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Abstract: Ancient masonry structures can be seen as a set of rigid blocks where the de-

formation is taking place at the interface between the blocks. Rocking, 

twisting and sliding between them are possible mechanisms that actually take 

place under static or dynamic loading. A continuum model for regular block 

structures is derived by replacing the quotients of the discrete equations by 

corresponding differential quotients. The homogenisation procedure leads to 

an anisotropic Cosserat Continuum. For elastic block interactions the dispersion 

relations of the discrete and the continuous models are derived and compared. 
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1. INTRODUCTION

The numerical analysis of discontinuous blocky structures can be dealt 

using discrete and finite element codes. In the latter case, special interface 

elements are needed in order to account for the unilateral kinematics of the 

rock joints. The interest of developing continuous models for discrete struc-

tures is that discrete type analyses are very computer time intensive and, at 

least for periodic structures, one might argue that a homogenised continuum 

model would allow a much more elegant and efficient solution. One could 

list the practical relevance of the development of continuum models: (a) it is 

extremely flexible when used with numerical methods, since no interface ele-

ments are needed and since the topology of the finite element is independent 

of block size and geometry (one mesh can be used to study several different 

structures); (b) quite a number of analytical solutions can be provided that 
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can be used as benchmarks for discrete codes; (c) unconditionally stable in-

tegration through implicit algorithms can be used, unlike discrete models 

where conditionally stable explicit integration schemes are used. 

However, the computational efficiency comes at a price. Continuum 

models are usually based on micro-mechanical mechanisms, which govern 

the material behaviour in the medium to large wavelength range. When the 

characteristic length of the macroscopic deformation pattern is smaller than a 

certain multiple of the characteristic fabric length of the material, then the 

applicability of the continuum model reaches its limit. Another important 

limitation of the homogenisation of layered or blocky structures with clas-

sical continuum theories is that they cannot account for elementary bending 

due to inter-layer or inter-block slip and may thus considerably overestimate 

the deformation. In order to overcome these limitations and to expand the 

domain of validity of the continuum approach one has to consider the salient 

features of the discontinuum within the frame of continuum theories with 

microstructure. The 2D-Cosserat theory has been used with some success in 

the recent years for analysing blocky and laminated systems
1-3

. The enriched 

kinematics of the Cosserat continuum allows to model microelement 

systems undergoing rotations, which are different from the local rotations of 

the continuum. Various failure modes such as inter-block slip and block 

tilting can then be described. In these previous studies developed in the 

frame of two-dimensional Cosserat theory, only one rotational mode of the 

block has been considered. This work is extended in this paper by 

considering rock twisting in addition to rock sliding. This rotational mode is 

frequently observed on masonry structures under dynamic loading. 

The problem of a three-dimensional regular block structure is addressed 

here. Starting with elastic behaviour of the joints, the dynamic differential 

equations for the discrete 3D structure are derived. A continuum model is 

obtained by replacing the difference quotients of the discrete equations by 

corresponding differential quotients. The homogenisation procedure leads to 

an anisotropic 3D-Cosserat continuum. For elastic block interactions the dis-

persion relations of the discrete and the continuous models are derived and 

compared. The domain of validity of the continuous approach is discussed 

by comparing the dispersion function of the discrete and the continuous 

system. 

2. THE DISCRETE MODEL FOR 3D STRUCTURE 
AND INFINITESIMAL DEFORMATION 

An idealized model of a masonry wall is considered here (Figure 1). Six 

others surround each block. The main concern is the accuracy with which 

the continuum model reflects the domain of rigidity set by the size of the 

blocks. The elasticity of the blocks and the joints’ elasticity are lumped at 
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the block faces for simplicity. Fully elastic joint behaviour is assumed. Also, 

it is assumed that the interaction between the block is concentrated in six 

points of the faces as shown in Figure 1. 

Moments and normal and shear forces are written as: 

i

kl Q kl

i

kl N kl

i i

kl M kl kl T kl

Q c x

N c x

M c or M c

 (1) 

where cQ, cN, cM and cT are the elastic shear, normal, bending and torsional 

stiffness respectively and x and  are the relative translations and 

rotations of block k with block l at various contact points. 

Using d’Alembert’s principle, the motion equations of block (i,j) of the 

three-dimensional assembly of blocks are obtained as following: 
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Figure 1. Statical and geometrical configuration. Each block is 2a long, b wide and b high.  
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where m and Ji the mass and the moments of inertia of each block. 

The above equations describe the dynamic behaviour of the block as-

sembly depicted at Figure 1. Looking carefully at these equations we distin-

guish two uncoupled sets of equations, i.e. Eqs.(2-4) and Eqs.(5-7), which cor-

respond to two different modes of motion-deformation of the blocky structure. 

These modes describe the in and the out of plane deformation of the structure. 

Therefore the initial problem is finally separated in two independent pro-

blems, which is a common approach in the theory of plates. The in plane 

mode of deformation is examined at the paper of Sulem and Mühlhaus
2
.

3. THE CONTINUOUS MODEL 

In the above system of equations (Eqs.(2–7)) the discrete coordinates (i,j) 

are replaced by the continuous ones (x1,x2) and instead of ui±1,j±1, vi±1,j±1, wi±1,j±1,

i±1,j±1, i±1,j±1 and i±1,j±1 one writes u(x1± , x2±b), v(x1± , x2±b), w(x1± , x2±b),

(x1± , x2±b), (x1± , x2±b) and (x1± , x2±b). Then the u, v, w, ,  and 

degrees of freedom are developed into a Taylor series up to the second order: 

2 2 2

2 2

1 2 1 2 2 2

1 2 1 2 1 2

3
, ,

f f f f f
f x a x b f x x a b a b ab

x x x x x x

 (8) 

Applying the aforementioned procedure to Eqs.(2-7) one obtains the fol-

lowing system of second order differential equations: 
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Examining again Eqs.(9)-(14) one distinguishes two uncoupled sets of 

equations, i.e. Eqs.(9)-(11) and Eqs.(12)-(14), which correspond respectively 

to the in and the out of plane deformation of the structure. 

4. IDENTIFICATION OF A COSSERAT 
ANISOTROPIC CONTINUUM 

In a three-dimensional Cosserat continuum each material point has three 

translational degrees of freedom (u; v; w) and three rotational degrees of 

freedom 
c

i. The index c is used to distinguish the Cosserat rotation from the 

rotation:

, , ,

.1
; . 1,2,3

2
ij i j j i i

i

u u i
x

 (15) 

For the formulation of the constitutive relationships one needs deform-

ation measures, which are invariant to rigid body motion, i.e. the convention-

al strain tensor: 
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, ,

1

2
ij i j j i

u u  (16) 

The relative rotation of each material point is given by: 

rel c

i ji j in  (17) 

and the gradient of the Cosserat rotation, which is called the curvature of the 

deformation, is given by: 

c

j

ij

ix

 (18) 

Eqs.(16,17) are combined to give the following deformation quantities 

for the 3D-Cosserat continuum: 

1 1 1 2

11 12 3 13 2 23 1

1 2 3 3

3 32 2

22 21 3 31 2 32 1

2 1 1 2

3

33

3

c c c
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u u u u

x x x x

u uu u

x x x x

u

x

 (19) 

The twelve deformation quantities (Eqs.(18, 19)) are conjugate in energy 

with twelve stress quantities. First, one has the nine components of the non-

symmetric stress tensor ij, which are conjugate to the non-symmetric de-

formation tensor ij, and second one has nine moment stresses (moment per 

unit area), which are conjugate with the nine components of the deformation 

curvature tensor ij. Force and moment equilibrium at the element (dx1, dx2,

dx3) lead to (Figure 2): 

Figure 2. Stresses on element  (dx1, dx2, dx3).
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Following the hereunder constitutive relations an equivalent Cosserat 

continuum is identified that describes the studied blocky structure. 
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The geometric configuration of the considered structure is anisotropic 

even for square blocks as each block has four neighbours in the x2 direction 

and only two neighbours in the x1 direction (Figure 1). 

5. THE DISPERSION FUNCTION 

The domain of validity of the above representation of a blocky structure 

by a Cosserat continuum is evaluated by comparing the dynamic response of 

the discrete and the homogenized structures. The dynamic response of a 

structure is characterized by its dispersion function, which relates the wave 

propagation velocity to the wavelength of the input signal. For elastic 

behaviour it is possible to derive analytical solutions for the dispersion func-

tion of the discrete and the continuous systems by using discrete and con-

tinuous Fourier transforms as presented below. Here, one is interested in the 

 (21) 
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out of plane dynamic response of the structure. For the in plane comparison 

of the blocky structure the reader is referred to the previous work of Sulem 

and Mühlhaus
2
, where a similar analysis is followed showing that the Cos-

serat model gives a good approximation for wavelengths bigger than five 

times the size of the block. First we will derive the expression of the dis-

persion function for the continuous system. 

The Fourier transform of a function is: 

1 2
2 i( )

1 2 1 2 1 2 1 2
G( , , )= g( , ,t) g( , ,t)e

ax by t
x x x x dx dx dtF  (22) 

where i -1 , 1 and 2 the wave numbers at x1 and x2 direction respectively 

and  the frequency. 

 The inverse transform is: 

1 2
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x t
a b d d dF  (23) 

The Fourier transform will be denoted as: 

1 2 1 2
, , , ,g x x t G  (24) 

In general the wave speed V depends on the wave numbers 1 and 2. The 

dispersion function V( 1, 2) is determined by insertion of the transformed 

unknown functions w, , and  and their transformed derivatives into Eqs. 

(12)-(14). This leads to the following homogeneous system of equations: 
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This system possesses non-trivial solutions when its determinant vanishes, 

that is: 
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and   

2

1 1 2 2
V V

Y m
a b

 (28) 

Y is the solution of the following characteristic polynomial equation: 

3 2
0AY BY CY D  (29) 

where the coefficients are: 

3 2
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Concerning the discrete system a function gi,j(t) can be written as: 

, 1 2 a,b 1 2
( , , ) ( , , )i j i jg t g x x t f x x tIII  (31) 
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(Dirac comb) and is the Dirac function. The discrete Fourier transform of 

function gi,j(t) is denoted as: 

, 1 2
, ,i jg t G  (32) 

and consequently:  

1 2
i i

1, 1 1 2
, ,i jg t e G  (33) 

Similarly to the continuous case, the dispersion function is determined by 

applying the Fourier transform to the discrete system of Eqs. (5)-(7). This 

leads to the following homogeneous system of equations: 
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This system has the same form as the one derived from the continuum 

model and it similarly possesses non-trivial solutions when its determinant 

vanishes:
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Y is the solution of the following characteristic polynomial equation: 

3 2
0AY BY CY D  (38) 

where the coefficients are: 
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Eq.(37) is formally the same as Eq.(29). 
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6. VALIDATION OF THE COSSERAT CONTINUUM 
- HOMOGENISED vs. DISCRETE MODEL 

In order to compare the dynamic response of the discrete and the con-

tinuous systems, Eq.(29) and Eq.(37) are solved. The following dimension-

less quantities are defined: 

dimensionless wave velocity:     
2 2

1 2

1

Q

Y
V

c

 (40) 

phase velocity: 

m

 (41) 

dimensionless wave lengths: 
1

1

2
w ,

2

2

w  (42) 

The wave propagation is analysed successively in the x1 ( 2=0) and the x2

direction ( 1=0). The dimensionless wave shear velocity versus the dimen-

sionless wavelength for the Discrete and the Cosserat models are presented 

in Figures 3 and 4. In Figures 5 and 6 the phase velocity for the three dif-

ferent modes corresponding to the three real roots of the corresponding cha-

racteristic Eqs.(29) and (38) are depicted. It is observed that the Cosserat 

model gives a good approximation for wavelengths bigger than five times 

the size of the block ( 2 < 0.6). 
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Figure 3. Dimensionless wave velocity for the Discrete and the Cosserat models (cN=5cQ,

b=a) for wave propagation in x1-direction. 
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Figure 4. Dimensionless wave velocity for the Discrete and the Cosserat models (cN=5cQ,

b=a) for wave propagation in x2-direction. 

0

2

4

6

8

10

12

14

16

0 0,5 1 1,5 2 2,5 3
1

p
h

a
s

e
 v

e
lo

c
it

y

Continuum 1st oscillation mode
Discrete 1st oscillation mode
Continuum 2nd oscillation mode
Discrete 2nd oscillation mode
Continuum 3rd oscillation mode
Discrete 3rd oscillation mode

Figure 5. Phase velocity for the Discrete and the Cosserat models (cN=5cQ, b=a) for wave 

propagation in x1-direction. 
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Figure 6. Phase velocity for the Discrete and the Cosserat model (cN=5cQ, b=a) for wave 

propagation in x2-direction. 

7. CONCLUSIONS

When dealing with blocky or layered structures or more generally with 

any structure where inhomogeneities are visible, one can address the question 

of modelling the behaviour of such a structure either by considering each 

inhomogeneity individually and solving the problem as in the distinct or 

discrete-element methods, or by considering the salient features of the dis-

continuum within the framework of generalised continuum theory. 

The three-dimensional dynamic behaviour of a wall was studied here. Both 

the discrete and the 3D Cosserat model of the aforementioned structure are 

described, similarly to plate theory, by two uncoupled sets of equations, 

which correspond to the in- and to the out-of-plane motion of the blocky 

structure. The in plane motion of the wall was previously studied by Sulem 

and Mühlhaus
2
. Concerning the out of plane wall behaviour, the homogeni-

sation procedure leads to similar conclusions with the in-plane analysis of 

the structure. The Discrete and the 3D Cosserat approaches coincide for 

wavelengths five times bigger the size of the block. However, the Cosserat 

model becomes increasingly inaccurate for smaller wavelengths. Generally 

one could assert that the Cosserat model appears to be the natural starting 

point for the development of continuum models for blocky structures. In the 

future, the derived continuous model is going to be extended in the plasticity 
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domain. Multi-yield plasticity criteria will be developed and applied to ex-

press and simulate the interblock sliding, tilting and twisting failure modes. 
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