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Abstract. The Spherical Cap Harmonic Analysis (SCHA) is a regional 

modeling technique based on appropriate functions which are solutions of 

Laplace’s equation over a constrained, cap-like region of the Earth. The 

concept was introduced in 1985 in the context of geomagnetism as a local 

or regional extension of the classic global spherical harmonic analysis. 

Starting from the basic principles in which the analysis method is founded, 

this paper describes the latest applications for the modeling of the main 

magnetic field and its secular variation. Although examples of applications 

over small areas will be given, it will be shown that, in general, the bigger 

the region the more appropriate the technique. Therefore, this paper focuses 

on the results and perspectives over continental areas, like Antarctica or 

Europe. The possible application to the derivation of isogonic charts for 

navigational purposes with suitable time predictions will be emphasized. At 

the same time, the limitations of the method will be examined. Although 

recent revisions of the technique seem to solve some of the problems, our 

present research focuses on the quest for solutions to the still unanswered 

questions.
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1. Introduction 

The analytical representation of the geomagnetic field has been a topic of 

research for a long time, either for the aspects related with the definition of 

the origin of the field itself or for its variations. There is also great scientific 

interest in the phenomena that produce geomagnetic variations, like 

ionospheric and magnetospheric current systems, and those induced by 

them in the Earth’s interior; along with the Earth’s self-sustained dynamo, 

which is the origin of the main field and its secular variation. Modeling the 

sources that originate the crustal contribution, caused by differential 

magnetization of the rocks in the Earth’s crust, are found in the same way. 

From the beginning, such representations have been oriented towards 

global modeling or they have tended toward the representation of the 

phenomenon over a particular portion of the Earth’s surface, because of a 

special interest in its study, or because of a denser distribution of the 

measurements in a particular region. A regional analysis tends to represent 

the field with better resolution, which is often a great advantage; but the 

mathematical algorithms that serve as a basis for such representations suffer 

frequently from restrictive constraints or impossible convergences. So, the 

algorithms have traditionally been better solved in the global case, given the 

quasi-spherical geometry of the Earth. 

The Spherical Harmonic Analysis technique, introduced by Gauss in 

1839, has resulted, by far, in the most popular method for modeling the 

main field and its secular variation at the global scale. Starting from 

Maxwell’s equations, applied over the Earth’s surface, it can be accepted 

with a good approximation that we are free from electric currents, so that 

the curl and the divergence of the field are null. The field can then be 

represented as the negative gradient of a magnetic potential V:

VB  (1) 

and such potential must then satisfy Laplace’s equation: 

0
2V  (2) 

A solution for this equation in spherical coordinates may be obtained by the 

method of separation of variables (radial distance r from the Earth’s center, 

colatitude  and longitude given as V(r,  , U(r)P( )Q( ).

Therefore, the problem is reduced to finding the solutions for these 3 

differential equations, which depend on each of the variables: 
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By adequately choosing the boundary conditions for the earth’s sphere, the 

general solution of Laplace’s equation can be expressed as a superposition 

of potential functions of this type: 
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In this way, the represented potential consists of two parts: one produced by 

sources located within a sphere of radius a, and another by sources located 

outside this volume. The P functions are the associated Legendre functions 

of first kind of degree n and order m, which are integer parameters for this 

solution.

The product of the Legendre functions with the trigonometric functions 

in longitude forms the series of two-dimensional spherical harmonics. The 

g and h are the spherical harmonic coefficients, or Gauss coefficients. The 

general solution results in an infinite series of terms. In practice, it is 

truncated at finite indices Ni and Ne.

The potential V, however, is not observable. According to equation (1), 

the cartesian components of the geomagnetic field are obtained as the 

partial derivatives of V with respect to r, , and :

V

r
BX

1
                                         (7) 

V

r
BY

sin

1
                                        (8) 

r

V
BZ r                                         (9) 

The most popular example of a global model for the main field (only 

internal long wavelength coefficients) is that known as the International 

Geomagnetic Reference Field (IGRF). The last up-to-date version of IGRF, 

known as the IGRF 10
th
 generation (IAGA, 2005), includes models of the 
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main field from 1900 to 2005 and a secular variation model for 2005-2010. 

The value of Ni for the fixed field is equal to 10 (that is, 120 coefficients) 

for all models prior to 1995, while for years 2000 and 2005 it includes 

coefficients up to degree n=13 (i.e., 195 coefficients). The secular variation 

model is expanded up to degree n=8.

The most ambitious recent effort to model fields, not only from the Earth’s 

core but also from the lithosphere, the quiet-day ionospheric sources and the 

magnetosphere, along with the associated induced currents, and 

interhemispheric field-aligned currents, is known as the comprehensive model 

of the near-Earth magnetic field (Sabaka et al., 2004). It includes about 

2,000,000 data entries from the POGO, MAGSAT, Ørsted, and CHAMP 

satellites (for which the ionospheric fields are internal), and magnetic 

observatory hourly and annual means from 1960 to 2000, resulting in more 

than 25,000 parameters. 

2. Regional techniques 

When geomagnetic observations are known only over a small portion of the 

Earth’s surface or the analysis is only required over a particular area, the 

above functions for the spherical analysis are not the most appropriate 

anymore. The different techniques for obtaining regional models can be 

subdivided into graphical and analytical (Haines, 1990). 

The oldest models of the geomagnetic field, for which the maps were 

drawn by hand, and those which have used algorithms to generate uniform 

grids from non-uniformly distributed data by numerical interpolation were 

derived graphically. 

The simplest analytical method uses a polynomial expression in latitude 

and longitude (e.g. De Santis et al., 2003). However, this technique, as with 

graphical methods, does not account for altitude variations, permits the 

possibility of geometrical inconsistencies, and does not guarantee the 

conditions imposed by the electromagnetic theory which requires that in 

regions free from magnetic sources and electric currents, the magnetic 

potential satisfies Laplace’s equation. 

Another procedure sometimes used consists in the application of 

spherical analysis to data in a restricted region. However this can generate 

numerical instabilities in the determination of the coefficients because the 

functions are not orthogonal over the limited area in which the analysis is 

developed.

So, instead of using basis functions which are orthogonal over the whole 

sphere, it is more natural to use appropriate functions for such regions. Two 

techniques employed for smaller regions on the globe are the Rectangular 
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Harmonic Analysis (RHA) and the Spherical cap Harmonic Analysis 

(SCHA).

In the RHA, the general solution for Laplace’s equation is given by an 

expansion in terms of the ordinary Cartesian or rectangular coordinates, 

with the origin usually taken at the centre of the region where the data are 

located:
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where kx=2 /Lx and ky=2 /Ly, where Lx and Ly, are the dimensions of the 

rectangular region in the x and y directions, respectively. In this way the 

dimensions in the horizontal coordinates are normalized to 2 .

Although the components of the geomagnetic field obtained in this way 

are really derived from a potential that satisfies Laplace’s equation, so that 

they suppose an analytical solution to the problem, the expansion does not 

converge uniformly over its interval of validity, but it is convergent only in 

mean square. This is because the functions used as a basis are periodic 

within such an interval; meanwhile the potential expanded in terms of such 

functions is not. In this way the termwise derivatives with respect to x or y

are divergent. The effect can be appreciated by the exhibition of some 

ringing at the boundaries. 

On the other hand, the terms Ax, By, and Cz violate the boundary 

conditions for a potential only due to internal sources, which impose that it 

must be zero when z tends to infinity. Their presence is explained by the 

fact that they tend to compensate the mentioned ringing, as well as the 

problems that appear (especially when the area is large) by the rectangular 

approximation of the spherical geometry. 

3. 

The Spherical Cap harmonic Analysis, or SCHA, developed by Haines 

(Haines, 1985), does not have the above mentioned problems and its basis 

functions give a convergent expansion both for the potential and for any of 

its derivatives. 

Spherical Cap Harmonic Analysis 
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In this case, when solving Laplace’s equation, the boundary conditions 

are the same as those in the spherical case, except those in  at the cap 

boundary. For a spherical cap the potential V at 0 and its derivative with 

respect to  must satisfy the following boundary conditions, where f and g

are arbitrary functions: 
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It has been demonstrated that the first condition is satisfied by choosing 

those values of n such that the derivative of the potential with respect to the 

colatitude is zero: 
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Meanwhile, the second is satisfied for other values of n such that the 

potential itself is zero: 
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0

m

nk
P                    (14) 

These boundary conditions are satisfied by the associated Legendre 

functions with again a real, but not necessarily integer, degree. 

Since the different real values of n depend on m, they are described by 

nk(m), where k is an integer index chosen to order the different roots n for a 

given m. Thus defined, the nk(m) for which k-m are even are the roots of 

equation (13), and those for which k-m are odd are the roots of equation 

(14), when these equations are considered as equations in n.

By superposition and assuming the finite expansion approximation, the 

general solution of Laplace’s equation for the spherical cap is: 
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As it can be seen, equation (15) includes the possibility of adding a 

polynomial temporal dependence for the potential. Here the 2-D functions 

given by the product of the Legendre functions in colatitude with the 

trigonometric functions in longitude are called spherical cap harmonics, in 

analogy with the spherical harmonics in the global context. 
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Figure 144. Contour maps of magnetic declination (left) and its annual change (right) for 

1990 from a reference model for Spain (Torta et al., 1993). 

The spatial wavelength over the Earth’s surface represented by the 

model, for a harmonic of degree nk, is simply given by the quotient between 

the Earth’s perimeter and the harmonic degree. Table 29 shows the 

maximum (when K is equal to 4) and minimum degrees associated with an 

SCHA performed over different cap sizes, and the corresponding 

wavelengths involved. So, for a 16º cap, which is roughly the size of 

Europe, the harmonics start at n equals 6.1 and quickly reaches almost 25. 

When looking at the main field and its secular variation, which are 

characterized by degrees ranging from 1 to 10 or 12, the use of big caps is 

necessary; otherwise unrealistic detail is obtained in the maps. This did 

happen in a first attempt to apply the technique to the secular variation over 

Spain and adjacent areas (Torta et al., 1992), where, even though the data 

was kept over the original 16º cap, the model became more and more 

realistic as the size of the cap was increased. The boundary conditions (13) 

and (14) of the spherical cap harmonics were then defined in a realistic way 

at the border of the cap.

A similar procedure (Duka et al, 2004) was recently used for Albania 

and Southern Italy with data only restricted to a 3º cap but with the real area 

enlarged to a cap of 8º. Since this cap is still very small, the authors limited 

the expansion to a K equal to 2. 

With the model coefficients, it is possible to obtain maps for any of the 

magnetic elements and for any epoch within the interval of validity of the 

model; for instance, for the magnetic declination, the relevant element for 

aeronautical navigation. Figure 144 shows an example of the magnetic 

declination obtained for the Iberian Peninsula for 1990, in degrees East, and 

the annual change, in minutes per year, for the same epoch. 
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Table 29. Maximum and minimum degrees and wavelengths (in Km) associated with 

spherical cap harmonic analyses over different cap sizes. 

0 nmax  (K=4) wmin nmin  (K=4) wmax

16º 24.6277 1625 6.1481 6511 

20º 19.6044 2042 4.8432 8265 

25º 15.5864 2568 3.8056 10519 

30º 12.9083 3101 3.1196 12832 

35º 10.9958 3641 2.6347 15194 

40º 9.5619 4187 2.2754 17593 

45º 8.4471 4738 2.0000 20016 

For all the above mentioned reasons the use of the SCHA technique has 

been growing among the geomagnetic field modeling community. Table 30 

is a compendium of all the up-to-date English-written published papers and 

reports known to us about the technique and its applications. 

Table 30. List of English language papers related to the SCHA as of May 2005. 

ABOUT THE TECHNIQUE 

Haines, J. Geophys. Res. 90, 2583, 1985 

Haines, HHI-Rep. 21, 27, 1987 

Haines, Comput. Geosc. 14, 413, 1988 

Haines, J. Geomag. Geoelectr. 42, 1001, 1990 

Haines, Phys. Earth Planet. Inter. 65, 231, 1991 

Torta et al., Phys. Earth Planet. Inter. 74, 209, 1992 

Haines, Geophys. J. Int. 114, 490, 1993 

De Santis & Falcone, Proc. II Hot. Marus. Symp. 1994 

Torta & De Santis, Geophys. J. Int. 127, 441, 1996 

De Santis et al., Phys. Earth Planet. Inter. 97, 15, 1996 

De Santis et al., J. Geomag. Geoelectr. 49, 359, 1997 

De Santis & Torta, J. Geodesy 71, 526, 1997 

De Santis et al., Annali di Geofisica  40, 1161, 1997 

Lowes, Geophys. J. Int. 136, 781, 1999 

De Santis et al., Phys. Chem. Earth A 24, 935, 1999 

Düzgit & Malin, Geophys. J. Int. 141, 829, 2000 

Korte & Holme, Geophys. J. Int. 153, 253, 2003 

Thébault  et al., Geophys. J. Int. 159, 83-103, 2004 

VARIATIONS OF THE TECHNIQUE 

De Santis, Geophys. J. Int. 106, 253. 1991 

De Santis, Geophys. Res. Lett. 19, 1065, 1992 

REFERENCE FIELD MODELS 
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Haines & Newitt, J. Geomag. Geoelectr. 38, 895, 1986 

Nevanlinna et al., Deut. Hydro. Zeits. 41, 177, 1988 

Newitt & Haines, J. Geomagn. Geoelectr. 41, 249, 1989 

De Santis et al., J. Geomagn. Geoelectr. 42, 1019, 1990 

Newitt & Haines, Curr. Res. E, G.S.C., 275, 1991 

Nevanlinna & Rynö, HHI Rep. 22, 106, 1991 

Torta et al., J. Geomag. Geoelectr. 45, 573, 1993 

An et al., J. Geomag. Geoelectr. 46, 789, 1994 

An et al., Geomagn. Aeron. 34, 581, 1995 

Haines & Newitt, J. Geomag. Geoelectr. 49, 317, 1997 

Kotzé & Barraclough, J. Geomag. Geoelectr. 49, 452, 1997 

Chiappini et al., Phys. Chem. Earth 24, N.5, 433, 1999 

Kotzé, Earth Planets Space 53, 357, 2001 

De Santis et al., Geophys. Res. Lett. 29, N. 8, 33-1,  2002 

Gaya-Piqué, PhD Thesis, URL, 162 pp., 2004 

Duka et al., Ann. Geophys. 47, 1609-1615,  2004 

Gaya-Piqué et al., Earth Obs. with CHAMP. Berlin: Springer, 317-322, 2005 

SECULAR VARIATION MODELS 

Haines, J. Geophys. Res. 90, 12563, 1985 

García et al., Phys. Earth Planet. Inter. 68, 65, 1991 

Miranda et al., J. Geomag. Geoelectr. 49, 373, 1997 

Torta et al., Tectonophysics 347, 179, 2002 

DETERMINATION OF THE NORTH MAGNETIC POLE 

Newitt & Niblett, Can. J. Earth Sci. 23, 1062, 1986 

Newitt & Barton, J. Geomag. Geoelectr. 48, 221, 1996 

Newitt et al., EOS 83, 381, 2002 

ANOMALY FIELD MODELS 

Haines, J. Geophys. Res. 90, 2593, 1985 

De Santis et al., NATO ASI Series C 261, 1, 1989 

Torta et al., Cahi. Cent. Eur. Geod. Seis. 4, 179, 1991 

An et al., J. Geomag. Geoelectr. 44, 243, 1992 

Duka, Annali di Geofisica 41, 49, 1998 

Zhen-chang et al., Chin. J. Geophys. 41, 42, 1998 

Rotanova & Odintsov, Phys.Chem. Earth A 24, 455, 1999 

Rotanova et al., Acta Geophys. Pol. 48, 223, 2000 

Korte & Haak, Phys. Earth Planet. Inter. 122, 205, 2000 

Kotzé, Geophys. Res. Lett. 29, N. 15, 5-1, 2002 

GEOMAGNETIC VARIATIONS EXTERNAL ORIGIN 

Walker, J. Atmos. Terr. Phys. 51, 67, 1989 
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Newitt & Walker, J. Geomag. Geoelectr. 42, 937, 1990 

Haines & Torta, Geophys. J. Int. 118, 499, 1994 

Torta et al.,  J. Geophys. Res. 102, 2483, 1997 

Walker et al., J. Atmos. Sol. Terr. Phys. 59, 1435, 1997 

Amm, Ann. Geophys. 16, 413, 1998 

IONOSPHERIC PARAMETERS 

De Santis et al., Ann. Geophys. 9, 401, 1991 

De Santis et al., Adv. Space Res. 12, N. 6, 279, 1992 

De Santis et al., Comput. Geosc. 20, 849, 1994 

El Arini et al., Proc. Int. Beacon Sat. Symp. 358, 1994 

Dremukhina et al., J. Atmos. Sol. Terr. Phys. 60, 1517, 1998 

GEODESY

Jiancheng et al., Manuscr. Geod. 20, 265, 1995 

Hwang & Chen, Geophys. J. Int. 129, 450, 1997 

Spherical Harmonic Analysis is well founded, but the SCHA is still in 

the dawn of its existence, so it must be used with some precaution. For 

instance, one must be aware of the problems concerning external-internal 

separation. Torta and De Santis (1996) performed an analysis of the daily 

variation over a cap of 18º, corresponding to the area represented by the 

European continent. They showed that while the fit to the total variation for 

any of the points of that area is excellent, the external and internal parts of 

such variation are not exactly the real ones, so that the errors in the external 

and internal fields are equal and opposite. The situation improves 

substantially with a cap of 30º, and further with larger caps, as soon as the 

intrinsic spectral content of the phenomenon to analyze coincides with that 

of the models basis functions. In any case, as the real and modeled 

separated fields are approximately in phase, the information about the 

ionospheric current systems generated by the magnetic variations is still 

valid.

These problems appear because the external-internal separation in 

reality implies the comparison of separate analyses for the horizontal and 

vertical components (Matsushita and Campbell, 1967). And, when the 

region becomes small enough, one of the first things that we appreciated 

(García et al., 1991) is that the potential for the horizontal and radial 

components cannot be simultaneously exactly represented. In fact, 

analyzing all components at the same time provides an approximation that 

attempts to fit both, but it is not as precise as fitting Z separately from X

and Y. In any case, this problem is not unique to the SCHA; it appears with 

any method that attempts to analyze fields with wavelengths much larger 

than the area covered by the data (Lowes, 1995, 1999). 
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Even though the resulting potential represents a good approximation 

within the cap where the data are located and in their altitude range, it 

irremediably diverges for the opposite pole (because of the non-integer 

degree of the Legendre functions). So that, it is little by little intrinsically 

different form the real potential out of that area, and it prejudices the 

vertical extrapolations as well (Figure 145). 

Figure 145. Solid line: associated Legendre function (n=9, m=2) at =35º represented at all 

longitudes around a sphere. The same function has been computed on a regular grid inside a 

40º spherical cap and fitted with an SCHA. Dashed line: the result of such SCHA over the 

same circular path around the sphere.

A revision of the technique has been recently presented (Thébault et al., 

2004) in which the potential expansion is expressed as complex Legendre 

(conical) functions in colatitude and log-trigonometric series in longitude. 

The local potential Vc expanded in the local basis (a spherical cap defined 

within r=a and r=b) is given as Vc = V1 + V2, where V1 is the same potential 

as given by Haines (1985) for the even-set and V2 is defined as:
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where R0 is the square root of 1/(e
S
-1) (with S = ln (b/a)),
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where p is an integer belonging to the imaginary part of a complex 

harmonic degree n (see Thébault et al., 2004). Km
p are conical functions, i.e. 

Legendre functions with n = complex. 

The advantage of this proposal is that it provides a better fit for the 

radial variation, even for the X, Y, and Z components, with respect to the 

classical SCHA. However, the internal-external separation is not made in r,

but with respect to the cap region (i.e. internal or external to the cap). 

Figure 146. Path followed by the balloon (anticlockwise sense) carrying the magnetic 

instrumentation. Alternate colors mean different days.
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4. 

Assuming very carefully all the above mentioned limitations, the last 

application of the technique was revised (Gaya-Piqué, 2004; Gaya-Piqué et

al., 2006). It is called the Antarctic Reference Model (ARM) and to our 

knowledge it is the first full main field (i.e. main field plus its secular 

variation) geomagnetic model for the Antarctic. A model in this region is 

very important not only for scientific studies but especially for navigating 

with a compass there. It would be almost impossible without correct 

knowledge of large differences in declination typical of Antarctica. 

Figure 147. Spatial distribution of the satellite magnetic measurements used to develop the 

Antarctic Reference model. From left to right and from top to bottom: OGO-2, OGO-4, 

OGO-6, MAGSAT, ØRSTED and CHAMP. 

The model has been developed using the most recent data sets available 

for the region. The annual means from 1960 on from all Antarctic magnetic 

observatories south of 60ºS were used. However, the number and the extent 

of gaps in the data are important to note, because the time derivatives 

simply taken as the first differences tend to provide non-realistic values of 

the secular variation. To overcome this problem we took differences 

relative to a fiducial observation, in particular with respect to the mean over 

all data at each observatory. In this way, both the main field and the crustal 

anomaly are removed, obtaining for the ith
 measurement of the field at the 

vth
 observatory at epoch tiv (Haines, 1993): 

Antarctic Reference Model 
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Figure 148. Contour maps of declination (left, units: degrees East) and its annual change 

(right, units: minutes/year) for 2005 from the Antarctic Reference model. 
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where
qvb are spatial functions (expressed as series expansions in spherical 

cap harmonics) evaluated at the position of the vth
 observation, and iv  is 

the measurement error. In equation (18) the temporal basis functions are 

expressed as power functions, but they can be chosen as Legendre, Fourier, 

or any other appropriate set of functions. 

Secondly, a balloon mission was undertaken to obtain a data set of 

magnetic measurements from stratospheric altitude (Figure 146). Special 

attention was given to this mission since its magnetic measurements were 

used for the first time in this work. 

Finally, magnetic data from six satellite missions were used, covering 

epochs over the 40 years of validity of the model. These data have been 

selected according to different criteria to model only values corresponding 

to magnetically quiet periods (Figure 147).The model parameters follow: 

- A 30° half-angle Spherical Cap centered at the South Pole 

- A maximum spatial degree expansion of K=8, which means n  25, 

or a wavelength of approximately 1,600 km 

- A variable maximum temporal degree expansion using cosine 

series

One hundred sixty three statistically significant coefficients were 

obtained by means of a stepwise regression procedure (see Haines and 

Torta, 1994 for details; an alternative to this procedure based on a 

regularized method has been recently presented by Korte and Holme, 

2003). The regression procedure allows for the determination of the field 
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for epochs between 1960 and 2005 (Figure 148). The fit to the secular 

variation of the observatory annual means is better than those of global 

models like IGRF or the Comprehensive model (Gaya-Piqué et al.., 2006), 

and in Figure 149 one can see its validity, with good fit of the magnetic 

elements at four different observatories being obtained. 

Figure 149. X (top left), Y (top right), Z (bottom left), and F (bottom right) annual means 

registered at ARC (solid triangles), SBA (open triangles), SYO (squares), and VOS (circles) 

observatories relative to their respective mean values over the time period. The thick lines 

show the fit given by ARM, and the thin lines that by IGRF 9
th

 generation. 
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5. Conclusions 

It has been shown how it is possible to develop models that reflect the 

spatial and temporal variations of the geomagnetic field in a restricted 

region with more detail and precision than is usually possible using the 

standard global models. Thus, regional models of secular variation allow 

for a better integration of disparate magnetic surveys and uniform digital 

anomaly charts can be obtained in this way. The spatial precision can be 

achieved using the Spherical Cap Harmonic Analysis technique. The 

temporal dependence of differences in the main field relative to the means 

at each observatory has been shown by analysis to be definitively more 

robust than the fit to variations obtained by numerical differentiation. 

It was not the intent of this paper to present the SCHA method as the 

definitive technique for the analysis of the geomagnetic field in a restricted 

region of the Earth’s surface. The intention has been to demonstrate how 

the SCHA can be of great value in some applications, once its drawbacks 

are analyzed, and whenever it is used conscientiously with its limitations 

recognized.
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DISCUSSION

Question (Spomenko J. Mihajlovic): For which area do you think that 

SCHA is an optimal method (How wide should the area be)? 

Answer (Miquel Torta): The area where SCHA is optimal depends on what 

kind of field one wants to represent. The spatial wavelength over the 

Earth’s surface represented by the model, for a harmonic of degree nk, is 

simply given by the quotient between the Earth’s perimeter and the 

harmonic degree. And the different values that take the nk harmonics 

depend on the cap size, the bigger the cap the smaller the harmonics, and so 

the larger the wavelengths associated with each harmonic. Therefore, if one 

is interested in representing the main field and its secular variation, which 

we know are characterized by degrees going from 1 to 12 or 13, the use of 

big caps (say of continental size) are necessary; otherwise we will have 

unrealistic detail in our maps. If the model is aimed at representing smaller 

scale features (e.g. lithospheric anomalies), a small cap (e.g. of few degrees 

cap half-angle) can be suitable. As a rule of thumb, the area of the existence 

of the feature (or features) of the field that is going to be represented must 

be at least to some extent coincident with the cap-like region defining the 

analysis.




