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Abstract. This research experiments with representations of function
using analogical matching, trying to determine the benefits of using
environment-centric (EC) vs. device-centric (DC) representations. We

use the Structure Mapping Engine for matching, and seek to show the
effect on quality and quantity of analogical matches when the
representation is varied.

1. Introduction

Designing something is challenging, so providing computational help is

important. Software systems can help the designer, or might replace the

designer in some situations (Brown 1992). For computers to design devices

we have to describe them in some way using a knowledge representation.

This research experiments with two different knowledge representations:

both based on the Structure-Behavior-Function model for describing devices

(Chandrasekaran and Josephson 2000). That work describes two different

ways to represent the function of devices, Device-Centric (DC) and

Environment-Centric (EC), both described below. Each may be

advantageous in certain situations, but there appears to be no research

showing what the effects are of using DC vs. EC representations of function.

This research seeks to perform experiments that will explore what the

effects are with certain design tasks. The knowledge representation will be

used in experiments with some automated reasoning, producing results that

we can measure.

Motivated by exploring computational support for creativity (Boden

1994), we target analogical reasoning. Analogy is often cited as a key

ingredient of creativity (Goel 1997; Gentner et al. 2001). In addition,

functional reasoning is also at the right level of abstraction to support

creativity (Umeda and Tomiyama 1997).

Analogical reasoning involves expressing what the current situation is,

looking for past situations that might apply (matching), and finally applying
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them to the current situation (transfer). A full study would require a system

that performs all the steps in analogical reasoning, but for this research we

take the first step and focus only on the matching phase. We use an

algorithm called SME (Falkenhainer et al. 1989). SME was chosen because

it is well tested in much research, it is claimed to have psychological

backing, the software is available, and because it is suited for the problem.

Using SME we can take a pair of devices represented with a particular

knowledge representation and produce a list of possible matches between

them with associated weights. We measure the quantity and quality of the

matches in order to measure the effect of DC vs. EC representations.

We are also interested to see whether novel matches are produced: i.e.,

whether DC vs. EC representations might have any effect on novelty, a key

aspect of creativity (Besemer and Treffinger 1982). Therefore we consult a

group of humans to get their judgment.

We have performed a set of experiments that that indicate where the

results are coming from: i.e., the credit assignment problem. The issue is

whether DC vs. EC representations, or the representation used (level of

detail; ontology) should be given credit (Kitamura et al. 2004).

The hypothesis of this research is that representations with EC

information will produce a greater number of analogical matches, and that

these matches will be of lower strength than matches made using

representations that only contain DC information. We hypothesize that

creating a representation with both DC and EC information should produce

even more matches than either DC or EC alone, and that these matches

should have higher weights.

We show through experimentation with SME that EC produces more

matches than DC, DC produces higher quality matches than EC, and, in

contrast to our hypothesis, the combined representation produces

comparatively fewer matches and more lower quality matches than EC

alone.

In addition, from limited experiments with humans we show that they

tend to rate low weighted matches as being more novel than high weighted

matches and rate DC matches as being more novel than EC matches.

2. Design Research

A lot of research has been done on functional representation and reasoning

(Umeda and Tomiyama 1997; Stone and Wood 1999; Pahl and Beitz 2003;

Chandrasekaran and Josephson 2000; Stone and Chakrabarti 2005.

A full description of a device D’s intended function would link it, via

relationships and behaviors, to “purpose” Brown and Blessing 2005;

Rosenman and Gero 1998). There is little work addressing the effect of a

device on the environment. Prabhakar and Goel (1996) distinguish the
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“external environment” of D, from the “outer environment” of D: i.e., those

entities in the environment that directly interact with D.

Our work is most influenced by Chandrasekaran and Josephson’s

framework (2000). They consider that a device (D) is used by being placed

in an environment (E). The causal interactions that result from this “mode of

deployment” occur due to a pattern of relationships over time between D and

E. If the pattern of behaviors arising from the interactions is desired then D

performs a function in E. Behaviors are seen as values of, or relations

between, state variables, or properties, of an object, considered over time.

If the desired behaviors are expressed in terms of D only, then they

consider it to be a Device-Centric (DC) description of D’s function. An

Environment-Centric (EC) description only uses elements in E: such a

description might be presented in the early stages of a design task.

Our representations are a strict DC version, and another that includes all

entities that interact, from both D and the outer environment. We refer to

this, for contrast, as EC, but from Chandrasekaran and Josephson’s

definitions it should more properly be called “mixed”.

2.1. USING THE FUNCTIONAL BASIS

The terms used to describe the function of different devices must be

consistent and at the same level of abstraction so that device descriptions are

comparable. This will reduce the variation and noise in results. For example,

using more abstract terms for one device may cause SME to generate more

matches, making strong conclusions harder to make, while inconsistent

terms may cause fewer matches, with similar consequences.

This research uses a set of domain specific terms called the “functional

basis” (Stone and Wood 1991). The functional basis provides a set of

domain-dependent terms for flows and functions. The representations in this

research use flows in the same way the functional basis does. The functional

basis represents flows of material, energy or signal that transfer from one

device to the next. The basic functions available include import, export,

transmit, couple, display, rotate, and change. Our representation uses the

basic functions from the functional basis work as a way of describing device

behaviors.

3. Knowledge Representation

There are several goals for the knowledge representation (KR):

1. It can represent DC and EC functions;

2. It can represent devices at different levels of detail;

3. DC and EC parts can be combined to form a combined representation. We

refer to this representation as BOTH (see example in Section 3.3).
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The KR must be descriptive enough to describe functions and must allow for

different experiments. These experiments (Section 6) require the ability to

represent devices at different levels of detail, and also to use the DC only,

EC only, or BOTH versions of the each device’s representation.

3.1. DESIGN DECISIONS

We consider a function to be a set of desired behaviors. Rather than

including all of the constructs from Chandrasekaran and Josephson’s work,

such as mode of deployment, this research represents only behaviors and

functions, leaving further exploration of Chandrasekaran and Josephson’s

concepts to future work.

The KR is somewhat independent from SME vocabulary, but is still

easily translatable into proper input for SME. This decouples the KR from

the particular intricacies of the matching algorithm implementation used.

3.2. OBJECTS IN THE REPRESENTATION

There are five main concepts in the KR: devices, functions, behaviors,

relations, and flows. To completely specify a device using the KR, one must

provide a library of relations and flows, a set of behaviors and a set of

functions that group the behaviors.

A device has a set of functions that are either DC or EC. Each function

consists of a set of behaviors. Since a device may have multiple functions,

some of a device’s behaviors may be mentioned in more than one function.

Devices are physical objects in the world and their behaviors describe

how they interact. Behaviors are instantiations of relations. The relations

(e.g., import) provide constructs that are filled in with domain specific

elements, such as flows or other devices, in order to specify a behavior. For

example “import <flow> <device>” is an example of a relation with two

arguments. Instances are import torque gear and import force drum.

Flows are the material, energy or signals involved in a particular

behavior. For example, a behavior change force surface describes how the

flow “force” interacts with the device “surface”.

The environment for a particular device is an outer environment defined

by a set of external objects that interact with the device. It is not the entire

external environment. The representation does not have an explicit

representation of the environment. Instead it describes the environment using

behaviors. For example, the behavior transmit torque minutegear references

minutegear, which is part of the environment. Also, the representation can

have behaviors that do not refer to the environment at all. To distinguish

objects which are part of the environment from the device we mark objects

in the environment by underlining them.
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3.3. USING THE KNOWLEDGE REPRESENTATION

The objects described in Section 3.2 can be used to satisfy the goals we had

for the knowledge representation. This section provides examples of devices

represented with high and low detail. This section also provides examples of

DC and EC behaviors and functions.

(a) (b)

two, earth and gear2, are not shown.

The KR can be used to represent DC behaviors and functions for the gear

pictured in Figure 1(a)s. The relation “import <flow> <device>” is used to

define the behavior:

import force gear (b1)

The relation “export <flow> <device>” is used to describe the result of

behavior b1:

export force gear (b2)

The two behaviors combine to form a single DC function.

b1, b2(dc1)

To represent EC behaviors and functions, the representation needs to

introduce another device to interact with the gear because EC behaviors need

to mention something in the environment.

For the situation with a weight and two gears, partially represented in

transmit force from weight to gear (b3)

transmit force from gear to gear2 (b4)

Figure 1. (a) A gear (b) a gear and a weight. Other devices that interact with these

Figure 1b, two EC behaviors are available for the gear:
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The environment of the gear consists of weight and gear2. The behaviors b3

and b4 combine to form an EC function:

b3, b4 (ec1)

The weight in the mechanism can also be represented with two behaviors:

transmit force from earth to weight (b5)

transmit force from weight to gear (b6)

The environment of the weight consists of earth and gear. The behaviors b5

and b6 combine to form an EC function for the weight:

b5, b6 (ec2)

When representing with low detail, the representation focuses on a

particular device. The device has no internal components and the behaviors

for the device either refer to the device itself or to objects in the

environment.

For a high detail representation, the KR needs to combine low detail

descriptions together. The representation does this by combining the

behaviors and functions from each low detail device. Using the gear and

weight example from figure 1b the high detail EC function would contain

four behaviors instead of two and only one function. The EC function would

be:

b3, b4, b5, b6 (ec3)

This KR can be used to create a BOTH representation by concatenating

the EC and DC version of each device representation. Thus, the BOTH

representation for the gear consists of the functions dc1 and ec1 as well as

the behaviors b1, b2, b3, and b4. Note that as the DC and EC representations

use different relations there is no overlap when constructing the BOTH

representation.

4. SME

This section briefly describes how SME works and what features are

relevant for this research (Falkenhainer et al. 1989). The code used in this

research is available online (Falkenhainer 2005).

The SME algorithm takes two devices, called the source and target, and

maps knowledge from the source into the target. The first step of the

algorithm is to create a set of match hypotheses. A match hypothesis

represents a possible mapping between a part of the source and the target.

SME uses match rules to calculate positive and negative evidence for

each match. SME combines different amounts of evidence together,
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favoring matches between parts of the device representation that have

similar relation names.

For example, given relations r1 and r2:

transmit torque inputgear secondgear (r1)

transmit signal switch div10 (r2)

SME produces four match hypotheses. Three of the match hypotheses are

torque to signal, inputgear to switch, and secondgear to div10. Each has a

positive evidence value of 0.6320. SME also matches both “transmit”

relations and gives them 0.7900 positive evidence. These matches are

between flows, between devices, and between relations. All of these matches

are dependent on the shared relation name “transmit”.

The match rules also propagate evidence from higher matches down to

lower matches. This gives additional evidence to matches that are part of a

higher order relation match. SME does this because of the Systematicity

Principle which states that more connected knowledge is preferred over

independent facts (Falkenhainer et al. 1989).

SME can produce negative evidence when the relation type matches, but

the elements in the relation do not match.

The rest of the SME algorithm is involved in creating maximally

consistent sets of match hypotheses. These sets are called

“gmaps”. The sum of all the positive evidence values in the match

hypotheses of a gmap becomes the weight of the gmap. Comparing a source

device to a target device may produce one or more of these gmaps, each with

an associated weight. Also, SME combines multiple smaller gmaps to

produce bigger, maximally consistent, gmaps.

4.1. SME PROPERTIES RELEVANT TO THIS RESEARCH

Since this research is comparing two kinds of KR, there are some properties

of SME that are relevant for the determining reasons why one KR produces

different results than another:

• More information in a particular representation should allow for matches

of higher weight. This is because longer representations can produce

more match hypotheses and thus have higher weighted gmaps.

• Making longer representations may not produce a greater number of gmaps

because gmaps can be combined together during the creation of

maximally consistent gmaps

Our experiments use these properties to explain why results using the DC

and EC representations differ.
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5. Test Examples

The requirements for the test examples to be used are that they: must have

varied levels of detail; must include both DC and EC representations; should

be similar enough to allow analogical matches; should allow for novel

matches; must be a large enough sample so that general conclusions can be

reached; and must be capable of being understood by humans.

The test examples used in this research are a set of clocks that are

decomposed into components and subcomponents. By combining different

subcomponents together, the level of detail can be adjusted. Because the

clocks share components, there are obvious analogical matches that SME

can make, providing good contrast for results that people may consider

novel. The test examples represent 21 individual subcomponents, which can

be grouped into 8 larger components.

5.1. THE CLOCK TEST EXAMPLES

We use two kinds of clocks: a digital clock, such as a bedroom alarm clock,

and a pendulum clock, such as a grandfather clock. Each clock has a

different way to achieve the functions of setting and displaying the time.

Each clock works differently, but they share common components and

common functions. These components are the powerprovider, which

provides some kind of energy into the clock, the timebase, which converts

the energy into a periodic signal, a gear, which converts the signal into a

once-per-second or once-per-minute signal, and a face which displays the

time.

We used articles by Brain (2005a; 2005b) as sources of information about

clocks. When using a clock a human needs to observe the time and be able to

set the time. Figure 2 shows a conceptual diagram of these components and

how they interact. Arrows indicate the direction of flow in the clock. For

example, the powerprovider transfers energy to the timebase. The human

interacts with the clock by resetting it or by receiving a visual signal.

Figure 3 shows a schematic for a pendulum clock. The schematic labels

all the pendulum clock’s components. Figure 4 shows how these

subcomponents get grouped into components. For example, the secondhand

and minutehand are subcomponents of face. The schematic for the pendulum

clock is shown in Figure 5.

The pendulum clock works primarily with gears while the digital clock

uses many divide-by-x counters. The hierarchy for the digital clock includes

subcomponents such as a divide-by-10 counter, which is part of the digital

gear, and a plug, which is part of the digital power provider.
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Figure 2. Generic model of a clock: components and how they interact with each

other and with a human.

Figure 3. Schematic for an idealized pendulum clock showing all its components.

Diagram based on (Brain 2005b).

Figure 4. Hierarchy for the pendulum clock. Boxes show the devices; arrows

represent a component-subcomponent grouping.
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Figure 5. Schematic for pendulum clock. Boxes represent subcomponents; solid

arrows represent flow; the dotted line represents flow when the gear release lever is

pressed.

Thus, the test examples are made up of two different clocks that can be

represented at two levels of detail. The low detail representations are the

subcomponents of the clocks such as secondgear or plug. The high detail

representations include clock components such as digital powerprovider.

6. Computational Experiment

SME produces a list of gmaps for each match, each with an associated

weight. The goal of the computational experiment is to analyze these lists of

gmaps and explain how they are affected by different representation types.

Overall, the experiment demonstrates the following effects:

•EC has lower weighted matches than DC;

•EC generates more matches than DC;

•EC matches have higher variance than DC;

•BOTH matches are fewer in number and have lower weights than DC or EC

alone.

The experiment and analysis must be able to measure these effects, explain

them, and show that they are robust. The experiment measures the gmap

weights, the gmap weight variance, and the number of gmaps generated. To

make fair comparisons between the datasets the gmap weights and number

of gmaps are normalized.

The experimental results can be influenced by several factors including

the representation length, the representation complexity, and the number of

devices mentioned. Each experiment is run on low and high detail test

examples in order to show that any observed effects remain the same even

when the level of detail is varied.

6.1. EXPERIMENTAL RUNS

The experiment uses the factorial experiment design shown in Table 1.

Overall, there are 6 different device sets that the experiment uses. There are
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three versions of device representations, EC, DC, and BOTH. Each version

is categorized into low detail and high detail. Each combination makes up an

experiment test set. There are 21 low detail and 8 high detail devices. The

devices are the 21 subcomponents and 8 components of the clocks described

in Section 5.

TABLE 1. Factorial experiment design showing the 6 different device sets.

Low detail High detail

EC

DC

BOTH

An experiment test run consists of analyzing pairs of devices from a

particular test set. SME compares each device in the test set to the other

devices in the test set. The experiment disregards comparisons between the

same device. This results in n
2
–n comparisons where n is the number of

devices in the test set. For example, the low detail test set has 420 matches in

it.

6.2. EXPERIMENTAL FACTORS

This experiment needs to show how the gmap weight, gmap weight

variance, and number of gmaps differ for the EC, DC, and BOTH datasets.

This is complicated by the fact that several factors can affect these statistics.

The representation length is the sum of the number of functions and

behaviors in the source representation. We find that for most of the data, the

representation length and the number of gmaps are positively correlated

(p<0.05). This means that as the representation length increases more gmaps

get generated. Our normalization procedure decreases this correlation.

The representation complexity is the sum of the number of behaviors in

each function and the number of arguments in each behavior divided by the

3.3, with behaviors b1, b2 and function dc1, has a representation complexity

of 2. This measure of complexity is similar to the one used in (Balazs 1999).

In our data, on average, EC representations have the highest amounts of

complexity. This is because DC representations only mention the device, and

EC representations mention both the device and the environment.

6.3. NORMALIZED GMAP WEIGHT AND VARIANCE

The experiment needs to compare the magnitude and variance of the weights

between the datasets. The factors described in Section 6.2 imply that the

gmap weights cannot be compared directly unless some aspects of the

representation are taken into account.

representation length. For example, the DC version of the gear from Section
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Therefore, we use a normalization strategy in order to make a fair

comparison between the representations. The normalization formula first

computes the value, MAXVAL, which is equal to the highest weighted

gmap SME produces when the device is compared to itself. Then the weight

of each gmap made with that device is divided by MAXVAL to obtain a new

normalized weight.

This strategy should adjust the magnitudes of the gmap weights to

account for both the representation length and complexity. It also gives the

measurement more meaning. Instead of measuring its overall strength, this

normalized weight measures the relative amount of a device’s representation

that is matched by the target device. Thus, the higher the normalized weight,

the more of the target device fits with the source device.

Each time SME generates a match it outputs a list of gmaps, each of

which has an associated weight. Since our comparisons are done on a per

match basis and not on a per gmap basis we need to aggregate the gmap

weights for each match and then use the aggregated result for our analysis.

Thus, for each match, we compute the average, standard deviation, and

highest of its gmap weights. Then, for all matches we compute additional

statistics to create results such as “average of average gmap weights” or

“average standard deviation of gmaps.”

6.4. NORMALIZED NUMBER OF GMAPS

The number of gmaps is positively correlated with the representation length.

In order to account for this influence and to compare the different datasets,

we normalize the data by the representation length. Unlike the gmap weight

measure, we could not use the number of gmaps generated when a device is

compared to itself because it was not close to an upper bound on the number

of gmaps.

The formula for computing the normalized number of gmaps is the

number of gmaps divided by the representation length. For example, if a

match has a representation length of 5 and generates 10 gmaps, then the

normalized number of gmaps would be 2.

7. Human Experiment

In the computational experiments we present SME with representations of

two devices, and it outputs a list of potential matches between portions of

each representation. For example, based on these lower level matches, SME

might suggest that a pen is like a hammer.

As our hypothesis concerns the possible benefits of different styles of

device representation, the representation is varied throughout the

experiments, and the resulting matches are measured and evaluated.
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We are interested in performing the human experiment for two reasons.

First, we would like to determine whether or not the matches proposed by

SME are “novel”: e.g., a pen is like a sponge. We hypothesize that one form

of device representation is less likely to produce novel matches.

Second, we would like to investigate how the match weights generated by

respondents correlate with SME match weights. There are two ways the

SME results can correlate.

First, the human and SME results could place the same relative weights

on certain device matches. For example, both the human and SME could

think that the pen is more like a hammer than it is like a sponge.

Second, the human results can lend support to the DC or EC

representation if the reasons the humans are using match with the

representation that SME uses, and if the human's and SME’s match weights

correlate. We might get this result if the human thought the pen was most

like a sponge because they both interact with liquid and if SME marked

them as most similar because the pen and sponge both interact with a

human's hand. Though the reasons are not exactly similar, they both involve

EC reasoning: i.e., about how the device interacts with the environment.

To gather this information from human respondents, we use two

techniques: repertory grids and a questionnaire (Hart 1986). The respondents

are a volunteer group of engineers.

The repertory grid technique provides several benefits:

• It is a proven technique that allows respondents to give information

about the similarity of different devices in a group. The result of

collecting the grid information is a “percent similar” measure describing

the human’s evaluation of device similarity. After normalization, it can

be compared to SME output which also reports how similar devices are.

• As part of the grid creation process, respondents give reasons why they

differentiated one device from another. This information can be

classified as DC or EC, lending support to that approach. It can also be

compared directly to the lower level matches in the computer results.

• A good computer tool is available that makes collection of repertory

grids relatively easy (Shaw and Gaines 2005).

A questionnaire is used to determine novelty. It asks the respondents to

evaluate how novel they think the computer's analogical matches are and to

disregard other observations such as correctness when they make their

evaluation. The respondents indicate low, medium, or high novelty. The

respondents are asked about results from various computer experiments

produced using different representations.

The experimental procedure is to first collect a repertory grid and then

have the respondent fill out a questionnaire: both about the same devices.

Collecting the repertory grid first is important, as it allows the respondents to

determine for themselves how the devices relate to each other. Thus, when
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they fill out the questionnaire, they will be able to compare the computer’s

answers to their own and be better able to judge the novelty of them.

A subset of the clock examples from the computational experiment is

used for the human experiment. Preliminary experiments with simpler

examples, such as pens and sponges, indicated that the respondents were

using reasons that we could classify as DC or EC. However, many of their

reasons were focused on surface features. The clock examples subsequently

adopted have similar functions, but very different surface features.

Therefore, the respondents tend to focus their attention on the function of the

clock components, which is what we want.

Since understanding clocks takes time, the respondents were given

articles to read before the experiment. These articles were the same ones that

we used to create the representations for the computational experiment,

taken from How Digital Clocks Work (Brain 2005a) and How Pendulum

Clocks Work (Brain 2005b). The respondents were engineers, and had little

trouble understanding the examples, given the documentation.

8. Results

8.1. COMPUTATIONAL RESULTS

Tables 2 to 5 show the averages of the computational results for the various

measurements in the experiment. Higher values indicate a stronger match.

Low detail High detail

EC 0.5543 0.4705

DC 0.6907 0.5580

BOTH 0.4390 0.3935

Low detail High detail

EC 0.7629 0.6460

DC 0.6907 0.6086

BOTH 0.7081 0.6193

8.1.1. DC and EC Comparison

Our hypothesis concerning gmap weights was that the DC weights would be

higher than EC weights. This is true for average gmap weight, but not true

for highest gmap weight. The difference for low detail result, Table 2, is

statistically significant (p<0.05), while the difference for high detail is not.

TABLE 3. Average highest normalized gmap weight per match.

TABLE 2. Average of average normalised group.
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Low detail High detail

EC 0.1796 0.1212

DC 0.0 0.0435

BOTH 0.2512 0.1275

Low detail High detail

EC 0.9421 2.5664

DC 0.2952 1.2389

BOTH 0.4883 1.9624

This can be explained by the standard deviations in Table 4: it shows that

the standard deviation for EC is higher than it is for DC. The standard

deviations are statistically different (p<0.05). Although the EC

representation might have a few gmaps with higher weights, it has other

lower weighted gmaps that decrease the match’s average gmap weight.

Thus, in the experiments DC representations produced a few high weighted

matches that have similar weights while, the EC representations produced

matches that have a wider variety of weights. This resulted in lower average

gmap weights and higher highest gmap weights for the EC representation.

Another one of our hypotheses was that EC would produce more matches

than DC. The data, shown in Table 5, shows that EC produces at least twice

as many gmaps as DC. This result is statistically significant (p<0.05).

8.1.2. BOTH Dataset

Our final hypothesis is that the matches from the BOTH dataset will have

more matches of higher weights than the DC or EC datasets. This makes

sense because the more information the representation has, the more it

should be able to match.

Our results show the hypothesis is correct for absolute gmap weights, but

not for the normalized weights. The normalized weights measure how much

of the representation was matched. This result means that a large portion of

the BOTH representation is left unused in each gmap.

We observed that gmap weights from the BOTH dataset have a lower

highest gmap weight than the ones from the EC dataset and only a slightly

higher highest gmap weight than the ones from DC dataset. The EC dataset

We also observed that the average gmap weight for the BOTH dataset

was lower than it was for the DC and EC datasets. This effect is partly

caused by the fact that BOTH has a higher standard deviation than DC.

TABLE 4. Average standard deviations of normalized gmap weights per match.

TABLE 5. Normalized number of gmaps per match.

not have statistically different highest gmap weights.

has statistically different highest gmap weights and the DC dataset does
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However, this does not explain the difference the BOTH dataset has with the

EC dataset, because they have about the same standard deviation. A

statistical test did not reject the possibility that the standard deviations are

similar.

One explanation for this is that when DC and EC information are together

the DC information is preventing the matches that would have been

generated if only the EC information was present. It could be that with the

BOTH representation it is harder to make globally consistent gmaps, as there

is so much data with which to be globally consistent. Because the

Another observation about the BOTH dataset is that its highest gmap

weight and number of gmap measures are in between DC and EC measures.

It seems that adding EC information to the DC information improved the

highest gmap weight and number of gmaps by only 24% to 55% of what

would have been gained by using the EC information only. Investigating this

further, we found that the number of gmap weights from the BOTH dataset

is not statistically different from a dataset made by averaging the number of

gmap weights from the DC and EC datasets. The average number of gmaps

for the averaged DC/EC dataset is 1.8245, which is close to the value of

1.9624 for BOTH.

8.1.3. Robustness to level of detail

With a few exceptions, these observations are robust to changes in the detail

of the representation. The data shows that the same trends occur in the low

detail as in the high detail data. The observations that are different are

caused by special properties of the low detail data. One difference is that the

DC representation seems to be less effective in low detail devices than in

high. The low detail DC representations produced one gmap at most for any

matches. The high detail representation, however, did not have this problem.

We conclude that the low detail representation is too small for our DC

representation.

8.2. HUMAN RESULT ANALYSIS

We collected data from 10 respondents: a repertory grid and a questionnaire

for each respondent. This section offers the results from this limited survey.

8.2.1. Repertory Grid

We use the “percent similar” measure generated by the repertory grids

collected from the respondents, and compare that measure to the normalized

highest gmap weight generated by SME. Each repertory grid was made

between 6 devices, making 36 possible evaluations between devices.

are lower.

normalization discounts for not having large matches, the match weights
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Although percent similar can range between 0 and 1, it should not be

directly compared to SME data since the repertory grid collection technique

asks for clarification when similarity levels are above a certain percent. This

makes the percentages artificially low. Therefore, we compute match

rankings based on the percent similar measures generated by SME and the

repertory grid.

We looked for correlations between the DC and EC data sets and each of

the 10 individual respondents. We use the Spearman rank order test to detect

correlation between the datasets and the Wilcoxon signed rank for testing

that the medians of the differences between the datasets are different.

The tests show no significant correlations between the DC and EC

datasets and the respondents’ answers (p>0.23). The data also shows that the

datasets and the respondents’ answers are significantly different (p<0.1).

The repertory grid is also used to try to determine whether the

respondents’ reasons given in the repertory grid correlate with the SME

datasets. We classified each of the respondent’s constructs used in their

repertory grid as DC, EC, or neither.

One of the respondents with the most EC constructs had the strongest

correlation with the EC dataset. The respondent with the most DC constructs

was slightly more correlated with the EC dataset. The respondent that was

most correlated with the DC dataset had 4 EC constructs and 2 DC

constructs. Our analysis also shows that sometimes, the classification of the

respondents’ constructs predicts which dataset they will be more correlated

with. This occurred in the data from 5 of the 10 respondents.

8.2.2. Questionnaire

The Questionnaire consisted of 8 questions about novelty. Four of the

questions were from DC matches and the other 4 were from EC matches.

The questions spanned matches that SME gave high and low match weights

to: i.e., high m-weight questions and low m-weight questions. Overall, the

respondents marked 21 with high novelty, 30 with medium, and 29 with low.

First, we expected that EC matches would be more novel because EC can

make a wider variety of matches. However, we discovered that the

respondents considered the DC matches slightly more novel. Twelve of the

21 high novelty scores were for DC.

Second, we expected that the lower the SME match weight, the more

novel the respondents would rate the match. Since a lower weight means that

the match was not a very strong match, we expected that lower weighted

matches would seem more original to the respondents.

The respondents’ data shows this effect, Table 6. There were 5 high m-

weight questions and 3 low m-weight questions. Nine of 21 high novelty

ratings were given to the low m-weight questions for an average of 3 high
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novelty ratings per low m-weight question and 2.4 high novelty ratings per

high m-weight question.

Low novelty

High m-weight q’s 2.4 4.4 3.2

Low m-weight q’s 3 2.6 4.3

9. Discussion

The purpose of this research is to explore the differences between DC and

EC representations of function. To do this we created a KR and represented

a set of clock test examples. We performed a computational experiment with

SME and performed an informal human experiment. From these we have

discovered some properties of DC and EC representations that may be useful

for computer-based design systems and the designers who use them.

First, our experiment shows how a designer might use a knowledge

representation more effectively to generate novel matches. Our human

experiment shows that the respondents determined low weighted matches to

be more novel than high weighted matches. Our computational experiment

shows that EC representations produce the most matches, some of which are

low weighted. This suggests that to find novel matches a designer should

prefer representations that are EC.

In addition to this, our computational experiments show that to make

novel matches, the designer should not mix strictly DC representations and

EC representations for several reasons. First, the experiments show that

although the matches from the BOTH representation were as varied as EC,

there were not as many. The experiments also show that adding extra DC

information to EC representations causes them to perform worse than the EC

representation alone.

Another way to produce novel matches is to use a DC representation

alone. Our human experiment shows that the respondents rated matches that

came from DC representations as being more slightly novel than matches

from EC representations.

Unfortunately, our results are inconclusive about whether DC or EC

representations are more useful for generating novel matches. On one hand,

the low weighted matches that EC representations create can generate novel

results. On the other hand, DC representations, which produce few low

weighted matches, can also produce novel matches. Thus, more work needs

to be done in order to determine which has a greater effect on producing

novel matches.

TABLE 6. Average number of novelty ratings per question class.

High novelty Medium novelty
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Another result is that DC representations are useful for when the designer

is looking for a few strong matches. By using a DC representation, the

designer can expect to get fewer matches to sort though, and to find matches

that are more relevant to their work. Chandrasekaran and Josephson (2000)

say that it may be beneficial for designers to switch focuses from EC to DC

at a certain point in the design process. This research suggests that this

decision point may be when the designer wants the design system to produce

fewer, more focused matches.
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