi). The myo-inositol phosphates with fewer 



developing kernels, phytic acid is synthesized by sequential kinase-catalysed 
phosphorylations. Myo-inositol-P can also be dephosphorylated and the 
liberated sugar alcohol can be incorporated into phosphatidylinositol 
followed by an alternative phosphorylation pathway to phytic acid. Myo-
inositol is also the precursor to various raffinosaccharides, cell wall compo-
nents, and auxin conjugates. However, the metabolic flow through these 
pathways in wild type and mutant kernels is unknown. 

We hypothesize that phosphorous-containing metabolite(s) that accu-
mulate in low phytic acid maize kernels are associated with reduced kernel 

initially to identify those that might be tied to reduced yield. This effort was 
followed up with a more comprehensive metabolomics approach. We also 
anticipate that comparison of results from wild type and low phytic acid type 
might define better our incomplete understanding of phytic acid biosynthesis 
in these mutant kernels. 

2 METHODS 

2.1 Analysis of phytic acid, inorganic, and total P  
in field-grown seeds 

Twenty inbred and hybrid lines with wild-type phenotypes were planted 
alongside their lpa1 conversions at five locations within the US Midwest 
Corn Belt. Plots at each location were harvested at the same time, and the 
seeds were cleaned, dried, and analyzed for phytic acid, inorganic P, and 
total P. Phytic acid was measured by anion exchange HPLC. Seeds were 
ground using a Kleco ball mill (Visalia, CA). Samples were weighed (500 
mg) into 20 mL scintillation vials. A 5 mL of 0.4M HCl was added and the 
samples were shaken on a gyratory shaker at room temperature for 2 h. 
Extracts were filtered through a 0.45 µm PVDF syringe filter attached to a 5 
mL plastic disposable syringe barrel. A 450 µL aliquot was filtered through 
a 0.2 µm microcentrifuge spin filter unit and then transferred to a 2 mL glass 
autosampler vial fitted with a 400 µL glass insert. A Dionex DX 500 HPLC 
equipped with a Thermo Separation Products AS3500 autosampler was used. 

analytical column (4 × 250 mm) in line with an OmniPacTM PAX-100 guard 
column (4 × 50 mm) and an ATC-1 anion trap column. A Dionex conduc-
tivity detector module II was used with an anion self-regenerating suppressor 
(ASRS-Ultra II) set up in the external water regeneration mode and operated 
with a current of 300 mA. Phytic acid was eluted at 1 mL min–1 with the 
following mobile phase program: H2O/200 mM NaOH/50% aqueous iso-
propanol (68/30/2) for 4.0 min, followed by a step gradient to H2O/200 mM 
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dry weight. A targeted analysis of phosphorylated compounds was done 

TM Extracts were injected in 25 µL amounts onto a Dionex OmniPac    PAX-100 
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NaOH/50% aqueous iso-propanol (39/59/2) at 14.1 min, then a step gradient 
return to initial conditions at 15.1 min, followed by equilibration for 15 min. 
The separation was performed at room temperature. The concentration of 
phytic acid P was calculated from the concentration of phytic acid by 
dividing the former by the molecular weight of the sodium phytate standard, 
multiplying by 6 (P per phytic acid molecule), and multiplying by 31 
(molecular weight of P).  Inorganic P was measured spectroscopically using 
modifications of the method of Chen et al. (1956) (Shi et al., 2003).  Total P 
was determined by a contract laboratory using inductively coupled plasma 
spectroscopy. 

2.2 Targeted analysis of P-containing kernel constituents 

Bulk samples of mature kernels from Pioneer Hybrid 3730 (wild type) 
and its lpa1 hybrid conversion were used for targeted analysis of P-
containing constituents.  These two seed sources were grown at the same 
field location.  Phospholipids were extracted twice from 1.0 g ground seeds 
in two 3 mL aliquots of ice cold methanol:chloroform:formic acid (10:10:1) 
with centrifugation for 5 min at 2500 revolutions per minute (rpm) after each 
extraction. The pellet was re-extracted twice with two 3 mL aliquots of 
methanol:chloroform:H2O (5:5:1), again with centrifugation for 5 min at 
2500 rpm after each extraction.  The supernatants from all four extractions 
were combined, and 3.6 mL of a solution containing 1.16 mL 85% H3PO4 
and 7.455 g KCl in a total volume of 100 mL were added.  The solution was 
vortexed and centrifuged for 5 min at 2500 rpm. Major phospholipids in the 
lower layer were determined by normal phase HPLC with evaporative light 
scattering detection adapting the method of Picchioni et al. (1996). 

Phosphorous was measured in starch extracted from isolated endosperm, 
the kernel tissue where the majority of starch is found (Perry, 1988). The 
extraction and purification of starch was according to the method of Bechtel 
and Wilson (2000) with modifications. The endosperm was ground to a fine 
powder in a Kleco ball mill. One and one-half grams ground endosperm 
were incubated for 60 min at 37°C with 25 mL H2O and 10 mL 0.8% Pepsin 
A in 0.04N HCl. Five milliliters 0.08% hemicellulase (1500 units/g activity) 
in 0.1M sodium acetate were added, and the reaction mix was incubated an 
additional 3 h at 45°C. Five milliliters of detergent mix (5% Triton X-100, 
5% Tween 40, 5% SDS, and 5% Triton X-15) were added, and the reactions 
were vortexed and centrifuged for 5 min at 2500 × g at 20°C, and the 
supernatant was discarded. The pellet was resuspended in 25 mL H2O, 
vortexed, centrifuged, and decanted as before. The water washing, vortexing, 
centrifuging, and decanting steps were repeated three times. The pellet was 
resuspended in 2 mL H2O and applied on a 53 µm or 75 µm-mesh screen 
and washed with approximately six volumes of water. The filtrate was 

225



centrifuged for 5 min at 2500 × g at 20°C, and the supernatant was 
discarded. The resulting pellet was dissolved in 3 mL 70% ethanol, vortexed, 
centrifuged, and the supernatant was discarded. The final purified starch 
pellet was lyophilized for a minimum of 48 h. The entire procedure was 
performed on 20 wild type and 20 lpa1 1.5 g samples, and the purified starch 
from each phenotype was pooled to accumulate sufficient material for 
subsequent total P determination. 

2.3 Metabolomic analysis of individual kernels 

Wild type and lpa1or lpa3 plants were crossed to obtain kernels on F1 
ears segregating 1:1 for the mutant genotype. At physiological maturity, 
individual kernels were removed from the cob and frozen immediately in 
liquid nitrogen. Only kernels from the central portion of the ear were 
harvested; the butt and tip kernels were discarded. The kernels were 
lyophilized and ground to a fine powder in a Genogrinder 2000 ball mill 
(SPEX CertiPrep, Metuchen, NJ). The low phytic acid phenotype of 
individual kernels was determined indirectly by measuring the amount of Pi 
spectroscopically using modifications of the method of Chen et al. (1956) 
(Shi et al., 2003).  

Metabolites were extracted from 30 mL ground material from each of 10 
wild type and 10 low phytic acid kernels. Extraction and chemical deriva-
tization were performed according to the method of Fiehn et al. (2000) 
(Figure 16-4). Both lpa1 and lpa3 mutants and their wild-type controls were 
analyzed. The unique experimental design minimizes greatly the environ-
mental influence on metabolite expression, since every sample developed 
within the same ear. The nonpolar fractions, after methylation and 
trimethylsilylation, and the polar fractions, after methoxyamination and 
trimethylsilylation, were subjected to GC/TOF/MS.  The trimethylsilyl deriva-
tives were separated by gas chromatography on a Supelco 30 M × 0.25 mm 
I.D. × 0.25 mm film thickness SPB-50 column. One-microliter injections 
were made with a 1:10 split ratio using an Agilent 7683 autosampler. The 
polar extracts were rerun in the splitless mode in order to improve sensitivity 
for some phosphorous-containing metabolites. 

An Agilent 6890N gas chromatograph was programmed for an initial 
temperature of 70ºC for 5 min, increased to 310°C at 5º min–1 where it was 
held for 1 min. The injector and transfer line temperatures were 230ºC and 
250ºC, respectively, and the source temperature was 200ºC. He was used as 

–1
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the carrier gas with a constant flow rate of 1 mL min  maintained by electro-
nic pressure control. Mass spectra were obtained online with a Leco Pegasus
III time-of-flight (TOF) mass spectrometer. An electron beam of –70eV was



16. Low Phytic Acid Maize  

 
Figure 16-3. Extraction and derivatization scheme for metabolomics analysis of maize 
kernels.  MeOH, methanol; CHCL3, chloroform; MSTFA, N-methyl-N-trimethylsilyl-trifluoro-
acetamide.  

–1. 

relative amount of each metabolite was based on the hand-curated area of the 
extracted ion chromatogram of a characteristic quantifying m/z value.  All 
quantifications were normalized to the peak area of quantifying m/z value of 
the internal standard and the initial sample dry weight. Student’s T-tests 
were performed to evaluate the statistical significance of the mean relative 
amounts of each metabolite in wild type and low phytic acid kernels.  

3 RESULTS AND DISCUSSION 

3.1 Phosphorous balance in field-grown seeds 

The reduced phytic acid content of the lpa1 mutant was evident in all 
combinations of genetic background and planting location (Figure 16-4).  
There were no significant effects of either genetics or location on this 
relationship.  There was about twice the amount of phytic acid in lpa1 

Harvest individual mature kernels from segregating ears 

Freeze immediately in liquid nitrogen 

Lyophilize and grind 

Add nonadecanoic acid and ribitol internal standards

Extract with 50% aqueous MeOH at 70° for 15min 

Centrifuge

Re-extract pellet with CHCL3 at 37° for 5min 

Centrifuge

Combine supernatants, vortex, centrifuge

Lower nonpolar fraction Upper polar fraction

Transmethylate with 3% H2SO4 Form methoxyamines with 
in MeOH at 100° for 4h methoxyamine HCl at 30° for 90min

Trimethylsilylate with MSTFA at 37° for 30min 

GC/TOF-MS on 30M x 0.25µ SPB-50 column in
Agilent 6890 GC/Leco Pegasus III TOF-MS

Assay Pi phenotype
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used to generate spectra with a mass range of m/z 41–999 at a sampling rate 
of 5 spectra s
spectrum and retention of appropriately derivatized authentic standards.  The 

 .  Metabolites were identified based on a match to both the mass 



kernels of sample 20 compared with those of the other genetic backgrounds, 
but still significantly less than in sample 20 wild-type kernels.  This increase 
is undoubtedly due to the high oil character of sample 20.  A proportionally 
larger embryo characterizes these high oil kernels.  Thus, more phytic acid is 
to be expected on a whole-kernel weight basis since it accumulates 
preferentially in the embryo (O’Dell et al., 1972).  We did not measure 
phytic acid in isolated embryos.  As expected, Pi contents in these kernels 
exhibited an inverse relationship to that of phytic acid.  Total P was 
relatively constant in kernels of samples 1–19, but was slightly higher in 
those of the high oil type (sample 20) due to their proportionally larger 
embryos (Figure 16-4). 

The lack of variability seen in measured phytate and Pi of the low phytic 
acid phenotype observed in this field trial suggests that this trait could be 
used potentially in a breeding program. However, significant reductions in 
seed yield are observed consistently with lpa1 plants compared with wild-
type plants. Although the physiological basis for this yield reduction is 
unknown, an obvious suggested cause would be a disrupted P balance.  
Yield reduction could be attributed to the reduction in phytic acid and/or 
elevation in Pi, although it is possible that other P-containing metabolites are 
involved. Our data show about 32% of the total P in lpa1 kernels is 
unaccounted for vs 9% in the wild-type kernels (Table 16-1). There was a 
very consistent and significant increase in the amount of organic P not 
associated with phytic acid in low phytic acid kernels in all genetic 
backgrounds and planting locations. To better understand where the unac-
counted P has accumulated, we attempted to quantify P in the major P-
containing biomolecules in lpa1 and wild-type kernels using a targeted 
analysis approach.  For practical reasons, we used a single seed source for 
this more in-depth analysis. 

3.2 Targeted analysis of P-containing kernel constituents 

As expected, all four of the major membrane-associated phospholipids 
(phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and 
phosphatidylserine) were found in the nonpolar kernel extracts.  However, 
there were no significant differences in the amounts of any of these 
phospholipids between wild type and lpa1 kernels, suggesting that altered 
membrane function is not associated with reduced lpa1 kernel weight. We 
also did not find a significant difference in the amount of P associated with 
endosperm starch between wild type and lpa1 kernels.  This is perhaps not 
surprising since a mutation affecting P incorporation into phytic acid in the 
embryo would influence P content of starch in the endosperm. Although 
scenarios can be suggested to account for this, it is more likely that the effect 
of the lpa1 mutation would be restricted to P metabolism in the embryo.  To 
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investigate this possibility, we plan to measure the P content of embryo-

unaccounted P in lpa1 kernels led us to conduct a more comprehensive 
metabolomics approach. 

 

 

Figure 16-4. Phytic acid phosphorus, Pi, and total P in whole kernels from wild-type plants 
(solid bars) and their lpa1 conversions (hashed bars) of different genetic backgrounds grown 
at five different locations within the US Midwest. 
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associated proteins. Regardless, the lack of an obvious candidate for the 



Table 16-1. Phosphorus accounting in wild type and lpa1 maize kernels 

3.3 Metabolomic analysis of individual kernels 

Total ion chromatograms from the polar extraction of wild type and lpa1 
kernels were fairly similar (Figure 16-5).  Approximately 24 clearly defined 
peaks were apparent in both samples, with relatively few quantitative 
differences between the two.  However, the high data collection rate of the 
TOF analyzer coupled with the uniformity of mass spectra across a peak 
affords automated peak deconvolution, resulting in reliable identification 
and reproducible quantitation of even very closely eluting metabolites.  Total 
ion chromatograms from the nonpolar extraction of wild type and lpa1 
kernels were also fairly similar to each other (data not shown). 

Since we are interested particularly in P-containing metabolites, we took 
advantage of the fact that m/z 299 in our electron impact mass spectra is 

unaccounted P in lpa1 kernels, even if these molecules exist at very low 

m/z 299 fragment were significantly more abundant in lpa1 kernels compared 
with wild-type kernels (Figure 16-6). These peaks include the TMS deri-
vatives of phosphoric acid, glycerol-3-phosphate, phosphatidylinositol, and 

unknown metabolite of phosphatidylinositol, defined as such since it was 
identified when an authentic phosphatidylinositol standard was subjected to 
the sample preparation and derivation process, was significantly more 

metabolites were present at low levels in lpa1 kernels, too low to account for 
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two unknown phosphorylated metabolites (Table 16-2). In addition, an 

abundant in wild-type kernels. However, all of the organic P-containing 

relative abundances.  Not surprisingly, most of the peaks characterized by an 

diagnostic of such compounds due to instability of the ester-linked trimethyl-
silylphosphate moiety. This allowed us to identify likely sinks for the 

Component Wt 

mg g–1

 
Total P 3.38  3.25 

Phytic acid P 2.93  1.11 

Inorganic P 0.14  1.11 

Remainder 0.31  1.03 

 

lpa1 
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Figure 16-5. Total ion chromatograms (TIC) of polar extractions of wild type and lpa1 
kernels. 

a significant proportion of the unaccounted P. Interestingly, our findings are 
not consistent with the presumed biosynthetic pathway of phytic acid in lpa1 
mutant kernels.  This may not be surprising since we worked with fully 
mature kernels that (1) should exhibit much less active phytic acid synthesis 
than developing kernels and (2) contain a significant amount of endosperm 
that does not accumulate phytic acid, thus effectively diluting metabolites 
involved directly in phytic acid synthesis.  For these reasons, we plan to 
repeat this study with developing embryos. 

The relative expression of all the identified polar and nonpolar 
metabolites in lpa1 compared with wild-type kernels is presented in Tables 
16-2 and 16-3, respectively.  There were only two metabolites, glycerol and 
phosphoric acid, that were found in both polar and nonpolar extracts.  Both 
metabolites were far more abundant in the polar fraction, as expected for 
molecules with multiple hydroxy groups.  Their presence in the nonpolar 
fraction could be due to hydrolysis of hydrophobic glycerolipids and 

found in the nonpolar metabolite profiles since they are not detectable with 
the GC conditions employed.  Regardless, it is important to recognize such 
supposed artifacts of the analytical process when evaluating the biological 
significance of metabolite profiles.  As expected, metabolites represented by 
two different derivatives (i.e., different numbers of methyl or trimethylsilyl 
groups) showed similar expression between the two phenotypes, indicating 
consistent extraction and detection.  Aside from the aforementioned P- 
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phospholipids during sample preparation, probably during the high temp-
erature methylation step.  Intact glycerolipids or phospholipids were not 

containing metabolites, the lpa1 phenotype was associated with little change 



 

 
 

Figure 16-6. Partial extracted ion chromatograms for m/z 299 of polar extractions of wild 
type and lpa1 kernels.  

in the amounts of the primary metabolites measured.  This result suggests 
either a limited perturbation of primary metabolism by the lpa1 mutation, or 
alternatively, the analytical precision and number of replicate samples were 
insufficient to uncover more subtle changes. A somewhat different picture 
emerges from the relative expression of identified polar and nonpolar 
metabolites in lpa3 kernels compared to their wild-type controls (Tables 16-4 
and 16-5, respectively).  As in lpa1 kernels, the relative amounts of several 
P-containing metabolites were correlated with the lpa3 genotype. These 
metabolites were phosphoric acid, glycerol-3-phosphate, sucrose-6-
phosphate, phosphatidylinositol, and all three unknown phosphorylated 
metabolites observed in lpa1 kernels.  As in lpa1 kernels, all of the organic 
P-containing metabolites in lpa3 kernels were present at levels too low to 
account for a significant portion of the unaccounted P.  As in lpa1 kernels, 
our results are not consistent with the presumed biosynthetic pathway of 
phytic acid in lpa3 kernels. We also plan to repeat this study with developing 
embryos. 

The metabolic profile of lpa3 kernels exhibits far more differences in 
non-P-containing metabolites compared to wild type than that of lpa1 
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kernels. Several amino acids, organic acids, sugars, fatty acids, fatty 
alcohols, alkanes, phenolic acids, and phytosterols were affected.  However, 
the physiological significance of the altered amounts of these diverse 
primary metabolites is unknown.  Several phenolic acids were found in both 
polar and nonpolar extracts, often as different derivatives.  For example, the 
TMS ester, TMS ether derivatives of caffeic and ferulic acids were found in 
the polar fraction, while the methyl ester, TMS ether derivatives appeared in 
the nonpolar fraction that underwent transmethylation.  Although there were 
 

Table 16-2. Differential polar metabolite expression in lpa1 and wt maize kernels 

Metabolitea a lpa1:wt 
Alanine,N,O TMS 0.9 Malic acid TMS 1.1 
β-Alanine,N,N,O TMS  0.8 Succinic acid TMS 1.1 
4-Aminobutyric acid TMS  0.5** Glycerol-3-phosphate TMS 1.5** 
Asparagine,N,N,O TMS  1.0 myo-Inositol-1/3-phosphate TMS 1.3 
Asparagine,N,N,N,O TMS  0.5 Phosphatidylinositol TMS 1.7** 
Asparatic acid,N,O,O TMS  0.7* Phosphatidylinositol metabolite TMS 0.8** 
Glutamic acid,N,O,O TMS  0.9 Phosphoric acid,O,O,O TMS 1.8*** 
Glutamine,N,N,O TMS  1.0 Unknown phosphorylated metabolite TMS 1  4.3*** 
Glycine,N,N,O TMS  0.8 Unknown phosphorylated metabolite TMS 2  1.8** 
Homoproline,O TMS  0.9 Arabinitol TMS  1.2 
Homoproline,N,O TMS  0.9 Erythritol TMS  0.8 
2-Hydroxyglutaric acid TMS 1.2 myo-Inositol TMS 1.7** 
Isoleucine,N,O TMS  1.0 Sorbitol TMS 0.6 
Leucine,N,O TMS 0.9 Caffeic acid TMS b 
Methionine,N,O TMS  0.8 Ferulate acid TMS 0.2 
Phenylalanine,N,O TMS  1.0 Adenine TMS 1.5 
Proline,N,O TMS  0.9 Arabinose MeOX2 TMS 0.9 
Pyroglutamic acid,N,O TMS 0.9 Fructose MeOX1 TMS 0.8* 
Serine,O,O TMS  0.0 Fructose MeOX2 TMS 0.8* 
Serine,N,O,O TMS 0.9 Galactose MeOX1 TMS  0.5 
Threonine,N,O,O TMS  0.7 Galactose MeOX2 TMS  2.0 
Tyrosine,N,O TMS 0.8 Glucose MeOX1 TMS 0.8 
Tyrosine, N,O,O TMS  1.0 Glucose MeOX2 TMS 0.8 
Valine,N,O TMS  1.0 Glucuronic acid MeOX1 TMS 0.9 
Glyceric acid TMS  1.0 Glucuronic acid MeOX2 TMS b 
Glycerol TMS  0.9 Raffinose TMS 0.8 
Citric acid TMS 0.9 Sucrose TMS 1.0 
Fumaric acid TMS  0.7   

 

aTMS, trimethylsilyl ester; MeOX, methoxyamine.  

bNot found in wild type.  

*Means are significantly different at P<0.1. 
**Means are significantly different at P<0.05. 
***Means are significantly different at P<0.01. 
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 Table 16-3. Differential nonpolar metabolite expression in lpa1 and wild type maize kernels 

Metabolitea 
14:0 Me 1.2 
16:0 Me 1.0 
16:0 TMS  1.2 
16: 1cis∆7 Me 1.1 
17:0 Me 1.1 
18:0 Me 1.1 
18:1cis∆9 Me 1.0 
18:1cis∆9 TMS 0.8 
18:2cis∆9,12 Me 1.0 
18:2cis∆9,12 TMS 1.6 
18:3cis∆9,12,15 Me  0.9 
20:0 Me 1.5 
20:1cis∆11 Me 2.0 
22:0 Me 0.4 
23:0 Me 0.8 
24:0 Me 1.1 
25:0 Me 3.7 
26:0 Me 2.6 
  
2HO-20:0 MeTMS  1.3 
2HO-22:0 MeTMS  2.2 
2HO-24:0 MeTMS  0.5 
  
ρ-Coumaric acid MeTMS 0.7 
3,5-Di-tert-butyl-4-hydroxybenzoic acid Ee 1.2** 
4-Methoxy, 3-hydroxycinnamic acid Me 1.1 
  
Campesterol TMS 0.6 
β-Sitosterol Me 1.1 
β-Sitosterol TMS 1.2 
Stigmasterol TMS  0.2 
  
Glycerol TMS 
Phosphoric acid,O,O,O TMS 0.3 

 
aMe, methyl ester; TMS, trimethylsilyl ester; MeTMS, methyltrimethylsilyl ester; Ee, ethyl 
ester. 
bNot found in lpa1. 
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**Means are significantly different at P<0.05. 

some free phenolic acids in the polar fraction, as a class they were far more 
abundant in the nonpolar fraction.  This finding suggests that the phenolic 
acids were liberated by hydrolysis of hydrophobic conjugates, presumably 
phenolic acids esterified to phytosterols and/or various acyl groups, during 
sample preparation, most likely during transmethylation.  As with glycerol 
and phosphoric acid in lpa1 kernels, the biological significance of phenolic 

b 

lpa1:wt
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Table 16-4. Differential polar metabolite expression in lpa3 and wild type maize kernels 

Metabolitea a lpa3:wt 

β-Alanine,N,N,O TMS  0.9 Indoleacetic acid TMS 0.7 
ρ-Coumaric acid MeTMS 1.0 Homoproline,N,O TMS  0.2** 
2-Hydroxyglutaric acid TMS  1.7** Isoleucine,N,O TMS  0.7** 
4-Aminobutyric acid TMS  1.2 Leucine,N,O TMS 0.6*** 
4-Hydroxybenzoic acid TMS 0.9 Lysine,N,N,N',O TMS  1.2 
5-Hydroxyindoleacetic acid TMS 1.0 Malic acid TMS 0.9 
5-Hydroxynorvaline,N,O,O TMS  1.1 Methionine,N,O TMS  0.6** 
Adenine TMS 1.0 myo-Inositol TMS 1.4 
Alanine,N,O TMS 0.9 myo-Inositol-1/3-phosphate TMS 1.2 
Arabinitol TMS  0.6 Ornithine,N,N,N',O TMS  1.0 
Arabinose MeOX2 TMS 1.2 Ornithine,N,N,O TMS  1.2 
Asparagine,N,N,N,O TMS  0.8 Phenylalanine,N,O TMS  0.8 
Asparagine,N,N,O TMS  1.0 Phenylalanine,O TMS  0.9 
Asparatic acid,N,O,O TMS  0.7* Phosphatidylinositol metabolite TMS 1.5** 
Benzoic acid TMS 1.1 Phosphatidylinositol TMS 16.4*** 
Caffeic acid TMS 0.8 Phosphoric acid,O,O,O TMS 3.5*** 

Citric acid TMS 3.4*** Proline,N,O TMS  0.4 
Erythritol TMS  0.9 Pyroglutamic acid,N,O TMS  1.0 
Ferulate acid TMS 0.9 Raffinose TMS 1.1 
Fructose MeOX1 TMS 1.0 Ribose MeOX2 TMS 4.6 
Fructose MeOX2 TMS 1.0 Serine,N,O,O TMS 0.2** 
Fumaric acid TMS  1.1 Serine,O,O TMS  0.9 
Galactose MeOX1 TMS  0.9 Sorbitol TMS 1.0 
Galactose MeOX2 TMS  1.0 Succinic acid TMS 1.1 
Gluconic acid TMS 1.0 Sucrose TMS 1.2** 
Glucose MeOX1 TMS 1.0 Sucrose-6-phosphate TMS 2.8*** 
Glucose MeOX2 TMS 0.9 Threonine,N,O TMS  1.1 
Glucuronic acid MeOX1 TMS 0.7 Threonine,N,O,O TMS  0.4** 
Glutamic acid,N,O,O TMS  0.7 Tyrosine, N,O,O TMS  1.2 
Glutamine,N,N,O TMS  0.7 Tyrosine,N,O TMS 1.0 
Glyceric acid TMS  1.2 Unknown phosphorylated metabolite TMS  42.4*** 
Glycerol TMS  1.4** Unknown phosphorylated metabolite TMS  7.6*** 
Glycerol-3-phosphate TMS 2.3*** Uracil TMS 0.8 
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Glycine,N,N,O TMS  0.8** Urea,N,N TMS 1.0 
Histidine, N,O TMS 1.4 Valine,N,O TMS  0.8 
Homoproline,O TMS  0.6* Valine,O TMS  1.3 

 
aTMS, trimethylsilyl ester; MeTMS, methyltrimethylsilyl ester; Ee, ethyl ester; MeOX, 
methoxyamine.   

*Means are significantly different at P<0.1. 
**Means are significantly different at P<0.05. 
***Means are significantly different at P<0.01. 
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 Table 16-5. Differential nonpolar metabolite expression in lpa3 and wild type maize kernels 

Metabolitea lpa3:wt Metabolitea lpa3:wt 

14:0 Me 1.3** 1HO-22:0 TMS 3.3 
15:0 Me 1.5* 2HO-18:0 MeTMS  1.2 
16:0 Me 1.2* 2HO-20:0 MeTMS  2.6** 
16:0 TMS  1.3** 2HO-22:0 MeTMS  7.2** 
16: 1cis∆7 Me 1.3* 2HO-24:0 MeTMS  3.5** 
17:0 Me 1.1 2HO-25:0 MeTMS  2.3** 
17: 1cis∆10 Me 1.3* 25:0 1.1 
18:0 Me 1.1 27:0 1.3*** 
18:0 TMS 1.1 28:0 0.7 
18:1cis∆9 Me 1.1 29:0 1.4* 
18:1cis∆9 TMS 1.3* 30:0 1.0 
18:2cis∆9,12 Me 1.1 31:0 1.4** 
18:2cis∆9,12 TMS 1.5* 33:0 1.2** 
18:3cis∆9,12,15 
Me  

1.1 ρ-Coumaric acid MeTMS 1.0 

20:0 Me 1.4*** β-Sitosterol Me 1.2* 
20:1cis∆11 Me 1.3** β-Sitosterol TMS 1.7** 
20:2cis∆11,14 Me 1.4 
21:0 Me 1.1 4 - H y d r o x y b e n z e n e  a c e t i c  a c i d  M e T M S  1.5 
22:0 Me 1.2 4 - H y d r o x y b e n z o i c  a c i d  M e T M S  6.9** 
23:0 Me 1.2* 4 - M e t h o x y ,  3 - h y d r o x y b e n z o i c  a c i d  M e T M S 1.3 
24:0 Me 1.4*** 4 - M e t h o x y ,  3 - h y d r o x y c i n n a m i c  a c i d  M e T M S  1.0 
25:0 Me 1.1 Caffeic acid MeTMS 1.1 
26:0 Me 1.4** Campesterol TMS 1.8** 
1HO-12:0 TMS 1.5** Ferulic acid MeTMS 1.0 
1HO-14:0 TMS 1.2 Stigmasterol Me  2.1** 
1HO-18:0 TMS 1.2 Stigmasterol TMS  2.1** 
 

aMe, methyl ester; TMS, trimethylsilyl ester; MeTMS, methyltrimethylsilyl ester; Ee, ethyl 
ester. 
bNot found in wild type.  
*Means are significantly different at P<0.1. 
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**Means are significantly different at P<0.05. 
***Means are significantly different at P<0.01. 

 
metabolites in the polar and nonpolar fractions should be interpreted with the 
presumed effect of the analytical process in mind.  We will understand this 
phenomenon better when we determine the relative amounts of free and 
bound phenolic acids in maize kernels by LC/MS. 

Our targeted and metabolomic analyses revealed several P-containing 
metabolites that were much more abundant in both lpa1 and lpa3 kernels 
compared to their wild-type controls that developed within the same ear.  
Several other metabolites were also affected differentially; these are 
potential targets for possible metabolic rescue of suboptimal yield.  The 

3 - M e t h o x y ,  4 - h y d r o x y b e n z a l d e h y d e  T M S  b 
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metabolomic data are not consistent with the presumed phytic acid 
biosynthetic pathway in either mutant. This is not surprising for less 
metabolically active mature kernels, thus the need to extend the analyses to 
embryos isolated from developing kernels. We also plan to analyze lpa2 
kernels in order to investigate the effects of all three low phytic acid 
mutations on additional P-containing (and other) metabolites measured by 
GC/MS and LC/MS.  LC/MS will allow us to semi-quantify additional 
metabolites, and determining their empirical formula with high-resolution 
mass spectrometry will facilitate their identification. 
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Chapter 17 

THE LOW TEMPERATURE METABOLOME  
OF ARABIDOPSIS 

Gordon R. Gray1 and Doug Heath2 

1Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 
5A8, Canada; 2Phenomenome Discoveries Inc., 204-407 Downey Road, Saskatoon,  
Saskatchewan S7N 4L8, Canada 

1 INTRODUCTION 

Low temperature represents an environmental variable which 
significantly affects plant performance, causing losses in productivity and 
limiting geographical distribution of many species (Boyer, 1982). Low 
temperature exposure has consequences for most biological processes, and 
freezing temperatures often lead to severe damage due to the cellular 
dehydration which occurs upon ice formation (Thomashow, 1999; Xin and 
Browse, 2000).  However, the exposure of certain plant species, including 
Arabidopsis, to low temperatures (5–10°C), initiates a series of events 
which, over a varying period of time, results in these plants acclimating to 
the lower growth temperature and becoming more freezing tolerant (Browse 
and Xin, 2001; Stitt and Hurry, 2002).  This is referred to as cold 
acclimation. 

Cold acclimation is complex and involves numerous molecular, 
physiological and biochemical changes. Due to its agricultural importance, 
considerable effort has been directed at understanding the phenomenon of 
cold acclimation at the molecular genetic level (Thomashow, 2001; Fowler 
and Thomashow, 2002).  Equally important are the biochemical changes 
which occur at the level of the metabolome (Cook et al., 2004; Kaplan et al., 
2004).  Examination at the metabolic level offers a direct link between a 
gene and function, as well as the elucidation of relationships that occur 
through complex biochemical regulation (Fiehn, 2002). 

Our goal was to examine the effects of cold acclimation on metabolome 
from a global perspective; incorporating changes from all metabolic pathways 
using an unbiased, non-targeted approach afforded us by Fourier transform ion 
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cyclotron mass spectrometry (FTMS) technology (Aharoni et al., 2002; Brown 
et al., 2005). 

2 MATERIALS AND METHODS 

2.1 Plant material, growth conditions and experimental 
design 

Seeds of Arabidopsis thaliana (L.) Heynh., ecotype Columbia were 
germinated from seed under controlled environment conditions at 23°C with 
an 8 h photoperiod and growth irradiance of 90 µmol quanta m–2s–1 as 
described previously (Gray et al., 2003). Plants were allowed to grow under 
these non-acclimating conditions for 27 days and then shifted to cold 
acclimating conditions at 4°C with the same photoperiod and irradiance as the 
non-acclimated control plants.  Leaves were sampled in triplicate biological 
replicates, flash frozen in liquid nitrogen and ground to powder. 

2.2 Non-targeted analyses of metabolites using FTMS 

2.2.1 Sample extraction and preparation 

Fifty mg of ground leaf material was triple extracted using 1 mL of 1% 
(v/v) formic acid and 3 × 3 mL of ethyl acetate.  The aqueous fractions were 
centrifuged for 10 min, the supernatant removed and stored at –80°C until 
analysis. The combined ethyl acetate fractions were evaporated to dryness 
under nitrogen, reconstituted in 1 mL of 100% (v/v) methanol and also stored 
at –80°C prior to FTMS analysis. Samples were diluted 1:19 prior to 
electrospray ionization (ESI) and atmospheric pressure chemical ionization 
(APCI) analyses.  Dilution for all negative and positive ion ionization analyses 
occurred using methanol: 0.1% (v/v) ammonium hydroxide (50:50, v/v) and 
methanol: 0.1% (v/v) formic acid (50:50, v/v) as mobile phases, respectively. 

2.2.2 Instrument operating conditions 

All analyses were performed on a Bruker Daltonics APEX III Fourier 
transform ion cyclotron resonance mass spectrometer equipped with a 7.0-
Tesla actively shielded superconducting magnet (Bruker Daltonics, Billerica, 
MA, USA).  Samples were introduced separately by direct injection into ESI 
or APCI sources.  Flow rates were 600 µL h–1 for both ESI and APCI. 
Ionization (ESI and APCI) and ion transfer/detection parameters were 
optimized using a standard mix of serine, tetra-alanine, reserpine, Hewlett-
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Packard tuning mix, and the adrenocorticotrophic hormone fragment 4–10.  In 
addition, the instrument conditions were tuned to optimize ion intensity and 
broadband accumulation over the mass range of 100 to 1000 a.m.u. according 
to the instrument manufacturer recommendations.  A mixture of the above-
mentioned standards was used to internally calibrate each sample spectrum for 
mass accuracy over the acquisition range of 100 to 1000 a.m.u.  Using a linear 
least squares regression line, mass axis values were calibrated so that each 

theoretical mass. 

2.2.3 Raw spectra processing and data alignment 

Using XMASS software (v 6.0.3) from Bruker Daltonics Inc., data file 
sizes of 1 megaword were acquired and zero-filled to 2 megawords.  A simm 
data transformation was performed prior to Fourier transform and magnitude 
calculations.  The mass spectra from each analysis were integrated, creating 
a peak list that contained the accurate mass and absolute intensity of each 
peak.  In order to compare and summarize data across different ionization 
modes and polarities, all detected mass peaks were converted to their 
corresponding neutral masses assuming hydrogen adduct formation. 

A self-generated 2-dimensional (mass versus sample intensity) array was 
then created using DISCOVArray software (Phenomenome Discoveries Inc., 
Saskatoon, SK, Canada).  The data from multiple files were integrated and 
this combined file was then processed to determine all of the unique masses.  
The average of each unique mass was determined, representing the y-axis.  
A column was created for each file that was originally selected to be 
analysed, representing the x-axis.  The intensity for each mass found in each 
of the files selected was then filled into its representative x, y coordinate.  
Coordinates that did not contain an intensity value were left blank. Once in 
the array, the data was further processed, visualized, and interpreted, as well 
as a putative chemical identity assigned.  

2.2.4 Statistical analyses 

The array was imported as a text file into GeneLinker Gold v. 3.0 
(Predictive Patterns Software Inc., Kingston, ON, Canada) for statistical 
analyses.  An F-Test was used to create a list of masses that had significant 
intensity changes (p ≤ 0.05) between any two sample means generated from 
biological triplicates. These masses were designated as separate component 
names, and the corresponding sample peak intensities were used for 
subsequent hierarchical cluster analysis (HCA) by components. 
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internal standard mass peak had a mass error of <1 ppm compared to its 



3 RESULTS 

Typically, studies examining cold acclimation grow plants under non-
acclimating (23°C) conditions to a certain developmental age and then shift 
them to the cold acclimating temperature (4°C). In the present study, we 
employed a similar experimental design, examining shifted leaves for an 
extensive time course (up to 49 days under cold acclimating conditions). 

In total, 1187 compounds were found in the Arabidopsis thaliana leaf 
extracts from all sampling points. These data were filtered such that only 
those compounds that were observed to significantly change during the 

compounds) were further subjected to pair wise analysis (data not shown). 
We employed HCA to further examine the differences and similarities 

between the leaf putative metabolite profiles from our filtered data sets. The 
results of the HCA demonstrate that the cold acclimated leaves present a 

 

 

Figure 17-1.  The effect of cold acclimation on the metabolic profile of shifted leaves in 
comparison to the non-acclimated control as determined by HCA.    
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experiment were retained (F-test, p ≤ 0.05). These components (593 

constantly changing metabolic phenotype and this became more distinct 
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from the non-acclimated control the longer the shifted leaves remained at 
low temperature (Figure 17-1). This is indicative of a complete 
reprogramming of the metablome in response to low temperature. This 
reorganization of the metabolome is further supported by the pair-wise 
comparisons of the changing compounds (data not shown). 

To confirm and validate the results of our global analysis with 
compounds known to change during cold acclimation, we examined the 
metabolites associated with photosynthetic carbon metabolism. In Arabidopsis 
and numerous other cold-tolerant plant species, a reprogramming of 
photosynthetic carbon metabolism is frequently observed which results in 
the preferential accumulation of soluble sugars (Stitt and Hurry, 2002).  
These are thought to be an essential element for acclimation to low growth 
temperatures and the attainment of maximal freezing tolerance for winter 
survival (Stitt and Hurry, 2002; Strand et al., 2003).  

The responses observed for the total hexose (Figure 17-2a), di-hexose 
(Figure 17-2c) and hexose-phosphate (Figure 17-2e) pools are consistent 
with those obtained from previous studies examining the individual 
compounds which would comprise these pools (Strand et al., 1997, 1999; 
Hurry et al., 2000).  Representative spectra for these pools are presented in 
Figures 17-2b, d, and f and correspond to the detect ion masses obtained 

were 179.0562, 341.1083 and 259.0222 a.m.u respectively. 

4 DISCUSSION 

FTMS allows for the separation of metabolites in a sample solely by 

to the putative identification of the metabolite. Relative quantification is 
achieved by comparing absolute intensities of each mass (Aharoni et al., 
2002).  This technology does not allow us (in most cases) to unequivocally 
identify specific metabolites. However, it does allow us to detect a 
comprehensive list of masses (based on m/z values) which are reflective of 
individual components (or putative metabolites).  

The shift from non-acclimating growth conditions to cold acclimating 
temperatures is characterized by transient, physiological, biochemical and 
molecular perturbations. These transient stress responses lead to stable, long-
term adjustments that reflect developmental responses to the new growth 
temperature (Huner et al., 1993). Leaves shifted to low temperature present 
putative metabolite profiles which are constantly changing in an attempt to 
reach a cold acclimated metabolic state. Thus, metabolome analysis 
indicates that the metabolic alterations which occur in Arabidopsis leaves 
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from the negative ESI mode of highly polar fraction in each case. These 

mass resolution (Brown et al., 2005). Based on accurate mass deter- 
mination, the elemental composition is determined which can then lead 



subjected to low temperature are representative of a global reprogramming 
of metabolism. 

Our results are consistent with the notion that photosynthetic carbon 
metabolism is reprogrammed in response to low temperature (Stitt and Hurry, 
2002). Whereas previous conclusions were the result of studies which 
examined each metabolite in isolation, our data sets are reflective of the entire 
metabolome. By measuring an entire spectrum of compounds versus an 
individual or group of metabolite(s), a global unbiased assessment of meta-
bolic processes relative to cold acclimation was determined. Clearly, the  
 

 

Figure 17-2. Abundance of the total hexose pool (a), total di-hexose pool (c), and total 
hexose-phosphate pool (e) in leaves shifted to cold acclimating conditions.  Values represent 
means ± SD (n = 23). Representative spectra from (a), (c), and (e) are shown in (b), (d), and 
( f ) respectively. 
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regulation or reprogramming of metabolism within the leaf during cold 
acclimation extends beyond that of photosynthetic carbon metabolism. 

Techniques allowing a full description of the metabolome status of an 
organism can strongly complement existing functional genomic approaches 
(Sumner et al., 2003).  Several studies relate stress conditions to changes in 
gene expression patterns at the mRNA (or protein) level (Fowler and 
Thomashow, 2002). However, care must be taken in the interpretation of 
these studies as our data demonstrate that there are fundamental differences 
at the level of the metabolome, which are dependent on the duration of low 
temperature exposure. Our results highlight the importance of proper 
experimental design and the significance of leaf prehistory (Krol et al., 1984; 
Huner et al., 1993; Gray et al., 2003) when studying complex environmental 
stress responses. 
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Chapter 18 

CLONING, EXPRESSION AND 
CHARACTERIZATION OF A PUTATIVE 
FLAVONOID GLUCOSYLTRANSFERASE  
FROM GRAPEFRUIT (CITRUS PARADISI) 
LEAVES 

Tapasree Roy Sarkar, Christy L. Strong, Mebrahtu B. Sibhatu, Lee M. Pike, 
and Cecilia A. McIntosh 
Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson 
City, Tennessee 37614, USA 

Abstract: As part of an ongoing effort to understand the regulatory role of glucosylation 
in grapefruit bitter compound production and overall flavonoid secondary 
metabolism, PSPG box gene-specific primers were designed and used to “fish” 
out potential secondary product glucosyltransferase (GT) clones.  This is a 
report on the isolation of the first full-length putative GT clone, its expression, 
and evaluation of its activity using common flavonoids or aglycones of 
flavonoids commonly found in grapefruit tissue.  While sequence analysis 
strongly supports this clone being a secondary product GT, it did not transfer 
labeled glucose from UDP-14C-glucose to any of the flavonoid substrates 
tested. 

Key Words: glucosyltransferase; expression; secondary product; grapefruit; flavonoid. 

1 INTRODUCTION 

A unique biochemical characteristic of higher plants is the production of 
a wide variety of natural products or “secondary metabolites.”  Many types 
of compounds fall into this category; the major groups are phenolics, 
alkaloids, and terpenoids. The roles of these substances in plant biochemistry 
and function are extremely diverse. Furthermore, many of these compounds 
have found widespread utilization in the livelihood of human society.  The 
roles and uses for secondary metabolites include (but are not limited to) 
flower colorations and UV patterning, antibiotic, and other medicinal uses, 
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dyes, pesticides, gums, detergents, and flavoring agents.  While virtually all 

The research focus of our laboratory has been to study the regulation of 
biosynthesis of specific flavonoids (a major group of phenolics) and to 
elucidate factors that control flavonoid synthesis and accumulation during 
plant development and growth. Our specific focus is elucidation of the 
regulation of glucosylation of different subclasses of flavonoids resulting in 
production of the derivatives (e.g., glycosides) actually found in plant 
tissues.  In order to gain a basic knowledge of the regulatory system, it is 
critical to understand factors involved in regulating biosynthesis and 
accumulating secondary metabolites, as well as roles of specific compounds 
made by a plant in its normal physiology and development. This information 
is important for understanding potential repercussions of altering these 
factors during production of transgenic plants. 

With the exception of the “flavonoid” 3-O-glucosyltransferases involved 
in flavonol and/or anthocyanin synthesis, relatively little is known of 
regulation of the myriad of enzymes involved in flavonoid ring glucosylation 
and subsequent removal of flavonoid aglycones from the “ring converting” 
metabolic pool. Citrus paradisi (grapefruit) is well-known for the presence 
of high levels (up to 40–70% dry weight) of a bitter flavanone diglycoside 
(naringin) in very young leaves and fruits and accumulation in specific 
tissues of mature fruit (Jourdan et al., 1985; McIntosh and Mansell, 1990 
and ref. therein; McIntosh and Mansell, 1997).  Grapefruit and other citrus 
are known for their accumulation of flavanone and flavone glycosides in 
addition to the more common flavonol glycosides.  This makes them an 
excellent source for the study of flavonoid metabolic regulation and the role 
glucosylation plays in that regulation. 

Previous efforts to elucidate potential levels of control of flavanone 
glycosylation in grapefruit have indicated that regulation and control of ring-
substituting branch points have a significant role in this process (McIntosh 

glucosyltransferase (EC 2.4.1.185) with some unique biochemical 
characteristics, and up to four additional flavonoid glucosyltransferases 
(GTs) from young grapefruit leaves have been at least partially characterized 
(McIntosh et al., 1990). 

We recently initiated efforts to “fish” out putative secondary product GT 
clones from a young grapefruit leaf cDNA library for subsequent expression 
and characterization as a prelude to structure/function analysis of flavonoid 
GTs. We report here on the isolation of the first full-length putative GT 
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Pelt et al., 2003). Of special interest is a flavanone-specific 7-O-
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and Mansell, 1990; McIntosh et al., 1990; Durren and McIntosh, 1999; 

higher plants produce “secondary metabolites” and some of these comp-
ounds are fairly ubiquitous, in many cases specific compounds or classes
of compounds are made and/or accumulated during the growth and deve-
lopment of specific plant groups. As a result, many plant families possess
characteristic natural product profiles. 
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clone as well as the expression and analysis of its activity with flavonoid 
substrates. 

2 METHODS 

2.1 RNA isolation 

Seeds of Citrus paradisi (v. Duncan) were obtained from the Citrus 
Budwood Registry, FDACS (Winter Haven, Florida, USA), soaked under 
running water overnight, and grown under greenhouse conditions.  Total 
RNA was extracted from very young, metabolically active light green leaves 
from 2- to 3-month-old seedlings using the RNeasy Plant Mini Kit with 
shredder column (Qiagen). 

2.2 Preparation of cDNA and amplification of putative plant 
secondary product glucosyltransferases 

A SMART RACE cDNA amplification kit (Clonetech) was used 
according to manufacturer’s instructions to construct both 3′ and 5′ RACE-
ready cDNA from total cellular RNA in order to increase likelihood of 
obtaining cDNA with intact 5′ and 3′ ends.  Gene-specific primers (GSPs) 
were designed (OLIGO Primer Analysis, version 5) using a highly 
conserved portion of the plant secondary product glucosyltransferase (PSPG) 
box, a 44 amino-acid long consensus sequence and a component of the 
UDP-glucose binding domain.  Since nothing is known about possible 
preferential codon usage in grapefruit, the GSPs (20-mers) were designed to 
include universal bases (*) or degeneracy in key positions.  GSP1F: 

5′GAA(G)TTCCA*CCG(A)CAA(G)TGC(AT)GT-3′.  These primers were 
synthesized by Integrated DNA Technologies (IDT) and used to PCR 
amplify putative GT sequences from SMART RACE cDNA using a gradient 
PCR in order to determine optimal annealing conditions. 

Several PCR products were obtained, gel-purified (GenElute Minus EtBr 
Spin columns; Sigma) and cloned using a TOPO-TA cloning kit (Invitrogen) 
and transformed into PCR-4-TOPO cells (Invitrogen) for further analysis. 
Colonies were blue/white selected for transformants.  Cyclo-Prep Miniprep 
Plasmid DNA purification kit (Amresco) was used for DNA isolation.  
Several candidate partial clones representing 5′ ends were obtained.  A clone 
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5′ACG(TA)CAT(C)TGC(T)GG*TGGAAT(C)TC-3′ and GSPR: 

specific primer (CSP2; 5′GTGGTCTTCCCCTGACGAGTA-3′) was desi-
gned to obtain clones corresponding to the remaining 3′ portion of putative
GT1 (PGT1) with sufficient overlap to confirm sequence segments belonged
to the same clone. Sequencing was performed by the University of Tennessee



2.3 Sequence analysis and identification 

The 1106 bp PGT1 sequence (Figure 18-1) was compiled from the 
sequence of the 5′ clone obtained using GSP1F and the 3′ clone obtained 
using CSP2.  PGT1 was examined first for presence of a continuous open 
reading frame that would contain a potential PSPG box with critical 
conserved residues.  Subsequently, PGT1 nucleotide and inferred amino acid 
sequences were used in BLAST (Altschul et al., 1990) and FASTA (Pearson, 
1999) searches to evaluate whether the clone corresponded to any previously 
reported. Results showed similarity to plant GTs in general, although no 
specific absolute matches were obtained. 

2.4 Amplification and expression of full-length PGT1 clone 

In order to obtain a full-length clone of PGT1 for further study, primers 
were designed from a 5′ region from bp 7 through bp 24 (Figure 18-1) before 
the start codon (GTSP5F; 5′GGGATGAAGTTGGCACTA-3″) and from a 3′ 
region from bp 1082 through bp 1062 (Figure 18-1) just after the stop codon 
(GTSP6R; 5′-TTAGAGTTTAAAGGCCTGTGG-3′) and used with the 
SMART RACE cDNA library to amplify a full-length clone.  A single PCR 
product was obtained and TOPO-cloned as previously described. Clone 
identity was confirmed by sequencing. 

Amplification of PGT1 from the TOPO clone was done using primers 
designed to incorporate an NcoI restriction site at the 5′ end that 
encompassed the start codon and a SalI restriction site at the 3′ end after the 
stop codon.  A single PCR product was obtained, gel purified, cut with NcoI 
and SalI, directionally cloned into expression vector pCD1 and the sequence 
verified.  The recombinant pCD1 vector with PGT1 insert was subsequently 
transformed into expression host Escherichia coli BL21(DE3)RIL.  Protein 
induction was performed at 27C and 37C and expressed protein levels 
monitored after 4.5 hrs and 8 hrs.  Optimal production of soluble PGT1 was 
found at 27C for 4.5 hrs. Expressed PGT1 was isolated in soluble form from 
induced cells using a lysozyme method adapted from Novagen (2002). 

2.5 Test of PGT1 flavonoid GT activity 

PGT1 was tested for flavonoid GT activity by using a method adapted 
from McIntosh et al. (1990) and an extract from young grapefruit leaves was 
used as a positive control.  All enzyme sources were buffered at pH 7.5 and 
contained 14 mM βME.  Representative flavanone, flavone, flavonol, and 
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Molecular Core Facility (Knoxville), and clones were analyzed for overlap
quality using the BioEdit Sequence Alignment editor program. 
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chalcone aglycones were chosen for testing (naringenin, naringenin 
chalcone, hesperetin, apigenin, kaempferol, and quercetin) using information 
on presence of naturally occurring derivatives in grapefruit or compounds 
that were shown to be acceptable substrates for grapefruit flavonoid 
glucosyltransferases (McIntosh and Mansell, 1990; McIntosh et al., 1990). 
Reactions were as follows: 5 µL aglycone (50 nmol in ethylene glycol 
monomethylether), 10 µL UDP-14C-glucose (100,000 dpm; 100 nmol), and 
enzyme sample (30 µL for the extracted cell pellets; 60 µL for culture 
supernatants and crude grapefruit leaf extract) in a total reaction volume of 
75 µL.  Extracts from uninduced cultures were used as negative controls.  
Reactions were incubated at 30C for the times specified.  Reactions were 
stopped and incorporation of labeled glucose into flavonoid glycosides was 
determined as previously described (McIntosh et al., 1990). 

3 RESULTS 

3.1 Obtaining PGT1 full-length clone and inferred amino acid 
sequence alignment with other GTs 

Use of GTSP5F and GTSP6R primers with young grapefruit leaf cDNA 
gave a single PCR product that was cloned and sequenced.  Confirmation of 
having a full-length clone was confirmed by location of an unambiguous 
start codon and a contiguous open reading frame that was preceded by 2 in-
frame stop codons at the 5′ end (Figure 18-1) and with the PSPG box 
inframe. The nucleotide sequence and an amino acid sequence deduced by 
analysis of the continuous ORF were subject to FASTA searches.  The top 4 
amino acid alignments for proteins of known function (Kita et al., 2000; 
Hirotani et al., 2000; Ford et al., 1998) were flavonoid 3-O-GTs from 
Ipomoea purpurea (E = 8.5e–33) and Vitis vinifera (E = 3.2e–31), a flavonoid-
7-O-GT from Scutellaria baicalensis (E = 6.2e–36), and a limonoid GT from 
Citrus unshiu (E = 4e–39).  Amino acid alignment of PGT1 with 3 of these 
GTs is shown in Figure 18-2.  Within the PSPG box, PGT1 has 63% identity 
with the Citrus limonoid GT and the Vitis F3-O-GT, 65% identity with the 
Impomoea F3-O-GT, and 61% identity with the Scutellaria F7-O-GT.  
Outside of the PSPG box, the sequences are quite different from each other. 

3.2 Production of PGT1 and test for flavonoid GT activity 

PGT1 production was induced at 37C and 27C for 4.5 h and 8 h as 
previously described and results analyzed by SDS-PAGE using 10% gels 
followed by staining with Coomassie.  Induction at 37C resulted in PGT1 
being deposited in inclusion bodies (data not shown).  Induction at 27C for 
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4.5 h gave optimal production of soluble PGT1 protein within the cells 
(Figure 18-3).  The approximately 34 kDa pPGT1 protein is indicated by an 
arrow. 

 
             ... 
1  ACGCGGGGGA TGAAGTTGGC ACTACCTCTC CTCAGAGAAT ATTTTGACTC 
                              ... 
51  ATCCTCTCAG CCATAAACTA ACAAGTTAAA ACTATTTTTG TGTTTCAGAT 
 
101 GAAAAATTCC TTACGGATGA CACTCTTGAG AAACCTATTG ATTGGATCCC 
 
151 CGGCATGAGC AATATTCGGC TCAGGGATTT ACCAAGCTTT ATCAGAACCA 
 
201 CCGACCCTAA CGAAATTATG TTCGATTTCA TGGGCTCAGA AGCACAAAAT 
 
251 TGCTTCAGAT CTTCTGCAAT CATATTTAAC ACATTCGATG AGTTTGAACA 
 
301 TGAAGCTTTA GAGGTTATTG CTTCGAAATT TCCTAACATT TACACCGTAG 
 
351 GTCCACTCCC GTTGCTCTGC AAGCAAGTGG ATGAAACCAA ATTTAGGTCA 
 
401 TTTGGATCAA GCTTGTGGAA GGAAGACACT GACTGTCTCA AATGGCTCGA 
 
451 CAAAAGAGAC GCCAATTCAG TTGTGTACGT TAATTATGGC AGCGTGACTG 
 
501 TGATGTCAGA GTAACACTTG ACAGAATTTG CATGGGGTCT TGCAAATAGC 
 
551 AAGCGTCCAT TTTTATGGAT TCTTAGGCCG GACGTTGTGA TGGGCGACTC 
 
601 CGTGGTCTTG CCTGACGAGT ATTTTGAAGA GATCAAGGAT AGAGGATTGA 
 
651 TAGTTAGCTG GTGCAACCAA GAGCAAGTGC TGTCGCACCC CTCAGTTGGA 
 
701 GCTTTTCTGA CACATTGCGG ATGGAACTCT ACAATGGAGA GTATTTGCGG 
 
751 TGGCGTGCCT GTAATTTGCT GGCCTTTCTT TGTTGAGCAA CAAACAAATT 
 
801 GCAGATATGC ATGCACAACT TGGGGCATTG GCATGGAAGT CAATCATGAT 
 
851 GTGAAGCGTG GTGACATTGA AGCTCTTGTT AAGGAAATGA TGGAAGGAGA 
 
901 TGAAGGAAAG AAAATGAGGC AGAAGGCTTG GGAATGGAAA AAGAAAGCTG 
 
951 AAGCAGCGAC TGCCGTTGGA GGTCAGTCTT ACAATAATTT TGACAGATTA 
 
1001 GTTAAGATGG TTCTTCACCA AGGAAATTGG ACCGGAAACG AAACCCTTCA 
 
1051 CTAGTCCGTC GCCACAGGCC TTTAAACTCT AATAAATATC TTCTTGGAGT 
 
1101 TAAAAACAAA AAAAAAAAAA AAAAAAAAA 

 

 
Figure 18-1. Compiled Full-Length Nucleotide Sequence of PGT1 Clone.  Sequences from 
GSP generated 5′end clone 110-2A2 and 3′ clone 126-1C obtained using a CSP designed 
from 110-2A2.  The start and stop codons are in bold typeface and overlined, the PSPG box 
region is in bold typeface, and stop codons preceding the start codon are marked by  ... above. 
The subsequent full-length clone sequence corresponded to bp 7 through bp 1082. 
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     10    20   30    40   50     60  
  ....│....│....│....│....│....│....│....│....│....│....│....│ 
LGT -------------------------------------------------------MRKAG 
FGT ---------MGQLHIVLVPMIAHGHMIPMLDMAKLFSSRGVKTTIIATPAFAEPIRKARE 
3GT ------------------------------------------------------------ 
PGT1 ------------------------------------------------------------ 
     70   80    90    100   110  120 
  ....│....│....│....│....│....│....│....│....│....│....│....│ 
LGT NFTYEPTPVGDGFIRFEFFEDGWDEDDPRREDLDQYMAQLELIGKQVIPKIIKKSAEEYR 
FGT SGHDIGLTTTKFPPKGSSLP.NIRSL.QVTD..LPHFFRALELLQEPVEE.MEDLKPDCL 
3GT -------------------------------------MAMPGNYVKA.AEAEAETGTKFG 
PGT1 ------------------------------------------------------------ 
      130   140   150    160   170  180 
  ....│....│....│....│....│....│....│....│....│....│....│....│ 
LGT PVSCLINNPFIPWVSDVAESLGLPSAMLWVQSCACFAAYYHYFHGLVPFPSEKEPEIDVQ 
FGT VSDMFLPWTTDSAAKFGIPR.LFHGTS.FARCF.EQMSIQKPYKNVSSDSEPFVLRGLPH 
3GT CFLTDAFLW.GGDLAAERGGVPWIALWTAGACSISAHL.TDFVRS.AAATPTGNGNVLE. 
PGT1 -----------------------------------------------------------M 
      190   200   210    220   230  240 
  ....│....│....│....│....│....│....│....│....│....│....│....│ 
LGT LPCMPLLKHDEMPSFLHPSTPYPFLRRAILGQYENLGKPFCILLDTFYELEKEIIDYMAK 
FGT EVSFVRTQIPDYELQEGGDDAFSKMAKQMRDADKKSTGDVINSFEELESEYADYNKNVFG 
3GT KLKVIPGMSEISIGEMPGEILAKD.QEPFP.MIY.MALKLPGANAVVINSFQNLEPTVTD 
PGT1 SNIRLRDLPSFIRTTDPNEIMFD.MGSEAQNCFRSSAII.NTFDEFEH.ALEV.ASKFPN 
      250   260   270    280   290  300 
  ....│....│....│....│....│....│....│....│....│....│....│....│ 
LGT ICPIKPVGPLFKNPKAPTLTVRDDCMKPDECIDWLDKKPPSSVVYISFGTVVYLKQEQVE 
FGT KKAWHIGPLKLF.NR.EQKSSQRGKESAIDDHEC.AWLNSKKPNSVVYMCFGSMATFTPA 
3GT DIRS.LQKVFNIG.MILRQAAAATPGP.ISDDHNCIPWVD.LPPASPPAVYLSFGSGLTP 
PGT1 .YTVG.LPL.C.QVDETKFRSFGSSLWKEDTDCLKWLDKRDANSVVYVNYGSVTVMSEQH 
      310   320   330    340   350  360 
  ....│....│....│....│....│....│....│....│....│....│....│....│ 
LGT EIGYALLNSGISFLWVMKPPPEDSGVKIVDLPDGFLEKVGDKGKVVQWSPQEKVLAHPSV 
FGT QLHETAVGLES.GQDFIWVVRNGGENEDWLPQGFEERIK.KGLMIRG.A..VMI.D...T 
3GT PPDEIVALAEALEAKRAPFLWSLKPHGVKH..E....RTKEF..I.P.A..VQ..S..G. 
PGT1 LTEF.WGLANSKRPFLWILR.DVVMGDS.V...ETF.EIK.R.LI.S.CN..Q..S.... 
      370   380   390    400   410  420 
  ....│....│....│....│....│....│....│....│....│....│....│....│ 
LGT ACFVTHCGWNSTMESLASGVPVITFPQWGDQVTDAMYLCDVFKTGLRLCRGEAENRIISR 
FGT GA..........L.GICA.L.MV.W.VFAE.FYNEKLVTE.L...VSVGNKKWQRVGEGV 
3GT GA..........L.AISF..CL.CR.FY...QINSRFVES.WEI.VKVEG.KFTKDETLK 
PGT1 GA.L...........ICG.....CW.FFVE.Q.NCR.A.TTWGI.MEVNHDVKRGDIEAL 
      430   440   450    460   470  480 
  ....│....│....│....│....│....│....│....│....│....│....│....│ 
LGT DEVEKCLLEATAGPKAVALEENALKWKKEAEEAVADGGSSDRNIQAFVDEVRRTSVEIIT 
FGT GSEAVKEAVERVMVGDG.A.MRSRALYYKEMARK.VEEGGSSYNNLNALIEELSAYVPPM 
3GT AINVVLDSDRGKLL.ENVVKLKGEAMEAVKPHGSCTKEFQELVHLLNGY 
PGT1 VKEMMEGDEGKKMRQKAWEWKKKAEAATAVGGQSYNNFDRLVKMVLHQGNWTGNETLH 
      490   500   510     
  ....│....│....│....│....│....│....│... 
LGT SSKSKSIHRVKELVEKTATATANDKVELVESRRTEVQY 
FGT KQGLN 
 
 
 

Figure 18-2. Amino Acid Alignment of 3 Known GTs and PGT1. LGT=Citrus unshiu limonoid 
UDP-GT (BAA93039); FGT=Scutellaria baicalensis UDP-glucose flavonoid 7-O-GT 
(BAA83484); 3GT=Ipomoea purpurea UDP-glucose: Flavonoid 3-O-GT (AAB86473). The 
Plant Secondary Product Glucosyltransferase (PSPG) box of each sequence is shown in bold. 
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Figure 18-3.  Expression of PGT1 Protein.  Cells were grown at 27C, collected by 
centrifugation, and lysed as described.  Lane 1=4.5 hr induction lysed cell pellet, Lanes 2-3 = 
4.5 hr induction lysed cell soluble protein (2 different concentrations loaded), Lane 
4=markers, Lane 5=uninduced culture lysed cell soluble protein; Lane 6=uninduced culture 
lysed cell pellet; Lane 7=8 hr induction lysed cell soluble protein; Lane 8=8 hr induction 
lysed cell pellet.  Arrow indicates a band corresponding to the predicted size of PGT1. 

 
Soluble PGT1 was tested for flavonoid GT activity using 6 different 

flavonoid aglycones (Figure 18-4).  Previous analyses of flavonoid GTs 
isolated from young grapefruit leaf tissue (McIntosh and Mansell, 1990; 
McIntosh et al., 1990) indicated the presence of at least four flavonoid GTs: 
flavonol 3-O-GT (glucosylated kaempferol and quercetin), flavonol 7-O-GT 
(glucosylated kaempferol), highly specific flavanone 7-O-GT (glucosylated 
naringenin and hesperetin), and a GT that glucosylated naringenin chalcone 
and apigenin.  All of these substrates were used to determine whether PGT1 
had any GT activity toward flavonoid aglycones.  As a positive control, a 
crude protein extract from young grapefruit leaves was tested using 
naringenin; the negative control was using proteins from transformed but 
uninduced, lysed bacterial cells.  Aglycone substrate and UDP-glucose 
levels were in excess and the specific activity of the UDP-glucose was 
sufficient to be able to detect even low levels of activity. 

Results from the crude grapefruit leaf extract showed the presence of 
naringenin GT activity that was linear for 60 minutes as previously shown 
(McIntosh et al., 1990).  PGT1 did not show activity with any of the 
flavonoid substrates tested (Figure 18-5).  PGT1 sample was mixed with 
grapefruit leaf extract to determine if any inhibitory compounds were 
present; this mixture did show GT activity using naringenin as substrate 
(data not shown). 
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Figure 18-4.  Structures of Flavonoids Tested as Potential Substrates for PGT1. Six different 
compounds were evaluated: naringenin and hesperitin (flavanones), kaempferol and quercetin 
(flavonols), naringenin chalcone and apigenin (flavone). 

4 DISCUSSION 

We used information from the amino acid sequence of conserved PSPG 
boxes of known flavonoid glucosyltransferases to design gene specific 
primers to cast a wide net to “fish” out potential grapefruit GT sequences by 
PCR. Using clone-specific primers designed from 5′ partial clones, we 
subsequently were able to use PCR to amplify and obtain clones 
corresponding to the 3′ end of the putative GT, PGT1. 

A compiled PGT1 sequence was used for analysis of potential reading 
frame as well as a basis for BLAST and FASTA searches.  These searches 
confirmed that PGT1 had high correlation with plant secondary product GTs 
already in the databases.  Amino acid alignment of PGT1 with the highest 
matching GTs showed relatively high structural identity (61–65%) within 
the PSPG box itself, and low identity outside the PSPG box region.  This 
supports the identification of PGT1 as a secondary product GT, although it 
does not give a good indication of specific function with regard to possible 
substrates.  Currently, amino acid sequence alone is not a good predictor of 
specific function of plant secondary product GTs.  Indications are that 
enzymes of the same function from different plants show low amino acid 
identity outside of the PSPG box area.  For example, alignment of sequences 
of flavonoid 3-O-GTs from Vitis vinifera (AAB81682), Ipomoea purpurea 
(AAB86473), and Perilla frutescens (BAA19659),  showed 66–75% amino 
acid identity within the PSPG box but only 25–31% identity overall (data not 
shown).  Therefore, analysis of activity of heterologously expressed proteins 
should be performed to determine or verify specific enzyme function. 
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Reaction Time (minutes)  
Figure 18-5.  Reaction Kinetics with Flavonoid Aglycones and UDP-14C-Glucose.  
Reactions were run using either crude grapefruit leaf extract, PGT1 soluble protein from 
cultures induced 4.5 hr at 27C, or control sample from uninduced cultures. ♦ = crude leaf 
extract, naringenin (control); ■ = PGT1, naringenin; --□-- = uninduced sample, naringenin; ● 
= PGT1, kaempferol; --○-- = uninduced sample, kaempferol.  PGT1 and uninduced samples 
gave nearly identical results with the other flavonoids (data not shown). 
 
 

The predicted size of the PGT1 protein, approximately 34 kDa, was 
much smaller than the 49.5–55 kDa range of sizes for the native flavonoid 
GTs isolated and characterized from young grapefruit leaves (McIntosh  
et al., 1990).  However, it was still evaluated for possible GT activity 
towards flavonoid aglycone substrates.  As a first screen, we used flavonoids 
that are naturally produced in grapefruit plants and/or those that were shown 
to be glucosylated by the GT enzymes previously isolated from grapefruit 
leaf tissue. PGT1 did not demonstrate activity toward any of the flavanone, 
flavone, chalcone, or flavonol substrates tested.  This supports the idea that 
PGT1 is not likely to be a flavonoid GT and its biochemical function is 
unknown at the present time. 

We are in the process of completing analyses of clones for 2 additional 
candidate GTs, obtained in the manner described here, to confirm that we 
have complete sequence information.  Once confirmed, we will use the 
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compiled sequences to design primers to obtain full-length clones that will 
be used for subsequent expression and analysis for flavonoid GT activity.  
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Chapter 19 

APPLICATION OF METABOLITE AND 
FLAVOUR VOLATILE PROFILING TO 
STUDIES OF BIODIVERSITY IN 
SOLANUM SPECIES 

Gary Dobson1, Tom Shepherd1, Rhoda Marshall1, Susan R. Verrall1, Sean 
Conner1, D. Wynne Griffiths1, James W. McNicol2, Derek Stewart1, and 
Howard V. Davies1 
1

2Biomathematics & Statistics Scotland, Dundee Unit, Dundee DD2 5DA, Scotland, UK 

Abstract: Volatile flavour compounds produced when potato tubers are boiled have been 
related to polar and non-polar metabolites present in raw tubers. 

Key Words: boiling; cooking; flavour; gas chromatography; mass spectrometry; metabolite 
profiling; potato tuber; Solanum tuberosum; S. phureja; volatiles. 

1  INTRODUCTION 

Potato is a globally important foodstuff and source of nutrition and has 
been developed for agronomic traits such as yield and disease resistance. To 
meet changes in consumer demands, much effort is being put into improving 
other characteristics such as nutritional value and organoleptic properties. 
We are using a wide range of potato germplasm to explore phytochemical 
diversity. The diploid species Solanum phureja, developed from the Andean 
cultivated potato, has a yellower flesh than S. tuberosum due to higher 
carotenoid levels, has distinctive mouth-feel characteristics (high in smooth, 
and low in grainy and floury traits) and has more intense favourable flavour 

S. phureja genotypes are the subject of studies concerning the relationships 
between tuber metabolites, volatile flavour compounds and taste. The 
simultaneous analysis of polar metabolites from potato tubers has been 
carried out by gas chromatography-mass spectrometry (GC-MS) (Roessner 
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attributes (creamy, sour, earthy) than S. tuberosum (De, Maine et al., 2000). 



et al., 2000). In this study, GC-MS has been used to compare the polar and 
non-polar metabolites and volatile compounds from four S. phureja 
genotypes and four cultivars of S. tuberosum. 

2  MATERIALS AND METHODS 

2.1 Plant material 

The plants used in this study were chosen on the basis of taste attributes 
determined by taste panels. The S. tuberosum cultivars Ailsa, Cara, Maris 
Piper and Pentland Dell represented “bland” cultivars, whilst the S. phureja 
genotypes (DB 257/28, DB 333/16, DB 337/37 and DB 358/23) were 

Plants were field-grown using normal agronomic practices at a trial site 
(Mylnefield, Dundee, UK) in 2000. Tubers were harvested two weeks after 
foliage burn-down, kept at ambient temperature (ca. ~8–12°C) for 4 weeks 
to allow for skin set, then transferred to a 4°C store.  At 4, 10 and 21 weeks 
post-harvest, i.e. 0, 6 and 17 weeks storage, two replicate samples of each 
genotype were taken from storage and used in the cooking experiments. 

2.2 Isolation and analysis of tuber metabolites

For each replicate experiment, six average-sized tubers were chopped 
into eighths, two opposite eighths were taken for freeze-drying and the 
remainder were cooked by boiling. A further sub-sample was taken for 
freeze-drying after cooking, and the remaining tubers were sampled for 
volatile compounds.  The freeze-dried samples were extracted and analysed 

3  RESULTS AND DISCUSSION 

Comparisons were made between the four S. phureja genotypes and four 
cultivars of S. tuberosum on the basis of their polar and non-polar metabolite 
contents and compositions of volatile flavour compounds. The effect of low 
temperature storage was also studied.  
 

G. Dobson et al.

and volatile flavour compounds 

for both polar and non-polar tuber metabolites by GC-MS. Volatile com- 
pounds produced during cooking were also analysed by GC-MS.  Details
of the procedures used for sample preparation, extraction, isolation and
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selected for their more “distinct” flavour (De, Maine et al., 2000). 

analysis are given in Chapter 15 (Shepherd et al., 2007). 
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3.1 Polar metabolites 

The relative concentrations of 142 polar metabolites, including amino 
acids, sugars and organic acids were measured in each potato tuber sample.  
Data from replicate analyses of the four cultivars of S. tuberosum and four 
genotypes of S. phureja (raw and cooked) at all three storage dates were 
analysed by PCA and the two species were clearly separated (Figure 19-1A). 

An examination of the specific metabolites responsible for the separation 
revealed that some amino acids (β-alanine, γ-amino butyric acid and proline) 
were elevated in S. tuberosum, whereas some aromatic (tyrosine and 
phenylalanine) and branched (br-) amino acids (leucine and isoleucine) were 
elevated in S. phureja (Figure 19-2), and the levels of valine, methionine and 

 

Figure 19-1. PCA plots showing separation of Solanum tuberosum and S. phureja in terms of 
(A) polar and (B) non-polar metabolites in cooked and non-cooked tubers and (C) volatiles 
from cooked tubers.  Vertical axis: score (3); horizontal axis: score (1) for (A, C), score (2) 
for (B). 
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lysine were higher in S. phureja line 333/16 only. With the exception of 
piperidine carboxylic acid (pipecolic acid) and 2,3,4-trihydroxybutyric acid 
(threonic acid), which were higher in S. phureja and S. tuberosum 
respectively, the levels of the other metabolites were similar in both species. 

When data for raw tubers alone was considered over all storage periods, 
all four cultivars of S. tuberosum could be separated by PCA. The levels of 
some amino acids were different between the cultivars; M. Piper was high in 
γ-amino butyric acid and low in proline, P. Dell was high in β-alanine and 
Cara was low in lysine. Within S. phureja, over all storage periods, all 
genotypes except 257/28 could be separated from the others. 333/16 was 
higher in some amino acids (alanine and proline in addition to methionine, 
valine, and lysine), and citric acid was elevated in 333/16 and 337/37, 

The most striking change with storage was an increase in fructose, 
glucose, and sucrose. This trend was evident for both species, and PCA of 
the data for raw tubers clearly separated those samples that were not stored 
at 4°C from those stored for 6 and 17 weeks, which in turn were not clearly 
separated. This is not surprising as low temperature sweetening is a well 
documented phenomenon in potato tubers (Brown et al., 1990). Other 
changes included increases in the levels of aspartic acid and serine, and a 
decrease in the level of fumaric acid, after storage.  

3.2 Non-polar metabolites 

Separation of S. phureja and S. tuberosum was achieved by PCA of data 
for the relative concentrations of 35 non-polar metabolites in all samples, 
both raw and cooked and at all 3 storage dates (Figure 19-1B). Levels of the 
fatty acids n-hexadecanoic acid, 15-methylhexadecanoic acid and n-heneico-
sanoic acid were all elevated in S. phureja relative to S. tuberosum (Figure 
19-3). 

On analysis of data for raw tubers, all four cultivars of S. tuberosum 
could be clearly separated by PCA over all storage periods. Among the fatty 
acids, 15-methylhexadecanoate was low in Cara, n-octadecanoate was high 
in Cara and low in Ailsa, and n-hexacosanaote was high in M. Piper. Among 
the straight chain alcohols, n-heptacosanol and n-nonacosanol were elevated 
in M. Piper whereas n-heneicosanol was high in Cara and low in Ailsa and 
M. Piper respectively. The separation between S. phureja genotypes was less 

257/28 and 333/16, occurred as discrete groups. n-Hexadecanoic acid was 
particularly high in 358/23, and the order of abundance of 15-methyl 
hexadecanoic acid was 358/23>337/37>257/28>333/16.  

For both S. phureja and S. tuberosum, separation according to storage 
date was evident at least for 0 and 17 weeks storage at 4°C. None of the 
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whereas piperidine carboxylic acid was high in 358/23. 

distinct than with S. tuberosum. Over all dates, 337/37 and 358/23, but not 



metabolites showed any striking difference in relative abundance between 
the two storage dates. The levels of n-octacosanoic acid tended to decrease 
with storage in S. tuberosum, and in S. phureja, n-tricosanoic acid tended to 
increase. There was no evidence for a decrease in linoleic acid and an 
increase in α−linolenic acid with storage as observed in a previous targeted 
study on the fatty acids of the same materials (Dobson et al., 2004). 

3.3 Volatiles 

S. phureja and S. tuberosum were separated by PCA of the total ion 
count area percent compositions of 83 volatiles from cooked tubers (Figure 
19-1C). The levels of some br-aldehydes (2-methylpropanal, 2-methyl-

acid methyl ester), four sesquiterpenes and several other volatiles (2-methyl-

PCA plots for some of the compounds elevated in S. phureja are shown in 
Figure 19-4. 

Figure 19-3. PCA plots showing fatty acid levels (as methyl esters) in the non-polar
metabolites from Solanum tuberosum and S. phureja after post-harvest storage at 4°C.
Vertical axis: abundance relative to internal standard methyl nonadecanoate; horizontal axis:
PCA score 2.

G. Dobson et al.264 

chain br-acids (2-methylpropanoic acid methyl ester and 2-methylbutanoic 

furan, methanethiol, 2-butanone and 2-hydroxybenzoic acid) were higher in 
S. phureja. Hexanal and 2,3-pentadione were elevated in S. tuberosum.  

butanal, 3-methylbutanal), 3-methylthiopropanal, methyl esters of short-
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All genotypes of S. phureja could be separated by PCA, even when all 
storage times were considered together. Levels of pentanal, 2-methyl- 
propanoic acid methyl ester and two of the sesquiterpenes were highest from 
333/16. Several aldehydes from 337/37 (hexanal, 5-methylhexanal, and 2,4-
heptadienal) were elevated relative to the other genotypes, whereas other 
aldehydes (2-methylpropanal, 2-methylbutanal, 3-methylbutanal, 2-propenal, 
2-methyl-2-butenal, 3-methylthiopropanal, and benzaldehyde) and some 

butanone) were low. 2-Pentylfuran was high from 358/23 and 257/28, 
whereas two aldehydes (nonanal and decanal) and two alcohols (3-methyl-1-
butanol and 2-methyl-1-butanol) were higher in 257/28 and 358/23, 
respectively.  

The unstored cultivars of S. tuberosum were all separated by PCA and 
when all storage periods were considered together, Ailsa and Cara, but not P. 
Dell and M. Piper, were readily distinguished. The proportions of hexanal, 
2-pentenal, and 2,3-pentadione decreased in the order Ailsa > Cara > M. 
Piper and P Dell, whereas the reverse order was evident for 3-methylbutanal, 
2-methylbutanal, 2-pentylfuran, and methanethiol. 3-Methyl-1-butanol and 
2-methyl-1-butanol were higher in P. Dell and M. Piper and lower in Ailsa 
and Cara. Decanal was particularly low in Ailsa whereas a sesqiterpenoid 
was high in P. Dell.  

Considering both species together there was clear separation by PCA 
according to storage date.  Samples stored for 0 and 17 weeks were well 
separated and those stored for 6 weeks were intermediate in position. The 
proportions of some alkanes (nonane, decane, and undecane) were higher at 
17 weeks, whereas others, of longer chain length (tetradecane, pentadecane, 
hexadecane, heptadecane, and octadecane), together with some aldehydes 
(heptanal, undecanal, 2-heptenal, 2-octenal, 2,4-nonadienal, and 2,4-deca- 
dienal) were higher at 0-week storage. 

4  CONCLUSIONS 

It is of interest to catalogue the differences in relative abundances of 
metabolites between species and among cultivars or genotypes, and changes 
with duration of storage. Some of these differences, notably the increase in 
sugars with storage, are well documented, but the majority are not. The real 
challenge is to identify relationships between different metabolites in terms 
of changes in metabolic pathways (Figure 19-5). There is a relationship 

aldehydes and methyl esters of short chain br- acids in the volatile profiles 
from S. phureja.  The aldehydes are generated from the amino acids via the  
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other volatiles (2-methylfuran, methanethiol, carbon disulfide, and 2-

between the elevated abundance of certain br- amino acids in tuber of S.
phureja relative to S. tuberosum and similarly elevated levels of short-chain br- 
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from the equivalent branched acylCoA thioester derivative which in turn is 
derived from an amino acid. 2-Methylbutanal and 2-methylbutanoic acid 

 
 
. 

Figure 19-5. Simplified schematic representation of interrelationship between polar and non-
polar metabolites isolated from tubers of Solanum tuberosum and S. phureja.  Individual
metabolites showing differences in abundance between S. tuberosum and S. phureja are
indicated by open and closed circles.  Metabolites which show changes in abundance during
storage at low temperature are indicated by closed and open diamonds. Several of the
metabolites shown are the source of a number of volatile flavour-related compounds generated
when tubers are boiled.  These volatiles, shown in the outlined boxes, and their precursor
metabolites were relatively more abundant when sampled from tubers of S. phureja. 
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ester are derived from isoleucine and valine, respectively, and all these 
compounds tend to be more abundant in samples from S. phureja (valine is 
elevated in genotype 333/16 only). 3-Methylbutanal and 3-methylbutanoic 
acid methyl ester are derived from leucine but although the amino acid and 
aldehyde were elevated from S. phureja, the methyl ester was not detected in 

iso-branched odd chain fatty acids by the synthesis de novo, was more 

species in the abundance of the br-alcohols 2-methyl- and 3-methylbutanol 
which also originate from isoleucine and leucine respectively. For individual 

The increased abundance of br-aldehydes and br-short-chain esters in the 
volatile profiles from the four genotypes of S. phureja may be significant 
factors in their favourable flavour assessment by specialist taste panel. 
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Chapter 20 

METABOLIC PROFILING HORIZONTAL 
RESISTANCE IN POTATO LEAVES (CVS. 
CAESAR AND AC NOVACHIP) AGAINST 
PHYTOPHTHORA INFESTANS 

Y. Abu-Nada1, A.C. Kushalappa1, W.D. Marshall2, S.O. Prasher3,  
and K. Al-Mughrabi4 
Departments of 1Plant Science, 2Food Sci. and Agric. Chemistry, and 3Bioresource Eng., 
McGill University, Ste. Anne de Bellevue, QC, Canada H9X 3V9; 4New Brunswick Dept. 
Agric., Wicklow, NB, Canada E7L 3S4 

Abstract: Metabolic profiles were developed for potato leaves, cvs. Caesar and AC 
Novachip, inoculated with water (CW and AW) or Phytophthora infestans (CP 
and AP), using gas chromatography/mass spectrometry (GC/MS). The level of 
horizontal resistance was higher for cv. Caesar than for AC Novachip with an 
area under the lesion expansion curve (AULEC) of 334 and 857, lesion area of 
86 and 224 mm2, and sporulation of 4.4 × 103 and 13.7 × 103 sporangia lesion–1, 
respectively.  A total of 51 metabolites were detected consistently in all the 
four replicates of at least one treatment. Of the 51 relatively consistent 
metabolites, 33 were unique to a treatment and 18 were common to two or 
more treatments. A total of 7 and 29 PR-metabolites were identified, 
respectively, in Caesar and AC Novachip cultivars. Most of the phenolic 
compounds were associated with the AP. The metabolite heptadecanoic acid, 
16-methy was detected only in the CP. In response to the P. infestans attack, 
the two cultivars appear to follow two different pathways.  The susceptible cv. 
AC Novachip appears to follow the Shikimic acid-phenylpropanoid pathway 
as we have detected many phenolic metabolites and benzoic acids, the latter is 
a precursor of the signal molecule salicylic acid (SA), known to trigger 
phenolic compounds. On the other hand, the resistant cv. Caesar appears to 
follow mevalonic acid-methylerythritol pathway as we have detected 
heptadecanoic acid, a probable derivative of linolenic acid that is a precursor 
of a signal molecule jasmonic acid (JA), known to trigger terpenes.  The factor 
analysis using principal components discriminated all the four treatments and 
the factor loading indicated which compound loaded significantly to a 
treatment. The possible function of these compounds in plant defense against 
biotic stress is discussed. 

Key Words: AC Novachip; Caesar; GC/MS; late blight; plant metabolomics; Phytophthora 
infestans; Solanum tuberosum; horizontal resistance. 
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1 INTRODUCTION 

Potato late blight, Phytophthora infestans (Mont.) de Bary, is the most 
important pathogen that attacks potato (Solanum tuberosum) (Flier et al., 
2003). P. infestans is a heterothallic fungal-like organism requiring the A1 
and the A2 mating types for sexual reproduction (Stromberg et al., 2001; 
Peters et al., 1999; Daayf and Platt, 1999).  The A2 mating type was found 
to be more aggressive than the A1 (Fry and Smart, 1999). In Canada, the 
clonal lineage US-8 is the most aggressive and dominant on cultivated 
potato cultivars (Medina et al., 1999; Peters et al., 2001; Daayf and Platt 
2003). 

resistance increases the selection pressure (Keller et al., 2000) and recently, 
many new races of P. infestans have been detected in North America. This 
has made the breeders to consider the horizontal resistance in the breeding 
programs, as it is considered to be more durable than the vertical resistance 
due to the polygenic nature of inheritance (Simmonds and Wastie, 1987; 
Peters et al., 1999). However, the progress made in transferring horizontal 
resistance to cultivated potatoes has been very limited because of the 
difficulty in breeding for polygenic traits (Evers et al., 2003). 

In Plant-pathogen interactions, the complete pathway involves the 
binding of an elicitor, a suppressor or an inducer to a specific receptor, a 
messenger that carries the signal and an effecter that activate the phenotypic 
expression. Pathogens produce different enzymes that can hydrolyze plant 
cell walls and their products act as signal molecules that evoke plant defense 
responses by the accumulation of phytoalexins (Esquerre-Tugaye et al., 
2000), pathogenicity related (PR) proteins (Palva et al., 1993), the 
enforcement of cell wall by lignification (Robertsen, 1987) and the 
accumulation of hydroxyproline-rich glycoproteins (HRGP) in the cell wall 
(Boudart et al., 1995; Huang, 2001). Biochemical defense compounds 
produced by plants have been grouped into preformed phytoanticipins and 
induced phytoalexins that are synthesized following infection (Osbourn, 
1996). Some of the phytoanticipins commonly detected in plants include 
phenols, phenolic glycosides, sulfur compounds, saponins, cyanogenic 
glycosides and glucosinolates. Phytoanticipins are commonly found in the 
outer cell layers of the plant tissues and they are usually stored in the 
vacuoles or other organelles in the healthy plants. Following insect feeding 
damage or a necrotroph invasion, some of these compounds defend the plant 
against the attacking pathogen. Saponins are glycosylated compounds that 
belong to triterpenoid, steroid and steroidal glycoalkaloid groups. The 
steroidal glycoalkaloids are abundantly found in the Solanaceae family that 
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In the past, breeding programs have mainly considered vertical resis- 
tance, generally controlled by single or major R-genes, because trans-
ferring genes from wild types to cultivated is easy. However, vertical 
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includes potato. Some fungi such as Pythium and Phytophthora withstand 
saponins because of having a low concentration of sterols in their cell 
membrane. Other phytoalexins isolated from potato include: rishitin, 
phytuberin, lubimin, solavetivone (Huang, 2001). Glucosinolates are sulfur-
containing compounds and are well known as mustard oil glycosides.  

Plant metabolites are numerous and they are estimated to be between 
90,000 and 200,000 (Fiehn, 2001; Dixon et al., 2002). Primary metabolites 
are essential for the growth and development of the plant, while the 
secondary metabolites are not, and most of them are usually associated with 
the defense response in the plant (Taiz and Zeiger, 2002). Although the 
genomic, transcriptomic, and proteomic information of plant-pathogen 
interaction is very useful in developing cultivars with novel traits, they do 
not always give sufficient information on the end products of plant defense, 
the metabolites produced in the host-pathogen interactions (Fiehn, 2001; 
Roessner et al., 2000). Metabolic profiling has been used to identify 
genetically and environmentally modified traits (Roessner et al., 2001). 
Roessner et al. (2000) were able to identify more than 150 metabolites from 
potato tubers using GC/MS technique. Major differences were found in the 
concentration of the amino acids such as glutamine, proline, and arginine. In 
vitro microtubers were found to have higher concentrations of the amino 
acids compared with the soil-grown tubers. Fiehn et al., (2000) used 
metabolic fingerprinting for the comparison of two homozygous ecotypes 
and two single gene mutants of Arabidopsis thaliana. Distinct metabolic 
phenotypes were reported for each genotype. 

Breeding for quantitative disease resistance is problematic due to lack of 
tools to evaluate quantitative resistance phenotypes. In segregating popu-
lations varying in low to high levels of quantitative resistance though the 
disease severity on very resistant and very susceptible plant-pathogen 
interactions were consistent among trials over years, those on the inter-
mediate interactions were quite inconsistent (Haynes et al., 2002). 
Quantitative resistance in potato against late blight has been measured based 
on multiple epidemiological disease parameters such as infection efficiency, 
latent period, lesion size, amount of sporulation, etc. (Carlisle et al., 2002). 
However, these measurements are time-consuming and expensive for use in 
breeding programs. Plant breeders are looking for tools to measure phenol-
types varying in quantitative resistance. Metabolic phenotyping of cultivars 
varying in resistance to disease may be a potential alternative. Accordingly, 
the main objective of this study was to develop metabolic profiles for potato 
cultivars with different levels of horizontal resistance against leaf infection 
by P. infestans and relate them to levels of resistance/disease severity.  
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2 MATERIALS AND METHODS 

2.1 Potato plant production 

Elite seed potato tubers of cvs. AC Novachip and Caesar were obtained 
from Bon Accord Elite Potato Center, NB and Global Agri. Services Inc., 
NB, respectively. AC Novachip is very susceptible and Caesar is moderately 
resistant to foliar infection by P. Infestans (CFIA, 2003). These tubers were 
stored at 4˚C and 90% RH until use. Seed tubers were sown singly in 16 cm 
diameter pots containing soil mixture of 1:1 ratio of soil and PRO-Mix BX 
(Premier Horticulture Ltd, Riviere-du-Loup, QC). Plants were fertilized 
weekly with 200 mL/pot of a solution (1.5g L–1) of Plant-Prod® 20:20:20 and 
trace elements (Plant Products Co. Ltd., Ontario, Canada). Three stems per 
tuber were maintained. Potato plants were grown in the green house (20–
25˚C) for 30–40 days to obtain a good foliage growth. 

2.2 Inoculum production 

P. infestans culture (clonal lineage US-8, A2 mating type, isolate No. 
1661, obtained from AAFC, Charlottetown, PEI) was maintained at 4˚C.  
The pathogen was sub-cultured on rye-agar seed extract media at 15˚C. The 
sporangia were harvested after 2–3 weeks by flooding with sterile water 
containing 0.02% Tween 80. The concentration of the sporangia in the 
suspension was adjusted to 5 × 104 mL–1.  

2.3 Inoculation and incubation  

Plants grown in greenhouse were transferred to a growth chamber 
maintained at 20oC, 16 h photoperiod and 90% relative humidity. Three days 
later, 12 well-formed leaflets were inoculated at either sides of midrib on the 
undersurface with 5 µL of the sporangial suspension or 0.02% Tween 80 
which served as a control. Plants were misted with sterile water, covered 
with plastic bags to maintain high relative humidity, and transferred back to 
the growth chamber. The bags were removed 24 h later.  

2.4 Disease severity and sporulation assessment 

The lesion diameter was measured on 1, 2, 4, 6, 8 days after inoculation 
(DAI) from which the lesion area and the area under the lesion expansion 
curve (AULEC) (Shaner and Finney, 1977) were calculated.   

Twenty-four hours after inoculation, leaf discs were cut using 15 mm 
cork borer, placed upper surface down in Petri dish lined with a moist filter 
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paper and incubated at 20oC and 16 h photoperiod. The plates were 
completely randomized inside the incubator. Six days after inoculation, the 
leaf discs were transferred into a test tube containing 5 mL of 0.02% of 
Tween 80 in water, vortexed, and the number of sporangia was counted 
using a haemocytometer. Each sample was counted six times from which the 
average number of sporangia per lesion was derived.  

2.5 Metabolite extraction and analysis 

Leaf discs containing the inoculated sites were cut at 24 h after 
inoculation, using a 15 mm cork borer and crushed in liquid nitrogen using a 
mortar and pestle. The powdered samples were stored in Eppendorf tubes at 
–80oC until use. The polar metabolites were extracted following a method 
developed by Roessner et al. (2000) where 100 mg of the powdered plant 
tissue was extracted with 1.4 mL of 99.93% methanol, for 15 min at 70oC, 
vigorously mixed with one volume of water and centrifuged at 2,200 g for 
10 min. 1 mL of the methanol/water supernatant was dried in Speed Vacuum, 
methoximated in 80 µL of 20 mg of methoxyamine hydrochloride in 
pyridine for 90 minutes at 30oC, and derivatized in 80 µL of MSTFA at 37oC 
for 30 minutes. Ribitol (50 µL solution of 2 mg ribitol mL–1 water) was 
added as an internal standard.  

2.5.1 GC/MS analysis  

100 µL samples of leaf extracts, in tubes with septa, were loaded to an 
auto sampler connected to GC (model 3400, Varian, Canada) which injected 
1 µL sample in to the GC injection port. The GC was equipped with a 
capillary column (DB-5MS, 30 m and 0.25 mm diameter). The GC injector 
temperature was healed at 250oC. Helium was used as a carrier gas with a 
flow rate of 1 mL s–1. The oven temperature was held at 50oC for 3 min and 
then increased at the rate of 3oC min–1 until 200oC, then at 12oC min–1 until 
250oC and was held at this temperature for 2 min. The compounds were 
ionized and the mass spectra from 50 to 600 m/z were recorded using an ion 
trap analyzer. Data was analyzed using Saturn Lab Software, and NIST 
library was used to identify the metabolites. The data for the entire 
experiment were borrowed in to an EXCEL (Microsoft Corporation) spread 
sheet, and sorted based on retention time using Pivot Table procedure. The 
mass spectra of individual peaks/compounds across four blocks of a 
treatment were manually compared among themselves using the retention 
time (±0.01 min) as a reference, and with the top ten choices of NIST library 
search program. The output consisted of a list of compounds and their 
relative abundance of mass ions (ion trap detector output). 
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2.5.2 Experimental design 

A completely randomized block design was used for the metabolic 
profiling study using GC/MS. The experiment consisted of two main factors 
of two cultivars of potato (Cesar and AC Novachip) and two sub-factors of 
inoculations (pathogen or water). The entire experiment was conducted four 
times over time. Each experimental unit for metabolic profiling consisted of 
12 discs cut from 6 leaflets in 3 stems produced from one tuber. The data on 
metabolites and their abundance were used in statistical analysis. From the 
same single-tuber-plants, used for GC/MS analysis, the lesions on another 6 
leaflets were used for the assessment of disease severity over an 8-day 
period. The data on lesion diameter was used to calculate the lesion area and 
area under the lesion expansion curve. A completely randomized design with 
two treatments of two cultivars and four replicates was used for the 
sporulation assessment. Each experimental unit consisted of single-tuber-
plants from which 10 leaflet-discs containing inoculation sites were cut. 
Spore suspensions were prepared 6 DAI and the data on number of 
sporangia per inoculation site were used in statistical analysis. 

2.6 Data processing and statistical analysis 

2.6.1 Disease severity and sporulation  

The data on average lesion area in mm2, AULEC, and the number of 
sporangia per inoculation site, for each experimental unit, were subjected to 
ANOVA using completely randomized design procedure of SAS. 

2.6.2 Metabolic profile 

The metabolic profiles consisted of GC/MS output on retention time, 
names and abundances of compounds. The data for the entire experiment 
were borrowed in to an EXCEL (Microsoft Corporation) spreadsheet and the 
frequency of each metabolite occurrence among blocks was determined. The 
metabolites unique to a treatment (cultivars inoculated with water or 
pathogen) or metabolites common to two or more treatments were identified. 
The metabolites novel or increased in abundance following pathogen 
inoculation were designated here as pathogenesis-related (PR) metabolites.   

The compounds that were common to two or more treatments and their 
average mass ion abundances were normalized by dividing each by the total 
for all the metabolites considered and designated as metabolic fingerprints. 
The metabolic fingerprints were subjected to factor analysis (SAS), using 
principle component method, to assign a compound or combinations of 
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compounds that significantly loaded to a treatment and to discriminate 
resistance/treatments based on factor scores. 

3 RESULTS 

3.1 Disease severity and amount of sporulation  

The average lesion areas on the 8 DAI were 224 and 86 mm2, and the 
average AULEC were 857 and 334, for AC Novachip and Cesar, 
respectively. The amount of sporulation was higher in susceptible AC 
Novachip (13.7 × 103 sporangia mL–1) as compared to the resistant cultivar 
Caesar (4.4 × 103 sporangia mL–1).  An analysis of variance indicated that 
the treatments, of each of the three experiments, were highly significant at 
1% level and the F-values for the blocks, for lesion size and AULEC, were 
not significant at 1% level.  

3.2 Pathogenesis related (PR) metabolites and resistance 
level discrimination 

A total of 875 metabolites were detected in the polar extracts of two 
potato cultivars, AC Novachip and Caesar, at 24 h after inoculation with P. 
infestans or water (control). Of these metabolites, 401 had mass ion 
abundances of ≥5000 (Ion Trap detector output), including 51 metabolites 
that were detected in all the four blocks, in at least one of the treatments 
(Table 20-1). Out of the 51 metabolites, 33 were unique to a treatment, 12 
were common to two or more treatments, and the remaining 6 were common 
to all the treatments (Caesar pathogen (CP), Caesar water (CW), AC 
Novachip pathogen (AP) and AC Novachip water (AW) inoculated). Two 
metabolites 1,4-Dihydro-2-isopropyl-6 and 2-Hydroxy-3-methylanthraquin 
were detected only in the CW. Another two metabolites 1H,10H-
Furo[3',4':4a,5]napht and heptadecanoic acid, 16-methy were specific to CP. 
Thirteen metabolites were unique to AW and sixteen were unique to AP.  A 
metabolite, 2-Methoxy-4'-nitro-diphenyla was detected in all the four blocks 
of AW, but occurred only in one block of CW. Two metabolites, 2-Phenyl-
3-methoxy-cycloprop and 4H-1-Benzopyran-4-one, 5-hyd were found in 
both the cultivars when pathogen was inoculated, but the frequency and the 
abundances of these metabolites were much higher in the AP. In addition, 
Myo-inositol, 1,2,3,4,5,6-he and Acetic acid,  (trimethylsilyl) were found in 
all the treatments, though their abundances varied.  A total of 7 and 29 PR-
metabolites were detected in Caesar and AC Novachip, respectively, 
including 3 that were common to both the cultivars (Table 20-1). These   
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Table 20-1. Average abundance and frequencies of occurrence of metabolites (and PR-
metabolites*) detected in leaves of two potato cultivars Caesar and AC Novachip inoculated 
with water or P. infestans  
 

Mass ion abundance (x103) 
Metabolites (Chemical groups)1 

 CW  CP  AW  AP 
Alkaloids  69.4 [3]2  5.8 [1]   328.2 [9]  249.5 [5]  
  1,4-Dihydro-2-isopropyl-6  44.9 (4)3       
  1H-Pyrimido[1,2-a]quinoline-      66.0 (4)    
  2,3-Dihydro-1H-2-methylcyclo      36.7 (4)    
  Conanin-3-amine, N,N-dimethy      24.3 (4)    
  Morphinan-14-ol, 8-azido-6,7      73.4 (4)    
  Pyrazolo[5,1-c]-as-triazine-      35.1 (4)    
  1,3-Dicyano-2-phenyl-3-amino        25.4 (4)*  
  1,2-Dihydro-2,4-diphenyl-qui      54.0 (4)   8.9 (2)  
  1,4-Dihydro-2-isopropyl-6-ph      8.9 (2)   121.4 (4)* 
  Quinoline, 1,2-dihydro-1-(p-  6.7 (1)     22.4 (4)   62.0 (4)*  
  Isoxazolo[4,3-a]phenazine, 1  17.9 (2)  5.8 (1)   7.2 (2)   31.8 (4)*  
Nitrogen  12.4 [1]    99.1 [2]   48.5 [2]  
  Methanamine, N-[4-(diphenylm      39.8 (4)    
  2,3-Di-O-benzoyl-d,l-glycero        25.4 (4)*  
  Benzenesulfonamide, 4-(dimet        23.2 (4)*  
  2-Methoxy-4'-nitro-diphenyla  12.4 (1)    59.3 (4)    
Phenolics  345.8 [3]  219.6 [3]  288.1 [4]  321.7 [9]  
  2-Hydroxy-3-methylanthraquin  51.7 (4)       
  Benzoic acid, 2,4-bis(trimethylsiloxy)-,       55.6 (4)    
  Noradrenaline tetraTMS      51.3 (4)    
  10-Dicyanomethylene-benz(a)a        23.3 (4)*  
  4H-1-Benzopyran-4-one, 6,7-d        30.7 (4)*  
  9,10-Anthracenedione, 1-phen        16.4 (4)*  
  Benzoic acid, 2,4-bis[(trimethylsilyl)oxy]-,        64.3 (4)*  
  Benzoic acid, 3,5-bis(1,1-di        22.4 (4)*  
  Luteoline (5,7,3',4'-tetrahy        22.1 (4)*  
  3-Hydroxy-4-(methylsulphonyl  5.8 (1)       33.2 (4)*  
  9,10-Anthracenedione, 1,3-di    23.8 (4)*  16.8 (3)    
  4H-1-Benzopyran-4-one, 5-hyd    7.8 (1) *    26.8 (4)*  
  1,8-Dihydroxyanthraquinone d 288.3 (4)  188.0 (4)  164.5 (3)  82.5 (3)  
Sulfur      43.8 [1]   271.5 [2]  
  Tetramethyl diphosphan-oxide      43.8 (4)    
  2-Methyl-2-(4-methoxyphenyl)        212.4 (4)* 
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Table 20-1 (continued).     
  exo-2-Cyano-endo-2-methylthi        59.1 (4)*  
Others 2478.4 [5] 2144.8 [10]  1897.3 [11]  2424.6 [14]  

  1H,10H-Furo[3',4':4a,5]napht    41.3 (4)*     
  Heptadecanoic acid, 16-methy    56.2 (4) *     
  2-Ethoxycarbonyl-5-isopropyl      41.0 (4)    
  3-(t-Butylacetoxy)-3-methylb      9.3 (4)    
  7,11-Dimethyloctadecane      11.3 (4)    
  Cyclopenta[c]pyran-1,3-dione      29.5 (4)    
  1,3,3-Trimethyl-6-hydroxy-2-        30.5 (4)*  
  2,3,4,6-Tetramethoxystyrene        30.7 (4)*  
  2-Propenoic acid, 3-(cyclohe        40.1 (4)*  
  6-Benzyloxy-2-ethoxy-2,3,4,5        50.0 (4)*  
  Octadecanoic acid, methyl ester        92.0 (4)*  
  2-Phenyl-3-methoxy-cycloprop    8.5 (2)*     113.8 (4)* 
  Cyclopenta[c]pyran-4-carboxy      26.9 (3)   106.8 (4)* 
  Hexadecanedioic acid diTMS  33.4 (2)  33.3 (1)     65.8 (4)*  
  3'-Methyl-2-benzylidene-coum    37.6 (3)*  63.9 (4)   61.4 (4)  
  Tricyclo[3.2.1.02,4]octane,     11.0 (2)*  20.2 (4)   58.5 (4)*  
  (3R,6R)-(+)-3-Isopropenyl-6- 159.6 (4)  99.7 (2)   97.5 (2)   102.5 (2)* 
  Acetic acid, [(trimethylsily  1246.7 (4)  1123.4 (4) 1166.4 (4)  1291.5 (4)* 
  Myo-Inositol, 1,2,3,4,5,6-he 907.3 (4)  633.5 (4)  148.2 (4)  172.7 (4)* 
  Propanoic acid, 3-(trimethyl 131.4 (4)  69.6 (2)   161.7 (4)  192.8 (4)* 
 
1. Shortened names according to NIST library 
2. Total number of metabolites per group for the corresponding treatment. 
3. Frequency of metabolites among four blocks; * = Pathogenesis- Related (PR) metabolites 
(abundances of CP > CW; AP > AW) 
 
PR-metabolites can be used to discriminate resistance between these two 
cultivars. 

3.2.1 Factor analysis to discriminate resistance levels 

The metabolic fingerprints based on normalized abundances of 18 
metabolites that were common to two or more treatments (excluding 31 
metabolites unique to a treatment, out of 51 relatively consistent metabolites, 
Table 20-1) were subjected to factor analysis to discriminate resistance 
based on factor loadings. The factor scores were used to discriminate 
resistance levels/treatments (Figure 20-1). Nine compounds loaded signifi-
cantly to factor 1 that contributed mainly to AP (metabolites number 1-9, 
Table 20-2), where five belonged to phenolic and alkaloid groups. 

277 



 

Figure 20-1. Scatter plot (using factor scores) of potato cultivars with contrasting levels of 
horizontal resistance, pathogen or water inoculated, based on factor analysis of normalized 
abundance of 18 compounds common to two or more treatments. AW, AP = water or 
pathogen inoculated AC Novachip and CW, CP = water or pathogen inoculated Caesar, 
respectively. 

Five metabolites (12–16, Table 20-2) loaded significantly to factor 2 which 
contributed mainly to AW, and one metabolite (18, Table 20-2) loaded 
significantly to factor 3 which contributed to CP. 

3.2.2 Metabolite groups to discriminate resistance levels 

The metabolites detected were further classified into different chemical 
groups based on their function, such as, phenolics, alkaloids, sulfur-
containing, nitrogen-containing metabolites, and others (Table 20-1). The 
most frequent and abundant groups were the phenolics followed by the 
alkaloids. The phenolics were found in all the treatments with some 
differences in their abundances. Three phenolic metabolites were detected in 
both CW and CP; however, the total abundance decreased following 
pathogen inoculation from 346 × 103 in CW to 220 × 103 in CP. On the  
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contrary, the total number of the phenolic metabolites in the AP increased 
from 4 in AW to 9 in AP. The total abundances of phenolic compounds 
increased from 288 × 103 in AW to 322 × 103 in AP. The total abundances of 
benzoic acid derivatives increased from 56 × 103 in AW to 87 ×103 in AP. 

Table 20-2. Eigenvector loadings , based on factor analysis using principal component 
method, for normalized abundances of 18 metabolites that were common to two or more 
treatments (metabolites unique to treatments not included; details in Table 20-1) 
 

No. Metabolites Factor 1 Factor 2 Factor 3 

1 2-Phenyl-3-methoxy-cycloprop 0.994  -0.094 -0.039 

2 1,4-Dihydro-2-isopropyl-6-ph 0.994 0.041 -0.099 

3 3-Hydroxy-4-(methylsulphonyl  0.962 -0.112 -0.245 

4 Cyclopenta[c]pyran-4-carboxy  0.960 0.269 -0.075 

5 4H-1-Benzopyran-4-one, 5-hyd  0.957 -0.233 0.167 

6 Tricyclo[3.2.1.02,4]octane,  0.946 0.295 0.130 

7 Quinoline, 1,2-dihydro-1-(p 0.910 0.385 -0.149 

8 Isoxazolo[4,3-a]phenazine, 1 0.887 -0.106 -0.447 

9 Hexadecanedioic acid diTMS 0.772 -0.635 -0.022 

10 (3R,6R)-(+)-3-Isopropenyl-6- -0.752 -0.059 -0.656 

11 1,8-Dihydroxyanthraquinone d    -0.979 -0.116 -0.167 

12 1,2-Dihydro-2,4-diphenyl-qui -0.153 0.982 0.102 

13 2-Methoxy-4'-nitro-diphenyla -0.358 0.933 -0.009 

14 Acetic acid, [(trimethylsily 0.116 0.861 0.493 

15 Propanoic acid, 3-(trimethyl 0.512 0.819 -0.255 

16 3'-Methyl-2-benzylidene-coum 0.394 0.747 0.535 

17 Myo-Inositol, 1,2,3,4,5,6-he -0.639 -0.758 -0.123 

18 9,10-Anthracenedione, 1,3-di  -0.470 0.214 0.855 

Eigenvector (metabolite) loadings with high positive values indicate significant loading of 
compounds to each factor. Factor 1 contributed mainly to AC Novachip-pathogen-
inoculated, Factor 2 = AC Novachip-water-inoculated; factor 3 = Caesar-pathogen-
inoculated (see Figure. 20-1 for factor scores). 

a

a 

a
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No benzoic acid derivatives were detected in either CP or CW. The total 
abundance of the phenolic metabolite 1,8-dihydroxyanthraquinone reduced 
in both the cvs. following pathogen inoculation, from 288 × 103 in CW to 
188 × 103 in CP, and from 165 × 103 in AW to 83 × 103 in AP.  

The number and abundances of alkaloids reduced following pathogen 
inoculation in both cultivars, however, both the number and abundances 
were higher for both AW and AP. Similarly, the abundances of nitrogen-
containing compounds reduced in pathogen inoculated treatments. Two 
sulfur-containing metabolites with total abundances of 44 × 103 in AW 
increased following pathogen inoculation to 272 × 103. No sulfur-containing 
metabolite was detected in both treatments of the cv. Caesar.   

4  DISCUSSION 

In the present study, we were able to discriminate levels of resistance in 
two potato cultivars inoculated with P. infestans based on metabolic 
profiling of the polar portion of the plant extract using several criteria: (a) 
unique and combinations of PR-metabolites; (b) chemical groups of 
metabolites and their abundances; and (c) factor models based on metabolic 
fingerprints of normalized abundances of metabolites common to two or 
more treatments. The cv. AC Novachip produced more PR-metabolites, 
including phenolic compounds than cv. Caesar.  The cv. Caesar produced 
high abundance of heptadecanoic acid, 16-methyl following pathogen 
inoculation. The chemical groups of metabolites, though not unique, the total 
abundances of phenolics were higher for AP than for CP. Also, the factor 
loadings and scores, based on common metabolites, discriminated the 
resistance levels. 

The cv. Caesar was more resistant than cv. AC Novachip for leaf 
infection by P. infestans as confirmed by the lower disease severity (lesion 
area and AULEC) and lower amount of sporulation. This is in agreement 
with the assessment of resistance previously reported by CFIA (2003).  

infestasns attack. The cv. AC Novachip appears to follow shikimic acid 
pathway producing more of phenolics, while the cv. Caesar appears to 
follow mevalonic-acid pathway producing terpenoids, Heptadecanoic acid, 
16-methy’. Majority of the compounds detected in this study belonged to the 
phenolics. This group contains many metabolites that are known for their 
antimicrobial activity (Dixon et al., 2002). Phenolic compounds are 
produced via Shikimic acid-phenylpropanoid pathway where the amino acid 

Y. Abu-Nada et al.

Many metabolites detected in our study were identified to be inter- 
mediate compounds of metabolic pathways of plant-pathogen interaction.
Based on the compounds detected in this study, it appears that the two
cultivars follow two different metabolic pathways to defend against P. 
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phenylalanine is converted to cinnamic acid that in turn produces many 
metabolites belonging to different subgroups such as coumarins, flavones, 
flavanones, flavonols, isoflavans, isoflavones, anthocyanidins and many 
others (Dixon et al., 2002; Huang, 2001; Hopkins and Huner, 2004). The 
shikimic acid pathway also can increase the production of the aromatic 
amino acids phenylalanine, tyrosine and tryptophan (Dixon, 2001; Taiz and 
Zeiger, 2002; Lyon, 2003).  

The activity of the phenolic compounds, total numbers and abundances, 
was higher in the cv. AC Novachip compared with the cv. Caesar. The total 
abundance of benzoic acid derivatives increased from 56 × 103 in the AW to 
87 × 103 in the AP, while these were not detected in Caesar. Benzoic acid 
was reported to be a precursor of the signal molecule Salicylic acid (Dixon 
et al., 2002; Metraux, 2002; Nakane et al., 2003; Lyon, 2003). Although the 
SA was not detected in our study the presence of the benzoic acid 
derivatives that are precursors of SA may indicate its activity. Following 
pathogen attack plants produce SA, which in tern stimulated the production 
of PR-proteins (Durner et al., 1997) and phytoalexins (Nojiri et al., 1996) 
leading to local acquired resistance (LAR) and systemic acquired resistance 
(SAR) (Heil and Bostock, 2002). The abundance of the phenolic metabolite 
1,8-dihydroxyanthraquinone d was reduced by about 35% in Caesar and 
50% in AC Novachip following pathogen inoculation. This metabolite is an 
anthraquinone and could have been produced from the precursor 
isochorismic acid (Lyon, 2003). The reduction in anthraquinone production 
can stimulate the production of salicylic acid with the help of the enzyme 
pyruvate lyase. This pathway is proposed in Arabidopsis, but not yet proved 
in potato (Lyon, 2003). If this is true, then one could expect that the amount 
of salicylic acid produced via this pathway would be more in the AP than in 
the CP. 

Although the activity of nitrogen-containing compounds and alkaloids 
were reduced in both cultivars when inoculated with the pathogen, the 
reduction was more in the cv. Caesar. The primary sources of these 
compounds are pyruvate, the tricarboxylic acid cycle (TCA) and the 
Shikimic acid pathway (Taiz and Zeiger, 2002; Nakane et al., 2003). Thus, 
we could hypothesize that either the activity of pyruvate, the TCA, or the 
activity of one branch of the shikimic acid pathway that produces aromatic 
amino acids was reduced. 

Other metabolites which have phenol and nitrogen in their structures and 
might be synthesized via shikimic acid-phenylpropanoid pathway by AC 
Novachip were: (9,10-Anthracenedione, 1,3-di; 9,10-Anthracenedione, 1-phen; 
2,3-Di-O-benzoyl-d,l-glycero; Benzenesulfonamide, 4-(dimet;  Luteoline 
(5,7,3',4'-tetrahy; 10-Dicyanomethylene-benz(a)a; 4H-1-Benzopyran-4-one, 
6,7-d). Factor analysis (Table 20-2) indicated significant loading of nine 
metabolites to factor 1 and these were significantly correlated with the 
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pathogen-inoculated AC Novachip. Five of these metabolites belong to the 
phenolics and alkaloids. 

In pathogen inoculated Caesar Heptadecanoic acid, 16-methy was 
detected which is a fatty acid that could be a derivative of heptadecatrienoic 
acid (C17: 3) which is produced from linolenic acid (C18: 3) through the 
activity of α-dioxygenase, a pathogen inducible oxygenase (Lyon, 2003). In 
response to pathogen attack, it has been reported that in the mevalonic acid 
pathway lipoxygenase and other enzymes activate the conversion of 
linolenic acid to jasmonic acid (JA) and other derivatives (Liechti and 
Farmer, 2002). Although the plants can produce JA following insect attack 
or the infection by a pathogen, the end products of these interactions are 
different, and these affect the products of the local and systemic acquired 
resistance in the plant (Fidantsef et al., 1999). In Solanaceae, the jasmonates 
and oxylipins (linolenic acid derivative) elicit proteinase inhibitor 
accumulation and steroid glycoalkaloid synthesis responses, i.e., similar to 
mechanical wounds or chewing insect attack (Casey, 1995; Choi et al., 
1994). On the contrary, fungal elicitors such as arachidonic acid (AA) and 
lipoxygenase metabolites stimulate the accumulation of PR-proteins and 

detected in cv. Caesar, it could be hypothesized that the mevalonic-acid 
pathway was active, which is signaled by JA. However, no JA and little 
lipophilic metabolites were detected in our study, but in reality, there may 
have been more as in the present investigation only polar phase of the plant 
extracts (methanol-water solvents), which excluded most lipophilic 
compounds including many terpenes, was analyzed.  

P. infestans is a hemibiotroph and during the biotrophic phase, the 
fungus shows minimal secretary activates in order not to trigger the plant 
defense responses (Mendgen and Hahn, 2002). The pathogen elicits the 
hypersensitive response (HR) when infecting the nonhost plants, the partially 
resistant and the highly resistant plants. In the completely resistant Solanum 
species and nonhosts the HR was very fast, killing 1-3 infected plant cells. 
However, in the partially resistant plants, the HR was slow, gradually killing 
five or more plant cells. The major R-genes such as R1 were found to 
produce a strong HR response while the weak R-genes, i.e., R10 was found 
to produce a weak and late HR responses and the pathogen hyphae were able 
to grow beyond the HR lesion to start a new infection (Vleeshouwers et al., 
2000).  In our study, both cultivars are believed to have minor genes that are 
responsible for the horizontal resistance. They were found to have different 
levels of disease severity according to lesion size, sporulation rates and the 
AULEC, but there is a possibility that the cultivar Caesar could contain one 
of weak R-genes that mimic the horizontal resistance. Further studies are 
needed in this area.  

Y. Abu-Nada et al.

sesquiterpene phytoalexins, leading to programmed cell death (Bostock  
et al., 1986). Because high abundance of ‘Heptadecanoic acid, 16-methy’ was 
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In conclusion, the cultivars tested in this study, AC Novachip and Caesar 
seem to have evolved developing two separate mechanisms to suppress the 
invasion by P. infestans.  The activity of phenolic metabolites increased in 

heptadecanoic acid, a potential precursor for the signal molecules jasmonic 
acid, was only detected in the inoculated Caesar. JA has been associated 
with the activation of many terpenes. An analysis of the lipophilic potion of 
the plant extract would shed more lights on the compounds that are involved 
in this pathosystem. 
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Chapter 21 

IN VIVO 15N-ENRICHMENT OF METABOLITES 
IN ARABIDOPSIS CULTURED CELL T87 AND 
ITS APPLICATION TO METABOLOMICS 

Kazuo Harada, Ei-ichiro Fukusaki, Takeshi Bamba, and Akio Kobayashi 
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 
Yamadaoka, Suita, Osaka, 565-0871, Japan 

Abstract: A mass spectrometer is one of the best analytical tools for metabolomics. 
However, its quantitative accuracy can be compromised due to ‘ion 
suppression’ caused by insufficient separation during chromatography. Here 
we present a practical solution for quantitative analysis by means of stable 
isotope dilution, including in vivo 15N-labeling. We employed Arabidopsis 
thaliana cultured cell T87 as a model plant cell. 15N-enrichment was readily 
performed by cultivation with modified LS-media containing 15N-labeled 
inorganic nitrogen sources, K15NO3 and 15NH4

15NO3. No significant 
morphological change in T87 cells was observed with 15N-enrichment. A 
mixture of the extracts of 15N-cultured cells and 14N-cultured cells was 
subjected to capillary LC/MS analysis. Sufficient linearity was obtained in the 
relative quantification system. In addition, time-course sampling revealed an 
apparent turnover rate of metabolites including nitrogen atoms. The time 
course was started from the zero time at which culture media were changed 
from 14N-media to 15N-media. Interesting variations in nitrogen turnover rate 
among the metabolites was observed. This 15N in vivo labeling system should 
become a powerful tool for both metabolomics and flux analysis. 

1 INTRODUCTION 

Metabolomic analytical procedures that have been developed to-date 
have the following problems: (i) Mass spectrometry is generally used for 
detection in metabolic profiling, e.g., GC/MS, LC/MS, CE/MS. However, 
mass spectrometric measurements are rarely quantitative due to fluctuations 
in the ionization efficiency of analytes (King et al., 2000; Mëller et al., 
2002). This fluctuation is caused by the presence of material other than the 
target compound during ionization. Therefore, researchers have not yet 
obtained accurate quantitative data during metabolic profiling. (ii) Metabolic 
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profiling procedures measure accumulated amounts of metabolites. This 
means information about metabolic flux is lacking in the profiling data 
(Matsuda et al., 2003). Therefore, it is difficult to discuss the dynamics of 
metabolism using profiling data. 

It should be possible to utilize isotopes to overcome these problems. For 
(i), the stable isotope dilution method, which uses stable isotope labeled 
analogs (isotopomers) of analytes as internal standards, compensates for 
fluctuations in ionization efficiency (Dube et al., 2001). This method can 
also correct variations due to experimental procedures (i.e., extraction, 
preparation, injection into the analytical instrument) other than ionization in 
the mass spectrometer. Therefore, this allows the accurate quantification of 
metabolite levels. For (ii), the isotopic distribution of metabolites following 
incorporation of isotopes into samples over certain periods reveals apparent 
turnovers of metabolites. This helps us to interpret the dynamics of 
metabolism. 

Moreover, plants can use inorganic ions, nitrate and ammonium, as their 
sole nitrogen source. This means that 15N-labeling of these inorganic ions in 
culture media will cause isotopic labeling of every nitrogen-containing 

15

2 ISOTOPE DILUTION METHOD USING IN VIVO 
15N-LABELING  

2.1 Background 

The stable isotope dilution method has been widely used to accomplish 
accurate quantification in mass spectrometry (Dube et al., 2001; 
Matuszewski et al., 2003). The method compensates for fluctuations caused 
by ion suppression or matrix effects, because the ionization efficiencies of 
isotopomers are identical under all conditions (i.e., including compounds 
other than analytes). 

When applying the stable isotope dilution method to metabolic profiling, 
it is important to consider how isotopomers corresponding to the vast array 
of metabolites are to be prepared. The utility of commercial isotopomers is 
limited because isotopic compounds corresponding to most metabolites are 
expensive or unavailable, and organic or enzymatic syntheses are very 
laborious and time-consuming to prepare all the isotopic analogs of 
multitarget metabolites.  

Thus two strategies are considered to be practical for stable isotope 
dilution. One is postharvest derivatization of sample mixtures using certain 

K. Harada et al. 

compound. Here, we present a novel analytical method for plant meta-
bolomics using in vivo N la-beling in order to overcome above-mentioned
problems. 
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reagents and their isotopomers. In the proteomics field, one of the most 
useful commercially available reagents for stable isotope dilution is the 
isotope coded affinity tag (ICAT) (Gygi et al., 1999). Although such 
methods have also been reported in the metabolomics field (Fukusaki et al., 
2005), no practical methods have been developed because three problems 
remain: (i) procedures enabling exhaustive derivatization are limited; (ii) a 
loss of analytes caused by derivatization occurs; and (iii) the methods are not 
able to compensate for the difference in derivatization efficiencies using 
certain reagents and their isotopomers.   

The other strategy is in vivo labeling method, in which samples uptake 
isotopes from culture media (Figure 21-1) (Ong et al., 2002; Steen et al., 
2002). This method avoids the problems associated with postharvest 
derivatization. Thus in vivo labeling method should be appropriate for 
exhaustive metabolic profiling. Accordingly we verified the utility of in vivo 
labeling method by the following experiments. 

2.2 Materials and experiments 

As sample material, we selected Arabidopsis thaliana cultured cell T87 
(Axelos et al., 1992). The 15N-labeled cells were grown in modified 
Linsmaier and Skoog medium containing K15NO3 and 15NH4

15NO3 (15N-LS 
medium) instead of K14NO3 and 14NH4

14NO3 under continuous light at 23ºC. 
Every 7 days, mother cell suspensions were transferred into new 15N-LS 
medium.  

Figure 21-1. Concept of isotope dilution method using in vivo 15N-labeling. 
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The instrument for capillary LC was a Famos-Switchos II- Ultimate (LC 
Packings, Amsterdam, The Netherlands), mass spectrometry was by an 
Esquire 3000 plus (Bruler Daltonics, Billerica, MA, USA) using electrospray 
ionization (ESI). An ODS capillary monolithic column (0.2 mmi.d.×750 
mm, Kyoto Monotech Corp. Kyoto, Japan) was used as the analytical 
column. The solvent for LC/MS analysis was H2O-acetonitrile-formic acid, 
at a flow rate of 3.2 µL/min.  

2.3 Results and discussion 

Next we study the accuracy of stable isotope dilution using in vivo 
labeling. Folates were chosen as targets, because they are difficult to analyze 
due to their low amounts and instability.  

5-Methyltetrahydropteroate (5-CH3-H4pteroate) that is related to folate 
should be detected as [M+H, at m/z 331]+ in the mass spectrometer using 

15

+

obtained by combining unlabeled and labeled cell equally was subjected to 
capillary LC/MS (Figure 21-2), both peaks in mass chromatogram of m/z 
331 and 337 were detected with almost the same peak areas.  

To validate the isotope dilution method using in vivo labeling as a 
quantitative method, a mixing experiment was performed using known  
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Folate determination was performed as follows. Unlabeled (14N) and 
labeled (15N) cells were harvested by filtration and immediately ground in 
liquid nitrogen. These were combined and immersed in an extraction buffer of 
25 mM ammonium acetate containing sodium 2% ascorbate and 0.02 M  
2-mercaptoethanol (pH 7.3).  The sample suspensions were placed in a boiling 
water bath for 10 min. Subsequently, the extracts were rapidly cooled and 
centrifuged. Recovered extracts were purified by affinity chromatography 
(Konings, 1999). The eluents were incubated with carboxypeptidase for 4 h at 
30ºC. The samples were freeze-dried, dissolved in 200 µL of CH3COONH4 
(pH 7.3, 15 mM), filtered through a 0.45 µm filter and subjected to capillary 
LC/MS.  

15

15

S-adenosylhomosysteine occurred after culturing for 21 days. Although the 
heavy 15N-isotope should lead to a kinetic isotope effect, the weight, 

15

15N-enrichment 
of T87 cells is not detrimental to plant cells. 

N-labeled cells were indistinguish-morphology and rate of growth of the 
able from those of the reference cells. This shows complete 

3N-labeled 5-CH -HESI. Because this compound contains 6 nitrogen atoms, 4
pteroate should be detected as [M+H, at m/z 337] . When the sample 

First, we confirmed whether or not all nitrogen in plant cells could 
N. Consequently, complete incor-be substituted by the stable isotope 

poration of N in amino acids, folates, S-adenosylmethionine, and  
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Figure 21-2. Capillary- LC /MS analysis of mixed extract from cultured cell in 14N and 15N 
medium (a) Base peak chromatogram (Upper), mass chromatogram of 331 m/z (Middle) and 
337 m/z (Lower) (b) Mass spectrum of normal (331.0 m/z) and all nitrogen-15N-labeled (337.0 
m/z) 5-CH3-H4folate. 

weights of T87 cells (Fig. 21-3). Unlabeled and labeled T87 cells were 
mixed in various ratios. The experimentally determined peak area ratios 
were found to be linear (r2 = 0.998) over an abundance ratio from 1 to 3 (15N 
cell / 14N cell). This result should guarantee the linearity of the in vivo 
labeling method. 

We applied the isotope dilution method to an analysis of metabolic 

an anticancer, anti-inflammatory and immunosuppressive agent (Schweitzer 
responses against a metabolic inhibitor. Methotrexate is widely used as 
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Figure 21-3. Mass chromatogram of 331 m/z and 337 m/z caused by capillary – LC /MS 
analysis. The mixing ratios (g-cell in 15N medium / g- cell in 14N medium) are 1, 1.5, 2, 2.5, 3 
in order from top to bottom. 
 

metabolism (Prabhu et al., 1998). T87 cells both treated with methotrexate 
and untreated were combined with 15N-labeled cells. Folate compounds were 
then extracted and subjected to capillary LC/MS to compare the 14N/15N 

K. Harada et al. 

et al., 1990) and bonds dihydropteroate reductase and inhibits folate 
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ratios between (treated cells/labeled cells) and (untreated cells/labeled cells). 
It was found that 5-CH3-H4pteroate was reduced to 5.8% and 5-
formyltetrahydropteroate to 23% by methotrexate treatment. This indicates 
the stable isotope method allows us to determine metabolic changes 
quantitatively. 

Although we present experiments using cultured cells in this report, the 
same experiment using plant seedlings should also be performed. We believe 
the isotope dilution method will be a useful and practical method for 
improving the accuracy of quantitative metabolic profiling data. 

15

3.1 Background 

Information on metabolic flux is very important to analyze metabolic 
changes caused by genetic or environmental perturbation. However, 
metabolic profiling or metabolic fingerprinting, currently widely used, 
measures accumulated amounts of metabolites and does not reveal metabolic 
flux directly (Matsuda et al., 2003). The measurement of the isotopic 
distribution of metabolites following the incorporation of an isotope into a 
sample for a certain time should be possible for metabolic flux analysis. In 
microbiology, a methodology for metabolic flux analysis using 13C-glucose 
has been developed (Stephanopoulos et al., 1998). Even in plant biology, 
analyses of metabolic fluxes using 13C-glucose or 13CO2 have been 
performed (Kruger et al., 2003); however, unidentified metabolic pathways 
or intracellular compartmentation of metabolism make such analyses 
difficult.  

In contrast, a method using inorganic 15N, which does not enable the 
direct analysis of metabolic flux either, allows measurement of apparent 
metabolite turnover. The apparent turnover helps us to estimate metabolic 
flux. Accordingly, we verified that in vivo 15N-labeling could be applied to 
analyzing metabolic dynamics. 

3.2 Materials and experiments 

Materials and analytical instrument were the same as in 2.2 above. For 
amino acid analysis, labeled cells were harvested by filtration and were 
immediately ground in liquid nitrogen. The samples were immersed in a 
methanol/chloroform/water (2.5/1/1) extraction buffer at 37ºC for 30 min. 
The suspensions were centrifuged and upper phases (polar phase) were 

OF METABOLITES 
3  MEASUREMENT OF N-LABELING RATIOS
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phases were recovered and dried in vacuo. The residues were dissolved with 
lithium carbonate (80 mM, pH9.5) and derivatized with dansyl chloride (1.5 
mg/ml in acetonitrile) for 1 hour (Tapuchi et al., 1981). Samples were 
filtered through a 0.45 µm filter, and then subjected to capillary LC/MS. The 
LC eluent was water/methanol containing 20 mM ammonium acetate. 

3.3 Results and discussion 

First, we confirmed whether or not a difference in isotopic distribution 
among metabolites was observed. The extracts derived from cells cultured in 
15N-labeled and unlabeled LS media under continuous light for 24 h were 
subjected to capillary LC/MS analysis. Figure 21-4 shows mass spectra of 
dansylated glutamine and serine extracted from the two types of cells. In the 
mass spectra of amino acids derived from unlabeled cell, peaks of 
monoisotopic mass (glutamine: 380 m/z, serine: 339 m/z) possessed the 
highest intensity, whereas those of isotopomers were very low. In contrast, 
mass distributions of amino acids from 15N-labeled cell were shifted to 
higher m/z. This shows nitrogen in amino acids was substituted by 15N 
stemming from inorganic nitrogen in the media. Moreover, differences in the 
degree of mass peak shift were observed. (The degree of peak shift for 
glutamine was higher than for serine as shown in Figure 21-4.) This 
indicates the incorporation ratios of 15N are different among amino acids, 
which means mass distribution should be an indicator of metabolic flux. 

Next, 15N-labeling ratios of amino acids were compared between cells 
cultured under light and dark conditions. Incorporation of 15N was performed 

Figure 21-4. Mass spectra of dansylated glutamine (left) and serine (right) (Top) spectra 
obtained from extract of cultured cell in 14N medium (bottom) spectra from extract of cell 
cultured in 15N medium for 24 hours.  

K. Harada et al. 

recovered. These phases were added to water and centrifuged. Then upper 
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for 24 h. 15N-labeling ratios of each amino acid were obtained by subtracting 
contributions of natural abundance 13C, 15N, 18O, 34S, 36S from the observed 
mass distributions.  

The results are shown in Figure 21-5. Under light conditions, the 15N-
labeling ratios of glutamine, glycine, and aliphatic amino acids were 
relatively high, whereas the ratios of asparagine, aspartate, and aromatic 
amino acids were low. This indicates the length of the pathway for nitrogen 
incorporation into each amino acid. In comparison to the light conditions, 
most 15N-labeling ratios were decreased under dark conditions. Lysine, 
histidine, and aromatic amino acids were especially remarkable. This 
showed biosynthesis of these amino acids was inhibited. Previously it was 
shown using DNA microarray experiments that the transcription of genes 

15

increased under dark conditions. It is well known that biosynthesis of 
asparagine is activated under dark conditions (Ireland and Lea, 1999). Thus 
the results obtained by this experiment were consistent with previous 
findings, thereby establishing the validity of this method. 

This study indicates that comparing 15N-labeling ratios among extracts of 
cells cultured in different conditions should enable us to estimate the activity 
of metabolism. This method can be applied not only to amino acids but also 
other metabolites containing nitrogen, and proteins. Moreover, the method 
can also be applied to functional analysis of unknown genes using 
transformed cell lines or a transient RNAi system (An et al., 2003). 

 
 
 

 
 

Figure 21-5. 15N labeling ratio of amino acid pool derived from T87 cultured in light and dark 
condition (error bars represent standard deviations, n=6). 

 

et al., 2001), whereas the N-labeling ratios of arginine and asparagine were 
related to histidine and tryptophan biosynthesis is induced by light (Ma 

295 



 

 

ACKNOWLEDGMENTS 

We would like to thank Dr. Hiroyoshi Minakuchi (Kyoto Monotech 
Corp.) for his kind gift of an octadecylated capillary monolithic silica 
column. This work was supported in part by the New Energy and Industrial 
Technology Development Organization (NEDO). 

REFERENCES 

An, C.I., Sawada, A., Fukusaki, E., and Kobayashi, A., 2003, A transient RNA interference 
assay system using Arabidopsis protoplasts, Biosci Biotechnol Biochem. 67:2674-2677. 

Axelos, M., Curie, C., Mazzolini, L., Bardet, C., and Lescure, B., 1992, A protocol for 
transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension 
cultures, Plant Physiol Biochem. 30:123-128. 

Dube, G., Henrion, A., Ohlendorf, R., and Vidal, C., 2001, Application of the combination of 
isotope ratio monitoring with isotope dilution mass spectrometry to the determination of 
glucose in serum, Rapid Commun Mass Spectrom. 15:1322-1326. 

Fukusaki, E., Harada, K., Bamba, T., and Kobayashi, A., 2005, An isotope effect on the 
comparative quantification of flavonoids by means of methylation-based stable isotope 
dilution coupled with capillary liquid chromatograph/mass spectrometry, J Biosci Bioeng. 
99:75-77. 

Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R., 1999, 
Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat 
Biotech. 17:994-999. 

Ireland, R.J., and Lea, P.J., 1999, The enzymes of glutamine, glutamate, asparagine, and 
aspartate metabolism, in: Plant amino acids, Biochemistry and Biotechnology, B.K. Singh, 
ed.,  Mercel Dekker Inc, New York, pp. 49-109. 

King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C., and Olah, T., 2000, 
Mechanistic investigation of ionization suppression in electrospray ionization, J Am Soc 
Mass Spectrom. 11:942-950. 

Konings, E.J.M., 1999, A validated liquid chromatographic method for determining folates in 
vegetables, milk powder, liver, and flour, J AOAC Int. 82:119-127. 

Kruger, N.J., Ratcliffe, R.G., and Roscher, A., 2003, Quantitative approaches for analyzing 
fluxes through plant metabolic networks using NMR and stable isotope labeling, 
Phytochemistry Reviews. 2:17-30. 

Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H., and Deng, X.W., 2001, Light control of 
Arabidopsis development entails coordinated regulation of genome expression and cellular 
pathways, Plant Cell. 13:2589-2607. 

Matsuda, F., Morino, K., Miyashita, M., and Miyagawa, H., 2003, Metabolic flux analysis of 
the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-
labeled tracer and LC-MS spectroscopy, Plant Cell Physiol. 44:510-517. 

Matuszewski, B.K., Constanzer, M.L., and Chavez-Eng, C.M., 2003, Strategies for the 
assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS, 
Anal Chem. 75:3019-3030. 

Mëller, C., Schaefer, P., Störtzel, M., Vogt, S., and Weinmann, W., 2002, Ion suppression 
effects in liquid chromatography-electrospray-ionisation transport-region collision induced 
dissociation mass spectrometry with different serum extraction methods for systematic 
toxicological analysis with mass spectra libraries, J Chromatogr. B. 773:47-52. 

K. Harada et al. 296                                                           



21. In Vivo 15N-Enrichment of Metabolites  

Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, 
M., 2002, Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and 
accurate approach to expression proteomics, Mol Cell Proteomics. 1:376-386. 

Prabhu, V., Chatson, K.B. Lui, H., Abrams, G.D., and King, J., 1998, Effects of sulfanilamide 
and methotrexate on 13C fluxes through the glycine decarboxylase/serine 
hydroxymethyltransferase enzyme in Arabidopsis, Plant Physiol. 116:137-144. 

Schweitzer, B.I., Dicker, A.P., and Bertino, J.R., 1990, Dihydrofolate reductase as a 
therapeutic target, FASEB J. 4:2441-2452. 

Steen, H., and Pandey, A., 2002, Proteomics goes quantitative: measuring protein abundance, 
Trends Biotechnol. 20:361-364. 

Stephanopoulos, G.N., Aristidoum, A.A., and Nielsen, J., 1998, Metabolic Engineering: 
Principles and Methodologies, Academic Press, San Diego. 

Tapuhi, Y., Schmidt, D.E., Lindner, W., and Karger, B.L., 1981, Dansylation of amino acids 
for high-performance liquid chromatography analysis, Anal Biochem. 115:123-129. 

297 


	NikolauPrelims.pdf
	ch-01.pdf
	ch-02.pdf
	ch-03.pdf
	ch-04.pdf
	ch-05.pdf
	ch-06.pdf
	ch-07.pdf
	ch-08.pdf
	ch-09.pdf
	ch-10.pdf
	ch-11.pdf
	ch-12.pdf
	ch-13.pdf
	ch-14.pdf
	ch-15.pdf
	ch-16.pdf
	ch-17.pdf
	ch-18.pdf
	ch-19.pdf
	ch-20.pdf
	ch-21.pdf



