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Abstract. A method for flexibly searching the conceptual design
space using a stochastic approach is presented. From a database of
previous design exemplars, a novel and inexpensive algorithm is used
to induce a Bayesian Belief Network (BBN) that represents the causal
relationships between a design domain’s variables. This BBN is then
used as part of an interactive tool for stochastically searching the
conceptual design space using two search heuristics. This method is

illustrated using a number of design scenarios based on a conceptual
car design domain. The paper concludes with future research avenues
to further the functionality of the BBN-based design search tool.

1. Introduction

The conceptual design stage occurs during the earliest parts of the design

process. This is where a design specification is transformed into an abstract

solution, representing the core concepts of the final design. The fluid nature

of the conceptual design stage provides a challenge when developing

deterministic models of a design at this phase. Specifically, it is difficult to

explicitly define metrics for concept quality and this is left to the subjective

expertise of the design team. The nature of conceptual design means that it is

possible for a ‘good’ concept to be poorly detailed and thus result in a poor

final product and vice versa. However, in general good concepts are more

readily transformed into good final products while poor concepts require

greater effort to attain a similar final high quality level.

A potential approach to this challenge is to adopt a stochastic perspective

of the conceptual design phase. This allows for a more flexible

representation of the design domain where multiple outcomes are possible.

By using Bayesian Belief Networks (BBNs) to model a design domain, it is

possible to work with partially defined design concepts. As more of the

design is specified, the more accurate the model becomes at predicting how

the remainder of the design is likely to be. An interesting and powerful
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aspect of the BBN is that it does not distinguish between the design

parameters that are directly controlled by the designer and design

characteristics which are determined as a result of the designer’s decisions

on the design parameters. This allows a designer to specify the

characteristics at the outset and to then be guided towards design parameters

that are likely to secure these characteristics.

This research has developed a method for inducing a BBN from a

Once the BBN has been instantiated, a set of search heuristics are

proposed to help guide a designer using the BBN to complete a partial

conceptual design (Section 5). This method is illustrated using a set of

design scenarios (Section 6). The paper concludes with a discussion of this

method and some future development avenues for this stochastic approach.

2. Background

The first task in the design process can be argued as determining the

specification of the final constructed artefact or product. The specification

will be a combination of ‘demands’ that the design must fulfil and weighted

wishes, which represent desirable but not essential aspects of the design.

This specification can be expressed as a simple list of features (Pugh 1990)

or encoded as an ‘acceptability function’ (Wallace et al. 1996). The

specification guides the designer towards generating concepts that fulfil the

demands. Alternative designs are discriminated between how well they

either fulfil the wishes or evaluate against the acceptability function.

Provided the specification does not impose overly restrictive demands, the

designer is still left with a large conceptual design space to explore.

Conceptual design is by definition fluid. It is left to the detail and

embodiment stages to crystalise the design into an artefact that can be

manufactured (Pahl and Beitz 1996). A good concept will be easily

transformed into a good final design. Conversely, a poor concept will require

extensive effort to transform into a good final design. This definition of

good/bad concept can only be measured after the final product has been

produced, and is of little use during the conceptual stage of the design

process. Also, the notion of a ‘good’ final design is domain and context

sensitive. A designer will have a notion of what aspects of the final design

are desirable, and a good designer will create concepts that are more likely to

have these outcomes.

As a means for resolving the lack of explicit overall quality measure, an

alternative, stochastic, view is adopted. This stochastic approach is

fundamentally that a good concept has a high probability of resulting in a

good final design, whereas a poor concept has a low probability of being

transformed into a good design. This leads to a stochastic view of the design

database of prior design exemplars using a novel information metric (Section 4).
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process: the probability of a good design at the end of the process depends

on the quality of the initial design concept.

The fluidity of the conceptual design phase means it is difficult to provide

concrete evaluation tools. Methods exist for creating ‘robust’ designs and,

through objective evaluation techniques, guide the designer towards

concepts that will be able to tolerate changes in the original specification

(Taguchi et al. 1989; Ziv-Av and Reich 2005). In effect, these methods aim

to provide the most generic design solution that is acceptable. These

methods require a predefined evaluation function for the design that encodes

the original design specification. An alternative stochastically driven

approach is to bias towards design refinement that do not have ‘spiky’

probability distribution functions (PDFs). Such PDFs lack robustness as any

deviation from the peak will result in a significant reduction in the likelihood

of design success.

The approach taken in this paper is to provide guidance on the order that

design variables should be determined. This designer guidance concept is

similar to the Signposting methodology (Clarkson and Hamilton 2000),

however it uses the shape of the dynamically computed PDFs rather than

predefined domain rules to determine the order that the design variables

should be determined.

An important aspect of this method is the inducing of domain models

from previous design exemplars. The methods for creation of domain

models can be represented on a spectrum ranging from expert based through

to fully algorithmic. The expert based end of the spectrum provides high

quality transparent models, however these require considerable time

investment from domain experts which can be prohibitive. At the other

extreme, pure machine learning methods tend to provide complex and

opaque models, which while accurate, do not necessarily provide a designer

with significant insight into the domain.

A motivating factor for this research is the cognitive aspects that affect

human designers. These include the range of model complexities that can be

intuitively handled; the nature of understanding a design domain; the latent

differences between novice and expert designers; and what constitutes an

intuitive interface to a stochastically based design domain model.

3. Bayesian Design

Bayesian design is the use of Bayesian Belief Networks to support the

design process. Bayesian Belief Networks (BBNs) provide a causal model

for a set of observations or variables (Jensen 2001). These models are

represented graphically, where the observations are the graph nodes and the

causal links are the directed edges that connect the nodes. As the networks

tend to be relatively sparse, namely that nodes are typically only attached to
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a small subset of other nodes, this significantly simplifies the computational

effort required to make inferences given a set of observations. As

observations are made, these provide information for the model. The model

uses these observations to make informed estimates on the values of the non-

observed variables. For a non-observed variable, it is possible to compute its

informed (conditional) probability distribution function. Effectively, the

available information biases the unobserved variable’s PDF.

In the design context, the observed variables are the design parameters

and characteristics. The distinction between these is primarily that design

parameters are directly determined by the designer while design

characteristics are a result of the design parameters. For the purposes of this

work, no distinction is made between these two, as it is impossible in general

to infer the causal order between the design variables. For example, when

designing a bridge one of the design parameters is the width of the bridge.

The wider the bridge, the greater the potential flow across the bridge which

is a design characteristic of the bridge. However, a greater potential flow

across the bridge will require a stronger bridge, which can be achieved

through a number of alternatives, e.g. material choice, structural design, etc.,

all of which are design parameters again.

Bayesian design is a stochastic view of design, and is particularly

appropriate for routine early design tasks. Due to the fluid nature of the early

design phases, this is an appropriate approach. Under the stochastic view,

each design variable has a PDF. This PDF is a mapping from the values the

design variable can take (design space) to the probability of that variable

taking that value. The probability of a variable taking on a particular value

represents is a measure of how frequently that variable takes that value in

final (e.g. detail phase) designs. This can be interpreted as a measure of the

design knowledge or experience that exists for achieving the given design

variable value. Thus, where low probabilities are encountered, this provides

a warning that a potential challenge lies ahead in achieving that position in

the design space.

As these PDFs are computed within a BBN, these will be biased where

relevant information is available. Relevant information in this context are

taken from neighbouring nodes within the network. The

updated conditional PDFs (CPDFs) now take into account the knowledge

that exists about a subset of designs from the domain, as defined by the

relevant information that has been added. So where previously setting a

design variable to particular value might have appeared difficult to achieve

by nature of the low probability of this outcome, it is possible that given the

additional information this is becomes a much more likely outcome.

This leads into exploiting design BBN as a design support tool. A

designer will start with a specification that defines a subset of the design

variables. These defined variables can be considered as observations and

observations
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thus be entered into the BBN. The BBN can now provide CPDFs for the

unobserved variables. These unobserved variables were not part of the

specification, and hence it may be assumed that the designer is free to set

these arbitrarily. The designer wishes to produce a design concept that will

have the greatest chance of producing a good concept, as these are least

likely to require extensive effort during the detailing phases to produce a

good final design. Hence, the designer should be attracted to set design

variables to their most likely states, as these represent the states where the

most knowledge and/or experience exists.

Where a number of different variables require determining, a simple

ordering heuristic can be applied. Design variables with narrow ‘spiky’

distributions should be determined first, proceeding through until the

variables with the ‘flattest’ PDFs being last. This ensures that design

variables with narrow likely ranges are set suitably as early as possible. If

this is not done, it is possible that through the setting of another design

variable, the ‘narrow’ design CPDF disappears altogether, thus representing

a highly unlikely design. In effect, this is the stochastic equivalent of over

constraining a design. Similarly, the ‘flat’ PDFs are likely to become spikier

as more of the design is defined. By monitoring how each individual PDF

changes with each additional design variable setting, it is possible to

dynamically guide a designer through the order in which the design variables

should be set. It is worth noting, however, that these are no more than

guiding heuristics. Designers are at liberty to navigate through the design

domain based on their personal experience or instincts.

4. Inducing Bayesian Networks

To use Bayesian Belief Networks as a design support tool, it is essential to

acquire a good BBN in the first instance. The first step to achieve this is the

creation of a suitable representation or encoding of the design domain. This

provides a definition of the conceptual design space of the domain under

consideration. A simple, but suitable, representation format is a design

vector. The design parameters and characteristics form the variable

components of the vector. As discussed in the previous section, these are to

be the nodes of the BBN.

The next step is identifying the causal links between these design variable

nodes. One method for achieving this is to use an expert (or panel of experts)

to manually identify the links. While this is expected to produce accurate

models, it is a time consuming exercise. As the domain becomes more

complex in terms of number of design variables, the complexity of the

model creation increases quadratically with the number of design variables.

Further, once the nodes have been linked, the PDFs and CPDFs that are

associated with the nodes and arcs respectively must be defined. This
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requires considerably greater consideration than identifying the causal links.

As a result, the expert crafted BBN is not appealing.

An alternative method for identifying the causal links in the BBN is to

apply data mining techniques to a database of previous design exemplars.

These techniques analyse the given database and create a network that

provides a sufficiently close representation of the stochastic phenomenon

observed in the database. These algorithms use three main metrics to

determine accuracy: validity, understandability, and interestingness (Mitra

and Pal 2002). Validity measures what proportion of the data can be covered

by the model. Understandability provides a complexity measure that can

represent how easy it is for a designer to understand a model. Finally,

interestingness measures the novelty of representation of a model in a design

domain. These metrics have been listed in order of difficulty of measuring.

Validity can be measured directly against the database supplied.

Understandability requires a measure of human ability to understand a given

model. Interestingness must be measured against the current state of domain

knowledge and combined with a subjective element supplied by the domain

expert.

4.1. INFORMATION CONTENT BASED METRIC

Most efficient BBN inducing algorithms require that the overall causal order

is known prior to running the algorithm. However, where this ordering is not

known, the complexity of most BBN graph inducing algorithm explodes to

O(n!), where n is the number of variables. In this research, it is assumed that

the causal order of the design variables is not known prior to running the

algorithm. A novel greedy algorithm has been developed for this work that

reduces the computational complexity down to O(n
2
). This breadth-first

greedy approach has been tested on some well known databases and

performs well in terms of identifying the correct BBN. The overall process is

illustrated in Figure 1.

The graph search algorithm implements a greedy search heuristic based

on a measure of the information content of the conditional probability

distribution. Recall the definition of conditional probability:

Figure 1. Flowchart representing the greedy BBN learning algorithm.
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Where the events A and B are independent, P(B, A) = P(B)P(A). Hence,

when A and B are independent P(B|A) = P(B). By considering the difference

between the observed conditional and prior probability distributions, it is

possible to measure the mean variation in this difference:

2
(2)

The variation, I, represents how much more information is contained in

the conditional probability distribution above the information contained in

the prior probability distribution. A large value for I indicates that the

conditional probability distribution contributes greatly to the knowledge of

the domain while a small value indicates that the two variables are likely to

be relatively independent of each other.

The graphical model search algorithm begins by measuring the pairwise

directions as in general I(A, B) � I(B, A). For each design variable, the

system is seeded with a partial model containing the given variable and the

variable that has the greatest information content of its conditional

probability distribution. Where a partial model would be repeated, the

variable with the next highest information content is selected.

These partial models are ordered in increasing information content order.

The next step is to merge partial models with low information content,

creating a new partial model whose information content is given by the sum

of its parts. The two lowest information content scoring models with a

common variable are merged, resulting in one fewer partial models. Where

there are more than two candidate models for combining, the tie breaker is

determined by (1) resulting model complexity followed by (2) lower

information score. This is repeated until all partial models are exhausted.

The above greedy algorithm results in a single graphical model.

5. Implementation

To test the above design heuristics, it was necessary to implement the

stochastic algorithm. To ensure wide access to the algorithm, it was decided

to implement the interactive design support tool using Microsoft’s Visual

Basic (VB) within Excel. Most office desktops have access to Excel, and

thus a large population of potential beta-testers exists.

The code is structured in two parts: The first part is a one-shot machine

learning algorithm that uses Equation 2 to induce the network from a given

dataset of prior design exemplars. As this only needs to be run once, it was

written in Matlab rather than VB. While this restricts the ability for arbitrary

information content between each variable pair. This is computed for both

I(A,B) = E[P(B | A)�P(B)]    –

≠
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users to use their own dataset, this is not a part of the user trial. The second

part of the code represents the user interface to the BBN. Figure 2 contains

the flowchart for the iterative and designer led search process. This is

encoded as a VB macro that reads the current design state from the Excel

design spreadsheet and computes the PDFs of the unspecified design

variables. These PDFs are extracted from the database of design exemplars

that resides on a separate spreadsheet. The conditional PDFs are computed

from the joint probabilities that can be extracted by frequency counting

within the database. The remainder of this section will focus on the user

interface.

5.1. DATA STRUCTURE

The data structures for the interactive design search tool are based on the

simple native structures available within Excel. There are three types of data

that need storing: (1) the database of previous design exemplars; (2) the

network structure; and (3) the current design state. Each of these is held in a

separate Excel worksheet. While this is not a highly efficient approach, it

does provide a very simple representation that can be easily manipulated by

a designer. Typically, a designer would be only interested in the design

status worksheet. However, the designer also has the capacity to edit the

BBN directly in the case that it is believed to be inaccurate. Also, the

designer is able to edit the exemplar database, either by removing data points

or adding further ones. However, if the manually edited data had an impact

on the network, this would not be possible for the user to determine directly.

The design status worksheet lists each design variable on a separate row.

The first column contains the variable name. In the next column, the variable

value is placed, when known. The remaining columns are used to display the

PDF for the given variable. The PDF is computed for all possible values the

design variable can take. This is a simple task, as the all the design variables

have been discretised and so there are only a small number of values to

consider. The designer then uses the PDFs as a guide to determining the next

design variable value.

Similarly to the design status worksheet, each row of the network work-

sheet contains the network data for a single variable. The first column

contains the variable name. The remaining columns contain the immediate

causal ‘parents’ of the variable. For each variable, X, these represent the set

of variables that X is causally dependent on. This set of parent variables is

Figure 2. Flowchart representing the overall design search process.
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typically denoted �(X). Hence, in the BBN, the CPDF of X is expressed by

P(X | �(X)).

Finally, the dataset work sheet simply contains a set of previous exemplar

designs. Each design is listed on a separate row. The columns in this case

contain the different design variables.

5.2. INTERACTIVE ALGORITHM

The interaction between designer and the code is centered around the

unspecified design variables. For illustration purposes, denote the

unspecified design variable as Y. To provide direct guidance, the information

supplied for each unspecified design variable is reduced to a single

dimension, namely the PDF for that design variable. Depending on the status

of adjacent design variables, there are two main cases to be considered: (1) Y

is a non-terminal node in the BBN tree and (2) Y is a terminal node. The

BBNs that are induced from the greedy learning algorithm are tree

structures: no node has more than one child, or alternatively, any variable

can causaly only affect one other variable. However, a variable can have

several parent variables that have a causal effect on it.

The first case is straightforward. The aim here is to compute the CPDF

defined by P(Y = y | �(Y)) for all y values that the design variable Y takes.

The CPDF only uses the specified parent design variables. That is, if one of

the members of �(Y) has not been specified, it is excluded from

consideration. Clearly, if none of the parents have been specified, then the

CPDF reduces to the PDF of the design variable Y.

In the second case, where the unspecified design variable Y is a terminal

node, the code considers the child node of Y. As the BBN is a tree graph,

there is only one child of Y. Let X = ��1(Y) be the unique child of Y. The

designer is then presented with the following distribution:

P(X | Y = y, �(X)) (3)

There are now two further sub-cases to consider: X has been specified and

X has not been specified. Where X is known, the algorithm proceeds to

compute the probabilities of achieving this specified value for all possible

values Y = y that the unspecified design variable can take. Again, only the

known values of �(X) are considered. In the second case, where X has not

been specified, the only information that can be used to guide the designer is

the PDF of the unspecified variable Y. This is as Y is a terminal variable, so

there are no further parents that will affect it, and it is independent to the

other parents of X, namely �(X).

It should be noted that in this second case, Equation 3 is not a proper

PDF as it does not necessarily sum to 1. This function measures the

likelihood of achieving the already determined value of X. However, for the

π
π

π

π

π    –

π

π

π
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purposes of identifying a good value for Y, the same argument applies,

namely that a designer should focus on those values that provide a suitably

high probability for achieving X’s value.

All the PDFs are computed dynamically at run time by counting suitable

exemplars from the database. The complexity of this process is O(Nn),

where N is the size of the database and n is the dimensionality of the design

space.

5.3. DESIGNER HEURISTICS

The final aspect to be considered is how the displayed PDFs are interpreted

by the designer as heuristics for the design search process. For each

unspecified design variable, the relevant PDF for that variable is displayed in

the columns adjacent to the design specification. As argued earlier, it is

suggested that the designer focuses first on the variables with narrow

distributions and then moves onto variables with ever wider distributions.

This is the variable ordering heuristic. The second heuristic guides the

designer to the value that each variable should be set to. It is suggested that

the designer selects the value that has an acceptably high probability

associated with it. This represents the most likely outcome for the design, or

conversely, the design with the greatest likelihood of success.

6. Case Study: Preliminary Car Design

As an initial trial of the stochastic design search method, the well known

UCI machine learning car design database was used (Blake and Merz 1998).

This database contains a sample of 1728 designs, each with a full set of

observations. Each sample represents a conceptual car design. The cars are

represented as a 10-dimensional vector comprising of both design

parameters and design characteristics. The design parameters are: the target

purchase price; the expected maintenance cost; the designed safety level; the

number of doors; the number of passengers; and the volume of luggage that

can be carried. The design characteristics are: the overall cost of ownership;

the comfort level; the technology level; and the overall car acceptability. All

the design variables are discrete. A set of predetermined rules was used to

map the design parameters onto the design characteristics to create the

database that was then used by the greedy BBN induction algorithm. The

structure of these rules is given in Figure 3. These structured rules provide a

means for comparing the stochastic design tool to the original and defining

structure of the design space.

The car database was first loaded into Matlab and passed to the BBN

learning algorithm. This generated a network representing the causal links

between the design variables. The algorithm produces exactly as many arcs

as there are design variables. This resulted in a non-tree structure. In a tree
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structure each node, with the exception of the root node, should have a

single child. The structure that was produced by the learning algorithm had

the ‘safety’ node linked to both the ‘technology’ and ‘car acceptability’

nodes. By considering the information content of the two arcs coming out of

the safety node, the arc with the lower information content was deleted. The

resulting tree network that was learnt from the dataset had an identical causal

structure to the underlying rule structure used to create original the design

database, as illustrated in Figure 3. This network was then encoded in the

Excel spreadsheet, along with the database.

6.1. STOCHASTIC SEARCH

The Excel spreadsheet provides the ‘user interface’ to the stochastic design

tool. Using this tool, four different design scenarios were explored based on

the nature of the design specification: (1) only design parameters specified;

(2) only design characteristics specified; (3) both specified; and (4) an

‘infeasible’ design specified. These are expanded below.

6.1.1. Design Parameters: ‘People carrier’

In the first scenario only design parameters (design variables under direct

control of the designer) were specified. Specifically, a subset of the design

parameters were specified to reflect a partial set of the requirements of a

‘people carrier’ type car. The design specification required that the car

should have low maintenance costs, a high safety rating, seat a large number

of passengers, and have a large luggage space. This specification omitted the

design parameters describing the purchase price of the car and the number of

doors.

Figure 3. Rule structure for the conceptual car domain.
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This specification was entered into the spreadsheet, and the VB macro

computed the PDFs for the unspecified design variables. Figure 4 is a screen

shot from this step. The stochastic design heuristic suggests considering the

design variables with the smallest distribution first. Further, to maximise the

likelihood of the design, the heuristic suggests selecting the values that

maximise this PDF. In this case, the order and settings of the design

variables were guided as follows (see also Table 1):

1. Comfort: set to ‘high’

2. Technology: set to ‘high’

3. Price: set to ‘low’

4. Car acceptability: set to ‘high’

5. Purchase price: set to ‘low’

6. Doors: set to ‘5’

It must be noted that at each step there were other potential alternatives

that could have been selected. Further, after each step, the PDFs for the

remaining undefined variables did change, thus illustrating the dynamic

nature of this search tool.

The final design does reflect a highly acceptable ‘people carrier’ design

concept. This would then be taken through to a more detailed design phase.

Figure 4. Screen shot from the ‘People Carrier’ design specification and initial PDF

computation.
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6.1.2. Design Characteristics: ‘Sports car’

The ‘sports car’ design scenario only specified the desired characteristics of

the final design concept. Three design characteristics were specified: the car

only required relatively low comfort, a high technology level, and a high

overall ownership cost. This left a large number of design variables to be

specified, which could potentially lead to infeasible designs without any

guidance, Table 1.

In a similar process to the previous scenario, the design heuristics

suggested the following course of action, see also Table 2:

1. Safety: set to ‘high’

2. Car acceptability: set to ‘low’

3. Luggage space: set to ‘low’

4. Purchase price: set to ‘high’

In this scenario, there were two occasions where the shape of two PDFs

were identical, Table 2, step 3, thus not providing a clear precedence for

TABLE 1. Search path for the unspecified design variables for the ‘People

Carrier’. Selected variable/value in bold.

Step Variable PDF/Likelihood

1 Buying

doors

COMFORT

PRICE

TECH

CAR

0.5

0.25

0

0.5

0.6

0.70

0.25

0.25

0

0

0

0.22

0.25

0.25

0.25

0.5

0.28

0.04

0.25

0.25

0.75

0

0.36

0.04

2 buying

doors

PRICE

TECH

CAR

0.25

0

0.5

0

0.70

0.25

1

0

0

0.22

0.25

1

0.5

0

0.04

0.25

1

0

1

0.04

3 Buying

doors

CAR

1

0

0

1

1

0

0

1

0

0

1

1

4 buying

doors

1

0

1

1

0

1

0

1

5 doors 0 1 1 1



236 PETER MATTHEWS

determining the values. In these cases, it is for the designer to use their

discretion to the order of determining the values.

The final design, while appearing to score poorly on a number of

characteristics, is in line with a high performance sports car that has traded

off mass appeal against a niche market.

6.1.3. Design Parameters and Characteristics: ‘Accessible luxury’

The ‘accessible luxury’ design scenario specified a combination of design

parameters and characteristics. The specified design parameters were: the car

should have low maintenance costs; be a four-door design; and have a high

TABLE 2. Search path for the unspecified design variables for the ‘Sports

car’. Selected variable/value in bold.

Step Variable PDF/Likelihood

1 buying 0 0 0.25 0.5

maint 0 0 0.25 0.5

doors 0.33 0.33 0.22 0.22

persons 0 0.5 0.33

luggage 0.58 0.25 0

safety 0 0 1

CAR 1 0 0 0

2 buying 0 0 0.25 0.5

maint 0 0 0.25 0.5

doors 0.33 0.33 0.22 0.22

persons 0 0.5 0.33

luggage 0.58 0.25 0

CAR 1 0 0 0

3 buying 0 0 0.25 0.5

maint 0 0 0.25 0.5

doors 0.33 0.67 0.67 0.67

persons 0 1 0.75

4 maint 0 0 0 1

doors 0.33 0.67 0.67 0.67

persons 0 1 0.75

5 doors 0.33 0.67 0.67 0.67

persons 0 1 0.75

6 persons 0 1 0
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safety level. The car was to have the following characteristics: it should have

a high comfort level and it should have a high acceptability level.

The stochastic search method suggested the following course of action,

Table 3:

1. Technology level: set to ‘very high’

2. Luggage space: set to ‘high’

3. Overall cost of ownership: set to ‘low’

4. Passengers: set to ‘4’

5. Purchase price: set to ‘low’

In this scenario there were occasions where the guidance to selecting the

variable value was ambiguous. For example, determining the overall cost of

ownership placed equal weight between selecting ‘low’ or ‘high’ (see Step 3

in Table 3). In this case, as the car is intended to be ‘accessible’, the designer

selects ‘low’. Had the designer selected ‘high’, this changes the options that

are offered two steps later when selecting the purchase price where the

designer is offered ‘high’ or ‘very high’.

6.1.4. Infeasible Design

In the final scenario, an infeasible design was specified. The design was

determined to be infeasible according to the rules that map the design

parameters onto the design characteristics. Specifically, given sufficient

design parameter information to determine the value of a characteristic, the

TABLE 3. Search path for the unspecified design variables for the ‘Accessible

luxury’. Selected variable/value in bold.

Step Variable PDF/Likelihood

1 buying
persons
luggage
PRICE
TECH

0.25
0
0

0.5
0

0.25
0.33
0.33

0
0

0.25
0.67
0.67

0.5
0

0.25

0
1

2 persons
luggage

PRICE

0
0

0.5

0.33
0.33

0

0.67
0.67

0.5

0

3 buying
persons
PRICE

0.25
0

0.5

0.25
1
0

0.25
1

0.5

0.25
0

4 buying
persons

1
0

1
1

0
1 0

5 buying 1 1 0 0
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characteristic was set to a different value thus representing an ‘infeasible’

design. While this is a slightly artificial case, it serves to demonstrate how

the search method proceeds under such circumstances.

In this scenario, the stochastic search method reported a flat zero PDF for

the cost of ownership characteristic (see Step 1 in Table 4). This indicates

that under the current specification, there is no previous knowledge on what

the likely cost of ownership for this design will be. If not having this

information was acceptable, the designer could proceed with the current

specification and find out further downstream in the design process what the

value of this characteristic would be. As part of this case study, this option is

not available. The alternative is to modify some other aspect of the design

until a non-zero PDF arises.

To search for an alternative design specification that provides a non-zero

PDF, the design domain BBN is used to track the parent and child variables

of the cost of ownership variable. These are the purchase price, the

maintenance cost, and the overall car acceptability. The design specification

did not include either the purchase price or the maintenance cost, leaving the

overall car acceptability design variable as the cause of the zero PDF. This

leaves the designer with two options: either modify the child variable (i.e.

the car acceptability) or consider the other parents of the child (in this case

the technology level, Figure 3). This is as the PDF displayed for the overall

car ownership variable is actually the CPDF of its child node, ranging over

all possible values that car ownership can take. As such, the displayed PDF

is the likelihood function, however the same value selection heuristics apply.

In this scenario, the designer decides to modify the comfort level

variable. The designer slackens the specification on this variable until the

PDF for ownership cost becomes non-zero, indicating that the design

specification is feasible, Step 2, Table 4. Once the partial specification is

feasible (no constant zero PDFs), the design search process continues as in

the other (feasible) design scenarios.

6.2. NOTES ON TRADITIONAL SEARCH

A traditional approach to completing the design specification would in the

first instance need to consider the design parameters and characteristics

separately. While specifying the design parameters remains possible, as this

is done directly by the designer, no information is made immediately

available regarding the likely values the design characteristics would take

on. These design characteristic values are only to be obtained if the designer

has knowledge about the relationship between the design parameters and the

characteristics. Without this knowledge, a designer must determine all

design parameters and then obtain the design characteristics through more

costly detail analysis or prototyping.
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The reverse approach where the designer specifies the design

characteristics and then searches for appropriate design parameters is not

directly possible with a traditional search. Where no or little knowledge

exists, the designer must guess initial design parameter settings and then test.

This must be repeated until either a sufficiently good design is achieved or

enough knowledge is generated to be able to understand the design domain

sufficiently well for the purposes of meeting the specification.

Both these approaches require performing extensive number of

experiments where the designer lacks knowledge on the nature of the

7. Discussion

There are two aspects to this stochastic design search method: inducing the

BBN design model from previous design exemplars and using the BBN as a

search tool. The information based induction algorithm appears to perform

well, based on a series of tests using databases taken from known source

models. The car design database provided an example of this, where it

identified the network structure with a single extra arc. This spurious arc was

easy to identify, as it was the arc with less information from one of two

potential arcs that broke the tree structure.

Using the BBN induced from the design database as a dynamic search

tool offers an efficient search strategy when the two search heuristics are

employed. The feasible design scenarios mainly followed the search

TABLE 4. Search path for the unspecified design variables for the

‘Infeasible design’. The first step involves slackening the ‘Comfort’

variable. Selected variable/value in bold.

Step Variable PDF/Likelihood

1 buying
maint
PRICE
(COMFORT@v-high)

0.25
0.25

0

0.25
0.25

0

0.25
0.25

0

0.25
0.25

0

2 buying
maint
PRICE
(COMFORT@high)

0.25
0.25

1

0.25
0.25

0

0.25
0.25

0

0.25
0.25

0

3 buying maint 0.5
0.5

0.25
0.25

0
0

0
0

4 maint 1 0 0 0

relationships between the various design variable.
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heuristics, with the designer rarely ‘deviating’ from the first ranked choice.

Further trials are needed where the designer does not follow these

suggestions.

Where a designer starts with an infeasible design, as per the final design

scenario, the stochastic search tool simply reports constant zero PDFs for the

unspecified variables. In the reported scenario, the designer used knowledge

of the BBN structure to identify the ‘neighbouring’ design variables to

modify blindly. An improvement would be to provide some form of

guidance to identify fruitful modifications to the current partial design

specification. This would allow the designer to ‘unblock’ the infeasible

design specification using a minimal change to the original specification.

8. Conclusions and Future Work

Using the Bayesian Belief Network with the two search heuristics provides

an efficient conceptual design search tool. The two heuristics aid the

designer to first identify the next design variable that should be determined,

followed by which value would provide the most robust design. A powerful

aspect of the BBN approach is that the designer need not distinguish design

parameters from design characteristics. This allows a designer to specify

design characteristics that are not normally under a designer’s direct control.

However, it must be emphasised that the designer is not constrained by the

design heuristics and is free to explore the design space in other orders. This

offers the designer the flexibility that is essential during the conceptual

design stage.

Further work is required in a number of areas. Research is needed on how

to develop a more intuitive user interface to the BBN. There is a need for

metrics for PDF ‘spikiness’ versus ‘flatness’. This is critical as it will not be

possible for a designer to identify the narrowest of PDFs in a design domain

with considerably more variables. Another key area for further work is to

develop methods for identifying design variables in infeasible design

specifications that could be fruitfully slackened. Currently, the designer only

has the network to identify neighbouring variables but no information on

which variable should be modified.

Finally, this work was based on an artificial database with a fully tested

set of designs (in terms of the design parameters). Further investigations are

required where this is not the case, as this represents real design situations.
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