
DESIGN OPERATORS TO SUPPORT ORGANISATIONAL DESIGN

CATHOLIJN M JONKER

University of Nijmegen, The Netherlands

ALEXEI SHARPANSKYKH, JAN TREUR

Vrije Universiteit Amsterdam, The Netherlands

and

PINAR YOLUM

Bogazici University, Turkey

Abstract. Organisational design is an important topic in the literature
on organisations. Usually the design principles are addressed

informally in this literature. This paper makes a first attempt to
formally introduce design operators to formalize the design steps in
the process of designing organisations. These operators help an
organisation designer create an organisation design from scratch as
well as offer the possibility to revise existing designs of organisations.
The operators offer both top-down refinements and bottom-up
grouping options. Importantly, the operators can be combined into
complex operators that can serve as patterns for larger steps in an

organisation design process. The usability of the design operators is
demonstrated in a running example. This is demonstrated by an
implemented prototype example tool.

1. Introduction

Organisations play a key role in the modern society. The welfare of the

society as a whole depends upon the effectiveness, efficiency and viability of

organisations. Organisational structures and processes are studied in social

sciences, where organisational design is a special topic. Organisation design

is concerned "with what an organisation is ought to be" (Pfeffer 1978). More

specifically, Galbaith (1978) stated that organisation design "is conceived to

be a decision process to bring about a coherence between the goals or

purposes for which the organisation exists, the patterns of division of labor

and interunit coordination and the people who will do the work". Further

203

J.S. Gero (ed.), Design Computing and Cognition 0’6, 203–222.
© 2006 Springer. Printed in the Netherlands.

204 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

Galbaith argues that design is an essential process for "creating

organisations, which perform better than those, which arise naturally".

In literature, a range of theories and guidelines concerning the design of

organisations are present (Galbraith 1978; Duncan 1979; Minzberg 1993;

Blau and Schoenherr 1971). However, despite the abundance of

organisational design theories no general principles applicable to

organisational design in all times and places can be identified (Scott 1998).

Moreover, almost all theoretical findings in organisational design are

informal and often vague. In order to provide an organisation designer or a

manager with operational automated tools for creating, analyzing, and

revising organisations, in the first place a formal representation of an

organisation model as a design object description should be provided. In

addition to this, to address the operations performed on such design object

descriptions during a design process, a formal representation of design

operators underlying possible design steps is needed. Such design operators

describe the possible transitions between design object descriptions. Using

the design operators, a design process can be described by, at the various

points in time, choosing a next operator to be applied to transform the

current design object description into the next one. Examples of very simple

design operators are adding or deleting an element of a design object

description.

In this paper we introduce a formal organisational model format, to be

used to represent design object descriptions. On top of this, a set of design

operators is formally defined. The formalisation is based on an extension of

predicate logic (Huth and Ryan 2004).

Often in the literature organisational design is recognized as an

engineering problem (Child 1973). From this perspective design is

considered as a continuous process of a gradual change of an organisational

model by applying certain operations (Pfeffer 1978). For example, Minzberg

(1993) describes design process as the following sequence of operations:

given overall organisational needs, a designer refines the needs into specific

tasks, which are further combined into positions. The next step is to build the

"superstructure" by performing unit grouping using special guidelines and

heuristics (e.g., grouping by knowledge and skill, by work process and

function, by time, by place, etc.). Then, the grouping process is repeated

recursively, until the organisation hierarchy is complete.

For this paper we aimed at identifying the most commonly and generally

used set of operators for designing organisations. For this purpose the

literature from social sciences, and design principles used in other

disciplines were investigated. Useful principles for organisational design can

be found in the area of derivative grammars. Thus, graphical changes in

organisational designs may be described by shape (Stiny 1991) and graph

grammars (Rozenberg 1997). Whereas changes in textual (or symbolic)

DESIGN OPERATORS 205

structural and dynamic descriptions of organisational elements may be

specified by string (Chomsky 1965) and graph grammars, which allow

representation of relationships between descriptions of different elements. In

order to relate graphical organisational designs to designs described in a

symbolic form, parallel grammars (or grammars defined in multiple

algebras) may be used (Stiny 1991). For designing organisation structures

with multiple levels of representation (e.g., hierarchical organisations with

departments, groups, sections) abstraction grammars (Schmidt and Cagan

1995) and hierarchical graph grammars (Habel and Hoffmann 2004) can be

useful. By means of abstraction grammars, design is performed from the top

level of the abstraction hierarchy to the bottom (most concrete) level, with

each design generation using the prior level design as a pattern. Furthermore,

mechanisms for choosing the most appropriate design generated by different

transformations defined by grammars have been developed in different areas

(e.g. recursive annealing in mechanical design (Schmidt and Cagan 1995)).

Thus, based on the rich literature on design, this paper makes a first

attempt to formalize the operators underlying organisation design processes.

A set of design operators is formally introduced, which provides the means

for creating a design of an organisation from scratch as well as revising

existing designs for organisations.

In Section 2 a formal framework for the specification of design object

descriptions for organisations is described. Sections 3 and 4 introduce a set

of classes of operators to create and modify design object descriptions for

organisations. Section 5 illustrates the application of a developed prototype

by an example. Finally, Section 6 discusses future work and provides

general conclusions.

2. Format for an Organisational Model as a Design Object Description

We consider a generic organisation model, abstracted from the specific

instances of agents (actors), which consists only of descriptions of

organisational roles and relations between them.

Definition 1 (Organisation)

A specification of an organisation with the name O is described by the

relation is_org_described_by(O, �, �), where � is a structural description and � is a

description of dynamics.

An organisational structure is characterized by the patterns of

relationships or activities in an organisation, and described by sets of roles,

groups, interaction and interaction links, relations between them and an

environment.

Γ ∆ ∆Γ

206 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

A structural description � of an organisational specification described by the

relation is_org_described_by(O, �, �) is determined by a set of relations, among

which
1
:

• a relation has_basic_components(�, R, G, IL, ILL, ONT, M, ENV)

defined on the subsets R, G, IL, ILL, ONT, M, ENV of the

corresponding general sets ROLE (the set of all possible role names),

GROUP (the set of all possible group names), INTERACTION_LINK

(the set of all possible interaction links names), INTERLEVEL_LINK

(the set of all possible interlevel links names), ONTOLOGY (the set of

all possible ontology names), ONTO_MAPPING (the set of all possible

ontology mappings names), ENVIRONMENT (the set of all possible

environment names)2

• a relation for specifying a role r�R in � is_role_in(r, �)

• a relation for specifying an interaction link e� IL in �

is_interaction_link_in (e, �)

• a relation for specifying an interlevel link il� ILL in �

is_interlevel_link_in(il, �)

• a relation for specifying an environment env�ENV

is_environment_in(env, ENV)

• a relation has_input_ontology(r, o) that assigns an input ontology

o�ONT to a role r�R (similarly the relations for output, internal, and

interaction ontologies are introduced: has_output_ontology(r, o),

has_interaction_ontology(r, o), has_internal_ontology(r, o))

• a relation has_input_ontology(env, o) that assigns an input ontology

o�ONT to an environment env�ENV (similarly the relations for

output, internal, and interaction ontologies are introduced:

has_output_ontology(env, o), has_interaction_ontology(env, o),

has_internal_ontology(env, o))

• a relation is_ontology_for(el, o) that assigns an ontology o�ONT either

to a role el� R or an environment el� ENV

• a relation has_onto_mapping(il, m) that associates an interlevel link

il� IL with an ontology mapping m�M (an ontology mapping for an

interaction link is defined similarly)

• a relation is_interaction_link_of_type(e, type) that specifies an

interaction link e� IL of one of the types: role_interaction_link,

env_input_link, env_output_link

1 Notice that all the following relations are defined using the names of organization elements;

2 The difference between R and ROLE, for example, is that R (subset of ROLE) is the set of

all role names that occur in �.

Γ ∆

Γ

Γ
Γ

Γ
Γ

Γ

∈ Γ
∈

∈

∈

∈ ∈

∈

∈
∈ ∈

∈

∈

∈

∈

Definition 2 (Organisation Structure)

Γ

the specifications for these elements will be provided in the following definitions.

Γ

DESIGN OPERATORS 207

• a relation connects_to(e, r, r', �) that specifies a connection by an

interaction link e� IL from a source-role r � R to a destination role

r’�R in �

• a relation connects_to(e, env, r, �) that specifies a connection by an

interaction link e� IL of type env_output_link from an environment

env�ENV to a role r�R in � (similarly for connects_to(e, r, env, �))

• a relation subrole_of_in(r', r, �) that specifies a subrole r’�R of a role

r�R in �

• a relation member_of_in(r ,g ,�) that specifies a member role r�R of a

group g�G in �

• a relation interlevel_connection(il, r, r', �) that specifies a connection

by an interlevel link il� ILL between roles r, r’�R of adjacent

aggregation levels

Organisational behavior is described by dynamic properties of the

organisational structure elements.

Definition 3 (Organisation Dynamics)

A description of dynamics � of an organisational specification described by

the relation is_org_described_by(O, �, �) is determined by a set of relations,

among which:

• a relation has_basic_components(�, DP) that specifies a set of dynamic

• a relation has_dynamic_property(r, d) that specifies a dynamic property

d�DP for a role r�R (the relations for dynamic properties of an

interlevel link, a group and an environment are defined in a similar

manner: has_dynamic_property(e, d), has_dynamic_property(g, d),

has_dynamic_property(env, d))

• a relation has_expression(d, expr) that identifies a dynamic property

name d�DP with a dynamic property expression expr�DPEXPR (e.g.,

a formula in sorted first-order predicate logic)

A role is a basic structural element of an organisation. It represents a

subset of functionalities, performed by an organisation, abstracted from

specific agents (or actors) who fulfill them. Each role has an input and an

output interface, which facilitate the interaction (communication) with other

roles. The interfaces are described in terms of interaction (input and output)

ontologies: a vocabulary or a signature specified in order-sorted logic. An

ontology contains objects that are typed with sorts, relations, and functions.

Each role can be composed of a number of other roles, until the necessary

detailed level of aggregation is achieved. Thus, roles can be specified and

analyzed at different aggregation levels, which correspond to different levels

of an organisational structure. A role that is composed of (interacting)

subroles, is called a composite role.

Γ

Γ
Γ

ΓΓ
Γ

Γ

Γ

∈

∈
∈ ∈

∈
∈

∈
∈

∈ ∈

Γ ∆

∆

∆

∈ ∈

∈ ∈

∈
∈

Γ

Γ

properties names DP defined in an organisation model

208 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

Definition 4 (Role)

A specification of a role r is determined by:

Objects:

• or, oi, o, o', o''�ONT, or= o � o' � o'', oi= o' � o'', here � is a

functional symbol that maps names of ontologies to a name of the joint

ontology

• Relations:

• has_internal_ontology(r, o), has_input_ontology(r, o'), and

has_output_ontology(r, o'')

• has_ontology(r, or) and has_interaction_ontology(r, oi)

• d�DP, has_dynamic_property(r, d)

The ontologies, which describe interfaces of interacting roles, can be

different. Therefore, if necessary, the specification of a role interaction

process includes ontology mapping. An ontology mapping m between

ontologies o and o' is characterized by a set of relations is_part_of_onto_map(a, a',

m), where a is an atom expressed in ontology o and a’ is an atom expressed

using ontology o’.

Roles of the same aggregation level interact with each other by means of

interaction links. The interaction between roles is restricted to

communication acts.

Definition 5 (Interaction link)

An interaction link e is determined by:

Relations:

• is_interaction_link_in(e, �)

• has_onto_mapping(e, m) for some m�M

• has_dynamic_property(e, d) for a number of d�DP

• Constraints:

• An interaction link e should connect two roles at the same aggregation

level: is_interaction_link_in(e, �) � �r, r'�R connects_to(e, r, r', �) �

¬has_subrole(r, r') � ¬has_subrole(r', r)

An interlevel link connects a composite role with one of its subroles. It

represents an information transition between two adjacent aggregation

levels. It may describe an ontology mapping for representing mechanisms of

information abstraction. For example, consider a situation, in which only a

(abstracted) part of information communicated within a certain composite

role should be made available as output from this role.

Definition 6 (Interlevel link)

A specification for an interlevel link il is determined by:

Relations:

• is_interlevel_link_in(il, �)

Γ

Γ

Γ

Γ

∈

∈

∈
∈

∈⇒

⊂⊂ ⊂ ⊂

∨
∨

E

DESIGN OPERATORS 209

• has_onto_mapping(il, m) for some m�M

• Constraints:

• An interlevel link il should connect two roles at two adjacent

aggregation levels: is_interlevel_link_in(il, �) � �r, r'�R

subrole_of_in(r', r, �) � (interlevel_connection(il, r, r', �) �

interlevel_connection(il, r', r, �))

A group is a composite structural element of an organisation that consists

of a number of roles. In contrast to roles a group does not have well-defined

input and output interfaces. Groups can be used for modeling units of

organic organisations, which are characterized by loosely defined or

sometimes informal frequently changing structures that operate in a dynamic

environment. Furthermore, groups can be used at the intermediate design

steps for identifying a collection of roles, which may be further transformed

into a composite role.

Definition 7 (Group)

A group g is defined by the relations to other concepts:

• membership relation member_of_in: r�R member_of_in(r, g, �)

• has_dynamic_property(g, d) for a number of d�DP

The conceptualized environment represents a special component of an

organisation model. According to some sociological theories (e.g.,

contingency theory), an environment represents a key determinant in

organisational design, upon which an organisational model is contingent.

Similarly to roles, the environment is represented in this proposal by an

element having input and output interfaces, which facilitate in interaction

with roles of an organisation. The interfaces are conceptualized by the

environment interaction (input and output) ontologies. Interaction links

between roles and the environment are indicated in the organisational model

as ones that have a specific type, namely env_input_link or env_output_link by

means of the predicate is_interaction_link_of_type. Roles interact with the

environment by initiating observations and obtaining observation results,

and performing actions that can change a state of the environment.

The behavior of each element of an organisational structure is described

by a set of dynamic properties. With each name of a dynamic property an

expression is associated. Dynamic property expressions represent formulae

specified over a certain ontology(ies). In particular, a dynamic property for a

role is expressed using a role ontology. A dynamic property for an

interaction link is constructed using the output ontology of a role-source of a

link and the input ontology of a role-destination. A group dynamic property

is expressed using ontologies of roles- members of a group. An example of

the dynamic property expression will be given in Section 3.1.

The application of the basic components of an organisational model is

illustrated by means of a running example. Consider the process of

Γ
Γ Γ

Γ

Γ

⇒
∨ ∨

∈
∈

∈

∈

E

210 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

organizing a conference. A partial model for the considered conference

organisation is shown in Figure 1.

At the most abstract level 0 the organisation is specified by one role CO

(Conference Organisation) that interacts with the environment Env. Role CO

can act in the environment, for example by posting a call for papers in

different media. Note, that the organisational model is depicted in a modular

way; i.e., components of every aggregation level can be visualized and

analyzed both separately and in relation to each other. Consequently,

scalability of graphical representation of an organisational model is

achieved. At the first aggregation level the internal structure of the

composite role CO is revealed. It consists of subrole Ch (Conference Chair),

which interacts with two other subroles: OC (Organizing Committee) and PS

(Paper Selection role). At the second aggregation level the internal structure

of role PS is represented. It consists of subrole PCh (Program Chair), subrole

PCM (Program Committee Member), and subrole R (Reviewer), which

interact with each other. The input interface of role PS is connected to the

input interface of its subrole PCh by means of an interlevel link. In our

example the interlevel link describes the mapping between the input

ontology of role PS and the input ontology of its subrole PCh. It means that

information, transmitted to the role PS at the first aggregation level, will

immediately appear at the input interface of subrole PCh, expressed in terms

of its input ontology at the second aggregation level.

3. Representing Design Operators for Organisational Design

In this section a formal format to represent design operators and based on

this format representations are introduces for a number of primitive design

operators for designing organisations. Each primitive operator represents a

Figure 1. Model of the conference organizing committee.

DESIGN OPERATORS 211

specialized one-step operator to transform a design object description

(organisational model) into a next one. The parts of the organisation O that

are being modified in terms of structure and dynamics (i.e., sets of dynamic

properties) are specified using the in-focus relations: structure_in_focus(O, Rf, Gf,

ILf, ILLf, ONTf, Mf, ENVf) and dynamics_in_focus(O, DPf), with Rf�R, Gf�G, ILf� IL,

ILLf� ILL, ONTf�ONT, Mf�M, ENVf�ENV, DPf�DP. The remaining parts of the

organisation stay the same.
The following operations all refer to an organisation O�ORGANISATION

described by relations is_org_described_by(O, �, �), has_basic_components(�, R, G, IL,

ILL, ONT, M, ENV). This organisation is modified by an operator, leading to a

second organisation O’�ORGANISATION described by relations
is_org_described_by(O', �', �'), has_basic_components(�', R', G', IL', ILL', ONT', M', ENV’).

Our choice of primitive operators is motivated by different design

guidelines and theories from social sciences (Galbraith 1978; Blau and

Schoenherr 1971; Lorsch and Lawrence 1970), other disciplines, and our

own research on formal modeling of organisations (Broek et 2005).

However, the application of the proposed set of operators is not restricted

only to these theories. Thus, a designer has freedom to choose any sequence

of operators for creating models of organisations. The operators are divided

into three classes, which are consecutively described in the following

subsections. Thus, in Section 3.1 the operators for creating and modifying

roles are specified; in Section 3.2 the operators for introducing and

modifying different types of links are described; and in Section 3.3 the

operators for composing and modifying groups are introduced.

3.1. OPERATORS FOR ROLES

The classes of primitive operators for creating and modifying roles in a

design object description for an organisation are shown in Table 1.

CLASS DESCRIPTION

Role Introduction Introduces a new role

Role Retraction Deletes all links, connected to a role with their dynamic
properties and mappings; deletes a role and all dynamic
properties, associated with this role

Role Dynamic Property
Addition

Adds a new dynamic property to a role

Role Dynamic Property
Revocation

Deletes an existing role dynamic property

A role introduction operator adds a new role to the organisation. Usually,

in organisational design after organisational tasks have been identified, these

tasks should be further combined into positions (roles), based on the labor

division principles (Kilbridge and Wester 1966).

TABLE 1. Operator classes for creating and modifying roles.

Γ

Γ Γ

⊆ ⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆

∈
∆

∈
∆

Γ

al.

212 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

Role introduction operator

Let op(O, O', �) be an operator that changes O into O’ with a focus on �. Then op

is a role introduction operator iff it satisfies:
1. ��R, ��R' such that is_role_in(�, �')

2. structure_in_focus(O, � , � , � , � , � , � , �)

3. structure_in_focus(O', {�}, � , � , � , ONTf', � , �), where ONTf'= is_ontology_for(o, �)

and o� ONT'

A role retraction operator removes all links, connected to a role with

their dynamic properties and mappings; it also deletes dynamic properties,

associated with the role and the role itself. In the example of the conference

organisation, when the Reviewer Recruiter has found enough reviewers, then

the role can safely be removed from the organisation.

A formal representation for the role retraction operator has been left out

due to the limited space and can be found in Jonker et al. (2005).
A role dynamic property addition operator creates a new property for the

existing role in the organisation. For example, a role property that may be
added to role Reviewer (R) expresses that a reviewer should send her review
to the Program Chair before a certain deadline. This property can be
formalized using the Temporal Trace Language (TTL) (Jonker and Treur
2003a), which is a variant of an order-sorted predicate logic with facilities
for reasoning about the dynamics properties of a system. Thus, the dynamic
part of the organisational model is changed by adding the following dynamic
property for role R:
� t state(�, t) |= deadline_for_conference(d) � �t’ < d state(�, t’, output(Reviewer)) |=

communicated(send_from_to(Reviewer, Program_Chair, review_report))

A role dynamic property revocation operator deletes a property from the
dynamic description of a role.

3.2. OPERATORS FOR LINKS

In this subsection, we propose a set of classes of primitive operators for

creating and modifying links in a design object description for an

organisation, Table 2.

CLASS DESCRIPTION

Interaction Link Addition Adds a new interaction link between any
two roles

Interaction Link Deletion Deletes an interaction link and all dynamic
properties, associated with this link

Interlevel Link Introduction Introduces a new interlevel link

Interlevel Link Retraction Retracts an existing interlevel link

Interaction Dynamic Property
Addition

Adds a new dynamic property to an
interaction link

Interaction Dynamic Property

Revocation

Deletes an existing dynamic property,

associated with an interaction link

TABLE 2. Operator classes for creating and modifying links.

Γ

δ

δδ∈/ ��δ∈
Ø Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø Ø δ
∈

A γ γ

δ

δ

E⇒

DESIGN OPERATORS 213

An interaction link addition operator allows the creation of an interaction

link (information channel) between two existing roles in the organisation. In

the organisational design after organisational subtasks are assigned to roles,

the problem of coordination of interdependencies among subtasks should be

solved.

In the conference management example, the Program Chair (playing in

this case a managerial role) may request two reviewers to discuss their

reviews. This requirement can be handled by the addition of an interaction

link between the appropriate reviewer roles in the design object description

for an organisation.

Interaction link addition operator
Let op(O, O', �) be an operator that changes O into O’ with a focus on �. Then
op is an interaction link addition operator iff it satisfies:

1. �� IL, IL' such that is_interaction_link_in(�, �')

2.

3. structure_in_focus(O', � , � , {�}, � , � , Mf', �)

Mf'= {m� M'| has_onto_mapping(�, m)}

An interaction link deletion operator is used to delete an existing

interaction link between two roles as well as to revoke all dynamic

properties, associated with this link. For example, the Program Chair has

taken care of the acceptance proceedings for the conference. He does not

need to be in contact with the reviewers any more. This case can be handled

by the deletion of the interaction between two roles in the design object

description for an organisation.

An interaction property addition operator creates a new property for an

existing interaction link. An interaction property revocation operator deletes

a property from the dynamic description of an interaction link.

An interlevel link creates a relation between a composite role and its

subroles. It allows information that is generated outside the role, to be passed

into the role through its input interface or it allows information, generated

within a role to be transmitted outside through the role output interface.

Normally, in hierarchical (mechanical) organisations decisions made at a

managerial level are transferred to an operational level, e.g, to a certain

department. Within the department this information is obtained by a certain

role(s). For identifying, which roles obtain this information interlevel links

are used. In the conference management example, the Conference Chair may

have the possibility to send inquiries to Program Committee Members. This

can be achieved by introduction of an interlevel link between composite role

Paper Selection (with which role Conference Chair has a direct connection

by an interaction link) and its subrole Program Committee Member. An

interlevel link introduction operator allows addition of such a link into a

role.

��δ∈/ δ∈ Γ
structure_in_focus(O, � , � , � , � , � , � , �)Ø Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø Ø
∈

δ
δ

δ δ

δ

214 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

Interlevel link introduction operator
Let op(O, O', �) be an operator that changes O into O’ with a focus on �. Then op

is an interlevel link introduction operator iff it satisfies:

1.

2.

3.

An interlevel link retraction operator is used for breaking off interaction

between some composite role and one of its subroles. This operation

removes an interlevel link from the design object description for an

organisation. If the Conference Chair does not need to communicate with

Program Committee Members any more, the interlevel link between these

two roles can be retracted.

3.3. OPERATORS FOR GROUPS

The classes of primitive operators for creating and modifying groups in a

design object description for an organisation are shown in Table 3.

Often an organisation designer can easily list a number of roles needed in

an organisation. However, it is not always clear, which roles are related to

each other; which roles would most often interact with each other, and so on.

CLASS DESCRIPTION

Grouping Combines roles into groups

Degrouping Moves roles outside of a group and deletes
the group

Group-to-Role
Transformation

Transforms groups into roles

Role-to-Group
Transformation

Transforms roles into groups

In the literature on organisational design (Minzberg 1993) different

principles of grouping are described. For example, role grouping can be

performed based on (1) similarities in role functional descriptions; (2) role

participation in the same technological process; (3) identity or similarity of

role technical specialties; (4) role orientation on the same market or

customer groups. Often roles belonging to the same group interact with each

other intensively. However, in the proposed organisational model in contrast

to roles, groups do not have interfaces. It means that every role within a

group is allowed to interact with roles outside the group by means of direct

interaction links. A group can be transformed into a role, a more coherent,

integrated and formal organisational unit with proper interfaces (e.g., a

department of an organisation). For example, in the conference organisation

the Program Chair and the Program Committee Members can be joined in

one Program Committee group that will be responsible for making final

TABLE 3. Operator classes for creating and modifying groups.

structure_in_focus(O, � � , � , � , � , � , �)Ø Ø Ø Ø Ø Ø Ø
�� IL, IL' such that is_interaction_link_in(�, �')��δ∈/ δ∈ Γ

,
structure_in_focus(O', � , � , {�}, � , � , Mf', �)Ø Ø Ø Ø Ø
Mf'= {m� M'| has_onto_mapping(�, m)}∈

δ

δ

δ
δ

δ

DESIGN OPERATORS 215

decisions concerning paper acceptance. This can be accomplished by

applying the grouping operator.

Grouping operator

Let op(O, Rg, O', Gn) be an operator that changes O into O’ wrt. Gn�G’, Rg�R.

Then op is a grouping operator that creates a new group Gn from the subset of

roles Rg iff it satisfies:

Structural aspect:
1. �a� Rg: member_of_in(a, Gn, �’).

2.

3. structure_in_focus(O', � , {Gn}, � , � , � , � , �)

Dynamic aspect:
1. dynamics_in_focus(O, �)

2. dynamics_in_focus(O', DPf')
DPf'={dp� DP'| has_dynamic_property(Gn, dp) }.

3. Er={e� IL| �r1�Rg �r2�Rg connects_to(e, r1, r2, �)}

DPr={dp� DP|�r� Rg has_dynamic_property(r, dp) � �e�Er has_dynamic_property(e, dp)}

DPg={ ’| has_dynamic_property(Gn, dp)}

4. DPg�DCL(DPr), where DCL(DPr) is the deductive closure of DPr

A natural dual to the role grouping is role degrouping. This operator takes

a group of roles and moves the roles to outside of the group. Role

Degrouping transforms a group into a set of roles.

For a group to act as a role, it should have well-defined (formalized)

input and output interfaces. A Group-To-Role operator takes a group and

adds these interfaces. In an organic organisation with loosely defined

frequently changing structure this would correspond to the formalisation of

one of the organisational units, i.e., providing a formal (permanent)

structural description with the subsequent specifying formal functional

procedures. For example, in the conference organisation setting Program

Committee group from the Paper Selection role can be further transformed

into Program Committee role, a formal organisational unit with certain

characteristics and functions (e.g., final decision making for the paper

acceptance). In this case reviewers should follow a formal procedure for

interactions with Program Committee role and cannot directly address any

arbitrary Program Committee member. Such transformation can be achieved

by means of Group-to-Role operator.

Group-to-Role operator

Let op(O, g, O', r) be an operator that transforms group g�G in O into role r�R' in

O’. Then op is a group-to-role operator iff it satisfies:

Structural aspect:
1. r� R, g� G'.

2. �a�R: member_of_in(a,g, �) � subrole_of_in(a, r, �’).

3. structure_in_focus(O, � , {g}, � , � , � , � , �)

4. structure_in_focus(O', {r}, � , � , � , ONTf', � , �)

has_output_ontology(r, o)}

А∈ Γ
structure_in_focus(O, � , � , � , � , � , �)Ø Ø Ø Ø Ø Ø� ,Ø

�Ø �Ø �Ø �Ø �Ø �Ø

�Ø

�∈
�∈ E∈ E∈ Γ

∈ E∈ E∈
dp� DP∈

⊆

∈/ ∈/
∈A Γ Γ⇒

Ø Ø Ø Ø Ø
Ø Ø Ø Ø Ø

∈

∈ ⊆

∨

Ø

ONTf'={o�ONT'| has_internal_ontology(r, o) �v has_input_ontology(r, o) �v

∈∈

216 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

Dynamic aspect:
1. dynamics_in_focus(O, DPf)

DPf={dp�DP| has_dynamic_property(g, dp)}.

2. dynamics_in_focus(O', DPf')
DPf'={dp�DP'| has_dynamic_property(r, dp)}.

3. DP(g) � DP(r)

A role may consist of several other roles that are not exposed to the rest

of the world. When a role is converted to a group, it exposes the input and

output interfaces of the roles inside it. Transforming a role into a group

results in the subroles now residing on the level of the prior composite role.

For example, during the reorganisation some formal organisation units (e.g.,

groups, sections, and departments) have been eliminated, whereas the roles

that constituted these units and relations between them were kept, thus,

creating a basis for new organisational formations.

The described above primitive operators reflect major principles of

organisational design. In practice next to the primitive operators more

complex operators are used. Complex operators are represented as a

combination of primitive operators; some of them are given in Table 4.

Sometimes an effect produced by application of some composite operator

to a design object description for an organisation can be achieved by

different combinations of primitive operators.

Consider the Role Refinement operator as an example. This operator

divides a role into several roles such that the role properties of the first role

are distributed over the newer roles. In organisational design role refinement

corresponds to the fine-tuned specialization and division of labor for

increasing efficiency. It is usually recommended to divide the work so that

the portions be differentiated rather than similar, and that each role is

responsible for a small portion of the overall task. According to Adam

Smith, division of labor is limited by the extent of the market; other general

principles of labor division can be found in (Kilbridge and Wester 1966).

Let us illustrate the application of Role Refinement operator in the

context of the conference organizing example. In Figure 2 the design object

description for an organisation is represented at the first aggregation level.

The symbol * denotes that an operator can be applied zero, one or multiple times.

Consider the situation when the decision is made to divide the tasks of

Organizing Committee (OC) between the Local Organizing Committee

(LOC), which is hence responsible for negotiations with publishers for

printing proceedings and arranging the conference venue, and the General

Organizing Committee (GOC), which is designated for solving financial and

other questions. Thus, role OC is refined into two newer roles LOC and

GOC. These roles are able to interact with each other and with role Chair.

∈

∈
⇒

4. Composing Operators

DESIGN OPERATORS 217

NAME PATTERN FOR DESCRIPTION

Interaction
Level
Ascent

Interaction link deletion*. Role
interaction dynamic property
addition*. Interlevel link addition*.
Interaction link addition*.

Represents interaction
between roles at a higher
aggregation level

Role
refinement

Role Retraction. Interlevel link
deletion*. Interaction link deletion*.
Interaction dynamic property
addition*. Interlevel link addition*.
Interaction link introduction*. Role
dynamic property addition*. Role

introduction*

Divides a role into
several roles such that
the role properties of the
first role are distributed
over the newer roles

Role join Role Retraction*. Interlevel link
deletion*. Interaction link deletion*.
Interaction dynamic property
addition*. Interlevel link addition*.
Interaction link introduction*. Role

dynamic property addition*. Role
introduction

Joins several roles into a
single role

Adding
aggregation
levels

Interaction Level Ascent. G-t-R. Role
grouping. Role refinement*

Aggregates existing roles
of the organisation in
more complex roles

Ch
PS

OC

PS

LOC

GOC

Ch

refines

refines

Figure 2. Example of Role refinement operator application, in which the Organizing

Committee role (OC) is refined into the Local Organizing Committee (LOC) and

Alternatively, every composite operator can be considered as an

aggregated one-step operator. Such descriptions define formal conditions for

a design object description for an organisation before and after the

application of a complex operator; therefore, they can serve for the purposes

of checking integrity and consistency of a design object description.

A natural dual to the role refinement is role joining. This operator takes

several roles and joins them into a single role. Consider again the

organisation arranging a conference. If over time the differences between the

tasks of the Program Committee Member and Reviewer roles disappear, then

the roles Program Committee Member and Reviewer can be joined in one

role.

General Organizing Committee roles (GOC).

TABLE 4. Sample complex operators for creating and manipulating organisations.

218 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

Let us consider one more often used complex operator Adding

Aggregation Levels. When certain roles have been joined in one group, this

operator allows representing this group as an integral structural unit of an

organisation at the more abstract aggregation level. This operator has a

counterpart in organisational design studies called departmentalization.

Based on the departmentalization principles (cf. Galbraith 1978) an

organisation is partitioned into structural units (called departments) with

certain areas of responsibilities, a functional orientation, and a local

authority power.

In the conference organisation Adding Aggregation Levels operator can

be applied for representing the Program Committee as an integral role that

consists of the Program Chair and the Program Committee Member roles

within Paper Selection role. Such choice, for example, can be motivated by

introducing a general formal procedure for paper acceptance. Hence, the

Program Committee role is empowered (has a corresponding dynamic

property) to make final decisions concerning paper selection. Adding

Aggregation Levels operator for this example can be considered as three-

step process (see Figure 3 for the representation of the organisation model

(role Paper Selection) at the second aggregation level).

First, roles Program Chair (PCh) and Program Committee Member

(PCM) are joined into one group by application of Grouping operator. After

that, at step 2 by means of the Group-to-Role operator the created group is

transformed into role Program Committee by adding interaction interfaces.

Finally, as the last step using Interaction Level Ascent operator interaction

links between roles PC and Reviewer (R) are created, as well as interlevel

links within role PC.

5. A Prototype Tool to Support the Design of Organisations

The formal representations of the organisation entities and the design

operators described in this paper provide a solid basis for the development of

a software environment supporting interactive organisation design processes.

The proposed formalism accurately distinguishes different types of

organisation entities with their objects, relations and constraints, which can

be naturally represented as classes with members and methods in object-

oriented programming (OOP) languages. Furthermore, the identified

relationships among organisation entities may be fully captured by the

fundamental OOP mechanisms (e.g., inheritance, interfaces and inner

classes). The design operators can be programmed as transformation

functions with explicitly defined arguments, conditions and effects of their

application. Moreover, most of the introduced formal concepts are based on

the notions from organisation theories, which will facilitate use of a tool by

organisation modelers.

DESIGN OPERATORS 219

Figure 3. Example of Adding Aggregation Levels operator application, in which the

roles Program Chair (PCh) and Program Committee Member (PCM) are grouped

For the purpose of illustration and evaluation a prototype tool was

implemented. This tool supports organisational design and allows

investigating its dynamics. The application of the design prototype is

demonstrated on the example of role refinement as described in the previous

Section. The dynamics of the design process is described in Table 5, which

is graphically illustrated by a partial trace taken from the tool in Figure 4.

In the design process, first, a designer chooses a part of the design object

description, on which she intends to put her attention (in the considered

example it is the role Organizing Committee). Next, the software proposes to

the designer a number of operators, which are potentially applicable to the

chosen part of the design object description. The designer chooses one of

them, for the example, the role refinement operator. Refinement is a

composite operator that consists of an ordered sequence of primitive

operators. Usually, most of the primitive operators constituting composite

ones are imperative (e.g., Role Introduction for Refinement); yet application

of some of them may be postponed to the future (e.g., Role dynamic

property addition for Refinement) or skipped (e.g., Interlevel link deletion

for Refinement). Further, the tool demands specifying roles, into which role

OC has to be refined. The designer specifies role names (for this example,

Local Organizing Committee (LOC) and General Organizing Committee

(GOC)) and their ontologies.

After that the software tool requests the designer to specify dynamic

properties for the created roles. The designer may postpone this operation to

a future time point. Thereafter, the tool proposes to add interaction links

between roles LOC, GOC and role Chair (Ch), with which the original role

OC was connected. After that dynamic properties for the introduced

interaction links may be added. As the last step role OC and interaction links

together and transformed into the Paper Selection (PC) role.

220 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

connecting it with role Ch, as well as OC role and interaction links dynamic

properties are automatically removed from the design object description.

ACTIONS OF THE DESIGNER STATES OF THE TOOL

Chooses to address the role Organizing
Committee (OC)

Proposes potentially applicable operators
for role OC

Chooses the role refinement operator According to the specification of the role

refinement operator, initiates execution
of role introduction operator and requests
the designer to specify role names

Specifies GOC (General Organizing
Committee) and LOC (Local Organizing
Committee) names of the roles, into

which role OC is refined

Requests to specify the elements of the
ontologies for the newly created roles

Specifies the elements of the ontologies
for roles LOC and GOC

Initiates execution of the role dynamic
property addition operator. Requests to
specify dynamic properties for LOC and
GOC roles

(optional) Specifies dynamic properties

for the roles

Initiates execution of the interaction link

introduction operator. Requests to
specify interaction links between roles
Chair (Ch), LOC and GOC

Specifies, which interaction links are
needed between the roles

Initiates execution of the interaction
dynamic property addition operator.
Requests to specify dynamic properties

for the introduced interaction links

(optional) Specifies dynamic properties
for the interaction links

Initiates execution of the interaction link
deletion operator, which removes all
interaction links connected with role OC.
Then, initiates execution of the role
retraction operator, which removes role

OC from the design object description

6. Discussion

This paper introduces a representation format and a variety of operators for

the design of organisations specified in this representation format. The

described operators have several important characteristics. First, they can be

combined into composite operators that can serve as patterns for larger

design steps in certain design cases. Second, the identified set of operators is

independent of any organisation theory or sociological methodology: they

can be used for formalizing design principles from different theories. Third,

a designer has freedom to choose any sequence of operators for creating

designs of organisations of most types (e.g., functional and organic). The

TABLE 5. Dynamics of the design process for the role refinement.

DESIGN OPERATORS 221

operators offer both top-down refinements, as well as bottom-up grouping

options. Finally, as has been shown the developed tool provides interactive

support in designing organisations. In the future a graphical interface for

representing design objects in the developed tool will be developed.

qq

is_role_in(OC, G_ORG)

is_role_in(Ch, G_ORG)

is_role_in(PS, G_ORG)

is_interaction_link(L1, G_ORG)

is_interaction_link(L2, G_ORG)

is_interaction_link(L3, G_ORG)

is_interaction_link(L4, G_ORG)

connects_to(L1, Ch, PS, G_ORG)

connects_to(L2, PS, Ch, G_ORG)

connects_to(L3, Ch, OC, G_ORG)

connects_to(L4, OC, Ch, G_ORG)

designer_attention(OC, G_ORG)

is_possible_operator_for_in(role_retraction, OC, ORG)

is_possible_operator_for_in(role_dyn_prop_add, OC, ORG)

is_possible_operator_for_in(role_dyn_prop_revoke, OC, ORG)

is_possible_operator_for_in(role_to_group, OC, ORG)

is_possible_operator_for_in(role_refinement, OC, ORG)

designer_supports(role_refinement, OC, ORG)

selected_operator(role_refinement, OC, ORG)

operator(role_intoduction, ORG)

request(role_name, ORG)

is_role_in(GOC, G_ORG)

is_role_in(LOC, G_ORG)

time 0 1 2 3 4 5 6 7 8 9 10

Figure 4. Screen print of a trace illustrating dynamics of the design process for the

In the area of component-based software engineering a number of design

patterns for building software components (e.g., refinement, chaining,

disjoint composition) have been introduced (He et al. 2005). These patterns

specify general-purpose manipulations with programming constructs (e.g.,

interface and private methods of components); while in organisational

design literature organisation transformations are described using domain-

specific concepts. The formal representation format proposed in this paper

bridges this gap and facilitates the abstraction of organisation domain into

general-purpose programming design patterns.

Formal specification of design processes enables verification of structural

and dynamic consistency of a design object description for an organisation.

The verification of structural consistency is based on the consistency

definitions for operators (Jonker et al. 2005). For verifying dynamic

consistency model checking techniques (McMillan 1993) may be used,

which will be further investigated in the future. Furthermore, verification

mechanisms based on certain requirements on organisational functioning and

performance (e.g., using organisation performance indicators) represent a

subject of our future research.

In conclusion, this paper introduced a representation format and a set of

formally represented design operators dedicated to the design of

organisations of most types. Although the choice of operators is motivated

by different theories and guidelines from the area of organisational design,

role refinement.

222 CM JONKER, A SHARPANSKYKH, J TREUR AND P YOLUM

the application of the proposed operators is not restricted to any theories

from social studies. The formalisation of the operators provides a solid basis

for the development of a software tool supporting interactive organisation

design processes. A prototype implementation for such a tool is

demonstrated by an example in this paper.

Acknowledgements

The authors wish to thank the anonymous reviewers for their useful comments. Their
comments also found their way into the technical report upon which this paper is based.

References

Blau, PM and Schoenherr, RA: 1971, The Structure of Organisations, Basic Books Inc., New

York London.

Broek, E, Jonker, C, Sharpanskykh, A, Treur, J, and Yolum, P: 2005, Formal modeling and

analysis of organisations, in O Boissier, V Dignum, E Matson, J Sichman (eds),

Child, J: 1973, Organisation: A Choice for Man, in J Child (ed), Man and Organisation,

Halsted Press, London, pp. 234-570.

Chomsky, N: 1965, Aspects of the Theory of Syntax, The MIT Press.

Duncan, RB: 1979, What is the right organisation Structure? Organisational Dynamics,

Galbraith, JR: 1978: Organisation Design, Addison-Wesley Publishing Company, London

Amsterdam Sydney.

Habel, A and Hoffmann, B: 2004, Parallel independence in hierarchical graph transformation,

International Conference on Graph Transformation, LNCS, Springer-Verlag, Heidelberg

3256: 178-193.

He, J, Li, X, and Liu, Z: 2005, Component-based software engineering, in DV Hung, M

Wirsing (eds), Theoretical Aspects of Computing, LNCS, Springer 3722: 70-95.

Huth, M and Ryan, MD: 2004, Logic in Computer Science: Modelling and Reasoning about

Systems, Cambridge University Press.

Jonker, CM, Treur J: 2003, A temporal-interactivist perspective on the dynamics of mental

states, Cognitive Systems Research Journal 4(3): 137-155.

Jonker, CM, Sharpanskykh, A, Treur, J, and Yolum, P: 2005, Operators for Formal Modeling

of Organisations, Technical report 06-01AI, Vrije Universiteit, Amsterdam.

Kilbridge, M and Wester, L: 1966, An economic model for the division of labor, Management

Science 12(6): 255-269.

Lorsch, JW and Lawrence, PR: 1970, Organisation Design, D Richard (ed), Irwin Inc, USA.

McMillan, K: 1993, Symbolic Model Checking, Kluwer Academic Publishers.

Mintzberg, H: 1993, Structure in Fives: Designing Effective Organisations, Prentice-Hall, NJ.

Pfeffer, J: 1978, Organisational Design, AHM Publishing Corp., Illinois, USA.

Rozenberg, G (ed): 1997, Handbook of Graph Grammars and Computing by Graph

Transformation, 1: Foundations, World Scientific.

Schmidt, LC and Cagan, J: 1995, Recursive annealing: A computational model for machine

design, Research in Engineering Design 7: 102-125.

Scott, WR: 1998, Organisations: Rational, Natural and Open Systems, Prentice Hall, USA.

Stiny, G: 1991, The algebras of design, Research in Engineering Design 2: 171-181.

Wijngaards, N: 1999, Re-design of Compositional Systems, PhD Thesis, SIKS dissertation

Series, 99-6, Vrije Universiteit Amsterdam.

Proceedings of the Workshop on Organisations in Multi-Agent Systems, pp. 17-33.

Winter, pp. 59-79.

