
Chapter 2
Direct and Indirect Causes†1,*

†1 This paper was originally published in: Topoi 9 (1990) 125–145. It is an elaboration and partial 
revision of the accounts of probabilistic causation I had given in Spohn (1980 and 1983a, ch. 6).

* I am indebted to the University of California at Irvine for giving me the opportunity to present 
much of the material during a visiting professorship during the Winter term 1988, to Maria 
Carla Galavotti for giving me another opportunity at Bagni di Lucca in October 1988, to Nancy 
Cartwright and Brian Skyrms for discussion and encouragement, and to Karel Lambert and 
Hans Rott for very carefully checking the manuscript and considerably improving style and 
content.
1 This is precisely how Lewis (1973b) proceeds.

2.1 Introduction

Everybody agrees that the distinction between direct and indirect causation 
is important. And it seems easy to draw, if an analysis of causation in general is 
available. The causal influence of one event on another is direct, if it is not medi-
ated by other events in between; otherwise it is indirect. The trouble is with the 
proviso. Indeed, I contend that the order of analysis must be reversed because the 
distinction is required for a successful analysis of causation. Such an analysis 
perhaps proceeds best in two steps: the first analyses direct causation, and the 
second extends the analysis to indirect causation and thus to causation in general. 
Such a strategy is at least plausible. For direct causation is a very special case and 
so may be supposed to be more easily explicable. Then, one might say that the 
relation “A is a cause of B” is just the transitive closure of the relation “A is a 
direct cause of B”, thus completing the full analysis of causation.1 The complete 
story is not so simple; but the idea will turn out to be right. In (1983b), I dealt 
mainly with the first step – direct causation. Here, I deal mainly with indirect 
causation.

Section 2.2 introduces the conceptual machinery required throughout the paper. 
Section 2.3 recapitulates my (1983b) explication of direct causes. Section 2.4 con-
siders the circumstances of direct causal relations in greater detail. Section 2.5 
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46 2 Direct and Indirect Causes

presents the main difficulties with indirect causes. Section 2.6, finally, proposes a 
strategy for dealing with these difficulties and shows that it will work.

The whole enterprise is subject to two major constraints. First, I shall discuss 
only causation of single events. The hope, of course, is that it will emerge from 
knowledge of causation in the single case what causal laws are. This procedure 
seems to me to be more likely to succeed than the reverse strategy endorsed by 
several philosophers,2 though I shall not argue the point here.

Secondly, I am concerned here only with probabilistic causation because this is 
the context in which all the problems dealt with here have been raised and have 
been discussed most extensively. It should be mentioned, however, that each con-
sideration, definition, and theorem of the present paper can routinely be extended 
to deterministic causation with the help of the theory of ordinal conditional func-
tions (OCFs) I proposed in (1988); only some marginal adjustments may be needed. 
This follows because deterministic conditional independence defined for OCFs 
obeys essentially the same laws as probabilistic conditional independence.3 It is 
thus possible to unify the deterministic and the probabilistic approach.4,†2

2.2 The Conceptual and Formal Framework

Each discussion of probabilistic causation proceeds from an explicitly given proba-
bility space: let I be a non-empty set of variables or factors. Each variable i Î I is 
associated with a set W

i
 of at least two possible values i may take. The cross product 

W of all the W
i
, is the set of all functions w defined on I such that, for each i Î I, 

w
i
 Î W

i
; intuitively, each w represents a possible course of events – a possible world 

in philosophers’ talk, or a possible path in the mathematician’s terminology. I, each 
W

i
, and hence W are assumed to be finite. This severe restriction has several advan-

tages. One of these is that there is no need to worry about measurability because 
each subset of W may be assumed to represent a state of affairs or an event in the 
mathematicians’ sense, but not the philosophers’. Moreover, we assume a prob-
ability measure P assigning a probability to each state of affairs, i.e. to each subset 
of W. This completes the description of the underlying probability space.

This explicitness has an important philosophical consequence: namely, that every-
thing said about causation is relative to the descriptive frame given by the set I of 
variables. Many discussions of examples suffer, I think, from an inadequate recogni-
tion of this relativization. It is essential because the causal relations may indeed vary 

2 For instance by Cartwright (1979), Giere (1980), and all those who take probability in causal 
contexts as a statistical property of event types or classes or the like. However, Cartwright herself 
attacks the reverse strategy in her (1988). See also Davis (1988) for a discussion of this point.
3 Compare Theorem 2 below with sect. 6 of Spohn (1988) [here: sect. 1.6].
4 Cf. Spohn (1988, sect. 7) [here: sect. 1.7].
†2 These remarks were apparently not noticed. Thus, I finally made them explicit in Chapter 3.



with the frame. Consider, e.g., a series of throws of a die by a machine: relative to a 
coarse probabilistic description which contains only variables representing the 
throws, no throw will be causally relevant to the next one. Relative to a finer descrip-
tion, however, which, for each time, allows for variables representing the mechanical 
state of the whole system (but which may still be probabilistic, say, because of 
neglect of air resistance), each throw will be causally relevant to the subsequent 
ones. One is, perhaps, inclined to think of causation as an absolute notion. However, 
from the current starting point the only way to get rid of the relativization is via the 
most fine-grained descriptive frame embracing all variables whatsoever. I am not 
sure whether such a move makes sense; it is at least philosophically problematic. 
Here, I will be content with the relativized notion of causation.

The relativization of causes is even more apparent in the distinction between 
direct and indirect causation. A state of affairs which is a direct cause relative to a 
coarse descriptive frame not mentioning the mediating links may well turn out to 
be an indirect cause relative to a more complete descriptive frame.

If time is continuous and if variables are associated with points and not with 
intervals of time, then, presumably, direct causes either do not exist or are simultane-
ous with their direct effects. In either case, the strategy of explicating causation via 
direct causation would not work because, in either case, causation would certainly 
not be the transitive closure of direct causation. So the strategy of analysis here 
demands a descriptive frame with discrete time. The idea is that the results obtained 
for discrete time may be generalized to continuous time in a fashion similar to the 
way in which the theory of stochastic processes has been extended, and the hope is 
that this will raise only well-known mathematical, but not new conceptual or philo-
sophical problems. I shall not attempt here, however, any such generalization.

I assume a weak order5 £ on the set I of variables which represents the order of 
the times at which the variables are realized; < is to denote the corresponding 
irreflexive order relation. Since I is finite, time is bound to be discrete. By assuming 
the order to be weak, simultaneous variables are in general allowed; the few excep-
tions will be explicitly noted. However, I shall not consider simultaneous causation; 
I am not sure whether this would be desirable.6 And I plainly exclude backwards 
causation; it will be clear that this is vital to the theory to be proposed here.

An analysis of causation faces a number of well-known and unsolved problems 
relating to variables which have more than two possible values.7 One may evade 
these problems by considering only binary variables. But there is a hitch to this 
restriction. The causal theorems to be proved essentially derive from the laws of 
conditional probabilistic independence, and there is one such law peculiar to binary 

5 This means that £ is transitive and complete.
6 In (1980) I allowed for simultaneous causation in a way which preserved continuity with the 
restricted case. I am not sure whether the same procedure would work here.
7 What is discussed with respect to more-than-two-valued variables is usually only causal rele-
vance simpliciter and not positive or negative causal relevance. An exception is Suppes (1970, pp. 
60ff.), but it has not been further discussed, as far as I know.
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48 2 Direct and Indirect Causes

variables (see Theorem 2(f) below) which may have unforeseen and undesired con-
sequences.8 Therefore, variables will be assumed to be binary only when required, 
and the problems with variables with more then two values will be neglected.

Finally, I shall assume that the probability measure P is strictly positive, i.e. that 
P({w}) > 0 for all w Î W; hence, the conditional probability P(B | A) is defined for 
each A ¹ ∅. Since W is finite, this assumption is unproblematic. The reason for it 
is that all probabilistic theories of causation run into serious trouble with the limit-
ing probabilities 0 and 1.9

How are probabilities to be understood in the present context? Any way you like. 
For instance, if one takes probability objectively, preferably in a propensity inter-
pretation, then the definitions below attempt to explicate causation as it objectively 
is. If, however, probabilities are understood epistemically as those of a certain sub-
ject at a certain time, then these definitions account for the causal conception of that 
subject at that time.

For philosophical reasons, I prefer the second understanding of probability. 
There are two main reasons. First, objective probability is the much more problem-
atic notion, and it seems to be heavily intertwined with causality.10 The most prom-
ising attempt to understand it is, I think, via subjective probability.11 This suggests 
to me that the appropriate order is to start with subjective probability, to explicate 
causation within the subjectivistic framework, and then to try to objectivize both.

Secondly, I have general reservations about too realistic an understanding of cau-
sation. There is a need for explaining the most pervasive and prominent epistemo-
logical role which the notion of causation plays. If one takes causation simply as a 
constituent of the real world, then the only explanation one can give seems to be this: 
“Causation is, of course, a fundamental and pervasive trait of reality; thus it is small 
wonder that the notion of causation plays a fundamental and pervasive role in our 
picture of reality”. However, the same argument would hold, say, for quarks or elec-
tromagnetic forces. Thus, this kind of explanation assimilates the epistemological 
role of the notion of causation to that of our notions of other important things like 
quarks or electromagnetic forces. This seems to me to be a distortion; according to 
the views of Hume, Kant, and other philosophers,12 the notion of causation has not 
only an important, but a peculiar epistemological role which cannot be sufficiently 
explained from a realistic point of view. However, this essay is deliberately neutral 

8 Within the theory of OCFs there is no such peculiar law and thus no technical difference between 
binary and other variables.
9 This is clearly displayed by Otte (1981) who criticized Suppes (1970) essentially on this account. 
I have argued in (1980, pp. 92f.), that the trouble-maker is essentially the fact that in standard 
probability theory there are no conditional probabilities for conditions having probability 0. The 
problem evaporates in the unification mentioned at the end of the introduction.
10 Cf., e.g., Salmon (1988a) who argues that propensities are best understood as probabilistic 
causes and that other objective probabilities are derived from propensities.
11 Here, I refer to Lewis (1980a) and Skyrms (1984, ch. 3); see also Spohn (1987).
12 The most eloquent at present is Putnam who repeatedly argues against a naturalistic conception 
of causation, e.g. in (1983b).



with respect to these deep and crucial philosophical issues. Its focus is on the logic 
of causation, and it is intended to inform the philosophy of causation.

The following notation will be used throughout: variables, i.e. elements of I, will 
be denoted by i, j, k, and l, subsets of I by J, K, L, M, and N (with or without 
 subscripts). (i, j) refers to the open interval between i and j, i.e. to {k Î I | i < k < j}, 
and [i, j] to the closed interval{k Î I | i £ k £ j};{< j} denotes the past of j, i.e. 
{k Î I | k < j}, and {< j – K} the past of j except K, i.e. {< j} – K.13 Instead of 
{< j – {i

1
,…, i

n
} } we simply write {< j – i

1
,…, i

n
}.

Possible paths, i.e. elements of W, will be denoted by u and w, states of affairs, 
i.e. subsets of W, by A, B, C, D, and E. We often have to refer to partial paths or, 
rather, to the set of their completions, which are states of affairs: for each w Î W 
and J Í I we define wJ = {u Î W | u(i) = w(i) for all i Î J},14 and I write wi instead 
of w{i}. In general, states of affairs which are concerned only with variables in some 
set J are called J-measurable states or simply J-states; mathematicians also call 
them J-cylinders. The formal definition is that A is a J-state iff, for all u and w 
agreeing on J, u Î A iff w Î A. Thus, A is a J-state iff A = ∪{wJ | w Î A}; and in 
particular each wJ is a J-state.

The laws of conditional probabilistic independence lie at the bottom of the 
whole inquiry and therefore need at least to be stated.

Definition 1: The states of affairs A and B are independent conditional on C, i.e. A 
^ B / C, iff P(A Ç B | C) = P(A | C) P(B | C). And the sets K and L of variables are 
independent conditional on the set M of variables, i.e. K ^ L / M, iff, for all K-states 
D, L-states E, and w Î W, D ^ E / wM. I shall often mix the two notations, i.e., more 
precisely: K, A ^ L, B / M, C is to mean that, for all K-states D, L-states E, and w Î 
W, A Ç D ^ B Ç E / C Ç wM.

The independence of states of affairs obeys:

Theorem 1:

(a) If A ^ B / C, then B ^ A / C,
(b) if P(C) ¹ 0 and C Í A, then A ^ B / C,
(c) if A and A′ are disjoint and A ^ B / C, then A È A′ ^ B / C iff A′^ B / C,
(d) if A ^ C / D, then A ^ B Ç C / D iff A ^ B / C Ç D.

The independence of sets of variables obeys:

Theorem 2:

(a) If K ^ L / M, then L ^ K / M,
(b) if K Í M, then K ^ L / M,
(c) if K′ Í K È M, L′ Í L È M, M Í M′ Í K È L È M, and K ^ L  / M, then K′ ^ 

L′ / M′,

13 The hyphen denotes set theoretic difference.
14 I choose this notation because the restricted domain needs to be more salient than the path 
itself.
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50 2 Direct and Indirect Causes

(d) if J ^ K / L È M and J ^ L / M, then J ^ K È L / M,
(e) if K and L are disjoint, J ^ K / L È M, and J ^ L / K È M, then J ^ K È L/M – 

provided P is strictly positive,
(f) if i is a binary variable, K ^ L / M, and K ^ L / M È {i}, then K È {i} ^ L / M 

or K ^ L È {i}/M.

For proofs see, e.g., Dawid (1979) or Spohn (1980). In particular Theorem 2(e) will 
be important; this is a further reason for assuming a strictly positive probability 
measure.15 This list of properties of conditional independence is not complete,16 but 
Geiger and Pearl (1988) present a number of interesting partial completeness 
results.

Concerning causal notation, three things must be observed. First, the causal 
relata are always states of affairs which are states of a single variable and thus are, 
so to speak, logically simple; I do not see the need to consider logically complex 
states of affairs as causes or effects.17 Second, whether A is a cause of B depends, 
of course, on the given world or path; there may well be two worlds such that 
A causes B only in one world, but not in the other. This path-relativity will be made 
explicit in the notation. Third, only facts can be causes or effects; A can cause B in 
w only if A and B obtain in w, i.e. if w Î A Ç B.

A B+⎯ →⎯ω  is to mean that A is a direct cause of B in w; and A B+ +⎯ →⎯⎯...
ω  is to mean 

that A is a (direct or indirect) cause of B in w. This notation, and all the notation to 
follow, always carries the presupposition that w Î A Ç B and that there are variables i 
and j such that A is an i-state, B is a j-state, and i < j. A similar notation for counter-
causation, causal relevance and irrelevance, etc. will be introduced later on.

2.3 Direct Causes

A is a cause of B iff A precedes B and raises the epistemic or metaphysical rank of 
B under the obtaining circumstances. This is the basic conception of causation 
which has found the widest agreement. In the deterministic case, it covers regularity 
theories and counterfactual approaches as well as analyses in terms of necessary 
and/or sufficient conditions which all differ on the relevant meaning of “raises the 

15 Theorem 2(f) does not hold for ordinal conditional functions. If their range is restricted to natural 
numbers, they satisfy the laws (a)–(e) without further qualification. Cf. Spohn (1988, sect. 6) [here: 
sect. 1.6].
16 Studeny (1989) and Geiger and Pearl (1988, sect. 6), mention further properties, and there are 
still more.
17 This is so because causes in the intuitive sense are partial causes as opposed to total causes and 
because I want to account directly for causes without considering total causes. Particularly in the 
context of deductive-nomological explanation philosophers have been attracted by the idea that, 
conversely, the notion of a total cause is the central one which has to be explicated first. This 
strategy, I think, has been rejected for good reasons.



epistemic or metaphysical rank”. My proposal is still different, namely to explicate 
this phrase in terms of OCFs. In the probabilistic case, however, there is only one 
interpretation of this phrase, that is, that A raises the probability of B.

The phrase “the obtaining circumstances” is also unclear; it is, in a sense, the 
subject of the whole paper. For direct causation, however, there is a particularly 
simple definition. This indeed is the main reason for splitting the account of causa-
tion into two steps. As I have argued in (1980, pp. 79ff.) (1983b, pp. 384ff.), and 
(1983c, pp. 80ff.), each fact preceding the direct effect B and differing from the 
direct cause A is to count among the obtaining circumstances of the direct causal 
relation between A and B; whenever judgment about that relation is based on less, 
it may be just the neglected facts which would change the judgment. This means 
that the obtaining circumstances consist of the whole past of B with the exception 
of A. I shall turn this into a formal definition and briefly compare it with other 
proposals.

Definition 2: Let A be an i-state, B a j-state, i < j, and w Î A Ç B. Then, A is a 
direct cause of B in w, i.e. A B+⎯ →⎯ω  iff P(B | A Ç w{< j – i}) > P(B | A

–Çw{< j – 
i}).18 A is a direct counter-cause of B in w, i.e. A B−⎯ →⎯ω  iff P(B | A Ç w{< j – i}) 
< P(B | A

–
 Ç w{< j – i}). A is directly causally relevant to B in w, i.e. A B±⎯ →⎯ω  iff 

A B+⎯ →⎯ω  or A B−⎯ →⎯ω . Finally, A is directly causally irrelevant to B in w, i.e. 
A B0

ω⎯ →⎯ , iff not A B±⎯ →⎯ω .

In a way, Definition 2 proposes a radical solution to Simpson’s troublesome 
paradox. If one conditionalizes on the whole past of the effect, there is no further 
subdivision of that past which could change the conditional probabilities. Of course, 
this is true only relative to a fixed descriptive frame; but this only emphasizes the 
importance of relativization.

Suppes (1970, pp. 41f.), moves from his own definition of prima facie causes 
toward Definition 2 by acknowledging the legitimacy and usefulness of relativizing 
his definitions to some background information. However, he does not expand on 
this suggestion. One may think that one need not mention the background as long 
as it is constant. But according to Definition 2, different direct causal relations refer 
to different backgrounds, to different obtaining circumstances. So it is mandatory 
to make the reference explicit.

When discussing Simpson’s paradox, Suppes (1984) doubts that the problem 
posed by it is solvable absolutely. He says, for example, that “there is no end to the 
analysis of data in a practical sense” (p. 56). I agree. But surely there is a natural 
end to the analysis of data within a fixed descriptive frame, a point with which 
Suppes, in turn, seems to agree (p. 57). This is captured by Definition 2.

Good’s theory (1961–63) differs from Definition 2 in several ways, but the 
crucial point is that in defining the tendency of A to cause B Good considers other 
conditional probabilities. He conditionalizes on the whole past of the cause and on 

18  A
– 

denotes the complement of A relative to Q.
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52 2 Direct and Indirect Causes

all true laws of nature,19 whereas I conditionalize on the whole past of the direct 
effect. I have not found a clear argument for the appeal to the true laws.20 Indeed, 
as far as I am concerned, it spoils much of the philosophical interest of the whole 
enterprise; for, the hope is that a better grasp of laws of nature will emerge from the 
analysis of singular causation.

The main question is whether to conditionalize on the past of the cause or on the 
past of the effect. Definition 2 would obviously be inadequate as a general account 
of causation, and one might therefore favor Good’s account. My theoretical reasons 
for not doing so will emerge later on. The basic objection, however, is provided by 
a simple example:

Take a two-person game; each of the players makes a choice, and the outcome 
is determined accordingly. So the outcome is caused by both of the choices, but 
these choices, let us suppose, are causally independent of each other. Indeed, we 
may assume that their temporal order is totally irrelevant to the whole set-up.21 
What is the causal efficacy of the choice of the first player to the outcome? On 
Good’s account, it varies with the temporal order: if the second player makes his 
choice first, that choice must be conditionalized on, otherwise not. This seems 
unacceptable because the causal set-up is not really changed by changing the 
temporal order. On the other hand, if the choices are taken as direct causes of the out-
come, Definition 2 judges the causal efficacy of one choice by considering the 
probabilities conditional on the other irrespective of their temporal order.

One might point out that there is no difference between Good’s conditionaliza-
tion proposal and mine if direct causes immediately precede their direct effects, i.e. 
if there are no temporally intermediate variables in the given descriptive frame. And 
one might think that it would indeed be reasonable to assume that direct causes 
immediately precede their direct effects.22 At the present stage, however, this 
assumption is quite unreasonable. It is a strong assumption which implies that, in 
case I is linearly ordered by £, the given probability space is so well-behaved as to 
form a Markov chain. But attention should not be confined just to Markov 
processes; there are many examples of causal processes which can at present not 
be modelled as Markovian. Indeed, from a theoretical point of view, it would be 
 disastrous to start by assuming well-behaved causal processes. What is needed is a 
general account of causation in terms of which the virtues of the various forms of 

19 Cf. Good (1961, pp. 308f.), and (1988, p. 27).
20 In Good (1988), he only argues on p. 27 that his way of conditionalization yields the desired 
result that a falling barometric reading has no tendency at all to cause a storm. But this result may 
already be obtained by conditionalization with respect to the past of the spurious cause; no refer-
ence to laws of nature is required for this example.
21 Thus, even if one player chooses first, the other does not know. Though many examples have the 
same structure, the irrelevance of the temporal order seemed to me to be particularly perspicuous 
in this game-theoretic case.
22 Good (1961) indeed makes a similar assumption on p. 45 when he requires neighbors in causal 
chains to be contiguous in space and time.



well-behaved causal processes can be characterized. Hence, the strong assumption 
should be investigated at a later stage.

Cartwright (1979) is interested in causal laws rather than in singular causation. 
Nevertheless, it is instructive to compare her views with Definition 2. She argues 
that all the variables influencing B but not influenced by A constitute the obtaining 
circumstances of the causal relation between A and B and that conditionalization 
with respect to them tells us whether A is a cause of B. Though I conditionalize on 
much more, the conflict is less important than it seems. Cartwright rightly insists 
that one must not conditionalize with respect to variables mediating between cause 
and effect; indeed, if their values are given, the cause cannot be expected to be posi-
tively relevant to the effect. But in the special case of direct causation there are no 
mediating variables; and the difference is then reduced to the fact that I conditionalize 
also with respect to all variables which precede, but do not influence the effect, 
whereas she does not.

I think that the more extensive conditionalization proposal is harmless, but she 
does not. She says on p. 432 that “partitioning on an irrelevancy can make a genuine 
cause look irrelevant, or make an irrelevant factor look like a cause” and goes on 
to illustrate this alleged possibility. Eells and Sober (1983), who also condition-
alize on irrelevant factors, argue on p. 42 that this illustration does not support 
Cartwright’s restricted form of conditionalization; and I agree with them.

Maintaining Definition 2 has an important consequence. The upshot of Cartwright’s 
paper is that there is no non-circular characterization of causation in probabilistic 
terms. But if I am right, this is certainly not true of direct causation. Hence, there is 
hope that Cartwright’s skeptical view is not true of causation in general.

2.4 The Circumstances of Direct Causes

The foregoing defense notwithstanding, it must be admitted that Definition 2 does 
not embody the only possible explication of obtaining circumstances. There are five 
further explications; and it is important to clarify them and to see the extent to 
which they are equivalent.

Definition 2 was based on the observation that each fact preceding the direct 
effect B and differing from the direct cause A is relevant as a circumstance. Here, 
“relevant” was used in the widest possible sense, namely as “possibly relevant 
solely on the basis of temporal relations”, which is fixed in:

Definition 3a: Let w, A, B, i, and j be as in Definition 2. Then the temporally possibly 
relevant circumstances of (the direct causal relation between) A and B in w are 
defined as Cw 

++ (A,B) = w {< j – i}.

This widest sense of “relevant” yields, as is to be expected, the narrowest cir-
cumstances. But there is a stricter sense of “possibly relevant”. Whether a variable 
is relevant to the relation between A and B may also depend on the probabilities 
involved. To specify this idea, we will need:
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Definition 4: Rw(B) is to denote the set of all variables directly causally relevant to B 
in w, i.e. Rw(B) = {k Î{< j} | not B ^ k / w{< j – k} }. And R(B) is to denote the set of 
all variables directly causally relevant to B in some world, i.e. R(B) = ∪w ÎW Rw(B) = 
{k Î{< j} | not B ^ k / {< j – k} }.

These sets will play an important role. A first crucial observation is:

Theorem 3: R(B) is the smallest subset R of {< j} such that B ^ {< j – R}/R.

By Definition 4, we have k Î {< j – R(B)} iff B ^ k/{< j – k}; and from this 
Theorem 3 follows with the help of Theorem 2(e). Thus, R(B) is the minimal set of 
variables preceding B which screens off all the other preceding variables from B; 
i.e. given their values, B is probabilistically independent of all the rest of the possi-
ble past of B. This yields another sense of “relevant”, namely, “possibly relevant on 
the basis of temporal relations and probabilities alone”:

Definition 3b: The probabilistically possibly relevant circumstances of (the direct 
causal relation between) A and B in ω are defined as Cw

+(A,B) = w(R(B) – {i}).

What one usually has in mind, however, is not possible, but actual relevance; intui-
tively, it should suffice to consider only the actually relevant circumstances. Here 
is a first attempt of explication: Definition 2 can be interpreted metalinguistically 
as giving the truth conditions of the sentence “A is a direct cause of B”, i.e. as 
specifying when this sentence is true in a world w. Viewed in this way, it seems 
plausible to say that the actually relevant circumstances of A’s being a direct cause 
of B just consist in the fact that A is a direct cause of B, i.e. in the set of all the 
worlds which relate A and B in this way; likewise for “direct counter-cause” and 
“direct causal irrelevance”. To render this idea precise we need the signum function 
for reals defined as sgn(0) = 0 and sgn(x) = x/|x| for x ¹ 0.

Definition 3c: The actually relevant circumstances of (the direct causal relation 
between) A and B in w in the widest sense23 are defined as Cw" (A,B) = {u | sgn [P(B 
| A Ç u{< j – i}) – P(B | A

–
 Ç u{< j – i})] = sgn[P(B | A Ç w{<j – i}) – P(B | A

–
 Ç 

w{< j – i})]}.

The deterministic analogue of this definition is not uninteresting, but the 
probabilistic concept is quite useless because it is not generally true that 
sgn[P(B | A Ç Cw" (A,B) ) – P(B | A

–
 Ç Cw" (A,B) )] = sgn[P(B | A Ç w{< j – i}) – 

P(B | A
–

 Ç w{< j – i})]; that is, if one conditionalizes on the circumstances in this 
widest sense, one may even get different causal conclusions. So the widest 
sense is too wide.

Here is a modification: The inadequate proposal holds that the actually relevant 
circumstances of A’s being a direct cause of B just consist in the fact that A is a direct 
cause of B. Now it seems that they rather consist in the fact that A is a direct cause of 
B in the way it actually is – where this additional clause refers to the  specific numerical 
change of the probability of B which is actually due to A. The idea is captured in:

23 It is now “circumstances”, not “relevance” which is taken in its widest sense.



Definition 3d: The actually relevant circumstances of (the direct causal relation 
between) A and B in w in the wide sense are defined as Cw′ (A,B) = {u | for each A′ 
Î{A, A

–
} P(B | A′ Ç u{< j – i}) = P(B | A′ Ç w{< j – i})}.

As can be easily shown, for each {< j – i}-measurable D Í Cw′ (A,B), P(B | A′ Ç 
D) = P(B | A′ Ç w{< j – i}) and hence B ^ {< j – i} / A′ Ç D for A′ Î {A, A

–
}; in fact, 

Cww′  (A,B) is the largest {< j – i}-measurable set for which this is true. Thus, Cw″ (A,B) 
represents the widest circumstances such that conditionalization on them agrees 
with conditionalization on any more narrowly taken circumstances of necessity and 
not by accident because of lucky averaging.24 This strongly indicates that we have 
hit upon a reasonable explication.

So let me study Cw′ (A,B) a bit more closely. One valuable piece of information 
concerns which cylinders are subsets of Cw′ (A,B). It is given by:

Theorem 4: Let w, A, B, i, and j be as in Definition 2. For each u Î Cw′ (A,B) and 
K Í{< j – i} we then have u{< j – K È {i} } Í Cw′ (A,B) iff B ^ K / A′ Ç u{< j – K 
È {i} } for each A′ Î {A, A

–
}.

For proof it is sufficient to consider Definitions 1 and 3d.
The theorem points to a useful distinction in Cw′ (A,B). Each u Î Cw′ (A,B) differs 

from w on some variables. The only interesting differences are in {< j – i}, because 
outside {< j – i} the members of Cw′ (A,B) may vary arbitrarily, anyway. Thus, let K 
= {k Î {< j – i} | u(k) ¹ w(k)}. Now the distinction is this: one case is that u is in 
Cw′ (A,B) because all variations of w on K are in Cw′ (A,B), i.e. because w{< j – K È 
{i} } Í Cw′ (A,B) or, equivalently, B ^ K /  A′ Ç w{< j – K È {i} } for A′ Î {A, A

–
}. 

The other case is that these conditional independencies do not hold. In this case, u 
is, in a sense, only accidentally in Cw′ (A,B), i.e. not because the variables in K do 
not matter to B given w{< j – K È {i} } and A or A

–
. Rather, the variables in K 

do matter; it is only that in some particular realizations of K the relevant conditional 
probabilities come out the same as for w and that u represents one such realization 
of K.

This suggests that the actually relevant circumstances of A and B in w should be 
conceived a bit more narrowly, namely as comprising only all the arbitrary varia-
tions of w in Cw′ (A,B) (A,B).

Definition 3e: The actually relevant circumstances of (the direct causal relation 
between) A and B in w in the narrow sense are defined as Cw (A,B) = ∪{w{< j – K È 
{i} } | K Í {< j – i} and B ^ K / A′ Ç w{< j – K È {i} } for each A′ Î {A, A

–
} }.

It will soon become clear why this is the preferred sense of the obtaining circum-
stances of a direct causal relation.

The five concepts of “obtaining circumstances” introduced so far are related in 
the following way:

24 Equivalently we may say in Skyrms’ terms (1980, part IA) that Cw′  (A,B) makes the probability 
of B given A or A

–
 maximally resilient over the rest of the past of B.
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Theorem 5: Cw 
++(A,B) Í C+

w(A,B) Í Cw (A,B) Í Cw′ (A,B) ⊆ Cw″  (A,B); and if D and 
D′ are any of these circumstances except Cw" (A,B), then P(B | A′ Ç D) = P(B | A′ Ç 
D′ ) for each A′ Î {A, A

–
}.

One may object that the most obvious suggestion has been ignored. Isn’t it very 
natural to think that the actual circumstances of the direct causal relation between A 
and B are just all of the other actual direct causes and counter-causes of B? Indeed. 
This is precisely the proposal of Cartwright (1979) restricted to direct causes; Mellor 
(1988, p. 234), explicitly endorses it, too; and it seems to be a natural “actualization” 
of Definition 3b where the circumstances of A and B in w that are possibly relevant 
in the probabilistic sense are defined as the conjunction of all the facts in w which 
are possibly directly causally relevant to B. This suggestion is fixed in:

Definition 3f: The ideal circumstances of (the direct causal relation between) A and 
B in w are defined as Cw*(A,B) = ∩ {D is a k-state for some k ¹ i and D B±⎯ →⎯w } = 
w(Rw(B) – {i}).25

For the moment “ideal” means something bad. The basic trouble is that we can-
not prove that Cw*(A,B) Í Cw′(A,B). This means that the relevant probabilities con-
ditional on the ideal circumstances may well differ from those conditional on the 
circumstances in the senses accepted so far. How can this happen? This is made 
clearer by a more positive result:

Theorem 6: Cw(A,B) Í C*w(A,B), and the identity holds iff for K = {k Î{< j – i} | B 
^ k/w{< j – k} } = {< j – Rw(B) È {i} } we have B ^ K / A′ Ç w{< j – K È {i} } for 
each A′ Î{A, A

–
}.

Again, the proof essentially requires writing out the appropriate definitions. The 
theorem says that the identity holds if and only if the variables which are individu-
ally independent of B given the rest of the actual past of B are also collectively 
independent of B given A and the rest of the actual past of B as well as given A

–
 and 

the rest of the actual past of B. Both aspects of this condition are easily violated, 
but it will suffice to exemplify this for the aspect relating to A and A

–
 (and not for 

the one about collective independence).
Suppose A precedes D, D precedes B, A Ç D Ç B = {w}, P(B | A Ç D) = 0.9, 

P(B | A Ç D
–

) = 0.9, P(B | A
–
 Ç D) = 0.1, and P(B | A

–
 Ç D

–
) = 0.5. Here is a dream: 

there is hardly anything more delicious than red orange juice, but it is not offered 
in the deli-shops. So I thought that this was a way to become rich (B) and started a 
red orange juice enterprise. But what should I charge? Either $2.99 (D) or $1.99 (D

–
) 

per half a gallon; the prices in between are taboo, and higher or lower prices would 
be disastrous. In my dream I was lucky; nobody had the same idea (A). But then it 
is quite plausible to assume that it does not matter how I fix the price. If I fix the 
price to be high, I sell less with a larger profit per unit; otherwise, I sell more with 
a smaller profit per unit. My prospects of B are equally favorable. Thus, according 
to the numbers and Definition 2, D is directly causally irrelevant to B in w. If there 

25 This identity follows from the fact that for k Î Rw(B) {D | D is a k-state and D B±⎯ →⎯w } = wk.



were competitors (A
–
), however, the price would of course make a big difference. 

Now look at the relation between A and B. A is a direct cause of B in w, and also in 
A Ç D

–
 Ç B; the fact that I have a monopoly is in any case advantageous to B. What 

are the circumstances of A B+⎯ →⎯ω ? The crucial comparison is that Cw(A,B) = D, 
but C*w(A,B) = W. Thus, we face here the strange fact that D is directly causally 
irrelevant to B, but relevant to A B+⎯ →⎯ω .

This possibility is, I think, responsible for quite some perplexity found in the liter-
ature. One may explain it away by resorting to a finer causal analysis in which D turns 
out to be indirectly causally relevant to B; but it is an open question whether this 
strategy always works. One may take it as constituting an objection against Definition 
2; but this does not invalidate the other reasons for our explication. Maybe there are 
other ways to deal with the problem, but I think the possibility must be admitted that 
the two causal roles of D fall apart, i.e. that D’s being relevant to the direct causal 
relation of other facts to B does not coincide with D’s itself being directly causally 
relevant to B. However, if such behaviour is considered an anomaly, I propose to state 
an assumption excluding it. Then one can study how causal structures behave in gen-
eral and how much more nicely they behave when this assumption is satisfied. 
Indeed, this assumption will play an important role later on.

What is the assumption? It was already stated in Theorem 6; it is the identity of 
Cw(A,B) and Cw*(A,B). This explains why I have called Cw*(A,B) the ideal circum-
stances of A and B in w; it specifies how the circumstances ideally are, but need not 
be. Finally this is the deeper reason why Cw(A,B) is the preferred explication of the 
actually relevant circumstances; among all the otherwise equally acceptable expli-
cations this is the only one which lends itself to a statement of the assumption of 
ideal circumstances.

2.5 The Difficulties with Indirect Causation

It is now time to tackle the explication of indirect causation and hence of causation 
in general which, as the literature shows, is a difficult matter. Why? The general 
reason is that, even within our parsimonious framework, there is a bewildering 
plethora of plausible conditions for causation which cannot be simultaneously sat-
isfied. The main purpose of this section is to present and untangle these conditions. 
Three kinds of conditions will be dealt with extensively and two others mentioned. 
A secondary goal is to show that the difficulties with these conditions are largely 
independent of the particular definition of direct causation one adopts. Therefore, 
little use of Definition 2 is made in this section; the synthesis is undertaken only in 
the final section.

The first condition is rather a matter of faith: namely that an explication of cau-
sation be simple. This sounds quite airy because simplicity ratings often diverge. 
But it helps to avoid the manifest danger of lapsing into the strategy of trying to 
solve difficulties by piling up clauses and provisos, each of them plausible, but all 
together unintelligible.
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The second condition is that there must be a good overall fit between an explica-
tion and the many more or less problematic examples found in the literature. 
Obviously the whole story necessary to show that a given explication satisfies this 
condition is long, indeed too long for this essay. But I have reservations about abbre-
viating the story. There is some tendency to focus on this or that problematic type of 
example as the central touchstone of any theory of causation. But this would be too 
narrow an attitude; there are too many types of examples to be considered, and intui-
tions about examples are not fixed enough to constitute an unshakable reference 
point. As I said, a good overall fit is to be achieved, even if this standard opens a door 
to vagueness and subjectivity. Moreover, examples are in a sense theoretically barren. 
We do not understand them as long as we have no theoretical structure enabling us to 
integrate them and to explain why they are examples for this or against that; and star-
ing at them probably is bad heuristics for arriving at that structure. This is why I con-
centrate here on three further kinds of conditions of a theoretical nature.

The third kind of condition consists in structural conditions concerning the for-
mal structure of causal relations. The fourth kind consists in Markovian conditions: 
there is a strong intuition that causal chains are Markov chains; and of course an 
indirect cause should be connected to its indirect effect by some causal chain. The 
fifth kind consists in positive relevance conditions: there is also a strong intuition 
that a cause is in some sense positively relevant to its effect; it is, indeed, embodied 
in the basic conception of causation cited in the very first sentence of Section 2.3, 
and Definition 2 also relies on it.

There are alternative ways of specifying each kind of condition. It will turn out 
that the most plausible candidates are mutually incompatible. Recognition of this 
fact is important to the explanation of a number of examples and confusions. Let us 
look at these conditions in more detail.

Structural conditions: The first structural condition for the relation +…+⎯ →⎯⎯ω  of 
being a (direct or indirect) cause in w is trivial, but should be made explicit:

(S0)  Lower bound: If A B+⎯ →⎯ω , then A B+ +⎯ →⎯⎯...
ω .

I shall continually use (S0) without mention. The next condition sets an upper 
bound:

(S1)   Upper bound: If A B+ +⎯ →⎯⎯...
ω , then A stands to B in the transitive closure 

of 
+⎯ →⎯ω .

This condition is not acceptable for continuous time. But given discrete time, 
(S1) seems compelling; I cannot imagine how indirect causation could extend 
farther than what is allowed by direct causal steps. The next all-important 
condition is

(S2)  Transitivity: If A B+ +⎯ →⎯⎯...
ω  and B C+ +⎯ →⎯⎯...

ω , then A C+ +⎯ →⎯⎯...
ω .

(S0), (S1), and (S2) entail that +…+⎯ →⎯⎯ω
 is the transitive closure of +⎯ →⎯ω .  Thus, as 

mentioned in the introduction, these conditions yield a definition of  causation in 
general. So where is the snag? It lies in the fact that all Markovian and positive rel-
evance conditions violate transitivity. This will become fully clear below. But the 
gist is easily summed up:



Though transitivity looks very natural, one would expect transitivity to ensue 
from a general definition of causation. If it is the other way around, naturalness is 
tarnished. Now, if deterministic causes are defined as sufficient and/or necessary 
conditions, transitivity follows immediately – at least when such conditions are 
explained in terms of logical or nomological entailment. This is certainly the 
strongest source of the intuition of transitivity. But even in the case of deterministic 
causation the issue is not clear. If such conditions are explained in terms of the 
subjunctive conditional, transitivity fails because the subjunctive conditional fails 
to be transitive.26 Thus, even in this case a conflict arises. Lewis (1973b) resolves it 
by axiomatically accepting transitivity, at the cost of renouncing the general equa-
tion between causation and sufficient and/or necessary conditions and taking 
transitivity as a primitive property.

In the case of probabilistic causation, the issue is even less clear. Here, a direct 
causal impact has, so to speak, no necessitating force, but is only weak and imper-
fect.27 Hence, it seems plausible that such a weak impact is not preserved over long 
causal chains, but fades sooner or later. For instance, given our very coarse and 
only probabilistic meteorological models, each day’s weather may be granted to 
causally influence the next day’s weather. But does the weather, say, at the turn of 
the last century still influence today’s weather? It does not seem so; somewhere in 
between the influence has faded completely, even though it may be difficult to tell 
precisely when or where. If this is plausible, the intuition of transitivity totters. 
Indeed, this intuition is not generally respected by theorists of probabilistic causa-
tion. For example, Suppes (1970, p. 58), dryly states that all causal relations he has 
defined fail to be transitive as long as the limiting probabilities 0 and 1 are not 
involved.28

Thus, a profound uncertainty about this issue may be observed, and there is 
reason for looking for alternatives to transitivity. Here is a possible approach: 
Certainly, each indirect cause and effect should be connected by a causal chain. 
Everything then depends on how causal chains are characterized, and they may 
indeed be characterized in several, apparently nonequivalent ways:

Definition 5:

(a) áA
1
,…, A

n
ñ is a weak causal chain in w iff A A1 2

+⎯ →⎯ω
+⎯ →⎯ω .… +⎯ →⎯ω An

.
(b) áA

1
,…, A

n
ñ is a connected causal chain in w iff it is a weak causal chain in w 

and, for all r and s with 1 £ r < s £ n, A Ar s
+ +⎯ →⎯⎯... .ω

(c) áA
1
,…, A

n
ñ is a strict causal chain in w iff it is a connected causal chain in w 

and, for no r and s with r < s, A Ar s
+

+⎯ →⎯ω 1.

26 Cf. Lewis (1973a, pp. 32–34).
27 One might well find this idea and thus probabilistic causation unintelligible; many have done so. 
But in the light of the last remark in the introduction the present discussion should be illuminating 
for them, too.
28 Eells and Sober (1983) take up another remark of Suppes on that page and investigate under 
which special circumstances transitivity of probabilistic causation is preserved.
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(d) áA
1
,…, A

n
ñ is an effective causal chain in w iff it is a weak causal chain in w 

and, for all r > 1, A Ar1
+ +⎯ →⎯⎯... .ω

(e) áA
1
,…, A

n
ñ is an affective causal chain in w iff it is a weak causal chain in w 

and, for all s < n, A As n
+ +⎯ →⎯⎯... .ω

Of course, (a), (b), and (c) are the more promising definitions; the reason for intro-
ducing also (d) and (e) will be clear in due course. Note the difference between (b) 
and (c): if A B C+ +⎯ →⎯ ⎯ →⎯ω ω  and also A C+⎯ →⎯ω  – a situation which has in no way 
been excluded so far – then áA, B, Cñ is a connected, but not a strict causal chain in 
w. Correspondingly, there are five structural conditions for 

+ +⎯ →⎯⎯... :ω

(S3)   Structural chain conditions: Whenever A B+ +⎯ →⎯⎯... ,ω  but not A B+⎯ →⎯ω ,
then there are C

1
,…, C

n
 (n ³ 1) such that áA, C

1
, …, C

n
, Bñ is a (a) weak, 

(b) connected, (c) strict, (d) effective, (e) affective causal chain in w.

It might be tempting to reverse (S3), in particular part (b), i.e. to take the fact 
that in a series of states starting with A and ending with B all causal relations except 
the one from A to B obtain to imply that A also causes B. Formally:

(S3b′)   Reversed chain condition: if there is a connected causal chain áC
1
, …, C

n
ñ 

in w such that áA, C
1
,…, C

n
ñ is an effective causal chain in w and áC

1
,…, 

C
n
, Bñ is an affective causal chain in w, then A B+ +⎯ →⎯⎯... ,ω  i.e. áA, C

1
,…, 

C
n
, Bñ is also a  connected chain in w.

Another idea is that: by assuming transitivity the causal relation + +⎯ →⎯⎯...
ω  is 

boosted to its maximal extension within the upper bound (S1). Thus, if transitivity 
is dropped, the effective range of a state A in w, i.e. the set of its effects in w, may 
comprise less than all states which can be reached from A via weak causal chains. 
How much less? It is hard to say. But in any case, it seems impossible that the effect-
ive range of A extends farther than the effective ranges of all its immediate causal 
successors:

(S4a)   Local effective maximum: whenever A B+ +⎯ →⎯⎯... ,ω  but not A B+⎯ →⎯ω , then 
there is a C with A C B+ + +⎯ →⎯ ⎯ →⎯⎯ω ω

... .

The same consideration holds, of course, for the affective range of A, i.e. the set of 
its causes:

(S4b)    Local affective maximum: whenever B A+ +⎯ →⎯⎯... ,ω  but not B A+⎯ →⎯ω ,  then 
there is a C with  B C A+ + +⎯ →⎯⎯ ⎯ →⎯... .ω ω

These suggestions demonstrate the ease with which further conditions may be 
invented. But there is no point in doing so. More interesting is the relation between 
the conditions stated so far. This is given completely by:

Theorem 7:

(a) Upper bound (S1) and transitivity (S2) are equivalent to the assertion that 
+ +⎯ →⎯⎯...

ω  is the transitive closure of +⎯ →⎯ω .
(b) Upper bound (S1) and the reversed chain condition (S3b′) are also equivalent 

to this assertion.



(c) Given (S1), transitivity (S2) implies the connected chain condition (S3b); but 
the reverse does not hold.

(d) The connected (S3b) and the strict (S3c) chain condition are equivalent.
(e) The connected chain condition (S3b) implies the effective (S3d) and the affect-

ive (S3e) chain condition; but even jointly, (S3d) and (S3e) do not imply 
(S3b).

(f) Local effective maximum (S4a) is equivalent to the affective chain condition 
(S3e).

(g) Local affective maximum (S4b) is equivalent to the effective chain condition 
(S3d).

(h) Each of (S3d) and (S3e) imply the weak chain condition (S3a); but the reverse 
does not hold.

(i) Upper bound (S1) is equivalent to the weak chain condition (S3a).

Proof:

(a) Is trivial.
(b) For the direction (Þ) suppose that it has been shown for all r < n that we have 

C Cr1
+ +⎯ →⎯⎯...

ω  for each weak causal chain áC
1
,…, C

n
ñ in w of length r. Now, let 

áC
1
,…, C

n
ñ be a weak causal chain in w of length n. Because of the supposition 

the premises of (S3b′) are satisfied, and so we may infer that C Cr1
+ +⎯ →⎯⎯...

ω . 
Hence, the existence of a weak causal chain in w from A to B already ensures 
A B+ +⎯ →⎯⎯... .ω

 With upper bound (S1) this implies the desired result. The other 
direction (Ü) is trivial.

(c) The direction (Þ) is trivial. Concerning the reverse, imagine that 
A B C+ +⎯ →⎯ ⎯ →⎯ω ω  but not A C+ +⎯ →⎯⎯... .ω  This situation satisfies (S3b), but not 
transitivity (S2).

(d) Each strict causal chain is connected; thus (S3c) implies (S3b). On the other 
hand, suppose that áA

1
,…, A

n
ñ is a connected causal chain in w. Let A

1
 = B

1
; 

B
2
 = A

r
, where r is the maximal index for which A Ar1

+⎯ →⎯ω ;  B
3
 = A

s
, where s 

is the maximal index for which A Ar s
+⎯ →⎯ω ;  etc. Thus, for some m B

m
 = A

n
. 

Obviously, áB
1
,…, B

m
ñ is a strict causal chain in w. This shows that each con-

nected causal chain has a strict causal subchain with the same start and end. 
Hence, (S3b) also implies (S3c).

(e) The direction (Þ) is trivial. That the reverse does not hold, may be seen in the 
following way: Take a weak causal chain áA

1
,…, A

5
ñ in w with five members, 

and suppose that A Ar s
+ +⎯ →⎯⎯...

ω  for all r < s with the exception of r = 2 and 
s = 4. Moreover, assume states B and C such that both, áA

1
, B, A

4
ñ and áA

2
, C, 

A
5
ñ, are effective and affective causal chains in w, but neither A C1

+ +⎯ →⎯⎯...
ω  nor 

B A+ +⎯ →⎯⎯...
ω 5  holds. In this situation, there is an effective and affective causal 

chain from each D to each E for which D E+ +⎯ →⎯⎯... ,ω  but there is no connected 
causal chain from A

1
 to A

5
.

(f) For the direction (Þ), suppose that A B+ +⎯ →⎯⎯... ,ω ; but not A B+⎯ →⎯ω .  According 
to (S4a), there is a C

1
 with A C B+ + +⎯ →⎯ ⎯ →⎯⎯ω ω1

... .. Now, if C B1
+⎯ →⎯ω ,  we are 

finished. If not, we again apply (S4a) and find a C
2
 with C C B1 2

+ + +⎯ →⎯ ⎯ →⎯⎯ω ω
... . 

And so on. In the end, this process yields an affective causal chain in w from A 
to B. The reverse direction (Ü) is trivial.
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(g) This is perfectly symmetric to (f).
(h) and (i) are trivial.

The fact that some reverse inferences are not valid is perhaps a little surprising. In any 
case, Theorem 7 exhibits clearly the differing strengths of the various conditions.

It is not yet the time to decide which structural conditions are the most plausible 
ones. But one conclusion is quite obvious: if one should give up the transitivity of 

+ +⎯ →⎯⎯...
ω  and decide to settle for something weaker, one gets onto a slippery slope, 

at least from a purely structural point of view. For instance, it is an unpleasant fact 
that then one has to cope with various non-equivalent concepts of a causal chain. 
However, if transitivity is assumed, each weak causal chain is also effective, affect-
ive, and connected, and, thus, no ambiguity would arise. A further point is that, 
intuitively, it may be not so clear which chain condition direction to endorse. The 
reverse direction – stated in (S3b′) in its weakest form – may also seem plausible; 
but it implies transitivity according to Theorem 7(b). Thus, in the light of struc-
tural considerations alone, transitivity (S2) has a clear preponderance over the 
alternatives. So, let us look more closely at the reasons against transitivity.

Markovian conditions: There is a strong intuition that indirect effects are 
screened off from their indirect causes by the mediating links, i.e. that the indirect 
causal efficacy of a state is completely contained in the mediating links, or, in other 
words, that, if the intermediate members of a causal chain are realized in some way 
or other, then the past of the chain is irrelevant to its future. This intuition is com-
monly expressed in the Markovian way; indeed, it is often said that Markov chains 
have no memory, that they are characterized by the absence of after-effect. The 
central concept is:

Definition 6: ái
1
,…, i

n
ñ is a (finite) Markov chain iff i

r+ 1
 ^ {i

1
, …, i

r-1
} / i

r
 for all 

r = 2,…, n – 1. Moreover, ái
1
,…, i

n
ñ is a causal Markov chain in w iff it is a Markov 

chain and a weak causal chain in w (where ái
1
,…, i

n
ñ is a weak causal chain in w iff  

áwi
1
, …, wi

n
ñ is).

Unfortunately, there are various choices for rendering precise the Markovian 
intuition. Is it intuitively a necessary condition for a causal chain to be a causal 
Markov chain? Or a sufficient condition that it be both a Markov and a strict causal 
chain? This is not easy to decide. Let us look at one attempt a bit more closely:

(M1)  Markov chain condition: suppose that A = wi and B = wj. Then A B+ +⎯ →⎯⎯...
ω  

iff there exist k
1
, …, k

n
 (n ³ 0) such that ái, k

1
, …, k

n
, jñ is a causal Markov 

chain in w.

(M1) is a biconditional and thus bolder than (S3). But it rests on the same basic idea, 
namely, that indirect causation must be mediated by a causal chain; and it adds a par-
ticular explication of causal chains. Indeed, (M1) provides an explicit definition of 

+ +⎯ →⎯⎯...
ω  according to which it behaves thus:

Theorem 8: The Markov chain condition (M1) implies the strict chain condition 
(S3c), but it does not imply transitivity (S2).

Proof: The first part follows from the well-known fact that, if ái
1
,…, i

n
ñ is a 

Markov chain, then any subsequence áj
1
,…, j

m
ñ of ái

1
,…, i

n
ñ is also a Markov chain. 



The failure of transitivity is due to the fact that the serial connection of two or more 
Markov chains will not generally result in one large Markov chain.

Hence, the Markov chain condition does away with the unwelcome splitting up 
of the structural characterizations of causal chains. Apparently, it is a serious altern-
ative to the assumption of transitivity. But there are, on the contrary, also clearly 
disconcerting features.

First, it is easy to see that according to (M1) there may be connected causal 
chains which are not Markovian. Suppose that A = wi, B = wj, C = wk, and D = wl, 
and that A B D+ +⎯ →⎯ ⎯ →⎯ω ω ,  A C D+ +⎯ →⎯ ⎯ →⎯ω ω , and A D+ +⎯ →⎯⎯... .ω Then both, áA, 
B, Dñ and áA, C, Dñ, are connected causal chains in w. But in order to satisfy (M1) 
only one of ái, j, lñ and ái, k, lñ needs to be a Markov chain; there is nothing so far 
to guarantee that the other is so, too. If ái, j, lñ is the Markov chain, should then the 
other, ái, k, lñ, be denied to be a genuine causal chain? Or should one stipulate that 
such a situation does not arise, i.e. that not only some, but all connected causal 
chains leading from one state to another are Markovian? No; a more trenchant con-
clusion is called for.

Consider an illustration of the very common abstract situation just described. At 
a signal of the romantic lover (A), a fiddler (B) and a mandolin player (C) strike up 
a sweet melody in order to tenderly wake the beloved (D). Here we have, as required, 
two causal chains running from A to D, one through B and the other through C. It is 
plausible in this case, and easily done, to distribute the probabilities in such a way 
that, given B alone, A is still probabilistically positively relevant to D (via C, so to 
speak), and also given C alone; the situation is symmetric with respect to B and C. 
This, however, means that, contrary to (M1), no causal chain between A and D is 
Markovian and thus that (M1) somehow fails to capture the Markovian intuition.

A well-known move for coping with such problems is to generalize the concept 
of a Markov chain to that of a Markov field.29 In these terms, the case exemplifies 
a Markov field characterized by the conditional independence l ^ i / {j, k} which 
says that D is screened off from A only jointly by B and C. In principle, I fully 
endorse this strategy,30 but not at the present stage where it seems to me to over-
shoot the mark. If one adopts this strategy, the conceptual key role is taken over by 
the notion of a Markov field and the corresponding causal notion of a causal net, 
which are more complex notions and more difficult to grasp. The structural and the 
Markov conditions would then have to be expressed in these more complex terms. 
And causal chains become derivative entities definable only as certain parts of 
causal nets. This seems to be the wrong direction of analysis; we should build up 
complexities from simpler units already understood.

Indeed, a less radical move will do; a slight, though basic conceptual modification 
will save the old strategy. In explicating direct causes, the positive correlation between 
direct cause and effect was considered not in isolation, but embedded in the given past 

29 Cf., e.g., Lauritzen (1982).
30 The theory of Markov fields is indeed utterly illuminating for the causal theorist; cf., e.g., 
Kiiveri et al. (1984) or the rich material presented in Pearl (1988, ch. 3).
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course of events. Similarly, the members of a Markov chain should be taken not in 
isolation, but rather as embedded in a given setting. Thus, I propose:

Definition 7: ái
1
,…, i

n
ñ is an w-Markov chain iff i

1
 < … < i

n
 and if, for all r = 2,…, 

n – 1, i
r + l

 ^ {i
1
, …, i

r-1
}/i

r
, w{< i

r+l
 – i

1
, …, i

r
}; this means that the conditional inde-

pendence characteristic of a Markov chain holds only given the rest of the past of 
i
r+l

 in w. Moreover, ái
1
,…, i

n
ñ is a causal w-Markov chain iff ái

1
,…, i

n
ñ is an w-

Markov chain and a weak causal chain in w.

Let us modify (M1) correspondingly:

(M2)   w-Markov chain condition: Suppose that A = wi and B = wj. Then 
A B+ +⎯ →⎯⎯... ,ω  iff there exist k

1
,…, k

n
 (n ³ 0) such that ái, k

1
,…, k

n
, jñ is a 

causal w-Markov chain.

This amendment takes care of the example of the romantic lover; there, ái, j, lñ and
 ái, k, lñ both plausibly are w-Markov chains. Indeed, I think that (M2) reflects the 
Markovian intuition better than (M1). Generally, the expectation should be that a 
more proximate cause screens off the effect from a more remote cause only given 
the circumstances and not unconditionally. The structural properties have not 
changed, however:

Theorem 9: The w-Markov chain condition (M2) implies the strict chain condition 
(S3c), but it does not imply transitivity (S2).

Proof: It is easily shown that, if ái
1
,…, i

n
ñ is an w-Markov chain, then any sub-

sequence áj
1
,…, j

m
ñ of ái

1
,…, i

n
ñ is also an w-Markov chain. This immediately entails 

the first part. Again, the serial connection of two or more w-Markov chains will in 
general not result in one large w-Markov chain. Thus, transitivity need not hold.

I conclude that (M2) is a viable alternative to transitivity (S2). But the matter is 
still open, and the evidential basis should be further augmented.

Positive relevance conditions: A third important theoretical constraint is intro-
duced by the conception that a cause is in some sense positively relevant to its effects. 
The account of direct causation above is based on that conception; and theoretical 
unity seems to be best preserved by further relying on it. This sets the task to extend 
Section 2.4 and to determine the circumstances also of indirect causal relations, 
which is in fact so intricate that it can only be started, but not completed here.

Recall first Cartwright’s circularity problem. In the case of direct causation, 
it could be argued that the whole past of the effect may be taken as obtaining 
 circumstances. But, for indirect causation, obviously this will not do. Precisely 
because of the Markovian intuition, some causal intermediates must be excluded 
from the circumstances in this case; and the problem is to say which ones. However, 
we need not yet worry about the threat of circularity because we are now after 
plausible conditions only and not after definitions.

A useful perspective on the problem is gained when we think of the relativity of 
the direct/indirect-distinction to the given descriptive frame. The core of the idea of 
positive relevance is, I think, the expectation that what is an indirect cause in the 
given descriptive frame should be a direct cause in some reduced descriptive frame. 



The advantage of putting the core idea in this way is that it avoids reference to a 
specific explication of direct causal relevance (though I shall employ the account of 
Section 2.3 later on). The problem takes then the form of determining which 
reduced frame to consider. There are, prima facie, several options:

(P)   Positive relevance conditions: Let A be an i-state and B a j-state. Then 
A B+ +⎯ →⎯⎯...

ω  holds relative to the descriptive frame given by I iff 
A B+ +⎯ →⎯⎯...

ω  holds relative to the descriptive frame given by I – J
(1) for some J Í (i, j),
(2) for some, or (3) for each, J = {k

1
,…, k

n
} Í(i, j) such that ái, k

1
,…, k

n
, jñ 

is (a) a weak, (b) a connected, (c) a strict causal chain in w, (d) a causal 
Markov chain in w, (e) a causal w-Markov chain,

(4) for J = {k Î (i, j) | k is a member of (a) a weak, (b) a connected, (c) a 
strict causal chain in w, (d) a causal Markov chain in w, (e) a causal w-
Markov chain running from i to j},

(5) for J = (i, j).

As a sufficient condition for A B+ +⎯ →⎯⎯...
ω  (P1) is certainly too weak. But taken as a 

necessary condition, (P1) seems to be the inalienable minimum of the positive rele-
vance idea. However, even this minimum need not be satisfied in the light of the 
theory proposed below.

(P5) is, as noted above, the version favored by Good (1961–63). The example of 
the two-person game in Section 2.3 may also be used to cast doubt on (P5). Suppose 
that the choice A of the first player is negatively relevant to a certain outcome C, given 
the later, but independent choice B of the second player. On the current account, A 
is then a counter-cause of C. But it is easily imaginable that averaging over the 
choice of the second player makes A unconditionally positively relevant to C; just 
assume that C is sufficiently unlikely given A

–
 and B

–
. According to (P5), A would 

then be a cause of C. This seems inadequate.
(P4) is the best approximation to the position of Cartwright (1979), though which 

version of (P4) she would prefer is not clear. Is (P4) plausible? If there is only one 
causal chain running from i to j then (P2), (P3), and (P4) coincide. But if there is 
more than one chain, the three conditions may diverge almost arbitrarily; only the 
versions of (P3) are guaranteed to be stronger than the corresponding  versions of 
(P2). In view of this divergence, it is hard to say which condition is preferable.

But we know some things. An important observation is that each version of (P) 
violates transitivity (S2), at least if Definition 2 is presupposed. One numerical 
example covers all versions. Suppose that A Ç B Ç C = {w}, P(B | A) = 0.8, 
P(B | A

–
) = 0.4, P(C | A Ç B) = 0.6, P(C | A Ç B

–
) = 0.1, P(C | A

–
 Ç B) = 0.9, and 

P(C | A
–
 Ç B

–
) = 0.4. Then A B C+ +⎯ →⎯ ⎯ →⎯ω ω  holds according to Definition 2; but 

we have P(C | A Ç B) < P(C | A
–
 Ç B) and P(C | A) = 0.5 < 0.6 = P(C | A

–
). 

Thus, according to all versions of (P) we cannot have A C+ +⎯ →⎯⎯... .ω
 Generally, 

structurally good behavior may at most be expected from the (d) and (e) versions 
of (P2) and (P3) which incorporate Markovian elements.

Of course, it is rather the harmony between Markovian and positive relevance con-
ditions which is hoped for. This hope is based on the following well-known result:
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Theorem 10: Let ái
1
,…, i

n
ñ be a Markov chain of binary variables and A

r
 = wi

r
 for 

r = 1,…, n. Then, if P(A
r+ 1

 | A
r
) – P(A

r+ 1
 | A

–
) = x

i
 for r = 1,…, n – 1, P(A

n
 | A

1
) – P(A

n
 

| A
–

1
) = x

l
 · … · x

n-1
. This implies in particular that, if each A

r
 is positively relevant to 

A
r+1

, then A
1
 is positively relevant to A

n
.31

However, Theorem 10 does not achieve the desired harmony. If additional vari-
ables are dispersed between i

1
,…, i

n
, then, according to Definition 2, the positive rel-

evancies assumed in Theorem 10 need not indicate direct causal relations. Moreover, 
the theorem refers only to the Markovian chain condition (M1). If, however, the right 
strategy is to replace Markov chains by w-Markov chains, then the theorem does not 
apply; and there is no corresponding theorem about w-Markov chains.

So the situation is, in fact, as bad as I have indicated. All Markovian and positive 
relevance conditions are incompatible with the favourite structural condition of 
transitivity; and the preferred Markovian condition need not preserve positive rele-
vance in any of the ways considered.

Suppes (1984, pp. 55ff.), devotes a whole section to “conflicting intuitions” 
concerning causality, and Salmon (1988b) appreciatively adopts this phrase, though 
he has, in part, different things in mind. It is my experience that, given the current 
parsimonious framework and no further notions or distinctions bearing on causality, 
the intuitions and conflicts described in the present section are central to the discus-
sion of probabilistic causation. Is there any way to resolve these conflicts? The final 
section suggests one such way.

2.6 Causation

For a long time, Suppes’ remark (1970, p. 58) that transitivity is not to be expected 
in the case of probabilistic causation held me in its grip. All proposed plausible 
explications so clearly failed to yield transitivity that it seemed crazy to cling to 
that structural property. The task could thus only be to reconcile the other intui-
tions and conditions; and Theorem 10 seemed to point the way. Eells and Sober 
(1983) obviously had the same idea in mind when investigating the lucky circum-
stances under which the causal relation defined on the basis of the positive rele-
vance idea is transitive.

Moreover, when faced with several options, it is always a wise policy to choose 
the weakest explication possible. The various strengthenings can then be introduced 
and studied afterwards. Were one, on the contrary, to start with a stronger notion, 

31 For a proof cf., e.g., Good (1980). Eells and Sober (1983, pp. 49ff.), prove a more general result 
about the propagation of positive relevance in particular Markov nets. Theorem 10 shows, by the 
way, that the meteorological example for the fading of probabilistic causal influence and thus for 
the failure of transitivity is not really convincing. If the meteorological models would explain the 
weather as a Markov process (I doubt that they actually do), then the theorem says that even the 
weather at the turn of the last century makes a probabilistic difference for today’s weather, though 
an almost infinitesimally small one.



all the weaker ones would simply drop out of theoretical consideration. But 
Theorem 7 has revealed transitivity to be a particularly strong structural condition; 
it implies all the other conditions, given the unassailable (S0) and (S1). So, again, 
it appeared better to ignore transitivity.

However, the consideration does not apply the right measure of strength. 
What counts is not structural strength, which was seen to be accompanied by 
weakness concerning other kinds of conditions. What counts is conceptual 
strength. And the fact is that the transitive closure of direct causation is the 
weakest possible notion of causation in general; it yields the causal relation with 
the widest possible extension, if the upper bound condition (S1) is presupposed; 
whenever A is a cause of B in any other feasible sense, A is also a cause of B in 
this sense.32 So, I shall settle for the minimal notion of causation, even if the 
price to be paid is what Lewis (1973b) had to pay, too, namely, that transitivity 
is a primitive property.

Definition 8: Let A be an i-state, B a j-state, i < j, and w Î A Ç B. Then A is a cause 
of B in w, i.e. A B+ +⎯ →⎯⎯... ,ω  iff A stands to B in the transitive closure of +⎯ →⎯ω .  A 
is a counter-cause of B in w, i.e. A B− −⎯ →⎯⎯... ,ω  iff A B−⎯ →⎯ω  or for some D 
A D B+ + −⎯ →⎯⎯ ⎯ →⎯... .ω ω . A is causally relevant to B in w, i.e. A B±…±⎯ →⎯⎯ω ,  iff A stands 
to B in the transitive closure of ±⎯ →⎯ω . Finally, A is causally irrelevant to B in w, 
i.e. A B0 0... ,ω⎯ →⎯⎯  iff not A B±…±⎯ →⎯⎯ω .

This definition of counter-causation is, I think, the most plausible one. If coun-
ter-causation is to be allowed at all, then the counter-causal influence stops with the 
realization of the counter-effect and does not extend beyond. At least, I would 
firmly claim this for deterministic causation (where there may be counter- causation, 
too) and thus also for probabilistic causation, though less firmly.33 For the uncon-
vinced there is also the concept of causal relevance which comprises  causation, 
counter-causation, and much more.

Definition 8 covers all kinds of weird cases. First, to repeat, causal chains need 
not be Markov chains. Also, a cause need not be positively relevant to its effect 
under admissible conditionalization. The numerical example in the foregoing sec-
tion  demonstrating the incompatibility of (P) and (S2) is a case in point; according 
to Definition 8, A C+ +⎯ →⎯⎯...

ω  holds in this case. A C−⎯ →⎯ω  holds also; indeed, this 
is essential to its construction. This means that a state of affairs may at once be a 
cause and a counter-cause of another state of affairs, if at least one of these causal 
relations is indirect. Though this may appear counter-intuitive, it seems to be 
exactly the right thing to say in many cases – for instance in the famous thrombosis 
example of Hesslow (1976): the woman’s taking a contraceptive is a cause as well 
as a counter-cause of her thrombosis, mediated by different chains. Otte (1985, 
pp. 122f.), has drawn this  conclusion, also.

32 I owe this point to Karel Lambert; it became really clear to me in a long conversation with him.
33 Good (1961, p. 311, Axiom 10), and Humphreys (1980, pp. 308f.), seem to be guided by the 
same conception.
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The counterpart may also happen: A is a cause of B, and if A
–
 had obtained, A

–
 

would have been a cause of B, too. This is the case when causal preemption occurs 
or a back-up system is installed. Consider, e.g., the equally famous case of the 
desert traveller introduced by Hart and Honoré (1959, pp. 239ff.). One enemy of 
the traveller pours poison into his water keg; later, but independently, the other 
drills a hole into the keg. The latter fact is a cause of the traveller’s death. But if the 
hole had not been drilled, the lack of the hole would also have been a cause of his 
death, because it would have caused the poison to stay in the keg. In other words, 
the set-up can be such that a variable has only a relay function; it can turn on dif-
ferent chains which all lead to the same effect. Nevertheless, this relay function 
must be conceived as a causal function. The list of such oddities could easily be 
extended.

Settling for the weakest notion is only a start. The essential step consists in 
showing how to build stronger conceptions upon the weak base. Thus, the task is to 
specify conditions under which Definition 8 does justice to the Markovian and 
positive relevance intuitions. And it will not do to find just any sufficient condi-
tions; that would presumably be easy. These conditions must be specified solely in 
causal terms; only then do we know which causal situations satisfy our causal pre-
conceptions. To this task I now and finally turn.

The Markovian part is the easier one. First some terminology. Since Definition 
8 entails that the four kinds of causal chains given by Definition 5(a), (b), (d), 
and (e) coincide, I shall now talk of causal chains simpliciter; only strict causal 
chains in the sense of Definition 5(c) have to be distinguished. Additionally, we 
need:

Definition 9: áA
1
,…, A

n
ñ is a chain of causal relevance in w iff A A1 2

± ±⎯ →⎯ ⎯ →⎯ω ω  
… ±⎯ →⎯ω An ; and it is a strict chain of causal relevance in w iff it is a chain of 
causal relevance in w and, for no r and s with r + 2 £ s £ n, A Ar s

±⎯ →⎯ω .  Moreover, 
ái

1
,…, i

n
ñ is a (strict) chain of causal relevance in w iff áwi

1
,…, wi

n
ñ is.

A first welcome result is:

Theorem 11: The following two assertions are equivalent:

(a) For each w Î W, all chains ái
1
,…, i

n
ñ of causal relevance in w are strict.

(b)  For each w Î W, all chains ái
1
,…, i

n
ñ of causal relevance in w are w-Markov 

chains.

Proof: (a) Þ (b): Suppose (b) is false, i.e. there are i
1
,…, i

n
, and w such that ái

1
,…, 

i
n
ñ is a chain of causal relevance in w, but not an w-Markov chain. Thus, there is an 

s £ n such that i
s + 1

 ̂  {i
1
,…, i

s-1
} / i

s
, w{< i

s + 1
 – i

1
,…, i

s
} does not hold. Several applications 

of Theorem 2(e) yield that there is an r < s for which i
s + 1

 ^ i
1
/{i

1
,…, i

r-1
, i

r+ 1
,…, 

i
s
}, w{< i

s + 1
 - i

1
,…, i

s
}. is not true. And this means that there is an u Î W agreeing 

with w outside {i
1
,…, i

s
} such that υ

υ
υi ir s

±
+⎯ →⎯ 1.

(b) Þ (a): Suppose (a) is false, i.e. there are i
1
,…, i

n
, and w such that ái

1
,…, i

n
ñ is 

a chain, but not a strict chain of causal relevance in w. Thus, we have ω
ω

ωi ir s
±

+⎯ →⎯ 1. 
for some r and s with r < s. This immediately entails that ái

1
,…, i

n
ñ is not an 

w-Markov chain.



This is a perspicuous theorem. It says that, if causal relevance spreads strictly in 
stages in all worlds so that in no world there obtain direct as well as indirect causal 
relations between any states, then all these chains are w-Markovian, i.e. they have 
the preferred Markovian property. However, the order of the quantifiers is not the 
desired one. There is no reason to expect that all possible worlds are causally well-
ordered in this way. Hence, what is needed is a universal equivalence rather than an 
equivalence of universal statements. Here, at last, Section 2.4 comes into play; the 
assumption that the actual circumstances are ideal will be required in:

Theorem 12: Let i
1
,…, i

n
 be binary variables and ái

1
,…, i

n
ñ a chain of causal rele-

vance in w. Assume that for all r < n C*
w(wi

r
, wi

r + 1
) = Cw(wi

r
, wi

r + 1
). Then ái

1
,…, i

n
ñ 

is an w-Markov chain iff it is a strict chain of causal relevance in w.

Proof: (Þ): Suppose that ái
1
, …, i

n
ñ is not a strict chain of causal relevance in w, 

i.e. there exist r < s with ω
ω

ωi ir s
±

+⎯ →⎯ 1.. Again, this entails that ái
1
,…, i

n
ñ is not an 

w-Markov chain.
(Ü): Suppose that ái

1
, …, i

n
ñ is a strict chain of causal relevance in w and con-

sider any s < n. Then for all r < s ω
ω

ωi ir s
0

1⎯ →⎯ + ,  i.e., since the variables are binary, 
i
s + 1

 ^ i
r
 / w{< i

s + 1
 – i

r
}. Thus, if K = {k Î {< i

s + 1
 – i

r
} | i

s+ 1
 ^ k / w{< i

s + 1
 – k} }, we 

have {i
1
,…, i

s-1
} Í K. With the assumption about the circumstances and Theorem 6 

we also have i
s + 1

 ^ K / i
s
, w{< i

s + 1
 – K È {i

s
} }. And this implies that ái

1
,…, i

n
ñ is 

an w-Markov chain.

Of course, Theorem 12 in particular applies to causal chains. These theorems are 
mathematically trivial, but conceptually nice; and I do not see how they can be 
improved upon much. Their content is certainly plausible; intuitively, it is just the 
existence of direct bypasses to causal chains which violates the Markovian intuition.

Concerning positive relevance, suppose that A
r
 = wi

r
 (r = 1, …, n) and that (A

1
, 

…, A
n
) is a causal chain in w. Somehow, A

1
 should then be positively relevant to A

n
. 

But how? If ái
1
,…, i

n
ñ were a Markov chain, Theorem 10 could be applied. But it 

has turned out that w-Markov and not Markov chains are the ones relevant to our 
enterprise. So if ái

1
,…, i

n
ñ is assumed to be an w-Markov chain, the trouble is that 

the characteristic conditional independencies refer for each i
r
 to a different 

 condition, and therefore Theorem 10 is not immediately applicable. But perhaps the 
 different conditions can be equalized and the grounds for Theorem 10 thus pre-
pared. This is the basic idea which will be worked out in the sequel.

A very simple example illustrates all of the essential aspects of that idea. 
Suppose that there are only four binary variables i < j < k < l, A = wi, B = wj, 
C = wk, D = wl, A B D+ +⎯ →⎯ ⎯ →⎯ω ω , and ái, j, lñ is an w-Markov chain. In probabilis-
tic terms this means that

(1) P(B | A) > P(B | A
–
),

(2) P(D | A Ç B Ç C ) > P(D | A Ç B
–
 Ç C ), and

(3) P(D | A Ç B′ Ç C ) = P(D | A
–
 Ç B′ Ç C ) for each B′ Î {B, B

–
}.

One would like to infer that, if B is omitted, A is positively relevant to D. Here, C 
may be taken as given or not. Thus, there are two alternatives for expressing this 
positive relevance:
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(4a) P(D | A Ç C) > P(D | A
–
 Ç C), or

(4b) P(D | A) > P(D | A
–
).

Obviously, neither follows from (1)–(3), because (2) and (3) conditionalize on C, 
but (1) does not; that is the trouble with w-Markov chains. The idea is to equalize 
the conditions in (1)–(3). Again, there are two alternatives. One may keep (2) and 
(3) and assume

(1a) P(B | A Ç C) > P(B | A
–
 Ç C)

instead of (1); then (4a) can be inferred with the help of Theorem 10. Or one may 
keep (1) and assume

(2b) P(D | A Ç B) > P(D | A Ç B
– 

) and
(3b) P(D | A Ç B′ ) = P(D | A

–
 Ç B′) for each B′Œ {B, B

–
}

instead of (2) and (3); then (4b) can be inferred with the help of Theorem 10. 
However, (1a), (2b), and (3b) do not yet have causal form. The question thus is 
which causal assumptions allow them to be derived from (1)–(3). The answer dif-
fers for the two alternatives.

Look first at (1a). (1a) obviously follows from (1) together with

(5a) P(B | A′ Ç C) = P(B | A′ ) for each A′ Î {A, A
–
};

and since P is strictly positive, this is equivalent to

(6a) P(C | A′ Ç B) = P(C | A′ Ç B
–
) for each A′ Î {A, A

–
}.

Thus, (4a) may be derived from (1)–(3) by additionally assuming (6a). And (6a) has 
causal form; it says that B is directly causally irrelevant to C, whether A obtains or not.

Now consider (2b) and (3b). They obviously follow from (2) and (3), if

(7b) P(D | A′ Ç B′ Ç C) = P(D | A′ Ç B′ Ç C
–
) for each A′ Î {A, A

–
} and B′ Î {B, B

–
}.

And (7b) already has causal form; it says that C is directly causally irrelevant to 
D, whether A and B obtain or not.

So at least two simple alternative causal conditions are available which guaran-
tee positive relevance of the indirect cause to the indirect effect in this example. 
When is neither condition satisfied? When and only when B is causally relevant to 
C in some world and C is causally relevant to D in some world. But in this case 
there are two paths of causal influence running from A to D (though not necessarily 
in one world); so it is not surprising that an account of how causal influence is 
transmitted through single causal chains is inapplicable to such a case.

These observations are valid in general. In the general case we deal with a causal 
w-Markov chain ái

1
,…, i

n
ñ, where again A

r
 = wi

r
 (r = 1,…, n). The strategy of equal-

izing conditionalization then amounts to finding some set M of variables such that 
for all r = 2,…, n the positive relevance of A

r-1
 to A

r
 as well as the characteristic 

w-Markov independencies hold also conditional on wM, thus enabling the inference 
of the positive relevance of A

l
 to A

n
 conditional on wM.



Which properties should M be expected to have? Of course, the basic property 
is that i

2
,…, i

n-1
 do not belong to M. Two further properties are suggested by the 

above example. Alternative (b) makes it clear that, if a variable is directly causally 
relevant to i

r
, then it must not be deleted from M. In other words, wM has to preserve 

the circumstances of A
r
 in some suitable sense (Theorem 14 below will refer to the 

probabilistically possibly relevant circumstances, Theorem 16 to the ideal ones). 
The condition that that much information about A

r
 must be retained is certainly 

plausible. Now, by omitting i
r
 from M we delete the most direct information about 

A
r
. But it seems that we must as well delete any indirect information about A

r
 which 

exceeds the information provided by its circumstances; if such indirect information 
were retained, the averaging with respect to i

r
 – which is needed for calculating 

P(A
r
 | A

1
 Ç wM) – may be biased in an undesirable way. This is what emerges from 

alternative (a) in the above example, in particular from (5a).
In sum, for each r = 2,…, n, wM must include the circumstances of A

r
 and must 

not contain any further information about A
r
. The fact that wM then suits the desired 

equalization of conditions is the intuitive content of the theorems we are after. They 
are supplemented by two auxiliary theorems providing a way of expressing the 
exclusion of such further information in causal terms.

For this purpose let us define:

Definition 10: The variables i and j are causally connected in w within J Í I iff 
there are k

1
,…, k

n
 Î J È {i, j} such that k

1
 = i, k

n
 = j, and, for all r = 1, …, n – 1, 

ω
ω

ω ω
ω

ωk k k kr r r r
±

+ +
±⎯ →⎯ ⎯ →⎯1 1 or  .. And if i < j, I call i and j causally  connected 

in w iff they are causally connected in w within (i, j).34

Causal unconnectedness in a lot of worlds implies a lot of probabilistic inde-
pendence, at least if there are no simultaneous variables.35 This is ascertained by the 
auxiliary:

Theorem 13: Suppose that I is linearly ordered by < and that i and j > i are causally 
unconnected in all u Î w{< i}. Then there are disjoint K and L such that K È L = 
[i, j], i Î K, j Î L, and K ^ L / w{< i}.

This will turn out to be a special case of Theorem 15 below. And it leads to a 
first result concerning the positive relevance of indirect causes:

Theorem 14: Suppose that I is linearly ordered by <, that ái
1
,…, i

n
ñ is an w-Markov 

chain of binary variables. A
r
 = wi

r
, x

r
 = P(A

r+ 1
 | A

r
 Ç w{< i

r+ 1
 – i

r
}) – P(A

r+ 1
 | A

–
r
 Ç 

w{< i
r+ 1

 – i
r
}) and that M is a set of variables such that for all r = 1,…, n:

34 This restriction of the connecting sequence to the interval between i and j does certainly not 
conform to the standard usage of “causally connected”, if there is any. Note that despite this 
restriction causal connectedness is still weaker than causal relevance. A chain of causal relevance 
from i to j is always future-oriented, whereas a sequence causally connecting i and j may arbitrar-
ily change its temporal direction.
35 This is rather a technical restriction needed in the proofs below. However, it is not obvious how 
to avoid it.
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(a) i
r
 Ï M,

(b) R(A
r
) – {i

r-1
} Í M,

(c) each j Î M with j > i
r
 is causally unconnected with i

r
 in all u Î w{M Ç {< i

r
}).

Then ái1,…, i
n
ñ is a Markov chain conditional on wM, and hence P(A

n
 | A

1
 Ç wM) – 

P(A
n
 | A

–
1
 Ç wM) = x

1
 ·… · x

n-1
.

The proof is given together with that of Theorem 16. Condition (b) includes vari-
ables into M, (c) excludes variables from M. Thus, (b) and (c) work in opposite direc-
tions and may be difficult to satisfy. This can be improved upon, but again at the price 
of assuming circumstances to be ideal. That assumption is used in the auxiliary:

Theorem 15: Suppose that I is linearly ordered by <, that {< i} ÍN Í{< j}, that, 
for all u Î wN and k, l Î {i, j} with k < l, C*

u (
uk, ul) = Cu(

uk, ul), and that i and j 
are causally unconnected in all u Î wN. Then there are disjoint K and L such that 
K È L = [i, j], i Î K, j Î L, and K – N, w(K Ç N) ^ L – N, w(L Ç N) / w{< i}.

Proof: Let K = {i} È {k Î (i, j) | i and k are causally connected within (i, j) in 
some u Î wN} and L = {j} È (i, j) – K. Since causal connectedness within a fixed 
set is transitive, this definition implies that each k Î K is causally unconnected with 
each l Î L within (i, j) in all u Î wN. In particular we thus have for all k Î K, l Î L, 
and u Î wN:

(1) If k < l, then k Ï Ru(
uI); and if l < k, then l Ï Ru(

uk).

Now we shall inductively work up from i to j. Suppose we have already shown for 
some i* Î (i, j) È {j} that

(2) {< i*} Ç K – N, w({< i*} Ç K Ç N) ^ {< i*} Ç L – N, w({< i*} Ç L Ç N) / w{< i}.

Let’s assume that i* Î L (for i* Î K the corresponding reasoning applies). (1) and 
the ideality of the actual circumstances then imply

(3) {< i*} Ç K ^ i* / w{< i} Ç u({< i*} Ç L) for all u Î wN, i.e,
(4) {< i*} Ç K ^ i* / w{< i} Ç w({< i*} Ç L Ç N), {< i*} Ç L – N.

(2) and (4) finally yield according to Theorem l(d)

(5) {< i*} Ç K – N, w({< i*} Ç K Ç N) ^ ({< i*} È {i*}) Ç L – N, w({< i*} Ç 
L Ç N)/w{< i}.

For i* = j this is the desired result. Note that for N = {< i} Theorem 15 reduces to 
Theorem 13. In this special case, (3) follows from (1) with the help of Theorem 2(e) 
alone and without the ideality of circumstances.

This leads to the second result concerning positive relevance:

Theorem 16: Suppose that I is linearly ordered by <, that ái
1
,…, i

n
ñ, A

r
, and x

r
 are 

as in Theorem 14, and that M is a set of variables such that for all r = 1,…, n:

(a) i
r
 Ï M,

(b) Rw(A
r
) – {i

r-1
} Í M,



(c) each j Î M with j > i
r
 is causally unconnected with i

r
 in all u Î wM.

Suppose further that for all u Î wM and k, l Î [i
1
, i

n
] with k < l C*u(

uK, ul) = Cu
(uK, ul). Then the same result obtains as in Theorem 14.

Proof: All that must be shown is that for all r = 2, …, n, A′ Î {A
r-1

, A
–

r-1
}, and 

u Î W:

(1) P(A
r
 | A′ Ç w{< i

r
 – i

1
…, i

r-1
} Ç u{i

1
,…, i

r-2
} = P(A

r
 | A′ Ç wM Ç u{i

1
,…, i

r-2
} = 

P(A
r
 | A′ Ç wM)

(1) says that all the probabilities showing that ái
1
,…, i

n
ñ is a Markov chain condi-

tional on wM coincide with the corresponding probabilities showing that ái
1
,…, i

n
ñ 

is an w-Markov chain. A direct application of Theorem 10 then leads us to the 
desired result. To show (1) suppose that M – {< i

r
} consists of j

1
 < … < j

q
 and that 

we have already shown for some p – 1 < q that

(2) P(A
r
 | A′ Ç u{< i

r
 – i

r-1
} Ç w{j

1
,…, j

p-1
}) = P(A

r
 | A′ Ç u{< i

r
 – i

r-1
})

holds for all u Î wM. Since i
r
 and j

p
 are causally unconnected in all u Î wM we may 

infer from Theorem 15 and the ideality of the actual circumstances that there is a 
partition áK, Lñ of [i

r
, j

p
] such that i

r
 Î K, j

p
 Î L, and for M′ = M Ç {< j

p
}

(3) K – M¢, u(K Ç M¢ ) ^ L – M′, u(L Ç M¢ ) / u{< i
r
}

for all u Î wM. Alternatively, we get (3) from Theorem 13 and the stronger uncon-
nectedness assumption (c) of Theorem 14 without the ideality of circumstances. 
(3) implies with Theorems 1(d) and 2(c)

(4) i
r
 ^ j

p
/u{< i

r
} Ç u{j

1
,…, j

p-1
} for all u Î wM, i.e,

(5) i
r
 ^ j

p
/A′ Çu{< i

r
 - i

r-1
} Ç w{j

1
 …, j

p-1
}for all u Î wM.

(2) and (5) together imply that (2) holds for p, too, and thus also for q, i.e. that for 
all u Î W

(6) P(A
r
 | A′ Ç wM Ç u{< i

r
 – M È {i

r-1
} }) = P(A

r
 | A′ Ç w(M Ç {< i

r
}) Ç u{< i

r
 – M 

È {i
r-1

} }).

Next observe that

(7) P(A
r
 | A′ Ç w(M Ç {< i

r
} }) = P(A

r
 | A′ Ç w(M Ç {< i

r
}) Ç u{< i

r
 – M È 

{i
r-1

} })

holds for all A′ Î {A
r-1

, A
–

r-1
} and u Î W because of the assumption (b) about M and 

the ideality of circumstances – which is not needed, if, alternatively, the assumption 
(b) of Theorem 14 is used. (7) says that the R.H.S. of (6) does not depend on u. 
Thus, the L.H.S. of (6) does not depend on u as well. This finally yields

(8) P(A
r
 | A′ Ç wM) = P(A

r
 | A′ Ç w(M Ç {< i

r
}) Ç u{< i

r
 – M È {i

r-1
} })

for all u Î W, and this is even somewhat stronger than the desired (1).

A careful analysis of the two proofs will show several steps which do not require 
the full strength of the premises. Thus, there certainly are weaker and maybe nicer 
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conditions under which the consequence of these theorems still holds. But I wonder 
whether there are much weaker or much nicer conditions subject to the constraint 
that they be expressed in causal terms.

When does a set M exist as required by Theorem 16(a)–(c)? I have not found an 
informative and more perspicuous sufficient condition. But there is a simple neces-
sary condition:

Theorem 17: A set M satisfying clauses (a)–(c) of Theorem 16 exists only if in all 
u Î wM ái

1
,…, i

n
ñ is the only chain of causal relevance leading from i

1
 to i

n
.

Proof: Suppose that for some u Î wM there is another chain of causal relevance 
from i

1
 to i

n
 which may be assumed to be of the form ái

1
, j

1
,…, j

p
, i

r
,…, i

n
ñ, where j

p
 

¹ i
r-1

. Hence, clause (b) demands that j
p
 Î M. But i

1
 and j

p
 are causally connected 

in u. Hence, j
p
 Ï M and thus a contradiction is entailed by clause (c).

Since there may be causal connections between earlier members and direct 
causal antecedents of later members of ái

1
,…, i

n
ñ which are not chains of causal 

relevance – a situation which again excludes the existence of an appropriate M –, 
Theorem 17 may not be strengthened to a biconditional.

Theorem 17 limits the scope of Theorem 16 to cases where causal influence is 
transmitted through a single causal chain. More powerful theorems are therefore 
required for dealing with the transmission of causal influence through more com-
plex causal nets. Eells and Sober (1983, pp. 49ff.) should be of help here in a simi-
lar way as Theorem 10 has guided Theorems 14 and 16.

But it is clear that this is only the beginning of a much fuller theory of causation. 
For instance, I have not returned to the very first characterization of causation in 
Section 2.3 and tried to say what the circumstances of an indirect causal relation 
are. Theorems 14 and 16 suggest that wM, for a minimal M satisfying (a)-(c) of 
Theorems 14 or 16, provides such circumstances. However, this suggestion is nei-
ther general nor worked out.

Still, I hope to have developed the program far enough to justify the impression 
that the right direction towards a prosperous theory has been found. In particular, 
Theorems 11, 12, 14, and 16 explain how the three basic intuitions here discussed 
come to be held, even though they are not generally compatible. This explanation 
is as plausible as the assumption that the conditions which have been shown to 
guarantee agreement between the intuitions are taken for granted. And I think this 
assumption is not too implausible.36

36 In fact, I believe that there is a deeper explanation for the conditions that actual circumstances 
are ideal, that causal chains are strict, and the like; these conditions are crucial to an objectivization 
of our causal picture. This conjecture would emerge more clearly in the unwritten deterministic 
counterpart of this paper; but it certainly cannot be part of this inquiry.




