
SYSTEMS DEVELOPMENT METHODOLOGIES: A KNOWLEDGE
PERSPECTIVE

WARREN KERLEY AND TONY HOLDEN

Cambridge University, UK

Abstract. Structured methodologies have for some time been the
dominant guiding means by which information systems have been
designed and implemented. This paper argues that the process-based

view that has underlied information system design (ISD) for so many
years could usefully give way to a knowledge-based perspective since
ISD is fundamentally a knowledge structuring activity. This paper
includes a review of the evolution of systems development
methodologies since the late 1960s and contrasts the intended benefits
and problems in practice of using structured, process-oriented
methodologies such as SSADM, with those of the agile

methodologies, such as XP, which have emerged in the last few years.
A framework is presented of how ideas from the fields of knowledge
management and organizational learning can be applied to the analysis
of ISD methodologies. We consider some higher-level considerations
of possible future trends in ISD and our analysis suggests that the
present preponderance of structured methodologies will give way to
greater use of agile and open source approaches. We finish with a

description of the work we have done to apply these ideas within
current practice and make suggestions for further work in this area.

1. Introduction

Developers of computer-based information systems (IS) are expected to

deliver working systems that meet their customers’ requirements and are

constructed to acceptable levels of quality, maintainability, dependability,

efficiency and usability. They are also expected to do this in a way that is

cost effective, timely, manages the levels of risk to which the development

project is exposed and is flexible enough to incorporate changes throughout

the project lifecycle.

In practice this is difficult. It is an established part of ISD wisdom that

many systems are delivered late, over budget and behind schedule. Others

are cancelled without ever being completed. Even if a system is delivered

within time and budget constraints, it may still be perceived as a failure if

163 

J.S. Gero (ed.), Design Computing and Cognition ’06, 163–181. 
© 2006 Springer. Printed in the Netherlands. 



164 WARREN KERLEY AND TONY HOLDEN

does not meet the expectations of key stakeholders. Moreover, the

productivity of software developers has failed to keep pace with the

spectacular fall in cost and increase in performance of computer hardware.

2. Methodologies

Researchers and practitioners have not been lax in meeting this challenge.
Methodologies have proliferated over the last 30 years in order to organize
the activities involved in information systems development. In the 1960s and
70s information systems were developed largely on an ad hoc basis, without
any formal methodological support. Driven by the need to manage
increasingly large and complex projects, efforts were made to formalize
matters and, in the late 1960s, the systems development lifecycle (SDLC)
view of software project development, commonly known as the waterfall

model, emerged. Many methodologies follow the SDLC approach today due
to the support of national governments and organizations such as the US
Project Management Institute. Nevertheless by the late 70s and early 80s
new approaches based on prototyping and evolutionary development had
appeared in response to practitioner experience that showed SDLC
methodologies could take too long and be too rigid under some

circumstances.
Other work by academics in the early 80’s aimed to address the social

and sense-making issues involved in ISD and resulted in, for example,

ETHICS and the Soft Systems Methodology (SSM). Subsequent work

combined the best elements of the existing methodologies, such as merging

of prototyping and evolutionary development ideas with the SDLC to

produce iterative and spiral methodologies.
The proliferation of methodologies reflected a number of different – and

rarely stated – philosophies, assumptions or beliefs about the nature of ISD.
These can nevertheless be broadly classified in a number of different ways.
For example Avison and Fitzgerald (2003) suggest seven major themes or
approaches – structured, data-oriented, prototyping, object-oriented,
participative, strategic and systems – which are not necessarily mutually
exclusive.

Although supplemented in recent years by visual or object-oriented

methods for interface design and specialized systems, the majority of
formalized methodologies in the 1990s were still underpinned by structured

SDLC and/or prototyping process models. They are therefore still primarily

process-oriented and plan-driven with their methods and process models
based on concepts that originate in mainstream engineering disciplines.
Projects are heavily documented and require strict adherence to the
prescribed processes.

Despite all this being highly time and effort consuming, documentation
does aid in realizing a degree of quality, control and, importantly for most
software companies, reassurance for potential and repeat customers.



SYSTEM DEVELOPMENT METHODOLOGIES 165

Organizations using these approaches consequently look for ways to
continuously improve these processes through adherence to quality standards
such as ISO certification and process improvement initiatives such as SEI’s
Capability Maturity Model (CMM).

From a management viewpoint, subdivision of the development process
has definite advantages. It reduces the skill-levels required by developers
and standardization makes these skills more interchangeable. These are seen
as critically important benefits given the shortage and high turnover of
software developers (Riemenschneider 2002). Standardization also
facilitates project management and control, thereby reducing risk and

uncertainty. The large amount of documented information within the process

increases management flexibility, as personnel can be moved quickly within
or between projects, and provides insurance against the loss of critical

knowledge if key personnel leave. These benefits have prompted national
governments to encourage the use of structured methodologies and the
subsequent support of formal certification and standards such as ISO 9000,
ISO 12207, ISO 15504, SSADM within the UK and the CMM by the US
Department of Defense.

In practice, however, the use of formalized, process-oriented
methodologies has not been without problems. In a case study of a project
using SSADM, Wastell (1996) found that the methodology was followed in
a blind, mechanical way. The effort spent on the aesthetics of the
diagramming techniques, and in providing the detail required by the
documentation standards, bogged the project down and provided too much
information. The “big picture” was obscured as far as the user
representatives were concerned. Process-oriented methodologies work best
when the requirements of the software project are completely locked in and

frozen before the design and software development commences. However,

in an increasingly volatile business environment, firms are asking for lighter
weight, faster and more agile software development processes that can

accommodate the inevitable ongoing changes to requirements. At the same

time there has been a backlash from the programming profession against the
mechanistic and dehumanizing aspects of process-oriented methodologies
and a desire for a return to programming as a craft rather than an industrial

process. These factors have led to the development by practitioners of agile
methodologies in the late 1990s, based on prototyping and rapid application
development approaches (Abrahamsson et al. 2002).

eXtreme Programming (XP) has been widely acknowledged as the
starting point for the various agile software development approaches and is
probably the best known. Other agile methodologies include Scrum,

Dynamic Systems Development Method, Crystal Methods, Feature-Driven
Development and Adaptive Software Development.

No clear agreement has been achieved on how to clearly distinguish agile
software development from more traditional, process-oriented approaches. A
central tenet of the agile philosophy is that it is impossible to get software



166 WARREN KERLEY AND TONY HOLDEN

right first time and it is therefore preferable to be responsive to changing
customer requirements and to provide them quickly with what they want.
Common, although idealized, features of the agile approach are that software
development is:

• Incremental with small functional differences and shorter times
between releases.

• Cooperative with customer and developers working constantly
together with close communication,

• Straightforward in that the method itself is easy to learn and to
modify,

• Adaptive and so changes to requirements may easily be included,
• Well, but minimally, documented.

It is this last aspect that most characterizes agile methodologies. It could
also be argued that agile methodologies are “more honest” as their approach
mirrors more closely the reality of software development in practice.

Concerns have been raised about the use of agile methodologies
(Abrahamsson 2002; Boehm and Turner 2003). They do not provide the
familiar management control mechanisms and high quality assurance
inherent in process-oriented methodologies, and are therefore considered
risky. There are also serious doubts about how scalable agile methodologies
are to larger projects. Nevertheless experience has shown that both process-
oriented and agile methodologies have a role in contemporary software

development.
That said how should a project manager choose which methodologies or

methods to adopt? No single methodology can work for all types of project.
Guidance is needed for practitioners about the methodologies or specific
methods that are applicable in a particular circumstance and how to select
the best one. The early view that there might be a single best method for all
IS development has given way in recent years to investigation of domain-

specific methods (Barry and Lang 2002). Although a single methodology

may be appropriate in some circumstances, no methodology covers all
aspects of systems development and each methodology tends to be stronger
on some aspects than others. Many problem situations will require
developers to use methods taken from different methodologies. However it
requires considerable skill on the part of developers and managers to be able
to pick and choose between methods and apply them effectively to the task

in hand.
Besides the problem of selecting from the vast numbers available,

methods from different methodologies may be incompatible with each other
because they are based on different philosophical assumptions or emphasize
different modeling stances and therefore representations of the system being
considered. For example, Stephens and Rosenberg (2003) describe in detail
the dangers of using some, but not all, of the twelve practices of eXtreme
Programming.One solution is a methodological framework such as
Mulitview that provides a coherent method to choose appropriate methods,



SYSTEM DEVELOPMENT METHODOLOGIES 167

tool and techniques contingent on the problem, the methodology and the
information systems development team itself (Avison and Wood-Harper
1991). More recently Boehm and Turner (2003) have outlined a contingency
method to identify the parts of a project that are amenable to agile
methodologies and those suitable for a process-oriented approach.

3. Use and Benefits of Methodologies

After all the theorists and academics have had their say, are methodologies
actually used in practice? Many companies do not use commercially
available methodologies at all or extensively modify them to better fit their

own particular organizational needs. The scale of this phenomenon means
that in-house methods predominate over the formalized methods prescribed
in the literature (Barry and Lang 2002). Ironically, little is known about the

nature of “homegrown methodologies” or how they are developed.
Where formal methodologies are used, they are rarely followed closely.

For example, the pressure of deadlines often leads to practices being
modified or abandoned for the sake of expediency (Wastell 1996; Curtis et
al. 1988). Estimates vary but between 50 and 75 per cent of US
organizations would be classified at CMM Level-1. Namely, immature
software organizations in which development is inconsistent and
methodologies are not used (Riemenschneider 2002). In one UK survey 60
percent of respondents did not use a development methodology and only 14
per cent claimed to use a formalized commercial methodology, Table 1.
“The predominant reason for non-use cited by respondents was that currently
available methodologies did not suit the profile of the development
prevailing in the organizations studied.” (Fitzgerald 2000).

%

Organizations not using any methodology 60
Organizations using a formalized commercial methodology 14
Organizations using internal methodology based on a
commercial one

12

Organizations using internal methodology not based on a
commercial one

14

Secondly, do methodologies work? Adopting a new methodology is a
costly and radical step. It involves significant organizational changes;
substantial investments in technology, training and staff time; and the need
to overcome resistance to change by developers and other stakeholders
(Abrahamsson 2002; Riemenschneider 2002; Wastell 1996). Barry and Lang
(2002) found that information systems developers appear to be reluctant to
abandon older techniques, even when their usefulness may be questionable,
and are slow to adopt the new techniques. In this context it seems unlikely

TABLE 1. Methodology Usage.



168 WARREN KERLEY AND TONY HOLDEN

that IS departments will want to invest in multiple methodologies unless
they are likely to be effective.

Unfortunately most work to date has been focused on developing new

methodologies rather than evaluating their efficacy in practice. Where
empirical research has been done the results can be equivocal or contradict
other studies. Glass (1999) reviewed the research on a number of new
technologies – including structured methodologies – that were expected to
bring significant improvements in software development productivity.
Fourth generation languages (4GLs) and object oriented (OO) approaches
seem to have provided the biggest productivity improvements, although
Glass has reservations about endorsing them.

As for structured methodologies, despite their longevity, research into
their benefits was surprisingly scarce and could point to, at best, modest
benefits from their use. The same lack of hard empirical evidence for their
benefits applies to agile methodologies (Abrahamsson et al. 2002), although
this may clearly be due, at least in part, to their relative newness. The case
studies that have been published on the use of agile methodologies have
often shown spectacular improvements in productivity and quality, but these
results have been greeted with skepticism by other practitioners and
academics who cite the absence, to date, of sufficient data (Boehm and
Turner 2003). Third, and finally, are methodologies relevant for the future?
Formalized, process-oriented methodologies were seen as the solution to the
“software crisis” but have not delivered the benefits expected (Glass 1999).
Structured and agile methodologies are based on concepts that came to
prominence in the decade between 1967 and 1977 Since then the pace of
business change has increased significantly, short-term needs dominate and
the economic justification for formalized systems development with its long

development lifecycle is dwindling (Boehm and Turner 2003). Systems
development is increasingly outsourced or based on the customization of
packaged software.

And it has been long recognized that methodology is less important than

the skill and determination of developers. The majority of methodologies in

use follow a rational, scientific paradigm where information systems
development is conceptualized as an orderly process that is amenable to the
same sorts of methods as mainstream engineering. In fact practice shows that
systems development is anything but rational and orderly and often too little
attention is paid to ‘softer’ social aspects and to human factors such as

creativity, intuition and learning over time.
In summary, IS managers are faced with a wide choice of possible

methodologies and, although contingency approaches to select
methodologies have been proposed, this choice has been further complicated
by the agile vs. process-oriented debate. In some respects however the
academic and practitioner literature gives greater importance to the
formalized, published methodologies than their use in practice warrants, as
they are often either not used or are heavily customized in practice. There



SYSTEM DEVELOPMENT METHODOLOGIES 169

are also doubts about their current efficacy and their usefulness in the future
given the rapidly changing business environment.

It must be acknowledged however that the use of structure and formality
over the last couple of decades has contributed in some way to the delivery
of large, complex and functioning software systems. Rather than invent yet
another methodology, the following sections take a different, knowledge-
oriented perspective on the task of software development. From this view
how can the ideas from the knowledge management and organizational
learning literatures contribute to a better understanding of the practice of
ISD and therefore which methods, tools and techniques should be most
effective in delivering IS projects in any given organizational situation?

4. A Knowledge Perspective

Brooks (1987) identified four essential difficulties (or essences) inherent in
developing software that make information systems development different
from mainstream engineering disciplines:

1. Complexity: Software systems have a very large number of different
states that increase more than linearly with an increase in system
size. This complexity creates problems of communication and
understanding, testing and verification, use, reuse, modification and
maintenance.

2. Conformity: Software is generally expected to conform to the needs
of the organization and not vice versa.

3. Changeability: Software is highly malleable and therefore
successful software will be changed, either at user request or to be
used elsewhere.

4. Invisibility: Implemented software is invisible. It is also difficult to
visualize as multiple modeling techniques are required to fully
represent its function and structure. There is also no representational
single point of reference. There is no software equivalent of the floor
plan of a building or the circuit diagrams and mechanical drawings
in engineering.

Brooks argues that no breakthroughs in ISD productivity and quality are
likely through the use of orthodox tools and techniques, because these fail to
address these four essences. Instead organizations should either avoid the
problems by using commercial off-the-shelf software or concentrate on
producing great designs from which to develop their systems. Great designs
however require a full understanding of system requirements and great
designers. According to Walz et al. (1993), it is reckoned that more than half
the cost of the development of complex computer-based information systems
is attributable to decisions during requirements specification and design.

affecting the design phase were: the thin spread of application domain
Curtis et al. (1988) found that on large projects the three biggest problems



170 WARREN KERLEY AND TONY HOLDEN

knowledge amongst developers; fluctuating and conflicting requirements
and, communication and coordination breakdowns. Consequently much of
the activity on projects is concerned with human skills such as learning,
communication and negotiation. Individuals have to acquire and integrate

knowledge from multiple domains and from different parts of the project.
This learning modifies the participants understanding of the solution and can
lead to changes in requirements, design and implementation throughout the
project lifecycle.

We suggest that a knowledge perspective, drawing on experience and
insights into knowledge management and organizational learning, provides
substantial help for the both the effective management of information
systems development and also the role that methodologies play in this.
Cognitive theories provide an understanding of how individuals handle
mental tasks and therefore how the application of ISD methods, practices
and tools could be aligned to take proper account of individual factors
(Robillard 1999). These factors include: the importance of learning and
previous experience and how this contributes to the creation of mental
schemas as models for comprehension; the problems inherent in solving ill-
defined problems such as those that typically arise during design; the
limitations of short-term memory and hence the importance of breaking
tasks down – the famous ‘7±2 chunks’ maxim – and how the information
resources that surround the ISD team can be organized, rendered accessible
and kept track of in order to facilitate good design and implementation
decisions.

At the same time, individuals have to work within a larger social and

organizational environment (Curtis et al. 1988). Nonaka and Takeuchi’s

SECI model (1995) provides an explanation of the social process by which
knowledge is created and shared within an organization. Skillfully applied,
Nonaka’s model can inform organizational design and engender the
individual learning and effectiveness described above. Central to the model
is the notion that individually held tacit knowledge becomes universally held
explicit knowledge through a managed process of ‘socialization-
externalization-combination-internalization’. This requires the careful
instigation of key knowledge-transmitting relationships, the explicit
expression of knowledge for group consumption and then its wider
dissemination within the organization for the enrichment of other
individuals’ capabilities. These SECI cycles follow each other and provide
an adaptable, and at least partially controllable, means to develop, transmit
and apply knowledge about aspects of project that is itself changing. The
SECI model emphasizes the value of integrating knowledge from various
domains (both internal and external to the project) and so mitigates against
the establishment of organizational ‘silos’ whose insularity hinders agility
and directs individual energies towards the maintenance of methodological
mechanisms rather than project success.



SYSTEM DEVELOPMENT METHODOLOGIES 171

Successful systems development critically depends on users and designers

learning from each other. Hence, managed, timely participation in the

learning cycles, such as those described by the SECI model, is important.
For example, when new members are added to teams existing members may
be reluctant to use or accept the new knowledge the newcomers bring with

them (Walz 1993). Conversely, how can early project participants influence
later stages of a project if they are no longer actively involved? If knowledge
is ‘captured’ once – for example user requirements gathered early in a
project – and pushed into the background, it will often have less weight than

the knowledge readily and currently available to the team.
With orthodox, methodologically-driven project management, a risk is

that achievement of bureaucratic targets and performance measures takes
precedence over the delivery of working systems and the satisfaction of end-
users. In other words, the emphasis is on the process with its explicit
measurement parameters and not the artifact. Knowledge management,
properly applied, focuses on the more tacit and inherent qualities of the
individuals, who deliver the artifact. This is not to say that performance
measures or targets must be eschewed in favor of some set of loosely-
defined or lofty and impractical aims. KM brings the focus back to the
efficient delivery of a useful artifact and is more amenable to engaging with
the communication dynamics and shorter timescales of modern ISD projects.

The literature on the learning organization (the entity) and organizational
learning (the process) is a rich source of insight into the way knowledge is

created and communicated. For example, Crossan’s et al. (1999) model is an
explanation of how the creation of new knowledge (feed forward) and the
transfer of existing knowledge (feedback) occur through four processes –
intuiting, interpreting, integrating and institutionalizing – at individual,
group and organizational levels. Montoni et al. (2004) present an approach
for acquiring and preserving ISD knowledge and making it available
between organizations.

Knowledge work is not programmable and this creates challenges for

managers predisposed to command-and-control management. Drucker
(1999) asserts that the only way to increase the productivity of knowledge
workers is to radically change the way that they are managed:

1. Non-value added activities should be completely eliminated;
2. Knowledge workers should be responsible for their own

productivity;
3. Continuous innovation and learning are required, coupled with

knowledge workers teaching others what they know and what they
can do;

4. Quality of work is at least as important as quantity; and
5. Knowledge workers own the means of production so should be

treated as an organizational asset not a cost. Managers, however,
will experience tension between allowing employees autonomy and
wanting to maintain control of project outcomes.



172 WARREN KERLEY AND TONY HOLDEN

These issues have long been recognized in ISD and practice has been to
grant IT professionals greater autonomy than many other business functions.
Management of ISD therefore involves a relatively high degree of
professional trust. Nevertheless software development almost always needs
to be disciplined if it is to meet its stated objectives – i.e. allowing freedom
and responsibility but within a guiding framework. Practitioners and
managers alike see the benefits of methodologies in providing structure to
the development process (Barry and Lang 2002) and something to manage
against. Even if formalized methodologies are not used they still influence
practice (Avison and Fitzgerald 2003). Methodologies also provide an
organizational framework, a common language, shared paradigms and
approaches to problem solving and task completion that help project
participants to communicate, cooperate and learn (Wastell 1996).

In contrast, approaching ISD as a knowledge-based activity suggests that
any guiding principles employed should attend to the cognitive needs of
individuals, the behavioral and social realities of team based working, the
desirability of individual and organizational learning and the business needs
of flexibility and speed but at an appropriate level of risk.

5. Analysis of Methodologies

In order to analyze a methodology it can be considered in terms of its
constituent model, techniques, tools, scope, outputs, users and practice. Also,
any methodology will have an underlying intellectual framework or
philosophy and will be directed towards a particular application area. It will

therefore have particular management objectives and success measures.
How can the two approaches of methodologically- and knowledge and

organizational learning- based views on ISD be unified in a way that meets
the needs of all parties in the current environment? In the next paragraphs
we propose a framework, Figure 1, that relates the two perspectives. We
then highlight and discuss cross-linkages between the two.

Just as methodologies are characterized by different underlying

philosophies, the knowledge management literature is broadly divided

ontologically and epistemologically into objectivist and subjectivist
standpoints (Ortenblad 2002). The objectivist standpoint is common in the
information systems literature: knowledge is an object that can be separated
from both knower and context and much valuable knowledge can be
codified, stored and transmitted using information technology. This has led
to the development of knowledge management tools to support ISD such as

design rationale and experience factories. Kettunen (2003) follows an

objectivist philosophy when he proposes methods to manage software
development knowledge that involve auditing each person’s knowledge and
then determining with whom they should share this knowledge.



SYSTEM DEVELOPMENT METHODOLOGIES 173

The objectivist philosophy is contested by researchers who emphasize the
cognitive and social aspects of knowledge and see knowledge as situated in a
process of interactions (Brown and Duguid 1998). For example, the idea of
communities of practice belongs to this subjectivist branch of the literature.
Within these two schools there are of course numerous variations and
stances.

Care must therefore be taken when combining and applying different
elements of knowledge management theory in case there philosophical
inconsistencies between them and the aspect of the methodology being
considered. For example, during design will the emphasis be on
documentation (objectivist) or workshops and walkthroughs (subjectivist)?

Different methodologies have different scopes in terms of which aspects
of the systems development process that they include. This scope will
determine the set and type of knowledge covered by the methodology. This
can help management to judiciously determine where inter- and intra-
project boundaries should be drawn; such as which user representatives
should be included in the core project team. Knowledge can be “sticky” and
have difficulty crossing organizational and project boundaries and so
managing knowledge flow across these boundaries is an important task.
There may be a need for roles responsible for translating between the
different domains or to broker, mediate and coordinate the transfer of

knowledge (Brown and Duguid 1998).
The way knowledge is represented is a central theme in knowledge

management. The models, tools and techniques, process steps and outputs of

Figure 1. Mapping of KM and OL concepts onto the hierarchy of SDM elements.



174 WARREN KERLEY AND TONY HOLDEN

a methodology will determine how project knowledge is represented and
therefore created, retained and transferred. Structured analysis tools, such as
data flow and process flow diagrams, aim to make knowledge as explicit as
possible. The story cards used in agile methodologies, on the other hand,
leave much of the knowledge required to develop from them tacit.
Explanations of knowledge generation and organizational learning
emphasize the circulation of knowledge flows within the organization
(Crossan et al. 1999; Boisot 1998; Nonaka and Takeuchi 1995), which has
implications for the appropriateness of different process models as the
frequency of project iterations affects how quickly a project can learn.

As for the users of methodologies, Walz (1993) found that for some
projects over 75% of the time devoted to the design phase was spent in
learning both the user requirements and technologies to be used. Their
recommendation is that managers should increase the amount of application
domain knowledge across the entire software development staff by auditing
the existing knowledge of project members, allowing time for learning, and
provide tools to help capture information and project experiences for later
reuse.

However, learning, sharing and integration are time consuming and every

member of the team does not have to know everything. Postrel (2002)
suggests that given the costs of developing trans-specialist knowledge (i.e.
knowledge outside of one’s own specialist area) the best approach is for
workers to specialize in their own knowledge domains and for management
to foster “islands of shared knowledge” only where necessary. This suggests
that management should be more actively involved in managing learning and
the flow of knowledge than much of the ISD and product development

literature proposes.
In terms of objectives, what should be the balance between knowledge

exploration – the discovery and creation of new knowledge – and
exploitation – the systematic and purposeful application of knowledge
(March 1991)? In ISD projects there will be conflict between stakeholders
because of the tensions between the working conditions conducive to
thinking and creativity and the economic pressures to complete projects as

quickly and cost effectively as possible. Different methodologies provide
management with varying degrees of direct control over work tasks and
therefore require different levels of cooperation from workers for their
successful use. Although managers need to consider what individual, project
and organizational learning is required to successfully develop the system
that is the immediate focus of concern, it will be prudent to be mindful of
what further investment should be made in learning beyond immediate
project needs. This will engender competences relevant for future projects –
and associated activities such as tendering.

In ISD exploration and exploitation activities often happen together but
some activities, such as requirements definition and design, are more
focused on exploration than others, such as coding and testing. Knowledge



SYSTEM DEVELOPMENT METHODOLOGIES 175

exploitation in ISD is becoming progressively easier due to technology
improvements in areas such as hardware, packaged software and
development tools.

Similar improvements are required in knowledge exploration (Drucker
1999; Brooks 1987). The amount of knowledge exploration and therefore
learning that takes place varies widely by methodology. In general iterative
methodologies, such as those which incorporate a spiral process model, will
encourage exploration and learning. On the other hand the more established
waterfall-type models emphasize more of a knowledge exploitation approach
because knowledge exploration is prescribed only in the very early phases.

However generalizations like these may be unhelpful. For example,
eXtreme Programming (XP) takes the idea of multiple iterations to the
extreme: ideally a project is a series of two-weekly releases. However, as
Stephens and Rosenberg (2003) point out, in practice a number of XP
practices are in fact anti-learning. Simple design and constant refactoring
reduce the amount of reflection and thinking ahead. Pair programming may
discourage an individual from working through a problem if their partner
knows how to solve it. Additionally, a customer representative based on-site
creates a single point of contact for all the projects external knowledge
needs. XP therefore represents an extreme knowledge exploitation strategy
that relies on already skilled programmers and knowledgeable customer
representatives to be successful.

A final concern for managers is how performance may be measured. A
knowledge based perspective emphasizes systems quality over the quantity

of deliverables produced. Most of the literature on knowledge measurement

and valuation is directed at the firm-level, although Standfield (2002) is

creating standards for intangible accounting and management that may prove
useful to ISD. The subjectivist perspective on this however is that the search
for metrics is counterproductive as it attempts to reify knowledge and “such
indicators do not provide any sense of an organization’s stock or flow of
knowledge or its contribution to decision making and organizational
performance.” (Fahey and Prusak 1998)

6. The Future

Fitzgerald (2000) suggests that any new methodologies should focus on
simplifying and speeding up ISD by the following means:

1. Making greater use of packaged software and outsourcing, which
allow systems to be developed with higher level building blocks;

2. Recognizing that most business software is algorithmically simple
and therefore using methods and tools that are correspondingly
straightforward;



176 WARREN KERLEY AND TONY HOLDEN

3. Aiming for satisficing solutions that are ‘good enough’ for the
business need rather than striving to deliver something excessively
functional or sophisticated.

At the same time, methodologies should allow developers to use both
SDLC (top-down) and prototyping (bottom-up) approaches to elicit
requirements as needed as well as giving developers autonomy to choose
their own design and implementation methods.

The above criteria, therefore, combine to change the emphasis to one that
reinforces both pragmatic considerations and also that a methodology is
usually there to aid rather than hinder a developer.

If future methodologies follow this line then future methodologies are
likely to deal at a higher level of abstraction, specifying desired outcomes
(what) rather than prescribing the exact steps to be followed (how). They
should also give guidance on determining the learning needs of project staff,
how requirements should be negotiated, how conflicts inherent in the
creational processes can be resolved and how particular factors such as these

contribute to the project’s uncertainty and risk (Curtis et al. 1988).
A knowledge perspective would add to and amplify these factors by

providing an assessment of knowledge needs i.e. what knowledge is
available, what knowledge needs to be acquired and what knowledge will be
generated; the most appropriate process model for the needs of knowledge
exploration versus exploitation; the appropriate project organization and
technologies for knowledge sharing, sympathetic with worker cooperation
and knowledge coordination. It may be that methodologies based on the
conception of ISD as an engineering discipline may become less prevalent
and a new perspective and set of corresponding methods will come to the

fore.
As an example of how knowledge-based thinking can contribute to a

better understanding of the future of methodologies, Boisot’s (1998) I-space
provides a strategic model for analyzing organizations from a knowledge-
based perspective. He proposes that organizational cultures can be
characterized as fiefs, bureaucracies, markets and clans, which in the
simplified I*-space version of his model occupy each of the four quadrants
of a 2x2 matrix mapping knowledge codification against knowledge
diffusion.

Boisot’s bureaucracies and markets in the top half of I*-space correspond
to common business usage of these terms. In bureaucracies knowledge is
highly documented (codified) to allow knowledge retention and sharing, but
the diffusion of this knowledge is strictly controlled within the
organizational hierarchy by management. In markets knowledge is also
highly codified but sharing is uncontrolled and therefore information is
widely diffused. Business relationships are impersonal and competitive and
coordination is through processes of mutual adjustment and self-regulation.
In the bottom half of I*-space, fiefs are small organizations, such as business



SYSTEM DEVELOPMENT METHODOLOGIES 177

start-ups, where knowledge is largely uncodified and undocumented.
Relationships are face-to-face and hierarchical. Members of a fief are
expected to have shared beliefs and goals and to subordinate themselves to
the goals set by their leader. Finally, clans are typified by business or
academic networks. The valuable knowledge in these networks is largely
uncodified and passed through personal contact. A clan’s goals and activities
are negotiated by its members who must therefore share common values and
beliefs.

Applying Boisot’s I*-space to the process of information systems design
provides insights into the choice of systems development methodologies.
Historically for large projects, IT managers chose between in-house
development using traditional, formalized methodologies and using third-
party solutions either in the form of packaged software or by outsourcing
software development. The newer, agile methodologies described above
along with the use of open source software have been receiving increasing
interest as possible software development methods. These four development
approaches – formalized methodologies, packaged software and outsourcing,
agile methodologies and open source software development – map onto
Boisot’s four organizational cultures in I*-space as shown in Figure 2.

Undiffused Diffused

U
n
co
d
if
ie
d

C
o
d
if
ie
d

Knowledge Diffusion

K
n

o
w

le
d

g
e

C
o

d
if

ic
a

ti
o

n

Open source

software

development

(Clan)

Agile

methodologies

(Fief)

Packaged

software &

outsourcing

(Market)

Traditional

formalised

methodologies

(Bureaucracy)

Open source

software

development

(Clan)

Agile

methodologies

(Fief)

Packaged

software &

outsourcing

(Market)

Traditional

formalised

methodologies

(Bureaucracy)

Information technology influences organizational form. Improvements in
information technology are constantly increasing the bandwidth with which
information systems can process and transmit information. This increase
allows organizations either to transmit more information, more quickly and
more widely, increasing the diffusion of knowledge; or to reduce the amount
of codification that is required prior to transmission. In consideration of
these changes, Boisot hypothesizes that there will be a shift in organizational
forms from bureaucracies in the top left of I*-Space to the right (greater

Figure 2. ISD approaches mapped onto Boisot’s I*-Space.



178 WARREN KERLEY AND TONY HOLDEN

diffusion) and down (less codification) towards clans in the bottom right
quadrant.

The emergence of agile methodologies and open source software
development as viable options for software development can be attributed to
the improvements in information technology hypothesized by Boisot. In the
case of agile methodologies, this stems from a combination of improved
modeling and programming techniques (particularly object oriented
techniques) (Glass 1999) and increased machine speeds allowing fast
compilation and testing. The accessibility of open source software
development results from the use of the internet as a communication

medium (Raymond 1997).
Organizations will continue to take positions in I*-space but this analysis

suggests that there will be a move from formalized methodologies to
approaches incorporating the principles of open source development (as

space (clan/open source software development) is also the culture that is
suggested by much of the subjectivist literature of organizational learning
(Ortenblad 2002).

7. Application to Current Practice

New knowledge-based methodologies will take time to emerge. Our research
indicates that the selection of methodologies is determined as much by
stakeholder preferences – which are usually towards simple to understand
waterfall approaches – as the characteristics of the projects themselves. The
IT departments are therefore constrained in the methodologies that they can
use and see part of their role as educating the business about possible
approaches.

This does not mean that knowledge management ideas cannot be usefully
applied to existing practice. Recent case study research by one of the authors
investigated the management of project issues during ISD using traditional
methodologies. The root causes of many of the issues were found to be
knowledge gaps (Hoopes and Postrel 1999): the knowledge needed to
successfully perform the task existed within the project but this knowledge
was not effectively used due to problems of knowledge sharing. Many
knowledge sharing problems during requirements specification, systems
analysis and systems design were caused by poor working relationships
between the designers and other project participants.

The results of this research were used to develop a workbook –
comprising methodologies to audit project performance and improve project
control – to help project managers anticipate and manage the risks of
knowledge gaps during the design of Information Systems. Central to this
workbook was a mapping of the phases of the systems development lifecycle

This mapping provided an “ideal” case for the project organization and
control against which to evaluate the particular project. For example, based

shown by the arrow in Figure 3 above). The bottom right quadrant in I*-

to Boisot’s four organizational cultures in I*-space as shown in Figure 3.



SYSTEM DEVELOPMENT METHODOLOGIES 179

on knowledge management theory, systems analysis and systems design
ideally involves a fief culture involving a small, cohesive team closely
supervised by the project manager. In practice the design team often
involves participants from disparate organizations such as the IT department,
the customer and third party suppliers and these participants may have little
loyalty to the project manager or one another. The project manager therefore
should be acutely aware of the risk of poor cooperation between the various
participants and put in place the appropriate formal and informal control
modes to manage their work, as well as contingencies to deal with any
residual risks.

8. Next Steps and Conclusion

This paper has presented an overview of the history, theory and state of
practice of systems development methodologies. It has also presented some
ideas from the knowledge management literature and proposed that these
should be incorporated into the future development of methodologies and so
provide greater structure for the coordination of activities within ISD
projects. Given the different viewpoints about the nature of knowledge and
the role of management, it is certain that – as with existing methodologies –
knowledge-based methodologies will be developed that reflect both different
philosophies, types of projects and stages of information systems
development.

We are pursuing two streams of work. The first involves gathering
empirical evidence for the value of the knowledge perspective in practice.
Practice has often preceded theory in the field (Fitzgerald 2000) and research
is being directed at examining whether knowledge management and
organizational learning ideas are in fact influencing ISD practice. The
second stream is developing knowledge-based methodologies following the

Figure 3. SDLC phases mapped onto Boisot’s I*-Space.



180 WARREN KERLEY AND TONY HOLDEN

guidelines presented in this paper with the intention of using them in action
research.

References

Abrahamsson, P: 2002, Agile Software Development Methods. Review and Analysis, VTT
Electronics, Oulu, Finland.

Avison, DE and Fitzgerald, G: 2003, Where now for development methodologies?,
Communications of the ACM 46(1): 79-82.

Avison, DE and Wood-Harper, AT: 1991, Information systems development research: An
exploration of ideas in practice, The Computer Journal 34(2): 98-112.

Barry, C and Lang, M: 2002, A comparison of 'traditional' and multimedia information
systems development practices, Information and Software Technology 45(4): 217-227.

Boehm, B and Turner, R: 2003, Balancing Agility and Discipline: A Guide for the Perplexed,
Addison-Wesley, Boston.

Boisot, MH: 1998, Knowledge Assets: Securing Competitive Advantage in the Information
Economy, Oxford University Press, Oxford.

Brooks, FP: 1987, No silver bullet: Essence and accidents of software engineering, Computer
20(4): 10-19.

Brown, JS and Duguid, P: 1998, Organizing knowledge, California Management Review
40(3): 90-111.

Crossan, MM, Lane, HW, White, RE: 1999, An organizational learning framework: From
intuition to institution, Academy Of Management Review 24(3): 522-537.

Curtis, B, Krasner, H and Iscoe, N: 1988, A field study of the software design process for
large systems, Communications of the ACM 31(11): 1268-1287.

Drucker, PF: 1999, Knowledge-worker productivity: The biggest challenge, California
Management Review 41(2): 79-94.

Fahey, L and Prusak, L: 1998, The eleven deadliest sins of knowledge management,
California Management Review 40(3): 265 - 276.

Fitzgerald, B: 2000, Systems development methodologies: The problem of tenses,
Information Technology and People 13(3): 174-185.

Glass, R: 1999, The realities of software technology payoffs, Communications of the ACM
42(2): 74-79.

Hoopes, DG and Postrel, S: 1999, Shared knowledge, "glitches," and product development
performance, Strategic Management Journal 20(9): 837 - 865.

Kettunen, P: 2003, Managing embedded software project team knowledge, IEE Proceedings -
Software 150(6): 359-366.

March, JG: 1991, Exploration and exploitation in organizational learning, Organization
Science 2(1): 71-87.

Montoni, M, Miranda, R, Rocha, A and Travassos, G (eds): 2004, Knowledge Acquisition and
Communities of Practice: An Approach to Convert Individual Knowledge into Multi-
Organizational Knowledge, Lecture Notes in Computer Science 3096, Springer.

Nonaka, I and Takeuchi, H: 1995, The Knowledge-creating Company: How Japanese
Companies Create the Dynamics of Innovation, Oxford University Press, New York.

Ortenblad, A: 2002, Organizational learning: A radical perspective, International Journal of
Management Reviews 4(1): 87-100.

Postrel, S: 2002, Islands of shared knowledge: Specialization and mutual understanding in
problem-solving teams, Organization Science 13(3): 303-320.

Raymond, ES: 1997, The Cathedral and the Bazaar, Available Online,
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/.



SYSTEM DEVELOPMENT METHODOLOGIES 181

Riemenschneider, CK: 2002, Explaining software developer acceptance of methodologies: A
comparison of five theoretical models, IEEE Transactions on Software Engineering
28(12): 1135-1145.

Robillard, PN: 1999, The role of knowledge in software development, Communications of the
ACM 42(1): 87-92.

Standfield, K: 2002, Intangible Management: Tools for Solving the Accounting and
Management Crisis, Academic Press, San Diego.

Stephens, M and Rosenberg, D: 2003, Extreme Programming Refactored: The Case Against
XP, Apress, Berkeley, CA.

Walz, DB: 1993, Inside a software design team: Knowledge acquisition, sharing and
integration, Communications of the ACM 36(10): 63-77.

Wastell, DG: 1996, The fetish of technique: Methodology as a social defence, Information
Systems Journal 6(1): 25-40.




