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14.1 Introduction

When we look at the evolution of wireless communication systems, as in most
systems, two major developments are most prominent: 1) addition of new
features and 2) improvement of already existing capabilities. The first devel-
opment arises from the fact that communication through a wireless medium
makes life easier. Every development brings several new features and these
new features contribute positively to this fact. These developments can be
seen clearly in the evolution of cell phones. In the past, cell phones were used
only for transmitting voice and short text-based messages. Currently, there
are cell phones in which an operating system runs and several multimedia
applications are available.

The second type of development solely originates from the fact that every
physical concept is finite. Therefore, according to the principal of parsimony,1

the newer systems restrain themselves from wasting resources. Using resources
adequately under dynamically changing conditions introduces the notion of
adaptation and optimization.

Although systems evolve in terms of 1) and 2), particularly in communi-
cation systems, it can be observed that the fundamental design architecture,
which is known as “layered architecture,” still remains the same. Despite the
inefficiency of contemporary communication systems, they still accomplish
their tasks. Nevertheless, it can be seen that the aforementioned evolution-
ary developments are approaching a saturation point for contemporary com-
munication systems. The fundamental design architecture inherently hinders

1 Entia non sunt multiplicanda, præter necessitatem [1]. The famous statement,
which is also known as “Occam’s Razor” and believed that phrased by William
of Ockham, which means “Entities should not be multiplied unnecessarily” [2].
A direct consequence of this statement is that for two systems which accomplish
the same task, the one that accomplishes the objective in lesser amount of effort,
element, unit, etc., is preferable to the other.
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applicability of some of the new developments in the world of communica-
tions. This fact was seen by researchers, but they have only patched the flaws
rather than applying radical changes. However, with the emergence of cog-
nitive radio, which was coined by Joseph Mitola III [3], the perception of
adaptation and optimization of wireless communication systems gained new
dimensions and perspectives. The emergence of cognitive radio (and cognitive
engine) is a promising solution for the barrier which arises from the flaws of
the fundamental design architecture.

In this chapter, we search for an answer to the question how can a global
(or multilayer) adaptation and optimization be established for cognitive radio?
In order to be able to provide a concrete answer, first we will briefly review
the fundamental design architecture while providing the reasons and relevant
efforts of migration from the traditional architecture to cross-layer design.
Next, we will outline cross-layer architecture and the place of adaptation along
with optimization for the past and contemporary wireless communication sys-
tems. Subsequently, we will provide the essentials for an overall adaptation
and optimization process in terms of cross-layer architecture. Later, we will
introduce three cross-layer application examples depending on the relation-
ships between layers as adjacent layer interaction, nonadjacent layer interac-
tion, and composite interaction. Then, we will investigate the optimization
problems from a formal perspective to be able to gain some insight into cross-
layer optimization for cognitive radio. We will also address multi-objective
optimization problems (MOPs) and relevant solutions which are going to run
on cognitive engine. In addition, we will summarize the challenges related to
cross-layer adaptation and optimization for cognitive radio. As a final remark,
we will extend individual cross-layer adaptation and optimization problems
to a network in which there are multiple individuals.

14.2 Why We Need Cross-Layer Design, Adaptation,
and Optimization

14.2.1 Traditional Layered Design and Its Evolution

Traditional protocol stack has been designed for dealing with complicated
problems by breaking them into smaller parts. It consists of layers whose
definitions and tasks are defined explicitly and independently. In other words,
each layer is isolated from the others except for providing output to and get-
ting input from adjacent layers [4]. According to the direction of the flow
upward/downward, each layer conducts its own task by taking inputs from
the layer below/above and conveys the outputs obtained to above/below. This
architecture has several advantages. First, defining the tasks explicitly pro-
vides modularity, which means simplicity in the design. Second, explicit def-
initions facilitate the standardization process. Therefore, several vendors can
produce various types of products by following the explicit abstractions, and
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Fig. 14.1. The only consideration in designing a new layer for traditional architec-
ture is that the new layer design should meet the requirements of the adjacent layers.
The requirements of layer N +1 are denoted as a round and a triangle, whereas that
of layer N − 1 is represented with a half–hexagon.

at the same layer level, any of them can communicate with the others with-
out having any problem. Finally, modularity that comes with independence
allows any type of alteration at any layer level as long as the input/output
requirements of the adjacent layers are met, which gives rise to the concept
of expandability of the layers as illustrated in Figure 14.1.

Even though layered structure overcomes many problems successfully, it
has been realized that the stringent architecture creates some problems such
as asynchrony and inefficiencies. A brief list of the major advantages and dis-
advantages of the traditional layered architecture and their effects is given in
Table 14.1. At the beginning, the disadvantages have been tried to alleviate
by increasing the amount of information flow among the layers [5]. After-
wards, with the emergence of new high-speed communication networks, the
major handicap of the traditional design, which is the obligation of an algo-
rithmic ordering, has been emphasized more. As in algorithms, in the tradi-
tional architecture, a process which resides in the next adjacent layer cannot
be executed unless a process defined in a layer is completed. In early ’90s,
the obligated ordering concept, which causes long communication delays and
low throughput for wired networks, has been tried to overcome by inter-layer
optimization [6]. Inter-layer optimization re-organizes the processes for layers
in such a way that some of the processes that do not interfere with each other
can be integrated and executed in parallel rather than serial.2 This approach
is extended to a new protocol scheme called Horizontally Oriented Protocol

2 At this point, it must be stated that even though some of the processes are
integrated, inter-layer optimization still preserves the strictly isolated structure
of layers [6].
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Table 14.1. The major advantages and disadvantages of the traditional layered
architecture and their effects.

+/− Explanation Effect

Advantages

Modularity
Each layer can be designed
independent of others

Simpler design

Standardization
Design only requires to have
the knowledge of explicit
definitions and abstractions

Interoperability

Expandability
Layers can be updated,
altered, or expanded
“independently”

Individual flexibility

Disadvantages

Ordering

Execution of any process in
any layer has to be after the
execution of previous
processes in former layers

• Inefficiency
• Latency

Interaction
Due to strict isolation,
information cannot cross
other layers

• Unawareness
• Redundant processes
• Sub-optimal

performance

Adaptation
In wireless communications,
rapid channel variations
cannot be responded
immediately

• Decrease in capacity
• Sub-optimal

performance

Topologies
Some of the network
topologies need flexible
layer architecture

Inefficiency

Structure (HOPS). In HOPS, the building stone of the architecture is defined
as “function,” instead of “layer.” Thus, the functions that do not need to
wait for others’ outcome can be binded and executed in parallel, which is the
reason why the scheme is called as “horizontally oriented” [7].

Migration from strict layered architecture to a more flexible interactive
one has another very strong motivation: wireless networks. Because of the
different nature of wireless communications, numerous concepts defined in
wired networks need careful re-consideration or even modification, so does the
protocol stack. Peculiar to wireless communications, due to small-scale fading,
wireless channel conditions may change drastically in a very short duration
of time [8]. Therefore, in order to take advantage of the durations in which
the channel is identified as “good,” a flexible design is essential [9]. Large-
scale channel variations contribute to the necessity of flexible architecture as
well [10]. Interference and time-varying capacity property due to multipath,
relative mobility, and shadowing are other very crucial parameters that affect
the wireless networks [8,11]. Apart from those, new transmission schemes for
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wireless communications such as relay networks [12] may not be established
via a strictly isolated layered architecture [9] and might require a different
design.

Especially in wireless networks, cross-layer approaches emerged by increas-
ing the amount of information provided to the adjacent layers. As an immedi-
ate example, packet losses in wireless networks can be considered. In wireless
networks, packet losses can occur because of bad wireless channel conditions,
congestion, or some other reasons. However, operating in transport layer, the
Transmission Control Protocol (TCP) cannot comprehend the reason behind
these losses. Therefore, it assumes that packet losses solely depend on conges-
tion [13]. Thus, any loss detected is going to be handled3 in terms of congestion
even though the actual reason might be different. In order to compensate for
this flaw, the link reliability is also tried to be improved as much as possible.
Hence, in case of a loss, wireless link is eliminated from other possible causes,
so TCP can handle the issue by considering other factors [13]. In fact, this
approach solely is not enough to optimize the problem because of the drop of
throughput. However, if the information about the reason of the loss can be
obtained from the layers, the system can only focus on alleviating the actual
reason without considering the other possibilities [10], which improves the
performance.

14.3 Cross-Layer Design, Adaptation, and Optimization

Up to this point, we have observed that under some circumstances, strictly
layered architecture performs inefficiently. As discussed in Section 14.2.1, in
order to overcome this major problem, increasing the amount of information
flow between layers and re-organizing the processes according to their depen-
dency on each other have been proposed. All these efforts lead to a novel con-
cept called “cross-layer architecture.” Hence, cross-layer design can be defined
generally as follows: “Any kind of innovation on the traditional structure that
blurs, changes, or even removes the boundaries between layers.”

In the literature, there are numerous types of cross-layer designs in the
frame of the definition stated above. Some of the designs only allow the infor-
mation to flow upward and/or downward direction [15], whereas some of them
are based on coupling of some of the layers [16] or merging some adjacent lay-
ers [10]. Even though these innovations are considered as solutions for some

3 TCP uses slow start, congestion avoidance, fast retransmit, and fast recovery
algorithms together to avoid and handle the congestion. The transmission is ini-
tiated with “slow start,” which is based on a gradual increase of sending rate of
the segments. This gradual increase is kept until a congestion is detected. In case
of a congestion, TCP employs a special algorithm which slows down the sending
rate of segments. When the congestion is cleared, TCP employs the slow start
again and tries to attain maximum throughput based on the gradual increase by
avoiding congestion [14].



426 Hüseyin Arslan and Serhan Yarkan

problems, they come at the expense of different problems such as more com-
plicated designs compared to the traditional one. Besides, blurring or remov-
ing completely the boundaries between layers in the traditional architecture
causes the tasks defined explicitly for each layer to spread into other layers
and become others’ problems as well. In other words, violating the indepen-
dence of layers introduces additional dimensions to the tasks of other layers.
Consequently, optimization of the tasks is converted from a narrow (single
layer) domain to a broader (multi-layer) domain.

Having a cross-layer architecture with optimization is not going to be
sufficient for ultimate system design goal. The missing link in the chain is
adaptation [8, 17, 18]. In Section 14.2.1, it is outlined that the status infor-
mation of a wireless communication system needs to travel among the layers
because of changing wireless channel conditions, network load, and Quality of
Service (QoS). Allowing the status information to travel among the layers is a
starting point to complete the chain [17,18]. Therefore, in the subsequent sec-
tions, the infrastructure for merging the concepts of cross-layer, adaptation,
and cognitive radio will be discussed.

14.3.1 Cognitive Radio, Cross-Layer Design, and Adaptation

Cognitive radio is a radio that can sense, be aware of, learn, and adapt to
the surrounding environment according to its inner and outer stimuli. These
properties of cognitive radio take their places in the cognition cycle [19]. Over-
all cognition cycle can be seen as an instance of Artificial Intelligence (AI),
since it encompasses observing, learning, reasoning, and adaptation.

Adaptation itself is a complex problem in the cognition cycle, because
cognitive radio needs to take into account several input sources at the same
time including its own past observations as a result of learning property.
For instance, during its adaptation, cognitive radio needs to consider sev-
eral requirements simultaneously such as user and application preferences, its
own capabilities such as battery status, environmental conditions such as the
availability of spectrum and propagation characteristics, and so forth. A com-
promise point, which can be regarded also as optimization, is tried to attain
between these requirements. Note that some of the requirements fall into the
tasks of specific layers in the traditional design. More explicitly, cognitive radio
needs to consider QoS requirements, physical medium options as in traditional
architectures beside some additional constraints such as battery consumption
and past experiences. Therefore, one can conclude that, cognitive radio needs
an overall adaptation that covers multiple layers with the aid of optimization.

Currently, there is no architecture that can meet all the aforementioned
requirements of cognitive radio simultaneously. A fundamental reason behind
that is the absence of any sort of controller and coordinator governing the
overall adaptation process. The obligation of the presence of a controller and
coordinator for complete adaptivity can be explained by an analogy. Since cog-
nitive radio has AI capabilities, it is adequate to consider the most intelligent
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systems on the Earth: humans. Humans have aural, olfactory, tactile, taste,
and visual sensors. These sensors help humans to perceive the surrounding
environment. Humans are aware of themselves with the aid of inner sensors
called as nerves. Humans are also equipped with very complex structures
called “organs” to carry out vital operations. Each organ in the human body
is physically isolated from the others such as the heart, the kidneys, and the
liver. Interestingly, as in the layered architecture, some of the organs operate
in algorithmic order such as digestive system. In the human digestive system,
the intestines should wait for the stomach to operate. At the end, there is
another structure that controls and coordinates every single organ in the hu-
man body: the brain. The brain is aware of both inner and outer world of the
body via the nervous system and sensors. It gathers all the information from
inner and outer world, processes and compares it with its past knowledge,
chooses the best (or, in engineering terminology, optimum) decision, acts on,
and observes the consequences for future usage. This procedure that the brain
follows highly resembles the cognition cycle.

The human body analogy stresses that, a special structure, which has the
capability of both controlling and coordinating, is essential in order to obtain
a complete adaptive architecture. In cognitive radio domain, the counterpart
of this special structure is known as “cognitive engine.” Even though cur-
rently there is no formal definition of cognitive engine, it is agreed that cogni-
tive engine is responsible for the overall adaptation and optimization process.
However, a question arises automatically by introducing cognitive engine to
the cross-layer design: What kind of an architecture should be adopted to
include both cross-layer design and cognitive radio? Now, we seek for appro-
priate approaches, if possible, an answer to this question.

14.3.2 Cognitive Engine and Cross-Layer Architecture Design

As stated in Section 14.3.1, when a completely adaptive system is considered,
the control and coordination of already defined layers have to be organized.
The initial step is to establish the flow of information between each layer
regardless of the levels of layers. In the earliest attempts toward cross-layer
design, several layers were connected to each other in bi-directional way [17].
With the help of combinatorics, for an n-layered architecture (n ≥ 2, n ∈ Z),
the number of single-direction flow must be defined is given by

(
n
r

)
and r = 2.4

Considering that the flow has two directions (upward and downward) as in [17]
and there are already information paths between adjacent layers, the total
number of new information paths to be defined becomes:

R = (n − 1)(n − 2). (14.1)

As can be seen in (14.1), a linear increase in the number of layers causes
a quadratic increase in the number of new paths to be defined, which should
4 This representation is known as binomial coefficient and given by (n!)/((n−r)! r!).
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be avoided. Besides, solely R paths are not going to be enough to attain a
complete adaptation since pre-defined layers are not capable of converging
to a complete adaptation. In addition, cognitive radio not only consists of
pre-defined layers, but also includes several other sensors that need to be
in connection with the adaptation process. This emphasizes that cognitive
engine needs to form a sort of interface between the layers and sensors. In
Section 14.3.1, when the cognition cycle was introduced, one of the abilities
of the cognitive radio, learning from its past experiences, has been brought
forward. Learning from past observations includes memory related processes.
Therefore, apart from layers and sensors, cognitive engine needs to interact
with different parts of the hardware. Finally, considering the evolution of
cognitive radio, cognitive engine can be updated and modified.

By considering the aforementioned aspects, it is reasonable to think cog-
nitive engine as a new layer that has connections with each layer, sensors,
and hardware. This assumption, as a side-effect, also removes the quadratic
behavior defined in (14.1) and allows one to facilitate the already defined
layered architecture to some extent by converting (14.1) into a linear form.

One of the important characteristics of this new architecture is that it
should preserve the previous achievements related to cross-layer organization
and architecture. More explicitly, cognitive engine must take advantage of the
present architecture rather than changing it entirely. The major impact of the
cognitive engine on the cross-layer design is to remove the distance between
layers on the edges. Consequently, a cognitive engine that is considered as a
separate layer can be placed between layered architecture and several other
peripherals such as memory and sensors. This is illustrated in Figure 14.2.

In a contextual model as shown in Figure 14.2, the operation of cogni-
tive engine is extremely important. In this architecture, cognitive engine is
“attached” to an already existing structure. Thus, the presence of cognitive
engine should not create any problem to the layered architecture, since cur-
rent layered architecture can already handle various issues very efficiently.
What cognitive engine introduces is to spread the adaptation among all the
layers, which cannot be achieved through traditional layered architecture. On
the other hand, cognitive engine forms an interface for the available infor-
mation coming from peripherals (such as memory and additional sensors) to
improve the performance and adaptivity. Hence, it can be said that cognitive
engine intervenes only when it is needed.5 According to the situation, cogni-
tive engine can take over the optimization process because of the necessity

5 Actually, this behavior of the cognitive engine has also several counterparts in
the human body analogy, which is discussed earlier. One of them is known as
“involuntary (stereotyped) reflex actions.” A person who touches a hot stove
immediately pulls his/her hand back without “thinking.” This response to the
stimuli is handled by a mechanism called “reflex arc.” Even though the brain is
not involved with the first stage of the action (pulling the hand immediately),
later on, the information “pain” is sent to the brain and the brain relates the
actions and learns.
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Fig. 14.2. A contextual model for cognitive radio. Cross-layer architecture and
peripherals such as memory and sensors are all inter-connected through cognitive
engine.

of the contribution of other layers. Similarly, cognitive engine takes action to
by-pass some of the layers for the sake of optimization and/or speed or battery
requirements.

Some illustrative examples – which do not contain any structure such as
cognitive engine – for cross-layer adaptation and optimization can be pre-
sented for the sake of further comprehension before going deep into cognitive
engine.

Illustrative Examples of Cross-Layer Adaptation and Optimization

Wireless channel possesses various characteristics. Multipath phenomenon
introduces spreading in time, whereas due to the Doppler effect, the sig-
nal spreads in frequency domain. In addition to multipath propagation
and Doppler spread, the transmission bandwidth is of great importance in
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understanding the characteristics of the wireless channel [8].6 These concepts
are the most prominent factors affecting the small-scale fading in wireless
channels, which can cause erroneous data reception.

In order to be able to achieve a reliable communication over fading chan-
nels, channel coding is used to detect and correct possible errors. The essence
of channel coding is to introduce redundancy into the data to be sent in order
to restore it at the receiver side. There are several channel coding schemes
such as block codes, convolutional codes, and turbo codes. One of the most
important parameters in the channel coding is the coding rate. Coding rate
is defined as Rc = k/n, where k denotes the number of bits before chan-
nel coding and n represents the number of bits after encoding operation.
Thus, n−k is the total redundancy which is a measure of spectral inefficiency
due to coding process [8]. Consequently, Rc = 1 means no redundancy at
all, in other words 100% efficiency. It is important to remember that even
though Rc = 1 promises 100% spectral efficiency, in case of an error, the data
may not be recovered appropriately, which requires re-transmission meaning
low data rate. We can exemplify channel coding with contemporary commu-
nication technologies such as Global Service for Mobile (GSM) and Global
Packet Radio Service (GPRS). GSM uses 0.5 code rate for speech data [20],
whereas GPRS uses four different code rates between 0.5–1 [21], according to
the pre-defined channel quality schemes. Measuring the link quality consecu-
tively allows GPRS to switch between different code rates to establish high
throughput [21].

It is also possible to get higher data rates by preserving the spectral effi-
ciency. This is achieved by switching to higher order modulations in case of
having a good link [8]. In Enhanced GPRS (EGPRS), two different modula-
tions are available with different coding rates [8,21]. After link measurements,
the communication system adjusts itself with the aid of Adaptive Modula-
tion and Coding (AMC). If the link quality is good, then EGPRS can switch
from lower order modulation (Gaussian Minimum Shift Keying [GMSK]) to
a higher order modulation (8–Phase Shift Keying [PSK]) with reducing the
channel coding power ((Rc → 1) ≡ (n → k)) [22].

EGPRS also provides a different cross-layer application which includes
again the collaboration of data link and physical layer. Instead of AMC, this
time, a technique, which is known as “incremental redundancy” (a method in
Type–II Hybrid Automatic Repeat Request (ARQ)7), is used [21]. In incre-
mental redundancy, first, the data is sent through the channel with a weak
coding power (Rc). If no error occurs, a high bit rate is achieved. Unless there
is an erroneous reception, which is going to be notified by an ARQ scheme

6 Note that if the transmission bandwidth is less than the coherence bandwidth of
the channel, the effects of signal spreading can be neglected.

7 It is named as Type-II, because it stores the erroneous packet whereas Type-
I discards it. The other method of Type-II Hybrid ARQ is known as “chase
combining.”
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Table 14.2. Separation theorem and JSCC.

Traditional architecture Cross-layer architecture

Separation theorem [34] JSCC

to the transmitter side, the coding power is never increased. In case of an
erroneous packet reception, the coding power is increased step by step until
the reception becomes error-free [23].8

Up to this point, some applications that facilitate the collaboration of the
layers close to each other have been outlined. There are also other applications
that can use cross-layer approach for the layers residing at the edge of the
traditional architecture such as the collaboration of application and physical
layer. A very well-known example of these sorts of applications is known as
Joint Source–Channel Coding (JSCC).

In multimedia applications the notion of perceptual quality is of vital im-
portance. Therefore, the main purpose of the multimedia transmission can be
defined as to obtain the best perceptual quality. However, when the transmis-
sion is carried out over wireless channels, numerous constraints (such as fading,
shadowing, interference, and so on) that affect the perceptual quality must be
considered as well (see Table 14.2). Especially video transport through wireless
channels is one of the prominent applications for JSCC. A JSCC that is aware
of the wireless channel9 improves the performance significantly [25, and ref-
erences therein]. The main purpose of any type of communications is to make
sure that the information that is intended to be sent arrives at the receiver
side. Otherwise, by definition, there is no communications, which means that
there is no need to think further. Therefore, a link must exist between trans-
mitter and receiver. In terms of JSCC for video transportation, we cannot talk
anything about the source coder unless a link exists. If there is a link, then

8 The working principle of incremental redundancy method can be considered as
the reciprocal of slow start method for TCP, which was introduced before.

9 Note that some JSCC approaches do not assume the presence of any sort of
channel knowledge [24].
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both source and channel coder get into the picture. In order to protect the
video information from link degradations, channel coding is applied. However,
this comes at the expense of reducing the efficiency of the bandwidth. If the
video information is not protected, it may not arrive or may arrive at the
receiver side but with unrecoverable errors, which causes the video to lose its
intelligibility. Source encoder removes redundancies from the video and pre-
pares the encoded scheme in an error-resilient way [26]. Before the delivery,
the information is packed as video frames. At this point, bit rate of each frame
is controlled by the rate controller according to the Channel State Information
(CSI), which is provided by lower layers such as physical layer. At the final
stage, channel coder adds redundancies depending on the link qualifications.
Hence, in JSCC, the problem reduces to the optimization or allocation of the
total bit rate between source and channel coding operation [27].10

Cross-layer design (and therefore, cross-layer optimization) manifests it-
self in a more complicated way for wireless ad hoc networks compared to
the previous examples. Lack of communication infrastructure brings several
other issues into the picture. Unlike the systems that have infrastructure, in
ad hoc networks, each node should consider very challenging tasks in several
layers such as routing in network layer due to the dynamic topology; schedul-
ing for wireless channel access in Medium Access Control (MAC) layer; and
power control in physical layer [29]. Security can also be added on top of
these considerations [30]. Optimizing each layer one by one (as in traditional
architecture approach) may end up with high network throughput, but this
gives rise to several other considerations such as unfair transmission rates for
some of the nodes in the network [31]. Therefore, the overall optimization
must include throughput and resource utilization, congestion control [32,33],
scheduling [33, and references therein], and efficient routing [31], which are
established in different layers in traditional architecture.

After solidifying the cross-layer concept with several examples including
interaction of closer layers, distant layers, and multiple layers, it is appropri-
ate to introduce some of the adaptation parameters that are being used in
contemporary communication systems.

14.3.3 Some of the Adaptation Parameters That Are Popularly
Used in Contemporary Communication Systems

Although the emergence of cognitive radio emphasizes the term “adaptiv-
ity” stronger than the previous communication technologies, we must note
that the evolution of wireless communications has already been going toward
adaptivity. It is not hard to see this reality when the progression of wire-
less communications in time is reviewed. When we look at the whole wireless

10 As stated in [27], this sort of approach of JSCC is limited only to the source and
channel encoders. The actual optimization includes more detailed investigation
such as power considerations [28].
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communication history, we can see that the early technologies or standards
use fixed schemes in the system design such as fixed resource allocation, fixed
frequency assignment, or fixed average signal quality for the receiver designs,
and so forth [8]. Fixed scheme provides a simple design architecture, but it
also comes at the expense of sub-optimum performance because of similar
reasons discussed about traditional and cross-layer design architecture, in
Section 14.2.1. This trade-off has been realized and tried to overcome by
flexing the design, which was led by adaptation.

As stated in Section 14.3.1, there are numerous examples of adaptive wire-
less systems that have already been used. Especially recent standards such as
WiMAX include many adaptation capabilities. However, these recent efforts
as well as the previous adaptation methodologies focus on individual layers
and look at the problem from a narrower perspective compared to cogni-
tive radio. This is not surprising, because global adaptation requires perfect
knowledge about all the parameters in every level including the relationships
between them. But, cognitive radio, by its very definition, aims global adap-
tation. In global adaptation, some of the parameters conflict with each other
for specific optimization criteria. Therefore, cognitive radio must be aware of
what to change for adaptation and how those changes affect the system.

There are adaptation forms that serve to attain the same goal in wireless
communication systems. One of the very well-known examples of these sorts
of adaptation methods is to maintain Bit-Error-Rate (BER) at a certain level
(constant BER). In many adaptive wireless communication systems, maintain-
ing the desired BER level is established by increasing the power level or ap-
plying Forward-Error-Correction (FEC) techniques [8]. Increasing the power
level has several side-effects such as faster battery consumption, increase in
interference, and so forth. Similarly, applying FEC techniques reduces the
efficiency of the use of the bandwidth. In this case, exploiting the options of
attaining the same goal requires the evaluation of the side-effects of each path.

Typically, when upper layer requirements are also taken into account as
in multimedia transmission, the global adaptation encompasses several con-
straints farther such as delay, perceptual quality, and so on. At this point,
cognitive radio chooses one available option that takes it to the global opti-
mum, if possible. However, introducing more constraints into the optimiza-
tion process increases the probability of conflict between constraints. When
an application that requires both high data rate and a constant BER is con-
sidered, applying adaptive modulation will cause the two goals to conflict,
because maintaining BER under a desired level is possible with reducing the
order of the modulation. This automatically reduces the data rate, under the
assumption that the other limitations are constant. Conversely, under the
same conditions, a high-data rate communication requires higher order mod-
ulation, which increases BER.

As we see, introducing even one constraint complicates the problem. Thus,
cognitive radio needs to consider the trade-offs mentioned above comprehen-
sively, since there are many parameters to be adjusted. Table 14.3 provides
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Table 14.3. Some of the writable parameters for adaptive wireless communication
systems.

Layer Parameters

RF

Antenna powers
Dynamic range
Pre-distortion parameter
Pre-equalization parameter

Physical layer

Transmit power
Digital modulation order
Carrier frequency
Operation bandwidth
Processing gain
Duty cycle
Waveform
Pulse shaping filter type
FFT size (for OFDM)
Cyclic prefix size (for OFDM)

Data link layer

Channel coding rate
Channel coding type
Packet size
Packet type
Data rate
Interleaving depth
Channel/Slot allocation
Carrier allocation (in multi-carrier systems)
MAC scheduling algorithm
Handover (Handoff)
Number of slots

Network
Routing algorithm/metric
Clustering parameters
Network scheduling algorithm

Transport
Congestion control parameters
Rate control parameters

Upper

Communication modes (simplex, duplex, etc.)
Source coding
Encryption
Service personalization

some of the currently used popular adaptation parameters with respect to the
layers. In the frame of global optimization, cognitive radio needs to consider
these and many others which will appear jointly in the future.
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14.4 Cross-Layer Optimization

Although cognitive engine conceptually looks like the missing part of over-
all cross-layer adaptation and optimization, in the implementation stage, the
real challenge is to construct the formal methods that are going to run on
cognitive engine. Currently, there is no unified mathematical model that can
handle each and every one of the capabilities mentioned above. Consequently,
cognitive engine needs to have –at least until a unified model appears –several
mathematical models to cope with different aspects of the cognition cycle.

Fortunately, there are very successful individual formal models that can
operate in particular domains of the cognition cycle such as learning, reason-
ing, multiobjective optimization, and so on. Specifically, in this section, we are
going to investigate how a MOP can be handled via available formal models.
Before getting into the details of multiobjective optimization concept, it is
appropriate to introduce the optimization problem in a general context.

14.4.1 Optimization Problems

No matter how complex the optimization problems are, the main goal of all of
them is the same: “to find the best solution among available set of solutions
under limited resources.” In order to be able to visualize this definition, we
can consider a very well-known example called as “0–1 knapsack problem.”
According to the story, a hiker wants to put several items (such as cans of food,
bed roll, and so on) into his bag, but he cannot carry more than 70 lb [35].11

He wants to find “the best” combination of the items which weight as close as
possible to 70 lb according to the relative value of each item determined by
himself. For instance, he may think of cans of food as more valuable than bed
roll, because food is essential for survival even though its price is less than
that of the bed roll. More explicitly, in 0–1 knapsack problem, the limited
source is the bag (or the hiker) that cannot carry more than 70 lb, whereas
the best solution corresponds to the combination of the hiker’s favorite items
that weight as close as possible to 70 lb without exceeding it.

Establishing a ‘reasonable’ solution requires the optimization problems to
have a formal model. In a general optimization problem, the formal model
relies on defining the following three items:

• Variables: They comprise the essence of the problem via the mathemat-
ical relations between each other.

• Objective Function: It represents the concept that is going to be opti-
mized. It can be univariate or multivariate depending on the structure of
the problem. The purpose of the problem corresponds to obtaining either
maximum or minimum value of this function.

11 The problem is called as 0–1 knapsack problem, because the hiker either chooses
an item (which is represented by “1”) or leaves it (which is represented by “0”).
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• Constraints:12 As the name implies, these are the limitations by which
the objective function is going to be optimized. Along with the domain of
the objective function, it defines the feasibility region, which means that
any probable solution outside this region is going to be ignored.

Having the items listed above on our hands, the statement of the opti-
mization problem can be written as follows:

Find x∗ which
minimizes f(x)
subject to ci(x) ≤ 0, i = 1, 2, . . . , r

with mj(x) = 0, j = 1, 2, . . . , h,

(14.2)

where x∗ = [x1, x2, . . . , xn]T , (·)T denotes the transpose operation, f repre-
sents the objective function, ci and mj denotes the constraints.13

If one wanted to apply (14.2) to 0–1 knapsack problem, the formal model
would be as follows:

Maximize f =
n∑

i=1

bixi

subject to
n∑

i=1

aixi ≤ 70

with xi ∈ {0, 1},

(14.3)

where bi denotes the relative value of the i-th item according to the hiker, ai

is the weight of the i-th item.
Even though (14.2) gives the formal statement of a general optimization

problem, there are numerous types of different optimization problems. Since
there is no unified and comprehensive method available yet as stated at the
beginning of Section 14.4, classification of the problem is extremely important,
because the approach (or the strategy) for obtaining the solution depends on
the particular class (or category). Therefore, we can briefly glance at classifi-
cations of optimization problems.

14.4.2 Classifications of Optimization Problems

Generally, the classification of optimization problems is divided into three
coarse categories as follows:

1. existence of constraints,
2. structure of the variables,
3. equation types of objective function and/or constraints.

Let us now briefly introduce each classification item.
12 Note that, some types of optimization problems may not require a set of con-

straints [36].
13 In the literature, sometimes mj is omitted.
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Existence of Constraints

This sort of classification of optimization problems has already been intro-
duced previously as constrained and unconstrained optimization problems.
Even though there are numerous types of unconstrained optimization prob-
lems (and a significant amount techniques devoted), in cognitive radio domain,
most of the adaptations require at least one or two constraints such as battery
level, channel state, and so on. Therefore, most of the time the optimization
problems related to cognitive radio fall into the category of constrained.

Structure of the Variables

Structure of the variables determines the domain of the problem in which
it is going to be investigated. There are several structure categories such as
continuous–discrete, deterministic–stochastic, and so on. In cognitive radio
domain, for instance, in the optimization problem which includes rate con-
troller as mentioned in Section 14.3.2, the number of bits in a frame is of
discrete type. Conversely, channel state information based on Received Signal
Strength Indicator (RSSI) is of both continuous and stochastic type.

Apart from the categorization above, a different categorization for this
topic is also possible. A problem can be considered as combinatorial or vari-
ational depending on the cardinality of the set of variables. In combinatorial
category [37], the solution set is finite.14 In variational category, basically, the
solution set is infinite [38]. Especially combinatorial optimization problems
are very important for cross-layer adaptation, as mentioned in Section 14.3.2
while discussing AMC.

Equation Types of Objective Function and/or Constraints

Formal aspects of the objective function and/or constraints are extremely im-
portant to treat an optimization problem. This type of classification is slightly
different from the others, since particular categories define particular mathe-
matical tools. The following categories are generally referred in the literature
according to the types of the equations within the problem: linear, quadratic,
polynomial, non-linear, and sparse.

The classification of optimization problems introduced above provides just
an idea about the concept. Apart from the classification above, there can be
defined several other categories such as “number of variables in the objective
function.” The formal and detailed classification of the optimization problems
and relevant approaches are out of the scope of this chapter. Interested readers,
who want to gain more information about the classification, may refer to
[39–41].

14 Knapsack problem is a combinatorial optimization problem, since the hiker can
establish his favorite combination of items over a finite set.
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Cognitive Radio and Optimization Problems

Two fundamental concerns behind the conceptual model of cognitive radio are
(i) to provide backward compatibility and at the same time (ii) to improve
an already working architecture. Since the layered architecture is going to
be kept to some extent and this approach is going to be combined with
overall adaptation, we automatically face to a different type of major clas-
sification in optimization problems, which is known as MOPs. Before investi-
gating MOPs, it is worth mentioning another approach in the literature, for
cross-layer architecture, which comprises a mid-step between single objective
function and multiobjective function.

This approach considers the use of the interaction of multiple layers to
optimize only one of the objectives. The main idea behind this approach is
to take advantage of the multi-modal structure of the current communication
standards with the aid of combinatorial optimization. Recall that in EGPRS,
the number of possible modulation schemes is limited to two, as stated in
Section 14.3.2. This means that the contribution of the physical layer to the
problem in terms of modulation is a set which has only two elements. Simi-
larly, in a IEEE 802.11a system, the modulation set has four different modu-
lation options, which are Binary PSK (BPSK), Quadrature PSK (QPSK), 16-
Quadrature Amplitude Modulation (QAM), and 64-QAM. As in modulation,
channel coding can be treated in the same way. If this approach is followed for
every possible layer, at the end, a comprehensive set which is composed of ele-
ments formed by the Cartesian product of every possible parameter set across
the layers is obtained. In other words, the Cartesian product of every possible
parameter set forms the solution set in which “the best” is going to be sought
for, as illustrated in Figure 14.3. Although the Cartesian product can form a
set that has a large cardinality, it is still finite [42]. Of course, this reasoning
gives rise to an obvious question: Who is responsible for the optimization?
This question can be answered in two ways: (I) without cognitive engine and
(II) with cognitive engine. For (I), there are several approaches [42]:

• Bottom-up approach: The lower layers try to save the upper layer from
the losses. This approach cannot provide an overall optimization, since it
is going to fail in multimedia applications.

• Application-centric approach: In contrast to bottom-up approach, this
approach gives the priority to the application layer to have the control
on the optimization process. This approach cannot support the overall
optimization either, because the response time of the application layer
to sudden changes in the lower layers (especially in the channel) is not
sufficient.

• MAC-centric approach: After seeing that pushing the responsibility
towards edges comes at the expense of sub-optimality, this approach
tries to keep the control of the optimization process around the center of
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Layers and Their
Modes

Cartesian
Product Result

Optimization

ObjectiveP3={p31,p32,....,p3n}

R ={pli,p2j,....,p3k}

S ={p11p21p31,p12p21p31,....,p1rp2mp3n}P2={p21,p22,....,p2m}

P1={p11,p12,....,p1r}

Fig. 14.3. The mid-step between single and multiobjective optimization. The design
still has one objective, but, the variables are coming from different layers, which
means that the type of the variables are not unique, as introduced in classification
of optimization problems.

the stack. It gathers the information from the upper and lower layers and
decides upon its own criteria. The major drawback occurs in JSCC.15

For (II), the answer is easy: “cognitive engine.” Since we have not pro-
vided a substantial answer to the optimization in terms of cognitive engine,
one may ask how does cognitive radio know which combination in the solu-
tion set provides the optimum solution? As being aware of its inner and outer
world, cognitive engine defines the constraints according to its inner and outer
environment. In one scenario, cognitive engine may realize that it is running
out of battery. This automatically affects the selection of the best combina-
tion and forces cognitive engine to find a power efficient one. Conversely, as
soon as the device understands that it is plugged into the electric outlet, cog-
nitive engine immediately drops the constraint of power efficiency and defines
another constraint accordingly.

15 In [42], there is another approach proposed for (I), which is called “integrated
approach.” Interestingly, the key point of this approach is stated as learning and
classification techniques [43].
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Combinatorial approach that takes advantage of multi-modal standards
draws us near our ultimate propose, which is to get solutions for MOP. How-
ever, we have to be aware of that MOPs are of different formalization from
that in (14.2), since the number of objective functions is more than one. Nev-
ertheless, (14.2) can be modified to reflect the multiobjective structure while
maintaining the general frame of the optimization concept as follows:16

Minimize F(x) = [F1(x),F2(x), . . . ,Fn(x)]T ,

subject to ci(x) ≤ 0,

gj(x) = 0.
(14.4)

In multi-dimensional cases, the solution for optimization problem becomes
harder.17 Considering the ultimate boundary, which is time, the challenge be-
comes clearer. Recalling from the previous sections, in cognitive radio, it is
desired to have a complete adaptivity across all the layers in a short period of
time since the wireless channel is highly dynamic. Apart from that, formal-
izing the requirements of each layer depending on stochastic events (such as
channel conditions) is extremely difficult. We will investigate the challenges
of cross-layer optimization in detail later. First, we outline the statement of
the problem formally.

Multiobjective Optimization Problems and Related Approaches

As their name implies, MOPs occur in a single design having multiple objec-
tives which usually contend against each other. If MOPs are also considered
in terms of the definition given at the beginning of Section 14.4.1, it is seen
that the challenging part is the allocation of resources between contenders.

We have seen some examples explicitly referring to MOPs such as the
relation between channel coding power and spectral efficiency. Recall that, it
is impossible to have 100% spectral efficiency and maximum data protection
simultaneously. When MOPs are considered, aiming maximum (or minimum)
generally loses its meaning. We say “generally,” because, in typical MOPs, it
is extremely difficult to find a solution that can maximize (or minimize) each
individual objectives simultaneously. Instead, the term solution corresponds
to a set which is composed of some alternatives representing the trade-offs
between objective functions. However, there may be some extreme cases that
16 Note that, mathematically, maximization of any function f is equivalent to mini-

mizing −f . Therefore, for the sake of brevity, every optimization problem can be
defined only through minimization and vice versa.

17 Again, the concept “harder” can also be defined formally. As a special form of the
problem of sum-of-subsets, knapsack problem is classified as Non-deterministic
Polynomial-time Complete (NP-Complete) in connection with the decision prob-
lem (Entscheidungsproblem) [44] which is believed that coined by David Hilbert.
For the relations between optimization problem and computational complex-
ity, [45] can be referred. For proofs and further discussion please see [46,47].
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lead to a solution rather than a set of alternatives [48]. These extreme cases are
known as utopia [49]. Then, that solution which satisfies the maximization (or
minimization) of each individual objective simultaneously is called optimal.

Ignoring extreme cases for MOPs and focusing on typical ones, we want
to consider what to do when the decision time comes. At that time, an ele-
ment has to be drawn from the set of alternatives for a decision to act on. At
this point, a new notion called preference gets into the picture. It is impor-
tant to note that the notion of preference distinguishes MOPs from Global
Optimization Problems (GOPs). GOPs search for a single solution, whereas
MOPs are based on getting the best compromise between multiple objectives
in a set of alternatives. Hence, for MOPs, trade-off approach is adopted rather
than a search.18 According to the preference of the decision-maker, the no-
tion of optimality turns into another concept called efficiency. Efficiency is
the assessment of an element in the set of alternatives, which is chosen by
decision-maker according to his preference. There are several definitions of
assessment of the efficiency of an element in the set of alternatives. Before
explaining the relationship between efficiency and its assessment, we need to
introduce the notion of dominance. In MOPs, dominance expresses the pref-
erence level of the elements to each other. If one of the elements in the set, say
x2, is less preferred to another element, say x1 (because x1 provides better
values for each individual objective function simultaneously), then, it is said
that x1 dominates x2. Now, putting all the things together, we can assess the
efficiency of the choice of the decision-maker. Edgeworth–Pareto optimal (or
Pareto optimal [50], efficient solution, nondominated solution, a noninferior,
or functional efficient solution [51]) is one of the most important assessment
definitions of the efficiency of the element of interest. Informally, Edgeworth–
Pareto19 optimality can be defined as follows:

Definition 1 (Edgeworth–Pareto optimality) In the set of alternatives
(trade-offs or nondominated set), if there is no other element that can domi-
nate the element chosen from the set, the element chosen from the set is called
Edgeworth–Pareto optimal.

In order to be able to solidify the concepts mentioned up until now, it
is appropriate to examine Figure 14.4. Figure 14.4 illustrates a simple, two-
objective function optimization problem which has a convex solution set or
feasibility region. The horizontal and vertical axes denote the objective func-
tion 1 and 2, respectively. The solution set is represented with diagonally
18 In the literature, “preferences” belong to decision-maker. Decision-maker is the

one who is responsible for the final decision [48]. Note that, even in mid-step
example introduced in Section 14.4.2 (see also Figure 14.3), the responsibility
must be taken by someone.

19 In the literature, Pareto optimal has a vaster usage than Edgeworth–Pareto opti-
mal. Edgeworth is the one who proposed the correspondent term of optimum for
multiobjective optimization problem, whereas Pareto is the one who generalized
it. For further historical discussions, please see [52,53].
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Fig. 14.4. Convex solution set, efficiency, nondominated set, and Edgeworth–Pareto
optimality are represented. The circles labeled as “A,B,C,D, and E” denote points
inside the set.

shaded, convex shape. Recall that this region is determined by the constraints
peculiar to the problem. The decision-maker is allowed to choose any point
within the convex solution set including its border. As stated above, the as-
sessment is going to be established by the notion of dominance. In Figure 14.4,
point D is being dominated by point E, because point E provides lower values
for both objective functions 1 and 2, simultaneously [46,48]. This fact can be
seen through the area bounded by two dashed lines originating from point D
to the axes. Similarly, the relationship of the dominance between point E and
point B; due to the property of transitivity, the relationship between point
D and point B can be seen as well. Conversely, the curve ÂBC denotes the
nondominated set, since no element can be found in the convex solution set
which can provide lower values for both objective functions 1 and 2, simul-
taneously. Thus, depending on the preference of the decision-maker, any of
the elements laying on ÂBC is considered as Edgeworth–Pareto optimal or
efficient.

As a final remark, it must be stated that the mathematical definitions
of efficiency, inefficiency, Pareto optimality, and dominance have slight differ-
ences between each other. Since these are out of the scope of this section, we
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will not discuss them here. However, the readers who are interested in may
refer to [46,48–51, and references therein].

Related Approaches

As mentioned previously, MOPs are complicated structures by their nature.
Number of objective functions and vast variety of the constraints are two
prominent factors that increase their complexities. Besides, there are some
newer concepts that are not in single objective optimization problems such as
decision-maker and preferences. These complexity factors and newer concepts
together lead to have a different classification from the one introduced in
Section 14.4.2.

MOPs are categorized as follows depending on when the preferences of the
decision-maker involve with the algorithm [49,51]:

1. No articulation of preferences: In this sub-category, the algorithm
totally ignores the decision-maker before and during its run. However,
after the algorithm ends, it strives to provide the whole feasible set to the
decision-maker.

2. A priori: This approach assumes that the algorithm to be used has the
knowledge of the preference of the decision-maker before it runs.

3. Progressive (interactive): In this one, unlike 2, there is no chronologi-
cal order between the preference of the decision-maker and the initiation of
the relevant algorithm. The decision-maker can provide its feedback dur-
ing the operation of the algorithm. The algorithm provides a candidate
solution to the decision-maker and waits for the response of the decision-
maker. If the candidate solution is not accepted by the decision-maker,
then algorithm strives to find a better candidate until it is accepted.20 A
further sub-classification of this category is also possible in terms of how
the preferences expressed during the procedure as follows [55]:
• target values,
• ranking of alternatives or objectives,
• other than above.

4. A posteriori: Unlike 1, these sorts of algorithms have the capability of
narrowing down the solution space to Pareto set. The essence of these
sorts of algorithms can be summarized as “generate-first-choose-later.”

As discussed before, due to lack of a unified method, we need to categorize
the problems so that we can apply specific tools to specific classes. Table 14.4
tabulates some of the methods available.

If the list of taxonomy above is examined in detail, it can be observed that
the involvement of the decision-maker with the process needs formalization

20 An application of such an interactive optimization procedure and the relevant
flow chart is presented in [54].
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Table 14.4. Multiobjective optimization problems, their classifications, and rele-
vant solution methods.

Sub-classes Solution methods

No preferences

Global criterion
Achievment function
Compromise function
Objective sum
Minimax method
Nash arbitration
Objective product
Ideal distance minimization
Maximal effectiveness principle

A priori preferences

Global criterion method
Weighted sum
Lexicographic method
Weighted Tchebycheff
Exponential weight criterion
Weighted product method
Goal programming
Bounded objective function method
Physical programming
Multiobjective decomposition

Interactive preferences

Hierarchical decomposition method
STEM method
Multiobjective graph theory
Method of constraints
Parameter space investigation method
Random search method
Vector-relaxation method
Interactive ε-grid method
Method of local improvements
Pareto boundary maps method

A posteriori preferences

Physical programming
Normal boundary intersection method
Normal constraint method
Dynamic multiobjective programming
Reachable set method
Piecewise linear approximation method
Genetic algorithms

as well. Then, how can we put the preferences of the decision-maker into
the mathematical model we developed? The answer to this question, again,
comes from the roots of the theory, which is economics. The function which
represents the preferences of the decision-maker is called preference function
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or utility function.21 With the aid of utility function, the formal model can
be applied for the models which require decision-maker’s feedback.

According to the taxonomy of MOPs and Table 14.4, we see that for
“no articulation of preferences,” the decision-maker is being dictated by the
algorithm, which means that decision-maker has no control on the process
[49, 51, 55]. When we consider cognitive engine, it looks a bit controversial,
because whatever the solution method is chosen, it is going to run on cognitive
engine. This problem arises from the fact that proposed solution methods
are implemented on a different platform such as computer. Conversely, for
cognitive radio, the problem, the solution, and even the decision-maker are
all in the same platform. This implication proves that cognitive engine must
have different units which govern the separated processes such as running the
algorithm, evaluating the preferences, and so on.22

14.4.3 Challenges for Cross-Layer Optimization

Before integrating cognitive engine into the traditional architecture, we have
to pay more attention to several aspects of cross-layer design and optimization.
First and foremost, MOPs are naturally challenging due to the number of
objectives involved with the problem. It is clear that the less the number
of objectives, the less complex the problem. In addition, since we want to
maintain the layered architecture to some extent, we must be aware of that
each layer has its own design criteria. Besides, we seek for a formal model that
encompasses all the layers, variables, constraints, and even objectives which
are defined on different domains [18]. For instance, minimum bit-error-rate
and no congestion are two separate objectives for physical and network layer,
respectively. Thus, formalizing these different objectives together and putting
them onto a common mathematical platform are very challenging problems.
Furthermore, in spite of the fact that some solutions for MOPs have really
fast convergence rates, for wireless devices that operates in very dynamic
environments, the delay requirements are very tight. Another dimension of
delay bottleneck challenges us in sharing the information through layers [9,18],
sensors, and other peripherals of cognitive radio. In order for the solution to
work appropriately, all the information should be available to cognitive engine
before the optimization process starts. As a direct consequence of number of

21 In economics, the concept of “utility” (or satisfaction) comes from the basic
consumer–entrepreneur relationship. In a system that includes both consumer
and entrepreneur, the purpose is to attain maximum utility (or satisfaction) for
the consumer and maximum profit for the entrepreneur [56]. Morover, includ-
ing/removing uncertainty (or risk) into/from the system causes this function to
be named utility function/value function, respectively [48]. Nevertheless, the term
preference function can be used for both risk and risk-free systems.

22 Interestingly, current computers are designed based on von Neumann architecture,
which has separate control, calculation, memory, input and output units [57].
Furthermore, this design operates as Universal Turing Machine.
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objectives and delay requirements, solution for MOPs themselves may need
an optimization since it consumes resources of the device. In other words,
calculating the optimum allocation of a resource consumes the other system
resources as well. Finally, it is known that cross-layer design can cause loops
due to some interactions of layers bringing forward another challenging notion
to be considered, which is known as stability [58].

At this point, we need to address another concern about cross-layer design
and optimization. Before the concept of cognitive radio and therefore cog-
nitive engine were introduced, one of the biggest challenges for cross-layer
architecture had been that: “who has control? [18]”23 With the emergence of
cognitive radio, we can say that this question becomes obsolete.

Throughout Section 14.4.2, we expressed that the concept of decision-
maker lies on the heart of MOPs along with preferences. We can say the same
thing for cognitive engine in cognitive radio architecture. However, we also
state that some of the problems have already been solved by the traditional
architecture very efficiently. Therefore, in cognitive radio architecture, it is
very reasonable to avoid MOPs unless they are needed. In other words, unless
the intervention of cognitive radio is inevitable, cognitive engine does not need
to get involved with the optimization process.

14.5 Further Notes

Up to this section, we outlined the methods to solve optimization problems for
cognitive engine. However, it is worth mentioning that there are two very im-
portant accessories, which assist cognitive engine in solving the optimization
problems: game theory and neural networks.

Our main focus was the optimization of the cross-layer architecture for a
single device up to this point. One can suspect that optimizing one device
in a network may not end up with a fully optimized network. Actually, this
can easily be seen by using the same notions of multiobjective optimization
discussed at the beginning of Section 14.4.2. In a network in which each node
is trying to optimize its own objectives, a conflict between each node for sev-
eral resources is highly probable. This phenomenon manifests itself in ad hoc
networks very clearly [32]. Therefore, individual optimizations may need to be
established for the sake of optimization of the network. Of course, these sorts
of optimizations are of different type compared to individual optimizations,
since there are two nested systems to be optimized: individual optimization
and network optimization. Meanwhile, as in MOPs, we need to refrain our-
selves from using the term “optimization” under those circumstances. Instead,
the term “common satisfaction” may be much more appropriate. Then, the
crucial question becomes: how do we attain a common satisfaction? In order
to answer this question, we are going to review game theory briefly.

23 Recall that, this question is investigated in Section 14.4.2 in a different form.
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Fig. 14.5. A basic cognitive engine structure. Note that the construction highly
resembles von Neumann architecture [57] because of the simplicity in the design
simplicity.

Foundation of game theory is based on economics. The main idea behind
the game theory is that, as defined in [56], the quantification of the problem of
the rational behavior. The theory is constructed first for an isolated econom-
ical system, which is inspired from Robinson Crusoe.24 Then, by introducing
several individuals more, a social economy concept is introduced. Each indi-
vidual acts rationally to attain its own satisfaction. Each individual develops a
strategy depending on the system. Then, as in MOPs, each strategy is defined
by a utility function which is tried to be reached to a static equilibrium rather
than an “optimum” [56].

With this new perspective of rational behavior, many engineering problems
in which there are several participants can be formalized and treated. In the

24 As a historical note, it must be stated that the idea of rational behavior of an
isolated human first appears with Abu Bakr Ibn Tufail (known as Abubacer in
Latin) who was the author of “Hay bin Yakzan” (Hayy Ibn Yaqzan), the prede-
cessor of Robinson Crusoe. In fact, the name of the hero of the story comes from
another story with the same name written previously by a Turkish philosopher
İbni Sina [59], who is known as Avicenna in Latin.
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literature, related to wireless communications, there are also several studies
that apply game theory to solve complex problems such as random access and
power control [60].

Similar to game theory, neural networks must be addressed as another
assisting tool for cross-layer adaptation and optimization. Stemming from
their parallel processing power, neural networks are one of the essential tools
for cognitive engine to cope with several problems. Inspired by the operation
of nervous systems of biological organisms, neural networks have the capabil-
ity of generalization, familiarity recognition, categorization, error-correction,
and time sequence retention [61]. As can be seen, such properties can assist
cognitive engine in many different areas including cross-layer adaptation and
optimization. There are several applications related to amalgamation of neural
networks and cross-layer design [62,63]. Furthermore, we begin to see that the
intelligence governing and/or assisting the protocol process is being embedded
into cross-layer structure through specialized layers called “cognitive layer,”
as well [64].

In light of this discussion, a basic cognitive engine structure can be as in
Figure 14.5.

14.6 Conclusion

In this chapter, we tried to elucidate the entangled relationship between
cognitive radio and cross-layer architecture. The rise of cognitive radio
implies an inherent cross-layer design by its very definition including self-
and environmental-awareness and adaptation. In parallel, the efforts to relax
the traditional architecture point out a new intelligent structure that can pro-
vide a complete adaptation. The missing link in the chain of amalgamation
of cognitive radio and cross-layer design is cognitive engine. Various work has
been carried out to establish this unification. It is not hard to see that there
are very challenging issues including both formal and design aspects of the
merge. However, no matter how hard the problems are, the innovations that
come together with cognitive radio tempt the research community to make
the dream come true.
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