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8.1 Introduction

Wireless communications is established through a common medium which is
highly dynamic. The elements of wireless communications systems such as
nodes in a network, users, and some properties of the wireless devices them-
selves (e.g. battery) are dynamic as well. In order for wireless communications
systems to better perform, adaptation to these dynamic conditions and ele-
ments is essential. How well a wireless system adapts to these dynamic con-
ditions depends on the amount of the knowledge of varying parameters. It is
clear that the more the knowledge, the better the adaptation.

Recently, wireless communication community meets a new concept called
“cognitive radio,” which is a radio that can sense, be aware of, learn, and
adapt to its surrounding environment [3]. Built on the top of Software Defined
Radio (SDR), cognitive radio can adapt the radio parameters with the aid of a
special structure called cognitive engine. Cognitive engine can be regarded as
the counterpart of human brain in human body, since the brain is the center
for intelligence, as described in Chapter 14 with the same analogy.

Cognitive radio is expected to push the concept of adaptation further with
the aid of its advanced attributes. The main reason behind this expectation is
the fact that cognitive radio is equipped with extended sensing capabilities in
addition to Artificial Intelligence (AI) sort of tools that are kept in cognitive
engine.

In this chapter, we will discuss how cognitive radio can sense and be aware
of major factors that affect its communications. First, we will address sensing
and being aware of the wireless channel. Next, we will take network related
awareness issues into consideration. In the following, we will discourse user rel-
evant topics along with other possible measurements. Finally, we will address
some major challenges and explain future research directions pertinent to the
realization of cognitive radio.
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8.2 Wireless Channel Awareness

This section discusses prominent wireless channel characteristics, relevant ob-
servable quantities, and some methods to measure them.

8.2.1 Channel Selectivity

Before introducing the channel selectivity in detail, it is appropriate to explain
what selectivity means. Selectivity is a measure of how differently a channel
behaves over the dimension in which the selectivity is defined. Measuring the
selectivity is established by channel coherence, which is statistically defined,
again, over the same dimension in which the selectivity is measured [8]. More
formally, channel coherence over a dimension is the width of the window over
which the signal is assumed as invariant. The less the width of the window, the
more the selectivity on the dimension of interest. For instance, time selective
channel basically means that at time instants that are close to each other,
the correlation between the components of the channel is weak. Therefore,
the width of the time window (in this case, the duration of the window)
formally determines time selectivity. Similar concepts can be deduced by just
replacing the dimension with the desired one, such as frequency selectivity and
coherence bandwidth; space selectivity and coherence distance. An illustration
of the concept of selectivity and coherence is shown in Figure 8.1.
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Fig. 8.1. The concept of selectivity and its measurement through channel coherence.
The width of the window for C1 is the narrowest one, whereas that of C3 is the
widest. Thus, for the dimension of interest, the selectivity of C1 is more than that
of C2 and the selectivity of C2 is more than that of C3.
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Duality

In this context, it is appropriate to mention a very important notion called
duality. Fourier1 transform (F{·}) and its inverse (F−1{·}) allow one to see
time and frequency domain interpretations of the functions as dual of each
other. For functions of deterministic type, with the aid of F{·} (and F−1{·}),
it can be shown that if the width (in time domain, “width” refers to “dura-
tion,” whereas in frequency domain it refers to “bandwidth”) of the function
in one domain expands, it shrinks in the dual domain. However, the signals
are of stochastic type in wireless communications. Therefore, it is better to
investigate the duality in terms of stochastic processes. It is known that, a
stochastic process that is defined in one domain automatically has a dual sto-
chastic process in the dual domain with the aid of, again, F{·} or F−1{·} [4].
In order to ease the mathematical tractability, in wireless communications,
often, signals are assumed as Wide-Sense Stationary (WSS).

In order to see the connection between selectivity, coherence, and duality,
stochastic linear time-varying wireless channels with WSS properties can be
considered. If the autocorrelation function of a channel is calculated over one
of the three domains (time, frequency, or space), the transform domain can
easily be obtained with the aid of Wiener–Khintchine Theorem. A channel
that spreads over the transform domain corresponds to a shrinkage in the
autocorrelation function because of the duality. Statistically, the shrinkage of
the autocorrelation function of a channel implies the decrease of coherence
and the increase of selectivity. As can be seen, when selectivity occurs in a
domain, the spreading is observed in its dual domain and vice versa. In wireless
communications community, the dual domain, namely “spreading” domain, is
labeled with its cause. Consider the selectivity in time. Since the dual of time
is frequency because of F{·}, spreading occurs in the dual domain, namely
in frequency. Spreading in frequency is caused by Doppler effect, therefore,
selectivity in time corresponds to Doppler spread in frequency. Conversely,
selectivity in frequency has its dual in time as a spreading signal. Spreading
in time is caused by the delays between multipaths. Therefore, selectivity in
frequency corresponds to “delay spread.” Duality can be defined over space
dimension as well. However, for this case, the space is transformed into a
domain called “wavevector” and vice versa.

1 Jean Baptiste Joseph Fourier, the French mathematician and physicist who was
born on March 21, 1768, in Auxerre, France and died on May 16, 1830, in Paris,
France. The representation of functions through sum of trigonometric series has
been named after him [3], although [3] caused plenty of controversies. Later on,
Johann Peter Gustav Lejeune Dirichlet, who was born on February 13, 1805, in
Düren, and died on May 5, 1859, in Göttingen, contributed to the Fourier’s theory
by appending the convergence conditions, which are known as “Dirichlet [Fourier
Series] conditions.”
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Frequency Selectivity

When electromagnetic waves are released into a physical medium, multiple
replicas of the original waves arrive at the destination (or receiver) because of
the objects within the environment. The replicas arrive at the receiver with
different delays, amplitudes, and phases, which is known as “multipath effect.”
Depending on the relative distances of the objects that reflect/scatter/refract
the electromagnetic waves to the receiver, the replicas spread in time and lead
to some important consequences:

1. If the relative delays between multipaths are shorter than (or on the order
of) the symbol duration of the transmitted signal, the receiver cannot
resolve each separate multipath, therefore, it sees the superposition of the
multipaths, which causes a randomly fading channel.

2. If the relative delays of multipaths exceed the symbol duration, the sym-
bols previously transmitted will impinge on other symbols causing Inter-
Symbol Interference (ISI). ISI is sometimes described by the analogy of
“channel memory,” since the channel remembers the previous symbols
even in the presence of the new symbols.

Having the knowledge of frequency selectivity provides extremely impor-
tant performance improvement to the adaptive wireless communication sys-
tems including cognitive radio. As a sample application, adaptive channel
equalization in single carrier systems can be considered. For example, in
Global System for Mobile communications (GSM), channel equalizers are em-
ployed to compensate for ISI. However, the number of channel taps needed for
equalization might vary depending on the dispersion of the channel. Instead
of fixing the number of channel taps for the worst-case channel condition, it
can be changed adaptively, allowing simpler receivers with reduced battery
consumption and improved performance [8].

Frequency selectivity carries slightly more importance for Orthogonal Fre-
quency Division Multiplexing (OFDM) systems compared to single carrier
systems. Even though the symbol duration is prolonged because of the use of
multiple orthogonal carriers, there is still partial ISI due to the multipath ef-
fect. Therefore, a certain amount of data, which is called Cyclic Prefix (CP), is
replicated and added in front of the OFDM symbols to be able to alleviate ISI
degradation. Considering the fact that the multipath effect is highly environ-
ment dependent, the width of CP is chosen in such a way that it is larger than
the maximum excess delay of the channel for the environment in which the
wireless system operates.2 However, alleviating ISI comes at the expense of
reducing the spectral efficiency, since a certain amount of the data is repeated.

2 Since the width of CP is determined by the maximum excess delay of the channel,
the maximum excess delay of the channel must be estimated. As a rule of thumb,
the maximum excess delay of the channel is computed by multiplying Root-Mean-
Squared (RMS) delay spread of that environment by four [5].
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Instead of choosing a CP for the worst-case multipath delay spread condition,
the size of CP can be adjusted adaptively. Using adaptive CP size increases
the spectral efficiency.

Channel selectivity information can be estimated directly from the received
signal and/or from channel estimates that are obtained after processing the
received signal. However, some other opportunities in estimating the time dis-
persion of the wireless channel emerge through the use of additional sensing
capabilities of cognitive radio. Since time dispersion is highly environment
dependent, any tool that can provide cognitive radio with information about
the environment plays a crucial role in estimating the selectivity of the chan-
nel. For instance, in an indoor environment, it is very likely that the RMS
delay spread of the channel is considerably lower than that in a typical outdoor
environment [6]. Beside the components that can provide absolute location in-
formation such as Global Positioning System (GPS), the peripherals such as
light and temperature sensors might be used to characterize whether cogni-
tive radio is in an indoor or outdoor environment [3]. When cognitive radio is
in an outdoor environment, a more descriptive sub-class of the environment3

can be identified via different enabling technologies. For outdoor cases, there
are enabling technologies for obtaining the topographical (geomorphological)
information about the environment such as Digital Elevation Models (DEMs)
and recently becoming popular one, Geographical Information System (GIS).
These digital tools allow one to analyze the spatial information. Therefore,
these sorts of tools might be very helpful for cognitive radio to comprehend
the surrounding environment in terms of its topographical characteristics.
Table 8.1 presents some of the techniques that have been proposed for esti-
mating the frequency selectivity of the channel along with new ones that can
be used by cognitive radio for the same purpose.

Time Selectivity

When there is a relative motion between transmitter and receiver, a physi-
cal phenomenon called Doppler effect4 occurs. The observed frequency of the

3 In European Co-operation in the field of Scientific and Technical research (COST)
231, there are four forms for four different environmental classes: Typical urban,
bad urban, rural, and hilly terrain [7]. These four types have already been de-
fined in its predecessor, COST 207 for GSM. The Power Delay Profiles (PDPs) of
typical urban and rural environments are described via single exponential cluster
with different parameters, whereas those of in hilly terrain and bad urban environ-
ments are described by two exponential clusters with different parameters. Main
parameter differences between environments that have common cluster structure
are the arrival times of the clusters.

4 This phenomenon has been named in the honor of Austrian mathematician and
physicist Johann Christian Andreas Doppler who was born on November 29, 1803,
in Salzburg, Austria and died on March 17, 1853, in Venice, upon his discovery [8]
in 1842.
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Table 8.1. Measuring frequency selectivity and some adaptation options.

How To Measure What To Adapt

Frequency domain Level Crossing
Rate (LCR)
Delay spread and Channel Im-
pulse Response (CIR) estimation
Channel frequency correlations
Via digital elevation model
(DEM) and GIS

Number of equalizer taps for single carrier sys-
tems
Number of pilots and spacing for multi-carrier
systems
Fast Fourier Transform (FFT) size for multi-
carrier systems
Carrier spacing for multi-carrier systems
Adaptive filtering for channel estimation
CP length for multi-carrier systems

transmitted signal5 at the receiver is shifted because of Doppler effect. In
wireless communications, Doppler effect describes the time-varying nature of
a wireless channel. Generally, impulse response of a wireless channel varies in
time rapidly because of the relative motion in the channel. These rapid vari-
ations in time cause spectral broadening, which is called “Doppler spread.”
However, impact of the broadening depends on the bandwidth of the trans-
mitted signal. Under the same conditions, the signals that have wider trans-
mission bandwidths are affected less by this broadening compared to those
which have narrower bandwidths. In accordance with earlier discussion about
duality, it is concluded that the increase in bandwidth of the transmitted sig-
nal corresponds to a shorter symbol duration in which the variation of the
channel in time becomes negligible.

Doppler spread information can be very useful in various wireless system
improvements. The applications can be investigated from two perspectives:
(a) transmitter/receiver improvements and (b) network improvements. For
(a), practical channel estimation methods can be examined. Whether channel
interpolators or channel trackers are used, contemporary channel estimation
algorithms are designed to operate on the worst case Doppler spread value.
It is clear that in case of having the Doppler spread information in hand, the
parameters of the channel estimation algorithms can be adjusted adaptively
rather than adopting a fixed scheme [8, 10]. Variable coding and interleav-
ing schemes can also be employed depending on this information, which is
directly related to the speed of the mobile [11]. For (b), the use of Doppler
spread information in controlling some network algorithms can be considered.

5 The application of Doppler effect to the light, which is a sort of electromagnetic
wave, was established by the French physicist Armand Hippolyte Louis Fizeau
(1819–1896) in 1848 independent of Ernst Mach (1838–1916), who also discovered
the same shift in 1860. The effect was first used in calculating the relative speed
of the stars by William Huggins [9].
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For instance, in cellular systems, hand-off (or handover), cell assignment, and
channel allocation can be established efficiently having the Doppler spread es-
timate [12]. Assignment of fast-moving mobiles to umbrella cells in hierarchical
cell structures can be considered as a specific application. The assignment of
fast-moving mobiles to umbrella cells reduces the number of hand-offs, whereas
the assignment of slow-moving mobiles to microcells increases the capacity [8].

There are several approaches to estimate Doppler spread. Examining
the variation and autocorrelation of channel estimates are two fundamen-
tal methods in measuring the Doppler spread. Instead of channel estimates,
the envelope of the signal can also be used [13]. When the channel estimates
are of interest, the variation is calculated by differentials. However, the re-
sults obtained after differentials are generally noisy and low-pass filtering
is required for smoothing. The bandwidth of the low-pass filter depends on
Doppler spread too. Therefore, in essence, this method relies on changing the
bandwidth of the filter adaptively. Apart from variation of the channel esti-
mates, the autocorrelation of the channel estimates can be used in Doppler
spread estimation as well. The autocorrelation of the channel is computed
over the known part of the received data. Some examples of Doppler spread
estimation that use the autocorrelation of the channel estimations can be
found in [13,14]. A brief list of quantifying time selectivity and some relevant
adaptation options is given in Table 8.2.

As in time dispersion, Doppler spread estimation can also be improved by
additional capabilities of cognitive radio. Since Doppler shift is a function of
the speed of the mobile and Angle-of-Arrival (AoA), a sensor that provides
the absolute location information improves the Doppler spread estimation.
GPS is one of the prominent candidates for this sort of sensing applications
for cognitive radio. After several consecutive measurements,6 the speed and
angle-of-arrival (AoA) can be obtained in case the position of the base station
is known.

Table 8.2. Measuring time selectivity and some adaptation options.

How To Measure What To Adapt

Correlation of channel estimates
Correlation of signal envelope
Variation of channel estimates
Variation of signal envelope
Multiple antennas
Positioning methods such as GPS

Channel tracker step size
Coding and interleaving schemes
Hand-off management
Frequency allocation

6 This can be seen with the fact that v = dr(t)/dt, where r is the position vector
(such as r(t) = [x y z]T , (·)T denotes the transpose operation) and v is the speed
of the mobile. Note that transmission frequency and speed of light are assumed
as known quantities.
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Space Selectivity

Space selectivity is caused by the arrivals (or departures) of different mul-
tipaths at the receiver (from the transmitter) at different angles. When the
power of arriving (or departing) multipaths is considered over angle domain,
a spread is observed. The amount of spread is directly related to the richness
of the scatterers within the environment. The more the scatterers, the larger
the spread. Such as in time and frequency selectivity, coherence distance is
a measure of the selectivity over space. Coherence distance is inversely pro-
portional to angular spread. Hence, the shorter the coherence distance in the
space, the larger the spread over angle domain.

Although space selectivity is not studied as much as time and frequency
selectivity, there is a significant interest on space selectivity in multi-antenna
systems. Adaptive wireless systems and cognitive radio can make use of the
information about space selectivity in several ways. For instance, the infor-
mation about space selectivity can be used in adaptive multi-antenna system
design. Adaptive power allocation is another method in which space selectiv-
ity is used to improve the performance [15]. Adaptive modulation and coding
across multi-antenna elements are also possible depending on the channel cor-
relations. Some other options are presented in Table 8.3.

Interference Selectivity

Apart from the three basic wireless channel dimensions (time, frequency, and
space) and related selectivity issues, several other dimensions can also be dis-
cussed [see Chapter 9 in this book]. Dimension of interference and selectivity
over which it is defined can be considered as one of them. However, unlike the
three basic dimensions, the selectivity cannot be defined solely over interfer-
ence dimension. Interference selectivity becomes clearer when it is considered
along with the basic dimensions. For instance, interference can be selective
over frequency. It can be either Narrow Band Interference (NBI) or Wide
Band Interference (WBI) depending on the bandwidth of the interferer as il-
lustrated in Figure 8.2. Similarly, interference conditions may change in time
resulting “time selective interference,” whereas change of interference condi-
tions in space causes “space selective interference.”

Table 8.3. Measuring space selectivity and some adaptation options.

How To Measure What To Adapt

Antenna arrays
Environmental characterization
(such as indoor/outdoor)

Beamforming
Smart antenna
Adaptive Multiple-Input Multiple-Output
(MIMO) systems
Interference management
Frequency allocation
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Fig. 8.2. Interference selectivity can be described via three basic dimensions: time,
frequency, and space. Here, an example of interference selectivity is shown over
frequency dimension. Note that the interference characteristics vary in frequency.

A cognitive radio, with enough knowledge of interference selectivity, can
adapt its radio parameters to have a better transmission. As an example, a
cognitive radio that uses Ultra Wide Band (UWB) scheme with OFDM can
be considered. The information about the frequency selectivity of interference
can be used to avoid NBI by de-activating the carriers corresponding to the
interfering bands [16]. Similarly, being aware of the time selectivity of interfer-
ence will give cognitive radio a chance to schedule its transmission accordingly
in time as well.

Code Selectivity

Toward the latest steps of the evolution of the wireless communication sys-
tems, we witness the emergence of code as an extension to the basic dimension
set. Therefore, selectivity over code dimension can be considered as well.
Code selectivity could be a very important measure for cognitive radio sys-
tems that use codes in accessing the channel such as Direct-Sequence Spread-
Spectrum (DSSS) systems using Pseudo Noise (PN) codes, Frequency Hopping
(FH) systems using FH codes, and UWB systems using Time Hopping
(TH) codes. Since most of the wireless systems are interference limited, the
interference that is caused by statistical properties of the codes (e.g. ISI,
which is caused by non-zero autocorrelation sidelobes of the codes or Multi
Access Interference (MAI), which is caused by non-zero cross-correlation side-
lobes of the codes) can be controlled by designing the codes appropriately.
Beside interference, spectral efficiency can also be achieved by adjusting
the statistical properties of the codes such as suppressing the sidelobes of
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auto- and cross-correlation. However, it is impossible to have codes that have
both perfect auto- and cross-correlation properties. Furthermore, there is a
trade-off between having sidelobes suppressed and the amount of interference
created. Suppressing the sidelobes of the autocorrelation of the codes reduces
ISI and increases MAI, and vice versa. Therefore, taking all these concerns
into account, cognitive radio systems can increase the overall system capacity
by adjusting the statistical properties of the codes adaptively depending on
other system, channel, and transceiver parameters.

Other Selectivities

In this sequel, we must state that, wireless communications is not limited to
the aforementioned dimensions and selectivities. There are some other aspects
of wireless communications that need to be examined such as polarization,
signal, and power. Although these dimensions might not be directly related
to the actual wireless medium and can be regarded as elements of signal space,
they have strong connections with channel space.

8.2.2 Link Quality

First and foremost condition of having a communication is to make sure that
the information reaches at the receiver in a form that the receiver can recon-
struct what is transmitted. As discussed in Section 8.1, the communication
link exhibits different behaviors over several dimensions because of the dy-
namic nature of wireless communications. Thus, sensing the communication
link is regarded as one of the most important tasks of cognitive radio in order
to be aware of the wireless channel. In this regard, this subsection reviews some
popular link quality measurement methods from the perspective of cognitive
radio.

Path-Loss

Path-loss is the measure of the difference between transmitted and received
power [6]. It is known that this loss increases with the transmitter–receiver
separation in distance and depends on the environment, which is represented
by the path-loss exponent.7,8

7 Here, it must be stated that path-loss includes the antenna gains of the trans-
mitter and receiver as well as the wavelength (or frequency) of the transmitted
electromagnetic wave. However, the average large-scale path-loss can be approx-
imated with the use of a function of both transmitter–receiver separation and a
path-loss exponent that takes different values for different environments [6].

8 There is also another type of path-loss, which is called frequency dependent path-
loss, that manifests itself in UWB communications systems.
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Path-loss information can be used in a very well-known application: adap-
tive power control [17]. In Code Division Multiple Accessing (CDMA) sys-
tems, when power control is not employed, all the users transmit with the
same power level. Hence, the users closer to the base station cause a very
high level of interference to the users which are far away from the base sta-
tion. Therefore, power control algorithms are applied to adjust power levels
of the users [8, and references therein]. Similar to adaptive power control, in-
terference management based on sensing the path-loss is also possible. Apart
from transmitter–receiver centric applications, path-loss information is useful
for the network control. In cellular systems, hand-off (or handover) can be
managed with the aid of path-loss information. As a direct consequence of
the use of this information in hand-offs, adaptive channel allocation schemes
can be employed, which increase the channel utilization and decreases the
probability of call blocking [6]. As stated, path-loss highly depends on the
environment. Therefore, the performance of the aforementioned applications
can be improved in case of having information about the path-loss exponent.

In order to be able to make use of path-loss information as explained
above, it must be measured. Received Signal Strength (RSS) is one of the
simplest tools serving this purpose. In order to get RSS, the receiver samples
the channel and averages them out.9

At this point, it must be stated that being aware of the location, cogni-
tive radio can better estimate the path-loss by taking advantage of statistical
propagation models. Before getting into the details of this discussion, it is
appropriate to review the statistical propagation models briefly.
Statistical Propagation Models for Path-Loss – It is known that the profile
of the terrain in which the communication is established has a significant
impact on path-loss [6]. Various statistical propagation models for different
terrain profiles are available in the literature. These models, which are based
on extensive field measurements, can provide quite simple formulae for path-
loss estimation in connection with the terrain of interest. For instance, the
path-loss model for “urban” areas can be considered. According to Hata’s
model [18], the median path-loss in “urban” areas is given by the following
formula:

Lurban(dB) = 69.55 + 26.16 log
(

fc

MHz

)
− 13.82 log

(
hBS

m

)
− a(hMS)

+
(

44.9 − 6.55 log
(

hBS

m

))
log

(
d

km

)
, (8.1)

where

a(hMS) =
(

1.1 log
(

fc

MHz

)
− 0.7

)
hMS

m
−
(

1.56 log
(

fc

MHz

)
− 0.8

)
, (8.2)

9 RSS can be obtained by processing pilot signals (as in Wide Band CDMA
(WCDMA)) or link layer beacon (as in IEEE 802.11). However, the duration of
averages depends on many things such as system itself (having single or multiple
antennas), variation of the channel, application, and so on.
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and MS stands for “mobile station;” BS stands for “base station;” fc de-
notes the transmission frequency; hi denotes the effective antenna height
(i ∈ {MS, BS}); d is the distance between MS and BS; and a(·) represents the
correction factor. In (8.2), the correction factor is defined for small to medium
scaled city.10

In Hata’s model, we can model path-loss for other propagation environ-
ment classes as well. If one wants to estimate the path–loss for “suburban”
area, (8.1) becomes

Lsuburban(dB) = Lurban(dB) − 2
(

log
(

fc

28MHz

))2

− 5.4, (8.3)

whereas for “open rural” area, (8.1) becomes

Lopen rural(dB) = Lurban(dB) − 4.78
(

log
(

fc

MHz

))2

+ 18.33
(

log
(

fc

MHz

))
− 40.94.

(8.4)

As can be seen from (8.1), (8.3), and (8.4), obtaining the path–loss de-
pends only on choosing the correct environmental index such as “urban,”
“suburban,” or “open rural.”11 In conventional systems, there is no method,
infrastructure, or device that can distinguish the propagation environments
from each other. However, with the emergence of cognitive radio, the use of
auxiliary sensing methods are brought forward to fill this gap. Hence, cognitive
radio can take advantage of these extra sensing capabilities to distinguish the
propagation environments from each other. In this sequel, one might wonder
how cognitive radio can establish the distinguishing process. The answer of
this question requires the formal definition of each propagation environment.
Unfortunately, there is no formal definition for propagation environments.
Nonetheless, a coarse classification of the propagation environments can still
be established. In Figure 8.3, very frequently used propagation environments
in the literature and their classification are shown.

Having a classification such as in Figure 8.3 will definitely be useful for
cognitive radio to employ the corresponding path-loss formula. However, there
is still a missing link in the chain: “How can cognitive radio understand that
which of the propagation environments presented in Figure 8.3 corresponds
to its surrounding environment?” Now, we are going to search for an answer
to this question.
10 There are several correction factors further to represent other sort of environments

such as large city for different transmission frequencies, fc.
11 In COST 231, the extension of Hata’s model is provided as well [7]. Here, the

details of the specifications of Hata’s model such as the limits for h, d, and fc

are not discussed. However, interested readers may refer to [6, 7, and references
therein] for further details.
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Fig. 8.3. Some popularly used propagation environments in the literature and their
classification.

Environmental Characterization – In Longley–Rice model, which is one of the
earliest propagation models, there are two operation modes defined depend-
ing on the availability of the terrain profile: “point-to-point mode” and “area
mode” [19, 20]. Although this model is for point-to-point communication, its
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significance lies beneath the use of terrain profiles in estimating the path-loss.
Similar to [19, 20], [21, 22] make use of a topographical database to estimate
the field strength. In light of this approach, it can be said that cognitive radio
can take advantage of terrain profile data to characterize the topography of
its surrounding environment. Some of the basic topographical databases such
as DEMs – i.e. digital representations of a topographic surface, which is used
for determining properties of terrain in terms of elevation at any point, slope,
aspect and extracting features of it, such as peaks, pits, and other landforms –
are already available. GIS is also another very popular application which can
be used for the same purpose.12 In fact, GIS is more promising than DEMs,
because it can be queried by several methods one of which is the position vec-
tor r(t) = [x, y, z]T . Recall that global positioning system (GPS) can provide
the position vector. Thus, cognitive radio that can be provided with posi-
tion information by a network or a positioning capable sensor (such as GPS)
can easily extract the topographical information. Then, the digital data is
processed with the aid of Spatial Interpolation Method (SIM) to obtain char-
acteristics of the local physical environment [21, 22, 24]. The remaining part
is just to find the best match for the extracted topographical data among
environmental classes. As stated above, matching the data can be handled
via pattern recognition and/or parallel processing capable tools that cogni-
tive radio possesses. Upon finding the best match, a statistical model related
to the matched environmental class is chosen and adaptation stage is initiated.
The algorithm for this process is presented in Figure 8.4. Besides, Table 8.4
presents the possible ways of quantifying the path-loss along with adaptation
options.

Fig. 8.4. The algorithm of location awareness and environmental characterization
for cognitive radio. #is represent the steps of the algorithm.

12 Note that, there are already some products in the market for mobile version of
GIS applications [23].
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Table 8.4. Measurement of path-loss and some adaptation options.

How To Measure What To Adapt

RSS

Geolocationing Methods

Link adaptation via adaptive coding/modulation
Hand-off (handover)
Channel allocation
Interference management
Simple distant–based power control algorithm

The impact of noise upon communications systems is known very well [34].
Noise is also taken into account in statistical wireless channel models. In order
to improve the performance of wireless systems, characterizing the behavior
of noise is very important. As will be shown subsequently, environments can
provide some hints about the statistical behavior of noise. Hence, cognitive
radio can make use of the relationship between environment and corresponding
statistical behavior of the noise for its adaptation.

Noise

In most of the wireless channel models, noise is assumed as white and Gaussian
distributed because of its mathematical tractability. However, in practice, sev-
eral other types of noise behaviors exist too. In the literature, several studies
show that offices, factories, and hospitals have impulsive noise [26]. Similarly,
in outdoor environments such noise sources are observed. Thus, the perfor-
mance of a system designed under the assumption of white and Gaussian
distributed noise will be affected in the presence of an impulsive noise. More-
over, it is also reported that some diversity schemes such as maximal ratio
combining, equal gain combining, and selection diversity are not effective in
impulsive noise environments [27].

If cognitive radio knows the characteristics of the ambient noise, some of
the system parameters such as coding requirements can be adjusted accord-
ingly [26]. Besides, information about noise can be very useful in designing
transceivers via adaptive modulation, optimal soft information calculation,
and improved channel estimation [28,29]. From the network perspective, noise
information can be used in improving several applications such as hand-off,
power control, and channel allocation techniques [8].

In extracting the characteristics of the ambient noise, Signal-to-
Interference Ratio (SIR) (or Signal-to-Noise Ratio (SNR) or Signal-to-
Interference-plus-Noise Ratio (SINR)) are popularly used during or right after
the demodulation process at the receiver. Unlike Received Signal Strength
Indicator (RSSI), these quantifiers need to wait for the completion of the
demodulation process.13 However, the estimates are more reliable at this
13 It must be stated that because these quantifiers can be read during or right after

the demodulation procedure, they introduce additional complexity to the system
compared to RSSI.
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stage. As their names imply, these quantifiers are based on the ratio between
the power level of the desired signal (S), and the power level of the unwanted
signal(s) (I and/or N), where S

I , S
N , and S

I+N denote SIR, SNR, and SINR,
respectively. They can be obtained in several ways. In many new–generation
wireless systems, coherent detection is employed. Since coherent detection
requires estimation of channel parameters, estimated parameters can be
used in calculating the signal power as well. The use of training sequences
and data symbols are other two options of signal-to-interference ratio (SIR)
estimation.14 SNR (or SIR, or signal-to-interference-plus-noise ratio (SINR))
is formed by estimating the desired received signal and the impairment sep-
arately. Hence, estimation of SNR provides information about the noise.
In OFDM based systems, noise power estimation is often based on the dif-
ference between the noiseless and noisy samples in frequency domain, which
assumes the noise is white and Gaussian distributed. However, as stated
above, noise in frequency domain can sometimes have a different power spec-
trum from a flat power spectrum. In such cases, looking at the estimate of
the noise variance in frequency domain provides beneficial information about
the noise color [28, 29]. Some of the parameters in measuring the noise and
relevant adaptation options are given in Table 8.5.

There are further link quality measurements on the physical and Medium
Access Control (MAC) layers too. These measurements such as Bit-Error-
Rate (BER), Frame-Error-Rate (FER), and Cyclic Redundancy Check (CRC)
become available after the decoding process and their reliabilities are improved
significantly compared to the aforementioned ones. However, one should keep
in mind that, having information at this stage comes at the expense of
larger processing delays and additional computational complexity. Further-
more, some of them such as BER and FER require excessive amount of time
to attain a reliable quantification.

Table 8.5. Measurement of noise and some adaptation options.

How To Measure What To Adapt

SNR
SIR
SINR

Link adaptation via adaptive coding/modulation
Transmission frequency
Transmit power
Hand-off
Receiver algorithm parameters
Bandwidth
OFDM carriers
Carrier assignment in OFDM Access (OFDMA)

14 For further information, the interested readers may refer to [8, and references
therein].
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Network and Transport Layer Measurements

When network and transport layer are considered, observing and quantifying
the wireless communication link brings about different perspectives. In these
layers, transceivers perceive the communication link as a whole that includes
other transceivers. Therefore, in these layers, transceivers take into account
the status of other nodes in the network as well.

Packet loss is one of the basic and simple quantifier that can be used in
these layers. Transceivers can get information about the quality of the link
by simply counting the packets which could not be acknowledged. Similarly,
Round-Trip Time (RTT) can be used in estimating the quality of the link to
some extent. The buffer status of the nodes can be used in determining the
congestion level of the link, which can also be regarded as a measure of link
quality. Particularly in ad hoc networks, being aware of other nodes become
prominent. For instance, a quantifier that indicates the power level of the
other nodes introduces another metric for routing, which is known as “power
aware routing” [30]. In connection with power aware routing, being aware of
the locations (or relative positions) of the nodes will definitely provide these
layers with an extra and very important quantifier.

With the aid of these quantifiers, cognitive radio can adjust its transmis-
sion rate to avoid congestion, increase efficiency, save energy, and so on. In
addition, cognitive radio can contribute to the network optimization by com-
bining many of them. For instance, combination of power aware routing and
being aware of the locations of other nodes will provide a superior routing
scheme compared to those which make use of only one routing metric. Some
of the quantification parameters and related adaptation options are presented
in Table 8.6.

Upper Layers

After passing through session and application layers, cognitive radio reaches at
the user even though the user by itself is not a layer in the protocol stack. From
the perspective of cognitive radio, the user carries a significant importance

Table 8.6. Measurement of the quality of the communication link in network and
transport layer and some adaptation options.

How To Measure What To Adapt

Packet Loss
Routing Table Change Rate
Congestion Level
Positions of Nodes
Power Level of Nodes
RTT

Routing Algorithm
Routing Metric
Clustering Parameters
Network Scheduling Algorithm
Congestion Control Parameters
Rate Control Parameters
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because of its place in the cognition cycle. Therefore, cognitive radio can
perceive the user as another layer that is placed on top of the traditional
protocol stack and sense it. These issues will be discussed in Section 8.4 in
detail.

8.2.3 Other Wireless Channel Characteristics

In addition to the topics discussed in Sections 8.2.1 and 8.2.2, there are some
further parameters that have significant impact on the transmission such as
being in Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS).

LOS/NLOS

When the field measurements are established in order to have a statistical
channel model, it is extremely important to distinguish the measurements
as for LOS and NLOS. This stems from the fact that LOS channels will
behave very differently compared to NLOS channels because of the presence
of the direct component. LOS/NLOS distinction is very important in terms of
the operation band as well, since the behavior of propagation differs in LOS
and NLOS. For instance, in order to be able to establish a communication
with electromagnetic waves that have wavelengths on the order of millimeters
(the bands above 10 GHz), LOS is required as in 10–66 GHz portion of the
physical layer part of IEEE 802.16 [31]. However, the necessity of having LOS
is not required for sub-10 GHz bands. In addition, being in LOS/NLOS is
very important for positioning algorithms. The error characteristics change
drastically depending on being in LOS or NLOS [32].

The knowledge of being in LOS or NLOS allows cognitive radio to have
some adaptation options. Cognitive radio can easily switch to an appropriate
upper frequency band to achieve higher data rates in case of being in LOS or
switches back to the band in which it was previously operating when there
is no LOS. Ranging and positioning algorithms can be selected by cognitive
radio adaptively, depending on the status of the transmission in terms of being
in LOS or NLOS as well.

In order to determine whether the status of the communication is LOS or
NLOS, hypothesis test is applied. Hypothesis test makes use of the mutually
exclusive relationship between LOS and NLOS [32–35]. Considering the fact
that the channel amplitudes of the first tap in narrowband systems follow
Ricean distribution in LOS and Rayleigh distribution in NLOS, a comparison
between the reference (theoretical) distributions and values observed can be
established before the hypothesis test [36].15 However, a reliable decision for
the comparison approach, a priori knowledge about the noise level of the sys-
tem is required [32]. Apart from these methods, autocorrelation characteristics
of multiple channel taps have also been proposed [31].
15 In comparing the statistics obtained to a reference one, some statistical tests such

as Pearson’s test statistics [36] or Kolmogorov–Smirnov test [37] can be employed.
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Table 8.7. Measuring LOS/NLOS and some adaptation options.

How To Measure What To Adapt

Channel Estimates
Geolocationing Methods

Transmission frequency
Power adjustment
Locationing algorithms for improved accuracy
Receiver algorithm parameters

Quantifying the transmission status in terms of being LOS or NLOS be-
comes possible through the use of additional sensing capabilities of cognitive
radio. A list of quantification options and relevant adaptation parameters for
LOS/NLOS is given in Table 8.7. As discussed in detail in Section 8.2.2, the
use of DEMs is a very promising candidate for this purpose. In fact, previ-
ously, DEMs have already been used in digital domain to determine the status
of being LOS or NLOS [21,22].

8.3 Network Awareness

This section outlines what and how cognitive can sense, be aware of, and
consequently adapt the network related issues. The following two perspectives
are considered: being aware of the same network and other network structures.

8.3.1 Being Aware of the Same Network

This sort of awareness is necessary while cognitive radio is already communi-
cating with some other nodes. From this point of view, being aware of its own
network and its other members (nodes) will definitely improve the quality of
overall network communications. However, being a member of the same net-
work does not necessarily require that all the nodes have cognitive capabilities.
Therefore, it can be said that being “entirely” aware of the same network is
only possible when all the nodes in that network are cognitive radio.

As discussed in Section 8.2.2, being aware of the same network can be
extended by using conventional and advanced methods such as the use of
packet loss quantifiers, routing algorithms, and some other additional capa-
bilities which are introduced by cognitive radio such as location sensing.

8.3.2 Being Aware of Other Networks

Before cognitive radio begins to communicate, it can sense not only the unoc-
cupied bands in the spectrum, but also the signaling schemes over the air. For
instance, cognitive radio can sense unoccupied slots for Time Division Mul-
tiple Accessing (TDMA)–based signaling, and furthermore, it can be aware
of the network type by using several methods such as cyclostationary-based
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detection. This is very important for cognitive radio, since it can easily change
its transmission parameters such as employing valid waveforms and relevant
policies for the network sensed with the aid of SDR.

This type of sensing and awareness carries a great importance especially
for emergency, disaster relief, and rescue operations. The transmission of other
devices can be observed by sensing the spectrum, extracting the data from
other users’ transmission, processing it, comparing it with some a priori in-
formation (such as standard information), and making a decision about the
existence of a possible network. Thus, in such an environment, cognitive ra-
dios can establish a network and connectivity for the devices which cannot
easily be detected by first responders [39].

8.4 User Awareness

When cognitive radio has first been brought forward [3, 19], beside its ad-
vanced properties such as the capability of sensing the spectrum, adjusting
the transmission parameters via software (or software defined radio (SDR)),
the concept of “user dimension” has been pulled inside the radio communica-
tion domain entirely. Here, the word “entirely” is preferred, because, there are
already some earlier attempts. However, these attempts are limited compared
to that of cognitive radio, because, they mostly require user’s intervention.
Some advanced cell phones, Personal Digital Assistants (PDAs), and laptops
can define several user profiles as options, but, these options are not auto-
mated. In addition, once the user chooses any of the options provided, the
device cannot make modifications on the options depending on the changing
conditions.

However, cognitive radio, beside the aforementioned capabilities, can learn
and even make predictions about the user. One of the interesting awareness
topic about the user is being aware of user’s perception. When a simple voice
conversation over phone is considered, some sort of adaptations become clearer
depending on the environment and/or who the user is. For instance, if the user
is in a crowded and noisy environment such as a stadium, the intelligibility of
the voice decreases drastically. In the conventional way, the user intervention
is required by just choosing the loudest voice level of the phone or warning
the other party to raise his/her voice. However, cognitive radio can reduce or
totally remove the user intervention by sensing the environment with the aid
of its additional sensing and advanced recognition capabilities. Detecting the
crowd via visual sensing and picking the phrases such as “I did not hear you,”
“Can you repeat it?” “Can you raise your voice?” cognitive radio is aware of
the user’s perception (as well as the environment) and adapts to satisfy its
user’s needs. Another interesting user awareness and adaptation scenario can
occur while driving a car. Driving car inherently limits some of the abilities
of the user such as reading and/or using the keypad of the communication
device. When a text message (such as Short Message Service (SMS) or e-mail)
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arrives, cognitive radio can convert the text to speech without requiring user
intervention. When the user wants to reply, it can do the process in reverse
direction, in other words it can convert speech to text, and send the text
message. In case the user wants to call the sender, it can initiate an ordi-
nary phone conversation by recognizing the user’s speech and command (such
as “Call him!”). Another very important application area of user oriented
sensing occurs in emergency related events. Cognitive radio that is aware of
physiological state of its user can immediately establish a 911 call in case of
an emergency.

Because humans have many aspects in terms of their perceptions, psycho-
logical status, and some other further characteristics, the items to be included
into the list in user dimension are numerous. However, possessing very pow-
erful abilities such as learning and sensing beside awareness and adaptation,
cognitive radio can have various sensing options for other aspects of human,
which have very stong relations with AI.

8.5 Other Possible Awareness Scenarios

It is certain that wireless communications cannot be limited to the topics
mentioned throughout this chapter. Although a wide perspective is tried to be
established, it is very difficult to put all possible aspects of the communications
into text, since most of them evolve in time. However, some of the topics that
are and will be of interest can still be discussed.

The security is one of the most important aspects in all types of commu-
nications. In this manner, cognitive radio can decide the appropriate security
level without requiring any external intervention. Here, the discussion excludes
the use of the safest level, because it comes at the expense of delay, overhead,
and so on. These concerns force cognitive radio to optimize (deciding the ap-
propriate level) the security level. In connection with optimization, cognitive
radio itself can be considered as another dimension (or entity) to be sensed
and aware of in the communications domain. Cognitive radio cannot attain
a global optimization unless it is aware of itself. In this regard, being aware
of its resources such as battery level and hardware limitations (e.g. the lim-
its of Analog-to-Digital Converter (ADC), processor speed, memory size, and
so on), the operational status such as being in hibernation, in-charge mode,
communication mode, learning mode can be considered just to name few.

8.6 Challenges and Future Directions

So far, it is discussed that the capabilities of cognitive radio enable many new
sensing options providing alternatives to already existing ones. A hierarchi-
cal list of some major items to be sensed by cognitive radio is presented in
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Fig. 8.5. Some major items to be sensed by cognitive radio. Please note that this
represents a limited list that only provides some of the key measurements. As the
cognitive radio evolves, this list will certainly evolve as well.
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Figure 8.5. However, there are many challenges related to these enabling ap-
proaches. In this section, the prominent challenges and hurdles regarding to
these approaches will be outlined.

First, the challenge with the general architecture of cognitive radio needs
to be addressed. In order for cognitive radio to attain the point that has been
discussed so far, a design, which integrates SDR and tools that handle artificial
intelligence (AI) sort of operations, is required. This can be considered as the
most challenging issue for cognitive radio.

Assuming that such an architecture or design is established, the complex-
ity of the procedures in sensing mentioned throughout this chapter is quite
overwhelming. Therefore, cognitive radio needs to find ways of handling this
complexity issue. Cognitive radio makes use of not only existing methods and
approaches, but also the new opportunities of sensing with the aid of addi-
tional sensors and devices to improve the adaptation process. Since the infor-
mation traffic will increase considerably, controlling, processing, and therefore
managing the resources automatically become a major concern.

Apart from general challenges, there are some other challenges peculiar to
sensing, being aware, and adaptation for each topic discussed up until now. In
Section 8.2.2, determining the path-loss through the use of external sensors
has been discussed. The main challenge here is to find how cognitive radio can
identify the environment in order to use the appropriate path-loss exponent.
As explained in [3], distinguishing indoor from outdoor is a simple job by
just using light and thermal sensor. However, distinguishing several indoor
environments from each other, such as LOS and NLOS indoor communications
requires additional effort.

In Section 8.2.3, extracting time dispersion parameters of the wireless
channel with the aid of DEMs and GIS has been discussed as well. How-
ever, digital information provided by these sorts of tools must be interpreted
by cognitive radio in such a way that it can understand the geomorphological
characteristics of the environment and classify them as hilly terrain, urban,
and so on. As can be seen, the interpretation process requires the use of ad-
vanced pattern recognition algorithms. Another aspect of geomorphological
characterization is that it may require the classification of the propagation
environments for cognitive radio to choose an appropriate model as discussed
earlier. There are extensive statistical channel models in the literature to in-
clude various possible propagation environments. If cognitive radio can match
the surrounding environment with an existing statistical model in its mem-
ory, it can easily adjust a few relevant parameters to adapt the environment.
However, in order for cognitive radio to choose one of the statistical models
among many of them, it should store the statistical models in a hierarchical
way. Unfortunately, there is no clear-cut definition for types of propagation
environments in the literature. Cognitive radio may suffer from lack of these
definitions.

In quantifying time selectivity, apart from the conventional way of
extracting the parameters, cognitive radio can make use of its location sensors
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such as GPS. However, it is not known how frequently cognitive radio must
refer to the sensors to obtain the information. In addition, the capabilities
of the sensors (such as acquisition time, precision, and so on) must also be
taken into account.

In time selective interference, characterizing the pattern of the interfer-
ence that changes in time for adapting purposes may require long observa-
tion durations. This hurdle becomes clearer in channels that are randomly
accessed. Similar to interference, the relationships between code dimension
and three basic dimensions need to be studied to have a comprehensive
understanding of the selectivity.

The inclusion of aforementioned and possible future dimensions into the
universe of cognitive radio will force researchers to examine the relationships
between these dimensions. The entangled structures of these dimensions must
be investigated throughly to realize the ultimate cognitive radio, which is a
very challenging task.

Considering the complete adaptation and global optimization jointly un-
veils one of the biggest challenges in realizing cognitive radio. In order for
cognitive radio to achieve both complete adaptation and global optimiza-
tion, the complex nature of complete adaptation needs to be scrutinized. The
analysis must encompass both already existing and recently emerging sens-
ing options and their relevance. Upon this analysis, which is very likely to
provide a very comprehensive list, the ways of attaining global optimization
must be researched. Global optimization through additional sensing capabil-
ities along with the already existing ones can be achieved by AI structure,
which is, generally, referred as cognitive engine. Thus, cognitive engine must
be capable of “understanding,” “interpreting,” and even “reasoning” via the
input provided by layers, sensors, and even by its own hardware. In order
for cognitive engine to “think” taking into account all input, a descriptive
language, Radio Knowledge Representation Language (RKRL), is proposed
in [3]. Hence, already existing and recently emerging options must be included
into the knowledge space of cognitive radio in connection with the analysis.

The interactions, applications, and algorithms in a network that include
both cognitive and non-cognitive radios need to be studied as well. In this
regard, networks in which all the nodes are cognitive radios form another field
of study.

Especially in sensing other networks, cognitive radio is challenged by tech-
nological limitations. Currently, sensing other types of networks and signaling
schemes is carried out by huge devices. Beyond that, the techniques that
are employed for that purpose require computationally very complex signal
processing operations which are power hungry. Thus, in order for cognitive
radio to have these abilities, practically simple and less complex algorithms
that can perform the same operations must be developed.

Considering the fact that sensing, learning, being aware, and adaptation
capabilities make cognitive radio more personal, the characterization of the
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user can be examined in detail. Especially sensing the user’s psychological and
physiological status and act on accordingly will be an interesting research for
the sake of becoming more personal.

8.7 Conclusion

Cognitive radio provides new horizons to the radio communications with its
advanced capabilities such as sensing, learning, being aware of, and adaptation
to its surrounding environment. These advanced capabilities improve almost
every aspect of wireless communications. In this chapter, some major items
to be sensed by cognitive radio are discussed. It is certain that the things
that cognitive radio can sense, be aware of, and measure are not limited to
the items discussed here. As cognitive radio evolves, the list of the things
that cognitive radio can sense, be aware of, and measure will evolve as well.
However, in order for cognitive radio to come true, the hurdles in front of the
new methods of sensing and measuring processes must be overcome.
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17. Şennur Ulukuş and R. D. Yates, “Adaptive power control and MMSE interfer-
ence suppression,” Wireless Networks, vol. 4, no. 6, pp. 489–496, Oct. 1998.

18. M. Hata, “Empirical formula for propagation loss in land mobile radio services,”
IEEE Transactions on Vehicular Technology, vol. VT-29, no. 3, pp. 317–325,
Aug. 1980.

19. P. Rice, A. G. Longley, K. A. Norton, and A. P. Barsis, “Transmission Loss Pre-
dictions for Tropospheric Communication Circuits, Volume I,” National Bureau
of Standards, Technical Note 101, Jan. 1967 [Issued May 7, 1965; Revised May
1, 1966; Revised (II) January 1, 1967].

20. P. Rice, A. G. Longley, K. A. Norton, and A. P. Barsis, “Transmission Loss Pre-
dictions for Tropospheric Communication Circuits, Volume II,” National Bureau
of Standards, Technical Note 101, Jan. 1967 [Issued May 7, 1965; Revised May 1,
1966; Revised (II) January 1, 1967].

21. R. Edwards and J. Durkin, “Computer Prediction of Service Area for VHF
Mobile Radio Networks,” in Proceedings of the IEE, vol. 116, no. 9, Sept. 1969,
pp. 1493–1500.

22. J. Durkin, “Computer prediction of service areas for VHF and UHF land mobile
radio services,” IEEE Transactions on Vehicular Technology, vol. VT-26, no. 4,
pp. 323–327, Nov. 1977.

23. ESRI, “ArcPad: Mobile GIS, ESRI White Paper,” ESRI, Tech. Rep., September
2004.

24. L. Mitas and H. Mitasova. (1998) Multidimensional spatial interpolation.
GMS Laboratory, University of Illinois at Urbana-Champaign (Accessed on
11.15.2006). [Online]. Available: http://skagit.meas.ncsu.edu/h̃elena/gmslab/
viz/sinter.html

25. C. E. Shannon, “The Mathematical Theory of Communication,” The Bell Sys-
tem Technical Journal, vol. 27, pp. 379–423; 623–656, July, October, 1948.



8 Enabling CR via Sensing, Awareness, and Measurements 261

26. K. L. Blackard, T. S. Rappaport, and C. W. Bostian, “Measurements and models
of radio frequency impulsive noise for indoor wireless communications,” IEEE
Journal on Selected Areas in Communications, vol. 11, no. 7, pp. 991–1001,
Sept. 1993.

27. R. S. Blum, R. J. Kozick, and B. M. Sadler, “An Adaptive Spatial Diversity Re-
ceiver for Non–Gaussian Interference and Noise,” IEEE Transactions on Signal
Processing, vol. 47, no. 8, pp. 2100–2111, Aug. 1999.
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