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14.1 What is the logic of ordinary language?
According to a story, Albert Einstein was once asked how he had come

upon his strange revolutionary ideas. He replied: “By asking the questions that
children are discouraged to ask.” If we want to follow Einstein’s strategy in
the philosophy of logic, we are thus led to ask such questions as we ourselves
discourage our own introductory logic students to ask. But what are such ques-
tions? One of them might very well be: What is the logic of our ordinary
language? It is convenient to us logic teachers to pretend initially that it is the
logic we are teaching, in other words, that the notation of the usual first-order
logic is nothing but a streamlined version of ordinary English. In older text-
books this claim is sometimes made explicitly. If pressed, we might appeal to
Chomsky (e.g. 1986) whose Ersatz logical forms alias LFs differ only inessen-
tially from the logical forms of ordinary first-order formulas. Yet such appeals
should evoke pangs of intellectual conscience, for our actual Sprachlogik differs
in several disturbing ways from the received (“Frege-Russell”) first-order logic.
I have shown (in Hintikka 1997) that even one of the most general notions of
formal logic, the notion of scope, is not a primitive notion but one which can
be applied to natural language only indirect ways. It can also be shown that the
logic of natural-language conditional sentences can only be captured by going
way beyond ordinary first-order logic. But even apart from such theoretical
differences, there are lots of ordinary language sentences whose logic is not
captured by their prima facie translations into first-order logical notation. For
instance, consider the sentence
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(1) For this problem, there is a person such that if he or she can solve it, anyone
can.

This seems to have the logical form (if we look away from the initial demon-
strative identification of the problem)

(2) (∃x)(A[x] ⊃ (∀y)A[y]).

But (2) turns out to be a logical truth whereas (1) is not naturally taken to be
one. Likewise, C.S. Peirce already noted that the following pair of sentences
clearly have a different meaning even though our logic tells us that they do not
(Collected Papers 4.546):

(3) Someone is such that he will commit suicide if he fails in business.

(4) Someone is such that he will commit suicide if everyone fails in business.

Or, rather, Peirce noted that the following prima facie translations (5)–(6) of
(3)–(4) into the notation of first-order logic are logically equivalent, in spite of
the difference in meaning between (3)–(4):

(5) (∃x)(F [x] ⊃ S[x])

(6) (∃x)((∀y)F [y] ⊃ S[x])

Likewise, the reasoning that leads to some of the best-known paradoxes
seems to be impeccable reasoning, in spite of giving rise to paradoxical conclu-
sions. The sorites paradox is a case in point. If we abbreviate “a has n hairs”
as H(a,n), then the inductive inference leading to the paradox appears to be
unobjectionable. It could be taken to be of the form

(7) (H(a, 0) ⊃ B(a))&(∀x)((H(a, x) ⊃ B(a)) ⊃ (H(a, x + 1) ⊃ B(a))
ergo (∀x)((H(a, x) ⊃ B(a))

where B(a) says that a is bald. In a simpler form, the structure of (7) can be
taken to be

(8) S[0](∀x)(S[x] ⊃ S[x + 1]), ergo (∀x)S[x].

which looks like a perfectly valid instance of mathematical induction. Each of
these anomalies might look insignificant, but their cumulative impact ought to
be a clue that shows that the logic of our ordinary discourse is far from being
adequately understood.

14.2 What is truth?
Another Einsteinian question is surely what precisely is meant by truth in

first-order logic. We teach students all about truth-functions and truth-values,
but are not likely to give an adequate answer when a student inquires what
the mysterious notion of truth is. Maybe we tell our students to look up a
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Tarski-type truth-definition from an advanced text (or from Tarski 1935), trying
to suppress the guilty awareness of how a student will not find any real insight
into the notion of truth from Tarski-type conditions on valuations and on in-
finite sequences. A student’s puzzlement over such complications is part and
parcel of those philosophers’ dissatisfaction who claim that there is nothing in
Tarski-type truth definitions that show that they are definitions of truth. The
striking fact here nevertheless is that in the case of first-order logic (the logic of
quantification) there is an accurate general answer easily available (see Hintikka
1998 and 2001). What is more, this answer is nothing more and nothing less
than an explication of our natural pretheoretical notion of truth for quantifica-
tional sentences. In order to see what this answer is, consider a sentence of the
form

(9) (∀x)(∃y)F [x, y]

When is (9) true? Obviously if and only if for any given value of x it is in
principle possible to find a “witness individual” y depending on x such that
F [x, y]. And this colloquial location “it is possible to find, given x” is in
the eyes of a mathematician nothing but an euphemism for the existence of a
function f(x) which produces a suitable witness individual as its value for any
given argument x, in other words a function f such that the following is true:

(10) (∀x)F [x, f(x)]

The generalization of this observation is that a first-order sentence S is true
if and only if there exists a full array of its Skolem functions. But what are
the Skolem functions of S? In order to recognize them, let us assume that S
is in a negation normal form. What this means is that its propositional con-
stants are &, ∨ and ∼ and that all negation signs precede immediately atomic
formulas or identities. Then the Skolem form of S is obtained y1 by replac-
ing each existentially quantified subformula (∃x)F [x] of S by F [f(y1, y2, . . .)]
and prefixing the entire sentence with (∃f). Here f is a new function variable,
different for different existential subformulas, and (∀y1), (∀y2), . . . are all the
universal quantifiers in S on which the quantifier (∃x) depends on in S. The
truth-making choices of the values of the function variable f are the Skolem
functions of S. And what these functions do is to produce the witness indi-
viduals (usually dependent on other such individuals), which according to our
pretheoretical conception show the truth of S. Thus what we have here is a
straightforward generalization of the truth-condition for (9), identified above.
For some purposes, the notion of Skolem functions can - and must - be extended
to relate also to the propositional connectives of S. Assuming still that S is in
a negation normal form, this means replacing each disjunction (S1 ∨ S2) that
occurs as a subformula of S by

(11) (S1&g(y1, y2, . . .) = 0) ∨ (S2&g(y1, y2, . . .) �= 0).
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At the same time, the entire sentence is prefixed by (∃g). In (11), g is a new func-
tion variable, different form all the f ’s and different for different disjunctions
and (∀y1), (∀y2). . . are all the universal quantifiers on which the disjunction
in question depends on in S. Furthermore, 0 can be any designated member
of the domain. In the special case of a sentence of the form (∃x)F [x] its
sole Skolem function reduces to a constant individual. This individual serves
as the “witness individual” which according to our pretheoretical conception
vouchsafes the truth of the sentences in question. The general case becomes as
obvious as this paradigm case as soon as we realize that in general the requisite
witness individuals that show the truth of the sentence depend on other witness
individuals, in mathematicians’ jargon, are functions of them. These functions
are precisely the Skolem functions of S. Hence appropriate witness individuals
exist for S if and only if there exists an array of all the Skolem functions of
S. Then and only then is S true (see Hintikka 2001). Some philosophers have
played with the notion of a truth-maker. As far as quantificational languages
are concerned, there is only one kind of truth-makers, and they are Skolem
functions.

14.3 Compositionality and the meaning of quantifiers
This definition of truth is so perspicuous, and so obviously but an explication

of our very own notion of truth, that one could legitimately expect that is has
been acknowledged and exhaustively discussed by philosophers of our time.
It boggles one’s mind that this has not happened. Philosophers and logicians
have discussed Tarski-type truth-definitions ad nauseam, notwithstanding the
fact that a much simpler and much more natural truth-definition is readily avail-
able for them. Why this neglect? The reason is not that the truth definitions for
first-order sentences which turn on the existence of Skolem functions cannot
be formulated in the same language, for nor can a Tarski-type truth definition.
The real reasons are different. One of them is Tarski’s tacit insistence that truth
definition must be compositional. Tarski did not spell out this requirement,
but a closer examination reveals his commitment to it. (Such an examina-
tion is found in Hintikka and Sandu 1999.) In contrast, game-theoretical truth
definitions of the kind explained violate prima facie the requirement of compo-
sitionality. This is shown by the definition of the Skolem form of a first-order
sentence given above. In it, the selection of the arguments y1, y2, . . . of the new
function constant do not depend only on the subformula F [x], but also on which
the outside universal quantifiers are on which (∃x) depends in the sentence in
question. (As should be obvious, the principle of compositionality amounts
essentially to the assumption of semantical context-independence.) As a con-
sequence, the eminently natural game-theoretical definition of truth cannot be
implemented without violating compositionality. In view of the popularity of
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compositionality among linguists and logicians, it seems likely that in different
direct and indirect ways a commitment to compositionality is one of the main
factors that have conspired to suppress the Skolem-function definition of truth
from philosophers’ attention.

Commitment to compositionality is connected with another oversight of the
majority of contemporary philosophers. It is the belief that the semantics of
quantifiers is exhausted by the idea that quantifiers “range over” a certain class
of values. If so, the truth of a universally quantified sentence (∀x)F [x] re-
duces to the truth of all its substitution-instances F[b], where b is a member of
the domain; and likewise for existentially quantified sentences. From this idea
of quantificational truth it is only a short trip to Tarski-type truth definitions,
which are conditioned by Tarski’s requirement as to what an acceptable truth-
definition must be like. What is wrong with the exclusiveness of the “ranging
over” idea is that it does not address at all the other component of the semantics
of quantifiers. This other component is the representation of dependencies and
independencies between actual real life variables by means of the dependen-
cies and independencies of the quantifiers to which the variables in question
are bound. Such dependencies are expressed in so many words by Skolem
functions. Their role in the game-theoretical truth predicate shows how the
dependence relations between different variables are taken care of in the game-
theoretical characterization of truth. Only when these dependence relations are
looked away from will a truth-definition in terms of substitution-instances or,
for that matter, a Tarski-type truth-definition, appear natural.

Another important reason for neglect of Skolem-type truth definition that
logicians and philosophers have been suspicious of second-order logic and
tried to stick to the first-order level. Such a goal seems to be guiding already
Tarski. Now remaining on a first-order level might be a commendable aim,
but it has not been implemented in the right way. Instead of second-order
logic, philosophers have preferred to it set theory practiced on the first-order
level. We are all familiar with Quine’s misplaced quip about higher-order logic
being set theory in sheep’s clothing. It is turning out, Quine notwithstanding,
that it is axiomatic set theory, not higher-order logic, that is the big bad wolf
here. Outside philosophical fairy tales, the cold sober fact is that first-order
axiomatizations of set theory cannot do an adequate job in their foundational
role of capturing set-theoretical truths. Their failure is discussed in (Hintikka
2004(a)).

This failure of the only viable-looking rival means that there are no valid
objections to defining truth in terms of the existence of Skolem functions. Such
definitions may not be the last word on our concept of truth but they are an
eminently useful first word. Their plausibility can be further enhanced by
dramatizing the production of witness individuals by Skolem functions as steps
in certain explicitly definable search games. The definition of these games,
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known as semantical games, makes the role of Skolem functions eminently
intuitive. Full arrays of Skolem functions for a sentence S are precisely the
winning strategies for the verifier in the semantical game G(S) correlated with
S and starting with S. Thus the truth of S can be defined as the existence of a
winning strategy for the verifier in the game G(S).

In a critical philosophical perspective, however, such a use of game-theoreti-
cal concepts is nevertheless merely a dramatization of the basic insight into the
role of Skolem functions as implementing our natural notion of truth. I shall nev-
ertheless call the definition of truth for quantificational sentences in terms of the
existence of Skolem functions the game-theoretical truth definition. The game-
theoretical framework is in any case useful in several respects. For one thing, it
shows that the game-theoretical truth definition in not subject to criticism from
an intuitionistic or from a constructivistic viewpoint. If we want for some reason
or other to restrict ourselves to a constructivistic notion of truth, it can be done
simply by restricting the values of Skolem function quantifiers to constructive
functions (whatever they are or may be). Likewise, an intuitionistic notion of
truth can be captured by restricting Skolem functions to known ones. I think
that we can leave the question as to which functions are known for Brouwer
and his followers to decide. One major advantage of such game-theoretical
truth-definition was already noted. They allow variation in a way that cap-
tures different nonclassical conceptions of truth in a natural way. This makes
it possible to compare competing logics with each other in an informed way.

14.4 IF logic as the natural basic logic
Even more importantly, when we start thinking in game-theoretical terms, we

can at once see that there are lots of perfectly natural semantical games that do
not correspond to any sentences of the received first-order logic. In other words,
certain second-order sentences behave just like truth-conditions for nonexistent
first-order sentences in terms of perfectly well-defined semantical games. For
instance, the second-order sentence

(12) (∃f)(∃g)(∀x)(∀y)F [x, f(x), y, g(x, y)]

is the truth-condition of the sentence

(13) (∀x)(∃z)(∀y)(∃u)F [x, z, y, u].

In the correlated game, the verifier is searching for a truth-making value of z
on the basis of his or her (or its, if the player is a computer) knowledge of a
given value of x, and searching for a value of u on the basis of his, her or its
knowledge of the values of x and y. Likewise, the second-order sentence

(14) (∃f)(∃g)(∀x)(∀y)F [x, f(x), y, g(y)]

asserts the existence of a winning strategy in a similar game whose only novelty
is that the search for the second “witness individual” is carried out with the
verifier’s knowledge limited to the value of y. Such games are perfectly well
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defined, and the second-order (14) is related to them precisely the same way
as (12) is related to the semantical game played with (13). Once we see this,
we can see that we can formulate first-order sentences related to (14) in the
same way as (12) is related to (13), as soon as we relax our notation so as to
allow a quantifier (Q2y) to be independent of another quantifier, say (Q1x),
even though it occurs its syntactical scope. This can be done by writing it
(Q2y/Q1x). Then the first-order counterpart to (14) is expressible as

(15) (∀x)(∃z)(∀y)(∃u/∀x)F [x, z, y, u]

which is equivalent to

(16) (∀x)(∀y)(∃z/∀y)(∃u/∀x)F [x, z, y, u].

Then the semantical game correlated with (15) is such that (14) expresses the
existence of a winning strategy for the verifier in it.

This can obviously be generalized. The result is what has been called
independence-friendly (IF) logic. For its theory, the reader is referred to Hin-
tikka (2002(b)). IF logic is our natural basic logic. It is richer in its expressive
capacities than the received first-order logic, which can be thought of as the
slash-free fragment of IF first-order logic. (But cf. below.) In it, several crucial
notions can be expressed that were not expressible in the received old first-
order logic. For instance, the equicardinality of two sets, say α and β, can be
expressed on the first-order level as follows:

(17) (∀x)(∀z)(∃y/∀z)(∃u/∀x)
((x ∈ α ⊃ y ∈ β)&(z ∈ β ⊃ u ∈ α)&((y = z) ↔ (x = u)))

This may be compared with the second-order sentence serving the same pur-
pose:

(18) (∃f)(∃g)(∀x)(∀z)
((x ∈ α ⊃ f(x) ∈ β)&(z ∈⊃ g(z) ∈ α)&((f(x) = z) ↔ (x = g(z))))

The equivalence of (17) and (18) illustrates a most remarkable thing about
IF first-order logic: It is tantamount to the

∑1
1 (sigma one-one) fragment of

second-order logic. It is easily shown that each sentence of this fragment has
an equivalent IF first-order sentence. Conversely, each IF first-order sentence is
equivalent to its on game-theoretical truth condition, which is a

∑1
1-sentence. It

can also be seen that the truth conditions of different IF first-order sentences can
be integrated into a

∑1
1-truth predicate. (It is assumed here that we are dealing

with an IF first-order language strong enough to express its own syntax.) Since
that predicate has an equivalent in the corresponding IF first-order language,
which can admit of a truth predicate definable in the same language (see Hintikka
1998 and 2001). Thus the notion of truth and its definability are put to a radically
new light by the simple step of allowing quantifiers to be independent of each
other. In every other respects, we can preserve all the classical semantical rules,
as they must be formulated in game-theoretical terms.
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14.5 Two negations
But the notion of truth is not the only one which now has to be re-examined.

Another one is the notion of negation. With respect to it, we are in for an
intriguing surprise. The concept of negation that results from perfectly “classi-
cal” semantical rules where independence is allowed does not obey the law of
excluded middle. Is IF logic therefore “nonclassical”? The truth is that there
is no obvious definition of “classical” that we could appeal here to decide the
issue, unless we resort to the quaint old sense of the word as referring to what
is taught in classrooms. Since the negation ∼ used in IF logic obeys the most
classical semantical rules imaginable and yet violates tertium non datur, the
right conclusion to be drawn here that the law of excluded middle is not part
and parcel of “classical” logic.

This strong negation ∼ has to be distinguished from the familiar contradic-
tory negation ¬. The same distinctions must be extended to conditionals and
equivalences. A conditional “If A, then B” may have the logical force of either
(∼ A ∨ B) or (¬A ∨ B), and an equivalence can mean either (A&B) ∨
(∼ A& ∼ B) or (A&B) ∨ (¬A&¬B).

Here we are witnessing yet another apparently trivial question which never-
theless leads to surprising new perspectives. What has been found out is that
there is a strong (dual) negation implicit in all our use of the basic logical no-
tions. It is the negation that naturally goes together with the game-theoretical
concept of truth which was seen to be but an implementation of our pretheo-
retical notion of truth. Such a strong negation must thus be tacitly present also
in the logic of ordinary language. This strong negation is in a game-theoretical
perspective even more fundamental than contradictory negation. But if so, how
is the contradictory negation to be handled in our explicit logic? How come that
the negation that is present in natural language in the sense of having syntactical
markers for it is the contradictory one? How is the contradictory negation to
be interpreted semantically in GTS? And what is there to be said in the light of
the distinction about the conditionals of ordinary language?

Three possibilities can be investigated here separately. The first is suggested
by the naturalness of the game-theoretical truth condition also when applied to
natural language. It suggests that appearances notwithstanding it is the game-
theoretical semantics that governs also the semantics of natural language, in-
cluding the behavior of negation and conditionals in them. But how can this
make much difference? When no slashes are present, the difference between
∼ and ¬ should not make any difference. Indeed, the received first-order logic
can apparently be identified with the slash-free fragment of IF first-order logic.
So how can the distinction between ∼ and ¬ make any difference for slash-free
sentences like (1)–(6) or for inferences like (8)? An answer here is that the
distinction between ∼ and ¬ makes no difference for slash-free formulas only
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if it is assumed that atomic sentences obey the law of excluded middle. If they
do not, there is a difference after all. Among other things, the same sentences
are no longer logically true. And it is in fact easy to ascertain that then (2) is
no longer logically true, (5) and (6) no longer logically equivalent and (8) no
longer a valid inference. (The “then” here means of course taking (A ⊃ B) to
mean (∼ A ∨ B).)

Thus independence-friendly logic offers an interesting general perspective
on the different mini-paradoxes of first-order logic. They can be dissolved if
we assume that the conditionals of natural language are of the form (∼ A∨B)
rather than (¬A ∨ B), that is, that they are IF conditionals (as we will call
them) rather than traditional ones. This dissolution strongly suggests that the
logic of ordinary language is primarily independence-friendly logic rather than
Frege-Russell one. This result is especially interesting philosophically in the
case of (7)-(8), that is, in the case of sororities paradox. There exists a large and
inconclusive literature on this paradox and on its variants. It is often surmised
that the paradox should not arise in connection with predicates like “bald” which
are unsharp, that is, whose attribution to a particular case need not always be
either true or false. (This is sometimes expressed by speaking of “truth-value
gaps”.) However, no simple way of implementing this idea is found in the
literature. Now we can see that the failure of tertium non datur for the predicate
in question is after all that is needed to disarm the paradox, assuming that the
basic logic of natural language is IF first-order logic. This assumption is in fact
strengthened by its success in disarming the prima facie paradoxes of first-order
logic. This observation can be generalized. The IF first-order logic that has
been examined promises to be a far more natural logic of unsharp concepts than
the so-called fuzzy logic of Lofti Zadeh. (see e.g. Zadeh and Yager 1991.)
Of perhaps what can be said here is that the logic of natural language we are
in effect already using can serve as a “fuzzy logic” better than its trade name
variant without any additional assumptions or constructions.

Another well-known paradox is likewise disarmed by IF first-order logic. It
is the liar paradox. When we use IF logic in a theory of elementary arithmetic,
we can of course formulate a truth predicate W [x] for it in the same arithmetic.
Hence by means of the diagonal lemma we can formulate the Gödel-type sen-
tence

(19) ∼ W [g]

whose Gödel number is g and which says that the sentence with the Gödel
number g is false. (In (19) g is the numeral that represents g.) The sentence
(19) is true if false, and false if true. Hence it must be neither true nor false,
which is perfectly possible in IF logic. No contradiction is hence forthcoming.

But now it might at first seem that the extended IF first-order logic must run
afoul of the so-called strong liar paradox. In elementary arithmetic using IF
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logic we can formulate a truth predicate, that is a predicate W [x] that applies
to the Gödel number x = g(S) of an arithmetical sentence S if and only if
S is true. Why cannot we apply the diagonal argument to the contradictory
negation of W [x] so as to obtain a sentence that so to speak says “I am not
(i.e. contradictorily not) true”? The answer is that one cannot prefix ¬ to
an open formula like W [x], only to closed sentences. Hence the crucial liar
sentence (Gödel-type self-referential sentence) is in this case ill formed. Again,
no contradiction is in the offing.

Thus we have found an excellent first approximation to the logic of nat-
ural language. It is not the “ordinary” (i.e. received) first-order logic but the
slash-free part of IF first-order logic, with the tacit provision that the predicate
constants may be unsharp, that is, may fail to obey the law of excluded middle.
The only negation used in this logic is the dual negation ∼. This nevertheless
makes a difference only when the given predicate constants fail to conform to
the tertium non datur.

Thus we have found exceedingly simple solutions to some of the oldest and
most intriguing puzzles of the entire canon of logic. These solutions might at
first seem too good meaning too simple to be true. Now I firmly believe that these
solutions are definitive ones, but I also believe that further discussion is needed
to back them up and to put them into perspective. But in order not to trivialize
the issues that discussion must not pertain to the details of the paradoxes or to the
purported lines of reasoning that lead into them. The solutions I have explained
depend essentially on only one assumption. This assumption is that the natural,
preferred logic of ordinary language is IF logic. Hence the further discussion
that is needed here should pertain to the status of IF logic as compared with
alternatives to it, especially when it comes to the treatment of negation. The
rest of this paper is accordingly devoted to certain extensions of IF logic that
might seem to have a claim to be our genuine Sprachlogik.

Indeed, it is unmistakable that the contradictory negation is needed in the
semantics of natural languages. Hence we have to develop an explicit formal
logic that will involve ¬ and not only ∼. A minimal step in that direction is to
introduce ¬ by a fiat. The result is what has been called the extended IF logic.
Studying it is the second one of the three lines of thought mentioned above.
However, since there cannot be any game rules for ¬, the semantics of extended
IF logic will have to be introduced by the bland metalinguistic stipulation that
¬S is true if and only if S is not true. And here the italized not must itself be
a contradictory negation. Hence the semantics of ¬ can along these lines be
specified only by relying on the same notion in a metalanguage.

By the same token, the contradictory negation can in the extended IF logic
occur only sentence-initially. For if it occurred otherwise, its semantics would
presuppose a game rule for it. With proper care, it is possible to relax this
requirement somewhat, however, as long as does not occur within the syntactical
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scope of any quantifier. If we now assume that the logic of natural language is
like the extended IF logic, a number of phenomena in natural language become
explainable. Some of them are mentioned in Hintikka (2002(a)), especially the
fact that contradictory negation is in natural languages a barrier to anaphora.

The extended IF first-order logic is an interesting logic in its own right. It is
obviously equivalent to the (

∑1
1∪

∏1
1) fragment of second order logic. It might

at first sight seem rather similar to the unextended IF first-order logic. On a
closer examination, however, the differences are seen to be profound. Most of
the “nice” metatheorems that hold for IF first-order logic are no longer valid
in the extended IF logic, such as compactness, upwards Skolem-Löwenheim
theorem, and the separation theorem. We will return to this matter, but it can
already now be seen that the extension in question is important.

This is connected with the expressive richness of the extended IF first-order
logic. In order to see this richness, consider an attempt to reconstruct the entire
simple theory of types on the first-order level, construing it as a many-sorted
first-order logic with different sorts. The structure of types is easy to specify
on the first-order level. The only thing that cannot be expected by ordinary
first-order logic is the requirement that for each arbitrary class of n-tuples of
entities of a certain type there exists the embodiment of that class on the next
higher type (order) level. This requirement can obviously be implemented by
means of sentences of the extended IF first-order logic. This logic is therefore
in a sense as rich as the entire theory of all finite types, and hence capable of
codifying most traditional mathematics.

14.6 Extending IF logic with the help of tertium non datur
However, it seems clear that the extended IF logic cannot be the last word

here. On the one hand, it is unsatisfactory simply to introduce ¬ by a fiat,
without giving any account of the actual rules by means of which its semantics
is determined. On the other hand, it can easily be seen that the logic of natural
language is richer than even the extended IF first-order logic, in that what is
unmistakably a contradictory negation can occur within the scope of quantifiers.
The most obvious case in point is offered by negative quantifiers like no. If
someone says

(20) nobody has the winning lottery ticket

it does not mean that everybody has something else. It simply means that it is
not the case that someone has the winning ticket. Such a sentence therefore has
the logical form

(21) (∀x)¬W [x]

Since W[x] is allowed here to be an IF formula which is not necessarily true or
false for different substitution values for x, (21) is not necessarily equivalent to



206 Jaakko Hintikka

(22) ¬(∃x)W [x]

Now the semantics of (21) is not determined by the game-theoretical rules of
IF first-order logic. It was just seen that it is not determined by the semantics
of the extended IF first-order logic, either. How, then, can a natural semantics
be defined for sentences like (21)? An eminently natural answer is available
here. It can be approached from two different directions. The general question
concerns the interpretation of sentences S0 where ¬ is allowed to occur within
the scope of quantifiers. One way of doing so is by considering a hierarchy of
semantical games. The first begins with S0 and comes to an end either with an
atomic sentence or with a sentence (closed sentence) of the form ¬S1. (This
sentence usually is a substitution-instance of a subformula of S0.) The truth-
value of ¬S1 is either true or false, and it is determined by the facts of the
subordinate game G(S1) which can then be handled in the same way. In other
words, ¬S1 is deemed true for the purposes of G(S0) if and only if there exists
no winning strategy for the verifier in G(S1), otherwise false.

For instance, a play of the game with the sentence (21), i.e. of the game
G((∀x)¬W [x]), will stop after a choice of an individual (say b) by the falsifier.
This endpoint sentence is of the form ¬W [b]. It is true if and only if there exists
no winning strategy for the verifier in the game G(W [b]), otherwise false.

It is immediately seen that on this interpretation (21) is true if and only if
all the sentences of the form ¬W [b] are true, where b is a constant representing
some member of the domain. This assigns a meaning to (21) game-theoretically
if W [x] does not contain ¬, for in ¬W [b] the contradictory negation is then
sentence-initial (i.e. prefixed to a closed formula). Otherwise we are dealing
with a clause in a recursive truth-definition.

What all this amounts to is that the interpretation that extends our semantics
to nested contradictory negations is a kind of substitutional interpretation quanti-
fier. It will be called in the following the substitutional interpretation quantifier,
but without thereby prejudicing its precise relation to what has in the past been
called the substitutional interpretation quantifier of quantifiers. In the simplest
cases it does coincide with substitutional interpretations in the received sense.
In such cases, the truth of a universally quantified sentence is tantamount to the
truth of all its substitution-instance, and the truth of an existentially quantified
one with the truth of at least one of its substitution-instances. Restricting one’s
attention to such simple cases has led some philosophers to the conclusion that
there is no deep difference between substitutional and objectual interpretations
of quantifiers. (For this kind of view, see Kripke 1976.) This is nevertheless
a mistake belied by what is found in IF logic. Even in the absence of contra-
dictory negation, a strict inside-out (recursive) definition of truth in a substi-
tutional sense is impossible in the presence of irreducible independence. This
is especially blatant in the case of mutually dependent quantifiers. Their logic
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can be considered a strict counter-example to the substitutional interpretation
quantifier of quantifiers.

In any case, in the presence of independence and dependence indicators
there will have to become restrictions on the occurrence of ¬. The main such
restriction is that no quantifier outside the scope of a given occurrence of ¬ can
depend on a quantifier inside its scope. More generally, the scopes of different
occurrences of ¬ must be nested, that is, they must form a tree structure.

14.7 Elementary versus non elementary logics
The logic definable in this way will be called the fully extended IF first-order

logic. It calls for a number of explanations and comments.
First, it might be tempting to consider the fully extended first-order logic as

the natural logic of ordinary language. This temptation is perhaps strengthened
by the belief that something like the substitutional interpretation quantifier of
quantifiers constitutes their natural semantics. There is perhaps a true element
to this temptation. However, it is not the whole story. For one thing, the usual
substitutional interpretation quantifier of quantifiers relies on the assumption
that the semantics of quantifiers is exhausted by the “ranging over” idea. This
interpretation hence cannot do justice to the role of quantifiers as expressing
relations of dependence and independence between variables. It is therefore
only a part of the story. Indeed, it is a secondary part, for the solutions to the
mini-paradoxes of first-order logic outlined above strongly suggests that our
basic logic operates like the unextended IF logic and not like its full version.
The substitutional component in the truth definition for the full IF logic is thus
an additional ingredient over and above the game-theoretical conception of truth
codified by the existence of Skolem functions. The naturalness of this game-
theoretical truth definition is the best testimony against relying too much on the
“ranging over” idea alone. Indeed, we can now begin to appreciate the reasons
for the complexity of the semantics of natural languages. This semantics is a
mixture of different ingredients, where the basic game-theoretical conception
of truth is supplemented by essentially different substitutional ideas.

The specious plausibility of the substitutional interpretation quantifier of
quantifiers may perhaps be partly dispelled by asking what has to be known in
order to understand a quantificational sentence or such an interpretation. The
most important part of the answer is that the domain of individuals (aka the
universe of discourse) has to be known. This rules out all uses of quantifiers
where their range is open-ended. Such an open-endedness does not make it
impossible to play semantical games and to understand statements as to what
can or cannot happen in them. Accordingly, a quantificational language can be
understood and used even when the language users do not know precisely what



208 Jaakko Hintikka

the domain is. Hence game-theoretical semantics of quantifiers is more widely
applicable than a substitutional one.

If it strikes you as outlandish to apply a quantificational language without a
sharply defined universe of discourse, you can contemplate Aristotle’s syllogis-
tic logic. No idea of a sharply delineated range of quantifiers was presupposed
there, and existential force was not carried primarily by the particular “quanti-
fier” but by the predicate term. Or think of higher-order quantifiers in our own
logic. What precisely is their range? Believers in the standard interpretation
in Henkin’s sense will give you one answer, believers in nonstandard interpre-
tation another one. And in this case the idea of a quantifier “ranging over” its
values does not help us very much.

These remarks are not calculated to show that the substitutional interpretation
quantifier is not possible or that it is not interesting. However, they suggest
strongly that it is not the whole story of our pretheoretical understanding of
quantifiers.

This point can be elaborated further. In a sense semantical games are what
I shall call concrete processes. They are playable by actual humans. Indeed,
Charles S. Peirce already envisaged them as games between a human “propo-
nent” and an equally human “interpreter” (e.g. Collected Papers 3.479-482,
5.542, see Hilpinen 1982). (For most applications, it is nevertheless more nat-
ural to think of them as games between a human agent (“knower”) and nature
in the familiar game-theoretical sense of “games against nature”.) Each play
of these games which is connected with a finite sentence consists of a finite
number of concrete moves. The players need not be initially familiar with all
the members of the domain in which the game is played. One can in fact de-
velop an instructive fallibilist epistemology starting from the assumption that
the only information an inquirer receives about the world are the outcomes of
the semantical games the inquirer plays against nature with different strategies.
All this is possible even when the given domain is infinite. The crucial point is
that the domain never plays any role in these activities as a closed totality.

It need not be assumed that every member of the domain has a name. It
suffices to require that when a player of a semantical game chooses an individual
from the domain, the players can give it a name and amplify their language by
adjoining the newly coined name to it. Only a finite number of such extensions
is needed in any play of a semantical game. Admittedly, for a truth definition we
need the totality of the strategies that the inquirer has at his, her or its disposal.
But if one’s logical conscience is sensitive, one can restrict this strategy set to
strategies that are constructive, known, computable or otherwise in conformity
with one’s principles of logical morality. (Or should I say, one’s moral logic?)
Apart from that qualification, the basic features of IF logic should be acceptable
to everyone. That everyone includes Wittgenstein, for whom (as was pointed
out) basic semantical games must be humanly playable. In the spirit of virtual



Truth, Negation and Other Basic Notions of Logic 209

history, I cannot help wondering how much greater progress the philosophy
of logic would have experienced if Wittgenstein had realized that semantical
games are the true logical home of our basic logical concepts. (Wittgenstein
associated an importance to the activities of seeking and finding, but he related
them to the notion of object rather than to the nature of quantifiers. see Hintikka,
forthcoming (c).)

The game-theoretical truth definition and unextended IF logic should like-
wise be acceptable to intuitionists, at least if we allow them to restrict the
verifier’s strategies to known ones. No infinite operations are involved in play-
ing the semantical games that are the logical home of unextended IF first-order
logic.

In contrast, the substitutional interpretation quantifier (and its objectual coun-
terparts) involve the given domain as a complete totality. For instance, the
substitutional truth condition (21) requires that W [b] is true, for each and every
name b of a member of the domain. If different variables range over differ-
ent classes of values, all the totalities of such values have to be considered as
completed totalities. It has to be assumed, importantly, that all the individuals
(members of the domain) have names. Thus substitutional truth conditions are
infinitistic and nonconstructive in a way the game-theoretical truth predicate is
not. With a side-glance at Hilbert, it may be said that the classes of values of
the different first-order quantifiers are the only true “ideal objects” we need in
mathematics.

What has been found has major repercussions for the traditional philosophy
of mathematics. For one thing, it is seen that the main source of trouble is
not the infinity of the domain of numbers. Semantical games can be played
on infinite models and not only on finite ones. It makes sense to speak for
instance of seeking and finding a rational number of a certain kind. Conversely,
IF logic is one of the few rivals of the ordinary first-order logic that affects also
the theory of finite models for first-order formulas. For such reasons, I am not
calling the approach favored here finitistic. The infinity of the domain is not
the main issue.

However, in contrast Brouwer seems to have been right in blaming a large
part of the interpretational problems in the foundations on the unrestricted use
of the tertium non datur principle in mathematics. For the substitutional inter-
pretation quantifier with all its infinitistic burdens becomes unavoidable only
when we have to interpret contradictory negations occurring within the scope
of quantifiers.

This point must be pushed deeper, however. As I have argued elsewhere,
intuitionistic logic should be thought of, not as the logic of mathematical truths
per se, but as a logic of our knowledge of mathematical (and logical) entities.
Now the game-theoretical truth definition shows that the crucial entities in the
logic of mathematics are Skolem functions. Therefore we can hope to interpret
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sentences in a logical language intuitionistically only as long as their semantics
can be formulated by reference to Skolem functions. (Of course we may have
to restrict them to known functions.) Now it is precisely when we begin to use
contradictory negation in arbitrary positions that we cannot any longer interpret
our sentences by reference to Skolem functions.

However, Brouwer’s insights have not been implemented in an instructive
way in the earlier discussion. The best known way of attempting to do so has
been to set up an “intuitionistic logic” to replace ordinary first-order logic. (see
e.g. Heyting 1956.) But this is barking up the wrong logic. Of course ordinary
first-order logic has to be generalized so as to become a fragment of IF first-
order logic. But understood as such a fragment, there is nothing wrong with
ordinary first-order logic.

On the other hand, even when an explicit intuitionistic logic is formulated, it
does not do the job of IF first-order logic, either. It does not capture adequately
the epistemic element in Brouwer’s thinking, and more importantly it does
not deal any better than ordinary first-order logic with the representation of
dependence and independence relations between variables, either.

This failure is not automatically avoided by the introduction of the substi-
tutional interpretation quantifier of quantifiers, either. Even though the sub-
stitutional interpretation quantifier is objectionable to an intuitionist, it does not
make any difference in ordinary first-order logic. Hence Brouwer’s objections
to classical logic can be met by using a game-theoretical interpretation rather
than a substitutional one. It is only when independence indicators are present
that the two interpretations, the game-theoretical and the substitutional one, dif-
fer from each other. It is therefore only then that the tertium non datur principle
begins to depend on distinctly infinitistic element into the logic of classical
mathematics. It does so because the tertium non datur principle can only be
backed up by the substitutional interpretation quantifier. But this is a much
deeper issue than what can be handled by tinkering with the inference rules of
ordinary first-order logic. Hence the real target of intuitionistic criticism ought
to be the substitutional interpretation quantifier of quantifiers rather than the
inference rules of first-order logic.

This point is somewhat obscured by the fact that prima facie failures of
the law of excluded middle can also be caused by the epistemic element in
intuitionistic logic. A failure of the law of excluded middle is hence merely a
symptom of trouble. The need of a substitutional interpretation quantifier is the
trouble.

The infinitistic character of substitutional first-order logic also makes it a
poor candidate for the role of the true logic of ordinary language and ordinary
discourse. Here I can in fact appeal to many of the standard finitistic arguments
once one of the persisting mistakes in this area is eliminated. This mistake
confuses the infinity of the domain with the infinity of the operations we need to
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carry out to apply our logic and our languages to it . This mistake is undoubtedly
due to the more general mistake of assuming that the semantics of quantifiers
must be explained by reference to their “ranging over” all the members of the
domain. What matters is the question whether infinite operations are needed to
apply our logic, not what the cardinality of the domain is to which it is being
applied. As long as our logic is purely game-theoretical, its application can be
thought of as being implemented by plays of semantical games. Such plays
involve a finite number of moves that in principle can be carried out by human
players. Hence the possible infinity of the domain does not matter.

Thus there is no obstacle to thinking of IF logic as the natural logic of our
colloquial language. But the application of a substitutionally interpreted quan-
tificational language in an infinite domain presupposes infinite operations. If
so, it cannot very well be the logic of ordinary discourse for in our ordinary
thinking we cannot even in principle rely on the assumption that infinite oper-
ations actually are carried out. IF logic is the natural logic of natural language,
and thereby supports the solutions of the paradoxes discussed above.

14.8 Fully extended IF logic is equivalent to second-order
logic

We nevertheless have to take the substitutional interpretation quantifier seri-
ously in general logical theory. There are in fact interesting further insights to
be reached here concerning first-order logics that rely on substitutional inter-
pretation quantifier. We have defined a hierarchy of first-order sentences with
an increasingly complex structure of nested contradictory negations. How is
it related to the quantificational hierarchy (

∑1
n − ∏1

n hierarchy) of second-
order sentences? The surprising answer turns out to be: the two hierarchies are
equivalent.

The validity of this result is in fact fairly easy to see. It is well known that (and
how) a

∑1
1-sentence can be reduced to an IF first-order sentence. Furthermore,

a
∏1

1-sentence is equivalent to a sentence of the form ¬S, where S is an IF first-
order sentence without contradictory negations. By the same token, if each
∑1

n-sentence S is equivalent to a sentence of the full IF first-order logic with
n − 1 layers of contradictory negations, then clearly each

∏1
n sentence has an

equivalent translation of the form ¬S.
Furthermore, consider a

∑1
n sentence. By definition, it has the form of

a string of existential second-order quantifiers followed by a
∏1

n−1 formula.
Now these second-order existential quantifiers can be replaced by first-order
independent quantifiers in the same way as in showing that each

∑1
1 sentence

is equivalent to an IF first-order sentence.
To illustrate this step, assume that the given

∑1
n sentence is

(23) (∃f)F [f ]
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where f is a zero-argument function variable and F [f ] is a
∏1

n−1 formula.
It is assumed that F [f ] is in the negation normal form. Then (23) is clearly
equivalent to the following sentence:

(24) (∀x)(∀y)(∃z/∀y)(∃u/∀x)((x = y) ⊃ (z = u)) &F ∗[x, y, z, u])

Here x, y, z, u are new variables not occurring in F [f ] and F ∗ is obtained from
F [f ] as follows:

(i) Every occurrence of a subformula of the form (f(w) = v) is replaced by
((x = w) ⊃ (z = v)) and likewise for subformulas of the forms

(v = f(w))

(f(w) = a) (a = f(w)), etc

(ii) Every occurrence of an atomic subformula of the form A(f(w)) is replaced
by ((x = w) ⊃ (A(z))), and likewise for other kinds of atomic subformulas
containing an argument of the form f(w) or f(a). Nested functions are
handled in the same way as in the

∑1
1 case. Predicates can be handled by

means of their characteristic functions.

Thus the entire second-order logic turns out to be equivalent to the substitutional
first-order logic. We shall call this result the negation reduction of second-
order logic to the first-order level. (An essentially equivalent result is proved
in Väänänen 2001.) It throws light on several questions in the foundations of
logic and mathematics. One of them is the relation of first-order logic to higher-
order logics. We may in fact think of this problem as one of the Einsteinian
questions mentioned in the beginning of this paper, that is, questions that are
so subtle that they appear trivial. The obvious-looking way of answering this
question by saying that what distinguishes the two is the ontological status of the
entities which our quantifiers range over in the two kinds of logic. In first-order
logic, they are particulars (individuals); in the second-order logic, the values of
quantified variables can also be sets or relations of particulars or functions from
particulars to particulars. What can be simpler that this? Admittedly, in first-
order axiomatic set theory sets are admitted as values of first-order variables.
However, such a set theory is turning out to be a disaster area when considered
as a foundational project. (see Hintikka, 2004(a).) Again, the peculiarities of
higher-order logic come to play only when a standard interpretation in Henkin’s
sense is imposed on ranges of higher-order variables. If that is not done, higher-
order logic can in effect be dealt with as if it were a many-sorted first-order logic.
Apart from such qualifications, the distinction between first-order logic and
higher-order logic seems to be exhaustively characterized by reference to the
categorical (ontological) status of the values of the variables of quantification.
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The result we have reached shows that the first-order vs. higher-order distinc-
tion is in reality more complicated than that. (This point has been emphasized
aptly by Jouko Väänänen (2001).) The reduction to the first-order level marks
a definite gain in conceptual clarity. Any philosophical nominalist will rejoice
at this reduction. Among other things, the reduction shows that foundation-
ally speaking we do not have to worry in second-order logic about the thorny
question of the existence or nonexistence of different kinds of higher-order en-
tities, such as sets. All we are trafficking in are different kinds of structures of
particular objects. This satisfies one of the major desiderata of Hilbert (1996,
p. 1121) who blamed the entire Grundlagenkrise on the use of higher-order
entities by Frege, Dedekind and Cantor.

Hilbert’s worry about mathematicians’ reliance on higher-order quantifica-
tion has not received the attention it deserves. Apparently the problem of the
existence of higher-order objects has been tacitly transformed to the technical-
looking question as to what existence assumptions to make in axiomatic set
theory. The reappearance of serious problems in the foundations of set theory
shows that this attempted transformation does not help us. The negation reduc-
tion shows that substitutional first-order logic satisfies Hilbert’s wishes, even
though it involves serious other problems.

In a different direction, the negation reduction vindicates the status of second-
order logic as genuine logic. Since the existence of higher-order entities like sets
plays no role in it, we do not need any set theory to back it up. This reinforces our
reversal of Quine’s quip. To deal with sets as if they were particular objects is
to admit dangerous higher-order conceptualizations in sheep’s clothing. (How
very dangerous they are is shown in Hintikka, 2004(a).) In contrast, the prima
facie dangerous second-order quantifiers turn out to be reducible in a sense to
the sheepish first-order level.

14.9 Logic and mathematical reasoning
In a foundational perspective results like the negation reduction aid and abet

mightily the cause of logicism. Admittedly, some of the earlier formulations of
the tenets of logicism are now inapplicable, including those that claim that all
the axioms we need in mathematics are theorems of a suitable axiomatization
of logic. There is no such thing as a complete axiomatization of even the (un-
extended) IF first-order logic. In other words, our basic logic is semantically
incomplete. Hence it makes no sense to speak of an axiomatic reduction of
mathematics to logic. The real question is whether all the different conceptu-
alizations and all the different modes of reasoning used in mathematics can be
reconstructed by means of logic.

It is usually thought and said that all modes of reasoning needed in mathe-
matics can be represented by means of second-order logic. If so, the negation
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reduction theorem shows that they can in at least one natural sense be reduced
to modes of logical reasoning, which is precisely what logicists are supposed
to claim.

This is perhaps not the last word on the subject, however. On the one hand,
the substitutional first-order logic which is the target of the reduction is not un-
problematic philosophically. On the other hand, it is not obvious that literally
all assumptions that can be considered in mathematics can in fact be captured
by means of second-order logic. For instance, it is not immediately clear that
maximality assumptions like Hilbert’s Axiom of Completeness (Hilbert 1903)
can be so formulated. However, even apart from such qualifications, the re-
sults reached here, especially when they are combined with the realization of
the failure of first-order axiomatic set theory to capture set-theoretical truths
(see Hintikka 2004(a)), show impressively the fundamental role of logic in
mathematical reasoning.

At the same time, the negation reduction raises our awareness of what sep-
arates concrete unproblematic reasoning from questionable one. What makes
the difference was seen not to be the finitude of the domain. Now it is seen
not to lie (Hilbert notwithstanding) in the first-order character of unproblem-
atic reasoning, either, for all second-order reasoning and hence virtually all
mathematical reasoning can in principle be conducted on first-order level. The
crucial step is to allow contradictory negations into the scopes of quantifiers or,
to use logicians’ jargon, to “quantify into” a context governed by a contradictory
negation.

The negation reduction theorem is of interest also from the vantage point of
hierarchy theory. (For it see Addison 1961, and forthcoming). In this theory,
different quantifier hierarchies are studied comparatively. Now by utilizing the
notion of informational independence (independence of a quantifier on another
one) it can be shown that certain important quantifier hierarchies are equivalent
to hierarchies of contradictory negation. This seems to open a possibility of
extending the scope of the entire hierarchy theory.

There has been in the literature some discussion of the question whether IF
first-order logic is perhaps “really” (part of) higher-order logic. The results
reached here show that the entire question is ill formulated. By the ontological
criterion, IF first-order logic is unproblematically first-order, for all values of
bound variables in its semantics are individuals (particular members of the
domain). But if we do not go by this criterion, the notions of “first-order” and
“second-order” have to be redefined. In the light of the results reached here,
it might be maintained with a greater plausibility that the entire second-order
logic is “in reality” but full IF first-order logic in a different notation. It seems
that those philosophers who claim that IF logic is “in reality” second-order
logic are tacitly requiring that the semantics of genuine first-order logic must
be compositional and must rely exclusively on the “ranging over” idea. If so,
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the upshot of the line of though carried out here is to show how hopelessly
restrictive such a conception of first-order is. Such a truncated first-order logic
will not cut much ice even as the supposed logic of ordinary discourse.

It has to be admitted, however, that the borderline between first-order logic
and second-order logic is much less sharp than first meets an untrained eye. This
interplay of the two logics is manifested in the role of Skolem functions in the
theory of first-order logic. It is also natural to generalize the rule of existential
instantiation so as to allow the introduction of new function constants and not
only new individual constants. (The instantiating “witness individuals” may
depend on other individuals.) Moreover, first-order formulas can entail second-
order formulas, even existential ones. This is exemplified by the fact that each
first-order sentence logically implies its own Skolem form, as (9) implies

(25) (∃f)(∀x)F [x, f(x)]

Similar crossings are not found where two parts of logic are truly separated.
For instance, no positive epistemic conclusion is implied by non-epistemic
premises, and similarly for other parts of logic.

14.10 A prescriptive postscript
But what do all these results have to do with the title notion of this volume,

the notion of alternative logic? The answer depends on what this singularly
ill-defined term is taken to mean. In its most superficial sense, an alternative
logic is any logic different from the received logic which is usually taken to
be the “classical” first-order logic. What has been found in this paper (and
in its predecessors) shows that in this sense the term “alternative logic” is an
oxymoron. This is shown once and for all by the independence-friendly (IF
logic) examined in this paper. IF logic is not an alternative to the received
first-order logic. Rather, IF logic replaces the received “classical” first-order
logic and accommodates it as a special case. The received first-order logic turns
out to be a result of logicians’ failure to acknowledge the important limitations
that restrict the expressive power of the “classical” first-order logic. These
limitations also show that the received first-order logic does not deserve this
honorific appellation, unless the term “classical” is taken in one of its earlier
senses as “what is taught in class-rooms”.

In a somewhat less insipid sense an alternative logic is often taken to be a logic
whose system of axioms and inference rules is different from the “classical”
one. But what is a valid rule of inference? It is in its usual sense a rule
that preserves truth. (It is already a symptom of an invidious confusion that
in the literature the preservation of truth is not always distinguished from the
preservation of logical truth.) Admittedly, in some cases what is to be preserved
is merely probable truth or truthlikeness. However, those variations do not make
an essential difference to the line of thought pursued here. If a putative rule
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of inference does not satisfy such a preservation requirement, it can scarcely
serve any realistic purpose in the applications of logic and hence should not be
called rule of inference. But if so, if truth-preservation is a condition sine qua
non of a rule of inference, the validity of rules of inference has to be studied in a
semantical theory of the language in which the inferences are couched, for the
notion of truth belongs to semantics (model theory). More fully expressed,
the study of inferences involving certain logical notions must turn on the role
these notions play in the way reality is represented in language. Now what is
in this perspective the semantical task of quantifiers, those central notions of
our basic logic? It is usually thought that the semantical function of quantifiers
is exhausted by their variables’ “ranging over” a class of values. This idea is
among other places epitomized by Frege’s unfortunate idea that quantifiers are
higher-order predicates whose task is to express whether lower-order predicates
are empty or not.

In reality, this “ranging over” is only a part of the real job description of
quantifiers. The other part of what quantifiers do is to express through their
formal dependence or independence of each other the real-life dependence or
independence of their respective variables. Once this is realized, it is easily
seen that the received Frege-Russell notation does not allow the representation
of all possible patterns of dependence and independence between variables. It
hence fails to do full justice to the meaning of quantifiers. What IF logic does is
to eliminate this shortcoming. Unlike the “classical” first-order logic, it fulfills
the whole task of quantifier logic and not only a part of it.

Since this is precisely the task that any general logic of quantifiers has to
accomplish, there cannot be any genuine alternatives to IF logic, either. What
look like such alternatives, principally intuitionistic logic and constructivistic
logic, can be construed as resulting from restricting the modes of dependence
between variables, perhaps to knowable ones or constructive ones. If this is
taken to be a sufficient reason to label them “alternative logics”, there is no need
to object, as long as their character as variants of IF logic is acknowledged.

Thus the verdict is clear as far as independence-friendly logic is concerned.
IF logic is not a logic of certain kinds of games. It is a study of Skolem functions
of quantifier sentences. These functions receive their significance from the fact
that they codify relations of dependence between different variables. Rightly
understood, IF logic is not alternative to any other logic, nor does it have any
genuine alternatives.

This leaves most of the so-called alternative logics still unexplained. It is
impossible to do justice to all of them here, but it might be in order to try to
indicate what is interesting about them. As an example, what is known as the
theory of circumscription will do. An inference from certain premises to a
conclusion by circumscription relies, over and above the information that the
premises convey, on a tacit assumption to the effect that the premises provide
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all the relevant information. This is a contingent assumption, not a logical or
even necessarily a common sense truth. As any puzzle fan knows, often the
solution of a puzzle requires precisely a violation of the sufficiency presump-
tion in that it requires the presence of a factor not foreshadowed in the given
information.

Now at first such inference might not seem to require any new principles
of reasoning. Indeed, reasoning from partly tacit premises is one of the oldest
topics of logical theory. It has an established name, viz. enthymemic rea-
soning. Why should circumscriptive reasoning nevertheless require a special
alternative logic? Perhaps it does not. What is peculiar and interesting about
it is that there does not seem to be any way of expressing the tacit sufficiency
premise in the language in which the circumscriptive inferences are carried
out.

The theory of circumscriptive inference is therefore an attempt to elicit in-
formation from a premise which is not only unspoken but unspeakable in the
language used, by introducing special rules of inference. This is an intriguing
enterprise, independently of whether it is deemed fully successful or not, but it
need not involve a logic alternative to our old ones. It is a branch of the theory
of enthymemic inference, viz. the branch which studies inferences in which
the tacit premise is not expressible in the language in which the reasoning is
carried out.

This can be generalized to several other highly interesting “logics”. Proba-
bilistic inductive logic depends on assumptions concerning the orderliness of
one’s universe of discourse. In the simplest case, such an assumption is codified
in the constant of Carnap’s λ-continuum. The choice of a value of λ codifies
such a regularity or irregularity assumption, even when it is not expressed in
the form of a proposition in the explicit language of inductive reasoning.

In mathematics, we find fascinating assumptions that are not expressible, or
at least not easily expressible, by means of the usual mathematical and log-
ical concepts in the mathematical notation itself. They are assumptions of
extremality (maximality and minimality). Hilbert’s struggles with his “Axiom
of Completeness” in geometry vividly illustrate this problem. Extremality as-
sumptions have not given rise to a new logic except perhaps in Hintikka (1993).
They can nevertheless play the same role as the tacit premises of circumscrip-
tive logic or inductive logic. What is common to all these “alternative logics”
is that they are methods of eliciting consequences of certain tacit assumptions.
They are not theories of inference in general; they are chapters of a theory of
enthymemic reasoning. It is not even clear that they involve in the last analysis
any peculiar modes of logical inference.

In the light of these observations, perhaps what you should do next time
when you are tempted to use the expression “alternative logic”, is to look for
an alternative locution.



218 References

References
Addison, John W. (1960). “The theory of hierarchies”, in E. Nagel, A. Tarski,

and P. Suppes, editors, Logic, Methology and Philosophy of Science, Pro-
ceedings of the 1960 International Congress, Stanford University Press, Stan-
ford, 26–37.

Addison, John W., (forthcoming). “Tarski’s theory of definability: Common
themes in descriptive set theory, recursive function theory, classical pure
logic, and finite-universe logic”.

Chomsky, Noam, (1986). Knowledge of Language, Praegen, New York.
Henkin, Leon (1950). Completeness in the theory of types. Journal of Symbolic

Logic vol. 15, 81–91.
Heyting, A. (1956). Intuitionism: An Introduction, North-Holland, Amsterdam.
Hilbert, David, (1903). Grundlagen der Geometrie, Zweite Auflage, Leipzig.

(First ed., 1899. The axiom of completeness was added in the second edition.)
Hilbert, David, (1996: original 1922), “The new grounding of mathematics”,

translation from German, in William B. Ewald, editor, From Kant to Hilbert
1–2, Clarendon Press, Oxford, 1115–1134.

Hilpinen, Risto, (1982). “On C.S. Peirce’s theory of propositions”, in Eugene
Freeman, editor, The Relevance of C.S. Peirce, The Hegeler Institute, La
Salle, 264–270.

Hintikka, Jaakko, (1993). “New foundations for mathematical theories”, in J.
Väänänen and J. Oikkonen, editors, Logic Colloquium 90: Lecture Notes in
Logic, no. 2, Springer, Berlin, 122–144. [ASL summer meeting in Helsinki.]

Hintikka, Jaakko, (1996). The Principles of Mathematics Revisited, Cambridge
University Press, Cambridge.

Hintikka, Jaakko, (1997). “No scope for scope”, Linguistics and Philosophy
vol. 20, 515–544.

Hintikka, Jaakko, (1998). “Truth-definitions, Skolem functions, and axiomatic
set theory”, Bulletin of Symbolic Logic, vol. 4, 303–337.

Hintikka, Jaakko, (2001). “Post-Tarskian Truth”, Synthese, vol. 126, 17–36.
Hintikka, Jaakko, (2002a). “Negation in logic and in natural language”, Lin-

guistics and Philosophy, vol. 25, 585–600.
Hintikka, Jaakko, (2002b). “Hyperclassical logic (aka IF logic) and its impli-

cations for logical theory”, Bulletin of Symbolic Logic, vol. 8, 404–423.
Hintikka, Jaakko, (2004a). “Independence-friendly logic and axiomatic set the-

ory”, Annals of Pure and Applied Logic, vol. 126, 313–333.
Hintikka, Jaakko, (2004b). “On the epistemology of game-theoretical seman-

tics”, in J. Hintikka, T. Czarnecki, K. Kijania-Placek and A. Rogszczak,
editors, Philosophy and Logic: In Search of the Polish Tradition: Essays
in Honour of Jan Wolenski on the Occasion of his 60th Birthday, Synthese
Library 323, Kluwer Academic Publishers, Dordrecht, 57–66.



References 219

Hintikka, Jaakko, (forthcoming), “The crash of the philosophy of the Tractatus”.
Hintikka, Jaakko and Jack Kulas, (1983). The Game of Language, D. Reidel,

Dordrecht.
Hintikka, Jaakko, and Gabriel Sandu, (1996). “Game-theoretical semantics”,

in J. van Benthem and Alice ter Meulen, editors, Handbook of Logic and
Language, Elsevier, Amsterdam, 361–410.

Hintikka, Jaakko, and Gabriel Sandu, (1999). “Tarski’s guilty secret: composi-
tionality”, in J. Wolenski and E. Köhler, editors, Alfred Tarski and the Vienna
Circle, Kluwer Academic Publishers, Dordrecht, 217–230.

Kripke, Saul, (1976). “Is there a problem about substitutional quantification?”,
in G. Evans and J. McDovell, editors, Truth and Meaning, Oxford University
Press, New York, 325–419.

Peirce, Charles S., (1931-1966). Collected Papers of Charles Sanders Peirce,
8 vols., ed. By C. Hartshorne, P. Weiss, and A.W. Burks, Harvard University
Press, Cambridge.

Quine, W.V., (1970). Philosophy of Logic, Prentice Hall, Englewood.
Tarski, Alfred, (1935). “Der Wahrheitsbegriff in den formalisierten Sprachen”,

Studia Philosophica, vol. 1, 261–405.
Väänänen, Jouko, (2001). “Second-order logic and foundations of mathemat-

ics”, Bulletin of Symbolic Logic, vol. 7, 504–520.
Zadeh, Lofti, and R.R. Yager, editors, 1991, An Introduction to Fuzzy Logic:

Applications in Intelligent System, Kluwer Academic Publishers, Dordrecht.




