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15.1 Introduction
IF logic is introduced by J. Hintikka and advocated in a number of publica-

tions; the main ones are [Hintikka, 1996] and [Hintikka and Sandu, 1997]. The
difference with predicate logic concerns the interdependency of quantifiers. In
predicate logic quantifiers may depend on the quantifiers in whose scope they
occur, e.g. in the quantifier sequence ∀x∃yψ the value chosen for y may depend
on x. So scope indicates possible dependencies. It is not possible in predicate
logic to express that a quantifier should be independent of another one. In IF
logic it is possible to express that an existential quantifier is independent of
a preceding universal quantifier (IF abbreviates ‘Independence Friendly’); the
issue of (in)dependence also applies to disjunctions.

In IF logic existential quantifiers (and disjunctions) are by definition indepen-
dent of other existential quantifiers. A natural generalization of IF would be that
these can at choice be dependent or independent of existential quantifiers. We
indicate this generalization by IFG (IF Generalized). The generalizations that
are investigated by [Hodges, 1997] and [Caicedo and Krynicki, 1999] go even
further and allow for independency with universal quantifiers and conjunctions.
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IF and IFG are logics with unexpected properties. [Hodges, 1997] has a
section called Deathtraps, and says (p. 546): ‘the idea “what a player is al-
lowed to know”, though it has strong intuitive content, can be very misleading’.
[Caicedo and Krynicki, 1999] state (p. 22): ‘One has to be careful about wrong
extrapolations from classical semantics.’ [Janssen, 2002] concludes (p. 375):
‘The examples given in the previous sections show that strategies are on several
points in conflict with intuitions on independence’.

The cause of the unexpected properties lies in a phenomenon which is
called ‘signalling’, and which will be explained in the next sections. Although
[Caicedo and Krynicki, 1999] have warned the reader, they fell in the trap of
wrong extrapolations. Several of their theorems are incorrect, and this is, in
our opinion, not due to some accidental oversight, but because the deathtraps
of signalling are not well known.

In this paper we will present several tricky examples of signalling. The
results of [Caicedo and Krynicki, 1999] and the fundamental claim by Hintikka
that IF is a conservative extension of predicate logic all are incorrect due to
signalling. Probably they can reformulated in a weaker sense ([Caicedo et al.,
to appear]).

15.2 What is signalling?
In the context of game theoretical semantics for IF, ‘signalling’ is the phe-

nomenon that the value of a variable one is supposed not to know, is available
through the value of another variable. Below we present the earliest exam-
ple of this phenomenon, but first we explain informally the game theoretical
interpretation of IF and IFG. Formal definitions will be given in section 15.5.

The interpretation of a formula proceeds by a game between two players;
∀belard and ∃loise. ∀belard aims to refute the formula, ∃loise to confirm it.
We suppose the formula to be in negation normal form. In that case ∀belard
makes the choices for ∀ and ∧, and ∃loise for ∃ and ∨. If a choice is to be made
independent of the values of certain variables, that is indicated by mentioning
those variables after a slash that is attached to the quantifier or connective. For
instance, in ∃x/y the x has to be chosen independent of y, and in ∨/x a disjunct
has to be chosen independent of x. Again, ∃loise has to make the choices in
these cases, and ∀belard for the other ones. A formula is defined to be true if
∃loise has a winning strategy (and false if ∀belard has a winning strategy, but
this will hardly play any role in the paper).

Time for an example. We start with a classical formula:

∀x∃y[x = y] (15.1)

The game proceeds as follows. First ∀belard chooses a value for x, and next
∃loise chooses one for y. If she chooses the same value as ∀belard she wins
this play. As a matter of fact, that method always is successful; it is a winning
strategy, and therefore the formula is true.
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An IFG formula that resembles (15.1) is:

∀x∃y/x[x = y] (15.2)

Here ∃loise has to make her choice independently of x. Maybe she by accident,
but she does not have a winning strategy for the game. Hence the formula is
not true. It is not false either, because also ∀belard has no winning strategy.

Consider now
∀x∃z ∃y/x[x = y] (15.3)

A vacuous quantifier is inserted, and in classical predicate logic that would
make no difference; its truth value remains unchanged. But in IFG it makes a
difference. The winning strategy for ∃loise is to choose z to be equal to x, which
is allowed because no independence restrictions are put on z. Next she chooses
y to be equal to z, which is allowed because she does not ask for the value
of x. The result is that x equals y. So by proceeding in this way, ∃loise has
a winning strategy. The strategy recognizes the value of z as a signal for the
value of x, and uses that signal to choose the value of y. For original IF logic
this example of signalling is not possible (because existential quantifiers are
there by definition independent of each other), but we will meet several other
examples concerning IF logic where signalling is used.

Example (15.1) was the first example of signalling that was discovered
[Hodges, 1997] p. 548. The example of a wrong extrapolation from classical
logic given by [Caicedo and Krynicki, 1999] p. 22 has a completely different
appearance, but in fact it is a reformulation of (15.1), so it is based upon sig-
nalling. [Janssen, 2002] gives many other examples of signalling, and so does
the present paper.

15.3 Signalling is needed
Before we consider cases where signalling causes a problem, it first will be

illustrated that signalling is an essential component of the semantics of IF and
IFG.

Consider (15.4), interpreted in a model with 2 elements: {0, 1}.

∀x[x = 1 ∨ x �= 1] (15.4)

This formula is classically true, and it is so in IF and IFG semantics: ∃loise can
make her choice based upon the value of x, and has as strategy: if x = 1 then
L else R.

A related example is:
∃u[u = 1 ∨ u �= 1] (15.5)

This formula is true in classical logic, and it is true in IF. But the winning strategy
is not, as you might expect, to choose for ∨ the left disjunct in case u = 1 and
the right disjunct otherwise. This is not allowed: the choices of ∃loise are in
IF by definition independent of her own earlier choices. This independence is
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analogous to the formation of the Skolem form for classical predicate logic: the
Skolem function for an existential quantifier has as arguments only variables
that are universally quantified. For example: ∀x∃y∃z[x < y < z] has Skolem
form ∃f∃g∀x[x < f(x) < g(x)] The fact that z ( = g(x)) is greater than
y ( = f(x)), is accounted for by first recalculating internally in g what f(x) is;
one might say g(x) = g′(x, f(x)).

As explained, when playing (15.5) it is not allowed to recalculate the value
of u for the decision on ∨. What can than be a winning strategy? The solution
is to use constant strategies: for ∃u the value 0, and for ∨ always choose R.

In IFG the same problem arises for (15.6) where it is made explicit that the
value of u may not be used for making a choice for the disjunction. In (15.6)
the same strategy is winning as for (15.5).

∃u[u = 1 ∨/u u �= 1] (15.6)

We return to IF, and make the example more complicated. Consider:

∀x∃u[u = x ∧ [u = 1 ∨ u �= 1]] (15.7)

This formula is classically true, but for IF semantics the situation seems difficult.
The constant strategies from the previous example will not work. ∃loise cannot
take a strategy that always yields the same value for u because it must satisfy
u = x, and the strategy for ∨ must vary with the value of u. The solution is to
use the value of x as signal for the value of u. ∃loise wins by choosing u equal
to x, and making for ∨ the choice L if x = 1 and R otherwise.

Example (15.7) is an important example because it illustrates the need for
signalling in IF. The language of IF logic is an extension of the language of
predicate logic, and it is claimed to be a conservative extension [Hintikka,
1996] p. 65. Without signalling ∃loise has no winning strategy in example
(15.7). Without signalling, (15.7) would be a formula without slashes that is
not true in IF, whereas classically it is true; it would be a counterexample to the
claim of conservative extension. This shows: signalling is needed.

This story can directly be transferred to IFG. The IF example (15.7) is refor-
mulated in IFG as (15.8), where of course the same strategy is winning.

∀x∃u[u = x ∧ [u = 1 ∨/u u �= 1]] (15.8)

When [Hodges, 1997] proposes to switch to IFG, he says (p. 22): ‘Obviously
this won’t diminish the expressive power of the language.’ But in order to allow
a reconstruction of IF in IFG, we must have the same possibilities for signalling
in IFG (for (15.8)) as in IF (for (15.7)).

So, signalling has effects that cannot easily be missed: giving it up would
cause considerable changes in the semantics. An alternative semantics, in which
signalling cannot occur, is given in [Janssen, 2002] but at the cost of loosing
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some of the expressive power. However, the argument given above for signalling
is not the end of the story: in sections 15.4.4 and 15.7.4 we will show that even
with signalling there are problems with the claim of conservative extension.

15.4 Counterexamples
In the literature one finds some theorems and claims which are incorrect

due to the fact that the possibilities of signalling are not well known. In this
section we present the counterexamples informally; in section 15.7 we will
prove the results in a more technical way. For instance, in this section we do
not quote the original versions of the theorems, and furthermore we will not
give complete proofs here. Although we will prove that certain formulas are
true, by providing winning strategies for ∃loise, we will not prove that certain
formulas are not true. The reason is that negative proofs are more difficult
to obtain: the collection of possible strategies is rather unwieldy. Instead we
will (following [Caicedo and Krynicki, 1999]) first define (in section 15.5) an
alternative for the game interpretation which they also use for formulating their
theorems: an interpretation which uses sets of valuations.

15.4.1 Renaming of bound variables
Claim 1. (cf. Lemma 3.1a [Caicedo and Krynicki, 1999] p. 26)
Let Qx be ∀x or ∃x where the quantifiers may be with or without a slash. If φ is
a sentence in which Qx[ψ(x)] occurs as subformula, and z does not occur (free
or bound) in ψ, then the subformula Qx[ψ(x)] may be replaced by Qz[ψ(z)]
without changing the truth value.

We will show that this claim is incorrect. A counterexample is given by the
following two formulas, where (15.10) is obtained from (15.9) by replacing s
by y. They are played on a model with 2 elements: {0, 1}, and it does not
matter whether you see them as IFG or IF formulas.

∀x∀y∀z[x �= y ∨ ∃s∃u/x[u = x ∧ s = z]] (15.9)

∀x∀y∀z[x �= y ∨ ∃y ∃u/x[u = x ∧ y = z]] (15.10)

In (15.9) the winning strategy is as follows. We let f∨ ≡ if x �= y then L else R;
f∃s ≡ s := z and f∃u/x

≡ u := y. This strategy is winning because y signals
the value of x to ∃u/x. In (15.10) the corresponding strategy is f∃y ≡ y := z.
That strategy is not winning because when it comes to the choice of u, y is
equal to z and not to x: the ∃y blocks the signal from ∀y.

We expect that a general version of the renaming theorem is not possible.
No matter how we restrict the choice of the new variable: there might always
be a context in which this new variable blocks a signal from outside. So we
always run the risk of changing the truth value in some context if we rename
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the variable. In order to obtain a kind of renaming theorem, we have to change
the notion of equivalence. Instead of the absolute notion ‘equivalent in all
contexts’, a stricter notion seems to be required.

15.4.2 Prenex normal form
In predicate logic the prenex normal form theorem describes how quantifiers

can be shifted to the front of a formula, e.g. ∀x[φ] ∨ ψ can be replaced by
∀x[φ ∨ ψ], under the condition that x does not occur free in ψ. In IF and
IFG these two formulas are not necessarily equivalent because quantifiers in ψ
become dependent on ∀x. Therefore [Caicedo and Krynicki, 1999] present a
rephrasing.

Claim 2. (cf. Lemma 3.1.c,d [Caicedo and Krynicki, 1999] p. 26)
Let Qx be ∀x or ∃x where the quantifiers may be with or without a slash and
let φ/x denote the result of adding to all quantifiers in φ the independence
condition /x. Then any subformula of the form [Qx[ψ]∨ θ] can be replaced by
Qx[ψ ∨ θ/x] without changing the truth value.

This quantifier extraction claim is incorrect because it may interfere with
signalling. There are two ways in which this can happen.

The first counterexample will show that in Qx[ψ ∨ θ/x] the x can be used
to send signals to θ/x. Indeed, the formulation of the claim given above, was
intended to prevent this, but as we have seen in section 15.3, also decisions on
disjunctions may depend on signals. The second counterexample is based upon
the possibility that in Qx[ψ∨θ/x] the quantifier may block signals from outside
to θ/x.

Counterexample 1
This first example is based upon a situation where a formula that is not true,

becomes true by quantifier extraction. It is an IFG example; the situation for
IF formulas still has to be investigated further. Consider:

∀z[∀x[x �= z] ∨ ∃u/z[u = z ∨/z u �= z]] (15.11)

It will be clear that no z satisfies the left disjunct. In the right disjunct there is
for f∃u/z

no argument available, so it is a constant strategy. Furthermore f∨/z

is not allowed to depend on z, but it may depend on u. Since f∃u/z
is constant,

this means that f∨/z
is constant: always L or always R. For at least one value

of z such a choice will not be winning, hence ∃loise has no winning strategy;
so, formula (15.11) is not true.

The result of the quantifier extraction transformation in (15.11) is:

∀z∀x[x �= z ∨ ∃u/z,x[u = z ∨/z u �= z]] (15.12)
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This formula is true as the following strategy shows. Let f∨ ≡ if x �= z then
L else R. So either the left disjunct is satisfied, or the right disjunct has to be
satisfied in a situation where x = z. For u we take an arbitrary (but fixed) value.
For ∨/z the value of x can be used as a signal: f∨/z

≡ if u = x then L else R.
So if the players arrive at the subformula u = z, this one is satisfied because
u = x and x = z, and if they arrive at the subformula u �= z, that one is satisfied
because u �= x and x = z. So these choice functions for the disjunctions form a
winning strategy for ∃loise.

Note that in variant (15.13) of (15.12) for f∨/z,x
no information about x can

be used. So (15.13) is not true, just as the sentence in which the quantifier
extraction has not yet taken place, viz. (15.11).

∀z∀x[x �= z ∨ ∃u/z,x[u = z ∨/z,x u �= z]] (15.13)

This counterexample suggests that in claim 2 not only the quantifiers, but also
the connectives have to be slashed.

Counterexample 2
This example, again an IFG example, shows that by giving ∀ wide scope a
signal can be blocked. The counterexample is obtained from:

∀y∃u[∀u[u �= u] ∨ ∃x/y[x = y]] (15.14)

For this formula the winning strategy is: f∃u ≡ u := y, f∨ ≡ R, and let
f∃x/y

≡ x := u. Since u = y it follows that x = y. Hence (15.14) is true in our
model.

Quantifier extraction changes formula (15.14) into

∀y∃u∀u[[u �= u] ∨ ∃x/y,u[x = y]] (15.15)

The strategy x := u given above for ∃x/y is not allowed for ∃x/y,u, and the
formula is not true. The quantifier ∀u blocks the signal u = y from outside to
∃x/y,u[x = y].

We think that a general version of the quantifier extraction lemma (as in
claim 2) is not possible. One can always construct a context in which a moved
quantifier blocks a signal. Therefore we suggest investigating the idea that the
normal form theorem has to be restricted to situations where this cannot arise.

15.4.3 Slashed disjunction elimination
It is claimed that slashed disjunction can be eliminated. In Hintikka’s work

this follows from his translation procedure from IF logic to second order logic
and back (cf. [Hintikka, 1996] p. 52 and p. 62–63). [Caicedo and Krynicki,
1999] give the result within IFG.

Claim 3. (cf. Lemma 3.2, [Caicedo and Krynicki, 1999] p. 25)
φ ∨/Y ψ ≡G ∃u/Y ∃s/Y,u[[[u = s ∧ φ] ∨ [u �= s ∧ ψ]] ∨ ∃!u[u =u ∧ [φ ∨ ψ]]]
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The last part of the formula in the claim deals with the situation that there is
one element in the model. In our counterexample we assume that the model
has at least three elements, so we may neglect that part.

Consider now:

∀y∀t[∃x/t[x = t] ∨/y ∃x/t[x = t]] (15.16)

The strategies for the two occurrences of ∃x/t may depend on y, but not on u.
∃loise may follow for the left occurrence of ∃x/t another strategy than for the
right one. Because ∀belard can choose from at least 3 different values for t,
there will always be one occurrence ∃x/t that ∃loise has to satisfy for two or
more different values of t. This she cannot do, so the sentence is not true.

The proposed elimination rule changes (15.16) into (15.17), where we omit-
ted the last part (since it is false in our model).

∀y∀t ∃u/y ∃s/u,y[[u = s ∧ ∃x/t x = t] ∨ [u �= s ∧ ∃x/t x = t]] (15.17)

∃loise has a winning strategy for this sentence: f∃u/y
≡ u := t, f∃s/y,u

≡ s :=
t, f∨ ≡ L, and f∃x/t

≡ x := s. This strategy never violates the independence
restrictions, and it guarantees ∃loise to win. Note that the y plays no essential
role in the strategies.

We conclude that also the rule for the elimination of slashed disjunctions has
to formulated in some restricted way.

15.4.4 Conservative extension
Claim 4. ([Hintikka, 1996] p. 65.) Technically speaking IF first-order logic is
a conservative extension of ordinary first-order logic

Also this claim is undermined by the tricky properties of signalling, as will
be explained below.

A variant of example (15.7) from section 15.3 is the IFG example:

∀x∃u[u = x ∧ [u = 1 ∨/u u �= 1]] (15.18)

This example is true: the x could be used as a signal for the value of u at the
disjunction. An extended version of (15.18) is:

∀x∀y∃u [u = x ∧ ∀s[s = y ∨ [u = 1 ∨/u u �= 1]]] (15.19)

This formula is again true: for the first ∨ choose R, and for the second ∨ use x
as a signal for the value of u. Next we replace s by x.

∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]]] (15.20)

Here the signal is blocked, and consequently the formula is not true.
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Next we write (15.20) in the language of IF logic, what means that the
independence of ∨ from ∃u is not expressed. Then we get:

∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨ u �= 1]]] (15.21)

Above we have argued that ∃loise has no winning strategy for (15.20), hence
not for (15.21); a proof will be given in Section 15.7.4. So, according to the IF
interpretation, (15.21) is not true. At the same time it is a formula from classical
predicate logic, and classically it is true. Hence IF-logic is not a conservative
extension of predicate logic.

15.5 Definitions
15.5.1 The language
Definition 5. The language of IFG-logic is defined as follows:

1. The language has variables. Typical examples are x, y, z, u, s, and t. In
general discussions variables range over a domain A of model A, but in the
examples the domain is {0, 1} or {0, 1, 2}.

2. The language has constants. In general discussions typical constants are
a and b. In the examples 0 and 1 are used.

3. A term is a variable or a constant We choose our fragment not to contain
any function symbols.

4. The relation symbols are R1, R2, . . .; each with a fixed arity. In the
examples the binary relation symbols =, �=, <, and ≤ are used.

5. If t1, . . . , tn are terms, and n is the arity of R, then R(t1, . . . , tn) and
¬R(t1, . . . , tn) are formulas.

6. If ψ and θ are formulas, z is a variable, and Y a set of variables, then also
the following expressions are formulas: ψ ∧ θ, ψ ∨ θ, ψ ∨/Y θ, ∀zψ, ∃zψ.
If z �∈ Y then ∃z/Y ψ is a formula.

After a slash we will omit brackets of set denotations, and write ∃y/x and
∃y/x,u.

Definition 6. FV (φ) is the set of free variables in φ. It consists of those
variables in φ which do not occur in φ bound. FV (φ) includes variables in
Y ’s occurring in ∨/Y and ∃x/Y as far as they are unbound in φ.

A comparison of our definition of the logic with the literature gives rise to
the following remarks:
1. We assume all formulas to be in negation normal form, as is done in almost

all publications of Hintikka and in [Väänänen, 2002]. In some other publi-
cations about variants of IF-logic negation may occur freely (e.g. [Hodges,
1997] and [Caicedo and Krynicki, 1999]). We do not need it, however, for
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our discussion of signalling. A happy consequence is that there is no role
switch between ∀belard and ∃loise, what makes the discussion easier to
understand.

2. In Hintikka’s version choices depend only on moves of the opponent, but
can be made independent of them by slashing those moves away. We allow
also (in)dependency between own choices. Therefore also existentially
quantified variables may arise after a slash.

3. We do not consider strategies for ∀belard, as they are not necessary to make
our points.

15.5.2 Playing
The main ingredient of a game is a formula from IFG logic. The aim of the

game is to determine the truth of the formula in a model A. The two players
have different aims: ∃loise tries to confirm the truth and ∀belard to refute it.
We are, however, not so much interested whether ∃loise accidently wins (or
looses), but whether she has a winning strategy for the game, because that is
the criterium whether the formula is true or not. Therefore we will describe
IFG on two levels: the level of actual playing the game, where the two players
move, and win or lose, and the level of a set of sets of plays where the players
may have a winning strategies.

We first describe how a game is played: which player has to move in a given
position, what are his/her possible moves, and what is the effect of the move.
In the course of the game the players will encounter subformulas like ψ ∨/Y θ
or ∃x/Y ψ. The subscript indicates that the choice of the move has to be made
independent of the variables in Y . This is a restriction on the motivation for
the choice, but not on the choice itself. Therefore in the description of playing
it makes no difference whether /Y occurs as subscript or not. Its role will be
defined when we consider strategies in section 15.5.3.

A valuation describes at least the values of the free variables in φ; an alterna-
tive name would be finite assignment. For valuations we mainly use v and w.

Definition 7. A valuation v for a formula φ in a model A is a function v ∈
dom(A)X where FV (φ) ⊆ X .

Definition 8. We use the following notations concerning valuations:

{x : a} the valuation that assigns a to x (a ∈ dom(A))
v ∗ {x : a} the valuation obtained from v by changing the value assigned

to x into a if v was defined for x, or by extending the domain
of v such that it now assigns a to x.

ε (the empty valuation) the valuation that is defined for no
variable at all
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v ∼Y w (v is an Y -variant of w) valuations v and w are defined for
the same variables, the values they assign may differ for the
variables in Y , but are the same outside Y

Definition 9. A play is a triple 〈A, φ, v〉where φ is a formula from IFG-logic,A
a model and v a valuation where FV (φ) ⊆ dom(v). A position is a pair 〈ψ, w〉,
where ψ is a subformula of φ and w a valuation where FV (φ) ⊆ dom(w).
A move is a transition from a position to a position. The possible moves are
determined by the form of φ. We distinguish the following cases:

1. 〈φ, v〉 ≡ 〈ψ ∧ θ, v〉
∀belard chooses L or R. If he chooses L, then the play is continued from
position 〈ψ, v〉, otherwise from position 〈θ, v〉.

2. 〈φ, v〉 ≡ 〈ψ ∨ θ, v〉 or 〈φ, v〉 ≡ 〈ψ ∨/Y θ, v〉
∃loise chooses L or R. If she chooses L, the play is continued from position
〈ψ, v〉 otherwise from position 〈θ, v〉. For the role of /Y see section (15.5.3)
below.

3. 〈φ, v〉 ≡ 〈∀xψ, v〉
∀belard chooses a value for x, say a, and the play proceeds from position
〈ψ, v ∗ {x : a}〉.

4. 〈φ, v〉 ≡ 〈∃xψ, v〉 or 〈φ, v〉 ≡ 〈∃x/Y ψ, v〉
∃loise chooses a value for x, say b. Then the play is continued from position
〈ψ, v ∗ {x : b}〉.

5. 〈φ, v〉 ≡ 〈R(t1, . . . , tn), v〉
Here the play ends. Let ai = v(ti) if ti is a variable, en ai = tAi if ti is a
constant. If (a1, . . . , an) ∈ RA then ∃loise has won the play, otherwise she
has lost.

6. 〈φ, v〉 ≡ 〈¬R(t1, . . . , tn), v〉
Here the pay ends. Letai be defined as in the previous clause. If (a1, . . . , an)
�∈ RA then ∃loise has won the instance of the game, otherwise she has lost.

15.5.3 The game
We now switch to the level where strategies can be defined. We consider a

game as set of plays ([Hodges, 1997] calls this level a ‘contest’).

Definition 10. A game is a triple 〈A, φ, V 〉, where A is a model with domain
A, φ a formula of IFG-logic and V a collection of valuations such that there is
a set X of variables with FV (φ) ⊆ X and V ⊆ AX .

A choice function fφ is a function that describes which choices ∃loise may
make, depending on the values previously chosen for the variables. The require-
ment that a choice does not depend on the variables in a set Y is formalized
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by requiring that fφ yields the same choice for different values assigned to the
variables in Y .

Definition 11. The possible choice functions fφ for ∃loise at position 〈φ, v〉
in a game 〈A, η, V 〉 are defined by the following cases:

φ ≡ ψ ∨ θ fψ∨θ : V → {L, R}
φ ≡ ψ ∨/Y θ fψ∨/Y θ : V → {L, R} such that from v1 ∼Y v2 follows that

fψ∨/Y θ(v1) = fψ∨/Y θ(v2).
φ ≡ ∃xψ f∃xψ : V → A, where A is the domain of A.
φ ≡ ∃x/Y ψ f∃x/Y ψ : V → A, where A is the domain of interpretation

and v1 ∼Y v2 implies f∃x/Y ψ(v1) = f∃x/Y ψ(v2).

We say that a choice function f is independent of Y on V if for all v, w ∈ V
from v ∼Y w follows f(v) = f(w).

Definition 12. A strategy Fφ for a game 〈A, φ, V 〉 is a collection choice func-
tions {fψ}ψ∈Sub(φ) which for each subformula ψ where ∃loise has to make a
choice, provides a choice function fψ. Different occurrences of ψ in φ have
their own choice function.

Definition 13. A strategy Fφ is called a winning strategy in game 〈A, φ, V 〉 if
playing in accordance with that strategy guarantees ∃loise to win in all possible
plays 〈A, φ, v〉, v ∈ V , of the game. Notation: A |=G φ[V, Fφ].

Definition 14. Sentence φ is called game-true, shortly ‘true’, if there exists a
winning strategy Fφ such that A |=G φ[{ε}, Fφ].

15.6 Valuations
In this section we will present an alternative definition for IFG that resembles

the classical definition of satisfiability using valuations. One of the reasons is
that several theorems from [Caicedo and Krynicki, 1999] are formulated with
such a definition. There is a difference however between the use of valuations
for IF (and IFG), and in the traditional approach to predicate logic. Whereas
classically a formula is interpreted with respect to a single valuation, for IF
and IFG this will be done with respect to a set of valuations. Therefore several
notions from definition 8 are lifted to the level of sets.

Definitions 15. The following notations concern sets of valuations:

{xy : aa, bb} (is an example of the explicit notation we use for a set of val-
uations) the set of valuations that assign to x and y identical
values from {a, b}

V ∗ {x : a} {v ∗ {x : a} | v ∈ V }
V ∗ {x : A} {v ∗ {x : a} | v ∈ V, a ∈ A}
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V ∼Y W (V is an Y -variant of W ) for each v ∈ V there is a w ∈ W
such that v ∼Y w and for each w ∈ W there is a v ∈ V such
that w ∼Y v.

In order to express a counterpart of independence in the realm of valuations,
we borrow the notion of Y -saturatedness from [Caicedo and Krynicki, 1999].
That a choice function is independent of Y will correspond with having a certain
partition of its domain into Y -saturated sets (see definition 20).

Definition 16. A subset W of V is called Y -saturated in V if for all w, v ∈ V
from w ∼Y v and w ∈ W follows that also v ∈ W .

Lemma 17. Let V1 and V2 be Y -saturated subsets of V . Then V1∪V2, V1∩V2,
and V1 \ V2 are Y -saturated subsets in V .

Lemma 18. The equivalence classes in V of the relation ∼Y are Y -saturated.

Definition 19. The partition V/∼Y of V into ∼Y equivalence classes is called
the Y -saturated partition of V .

We are now prepared for the definition of the interpretation in a model A of
a formula φ with respect to set a of valuations V ; notated as A |=V φ[V ]. Note
that the subscript V is fixed part of the notation, whereas for V any denotation
for a set of valuations can be used.

Definition 20. Let A be a model with domain A, φ a formula, X a set of
variables for which FV (φ) ⊆ X , and V ⊆ AX . Then φ is true under V in
A, notated A |=V φ[V ], iff:

1. For atomic φ
A |=V R(t1, . . . , tn)[V ] iff for all v ∈ V we have (a1, . . . , an) ∈ RA,
where ai = v(ti) if ti is a variable, and ai = tAi if ti is a constant.
A |=V ¬R(t1, . . . , tn)[V ] iff for no v ∈ V we have (a1, . . . , an) ∈ RA,
where ai as just defined.

2. A |=V [ψ ∧ θ][V ] iff A |=V ψ[V ] and A |=V θ[V ].

3. A |=V [ψ ∨ θ][V ] iff V = V1 ∪ V2 for some V1 and V2, such that A |=V

ψ[V1] and A |=V θ[V2].

4. A |=V [ψ ∨/Y θ][V ] iff V = V1 ∪ V2 for some V1 and V2, such that V1

and V2 are Y -saturated in V and A |=V ψ[V1] and A |=V θ[V2].

5. A |=V ∀xφ[V ] iff A |=V φ[V ∗ {x : A}].
6. A |=V ∃xψ[V ] iff there is a W ∼x (V ∗ {x : A}) such that A |=V ψ[W ]

7. A |=V ∃x/Y ψ[V ] iff V = ∪iVi, where each Vi is Y -saturated in V and
for each i there is an ai such that A |=V ψ[∪i(Vi ∗ {x : ai})].
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It might be helpful to compare the clause 7 with clause 4: the slashed ex-
istentional quantifier is seen as a slashed disjunction for the different values x
may take. Clause 6 could be expressed in an analogous way.

Note that if we let V = ∅, this inductive definition of satisfaction yields, for
any IFG-formula, A |=V φ[∅]. This might look anomalous, but it is actually
necessary for the situation with disjunction, where the empty sets of valuations
can occur if V is split into V and ∅. Be aware that this is different from saying
that formulas are always satisfied by the singleton set A∅ = {ε}: this is not the
case. In fact, satisfaction with respect to A∅ is only defined for formulas with
no free variables, i.e. sentences.

Definition 21. For φ a sentence, we say that φ is valuation true iff A |=V

φ[{ε}]. Notation: A |=V φ.

Definition 20 differs for clause ∃x/Y essentially from the definition in
[Caicedo and Krynicki, 1999]. Their definition has a typo that turns /Y into a
vacuous addition, and, after the obvious correction, gives rise to a difference be-
tween the game interpretation and the valuation interpretation in certain cases.
We will not go into details.

Next we establish the equivalence of the game interpretation and the valuation
interpretation.

Theorem 22. A sentence φ is game true iff φ is valuation true.

Proof.
We will show that for any formula φ and for all V ⊆ AX with FV (φ) ⊆ X
the statements (i) and (ii) are equivalent.
(i) A |=V φ[V ]

(ii) there is a winning strategy Fφ such that A |=G φ[V, Fφ]
In particular this shows for sentences φ: A |=V φ[{ε}] iff there is a winning
strategy Fφ such that A |=G φ[{ε}, Fφ], which proves the theorem.

Proof (⇒).
We only consider the clauses where a choice function for ∃loise has to be
designed.
3. A |=V ψ ∨ θ[V ]

By definition 20 there are V1 and V2 such thatA |=V ψ[V1] andA |=V θ[V2].
Then, by induction hypothesis, there are winning strategies Fψ and Fθ such
that A |=G ψ[V1, Fψ] and A |=G θ[V2, Fθ]. Define fψ∨θ(v) = L if v ∈ V1,
and R otherwise. Let Fφ = {fψ∨θ} ∪ Fψ ∪ Fθ. Then A |=G φ[V, Fφ].

4. A |=V ψ ∨/Y θ[V ]
Follow the construction from the previous case. Since V1 and V2 are
Y -saturated in V , so is V1 \ V2, hence fψ∨/Y θ indeed is independent of Y
on V .
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6. A |=V ∃xψ[V ]
According to clause 6 of definition 20 there is a W∼x(V ∗{x : A}) such that
A |=G ψ[W ]. By induction hypothesis there is a winning strategy Fψ such
that A |=G [W, Fψ]. For each v ∈ (V ∗ {x : A}) choose a wv ∈ W such
that wv ∼x v. Define f∃xψ(v) = wv(x). Then A |=G ∃xψ[V, {f∃xψ}∪Fψ]

7. A |=V ∃x/Y ψ[V ]
Let {Wj} be the Y -saturated partition of V (see def. 19). Let Vi and
ai be as in clause 7 of definition 20. For each Wj choose a Vi such that
Wj ⊆ Vi and define bj = ai. Since A |=V ψ[Vi ∗ {x : ai}] we have
A |=V ψ[Wj ∗ {x : bj}], and since the Wj are pairwise disjunct A |=V

ψ[∪j(Wj ∗ {x : bj})]. By induction hypothesis there is a winning strategy
Fψ such that A |=G ψ[∪j(Wj ∗ {x : bj}), Fψ]. Define f∃x/Y ψ(v) = bj if
v ∈ Wj . This defines a function because the sets Wj are pairwise disjunct,
and this function is independent of Y because the sets Wj are Y -saturated.
Hence A |=G ψ[V, {f∃x/Y ψ} ∪ Fψ].

Proof (⇐).
We consider only the cases where ∃loise applies her strategy.

3. A |=G (ψ ∨ θ) [V, Fψ∨θ].
Let V1 = f−1

ψ∨θ(L) and V2 = f−1
ψ∨θ(R), so V = V1 ∪ V2. Then for the

substrategy from Fφ for ψ, viz. Fψ, holds A |=G ψ[V1, Fψ]. Analogously
A |=G θ[V2, Fθ]. By induction hypothesis A |=V ψ[V1] and A |=V θ[V2].
Then V satisfies the conditions of clause 3 in definition 20, hence A |=V

(ψ ∨ θ)[V ].

4. A |=G (ψ ∨/Y θ) [V, Fψ∨/Y θ].
Define V1 and V2 as in clause 3 above. Since fψ∨/Y θ is independent of Y in
V , sets V1 and V2 are Y -saturated in V . So V1 and V2 satisfy the conditions
of clause 4 in definition 20, hence A |=V (ψ ∨/Y θ)[V ].

6. A |=G ∃xψ[V, F∃xψ]
Let B be the range of f∃xψ and define Vb = f−1

∃xψ(b) for each b ∈ B. Then
A |=G ψ[∪b(Vb ∗ {x : b}), Fψ]. By induction hypothesis we know that
A |=V ψ[∪b(Vb ∗ {x : b})]. So W = ∪(Vb ∗ {x : b}) satisfies clause 6 from
definition 20. Hence A |=V ∃xψ[V ].

7. A |=G ∃x/Y ψ[V, F∃x/Y ψ].
Let Vb be as in clause 6 above. Since f∃x/Y ψ is independent of Y in V , the
sets Vb are Y -saturated in V . So V = ∪bVb satisfies the conditions from
clause 7 in definition 20. Hence A |=V ∃x/Y ψ[V ]
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15.7 Proofs
15.7.1 Renaming bound variables

[Caicedo and Krynicki, 1999] p. 26, present a result that bound variables
under standard conditions can be renamed. They formulate a general version
for formulas with free variables, and therefore a general notion of equivalence
is needed. Their definition requires that the two expressions for all assignments
agree on truth (|=+

G what is our |=G) and falsehood (|=−
G ). For completeness of

information we also quote the falsehood part, but in our discussion only truth
plays a role.

Quote 23. ([Caicedo and Krynicki, 1999] p. 24) Formulas φ and ψ are G-
equivalent, notated as φ ≡G ψ, if and only if for any set V of valuations on
a fixed domain including FV (φ) ∪ FV (ψ) in a structure A, we have A |=+

G
φ [V ] ⇐⇒ A |=+

G ψ [V ], and A |=−
G φ [V ] ⇐⇒ A |=−

G ψ [V ].

The renaming theorem allows renaming by a fresh variable:

Quote 24. (Lemma 3.1a [Caicedo and Krynicki, 1999] p. 26) Let Q be ∃ or ∀.
Then: Qx/Y φ(x) ≡G Qz/Y φ(z), if z does not occur in Qx/Y φ(x).

Our counterexample is obtained from the two sentences which were used in
the discussion in section 15.4, viz (15.9) and (15.10). We consider here the
situation after ∀belard has made his choices for the universal quantifiers, and
∃loise has chosen the right disjunct.

Lemma 25. Let V = {xyz : 110, 111, 000,001}. Then:

A |=V ∃s∃u/x [u = x ∧ s = z] [V ], whereas (15.22)

A �|=V ∃y ∃u/x [u = x ∧ y = z] [V ] (15.23)

So renaming the bound variables may change the truth value of the formula.

Proof.
The winning strategy for (15.22) is f∃s ≡ s := z and f∃u/x

≡ u := y. The
negative result will be proved using the interpretation with valuations.

Assume that

A |=V ∃y ∃u/x [u = x ∧ y = z] [{xyz : 110, 111, 000, 001}] (15.24)

Then there must be a set W ∼y (V ∗ {y : A}) such that

A |=V ∃u/x [u = x ∧ y = z] [W ] (15.25)

The values of y and z will not change any further in the recursion to subformulas,
so we have to restrict here our choice to valuations for which y = z holds. So
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W consists of the y-variants for which y = z holds: W = {xyz : 100, 111,
000, 011}. Since (15.25) holds, there must be a collection Wi of in W x-
saturated subsets such that W = ∪iWi. The x-saturated subsets of W are W ,
W1 = {xyz : 100, 000} and W2 = {xyz : 111, 011} (and the empty set). Now
we have to find for each element of the collection a value for u such that the left
conjunct u = x becomes satisfied (the right conjunct is already satisfied by our
choice for W ). For none of the three candidates for the collection such a value
for u can be found. So there is no collection Wi that satisfies the requirements
for ∃u/x. So our initial assumption (15.24) is incorrect, which proves (15.23).

15.7.2 Prenex normal form
Caicedo and Krynicki present the following rephrase of the quantifier ex-

traction part of the prenex normal form theorem.

Quote 26. (Lemma 3.1.c,d [Caicedo and Krynicki, 1999] p. 26).
Let Q be ∃ or ∀. Let ψ/x denote the result of adding to all quantifiers in ψ the
independence condition /x. Then:

1. [Qx/Y φ ∨ ψ] ≡G Qx/Y [φ ∨ ψ/x]

2. [Qx/Y φ ∧ ψ] ≡G Qx/Y [φ ∧ ψ/x]

In section 15.4 we have presented two counterexamples. The first one showed
that new signalling possibilities emerge by quantifier extraction. We consider
that example after the first choice by ∀belard.

Lemma 27. Let V = {z : 1, 0}. Then:

A �|=V ∀x[x �= z] ∨ ∃u/z[u = z ∨/z u �= z] [V ] (15.26)

A |=V ∀x[x �= z ∨ ∃u/z,x[u = z ∨/z u �= z]] [V ] (15.27)

So quantifier extraction as quoted in (26), may change the interpretation of a
formula.

Proof.
The winning strategy for (15.27) is f∨ ≡ if x �= z then L else R, f∃u/z,x

≡ 0
and f∨z ≡ if x = 0 then L else R.

Next we prove the negative result using valuations. Assume that

A |=V ∀x[x �= z] ∨ ∃u/z[u = z ∨/z u �= z] [{z : 1, 0}] (15.28)

It will be clear that ∀x[x �= z] will not be satisfied for any nonempty subset of
{z : 1, 0}. Therefore

A |=V ∃u/z[u = z ∨/z u �= z][{z : 1, 0}] (15.29)
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must hold. Then we have consider the z-saturated subsets of {z : 1, 0}. That is
only the set itself. So there must be a value a such that

A |=V [u = z ∨/z u �= z][{zu : 1a, 0a}] (15.30)

Again, there is only one way to divide the valuations into z-saturated subsets,
the set itself and the empty set. But no matter what the value of a would be,
neither A |=V u = z [{zu : 1a, 0a}] nor A |=V u �= z [{zu : 1a, 0a}]. Hence
(15.28) cannot be true.

The second counterexample showed that signals from outside can be blocked
by quantifier extraction. We consider that example after the initial choices by
∀belard en ∃loise.

Lemma 28. Let V = {yt : 00, 11}. Then

A |=V ∀t [t �= t] ∨ ∃x/y[x = y] [V ]] (15.31)

A �|=V ∀t [t �= t ∨ ∃x/y,t[x = y]] [V ] (15.32)

So quantifier extraction as described in claim 26, may change the interpretation
of a formula.

Proof.
The winning strategy for (15.31) is given by f∨ ≡ R and f∃x/y

≡ x := t. We
show (15.32) using the interpretation with valuations. So, suppose:

A |=V ∀t [t �= t ∨ ∃x/y,t[x = y]] [{yt : 00, 11}]. (15.33)

Due to the meaning of ∀t (15.34) follows, so (15.35) holds:

A |=V [t �= t ∨ ∃x/y,t[x = y]] [{yt : 00, 01, 11, 10}]. (15.34)

A |=V ∃x/y,t[x = y] [{yt : 00, 01, 11, 10}] (15.35)

The set of valuations in (15.35) has only itself and the empty set as y-saturated
subset. So there must be a value a such that:

A |=V x = y [{xyt : a00, a01, a11, a10}] (15.36)

There is, however, no value which does so for all valuations in the set. Hence
(15.32) is proven.

15.7.3 Slashed disjunction elimination
Quote 29. (Lemma 3.2, [Caicedo and Krynicki, 1999] p. 25)
φ ∨/Y ψ ≡G ∃u/Y ∃s/Y,u[[[u = s ∧ φ] ∨ [u �= s ∧ ψ]] ∨ ∃!u[u =u ∧ [φ ∨ ψ]]]

Since the counterexample is in a domain with three elements, we omit the
part after ∃! (that disjunct is than false).
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Lemma 30. Let dom(A) = {0, 1, 2}. Then

A �|=V ∀y∀t[∃x/t[x = t] ∨/y ∃x/t[x = t]] (15.37)

Proof.
Let V = {0, 1, 2}{y,t}, and suppose that the formula mentioned in the lemma
was true in A. Then (15.38) must hold.

A |=V [∃x/t[x = t] ∨/y ∃x/t[x = t][V ] (15.38)

Then there must be sets V1 and V2, both y-saturated in V , such that each satisfies
one of the conjuncts. The three elementary candidates for these y-saturated sets
are Vi = {i}t × {0, 1, 2}y, where i ∈ {0, 1, 2}. The other candidates are the
union of two or three of these. Assume that V1 consists of one of the elementary
sets, then V2 must consist of the union of the other two. In that union two values
for t occur, hence there is no value for x which for all valuations satisfies x = t.
Analogously for the other combinations of y-saturated subsets.

Since we have already shown (section 15.4) that the rule for slashed dis-
junction elimination transforms (15.37) into a true formula, the proposed rule
cannot be correct.

15.7.4 Conservative extension
Quote 31. ([Hintikka, 1996] p. 65) Technically speaking IF first-order logic is
a conservative extension of ordinary first-order logic.

Lemma 32. The IFG sentence (15.39) is not true.

∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]] (15.39)

Proof.
Let A be a model with two elements {0, 1}. Assume

A |=V ∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]]][{ε}] (15.40)

By definition 20 the following must hold:

A |=V ∃u[u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]]] [{xy : 11, 10, 01, 00}]
(15.41)

Since u must be equal to x, we take for the u-variant only those valuations
where x = u.

A |=V [u = x ∧ ∀x[x = y ∨ [u = 1 ∨/u u �= 1]]] [{xyu : 111, 101, 010, 000}]
(15.42)
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The right conjunct has to be satisfied by the same set of valuations. The ∀x
adds all x-variants, so it must be the case that:

A |=V [x = y ∨ [u = 1 ∨/u u �= 1]] [{xyu : 111, 011, 101, 001, 010,

110, 000, 100}] (15.43)

Let V1 consist of all valuations for which x = y, then V1 satisfies the left disjunct.
Let V2 consist of the other valuations, so V2 = {xyu : 011, 101, 010, 100}.
Then it should be the case that:

A |=V [u = 1 ∨/u u �= 1] [V2] (15.44)

If we would have made another division, the V2 would have been larger, but
(15.44) still should hold. The u-saturated subsets of V2 are {xyu : 011, 010}
and {xyu : 101, 100}. None of these subsets satisfies u = 1, and none satisfies
u �= 1. So (15.44) cannot be the case. Hence (15.40) is not true, so there is no
winning strategy for (15.39).

Lemma 33. IF logic is not a conservative extension of ordinary predicate logic.

Proof.
Consider the IF formulation of sentence (15.39):

∀x∀y∃u [u = x ∧ ∀x[x = y ∨ [u = 1 ∨ u �= 1]]] (15.45)

The previous lemma proves that there is no winning strategy for (15.39), hence
not for (15.45), whereas classically (15.45) is valid.

15.8 Conclusions
Signalling is a tricky business. It disturbs several extrapolations from classi-

cal logic (change of bound variables, prenex normal form), and the interaction
of signalling and implicit independence causes that Hintikka’s IF is not a con-
servative extension of predicate logic.
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