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Chapter 1

Introduction

In this book, we give an exposition of the theory of Borcherds-Kac-Moody Lie
algebras and of the ongoing classification and explicit construction project of a
subclass of these infinite dimensional Lie algebras. We try to keep the material
as elementary as possible. More precisely, our aim is to present some of the
theory developed by Borcherds to graduate students and mathematicians from
other fields. Some familiarity with complex finite dimensional semisimple Lie
algebras, group representation theory, topology, complex analysis, Fourier series
and transforms, smooth manifolds, modular forms and the geometry of the
upper half plane can only be helpful. However, either in the appendices or within
specific chapters, we give the definitions and results from basic mathematics
needed to understand the material presented in the book. We only omit proofs
of properties well covered in standard undergraduate and graduate textbooks.

There are several excellent reference books on the above subjects and we
will not attempt to list them here. However for the purpose of understanding
the classification and construction of Borcherds-Kac-Moody (super)algebras the
following are particularly useful. Serre’s approach to the theory of finite di-
mensional semisimple Lie algebras in [Ser1] is conducive to the construction of
Borcherds-Kac-Moody Lie algebras as it emphasizes the presentation of finite
dimensional semi-simple Lie algebras via generators and relations. For a first
approach to automorphic forms and the geometry of the upper half plane, the
book by Shimura may be a place to start at [Shi].

We also do not replicate the proofs of properties of Kac-Moody Lie algebras
that are treated in depth in the now classical reference book by Kac [Kac14].

Borcherds-Kac-Moody Lie algebras are generalizations of symmetrizable (see
Remarks 2.1.10) Kac-Moody Lie algebras, themselves generalizations of finite
dimensional semi-simple Lie algebras. That this further level of generality
is needed was first shown in the proof of the moonshine theorem given by
Borcherds [Borc7], where the theory of Borcherds-Kac-Moody Lie algebras plays
a central role. So let us briefly explain what this theorem is about.

1



2 1 Introduction

1.1 The Moonshine Theorem

The remarkable Moonshine Theorem, conjectured by Conway and Norton and
one part of which was proved by Frenkel, Lepowsky and Meurman, and another
by Borcherds, connects two areas apparently far apart: on the one hand, the
Monster simple group and on the other modular forms. Any connection found
between an object which has as yet played a limited abstract role and a more
fundamental concept is always very fascinating. Also it is not surprising that
ideas on which the proof of such a result are based would give rise to many new
questions, thus opening up different research directions and finding applications
in a wide variety of areas.

1.1.1 A Brief History

The famous Feit-Thompson Odd order Theorem [FeitT] implying that the only
finite simple groups of odd order are the cyclic groups of prime order, sparked off
much interest in classifying the finite simple groups in the sixties and seventies.
The classification of the building blocks of finite symmetries was completed in
the eighties [Gor]: there are 17 infinite families of finite simple groups and 26
which do not belong to any families and are thus called sporadic [Bur]. The
MonsterM [Gri] is the largest sporadic simple group. It has about 1054 elements
or more precisely

246.320.59.76.112.133.17.19.23.29.31.41.47.59.71

elements. Evidence for the existence of the Monster were first found by B.
Fischer and R.L. Griess in 1973. Based on Conway and Norton’s conjecture
that the dimension of one of its representations is 196883 Fischer, Livingstone
and Thorne computed the full character table of M [FisLT]. We remind the
reader that a group representation is a group homomorphism from the group
to the isomorphism group of a vector space. Then, McKay noticed that the
dimensions of its two smallest representations, 1 and 196883, are closely related
to the first two coefficients of the Fourier expansions of the normalized modular
invariant

J = j − 744.

Since j(τ + 1) = j(τ) for τ in the upper half plane H = {x+ iy|y > 0}, we can
write j as a function of q = e2πiτ . Moreover j is holomorphic on H. So, as a
function of q, J has a Laurent series in the punctured disc of radius 1 centered
at 0:

J(q) = j(q) − 744 = q−1 + 196884q + ... =
∞∑

n=−1

c(n)qn

and c(−1) = 1, c(1) = 196883 + 1. This is the Fourier series of J . Further
details can be found in [Ser2].

At the time it was thought unlikely that there would be any connection
between modular forms and the Monster group. Shortly after, McKay and
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Thompson found that other coefficients of the q-expansion of J are also sim-
ple linear combinations of the dimensions of irreducible representations of the
Monster group M [Th]. Now, the dimension of an M -module is the trace of
the action of the trivial element 1 of M on it, and any M -module is completely
determined by its character, i.e. the trace function. So based on this observa-
tion, McKay and Thompson’s insight was to forecast that for all n ∈ Z there is
an M -module V (n) (later called a head representation of M) of dimension c(n)
with character Hn such that for all g ∈M ,

T (g) =
∞∑

n=−1

Hn(g)qn

would be an interesting function. When c(n) was a known linear combination,
the M -modules V (n) were to be taken to be the sums of the irreducible rep-
resentations whose dimensions appeared in the linear combination. Like in the
case of V (1), the head representations are obviously not just sums of the trivial
module.

Thus their work suggested these series, now known as the McKay-Thompson
series, were worth investigating. For g = 1, as already noted, we get the function
J . Furthermore, they conjectured that M has a natural infinite dimensional
representation

V = ⊕n∈ZV (n)

with graded dimension J(q). It came as a surprise that the most natural module
of a finite group was infinite dimensional.

1.1.2 The Theorem

In 1979, Conway and Norton calculated the first 11 coefficients of the McKay-
Thompson series for all g ∈M . Based on these calculations and other observa-
tions, they made the following remarkable conjecture [ConN]:

Moonshine Theorem. There exists a graded M -module V such that for all
g ∈ M , the series T (g) is a normalized Hauptmodul for a genus 0 discrete
subgroup of SL(2,R) commensurable with SL(2,Z), where T : M → C is the
graded character of the module V .

Thus the Moonshine Theorem reveals a surprising connection between Haupt-
moduls and the Monster group (or more precisely its conjugacy classes since
characters are class functions) via its head representations.

We remind the reader of the definitions and properties necessary to under-
stand the statement of the theorem. For details, see [Shi]. Two subgroups G
and H of SL(2,R) are commensurable if both | H : G∩H | and | G : G∩H | are
finite. For any discrete subgroup G of SL(2,R) commensurable with SL(2,Z),
H∗/G is a compact Riemann surface, where H∗ = H ∪ {cusp points ofG}. A
cusp of G is a point in R ∪ {i∞} fixed by a parabolic subgroup of G, i.e. a
subgroup with a unique fixed point in R ∪ {i∞}. The group G is said to be of
genus 0 if the corresponding Riemann surface is of genus 0. When this is the



4 1 Introduction

case, there exist bijections F from H∗/G to the Riemann sphere C∪∞, and any
meromorphic function on H fixed by G is a rational function of F . If further-
more F (i∞) = ∞, then F is called a Hauptmodul, and in this case there is a

smallest positive real number r such that
(

1 r
0 1

)
∈ G and so F (τ+r) = F (τ).

The Hauptmodul F can thus be written as a function of q = e2πiτ/r and has
a Laurent expansion (see Corollary C.2.7) in a punctured disc centered at 0:
F (τ) =

∑
n∈Z anq

n. As G is of genus 0, it can be shown that F has a simple
pole at ∞. Hence an = 0 for all n ≤ −2. The Hauptmodul F is said to be
normalized if a0 = 0 and a−1 = 1.

Conway and Norton not only conjectured that the graded traces T (g) (for
all g ∈ M) were Hauptmoduls, but based on the calculation of the first few
coefficients, they gave a list of these Hauptmoduls [ConN]. So in order to prove
the conjecture, one needs to first construct a Z-graded M -module (whose ex-
istence was conjectured by McKay and Thompson), and then show that the
traces associated with it are equal to the given Hauptmoduls.

In 1983, Frenkel, Lepowsky and Meurman [FrenLM1,2] proved the first part:
They constructed a new natural M -module V with graded dimension J , which
they called the moonshine module. It has a very rich algebraic structure. They
thus proved the Thompson-McKay Conjecture. In particular, it is the sum of
two vector spaces acted on by a certain involution of the Monster group – one
summand being a subspace of the lattice vertex algebra VL (see section 4.3) and
the other of a twisted version of VL, where L is the Leech lattice. In particular,
the centralizer C of this involution preserves the sum. As a result, their work
also yields the traces T (g) for all elements g ∈ C and thus proves the Moon-
shine Theorem for all conjugacy classes of elements in the subgroup C. However,
most elements of the Monster group do not belong to any of these conjugacy
classes. In 1992, Borcherds [Borc7] gave a very beautiful proof of the second
part – namely finding Tg for all g ∈M and not just for g ∈ C – which, together
with Frenkel, Lepowsky and Meurman’s work, explains how the modular forms
and the Monster group are related and leads to new interesting questions and
directions of research worth investigating.

The principal ingredients in Borcherds’ proof are vertex algebras (see Defi-
nition 4.1.13) and Borcherds-Kac-Moody Lie algebras (see Definition 2.1.7). In
[ConN], Conway and Norton had put forward the idea that there may be a Lie
superalgebra which in some way “explains” the Moonshine Conjecture (see also
Chapter 27 in [ConS3]). The construction of the Monster Lie algebra – the most
well known and simplest example of a Borcherds-Kac-Moody Lie algebra which
is not a Kac-Moody Lie algebra – (and thus the proof of the conjecture) is based
on Frenkel, Lepowsky and Meurman’s construction of the Moonshine module,
in particular the fact that it has the structure of a vertex algebra acted on by
the Virasoro algebra with central charge 24 (see Chapter 4 for definitions). For
a more detailed history, see [Lep2] and [Ray4] and for a detailed study, see[Gan].

The two principal items in the classification of some Borcherds-Kac-Moody
Lie (super)algebras, apart from the Lie (super)algebras themselves, are general-
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izations of two main ingredients in the proof of the moonshine theorem, namely
vector valued modular forms and G-graded vertex algebras, where G is a finite
abelian group. Let us first give an idea of what these infinite dimensional Lie
(super)algebras are like.

1.2 Borcherds-Kac-Moody Lie Superalgebras

Borcherds-Kac-Moody Lie algebras were constructed by Borcherds as a gener-
alization of Kac-Moody Lie algebras. They are (mostly infinite dimensional)
Lie algebras generalizing the notion of a finite dimensional semisimple Lie alge-
bra. A fundamental aspect of Lie’s work on continuous transformations groups
was his realization of how infinitesimal transformations could be used to study
the former. Thus Lie algebras were originally constructed to study Lie groups.
However it is worth noticing that the generalization to infinite dimension has
come first through Lie algebras and associated infinite dimensional Lie or al-
gebraic groups were constructed later [Gar2, KacP3,4,5,6,8, Kac13, KacWan1],
[Ti1,2,3,4] and for Borcherds-Kac-Moody Lie algebras, this has not yet been
completed.

Kac-Moody Lie algebras were constructed concurrently but independently
by Kac [Kac1,2] and Moody [Mo2]. Moody generalized a characteristic as-
pect of finite dimensional semisimple Lie algebra, namely their construction
via Chevalley-Serre generators and relations from Cartan matrices to a more
general class of matrices. Kac, in his study of Z-graded Lie algebras having
polynomial growth (see Definition 2.1.24) found that apart from the finite di-
mensional Lie algebras and the simple Lie algebras of polynomial vector fields,
there is only another type of contragredient Lie algebras (see Definition 2.1.21)
with this property, namely Lie algebras which he called affine [Kac2]. The latter
were also independently constructed by Moody in [Mo3], where they are called
“Euclidean Lie algebras”. They are in some sense the first level of generaliza-
tion to infinite dimension and are a sub-class of Kac-Moody Lie algebras (also
defined in [Kac1]). The affine Lie algebras have since then been successfully
applied in several areas of mathematics and physics.

We give a brief history of the steps that led Borcherds to generalize further
and define Borcherds-Kac-Moody Lie algebras. In his Ph.D. thesis, published
in 1985, Borcherds studied properties of the Leech lattice (for elementary defi-
nitions concerning integral lattices, see section 3.1) [Borc1]. This is the unique
unimodular even lattice of rank 24 without any vectors of norm 2 discovered by
J. Leech in 1965 and extensively studied by Conway and Sloane [Con1,2, ConPS,
ConS1,2,3]. Borcherds found that the multiplicities of all the norm -2 vectors
of the even unimodular Lorentzian lattice II25,1 with signature (25, 1), which
is the direct sum of the Leech lattice and of the unimodular even Lorentzian
lattice II1,1 of rank 2, are always less than 324 and in most cases equal to 324.

At about the same time in 1985, Frenkel constructed hyperbolic Kac-Moody
Lie algebras of rank at most 26 as Lie subalgebras of the quotient of a space on
which vertex operators act, this quotient having the structure of a Lie algebra
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[Fren]. Hyperbolic Lie algebras are Kac-Moody Lie algebras (see Definition
2.1.7) with an even Lorentzian root lattice, i.e. a lattice of signature (n, 1).
Their study, as will be seen in greater detail in sections 5.3 and 5.4, is of interest
for various geometric and number theoretic reasons. Frenkel’s insight was to
apply the Goddard-Thorn No-Ghost Theorem [GodT] of 1972 from the theory
of dual resonance in theoretical physics to this context in order to find upper
bounds for the multiplicities of the roots of a hyperbolic Kac-Moody Lie algebra
of rank 26 – the critical dimension in the No-Ghost Theorem (see section 5.5).
These upper bounds can be expressed in terms of a function of the norm of
the roots. More precisely, for a root α, mult(α) ≤ p24(1 − (α, α)/2), where
p24(n) is the number of partitions of n into parts of 24 colours. For a root α
of norm -2, we get precisely 324 (= p24(2)). Note that a root in the context
of infinite dimensional Kac-Moody Lie algebras does not necessarily describe a
reflection symmetry across a hyperplane whereas this is always the case for finite
dimensional semisimple Lie algebras. However for Kac-Moody Lie algebras this
is still true for the simple roots generating the root lattice, but no longer in the
context of Borcherds-Kac-Moody Lie algebras. See section 2.3 for details on
roots.

Furthermore, as was shown by Conway, the Dynkin diagram of this hy-
perbolic Kac-Moody Lie algebra of rank 26 is the Leech lattice [Con3]. More
precisely, each point of the Dynkin diagram (i.e. each simple root) corresponds
to a point in the Leech lattice in such a way that the edges between any two
points of the diagram only depend on the distance between the corresponding
two points in the Leech lattice. Note that in this case there are infinitely many
simple roots though this is not true in general for infinite dimensional Kac-
Moody Lie algebras (e.g. affine Lie algebras). Conway and Frenkel’s results led
Borcherds to become interested in investigating this hyperbolic Kac-Moody Lie
algebra on the one hand and vertex operators on the other. He thus arrived at
his definition of lattice vertex algebras and the construction of the Fake Monster
Lie algebra from them and in particular put the No-Ghost Theorem to its full
use [Borc5]: The real simple roots of this Lie algebra generate the hyperbolic
Kac-Moody Lie algebra of rank 26 and the multiplicities of the roots of the Fake
Monster Lie algebra are precisely the upper bounds given by Frenkel – so we get
an equality and not just a bound. Studying this Lie algebra led him to the idea
of imaginary simple roots. The Fake Monster Lie algebra F is graded by the
function p24. For each integer n, let Fn be the Lie subalgebra generated by the
vector subspaces of degree at most n. It can be shown that the Fake Monster Lie
algebra is generated by root vectors of degree n orthogonal to Fn−1 (see section
2.5). The corresponding roots are thus the generating – or rather the simple
– roots of the root system of F and some of them have non-positive norm, i.e.
are imaginary. It is then only one step to generalize the class of Kac-Moody
Lie algebras to that of Lie algebras today known as Borcherds-Kac-Moody Lie
algebras or generalized Kac-Moody Lie algebras [Borc4].

Finite dimensional Lie algebras have natural automorphisms induced by the
symmetries of their Dynkin diagrams – or equivalently of bijections of the in-
dexing set of simple roots leaving the Cartan matrix invariant–, called diagram
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automorphisms. This remains the case for Kac-Moody Lie algebras. Another
reason to go one step further in the generalization process stems from the fact
that the class of Lie subalgebras of Kac-Moody Lie algebras fixed by a finite
group of diagram automorphisms is not in general a Kac-Moody Lie algebra but
a Borcherds-Kac-Moody Lie algebra (see Exercise 2.2.4).

The class of Borcherds-Kac-Moody Lie algebras was enlarged to include Lie
superalgebras in 1994 [Ray1]. This also generalizes the class of Kac-Moody Lie
superalgebras constructed by Kac [Kac6]. This larger class of Lie superalgebras
is needed because hyperbolic reflection groups are, in general, Weyl groups of
Borcherds-Kac-Moody Lie superalgebras with non-trivial odd parts (see Defi-
nition 2.1.1). This is the case for one of the most interesting known examples
constructed by Scheithauer: the Fake Monster Lie superalgebra [Sch1,2].

Borcherds-Kac-Moody Lie superalgebras are special cases of contragredient
Lie superalgebras previously constructed by Kac in [Kac6], and they are the Lie
superalgebras to which many of Kac’s results on Kac-Moody Lie superalgebras
can be extended.

We next give a short introduction to the other two main ingredients in the
classification project.

1.3 Vector Valued Modular Forms

Modular forms are a central concept in mathematics developed first in the con-
text of elliptic functions, one of whose characteristics is double periodicity. They
are complex valued holomorphic functions (see Definition C.2.1) on the upper
half plane which transform “nicely” under the action of the isometry group of
H (see section 3.2), namely the group SL2(Z). They can be generalized to holo-
morphic functions on the upper half plane with values in a vector space, which
transform under the action of the metaplectic group (see section 3.3) – i.e. the
double cover of SL2(Z). The vector space in question is a representation space
of the metaplectic group. Some of the most important examples of ordinary
modular forms are theta functions of positive definite unimodular lattices. Sim-
ilarly some of the crucial examples of vector valued modular forms are theta
functions of indefinite lattices. These in particular lead to the construction of
the theta transform of a vector valued modular function.

This is described in sections 3.3 and 3.4, where we give the basis for the
theory developed by Borcherds in [Borc9,11]. Modular forms are not only central
to the moonshine questions but more generally to the theory of Borcherds-Kac-
Moody Lie algebras with Lorentzian root lattice.

1.4 Borcherds-Kac-Moody Lie Algebras
and Modular forms

The aim is to classify the “interesting” Borcherds-Kac-Moody Lie (super)
algebras. By “interesting” we mean those whose structure can be explicitly
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described in some concrete manner. Finite dimensional simple Lie algebras
and affine Lie algebras are the two classes for which this is so far possible.
Calculations seem to indicate that it will be very hard to do so for Kac-Moody
Lie algebras which are neither affine nor finite dimensional.

The root lattices of finite dimensional simple Lie algebras are positive def-
inite and that of affine Lie algebras are semi-positive definite (see Exercise
2.3.12). There is good evidence indicating that a class of Borcherds-Kac-Moody
Lie superalgebras which should be as explicitly describable have Lorentzian
root lattices. The two Borcherds-Kac-Moody Lie algebras at the origin of the
general theory of Borcherds-Kac-Moody Lie superalgebras, namely the Monster
and Fake Monster Lie algebras, have Lorentzian root lattices (Examples 2.3.11,
2.6.40): the even unimodular Lorentzian lattices II1,1 and II1,25 of rank 2 and
26 respectively.

Basically, the idea is to try to classify all the Borcherds-Kac-Moody Lie
algebras to which one can associate a vector valued modular form which is holo-
morphic on the upper half plane in such a way that this modular form will
contain – or rather induce – all the essential information on the correspond-
ing Borcherds-Kac-Moody Lie algebra and lead to a complete description of it.
This was done by Borcherds in [Borc9,11] though Lepowsky and Moody and
later Feingold and Frenkel were the first to suggest a relation between hyper-
bolic Kac-Moody Lie algebras – namely Kac-Moody Lie algebras whose root
lattice is Lorentzian – and Hilbert modular forms and Siegel modular forms
or Jacobi forms respectively [LepM, FeinF]. In particular, the case of E10 is of
special interest [KacMW]. Modular forms were already known to be connected
to some Borcherds-Kac-Moody algebras since they play a prominent role in the
representation theory of affine Lie algebras [FeinL, KacP1,2, KacWak1,2].

More precisely, the (highest weight) representation theory of Borcherds-Kac-
Moody Lie superalgebras leads to an equality called the denominator formula
(see section 2.6). This formula is central to the theory of these Lie superalgebras
as it contains the essential information on the structure of the Borcherds-Kac-
Moody Lie superalgebra it is related to. In the case of finite dimensional simple
Lie algebras it is the classical Weyl formula and for affine Lie algebras it is
equivalent to the famous Macdonald identities [Mac], [Dys]. The latter equiv-
alence is proved in [Kac5], where the Weyl-Kac character formula for arbitrary
integrable highest weight modules over symmetrizable Kac-Moody Lie algebras
is computed and the denominator formula derived from it. Thus, a connection
between modular functions and infinite dimensional Lie algebras first appears in
[Kac5]. Moody in [Mo5] independently pointed out that Macdonald identities
are equivalent to denominator identities for affine Lie algebras, though he did
not prove the character or denominator formulae.

For some Borcherds-Kac-Moody Lie algebras with Lorentzian root lattice,
when this formula is known explicitly it gives an infinite product expansion
of a function on a hyperbolic space transforming nicely under the action of
its isometry group – i.e. an automorphic form on a Grassmannian – with the
property that the exponents of the product factors are coefficients of a modu-
lar form. Roughly speaking, this automorphic form is the exponential of the
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theta transform of the modular form. This is how Borcherds-Kac-Moody Lie
algebras are associated to automorphic forms and vector valued modular forms
(see section 5.3). The basic literature for this material can be found both in the
original papers by Borcherds [Borc9,11] and in the survey articles [Borc10,12],
[Kon].

1.5 Γ-graded Vertex Algebras

Given a non-degenerate lattice, one can construct its Fock space, which is an
infinite dimensional vector space with the following characteristic: to each of its
elements, one can associate an infinite family of linear maps satisfying a set of
axioms. In other words, the Fock space can be given the structure of a vertex
algebra.

The generating formal functions of these families of linear maps are called
vertex operators. They were originally defined in theoretical physics, more pre-
cisely in the theory of dual resonance, where vertex operators are known as
quantum fields. They were introduced by Fubini and Veneziano in 1972 [Man]
in dual resonance theory. They first occurred in the mathematics literature in
1978 in the work of Lepowsky and Wilson [LepW] on the basic representations of
affine sl2. A construction of the basic representations for all affine Lie algebras
using untwisted vertex operators was done by Frenkel and Kac [FrenK] in 1980.
Lepowsky and Wilson’s work was extended to all affine Lie algebras by Kac,
Kazhdan, Lepowsky and Wilson [KacKazLW] in 1981. Part of the vertex alge-
bra structure first appear in the work of Frenkel and Kac [FrenK] and Frenkel’s
work. The complete axioms for vertex algebras were then given by Borcherds in
[Borc2], a definition heavily influenced by the ideas in [FrenK] and [Fren], and
shortly after for vertex operator algebras – structures that defer slightly from
vertex algebras – by Frenkel, Lepowsky and Meurman in [FrenLM2] with a dif-
ferent emphasis (see the introduction of [FrenLM2] for a detailed history). The
axiomatic side has been studied by the above but also by several others, among
whom H. Li [Li2], [LepL] and Y.-Z. Huang [Hua3], [FrenHL]. The simplest de-
finition of a vertex algebra, equivalent to Borcherds’, which is now sometimes
used, was given by Dong and Lepowsky in [DonL].

The construction of Γ-graded vertex algebras is a generalization given by
Dong and Lepowsky in 1993 [DonL] of Borcherds’ construction of lattice vertex
algebras [Borc2]. These more general structures are fundamental in the con-
struction of the Fake monster Lie superalgebra, hence in the case when the odd
part of the Borcherds-Kac-Moody Lie superalgebra is non-trivial.

1.6 A Construction of a Class of
Borcherds-Kac-Moody Lie (super)algebras

Classifying all the Borcherds-Kac-Moody Lie (super)algebras whose structure
can be obtained from an associated vector valued modular form is only a first
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step. We want not only to find a way of describing these Borcherds-Kac-Moody
Lie superalgebras but to construct them in a “concrete way”, i.e. in as explicit
a manner as the affine and finite dimensional semisimple Lie algebras.

The vertex operator representations of affine Lie algebras inspired a construc-
tion of the simply laced finite dimensional Lie algebras, i.e. of type A,D,E, all
of whose roots have the same norm [FrenK]. The point of this construction is
that it yields an explicit Chevalley basis [Ser1] for the Lie algebra (see Definition
2.1.7). The least complicated Borcherds-Kac-Moody Lie algebra that is not a
Kac-Moody Lie algebra is the Monster Lie algebra (Example 2.2.11). However
it is not the most typical example and has a very complex and rich structure
[FrenLM1,2], which will not be discussed in this book. All the other known
Borcherds-Kac-Moody Lie superalgebras can also be constructed from lattices
but to find an explicit basis for the Lie superalgebras in question, the procedure
is more complicated and indirect and their construction is based on other ob-
jects: lattice vertex superalgebras for the Lie algebra case and Γ-graded vertex
algebras for Lie superalgebras with non-trivial odd parts. This is in particular
the case for the Fake Monster Lie superalgebra constructed by N. Scheithauer
[Sch1,2]. The latter – together with its twisted versions [FucRS], [Sch3] – is
the only known example of a Borcherds-Kac-Moody Lie superalgebra with non-
trivial odd part.

More precisely, in all known cases (except the Monster one), a Borcherds-
Kac-Moody Lie algebra can be realized as a quotient of a particular subspace
of the (bosonic) lattice vertex algebra derived from its root lattice when the
lattice is even. There is a natural action of the Virasoro algebra on this vertex
algebra and the subspace in question is determined by it. The Lie superalgebra
bracket on the quotient is given by the linear maps associated to each element
of the vertex algebra and in order to show these are Borcherds-Kac-Moody
Lie algebras, the Goddard-Thorn No-Ghost Theorem [GodT] is needed. The
application of this result from theoretical physics in the context of Lie algebras
is a highly exceptional insight of Frenkel [Fren] and Borcherds [Borc2]. For
more details, see section 5.5. When the root lattice is odd, know examples
can be constructed from the tensor product of the bosonic and of the fermionic
lattice vertex superalgebras. This time, we need to use the action of the Neveu-
Schwarz superalgebra on it (the Virasoro algebra is the even part of this Lie
superalgebra) and the construction in this case is also possible because of the
No-Ghost Theorem.

The next three chapters are independent from each other and present the
background material to the classification: Borcherds-Kac-Moody Lie (super)
algebras, vector valued modular forms, and Γ-graded vertex algebras. In the
fifth chapter, we first explain how to associate a vector valued modular form to
some Borcherds-Kac-Moody Lie algebras with Lorentzian root lattice and show
there is a low upper bound on their rank. In fact, this gives good hope that the
classification and construction project can be completed. In sections 5.2–5.4,
in order not to present technical tools of greater complexity, we assume some
restrictions on the Lorentzian root lattices. The more general case is left as
exercises. In section 5.5, we give the method for constructing these Borcherds-
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Kac-Moody Lie algebras from even lattice vertex algebras. We do not consider
the case of odd lattices or more generally of Borcherds-Kac-Moody Lie superal-
gebras with non-trivial odd parts in chapter 5 as the technical complications do
not serve the purpose of a book aimed at introducing the reader to the above
topics. Some of these questions are left as exercises in chapter 4 and section 5.5.
The generality in which the material of chapters 2 and 4 is presented gives the
reader the background to proceed in this direction, in particular to understand
the construction of the Fake monster Lie superalgebra given by Scheithauer in
[Sch1,2].



Chapter 2

Borcherds-Kac-Moody Lie
Superalgebras

In this chapter we define Borcherds-Kac-Moody Lie superalgebras and explain
what their structure is. We will abbreviate this name to BKM. We will take C
to be the base field instead of R as in [Borc4]. It is necessary to do so for the
construction of BKM Lie superalgebras with non-trivial odd parts (see [Sch1,2]
for the construction of the Fake monster Lie superalgebra) and also for that
of Lie superalgebras closely related to BKM superalgebras, for example affine
Lie superalgebras (see Example 2.1.26). BKM algebras were first defined by
Borcherds in [Borc4]. The interested reader can also read an account of the
theory of BKM algebras in [Kac14, Chapter 11] and in [Jur1,2], where some
oversights are corrected. We do not repeat proofs that remain the same as in
the Kac-Moody Lie algebra case and are presented in [Kac14].

2.1 Definitions and Elementary Properties

So what is a BKM superalgebra? First of all it is a Lie superalgebra.

Definition 2.1.1. A Lie superalgebra is a Z2-graded algebra G = G0 ⊕G1 with
a Lie bracket satisfying

[a, b] = −(−1)d(a)d(b)[b, a] and [a[b, c]] = [[a, b]c] + (−1)d(a)d(b)[[a, c]b],

where for any homogeneous element x ∈ Gn, n = 0, 1, d(x) := n. The subspace
G0 (resp. G1) is called the even (resp. odd) part of G.

Therefore a Lie algebra is a Lie superalgebra with trivial odd part. The most
obvious example of a Lie superalgebra is that of linear maps on a Z2-graded
vector space.

13
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Example 2.1.2. Let V = V0 ⊕ V1 be a Z2-graded vector space. Consider the
associative algebra gl(V ) of endomorphisms of V . It has a natural Z2-grading:

gl(V )0 = {f ∈ gl(V ) : f(Vn) ⊆ Vn, n ∈ Z2},

gl(V )1 = {f ∈ gl(V ) : f(Vn) ⊆ Vn+1, n ∈ Z2}.
The Lie bracket is defined as follows:

[x, y] =
{
xy − yx, if x or y ∈ gl(V )0
xy + yx, if x, y ∈ gl(V )1.

Note that for any x ∈ gl(V ), if x =
(
x0,0 x0,1

x1,0 x1,1

)
with respect to a homogeneous

basis (i.e. a basis v1, · · · , vn such that v1, · · · vm ∈ V0 and vm+1, · · · vn ∈ V1),
the supertrace of x is defined to be

str (x) := tr(x0,0) − tr(x1,1).

In particular any Lie superalgebra G is a Lie sub-superalgebra of gl(G) via
the adjoint action ad , where G is considered as a Z2-graded vector space.

As mentioned in the introduction, the best way to think of a BKM super-
algebra is to consider it as a generalization of a finite dimensional semisimple
Lie algebra. So let us consider the characteristic properties of the latter and
see how these can be weakened in a natural way without losing their essence,
so as to apply to a larger class of Lie superalgebras. We start by reminding the
reader of some basic facts about finite dimensional Lie algebras.

Definition 2.1.3.
(i) A sub-superalgebra I of a Lie superalgebra G is an ideal if [I,G] ≤ I.

(ii) A Lie superalgebra is said to be simple if its only ideals are (0) and itself.
(iii) A semisimple Lie superalgebra is a direct sum of finitely many simple Lie

superalgebras.

Definition 2.1.4. The Killing form on a finite dimensional Lie superalgebra G
is defined as follows: for x, y ∈ G,

K(x, y) = str (ad (x)ad (y)).

Exercises 2.1.2 and 2.3.12 tell us that a finite dimensional semisimple Lie
algebra can be characterized in two different ways.

Lemma 2.1.5. Let G be a finite dimensional Lie algebra. The following prop-
erties are equivalent.

(a) The Lie algebra G is semisimple.
(b) The Lie algebra G is generated by elements ei, fi (called Chevalley gener-

ators), 1 ≤ i ≤ n satisfying the Chevalley-Serre relations:
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(i) [ei, fj ] = δijhi;

(ii) [hj , ei] = aijei, [hj , fi] = −aijfi where aij = K(hi, hj) is the
symmetric Cartan matrix;

(iii) (ad (ei))
1− 2aij

aii ej = 0 = (ad (fi))
1− 2aij

aii fj.

(c) The Killing form is non-degenerate on the Lie algebra G.

The generalization from finite dimension to infinite dimension was made via
property (b) in [Kac2] and [Mo2]. Later, the generalization from Kac-Moody
Lie algebras to BKM algebras is again via property (b) in [Borc4]. Thus, the
definition of a BKM superalgebra is based on the Chevalley-Serre construction
of finite dimensional semi-simple Lie algebras by generators and relations. In
section 2.2, we will consider the characterization via property (c).

Let I be either a finite set, in which case we often identify it with {1, · · · , n}
or a countably infinite set, in which case we sometimes identify it with N. Let
S ⊆ I be a subset of I.

The set I will be indexing the simple roots (or equivalently generators) of
the BKM superalgebra and S will be indexing the odd generators.

Let HR be a real vector space with a non-degenerate symmetric real valued
bilinear form (., .) and elements hi, i ∈ I such that

(i) (hi, hj) ≤ 0 if i 	= j,
(ii) If (hi, hi) > 0, then 2(hi,hj)

(hi,hi)
∈ Z for all j ∈ I.

(iii) If (hi, hi) > 0 and i ∈ S, then (hi,hj)
(hi,hi)

∈ Z for all j ∈ I.
Let H = HR ⊗R C. Let A be the symmetric real valued matrix with
entries aij = (hi, hj).

Remark 2.1.6. The elements hi of the subspace H need not be linearly inde-
pendent, nor even distinct. If the matrix A is non-degenerate, then elementary
linear algebraic arguments imply that the vectors hi are linearly independent.

The vector space H may be considered as an abelian Lie algebra.

Definition 2.1.7. The Borcherds-Kac-Moody Lie superalgebra G = G(A,H, S)
associated to the matrix A and the abelian Lie algebra H is the Lie superalgebra
generated by the abelian Lie algebra H and elements ei, fi, i ∈ I satisfying the
following defining relations:

(1) [ei, fj ] = δijhi;
(2) [h, ei] = (h, hi)ei, [h, fi] = −(h, hi)fi;
(3) deg ei = 0 = deg fi if i 	∈ S, deg ei = 1 = deg fi if i ∈ S;

(4) (ad (ei))
1− 2aij

aii ej = 0 = (ad (fi))
1− 2aij

aii fj if aii > 0 and i 	= j;

(5) (ad (ei))
1− aij

aii ej = 0 = (ad (fi))
1− aij

aii fj if i ∈ S, aii > 0 and i 	= j;
(6) [ei, ej ] = 0 = [fi, fj ] if aij = 0.

The matrix A is called the generalized symmetric Cartan matrix of the Lie su-
peralgebra G and H is a generalized Cartan subalgebra of G. If aii > 0 for all
i ∈ I, then G is said to be a Kac-Moody Lie superalgebra.



16 2 Borcherds-Kac-Moody Lie Superalgebras

When S = ∅, G = G(A,H, S) is a Lie algebra and for simplicity’s sake we
will write G = G(A,H). The next Corollary on the derived Lie sub-superalgebra
of a BKM superalgebra follows immediately from Definition 2.1.7.

Corollary 2.1.8. Let G = G(A,H, S) be a BKM superalgebra, then its derived
Lie sub-superalgebra G′ = [G,G] is the BKM superalgebra G(A, 〈hi : i ∈ I〉, S).

The more one generalizes, the lesser the restrictions imposed on the gener-
alized Cartan matrix. For finite dimensional Lie algebras, the Cartan matrix A
is positive definite (see Proposition 2.2.8) and this forces aii > 0 for all i ∈ I
and |aij | ≤ 3. For Kac-Moody Lie superalgebras, aii > 0 and 2aij/aii ∈ Z for
all i, j ∈ I. For BKM superalgebras, aii ≤ 0 is allowed and the corresponding
rows and columns can be random.

Remark 2.1.9. Note that in some research papers, in the definition of a BKM
superalgebra, the bilinear form on H is not supposed to be non-degenerate. In
that case, condition (2) of Definition 2.1.7 implies that the kernel of the bilinear
form on H in contained in the centre of the BKM superalgebra G. So we can
just quotient out G by its centre to get a BKM superalgebra according to the
above definition.

In the original definition of a Kac-Moody Lie algebra [Kac1,2], the elements
hi are assumed to be linearly independent by definition. As we will see later
this is not the case for the most interesting BKM algebras that are not Kac-
Moody Lie algebras, in particular for the Fake monster Lie algebra (see Example
2.6.41).

Hence, in the case of Kac-Moody Lie algebras, the above definition is more
general than the one in [Kac14] though according to both the bilinear form on
H must be non-degenerate (see chapters 1,2 in [Kac14]). This subtle difference
is well illustrated in the next example.

Example 2.1.10. Let E1 and F1 be the Chevalley generators of the sim-
ple Lie algebra sl2. The corresponding loop algebra has underlying space
G = C[t, t−1]⊗Csl2 and Lie bracket defined as [tn⊗x, tm⊗y] = tn+m⊗ [x, y] for
x, y ∈ sl2. It is generated by the element e1 = 1 ⊗E1, e2 = t⊗ F1, f1 = 1 ⊗ F1

and f2 = t−1⊗E1 satisfying the defining relations given in Definition 2.1.7 with

h1 = [e1, f1] = −[e2, f2] = −h2.

Thus G = G(A,H), where
H = Ch1

and the generalized Cartan matrix is

A =
(

2 −2
−2 2

)
.

Hence, the bilinear form being non-degenerate on the generalized Cartan sub-
algebra, the loop algebra G is a BKM algebra. Since aii > 0 for i = 1, 2, it is
therefore a Kac-Moody Lie algebra according to Definition 2.1.10. However it
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is not a Kac-Moody Lie algebra according to [Kac14] since the vectors h1 and
h2 are not linearly independent.

The Affine Lie algebra associated to sl2 is the central extension of G by
a 1-dimensional centre generated by c. Its generalized Cartan subalgebra is
isomorphic to H ⊕ Cc and condition (2) of Definition 2.1.7 implies that Cc
is the kernel of the bilinear form. Therefore, the latter is degenerate and so
the affine Lie algebra is not a Kac-Moody Lie algebra. This follows from the
uniqueness of the triangular decomposition given in section 2.4.

To get the extended affine Lie algebra Ĝ given by the simple Lie algebra
sl2, a derivation d is added to the previous central extension. It is defined as
Ĝ = G(A, Ĥ), where Ĥ is isomorphic to H ⊕ Cc ⊕ Cd. The vector h1 ∈ H
is as above a generator of the vector space H and h2 ∈ Ĥ is now equal to
h2 = c−h1. The bilinear form on Ĥ given by the above matrix A and (c, d) = 1,
(c, c) = 0 = (d, d), (d, h1) = 0.

For details about this example, the reader is referred to [Gar1] where the
derivation d was first introduced in the context of untwisted affine Lie algebras,
to [GarL] where an appropriate family of d operators are given in the general
case, and to [Kac14, Chapter 7].

Remark 2.1.11. In Definition 2.1.7, the generalized Cartan matrix A is as-
sumed to be symmetric. The reader may be more familiar with the definition
in which the positive diagonal entries of the matrix are all equal to 2. In this
case, the generalized Cartan matrix – let us call it B – satisfies the conditions

(i′) bij ≤ 0 if i 	= j;
(ii′) bij ∈ Z if bii = 2;

(iii′) if bij = 0, then bji = 0;
(iv) there exists a diagonal matrix D with positive entries such that the matrix

A = DB is symmetric.
Condition (iv) says that the matrix B is symmetrizable. The definition of the
Kac-Moody Lie algebra G(B,H, S) corresponding to the matrix B in [Mo2] is
similar to Definition 2.1.7. It is the Lie algebra with generators H, e′i, f

′
i such

that
h′i = [e′i, f

′
i ],

[h′i, e
′
j ] = bji [h′i, f

′
j ] = −bji

(ad (e′i))
1−bije′j = 0 = (ad (f ′i))

1−bijf ′j .

However, we may as well take the symmetric version of the generalized
Cartan matrix for reasons of simplicity since the generators of G(B,H, S) are
multiples of those of G(A,H, S) and thus both Lie superalgebras are isomor-
phic (see Exercise 2.1.3). Obviously there can be several symmetric matrices
equivalent to the matrix A (e.g. any positive multiple of A). For example
the “usual” Cartan matrix for the simple finite dimensional Lie algebra C2 is(

2 −2
−1 2

)
and one of its symmetric versions is

(
2 −2
−2 4

)
.

Condition (ii)′ for the matrix B is indeed equivalent to condition (ii) for the
matrix A. To see this, set di to be the (i, i)-th entry of the diagonal matrix D.
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From the above definition, we get aij = dibij for all i, j ∈ I. In particular if
bii = 2 then, aii = 2di and so 2aij

aii
= bij ∈ Z.

The definition of the generalized Cartan matrix of an arbitrary Kac-Moody
Lie superalgebra as given in [Kac7,14] only satisfies conditions (i′)-(iii′) and is
not necessarily symmetrizable. However, in this case there is no bilinear form
on H given by the Cartan matrix. There are as yet no known examples of a
non-symmetrizable Kac-Moody Lie algebra though some important results have
been proved in the non-symmetrizable case by Kumar [Kum1,2]. The bilinear
form on H induces a non-degenerate invariant symmetric bilinear form on G
and without the existence of such a bilinear form, it is hard to get results on its
structure and representation theory. The two most important classes of Kac-
Moody Lie algebras (known so far), namely the finite dimensional semisimple
and the affine Kac-Moody Lie superalgebras, both have symmetrizable Cartan
matrices (see section 2.2 and for more details [Kac14, Chapters 1,2,6,7,8] for the
Lie algebra case and [Kac3,4] for the more general Lie superalgebra case).

Remark 2.1.12. Keeping the notation of Remark 2.1.11, the Cartan matrix
of a finite dimensional simple Lie algebra has the following property: for i 	= j,
either bij = −1 or aji = −1. Hence, in this case the graph with nodes labeled

by the indexing set I and with bijbji = 4a2
ij

aiiajj
edges linking the i-th and j-th

node with an arrow pointing towards the i-th node if
∣∣aij

∣∣ > 1 contains all the
information given by the Cartan matrix. This graph is the well known Dynkin
diagram.

It can be generalized to Kac-Moody Lie superalgebras. If i ∈ S, then the
corresponding node is set to be black and if i 	∈ S, it is white. However there

may exist indices i, j ∈ I for which both the integers
2
∣∣aij

∣∣
aii

> 1 and
2
∣∣aij

∣∣
ajj

> 1.
So the i-th and j-th nodes are linked with one edge labeled by the ordered pair
2
∣∣aij

∣∣
aii

(resp.
∣∣aij

∣∣
aii

) if i 	∈ S (resp. i ∈ S) and
2
∣∣aij

∣∣
ajj

(resp.
∣∣aij

∣∣
ajj

) if j 	∈ S (resp.
j ∈ S). So this generalized Dynkin diagram contains the same information as
the corresponding generalized Cartan matrix.

However, in the more general context of BKM superalgebras, there may be
indices i ∈ I such that aii ≤ 0 and then the scalar 2aij

aii
can take any real value,

not necessarily an integer, and in the case when aii = 0, it is not defined. So
we cannot associate any useful Dynkin diagram type graphs with most BKM
superalgebras.

The next result explains Conditions (4) and (5) of Definition 2.1.7. Set

G̃ = G̃(A,H, S)

to be the Lie superalgebra generated by the Lie subalgebra H and elements ei,
fi, i ∈ I satisfying relations (1) − (3) of Definition 2.1.7.
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Proposition 2.1.13.
(i) Suppose that aii 	= 0. If i ∈ I\S, then the Lie subalgebra

Si = Cfi ⊕ Chi ⊕ Cei

of the BKM superalgebra G is isomorphic to sl2 and if i ∈ S, then the Lie
sub-superalgebra Si = C[fi, fi]⊕Cfi ⊕Chi ⊕Cei ⊕C[ei, ei] is isomorphic
to sl(0, 1). Moreover, for all i ∈ I\S (resp. i ∈ S) such that aii >
0, considered as a Si-module via the adjoint action, the vector space G̃
decomposes into finite dimensional Si-modules if and only if condition (4)
(resp. (5)) holds.

(ii) Suppose that aii = 0. Then, the Lie (sub)-superalgebraSi =Cfi⊕Chi⊕Cei

is isomorphic to the three dimensional Heisenberg algebra (resp. superal-
gebra) if i ∈ I\S (resp. i ∈ S).

Hence a Kac-Moody Lie superalgebra is generated by copies of the 3-
dimensional simple Lie algebra sl2, one for each even simple root, and of the
5-dimensional simple Lie superalgebra sl(0, 1) (see Proposition 2.1.23 for the
definition), one for each odd simple root, and the adjoint actions of each of
these sl2’s and sl(0, 1)’s on G decomposes into finite dimensional represen-
tations. A BKM superalgebra is generated by copies of sl2, sl(0, 1), and of
the 3-dimensional Heisenberg (super)-algebra, and the action of these sl2’s and
sl(0, 1)′s decompose into finite dimensional representations if and only if they
correspond to positive diagonal entries in the generalized Cartan matrix.

From now on, we will assume that the generalized Cartan matrix A is inde-
composable. The general case easily follows but would make the statement of
definitions and properties less clear without adding any new ideas or technical
difficulty. So let us remind the reader of the definition of an indecomposable
matrix and justify our assumption:

Definition 2.1.14.
(i) A square matrix A is said to be indecomposable if there do not exist square

matrices B and C such that A =
(
B 0
0 C

)
.

(ii) The indexing set I is said to be connected if it cannot be written as the
union of two subsets I1 and I2 such that (hi, hj) = 0 for all i ∈ I1 and
j ∈ I2.

Lemma 2.1.15. Let H1,H2 ≤ H be subspaces of H such that H1 +H2 = H.
Suppose that there exist subsets I1, I2 ≤ I such that I1∪I2 = I, 〈hi : i ∈ Ij〉 ≤ Hj

for j = 1, 2, and (hi, hj) = 0 for all i ∈ I1, j ∈ I2. Then, the generalized

symmetric Cartan matrix A = (hi, hj)i,j∈I , A =
(
A1 0
0 A2

)
, where for i = 1, 2,

Ai is a generalized symmetric Cartan matrices with indexing set Ii; and

G(A,H, S) = G(A1,H1, S1) +G(A1,H2, S2).

If moreover H1 ⊕H2 = H, then

G(A,H, S) = G(A1,H1, S1) ⊕G(A1,H2, S2).
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We leave the proof of this result for the reader to check.

Remark 2.1.16. In many natural examples, the sum H1 + H2 is not direct.
This is trivially the case for the Heisenberg algebras (resp. superalgebras).
These are BKM algebras (resp. superalgebras) with H = Cc, I = Z, S = ∅
(resp. I = S) hi = c for all i ∈ I, and A = 0.

The assumption that A is indecomposable eliminates the most degenerate
cases: if a column or a line of the matrix A is uniformly 0, then A = 0. In
this case, I = {1} and the derived Lie superalgebra G′ is the 3-dimensional
Heisenberg (super)algebra.

Kac defined a Kac-Moody Lie algebra as a quotient of the Lie superalgebra
G̃ by the unique maximal ideal intersecting the Cartan subalgebra trivially. The
Gabber-Kac Theorem shows that this definition is equivalent to the original one
of Moody by generators and relations [GabK, Chapter 9 in Kac14]. The same
remains true in the more general context of BKM superalgebras [Ray2]. Here
we only state this result as we need to develop some representation theory for
this (see Exercise 2.6.4).

Theorem 2.1.17. The ideal of G̃ generated by the elements

(6) (ad ei)
−2aij

aii
+1
ej, (ad fi)

−2aij
aii

+1
fj, for aii > 0, i ∈ I\S;

(7) (ad ei)
−aij
aii

+1
ej, (ad fi)

−aij
aii

+1
fj, for aii > 0, i ∈ S; and

(8) [ei, ej ], [fi, fj ] if aij = 0

is the maximal ideal R intersecting the Cartan subalgebra H trivially.

This Theorem is crucial for the structure of G. An immediate consequence
is the following important result, without which for example the fundamental
fact that generalized Cartan matrices uniquely characterize BKM superalgebras
(see section 2.4) would not hold:

Corollary 2.1.18. The centre of the BKM superalgebra G is contained in the
generalized Cartan subalgebra H.

Also, Theorem 2.1.17 together with exercise 2.1.5 give the well known trian-
gular decomposition of a BKM superalgebra [Kac14, Theorem 1.2 and Borc6].

Corollary 2.1.19. G = N− ⊕H ⊕N+ as vector spaces, where N+ (resp. N−)
is the Lie sub-superalgebra generated by the elements ei (resp. fi), i ∈ I.

Definition 2.1.20. Keeping the notation of Corollary 2.1.19, the Lie sub-
superalgebra B+ = H ⊕ N+ (resp. B− = N− ⊕ H) is a (generalized) positive
(resp. negative) Borel sub-superalgebra.

Finite dimensional and affine BKM superalgebras

The finite dimensional simple Lie superalgebras were classified by Kac in the
70s in [Kac3]. For details, the reader is referred to this paper. Some are sub-
superalgebras of finite dimensional general linear Lie superalgebras (see Exam-
ple 2.1.2). All finite dimensional semisimple Lie algebras and affine Lie algebras
are BKM algebras. However this is no longer true for most finite dimensional
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and affine Lie superalgebras. Some do not even have associated Cartan ma-
trices. Some can be defined via generators of the same type as in Definition
2.1.7 and Cartan matrices but in general the Chevalley-Serre presentation given
in Definition 2.1.7 is not sufficient. When the odd part is non-trivial, there
are usually more relations [LeiS]. In general they have more than one (non-
equivalent) Cartan matrix (see Definition 2.4.1), i.e. non-equivalent Dynkin
diagrams (see section 2.2) and these Cartan matrices do not satisfy conditions
(i)-(iii) of generalized Cartan matrices given above. The list of the finite di-
mensional contragredient simple classical Lie superalgebras and for each, all the
possible Dynkin diagrams is given in [Kac3, §2.5]. Those with non-trivial odd
part are of type A(m,n), B(m,n), C(n), D(m,n), D(2, 1;α), F (4) or G(3).
As a Dynkin diagram contains the same information as the corresponding gen-
eralized Cartan matrix, from this list, it is easy to find those that are BKM
superalgebras [Ray3]. Before stating this result, we first define contragredient
Lie algebras. These are constructions introduced by Kac in [Kac6], of which
BKM superalgebras form a subclass. They allowed him to construct the most
important examples of simple finite-dimensional Lie superalgebras.

Definition 2.1.21.
(i) A Lie superalgebra G is Z-graded if G = ⊕i∈ZGi, where [Gi, Gj ] ≤ Gi+j.

(ii) For any matrix A indexed by the set I, a contragredient Lie superalgebra
G = G(A,S) is the minimal Z-graded Lie superalgebra such that the vector
space G−1 (resp. G1) is generated by the elements fi (resp. ei) satisfying
conditions (1) − (3) of definition 2.1.7 and G0 = [G1, G−1].

In the above definition, minimal means that G is the epimorphic image of
every Z-graded Lie superalgebra with G−1, G0 and G1 of the above type.

Lemma 2.1.22. A BKM superalgebra whose generalized Cartan subalgebra is
generated by the vectors hi, i ∈ I, is the quotient of a contragredient by a central
Lie subalgebra (⊂ G0).

Proof. This result follows from Theorem 2.1.17 by setting deg(ei) = 1 and
deg(fi) = 1.

Corollary 2.1.23. A simple finite dimensional Lie superalgebra G is a BKM
superalgebra if and only if G is contragredient of type A(m, 0) = sl(m + 1, 1),
A(m, 1) = sl(m + 1, 2), B(0, n) = osp(1, 2n), B(m, 1) = osp(2m + 1, 2),
C(n) = osp(2, 2n − 2), D(m, 1) = osp(2m, 2), D(2, 1;α) for α 	= 0,−1, F (4),
and G(3).

Proof. The above do have a Cartan subalgebra H and elements hi, i ∈ I with
respect to which the generalized Cartan matrix is respectively:





0 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2




,





0 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 0




,
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1 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2




,





0 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 1




,





0 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −2
0 0 0 . . . −2 4




,





2 0 −1 . . . 0 0
0 2 −1 . . . 0 0
−1 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 0




,




2 −1 0
−1 0 −α
0 −α 2α



 for α > 1,





0 −1 0 0
−1 2 −2 0
0 −2 4 −2
0 0 −2 4



,




0 −1 0
−1 2 −3
0 −3 6



,

where in all cases i ∈ S if and only if aii = 0 or 1.
The converse is left as an exercise for the reader.

Note that the above list of generalized Cartan matrices together with the
uniqueness of the generalized Cartan matrix except for A(1, 0) (see Theorem
2.4.8) imply that the only finite dimensional simple Kac-Moody Lie superalge-
bras with non-trivial odd part are of type B(m, 1) whereas all finite dimensional
semisimple Lie algebras are Kac-Moody Lie algebras.

Affine Lie algebras are well known and have several definitions. Affine BKM
superalgebras are defined following the original construction of affine Lie alge-
bras via their growth rate [Leu, Kac7].

Definition 2.1.24. A Z-graded Lie superalgebra G = ⊕i∈ZGi is of finite
or polynomial growth if there is a polynomial p such that for each i ∈ Z,
dimGi ≤ p(

∣∣i
∣∣).

Definition 2.1.25. An affine Lie superalgebra is a contragredient BKM super-
algebra of infinite dimension but finite growth.

The affine Lie algebras have been classified by Kac in [Kac3]; in particular,
it follows from his paper that affine Lie algebras are BKM algebras and in
particular Kac-Moody algebras (i.e. aii > 0 for all i ∈ I). This does not remain
true in the Lie superalgebra setup [Leu]. The affine Lie superalgebras have been
classified by van de Leur in [Leu], using the methods developed in [Kac1].

Proposition 2.1.26. An affine BKM superalgebra is either a Kac-Moody Lie
superalgebra or has degenerate generalized symmetric Cartan matrix A = (0).

We reproduce the list of affine Kac-Moody Lie superalgebras given in [Kac7].
They are of type B(1)(0, n), B(1)(0, 1) A(2)(0, 2n − 1), n ≥ 3, A(2)(0, 3),
C(2)(n + 1), n ≥ 2, C(2)(2), A(4)(0, 2n), n ≥ 2, and A(4)(0, 2). The first six
respectively have Cartan matrices
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4 −2 . . . 0 0
−2 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 2 −1
0 0 . . . −1 1




,

(
4 −2
−2 1

)





2 0 −1 . . . 0 0
0 2 −1 . . . 0 0
−1 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 1




,




2 −1 0
−1 1 −1
0 −1 2



 ,





1 −1 . . . 0 0
−1 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 2 −1
0 0 . . . −1 1




,

(
1 −1
−1 1

)
,

where i ∈ S if and only if aii = 1. The last two matrices with S = {1} are the
Cartan matrices of A(4)(0, 2n), n ≥ 2, and A(4)(0, 2) respectively.

We next construct an example of an affine Lie superalgebra. It is not a BKM
superalgebra but shows that when the odd part is non-trivial, we have to be
careful about the base field taken.

Example 2.1.27. The extended affine Lie superalgebra sl(1)(1, n) is con-
structed in the same way as the extended affine Lie algebra sl(1)2 (see Example
2.1.10) as the central extension of the Loop superalgebra

C[t, t−1] ⊗C sl(1, n)

with an added derivation.
Let E1, ..., En and F1, ..., Fn be the generators of sl(1, n) with 1 ∈ S.
Then the generators of sl(1)(1, n) are e0, ..., en and f0, ..., fn, where

ei = 1 ⊗ Ei and fi = 1 ⊗ Fi ∀i ≥ 1.

Let θ be the root of sl(1, n) of maximal height. It has norm 0. Therefore
the simple root vectors e0 and f0 of sl(1)(1, n) are defined as follows: let F0 ∈
sl(1, n)θ be such that

(ω(F0), F0) = 1/(θ, α1)

and not as (ω(F0), F0) = 1/(θ, θ) as in the affine Lie algebra case since θ has
norm 0. So calculations show that

F0 = i[e1...[en−1, en]]
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and we have to take C as our ground field and cannot work over R. Then
E0 = ω(F0) and

e0 = t⊗ E0 and f0 = t−1 ⊗ F0.

Before closing this section, we define two basic automorphisms of BKM
superalgebras as they map the subspace N+ onto the subspace N− and whose
existence follow from Exercise 2.1.5.

Proposition 2.1.28. There is an automorphism ω of period 4 acting on the
BKM superalgebra G, called the Chevalley automorphism given by:

ω(ei) =
{
fi if i ∈ S,
−fi, otherwise. ;

ω(fi) = −ei ∀i ∈ I, ω(h) = −h ∀h ∈ H.

There is an antilinear automorphism ω0 of period 4 acting on the BKM super-
algebra G, called the compact automorphism given by:

ω0(ei) =
{
fi if i ∈ S,
−fi, otherwise. ;

ω0(fi) = −ei ∀i ∈ I, ω0(h) = −h ∀h ∈ HR.

We remind the reader that ω0 is antilinear on the complex vector space G if
ω0(cx) = cω0(x) for all x ∈ G and c ∈ C. The need for the antilinear map ω0

will be seen in Corollary 2.2.6. When the BKM superalgebra G is a Lie algebra,
ω (resp. ω0) is the usual Chevalley (resp. compact) involution. As will be seen
in section 2.4, when G is a finite dimensional simple Lie algebra, ω is an inner
automorphism, but this is no longer the case in infinite dimension.

Proposition/Definition 2.1.29. Suppose that G is a BKM algebra. The
set {x ∈ G : ω0(x) = x} of fixed point of the automorphism ω0 is a real Lie
superalgebra C(A) of the BKM superalgebra G such that G = C⊗R C(A). It is
the compact form.

Proof. The result follows from the fact that ei − fi, i(ei + fi) and ih, for all
h ∈ HR, are vectors in C(A).

Exercises 2.1

1. Show that a finite dimensional Lie superalgebra L is semisimple if and only
if it has no non-trivial abelian ideal.
Hint: you may use induction on the dimension of L to show that the non-
existence of a non-trivial abelian ideal is a sufficient condition.

2. Let L be a finite dimensional Lie superalgebra.
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(i) Prove that the Killing form K on L is an invariant bilinear form, i.e. for
all x, y, z ∈ L, K([x, y], z) = K(x, [y, z]) and K is bilinear.

(ii) Deduce that the kernel of the Killing form is an ideal of L.
(iii) Suppose that L is a Lie algebra. Deduce that the Killing form is non-

degenerate if the Lie algebra L is semisimple.
(iv) If the Killing form is non-degenerate on L, prove the Lie superalgebra L

is semisimple.

Hint: you may use Exercise 1.

3. Let B be a symmetrizable matrix satisfying conditions (i′)− (iv) of Remark
2.1.11. We keep the same notation as in Remark 2.1.11.

(i) Show that for i, j ∈ I, (h′i, h
′
j) = d−1

i d−1
j aij , where di is the (i, i)-th entry

of the diagonal matrix D.
(ii) Deduce that the Lie superalgebras G(A,H, S) and G(B,H, S) are isomor-

phic.

We remind the reader that the generalized Cartan matrix is assumed to be in-
decomposable.

4. Show that the centre of the BKM superalgebra G is the subspace

{h ∈ H : (h, hi) = 0 ∀i ∈ I}.

Deduce that if H = 〈hi : i ∈ I〉 and the form is non-degenerate on H, then the
BKM superalgebra G is simple.

5. Consider the Lie superalgebra G̃.
(i) Show that G̃ = Ñ− ⊕H ⊕ Ñ+ as vector spaces, where Ñ+ (resp. Ñ−) is

the Lie sub-superalgebra generated by the elements ei (resp. fi), i ∈ I,
satisfying properties (1) − (3) of Definition 2.1.7.

Hint: Show first that G̃ is the sum of the above three Lie sub-superalgebras. To
show that the sum is direct, construct for each λ ∈ H∗ (the dual of H), an
action of G̃ on the tensor algebra T (V ) of a vector space with a basis indexed
by I and consider the action of 0 = f + h + e on 1 ∈ T (V ), where f ∈ Ñ−,
e ∈ Ñ+, and [e, f ] = h.

(ii) Deduce that the Lie sub-superalgebra Ñ+ (resp. Ñ−) is freely generated
by the vectors ei (resp. fi), i ∈ I.

(iii) Deduce that the automorphisms ω and ω0 defined in Proposition 2.1.28
are well defined.

For a solution see [Kac14, Theorem 1.2] or [Borc6].

6. Let G = ⊕i∈ZGi be a Z-graded Lie superalgebra. Show the existence of a
minimal Lie superalgebra generated by G−1 +G0 +G1.
For a solution, see [Kac6, Proposition 1.2.2] and [Kac1, Proposition 4]

7. Let Ĝ be the Lie superalgebra generated by the subspace Ĥ containing
vectors hij , i, j ∈ I with hij 	= 0 if and only if aki = akj for all k ∈ I, satis-
fying (hii, hjj) = aij , and elements ei, fi, i ∈ I satisfying relations (1) − (6) of
Definition 2.1.7. and the following extra ones
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(7) [ei, fj ] = hij ,
(8) [hij , ek] = 0 = [hij , fk] if i 	= j.

(i) Show that Ĝ is the universal central extension of the BKM superalgebra
G given in Definition 2.1.7.

(ii) Deduce that a Kac-Moody Lie superalgebra is its own universal central
extension.

(iii) Deduce the a BKM superalgebra is the semi-direct product of Ĝ/Z, where
Z is a central subalgebra of Ĝ and of an abelian algebra having the gen-
erators ei and fi of Ĝ as eigenvectors.

For a solution, [see Borc6]

2.2 Bilinear Forms

In Section 2.1, we saw that BKM superalgebras were defined by generalizing
one of the defining properties of finite dimensional semisimple Lie algebras,
namely Lemma 2.1.5.b. In this section, we consider the equivalent characterizing
property 2.1.5.c. When the Lie algebra G is infinite dimensional, the Killing
form obviously makes no sense as the trace is no longer definable. Furthermore,
note that when G is a finite dimensional BKM superalgebra, Lemma 2.1.3.c
may not hold.

Lemma 2.2.1. The Killing form on a finite dimensional BKM superalgebra is
trivial if and only if it is of type D(2, 1, α).

To generalize the Killing form to BKM superalgebras, let us consider its
essential characteristics. First some more definitions.

Definition 2.2.2. Let (., .) be a bilinear form on the Lie superalgebra L.

(i) (., .) is said to be supersymmetric if (x, y) = (−1)d(x)d(y)(y, x) for all ho-
mogeneous elements x, y ∈ L.

(ii) (., .) is said to be consistent if (G0, G1) = 0.
(iii) (., .) is said to be invariant if ([g, x], y) = (g, [x, y]) for all elements

g, x, y ∈ L.

Lemma 2.2.3. Let L be a finite dimensional Lie superalgebra and K its Killing
form. The form K is bilinear supersymmetric, invariant, and consistent.

These properties are well known and we leave it for the reader to check.
Though Lemma 2.1.3.c. does not hold in general for finite dimensional BKM
superalgebras, they have non-degenerate bilinear forms satisfying Lemma 2.2.3.

Lemma 2.2.4. There is a non-degenerate, invariant, supersymmetric, con-
sistent bilinear form (., .) on the BKM superalgebra G. Moreover, if the Lie
superalgebra G is perfect (i.e. equal to its derived Lie subalgebra), then this
form is unique up to multiplication by a non-zero scalar.



2.2 Bilinear Forms 27

In the rest of this chapter, (., .) will denote a non-degenerate, invariant,
supersymmetric, consistent bilinear form on G.

As a consequence of Lemma 2.2.1, for finite dimensional BKM superalgebras
of typeD(2, 1, α), the non-degenerate forms are not multiples of the Killing form.
However these properties of a bilinear form are too weak to characterize BKM
algebras, let alone BKM superalgebras. Even in finite dimension, there are
nilpotent Lie algebras with non-degenerate invariant symmetric bilinear forms
(see Exercise 2.2.2). To find a characterization of BKM algebras via bilinear
forms, we need to consider the compact antilinear automorphism.

Lemma 2.2.5. Let G be a BKM superalgebra. The compact antilinear auto-
morphism keeps the bilinear form invariant.

We first consider the case when G is a Lie algebra. Usually a Hermitian
form on a complex vector space is considered to be linear in the first argument.
Here it is more suitable to define them to be linear in the second variable and
antilinear in the first. This is due to requirements arising in the more general
context of BKM superalgebras (see Remark 2.2.18).

Corollary 2.2.6. Let G be a BKM algebra. The form (., .)0 defined by

(x, y)0 = −(ω0(x), y), x, y ∈ G

is Hermitian and contravariant, i.e. ([g, x], y)0 = −(x, [ω0g, y])0 for all g, x, y ∈
G.

Proof. We will only prove that the form (., .)0 is Hermitian. The contravariance
property is left for the reader to check. We apply Proposition 2.1.29. Let
x = x1 + ix2 ∈ G and y = y1 + iy2 ∈ G, where xi, yi ∈ C(A) for i = 1, 2. Then,

(y, x)0 = (y1 − iy2, x1 + ix2) = (x1 − ix2, y1 + iy2) = (x, y)0.

In the above result, for the form (., .)0 to be Hermitian, the map ω0 has to
be assumed to be antilinear.

The following property of the form (., .)0 for finite dimensional semisimple
Lie algebras is classical. For a proof, see Exercise 2.6.6.

Proposition 2.2.7. If G is a finite dimensional semisimple Lie algebra, then
the bilinear form (., .)0 is positive definite on G.

This result is clearly false in this strong form for arbitrary BKM algebras
since the generalized symmetric Cartan matrix A may have non-positive diago-
nal entries. As mentioned earlier, Kac-Moody Lie algebras were first constructed
in the context of a study of Z-graded Lie algebras and this basic property also
needs to be taken into account. Note that the nilpotent Lie algebras carrying
non-degenerate invariant bilinear symmetric forms constructed in Exercise 2.2.2
are not Z-graded.
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Theorem 2.2.8. Let G be a BKM algebra. Then:
(i) G is graded: G =

∑
i∈ZGi, dimGi < ∞ for all i 	= 0, and

[Gi, Gj ] ≤ Gi+j;
(ii) there is an antilinear involution ω0 of G such that ω0(Gi) = G−i and ω0

is multiplication by −1 on G0R;
(iii) the form (., .)0 is a contravariant Hermitian form and it is positive definite

on all the spaces Gi with i 	= 0. Furthermore (Gi, Gj)0 = 0 if i 	= j.

Proof. Set deg h = 0 for all h ∈ H and deg ei = i = −deg fi for i ∈ I. This
induces a Z-gradation of the Lie algebra G satisfying (i). By definition, the
compact involution ω0 given in Proposition 2.1.28 satisfies (ii) since hi ∈ HR

and G0 = H.
(iii) follows from Exercise 2.6.6 as it requires the use of some representation
theory. This part proved in [KacP3], is called the Kac-Peterson Theorem.

It is important to note that the i-th pieces are all finite dimensional except
possibly the 0-th piece. As Exercise 2.2.3 shows there are Lie algebras which
satisfy all the other conditions but are not BKM algebras.

The above properties characterize BKM algebras. In other words, the con-
verse to Theorem 2.2.8 holds. It is essential in Borcherds’ proof of the Moonshine
Theorem where it is needed to show that the Monster Lie algebra is a BKM
algebra.

Theorem 2.2.9. Let L be a Lie algebra satisfying the following conditions:
(i) L is graded: L =

∑
i∈Z Li with dimLi < ∞ for all i 	= 0 and

[Li, Lj ] < Li+j;
(ii) there is an antilinear involution ω0 of L such that ω0(Li) = L−i and ω0

is multiplication by −1 on L0R;
(iii) there is a contravariant Hermitian form (., .)0 on L, invariant under ω0

and positive definite on all the subspaces Li for i 	= 0. Furthermore
(Li, Lj)0 = 0 if i 	= j.

Then the kernel R of the Hermitian form is contained in the centre of L and
L/R is a BKM algebra.
We split the proof of this result into several parts. L will denote a Lie algebra
satisfying conditions (i)-(iii) of Theorem 2.2.9.

Lemma 2.2.10. The Lie subalgebra L0 is abelian.

Proof. For any h1, h2 ∈ (L0)R, condition (i) gives [h1, h2] ∈ L0. Hence by
condition (ii), −[h1, h2] = ω0([h1, h2]) = [ω0(h1), ω0(h2)] = [h1, h2], and the
Lemma follows.

Lemma 2.2.11. The kernel R of the Hermitian form is contained in the centre
of L.

Proof. Let k ∈ R. There exists s ≥ 0 such that kj ∈ Lj , −s ≤ j ≤ s and

k =
s∑

j=−s

kj .



2.2 Bilinear Forms 29

So,
0 = (k, kj)0 = (kj , kj)0,

by (iii). This implies that s = 0 since the Hermitian form (., .)0 is non-degenerate
on Li for i 	= 0. So k = k0 ∈ L0 and thus

R ≤ L0.

Also, for any j > 0 and any x ∈ Lj ,

([k, x], y)0 = −(k, [ω0(x), y])0 = 0

for all y ∈ Lj . Hence
[k, x] = 0

as [k, x] ∈ Lj by (i) and (., .)0 is non-degenerate on Lj . Therefore as L0 is
abelian, k is contained in the centre of L.

Lemma 2.2.12. Suppose thatR = 0. For any integer r > 0, setMr to be the Lie al-
gebra generated by the spacesLi,

∣∣i
∣∣ < r andVr = {v ∈ Lr : (v, x)0 = 0∀x ∈ Lr}.

Then, Lr = Vr ⊕ (Mr ∩ Lr) as vector spaces and there exists a basis Br of the
vector space Vr consisting of pairwise orthonormal eigenvectors {ei} for L0.

Proof. As the Hermitian form (., .)0 is positive definite on Lr, the direct sum
follows.
Now, [L0, V±r] ≤ V±r: indeed, for any h ∈ L0, x ∈ V±r, y ∈Mr,

([h, x], y)0 = −(x, [ω0(h), y])0 = 0

by definition of V±r since [ω0(h), y] ∈Mr.
Hence there exists a basis of Vr consisting of eigenvectors for L0. And so, as

the Hermitian form is positive definite on Vr, there is an orthonormal set {ej}
of elements in Vr consisting of eigenvectors for L0.

We keep the notation of Lemma 2.2.12. For all i, set

fi = −ω0(ei) and hi = [ei, fi].

By (i), hi ∈ L0. The following consequence is immediate.

Corollary 2.2.13. Suppose that R = 0. The set B = (∪∞
r=0Br)∪ (∪∞

r=0ω0(Br))
together with the Lie subalgebra L0 generate the Lie algebra L.

Let A = (aij) be the matrix with entries aij = (hi, hj)0. We next show
that the matrix A satisfies conditions (i)-(iii) of a symmetric generalized Cartan
matrix, that its entries are real, and that the generators ei, fi, and H = G0

satisfy relations (1)-(6) of Definition 2.1.7 of a BKM algebra.

Lemma 2.2.14. Suppose that R = 0. For all i, j, [ei, fj ] = 0 if i 	= j and
[h, ei] = (h, hi)0ei, [h, fi] = −(h, hi)0fi.
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Proof. Let i 	= j. We first show that [ei, fj ] = 0. Without loss of generality,
we may assume that ei ∈ Ls, fj ∈ L−t, s ≥ t > 0. Hence by Lemma 2.2.12,
ei ∈ Vs. So for all x ∈ Ls−t,

([ei, fj ], x)0 = −(ei, [ej , x])0. (1)

Since 0 ≤ s− t < s, x ∈Ms. We show that

([ei, fj ], x)0 = 0 (2)

for all x ∈ Ls−t. If t < s, then fj ∈ Ms and so [ej , x] ∈ Ms. In this case, (2)
follows from (1) since the subspaces Ms and Vs are orthogonal by Lemma 2.2.12.
If t = s , x ∈ L0 and so the vector [ej , x] is a multiple of the vector ej since ej

is an eigenvector for L0. Hence (2) again follows from (1) by orthogonality of
the generators ei and ej (see Lemma 2.2.12).

For s− t 	= 0, the form (., .)0 is positive definite on Ls−t, and so equality (2)
forces [ei, fj ] = 0.

For s = t, because of equality (2), [ei, fj ] ∈ R since by condition (iii),
([ei, fj ], x) = 0 for all x ∈ Lr, r 	= 0. Hence, [ei, fj ] = 0 by the assumption that
R = 0.
For any h ∈ L0, [h, ei] = cei for some scalar c ∈ C as ei is an eigenvector for
L0, and

c = c(ei, ei)0 = ([h, ei], ei)0 = −(h, [fi, ei])0 = (h, hi)0.

Similarly [h, fi] = −(h, hi)0fi.

Lemma 2.2.15. aij ∈ R for all i, j and if i 	= j then, aij ≤ 0.

Proof. For any i, j,

(hi, hj)0 = ([ei, fi], [ej , fj ])0
= (fi, [fi[ej , fj ]])0
= (fi, [ej [fi, fj ]])0 by Lemma 2.2.14
= ([fj , fi], [fi, fj ])0.

This is a non-positive real because of condition (iii).

Lemma 2.2.16. If aij = 0, then [ei, ej ] = 0 and [fi, fj ] = 0.

Proof. Suppose that i 	= j.

([ei, ej ], [ei, ej ])0 = (ej , [fi[ei, ej ]])0
= −(ej , [hi, ej ])0 by Lemma 2.2.14
= −aij(ej , ej)0 by Lemma 2.2.14
= 0.

As the Hermitian form is positive definite on each space Ls for s 	= 0, [ei, ej ] = 0.
Applying the involution ω0 to this bracket, we get the second equality.
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Lemma 2.2.17. If aii > 0 and i 	= j, then 2aij

aii
∈ Z− and

(ad (ei))
1− 2aij

aii ej = 0 = (ad (fi))
1− 2aij

aii fj .

Proof. Suppose that i 	= j and aii > 0. The Lie subalgebra Si = 〈ei, hi, fi〉
isomorphic to sl2 acts on L via the adjoint action. If the Si-module gener-
ated by fj is finite dimensional, then the result follows since by Lemma 2.2.14,
[ei, fj ] = 0.

So we only need to show that the Si-module generated by fj is finite dimen-
sional. For any positive integer n, as the Hermitian form is contravariant,

((ad fi)nfj , (ad fi)nfj)0 = ((ad fi)n−1fj , [ei, (ad fi)nfj ])0

= −n(
n− 1

2
aii + aij)((ad fi)n−1fj , (ad fi)n−1fj)0.

Hence, (ad fi)nfj 	= 0 if and only if n−1
2 aii + aij 	= 0 and

((ad fi)n−1fj , (ad fi)n−1fj)0 	= 0. Therefore the result follows as the Hermitian
form is positive definite on the space Ls for s > 0.

This shows that the Lie algebra L/R is the BKM algebra with Cartan matrix
A and Cartan subalgebra H = L0/R, proving Theorem 2.2.9.

Theorems 2.2.8 and 2.2.9 assume that G is a Lie algebra. So the imme-
diate question that comes to mind is: Do properties (i)-(iii) of Theorem 2.2.8
characterize BKM superalgebras? Though in many cases a Lie algebra fails to
be a BKM algebra because there is no suitable Z-grading with finite dimen-
sional pieces, a most important aspect of the characterization given in Theorem
2.2.8 is the positivity of the Hermitian form (., .)0 . However, positivity is not
a natural concept in the context of Lie superalgebras. Indeed, when the odd
part is non-trivial, (Hermitian) supersymmetry is the natural concept replacing
(Hermitian) symmetry. If the form (., .)0 on a Lie superalgebra G is Hermitian
supersymmetric, then for any x ∈ G1,

(x, x)0 = −(x, x)0

and so positivity implies that (x, x)0 is purely imaginary (i.e. in iR). Hence, for
a characterization of BKM superalgebras in terms of an almost positive definite
bilinear form, we need the form to be Hermitian symmetric. As this is rather an
artificial construction in the framework of Lie superalgebras, from the outset it
appears unlikely that BKM superalgebras can be characterized in this manner.
Let us take a closer look at this question.

Remark 2.2.18. When G is a BKM algebra and the base field in taken to
be R instead of C, the form (., .)0 is defined as (x, y)0 = −(x, ω(y)) in [Borc4],
where (., .) is the Hermitian form on G induced by the generalized symmetric
Cartan matrix A defined in Lemma 2.2.4. As the Chevalley automorphism ω is
an involution,
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(ω(x), y) = (x, ω(y)),

so it does not matter whether ω acts on the first or second component.
When S 	= ∅, the above equality no longer holds. Therefore, we have to be

careful with the definition of the form (., .)0. If we keep Borcherds’ definition
given above, then for i ∈ S

(ei, ei)0 = −(ei, ω0(ei)) = −(ei, fi) = −1 < 0

by Lemma 2.2.4, and so the form (., .)0 is not positive definite. This suggests
that the definition of the form (., .)0 should be

(x, y)0 = −(ω(x), y)

over R, and
(x, y)0 = −(ω0(x), y)

over C, as given in [KacP3] and [Kac14, §11.5] instead of the one given in [Borc4].
It is in fact why the Hermitian form needs to be antilinear in the second factor.

Corollary 2.2.19.

(i) The form (., .)0 on the BKM superalgebra G is consistent.
(ii) ([g, x], y)0 = (−1)d(g)d(x)(x, [ω0(g), y])0, where ω0 is the compact automor-

phism.

Proof. We only prove (ii).

([g, x], y)0 = −([ω0(g), ω0(x)], y)
= −(−1)d(g)d(x)(ω0(x), [ω0(g), y]) by invariance of the form (., .)
= (−1)d(g)d(x)(x, [ω0(g), y])0.

We will say that a Hermitian form on G satisfying Corollary 2.2.19.(ii) is con-
travariant. As expected, the next result shows that only a few BKM superalge-
bras can be characterized in terms of almost positive definite bilinear forms.

Theorem 2.2.20. Let L be a Lie superalgebra satisfying the following condi-
tions:

(i) L is graded: L =
∑

i∈Z Li with dimLi < ∞ for all i 	= 0 and
[Li, Lj ] < Li+j;

(ii) there is an antilinear automorphism ω0 of L of period 4 such that
ω0(Li) = L−i and ω0 is multiplication by −1 on (L0)R;

(iii) there is a contravariant Hermitian form, invariant under ω0, (., .)0 on L,
which is positive definite on all subspaces Li with i 	= 0. Furthermore
(Li, Lj)0 = 0 if i 	= j.
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Then the kernel R of the bilinear form is contained in the centre of L and L/R
is a sum of BKM algebras and Lie superalgebras of type A(n, 0) or B(n, 0),
A(∞, 0), B(∞, 0), or B(1)(1, 2n).

We prove this result in a few steps. In what follows, we keep the nota-
tion used in the proof of Theorem 2.2.9 and L will denote a Lie superalgebra
satisfying Theorem 2.2.20.

Lemma 2.2.21. The Lie sub-superalgebra L0 is abelian and its odd part (L0)1
is contained in the centre of L.

Proof. Replacing ω0 with ω2
0 in the proof of Lemma 2.2.10, it follows that the

Lie sub-superalgebra L0 is abelian.
For any integer s > 0, consider an arbitrary eigenvector x ∈ Ls for L0. For

any h ∈ L0 ∩ L1, there is some scalar c ∈ R such that

[h, x] = cx.

Now,
2[h, [h, x]] = [[h, h]x] = 0

as h ∈ L1 and L0 is abelian. However, [h, [h, x]] = c2x. Therefore, as x 	= 0,
c = 0. It follows that h is a central element, proving the Lemma.

Lemma 2.2.11 clearly holds as well. From Lemma 2.2.21, it immediately
follows that there is a basis of Vr consisting of homogeneous elements. Hence
the form (., .)0 being positive definite, we can take the elements ei to be homo-
geneous elements:

Corollary 2.2.22. Suppose that R = 0. For any integer r > 0,
Lr = Vr ⊕ (Mr ∩ Lr) as vector spaces and there exists a basis Br of the vector
space Vr consisting of pairwise orthonormal homogeneous eigenvectors {ei} for
L0.

As usual, we let I be the indexing set for the subscripts i of the generators
ei ∈ L, and S be the subset giving the odd generators. Without loss of general-
ity, we may assume that the set I is connected. Lemma 2.2.15 and 2.2.16 clearly
holds and so does Lemma 2.2.17 for the even generators of the Lie superalgebra
L. Moreover,

Lemma 2.2.23. If i ∈ S, aii > 0 and i 	= j, then aij

aii
∈ Z− and

(ad (ei))
1− aij

aii ej = 0 = (ad (fi))
1− aij

aii fj.

Lemma 2.2.24. The Lie superalgebras L is a BKM superalgebra with
∣∣S

∣∣ = 1.
Furthermore, for all i ∈ S, aii ≥ 0 and if aii = 0 then [ei, ei] = 0.

Proof. Let i ∈ S, j ∈ I.
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([ei, ej ], [ei, ej ])0 = −(−1)d(ej)(ej , [fi[ei, ej ]])0

=
{

(−1)d(ej)(ej , [hi, ej ])0 if i 	= j
2(ej , [hj , ej ])0 if i = j

=
{

(−1)d(ej)aij(ej , ej)0 if i 	= j
2ajj(ej , ej)0 if i = j

(*)

Since the form (., .)0 is positive definite on the space Ls, if j ∈ S (resp. j 	∈ S),
then [ei, ej ] 	= 0 if and only if aij > 0 (resp. aij < 0). In particular, for all
i ∈ S, aii ≥ 0 and aii = 0 if and only if [ei, ei] = 0.

So for i ∈ S, aii > 0, Ei = [ei, ei] 	= 0 and ω(Ei) = Fi = [fi, fi] 	= 0. This
gives

([Ei, ej ], [Ei, ej ])0 = −(−1)d(ej)(ej , [Fi[Ei, ej ]])0
= 4aii(−1)d(ej)(ej , [hi, ej ])0
= 4(−1)d(ej)aiiaij(ej , ej)0
= −4aiiaij(ej , ej)0.

Hence since the form (., .)0 is positive definite on the spaces Ls, aij ≤ 0. So
from (∗), it follows that for all j ∈ S aij = 0.

Hence, the set I being connected, if there exists i ∈ S such that aii > 0, then
S = {i}. Also, Lemmas 2.2.15, 2.2.16, 2.2.17, 2.2.23 together with (∗) imply
that L is BKM superalgebra.

Next suppose that i 	= j ∈ S and aii = 0 = ajj . If aij > 0, then
from (∗), the even vectors E = [ei, ej ] 	= 0, F = [fi, fj ] 	= 0. Suppose that
there exists k ∈ I − {i, j} such that ajk 	= 0. If k ∈ S (resp k 	∈ S), then
akk = 0. Since [ej , ek] is an even (resp. odd) vector, from (∗), we can deduce
that aik ≥ 0 (resp. aik ≤ 0) and ajk ≥ 0 (resp. ajk ≤ 0) and on the other hand
aik + ajk ≤ 0 (resp. aik + ajk ≥ 0). This contradiction and the connectedness
of the indexing set I imply that

∣∣S
∣∣ ≤ 2. Moreover, by Lemmas 2.2.15, 2.2.16,

2.2.17, 2.2.23 and equalities (∗), L is a BKM superalgebra and if
∣∣S

∣∣ = 2, then
L is finite dimensional. The list of finite dimensional BKM superalgebras given
in Corollary 2.1.23 together with Theorem 2.4.8 on the uniqueness of the gen-
eralized Cartan matrix forces L to be of type A(1, 0) when

∣∣S
∣∣ = 2. However in

this case there is another non-equivalent generalized symmetric Cartan matrix(
0 −1
−1 2

)
associated to L and the corresponding subset S has cardinality 1

(see Example 2.4.7).

We can now assume that L is a BKM superalgebra with S = {1} and a11 ≥ 0.
For details on roots, see §2.3.

Lemma 2.2.25. Let I1 be a finite connected subset of I such that 1 ∈ I1 and
L1 be the BKM sub-superalgebra of L indexed by I1. Either dimL1 <∞ or L is
an affine Kac-Moody Lie superalgebra of type osp(1)(1, 2n). Moreover all roots
of L have non-negative norm.

Proof. Let LE be the even BKM subalgebra generated by the even generators
ei, fi, i ∈ I\S. We first show that all the roots of LE have positive norm. Let α
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be a root of LE such that (α, α) ≤ 0. Without loss of generality, we may assume
that (α, α1) < 0. Then β = α + α1 is an odd root and by Lemmas 2.2.23 and
2.2.24, (β, β) < 0. Hence, by Lemma 2.3.15, for any 0 	= eβ ∈ Lβ , [eβ , eβ ] 	= 0
and

([eβ , eβ ], [eβ , eβ ])0 = 2(eβ , [[ω(eβ), eβ ]eβ ])0
= 2(eβ , eβ)0(eβ , ω(eβ))(β, β)
= 2(eβ , eβ)20(β, β).

This contradicts the fact that the form (., .)0 is positive definite and in particular,
the Lie superalgebra L has no odd roots of negative norm. If there are roots
of LE of non-positive norm, then there is a root α such that (α, α) ≤ 0 and
(α, α1) 	= 0. Hence, the above shows that if the set I is finite, then dimLE <∞.
If a11 = 0, then the result follows from Corollary 2.3.34.

Assume next that a11 > 0. Lemma 2.2.23 implies that the Lie subalgebra
Lp generated by LE and the elements [e1, e1], [f1, f1] remains a BKM algebra.
If all roots of Lp have positive norm, then again dimL1 <∞ as before.

So suppose that the BKM algebra Lp has a root α of non-positive norm. We
claim that

(α, α) = 0.

From what precedes, 1 ∈ Supp(α). By Lemma 2.3.21 (ii), we may assume that
(α, αj) ≤ 0 for all j ∈ I. Then, (α, α1) = 0 for otherwise the finite dimensional
representation theory of sl2 (see [Kac14, §3.2]) implies that α + α1 is an odd
root of L and as its norm is negative, we get a contradiction to the above. Since
a1j ≤ 0 for all j ∈ I, it follows that a1j = 0 for all j ∈ Supp(α), contradicting
the connectedness of the support of the root α given in Proposition 2.3.8.

If (α, αj) < 0 for some j ∈ I, then α + αj is a root of L of negative norm
since ajj > 0. However, we have just shown that all roots of non-positive norms
have norm 0 and so

(α, αj) = 0 ∀j ∈ I.

Moreover as the indexing set I is connected, I = Supp(α). Therefore the Kac-
Moody Lie algebra Lp is an affine Lie algebra [Kac14, §4]. As L is a Kac-
Moody Lie superalgebra with no roots of negative norm, from the list of affine
Kac-Moody Lie superalgebras given [Kac7] we can deduce that L is of type
osp(1)(1, 2n).

We can now finish the proof of Theorem 2.2.20.

Proof of Theorem 2.2.20. It only remains to show that when S = {1} and
the BKM superalgebra L has finite dimension, it is of type sl(1, n) or osp(1, 2n).
Since all roots have non-negative norm, the list given in Corollary 2.1.23 shows
that these are the only possibility.

The converse to Theorem 2.2.20 holds:

Lemma 2.2.26. The Lie superalgebras of type A(m, 0), B(0, n)(= osp(1, 2n)),
A(∞, 0), B(0,∞), and B(1)(0, n) satisfy conditions (i)-(iii) of Theorem 2.2.20.
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Proof. Let G be a BKM superalgebra a type stated in the Lemma. In each
case, there is a unique simple odd root α1. For the automorphism ω0, we can
take the compact automorphism. The Hermitian form (., .)0 is defined as in
Remark 2.2.18. We only show that the Hermitian form is positive definite on
root spaces, the other properties being easily verified. As the Lie subalgebra Gp

generated by ei, fi for i > 2 and [e1, e1], [f1, f1] is a BKM algebra, Theorem
2.2.8 shows that the Hermitian form (., .)0 is positive definite on the root spaces
of this BKM subalgebra. Hence, we only need to show that (., .)0 is positive
definite on root spaces Gα not contained in Gp. This is the case for a positive
root α only when there is an even positive root β such that β + α1 = α and for
any x ∈ Gα, there exists y ∈ Gβ such that x = [e1, y] 	= 0. Therefore,

(x, x)0 = −(y, y)0(β, α1).

Since (β, α1) ≤ 0, it follows that (x, x)0 > 0, proving the result.

Remark 2.2.27. The finite dimensional and affine Lie superalgebras that are
not BKM superalgebras do not have an almost positive definite contravariant
form since any Lie superalgebra satisfying Theorem 2.2.20 must be a BKM su-
peralgebra. In particular, non-twisted affine Lie superalgebras sl(1)(1, n) do not
have such a form even though the finite dimensional Lie superalgebras sl(1, n)
do.

It is important to notice that we want the Hermitian form (., .)0 to be positive
definite on the root spaces and not on the whole of G. The difference between
sl(1, n) and osp(1, 2n) is that in the first case (., .)0 is not positive definite on G,
whereas it is in the second case. Indeed sl(1, n) has roots of norm 0, i.e. there
is an element h ∈ H such that (h, h)0 = 0, whereas osp(1, 2n) does not. This
is the reason why there is a Hermitian form satisfying Theorem 2.2.20 on the
affine Lie superalgebras osp1(1, 2n) but not on sl(1)(1, n).

Example 2.2.28. The Lie superalgebra sl(1)(1, 2) (see Example 2.1.27 and for
details see [Kac7]) is generated by vectors ei, fi, i = 0, 1, 2, where ei, fi are odd
vectors for i = 0, 2. Setting hi = [ei, fi], the matrix giving the bilinear form

(hi, hj) is




0 −1 1
−1 2 −1
1 −1 0



. Hence for the vector x = [[e0, e1][e1, e2]],

(x, x)0 = −([e1, e2], [[[f0, f1][e0, e1]][e1, e2]])0
= −([e1, e2], [h1 − h0, [e1, e2]])0
= −([e1, e2], [e1, e2]])0

since
[[f0, f1], [e0, e1]] = −[[h0, f1]e1] + [e0[f0, h1]] = h1 − h0.

Therefore the form (., .)0 cannot be positive definite on the root spaces.

From Theorems 2.2.9 and 2.2.20 together with [Kac14, §4], we can deduce
the following result.
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Corollary 2.2.29.
(i) A finitely generated Lie superalgebra L satisfies Theorem 2.2.20 and the

bilinear form (., .)0 is positive definite on L if and only if L is the sum of
finite dimensional simple Lie algebras and copies of sl(1, n).

(ii) A finitely generated Lie superalgebra L satisfies Theorem 2.2.20 and the
bilinear form (., .)0 is semi-positive definite on L0 if and only if L is the
sum of finite dimensional simple Lie algebras, copies of sl(1, n), affine Lie
algebras and copies of osp(1)(1, 2n).

Exercises 2.2

1. Let G = G(A,H, S) be a BKM superalgebra.

(i) Construct a non-degenerate, invariant, bilinear, consistent, supersymmet-
ric form (., .) on G such that (ei, fi) = 1 for all i ∈ I and (hi, hj) = aij .

Hint: Find a proper Z-grading for G and use induction. For a solution, see
[Kac14, Theorem 2.2].

(ii) Show that for any root α, β ∈ ∆, (Gα, Gβ) = 0 unless α+ β = 0.
(iii) Show that the form (., .) is left invariant by the Chevalley automorphism.
(iv) Show that when H = 〈hi : i ∈ I〉, any other invariant symmetric bilinear

form on G is a multiple of the form (., .).

2. Let Ln be the filiform Lie algebra spanned by the elements e0, e1, · · · , en with
only non-trivial brackets [e0, ei] = ei+1 for all 1 ≤ i ≤ n− 1.

(i) Construct a non-degenerate bilinear symmetric form on the Lie algebra
Ln.

(ii) Show that the Lie algebra Ln cannot be Z-graded.

3. Let L be an extended affine Lie algebra and consider the Lie algebra:
G = C[t−1, t] ⊗ L with bracket given by [f(t)x, g(t)y] = f(t)g(t)[x, y] for all
f(t), g(t) ∈ R[t−1, t] and x, y ∈ L.

(i) Show that there is a Z-grading of G and an antilinear involution ω such
that ω(Gi) = G−i and ω(h) = −h for all h ∈ G0R.

(ii) Show that there is a contravariant Hermitian form on G (with respect to
ω), positive definite on each piece Gi for i 	= 0.

(iii) Show that G is not a BKM algebra.

4. Let G be a Kac-Moody Lie algebra. Let D be a finite group of diagram
automorphisms of G, i.e. for all d ∈ D, there is a bijection d of the indexing set
I satisfying

ad(i)d(j) = aij ∀ i, j ∈ I,

such that for i ∈ I, d(ei) = ed(i) and d(fi) = fd(i). Let GD be the Lie subalgebra
of elements fixed by D:

GD = {x ∈ G : d(x) = x ∀ d ∈ D}.
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Show that the Lie algebra GD is a BKM algebra but need not be a Kac-Moody
Lie algebra.For a solution, see [Borc4].

(ii) Does (i) remain true for BKM superalgebras?

Hint: Consider affine BKM superalgebras.

5. Show that the BKM algebra G is finite dimensional if and only if the Her-
mitian form (., .)0 is positive definite on G. Show that the BKM algebra G is
an affine Lie algebra if and only if it is semi-positive definite on G.

2.3 The Root System

The generalized Cartan subalgebra H acts semisimply on the BKM superalge-
bra G via the adjoint action. Hence to know the structure of G, it is worth
finding its eigenvalues and eigenspaces. It is most natural to take the eigenval-
ues in the dual space H∗. In order to do this without any complications, the
elements hi are assumed in [Kac14] to be linearly independent. However, in the
most well known and important examples of BKM superalgebras, namely the
Monster Lie algebra (see Example 2.3.11.) and the Fake Monster Lie algebra
(see Example 2.6.40), that are not Kac-Moody Lie algebras, the elements hi are
linearly dependent. So in the general case, one has to be very careful about the
definition of roots or more precisely what set we take them to be elements of.

Definition 2.3.1. The formal root lattice Q is defined to be the free abelian
group generated by the elements αi, i ∈ I with a real valued bilinear form given
by (αi, αj) = aij. The elements αi i ∈ I are called the simple roots.

Note that Q may not strictly speaking be an integral lattice (see Definition
3.1.1) since in general the indexing set I of a BKM superalgebra is countably
infinite in which case the rank of Q is not finite (see Example 2.3.11 of the
Monster Lie algebra).

For reasons of simplicity, we shall keep the same notation (., .) for the bi-
linear form on Q, H or H∗. From the triangular decomposition of the BKM
superalgebra G given in Corollary 2.1.19, the following definition of eigenspaces
makes sense.

Definition 2.3.2. For α =
∑j

k=1 αik
∈ Q, the root space Gα (resp. Gα) is the

subspace of G generated by the elements [eij
[...[ei2 , ei1 ]]] (resp. [fij

[...[fi2 , fi1 ]]]).
A non zero element α of the formal root lattice Q is said to be a root of G if
the subspace Gα is non trivial. The dimension of the root space Gα is called the
multiplicity of the root α.

The simple root spaces are easily described. Moreover, there is a concept of
positive and negative roots.

Proposition 2.3.3.
(i) For all i ∈ I, Gαi

= Cei and G−αi
= Cfi. In particular,

dimGαi
= 1 = dimG−αi

.
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(ii) If the element α ∈ Q is a root, then either α or −α is a sum of simple
roots.

(iii) A root space Gα is either contained in the even part G0 or odd part of G1

of the BKM superalgebra G.

Definition 2.3.4.

(i) A root α is said to be positive (resp. negative) if α (resp. −α) is a sum
of simple roots.

(ii) A root α is said to be even (resp. odd) if Gα ≤ G0 (resp. G1). We then
write d(α) = 0 (resp. d(α) = 1).

(iii) The height of a root α =
∑
kiαi is defined to be

∑
ki and is written ht (α).

(iv) The support of α is the set {i ∈ I : ki 	= 0} and is written supp(α).
(v) A base of the set of roots ∆ is a linearly independent subset Π such that

for any α ∈ ∆, α =
∑

β∈Π kββ, where for all β ∈ Π, either all the scalars
kβ ∈ Z+ or all kβ ∈ Z−.

Proposition 2.3.5. For any root α ∈ ∆,
multα = mult(−α).
Proof. From Proposition 2.3.3 we get ω(Gα) = G−α for any root α ∈ ∆, where
ω is the Chevalley automorphism defined in Proposition 2.1.28. This proves the
result.

We can immediately deduce the following.

Corollary 2.3.6. A root α in ∆ is negative if and only if −α is a positive root.
Hence the set ∆ decomposes into the set ∆+ of positive roots and the set −∆+

of negative roots:
∆ = ∆+ ∪ (−∆+).

This together with Corollary 2.1.19 shows that the Cartan decomposition
holds for BKM superalgebras:

Corollary 2.3.7. The BKM superalgebra G = G(A,H, S) is a triangular direct
sum:

G = (⊕α∈∆+G−α) ⊕H ⊕ (⊕α∈∆+Gα).

This is called the generalized Cartan decomposition of the BKM superalgebra G.

The following is a basic property of roots, well known to hold in the Kac-
Moody case. The proof remains the same and is a direct consequence of condi-
tion (5) in Definition 2.1.7 of a BKM superalgebra. Hence we leave it for the
reader to check.

Proposition 2.3.8. The support of every root α is connected.

The indexing set I of most of the BKM superalgebras with a “nice” con-
struction that are not Kac-Moody Lie superalgebras and that we are primarily
interested in this book (see chapter 5) is countably infinite. Therefore their for-
mal root lattice has countably infinite rank. However, the Z-lattice generated
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by the elements hi of their Cartan subalgebra has an interesting structure. So,
instead of artificially making the roots linearly independent by taking them as
elements of the root lattice Q, it is more natural to consider them as vectors
in the Cartan subalgebra H or its dual H∗, and hence to consider the integral
root lattice as being embedded in H or H∗. This lattice has in many cases
very interesting properties. This is the case for the class of BKM superalge-
bras that we want to classify (see Chapter 5). Note that as the bilinear form
in non-degenerate on the Cartan subalgebra H, it makes no difference whether
one considers the roots in H or its dual H∗. If the roots are taken to be in the
Cartan subalgebra H, then the elements hi are called the simple roots.

Set fQ (resp. gQ) to be the natural map from Q to H (resp. H∗) taking αi

to hi (resp. the linear functional βi in H∗ mapping h to (h, hi)). These maps
extend to linear maps from C ⊗Z Q to H and H∗.

One has to be very careful when roots are taken to be in H or H∗ for these
maps from Q to H or its dual H∗ are not in general injective as the elements hi

are not necessarily linearly independent. This is what happens in the most well
known examples of BKM algebras that are not Kac-Moody Lie algebras such
as the Monster Lie algebra (see Example 2.3.11). There may be n > 1 simple
roots in Q of non-positive norm with the same image in H (resp. H∗) if the
generalized Cartan matrix A has equal distinct columns.

Proposition 2.3.9.

(i) fQ(αi) = fQ(αj) if and only if gQ(αi) = gQ(αj).
(ii) fQ(αi) = fQ(αj) implies that the i-th and j-th columns of A are equal.

If the roots are taken to be in H, then the root space of the root h ∈ H is

Gh = {x ∈ G : [h′, x] = (h′, h)x, h′ ∈ H}.

It is important to note that as a consequence of Proposition 2.3.9 when roots are
considered to be in the Cartan subalgebra H or its dual H∗ instead of the formal
root lattice Q, the simple root spaces are no longer necessarily of dimension 1.

Corollary 2.3.10. For all i ∈ I, Gαi
≤ Ghi

.

When a root is considered in the generalized Cartan subalgebra H, its height
can be defined in a way similar to that of Definition 2.3.4 (ii). It clearly has the
same value as its pre-image in the root lattice Q.

Example 2.3.11. 1. The Monster Lie algebra.
Let c(n) be the coefficients of the q-expansion of the normalized modular

invariant J (see section 3.2), i.e. c(−1) = 1 and J(q) = q−1 +
∑

n≥1 c(n)qn. Let
I be the countably infinite set

{−1, 11, 12, ..., 1c(1), 21, ..., 2c(2), ...},

where each integer i occurs c(i) times. Let II1,1 be the unique (up to isomor-
phism) even unimodular Lorentzian lattice of rank 2 (see section 3.1). In other
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words, it is the free abelian group Z2 with bilinear form given by the matrix
(

0 −1
−1 0

)

with respect to the standard basis (1, 0), (0, 1). Let H = II1,1 ⊗Z C be the
complex space given by the lattice II1,1. To avoid confusion, the bilinear form
on H will be written “.”. For 1 ≤ j ≤ c(i), set

hij
= (1, i).

The Monster Lie algebra M is the BKM algebra with generalized Cartan sub-
algebra H and generalized symmetric Cartan matrix A indexed by the set I
and with (ij , kl)−th entry equal to hij

.hkl
= −i − k. Thus A is the following

symmetric matrix with a countably infinite number of columns:




2 0 · · · 0 −1 · · · −1 −2 ...
0 −2 · · · −2 −3 · · · −3 −4 ...
...

...
...

...
...

...
...

...
...

0 −2 · · · −2 −3 · · · −3 −4 ...
−1 −3 · · · −3 −4 · · · −4 −5 ...
...

...
...

...
...

...
...

...
...

−1 −3 · · · −3 −4 · · · −4 −5 ...
−2 −4 · · · −4 −5 · · · −5 −6 ...
...

...
...

...
...

...
...

...
...





.

We will show later that the multiplicity of the root (m,n) is c(mn) (see Exercise
5.2.2).

2. Consider I = {1, 2, 3}, S = {1}, G = G(A,H, S) with H = Rh1 ⊕ Rh2,
h3 = h1 and

A =




0 −1 0
−1 2 −1
0 −1 0



 .

Then both e1, e3 ∈ Gh1 since h1 = h3. Therefore, Gh1 is not contained in either
the even nor the odd part of the BKM superalgebra G.

The latter example shows that the concept of an odd or even root may
not make sense when roots are no longer considered to be in the formal root
lattice Q. However the aspect to be particularly careful about when the roots
are taken to be elements of the generalized Cartan subalgebra H or its dual is
the problematic notion of positivity for the simple roots hi ∈ H are in general
linearly dependent. This is in particular the case when the indexing set I is
infinite and the generalized Cartan subalgebra is finite as in the BKM algebras
we will study in Chapter 5 (see for example the above Example 2.3.11.1 of the
Monster Lie algebra).
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The situation may be more complicated than in the previous example for the
non-positive norm root spaces. Part of a non-positive norm root space – but not
necessarily the full space – may be generated by simple root spaces. Hence we
may need to differentiate between the multiplicity of a root – i.e. the dimension
of the root space – and the codimension of its maximal subspace generated (as
a Lie superalgebra) by simple root spaces.

Definition 2.3.12. The element h ∈ H is said to have root multiplicity n if
n = dimGh and restricted simple root multiplicity m if there are m simple roots
αi ∈ Q such that the simple root spaces Ghi

(or the spaces G−hi
) generate (as

a Lie superalgebra) the root space Gh.

The above result can be rewritten in terms of roots in the dual space H∗ by
taking the image of h in H∗.

Proposition 2.3.13.

(i) The restricted simple root multiplicity of a root h ∈ H is the codimension
of the maximal subspace of Gh that can be generated (as a Lie superalgebra)
by root spaces Ghi

(or G−hi
).

(ii) Suppose that the restricted root multiplicity of h is strictly less than its
root multiplicity, then the maps fQ and gQ are not injective.

This distinction between the multiplicity of a root and its restricted simple
root multiplicity is essential for a natural class of BKM subalgebras of the
Monster Lie algebra ([Ray2]).

Examples 2.3.14. 1. For r ∈ N, the Lie subalgebra Mr of the monster Lie
algebra M generated by the subspaces M(m,rn), m,n ∈ Z is a BKM algebra
with the same Cartan subalgebra H = II1,1, ⊗Z R as M . It is hard to show
this from the definition of a BKM algebra given in Definition 2.1.7 but it follows
easily from Theorem 2.2.9.

Assume that r > 1, in other words that Mr is a proper Lie subalgebra of M
and consider its root space M(2,2r). As stated in Example 2.3.11.1, its dimension
is c(4r). We calculate the restricted simple root multiplicity of the root (2, 2r)
of the BKM algebra Mr.

We first need to find the positive roots (mi, rni), 1 ≤ i ≤ s distinct from
(2, 2r) such that

∑s
i=1(mi, rni) = (2, 2r). As the root (mi, rni) is positive,

the integer mi ≥ 1. This follows from the description of simple roots given in
Example 2.3.11.1 And so s = 2,

mi = 1

and n1 + n2 = 2. Since r > 1 and c(l) = 0 for l < −1, we get ni > 0. So

ni = 1.

Clearly (1, r) is a simple root of the BKM algebra Mr. Thus the restricted
simple root multiplicity of the root (2, 2r) is equal to the codimension of the
subspace
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[M(1,r),M(1,r)]

in the root space M(2,2r). So we now compute the dimension of this subspace.
Let ej , 1 ≤ j ≤ c(r), be a basis for the subspace M(1,r). Then [ej , ek], j < k,

are linearly independent vectors in M(2,2r). Indeed if cjk ∈ R, for scalars

∑

j,k,j<k

cjk[ej , ek] = 0,

then for the smallest integer 1 ≤ l ≤ r for which some clk 	= 0,
∑

j,k,j<k

cjk[fl[ej , ek]] = 0

implies that
−

∑

k,l<k

clk[hl, ek] = 0.

Thus,
−

∑

k,l<k

clkhl.hkek = 0.

As hl = hk = (1, r), hl.hk = −2r. This implies that
∑

k,l<k

clkek = 0,

forcing clk = 0 for all k > l as the vectors ek are linearly independent, contra-
dicting the above assumption.

Hence the dimension of the subspace [M(1,r),M(1,r)] is the cardinal of the
set {(a, b) : 1 ≤ a < b ≤ c(r)}, i.e.

dim[M(1,r),M(1,r)] =
c(r)−1∑

i=1

i =
c(r)(c(r) − 1)

2
.

Therefore (2, rn) has root multiplicity c(4r) and restricted simple root multi-
plicity

c(4r) − c(r)(c(r) − 1)
2

.

This is a non-trivial integer strictly less than c(4r) (see [Rad]). For example
c(4) = 20245856256 and c(1) = 196884.

2. Let G = G(A,H) be the BKM algebra with indexing set I = {1, 2, 3}, a two
dimensional generalized Cartan subalgebra H with basis h1, h2 and such that
h3 = h1 + h2 and non-degenerate bilinear form given by the matrix

(
2 −3
−3 2

)
.
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Thus the generalized symmetric Cartan matrix of G is

A =




2 −3 −1
−3 2 −1
−1 −1 −2



 .

Then the restricted simple root multiplicity of h3 is 1, whereas its multiplicity
is 2. Indeed the root space Gh3 has dimension 2 since

Gh3 = R[e1, e2] ⊕ Re3.

In this last example, h2 = h3 − h1. This shows that one may have to be
careful about the concept of positive and negative root when the roots are taken
to be in H or its dual.

When we will be speaking of roots without mentioning the space they belong
to, it will mean that the statements hold whichever they are taken to be elements
of. When we will talk of positive or negative or even or odd roots, we will mean
that either the roots are considered to be elements in the formal root space Q
or else if they belong to H or H∗, these concepts have no ambiguity.

Before going further, we give a very useful result involving the bilinear form
and Chevalley involution.

Lemma 2.3.15. Let α ∈ ∆ and hα ∈ H be such that for all x ∈ Gα and h ∈ H,
[h, x] = (hα, h)x. Then, [x, y] = (x, y)hα for all y ∈ G−α.

Proof. For any h ∈ H, ([x, y] − (x, y)hα, h) = −(x, [h, y]) − (x, y)(hα, h) = 0
by definition of hα. The result follows from the non-singularity of the bilinear
form (see Exercise 2.2.1).

Roots of Finite and Infinitety Type

We first make some elementary observations.

Lemma 2.3.16. Let L be a Lie superalgebra. For any x ∈ L, [x[x, x]] = 0 for
all x ∈ L.

Proof. Let x be a homogeneous element.

[x[x, x]] = [[x, x]x]+(−1)d(x)[x[x, x]] = −(−1)d(x)[x[x, x]]+(−1)d(x)[x[x, x]] = 0.

There are two types of roots:

Definition 2.3.17. A root α is said to be of finite type if all elements in the
root space Gα act locally nilpotently on G, i.e. for any x ∈ Gα, y ∈ G, there
is a non-negative integer n (depending on x and y) such that (adx)ny = 0.
Otherwise it is said to be of infinite type.

The reader may be more familiar with the usual notions of real and imaginary
roots. It makes sense in the context of BKM algebras but as we shall see below
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this is less so in the larger framework of BKM superalgebras. The next result
about odd roots though elementary is very helpful.

Lemma 2.3.18. If α ∈ ∆1, then for all x ∈ Gα, [x, x] 	= 0, in particular
2α ∈ ∆0, unless α is a root of norm 0 and finite type.

Proof. Let α ∈ ∆1 and 0 	= x ∈ Gα. Suppose that [x, x] = 0. Let y ∈ G−α

be such that (x, y) = 1 (by Exercise 2.2.1 such an element y exits). Then, by
Lemma 2.3.15, 0 = [y[x, x]] = 2(x, y)(α, α)x. Hence, (α, α) = 0 and for all
z ∈ G, [x[x, z]] = 1

2 [[x, x]z] = 0, proving the result.

When a root has non-zero norm, there is a nicer definition of finite type,
given by the length of the root chains they give rise to.

Lemma 2.3.19. Let α be a root of non-zero norm and finite type and
x ∈ Gα be locally nilpotent on G. Then, the Lie sub-superalgebra Sx = 〈x, ω(x)〉
(generated by the vectors x and ω(x) as a Lie superalgebra) is isomorphic to
the 3-dimensional simple Lie algebra sl2 if d(x) = 0 and to the 5-dimensional
simple Lie superalgebra osp(1, 2). Moreover, as a Sx-module G is a direct sum
of finite dimensional Sx-modules.

Proof. We only consider the case when x ∈ G1 as the even case is well known
(see [Kac14, Proposition 3.6]). In this case, [x, x] 	= 0 by Lemma 2.3.18. Hence,
by Lemma 2.3.16, Sx has basis x, [x, x], ω(x), ω([x, x]), [x, ω(x)] and as aii 	= 0, it
is therefore isomorphic to osp(1, 2) (see Corollary 2.1.23). To prove the second
part, it suffices to consider the case x ∈ G0. The result then follows from
Exercise 2.3.2

Together with Lemma 2.3.15 and the finite dimensional representation the-
ory of sl2, Lemma 2.3.15 yields the following result.

Proposition 2.3.20. A root α of non-zero norm is of finite type if and only
if for any β ∈ ∆, nα + β ∈ ∆ only for finitely many integers n, in which case,
n ∈ [−a, b] ∩ Z, where

a− b =
{

2(α, β)/(α, α) if d(x) = 0
(α, β)/(α, α) if d(x) = 1

.

0 = [e−α[eα[eα, eβ ]]] = ((−α, α+ β) − (−α, β))[eα, eβ ] = −(α, α)[eα, eβ ].

Hence, by assumption on the root α, [eα, eβ ] = 0.

Simple odd roots αi with norm 0 behave strangely since the action of the cor-
responding root vector on a root space Gα does not depend on the inner product

Proof. Let α ∈ ∆ be a root of finite type such that (α, α) 	= 0. We only
check that for eα ∈ Gα ∩ G1 and eβ ∈ Gβ for which [e−α, eβ ] = 0, where
e−α ∈ G−α satisfies (eα, e−α) = 1, [eα, eβ ] 	= 0 implies that [[eα, eα]eβ ] 	= 0
for then the result follows from Lemma 2.3.19 and the finite dimensional rep-
resentation theory of sl2. Suppose that [[eα, eα]eβ ] = 0. Then, [eα[eα, eβ ]] = 0.
From Lemma 2.3.15, we get
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(αi, α). This is why the structure of BKM superalgebras is more complex than
that of a BKM algebra.

Lemma 2.3.21. If aii = 0 and ei ∈ G1, then (ad ei)2x = 0 for all x ∈ G.

Proof. Let aii = 0 and ei ∈ G1. Because of Condition (6) of Definition 2.1.7
of a BKM superalgebra, [ei, ei] = 0. Hence, using the Jacobi identity, we then
get [ei[ei, x]] = 1

2 [[ei, ei]x] = 0 for all x ∈ G.

In spite of this result, simple odd roots αi of norm 0 may not satisfy Propo-
sition 2.3.20 for if ajj ≤ 0, then there may well be simple roots αk,n ∈ Q such
that f(αk,n) = f(nαi + αj) for countably infinite integers n ≥ 0. Furthermore
this may not happen for consecutive integers n and so the root αi would neither
satisfy Theorem 2.3.33, characterizing infinite type roots as roots with unbro-
ken root chains in at least one direction. This is why we do not use Proposition
2.3.20 as the definition of roots of finite type.

Applying Proposition 2.3.20, Lemma 2.3.21 and the representation theories
of sl2 and of the 3-dimensional Heisenberg algebra, the type of a simple root
can easily be deduced from its norm and parity.

Proposition 2.3.22.

(i) Suppose that aii > 0. Then the simple root αi is of finite type. If moreover,
i ∈ S, then 2αi ∈ ∆ is an even root of finite type.

(ii) Suppose that aii = 0 and i 	∈ S. Then the simple root αi is of infinite
type.

(iii) Suppose that aii = 0 and i ∈ S. Then the simple root αi ∈ Q is of finite
type and so is hi ∈ H if and only if Ghi

∩G0 = 0.
(iv) Suppose that aii < 0. Then the simple root αi is of infinite type.

To study arbitrary roots, we need to introduce a most important object
in the theory of BKM superalgebras, namely their (even) Weyl group, which
controls the essential of their structure. It makes sense to define the reflection
rα along a hyperplane perpendicular to α when α is an even (resp. odd) root
of finite type and non-zero norm. It is well known that for all weights β ∈ H or
C ⊗Z Q,

rα(β) =

{
β − 2(β,α)

(α,α) α if d(α) = 0

β − (β,α)
(α,α)2α if d(α) = 1

.

For i ∈ I, the reflection rαi
will be written ri.

Definition 2.3.23. The even Weyl group WE is defined to be the group gen-
erated by the reflections ri, i ∈ I such that aii > 0. The Weyl group W is
generated by all the reflections rα, where α ∈ ∆+ is a root of finite type with
non-zero norm.

Note that the even Weyl group of the BKM superalgebra G is the Weyl
group of the Kac-Moody Lie sub-algebra of G generated by the vectors ei and
fi for i ∈ I\S and [ei, ei], [fi, fi] for i ∈ S such that aii > 0. Hence it is a
Coxeter group [Kac14, §3.13].
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It is well known that in the case of Kac-Moody Lie superalgebras, the groups
WE and W are the same. This remains true for all infinite dimensional BKM
superalgebras but not necessarily for finite dimensional ones. Indeed a finite
dimensional BKM superalgebra may contain roots of negative norm and they
are necessarily of finite type since the dimension of the BKM superalgebra is
finite.

Example 2.3.24. The exceptional Lie superalgebra F (4) (for details, see
[Kac3]; for its generalized Cartan matrix see Corollary 2.1.23) has four sim-
ple roots, S = {1} and a11 = 0. The set of even simple roots α2, α3, α4

generates the set of positive roots of the simple finite dimensional Lie algebra
F4 . However, there is one positive even root not generated by them, namely
2α1 + 3α2 + 2α3 + α4, containing 1 ∈ S in its support and with negative norm.

Theorem 2.3.25. If the derived BKM superalgebra [G,G] is isomorphic to
A(m, 1), B(m, 1), G(3), F (4) or D(2, 1, α) for α > 1, then the Weyl group W
is isomorphic to WE × Z2. Otherwise, WE = W . In particular, WE = W for
all BKM superalgebras with infinite dimensional derived Lie sub-superalgebras.

We leave the proof of this result for later as it requires further properties of
the root system. It is a direct consequence of Theorem 2.3.44.

The next technical result is well known in the Kac-Moody setup, and will
be often used.

Lemma 2.3.26.

(i) (w(α), w(β)) = (α, β), for all roots α, β.
(ii) Let α be a positive root of non-positive norm and minimal height in WE(α).

Then (α, αi) ≤ 0 for all i ∈ I. Furthermore if (α, α) = 0, then either the
root α is simple or for all i ∈ Supp(α), (α, αi) = 0 and aii > 0.

(iii) If α and β are positive roots of non-positive norm, then (α, β) ≤ 0.

Proof. (i) follows from Proposition 2.3.20.
Suppose that α ∈ WE(α) is of minimal height. Let i ∈ supp(α). If aii ≤ 0,
then (α, αi) ≤ 0 since in this case aij ≤ 0 for all j ∈ I. Hence, (α, αi) > 0
implies that aii > 0. By Lemma 2.3.22 (i), αi is therefore a root of finite type
and so from the finite dimensional representation theory of sl2, ri(α) is a root,
contradicting the minimality of α. Hence (α, αi) ≤ 0 for all i ∈ I. If (α, α) = 0,
then this implies that for all i ∈ supp(α) such that aii ≤ 0, (αi, αj) = 0 for all
j ∈ supp(α). So (ii) now follows from the connectedness of root supports (see
Lemma 2.3.8).
(iii) follows from (ii).

We next show that roots of finite type are conjugate under the action of the
even Weyl group WE to simple roots or “nearly” simple ones.

Proposition 2.3.27.

(i) For any α ∈ ∆+, if α has positive norm, then there exits w ∈ WE, such
that w(α) or 1

2w(α) is a simple root.
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(ii) If α is an odd root of norm 0 of finite type, then there exits w ∈WE such
that w(α) is a simple root.

Proof. We only prove the second part. Let α be a positive root of finite type
and norm 0 of minimal possible height in WEα. Suppose that the root α is
not simple. Then by Lemma 2.3.27, supp(α) gives rise to a Kac-Moody Lie
sub-superalgebra; and so, from Exercise 2.3.5, the root α is of infinite type,
contradicting assumption.

In part (i), the half factor is needed for some even roots 2α such that α is
an odd root. For example if i ∈ S and aii > 0, then β = 2αi is a root that is
not necessarily conjugate to any simple root, but 1

2β is simple.
Proposition 2.3.27 has several interesting consequences. The above example

F (4) (see Example 2.3.24) is an illustration of the following result.

Corollary 2.3.28. Suppose that G is a finite dimensional BKM superalgebra
and that α is an even root containing an index i ∈ S in its support such that
aii = 0. Then the norm of α is negative.

Proof. Let α ∈ ∆+ be an even root containing in its support an index i ∈ S
such that aii = 0. The root α is not conjugate to a simple root under the action
of the even Weyl group WE , for otherwise it would necessarily be conjugate to
αi, which is not possible since the root α is even, whereas αi is odd. Hence,
Proposition 2.3.27 (i) implies that (α, α) ≤ 0. If (α, α) = 0, then by Lemma
2.3.26 (ii) and Proposition 2.3.27 (ii), we may assume that for all i ∈ supp(α),
aii > 0, contradicting assumption. Hence, (α, α) < 0.

Whether roots of non-negative norm are of finite or infinite type can now be
easily deduced.

Corollary 2.3.29.

(i) All roots of positive norm are of finite type.
(ii) If the norm of the even root α is positive, then kα is a root if and only if

k = ±1.
(iii) All roots of norm 0 and finite type are odd.

We next study roots of infinite type.

Corollary 2.3.30. If α is a root of infinite type, then (α, α) ≤ 0 and for all
w ∈WE, w(α) > 0 if and only if α > 0.

Proof. The first part follows from Corollary 2.3.29.(i). Suppose that α is a
positive root having non-positive norm. If ri(α) < 0, then α− cαi < 0 for some
scalar c ∈ Z. Hence, α < cαi and so its norm is positive. This contradiction
proves the Corollary.

Lemma 2.3.31. Let α, β ∈ ∆+ be positive roots with non-positive norm and
such that (α, β) 	= 0. If the root α or β has norm 0, then assume that it is of
infinite type. Then, for all non-trivial vectors eα ∈ Gα, eβ ∈ Gβ, [eα, eβ ] 	= 0
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unless α = β and eβ is a multiple of eα or α = 2β (resp. β = 2α) and [eβ , eβ ]
(resp. [eα, eα]) is a non-trivial multiple of eα (resp. eβ).

Proof. Assume that the result does not hold for eα ∈ Gα, and eβ ∈ Gβ , where
α, β ∈ ∆+, with (α, α) ≤ 0, (β, β) ≤ 0 and

(α, β) 	= 0. (1)

So
[eα, eβ ] = 0. (2)

When α = β, eβ is not a multiple of eα by assumption. Since neither root is of
finite type and with norm 0, by Lemma 2.3.18, we may assume that both α, β
are even roots. Let e−α ∈ G−α (resp. e−β ∈ G−β) be such that (eα, e−α) = 1
(resp. (eβ , e−β) = 1).
Case 1: α = β.

Equality (2) and Lemma 2.3.15 imply that

α([e−α, eβ ])eα = [[e−α, eβ ]eα] = −(α, α)eβ .

Hence, as eα is not a multiple of eβ , (α, α) = 0. Without loss of generality, we
may assume that α is of minimal height in WE(α), Hence, by Lemma 2.3.26 (ii),
aii > 0 for all i ∈ supp(α) and the elements ei, fi with i ∈ supp(α) generate an
affine Kac-Moody Lie superalgebra (see [Kac14, Chapter 4] and [Kac7]). Their
structure contradicts (2). Hence the result holds when α = β.
Case 2: α 	= β.

Since (α, β) 	= 0, equality (2) implies that [eα, e−β ] 	= 0. Hence α − β is a
root. Without loss of generality, we may assume that the root α−β is positive.
Lemma 2.3.26 (ii) and 2.3.30 allow us to assume that

(β, αi) ≤ 0 ∀ i ∈ I (3)

since (α, α) ≤ 0.
Claim: (adeβ)n(e−α) 	= 0 ∀n ∈ Z+.

Suppose this equality does not hold. Let n ∈ Z+ be the minimal integer
satisfying

(adeβ)n+1(e−α) = 0. (4)

Making the operator ad(eβ) act on this equation and using (2), we get

(α, β) =
n

2
(β, β). (5)

So the assumption that (α, β) 	= 0 gives

(α, β) < 0 and (β, β) < 0. (6)

By minimality of n, nβ − α ∈ ∆ ∪ {0}. Since

(nβ − α, β) =
n

2
(β, β) < 0, (7)
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nβ − α > 0 (8)

because of (3). Hence
n > 1 (9)

since otherwise (8) becomes β − α > 0, contradicting assumption. Also

(nβ − α, α) 	= 0. (10)

Otherwise,

(nβ − α, α− β) > 0 and (nβ − α, nβ − α) = n(nβ − α, β) < 0

from (7). And so by Lemma 2.3.26 (iii),

0 < (α− β, α− β) = (α, α) − 2(α, β) + (β, β) = (n− 2)(α, β) + (β, β),

which is false because of (9) and (7). Now [eα, (ad eβ)ne−α] = 0 by (9). There-
fore,

nβ − 2α ∈ ∆ ∪ {0}.
Moreover, (5) can be written as (nβ − 2α, β) = 0. Suppose first that nβ − 2α
is a root. So from (3) and Lemma 2.3.26 (ii) we can deduce that (β, αi) = 0
for all i ∈ supp(nβ−2α). Hence, for all j ∈ supp(β) such that j 	∈ supp(nβ−2α),
(αj , αi) = 0. As supp(β) is connected (see Proposition 2.3.8), either
supp(β) = supp(nβ − 2α) or supp(β)∩ supp(nβ − 2α) = ∅. If the former holds,
then (β, αi) = 0 for all i ∈ supp(β), and so (β, β) = 0, contradicting (7). The
latter cannot hold since α > β and nβ − α > 0 imply that supp(α) = supp(β).
So

nβ = 2α.

Suppose that n is even. Then, h = (ad eβ)
n
2 e−α ∈ H. By minimality of

n, [h, eβ ] 	= 0. From Lemma 2.3.15 we know that [h, eβ ] = (h, hβ)eβ , where
hβ = [eβ , e−β ]. However

(hβ , h) = (β, β)(eβ , (ad eβ)
n
2 −1e−α) = 0

unless n = 2, in which case α = β, contradicting assumption. Hence, the integer
n is odd and

e β
2

= (ad eβ)
n+1

2 e−α 	= 0.

Then, h = (ad e β
2
)ne−α 	= 0 for otherwise same arguments as before imply that

1
2 (α, β) = l

8 (β, β) for some integer l ≤ n − 1, whereas 1
2 (α, β) = n

4 (β, β) since
nβ = 2α, and so l = 2n contradicting the assumption on l. Then, the same
argument as in the even case applied to β/2 instead of β implies a contradiction
since n > 1 by (9). This proves the Claim.

Hence for n large enough,

nβ − α ∈ ∆+, (nβ − α, nβ − α) < 0, (nβ − α, α) < 0, [eα, (ad eβ)ne−α] = 0.
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So, nβ−2α ∈ ∆∪{0}. For n >> 0, nβ−2α > 0. Therefore applying the above
Claim with nβ − α replacing α and α replacing β, it follows that for n >> 0,

nβ −mα ∈ ∆ ∪ {0}

for all integers m > 0. So for all αi, αj in the support of α, nli −mki ≤ 0 if
and only if nlj −mkj ≤ 0. Therefore kilj = likj , and β = ki

li

∑
j∈I ljαj = ki

li
α

for some li 	= 0. It follows that for any integer r > 0, if m = kir and n = lir,
then nβ −mα = 0 and so 0 	= (ad e−α)m−1(ad eβ)ne−α = h ∈ H. For r >> 0,
[e−α, h] 	= 0 and m >> 0 and hence we get a contradiction as above. This
proves the Lemma.

Lemma 2.3.32. Let α be a positive root with non-positive norm and of minimal
height in WE(α). If (α, α) = 0, assume that α is of infinite type. Let β be a
positive root such that (α, β) 	= 0 and (β, β) > 0. Then, α+ β ∈ ∆.

Proof. By Lemma 2.3.26 (ii), (α, β) < 0 since α and β are positive roots.
Hence α+ β ∈ ∆ by the finite dimensional representation theory of sl2.

The next two result on the length of root chains induced by roots of infinite
type and justifying the term “infinite type” is immediate from the previous two
Lemmas.

Theorem 2.3.33. Let α be a positive root with non-positive norm. If (α, α) = 0,
assume that α is of infinite type. Let β be any positive root. Suppose that if
β has norm 0, then it is of infinite type. Then, nα + β ∈ ∆ for all n ∈ Z+,
more precisely (ad eα)n(eβ) 	= 0 for any linearly independent vectors eα ∈ Gα,
eβ ∈ Gβ or −nα+ β ∈ ∆ for all n ∈ Z+, more precisely (ad e−α)n(eβ) 	= 0 for
any non-trivial vectors e−α ∈ G−α, eβ ∈ Gβ. If the latter holds, then (α, β) > 0
and (β, β) > 0.

Corollary 2.3.34. Consider the roots as elements of the lattice Q. Let α be a
root of infinite type. Then, there is a root β such that for any non-trivial vector
x ∈ Gα, there exists a vector y ∈ Gβ such that (adx)ny 	= 0 for all integers
n ≥ 0. In particular, nα+ β is a root for all integers n ≥ 0.

Proof. Without loss of generality, we may assume that the infinite type root
α is a positive even root. Suppose that there exists a positive root β such that
(α, β) 	= 0 and β 	∈ {α, 2α, 1

2α} and if (β, β) = 0 then β is of infinite type. Then
the result follows from Theorem 2.3.33.

So suppose that no such root β. We show that this leads to a contradiction.
Since the generalized Cartan matrix A is indecomposable by assumption, it

then follows that supp(α) = I. Since the root α is of infinite type, it is not of
the type αi, 2αi, 1

2αi for then I = {αi} and the derived Lie superalgebra G′ is
finite dimensional by Lemma 2.3.16. In particular the root α is of finite type,
contradicting assumption. Hence,

(α, αi) = 0 (1)

unless i ∈ S and aii = 0. Suppose that j ∈ I and ajj < 0. Then, unless
j ∈ S and ajj = 0, (1) implies that aij = 0 for all i ∈ I, contradicting the
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connectedness of supp(α) (see Proposition 2.3.8). Hence, for all i ∈ I, aii > 0
or i ∈ S and aii = 0. Let x ∈ Gα be a non-trivial vector.
Case 1: for all i ∈ I, aii > 0.

In this case, (α, αi) = 0 for all i ∈ I and for all i ∈ I, ei, fi generate an
affine Kac-Moody Lie superalgebra and their structure (see [Kac14, §4,6,7,8]
and [Kac7]) leads to a contradiction of the above assumption.
Case 2: There exists i ∈ S, aii = 0.

Without loss of generality, assume that a11 = 0.
Claim 1: [x, ei] = 0 for all i ∈ I.

Suppose this statement is false and [x, ei] 	= 0. Then, α+αi ∈ ∆. If aii = 0,
then, (α, α + αi) < 0 and (α + αi, α + αi) < 0 and so by Theorem 2.3.33, our
assumption is again contradicted. Thus aii > 0. As the generalized Cartan
matrix is assumed to be indecomposable, it follows that there exists a positive
root β ∈ ∆ with 1 ∈ supp(β) such that α+β ∈ ∆. Since 1 ∈ supp(β), (β, β) ≤ 0
by Proposition 2.3.27 (i). Hence, the previous argument applied to β instead of
αi leads once more to a contradiction. As a result, our Claim holds.
Claim 2: The root α is the root of maximal height in ∆.

Suppose that there is a positive root β such that β 	≤ α. If for all i ∈ supp(β),
aii > 0, then as the matrix A is indecomposable, there is a root γ > β such
that 1 ∈ supp(γ). So we may suppose that there exists 1 ∈ supp(β). Then,
(α, β) < 0. From Claim 1, we can deduce that α+β is not a root. Hence, α−β
is a root and so α ≤ β. However, Claim 1 also implies that there are no such
roots, proving Claim 2.

Hence there are only finitely many roots and as dimGβ < ∞ for all β ∈ ∆,
the derived Lie subalgebra G′ is finite dimensional. In particular the root α is
of finite type, contradicting assumption and proving the result.

In the above Corollary, the statement can be easily rewritten in terms of
roots belonging to the subspaces H or H∗ but it is slightly more cumbersome.
The next example illustrates why the length of the root chains through infinite
type roots may be sometimes finite or more precisely why in Theorem 2.3.33,
we have to exclude the case when β is a root of finite type and norm 0.

Example 2.3.35. Let A =




0 −1 −1
−1 1 0
−1 0 −1



, where S = {1, 2}. The root

α = α1+α2 is a root of infinite type since nα+α3 is a root for all positive integers
n. This follows from the representation theory of sl2. However, (α, α1) < 0 but
α+ α1 is not a root. Indeed,

[[e1, e2]e1] = −[[e1, e1]e2] + [e1[e1, e2]] = [e1[e1, e2]]

by Lemma 2.3.21; and so
[[e1, e2]e1] = 0.

We can now explain the reason why the terminology real and imaginary
roots makes sense if one restricts oneself to BKM algebras. It is due to the
following equivalences.
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Proposition 2.3.36. Suppose that G is a BKM algebra. Assume that the
derived Lie algebra G′ is not the 3-dimensional Heisenberg algebra. Then the
following three properties are equivalent:
(a) For any β ∈ ∆, β + nα ∈ ∆ only for finitely many integers n;
(b) (α, α) > 0;
(c) There exists an element w ∈W such that w(α) is a simple root of positive

norm.

Proof. (b) implies (c) by Proposition 2.3.27 (i) and (c) implies from (a) by
Corollary 2.3.29. We check that (a) implies (b): Suppose that α is a positive
root satisfying (a) and (α, α) ≤ 0. Since G is a Lie algebra, by Theorem 2.3.33,
(α, β) = 0 for all β ∈ ∆. In particular, (α, αi) = 0 for all i ∈ supp(α). Therefore
from [Kac14, Chapter 4], either supp(α) generates an affine Lie algebra and α
is a root of infinite type, or I = {1}, a11 = 0 and α = α1. This contradicts
assumptions.

However, as Example 2.3.24 or more generally Corollary 2.3.28 show, Propo-
sition 2.3.36 does not hold for all finite dimensional BKM superalgebras. Ex-
ample 2.3.24 goes further and illustrates the fact that a finite dimensional BKM
superalgebra with S 	= ∅ may have roots of negative norm and finite type. For
infinite dimensional BKM superalgebras, a slightly altered version holds.
Corollary 2.3.37. Suppose that the G is a BKM superalgebra such that the
derived sub-superalgebra G′ has infinite dimension. Then the following three
properties are equivalent:

(a) For any β ∈ ∆, β + nα ∈ ∆ only for finitely many integers n;
(b) (α, α) ≥ 0 and if (α, α) = 0 then the root α is odd and 2α 	∈ ∆;
(c) There exists an element w ∈ W such that w(α) is a simple root of non-

negative norm.

To prove this result, we only need to show that for infinite dimensional BKM
superalgebras, roots having negative norm are necessarily of infinite type (see
Theorem 2.3.44). Some prerequisites are required for this. First notice that for
BKM algebras, all real roots give rise to reflections and so contribute to the
Weyl group. However this is false both for finite or infinite dimensional BKM
superalgebras as they may have odd roots of norm 0 and finite type. Hence,
in the larger context of BKM superalgebras, it is best to differentiate between
roots by using the essential characteristic of real roots, namely the lengths of the
root chains they give rise to. Since the generalized Cartan matrix is assumed to
be indecomposable, Theorem 2.3.33 can be rewritten in terms of roots of finite
type having negative norm.

Corollary 2.3.38. Let α be a root of finite type and negative norm. Then,
(i) I = Supp(α) and
(ii) ∀β ∈ ∆, (α, β) = 0 unless β ∈ {1

2α, α, 2α} or β is of finite type and has
norm 0.

Therefore there are very few roots of finite type having negative norm.
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Corollary 2.3.39. There are at most two positive roots of finite type having
negative norm in the set of roots ∆, one even root α and one odd root 1

2α.
Moreover, the corresponding root spaces have dimension 1.

Proof. Let α and β be positive roots of finite type having negative norm. Then
by Corollary 2.3.38, supp(α) = supp(β) contains i ∈ S such that aii = 0 and
for all i ∈ I such that aii 	= 0, (α, αi) = 0. Hence, (α, β) < 0 and so β = 1

2α or
α or 2α as desired and the dimensions are stated (see Theorem 2.3.33).

For a more in depth study of the influence of these negative norm roots
of finite type on the structure of BKM superalgebras, we need to consider au-
tomorphisms on G induced by the Weyl group. As in the Kac-Moody setup,
there is an inner automorphism (see section 2.4) of the BKM superalgebra cor-
responding to a reflection ri when aii > 0. For reasons of simplicity, we will
keep the same notation for the reflection and the inner automorphism.

Definition 2.3.40. For aii > 0, the inner automorphism corresponding to the
reflection ri is defined to be

ri :=
{

(exp ad (fi))(exp ad (−ei))(exp ad (fi)), if i ∈ I\S
(exp ad ([fi, fi]))(exp ad (−[ei, ei]))(exp ad ([fi, fi])), if i ∈ S

.

The next well known result in the context of Kac-Moody Lie algebras clearly
still holds.

Proposition 2.3.41. For all i ∈ I, ri(Gα) = Gri(α) for any root α.

Corollary 2.3.42. If α is a root of positive norm, then the root space Gα has
dimension 1. This is also the case for roots of norm 0 and finite type when the
roots are assumed to be in the formal root lattice Q.

Proof. Let α be a root of positive norm. By Propositions 2.3.27 and 2.3.41
we may assume that the root α is simple. Since all the non-diagonal entries of
the matrix A are non-positive, if αi and αj are simple roots in Q of positive
norm, then f(αi) = f(αj) implies that i = j. The result follows since the same
arguments clearly hold when α is a root of norm 0 and finite type and the roots
are taken to be in Q.

Corollary 2.3.43. Let Gp be the (even) Lie subalgebra generated by the ele-
ments

ei, fi, i ∈ I\S, [ei, ei], [fi, fi], i ∈ S.

Then WE is the Weyl group of Gp. Moreover, if Gp is finite dimensional and
if the set {i ∈ S : aii = 0} is finite, then the derived Lie superalgebra [G,G] is
finite dimensional.

Proof. Suppose that dimGp < ∞. Since for all i ∈ S such that aii 	= 0,
[ei, ei] 	= 0, all the simple roots of G are of finite type and there are finitely many
roots of non-zero norm. Furthermore, by Exercise 2.3.9, WE is a finite group.
Hence, by Corollary 2.3.27 (ii), there are only finitely many roots of norm 0. The
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result now follows from Corollary 2.3.39 since the latter implies that there are at
most two positive roots of negative norm, α, 1

2α, and dimGα = dimG 1
2 α ≤ 1.

We are now ready to prove the main result on roots of finite type having
negative norm.

Theorem 2.3.44. Suppose that the BKM superalgebra G contains roots of
finite type and negative norm. Then, the Lie superalgebra G′ = [GG] is a finite
dimensional Lie superalgebra of type A(m, 1), B(m, 1), G(3), F (4) or D(2, 1, α)
for α > 1;

Proof. Let α be a positive even root of finite type having negative norm.
Claim: All roots of G are of finite type.

Let β be a root of infinite type. By Corollary 2.3.29 (i),

(β, β) ≤ 0.

Without loss of generality, we may assume that the root β is of minimal height
in WEβ. From Lemma 2.3.38 (ii),

(α, β) = 0.

From Corollary 2.3.39 and Lemma 2.3.26 (ii), (α, αi) ≤ 0 for all i ∈ I and so

(α, αi) = 0 (1)

for all i ∈ supp(β). Since I = supp(α) by Lemma 2.3.39 (i), it then follows that
for i ∈ I − supp(β), aij = 0 for all j ∈ supp(β). Since supp(α) is connected by
Proposition 2.3.8, this forces I = supp(β) and so equalities (1) give (α, α) = 0,
contradicting the definition of the root α. This proves our Claim.

Consider the even Lie subalgebra Gp of G generated by the elements ei, fi,
i ∈ I\S and [ei, ei], [fi, fi], i ∈ S. The above Claim implies that Gp is a Kac-
Moody Lie algebra (i.e. its simple roots have positive norm) all of whose roots
are of finite type. Hence by Proposition 2.3.36, all its roots have positive norm.
Furthermore as I = supp(α), the indexing set I is finite. Therefore the Lie
algebraGp is finite dimensional [Kac14, Proposition 4.9]. Therefore by Corollary
2.3.43, dim[G,G] < ∞,. Then the list given in Corollary 2.1.23 together with
the uniqueness of the generalized Cartan matrix (see Theorem 2.4.8) proves the
Theorem.

Theorem 2.3.44 together with Corollary 2.3.37 allows us to deduce Theorem
2.3.25, i..e when the group WE = W and when it is a proper subgroup. Another
consequence of Theorem 2.3.44 is that infinite dimensional BKM superalgebras
contain roots of infinite type:

Corollary 2.3.45. Suppose that the indexing set I is finite and that all roots of
the BKM superalgebra G are of finite type. Then, the derived Lie superalgebra
[G,G] has finite dimension.
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Proof. If there is a root of negative norm and finite type, then the result
follows from Theorem 2.3.44. So suppose that all roots have non-negative norm.
Consider the BKM subalgebra generated by the elements ei, fi for i ∈ I\S and
[ei, ei], [fi, fi] for i ∈ S. Then, it is finite dimensional and the Weyl group W
of G is finite by Exercise 2.3.9. Therefore by Proposition 2.3.27, the number of
roots of norm 0 is finite and so the result follows from Corollary 2.3.41.

In Lemma 2.3.31, we considered root chains induced by non-positive norm
roots through roots that are not in its orthogonal hyperplane. We next study
what happens when the root α has non-positive norm and the root β is or-
thogonal to α. When (β, β) > 0, applying the finite dimensional representation
theory of sl2, one can easily conclude.

Proposition 2.3.46. Let α and β be orthogonal roots of non-positive norm,
both positive or both negative. Then either β = nα for some integer n > 0 or
supp(α) ∩ supp(β) = ∅, (α, αi) = 0 for all i ∈ supp(β) and (β, αi) = 0 for all
i ∈ supp(α). Assume further that when both α = β has norm 0 and is of infinite
type, α is an even root. Then the corresponding root spaces commute.

Proof. Let α and β be positive orthogonal roots of non-positive norm. Without
loss of generality, by Corollary 2.3.31, we may assume that the root α is a root
of minimal height in WE(α) and so by Lemma 2.3.26 (ii), (α,αi) ≤ 0 for all
i ∈ I. As a consequence

(α, αi) = 0 ∀i ∈ supp(β), (1)

and so due to the connectedness of the support of a root (Proposition 2.3.8),
either supp(α)∩ supp(β) = ∅ and α+β is not a root or supp(α) = supp(β) and
supp(α) generates an affine Kac-Moody Lie superalgebra (see [Kac14, Chapter
4] and Kac7]). The result then follows from the theory of affine Kac-Moody Lie
algebras [Kac14, Chapters 6–8].

Before concluding this section, we define the Weyl vector which, as will be
seen later sections and chapters, plays a fundamental role in the theory of BKM
superalgebras.

Definition 2.3.47. A Weyl vector is defined to be a vector ρ either in the dual
of the space C ⊗Z Q or in H or in its dual H∗ satisfying

(ρ, αi) =
1
2
(αi, αi) for all i ∈ I

for all i ∈ I.

Remark 2.3.48. There may be no Weyl vector in the space C⊗Z Q since the
bilinear form may not be non-degenerate on the formal root lattice. This is for
example the case for affine Lie algebras (see Example 2.1.10). It exists in both
H and its dual since the bilinear form on the generalized Cartan subalgebra
H is assumed to be non-degenerate by definition. It is therefore also uniquely
defined in H.
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Note also that the fundamental Weyl chamber in the BKM superalgebra
setup is defined to be the subset {h ∈ HR : (h, hi) ≥ 0, ∀ i ∈ I, aii > 0} of the
real subspace HR. Hence it only depends on the simple roots of positive norm
and is equal to the fundamental Weyl chamber of the Lie subalgebra Gp (see
Corollary 2.3.43 for its definition). The Weyl chambers are the conjugates of
this set under the action of the Weyl group W .

Example 2.3.49. For the monster Lie algebra M (see example 2.2.11.1), (1, 0)
is the Weyl vector in H = C ⊗Z II1,1 since

(1, 0).(1, n) = −n = (1, n).(1, n), ∀n ≥ −1.

Exercises 2.3

1. Prove that the support of a root is always connected.

2. Show that for i ∈ I such that aii > 0, considered as a Si-module, where Si is
the Lie sub-superalgebra of the BKM superalgebra generated by the elements
ei and fi, G is a direct sum of Si-modules.

3. For r ∈ N, show that the Lie subalgebra Mr of the monster Lie algebra M
generated by the subspaces M(m,rn), m,n ∈ Z is a BKM algebra with the same
generalized Cartan subalgebra H = C ⊗ II1,1, as M .

4. Suppose that G = G(A,H, S) is a Kac-Moody Lie superalgebra. Prove that
if the restricted simple root multiplicity of the root h ∈ H is non-trivial, then
it is equal to the multiplicity of h and mult(h) = 1.
Show that there are Kac-Moody Lie superalgebras for which the map fQ is not
injective. However, if the elements hi are assumed to be linearly independent
then show that the map fQ is injective.

5. Let G be a BKM superalgebra and the root α ∈ ∆ satisfies I = supp(α) and
(α, αi) = 0 for all i ∈ I.

(i) Show that the matrix with entries given by the bilinear form (αi, αj) with
i, j ∈ supp(α) is the generalized Cartan matrix of an affine Lie superalge-
bra.

(ii) Show that in affine BKM superalgebras the roots of norm 0 are of infinite
type.

(iii) Deduce that the root α is of infinite type unless α = αi for some i ∈ S.

Hint: For a solution see [Kac14, Chapters 4,6] and [Kac7].

6. Prove that all roots of positive norm are conjugate to a simple root of positive
norm under the action of the group WE . Deduce that they are always of finite
type.

7. Enumerate the roots of the BKM superalgebra F (4) and calculate their
norms.
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8. Let α ∈ Q be a root and hα = fQ(α). Show that [x, y] = (x, y)hα for all
x ∈ Gα, y ∈ G−α. Deduce that for all 0 	= x ∈ Gα, [x, ω(x)] 	= 0.

9. Show that the derived BKM superalgebra [G,G] is finite dimensional if and
only if its Weyl group is finite.
Hint: for a partial solution, see [Kac14, Proposition 4.9].

10. Show that if all roots of the BKM superalgebra G have non-negative norm,
then the derived Lie superalgebra G′ is either finite dimensional simple or affine.
In particular, if the norms are all positive then deduce that the Lie superalgebra
G is finite dimensional and simple.

11. Set

K = {α ∈ Q+ : (α, αi) ≤ 0, ∀i ∈ I, supp(α) connected},

where Q+ = {α ∈ Q : α =
∑

i∈I kiαi, ki ≥ 0∀i ∈ I}.
(i) Let α ∈ K be such that supp(α) does not contain any index i ∈ S with

aii = 0. Show that α is either a root or α = jαi for some i ∈ I such that
aii ≤ 0 and some integer j ≥ 2.

Hint: Consider the positive root β of maximal height such that β ≤ α. Show that
β = α by applying Theorem 2.3.33 and using the theory of affine Kac-Moody
Lie superalgebras.

(ii) Does (i) hold for elements α ∈ K containing an index i ∈ S such that
aii = 0? Either prove this statement or find a counterexample.

(iii) Deduce that when S = ∅, the set of positive roots of infinite type is
⋃

w∈W

w(K) − ∪j≥2jΠm,

where Πm = {αi : i ∈ I, aii ≤ 0} but that this is not necessarily true for
BKM superalgebras.

12. Let G be a finite dimensional semisimple Lie algebra.

(i) Show that G is the direct sum of a maximal abelian Lie subalgebra H and
its eigenspaces (with respect to the adjoint action).

(ii) Studying the roots of G with respect to H, show that G is generated by
Chevalley generators satisfying the Serre-Chevalley relations.

For a solution, see [Serr1].

2.4 Uniqueness of the Generalized Cartan
Matrix

Obviously a BKM superalgebra can have distinct generalized symmetric Cartan
matrices. So let us start by defining clearing what we mean by this.
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Definition 2.4.1. Two symmetric matrices A and B are said to be equivalent
if they can be obtained from one other by a permutation of rows and by positive
scalar multiplication.

It is fundamental to know that different Cartan decompositions give rise to
the same generalized symmetric Cartan matrix (up to equivalence). This is well
known in the context of Kac-Moody Lie algebras and as expected still holds in
the more general setup of BKM superalgebras. For this, the conjugacy of Cartan
subalgebras under the action of inner automorphisms, also a classical result in
the context of Kac-Moody Lie algebras [KacP6] must continue to hold in our
larger framework. First let us define the group Inn(G) of inner automorphisms.
For details, see [KacP4] and [Hum]. We keep the notation used in [KacP6].

Consider the root spaces Gα as abelian groups. Let G∗ be the free product of
the groups Gα for all α ∈ ∆ with (α, α) > 0 with inclusion maps iα : Gα → G∗,
i.e. the group G∗ is the disjoint union of the groups Gα and the only rela-
tions are those in the subgroups Gα. Let V be an integrable G′-module (see
Definition 2.6.29) and π : G′ → gl(V ) the corresponding representation. Let
π∗ : G∗ → GL(V ) be the homomorphism given by π∗(iαx) = exp(π(x)) for
x ∈ Gα. Set N = kerπ∗, where the intersection is taken over all integrable
G′-modules.

Definition 2.4.2. The Lie group associated to the BKM superalgebra G is the
group G = G∗/N . For x ∈ Gα with (α, α) > 0, write exp(α) := N+(iα(x)) ∈ G.
The group of inner automorphisms of G, Inn(G) is the image of the group G
under the homomorphism Ad : G → GL(G) given by Ad (exp(x)) = exp(ad (x))
for x ∈ Gα.

Theorem 2.4.3. All generalized Cartan subalgebras of the BKM superalgebra
G are conjugate under the action of inner automorphisms.

To prove this, a little preparation is necessary. First we need some more
notation and then we state an obvious fact.

Set
J = {i ∈ I : aii > 0}

and, for any subset K of the indexing set I, set GK to be the Kac-Moody Lie
superalgebra generated by the elements ei and fi for i ∈ K. Define U+ (resp.
U−) as the Lie sub-superalgebra generated by the root spaces Gα where the
support of the root α ∈ ∆+ (resp. −α ∈ ∆+) contains at least an index i ∈ I
such that aii ≤ 0.

The next result is immediate from the generalized Cartan decomposition
given in Corollary 2.3.7

Lemma 2.4.4.
G = U+ ⊕ (GJ +H) ⊕ U−

as a direct sum of vector spaces.

Proposition 2.4.5. If the generalized symmetric Cartan matrix A is indecom-
posable and the derived BKM superalgebra [G,G] is infinite dimensional, then
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(i) The adjoint action on G of an element of the generalized Cartan subalgebra
H is locally finite;

(ii) every element of G with locally finite action on G via the adjoint action
is contained in the Lie sub-superalgebra GJ +H;

(iii) all generalized Cartan subalgebras of G are contained in the Lie sub-
superalgebra GJ +H.

Proof. (i) is an immediate consequence of the fact that the Lie superalgebra
G is generated by eigenvectors for H. So we prove (ii) and (iii). Suppose that
K is a generalized Cartan subalgebra of G. By definition, K is an even Lie
subalgebra of G.

Since K is a generalized Cartan subalgebra, it acts on G in a locally finite
way, i.e. for any element x ∈ K and y ∈ G, there is a finite dimensional subspace
of G containing (adx)ny for all n ∈ Z+. Let x be an element of K not contained
in GJ + H. By Lemma 2.4.4, there are elements u+ ∈ U+, u− ∈ U− and
v ∈ GJ +H such that

x = u+ + v + u−.

We first assume that u+ 	= 0. So there exists positive roots β1, ..., βr ∈ ∆ such
that for all 1 ≤ i ≤ r, ∃ij ∈ supp(βj) satisfying aijij

≤ 0, and root vectors
ui ∈ Gβi

such that

u+ =
r∑

i=1

ui.

From Proposition 2.3.27 we can infer that (βi, βi) ≤ 0 for all 1 ≤ i ≤ r. Since
the Lie subalgebra K is even, the roots βi are even for all 1 ≤ i ≤ r. Hence the
roots βi must be of infinite type by Proposition 2.3.27 (ii) and Corollary 2.3.30.
Therefore, applying Corollary 2.3.34, there exists a root β such that nβ1 + β is
a root for all integers n ≥ 0 and for some vector y ∈ Gβ , (adu1)ny 	= 0 for all
integers n ≥ 0.

We claim that infinitely vectors in the set {(adx)n(y) : n ∈ Z+} are linearly
independent. We can choose j ∈ {1, ..., r} to be such that βj is of maximum
height with the property that βj + β is a root. Then for each positive integer
n, (adu+)n(y) is the sum of root vectors, exactly one of which corresponds to
the root nβj + β. Hence there are infinitely many linearly independent vectors
(adx)n(y), n ∈ Z+. Indeed for all n ∈ Z+, the component of (adx)n(y) in the
nβk + β-root space cannot be a linear combination of components of (adx)r(y),
r ≤ n − 1 since all the components of u− belong to negative root spaces and
those of v belong to root spaces generated by simple roots of positive norm and
to the generalized Cartan subalgebra H. It follows that the claim holds. This
contradicts the fact that K acts in a locally finite way. So

u+ = 0.

Similarly,
u− = 0,

and so
x ∈ GJ +H,
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proving (ii). This forces the Cartan subalgebra K to be contained in GJ + H
as desired in (i).

We are now ready to prove Theorem 2.4.3.

Proof of Theorem 2.4.3. We first suppose that the derived Lie superalgebra
[G,G] is infinite dimensional. Let H1 be a generalized Cartan subalgebra of G.
Then,

H1 ≤ H +GJ

by Proposition 2.4.5 (iii). Let K be a finite subset of the indexing set J and
HK = H1∩(H+GK). The Lie subalgebraHK is a generalized Cartan subalgebra
of the BKM superalgebraH+GK . Write Z for the centre of the Lie superalgebra
H +GK . By Corollary 2.1.18, Z ≤ HK .
Claim: The vector space HK/Z has finite dimension.

For i ∈ K, let ei and fi together with HK be the usual generators of H+GK .
In particular the vectors ei and fi are eigenvectors for the Lie subalgebra HK .
By Definition 2.1.7, for h ∈ HK , [h, ei] = 0 = [h, fi] if and only if (h, hi) = 0,
where (., .) is the bilinear form on HK . So,

Z = ∩i∈KZi,

where Zi = {h ∈ HK , (h, hi) = 0}. Elementary arguments from linear algebra
imply that the subspaces Zi are hyperplanes in HK , i.e. subspaces of codimen-
sion 1. From this, we can deduce that the subspace Z has finite codimension in
HK since the set K is finite.
Let the vector space L be a complement of Z in the vector space HK . As
L is finite dimensional, with obvious modifications for the superalgebra case,
the Conjugacy Theorems of Peterson-Kac for Kac-Moody Lie algebras [KacP6]
can directly be extended to L + GK . Thus, the subalgebra L of H + GJ is
conjugate to a subalgebra of H under the action of some inner automorphism
g of the BKM superalgebra G. Since Z is central in H +GK and contained in
H, it follows that HK is conjugate to a subalgebra of H under the action of
this automorphism g. A symmetric argument applied to H implies that HK is
conjugate to H under the action of g. Similarly HK is conjugate to H1 under
the action of some inner automorphism. Hence HK = H1 since HK ≤ H1, and
H and H1 are conjugate under the action of some inner automorphism.

When the derived Lie superalgebra [G,G] is finite dimensional, the argument
above shows that we may assume G to be finite dimensional. The result is then
a well known result in the Lie algebra case (see [Serr1]) and has been proved in
[Serg1] in the more general context of Lie superalgebras.

The proof of Theorem 4.2.3 by Kac and Peterson for Kac-Moody Lie algebras
(used in the above proof) relies on the representation theory of Kac-Moody Lie
algebras, and so we leave it as an exercise in section 2.6. The uniqueness of the
Cartan matrix is a classical result in the framework of finite dimensional simple
Lie algebras. However as the next example shows, it does not necessarily hold
in the larger context of BKM superalgebras.



62 2 Borcherds-Kac-Moody Lie Superalgebras

Example 2.4.6. Both
(

0 −1
−1 0

)
with S = I

and (
0 −1
−1 2

)
with S = {1}

are generalized Cartan matrices of A(1, 0) (see Corollary 2.1.23).

In general, when the odd part is non-trivial, a finite dimensional BKM super-
algebra may also be decomposable as the sum of eigenspaces for an abelian Lie
subalgebra H in such a way that it is generated by H and eigenvectors ei, fi

satisfying Serre-Chevalley relations (though these may not be sufficient for a
presentation) and the matrix of the bilinear form with respect to this decom-
position is not a generalized Cartan matrix according to definition 2.1.7. For
example, 


0 −1 0
−1 2 −1
0 −1 0





is a generalized Cartan matrix for the Lie superalgebra A(1, 1); and the latter
also has a decomposition with respect to which the bilinear form is given by the
matrix 


2 −1 0
−1 0 1
0 1 −2



 .

Before stating the uniqueness result, we need to study the conjugacy of bases
under the action of the Weyl group.

Theorem 2.4.7. If dimH < ∞ and
∣∣∆| = ∞, then all bases of ∆ are con-

jugate to the base Π or −Π under the action of the Weyl group W , where
Π = {αi, i ∈ I}.
Proof. By Corollary 2.3.45, WE = W since

∣∣∆| = ∞. Let Π1 be another set
of simple roots in ∆ with respect to which the generalized symmetric Cartan
matrix is B = (bij), and ∆+

1 the set of positive roots with respect to Π1. Since
the matrix A is indecomposable, so is B by Lemma 2.1.15. By Corollary 2.3.46,
the set of roots ∆ contains roots of infinite type. We consider two cases.
Case A: All roots of infinite type have norm 0.

Let α be a root of infinite type and assume that α is of minimal height in
W (α). Hence (α, αi) = 0 for all i ∈ supp(α) and so

∀i ∈ supp(α), aii > 0 (1)

(see Exercise 2.3.5). Suppose that there is an index i ∈ I − supp(α). Then as
the set I has been assumed to be connected, we may assume that (α, αi) < 0.
Hence α+ αi is a root. If aii ≤ 0, then the root α+ αi has negative norm and
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so by Theorem 2.3.44, it is of infinite type, contradicting assumption. Therefore
aii > 0 and

(α+ αi, α+ αi) = (
2(α, αi)
(αi, αi)

+ 1)(αi, αi) ≤ 0

since 2(α,αi)
(αi,αi)

is a non-positive integer by above assumption on the simple root
αi and definition of a generalized symmetric Cartan matrix. The previous ar-
gument thus forces

(α+ αi, α+ αi) = 0. (2)

Since j ∈ supp(α), ajj > 0 by condition (1), Proposition 2.3.27 (ii) implies that
the root α+αi is not of finite type. Therefore as (α, α+αi) < 0, from Theorem
2.3.33 we can deduce that 2α+αi is a root. Equality (2) shows that this root has
negative norm and thus this again contradicts assumption because of Theorem
2.3.44. As a consequence,

I = supp(α).

By Exercise 2.3.5, the matrix A is thus the generalized Cartan matrix of an
affine BKM superalgebra. So the result holds by Exercise 2.4.2.
Case B: There exists a root of infinite type having non-zero norm.
Claim 1: The roots of non-positive norm in ∆+ are either all in ∆+

1 or all in
−∆+

1 .
Let α ∈ ∆+ be a root having negative norm. By Theorem 2.3.44 it is of

infinite type. Without loss of generality, assume that α ∈ ∆+
1 . Let β ∈ ∆+ be

a root of non-positive norm. Lemma 2.3.26 (iii) gives (α, β) ≤ 0. It also shows
that if (α, β) < 0 then, β ∈ ∆+

1 since α ∈ ∆+
1 . Suppose that (α, β) = 0. By

Proposition 2.3.47, either β is a positive multiple of α and so is in ∆+
1 , or else

the supports of α and β are disconnected and (α, αi) = 0 (resp. (β, αi) = 0)
for all i ∈ supp(β) (resp. i ∈ supp(α)). In the latter case, as the indexing
set I is connected there exists a root of infinite type and negative norm
γ = α + αi1 + ...αis

such that (α, γ) < 0 and (γ, β) < 0. So the above ar-
guments applied to the roots α and γ imply that γ ∈ ∆+

1 and then applying the
same reasoning to the roots γ and β, we can again deduce that β ∈ ∆+

1 .
Without loss of generality, we may assume that all roots of non-positive

norm are in ∆+
1 . Suppose that i ∈ J and αi ∈ (−∆+

1 ). Then, aii > 0.
Claim 2:

∣∣Π ∩ (−∆+
1 )

∣∣ <∞
Claim 1 implies that any submatrix of the generalized Cartan matrix A

induced by finitely many simple roots in the set Π∩ (−∆+
1 ) is positive definite.

Therefore, the elements hi in Π∩ (−∆+
1 ) are linearly independent, and so Claim

2 follows since dimH <∞.∣∣Π ∩ ri(−∆+
1 )

∣∣ <
∣∣Π ∩ (−∆+

1 )
∣∣ since for j 	= i, αj ∈ ∆+

1 if and only if
ri(αj) ∈ ∆+

1 . Hence Claim 2 implies that there is some w ∈ W such that
w(Π) ≤ ∆+

1 . We can then conclude from Definition 2.3.4 (v) of a base that
w(Π) = Π1.

The uniqueness of the generalized (symmetric) Cartan matrix now follows.
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Theorem 2.4.8. Assume that dimH < ∞. Let G = G(A,HA, SA) be a BKM
superalgebra. If the derived sub-superalgebra [G,G] is finite dimensional, then
assume that it is not of type A(1, 0). If B is a generalized symmetric Cartan
matrix and G = G(B,HB , SB), then the matrices A and B are equivalent.

Proof. By Exercise 1, for any h ∈ H, i ∈ I and x ∈ G±αi
,

[Ad (g)h,Ad (g)(x)] = Ad (g)ad (h)(Ad g)−1(Ad g)(x) = ±(hi, h)Ad (g)(x).

Hence the result is an immediate consequence of Theorems 2.4.3 and 2.4.7.

Remark 2.4.9. It is important to note that for a finite dimensional BKM
superalgebra G = G(A,H, S), there may well be bases with respect to which
the “Cartan” matrix B is not equivalent to the generalized Cartan matrix A.
However in this case the matrix B would not be a generalized symmetric Cartan
matrix, i.e. would not satisfy conditions (i)-(iv) given section 2.1. Example 2.4.6
illustrates this subtlety.

Theorems 2.4.3 and 2.4.7 also imply the following classical property of Borel
sub-superalgebras.

Theorem 2.4.10. Suppose that dimH < ∞ and dimG = ∞. The number of
conjugacy classes is precisely two.

It is well known that all Borel subalgebras of finite dimensional Lie algebras
are conjugate under the action of inner automorphisms. For infinite dimensional
Kac-Moody Lie algebras, there are two conjugacy classes of Borel subalgebras
as shown in [KacP6]. The above result generalizes this property to the context
of infinite dimensional BKM superalgebras. Most finite dimensional BKM su-
peralgebras with non-trivial odd part have more than two conjugacy classes of
Borel sub-superalgebras [Serg1] except B(0, n) that has one as all its roots have
positive norm and B(1, 1) that has two. For example, if G is of type A(1, 0),
then there are three conjugacy classes of Borel subalgebras [Exercise 2.4.2].

Hence for finite dimensional simple Lie superalgebras, the situation differs
much from the Lie algebra one. This suggests that the structure of infinite
dimensional BKM superalgebras is closer to that of Kac-Moody Lie algebras
than to finite dimensional Lie superalgebras with non-trivial odd part.

As a consequence of Theorem 2.4.8, the rank and the Kac-Moody rank are
well defined concepts.

Definition 2.4.11. Suppose that dimH < ∞. The rank (resp. Kac-Moody
rank) of the BKM superalgebra G = G(A,H, S) is defined to be the dimension
of the subspace generated by the elements hi, i ∈ I (resp. i ∈ J).

Corollary 2.4.12. If dimH <∞, then the rank and Kac-Moody rank are well
defined.

Automorphisms of BKM superalgebras

The above results allow us to give the decomposition of an arbitrary auto-
morphism of the BKM superalgebra G. We suppose that dimH <∞.
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Note that the Weyl group W acts on the subspace of H generated by the
elements hi, i ∈ I, in a natural way. For each i ∈ I, set

Ii = {j ∈ I : akj = aki, ∀k ∈ I}.

This set labels all the columns equal to the i-th one.
We choose a set of representatives from each class of indices Ii:

Î = {i ∈ I : i ≤ j, ∀j ∈ Ii}.

The vectors ej (resp. fj), j ∈ Ii form a basis of Ghi
(resp G−hi

). For each
i ∈ Î, for each bijective linear map µi of the vector space Ghi

⊕G−hi
satisfying

µi(Ghi
) = Ghi

, µi(G−hi
) = G−hi

, and [µi(ej), µi(fj)] = µi([ej , fj ]) for all j ∈ Ii,
let µ̂i be the automorphism of G given by

µ̂i(ej) =
{
µi(ej), if j ∈ Ii
ej , otherwise

.

µ̂i(fj) =
{
µi(fj), if j ∈ Ii
fj , otherwise

For each i ∈ I, we choose an ordering of Ii = {j1, ..., jni
}, where ni = dimGhi

,
and write e(s)i = ejs

and f
(s)
i = fjs

. Each bijection ḋ of the indexing set Î
satisfying aḋ(i)ḋ(j) = aij for all i, j ∈ Î and ḋ(S) = S gives rise to an automor-

phism d of G called a diagram automorphism and satisfying d(e(s)i ) = e
(s)

ḋ(i)
and

d(f (s)
i ) = f

(s)

ḋ(i)
for all i ∈ Î and 1 ≤ s ≤ ni.

We write AutG for the group of automorphisms of the BKM superalgebra
G.

Theorem 2.4.13. Suppose that dimH <∞ and
∣∣∆| = ∞.

(i) Let φ be an automorphism of the BKM superalgebra G. Then there is a
diagram automorphism φ1, an inner automorphism φ2 of G, and for each
i ∈ Î − J , automorphisms µi of G such that

φ = (
∏

i∈Î−J

µi)ωiφ1φ2 for some integer 0 ≤ i ≤ 3.

This decomposition (in the given order) is unique.
(ii) Let Ai = {µ̂i : µi ∈ GL(Ghi

)}. This is a group isomorphic to the general
linear group GL(ni), where ni = dimGhi

; and

AutG =< ω > ×(D�<(
⊔
Ai × In(G))).

The proof follows from Exercise 2.4.3.

Remark 2.4.14. In the above definition of diagram automorphisms, we could
have as is more usual included the maps µi by considering the entire indexing set
I rather than Î. However, roots are more naturally considered as elements of the
Cartan subalgebra H than of the abstract root lattice Q (see Example 2.3.11.1
of the Monster Lie algebra) and so the above statement is more convenient.
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Exercises 2.4.

1. (i) Show that Inn(G) ∼= G/Z, where Z is the centre of G.

(ii) Let V be an integrable G′-module and π : G → gl(V ) the correspond-
ing representation. Write also π for the representation of G given by
π(N + g) = π∗(g) for g ∈ G∗. Show that π(Ad (g)x) = π(g)π(x)π(g)−1 for
x ∈ G and g ∈ G.

2. Suppose that G is a finite dimensional BKM superalgebra and that S 	= ∅.
In each case, find the number of conjugacy classes of Borel sub-superalgebras
under the action of inner automorphisms.

3. Suppose that dimH <∞. Let φ ∈ Aut(G).

(i) Show that there exists an automorphism τ ∈ Inn(G) such that ψ1 = φτ−1

fixes the subalgebra H.
(ii) Deduce that there are automorphisms φ1 ∈ Inn(G), d ∈ D and an integer

0 ≤ l ≤ 3 such that φφ1ω
ld(Gα) = Gα for all roots α ∈ H.

(iii) Deduce the decomposition of the automorphism φ given in Theorem 2.4.13.
(iv) Show that the group of Inn(G) is normal in Aut(G).
(v) Deduce the decomposition of the group Aut(G) given in Theorem 2.4.13.
(vi) Show that the Chevalley automorphism is an inner automorphism if and

only if G is a finite dimensional simple Lie algebra or is of type B(0, n).

4. Show that Theorem 2.4.7 holds for affine BKM superalgebras.

2.5 A Characterization of BKM Superalgebras

It is usually very hard to apply Definition 2.1.7 in terms of generators and
relations to a given Lie superalgebra in order to find whether it is a BKM
superalgebra or not. Hence it is useful to find different characterizations of
BKM superalgebras. Theorem 2.2.9 that gives a characterization in terms of
an almost positive definite contravariant bilinear form is very powerful as it is
needed in the proof of the Moonshine Theorem to show that the Monster Lie
algebra [Example 2.3.11.1] is a BKM algebra. However, as shown in Theorem
2.2.20, this result applies to all BKM algebras but only to a restricted class
of BKM superalgebras. Even in the case of a given Lie algebra, though there
might well exist a bilinear form and an involution with the adequate properties,
it may not be easy to construct them. Note that even if one finds a contravariant
bilinear form with respect to some involution, the said involution may not be an
adequate one. Hence it is important to find different characterizations. Here we
give one based on properties of the root system and spaces. It is helpful when
a given Lie superalgebra is constructed from a root lattice to find whether it is
a BKM superalgebra or not. And it so happens that so far, most of the known
concrete examples of BKM superalgebras that are not Kac-Moody Lie algebras
are constructed in this manner, via vertex algebras (see section 5.4).
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We start by selecting the typical properties of root systems and spaces of
BKM superalgebras.

Lemma 2.5.1.
(i) The Cartan subalgebra H is self-centralizing.
(ii) There is an element h ∈ H such that CG(h) = H, where CG(h) is the

centralizer of h in G.

Proof. (i): Let x ∈ G − H be such that [x, h] = 0 for all h ∈ H. Then,
([ω(x), x], h) = (ω(x), [x, h]) = 0 for all h ∈ H, where ω is the Chevalley au-
tomorphism. Hence [x, ω(x)] = 0 since [x, ω(x)] ∈ H and the bilinear form in
non-degenerate on H. However, for any α ∈ ∆, if x ∈ Gα, then [x, ω(x)] 	= 0 by
Exercise 2.3.8. This proves the first part.

(ii): Consider the simple roots as elements of the dual space H∗, i.e.
αi(h) = (h, hi) for h ∈ H. As the bilinear form is non-degenerate on H, for
any i ∈ I, Ker(αi) 	= H. Therefore, since the indexing set is either finite or
countably infinite, ∪i∈IKer(αi) 	= H. Any element in H−∪i∈IKer(αi) has the
required property.

Definition 2.5.2. Any element of the Cartan subalgebra satisfying condition
(ii) of Lemma 2.5.1 is said to be regular.

The following is an immediate consequence of Lemma 2.2.9.

Lemma 2.5.3. Suppose that there are only finitely many indices i ∈ I such
that aii > 0. The norms of the roots of a BKM superalgebra are bounded above.

Lemmas 2.5.1-2.5.3 together with Lemma 2.3.26 (iii) and Proposition 2.3.46
and the existence of a non-degenerate supersymmetric consistent bilinear form
essentially characterize BKM superalgebras [Borc8, Ray3].

Theorem 2.5.4. Any Lie superalgebra L satisfying the following conditions is
a BKM superalgebra.

1. L has a self centralizing even subalgebra H with the property that L is
the direct sum of eigenspaces of H, and all the eigenspaces are finite di-
mensional. A root of G is defined to be a nonzero eigenvalue of H (roots
belong to the dual space of H).

2. There is a nondegenerate invariant supersymmetric bilinear form (., .) de-
fined on L.

3. There is an element h ∈ H such that CG(h) = H and there only exist
finitely many roots α of L with

∣∣α(h)
∣∣ < r for any r ∈ R. If α(h) > 0

(resp. α(h) < 0), α is called a positive (resp. negative) root.
4. The norms of roots are bounded above.
5. Let α and β be both positive or both negative roots of non-positive norm.

Then, (α, β) ≤ 0. Moreover, if (α, β) = 0 and if x ∈ Gα and [x,G−γ ] = 0
for all roots γ such that 0 < γ(h) < α(h), then [x,Gβ ] = 0.

We prove Theorem 2.5.4 in several steps. L will denote a Lie superalgebra
satisfying conditions (1) − (5) of the preceding Theorem. For any subspace U
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of the Lie superalgebra L, we will write Ui for U ∩ Li (i = 0 or 1), i.e. for the
even and odd parts of U . We write Lα for the α-root space and ∆ for the set
of roots. We take α ∈ H∗.

The existence of regular elements in H allows the use induction. The method
of proof is then similar to that of Theorem 2.2.9.

Let h ∈ H be a fixed regular element. If x is a homogeneous element of L
in the root space of α ∈ ∆, then we define the degree of x to be: deg x := α(h).
This gives a gradation of L:

L = ⊕r∈RLr.

Let r ∈ R be a given real number, and P and M be the Lie sub-superalgebra of
L generated by the subspaces Ls for

∣∣s
∣∣ < r and

∣∣s
∣∣ ≤ r respectively. Assume

that P is a BKM superalgebra. To prove Theorem 2.5.4 it suffices to show that
M is also a BKM superalgebra. We start with basic properties of the bilinear
form.

Lemma 2.5.5.

(i) If α, β ∈ ∆ ∪ {0}, then (Lα, Lβ) = 0 unless α + β = 0. In particular the
bilinear form (., .) is non-degenerate on H.

(ii) The bilinear form (., .) is consistent.

Proof. Let α, β ∈ ∆ ∪ {0}, x ∈ Lα, y ∈ Lβ . Then,

α(h)(x, y) = ([h, x], y) = (x, [h, y]) =
{

0 if y ∈ H
−β(h)(x, y) if y ∈ Lβ

and so (x, y) = 0 unless α+ β = 0 since by definition of the regular element h,
α(h) 	= 0. Hence condition 1 implies that (., .) is nondegenerate on H.

If x ∈ Lα ∩ L0 and y ∈ L−α ∩ L1, then [x, y] ∈ H and so [x, y] = 0 since H
is an even subspace by condition 1. Therefore,

0 = ([x, y], h) = (x, [y, h]) = α(h)(x, y),

giving (x, y) = 0. And so the form is consistent.

Lemma 2.5.6. There exists a set of linearly independent elements {ei}i∈I and
{fi}i∈I in M , satisfying (ei, fj) = δij, and (ei, ej) = 0 = (fi, fj) for all i, j,
such that together with a basis of H, they generate M as a Lie superalgebra.

Proof. Since H is an even subalgebra, the homogeneous subspaces
(Lr)i, i = 0, 1 are eigenspaces for H. Let (Ur)i = P ∩ (Gr)i, i = 0, 1. Similarly
for U−r. Set

(Vr)i = {x ∈ (Lr)i : (x, y) = 0,∀y ∈ P}.
Similarly for V−r. Let K be the kernel of the restriction of the bilinear form to
P . By Lemma 2.5.5 (i) and as the Lie superalgebra P is a BKM superalgebra,
by Theorem 2.1.17, K = 0 since it intersects H trivially; and so

(Lr)i = (Ur)i ⊕ (Vr)i.
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Moreover, H leaves (Vr)i invariant since for any x ∈ (Vr)i, y ∈ P , z ∈ H,
([z, x], y) = −(x, [z, y]) = 0 since [z, y] ∈ L.

Hence, for i = 0, 1, there exists a linearly independent set of elements in (Vr)i

of eigenvectors for H, which are orthogonal to P . Let {ej} be this set (they
form a basis for (Vr)i). Furthermore, since the form is consistent by Lemma
2.5.5 (ii), there exists a linearly independent set of elements in (L−r)i − L of
eigenvectors of H, which is dual to the set {ej} with respect to (., .). We denote
this set {fj}. We then add these elements to the set of elements ei, fi already
chosen as generators of the derived Lie superalgebra [P,P ].

In the rest of the Proof, {ei}i∈I , and {fi}i∈I will denote fixed sets of genera-
tors, as described in Lemma 2.5.6. We denote by αi ∈ H∗ the root corresponding
to ei. Set

hij = [ei, fj ], hi = hii,

and let A be the real matrix with entries aij = (hi, hj). We next show that the
matrix A and the above generators satisfy Definition 2.1.7 of a BKM superal-
gebra.

Lemma 2.5.7. The matrix A is symmetric.

Proof. This result follows since H is an even subalgebra and the form is super-
symmetric.

Lemma 2.5.8.

(i) [hi, ej ] = aijej, and [hi, fj ] = −aijfj.
(ii) If i 	= j then hij = [ei, fj ] = 0.

Proof. (i): Since ej is an eigenvector of H, there is some scalar c ∈ R such
that [hi, ej ] = cej . Hence

c = (cej , fj) = ([hi, ej ], fj) = (hi, [ej , fj ]) = (hi, hj) = aij .

Similarly [hi, fj ] = −aijfj , proving (i).
(ii): If ei, fj ∈ P , then this is true by assumption. So, assume that ei ∈ Vr.

If fj ∈ P , then [ei, fj ] ∈ Ls where s < r. Let x ∈ L−s, so that

([ei, fj ], x) = (ei, [fj , x]) = 0

as [fj , x] ∈ P and ei is orthogonal to P by definition. So [ei, fj ] = 0 since (., .)
is nondegenerate on Ls ⊕ L−s.

Now suppose that fj ∈ V−r. Hence [h, [ei, fj ]] = 0. Thus since H is the
centralizer of h in L, [ei, fj ] ∈ H. So since (ei, fj) = 0 by duality of the sets
{ei} and {fi}, for any z ∈ H,

([ei, fj ], z) = (ei, [fj , z]) = 0.

Therefore as (., .) is nondegenerate on H, hij = 0.
The case fj ∈ V−r and ei ∈ L is dealt with in a similar manner.

We next consider roots of positive norm.
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Lemma 2.5.9. Suppose that aii > 0.

(i) If, ei, fi ∈ L0, then 2aij

aii
is a non-positive integer. Moreover,

(ad (ei))
1− aij

aii ej = 0; and (ad (fi))
1− aij

aii fj = 0.
(ii) If ei, fi ∈ L1, then aij

aii
is a non-positive integer. Moreover,

(ad (ei))
1−2

aij
aii ej = 0; and (ad (fi))

1−2
aij
aii fj = 0.

Proof. (i): The Lie superalgebra Si generated by the elements ei and fi is
isomorphic to sl2. Consider the Si-module generated by the element ej . If the
result does not hold, then the representation theory of sl2 implies that nαi +αj

is a root for all integers n ≥ 0, contradicting condition 4. The second part of
(i) can proved in a similar fashion.

(ii): The element Ei = [ei, ei] 	= 0, for otherwise

0 = [fi[ei, ei]] = [[fi, ei]ei] − [ei[fi, ei]] = 2aiiei.

Similarly Fi = [fi, fi] 	= 0. The Lie superalgebra Si generated by the elements
Ei and Fi is isomorphic to sl2 and now (ii) follows from arguments similar to
those in (i).

Lemma 2.5.10. If aij = 0, then [ei, ej ] = 0 = [fi, fj ].

Proof. If either aii > 0 or ajj > 0, then the result follows from Lemma 2.5.9.
Otherwise it is a direct consequence of condition 5.

This proves Theorem 2.5.4.
When there are infinitely many simple roots of positive norm, there may

not necessarily be an upper bound for the norms of the roots. We can replace
Conditions 4 and 5 of Theorem 2.5.4 by root type conditions so as to be sure
to include all BKM superalgebras.

Corollary 2.5.11. Any Lie superalgebra L satisfying the following conditions
is a BKM superalgebra.

1. L has a self centralizing even subalgebra H, L is the direct sum of
eigenspaces of H, and all the eigenspaces are finite dimensional. A root
of G is defined to be a nonzero eigenvalue of H (roots belong to the dual
space of H).

2. There is a nondegenerate invariant supersymmetric bilinear form (., .) de-
fined on L.

3. There is an element h ∈ H such that CG(h) = H and there only exist
finitely many roots α of L with

∣∣α(h)
∣∣ < r for any r ∈ R. If α(h) > 0

(resp. α(h) < 0), α is called a positive (resp. negative) root.
4. A root is either of finite type (according to Definition 2.3.17) or else it is

said to be of infinite type.
5. Let α and β be either infinite type roots or of norm 0, both positive or both

negative. Then, (α, β) ≤ 0. Moreover, if (α, β) = 0, then for all x ∈ Gα

satisfying [x,G−γ ] = 0 for all roots γ such that 0 <
∣∣γ(h)

∣∣ <
∣∣α(h)

∣∣,
[x,Gβ ] = 0.
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The proof of this result is similar to that of Theorem 2.5.4.

Remark 2.5.12. 1. If the first part of condition 5 of Corollary 2.5.11 only
holds for roots of infinite type, then L is either a BKM superalgebra or a finite
dimensional simple classical Lie superalgebra or an affine Lie superalgebra. The
latter are not necessarily BKM superalgebras since they may not have “Cartan”
matrices with all non diagonal entries non-positive.
2. As the next example shows, even though it would be more satisfying, char-
acterizing a Lie superalgebra solely in terms of root chain lengths would include
too large a class of Lie superalgebras: when the simple root αi is of infinite type,
it would not follow that aii ≤ 0. Therefore, Theorem 2.5.4 and Corollary 2.5.11
are better characterizations.

Example 2.5.13. Let G(A,H) be the Lie algebra satisfying properties (1) and

(2) of Definition 2.1.7 and with A =
(

2 −1
−1 3

)
. Then, the root α1 is of finite

type, and the root α2 is of infinite type in the sense of Theorem 2.3.33, though
it has positive norm.

Open Problem. The above two characterizations given in §2.2 and 2.4 are
useful in some contexts but not in all. So, it would be worthwhile to find other
characterizations of BKM superalgebras in order to be able to tell when a given
Lie superalgebra is a BKM superalgebra.

Exercises 2.5.

1. Show that the even part G0 of a BKM superalgebra is a BKM algebra.
Hint: Show that the conditions of Corollary 2.5.11 hold for the Lie algebra G0.

2. Suppose that L is a Lie superalgebra satisfying conditions 1-4 of Corollary
2.5.11. Let α and β be either infinite type roots or of norm 0. If x ∈ Gα

satisfying [x,G−γ ] = 0 for all roots γ such that 0 <
∣∣γ(h)

∣∣ <
∣∣α(h)

∣∣, [x,Gβ ] = 0.
Let the Lie superalgebra M and the reals aij be defined as above.

(i) Show that if aii = 0 implies that aijaik ≥ 0 for all j, k then M is a BKM
superalgebra.

(ii) Suppose that there is some i such that aii = 0, aij < 0 and aik > 0.
(a) Show that the roots αj of M with non-zero norm are of finite type

and that if ajj = 0, then [ej , ej ] = 0.
(b) Show that all non-zero norm root spaces of M have dimension 1.
(c) Show that all norm 0 root spaces have finite dimension.
(d) Deduce that the Lie superalgebra M is contragredient and has finite

growth.
(iii) Deduce that the Lie superalgebraM is a direct sum of a BKM superalgebra

and of finite dimensional classical Lie superalgebras with symmetrizable
Cartan matrix (see [Kac3]).
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For a solution, see [Ray3].

3. Let G be a BKM superalgebra with a finite dimensional Cartan subalgebra
H. Let Ω be a finite group of diagram automorphisms of G. Assume that when
the Cartan matrix of G has a principal submatrix of affine type C(2)(n + 1),
n ≥ 1, all elements of Ω act trivially on the corresponding sub-superalgebra.
Show that the sub-superalgebra GΩ of G of elements fixed by Ω is a BKM
superalgebra.
Hint: Use Exercise 2. For a solution, see [Ray3].

2.6 Character and Denominator Formulas

Highest weight representations form an important class of representations of
BKM superalgebras. They lead to the denominator formula, which is central
to the theory of BKM superalgebras because it not only contains the essen-
tial information about the corresponding Lie superalgebra but also because it
provides the link with automorphic forms (see Chapter 5). This denominator
formula plays an essential role in the proof of the Moonshine Theorem.

We start with universal enveloping algebras as they are basic objects in rep-
resentation theory but do not give proofs as they are well known standard ones
(for details see [Jac]). The first result defines the structure of a Lie superalgebra
on a Z2-graded associative algebra.

Lemma 2.6.1. Let L be a Z2-graded associative algebra. If x, y are homoge-
neous elements,

[x, y] = xy − (−1)d(x)d(y)yx

gives the structure of a Lie superalgebra to L.

This allows us to now define the tensor superalgebra of a Lie superalgebra.

Definition 2.6.2. Let L be a Lie superalgebra. The n−th-tensor product Tn(L)
of L is the vector space spanned by the elements x1 ⊗ · · · ⊗ xn, xi ∈ L. It is an
induced Z2-grading. The tensor Lie superalgebra is the Lie superalgebra T (L)
with underlying vector space

⊔∞
n=0 Tn(L) with associative structure given by

(x1 ⊗ · · · ⊗ xn)(y1 ⊗ · · · ⊗ ym) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym

and Lie superalgebra structure given by Lemma 2.6.1.

We next give the definition of the universal enveloping superalgebra and
show how it can be constructed from the tensor Lie superalgebra.

Definition 2.6.3. A universal enveloping superalgebra of the Lie superalgebra
L is an associative Z2-graded algebra U(L) with 1 together with a linear map:
p : L −→ U(L) satisfying

p([x, y]) = xy − (−1)d(x)d(y)yx (i)
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and such that for any other associative algebra V (L) with 1 and any linear map
q : L −→ V (L) satisfying (i), there is a unique homomorphism of Z2-algebras
f : U(L) −→ V (L) such that f ◦ p = q and f(1) = 1.

Proposition 2.6.4. The universal Z2-graded algebra is uniquely defined. Let
K be the two-sided ideal of T (L) generated by the elements

[x, y] − x⊗ y − (−1)d(x)d(y)y ⊗ x,

where x, y ∈ L are homogeneous elements. Then, U(L) = T (L)/K.

Lemma 2.6.5. The map p : L→ U(L) is injective.

This last result allows us to identify the Lie superalgebra L with its image
p(L) in U(L). The Poincaré-Birkhoff-Witt Theorem holds [Jac, pp. 159–160].
As the proof remains the same as in the Lie algebra case, we leave it for the
reader to check. Note simply that if y is an odd element of the Lie superalgebra
L, then y3 = 1

2 [y, y]y in U(G) and that [y, y] is an even element.

Theorem 2.6.6 [PBW Theorem]. Let L be a Lie superalgebra and x1, ...xm

(resp. y1, ..., yn) be an ordered basis for the even part L0 (resp. odd part L1),
then the vectors

xi1
1 ...x

im
m yj1

1 ...y
jn
n , ik ∈ Z+ ∀ 1 ≤ k ≤ m, 0 ≤ jl ≤ 1 ∀ 1 ≤ l ≤ n

form a basis for U(L).

Together with Corollary 2.1.19, the PBW Theorem allows us to give the
structure of the enveloping Z2-graded universal algebra of the BKM superalge-
bra G.

Corollary 2.6.7. The universal enveloping algebra of the BKM superalgebra G
decomposes as follows:

U(G) = U(N−) ⊗ U(H) ⊗ U(N+).

We next remind the reader of the elementary notion of a module for a Lie
superalgebra.

Definition 2.6.8. A representation of a Lie superalgebra L is a homomorphism

G→ gl(V ),

where V is a Z2-graded vector space. The space V is called a L-module.

For the BKM superalgebra G, we want to study the class of G-modules that
generalizes finite dimensional modules. Suppose that V is a finite dimensional
G-module and that G is finite dimensional. Since the Cartan subalgebra H is
abelian, H acts semisimply on V . The eigenvalues are elements in the dual of H
and are called weights. As the module V is finite dimensional, there is a highest
weight, namely there is weight Λ ∈ H∗ such that VΛ+αi

= 0 for all i ∈ I. Here
Vλ is the eigenspace or weight space with eigenvalue λ ∈ H∗. The G-module V
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has a unique highest weight if and only if it is irreducible, in which case V is
said to be a highest weight module. This notion of highest weight modules can
be generalized to infinite dimensional BKM superalgebras. We do this now.

Remark 2.6.9. In section 2.6, roots can be considered to be elements of either
Q, H or its dual H∗. We will use the notation αi for the simple roots.

Definition 2.6.10. The G-module V (Λ) is said to be a highest weight module
with highest weight Λ ∈ H if V (Λ) is generated by a v satisfying:

xv = 0, x ∈ Gα, α ∈ ∆+, hv = (Λ, h)v, h ∈ H.

A vector v ∈ V (L) with this property is called a highest weight vector.

A fundamental property of highest weight modules is that they are sums of
finite dimensional eigenspaces of the generalized Cartan subalgebra H.

Definition 2.6.11. The eigenspaces

Vλ = {v ∈ V (Λ)|hv = (λ, h)v, h ∈ H}, λ ∈ H

are called weight spaces.

Lemma 2.6.12.

(i) The generalized Cartan subalgebra H acts semisimply on V (Λ). So

V (Λ) = ⊕λ∈HVλ

(ii) The weight spaces are finite dimensional. In particular dimV (Λ)Λ = 1.

Proof. The first part is an immediate consequence of Definition 2.6.10. By
Corollary 2.6.7, V (Λ) = U(N−)v, where v is a highest weight vector of V (Λ).
This leads to the second part since the root spaces are finite dimensional.

As we saw above, irreducible finite dimensionalG-modules are highest weight
modules. The converse also holds in finite dimension, namely that a finite
dimensional highest weight module is irreducible. Furthermore it is well known
that when G is a finite dimensional simple Lie algebra, its finite dimensional
modules are completely reducible. As the next result shows, highest weight
modules are always indecomposable.

Lemma 2.6.13. All highest weight G-modules are indecomposable.

Proof. Let V (Λ) be a highest weight G-module and v a highest weight vector
of V . Suppose that V = V1 ⊕ V2, where the Vi’s are G-submodules of V . Then,
v = v1 + v2 for some vi ∈ Vi. Now, for h ∈ H,

hv1 + hv2 = hv = Λ(h)v = Λ(h)v1 + Λ(h)v2

implies that hvi = Λ(h)vi. Hence v1 and v2 are highest weight and so by Lemma
2.6.12 (ii), v1 and v2 are multiple of v, giving a contradiction and proving the
result.
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There are infinite dimensional highest weight modules even when the Lie
superalgebra G is finite dimensional. Whatever the dimension of G, they are not
generally irreducible, though by the previous Lemma they are indecomposable.
This is well illustrated by the next example.

Example 2.6.14. Consider the G-module M(0) = U(G)/K, where K is the
left ideal of U(G) generated by the positive Borel sub-superalgebra B+ of G. It
is a highest weight G-module with highest weight 0 and highest weight vector
K + 1. It is infinite dimensional since Mλ 	= 0 for all λ ∈ H∗ such that λ ≤ 0.
The submodule N(0) generated by the vectors vi = K + fi, i ∈ I is a proper
G-submodule of M(0). So M(0) is not irreducible.

Assume that
∣∣I
∣∣ ≥ 2. We then show that N(0) is not a direct sum of highest

weight modules. The vectors vi, i ∈ I, are highest weight vectors of N(0) of
weight −αi and

N(0) = {N + x : x ∈ U(N−)N−}.
Hence the vectors vi are the only highest weight vectors of N(0) (up to non-
trivial multiplication by a scalar) and if aij 	= 0, then the vector
N+[fi, fj ] ∈ N(0) is not contained in ⊕i∈IU(G)(N+fi). Moreover, the highest
weight spaces being 1-dimensional, this also shows that the module N(0) is not
completely reducible.

The above example shows that complete reducibility is restricted to finite
dimension even when the BKM superalgebra G is simple (see Exercise 2.1.4).
Before going further, we need to define the category of modules that highest
weight modules belong to. The previous example gives an indication what this
category should be like. It should include all highest weight modules and their
submodules.

Definition 2.6.15. Let O be the category of Z2-graded G-modules V on which
the Cartan subalgebra H acts semisimply with finite dimensional weight spaces,
i.e.

V = ⊕λ∈HVλ, (1)

for all λ ∈ H, dimVλ < ∞, and there exist finitely many elements Λi ∈ H,
i = 1, ...,m such that the weight spaces Vλ are non-trivial only if λ ≤ Λi for
some 1 ≤ i ≤ m.

Finite sums of modules in the category O are also in O. The same holds for
quotients, submodules, and tensor products.

A first natural question is to find an expression for the dimensions of the
weight spaces of a G-module V ∈ O and to be able to differentiate its odd
and even weight spaces, in other words to find its character and its super-
character. To describe the dimensions of the weight spaces Vλ, equality (1) in
Definition 2.6.15 cannot be translated as

∑
λ∈H dimVλλ since this would lead

to a confusion between the dimension of the weight space λ + µ and the sum
of the dimensions of the λ-weight space and µ-weight space, i.e. between Vλ+µ

and Vλ ⊕ Vµ. Hence the need to introduce formal exponentials e(λ).
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Definition 2.6.16. Let E be the commutative associative algebra of formal
series ∑

λ∈H

xλe(λ)

for which there exist finitely many elements λi ∈ H, i = 1, ...,m such that the
coefficients xλ are non-trivial only if λ ≤ λi for some 1 ≤ i ≤ m. Multiplication
is defined by e(λ)e(µ) = e(λ + µ). The character and super-character of the
G-module V = V0⊕V1 ∈ O are the elements of the algebra E defined respectively
to be the formal sums:

chV =
∑

λ∈H

dimVλe(λ) and schV =
∑

λ∈H

(dimV0λ
− dimV1λ

)e(λ).

When V (Λ) ∈ O is a highest weight module of highest weight Λ, it is assumed
that d(Λ) = 0.

Before dealing with more general modules in O, the first step is obviously to
compute the character and super-character of irreducible highest weight mod-
ules. We will follow the method given in [Kac14, Chapters 9,10,11] in the Kac-
Moody setup. The proofs that do not require any changes in the more general
context of BKM superalgebras are left as exercises. It was first proved for Kac-
Moody Lie algebras in [Kac2], for BKM algebras in [Borc4], for Kac-Moody Lie
superalgebras in [Kac7], and for BKM superalgebras in [Ray1,6]. There is an
equivalent proof that uses the cohomology theory of BKM superalgebras. For
finite dimensional simple Lie algebras, see [Kos]. For Kac-Moody Lie algebras
this is done in [GarL].

For the calculation of the character and super-character formulae we need
at the start some means of telling when two irreducible highest weight modules
are “the same” or “different”. In other words, a basic requirement is to find the
isomorphism classes of irreducible highest weight G-modules. This can be done
by considering Verma modules.

Lemma 2.6.17. For each element Λ ∈ H, there is, up to isomorphism, a
unique G-module M(Λ) of highest weight Λ, called the Verma module, such that
any highest weight G-module is a homomorphic image of it. It is isomorphic to
U(G)/K, where K is the left ideal in U(G) generated by N+ and the elements
h − Λ(h) for h ∈ H. As a U(N−)-module, it is a free module generated by a
highest weight vector. Furthermore, the Verma module has a unique maximal
G-submodule N(Λ).

Note that as is shown in Example 2.6.14, the submoduleN(Λ) is not usually a
highest weight module. The classification of irreducible highest weight modules
is now an immediate consequence.

Theorem 2.6.18. For each element Λ ∈ H, there is, up to isomorphism,
a unique irreducible G-module L(Λ) of highest weight Λ. It is isomorphic to
M(Λ)/N(Λ).
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We next fix some more notation that will be used throughout this section.

Notation. For α ∈ ∆+, let eα,i, 1 ≤ i ≤ dimGα be a basis for the root space
Gα and fα,i, 1 ≤ i ≤ dimGα the dual basis for G−α. Since the bilinear form is
consistent, fα,i ∈ G0 if and only if eα,i ∈ G0.
Let m0(α) = dimGα ∩G0 and m1(α) = dimGα ∩G1 = mult(α) −m0(α).
Set

R =

∏
α∈∆+

0
(1 − e(−α))m0(α)

∏
α∈∆+

1
(1 + e(−α))m1(α)

and R′ =

∏
α∈∆+

0
(1 − e(−α))m0(α)

∏
α∈∆+

1
(1 − e(−α))m1(α)

.

For V ∈ O, set P (V ) = {λ ∈ H : Vλ 	= 0}.
Set P+ = {Λ ∈ H : ∀ i ∈ I, (α, αi) ≥ 0, 2(Λ,αi)

(αi,αi)
(resp. (Λ,αi)

(αi,αi)
) ∈ Z+ if aii > 0

and i ∈ I\S (resp. i ∈ S)}.
For λ =

∑
i∈I xiαi ∈ H, xi ∈ C, let ht (λ) =

∑
i∈I xi be the height of λ.

In view of Theorem 2.6.18, it seems sensible to first try and compute the
character and super-character of the Verma module M(Λ) and to use this in-
formation to find the character and super-character of the irreducible module
L(Λ).

Lemma 2.6.19. For Λ ∈ H, the character and super-character of the Verma
G-module M(Λ) are as follows:

ch(M(Λ)) = e(Λ)R−1, sch (M(Λ)) = e(Λ)R′−1

Proof. Let vΛ be a highest weight vector of the module M(Λ).
The set of positive roots may be ordered. For example by setting

degαi = i,

for each degree we get finitely many roots. Let βi (resp γi), i = 1, 2, ... be a
list of the positive even (resp. odd) roots. Then Lemma 2.6.17 implies that the
vectors

f
n1,1
β1,1

...f
n1,i1
β1,i1

f
n2,1
β2,1

...f
n2,i2
β2,i2

...fk1,1
γ1,1

...f
k1,j1
γ1,j1

fk2,1
γ2,1

...f
k2,j2
γ2,j2

(vΛ)

such that

(n1,1 + ...n1,i1)β1+(n2,1 + ...n2,i2)β2 + ...+ (k1,1 + ...k1,j1)γ1

+ (k2,1 + ...k2,j1)γ2 + ... = µ

and n1,l ∈ Z+, ki,l = 0 or 1, form a basis of the weight space M(Λ)Λ−µ. So

chM(Λ) = e(Λ)
∏

α∈∆0
+

(1 + e(−α) + e(−2α) + ...)m0(α)
∏

α∈∆1
+

(1 + e(−α))m1(α),

and
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schM(Λ) = e(Λ)
∏

α∈∆0
+

(1 + e(−α) + e(−2α) + ...)m0(α)
∏

α∈∆1
+

(1− e(−α))m1(α),

which imply the desired answers.

Our aim now is to find an expression for the character and super-character
of the irreducible highest weight G-module L(Λ) in terms of the character and
super-character of the corresponding Verma module.

A finite dimensional module V has a composition series and so its character
and super-character can be given in terms of the characters and super-characters
of its irreducible factors. In infinite dimension, a G-module V in O may not
necessarily have a composition series. So it requires a little work to deduce that
its character (resp. super-character) is still the sum of the characters (resp.
super-characters) of irreducible L(λ), where λ is a primitive weight. For any
γ ∈ H, there exist finitely many G-submodules of V

V = V0 ⊃ V1 ⊃ ... ⊃ Vmγ−1 ⊃ Vmγ
= 0

such that either

Vi−1/Vi
∼= L(µ), for some µ ≥ γ or (Vi−1/Vi)µ = 0 ∀µ ≥ γ.

Proposition 2.6.20. We keep the above notation and assume that no root is
both odd and even. Let V ∈ O be a G-module. For all λ ∈ H, let xλ be the
number of indices 1 ≤ i ≤ mγ such that Vi−1/Vi

∼= L(λ), where γ ≤ λ. The
character and super-character of the G-module V satisfy the following:

chV =
∑

λ∈H

xλchL(λ) and schV =
∑

λ∈H

(−1)d(λ)xλschL(λ),

where d(λ) is the parity of the weight λ in V . In particular, if V = V (Λ) is a
highest weight module with highest weight Λ, then xΛ = 1.

Proof. The proof follows from the fact that xλ does not depend on the weight
γ ∈ H chosen such that γ ≤ λ, nor on the series.

The case when roots are elements in H and can be both odd and even can
be extrapolated from the above in a straightforward manner but is cumbersome
to write.

The weights λ ∈ H for which xλ 	= 0 have a special property.

Definition 2.6.21. Let V ∈ O. The vector v ∈ V is said to be primitive if
there exists a G-submodule U of V such that v 	∈ U but xv ∈ U for all x ∈ N+.
If moreover, v ∈ Vλ, then λ is called a primitive weight of V .

Lemma 2.6.22. xλ 	= 0 for the module V ∈ O if and only if λ ∈ H is a
primitive weight of V .

Proof. Suppose that λ ∈ H is a primitive weight of V . There is a maximal
index 1 ≤ i ≤ mλ − 1 such that Vi contains a primitive vector v. Let U be
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a submodule of V such that v 	∈ U but N+v ⊆ U . Since (Vi/Vi+1)λ 	= 0, by
definition of the submodules Vj , Vi/Vi+1

∼= L(µ) for some µ ≥ λ. Since the
module L(µ) is irreducible, the vector Vi+1 + v generates the module Vi/Vi+1.
Suppose that

N+v ⊆ Vi+1. (1)

Then, µ = λ, proving the result. So we only need to show that (1) holds.
Otherwise, there is an index j ∈ I for which Vi+1 + ejv is another generator

of Vi/Vi+1 and so Vi/Vi+1 ≤ (U + Vi+1)/Vi+1. In particular, v = v1 + u for
some v1 ∈ (Vi+1)λ and u ∈ Uλ. Hence, N+v1 ⊆ U . By definition of v and U ,
v1 	∈ U and so v1 is a primitive vector of V of weight λ contained in Vi+1. This
contradicts the maximality of i.
The converse is left for the reader to check.

Given a weight Λ ∈ H∗, we want to find an algebraic way of describing the
set of primitive weights λ of a highest weight module V (Λ) with highest weight
Λ and in particular of showing that it is a finite set. Then, we can apply Propo-
sition 2.6.20 to the corresponding Verma modules M(λ) and a “matrix inversion
technique” leads to an expression for the character (resp. super-character) of
the irreducible module L(Λ) in terms of the characters (resp. super-characters)
of these Verma modules.

Primitive weights of V (Λ) satisfy the following algebraic condition.

Proposition 2.6.23. Let V = V (Λ) be a highest weight G-module and λ a
primitive weight of V . Then,

∣∣Λ + ρ
∣∣2 =

∣∣λ+ ρ
∣∣2.

In order to prove Proposition 2.6.23, we need to use the action of the gener-
alized Casimir operator introduced by Kac in [Kac5].

Definition 2.6.24. Let V be a G-module in the category O and v be a vector
in the λ-weight space Vλ of V . The operator Ω0 on V is defined to be as follows:

Ω0(v) = 2
∑

α∈∆+

∑

i

fα,ieα,i(v).

The generalized Casimir operator Ω is the operator acting on V as follows:

Ω(v) = Ω0(v) + (2ρ+ λ, λ)v.

Remark 2.6.25. The operator Ω0 is well defined: By definition of the category
O, there exist finitely many weights λi ∈ H such that for any given weight
λ ∈ P (V ) of V , α + λ ∈ P (V ), α ∈ ∆+, only if α < λi − λ. So for all v ∈ Vλ,
Ω0(v) has only finitely many nonzero terms. Note that both the operator Ω0 and
the generalized Casimir operator are even elements in the Z2-graded universal
enveloping algebra U(G).
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We next show that the action of the generalized Casimir operator on highest
weight modules commutes with the action of G; or equivalently that the element
Γ belongs to the centre of U(G).

Lemma 2.6.26. Let V be a G-module in the category O. Then, [Ω, x]v = 0 for
all x ∈ G, v ∈ V .

Proof. We only need to show that [Ω, ei]v = 0 and [Ω, fi]v = 0, for all i ∈ I,
v ∈ Vλ. Now

[Ω0, ei]v = 2
∑

α∈∆+

∑

s

(fα,s[eα,s, ei] + (−1)d(eα)d(ei)[fα,s, ei]eα,s)v.

Since [eα,s, ei] ∈ Gα+αi
, [eα,s, ei] =

∑
t kteα+αi,t and by definition of a dual

basis, we get kt = ([eα,s, ei], fα+αi,t). Hence,
∑

α∈∆+

∑

s

fα,s[eα,s, ei]v

=
∑

α∈∆+

∑

s

∑

t

fα,s([eα,s, ei], fα+αi,t)eα+αi,tv

=
∑

α∈∆+

∑

s

∑

t

(eα,s, [ei, fα+αi,t])fα,seα+αi,tv

=
∑

α∈∆+

∑

t

[ei, fα+αi,j ]eα+αi,tv

=
∑

α∈∆+−{αi}

∑

t

[ei, fα,t]eα,tv

= −
∑

α∈∆+−{αi}

∑

t

(−1)d(eα)d(ei)[fα,t, ei]eα,tv.

Thus

[Ω0, ei]v = 2(−1)d(ei)d(ei)[fi, ei]eiv

= −2hieiv

= −2(λ+ αi, αi)eiv,

which implies that [Ω, ei]v = 0. Similar calculations give [Ω, fi]v = 0.

In particular, this gives the action of the generalized Casimir operator on a
highest weight module.

Corollary 2.6.27. If V = V (Λ) is a highest weight G-module with highest
weight Λ ∈ H, then for any v ∈ V ,

Ω(v) = (
∣∣ρ
∣∣2 −

∣∣Λ + ρ
∣∣2)v.

Proposition 2.6.23 now follows from the definition of primitive weights.
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The character (resp. super-character) of irreducible highest weight modules
can now be expressed in terms of characters (resp. super-characters) of Verma
modules.

Corollary 2.6.28. For any weight Λ ∈ H, the character and super-character
of the highest weight G-module V (Λ) with highest weight Λ are given by:

chV (Λ) =
∑

λ≤Λ∣∣λ+ρ
∣∣2=

∣∣Λ+ρ
∣∣2

cλchM(λ) and

schV (Λ) =
∑

λ≤Λ∣∣µ−ρ
∣∣2=

∣∣λ−ρ
∣∣2

c′λschM(λ),

where cλ, c
′
λ ∈ Z and cΛ = 1 = c′Λ.

As we pointed out at the start of this chapter, we are primarily interested
in modules generalizing finite dimensional ones. When the BKM superalgebra
G is finite dimensional, if V is finite dimensional G-module, then all the root
vectors of G must necessarily act in a locally nilpotent way on V . As we have
seen in section 2.3, the roots of finite type and non-zero norm are the roots that
behave like the roots of a finite dimensional simple Lie algebra. It is therefore
natural to consider G-modules on which the action of the finite type root vectors
is locally nilpotent.

Definition 2.6.29. A G-module V is said to be integrable if for any root α of
finite type, and any element x ∈ Gα, x acts in a locally nilpotent way, i.e. for
any v ∈ V , there exits n ∈ N such that xnv = 0 (n depends both on v and x)

Lemma 2.6.30. Let V ∈ O be a G-module. Suppose that α ∈ ∆ is conjugate
to a simple root under the action of the Weyl group and that (α, α) = 0. Then,
for any x ∈ Gα ∩G1, x

2v = 0. In particular, x act in a locally nilpotent way on
V .

Proof. The result follows immediately from the fact that [x, x] = 0.

As a consequence of Lemma 2.6.30 we can immediately deduce the following:

Corollary 2.6.31. A G-module V ∈ O is integrable if all positive norm simple
root vectors and even negative norm and finite type root vectors act in a locally
nilpotent way on V .

The integrability condition for a highest weight module can therefore be
expressed in algebraic terms.

Lemma 2.6.32. A highest weight G-module V = V (Λ) is integrable if and only
if 2(Λ,αi)

(αi,αi)
(resp. (Λ,αi)

(αi,αi)
) is a non-negative integer when i ∈ I\S (resp. i ∈ S)

such that aii > 0 and when there are roots of negative norm and finite type,
2(Λ,α)
(α,α) ∈ Z+, where α is the unique even positive root with negative norm.
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We want to find formulae giving the character and super-character of in-
tegrable modules in the category O as they are the ones generalizing finite
dimensional modules. The formulae that we prove here hold for irreducible in-
tegrable highest weight modules L(Λ) of highest weight Λ ∈ H with the added
technical condition that (Λ, αi) ≥ 0 for all i ∈ I, namely Λ ∈ P+.

When the BKM superalgebra G is infinite dimensional, Theorem 2.3.44 tells
us that there are no roots of finite type and negative norm and hence the
formulae we derive apply to a large class of integrable irreducible highest weight
modules. When G is finite dimensional, a module is integrable if and only if it
is finite dimensional.

When G is of B(m, 0) type, all roots have positive norm and hence the
formulae apply to all integrable irreducible highest weight modules, in other
words to all irreducible finite dimensional modules.

Suppose that G is finite dimensional with non-trivial odd part with no
roots having negative norm but with roots having norm 0. Then the only
finite dimensional representations the formulae apply to are those satisfying
(Λ, αi) ≥ 0 when aii = 0.

Suppose next that ∆ contains a positive root α with negative norm and of
finite type. We know from Theorem 2.3.33 that supp(α) = I, and so (Λ, α) > 0
or (Λ, αi) = 0 for all i ∈ I. If the former holds then by Lemma 2.6.32, the
module L(Λ) is not integrable. So the only integrable irreducible module it
applies to is the trivial one.

Therefore for finite dimensional BKM superalgebras with non-trivial odd
part, the formulae we give mostly apply to infinite dimensional non-integrable
irreducible highest weight modules. For the character and super-character for-
mulae of finite dimensional modules of finite dimensional BKM Lie superal-
gebras with non-trivial odd part, see [Jeu], [JeuHKT], [Kac6,8], [KacWak1],
[Ray5], [Serg2].

To state the main theorem, we first need a well known elementary result on
the invariance of G-modules in the category O under the action of the Weyl
group.

Lemma 2.6.33. Let V ∈ O be an integrable G-module. Then, for any w ∈W ,
dimVwλ = dimVλ for all λ ∈ H.

Proof. The result follows from integrability and induction on the length of the
word w.

For µ =
∑

i∈I kiαi, write

ht 0(µ) =
∑

i∈I\S

ki.

Considering the roots as elements of the formal root lattice Q, set

TΛ = e(Λ + ρ)
∑

ε(µ)e(−µ) and T ′
Λ = e(Λ + ρ)

∑
ε′(µ)e(−µ)

with
ε(µ) = (−1)ht (µ) and ε′(µ) = (−1)ht 0(µ)
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if µ =
∑

i kiαi and satisfies the following four conditions:

ki ≥ 0 ∀ i ∈ I

ki 	= 0 =⇒ aii ≤ 0, (αi,Λ) = 0
kj 	= 0and j 	= i =⇒ aij = 0,
ki = 1 unless i ∈ S and aii = 0.

Otherwise,
ε(µ) = 0 = ε′(µ).

When the roots are considered to be elements of H or H∗, we consider the
image of TΛ and T ′

Λ under the functions fQ and gQ (see Proposition 2.3.9). For
reasons of simplicity, we will also write the images TΛ and T ′

Λ.

Theorem 2.6.34. For any weight Λ ∈ P+, the character formula and super-
character formula for the irreducible highest weight module L(Λ) are respectively:

chL(Λ) = e(−ρ)
∑

w∈W

det(w)w(TΛ)R−1

and
schL(Λ) = e(−ρ)

∑

w∈W

det(w)w(T ′
Λ)R′−1

,

where det(w) = (−1)l(w) and l(w) is the length of the word w ∈W .

Before proving this Theorem, we need some technical results.

Lemma 2.6.35. For any w ∈W ,

w(e(ρ)R) = ε(w)e(ρ)R and w(e(ρ)R′) = ε(w)e(ρ)R′.

Lemma 2.6.36. Let λ = Λ−
∑

i∈I xiαi, xi ∈ Z+ be a weight of the irreducible
highest weight G-module L(Λ). Then, there exists i ∈ I such that xi 	= 0 and
(Λ, αi) 	= 0.

Proof. Let λ = Λ−
∑

i∈I xiαi ∈ P (L(Λ)), Iλ = {i ∈ I : xi 	= 0} and Nλ be the
Lie sub-superalgebra of G generated by the vectors fi, i ∈ Iλ. Then, the weight
space L(Λ)λ is contained in U(N−)Nλv, where v is a highest weight vector of
the module L(Λ). Hence as L(Λ)λ 	= 0, Nλv 	= 0, and so for some i ∈ Iλ,
fiv 	= 0. Since ejv = 0 for all j ∈ I, ejfiv = 0 for all j 	= i. The G-module L(Λ)
being irreducible, it follows that

0 	= eifiv = [ei, fi]v = hiv = (Λ, hi)v.

We are now ready to prove Theorem 2.6.34.

Proof of Theorem 2.6.34. For reasons of simplicity, in the proof we take the
roots to be elements of the lattice Q. Note that in this case, a root is either odd
or even.
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Let Λ ∈ P+. We first prove the character formula. From Corollary 2.6.28
and Lemma 2.6.19, we get:

e(ρ)chL(Λ)R =
∑

λ≤Λ∣∣λ+ρ
∣∣2=

∣∣Λ+ρ
∣∣2

cλe(λ+ ρ). (1)

Lemmas 2.6.33 and 2.6.35 imply that cλ = ε(w)cµ if w(λ+ ρ) = µ+ ρ for some
w ∈W . Let λ be such that cλ 	= 0. Hence,

∀w ∈W, cw(λ+ρ)−ρ 	= 0 (2)

and so
w(λ+ ρ) ≤ Λ + ρ.

Let µ ∈ {w(λ + ρ) − ρ|w ∈ W} be such that ht (Λ − µ) is minimal. Then
(µ+ ρ, αi) ≥ 0 for all i ∈ I such that aii > 0. Let T be the sum of all terms in
the right hand side of (1) for which (λ + ρ, αi) ≥ 0 for all i ∈ I with aii > 0.
Hence (2) allows equation (1) to be re-written as

e(ρ)chL(Λ)
∏

α∈∆+
0

(1 − e(−α))multα =
∑

w∈W

w(T )
∏

α∈∆+
1

(1 + e(−α))multα. (3)

To prove the Character formula we need to compute T . Let cλe(λ + ρ) be a
non-trivial term in T . Then,

(λ+ ρ, αi) ≥ 0 ∀ i ∈ I such that aii > 0 (4)
∣∣λ+ ρ

∣∣2 =
∣∣Λ + ρ

∣∣2. (5)

Setting
λ = Λ −

∑

i∈I

xiαi, where xi ∈ Z+, (6)

equation (5) gives ∑

i∈I

xi(Λ + λ+ 2ρ, αi) = 0. (7)

From Condition (4) and the definition of ρ and Λ,

aii > 0 =⇒ (Λ + λ+ 2ρ, αi) > 0.

Next, consider i ∈ I such that aii ≤ 0. Suppose that xi 	= 0. Then from (6), we
get xi > 0 and

(λ+ 2ρ, αi) = (λ+αi, αi) = (Λ, αi)−
∑

j �=i

xj(αj , αi)− (xi − 1)(αi, αi) ≥ 0. (8)

Thus, it follows from equation (7) and the assumption that Λ ∈ P+ that

(Λ + λ+ 2ρ, αi) ≥ 0.
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This forces
xi 	= 0 =⇒ aii ≤ 0 and (λ+ 2ρ+ Λ, αi) = 0.

Finally (8) and the fact that Λ ∈ P+ give

(Λ, αi) = 0, (αi, αj) = 0 if xj 	= 0 and j 	= i;

and (αi, αi) = 0 if xi > 1. (9)

Set
λ = Λ − α− β, where α =

∑

i∈I\S

xiαi, β =
∑

i∈S

xiαi.

Claim: If e(w(λ + ρ) − γ) is a term in T for 0 	= γ =
∑

i∈S yiαi, yi ∈ Z+ and
w ∈W , then w(λ+ ρ) = λ+ ρ.

From the above, (λ+ ρ, αi) ≥ 0 for all i ∈ I. Therefore

w(λ+ ρ) = λ+ ρ−
∑

i∈I
aii>0

ziαi,

where zi ∈ Z+. Suppose that e(w(λ + ρ) − γ) is a term in T . Then, applying
Conditions (4) to the weight λ−

∑
i∈I

aii>0
ziαi −

∑
i∈S yiαi, it follows that zi = 0

for all i ∈ I and so w(λ+ ρ) = λ+ ρ.
We finally show by induction on ht (β) that cλ = ε(α)(−1)ht (β), where

ε(α) = (−1)n if α is the sum of n distinct pairwise perpendicular simple even
roots of non-positive norm, αi perpendicular to Λ, and ε(α) = 0 otherwise.

Suppose that ht (β) = 0. Then, there must be a term on the left hand side
of (3) equal to cλe(λ+ ρ). So, either λ is a weight of the module L(Λ) or

λ = µ− (−1)n
n∑

i=1

µi,

where µ is a weight of the module L(Λ), and for each i, µi is an even positive
root. Now µ = Λ −

∑
i kiαi, where ki ∈ Z+. Lemma 2.6.36 and (9) show that

µ = Λ.

Furthermore the support of a root is connected (see Proposition 2.3.8), and
so (9) forces the roots µi to be simple even, orthogonal to Λ and mutually
orthogonal. We thus get the desired answer for cλ.

Next assume that ht (β) > 0, and that the result holds for all weights λ with
β of smaller height. Then, no term on the left hand side of (3) equals cλe(λ+ρ).
Since β is the sum of mutually orthogonal simple roots and if any appear more
than once, it has norm 0, the only sub-sum of β that are roots are equal to
simple roots. Hence the above claim gives

cλe(λ) +
r∑

s=1

cλ+αi1+...αis
e(λ+ αi1 + ...αis

)e(−αi1)...e(−αis
) = 0,
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where r is the number of distinct simple roots αi with xi 	= 0 since in the
product

∏
α∈∆+

1
(1 + e(−α))multα, the simple roots appear exactly once as they

have multiplicity 1. It follows by induction that

cλ + ε(α)(−1)htβ
r∑

s=1

(
r
s

)
(−1)−s = 0,

giving the desired answer for cλ.
We next prove the super-character formula. The above arguments lead to:

e(ρ)schL(Λ)
∏

α∈∆+
0

(1 − e(−α))multα =
∑

w∈W

w(T ′)
∏

α∈∆+
1

(1 − e(−α))multα,

where the terms in T ′ satisfy conditions (9). Keeping the above notation,
we calculate T ′. We show by induction on ht (β) that c′λ = ε(α), where
ε(α) = (−1)n if α is the sum of n distinct pairwise perpendicular simple even
roots αi perpendicular to Λ, and ε(α) = 0 otherwise. When ht (β) = 0, this
follows as above. So assume ht (β) > 0. Then, for the same reason as before,

c′λe(λ) +
r∑

s=1

(−1)sc′λ+αi1+...αis
e(λ+ αi1 + ...αis

)e(−αi1)...e(−αis
) = 0,

where r is the number of distinct simple roots αi with xi 	= 0 since in the
product

∏
α∈∆+

1
(1 + e(−α))multα, the simple roots appear exactly once as they

have multiplicity 1. It follows by induction that

c′λ + ε(α)
r∑

s=1

(
r
s

)
(−1)s = 0,

giving the desired answer for c′λ.

Remark 2.6.36. Note that the assumption of irreducibility is only used in the
proof of Theorem 2.6.34 through the application of Lemma 2.6.36. However,
if G is a Kac-Moody Lie superalgebra, then Lemma 2.6.36 is not needed: as
there are no simple roots of non-positive norm in this case, comparing the left
hand and the right hand side of equality (3) in the proof, it follows that T =
e(Λ+ρ). Therefore whenG is a Kac-Moody Lie superalgebra, since the character
and super-character formulae hold for all highest weight modules V (Λ), for
each highest weight Λ ∈ P+, there must be precisely one (up to isomorphism).
In other words, for Kac-Moody Lie superalgebras, integrable highest weight
modules are necessarily irreducible. However, as the next example shows this is
not generally the case for BKM superalgebras.

Example 2.6.37. Let S = ∅ and A =
(

2 −1
−1 0

)
. Define eiv = 0, h1v = v,

and f2
1 v = 0 = h2v. Then the vector v generates a highest weight integrable

module V (Λ) with highest weight Λ ∈ P+ satisfying (Λ, α1) = 1 and (Λ, α2) = 0.
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However it is not irreducible if f2v 	= 0 since in this case f2v generates a proper
non-trivial G-submodule. Note that in this case, Lemma 2.6.36 does not hold.
Indeed, the weight λ = Λ−α2 ∈ P (V (Λ)) but (λ, αi) = 0 for i = 1, 2. If f2v = 0,
then the module V (Λ) is irreducible.

The character and super-character formulae lead to the most important for-
mulae associated to a BKM superalgebra:

Theorem 2.6.38. For any BKM superalgebra G,
∏

α∈∆+
0
(1 − e(−α))m0(α)

∏
α∈∆+

1
(1 + e(−α))m1(α)

= e(−ρ)
∑

w∈W

det(w)w(T ), and

∏
α∈∆+

0
(1 − e(−α))m0(α)

∏
α∈∆+

1
(1 − e(−α))m1(α)

= e(−ρ)
∑

w∈W

det(w)w(T ′).

These are respectively called the denominator formula and the super-denomina
tor formula.

Proof. Since L(0) is the irreducible trivial G-module, it has dimension 1, and
so

chL(0) = 1 = schL(0).

On the other hand, the character and super-character formulae applied to L(0)
give an expression for chL(0) and schL(0). Equating the two give the denomi-
nator and super-denominator formulae.

From the Cartan decomposition (Corollary 2.3.7), it follows that a complete
information of the structure of the BKM superalgebra G is equivalent to know-
ing the dimension of its generalized Cartan subalgebra H, the set of roots ∆
together with their multiplicity and parity, and which among them form a set of
“generating” roots Π, in other words are the simple roots. Therefore, the char-
acter and super-denominator formulae essentially characterize the superalgebra
G (up to the dimension of its generalized Cartan subalgebra): an expression
for the product side is equivalent to a description of the roots and their mul-
tiplicities, and an expression for the sum side is equivalent to a description of
the simple roots since the Weyl group is generated by simple roots of positive
norm reflections and T is a sum of simple roots of non-positive norm in which
each appears at least once. Together the character and super-character formulae
allow us to differentiate the even from the odd roots.

The main characteristic of these two formulae is that one side is a sum and
the other a product. This is why they give in many cases interesting identities.

We conclude this section by considering two examples of BKM algebras that
are not Kac-Moody Lie algebras. For the affine Lie algebras, the denominator
formula is equivalent to the Macdonald identities for powers of the Dedekind η
function [Dys], [Kac14, §12.1], [Mac], [Mo5].
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Example 2.6.39. The Monster Lie algebra M
We saw in Example 2.3.11.1 that the roots of M are elements in the Lorentzian

lattice II1,1 with bilinear form given by the matrix
(

0 −1
−1 0

)
with respect

to the standard basis (1, 0), (0, 1). We also saw that the simple roots are the
elements (1, n) with multiplicity c(n), where J(q) =

∑
n c(n)qn is the normal-

ized modular invariant. We will show in Chapter 4 that (m,n) is a root with
multiplicity c(mn).

Let p = e(−1, 0) and q = e(0,−1) be formal exponentials. Then the product
side of the denominator formula is:

∏

m>0
n∈Z

(1 − pmqn)c(mn).

To compute the sum side, we first compute T . We find which simple roots have
non-positive norm: Since (m,n).(m,n) = −2mn, the only roots with positive
norm are ±(1,−1). Also (1, n1).(1, n2) = −n2 − n1 = 0 implies that n1n2 ≤ 0.
Hence, no two simple roots of non-positive norm are orthogonal and neither have
norm 0. From Example 2.3.44, we know that (1, 0) is a Weyl vector. Hence,

T = p−1 −
∑

n>0

c(n)qn = p−1 + q−1 − J(q)

The Weyl group is W =< r >, where r is the reflection generated by the unique
simple root (1,−1) of positive norm. Since

r(1, 0) = (1, 0) − ((1,−1).(1, 0))(1,−1) = (0, 1),

r(p) = q and r(q) = p.

Therefore,
r(T ) = q−1 + p−1 − J(p).

As a result, the sum side of the denominator formula is

p−1(T − r(T )) = p−1(j(p) − j(q))

and so the denominator formula is
∏

m>0
n∈Z

(1 − pmqn)c(mn) = p−1(j(p) − j(q)).

Example 2.6.40. The Fake Monster Lie algebra F
The root lattice of the fake monster lie algebra F is the even unimodular
Lorentzian lattice II25,1 of rank 26 (see section 3.1 for details on lattices). Let
Λ be the Leech lattice, i.e. the unique positive definite lattice of rank 24 with
no vectors of norm 2. Then uniqueness of even unimodular Lorentzian lattices
(see Corollary 3.1.6) implies that
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II25,1 = Λ ⊕ II1,1.

We write vectors in II25,1 as (λ,m, n), with λ ∈ Λ and (m,n) ∈ II1,1.
The roots are the non-zero vectors α of II25,1 with multiplicity p24(1−α2/2),

where p24(n) is the number of partitions of n into parts of 24 colours, so that
∑

n

p24(1 + n) = q−1Πn>0(1 − qn)24 = ∆(q)−1 = q−1 + 24 + 324q + ...

The simple roots of finite type (i.e. positive norm) are in bijective correspon-
dence with points in the Leech lattice:

(λ, 1,
λ2

2
− 1), λ ∈ Λ.

The Weyl group W is thus isomorphic to the reflection group of the Leech lattice
and so its the full automorphism group of the Lorentzian lattice II1,1 [Con2].
The simple roots of infinite type are:

(0, 0, n), n ∈ N

with multiplicity p24(1) = 24. Their restricted simple root multiplicity is equal
to their multiplicity. Writing (., .) both for the bilinear form in II1,1 and the
one in Λ, the Weyl vector (see Definition 2.3.47) ρ = (µ, a, b) satisfies

0 = (ρ, (0, 0, n)) = an

for all n ∈ N since the root (0, 0, n) has norm 0, and

1 = (ρ, (λ, 1,
λ2

2
− 1)) = (µ, λ) − b− a(

λ2

2
− 1)

for all λ ∈ Λ since the root (λ, 1, λ2

2 − 1) has norm 2. Hence,

ρ = (0, 0,−1).

We next describe the set of positive roots. As positive roots are sums of
simple roots, if α = (λ,m, n) is a positive root, then eitherm > 0 or α = (0, 0, n).
Hence, as α, ρ = m,

α ∈ ∆+ = {α ∈ II25,1 : α, ρ > 0 or α = (0, 0, n)}.

We will see in section 5.4 that ∆+ is in fact the set of positive roots.
The product side of the denominator formula is thus

∏

α∈∆+

(1 − e(−α))p24(1−α2/2).
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All the simple roots of infinite type have norm 0 and are mutually orthogonal.
Hence,

T =
∑

n1,n2,···
(−1)n1+n2+...e(n1ρ)

(
24
n1

)
e(n22ρ)

(
24
n2

)
· · ·

= (1 − e(ρ))24(1 − e(2ρ))24 · · ·
= Πn>0(1 − e(nρ))24

=
∑

n∈Z

τ(n)e(nρ)

by definition of the Ramanujan tau function [Hard]. Hence the denominator
formula is

e(ρ)
∏

α∈∆+

(1 − e(−α))p24(1−α2/2) =
∑

w∈W
n∈Z

det(w)τ(n)e(w(nρ)).

The Kac-Moody Lie subalgebra generated by the roots of finite type is the
Feingold-Frenkel Lie algebra [FeinF], [Fre].

Remark 2.6.41. In the case of non-symmetrizable Kac-Moody Lie algebras,
the character formula has been proved by Kumar [Kum1,2]. There are as yet
no results on non-highest weight representations of BKM superalgebras. How-
ever, there is an obvious natural example, namely the adjoint representation for
infinite dimensional BKM superalgebras.

Exercises 2.6.

1. Prove the character formula for Kac-Moody Lie algebras.

2. Find a different construction of the Verma module as an induced module.

3. Let H1 be a generalized Cartan subalgebra of the Kac-Moody Lie algebra
G. Set

V = {v ∈ L(Λ) : v 	= 0, (Λ,Λ)v ⊗ v =
∑

α∈∆∪{0}
eα,i(v) ⊗ e−α,i(v)}.

(i) Show that H1 acts semisimply on the irreducible module L(Λ) for every
weight Λ ∈ P+. Let vΛ be a highest weight vector of the module L(Λ)
(with respect to H). For λ ∈W (Λ), set

V(λ)+ = {v ∈ V : supp(v) ≥ λ and λ ∈ supp(v)}

and
V(λ)− = {v ∈ V : supp(v) ≤ λ and λ ∈ supp(v)}.

(ii) Show that the U(H1)-submodule V generated by the vector vΛ is finite
dimensional and that V ∩ V 	= ∅.
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(iii) Deduce that there exists an eigenvector v of H1 in V ∩ V.
(iv) Show that V = V(λ)+ ∪ V(λ)−.
(v) Deduce that there exists g ∈ G such that g(v) is a multiple of vΛ.
(vi) Deduce that g(H1) = H.

For a solution, see [KacP6].

4. Let R+ (resp. R−) be the ideal of G̃ (see section 2.1, paragraph pre-

ceding Proposition 2.1.13) generated by the elements (ad ei)
−2aij

aii
+1
ej , (resp.

(ad fi)
−2aij

aii
+1
fj), for aii > 0, i ∈ I\S; (ad ei)

−aij
aii

+1
ej , (resp. (ad fi)

−aij
aii

+1
fj ,

for aii > 0, i ∈ S; and [ei, ej ] (resp. [fi, fj ]) if aij = 0.

(i) Prove that the ideal R+ is generated as an ideal by the subspaces
Rα = {x ∈ R+ : [h, x] = (fQ(α), h)x} for the elements α ∈ Q\Π such
that α > 0 (resp. α < 0 and 2(ρ, α) = (α, α) (see paragraph preceding
Proposition 2.3.9 for the definition of the map fQ).

Hint: Define a Verma module M̃(Λ) (Λ ∈ H) for the Lie superalgebra
G̃ and show that the unique maximal submodule Ñ(0) of M̃(0) is isomor-
phic to ⊕i∈IM̃(−αi). Deduce that there is an G-module homomorphism
R−/[R−, R−] → ⊕i∈IM(−αi). Using the PBW Theorem, show this map is
injective. Conclude.

(ii) Deduce that the ideal R = R+ ⊕R− is the maximal ideal in G̃ such that
R ∩H = 0.

For a solution, see [Kac14, §9.11] and [Ray3].

5. Find the denominator formula for the (untwisted) extended affine Lie al-
gebras and show that for the extended affine Lie algebra Ĝ corresponding to
the finite dimensional simple Lie algebra G it is equivalent to the Macdonald
identity giving the Fourier series for ηdim G.
For a solution, see [Kac14, §12.1].
6. Suppose that S = ∅. Let φ be the projection of the vector space G on N−.
Define the operator Ω′

0 on the Lie subalgebra N− to be

Ω′
0(x) =

∑

α∈∆+

mult(α)∑

i=1

[fα,i, φ([eα,i, x])].

(i) Show that for any α ∈ ∆+ and x ∈ G−α, Ω′
0(x) = (2(ρ, α) − (α, α)).

Hint: Find (Ω′
0(x))(v), where v is a highest weight vector of the Verma module

M(0). Use Lemma 2.6.26.

(ii) Show that the contravariant bilinear form (x, y)0 = −(ω0(x), y) (see sec-
tion 2.2) is positive definite on root spaces. When the Lie algebra G is
finite dimensional show that it is positive definite on G.

For a solution, see [Kac14, Theorem 11.7].



Chapter 3

Singular Theta Transforms
of Vector Valued Modular
Forms

In this chapter we introduce vector valued modular forms and show how to
derive their theta transforms. As we concentrate only on the properties needed
for our classification purpose given in sections 5.2 and 5.3, for an in depth study
of these objects, the reader can consult the following books: [Borc11], [EicZ],
[Frei], [Mi], [Shi], [Serr2].

3.1 Lattices

We start with some classical properties of lattices.

Definition 3.1.1. A (integral) lattice M is a free abelian group of finite rank
with a symmetric Z-valued bilinear form (., .). It is said to be even if for all
v ∈ M , (v, v) ≡ 0 (mod 2). Otherwise it is said to be odd. The rank or
dimension dimM (resp. signature sign(M)) of the lattice M is the dimension
(resp. signature) of the real vector space M ⊗Z R with bilinear form induced
from that of M . The lattice M is Lorentzian if it has signature (m, 1) or (1, n).

Unless the lattice under consideration is not integral, we will sometimes omit
to add this precision. We now briefly discuss dual lattices.

Definition 3.1.2. The dual lattice M∗ of the lattice M is the lattice of all
vectors v∗ in M ⊗Z R for which (v∗, v) ∈ Z for all v ∈ M . The lattice M is
unimodular if M = M∗.

The following result is an immediate consequence of the definition.

Lemma 3.1.3. An integral lattice M is always contained in its dual M∗ and
the quotient group M∗/M is an abelian finite group.

93
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However one should be careful in case the lattice M is degenerate. Indeed
if z ∈ M is such that (z,M) = 0, then there are no vectors in the vector space
M ⊗Z R whose inner product with z is non-trivial.

Lemma 3.1.4. The dual lattice M∗ of M is isomorphic to Hom(M,Z) if and
only if the lattice M is non-degenerate.

We next give a well known property of the signature of unimodular lat-
tices as the root lattices of some of the most interesting BKM algebras are
indeed unimodular. This result is a consequence of Milgram’s formula, which
we first state. There are elementary proofs of this formula. Here we derive it
as a consequence of results on the Siegel theta function for the lattice M in
section 3.3.

Lemma 3.1.5. For any nonsingular lattice M ,

1√∣∣M∗/M
∣∣

∑

λ∈M∗/M

eλ2/2 = esign(M)/8,

where e = exp(2πi).

Proof. Since the map ρM defined in Theorem 3.3.4 is a representation of the
metaplectic group (see Definition 3.3.2) on the group ring C[M∗/M ],

ρM (ST )eγ = e((γ, γ)/2)
√
i
b−−b+

√∣∣M∗/M
∣∣

∑

δ∈M∗/M

e(−(γ, δ))eδ

for any γ ∈M∗/M , where (b+, b−) = sign(M). Hence,

ρM (ST )2eγ = e((γ, γ)/2)
ib

−−b+

∣∣M∗/M
∣∣

∑

δ,µ∈M∗/M

e((δ, δ)/2)e(−(γ, δ))e(−(δ, µ))eµ

=
ib

−−b+

∣∣M∗/M
∣∣

∑

δ,µ∈M∗/M

e((δ − γ)2/2)e(−µ, δ)eµ

=
ib

−−b+

∣∣M∗/M
∣∣

∑

δ,µ∈M∗/M

e(δ2/2)e(−µ, δ + γ)eµ.

And so,

ρM (ST )3eγ =
√
i
3(b−−b+)

√∣∣M∗/M
∣∣
3

×
∑

µ,δ,λ∈M∗/M

e(δ2/2)e((µ, µ)/2)e(−(µ, δ + γ))e(−λ, µ)eλ

=
√
i
3(b−−b+)

√∣∣M∗/M
∣∣
3

∑

µ,δ,λ∈M∗/M

e((δ − µ)2/2)e(−(µ, γ + λ))eλ
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= e−γ

√
i
3(b−−b+)

√∣∣M∗/M
∣∣
3 (

∑

δ∈M∗/M

e(δ2/2))
∑

µ,λ∈M∗/M

e(−(µ, λ))eλ

=
(i
√
i)b−−b+

√∣∣M∗/M
∣∣
(

∑

δ∈M∗/M

e(δ2/2))e−γ .

By Lemma 3.3.3, S2 = (ST )3. Hence, from the action of S2 on the group ring
given in Theorem 3.3.4, we can deduce that

ib
−/2−b+/2

√∣∣M∗/M
∣∣
(

∑

δ∈M∗/M

e(δ2/2)) = 1.

The result follows since ib
+/2−b−/2 = exp(2πi(b+ − b−)/8).

Corollary 3.1.6. If an even lattice M is unimodular, then sign(M) is divisible
by 8. Furthermore, for every m,n ∈ Z+ such that 8 divides m − n, there is a
unique (up to isomorphism) lattice of rank m − n and dimension m + n. It is
written IIm,n.

Proof. Applying Lemma 3.1.5 to the case when M = M∗, the first part follows.
Uniqueness is a consequence of unimodularity. The lattice of rank 2 with bilinear

form given by the matrix
(

0 −1
−1 0

)
is even and unimodular and hence must

be II1,1. The lattice (E8)r ⊕ IIn
1,1 is clearly even and unimodular with rank 8r

and dimension 8r + 2n, proving existence.

In the particular case of a unimodular Lorentzian lattice, the existence of
norm 0 vectors simplifies the proofs in the next sections and in chapter 5.

Definition 3.1.7. A vector v in the lattice M (resp. M∗) is primitive if for all
non-zero integers n ∈ Z, 1

nv 	∈M (resp M∗).

Lemma 3.1.8. If M is a unimodular even Lorentzian lattice, then it contains
a primitive norm 0 vector.

Proof. Let s = sign(M). By the uniqueness part of Corollary 3.1.6 it follows
that there is a positive (or negative) definite lattice K with signature s and that
M = K ⊕ II1,1 is the unique Lorentzian lattice with signature s. The result is
then an immediate consequence of the structure of the sublattice II1,1.

3.2 Ordinary Modular Functions

Before developing the concept of vector valued modular forms, we remind the
reader of some properties of ordinary modular functions. For τ ∈ C, we will
write x = R(τ) and y = I(τ), i.e. τ = x+ iy.
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The upper half plane

H = {τ ∈ C : Im(τ) > 0}

is a Riemannian manifold (see Lemma B.2.26) with isometry group the Lie
group SL2(R) acting as follows:

Aτ =
aτ + b

cτ + d

for A =
(
a b
c d

)
∈ SL2(R) and τ ∈ H. In particular the action is transitive.

Lemma 3.2.1.

(i) The stabilizer of i ∈ H is SO2(R) = {A ∈ SL2(R) : AtA = 1}.
(ii) The spaces SL2(R)/SO2(R) and H are homeomorphic.

Proof. (i): Let A =
(
a b
c d

)
∈ SL2(R) be such that Ai = i. Then ai+b

ci+d = i.

Hence, ai + b = di − c. Therefore a = d and b = −c. Since ad − bc = 1,

a2 + b2 = 1. Hence, At =
(
a −c
b d

)
and AtA = 1. Conversely, if detA = 1 and

AtA = 1, then ad − bc = 1, a2 + c2 = 1 = b2 + d2, and ab + cd = 0. It follows
that a = d and b = −c and so A stabilizes i.

(ii): The homeomorphism is given by the map

SL2(R)/SO2(R) → H
A(SO2(R)) �→ A(i).

Definition 3.2.2. The discrete subgroups

Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)}

for N ∈ N are congruence subgroups of SL2(R). In particular, Γ0(1) = SL2(Z)
is the modular group.

Lemma 3.2.3. The modular group SL2(Z) is generated by the matrices

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Definition 3.2.4. A matrix A ∈ SL2(R) is parabolic if it has a unique fixed
point in C.

If A ∈ SL2(R) is a parabolic element, then its unique fixed point is in
Q ∪ {∞} since if a quadratic with integral coefficients has a unique root, then
the latter must be in this set.
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Definition 3.2.5. A point in r ∈ R∪{∞} is a cusp point of a discrete subgroup
Υ of the modular group SL2(Z) if it is fixed by a parabolic element of Υ.

Note that ∞ is a cusp point of the congruence subgroup Γ0(N) for all N ∈ N

since its the fixed point of the parabolic element
(

1 1
0 1

)
. The next result

follows from Exercise 3.2.3.

Lemma 3.2.6.The set of cusp points of the modular SL2(Z) is Q ∪ {∞} and
it acts transitively on it.

Set H∗ = H∪Q∪ {∞}. Sometimes ∞ is written i∞, i.e. it is considered to
be the limit point on the imaginary axis rather than the real one.

Definition 3.2.7. A fundamental domain for a discrete subgroup Γ of the Lie
group SL2(R) is a connected open subset D of the upper half plane satisfying
the following conditions:

(i) if x 	= y ∈ D, then for any A ∈ Γ, Ax 	= y.
(ii) H =

⋃
A∈ΓAD, where D is the closure of D in H.

Before giving a fundamental domain for the modular group, we state an
elementary result

Lemma 3.2.8. For any τ ∈ H, A =
(
a b
c d

)
∈ SL2(R), I(Aτ) = I(τ)∣∣cτ+d

∣∣2 .

Proof.

I(Aτ) = I(
(aτ + b)(cτ + d)

∣∣cτ + d
∣∣2 )

=
I(adτ + bcτ)
∣∣cτ + d

∣∣2

=
(ad− bc)I(τ)

∣∣cτ + d
∣∣2

=
I(τ)

∣∣cτ + d
∣∣2 .

Lemma 3.2.9.
D = {τ ∈ H :

∣∣τ
∣∣ > 1,R(z) <

1
2
}

is a fundamental domain for the modular group SL2(Z).

Proof. Since the group SL2(R) acts transitively on H and 2i ∈ D, to prove
this result we only need to show that

(i) if A(2i) ∈ D for some A =
(
a b
c d

)
∈ SL2(Z), then A(2i) = 2i and

(ii) For any τ ∈ H, there is some A ∈ SL2(R) such that A(τ) ∈ D.
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We first prove (i). A(2i) = 2ai+b
2ci+d . Suppose that A(2i) ∈ D. So, by

Lemma 3.2.8,
2

4c2 + d2
=

I(2i)
∣∣2ci+ d

∣∣2 > 1.

Equivalently,
4c2 + d2 < 2.

Since c, d ∈ Z, this forces c = 0 and d = ±1. As detA = 1, we then get a = d.
Hence A(2i) = 2i+ b or 2i− b. Since A(2i) ∈ D, it follows that b ∈ [− 1

2 ,
1
2 ]∩Z,

and so b = 0. As a result, A(2i) = 2i as wanted.

(ii): Let τ ∈ H. For A =
(
a b
c d

)
∈ SL2(Z), by Lemma 3.2.8,

I(Aτ) = I(τ)∣∣cτ+d
∣∣2 . For any M ∈ R, there exists finitely many (c, d) ∈ Z2

such that
∣∣cτ + d

∣∣ < M . Hence, there is some matrix A ∈ SL2(Z) such that
I(Aτ) is maximal. Since TAτ = Aτ + 1, there is some n ∈ Z+ such that
R(TnAz) ∈ [−1

2 ,
1
2 ]. Then,

∣∣TnAτ
∣∣ ≥ 1 for otherwise

I(−1/TnAτ) =
I(TnAτ)
∣∣TnAτ

∣∣2 > I(TnAτ).

However
I(TnAτ)
∣∣TnAτ

∣∣2 =
I(Aτ)

∣∣TnAτ
∣∣2 ≤ I(Aτ)

by definition of A. Hence the subset D satisfies condition (ii).

Definition 3.2.10. A modular function f(τ) of weight k and with level N
(k ∈ Z+ and N ∈ N) is a function on the upper half plane H, meromorphic on

H and at the cusps such that for any matrix
(
a b
c d

)
∈ Γ0(N),

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ).

If the function f is holomorphic on H and at infinity it is said to be a modular
form of weight k with level N . If f is zero at the cusps, then it is a cusp form.

By Lemma 3.2.2, to check if a meromorphic function on the upper half plane
is a modular function of level 1, we only need to consider how it transforms under
the action of the matrices S and T .

Lemma 3.2.11. At i∞ the modular function f has Laurent expansion

∞∑

n=−m

ane
2πiτ ,

where

an =
∫ 2π

0

f(x)
e2πix

dx.
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This series converges to f(τ) in the region τ > − logR/2π, for some real
0 < R < 1. If f is a modular form, then a(n) = 0 for n < 0. If f is a
cusp form, then a(n) = 0 for n ≤ 0.

Proof. Since T ∈ Γ0(N) if f is a modular function with level N ,

f(τ + 1) = f(τ) (1)

for all τ ∈ H. Set q = e2πiτ . Because of equality (1), The function f̃(q) = f(τ)
is a well defined function on the unit disc D = {q∈ C : 0 <

∣∣q
∣∣ < 1}. Since f

is meromorphic at infinity, the function f̃ is meromorphic at 0. Equivalently, f̃
has a pole of order m ≥ 0 say at 0. Thus there is some 0 < R < 1 such that for∣∣q
∣∣ < R

f̃(q) =
∞∑

n=−m

ane
2πiτ ,

where

an =
1

2πi

∮

Cr

f̃(q)
q
dq,

where 0 < r < R (see Corollary C.2.7). The result follows.

Lemma 3.2.12. Let f be a modular function. Set τ = x+ iy ∈ H
(i) There is a positive real N > 0 such that

∣∣e−Nyf(τ)
∣∣ is bounded as

I(τ) → ∞.
(ii) If the function f is invariant under the action of SL2(Z), then there is a

positive real N > 0 such that
∣∣e−N/yf(τ)

∣∣ is bounded as I(τ) → 0.

Proof. Suppose first that f is holomorphic at infinity. Considering the Taylor
series (see Theorem C.2.6) at q = 0, it follows that

∣∣f(τ)
∣∣ is bounded at infinity.

Dividing by qm, where m is the lowest power appearing in the Laurent series of
f at infinity, (i) then follows for arbitrary modular functions.

For any rational cusp p of f , there is an element A ∈ SL2(Z) such that
A(i∞) = p. Since f(Aτ) = f(τ) and f(τ) is meromorphic at infinity, (ii)
follows.

An automorphic form on H is a generalization of the concept of a modular
form. Exercise 3.2.1 says that the quotient space SL2(Z)\H∗ is the compact
Riemann sphere. Hence the modular group is a Fuschian group.

Definition 3.2.13. Let Υ be a discrete subgroup of the modular group and
H∗

Υ = H ∪ {cusp points of Υ}. If the Hausdorff topological space Υ\H∗
Υ is

compact, then Υ is a Fuschian group (of the first kind).

Definition 3.2.14.An automorphic form f on H of weight k (k ∈ Z+) for the
Fuschian group Υ is a meromorphic function on H, meromorphic at the cusps
of Υ such that
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f(
aτ + b

cτ + d
) = (cτ + d)kf(τ)

for all matrices
(
a b
c d

)
∈ Υ.

Some of the most important examples of modular forms are theta functions
of unimodular positive definite lattices. We state some of their properties.

Definition 3.2.15. The theta function of a positive definite lattice K is the
function on the upper half plane H defined by

θK(τ) =
∑

x∈K

qx2/2

for τ ∈ H, where q = e2πiτ .

Theorem 3.2.16. Let K be a unimodular positive definite even integral lattice
of rank n. Then θK is a modular form of weight n/2 and level 1 but it is not a
cusp form.

Proof.
θK(τ + 1) = θK(τ)

holds since the lattice K is even. We show that

θK(−1/τ) = (−iτ)n
2 θK(τ).

For a fixed value of τ , set g(x) = eπix2τ . By Lemma D.13, its Fourier transform
is:

(−iτ)−1/2e
−iπx2

τ .

So the Poisson summation formula (see Corollary D.8) for x = 0 gives

θK(τ) =
∑

λ∈K∗

eπiλ2τ

= (−iτ)
−n
2

∑

λ∈K

e
−iπλ2

τ

= (−iτ)
−n
2 θK(

−1
τ

).

Since the Lattice K is unimodular, n is divisible by 8 (see Lemma 3.1.5). Hence
(−iτ)−n

2 = τ
−n
2 .

To show that the function θK is holomorphic on H, we need to show that
the series

∑
x∈L q

x2/2 converges uniformly on H (see Lemma C.2.5). Let τ ∈ D,
where D is the fundamental domain of the modular group. Since I(τ) > 0 and∣∣R(τ)

∣∣ ≤ 1/2 and ∣∣τ
∣∣2 = R(τ)2 + I(τ)2 ≥ 1,

it follows that I(τ) ≥
√

3/2. Hence,
∣∣qx2/2

∣∣ = e−πI(τ)x2 ≤ e−π
√

3x2/2.
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The series ∑

x∈K

e−π
√

3x2/2

converges by the ratio test in the case when K has rank 1. The rank n case is an
immediate consequence. Therefore the series

∑
x∈K qx2/2 converges uniformly

in D. Hence the function θK is analytic on D. By Lemma 3.2.9, for any τ ∈ H,

there exists A =
(
a b
c d

)
∈ SL2(Z) such that Aτ ∈ D. Thus θK is analytic on

H since θK(Aτ) = (cτ + d)
n
2 θK(τ). Since the convergence is uniform,

lim
I(τ)→∞

θK(τ) =
∑

x∈K

lim
I(τ)→∞

qx2/2.

The lattice K being positive-definite,

lim
I(τ)→∞

qx2/2 =
{ 0 if x 	= 0,

1 if x = 0
.

As a result,
lim

I(τ)→∞
θK(τ) = 1.

In particular, the function θK is holomorphic at infinity. The function θK is not
a cusp form since limI(τ)→∞ θK(τ) 	= 0.

We finish this section with the definition of Jacobi forms as their generaliza-
tions to higher dimensions will be needed to calculate the Fourier coefficients of
the automorphic forms we construct in section 5.3. For details, see [EicZ] and
[Borc9, §3].

3.2.17. A Jacobi form of weight k and index m (k,m ∈ Z+) for the modular
group SL2(Z) is a holomorphic function φ : C ×H → C satisfying

(i)

φ(
z

cτ + δ
,
aτ + b

cτ + d
) = (cτ + d)kem(

c(z2/2)
cτ + d

)φ(z, τ),

for all
(
a b
c d

)
∈ SL2(Z);

(ii)
φ(z + λτ + µ, τ) = e−m(zλ/2 + τλ2/2)φ(z, τ),

for all λ, µ ∈ Z;
(iii) φ(z, τ) has a Fourier expansion of the form

∑

l,n∈Q

c(l, n)e2πiτle2πizn

with c(l, n) = 0 for l ≤ n2/4m. If c(l, n) = 0 for l = n2/4m, then φ is
said to be a cusp form.
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Exercises 3.2

1. (i) Show that the modular group acts continuously on the quotient space
SL2(Z)\H∗ and that this space is isomorphic to D ∪ {∞}.

(ii) Deduce that the space SL2(Z)\H∗ is compact and define a natural com-
plex structure on it.

(iii) Show that the space SL2(Z)\H∗ has genus 0 and thus that it is isomorphic
to the compact Riemann sphere C ∪∞.

2. Check that the definition of parabolic elements of SL2(Z) given in Definition
3.2.4 coincides with the usual definition of a parabolic matrix (namely of a
matrix with precisely one eigenvalue).

3. Show that for any rational p ∈ Q, there is a parabolic element A ∈ SL2(Z)
such that A(∞) = p. Deduce that the set Q ∪ {∞} is the set of cusps of the
modular group.

3.3 Vector Valued Modular Functions

The root lattices of the most interesting and important known examples of BKM
algebras that are not Kac-Moody Lie algebras are not only even Lorentzian but
also unimodular. Their study does not require the theory of vector valued modu-
lar functions. However there are examples of BKM algebras with non unimodular
Lorentzian lattices. So to have a complete classification of the BKM algebras
to which one can associate a modular function, we need to generalize modular
functions with values in C to vector valued modular forms. This is why we give
an exposition of some of their properties that we will need in chapter 5. All
the definitions and proofs can be simplified in the unimodular case. For a more
general detailed study of section 2.3 and 2.4, see [Borc9,11] and [Bar].

In the previous section we considered theta functions for positive definite
lattices. In order to motivate the definition of modular functions with values in
a vector space, we consider a typical example which will play a fundamental role
subsequently, namely the theta function of an arbitrary non-degenerate lattice,
not necessarily positive definite nor necessarily unimodular. Let us fix some
notation first.

Set M to be an even non-degenerate lattice with bilinear form (., .) and sig-
nature (b+, b−) and G(M) to be the Grassmannian of maximal positive definite
subspaces of the real vector space M ⊗Z R. For v+ ∈ G(M), set v− to be its
orthogonal complement. So v+ (resp. v−) is a maximal positive (resp. negative)
definite subspace. We will use the simplified notation

e = exp(2πi).

A theta function on M can be defined as a function with values in the group ring
C[M∗/M ]. The quotient M∗/M being a finite abelian group (see Lemma 3.1.2),
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this is a finite dimensional vector space. For γ ∈M∗/M , set eγ ∈ C[M∗/M ] to
be the corresponding element. As γ runs through M∗/M , we get a basis (eγ)γ

such that for γ, µ ∈ [M∗/M ], eγeµ = eγ+µ. There is an inner product on the
space C[M∗/M ] defined by

(eγ , eδ) =
{ 1 if γ + δ = 0

0 otherwise.

The complex conjugate of the basis vector eγ is defined to be e−γ .

Definition 3.3.1. For τ ∈ H, α, β ∈M ⊗ R, v+ ∈ G(M), γ ∈M∗/M , set

θM+γ(τ, α, β; v+) =
∑

λ∈M+γ

exp(2πi(τ(λ+ β)2v+/2+τ(λ+ β)2v−/2−(λ+β/2, α))).

The generalized theta function for the lattice M is the C[M∗/M ]-valued function
defined as follows:

ΘM (τ, α, β; v+) =
∑

γ∈M∗/M

θM+γ(τ, α, β; v+)eγ .

When α = β = 0, this is the Siegel theta function ΘM (τ ; v+) of the lattice M .

The generalized theta function is a generalization of the classical theta func-
tion defined on {(τ, α, β) : α ∈ M ⊗ R, τ, β ∈ C, I(τ) > 0} (see [Kac14,
Chapter 13]).

We study how the modular group acts on the theta function. For

A =
(
a b
c d

)
∈ SL2(Z), consider the expression

(cτ + d)−b+/2(cτ + d)−b−/2ΘM (Aτ, aα+ bβ, cα+ dβ; v+).

The rational numbers b+/2 and b−/2 need not be integers. As there are two
possibilities for the square root of cτ + d and cτ + d, the above expression for a
given matrix A is not in general uniquely defined. So we need to consider the
double cover (see Definition B.3.1) of SL2(R). The next result is an immediate
consequence of Theorems B.3.7 and B.3.8.

Corollary/Definition 3.3.2. The group SL2(R) has a unique double cover,
called the metaplectic group and written Mp2(R). Its elements are

(
(
a b
c d

)
, f),

where f is a holomorphic function on the upper half plane such that
f2(τ) = cτ + d for all τ ∈ H. The group law is given by

(A, f(τ))(B, g(τ)) = (AB, f(B(τ))g(τ))

for (A, f), (B, g) in Mp2(R).
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Since the group SL2(Z) is generated by the matrices
(

1 1
0 1

)
and

(
0 −1
1 0

)
,

one can deduce the generators of its double cover. For reasons of simplicity we
keep the same notation for the generators ofMp2(Z) and their images in SL2(Z).
Which group they are elements of will be clear from the context.

Lemma 3.3.3.

Mp2(R) = 〈T, S : S2 = (ST )3, S8 = 1〉,

where

T = (
(

1 1
0 1

)
, 1) and S = (

(
0 −1
1 0

)
,
√
τ).

Proof.

S2 = (
(
−1 0
0 −1

)
, i)

and so

S4 = (
(

1 0
0 1

)
,−1) and S8 = 1.

ST = (
(

0 −1
1 1

)
,
√
τ + 1).

So

(ST )2 = (
(
−1 −1
1 0

)
,
√
τ) and (ST )3 = (

(
−1 0
0 −1

)
, i).

We can now not only show how the theta function transforms under the
action of the modular group, but also describe an action of the metaplectic
group on the group ring.

Theorem 3.3.4. For (A, f) ∈Mp2(Z), where A =
(
a b
c d

)
∈ SL2(Z), set

ρM ((A, f))ΘM (τ, α, β; v+) = (cτ + d)−b+/2(cτ + d)−b−/2

×ΘM (Aτ, aα+ bβ, cα+ dβ; v+).

Then, ρM is a representation of the group Mp2(Z) on the vector space C[M∗/M ]
given by:

ρM (T )(eγ) = e((γ, γ)/2)eγ ,

ρM (S)(eγ) =
√
i
b−−b+

√∣∣M∗/M
∣∣

∑

δ∈M∗/M

e(−(γ, δ))eδ

∀ γ ∈M∗/M . In particular, ρM ((S2, i))eγ = ib
−−b+e−γ .

Proof. The definition of ρM implies that it is a group homomorphism and that
the identity element acts trivially. Hence ρM is a representation of the group
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Mp2(Z). We now find the action of ρM (T ) and ρM (S) on the basis vectors eγ ,
γ ∈M∗/M . Rewriting the definition of ρM ((A, f)) for any (A, f) ∈Mp2(Z) in
terms of the coordinates of the theta function, we get

∑

γ∈M∗/M

θM+γ(τ, α, β; v+)ρM ((A, f))eγ

=
∑

γ∈M∗/M

θM+γ(Aτ, aα+ bβ, cα+ dβ; v+)eγ (1)

We first consider the element T ∈Mp2(Z). For fixed γ ∈M∗/M ,

θM+γ(τ + 1, α+ β, β; v+)

=
∑

λ∈M+γ

e((τ + 1)(λ+ β)2v+/2 + (τ + 1)(λ+ β)2v−/2 − (λ+ β/2, α+ β))

=
∑

λ∈M+γ

e(τ(λ+ β)2v+/2 + λ2
v+/2 + β2

v+/2 + (λv+ , βv+) (2)

+τ(λ+ β)2v−/2 + λ2
v−/2 + β2

v−/2 + (λv− , βv−) − (λ+ β/2, α+ β))

= e((γ, γ)/2)
∑

λ∈M+γ

e(τ(λ+ β)2v+/2 + τ(λ+ β)2v−/2 − (λ+ β/2, α))

= e((γ, γ)/2)θM+γ(τ, α, β; v+)

since the spaces v+ and v− being orthogonal complements,

(λv− , βv−) + (λv+ , βv+) = (λ, β)

and
λ2

v−/2 + λ2
v+/2 = λ2/2,

and since the lattice M being even, (β/2, β) ∈ Z.
Substituting the expression for θM+γ(τ + 1, α + β, β; v+) given by equality

(2) into equality (1) applied to T , we can deduce that
∑

γ∈M∗/M

θM+γ(τ, α, β; v+)ρM (T )eγ =
∑

γ∈M∗/M

e((γ, γ)/2)θM+γ(τ, α, β; v+)eγ .

(3)
Since the vectors eγ are linearly independent and (3) holds for all τ ∈ H and
all vectors α, β ∈ M ⊗Z R, substituting the defining expression for the theta
function in both sides of (3) gives the desired answer for ρM (T ).
We next compute the action of the element S on the basis vectors. For fixed
γ ∈M∗/M , by definition of the theta function,

θM+γ(−1/τ ,−β, α; v+)

=
∑

λ∈M

e((−1/τ)(λ+ α+ γ)2v+/2 + (−1/τ)(λ+ α+ γ)2v−/2

−(λ+ γ + α/2,−β)).
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As the coordinate variables of the vector λv+ and λv− are complementary ones,
applying Lemmas D.13 and D.14, we can deduce that the Fourier transform of
a summand in the previous sum is:

(i/τ)−b+/2(−i/τ)−b−/2e(τ(λ+ β)v+/2 + τ(λ+ β)v−/2 − (λ+ β/2, α) − (λ, γ)).

Hence using the Poisson summation formula given in Corollary D.8, we get

θM+γ(−1/τ,−β, α; v+)

=
√
i
b−−b+

τ
b−
2

√∣∣M∗/M
∣∣
τ

b+
2

∑

λ∈M∗

e(τ(λ+ β)2v+/2 + τ(λ+ β)2v−/2

−(λ+ α/2, β) − (λ, γ))

=
√
i
b−−b+

τ
b−
2 τ

b+
2

√∣∣M∗/M
∣∣

∑

δ∈M∗/M

∑

λ∈M+δ

e(τ(λ+ β)2v−/2 + τ(λ+ β)2v+/2

−(λ+ α/2, β) − (λ, γ)) (4)

=
√
i
b−−b+

τ
b−
2 τ

b+
2

√∣∣M∗/M
∣∣

∑

δ∈M∗/M

e(−(δ, γ))

×
∑

λ∈M+δ

e(τ(λ+ β)2v−/2 + τ(λ+ β)2v+/2 − (λ+ α/2, β)).

This last equality follows from the fact that forλ ∈M+δ, (λ, γ) = (λ−δ, γ)+(δ, γ)
and since (λ − δ, γ) ∈ Z as λ − δ ∈ M , we have e(λ − δ, γ) = 1. By definition,
the right hand side of equality (4) is equal to θδ(τ, α, β; v+), which for the same
reasons as for T shows that ρM (S) is as expected.

It only remains to check that ρM (S2) is as given.

ρM (S)2eγ =
ib

−−b+

∣∣M∗/M
∣∣

∑

δ,µ∈M∗/M

e(−(γ, δ))e(−(δ, µ))eµ

=
ib

−−b+

∣∣M∗/M
∣∣e−γ

∑

δ,µ∈M∗/M

e(−(γ + µ, δ))eµ+γ

=
ib

−−b+

∣∣M∗/M
∣∣e−γ

∑

µ∈M∗/M

(
∑

δ∈M∗/M

e(−µ, δ))eµ.

When the lattice M is unimodular, ρM is just the trivial representation on
the one dimensional space C. We now have an idea how to generalize ordinary
modular functions to vector valued ones.

Definition 3.3.5. Let ρ be a representation of the group Mp2(R), V the cor-
responding representation space, and m+,m− ∈ 1

2Z. A vector valued modular
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form of weight (m+,m−) and type ρ is a real analytic function F on the upper
half plane H with values in V such that

F (
aτ + b

cτ + d
) = (cτ + d)m+

(cτ + d)m−
ρ((

(
a b
c d

)
, f))F (τ),

where (
(
a b
c d

)
, f) ∈Mp2(Z).

Note that in this generalized version, a modular form is allowed to be mero-
morphic (see Definition 3.2.10) at the cusps.

According to this definition, by Lemma 3.2.8, the function

τ �→ y

defined on the upper half plane is a modular form of weight (−1,−1) and type
ρ, where ρ is the trivial representation on the one dimensional space R.

Theorem 3.3.4 says that the Siegel theta function is a modular form of weight
(b+/2, b−/2) and type ρM . Indeed, its definition shows that it is holomorphic
on H. As this example shows, in general, a modular form f does not have a
Laurent series at infinity (see Lemma 3.2.11) since the action of the element T
gives

θM+γ(τ + 1) = e((γ, γ)/2)θM+γ(τ)

for γ ∈ M∗/M and (γ, γ)/2 may not be an integer. However, rewriting the
theta function in a different form, we get

θM+γ(τ) =
∑

λ∈M+γ

e(λ2/2τ) exp(πy(λ2
v+ − λ2

v−))

=
∑

m∈Q

∑

k∈Z

c(m, k)qmy−k.

In the last line, we have replaced exp(πy(λ2
v+ −λ2

v−)) by its infinite series expan-
sion. Note that c(m, k) = 0 for k > 0 and that m = λ2/2 is a rational but not
necessarily an integer when γ 	= 0. This example motivates the next definition:

Definition 3.3.6. A modular form F of weight (m+,m−) is almost holomorphic
if at infinity, its components have Fourier expansions of type

∑

m∈Q

∑

k∈Z

c(m, k)qmy−k,

where c(m, k) = 0 either for m << 0 or for k < 0 or for k >> 0. It is said to
be holomorphic if m− = 0 and c(m, k) = 0 for all k 	= 0 and m < 0.

We give a partial justification for this definition. The modular forms we will
encounter will be almost holomorphic (except in section 5.4).

Lemma 3.3.7. If F is a modular form of type ρM then at infinity, its component
Fγ , γ ∈M∗/M has Fourier expansion of type

∑

m∈Z

cm,γ(y)qm+γ2/2,
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where the coefficients cm,γ(y) are functions of y. If F is meromorphic at the
cusps, then these coefficients are constants and cm,γ(y) = 0 for m << 0.

Proof. Let
F (τ) =

∑

γ∈M∗/M

fγeγ .

Since for any γ ∈ M∗/M fγ(τ + 1) = e((γ, γ)/2))fγ(τ), setting
gγ(τ) = e(−(γ, γ)/2)), we get

gγ(τ + 1) = gγ(τ).

Since as a function of x, fγ is bounded but not necessarily as a function of y,
gγ(τ) =

∑
n∈Z dn,γ(y)e2πinx, where the coefficients dn(y) are functions of y. Set

cn,γ(y) = dn,γe
2πny. If fγ is meromorphic at i∞, then so is g. So in this case

the coefficients cn are constants as the Fourier series is the Laurent series at
q = 0. Hence,

fγ(τ) =
∑

n∈Z

cn,γ(y)qn+γ2/2,

proving the result.
In particular, Lemma 3.3.7 shows that the sum over m in definition 3.3.6

cannot in general be over Z but has to be over Q unless the lattice M is uni-
modular. This is the case even when the modular form F is holomorphic on H
and meromorphic at i∞.

If F and G are two modular functions of type ρM , then we will take the
product of F and G to be the inner product of F and G.

F (τ)G(τ) = (F (τ), G(τ)),

where (., .) is the inner product on C[M∗/M ] defined earlier in this section.

From now on, we restrict ourselves to the case of an even non-degenerate
lattice M of the following type:

M = L⊕ L⊥, (I)

where L is a sublattice of rank (b+−1, b−−1) and the orthogonal complement of
L in M , L⊥ is isomorphic to II1,1. Indeed, the most interesting BKM algebras
have a root lattice of this type (see Examples 2.3.11.1 and 2.6.40). The lattice
M being non-degenerate, so is L. Since the lattice II1,1 is self-dual, it follows
from (I) that

M∗ = L∗ ⊕ L⊥ (II)

and so
M∗/M = L∗/L. (II ′).

Set z ∈ L⊥ to be a primitive vector of norm 0 and z′ ∈ L⊥ to be the vector
satisfying (z, z′) = 1. Note that

z′2 = 0.
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We want to find an expression for the Siegel theta function of M in terms of
the Siegel theta function of the lattice L. For v+ ∈ G(M), set zv± to be the
components of z in v±, i.e.

z = zv+ + zv− ,

and w±
1 to be the orthogonal complement of the vector zv± in v±.

Lemma 3.3.8. The subspace w1
+ (resp. w1

−) is a maximal positive (negative)
definite subspace of ((L⊗Z R) ⊕ Rz)/Rz.

Proof. By definition of the subspace w1
±, (w1

±, z) = 0 since z = zv+ + zv− .
Hence the result follows by maximality of v±.

Set w± ⊂ L ⊗ R to be the subspace of vectors λ ∈ L ⊗Z R such that
λ + az ∈ w1

± for some a ∈ R. By Lemma 3.3.8, w+ (resp. w−) is a maximal
positive (negative) definite subspace of L⊗Z R. For λ ∈M∗⊗R, let λw± ∈ w±

be the orthogonal projection of λv± in w±.

Lemma 3.3.9. For all λ ∈M ⊗ R,

λv± ≡ λw± +
(λ, zv±)
z2

v±
zv± (mod Rz)

and

λ2
v± = λ2

w± +
(λ, zv±)2

z2
v±

.

Proof.
λv± = λw±

1
+ azv±

by definition of the subspaces w±
1 . Hence

(λv± , zv±) = az2
v±

since
(λw±

1
, zv±) = 0. (1)

Moreover, by orthogonality of the vector space v+ and v−, (λv± , zv±) = (λ, zv±).
Since by definition of the subspaces w±, λ±w1

2 = λ±w
2, the second equality then

follows from (1).
The Siegel theta function ΘM (τ, v+) is expressed in terms of vectors in M .

The first step is to find an expression for it in terms of vectors modulo z. This
in turn leads to the expression we want in terms of vectors in the lattice L. Set

J = L⊕ Zz′.

We have to be careful since the bilinear form is degenerate on J .
By definition of Siegel theta functions, we need to characterize maximal

positive and negative definite sublattices of L in terms of those of M . So we
start by doing this.



110 3 Singular Theta Transforms of Vector Valued Modular Forms

Lemma 3.3.10. For τ ∈ H, v+ ∈ G(M), γ ∈M∗/M ,

θM+γ(τ, v+) = (2yz2
v+)

−1
2

∑

λ∈J+γ

∑

n∈Z

e(τλ2
w+/2 + τλ2

w−/2

−n(λ, (zv+ − zv−)/2z2
v+) −

∣∣(λ, z)τ + n
∣∣2

4iyz2
v+

).

Proof. For τ ∈ H, v+ ∈ G(M), γ ∈ M∗/M , applying the definition of the
Seigel theta function, we get

θM+γ(τ, v+) =
∑

λ∈J+γ

∑

n∈Z

e(τ(λ+ nz)2v+/2 + τ(λ+ nz)2v−/2).

Set
g(λ, n) = e(τ(λ+ nz)2v+/2 + τ(λ+ nz)2v−/2)

for λ ∈ (M/z) + γ, n ∈ Z. By the Poisson summation formula (Corollary D.8),

θM+γ(τ, v+) =
∑

λ∈J+γ

∑

n∈Z

ĝ(λ, n), (1)

where ĝ(λ, n) is the Fourier transform of g(λ, n) with respect to the variable n.
Rewriting g(λ, n) makes the calculation of ĝ(λ, n) easier: since λ = λv− + λv+

and 0 = z2
v− + z2

v+ ,

g(λ, n) = e((τ − τ)z2
v+n2/2 + (τ(λ, zv+) + τ(λ, zv−))n/2 + τλ2

v+/2 + τλ2
v−/2).

Applying lemmas D.13 and D.14, we get

ĝ(λ, n) = (2yz2
v+)

−1
2 e(− n2

2(τ − τ)z2
v+

− n(τ(λ, zv+) +
τ(λ, zv−))
(τ − τ)z2

v+

+τλ2
v+/2 + τλ2

v−/2 − (τ(λ, zv+) + τ(λ, zv+))2

2(τ − τ)z2
v+

(2)

since
τ − τ = 2iy (3)

Let us compute the right hand side of equality (2).

(τ(λ, zv+) + τ(λ, zv−))2

2(τ − τ)z2
v+

=
τ2(λ, zv+)2 + τ2(λ, zv−)2 + 2

∣∣τ
∣∣2(λ, zv+)(λ, zv−)

2(τ − τ)z2
v+

From Lemma 3.3.9 we get

τλ2
v+/2 + τλ2

v−/2 = τλ2
w+/2 + τλ2

w−/2 +
τ(λ, zv+)2

2z2
v+

+
τ(λ, zv−)2

2z2
v−

= τλ2
w+/2 + τλ2

w−/2 +
τ(λ, zv+)2 − τ(λ, zv−)2

2z2
v+

= τλ2
w+/2 + τλ2

w−/2 +
τ(τ − τ)(λ, zv+)2 − τ(τ − τ)(λ, zv−)2

2(τ − τ)z2
v+

.
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Hence

ĝ(λ, n) = (2yz2
v+)

−1
2 e(− n2

2(τ − τ)z2
v+

− n(τ(λ, zv+) + τ(λ, zv−))
(τ − τ)z2

v+

+
τλ2

w+

2
+
τλ2

w−

2
−

∣∣τ
∣∣2((λ, zv+)2 + (λ, zv−)2 + 2(λ, zv+)(λ, zv−))

2(τ − τ)z2
v+

)

= (2yz2
v+)

−1
2 e(

τλ2
w+

2
+
τλ2

w−

2

−
n2 + 2n(τ(λ, zv+) + τ(λ, zv−)) +

∣∣τ
∣∣2(λ, z)2

2(τ − τ)z2
v+

).

The result then follows from equalities (3) and (1).
Lemma 3.3.10 now allows us to write the Siegel theta function of the lattice

M in terms of a generalized theta function of the lattice L.

Theorem 3.3.11. Let µ = −z′ + (zv− ,z′)

z2
v+

zv+ + (zv+ ,z′)

z2
v−

zv− . Then µ ∈ L⊗Z R

and for all τ ∈ H, v+ ∈ G(M), γ ∈M∗/M ,

θM+γ(τ ; v+) = (2yz2
v+)

−1
2

∑

c,d∈Z

e(−
∣∣cτ + d

∣∣2

4iyz2
v+

)θL+γ(τ, dµ,−cµ;w+).

Proof. To show that µ ∈ L ⊗Z R, it suffices to check that the vector µ is
orthogonal to both the vectors z and z′:

(µ, z) = −1 + ((zv+ , z)(zv− , z′)/z2
v+ + (zv− , z)(zv+ , z′)/z2

v−

= −1 + (zv+ , zv+)(zv− , z′)/z2
v+ + (zv− , zv−)(zv+ , z′)/z2

v−

= −1 + (z, z′)
= 0

and
(µ, z′) = ((zv+ , z′)(zv− , z′)(1/z2

v+ + 1/z2
v−) = 0

since z2
v+ + z2

v− = z2 = 0.
For any λ ∈ J + γ, there is a unique vector λL ∈ L+ γ and a unique integer

c ∈ Z,
λ = λL + cz′. (1)

From Lemma 3.3.10, we therefore get

θM+γ(τ, v+) = (2yz2
v+)

−1
2

∑

c,d∈Z

∑

λL∈L+γ

e(−
∣∣cτ + d

∣∣2

4iyz2
v+

) (2)

×e(τ(λL + cz′)2w+/2 + τ(λL + cz′)2w−/2 − d(λL + cz′, (zv+ − zv−)/2z2
v+)).
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(z′, z) = 1.
On the other hand (remember that L∗/L = M∗/M by (II ′)),

θL+γ(τ, dµ,−cµ;w+)

=
∑

λL∈L+γ

e(τ(λL − cµ)2w+/2 + τ(λL − cµ)2w−/2 − (λL − cµ/2, dµ)). (3)

Since −µ+ z′ is a linear combination of the vectors zv± , by definition of w±
1 ,

(λL − cµ)w±
1

= (λL + cz′)w±
1
.

Hence, by Lemma 3.3.8 (ii),

(λL − cµ)1w± = (λL + cz′)2w± .

Since (λL, z
′) = 0 = (λL, z) and zv− = z − zv+ ,

(λL, µ) = (λL, (zv+ − zv−)/2z2
v+). (4)

We have already shown that (µ, z′) = 0. Hence, as (z′, z′) = 0 and
(zv+ , zv−) = 0, z2

v+ + z2
v− = z2 = 0,

(µ, µ) = (
(zv− , z′)
z2

v+

zv+ +
(zv+ , z′)
z2

v−
zv− ,

(zv− , z′)
z2

v+

zv+ +
(zv+ , z′)
z2

v−
zv−)

=
(zv− , z′)2

z2
v+

+
(zv+ , z′)2

z2
v−

=
(zv− , z′)2 − (z′, zv+)2

z2
v+

=
(zv− − zv+ , z′)(z′, zv+ + zv−)

z2
v+

=
(zv− − zv+ , z′)

z2
v+

.

This together with (2), (3) and (4) prove the Theorem.

Exercises 3.3

1. Suppose that M is an arbitrary lattice with signature (b+, b−) (i.e. not
necessarily satisfying condition (I)) containing a primitive vector z of norm 0.
Let N ∈ N to be minimal such that (z, λ) = N for some λ ∈ M . Set z′ ∈ M∗

to be a vector satisfying (z, z′) = 1 and write L = (M ∩ z⊥)/z. Let w± be the
orthogonal complement of zv± in v±. Set µ = −z′ + zv+/2z2

v+ + zv−/2z2
v− .

(i) Show that
∣∣M∗/M

∣∣ = N2
∣∣L∗/L

∣∣.
(ii) Check that µ ∈ L⊗Z R.
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(iii) Show that for all τ ∈ H, v+ ∈ G(M), γ ∈M∗/M ,

θM+γ(τ ; v+, p) =

(2yz2
v+)

−1
2

∑

c≡(γ,z) (mod N)
d∈Z

e

(
−
∣∣cτ + d

∣∣2

4iyz2
v+

− (γ, z′)d+
(z′, z′)cd

2

)

×θL+(γ−cz′)(τ, µd,−cµ;w+),

where L+(γ− cz′) is the coset of L in L∗ given by L∗ ∩ (M +(γ− cz′))/Zz.
For a solution, see [Borc11, Theorem 5.2].
2. We suppose that the assumptions of Exercise 1 hold. Let

FM =
∑

γ∈M∗/M

= fM+γeγ

be a modular form of type ρM and weight (−b−/2,−b+/2) and
FL =

∑
γ∈L∗/L = fγeγ , where

fγ(τ, α, β) =
∑

δ∈M∗/M
δ|L=γ

e(−(δ, αz′) − αβ(z′, z′)/2)fM+γ+βz′(τ)

and δ|L is the restriction of the homomorphism δ : M → Z to L.
(i) Show that {δ ∈M∗ : δ|L = 0} = {mz/N : m ∈ Z}.
(ii) Let γ ∈ L∗/L and δ ∈ M∗/M such that δ|L = γ. Deduce that

(δ2 − γ2)/2 ∈ Z and λ ∈ M∗/M such that δ|L = γ if and only if
λ = δ +mz/N for some m ∈ Z/NZ.

(iii) Show that for all (
(
a b
c d

)
,
√
cτ + d) ∈Mp2(Z),

FL

(
aτ + b

cτ + d
, aα+ bβ, cα+ dβ

)

= (cτ + d)−b−/2(cτ + d)−b+/2ρL(( a b ) cd
√
cτ + d)FL(τ, α, β).

For a solution, see [Borc11, Theorem 5.3].

3.4 The Singular Theta Correspondence

In this section we explain a generalized version of the theory of theta correspon-
dence for lattices that are not necessarily positive definite. In other words, we
define a correspondence between modular forms of weight ( b+−b−

2 , 0) and type
ρM and a class of meromorphic functions on the Grassmannian G(M), which
has the structure of a Hermitian symmetric space (see Definition B.2.22 and
Lemma 3.5.1). In this generalization, the functions obtained from the modular
forms have singularities. The method explained here is a variant of the Rankin-
Selberg one (frequently used in the theory of modular forms) and was given by
Borcherds in [Borc11]. It is based on the work of Harvey and Moore [HarvM,
Appendix A].
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Let F be an almost holomorphic modular function on the upper half plane
(i.e. holomorphic on H and meromorphic at the cusps) of weight ( b+−b−

2 , 0) and
of type ρM . Then,

F (τ) =
∑

γ∈M∗/M

fγ(τ)eγ

for some complex valued functions fγ on H. By Lemma 3.3.7, for each
γ ∈M∗/M ,

fγ =
∑

m∈Q

cγ(m)qn,

where cγ(m) ∈ R for all γ ∈M∗/M and cγ(m) = 0 for sufficiently small values
of m. Set

FM (τ) = yb+/2F (τ).

Then, Lemma 3.2.8 implies that FM is a vector valued modular function on H
of weight (−b−/2,−b+/2) and type ρM which is also almost holomorphic.

FM (τ) =
∑

γ∈M∗/M

fM+γ(τ)eγ ,

for some complex valued functions fM+γ on H. Comparing with the coordinates
of F , we get

fM+γ(τ) = fγ(τ)yb+/2

=
∑

m∈Z

cγ(m)qmyb+/2

=
∑

m∈Q

cγ,m(y)e(mx),

where
cγ,m(y) = cγ(m)yb+/2 exp(−2πy).

We can easily deduce the following relation between the components of the
modular function F . We will not need it in this chapter but in chapter 5.

Lemma 3.4.1. For any γ ∈M∗/M , m ∈ Q, cγ(m) = c−γ(m).

Proof. Apply the element (S2, i) ∈ Mp2(Z) to the modular form F of weight
(b+ − b−)/2. We get

f−γ(τ) = (−1)(b
+−b−)/2ib

−−b+fγ(τ)

= (−1)i−b−ib
−
i−2fγ(τ)

= (−1)2fγ(τ)
= fγ(τ).

The result then follows.
For a reminder about (Lebesgue) integrals on the upper half plane, see Def-

inition C.1.9 and Corollary C.1.12.

Definition 3.4.2. The theta transform of the function F is the following inte-
gral:
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ΦM (v+, F ) =
∫ ∫

SL2(Z)\H
FM (τ)ΘM (τ, v+) dxdy/y2

For a definition of the product FMΘM , see §3.3 (paragraph following Corol-
lary 3.3.7). From the definition we see that, the modular function F being fixed,
ΦM is a function on the Grassmannian G(M). Foremost, we need to make sure
that this integral makes sense. First we show that it is independent of the choice
of a fundamental domain (see Definition 3.2.7) of Γ = SL2(Z). Then, we study
its convergence.

Lemma 3.4.3. The differential FM (τ)ΘM (τ, v+) dxdy/y2 is invariant under
the action of SL2(R).

Proof. Let A =
(
a b
c d

)
and (A, f) ∈Mp2(Z). Then,

FM (Aτ) = (cτ + d)−b−/2(cτ + d)−b+/2ρM ((A, f))FM (τ)

and applying Theorem 3.3.4,

ΘM (Aτ ; v+) = (cτ + d)b−/2(cτ + d)b+/2ρM ((A, f))ΘM (τ ; v+).

From Lemma B.2.25 we can deduce that

(A, f)∗(dxdy/y2) = dxdy/y2.

Hence,

FM (Aτ)ΘM (Aτ ; v+) = ρM ((A, f))FM (τ)ρM ((A, f))ΘM (τ ; v+).

So to finish the proof, by Lemma 3.3.3, it suffices to show that the right hand
side of this equality is invariant when A = T and A = S. Note that

ΘM (τ ; v+) =
∑

γ∈M∗/M

θM+γe−γ .

Suppose first that A = T . Then,

ρM ((T, f))FM (τ)ΘM (τ ; v+)

=
∑

γ∈M∗/M

fM+γ(τ)θM+γ(τ ; v+)e((γ, γ)/2)e(−(γ, γ)/2)

=
∑

γ∈M∗/M

fM+γ(τ)θM+γ(τ ; v+)

= FM (τ)ΘM (τ ; v+).

Suppose now thatA = S. Then,
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ρM ((S, f))FM (τ)ρM ((S, f))ΘM (τ ; v+)

=
1∣∣M∗/M

∣∣
∑

γ,δ∈M∗/M

fM+γ(τ)e(−γ, δ)eδ

∑

γ,δ∈M∗/M

θM+γ(τ)e(γ, δ)e−δ

=
1∣∣M∗/M

∣∣
∑

γ∈M∗/M

∣∣M∗/M
∣∣fM+γ(τ)θM+γ(τ)

= FM (τ)ΘM (τ ; v+).

Corollary 3.4.4. The Theta transform of the modular function F is indepen-
dent of the choice of the fundamental domain of the modular group.

Both the modular function FM and the Seigel theta function are holomorphic
and hence continuous on the upper half plane and are possibly monomorphic
only at cusp points. Hence, if we exclude from the closure of the fundamental
domain D a neighbourhood of i∞, the latter being the only cusp point in D,
then the resulting integral is convergent. So we only need to study what happens
near i∞, or equivalently as y → ∞. Set

Dl = {τ ∈ D : Im(τ) ≤ l}.

Lemma 3.4.5.The integral

GM (l, s; v+) =
∫ ∫

Dl

FM (τ)ΘM (τ ; v+)y−s dxdy/y2.

exists for all l > 0, s ∈ C and v+ ∈ G(M).

Proof. Both the functions FM and ΘM are analytic on H. Hence, the existence
follows from the fact that Dl is a compact closed subset of D on which the
integrand is analytic.

Definition 3.4.6. Let f be a function on the upper half plane. If the limit

g(s) = lim
l→∞

∫ ∫

Dl

f(τ)y−s dxdy/y2

exists for s ∈ C such that R(s) >> 0 and can be continued to a meromorphic
function on C, then

∫ ∫

SL2(Z)\H
f(τ)y−s dxdy/y2

is defined to be the constant term of the Laurent expansion of the function g(s)
at s = 0.

We next show that for any v+ ∈ G(M), the limit function of s

GM (s; v+) = lim
l→∞

GM (l, s; v+)
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exists and that, in particular, it satisfies the conditions of Definition 3.4.6. We
know what a singularity of a complex function (see Definition C.2.1) or more
generally of a function on a Hermitian symmetric space is. We need a further
definition in order to deal with the problems that arise from singular points.

Definition 3.4.7. Let f be a function on a Hermitian symmetric space V .
A point v ∈ V is a singularity point of type g for the function f , where g is
a function on V if the function f − g can be defined on a subset of V of co-
dimension 1 in such a way that it is analytic at the point v.

We next study the singularities of a real function given by an improper
integral which we will encounter frequently.

Lemma 3.4.8. For s ∈ C, r ∈ R, r ≥ 0, set

f(r) =
∫ ∞

1

e−ryys−1dy.

The function f has a singularity at r = 0 of type
{
−(−r)−s log(r)/(−s)! if s ∈ Z−
r−sΓ(s), otherwise

where Γ is the Gamma function (see §C.4 (i)). In particular, the function f has
no singularities at r > 0 when R(s) > 0.

Proof. To study the singularity at r = 0, we consider three cases.
Case 1: R(s) > 0.

The integral ∫ 1

0

exp(−ry)ys−1dy

exists at all r ≥ 0. This follows by replacing exp(−ry) by it Taylor series and
integrating termwise since

∞∑

n=0

(−r)n

n!

∫ 1

0

yn+s−1dy = −
∞∑

n=0

(−r)n

n!(n+ s)

and the latter series converges absolutely when R(s) > 0.
Hence the singularity of f at any point r ≥ 0 is of type

∫ ∞

0

exp(−ry)ys−1dy = r−s

∫ ∞

0

e−yys−1dy

= r−sΓ(s)

by Definition C.4.1.
Case 2: s = 0.

Integrating by parts, we get

f(r) =
∫ ∞

1

exp(−ry)y−1dy = r

∫ ∞

1

exp(−ry) log(y)dy.
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As above, the singularity of f(r) at r = 0 is of type

r

∫ ∞

0

exp(−ry) log(y)dy =
∫ ∞

0

exp(−y) log(y/r)dy

=
∫ ∞

0

exp(−y) log(y)dy −
∫ ∞

0

exp(−y) log(r)dy.

Since ∫ ∞

0

exp(−y) log(y)dy ≤
∫ ∞

0

exp(−y)ydy = Γ(2) = 2,

the integral
∫∞
0

exp(−y) log(y)dy exists. As it is independent of r, f(r) has a
singularity of type

− log(r)
∫ ∞

0

exp(−y)dy = − log(r)

at r = 0.
Case 3: s < 0.

Integrating by parts, we get

f(r) =
1
s

+
r

s

∫ ∞

1

exp(−ry)ysdy.

As s 	= 0, the function f has a singularity of type r
∫∞
1

exp(−ry)ysdy at r = 0.
Hence continuing m times where m is the smallest positive integer such that
s +m ≥ 0 and applying the second case when s is an integer and the first one
otherwise, the result follows.

We continue with two technical calculations. We state them as separate
Lemmas as they will be used in several subsequent proofs.

Lemma 3.4.9.

∑

m∈Q

cγ(m)
∫ 1/2

−1/2

exp(2πix(m− λ2/2))dx =
{∑

m∈Z cγ(λ2/2) if m = λ2/2
0 otherwise.

Proof. As the modular forms θM+γ and fγ have weight (b−, b+) and (−b−,−b+)
respectively, fγθM+γ is a scalar of weight 0. In other words, it is invariant under
the action of SL2(Z). Hence,

∫

y≥1

∫ 1/2

−1/2

fγ(τ)θM+γ(τ ; v+)yb+/2 dxdy/y2

=
∫

y≥1

∫ 1/2

−1/2

fγ(τ + 1)θM+γ(τ + 1; v+)yb+/2 dxdy/y2.
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This implies that

∑

m∈Q

cγ(m)
∫ 1/2

−1/2

exp(2πix(m− λ2/2))dx

=
∑

m∈Q

cγ(m)
∫ 1/2

−1/2

exp(2πi(x+ 1)(m− λ2/2))dx

=
∑

m∈Q

cγ(m) exp(2πi(m− λ2/2))
∫ 1/2

−1/2

exp(2πix(m− λ2/2))dx.

The result follows.

Lemma 3.4.10.

(i) As a function of s,
∫ ∫

D1

F (τ)Θ(τ ; v+)yb+/2−s dxdy/y2

is analytic on C.
(ii) ∫

y≥1

∫
∣∣x
∣∣≤1/2

F (τ)Θ(τ ; v+)yb+/2−s dxdy/y2

=
∑

λ∈M∗

cλ(λ2/2)
∫ ∞

1

exp(−2πyλ2
v+)y−2+b+/2−sdy.

(iii) As a function of s,
∑

λ∈M∗
λ

v+ �=0

∫∞
1

exp(−2πyλ2
v+)y−2+b+/2−sdy is analytic

on C.

Proof. Since the region

D1 = {y ∈ D : y ≤ 1} = {1/2 ≤ y ≤ 1,
∣∣x
∣∣ ≤ 1/2, x2 + y2 ≥ 1}

is closed and compact and the functions F and Θ are holomorphic on the upper
half plane H, part (i) follows.
We next prove (ii).

lim
l→∞

∫

1≤y≤l

∫
∣∣x
∣∣≤1/2

F (τ)Θ(τ ; v+)yb+/2−s dxdy/y2

=
∑

γ∈M∗/M

∫

y≥1

∫
∣∣x
∣∣≤1/2

fγ(τ)θM+γ(τ ; v+)yb+/2−s dxdy/y2
(1)

since the group M∗/M being finite, the summation and integration order can
be interchanged. By definition,

θM+γ(τ ; v+) =
∑

λ∈M+γ

e(τλ2
v+/2 + τλ2

v−/2)
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and
fγ(τ) =

∑

m∈Q

cγ(m)e(mτ).

Both these series are absolutely convergent on H since both the functions are
holomorphic on the upper half plane. In (1), we replace θM+γ and fγ with their
respective series. Before doing this, note that

2πi(mτ −τλ2
v+/2+τλ2

v−/2 = 2πix(m−λ2/2)+2πy(−m−λ2
v+/2+λ2

v−/2) (2)

since λ2 = λ2
v+ + λ2

v− . The above two series being absolutely convergent, so is
their product

∑

λ∈M+γ

∑

m∈Q

cγ(m) exp(−2πyλ2
v+) exp(2πix(λ2/2 +m)).

Therefore for any l > 0,
∫

1≤y≤l

∫

−1/2≤x≤1/2

∑

λ∈M+γ

∑

m∈Q

cγ(m)

× exp(−2πyλ2
v+) exp(2πix(λ2/2 +m))yb+/2−s−2dxdy

=
∑

λ∈M+γ

∑

m∈Q

cγ(m)(
∫ l

1

exp(−2πyλ2
v+)yb+/2−s−2dy)

×
∫

−1/2≤x≤1/2

exp(2πix(λ2/2 +m))dx

as the integrals being definite ones, we can integrate termwise and the series
remains convergent. Hence by Lemma 3.4.9, we can deduce that the right hand
side of (1) is equal to

∑

λ∈M∗

cλ(λ2/2) lim
l→∞

∫ l

1

exp(−2πyλ2
v+)y−2+b+/2−sdy

=
∑

λ∈M∗

cλ(λ2/2)
∫ ∞

1

exp(−2πyλ2
v+)y−2+b+/2−sdy.

Once again in the above expression absolute convergence allows the limit to be
taken termwise. (ii) now follows.
Finally suppose that λv+ 	= 0. For y ≥ 1, exp(−2πyλ2

v+) is a decreasing function
of y and when R(s) ≥ b+/2 − 2, y−2+b+/2−s, so is yb+/2−s−2. Hence,

G1(s) =
∫ ∞

1

e−2πλ2
v+yyb+/2−s−2dy

≤
∫ ∞

1

e−2πλ2
v+y

=
1

2πλ2
v+

e−2πλ2
v+ .
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The series ∑

λ∈M∗
λ

v+ �=0

cλ(λ2/2)
1

2πλ2
v+

e−2πλ2
v+

is absolutely convergent. It follows that the series
∑

λ∈M∗
λ

v+ �=0

cλ(λ2/2)G1(s)

is absolutely and uniformly convergent when R(s) ≥ b+/2 − 2. Moreover,

δG1(s)
δs

=
∫ ∞

1

e−2πλ2
v+y δy

b+/2−s−2

δs
dy = −

∫ ∞

1

e−2πλ2
v+y log(y)yb+/2−s−1dy

and log(y) ≤ y for all y ≥ 1. Hence the above implies that
∑

λ∈M∗
λ

v+ �=0

cλ(λ2/2)G1(s)

is absolutely and uniformly convergent when R(s) ≥ b+/2 − 1. Therefore,
∑

λ∈M∗
λ

v+ �=0

cλ(λ2/2)G1(s)

is analytic for R(s) ≥ b+/2−1, proving (iii) in this case. When R(s) < b+/2−1,
(iii) follows from Lemma 3.4.8.

The next observation will ensure that various sums are finite and so not
problematic.

Lemma 3.4.11. For any m ∈ Z+, there are only finitely many vectors λ ∈M∗

satisfying −m ≤ λ2 ≤ 0.

Proof. Let λ1, · · · , λn be a basis for the lattice M and λ∗1, · · · , λ∗n its dual basis
in M∗. Since (λ∗i , λi) = 1, for each i, λ∗i is a primitive vector of M∗. Hence,
for any λ ∈ M∗, λ =

∑
i aiλ

∗
i with ai ∈ Z. Also for each i, there is a positive

integer bi such that µi = 1
bi
λi is a primitive vector of M∗. Hence, λ =

∑
i ciµi

with ci ∈ Z. Let m ∈ Z+. λ2 =
∑

i aici/bi. Suppose that λ2 ≤ 0. Then
−m ≤ λ2 ≤ 0 if and only if

−m ≤
∑

i

aici/bi ≤ 0.

If this holds then, for each i,
∣∣aici

∣∣ ≤ bm, where b = max{b1, · · · , bn}. Since
any discrete bounded set is finite, the result follows.

Corollary 3.4.12. For any v+ ∈ G(M), as a function of s, GM (s, v+) is
analytic for R(s) >> 0 and can be analytically continued to a meromorphic
function on C.
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Proof. By definition of the fundamental domain D (see Lemma 3.2.9),

GM (s, v+) = lim
l→∞

∫

0<y≤l

∫
∣∣

x

∣∣≤1/2

x2+y2≥1

F (τ)Θ(τ ; v+)yb+/2−s dxdy/y2.

By assumption, there are only finitely many coefficients cγ(m) 	= 0 for m < 0.
Hence by Lemmas 3.4.10 (i), (ii) and 3.4.11, to prove that as a function of s,
GM (s, v+) is analytic when R(s) > b+/2 − 1 it suffices to show that in this
region, the integral

G1(s) =
∫ ∞

1

exp(−2πyλ2
v+)y−2+b+/2−sdy

converges when λv+ = 0. In this case

G1(s) =
∫ ∞

1

y−2+b+/2−sdy = [
1

b+/2 − s− 1
yb+/2−s−1]∞1 =

1
b+/2 − s− 1

(1)

if R(s) > b+/2 − 1. Moreover, (1) and implies that if we set

G1(s) =
1

b+/2 − s− 1

for all s ∈ C gives an analytic continuation (see §C.2) of G1 to a meromorphic
function on C. Hence by Lemma 3.4.10 (ii) and (iii), G(s, v+) can also be
analytically continued to a meromorphic function on C.

As a result, the theta transform ΦM (v+, F ) of F on the Grassmannian G(M)
as defined in Definition 3.4.6 exists. Before computing the function GM (s, v+),
we study the singularities of ΦM (v+, F ).

Theorem 3.4.13. In a neighbourhood of the point v+
0 ∈ G(M), the point

v+ ∈ G(M) is a singular point of the theta transform ΦM (v+, F ) of F of type

−
∑

λ∈M∗∩v
−
0

λ�=0

cλ(λ2/2)(−2πλ2
v+)1−b+/2 log(λ2

v+)/(1 − b+/2)!

if b+ = 0 or b+ = 2, and of type
∑

λ∈M∗∩v
−
0

λ�=0

cλ(λ2/2)(2πλ2
v+)1−b+/2Γ(−1 + b+/2)

otherwise.

Proof. The result follows from Lemma 3.4.10 applied to s = 0 and from Lemma
3.4.9. The term in the sum given in Lemma 3.4.10 corresponding to λ = 0 is
independent of v+ and so does not contribute to the singularity of ΦM (v+, F ).
Note that b+2

/2 − 1 < 0 if and only if b+ = 0 or b+ = 1.
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Note that by Lemma 3.4.11, the sums in Theorem 3.4.13 are finite since for
any γ ∈M∗/M , cγ(m) 	= 0 when m ≤ 0 is sufficiently small.

Now that we know the singularities of the function ΦM (v+, F ), we can begin
computing it.

Theorem 3.4.14.Suppose that ΦM is analytic at v+ ∈ G(M). For sufficiently
small values of z2

v+ ,

GM (s; v+) =
1√

2
∣∣zv+

∣∣GL(s;w+) +
√

2∣∣zv+

∣∣
∑

λ∈L∗

∑

n>0

e((nλ, µ))

×
∫

y>0

cλ,λ2/2(y) exp(−πn2/2yz2
v+ − πy(λ2

w+ − λ2
w−))y−s−5/2dy.

Proof. Using Theorem 3.3.11, we rewrite the theta function of M + γ in terms
of the generalized theta function of L+ γ. This gives

GM (s; v+) = lim
l→∞

∫ ∫

Dl

∑

γ∈M∗/M

fM+γ(τ)(2yz2
v+)

−1
2

×
∑

c,d∈Z

e(−
∣∣cτ + d

∣∣2

4iyz2
v+

)θL+γ(τ, 0,−cµ;w+)y−sdxdy/y2

(1)

The summand in the above sum corresponding to c = d = 0 is

(2z2
v+)

−1
2

∑

γ∈M∗/M

lim
l→∞

∫ ∫

Dl

fM+γ(τ)y−1/2θL+γ(τ ;w+)y−sdxdy/y2. (2)

We first show that this is equal to (2z2
v+)

−1
2 GL(s, w+).

Remember that L∗/L = M∗/M (see equality (II) in §3.2). Similarly to the
definition of FM given at the start of §3.4 for the lattice M , for the lattice L,
FL is defined as follows:

FL(τ) =
∑

γ∈L∗/L

fL+γeγ , where fL+γ = fM+γ(τ)y−1/2 (3)

Indeed, by Lemma 3.2.8, the right hand side of equality (3) is a modular form
of weight (−(b− − 1)/2,−(b+ − 1)/2) and type ρL. Moreover, this is equal to

∑

γ∈L∗/L

fγ(τ)y
b+−1

2 .

Since the lattice L has signature (b+ − 1, b− − 1), we can deduce equality (3).
This takes care of the term corresponding to (c, d) = (0, 0).We next consider the
sum of the summands on the right hand side of (1) corresponding to (c, d) 	= 0.
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It is equal to

(2z2
v+)

−1
2 lim

l→∞

∫ ∫

Dl

∑

γ∈M∗/M

fM+γ(τ)
∑

c,d∈Z,(c,d)�=0

exp

(
−π

∣∣cτ + d
∣∣2

2yz2
v+

)

× θL+γ(τ, µd,−cµ;w+)y−s−1/2dxdy/y2

= (2z2
v+)

−1
2 lim

l→∞

∫ ∫

Dl

∑

γ∈L∗/L

∑

c,d∈Z
(c,d)�=0

exp

(
−π

∣∣cτ + d
∣∣2

2yz2
v+

)

× fL+γ(τ)θL+γ(τ, 0,−cµ;w+)y−sdxdy/y2.

(4)

Substituting c, d ∈ Z with (c, d) 	= (0, 0) by (nc, nd) with c, d coprime and n ∈ N
in (4), we get

(2z2
v+)

−1
2 lim

l→∞

∫ ∫

Dl

∑

γ∈L∗/L

∑

c,d∈Z
(c,d)=1

∑

n∈N

exp

(
−π

∣∣cτ + d
∣∣2

2yz2
v+

)

× fL+γ(τ)θL+γ(τ, 0,−cµ;w+)y−sdxdy/y2.

(5)

For (c, d) = 1, there exist a, b ∈ Z such that ad− bc = 1 and a1d− b1c = 1 with
a1, b1 ∈ Z if and only if a1 = a + mc and b1 = b + md for some m ∈ Z. As a
result, (5) is equal to

(2z2
v+)

−1
2 ( lim

l→∞

∫ ∫

Dl

∑

γ∈L∗/L

∑
(
a b
c d

)
∈SL2(Z)/Z

∑

n∈N

exp(−n2π

∣∣cτ + d
∣∣2

2yz2
v+

)FL(τ)ΘL(τ, 0,−ncµ;w+)y−sdxdy/y2).

(6)

Now, aα+ bβ = nµ and cα+ dβ = 0 implies that α = nµd and β = 0. So, the
lattice L having signature (b+ − 1, b− − 1),

ΘL(
aτ + b

cτ + d
, nµ, 0;w+) = (cτ + d)

b+−1
2 (cτ + d)

b−−1
2 ΘL(τ, 0,−nµc;w+)

by Theorem 3.3.4 and

FL(
aτ + b

cτ + d
) = (cτ + d)

−(b−−1)
2 (cτ + d)

−(b+−1)
2 FL(τ).

We can then deduce that (6) is equivalent to

∑

γ∈L∗/L

(2z2
v+)

−1
2 lim

l→∞

∫ ∫

Dl

∑

A∈SL2(Z)/Z

∑

n∈N

exp
(

−πn2

2I(Aτ)z2
v+

)

× FL(Aτ)ΘL(Aτ, nµ, 0;w+)y−sdxdy/y2

(7)
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since the group L∗/L being finite, the summation and integration order can be
exchanged. In order to evaluate GM (s; v+) we need to integrate term by term in
the sum over SL2(Z)/Z. For this to be possible, the integral G(s, v+) needs to
be convergent. However by Corollary 3.4.12, this is only the case for R(s) >> 0.
So we need to justify this exchange some other way. Note that

∣∣ΘL(Aτ, nµ, 0;w+)
∣∣ =

∣∣ΘL(Aτ ;w+)
∣∣ (8)

and
FL(Aτ)ΘL(Aτ ;w+) = FL(τ)ΘL(τ ;w+) (9)

for all matrices A ∈ SL2(Z).
Claim: In equality (8), we can exchange the sum over SL2(Z)/Z with the
integral.

By Lemma 3.4.10 (i), since D1 is a close compact region,
∫ ∫

D1

F (τ)Θ(τ ; v+)yb+/2−sdxdy/y2

=
∑

A∈SL2(Z)/Z

∫ ∫

D1

∑

n∈N

exp
(

−πn2

2I(Aτ)z2
v+

)

FL(Aτ)ΘL(Aτ, nµ, 0;w+)y−sdxdy/y2.

As (∫ ∫

D1

+
∫

y≥1

)∫

−1/2≤x≤1/2

F (τ)Θ(τ ; v+)yb+/2−sdxdy/y2

=
∫ ∫

D1

F (τ)Θ(τ ; v+)yb+/2−sdxdy/y2,

we only need to show that the double integration
∫

y≥1

∫
−1/2≤x≤1/2

can be ex-
changed with the sum over SL2(Z)/Z. Let us consider

G1(s, v+, A)

=
∫

y≥1

∫

−1/2≤x≤1/2

∑

n∈N

exp
(

−πn2

2I(Aτ)z2
v+

)

∣∣FL(Aτ)
∣∣∣∣ΘL(Aτ, nµ, 0;w+)

∣∣y−sdxdy/y2

=
∫

y≥1

∑

n∈N

exp
(

−πn2

2I(Aτ)z2
v+

) ∣∣FL(τ)
∣∣∣∣ΘL(τ ;w+)

∣∣y−s−2dy.

This equality follows from (8) and (9) and using the fact that the variable x only
appears in expressions of type exp(2πipx) with p ∈ R having absolute value 1.

For any A ∈ SL2(Z), by Lemma 3.2.8, if y = ∞ then A(y) = y or 0. More-
over, A(D) is a fundamental domain and each fundamental domain contains
precisely one cusp point and it is the only possible point of singularity of the
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modular form F . Hence if A(i∞) = i∞, then A(D) = D and A = ±
(

1 0
0 1

)

modulo Z (see above for the action of Z on SL2(Z)). In this case,

G1(s, v+, A) =
∫ ∞

1

∑

n∈N

exp
(
−πn2

2yz2
v+

) ∣∣FL(τ)
∣∣∣∣ΘL(τ ;w+)

∣∣y−s−2dy

and from Corollary 3.4.12, G1(s, v+, A) is analytic for R(s) >> 0. Moreover for
any s ∈ C, G(s, v+) −G1(s, v+, A) is analytic.

Next suppose that A(i∞) = 0. Then,

G1(s, v+, A) =
∫ 0

p

∑

n∈N

exp
(
−πn2

2yz2
v+

) ∣∣F (τ)
∣∣∣∣ΘL(τ, ;w+)

∣∣yb2/2−s−5/2dy

for some non-zero rational p. From Lemma 3.2.12 we know that there is a con-
stant m ≥ 0 such that e−m/yF (τ) is bounded as y → 0. Take
z2

v+ < 2/π(m+ 1). Since
∣∣θL+γ(τ, ;w+)

∣∣ =
∑

λ∈L+γ

e−πy(λ2
v+−λ2

v− ),

where λ2
v+ − λ2

v− ≥ 0, it follows that G1(s, v+, A) converges for all s ∈ C. This
can be directly seen when R(s) >> 0. Otherwise it is a consequence of Lemma
3.4.8.

As a result, since G(s, v+) is analytic for R(s) >> 0, the integral and the
sum can be exchanged in this region, in other words

G(s, v+) =
∑

A∈SL2(Z)/Z

G1(s, v+, A) (10)

for R(s) >> 0. Moreover, the above also implies that
G(s, v+)−

∑
A∈SL2(Z)/ZG1(s, v+, A) is analytic on C. Therefore, equality (10)

holds for all s ∈ C. This proves our claim.
Since D is a fundamental domain, by definition (see Definition 3.2.7), for

any τ ∈ H, there is a unique τD ∈ D such that Aτ = τD for some A ∈ SL2(Z).

Setting An =
(
a+ nc b+ nd
c d

)
, for all n ∈ N,

I(Anτ) = I(A0τ)

by Lemma 3.2.8 and

R(Anτ) = R
(

((a+ nc)τ + (b+ nd))(cτ + d)
∣∣cτ + d

∣∣2

)

= R(A0τ) + n
c2(ττ) + d2

∣∣cτ + d
∣∣2

= R(A0τ) + n.
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Moreover, Aτ = τ for all τ ∈ H if and only if A =
(
±1 0
0 ±1

)
. Hence, (8)

becomes

(2z2
v+)

−1
2 2

∫

y>0

∫

x∈R/Z

∑

n∈N

exp
(
−πn2

2yz2
v+

)
FL(τ)ΘL(τ, nµ, 0;w+)y−s−5/2dxdy.

(11)
We replace ΘL in the above integral by the defining expression for it. We can
exchange the order of integration and summation since the following integral
converges except for one term: As R/Z is the unit circle,

∫

y>0

∫

x∈R/Z

∑

λ∈L+γ

∣∣exp(2πi(τλ2
w+/2 + τλ2

w−/2))
∣∣dxdy

=
∫

y>0

∑

λ∈L

exp(−πy(λ2
w+ − λ2

w−))dy

=
∑

λ∈L+γ

−1
π(λ2

w+ − λ2
w−)

and λ2
w+ − λ2

w− 	= 0 unless λ = 0. Therefore, (11) is equal to

(2z2
v+)

−1
2 2

∑

γ∈L∗/L

∑

λ∈L+γ

∫

y>0

∫

x∈R/Z

∑

n∈N

exp
(
−πn2

2yz2
v+

)

× fL+γ(τ)e(τλ2
w+/2 + τλ2

w−/2 − (λ, nµ))y−s−5/2dxdy.

Replacing fL+g with the expression on the right hand side of (3′), we get

(2z2
v+)−

1
2 + 2

∑

γ∈L∗/L

∑

λ∈L+γ
∫

y>0

∑

n∈N

exp
(
−πn2

2yz2
v+

)
e((λ, nµ)) exp(−πy(λ2

w+ − λ2
w−))

×
∫

x∈R/Z

∑

m∈Z

cλ,m(y)e(−xλ2/2 +mx)y−s−5/2dxdy

= (2z2
v+)−

1
2 2

∑

γ∈L∗/L

∑

λ∈L+γ

∫

y>0

∑

n∈N

e((λ, nµ))
∑

m∈Z

cλ,m(y) exp
(
−πn2

2yz2
v+

)

× exp(−πy(λ2
w+ − λ2

w−))y−s−5/2

∫

x∈R/Z

e(−xλ2/2 +mx)dxdy

since
∣∣e(mx)

∣∣ = 1 for all m ∈ Z implies that the order of the integral
∫

x∈R/Z

and of the sum of terms of the Laurent series can be interchanged for the same
reason as before. Since the interval [−1/2, 1/2) represents R/Z, by Lemma
3.4.9,



128 3 Singular Theta Transforms of Vector Valued Modular Forms

GM (s; v+) = (2z2
v+)

−1
2 (GL(s;w+) + 2

∑

λ∈L∗

∫

y>0

∑

n∈N

e((λ, nµ))

× cλ,λ2/2(y) exp
(
−πn2

2yz2
v+

)
exp(−πy(λ2

w+ − λ2
w−))y−s−5/2dy

.

This last integral is equal to the one we are looking for.
In the previous Theorem the condition on z2

v+ is needed because the modular
form F may not be holomorphic at the rational cusps.

Note that in sections 3.3 and 3.4, calculations and formulae are simplified in
the case when M is unimodular since then M = M∗. Before closing this section,
we define the subgroup of the isometry group of M fixing the automorphic form.

Definition 3.4.15. If σ is an isometry of the lattice M , then σ acts on the
vector valued modular form F and its theta transform ΦM (v+, F ) for v+ ∈
G(M) as follows:

σ(F ) =
∑

γ∈M∗/M

fγeσ(γ)

and
σ(ΦM (v+, F )) = ΦM (σv+, tF ).

The above makes sense since the isometry group of M acts on the Grass-
mannian G(M). We will write Aut(M,F ) to be the stabilizer of the theta trans-
form ΦM (v+, F ) of F , i.e. for σ ∈ Aut(M,F ),

ΦM (σv+, σF ) = ΦM (v+, F )

for any v+ ∈ G(M) that is not a singular point of the function ΦM .

Exercises 3.4

1. Suppose that M is an arbitrary lattice with signature (b+, b−) (i.e. not
necessarily satisfying condition (I)) containing a primitive vector z of norm 0.
Let N ∈ N to be minimal such that (z, λ) = N for some λ ∈ M . Set z′ ∈ M∗

to be a vector satisfying (z, z′) = 1 and write L = (M ∩ z⊥)/z. Let w± be the
orthogonal complement of zv± in v±. Set µ = −z′ + zv+/2z2

v+ + zv−/2z2
v− . Let

F and FM be the modular forms defined in section 3.4. Suppose that ΦM is
analytic at v+ ∈ G(M). Show that, for sufficiently small values of z2

v+ ,

GM (s; v+) =
1√

2
∣∣zv+

∣∣GL(s;w+) +
√

2∣∣zv+

∣∣
∑

λ∈L∗

∑

n>0

e((nλ, µ)) ×
∑

δ∈M∗/M
δ|L=λ

e((nδ, z′))

∫

y>0

cδ,λ2/2(y) exp(−πn2/2yz2
v+ − πy(λ2

w+ − λ2
w−))y−s−5/2dy.



Chapter 4

Γ-Graded Vertex Algebras

The aim of this chapter is to present the aspects of the theory necessary for the
construction of BKM superalgebras. The purpose of this book is not the study
of Γ-graded vertex algebras per se, so we only give the details needed for our
purpose. Hence the exposition does not pretend to be a complete treatment of
Γ-graded vertex algebras – a vast subject with a rich literature dedicated to it.
For an in depth study, the interested reader can in particular consult [Borc2],
[FrenB], [FrenLM2], [Kac15], [LepL] for vertex operator and vertex algebras,
and [DonL], [KacB2], [Sch2] for the more general context of Γ-graded vertex
algebras. We follow closely the methodology of the above mentioned books and
papers written by the several authors who developed the subject and keep the
approach and notation of [Kac15].

In this chapter Γ will denote an abelian group.

4.1 The Structure of Γ-graded Vertex Algebras

We start with some basic facts. We first need the notion of a generalized vertex
operator but before we give an elementary result.

Lemma 4.1.1. Let Γ be an abelian group of exponent N and ∆ be a Z-bilinear
symmetric map Γ × Γ → Q/Z. Then, ∆(Γ × Γ) ⊂ 1

N Z/Z.

Proof. Since the map ∆ is Z-bilinear, Z = ∆(0, h) = ∆(Ng, h) = N∆(g, h) for
all g, h ∈ G.

For reasons of simplicity, when the context allows it without any possible
confusion, we will write ∆(g, h) not just for a coset in Q/Z itself but also for
any rational representing the coset ∆(g, h).

Remember in Example 2.1.2 we saw that if a vector space V is graded by the
abelian group Z2, then so is the associative algebra of endomorphisms gl(V ).
More generally, this clearly holds for all abelian groups Γ: If V is Γ-graded,
then so is gl(V ). In particular for all g, h ∈ Γ, φ ∈ gl(V )g, v ∈ Vh, φ(v) ∈ Vg+h.

Since vertex operators are formal power series, we remind the reader of the
notation for the different types of sets. For a set F ,

129
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F [X] is the set of polynomials in X with coefficients in F , i.e.
∑n

i=0 aiX
i,

ai ∈ F ,
F [[X]] is the set of power series

∑∞
i=0 aiX

i, ai ∈ F , and
F ((X)) is the set of Laurent series (see Corollary C.2.5) in X, i.e.

∑∞
i=−N aiX

i,
ai ∈ F and N ≥ 0.

Definition 4.1.2. Let Γ be an abelian group of exponent N and ∆ be a
Z-bilinear symmetric map Γ × Γ → Q/Z. A generalized vertex operator on
the Γ-graded complex vector space

V = ⊕γ∈ΓVg

is a formal power series in gl(V )[[z
1
N , z−

1
N ]], where N is a positive integer,

written:
X(z) =

∑

n∈ 1
N Z

xnz
−n−1

such that for any v ∈ V , xn(v) = 0 for n large enough.
The vertex operator X(z) is said to be of parity g ∈ Γ if

(i) for all n ∈ Z, xn ∈ gl(V )g and
(ii) for any v ∈ Vh, h ∈ Γ, xn(v) = 0 unless n ∈ Z + ∆(g, h).

We then write p(X) = g. If Γ ≤ Z2 and ∆ = 0, the operator X(z) is said to be
a vertex operator.

Thus generalized vertex operators are generating series for endomorphisms of
V satisfying a convergence condition. Note that when we are considering vertex
operators, the vector space V is Z2-graded and so gl(V ) is a Lie superalgebra.
Moreover, in the case Γ = Z2, the exponent of Γ must be N = 2.

Before giving the definition of a Γ-graded vertex algebra, we define a concept
generalizing the notion of commutativity for two generalized vertex operators.
For this we need some basic facts about the Laurent expansion of the expression
(z − w)n.

Remark 4.1.3. When n is a rational or a negative integer, the formal expression
(z−w)n can have several interpretations and so it needs to be precised. Consider
it as a complex function. As a function of w, it is differentiable in the domain∣∣w

∣∣ <
∣∣z
∣∣ and this is a neighbourhood of w = 0. Hence for

∣∣w
∣∣ <

∣∣z
∣∣, we can

write its Taylor series (see Definition D.2.6) as a function of w:

(z − w)n =
∞∑

j=0

(−1)j

(
n
j

)
zn−jwj .

Similarly for
∣∣z
∣∣ <

∣∣w
∣∣, considering (z − w)n as a function of z, we get

(z − w)n =
∞∑

j=0

(−1)n−j

(
n
j

)
wn−jzj = (−1)n(w − z)n
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Here an extra precision is needed when n is not an integer: we have to define
(−1)n. In other words, if n = p

q , then (−1)n is a 2q-th root of unity. So we have
to choose and fix a 2q-th root of unity. We take eiπn.

Reverting back to formal power series, we define

iz,w(z − w)n =
∞∑

j=0

(−1)j

(
n
j

)
zn−jwj

and

iw,z(z − w)n = eπiniw,z(w − z)n = eπin
∞∑

j=0

(−1)j

(
n
j

)
wn−jzj .

Note that iz,w(z + w)n = iz,−w(z + w)n.
When n is a positive integer, the above reduces to

iz,w(z − w)n = (z − w)n

and
iw,z(z − w)n = (w − z)neπin = (z − w)n.

Before giving the generalization of commutativity, we need some more tools
as we are working in a general context of vector spaces graded by an abelian
group Γ.

Definition 4.1.4. A bi-multiplicative map ν : Γ × Γ → C∗ is a map satisfying

ν(g + h, k) = ν(g, k)ν(g, k) and ν(k, g + h, k) = ν(k, g)ν(k, h)

for g, h, k ∈ Γ.

Next we give an elementary technical result.

Lemma 4.1.5. Let Γ be an abelian group of exponent N and ν : Γ × Γ → C∗

a bi-multiplicative map. Then, for any g, h ∈ Γ, ν(g, h)N = 1.

Proof. As the map ν is bi-multiplicative, 1 = ν(0, h) = ν(Ng, h) = ν(g, h)N .

We can now define the notion generalizing commutativity .

Definition 4.1.6. Let Γ be an abelian group of exponent N , ∆ a Z-bilinear
symmetric map Γ × Γ → Q/Z and ν : Γ × Γ → C∗ a bi-multiplicative map.
Generalized vertex operators X(z), Y (z) on a Γ-graded complex vector space V
are said to be mutually local (with respect to ν and ∆) if for large enough positive
n in Z + ∆(p(X), p(Y )),

iz,w(z − w)nX(z)Y (w) = iw,z(z − w)nν(p(X), p(Y ))Y (w)X(z) (∗)

in gl(V )[[z
1
N , z−

1
N , w

1
N , w− 1

N ]].

Notation: When f ∈ gl(V )0 (resp. X is a generalized vertex operator of parity
0), for any g ∈ gl(V ) (resp. any generalized vertex operator Y ), we will write
[f, g] (resp. [X,Y ]) for fg − gf (resp. XY − Y X).
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When Γ ≤ Z2, gl(V ) is a Lie superalgebra. So for f, g ∈ gl(V ) (resp.
homogeneous vertex operators X,Y ), we will write [f, g] (resp. [X,Y ]) for
fg − (−1)p(f)p(g)gf (resp. XY − (−1)p(X)p(Y )Y X).

Remark 4.1.7. Suppose that X and Y are vertex operators. We then define

ν(a, b) = (−1)p(a)p(b) =
{
−1 if a = b = 1
1 otherwise

.

HenceX and Y are mutually local if (z−w)n[X(z), Y (w)] = 0, where the bracket
is taken coefficient wise and is the Lie super-bracket on the Lie superalgebra
gl(V ).

Remark 4.1.8. We check that the exponent n in equality (∗) is indeed in
∆(p(X), p(Y )).

For homogeneous generalized vertex operators X, Y and homogeneous vec-
tors a ∈ V , from Condition (ii) of Definition 4.1.2, we see that the exponents of
z (resp. w) in X(z)Y (w)a belong to

−∆(p(X), p(Y ) + p(a)) (resp. − ∆(p(Y ) + p(a)))

and those in Y (w)X(z)a to

−∆(p(X) + p(a)) (resp. − ∆(p(Y ), p(x) + p(a))).

Hence, since the exponents of z (resp. w) on the left hand side of equality (∗)
given in Definition 4.1.6 have to belong to the same coset as those on the right
hand side, the exponent n of both iz,w(z −w)n and iw,z(z −w)n has to belong
to the coset ∆(p(X), p(Y )).

Remark 4.1.9 on locality. It is at first hard to see why commutativity is
generalized in this manner. So we give some explanations.

Remark 4.1.3 shows that, considered as complex functions, the left (resp.
right) hand side of equality (∗) in Definition 4.1.6 is the Taylor series of
(z − w)nX(z)Y (w) in the domain

∣∣w
∣∣ <

∣∣z
∣∣ (resp.

∣∣z
∣∣ <

∣∣w
∣∣). Hence local-

ity means that these complex functions can be analytically continued on the
boundary

∣∣w
∣∣ =

∣∣z
∣∣ with equal continuations (up to a factor of ν(p(X), p(Y )).

Commutativity would be too strong a condition to impose: For any vector
space U , let U((z

1
N )) be the set of Laurent series in z with coefficients in U , i.e.

series
∑

m≥l umz
m.

X(z)Y (w) ∈ gl(V )((z
1
N ))((w

1
N )) and Y (w)X(z) ∈ gl(V )((w

1
N ))((z

1
N )).

However these two sets are not the same. For example (see Remarks 4.1.3),

iz,w(z − w)
−1
N ∈ gl(V )((z

1
N ))((w

1
N ))

but does not belong to gl(V )((w
1
N ))((z

1
N )). If the operators X and Y commute,

then X(w)Y (z) and Y (z)X(w) are both in

gl(V )((z
1
N ))((w

1
N )) ∩ gl(V )((w

1
N ))((z

1
N )) = gl(V )[[z

1
N , w

1
N ]][z

−1
N , w

−1
N ],
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i.e. they are series with finitely many terms in negative powers of w and z,
which is very restrictive. However, this may well be the case for

iz,w(z − w)nX(z)Y (w) and iw,z(z − w)nν(p(X), p(Y ))Y (w)X(z)

when n ∈ Z + ∆(p(X), p(Y )) is large enough.

As the next typical example shows, in general iz,w(z−w)nX(z, w) = 0 does
not necessarily imply that X(z, w) = 0 – further evidence that locality is much
weaker than commutativity.

Example 4.1.10. Considered as complex functions, iz,w(z−w)−1 is the Taylor
series of (z − w)−1 in the domain

∣∣w
∣∣ <

∣∣z
∣∣. Thus as formal power series,

(z − w)iz,w(z − w)−1 = 1 = (w − z)iw,z(w − z)−1.

In other words,

(z − w)(iz,w(z − w)−1 + iw,z(w − z)−1) = 0

but
iz,w(z − w)−1 + iw,z(w − z)−1 = z−1

∑

n∈Z

(
z

w
)n 	= 0.

We will have more to say about this series, written δ(z−w), later. It will prove
of much use. The reason δ(z−w) = 0 does not follow from (z−w)δ(z−w) = 0
is that it is not a Laurent series in w. The latter behave in a nice way as we
now verify.

Lemma 4.1.11. Let Γ be an abelian group with exponent N ∈ N and V be
a Γ-graded vector space. Suppose that X(z, w) ∈ gl(V )[[w

1
N , w− 1

N , z
1
N , z−

1
N ]]

satisfy
iz,w(z − w)nX(z, w) = 0

for some n ∈ Z+ + 1
N and that either X is a Laurent series in w. Then,

X(z, w) = 0.

Proof. Suppose that X is a Laurent series in w and that

iz,w(z − w)nX(z, w) = 0

for some n ∈ Z+ + 1
N . Equivalently,

∞∑

j=0

(−1)j

(
n
j

)
zn−jwjX(z, w) = 0.

Writing X(z, w) =
∑

k xk(z)wk, this becomes

∑

k∈ 1
N Z

∞∑

j=0

(−1)j

(
n
j

)
zn−jxk−jw

k = 0.
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Since X(z, w) is a Laurent series in w, there is some K ∈ 1
N Z such that xk = 0

for all k ≤ K. Hence,

∞∑

j=0

(−1)j

(
n
j

)
zn−jxk−j = 0

for all k ∈ 1
N Z and so X(z, w) = 0

A consequence of locality is that imposes a condition on ν(g2, g1) in terms
of ν(g1, g2).

Lemma 4.1.12. Let Γ be an abelian group of exponent N , ∆ a Z-bilinear
symmetric map Γ × Γ → Q/Z and ν : Γ × Γ → C∗ a bi-multiplicative map.
Suppose that the generalized vertex operators X, Y on a Γ-graded complex vector
space V are mutually local with respect to ν and ∆ and that X(z)Y (w) 	= 0.
Then,

ν(p(X), p(Y ))ν(p(Y ), p(X)) = e−2πi∆(p(X),p(Y )).

Proof. Suppose that X and Y are mutually local generalized vertex operators.
By definition of locality and Remark 4.1.3, for large enough positive rational
n ∈ Z + ∆(p(X), p(Y )), for all a ∈ V ,

iz,w(z − w)nX(z)Y (w)a = iw,z(z − w)neπinν(p(Y ), p(X))Y (w)X(z)a

= iw,z(w − z)neπinν(p(X), p(Y ))Y (w)X(z)a

= eπinν(p(X), p(Y ))ν(p(Y ),
Pω(X))iz,w(w − z)nX(z)Y (w)a

= e2πinν(p(X), p(Y ))ν(p(Y ),
p(X))iz,w(z − w)nX(z)Y (w)a.

By definition of a generalized vertex operator, X(z)Y (w)a is a Laurent series in
w. Hence, by Lemma 4.1.11, for all a ∈ V ,

e2πinν(p(X), p(Y ))ν(p(Y ), p(X))X(z)Y (w)a = X(z)Y (w)a.

As this holds for all a ∈ V ,

e2πinν(p(X), p(Y ))ν(p(Y ), p(X))X(z)Y (w) = X(z)Y (w).

Since by assumption X(z)Y (w) 	= 0, it follows that

ν(p(X), p(Y ))ν(p(Y ), p(X)) = e−2πin.

Now, n = nZ+∆(p(X), p(Y )) for some nZ ∈Z and so e−2πin = e−2πi∆(p(X),p(Y )),
which proves the result.

Note that when X and Y are vertex operators, Lemma 4.1.12 is satisfied for
the map ν defined in Remark 4.1.7.
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We are now ready to define Γ-graded vertex algebras.

Definition 4.1.13. Let Γ be an abelian group of exponent N , ∆ a Z-bilinear
symmetric map Γ × Γ → Q/Z and ν : Γ × Γ → C∗ a bi-multiplicative map
satisfying

ν(g, h)ν(h, g) = e−2πi∆(g,h) ∀ g, h ∈ Γ.

A Γ-graded vertex algebra is defined to be a Γ-graded vector space V with

(i) a vacuum vector 1 ∈ V0,
(ii) an endomorphism d ∈ gl(V ) called the translation operator and
(iii) For all a ∈ V , a generalized vertex operator

Y (a, z) =
∑

n∈ 1
N Z

anz
−n−1 ∈ gl(V )[[z

1
N , z−

1
N ]]

depending linearly on a and such that whenever a ∈ Vg, Y (a, z) has parity
g and satisfies the following axioms:

(1) (Translation) [d, Y (a, z)] = d
dzY (a, z) and d(1) = 0,

(2) (Vacuum) Y (1, z) = IV , Y (v, z).1 ∈ V [[z
1
N ]] and Y (a, z).1

∣∣
z=0

= a,
(3) (Locality) For all a, b ∈ V , the vertex operators Y (a, z) and Y (b, z) are

mutually local with respect to ν and ∆.

If Γ ≤ Z2, ∆ = 0 and ν(a, b) =
{
−1 if a = b = 1
0 otherwise

, then V is a vertex

(super)algebra.

Remark 4.1.14. The vacuum axiom makes sense since, by definition of a
generalized vertex operator Y (a, z), an.1 = 0 unless n ∈ Z since
Z = Z + ∆(p(a), p(1)) and p(1) = 0 by definition.

Our aim now is to find an expression for the “commutator”

anbm − eπinν(p(a), p(b))bman

of any two elements a, b ∈ V , called the vertex algebra identity (also known
as the Jacobi identity or Borcherds identity). This fundamental identity in the
context of Γ-graded vertex algebras is analogous to the Jacobi identity for Lie
algebras. In fact in the original definition of a vertex algebra (see [Borc2]), it is
given as a defining axiom – as stated in [FrenLM2], “it is implicit” in [Borc2]
– and in that of a vertex operator algebra (see [FrenLM2]), it is also taken as
one of the main defining axioms of a vertex operator algebra (see section 4.2 for
the difference between these two structures). As stated earlier, our purpose for
presenting some aspects of the theory of vertex algebras is the construction of
BKM algebras from objects known as lattice vertex algebras. The Lie algebra
structure on appropriate subquotients of lattice vertex algebras is a consequence
of the vertex algebra identity (see section 4.3). However, rather than proving
directly that it holds for lattice vertex algebras, it is easier to show that they
are vertex algebras according to the above definition and that as a consequence
the identity is valid.
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We derive the vertex algebra identity in several steps. Our first goal is an
associativity result. We start with some elementary properties of generalized
vertex operators that we will need for this, and which also explain the above
axioms.

Lemma 4.1.15. Let Γ be an abelian group of exponent N ∈ N, V be a Γ-graded
vector space, d an endomorphism of V and 1 a vector in V0.

(i) Let X(z) =
∑

n∈ 1
N Z xnz

−n−1 ∈ End(V )[[z
1
N , z−

1
N ]] a vertex operator on

V . Then, [d,X(z)] = d
dzX(z) if and only if for all n ∈ Z,

[d, xn] = −nxn−1.
(ii) Y (1, z) = IV if and only if 1n = δn,−1IV
(iii) For a ∈ V , Y (a, z).1 ∈ V [[z]] and Y (a, z).1

∣∣
z=0

= v if and only if an.1 = 0
for all n ≥ 0 and a−1.1 = a.

(iv) Let X(z) and Y (z) be mutually local vertex operators on V . Then, the
vertex operators d

dzX(z) and Y (z) are also mutually local.

Proof. (i) follows from the fact that d
dzX(z) =

∑
n∈Z −nxn−1z

−n−1. (ii) and
(iii) are easily shown (see Remark 4.1.14 for (iii)).
We next prove (iv): For large enough positive n in Z + ∆(p(X), p(Y )),

(z − w)nX(z)Y (w) = (w − z)neπinν(p(X), p(Y ))Y (w)X(z). (1)

We next apply d
dz to both sides of this equality.

n(z − w)n−1X(z)Y (w) + (z − w)n d

dz
X(z)Y (w)

= ν(p(X), p(Y ))(−n(w − z)n−1eπi(n−1)eπiY (w)X(z)

+ (w − z)neπinY (w)
d

dz
X(z)).

As eπi = −1, from (1), for large enough positive n in Z + ∆(p(X), p(Y )),

(z − w)n d

dz
X(z)Y (w) = (w − z)neπinν(p(X), p(Y ))Y (w)

d

dz
X(z).

As p( d
dzX(z)) = p(X(z)), this proves (iv).

In the rest of section 4.1, we will assume that V is a Γ-graded vertex algebra
and we will keep the notation of Definition 4.1.13.

Lemma 4.1.16. The endomorphism d has parity 0 and for all a ∈ V ,
d(a) = a−2.1.

Proof. From Lemma 4.1.15 (i) and the vacuum axiom, for all a ∈ V ,

d(a) = da−1.1 = a−2.1.

Hence as 1 ∈ V0, the parity condition on the vertex operator Y (a, z) implies
that d has parity 0, proving the Lemma.



4.1 The Structure of Γ-graded Vertex Algebras 137

Lemma 4.1.17. For all a ∈ V , Y (a, z).1 = ezda.

Proof. Applying the translation operator d, n − 1 times to both sides of the
equality in Lemma 4.1.16 leads to dn

n! (a) = a−n−1.1 for n ∈ N, from which the
result follows.

We can now prove Goddard’s uniqueness result. It is very useful as it says
that any generalized vertex operator mutually local with each of the operators
Y (a, z) is fully determined by its action on the vacuum vector.

Lemma 4.1.18. If for all a ∈ V , X(z) and Y (a, z) are mutually local vertex
operators on V and X(z).1 = Y (b, z).1 for some b ∈ V , then X(z) = Y (b, z).

Proof. Let X(z) be a vertex operator on V satisfying the conditions of the
Lemma. Then for large enough positive n ∈ Z + ∆(p(X), p(a)), for any a ∈ V ,

iz,w(z − w)nX(z)ewda

= iz,w(z − w)nX(z)Y (a,w).1 by Lemma 4.1.17
= iw,z(z − w)nν(p(X), p(a))Y (a,w)Y (b, z).1 by assumption

= eπiniw,z(w − z)nν(p(X), p(a))Y (a,w)Y (b, z).1

= eπiniz,w(w − z)nν(p(X), p(a))ν(p(a), p(b))Y (b, z)Y (a,w).1
by locality

= e2πiniz,w(z − w)nν(p(X), p(a))ν(p(a), p(b))Y (b, z)ewda

by Lemma 4.1.17

= iz,w(z − w)nY (b, z)ewda.

The last equality follows from the definition of the map ν and the fact that
p(X) = p(b) holds since X(z).1 = ezdb by assumption and Lemma 4.1.17 and
since the translation operator has parity 0 by Lemma 4.1.16. As all powers of
w in X(z)ewdu− Y (v, z)ewdu are non-negative, by Lemma 4.1.11,

X(z)ewda = Y (v, z)ewda.

Again, as all powers of w in this equality are non-negative, we may set w = 0.
So for any a ∈ V ,

X(z)a = Y (v, z)a,

which proves the result.

Lemma 4.1.19. For any a ∈ V , ewdY (a, z)e−wd = Y (a, iz,w(z − w)).

Proof.

ewdY (a, z)e−wd =
∞∑

n=0

1
n!

(adwd)nY (a, z).

By the translation axiom, this is

∞∑

n=0

wn

n!
(
d

dz
)nY (a, z),



138 4 Γ-Graded Vertex Algebras

which is the Taylor series of Y (a, z + w) in the domain
∣∣w

∣∣ <
∣∣z
∣∣ since, as

a complex function of w, Y (a, z + w) is differentiable in this neighbourhood
of w = 0. Therefore, the Lemma follows from the fact that the Taylor series in
this neighbourhood of (z + w), considered as a complex function of w, is
iz,w(z + w).

We can now prove a semi-symmetry property.

Lemma 4.1.20. For any a, b ∈ V ,

Y (a, z)b = ν(p(a), p(b))ezdY (b,−z)a.
Equivalently

anb = (−1)n+1ν(p(a), p(b))
∞∑

j=0

(−1)j d
j

j!
(bj+na).

Proof. Lemmas 4.1.19 and 4.1.17 imply that

e(z+w)dY (b,−z)a = Y (b, w)e(z+w)da

= Y (b, w)Y (a, z + w)1.

Hence, by the locality axiom and Lemma 4.1.17, for any large enough positive
rational n in Z + ∆(p(b), p(a)),

iw,z+w(−z)ne(z+w)dY (b,−z)a = iz+w,w(−z)neπinν(p(b), p(a))Y (u, z + w)ewdb.
(1)

As all exponents of w in the left hand side of equality (1) are non-negative, this
must also be the case on the right hand side. Hence, we can put w = 0. This
gives

iw,z+w(−z)nezdY (b,−z)a = iz+w,w(−z)neπinν(p(b), p(a))Y (a, z)b. (2)

Since bja = 0 = ajb for j >> 0, for large enough n, there are no negative
powers of z. Hence we can divide both sides of equality (2) by zn. However,
we have to be careful with the value of (−1)n that appears on both sides of (2).
By assumption (see Remark 4.1.3), iw,z+w(−z)n = eπiniw,z+wz

n = eπinzn and
iz+w,w(−z)n = eπinzn. By definition of ν,

ν(p(b), p(a))−1eπin = ν(p(b), p(a))e2πi∆(p(a),p(b)) = ν(p(a), p(b)).

Therefore, the first equality now follows. The second equality is just the first
equality written in terms of the coefficients of z−n−1.

One of the fundamental properties of Γ-graded vertex algebras, namely “as-
sociativity”, now follows easily. First note that

Y (Y (a, z)b, w)c =
∑

j∈Z+∆(p(a+b),p(c))

(Y (a, z)b)jcw
−j−1

=
∑

j∈Z+∆(p(a+b),p(c))

∑

k∈Z+∆(p(a)+p(b))

(akb)jz
−k−1w−j−1

=
∑

k∈Z+∆(p(a)+p(b))

Y (akb, w)z−k−1.
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Proposition 4.1.21. For any a, b, c ∈ V and n ∈ Z + ∆(p(a), p(c)) large
enough,

iz,w(w − z)nY (a, iz,w(z − w))Y (b,−w)c = iw,z(w − z)nY (Y (a, z)b,−w)c.

Proof. Applying the locality axiom, for large enough positive
n ∈ Z + ∆(p(a), p(c)),

iz,w(z − w)nY (a, z)Y (c, w)b = iw,z(z − w)nY (c, w)Y (a, z)b. (1)

By Lemma 4.1.20,

Y (c, w)b = ewdY (b,−w)c and Y (c, w)Y (a, z)b = ewdY (Y (a, z)b,−w)c.

By Lemma 4.1.19,

Y (a, z)ewd = ewdY (a, iz,w(z − w)).

These equalities together with (1) give the result since

and iz,w(z − w)n = iz,w(w − z)ne−πin.

We next give some basic properties of δ(z−w) = z−1
∑

n∈Z z
−nwn or more

generally of
δr(z − w) = δ(z − w)(

w

z
)r

for any rational r ∈ Q.

Lemma 4.1.22.

(i) δ(z − w) = δ(w − z)
(ii) δ(z − iw,v(w + v)) = δ(v − iz,w(z − w)) + δ(−v, iw,z(w − z)).

Proof. The first equality is easy to check. Hence we only show the second one.
By definition of δ(z, w),

δ(z − iw,v(w + v)) =
∑

n∈Z

z−n−1iw,v(w + v)n

=
∑

n∈Z

z−n−1
∞∑

k=0

(
n
k

)
wn−kvk

=
∞∑

k=0

1
k!

d

dw

k

δ(z, w)vk.

(1)

ν(p(a), p(c))ν(p(c), p(a)) = e−2πin, iw,z(z − w)n = iw,z(w − z)neπin
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Now,

iz,w(z − w)−k−1 =
∞∑

j=0

(
−k − 1
j

)
(−1)jz−k−1−jwj

=
∞∑

j=0

(
k + j
j

)
z−k−1−jwj

=
∞∑

n=k

(
n

n− k

)
z−n−1wn−k

=
∞∑

n=0

(
n
k

)
z−n−1wn−k

since
(
n
k

)
= n···(n−k+1)

k! = 0 for 0 ≤ n ≤ k − 1. Also,

iw,z(w − z)−k−1 =
∞∑

j=0

(
j + k
j

)
w−k−1−jzj

=
−∞∑

n=−1

(
−n− 1 + k
−n− 1

)
wn−kz−n−1

=
−∞∑

n=−1

(
−n− 1 + k

k

)
wn−kz−n−1

= (−1)k
−∞∑

n=−1

(
n
k

)
wn−kz−n−1.

Hence, substituting into (1) and using part (i), we get

δ(z−iw,v)(w + v)

=
∞∑

k=0

vkiz,w(z − w)−k−1 + (−1)kvkiw,z(w − z)−k−1

= δ(v − iz,w(z − w)) −
−∞∑

k=−1

vkiz,w(z − w)−k−1 +
∞∑

k=0

(−v)kiw,z(w − z)−k−1

= δ(v − iz,w(z − w)) −
−∞∑

k=−1

vkiw,z(z − w)−k−1 +
∞∑

k=0

(−v)kiw,z(w − z)−k−1

= δ(v − iz,w(z − w)) +
−∞∑

k=−1

(−v)kiw,z(w − z)−k−1 +
∞∑

k=0

(−v)kiw,z(w − z)−k−1

= δ(v − iz,w(z − w)) + δ(−v − iw,z(w − z)).

since whenever −k − 1 is a non-negative integer, iw,z(w − z)−k−1 = iz,w

(w − z)−k−1.
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Definition 4.1.23. If f(z, w) =
∑

m,n∈Q fm,nz
mwn is a formal series, then

we will say that f(w,w) is well defined if for any l ∈ Q, only finitely many
coefficients fm,l−m are non-zero.

Note that for a well defined series f(z, w) =
∑

m,n∈Q fm,nz
mwn, the series

f(w,w) =
∑

l∈Q(
∑

m∈Q fm,l−m)wl makes sense. Set

gl(V )[[z, z−1]]{w} = {f(z, w) =
∑

r∈Q

fr(z)wr : fr(z) ∈ gl(V )[[z, z−1]]}.

Lemma 4.1.24. Let s ∈ Q and zsf(z, w) ∈ gl(V )[[z, z−1]]{w} such that
f(w,w) is well defined. Then, for any r ∈ Q,

δr(z − w)f(z, w) = δr+s(z − w)f(w,w).

Proof. Let zsf(z, w) ∈ gl(V )[[z, z−1]]{w}. By definition of δr(z − w), we only
need to prove that

δ(z − w)f(z, w) = δs(z − w)f(w,w). (1)

Suppose that (1) holds for s = 0 and any g ∈ gl(V )[[z, z−1]]{w}. Then,

δs(z − w)f(w,w) =
w

z

s
δ(z − w)f(w,w) = z−sδ(z − w)(wsf(w,w))

= z−sδ(z − w)zsf(z, w)

since zsf(z, w) ∈ gl(V )[[z, z−1]]{w}. And so the Lemma follows. Hence we only
need to show that

δ(z − w)f(z, w) = δ(z − w)f(w,w)

for f ∈ gl(V )[[z, z−1]]{w}. Any series f in this set can be written as follows:

f(z, w) =
∑

n∈Q

∑

m∈Z

fm,nz
mwn.

As f(z, w) is well defined,

f(z, w) =
∑

l∈Q

(
∑

m∈Z

fm,l−m(
z

w
)m)wl.

Therefore,

δ(z − w)f(z, w) =
∑

l∈Q

(
∑

m,n∈Z

fm,l−m(
z

w
)m+n)wlz−1

= (
∑

m∈Z

fm,l−m)
∑

j∈Z

(
z

w
)jwlz−1

= δ(z − w)f(w,w).
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We are now ready to prove that associativity together with locality imply
the vertex algebra identity.

Theorem 4.1.25. For any a, b, c ∈ V , any n ∈ Z + ∆(p(a), p(b)), m ∈ Z +
∆(p(a), p(c)), k ∈ Z + ∆(p(b), p(c)),

∞∑

j=0

(
m
j

)
(an+jb)m+k−jc

=
∞∑

j=0

(−1)j

(
n
j

)
(an+m−jbk+j − eiπnν(p(a), p(b))bk+n−jam+j)c.

Proof. Let a, b ∈ V and for r ∈ Z + ∆(p(a), p(b)), set

f(z, iw,v(w + v)) = (w + v)rv−rY (a, z)Y (b, w).

(As a series in iw,v(w+ v), f only contains a constant term). Applying Lemma
4.1.22,

δ(z − iw,v(w + v))f(z, iw,v(w + v)) =δ(v − iz,w(z − w))f(z, iw,v(w + v))
+ δ(−v − iw,z(w − z))f(z, iw,v(w + v)).

(1)
We evaluate the three summands in this equality.

Let c ∈ V . By definition of generalized vertex operators, the coefficients on
z in f(z, iw,v(w + v))c are in

Z + ∆(p(a), p(b)) − ∆(p(a), p(b) + p(c)) = Z − ∆(p(a), p(c)).

Hence for s ∈ Z+∆(p(a), p(c)), since the series f is clearly well defined, Lemma
4.1.24 implies that

δ(z−iw,v(w+v))f(z, iw,v(w+v))c = δs(z−iw,v(w+v))f(iw,v(w+v), iw,v(w+v))c.

For r >> 0 locality gives

f(z, iw,v(w + v)) = iw,z(z − w)rν(p(a), p(b))v−rY (b, w)Y (a, z). (2)

Hence f is a Laurent series in z. So for r >> 0 and s >> 0, all the exponents
of iw,v(w + v) in f(iw,v(w + v), iw,v(w + v))c are non-negative integers. Hence,

iw,v(w + v) = iv,w(w + v) = (w + v)

in this series. Therefore,

f(iw,v(w + v), iw,v(w + v))c = Y (a, iv,w(w + v))Y (b, w)c, (3)

f(iw,v(w + v), iw,v(w + v))c = iw,v(w + v)sY (a, iw,v(w + v))Y (b, w)c (4)
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and by associativity (Proposition 4.1.21),

f(iw,v(w + v), iw,v(w + v))c = iv,w(w + v)sY (Y (a, v)b, w)c. (5)

Now Y (Y (a, v)b, w)c and Y (a, iw,v(w + v))Y (b, w)c are Laurent series in v. So
from Lemma 4.1.11 and equalities (4) and (5) we get

Y (Y (a, v)b, w)c = Y (a, iw,v(w + v))Y (b, w)c.

As a result, for r >> 0 and s >> 0,

δ(z − iw,v(w + v))f(z, iw,v(w + v))c = δs(z − iw,v(w + v))Y (Y (a, v)b, w)c. (6)

Consider the series f as a series f(v, iz,w(z−w)) in v and iz,w(z−w). It is well
defined and

vrf(v, iz,w(z − w)) ∈ gl(V )[[v, v−1]]iz,w(z − w).

So by Lemma 4.1.24,

δ(v − iz,w(z − w))f(v, iz,w(z − w)) = δr(v − iz,w(z − w))Y (a, z)Y (b, w). (7)

Next consider the series f as a series f(−v, iw,z(w− z)) in −v and iw,z(w− z).
Then for r >> 0, by (2)

f(−v, iw,z(w − z)) = iw,z(w − z)reπirν(p(a), p(b))v−rY (b, w)Y (a, z).

So the previous arguments imply that for r >> 0,

δ(−v − iw,z(w − z))f(−v, iw,z(w − z))

= δr(−v − iw,z(w − z))e2πirν(p(a), p(b))Y (b, w)Y (a, z) (8)

since iw,z(w − z)r = eπiniw,z(z − w)r. Therefore equalities (1), (6), (7) and (8)
lead to

δs(z − iw,v(w + v))Y (Y (a, v)b, w)c = δr(v − iz,w(z − w))Y (a, z)Y (b, w)c

+ δr(−v − iw,z(w − z))e2πirν(p(a), p(b))Y (b, w)Y (a, z)c
(9)

for r >> 0 and s >> 0. To conclude the proof, we only need to check that this
is equivalent to the vertex algebra identity. The right hand side of (9) is equal
to
∑

j∈Z

v−j−1−riz,w(z − w)j+rY (a, z)Y (b, w)c

+
∑

j∈Z

(−v)−j−1−riw,z(w − z)j+rν(p(a), p(b))e2πirY (b, w)Y (a, z)c

=
∑

n∈Z+∆(p(a),p(b))

v−1−niz,w(z − w)nY (a, z)Y (b, w)c

−
∑

n∈Z+∆(p(a),p(b))

v−1−niw,z(w − z)nν(p(a), p(b))eπirY (b, w)Y (a, z)c
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since for r, n ∈ Z + ∆(p(a), p(b)), e2πir = e2πin and by assumption
(−1)n = e−πin. So the coefficient of v−n−1 in the right hand side of (9) is

iz,w(z − w)nY (a, z)Y (b, w)c− iw,z(w − z)nν(p(a), p(b))eπinY (b, w)Y (a, z)c

=
∞∑

j=0

(−1)j

(
n
j

) ∑

l∈Z+∆(p(a),p(b+c))

alz
−l−1+n−jwjY (b, w)c

−
∞∑

j=0

(−1)j

(
n
j

)
ν(p(a), p(b))eπinY (b, w)wn−j

∑

l∈Z+∆(p(a),p(c))

alz
−l−1+jc

And thus the coefficient of v−n−1z−m−1 in the right hand side of (9) is

∞∑

j=0

(−1)j

(
n
j

)
(an+m−jw

jY (b, w)c−ν(p(a), p(b))eπinY (b, w)wn−jam+jc. (10)

The coefficient of z−m−1 in the left hand side of (9) is equal to

iw,v(w+v)mY (Y (a, v)b, w)c =
∞∑

j=0

(
m
j

)
wm−j

∑

l∈Z+∆(p(a),p(b))

Y (alb, w)vj−l−1c.

Hence the coefficient of v−n−1z−m−1 in the left hand side of (9) is

∞∑

j=0

(
m
j

)
wm−jY (an+jb, w)c. (11)

Equating the coefficients of w−k−1 in (10) and (11) we can deduce the vertex
algebra identity.

We have shown that locality and associativity imply the vertex algebra iden-
tity. This is in fact an equivalence [DonL], [LepL], [FrenHL], [Kac15]. Indeed,
the definition of a Γ-graded vertex algebra can be re-stated so as to have this
identity as a defining axiom (see Exercise 4.1.2).

As we will be using the vertex algebra identity in various particular cases,
we list them in the following result.

Corollary 4.1.26.

(i) For any b, c ∈ V , a ∈ V0, m ∈ Z, k ∈ Z + ∆(p(b), p(c)),

[am, bk]c =
∞∑

j=0

(
m
j

)
(ajb)m+k−jc

or equivalently

[am, Y (b, z)] =
∞∑

j=0

(
m
j

)
Y (ajb, z)zm−j .
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(ii) Suppose that V is a vertex algebra. Then, for any a, b ∈ V , m, k ∈ Z

ambk − (−1)p(a)p(b)bkam =
∞∑

j=0

(
m
j

)
(ajb)m+k−j .

Proof. We keep the notation of Theorem 4.1.25. If a ∈ V0 or ∆ = 0, then
n ∈ Z. So (i) and (ii) follow by setting n = 0 in the vertex algebra identity.

We next discuss briefly the basic notion of a product of two generalized vertex
operators. This requires some care. If X(z) and Y (z) are vertex operators on
a vector space U , then the formal series X(z)Y (z) is not usually a generalized
vertex operator as it does not necessarily satisfy the convergence condition: For
a ∈ U ,

X(z)Y (z)a =
∑

k

(
∑

m

xk−m−1ym

)
z−k−1a.

If k−m−1 < 0, convergence of the operator Y implies that
∑

m xk−m−1yma = 0
for k � 0. The problem arises from the coefficients xk−m−1 for k −m− 1 ≥ 0.
Since for any a ∈ V , xna = 0 for n� 0, we would want to put all endomorphisms
xn with n ≥ 0 on the right hand side. To do this, we define the normal order of
products of vertex operators as follows.

Definition 4.1.27. Let X(z) =
∑

n∈Z xnz
−n−1 and Y (z) be generalized vertex

operators on V . The normally ordered product of X and Y is defined to be as
follows:

: X(z)Y (z) :=
∑

n<0

xnz
−n−1Y (z) + ν(p(X), p(Y ))Y (z)

∑

n≥0

xnz
−n−1.

More generally, the normally ordered product of the generalized vertex operators
Xi(z), i = 1, · · · , r, where Xi(z), i = 1, . . . r − 1 is defined to be

: X1(z)X2(z) · · ·Xr(z) :=: X1(z)(: X2(z)...Xr(z) :) :

Remark 4.1.28. The above discussion shows that the formal series : X(z)Y (z) :
is a generalized vertex operator, i.e. satisfies the convergence condition. It
clearly has the parity p(X) + p(Y ). Using usual conventions, we write

X(z)+ =
∑

n<0

xnz
−n−1, X(z)− =

∑

n≥0

xnz
−n−1.

Although the next result is easy to check, we state it. It is needed to show
that the generalized vertex operators we will construct in section 4.2 for each
element of a Γ-graded vector space satisfy the axioms of a Γ-graded vertex
algebra.
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Lemma 4.1.29. Let U be a Γ-graded vector space with a derivation d ∈ EndU
of parity 0. Let Yi, i = 1, 2, be mutually local generalized vertex operators on U
satisfying

[d, Yi(z)] =
d

dz
Yi(z), Yi(z).1 ∈ EndV [[z]], i = 1, 2.

Then,
d2

dz
Yi(z) = [d,

d

dz
Yi(z)],

d

dz
Yi(z).1 ∈ EndV [[z]].

If moreover Y1 has parity 0, then the generalized vertex operators d
dzY1(z) and

Y2(z) are mutually local, and

: [d, Y1(z)]Y2(z) : + : Y1(z)[d, Y2(z)] :

=
d

dz
: Y1(z)Y2(z) :, : Y1(z)Y2(z) : .1 ∈ EndV [[z]].

Proof. The first two statements are obvious.

iz,w(z − w)n d

dz
Y1(z)Y2(w) =

d

dz
(iz,w(z − w)n d

dz
Y1(z))Y2(w)

− niz,w(z − w)n−1Y1(z)Y2(w)

=
d

dz
(iw,z(z − w)n d

dz
Y2(w)Y1(z))

− niw,z(z − w)n−1Y2(w)Y1(z)

= iw,z(z − w)n d

dz
Y2(w)

d

dz
Y1(z)

for large enough n ∈ Z + ∆(p(X), p(Y )).
We next check the third equality.

d

dz
: Y (v1, z)Y (v2, z) :

= −
∑

n<0

n(v1)n−1z
−n−1Y (v2, z) − (−1)ν(p(v1),p(v2))Y (v2, z)

∑

n≥0

n(v1)n−1z
−n−1

+ : Y (v1, z)[d, Y (v2, z)] :
=: [d, Y (v1, z)]Y (v2, z) : + : Y (v1, z)[d, Y (v2, z)] :

We next prove Dong’s Lemma [Li2]. It is crucial as it concerns the locality
of normally ordered products of generalized vertex operators.

Lemma 4.1.30. For any a, b, c ∈ V , the generalized vertex operators Y (c, z)
and : Y (a, z)Y (b, z) : are mutually local.
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Proof. Let a, b, c ∈ V . Set

X(z, w) = iz,w(z − w)−1+∆(p(a),p(b))Y (a, z)Y (b, w) − iw,z(z − w)−1+∆(p(a),p(b))

× ν(p(a), p(b))Y (b, w)Y (a, z).

We show that for large enough r ∈ Z + ∆(p(c), p(a) + p(b)),

iv,w(v − w)rY (c, v)X(z, w) = iw,v(v − w)rν(p(c), p(b))X(z, w)Y (c, v). (1)

Since the parity of Y (a, z) is 0, by locality, there exists M > 0 such that for any
integer n ≥M

iz,w(z − w)n+∆(p(a),p(b))Y (a, z)Y (b, w)

= iw,z(z − w)n+∆(p(a),p(b))ν(p(a), p(b))Y (b, w)Y (a, z),
(2)

iv,z(v − z)n+∆(p(a),p(c))Y (c, v)Y (a, z)

= iz,v(v − z)n+∆(p(a),p(c))ν(p(c), p(a))Y (a, z)Y (c, v),
(3)

and

iv,w(v − w)n+∆(p(b),p(c))Y (c, v)Y (b, w)

= iw,v(v − w)n+∆(p(b),p(c))ν(p(c), p(b))Y (b, w)Y (c, v).
(4)

Now, for any integer n ≥ N ,

(v − w)2n =
∞∑

k=0

(
2n
k

)
(v − z)2n−k(z − w)k.

If k < M , then 2n − k > M . Therefore, taking r > 3n and n ≥ N , (1) follows
from equalities (2) − (4).

Taking Resz of both sides of equality (1) shows that the generalized vertex
operators Y (c, v) and : Y (a,w)Y (b, w) : are mutually local.

We next give an elementary but useful consequence of the translation axiom.

Lemma 4.1.31. For any a ∈ V , Y (d(a), z) = d
dzY (a, z).

Proof. By Lemma 4.1.27, for any a ∈ V ,

d

dz
Y (a, z)1 =

d

dz
(ezda) = ezdd(a) = Y (d(a), z)1.

Hence the result follows from Lemmas 4.1.28 and 4.1.29.
This implies a property that will be necessary in the next section where we

construct generalized vertex operators.

Corollary 4.1.32. For any elements a ∈ V0, b ∈ V , n ∈ Z,

Y (a−n−1b, z) =:
1
n!

(
dn

dz
Y (a, z))Y (b, z) :
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Proof. In Theorem 4.1.25, since a ∈ V0, n and m are integers. So for any
c ∈ V , setting, n = −1 and m = 0 in the vertex algebra identity, we get for all
k ∈ Z + ∆(p(c), p(b)),

(a−1b)kc =
∞∑

j=0

(a−1−jbk+j + bk−1−jaj)c

=
∑

j<0

(ajbk−j−1 +
∑

j≥0

bk−1−jaj)c.

Equivalently,
Y (a−1b, z) =: Y (a, z)Y (b, z) : (1)

Now, by Lemma 4.1.31,

Y (dna, z) = (
d

dz
)nY (a, z) ∀n ∈ Z+ (2)

So by Lemma 4.1.15 (i), 1
n! (d

na)−1 = a−n−1. Since d is an endomorphism of
parity 0 (see Lemma 4.1.16), dn(a) ∈ V0. Therefore, applying (1) to dn(a)
instead of a and using (2), we get the result.

As this is all we need to know about arbitrary Γ-graded vertex algebras for
our purpose of constructing BKM superalgebras, we can now apply this theory
in order to construct Γ-graded lattice vertex algebras.

Exercises 4.1

1. Let R be a commutative ring with a derivations d (i.e. d(ab) = d(a)b+ ad(b)
for a, b ∈ R).

(i) Show that

d(i)d(j) =
(
i+ j
i

)
d(i+j),

where d(i) is the i-th derivative of d, and

d(n)(ab) =
n∑

i=0

d(i)(a)d(n−i)(b) ∀ a, b ∈ R.

(ii) Deduce that the ring R can be given the structure of a vertex algebra.

Hint: For any a, b ∈ V , define an(b) = (d(−n−1)(a))b.

2. Suppose that conditions (i)− (iii) of Definition 4.1.13 hold for the Γ-graded
vector space V . Show that if V satisfies the vertex algebra identity given in
Theorem 4.1.25, Y (1, z) = 1 and a−1.1 = a for all a ∈ V , then V is a Γ-graded
vertex algebra.
For a solution, see [Kac15, §4.8].
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3. Let Γ be a finite abelian group of exponent N . Show that the tensor product
U ⊗ V of two Γ-graded vertex algebras U and V is a Γ-graded vertex algebra
with vacuum vector 1 ⊗ 1 and translation operator dU ⊗ 1 + 1 ⊗ dV , where dU

(resp. dV ) is the translation operator of U (resp. V ).

4.2 Γ-Graded Lattice Vertex Algebras

From now on we only consider particular examples of Γ-graded vertex algebras,
namely Γ-graded lattice vertex algebras. The starting point is a lattice L. When
L is even, we can take Γ = 0. Lattice vertex algebras have a nice description and
as we will see in section 5.5, when the even lattice is Lorentzian of rank at most
26, we can derive BKM algebras from them. The aim is however not just to find
all the BKM algebras but the entire class of BKM superalgebras that can be
explicitly constructed. When the odd part is non-trivial, this is possible in rank
10 and has been done in [Sch2]. We do not give this construction in this book but
the background necessary for the interested reader to understand it. In order to
construct this Lie superalgebra with a non-zero odd part, we have to start with
an odd Lorentzian lattice. It may seem at a first glance that this construction
could be based on lattice vertex superalgebras (i.e. corresponding to the simpler
case Γ = Z2). However though they reflect to a certain extent the existence of
odd norm vectors in the root lattice, they only allow the derivation of the even
part of the Lie superalgebra. For the odd part, we need the more complex
structure of a Γ-graded lattice vertex algebra, where Γ is a larger abelian group.
Thus Dong and Lepowsky’s axiomatic development of the theory of Γ-graded-
vertex algebras is fundamental for the construction of BKM superalgebras with
non-trivial odd part.

Let L be a finitely generated rational lattice with non-degenerate bilinear
form (., .) and L0 the maximal integral even sublattice of L, i.e.

L0 = {v ∈ L : (v, v) ≡ 0 (mod 2)}.

Assume that L ⊆ L∗
0, where L∗

0 = {x ∈ L⊗Q R : (x,L0) ⊆ Z} is the dual of L.
Set

Γ = L/L0.

Since the dual lattice L∗
0 has the same rank as L0 and its elements are rational

linear combinations of the generators of the lattice L0, for any α ∈ L∗
0, there is

some n ∈ N such that nα ∈ L0. Hence, considered as free abelian groups, the
index [L∗

0 : L0] <∞. In other words, the abelian group Γ is finite since L ⊆ L∗
0.

Let N be the exponent of Γ. Set

Γ = {g0, · · · , gn}, g0 = 0 gi = L0 + γi, γi ∈ L, ∀ 0 ≤ i ≤ n.

Hence, setting Li = γi + L0, L = L0 ∪ · · · ∪ Ln.
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We are going to construct a Γ-graded vertex algebra. So we next need maps
∆ and ν with the properties defined in the previous section. Let

∆ : Γ × Γ → Q/Z

(gi, gj) �→ Z − (γi, γj).

The map ∆ is clearly a Z-bilinear symmetric map.
Define the parity of α ∈ Li to be p(α) = gi.
Fix a bi-multiplicative map

ν : Γ × Γ → C∗

satisfying
ν(gi, gj)ν(gj , gi) = e2πi(γi,γj) (1)

and
ν(gi, gi) = eπi(γi,γi). (2)

Remark 4.2.1. Condition (1) is needed since ν has to satisfy Lemma 4.1.12.
It is well defined since for any λ ∈ L0, µ ∈ L, (λ, µ) ∈ Z by assumption and
so e2πi(λ,µ) = 1. Moreover, it implies that ν(gi, gi) = ±eπi(γi,γi). Condition (2)
is imposed for consistency reasons that will appear later. It is also well defined
since L0 is an even sublattice and L ⊂ L∗

0.
It is not hard to check that bi-multiplicative maps satisfying (1) and (2) do

exist.

Lemma 4.2.2. The map

Γ × Γ → C∗

(x1, x2) �→ eπi(λ1,λ2),

where L0 + λi = xi, is bi-multiplicative and satisfies the above conditions (1)
and (2).

We will construct what the physicists call a Fock space. For this we next
need a central extension of the abelian group L by C∗. So we remind the reader
of some well known facts about central extensions. First set

B :L× L→ C∗

(βi, βj) �→ e−πi(βi,βj)ν(gi, gj), βi ∈ gi.

Lemma 4.2.3. The map B is

(i) skew-symmetric: ∀ α, β ∈ L,

B(β, α) = B(α, β)−1 and B(α, α) = 1

(ii) and bi-multiplicative: ∀ α, β, γ ∈ L,

B(α+ β, γ) = B(α, γ)B(β, γ) and B(γ, α+ β) = B(γ, α)B(γ, β)
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Proof. The map B is clearly bi-multiplicative as this is the case of ν. Further-
more by Remark 4.2.1,

B(βi, βj)B(βj , βi) = e−2πi(βi,βj)ν(gi, gj)ν(gj , gi) = 1

since ν satisfies condition (1). In other words, B is skew-symmetric. As ν
satisfies condition (2), Remark 4.2.1 implies that

B(βi, βi) = e−πi(βi,βi)eπi(βi,βi) = 1.

Remarks 4.2.4.

(i) For B(α, α) = 1 to hold, the map ν needs to satisfy condition (2). Oth-
erwise, we can only deduce that B(α, α) = ±1. As we will see further
down, B(α, α) = 1 is essential for our purposes as it is necessary in order
to associate a central extension of L by C∗ to B.

(ii) Suppose that L is an integral lattice.

If L is an even lattice, then L0 = L and so Γ = 1.
If L is an odd lattice, then Γ = Z2 since for any α, β ∈ L− L0,

(α+ β, α+ β) = (α, α) + (β, β) + 2(α, β) ≡ 0 (mod 2).

In both cases, ∆ = 0 and bi-multiplicativity and condition (2) satisfied by ν
implies that ν(a, b) = (−1)ab for a, b = 0, 1.

Hence, for α, β ∈ L,

B(α, β) = (−1)(α,β)+p(α)p(β) = (−1)(α,β)+(α,α)(β,β).

The cohomology group H2(L,C∗) is the group of equivalence classes of 2-
cocycles of the group L with values in C∗. These are maps ε : L × L → C∗

satisfying for any αβ, γ ∈ L

ε(α, 0) = 1 = ε(0, α); ε(α, β)ε(α+ β, γ) = ε(α, β + γ)ε(β, γ).

Two such cocycles ε1 and ε2 are equivalent if there is a group homomorphism
µ : L→ C∗ such that ε2(α, β) = ε1(α, β)µ(α)µ(β)µ(a+ β)−1.

Lemma 4.2.5.

(i) There is a bijection between isomorphism classes of central extensions of
group L by the group C∗ and the cohomology group H2(L,C∗).

(ii) There is a unique (up to isomorphism) central extension L̂ of the abelian
group L by the group C∗:

1 −→ C∗ −→ L̂ −→ L −→ 1

satisfying
aba−1b−1 = B(π(a), π(b)), a, b ∈ L̂, (∗)
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where for x ∈ L̂, π is the natural projection of L̂ onto L. For any 2-cocycle
ε corresponding to the group L̂,

ε(α, β) = B(α, β)ε(β, α) α, β ∈ L.

Furthermore, when L is an integral lattice, if αi, i = 1, · · ·n is a basis for
the lattice L, there exists a 2-cocycle corresponding to L̂ such that

ε(±α,±α) = (−1)(α,α) and ε(α, β) = (−1)
∑

i
kiliπi>jB(αi, αj)kilj .

Proof. (i): Let L̂ be a central extension of the abelian group L by C∗ and π
the projection of L̂ onto L. For every α ∈ L, let eα be an element of L̂ such
that π(eα) = α. Set e0 to be the identity element of L̂. Then ε : L × L → C∗

given by
eαeβ = ε(α, β)eα+β (1)

is a 2-cocycle since e0 is the identity and because of associativity.
Let K be another central extension of L by C∗. For all α ∈ L, fix elements

kα ∈ K mapped onto α and let µ be the corresponding 2-cocycle. The groups
K and L̂ belong to the same isomorphism class of central extensions of L if and
only if there is an isomorphism φ : K → L̂ such that φ(kα) = τ(α)eα for some
map τ : L → C∗. Thus they belong to the same isomorphism class if and only
if

µ(α, β) = τ(α)τ(β)τ(α+ β)−1ε(α, β) ∀α, β ∈ L,

i.e. µ is equivalent to ε. Hence the above gives a well defined injective map from
the isomorphism classes of central extensions of L by cyclic groups of order 2
and the group H2(L,C∗).

We next show that the map is surjective. Let ε be a 2-cocycle. We construct
a central extension of L mapped onto ε. Consider the set

L× C∗ = {(α, a) : α ∈ L, a ∈ C∗}.
Define the following product on this set: (α, a).(β, b) = (α+β, ε(α, β)ab) for all
α, β ∈ L, a, b ∈ C∗. As ε is a 2-cocycle, the product is associative and (0, 1) is
the identity element. Furthermore

(−α, ε(α,−α)−1a−1) = (α, a)−1.

Hence this product gives a group structure to the set L× C∗.
(ii): Let α1, · · · , αn be a Z- basis of the lattice L. Set

ε(αi, αj) =
{
B(αi, αj) if i > j
1 if i < j.

(ε(αi, αi) may be arbitrarily chosen). Extend this to L by bi-multiplicativity.
This gives a 2-cocycle on L with values in C∗ since bi-multiplicativity implies
that

ε(α, 0) = 1 = ε(0, α);
ε(α, β)ε(α+ β, γ) = ε(α, β)ε(α, γ)ε(β, γ) = ε(α, β + γ)ε(β, γ).

Let α =
∑

i kiαi and β =
∑

i liαi. Then,
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ε(α, β) =
∏

i,j

ε(αi, αj)kilj =
n∏

i=1

ε(αi, αi)kili
∏

i>j

B(αi, αj)kilj (2)

and

ε(β, α) =
n∏

i=1

ε(αi, αi)kili
∏

j>i

B(αj , αi)kilj .

Hence as B is skew-symmetric (see Lemma 4.2.3 (i)),

ε(α, β)ε(β, α)−1 =
∏

i>j

B(αi, αj)kilj
∏

j>i

B(αi, αj)kilj
∏

i,j

B(αi, αj)kilj = B(α, β).

Let L̂ be the corresponding central extension of L by C∗ and eα ∈ L̂ be as
described in (i). Then, eαeβ = ε(α, β)eα+β and eβeα = ε(β, α)eα+β . Hence
from (∗) we get

eαeβ = ε(α, β)ε(β, α)−1eβeα = B(α, β)eβeα. (3)

This proves the existence of a central extension of L satisfying (∗).
Conversely, if L̂ is a central extension of L satisfying (∗) and ε is a 2-cocycle

corresponding to L̂ via the map described in (i), then the definition of L̂ implies
that ε(α, β) = B(α, β)ε(β, α) for any α, β ∈ L.

We next check the uniqueness of the central extension L̂.
Equality (3) shows that, more generally, for any 2-cocycle ε,

B(α, β) = ε(α, β)ε(β, α)−1

is a bi-multiplicative skew symmetric map. This gives a surjective group homo-
morphism betweenH2(L,C∗) and the group of bi-multiplicative skew-symmetric
maps

L× L→ C∗

ε �→ (B : (α, β) �→ ε(α, β)ε(β, α)−1).

This map is also injective: if ε(α, β)ε(β, α)−1 = 1 for all α, β ∈ L, then ε is
symmetric. Equivalently, (1) implies that the corresponding central extension
is abelian and so must be isomorphic to L×C∗. Therefore, by (i), ε is equivalent
to the trivial cocycle.

Hence the above map is an isomorphism, and thus the uniqueness of L̂ follows
from (i).

Finally suppose that the lattice L is integral. From the above there is a
2-cocycle ε corresponding to L̂ such that

ε(αi, αj) =






B(αi, αj) if i > j
(−1)(αi,αi) if i = j
1 if i < j.
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Then, from (2) and Remark 4.2.4 (ii) it follows that for any α ∈ L,

ε(α, α) =
n∏

i=1

(−1)(αi,αi)k
2
i

∏

i>j

(−1)±(kiαi,kjαj)+±k2
i k2

j (αi,αi)(αj ,αj)

= (−1)
1
2 ((α,α)+(α,α)2)

= (−1)(α,α)

since (
∑

i kiαi,
∑

i kiαi) ≡
∑

i k
2
i (αi, αi) (mod 2). This proves the result.

In what follows, we will denote by L̂ the extension of the free abelian group
L by C∗ given in Lemma 4.2.5 (ii). For each α ∈ L, we fix an element eα ∈
L̂ satisfying π(eα) = α and such that e0 is the identity element of L̂. Set
ε : L× L→ C∗ to be the corresponding 2-cocycle: for all α, β ∈ L,

eαeβ = ε(α, β)eα+β .

The group algebra C[L̂] is a complex vector space with basis eα, α ∈ L.

Definition 4.2.6. Let S be the symmetric algebra of ⊕n<0(H ⊗ tn). The Fock
space is the Γ-graded vector space defined to be the tensor product

VL = S ⊗ C[L̂].

The Γ-grading is given by setting p(v ⊗ eα) = gi, for v ∈ S, α ∈ Li.

We remind the reader that the symmetric algebra is the quotient of the
tensor algebra T (⊕n<0(H⊗ tn)) by the ideal generated by the elements ab− ba,
a, b ∈ (⊕n<0(H ⊗ tn)).

Remark 4.2.7. Basically the Fock space is the tensor product of copies of the
symmetric algebra of H and of C[L̂] and has the structure of an algebra. For
h ∈ H and n ∈ Z−, h(n) will denote the element h⊗ tn. The elements

h1(−n1) · · ·hr(−nr) ⊗ eα,

where the elements hi ∈ H, ni ∈ N, α ∈ L, generate the vector space VL.
Our next aim is to construct a Γ-graded vertex algebra structure on VL.

Throughout this section we keep the notation of section 4.1. For simplicity of
notation we will write p(α) for p(1 ⊗ eα).

Consider H as an abelian Lie algebra and set H̃ to be the affinization H:

H̃ = H ⊗ C[t−1, t] ⊕ Cc,

where c is a central element and [h⊗ tn, h′ ⊗ tm] = δn+m,0(h, h′)c for m,n ∈ Z,
h, h′ ∈ H. Then H̃ is a Heisenberg algebra (see Remark 2.1.16). The Fock space
is a natural representation of the Lie algebra H̃.

For h ∈ H and n ∈ Z, h(n) will denote the endomorphism on VL correspond-
ing to the element h ⊗ tn of H̃. The next result also implies that when n < 0
it is consistent to use the same notation for h(n) both as the endomorphism of
VL defined in the next Lemma and as a vector of VL.
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Lemma 4.2.8.

(i) The symmetric algebra S is a module for the Heisenberg algebra H̃ with
the action of H̃ given as follows. For x ∈ S, write x = h′(−m)y, where
y ∈ S and m ∈ N.

c.x = x;

h(n).x =






h(n)x if n < 0
0 if n = 0
nδn,m(h, h′)y + h′(−m)h(n).y if n > 0

(ii) The space C[L̂] is also a H̃-module with the action given as follows: for
eα ∈ C[L̂],

c.(1 ⊗ eα) = 0, h(n).(1 ⊗ eα) = δn,0(h, α)(1 ⊗ eα).

Proof. For any x ∈ S, h, h′ ∈ H, n,m ∈ Z, α ∈ L calculations give

[h(n), h′(m)].x = (h, h′)δn+m,0x, [h(n), h′(m)].(1 ⊗ eα) = 0.

Hence as c.x = x and c.(1 ⊗ eα) = 0, the action described in the Lemma gives
representations of the Lie algebra H̃ on S and on R[L̂].

As the Fock space is a tensor product of two H̃-modules, it is a tensor
product module for the Lie algebra H̃.

Corollary 4.2.9. The Fock space VL is a H̃-module and the action is given by
Lemma 4.2.8.

Remark 4.2.10. For n < 0, h(n) is a “creation operator” and for n > 0, h(n)
is an “annihilation operator”.

Lemma 4.2.11.

(i) There is a natural derivation d on the Fock space defined by

d(h(−m) ⊗ 1) = mh(−m− 1) ⊗ 1, d.(1 ⊗ eα)
= 1α(−1) ⊗ eα h ∈ H,m ∈ N, α ∈ L.

(ii) d(1 ⊗ 1) = 0

Proof. (ii) follows from the definition of the derivation d and of e0 as the
identity element of the group L̂.

The following consequence of Lemma 4.2.11 (ii) is immediate.

Corollary 4.2.12. For all h ∈ H, n ∈ N, dh(−n).(1⊗1) = −nh(−n−1).(1⊗1).
So, the definition of the derivation d suggests setting

Y (h(−1) ⊗ 1, z) :=
∑

n∈Z

h(n)z−n−1.
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In other words,
h(n) = h(−1)n ∀n ∈ Z.

Lemma 4.2.13. For all h ∈ H, Y (h(−1) ⊗ 1, z) is a well defined general-
ized vertex operator on VL satisfying the vacuum and translation axioms. In
particular,

[d, h(n)] = −nh(n− 1)

for all h ∈ H, n ∈ Z. Furthermore, p(Y (h(−1) ⊗ 1), z) = 0.

Proof. By definition of the action of h(n) on VL given in Lemma 4.2.8, for all
v ∈ VL, h(n).v = 0 for n >> 0 and so the operator Y (h(−1) ⊗ 1, z) is a well
defined generalized vertex operator and satisfies the vacuum axiom.

For all h ∈ H [d, h(n)] = −nh(n−1) is a direct consequence of the definition
of the derivation d (see Lemma 4.2.11) for n < 0. For n > 0, we show this by
induction on the length of homogeneous for all v ∈ VL. For v = 1 ⊗ eα, α ∈ L,

[d, h(n)]v = d(δn,0(h, α)v) − h(n)(α(−1) ⊗ eα)
= δn,0(h, α)d(α(−1) ⊗ eα) − (h, α)δn,1v − (h, α)δn,0(α(−1) ⊗ eα)
= −nh(n− 1)v.

Suppose that for v ∈ VL, [d, h(n)]v = −nh(n− 1)v. Then, for h′ ∈ H, m ∈ N,

dh(n)(h′(−m)v)
= (h, h′)δn,mdv + dh′(−m)h(n)v −mh(n)h′(−m− 1)v − h(n)h′(−m)dv
= n(h, h′)δn,mdv +mh′(−m− 1)h(n)v + h′(−m)dh(n)v
−m(h, h′)nδn,m+1v −mh′(−m− 1)h(n)v − n(h, h′)δn,mdv − h′(−m)h(n)dv
= h′(−m)[d, h(n)]v − nh(n− 1)h′(−m)v + nh′(−m)h(n− 1)v
= −nh(n− 1)h′(−m)v

as wanted. Therefore [d, h(n)] = −nh(n − 1) for all h ∈ H, n ∈ Z. It follows
that [d, Y (h(−1) ⊗ 1, z)] = d

dzY (h(−1) ⊗ 1, z).
By definition of the gradation, h(−1) ⊗ 1 has parity 0. Hence This also

the case for the generalized vertex operator Y (h(−1) ⊗ 1, z) since h(−1)n 	= 0
implies that n ∈ Z. This proves the Lemma.

The following property of the operators h(n) follows easily from the action
of the Lie algebra H̃ on the Fock space VL.

Lemma 4.2.14. For all h, h′ ∈ H, n,m ∈ Z,

[h(n), h′(m)] = nδn+m,0(h, h′).

Corollary 4.2.15. The generalized vertex operators Y (h(−1) ⊗ 1, z) and

Y (h′(−1) ⊗ 1, w) are mutually local for all h, h′ ∈ H.
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Proof.

[Y (h(−1) ⊗ 1, z), Y (h′(−1) ⊗ 1, w)] =
∑

m,n∈Z

[h(n), h′(m)]z−n−1w−m−1

= (h, h′)
∑

n∈Z

nzn−1wn−1

= (h, h′)
∂

∂w
δ(z − w).

Since (z − w)δ(z − w) = 0 (see Example 4.1.10),

(z − w)2
∂

∂w
δ(z − w) =

∂

∂w
((z − w)2δ(z − w)) + 2(z − w)δ(z − w) = 0.

Hence,
(z − w)2[Y (h(−1) ⊗ 1, z), Y (h′(−1) ⊗ 1, w)] = 0

and so the generalized vertex operators Y (h(−1) ⊗ 1, z) and Y (h′(−1) ⊗ 1, z)
are mutually local since they have parity 0.

For α ∈ L, define

eα :VL → VL

v ⊗ eβ �→ v ⊗ eαeβ = ε(α, β)v ⊗ eα+β ,

where v ∈ S.
We can now state the result giving a Γ-graded vertex algebra structure to

the Fock space VL as it only depends on fixing mutually local vertex operators
for the elements h(−1)⊗ 1 of VL, h ∈ H, satisfying the translation and vacuum
axioms.

Theorem 4.2.16. The Fock space VL with vacuum vector 1⊗1 and translation
operator d whose action is defined by:

d(h(−m)⊗1) = mh(−m−1)⊗1, d(1⊗eα) = α(−1)⊗eα h ∈ H,m ∈ N, α ∈ L

has a unique Γ-graded vertex algebra structure satisfying

Y (h(−1) ⊗ 1, z) =
∑

n∈Z

h(n)z−n−1.

There is a basis eα, α ∈ L, of the group algebra R[L̂] for which

Y (1 ⊗ eα, z) = eαe
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)
zα(0)

and more generally, for any hi ∈ H, ni ∈ Z+, α ∈ L, the generalized vertex
operator corresponding to the vector

h1(−n1 − 1)...hr(−nr − 1) ⊗ eα
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is
:

1
n1!

Y (h1(−n1 − 1), z) · · · 1
nr!

Y (hr(−nr − 1), z) ⊗ 1)Y (1 ⊗ eα, z) :

Definition 4.2.17. A Γ-graded vector space V is said to be a Γ-graded (bosonic)
lattice vertex algebra if V is the Fock space VL for some rational lattice L and
the Γ-graded vertex algebra structure is given by Theorem 4.2.16.

It is sometimes useful to call this vertex algebra the bosonic lattice vertex algebra
in order to differentiate it from the fermionic lattice vertex algebra (see Exercise
4.2.2) since both are needed in the construction of a BKM superalgebra with
non-trivial odd part. We spend the rest of section 4.2 proving Theorem 4.2.16.
See [Borc2], [DL] and [Kac15] for the case Γ ≤ Z2. We start by showing that
the Γ-graded vertex algebra structure of VL only depends on the generalized
vertex operators Y (h(−1) ⊗ 1, z) and Y (1 ⊗ eα, z), h ∈ H, n ∈ N, α ∈ L.

Lemma 4.2.18. Suppose that VL is a Γ-graded vertex algebra with vacuum
vector 1 ⊗ 1 and translation operator d. Then,

(i) for h ∈ H, ni ∈ Z+, α ∈ L,

Y (h1(−n1 − 1) · · ·hr(−nr − 1) ⊗ eα, z)

=:
1
n1!

Y (h1(−n1 − 1), z) · · · 1
nr!

Y (hr(−nr − 1), z) ⊗ 1)Y (1 ⊗ eα, z) :

(ii) and for h ∈ H, n ∈ Z+, Y (h(−n) ⊗ 1) = ( ∂
∂z )n−1Y (h(−1) ⊗ 1).

Proof. (i) follows by induction on r from Corollary 4.1.32 applied to the vectors

a = hi(−ni − 1) ⊗ 1

and
b = hi+1(−ni+1 − 1) · · ·hr(−nr − 1) ⊗ eα.

(ii) follows from Lemmas 4.1.31 and 4.2.11 since dn(h(−1)⊗1) = nh(−n−1)⊗1.

Hence we only need to associate generalized vertex operators to elements
1⊗ eα, α ∈ L and finally to check that with the generalized vertex operators as
given in Theorem 4.2.16, the Fock space VL is indeed a Γ-graded vertex algebra.
We first aim towards the computation of Y (1 ⊗ eα, z).

Lemma 4.2.19. Suppose that VL is a Γ-graded vertex algebra with vacuum
vector 1⊗ 1, translation operator d and Y (h(−1)⊗ 1, z) =

∑
n∈Z h(n)z−n−1 for

all h ∈ H. For any n ∈ Z, h ∈ H, α ∈ L,

[h(n), Y (1 ⊗ eα, z)] = (h, α)znY (1 ⊗ eα, z).
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Proof. We apply Corollary 4.1.26 (i) to a = h(−1) ⊗ 1 and b = 1 ⊗ eα. Since
h(n) = (h(−1) ⊗ 1)n and h(n)(1 ⊗ eα) = δn,0(h, α) ⊗ eα,

[h(n), Y (1 ⊗ eα, z)] =
∞∑

j=0

(
n
j

)
Y (h(j)(1 ⊗ eα), z)zn−j

= (h, α)Y (1 ⊗ eα, z)zn

by linearity of generalized vertex operators.

The following result is an immediate consequence of Lemma 4.1.31 and
Corollary 4.1.32.

Lemma 4.2.20. Suppose that VL is a Γ-graded vertex algebra with vacuum
vector 1 ⊗ 1 and translation operator d. For any α ∈ L,

d

dz
Y (1 ⊗ eαz) =: Y (α(−1) ⊗ 1, z)Y (1 ⊗ eα, z) :

Hence

d

dz
Y (1 ⊗ eαz) =

∑

j<0

α(j)z−j−1Y (1 ⊗ eα, z) + Y (1 ⊗ eα, z)
∑

j≥0

α(j)z−j−1.

Now,
d

dz
e
−
∑

j<0
z−j

j α(j) =
∑

j<0

α(j)z−j−1e
−
∑

j<0
z−j

j α(j)
.

Similarly for j > 0. For j = 0,

d

dz
eα(0)logz = α(0)z−1eα(0)logz.

Furthermore, the vacuum axiom implies that

(eα)−1.1 = eα.

On the other hand, the constant term in the expression

e
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)
zα(0).1 = e

−
∑

j<0
z−j

j α(j) ⊗ 1

is 1. It thus makes sense to consider the following generalized vertex operator
on the space VL:

Yα(z) = e−αe

∑
j<0

z−j

j α(j)
Y (1 ⊗ eα, z)e

∑
j>0

z−j

j α(j)
z−α(0).

Lemma 4.2.21. Suppose that VL is a Γ-graded vertex algebra. For all h ∈ H,
n ∈ N,

(i) [h(n), eα] = δn,0(h, α)eα and
(ii) [h(n), Yα(z)] = 0.
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Proof. From the action of h(n) on VL given in Lemma 4.2.8, (i) is obvious for
n 	= 0. For any v ∈ S, γ ∈ L,

h(0)eα(veγ) = ε(α, γ)(h, α+ γ)veα+γ

= (h, α+ γ)veα(1 ⊗ eγ)

and
eαh(0)(veγ) = (h, γ)veα(1 ⊗ eγ),

proving (i) for n = 0.
For n, j ∈ Z, j 	= 0, by Lemma 4.2.14,

[h(n), e
z−j

j α(j)] = (h, α)δn+j,0z
ne−

zn

n α(−n) and [h(n), zα(0)] = 0.

Hence (ii) follows from (i) and Lemma 2.4.19.

In fact, the vertex operator Yα(z) does not depend on z.

Corollary 4.2.22. Suppose that VL is a Γ-graded vertex algebra with vacuum
vector 1 ⊗ 1, translation operator d, and Y (h(−1) ⊗ 1, z) =

∑
n∈Z h(n)z−n−1

for all h ∈ H. For any α ∈ L, the vertex operator Yα(z) ∈ End(VL).

Proof. From Lemmas 4.2.14 and 4.2.21 it follows that

Y (1 ⊗ eα, z) = eαe
−
∑

j<0
z−j

j α(j)
e

∑
j>0

z−j

j α(j)
zα(0)Yα(z).

So, by Lemmas 4.2.20 and 4.2.21, d
dzYα(z) = 0, which proves the result.

We will write Yα(z) = yα, where yα is an endomorphism of the vector space
VL. We next compute these endomorphisms.

Lemma 4.2.23. Suppose that VL is a Γ-graded vertex algebra with vacuum
vector 1 ⊗ 1, translation operator d, and Y (h(−1) ⊗ 1, z) =

∑
n∈Z h(n)z−n−1

for all h ∈ H. For any α, β,∈ L, v ∈ S, yα(v ⊗ eβ) = y(α, β)v ⊗ eβ for some
y(α, β) ∈ C and y(α, 0) = 1 = y(0, α).

Proof. For any v ∈ S, β ∈ L,

yα(v ⊗ eβ) = vyα(1 ⊗ eβ)

since yα commutes with all operators h(−n) for all h ∈ H, n ∈ N, by Lemmas
4.2.8 and 4.2.21 (ii). For any h ∈ H,

h(0)yα(1 ⊗ eβ) = (h, β)yα(1 ⊗ eβ)

by Lemma 4.2.21 (ii). Hence, since the bilinear form is non-degenerate on L,
there is an element y(α, β) ∈ S such that

yα(1 ⊗ eβ) = y(α, β) ⊗ eβ .

So by Lemma 4.2.21 (ii), [h(n), y(α, β)⊗eβ ] = 0 for any h ∈ H, n > 0. Therefore,
y(α, β) ∈ C.
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Applying the vacuum axiom, we then get

1 ⊗ eα = Y (1 ⊗ eα, z)(1 ⊗ 1)
∣∣
z=0

= y(α, 0)(1 ⊗ eα)

and
1 ⊗ eα = Y (1 ⊗ 1, z)(1 ⊗ eα) = y(0, α)(1 ⊗ eα).

And so y(α, 0) = 1 = y(0, α).

To compute the scalars y(α, β), we use the fact that the generalized vertex
operators Y (eα, z) and Y (eβ , w) are mutually local. We split the proof into two
parts as this will be useful later on.

Lemma 4.2.24. Suppose that VL is a Γ-graded vertex algebra with vacuum
vector 1 ⊗ 1, translation operator d, and Y (h(−1) ⊗ 1, z) =

∑
n∈Z h(n)z−n−1

for all h ∈ H. For any α, β ∈ L,

iz,w(z − w)∆(p(α),p(β))Y (1 ⊗ eα, z)Y (1 ⊗ eβ , w)

− iw,z(z − w)∆(p(α),p(β))ν(p(α), p(β))Y (1 ⊗ eβ , w)Y (1 ⊗ eα, z)

= (eαyαe
βyβ − eπi∆(p(α),p(β))ν(p(α), p(β))eβyβe

αyα)Yα,β(z, w),
(∗)

where

Yα,β(z, w) = zα(0)wβ(0)e
−
∑

j<0
( z−j

j α(j)+ w−j

j β(j))
e
−
∑

j>0
( z−j

j α(j)+ w−j

j β(j))
.

Proof. From Corollary 4.2.22,

Y (1 ⊗ eα, z)Y (1 ⊗ eβ , w)

= eαe
−
∑

j<0
z−j

j α(j)
e

∑
j>0

z−j

j α(j)
zα(0)yαe

βe
−
∑

j<0
w−j

j β(j)
e

∑
j>0

w−j

j β(j)
wβ(0)yβ .

Lemma 4.2.14 implies that [α(j), β(k)] = 0 for k 	= −j and [α(j), β(−j)] com-
mutes with both α(j) and β(−j). Hence,

e−
z−j

j α(j)e−
w−k

k β(−k) = δj+k,0e
−( w

z )j 1
j (α,β)e

wj

j β(−j)e−
z−j

j α(j).

And so,

e

∑
j>0

z−j

j α(j)
e
−
∑

j<0
w−j

j β(j) = e
−
∑

j<0
w−j

j β(j)
e

∑
j>0

z−j

j α(j)
e
−(α,β)

∑
j>0

( w
z )j 1

j .

Claim: eβzα(0) = z−(α,β)zα(0)eβ .
For any v ∈ S, γ ∈ L, eβzα(0)(v ⊗ eγ) = ε(β, γ)z(α,γ)(v ⊗ eβ+γ), where ε is

the 2-cocycle corresponding to the central extension L̂ (see Lemma 4.2.5 and
following paragraph), and zα(0)eβ(veγ) = ε(β, γ)z(α,β+γ)(veβ+γ), proving the
claim.

Considered as complex functions,

−
∑

j>0

(
w

z
)j 1
j

= log(1 − w

z
)
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and
z(α,β)iz,w(1 − w

z
)(α,β) = iz,w(z − w)(α,β)

in the domain
∣∣w

∣∣ <
∣∣z
∣∣. Hence as formal series,

e
−(α,β)

∑
j>0

( w
z )j 1

j z(α,β) = iz,w(z − w)(α,β).

Note that by definition of ∆, (α, β) = −∆(p(α), p(β)). Therefore, since by
Lemma 4.2.21, yα and yβ commute with the endomorphisms h(n) for all n ∈ Z,

Y (1 ⊗ eα, z)Y (1 ⊗ eβ , w) = iz,w(z − w)−∆(p(α),p(β))eαyαe
βyβYα,β(z, w), (1)

where

Yα,β(z, w) = zα(0)wβ(0)e
−
∑

j<0
( z−j

j α(j)+ w−j

j β(j))
e
−
∑

j>0
( z−j

j α(j)+ w−j

j β(j))
.

Similarly,

Y (1 ⊗ eβ , w)Y (1 ⊗ eα, z) = iw,z(w − z)−∆(p(α),p(β))eβyβe
αyαYα,β(z, w). (2)

The result follows from (1) and (2).
We are now able to derive the vertex operators Y (1 ⊗ eα, z).

Lemma 4.2.25. Suppose that VL is a Γ-graded vertex algebra with vacuum
vector 1 ⊗ 1, translation operator d, and Y (h(−1) ⊗ 1, z) =

∑
n∈Z h(n)z−n−1

for all h ∈ H. There is a basis eα, α ∈ L of the group algebra C[L̂] satisfying
eαeβ(eα)−1 = B(α, β)eβ with respect to which

Y (1 ⊗ eα, z) = eαe
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)
zα(0).

Proof. We keep the same notation as in Lemma 4.2.24. Since
Yα,β(z, w)−1 makes sense, multiplying both sides of equality (∗) in Lemma 4.2.24
by (z − w)mYα,β(z, w)−1, where m ∈ Z, we can deduce that for large enough
n ∈ Z + ∆(p(a), p(b)) (n = m+ ∆(p(a), p(b))),

iz,w(z − w)nY (1 ⊗ eα, z)Y (1 ⊗ eβ , w)

= iw,z(z − w)nν(p(α), p(β))Y (1 ⊗ eβ , w)Y (1 ⊗ eα, z) (1)

if and only if

(z − w)n−∆(p(a),p(b))eαyαe
βyβ = (z − w)n−∆(p(a),p(b))

× ν(p(α), p(β))eπi∆(p(α),p(β))eβyβe
αyα. (2)

(In particular if (1) holds, then it holds for all n ≥ ∆(p(a), p(b))) Applying the
operators on both sides of equality (2) to the vector 1⊗ eγ , γ ∈ L, we get from
Lemma 4.2.23,

y(β, γ)ε(β, γ)y(α, β + γ)ε(α, β + γ)

= ν(p(α), p(β))eπi∆(p(α),p(β))y(α, γ)ε(α, γ)y(β, α+ γ)ε(β, α+ γ).
(3)
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As ε is a 2-cocycle,

ε(β, γ)ε(α, β + γ) = ε(α, β)ε(α+ β, γ)

and
ε(α, γ)ε(β, α+ γ) = ε(β, α)ε(α+ β, γ).

Hence (3) becomes

y(β, γ)y(α, β + γ)ε(α, β) = ν(p(α), p(β))eπi∆(p(α),p(β))ε(β, α)y(α, γ)y(β, α+ γ).

By definition (see Lemmas 4.2.5 and 4.2.3),

ε(α, β) = B(α, β)ε(β, α)

and
B(α, β) = e−πi(α,β)ν(p(α), p(β)).

Also by definition of ∆,

−(α, β) = ∆(p(α), p(β)).

Hence, it follows that

y(β, γ)y(α, β + γ) = y(α, γ)y(β, α+ γ). (4)

In particular, setting γ = 0, by Lemma 4.2.23,

y(α, β) = y(β, α). (5)

Using both equalities (5) and (4), it follows that

y(β, γ)y(α, β + γ) = y(γ, α)y(β, γ + α)
= y(β, α)y(γ, α+ β)
= y(α, β)y(α+ β, γ).

Together with Lemma 4.2.23, this says that

y : L× L→ C

(α, β) �→ y(α, β)

is a 2-cocycle.
Suppose that y(α, β) 	= 0 for all α, β ∈ L. As the 2-cocycle y is symmetric,

the corresponding central extension of L by C∗ is abelian and thus isomorphic
to the direct product of groups L×C∗. Therefore, Lemma 4.2.5 (i) implies that
there exists a map τ : L→ C∗ such that

y(α, β) = τ(α)τ(β)τ(α+ β)−1.
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For all α ∈ L, set fα = τ(α)−1eα. These elements form a basis of the group
algebra C[L̂] and

Y (1 ⊗ fα, z)(v ⊗ fβ) = τ(α)−1τ(β)−1Y (1 ⊗ eα, z)(v ⊗ eβ)

= z(α,β)e
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)(v ⊗ fα+β).

Hence, rescaling the basis elements eα if necessary, we may assume that

Y (1 ⊗ eα, z) = eαe
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)
zα(0).

So to complete the proof of the Lemma, we only need to show the following
claim.
Claim: y(α, β) 	= 0 for all α, β ∈ L.

Suppose that y(α, β) = 0 for some α, β ∈ L. Then, by Corollary 4.2.22 and
Lemma 4.2.23,

Y (1⊗ eα, z)(1⊗ eβ) = eαe
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)
zα(0)(y(α, β)⊗ eβ) = 0.

(6)
Now,

yα(1 ⊗ eβ) = yαe
β(1 ⊗ 1) = Y (0, z)(1 ⊗ 1). (7)

This last equality follows from (6) and linearity in the first variable of the
operators Y (a, z), a ∈ VL. Since X(z) = Y (1 ⊗ eα, z)eβ is clearly a generalized
vertex operator, applying Lemma 4.1.18 to (7), we can deduce that X(z) = 0.
Hence, X(z)e−β = 0. However, for any s ∈ S, γ ∈ L,

eβe−β(s⊗ eγ) = ε(−β, γ)ε(β,−β + γ)(s⊗ eγ) = ε(β,−β)(s⊗ eγ). (8)

In other words, the map eβe−β on VL is multiplication by ε(β,−β) and this
scalar is non-trivial as it is in C∗ by definition of the 2-cocycle ε. Therefore, (8)
implies that

Y (1 ⊗ eα, z) = 0.

In particular,
1 ⊗ eα = Y (1 ⊗ eα, z)(1 ⊗ 1) |z=0= 0.

This contradiction forces y(α, β) 	= 0, proving our claim.

Remark 4.2.26. Note that because of the isomorphism between the group
of equivalence classes of 2-cocycles with values in C∗ and the group of bi-
multiplicative skew-symmetric maps L× L → C∗, the Γ-graded vertex algebra
structure of VL is independent, up to equivalence class, of the 2-cocycle ε chosen
as long as ε(α, β)ε(β, α)−1 = B(α, β).

In order to finish the proof of Theorem 4.2.16, it only remains to verify that
the generalized vertex operators Y (1⊗ eα, z) given in Lemma 4.2.25 satisfy the
Γ-graded vertex algebra axioms.
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Lemma 4.2.27. Suppose that Y (h(−1)⊗1, z) =
∑

n∈Z h(n)z−n−1 for all h ∈ H
and that d is the derivation given in Lemma 4.2.11 (i). Let

Y (1 ⊗ eα, z) = eαe
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)
zα(0).

Then,

(i) [d, Y (1 ⊗ eα, z)] = d
dzY (1 ⊗ eα, z),

(ii) Y (1⊗1, z) = IVL
, Y (1⊗eα, z).1 ∈ V [[z]] and Y (1⊗eα, z).1

∣∣
z=0

= 1⊗eα,
(iii) Y (1 ⊗ eα, z) is a generalized vertex operator of parity p(α).
(iv) The generalized vertex operators Y (v, z) and Y (1 ⊗ eα, z) are mutually

local for v = h(−1) ⊗ 1 and v = 1 ⊗ eβ for all h ∈ H, β ∈ L.

Proof. (i): Since for all v ∈ S, β ∈ L,

deα(v ⊗ eβ) = ε(α, β)(d(v) + (α+ β)(−1)v) ⊗ eα+β

and
eαd(v ⊗ eβ) = ε(α, β)(d(v) + β(−1)v) ⊗ eα+β ,

we get
[d, eα] = eαα(−1).

From Lemma 4.2.13, we can deduce that

[d, e−
z−j

j α(j)] = z−jjα(j − 1)e−
z−j

j α(j) ∀ j 	= 0, and [d, zα(0)] = 0.

Hence,

[d, Y (1 ⊗ eα, z)] = eαα(−1)e−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)
zα(0)

+
∑

j<0

α(j − 1)z−jY (1 ⊗ eα, z) + Y (1 ⊗ eα, z)
∑

j>0

α(j − 1)z−j

=
∑

j<0

α(j)z−j−1Y (1 ⊗ eα, z) + Y (1 ⊗ eα, z)
∑

j≥0

α(j)z−j−1

=
d

dz
Y (1 ⊗ eα, z)

(ii) is easy to check.
(iii): For any v ∈ S,

Y (1 ⊗ eα, z)(v ⊗ eβ) = eαe
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)(v ⊗ eβ)z(α,β).

Hence for all n ∈ Q, (1⊗ eα)n has parity p(α) and (1⊗ eα)n(v⊗ eβ) 	= 0 implies
that n ∈ Z − (α, β). However, by definition of ∆, ∆(α, β) = −(α, β).
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(iv): From Lemmas 4.2.14 and 4.2.21 (i) we can deduce that, for all n ∈ Z,

[h(n), Y (1 ⊗ eα, z)] = (h, α)znY (1 ⊗ eα, z)

and so

[Y (h(−1) ⊗ 1, z), Y (1 ⊗ eα, w)] =
∑

n∈Z

(h, α)Y (1 ⊗ eα, w)z−n−1wn.

Therefore,
(z − w)[Y (h(−1) ⊗ 1, z), Y (1 ⊗ eα, w)] = 0.

Since the generalized vertex operator Y (h(−1) ⊗ 1, z) has parity 0, Y (h(−1) ⊗
1, z) and Y (1 ⊗ eα, w) are mutually local.

Applying Lemma 4.2.24,

iz,w(z − w)∆(p(α),p(β))Y (1 ⊗ eα, z)Y (1 ⊗ eβ , w)

− iw,z(z − w)∆(p(α),p(β))ν(p(α), p(β))Y (1 ⊗ eβ , w)Y (1 ⊗ eα, z)

= (ε(α, β)eα+β − eπi∆(p(α),p(β))ν(p(α), p(β))ε(β, α)eα+β)Yα,β(z, w)
= 0

since

ε(α, β) = B(α, β)ε(β, α) by Remark 4.2.26

= e−pii(α,β)ν(p(α), p(β))ε(β, α) by definition of B

= e−pi∆(p(α),p(β))ν(p(α), p(β))ε(β, α) by definition of ∆.

We are now ready to complete the proof of Theorem 4.2.16.

Proof of Theorem 4.2.16. By Lemma 4.2.11 (ii), the translation opera-
tor d annihilates the vacuum vector. By Lemmas 4.2.13, 4.2.27 and Corollary
4.2.15, the generalized vertex operators Y (h(−1) ⊗ 1, z) and Y (1 ⊗ eα, z) sat-
isfy the axioms of a Γ-graded vertex algebra for all h ∈ H, α ∈ L. Hence by
Lemma 4.2.18, the generalized vertex operators given in Theorem 4.2.16 for arbi-
trary generating vectors give the Fock space VL with translation operator d and
vacuum vector 1 ⊗ 1 a Γ-graded vertex algebra structure. Uniqueness follows
from Lemmas 4.2.18 and 4.2.25. This completes the proof of Theorem 4.2.16.

Exercises 4.2

1. Let L be the root lattice of a finite dimensional simple Lie algebra G of type
A, D or E, i.e. all of whose roots have norm 2. Show that the lattice vertex
algebra VL is an integrable highest weight irreducible Ĝ-module with highest
weight vector the vacuum vector 1, where Ĝ is the extended affine Lie algebra
associated to the Lie algebra G.



4.3 From Lattice Vertex Algebras to Lie Algebras 167

For a solution, see [Kac15, §5.6].

2. Let L be an integral lattice, V f
L the exterior algebra of

⊕−n∈N(H ⊗ tn−
1
2 ),

and
Ĥ = H ⊗ C[t−1, t]t

1
2 ⊕ Cc,

where
Ĥ0 = Cc,

Ĥ1 = H ⊗ C[t−1, t]t
1
2 ,

c is a central element and [h(n), h′(m)] = δn+m,0(h, h′)c for m,n ∈ Z, h, h′ ∈ H.

(i) Show that Ĥ is a Heisenberg superalgebra and that V f
L is an irreducible

Ĥ-module.
(ii) Show that the space V f

L with vacuum vector 1, translation operator d with
action defined by:

d(h(−m) ⊗ 1) = mh(−m− 1) ⊗ 1, d(1 ⊗ eα)
= α(−1) ⊗ eαh ∈ H,m ∈ N, α ∈ L,

has a unique vertex superalgebra structure satisfying

Y (h(−1 − 1
2
) ⊗ 1, z) =

∑

n∈Z

h(n− 1
2
)z−n−1.

This is called the fermionic lattice vertex superalgebra. For a solution, see
[Sch1].

4.3 From Lattice Vertex Algebras
to Lie Algebras

In this subsection, we show how to construct Lie algebras from lattice vertex
algebras. For details, see [Borc2], [Fren] and [Sch1]. We assume that the lattice
L is non-degenerate and integral. Hence, by Remark 4.2.4 (ii), Γ ≤ Z2, ∆ = 0,
ν(a, b) = (−1)ab for a, b = 0, 1, and

B(α, β) = (−1)(α,β)+(α,α)(β,β).

So, by definition, the Fock space VL is graded by Γ = Z2: v⊗ eα ∈ (VL)0 (resp.
(VL)1) if (α, α) is even (resp. odd).

Our aim is to construct a BKM algebra from VL. The first thing to notice in
this respect is that the quotient of VL by the subspace generated by the action
of the translation operator d has the structure of a Lie superalgebra.
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Lemma 4.3.1. The quotient space VL/d(VL), where d(VL) = 〈dv, v ∈ VL〉, is a
Lie superalgebra with the Lie super-bracket given by:

[u, v] = u0(v), ∀u v ∈ VL.

Proof. We check that (anti)-commutativity and the Jacobi identity hold. By
Lemma 4.1.20, for all u, v ∈ VL,

u0(v) = −(−1)p(u)p(v)
∞∑

j=0

(−1)j d
j

j!
vju.

It follows that

[u, v] ≡ −(−1)p(v)p(u)[v, u] (mod d(VL)).

By Corollary 4.1.26(ii), for any u, v, w ∈ VL,

u0(v0w) − (−1)p(u)p(v)v0(u0w) = (u0v)0w.

Equivalently,
[u[v, w]] = [[u, v]w] + (−1)p(u)p(v)[v[u,w]].

Remark 4.3.2. The above proof shows that the Jacobi identity holds in VL but
not the (anti)-commutativity axiom of the Lie super bracket. It is in order for
this axiom to hold that to get a Lie superalgebra structure, we have to quotient
out the Fock space VL by the subspace generated by the derivation d.

Now there is a fundamental aspect of the vertex algebra VL which we have
not touched upon as yet. Recall from Lemmas 2.2.4 and 2.2.5 that an essential
characteristic of a BKM superalgebra G is the existence of a non-degenerate,
consistent, supersymmetric bilinear form such that the subspaces Gα and Gβ ,
where α, β ∈ ∆ ∪ {0}, are orthogonal unless α + β = 0. A basic aspect of
the structure of lattice vertex algebras is that they too have a natural non-
degenerate bilinear form. However, it is symmetric and not supersymmetric.
Remember from paragraph preceding Corollary 2.2.7 that, in this book, we
take Hermitian forms to be antilinear in the first argument and linear in the
second, unlike usual conventions.

Theorem 4.3.3. There is a unique, consistent, symmetric, Hermitian form
(., .) on VL such that:

(i) (1 ⊗ eα, 1 ⊗ eβ) =
{ 1 if α = β

0 otherwise
and

(ii) for any h ∈ H, n ∈ Z, the adjoint of the operator h(n) is h(−n).
Furthermore, the form (., .) is non-degenerate.

Proof. Let u = h1(−n1) · · ·hr(−nr) ⊗ eα and v = h′1(−m1) · · ·h′s(−ms) ⊗ eβ ,
where hi, h

′
i ∈ H, ni,mi ∈ N and α, β ∈ L. By (ii),
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(u, v) = (h′1(ms) · · ·h′s(m1)h1(−n1) · · ·hr(−nr) ⊗ eα, 1 ⊗ eβ) (∗)

and
(u, 1 ⊗ eβ) = (h1(−n2) · · ·hr(−nr) ⊗ eα, h1(n1)(1 ⊗ eβ)) = 0

unless r = 0. And so together with (i), this proves the existence and uniqueness.
The Hermitian form is clearly symmetric. If p(u) = 0 and p(v) = 1, then

by definition of the parity, (α, α) ≡ 0 (mod 2) and (β, β) ≡ 0 (mod 2). In
particular, α 	= β and so from (∗) and (i), (u, v) = 0. Hence the form is
consistent.

We now show that the Hermitian form is non-degenerate. From (∗) and (i),
all we need to show is that there are maps h′1(m1) such that
h′1(ms) · · ·h′s(m1)s 	= 0, where s = h1(−n1) · · ·hr(−nr) ∈ S. Let us re-write
the vector s as follows:

s = h1,1(−l1) · · ·h1,k(−l1)h2(−l2) · · ·hr(−lt),

where 0 < l1 < lj for all j > 1. As the Hermitian form on H is non-degenerate,
there is some h ∈ H such that (h,

∑k
i=1 h1,i) 	= 0 for all 1 ≤ i ≤ k. The action

of H̃ on S given in 4.2.8 (i) implies that

h(l1)ks = kl1(h,
k∑

i=1

h1,i)h2(−l2) · · ·hr(−lt).

Therefore, non-degeneracy follows by induction on t.

From now on, for reasons of simplicity, we will denote by (., .) both the
bilinear form on the lattice L and the Hermitian form on the Fock space VL

defined in Theorem 4.3.3.
The Lie superalgebra VL/d(VL) introduced in Lemma 4.3.1 is too big. The

Lie superalgebra which is of importance to us is a sub-quotient of this one. This
sub-quotient is derived from the natural action of the Virasoro algebra on VL.
A typical characteristic of a lattice vertex algebra is that the Virasoro algebra
acts on it. It induces a natural Z-gradation on VL which will give us the Lie
algebra we are looking for. Moreover the properties of this action will enable us
to show that this Lie sub-superalgebra is indeed a BKM superalgebra when the
lattice L is Lorentzian of rank at most 26. So let us first remind the reader of
the definition of a Virasoro algebra.

Definition 4.3.4. The Virasoro algebra Vir is the Lie algebra generated by
elements Ln, n ∈ Z and a central element c satisfying

[Lm, Ln] = (m− n)Lm+n +
1
12

(m3 −m)δm+n,0c.

A characteristic aspect of the lattice vertex algebras VL is that it has a vec-
tor with the special property that the coefficients of the corresponding vertex
operator generate a Virasoro algebra.
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Definition 4.3.5. A vertex algebra V with an even vector v such that

Y (v, z) =
∑

n∈Z

Lnz
−n−2,

where 〈Ln, c〉 ∼= V ir, c being a scalar, is called a conformal vertex algebra. The
vector v is said to be a conformal vector with central charge c.

Theorem 4.3.6. The vector

ζ =
1
2

∑

i

αi(−1)α′
i(−1) ⊗ 1,

where the vectors (αi) run through a basis of L and (α′
i) through a dual basis

in H is a conformal vector of the lattice vertex algebra VL with central charge
dimL. For all j ∈ Z,

Lj =
1
2

∑

i

(
∑

n<0

αi(n)α′
i(j − n) +

∑

n≥0

α′
i(j − n)αi(n)).

In particular, L−1 = d and L0 is diagonalizable derivation on VL:

L0(1 ⊗ eα) =
1
2
(α, α)(1 ⊗ eα), L0(h(−m)v) = mh(−m)v + h(−m)L0v.

Furthermore, the operators Ln and L−n are adjoint with respect to the Hermitian
form (., .) on VL.

Proof. By Corollary 4.1.26 (i), since Lm = ζm+1,

[Lm, Ln] =
∞∑

j=0

(
m+ 1
j

)
(Lj−1ζ)m+n+2−j . (1)

By Corollary 4.1.32, since h(−1) = (h(−1) ⊗ 1)−1 for all h ∈ H,

Y (ω, z) =
1
2

∑

i

: Y (αi(−1) ⊗ 1, z)Y (α′
i(−1) ⊗ 1, z) :

=
1
2

∑

i

(
∑

n<0

αi(n)z−n−1
∑

m∈Z

α′
i(m)z−m−1

+
∑

m∈Z

α′
i(m)z−m−1

∑

n≥0

αi(n)z−n−1)

=
1
2

∑

j

z−j−2
∑

i

(
∑

n<0

αi(n)α′
i(j − n) +

∑

n≥0

α′
i(j − n)αi(n)).

(2)

Hence,

Lj =
1
2

∑

i

(
∑

n<0

αi(n)α′
i(j − n) +

∑

n≥0

α′
i(j − n)αi(n)). (3)
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Hence, from the action of H̃ on VL given in Lemma 4.2.8, we get, for any h ∈ H,
m ∈ Z, α ∈ L, v ∈ VL,

L−1h(−m)v =
1
2

∑

i

(αi(−m− 1)m(α′
i, h)v

+m(αi, h)α′
i(−1 −m)) + h(−m)L−1v

= mh(−m− 1)v + h(−m)L−1v

and
L−1(1 ⊗ eα) =

1
2

∑

i

((α′
i, α)αi(−1) + (αi, α)α′

i(−1)) ⊗ eα

= α(−1) ⊗ eα

and so L−1 = d.

L0(h(−m)v) =
1
2

∑

i

(
∑

n<0

αi(n)α′
i(−n) +

∑

n≥0

α′
i(−n)αi(n))h(−m)v

=
1
2

∑

i

(αi(−m)m(α′
i, h)v +m(αi, h)α′

i(−m)) + h(−m)L0v

= mh(−m)v + h(−m)L0v

and
L0(1 ⊗ eα) =

1
2

∑

i

(αi, α)α′
i(0)(1 ⊗ eα)

=
1
2
α(0)(1 ⊗ eα)

=
1
2
(α, α)(1 ⊗ eα).

We next evaluate the right hand side of (1). From the above,

L0ω = 2ζ. (4)

For j > 0, since j − n > 1 when n < 0, (3) gives

Ljζ =
1
4

∑

i,k

α′
i(j − 1)αi(1)(αk(−1)α′

k(−1) ⊗ 1)

=
1
4
(
∑

i,k

(αi, αk)α′
i(j − 1)α′

k(−1) +
∑

i

α′
i(j − 1)αi(−1)) ⊗ 1

=
1
2
(
∑

i

α′
i(j − 1)αi(−1)) ⊗ 1

=
{

1
2 dimL(1 ⊗ 1) if j = 2
0 otherwise.
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So, setting IVL
to be the identity homomorphism on the space VL, (1) becomes

[Lm, Ln]

= (L−1ζ)m+n+2 + (m+ 1)(L0ζ)m+n+1 +
(m+ 1)m(m− 1)

6
(L2ζ)m+n−1

= (dζ)m+n+2 + 2(m+ 1)ζm+n+1 +
m3 −m

12
(dimL)IVL

by (4) and the vacuum axiom

= −(m+ n+ 2)ζm+n+1 + 2(m+ 1)ζm+n+1 +
m3 −m

12
(dimL)IVL

by Lemma 4.1.31

= (m− n)Lm+n +
m3 −m

12
(dimL)IVL

as expected.
Finally, we show that

(Lju, v) = (u,L−jv).

For all u, v ∈ VL,

(Lju, v)

=
1
2

∑

i

((
∑

n<0

αi(n)α′
i(j − n) +

∑

n≥0

α′
i(j − n)αi(n))u, v) by (2)

=
1
2

∑

i

(u, (
∑

n<0

α′
i(−j − n)αi(−n) +

∑

n≥0

αi(−n)α′
i(−j − n))v)

by Theorem 4.3.3

=
1
2

∑

i

(u, (
∑

n≤0

αi(n)α′
i(−j + n) +

∑

n>0

α′
i(−j + n)αi(n))v)

replacing n by −n

=
1
2

∑

i

(u, (
∑

n<0

αi(n)α′
i(−j + n) +

∑

n≥0

α′
i(−j + n)αi(n))v)

by Lemma 4.2.14
= (u,L−jv).

Remark 4.3.7. (i). The definition of the operator L0 implies that for any
eigenvector v ⊗ eα of L0, v ∈ S, α ∈ L, the corresponding eigenvalue x ∈ C is
such that x− 1

2 (α, α) > 0.
(ii). Note that vertex operator algebras were defined by Frenkel, Lepowsky and
Meurman [FrenLM2] to reflect some crucial features of the moonshine mod-
ule. They are conformal vertex algebras with the added condition that all the
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eigenspaces of L0 on V are finite dimensional. However not all conformal vertex
algebras are vertex operator algebras. In particular, if the lattice L is not posi-
tive definite, then the lattice vertex algebra VL is not a vertex operator algebra.
Indeed, for example, the eigenspace V1 = {v ∈ VL : L0v = v} is then infinite
dimensional:

{h(1
2
(α, α) − 1) ⊗ eα : h ∈ H,α ∈ L, (α, α) ≤ 0} ≤ V1

since for any α ∈ L of non-positive even norm, as 1− 1
2 (α, α) ∈ N, for all h ∈ H,

h( 1
2 (α, α)−1)⊗eα ∈ VL; and the definition of the operator L0 given in Theorem

4.3.6 implies that

L0(h(
1
2
(α, α) − 1) ⊗ eα) = h(

1
2
(α, α) − 1) ⊗ eα.

Corollary 4.3.8. Distinct eigenspaces for the operator L0 are orthogonal with
respect to the Hermitian form (., .). In particular, the restrictions of the Her-
mitian form to the eigenspaces of the operator L0 are non-degenerate.

Proof. Let u, v ∈ VL be eigenvectors for L0 with eigenvalues k, j respectively.
By Theorem 4.3.6, L0 is self dual. Hence,

k(u, v) = (L0u, v) = (u,L0v) = j(u, v).

The result follows.

For any subspace U of VL on which the operator L0 acts, for n ∈ 1
2Z, we

will write
Un = {u ∈ U : L0u = nu}.

As mentioned earlier, the Lie algebra VL/d(VL) is too large. This was realized
independently by Goddard-Thorn [GodT] and Frenkel [Fren] who showed that
the space we should consider is not the whole lattice vertex algebra VL, nor is
it a full eigenspace of the operator L0 but the subspace P 1 of VL, where we set

P i = {v ∈ V |L0v = iv, Liv = 0,∀i > 0}.

We next give two technical but useful results.

Lemma 4.3.9. The linear derivation d on VL is a monomorphism.

Proof. Suppose that du = 0 for some u ∈ VL. So by Lemma 4.1.31,

d

dz
Y (u, z) = 0

or equivalently
un = 0 ∀n 	= −1.

Hence, by Corollary 4.1.26 (ii), for all v ∈ VL, n ∈ Z, [u−1, vn] = 0. In particular,
from the vacuum axiom, we get

vnu = vnu−1(1 ⊗ 1) = 0 ∀n ≥ 0. (∗)
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Now, there exists r ∈ N, sj ∈ S and distinct elements βj ∈ L, 1 ≤ j ≤ r, such
that u =

∑r
j=1 sj ⊗ eβj . From (∗), we can deduce that for all h ∈ H, taking

v = h(−1) ⊗ 1 in the above,

0 = h(0)u =
∑

j

(h, βj)sj ⊗ eβj

since v0 = h(0). As the bilinear form on L is non-degenerate, there is some
h ∈ H such that (h, βj) 	= 0 for any 1 ≤ j ≤ r for which βj 	= 0. Therefore, as
the vectors sj ⊗ eβj are linearly independent, this implies that j = 1 and β1 = 0
and so

u = s1 ⊗ 1.

Taking v = h(−1) ⊗ 1 in (∗), for all h ∈ H, n ∈ N, h(n)s1 = 0. As the bilinear
form remains non-degenerate on H, we can conclude that s1 = 0 or equivalently
u = 0, proving the Lemma.

Lemma 4.3.10. For all u, v ∈ P 1, u0(v) ∈ P 1.

Proof. For any n ∈ Z+, by Corollary 4.1.26 (i), for all u ∈ P 1,

[Ln, u0] = [ζn+1, u0]

=
n+1∑

j=0

(
n+ 1
j

)
(ζju)n+1−j

=
n+1∑

j=0

(
n+ 1
j

)
(Lj−1u)n+1−j

= (L−1u)n+1 + (n+ 1)un since u ∈ P 1

= (du)n+1 + (n+ 1)un by Theorem 4.3.6
= −(n+ 1)un + (n+ 1)un by Lemma 4.1.31
= 0

Hence, for all v ∈ P 1, 0 = Lnu0v for n > 0 and L0u0v = u0v. In other words,
u0(v) ∈ P 1.

Corollary 4.3.11. The vector space P 1/dP 0 is a Lie subalgebra of the Lie
superalgebra VL/d(VL).

Proof. We first show that

P 1 ∩ d(VL) = dP 0.

Let v ∈ VL be such that dv ∈ dV ∩ P 1. Hence, L0dv = dv. By Theorem 4.3.6,
d = L−1 and [L0, L−1] = L−1. This implies that dv − dL0v = dv and so

dL0v = 0.

Applying Lemma 4.3.9, we then get L0v = 0.



4.3 From Lattice Vertex Algebras to Lie Algebras 175

For n > 1, again by Theorem 4.3.6,

0 = LnL−1v = L−1Lnv + (n+ 1)Ln−1v

and so by induction on n, L−1Lnv = 0. Thus by Lemma 4.3.9, Lnv = 0. Hence,
v ∈ P 0 as expected.

All we now need to check for P 1/dP 0 to be a Lie superalgebra is that for all
u, v ∈ P 1, u0(v) ∈ P 1. This follows from Lemma 4.3.10.

Finally, by Theorem 4.3.6, the derivation L0 has non-integral eigenvalues
only on the odd part of the Fock space VL. Therefore the subspace P 1 is even
and so P 1/dP 0 is a Lie algebra.

Remark 4.3.12. We will see in section 5.5 that the quotient of this Lie algebra
by the kernel of the Hermitian form is a BKM algebra when the lattice L is
even, Lorentzian of rank at most 26. It is important to note that the subspace
P 1/dP 0 is a Lie algebra, i.e. that its odd part is trivial. Therefore, even when
the lattice L is odd, which is the case for the root lattice of the fake monster
superalgebras [Sch2], and Γ = Z2, the above construction though it starts from
a lattice vertex superalgebra (i.e. Z2-graded) only leads to a BKM algebra.

The Lie algebra derived in Exercises 4.3.1 and 4.3.2 is also a BKM algebra
modulo the kernel of the bilinear form (see Exercise 5.5.2) when the lattice L is
Lorentzian of rank at most 10, not necessarily even.

Exercises 4.3

1. Assume that the lattice L is integral. Remember the definition of the fermi-
onic lattice vertex superalgebra V f

L from Exercise 4.2.2.

(i) Show that the quotient space V f
L /d(V

f
L ) is a Lie superalgebra.

(ii) Show that there is a unique, consistent, symmetric, natural Hermitian
form on V f

L such that: for any h ∈ H, n ∈ Z, the adjoint of the operator
h(n+ 1

2 ) is h(−n+ 1
2 ). Deduce that the form is non-degenerate.

(iii) Show that the vector

ζf =
1
2

∑

i

αi(−
3
2
)α′

i(−
1
2
) ⊗ 1,

where the vectors (αi) run through a basis of L and (α′
i) through a dual

basis in H is a conformal vector of the lattice vertex algebra V f
L with

central charge dimL. Check that for all j ∈ Z,

Lj =
1
2

∑

i

(
∑

n∈Z− 1
2

n<0

(−n+
j

2
)αi(n)α′

i(j−n)−
∑

n∈Z− 1
2

n≥0

(−n+
j

2
)α′

i(j−n)αi(n)).

Deduce that L−1 = d and L0 is diagonalizable derivation on V f
L :

L0(1) =
1
2
(α, α)(1 ⊗ eα), L0(v) = (m1 + · · ·mr)v,
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for v = h1(−m1) · · ·hr(−mr), hi ∈ H, mi > 0. Furthermore, show that
the operators Ln and L−n are adjoint with respect to the above Hermitian
form on V f

L .

2. Assume that the lattice L is integral. Let V b
L (resp. V f

L ) be the bosonic
(resp. fermionic) lattice vertex superalgebra defined in Definition 4.2.17 (resp.
Exercise 1) and ζb (resp. ζf ) its conformal vector given in Theorem 4.3.6 (resp.
Exercise 1). Set VL = V f

L ⊗ V b
L.

(i) Show that the vector ζ = ζf ⊗1+1⊗ζb is a conformal vector of the lattice
vertex superalgebra VL and that the Virasoro algebra acts on it.

(ii) Let P i be the generalized eigenspaces for the operator L0 (corresponding
to ζ instead of ζb as defined in section 4.3). Show that the quotient
space VL/dVL has the structure of a Lie superalgebra and P 1/dP 0 is a Lie
subalgebra of VL/dVL.

(iii) Let τ = a(− 1
2 ) ⊗ a(−1) ∈ V1. Show that ζ = 1

2τ0τ .
(iv) Deduce that the operators Ln = ζn+1 and Gm = τm+ 1

2
generate a Neveu-

Schwarz algebra with central charge 3
2 dimL, i.e. for all m,n ∈ Z, r, s ∈

Z + 1
2 ,

[c, Lm] = 0 = [c,Gr],

[Lm, Ln] = (m− n)Lm+n +
1
12

(m3 −m)δm+n,0c,

[Ln, Gr] = (
1
2
n− r)Gn+r,

[Gr, Gs] = 2Lr+s +
1
3
(r2 − 1

4
)δr+s,0c.

(iv) Set

P
1
2 = {v ∈ VL : L0v =

1
2
v, Lnv = 0 = Gmv, ∀n,m > 0}.

Show that the subspace G− 1
2
P

1
2 /dP 0 is a Lie subalgebra of P 1/dP 0.

For a solution of Exercises 1 and 2, see [Sch1].



Chapter 5

Lorentzian BKM Algebras

5.1 Introduction

The aim of the chapter is to give the reader the tools to understand the classifica-
tion of the “interesting” BKM superalgebras. This work is still in progress today
and has not been completed. We have seen in section 2.3 that a given BKM
superalgebra is fully known if we have a means of describing its root system ∆,
a base of ∆ or equivalently a set of generators for G, and the multiplicities of its
roots of infinite type. Given any abstract generalized Cartan matrix, one can
construct an associated BKM superalgebra. However, it is usually impossible
to find all this information about its structure. By “interesting”, we mean a
BKM superalgebra for which this is feasible and which can be constructed in
some concrete manner. The root lattices of these BKM superalgebras is either
Lorentzian, semi-positive definite of corank 1 or positive definite. The latter
two cases correspond respectively to affine and finite dimensional semisimple
Lie algebras (see Exercise 2.3.10). These are Kac-Moody Lie algebras. Based
on what is known so far, there is good reason to believe that the “interesting”
BKM superalgebras that are not Kac-Moody Lie superalgebras have Lorentzian
root lattice. This is for example the case for the two explicitly known BKM
superalgebras at the origin of the general theory of BKM superalgebras, namely
the Monster and Fake Monster Lie algebras (Examples 2.3.11 (i), 2.6.39, 2.6.40):
their root lattices are the even unimodular Lorentzian lattices II1,1 and II1,25

of rank 2 and 26 respectively.

Definition 5.1.1. A BKM superalgebra with Lorentzian root lattice is a
Lorentzian BKM (LBKM) superalgebra.

In this chapter we consider the roots as elements of the Cartan subalgebra
or of its dual. This is more natural. As the example of the Monster Lie algebra
(Example 2.3.11.1) shows, in general there are infinitely many simple roots of
infinite type and so the formal root lattice Q is infinite dimensional with an
artificial structure due to the fact that the simple roots are forced to be linearly
independent.

177
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There is a related project whose aim is the classification and construction of
hyperbolic Kac-Moody Lie algebras or equivalently hyperbolic Weyl (reflection)
groups. These are Kac-Moody Lie algebras with Lorentzian root lattice. Equiv-
alently, this is the classification of Lorentzian BKM superalgebras whose root
lattice can be generated by its simple roots of positive norm. The root lattice of
an “interesting” Lorentzian BKM superalgebra is not necessarily generated by
its simple roots of positive norm and the simple roots of non-positive norm may
have to be taken into account to construct a basis for the root lattice. In fact,
it may not have roots of positive norm. In other words, its Weyl group may be
uninteresting or even trivial. As we saw in Example 2.3.11.1, this is the case
for the Monster Lie algebra: its root lattice is the even unimodular lattice II1,1

of rank 2 and its Weyl group has order 2. The “interesting” Lorentzian BKM
superalgebras do not necessarily have hyperbolic reflection groups. If the classi-
fication problem of hyperbolic reflection group can be completely solved, then it
would therefore give a subclass of “interesting” Lorentzian BKM superalgebras.

Attempts to tackle this classification problem directly from information
about the root lattice or equivalently the generalized Cartan matrix do not
lead far.

In sections 5.2 and 5.3, we will introduce the reader to the classification
project of LBKM algebras to which we can associate a vector valued modular
form satisfying certain properties and whose Fourier coefficients give the root
multiplicities. Therefore the classification of these LBKM algebras should be
equivalent – though this is not proved yet – to the classification of these modular
forms. The classification of adequate modular forms should be an easier problem
to study. The only literature in this subject is in the form of research papers.
We follow the methodology of [Borc9,11] where these results were originally
proved.

In section 5.4 we will give evidence showing that this classification problem
should be a finite one. Namely, the existence of the Weyl vector (see Definition
2.3.47) gives a strong upper bound on the rank of the root lattices of LBKM
algebras. To do this, we need to consider the converse problem, namely that
of associating vector valued modular forms to automorphic forms on Grass-
mannians in such a way that the coefficients of its product expansion are given
by some of the coefficients of the modular form. For further study, the reader
should consult [Bar] and [Br], where this problem has been solved under some
technical restrictions.

The classification part of the project is only a first step. We need to find a
way of constructing them concretely and naturally. This we do in section 5.5
from lattice vertex algebras. See [Borc2] and [Fren] for details.

In the classification we sometimes get BKM superalgebras with non-trivial
odd parts and we have thus given in chapter 2 the theory in its most general
form rather than restricting ourselves to the Lie algebra setup. In chapter
4 we could have kept to the more classical theory of ordinary lattice vertex
superalgebras. They are all that is needed to construct LBKM algebras. Though
in this book we do not explain how to construct LBKM superalgebras with non-
trivial odd parts as it would make the exposition too advanced and too technical
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for a first approach, the theory of Γ-graded lattice vertex algebras gives the
reader interested in pursuing work in this direction the tools to understand this
construction.

5.2 Automorphic forms on Grassmannians

In this section, we study how the definition of automorphic forms on the upper
half plane for a Fuschian group can be generalized to the context of Lorentzian
lattices to functions transforming under the action of a discrete subgroup of a
real Lie group. For this we need to construct from a Lorentzian lattice a space
that has the same typical geometric properties as H. In other words, it should be
a Hermitian symmetric space and its group of isometries should be a semisimple
Lie group (see Lemma B.2.25). Indeed H is isomorphic to SL(2,R)/SO(2,R)
since SO(2,R) is the stabilizer of the point i ∈ H.
Remark 5.2.1. In the context of BKM superalgebras the Lorentzian lattices
we encounter have signature (n, 1) as simple roots of finite type have been
assumed to have non-negative norm. However in sections 5.2-5.4, we develop
the theory for Lorentzian lattices having signature (1, n) as this is more natural
in the framework of modular functions. However, the main result given in
Chapter 5 on product expansions of automorphic forms (Theorem 5.2.5) can
“symmetrically” be adapted to the case of a Lorentzian lattice with signature
(n, 1).

In sections 5.2-5.4, we will assume that L is a Lorentzian lattice with signa-
ture (1, b− − 1) and we set

M = L⊕ II1,1.

Hence the lattice M has signature (2, b−). We let z ∈M be a primitive element
of norm 0 in the second factor II1,1 of M . Hence z′ is also in II1,1 and has
norm 0.

The bilinear form on M ⊗Z C will be written (., .). Consider the Grass-
mannian G(M) consisting of all the 2-dimensional positive definite vector sub-
space of the real vector space M ⊗Z R.

Choose an orientation of maximal positive definite subspaces (see Appendix
A). Set P to be the set of elements ZM = XM + iYM ∈ M ⊗Z C with norm 0
and for which XM , YM form an oriented basis for a maximal positive definite
subspace of M ⊗Z R.

Note that Z2
M = 0 if and only if X2

M = Y 2
M and (XM , YM ) = 0.

Lemma 5.2.2. The Grassmannian G(M) is a Hermitian symmetric space
isomorphic to the submanifold of the projective space P(M ⊗C C) consisting
of points represented by vectors in P and its isometry group is isomorphic to
O(M,R)+/SO(2,R).

Proof. We choose an orientation (see Appendix A) on the 2-dimensional posi-
tive definite subspaces of M ⊗Z R. Consider the map:
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G(M) → P(M ⊗Z C)

v+ �→ XM + iYM ,

where XM , YM is a oriented orthogonal basis of the 2-dimensional positive def-
inite subspace v+ of M ⊗Z R such that X2

M = Y 2
M , and XM + iYM is a repre-

sentative of a point in the complex projective space P(M ⊗Z C). We first check
that this map is well defined. Let X1M and Y1M be another oriented orthog-
onal basis of the subspace v+ such that X1

2
M = Y1

2
M . Since for any λ ∈ C,

λ(XM + iYM ) and XM + iYM represent the same point in P(M ⊗Z C), we may
assume that X1

2
M = X2

M . Then, X1M = aXM + bYM and Y1M = cXM + dYM ,
where a, b, c, d ∈ R. So X1M ∧ Y1M = (ad − bc)XM ∧ YM , which implies that

ad − bc > 0. Since
(
a c
b d

)
∈ O(2,R), we therefore get c = −b and a = d.

Hence,

X1M + iY1M = (aXM + bYM ) + i(−bXM + aYM ) = (a− ib)(XM + iYM )

and so X1M + iY1M and XM + iYM represent the same point in P(M ⊗Z C).
These calculations also show that the map is injective. Hence by Lemma B.2.14,
the Grassmannian G(M) is a Hermitian manifold and the group O(M ⊗Z R)+

of the isometries of the real inner product space M⊗ZR keeping the orientation
fixed is its isometry group. The latter clearly acts transitively on G(M).

It only remains to check that the group O(M ⊗Z R)+ contains an involution
with an isolated fixed point (see Definition B.2.17). Let XM , YM be the oriented
basis of a 2-dimensional positive definite subspace v+ of M ⊗Z R. Then, its
orthogonal complement v+⊥ is a positive definite subspace. Consider the linear
map φ on M ⊗Z R defined by:

XM �→ YM ; YM �→ −XM ; v �→ v, ∀ v ∈ v+⊥
.

This map belongs to O(M ⊗Z R)+ as XM ∧ YM = YM ∧ (−XM ) (see Appendix
A) and simple calculations show that v+ is its unique fixed point in G(M).

We can therefore conclude that the Grassmannian G(M) is a Hermitian
symmetric space. Moreover, the stabilizer of the subspace v+ is the isometry
group of a 2-dimensional Euclidean vector space.

Lemma 5.2.3. There is a natural projection π : P → G(M) and (P,G(M), π)
is a principal C∗ bundle.

Proof. Let V ∈ G(M). Then, π−1(V ) is the set of norm 0 vectors
XM + iYM ∈M ⊗Z C such that XM , YM form an oriented basis of the positive
definite subspace v+ of M ⊗Z R. Since the manifold structure on the projective
space P(M ⊗Z C) is transferred from the manifold M ⊗Z C via the projection
π, it follows that the triple (P,G(M), π) is a fiber bundle (see Definition B.3.1).

To show that P is a principal C∗-fiber over G(M), we need to check that
the fibers π−1(V ) are the orbits of the action of C∗ on P and that this action
is free and transitive on the fibers (see Definition B.3.3).
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Let XM + iYM ∈ π−1(V ) and a+ ib ∈ C. The vector

(XM + iYM )(a+ ib) = (aXM − bYM ) + i(bXM + aYM )

has norm 0 and aXM −bYM ∈ V and so has positive norm. Moreover the matrix(
a −b
b a

)
has positive determinant. It follows that (XM +iYM )(a+ib) ∈ π−1(V ).

If (XM +iYM )(a+ib)=X+iY , then aXM−bYM =XM and bXM +aYM =YM ,
in which case b = 0 and a = 1.

Let X1M + iY1M ∈ π−1(V ). There exists A ∈ O(2,R)+ such that

A

(
XM

YM

)
=

(
X1M

Y1M

)
.

Since O(2,R)+ = {
(
a b
−b d

)
: a, b ∈ R, a2 + b2 	= 0},

(XM + iYM )(a− bi) = X1M + iY1M

for some a− bi ∈ C∗.

Definition 5.2.4. An automorphic form of weight k and character χ on the
Grassmannian G(M) is a function ΨM on P satisfying:

(i) ΨM is holomorphic on P ;
(ii) ΨM is homogeneous of degree −k, i.e. ΨM (vτ) = τ−kΨM (v), v ∈ P,

τ ∈ C∗;
(iii) There is a subgroup Γ of finite index in O(M)+ and a one dimensional

character χ of Γ such that ΨM (σv) = χ(σ)ΨM (v).

We next give a different description of the Grassmannian G(M). For this,
let us consider the positive norm vectors in L⊗Z R.

Lemma 5.2.5. There are two cones of positive norm vectors in the Lorentzian
vector space L⊗ZR. They are the sets ±{dx+y : d>0, (dx+y)2 > 0, (x, y)=0},
where x ∈ L⊗Z R and x2 > 0.

Proof. Let {ei, i = 1, · · · , n}, where ei has positive norm for i = 1, · · · , n − 1,
be an orthogonal basis of L ⊗Z R. With respect to this basis, (a1, · · · , an) is

a positive norm vector if and only if −an <
√∑n−1

i=1 a
2
i < an and an > 0 or

an <
√∑n−1

i=1 a
2
i < −an and an < 0.

We next explain how to choose one of the cones of positive norm vectors in
L⊗Z R.

Any vector in the complex vector space M⊗Z C is of the form Z+mz′ +nz,
where Z ∈ L⊗Z C, m,n ∈ C. We will write these vectors as (Z,m, n).
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Lemma 5.2.6. If XM , YM is an oriented basis of a 2-dimensional positive
definite subspace of M ⊗Z R satisfying (XM , z) > 0 and (YM , z) = 0, then set
Y ∈ L ⊗Z R to be the vector satisfying YM − Y ∈< z, z′ > ⊗ZR. The set of
these vectors Y forms a cone of positive norm vectors in K ⊗Z R.

Proof. First note that for any oriented basis XM , YM with the above property,
Y has positive norm since (Y, z) = 0 implies that YM = (Y, 0, n) for some n ∈ R.

We now show that for any two oriented bases XM , YM and X1M , Y1M with
the above property, Y and Y1 belong to the same cone of positive norm vectors.

By Lemma A.5, without loss of generality, we may take the positive norm
vector YM in L ⊗Z R. Then, (YM , z) = 0. Let XM ∈ M ⊗Z R be a positive
norm vector such that (XM , z) > 0 and XM , YM form an orthogonal basis for a
2-dimensional positive definite subspace v+ of M ⊗Z R. Then, either XM , YM

or XM ,−YM is an oriented basis. So, without loss of generality, we may assume
that XM , YM is an oriented basis.

Let X1M , Y1M be another oriented basis of a 2-dimensional positive definite
subspace of M ⊗Z R satisfying (X1M , z) > 0 and (Y1M , z) = 0. Let π be the
projection of M ⊗Z R onto v+. Then, there exist a, b, c, d ∈ R such that

ad− bc > 0 (1)

and
π(X1M ) = aXMbYM ; π(Y1M ) = cXM + dYM .

Since 0 = (Y1M , z), c = 0. Hence, (Y1M , YM ) = (π(Y1M ), YM ) = d and so
(Y1M , YM ) > 0 by (1). Equivalently, extending YM to an orthogonal basis of
the subspace K ⊗Z R, the YM -coefficient of Y1 is positive.

It only remains to check that all positive norm vectors in the cone C contain-
ing YM can be obtained in this manner. Applying the above argument for YM

to any positive norm vector Y1M in C, it follows that there is an oriented basis
X1M , Y1M or X1M ,−Y1M with the correct properties. In the latter case, what
precedes implies that −Y1M ∈ C, contradicting assumption. Hence, X1M , Y1M

is an oriented basis.

Set C to be the cone of all positive norm vectors Y in L⊗Z R as defined in
Lemma 5.2.6. Set

P1 ={ZM = XM +iYM ∈M⊗ZC : X2
M =Y 2

M > 0, (XM , YM ) = 0, (ZM , z) = 1}.

Clearly P1 ≤ P .

Lemma 5.2.7.

(i)

P1 = {(Z, 1,−Z
2

2
) : Z ∈ (L⊗Z R) + iC}.

(ii) There is an injection from L⊗Z R + iC to P1.
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Proof. We leave (i) for the reader to check. The map

L⊗ R + iC → P1

Z �→ Z − z′ − Z2

2
z

is injective.

Note that the action of O(M,R)+ on P does not restrict to L⊗ R + iC.

Corollary 5.2.8. The Grassmannian G(M) is isomorphic to the manifold
L⊗Z R ⊕ iC. In particular it is a hyperbolic space of dimension b−.

Proof. There is a natural injective map from P1 to G(M). Hence, by Lemma
5.2.7, there is an injection from L ⊗Z R + iC to G(M). This map is surjective
by Lemma 5.2.9. The second statement is a direct consequence of the definition
of a hyperbolic space (see Definition B.2.24).

Lemma 5.2.9. Let v+ be a 2-dimensional positive definite subspace of M⊗ZR.
There is a unique oriented orthogonal basis XM , YM of V satisfying
(XM + iYM , z) = 1 and (XM + iYM )2 = 0.

Proof. Since dim v+ > 1, the subspace v+ contains a non-zero vector Y or-
thogonal to z. Let XM , YM be an orthogonal oriented basis for v+. Then,
(XM , z) 	= 0. Otherwise (XM , z) = 0 = (YM , z). However the maximal dimen-
sion of a positive definite subspace in the complement of z in M ⊗Z R is 1.
Hence, we may choose XM ∈ v+ so that

(XM + iYM , z) = 1 and (XM , YM ) = 0.

Furthermore, X2
M = λY 2

M for some λ > 0. Hence XM ,
√
λYM forms a basis

for V with the right characteristics. Without loss of generality, we may thus
assume that λ = 1.

Suppose that X1M , Y1M is another oriented orthogonal basis for v+ satisfy-
ing

(X1M + iY1M , z) = 1 and X1
2
M = Y1

2
M .

Let X1M = aXM + bYM and Y1M = cXM + dYM . Then,

0 = (cXM + dYM , z) = c, 1 = (aXM + bYM , z) = a, and

0 = (X1M , Y1M ) = bd.

Since ad− bc > 0, it follows that b = 0. Moreover

X2
M = X1

2
M = Y1

2
M = d2Y 2

M = d2X2
M .

So, d = 1. As a result
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X1M = XM and Y1M = YM .

For an automorphic form ΨM on G(M), set Ψz to be the function on
L⊗Z R + iC defined as follows:

Ψz(Z) = ΨM ((Z, 1, Z2/2)).

This is well defined by Lemma 5.2.7. Since an automorphic form is homoge-
neous, the following result is immediate.

Lemma 5.2.10. The automorphic form ΨM is fully determined by the function
Ψz on L⊗Z R + iC.

By Corollary 5.2.8, the positive definite 2-dimensional vector space v+ is
given by a vector in L⊗Z R ⊕ iC and hence by a vector

ZM = (Z, 1,−Z2/2) ∈ P1

(see Lemma 5.2.7), where

Z = X + iY ∈ L⊗Z R ⊕ iC

in such a way that
ZM = XM + iYM

and XM , YM form an oriented orthogonal basis for v+.

Lemma 5.2.11.
(i) XM = (X, 1, (Y 2 −X2)/2) and YM = (Y, 0,−(X,Y ));
(ii) X2

M = Y 2 = Y 2
M ;

(iii) zv+ = XM/Y 2;
(iv) z2

v+ = 1/Y 2;
(v) w+ is the one dimensional subspace of L⊗Z R generated by Y ;
(vi) λw+ = (λ, Y )Y/Y 2 for any λ ∈ L.
(vii) µ = X.

Proof. Since
zv+ = (zv+ ,XM )XM/X2

M + (zv+ , YM )YM/Y 2
M

= (z,XM )XM/X2
M + (z, YM )YM/Y 2

M

as z = zv+ + zv− and (zv− ,XM ) = 0 = (zv− , YM ), (iii) follows from the fact
that (z,XM ) = 1, (z, YM ) = 0, and X2

M = Y 2
M (see Lemma 5.2.7).

By definition (see Theorem 3.3.11),

µ = −z′ + (z′, zv−)zv+/z2
v+ + (z′, zv+)zv−/z2

v− − z′ + (zv+ − (z′, zv+)z)/z2
v+

= (0,−1, 0) + (X, 1, (Y 2 −X2)/2)/Y 4 − (0, 0, (Y 2 −X2)/2)/Y 4

= (X, 0, 0).
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Before closing this section, we give an example illustrating why we have
to be careful when dealing with actions on L ⊗Z R and actions on P1. The
automorphisms on L⊗Z R⊕+iC do not act in the “same way” on P1. Namely,
we consider translations by elements in L∗. Let us find how translation by the
element u ∈ L∗ acts on P1. For any element Z ∈ L⊗Z R ⊕ +iC, it maps

Z �→ Z + u,

and hence it take the corresponding element in P1

ZM �→ (Z + u)M = (Z + u, 1,−(Z + u)2/2).

So the translation map by u corresponds to an automorphism of M whose
extended action on M ⊗Z C takes ZM to (Z + u)M .

Definition 5.2.12. For any u ∈ L∗, define the automorphism tu on M as
follows:

tu(v) = v + (v, z)u− ((u, v) + (v, z)(u, u)/2)z.

Lemma 5.2.13. tu(ZM ) = (Z + u)M for any Z ∈ K ⊗Z R ⊕ +iC.

Proof.

tu(ZM ) = (Z, 1,−Z2/2)+(u, 0, 0)−(0, 0, (Z, u)+u2/2) = (Z+u, 1,−(Z+u)2/2).

Exercises 5.2

1. Check that the denominator formula for the Fake Monster Lie superalgebra
F (see Example 2.6.40) is given by au automorphic form on the Grassmannian
G(M), where M is a unimodular even lattice of rank (26, 2). Determine the
group of isometries fixing this automorphic form.

2. The simple roots of the Monster Lie algebra were given in Example 2.3.11.1.
Show that its roots are the elements (m,n) ∈ II1,1 with multiplicity c(mn),
where J(q) =

∑
n c(n)q(n) is the normalized modular.

Hint: Consider the logarithm of the product side of the denominator formula
(see Example 2.6.39) and use Hecke operators T (m), m ∈ Z, where

T (m)f(τ) = mk−1
∑

ad=n
a≥1

0≤b<d

d−kf(
aτ + b

d
),

f being an (ordinary) modular function of weight k. For a solution, see [Borc7,
Lemma 7.1 and Theorem 7.2].
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5.3 Vector Valued Modular forms and LBKM
Algebras

We reconsider the examples of the Monster Lie algebra within the framework
of modular and automorphic forms.

Example 5.3.1. The Monster Lie algebra M .
The denominator formula gives a product expansion for the function j(τ)−j(σ)
on the product space H×H, where H = {x+ iy : x, y ∈ C, y > 0} is the upper
half plane, with the following properties.
1. The exponents of the product expansion of the function j(τ)−j(σ) are given
by the coefficients of the modular function j.
2.

(i) The function j(τ) − j(σ) is holomorphic on H × H and meromorphic at
the cusps.

(ii) For any g ∈ SL(2,Z) × SL(2,Z), g(j(τ) − j(σ)) = j(τ) − j(σ)
(iii) For any g ∈ Z2, g(j(τ) − j(σ)) = −(j(τ) − j(σ)).

3. The hyperbolic space H × H is a Hermitian symmetric space (see Lemma
B.2.23) isomorphic to G/K, where G = (SL(2,R) × SL(2,R)).Z2 is a real
Lie group and the stabilizer K of the point (i, i) ∈ H × H is isomorphic to
(SO(2,R) × SO(2,R)).Z2, where SO(2,R) = {g ∈ SL2(R) : gtg = 1}.
4. The root lattice of the Monster Lie algebra is the even unimodular lat-
tice L = II1,1 of rank 2 and the hyperbolic space H × H is isomorphic to the
Grassmannian G(M) of all negative definite 2-dimensional vector subspaces of
the real vector space M ⊗Z R, where M = L ⊕ II1,1. This can be seen in
the following manner. Consider the basis u1, u2 of L with respect to which

the bilinear form is given by the matrix
(

0 −1
−1 0

)
. Therefore a vector

u = y1u1 + y2u2 has negative norm if and only if y1 > 0 and y2 > 0 or y1 < 0
and y2 < 0. So, there are two cones of negative norm vectors in L. We choose
any one of them. Set C = {(y1, y2) : y1 > 0, y2}. Then,

L⊗Z R + iC = {((x1, y1), (x2, y2)) : y1 > 0, y2 > 0}

and so the hyperbolic space H×H is isomorphic to L⊗ R + iC.
Set z, z′ to be the basis the second factor II1,1 of M satisfying z2 = 0 = z′2.

The bilinear form on M will be written (., .).
The map

L⊗Z R + iC → P1 = {Z = X + iY ∈M ⊗Z C :

X2 = Y 2 < 0, (X,Y ) = 0, (Z, z′) = 1}

Z �→ Z − z − Z2

2
z′

is injective.



5.3 Vector Valued Modular forms and LBKM Algebras 187

There is an obvious projection from the above set to the Grassmannian
G(M). We therefore get a map from L⊗ R + iC to G(L), which is also clearly
injective. It is bijective since any 2-dimensional negative definite vector subspace
of M⊗ZR has a unique ordered orthogonal basis X,Y such that (X+iY, z′) = 1
(see Lemma 3.2.11).
5. The group (SL(2,Z) × SL(2,Z)).Z2 is isomorphic to the discrete group
O(M)+. Indeed, the Lie group O(M ⊗Z R)+ of isometries of the real vector
space M ⊗Z R keeping a chosen orientation invariant (see Appendix A) acts
as a transitive group of isometries of G(M) (see Lemmas 3.2.7 and B.2.24).
Moreover, the stabilizer of a point in the Grassmannian G(M) is isomorphic
to the above subgroup K since SO(2,R) is the subgroup of isometries of a
2-dimensional Euclidean space (see Lemma 3.2.7).

In other words, one can associate to the Monster Lie algebra a modular
function, namely j, whose Fourier coefficients are the exponents of a function,
namely j(τ)−j(µ), on the Grassmannian G(M), satisfying the relations (i)-(iii)
under the action of discrete group O(M)+ – an automorphic form on G(M).
Remember from Definition 2.3.10 that j is a vector valued modular form.

As illustrated in this example, our aim is to characterize a BKM Lorentzian
algebras by an automorphic form on the Grassmannian G(M) having a product
expansion whose exponents are given by the Fourier coefficients of a vector
valued modular form. The main result of this section gives a class of vector
valued modular forms to which automorphic forms on G(M) can be associated
in this manner.

In sections 5.3 and 5.4, we assume that the Lorentzian lattice L is even and
contains the unimodular lattice II1,1 of rank 2 as a direct summand as this
holds for the root lattices of all known interesting cases of LBKM algebras.

As b+ = 2, the modular function F , holomorphic on H, and meromorphic
at the cusps with Laurent series

∑
n∈Z c(n)qn at infinity satisfying c(n) ∈ Z

for n ≤ 0, considered in section 3.4, has weight 1 − b−

2 . We also found the
singularities of the theta transform ΦM of F . We start this section by taking
our investigations further in the case that interests us: namely when b+ = 2.
The zeros and poles of the automorphic forms on G(M) that can be associated
with a BKM algebra are elements of sets called rational quadratic divisors.

Definition 5.3.2. A rational quadratic divisor is a set of points Z ∈ L⊗ZR+iC
satisfying aZ2 + (b, Z) + c = 0 for some a, c ∈ Z, b ∈ L such that b2 − 4ac > 0.

Considering the image of L⊗Z R+ iC in P , they can be described as follows.

Lemma 5.3.3. The rational quadratic divisor are the sets of points in P1 or-
thogonal to a given negative norm vector in M . Two rational quadratic divisors
are equal if they correspond to negative norm vectors in M that are rational
multiples of each other.

Proof. Let (Z, 1,−Z2/2) ∈ P1, where Z ∈ L⊗Z R + iC. Let (b,−a, c) ∈M be
a negative norm vector. So

(b,−a, c)2 = b2 + 2ac > 0

and
((Z, 1,−Z2/2), (b,−a, c)) = (b, Z) + c+ aZ2/2.
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The result is now immediate.
Since the lattice L is Lorentzian, we show that the real vector space L⊗Z R

can be subdivided into connected regions on which the theta transform ΦL is
analytic. These regions generalize the notion of Weyl chambers for a reflection
group. Applying Theorem 3.4.13 and Corollary 5.2.8 to the lattice L, we can
deduce the following.

Lemma 5.3.4. The singular points of ΦL(w+, F ) in the hyperbolic space G(L)
of dimension b− lie on hyperplanes.

Therefore the domains on which the function ΦL(w+, F ) is analytic are dis-
connected. Note that any 1-dimensional positive definite subspace w+ ∈ G(L)
contains precisely two norm 1 vectors ±Y1 and only one of them is in the fixed
positive cone C (see section 5.2).

Definition 5.3.5. A Weyl chamber determined by the function ΦL(w+, F ) is
the positive cone generated by

{Y/
∣∣Y

∣∣ : Y ∈ R ∩ C},

where R is a maximal connected domain in the hyperbolic space G(K) on which
the function ΦL(w+, F ) is analytic.

If for some λ ∈ L⊗Z R, (λ, Y ) > 0 for all vectors Y in some Weyl chamber
W , we will write (λ,W ) > 0.

We are now ready to state the principal theorem of this section. It gives
conditions enabling a vector valued modular form to be associated to an au-
tomorphic form on a Grassmannian in such a way that the coefficients of the
Laurent series of the modular form are exponents of the product expansion of
the automorphic form.

Theorem 5.3.6. Let F be an almost holomorphic modular form on H of weight
1 − b−

2 and type ρM such that F =
∑

γ∈M∗/M fγ , where for all γ ∈ M∗/M , fγ

has Fourier series
∑

n∈Q cγ(n)qn at infinity satisfying cγ(n) ∈ Z for n ≤ 0 and
cγ(n) = 0 for n << 0. Then, there is an automorphic form ΨM of weight c(0)/2
for the group Aut(M,F ) with the following properties:

(i) For each primitive vector z ∈ M of norm 0 and Weyl chamber W of L,
there is a uniquely defined vector ρ = ρ(L,W,F ) ∈ L ⊗Z R such that for
Z ∈ L⊗Z R + iC,

Ψz(Z) = e−2πi(ρ,Z)
∏

λ∈L∗
(λ,W )>0

(1 − e2πi(λ,Z))cλ(λ2/2)

and the product is convergent for Y ∈ W and Z in the neighbourhood of
the cusp of z.

(ii) The zeros and poles of ΨM lie on rational quadratic divisors λ⊥, where
λ ∈ M and λ2 < 0. On λ⊥, where λ ∈ M has negative norm, they have
order ∑

n∈N
nλ∈M∗

cnλ(n2λ2/2).
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If the order is positive (resp. negative), it corresponds to a zero (resp.
pole). If this number is always positive, then the automorphic form is
holomorphic.

Remark 5.3.7. Let ei, 1 ≤ i ≤ n, be an orthogonal basis for L⊗Z R such that
e2i = −1 for i ≤ n − 1, e2n = 1 and en ∈ C. Then, for any Y ∈ C, Y =

∑
i aiei

such that an > 0. Remember that the positive cone C is determined by the
vector z (see section 5.2). By the cusp of z we mean Y ∈ C such that Y 2 >> 0,
i.e roughly speaking, Y is near “infinity”. This generalizes the notion of the cusp
at infinity in the upper half plane, namely the hyperbolic space of dimension 2,
to the hyperbolic space G(M) ∼= (L⊗Z R) + iC of dimension b− (see Corollary
5.2.8).

We spend most of this section proving this Theorem. Basically we show
that the Theta transform of the modular form F is closely related to the re-
quired automorphic form. More precisely, we know the singularities of the Theta
transform and hence the idea is to consider its exponential.

The first step is therefore to compute the Theta transform ΦM (v+, F ) for
v+ ∈ G(M) such that ΦM is analytic at v+. To do this, we apply Theorem
3.4.14.

In the rest of this section, F will denote a modular form with the properties
described in Theorem 5.3.6. Set v+ to be a point in the Hermitian symmetric
space G(M) to be a non-singular point of the function ΦM .

We split the calculation into several steps. We first evaluate the terms in
the series given for G(s, v+) in Theorem 3.4.14 corresponding to λw+ = 0.

Lemma 5.3.8. If λ ∈ L such that λw+ = 0, then
∫

y>0

cλ,λ2/2(y) exp(−πn2/2yz2
v+ − πy(λ2

w+ − λ2
w−))y−s−5/2dy

= cλ(λ2/2)(
πn2

2z2
v+

)−s+b+/2− 3
2 Γ(s− b+/2 + 3/2).

Proof. Let λ ∈ L be such that λw+ = 0. Then, λ = λw− . Since

λ2
w+ − λ2

w− = 2λ2
w+ − λ2

for λ ∈ L and cλ,λ2/2(y) = cλ(λ2/2)yb+/2 exp(−2πyλ2/2),
∫

y>0

cλ,λ2/2(y) exp(−πn2/2yz2
v+ − πy(λ2

w+ − λ2
w−))y−s−5/2dy

= cλ(λ2/2)
∫ ∞

0

exp(−πn2/2yz2
v+)y−s+b+/2−5/2dy.

Set t = πn2/2yz2
v+ . Then,

dt = − πn2

2y2z2
v+

dy
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and

y−s+ b+−1
2 = (

πn2

2z2
v+

)−s+ b+−1
2 ts−

b+−1
2 .

So, the above integral becomes

cλ(λ2/2)(
πn2

2z2
v+

)−s+ b+−3
2

∫ ∞

0

e−tts−
b+−3

2 −1dt

The result now follows from Lemma C.4.1.

Since ΦM is analytic at v+, so is ΦL at w+. Set W to be the Weyl chamber
containing a generator for the 1-dimensional subspace w+.

Corollary 5.3.9. Let v+ ∈ G(M) with oriented basis XM and YM . Assume
that the function ΦM (v+, F ) does not have any singularity at v+. Then, for Y 2

small enough,

ΦM (v+, F ) =

∣∣Y
∣∣

√
2

ΦL(w+, F )

+ 4
∑

λ∈L∗
(λ,W )>0

cλ(λ2/2) log
∣∣1 − e((λ,X + iY ))

∣∣

+ c0(0)(− log(Y 2) − log 2π − Γ′(1)).

Proof. Note that λ2
w+ − λ2

w− = 2λ2
w+ − λ2 for λ ∈ L and the lattice M hav-

ing signature (2, b−), cλ,λ2/2(y) = cλ(λ2/2)y exp(−2πyλ2/2). Hence, Theorem
3.4.14 becomes

GM (s; v+) =
1√

2
∣∣zv+

∣∣GL(s;w+) +
√

2∣∣zv+

∣∣
∑

λ∈L∗

∑

n>0

e((nλ, µ))cλ(λ2/2)

×
∫

y>0

exp(−πn2/2yz2
v+ − 2πyλ2

w+)y−s−3/2dy.

(1)

We first calculate the sum of terms corresponding to λ ∈ L∗ for which λw+ = 0.
If λ ∈ L∗ and λw+ = 0 then as v+ ∩L⊗Z R = w+, λv+ = 0. Hence in this case
λ = 0 by Theorem 3.4.13 since the theta transform does not have any singularity
at v+. Therefore applying Lemma 5.3.8 we find that
√

2∣∣zv+

∣∣
∑

λ∈L∗
λ

w+=0

∑

n>0

e((nλ, µ))cλ(λ2/2)
∫

y>0

exp(−πn2/2yz2
v+ − 2πyλ2

w+)y−s−3/2dy

=
√

2∣∣zv+

∣∣c0(0)
∑

n>0

(
πn2

2z2
v+

)−s− 1
2 Γ(s+ 1/2)

= c0(0)π−s− 1
2 (2z2

v+)sΓ(s+ 1/2)
∑

n>0

1
n2s+1

.

(2)
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Let us compute the constant term of the Laurent series at s = 0 of the right hand
side of this equality. By Corollary C.4.4, the function π−s− 1

2 (2z2
v+)sΓ(s+ 1/2)

is analytic at s = 0 whereas the function
∑

n>0
1

n2s+1 = ζ(2s+ 1) has a simple
pole at s = 0 (by Corollary C.4.14). Therefore to find the desired constant term,
we only need to calculate the first two terms of the Taylor series (see Definition
C.2.6) for the functions π−s− 1

2 , (2z2
v+)s, Γ(s+ 1/2), and the first two terms of

the Laurent series (see Corollary C.2.7) for the function ζ(2s+ 1). The sum of
the first two terms of the Taylor series for π−s− 1

2 at s = 0 is:

π− 1
2 − log(π)π− 1

2 s

since π−s− 1
2 = exp(−s− 1

2 ) log(π) and so − log(π)π−s− 1
2 = d

dsπ
−s− 1

2 . Similarly,
the sum of the first two terms of the Taylor series for (2z2

v+)s is

1 + log(2z2
v+)s

and that of Γ(s+ 1/2) is
Γ(1/2) + Γ′(1/2)s. (3)

Applying Corollary C.4.7 to the case s = 1/2 and using Corollary C.4.3 and
Lemma C.4.5 (ii), the expression in (3) is equal to

π
1
2 + π

1
2 (Γ′(1) − 2 log 2)s.

Corollary C.4.14 shows that the sum of the first two terms of the Laurent series
for ζ(2s+ 1) is

1
2s

− Γ′(1).

As a result, the constant coefficient of the Laurent series at s = 0 of the
right hand side of equality (2) is the constant coefficient of

c0(0)(π− 1
2 − π− 1

2 log(π)s)(1 + log(2z2
v+)s)

× (π
1
2 + π

1
2 (Γ′(1) − 2 log 2)s)(

1
2
s−1 − Γ′(1))

= c0(0)(1 − log(π)s)(1 + log(2z2
v+)s)

× (1 + (Γ′(1) − 2 log 2)s)(
1
2
s−1 − Γ′(1)).

So it is equal to

c0(0)(−Γ′(1) + (Γ′(1) − 2 log 2)/2 + log(2z2
v+)/2 − 1

2
log(π))

= c0(0)(log(
∣∣zv+

∣∣) − log(
√

2π) − Γ′(1)/2).
(4)

We next calculate the constant term of the Laurent series at s = 0 of the
sum
√

2∣∣zv+

∣∣
∑

λ∈L∗
λ

w+ �=0

∑

n>0

e((nλ, µ))cλ(λ2/2)
∫

y>0

exp(−πn2/2yz2
v+ −2πyλ2

w+)y−s−3/2dy.
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In order to do this, we first compute the integral
∫

y>0

exp(−πn2/2yz2
v+ − 2πyλ2

w+)y−s−3/2dy. (5)

It is equal to

exp(−2πn
∣∣λw+

∣∣/
∣∣zv+

∣∣)
∫ ∞

0

exp(−π
y

(
√

2y
∣∣λw+

∣∣− n/
√

2
∣∣zv+

∣∣)2)y−s−3/2dy.

Set
t = −π

y
(
√

2y
∣∣λw+

∣∣− n√
2
∣∣zv+

∣∣ )
2.

Then,

dt = [− π

y2
(
√

2y
∣∣λw+

∣∣− n√
2
∣∣zv+

∣∣ )
2 +

π
√

2
∣∣λw+

∣∣
y

(
√

2y
∣∣λw+

∣∣− n√
2
∣∣zv+

∣∣ )]dy

= [−π(
√

2
∣∣λw+

∣∣− n√
2
∣∣zv+

∣∣y
)]dy

= π(
√

2
∣∣λw+

∣∣− n√
2
∣∣zv+

∣∣y
)

n√
2
∣∣zv+

∣∣y
dy

= π1/2t1/2 n√
2
∣∣zv+

∣∣dy/y
3/2

since
√

2
∣∣λw+

∣∣− n√
2
∣∣zv+

∣∣y =
√

t
πy . Hence the integral (5) is equal to

exp(−2πn
∣∣λw+

∣∣/
∣∣zv+

∣∣)
√

2
∣∣zv+

∣∣
π1/2n

∫ ∞

0

e−tt−1/2y−sdt.

Since we want to find the constant term of its Laurent series at s = 0 and the
previous expression is analytic at s = 0, the integral part of it being equal to
Γ(1/2) =

√
π (see Lemmas C.4.1 and C.4.5), at s = 0 it is equal to

exp(−2πn
∣∣λw+

∣∣/
∣∣zv+

∣∣)
√

2
∣∣zv+

∣∣
n

= exp(−2πn
∣∣(λ, Y )

∣∣)
√

2
∣∣zv+

∣∣
n

. (6)

This equality follows from Lemma 5.2.11 (iv) and (vi). Therefore, from (1), (4),
(6) and Lemma 5.2.11 (iv),(vi) and (vii), we can deduce that

ΦM (v+, F ) =

∣∣Y
∣∣

√
2

ΦL(w+, F )

− 2
∑

λ∈L∗
λ

w+ �=0

cλ(λ2/2)
∑

n>0

e((nλ,X)) exp(−2πn
∣∣(λ, Y )

∣∣)/n

+ c0(0)(− log(Y 2) − log 2π − Γ′(1)).
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Since ∣∣e((nλ,X)) exp(−2πn
∣∣(λ, Y )

∣∣) = exp(−2πn
∣∣(λ, Y )

∣∣) < 1,

by Lemma C.4.13, the series
∑

n>0

e((nλ,X)) exp(−2πn
∣∣(λ, Y )

∣∣)/n

converges and is equal to

− log(1 − exp(2πi(λ,X) − 2π
∣∣(λ, Y )

∣∣)) = − log(1 − e((λ,X) + i
∣∣(λ, Y )

∣∣)).

Moreover, Lemma 5.2.11 (vi) implies that λw+ 	= 0 if and only if (λ, Y ) 	= 0.
Hence, as

log(1 − e((λ,X) + i
∣∣(λ, Y )

∣∣)) + log(1 − e(−(λ,X) + i
∣∣(−λ, Y )

∣∣))
= log((1 − e((λ,X) + i

∣∣(λ, Y )
∣∣)(1 − e(−(λ,X) + i

∣∣(λ, Y )
∣∣))

= log
∣∣1 − e((λ,X) + i

∣∣(λ, Y )
∣∣)
∣∣,

(λ, Y ) =
∣∣(λ, Y )

∣∣∣∣ if (λ, Y ) > 0, and by Lemma 3.4.1, cλ(λ2/2) = c−λ(λ2/2),

ΦM (v+, F ) =

∣∣Y
∣∣

√
2

ΦL(w+, F ) + 4
∑

λ∈L∗
(λ,Y )>0

cλ(λ2/2) log
∣∣1 − e((λ,X + iY ))

∣∣

+ c0(0)(− log(Y 2) − log 2π − Γ′(1)).

Finally, note that (λ, Y ) > 0 if and only if (λ,W ) > 0: As ΦM is analytic at
v+, so is ΦL at w+. From Lemma 5.2.11 (v) we know that this latter subspace
is generated by Y . By assumption, Y ∈ C. Hence, Y/

∣∣Y
∣∣ ∈ W (see Definition

5.3.5 of the Weyl chamber W ). Then, by Theorem 3.4.13 on the singularities
of ΦK and by definition of W , (λ, Y ) 	= 0 if and only if (λ,W ) 	= 0. Since by
definition W is generated by vectors in C, (λ, Y ′) > 0 for all Y ′ ∈W . The result
now follows.

To complete the calculation of the function ΦM (v+, F ), we need to compute
ΦL(w+, F ). In fact we will show that each to each Weyl chamber corresponds
a Weyl vector and that ΦL(w+, F ) is given by the inner product of this vector
with the norm 1 generator for w+ in C.

By definition, the Weyl chambers are precisely the regions on which the
function ΦL(w+, F ) is analytic and they are disconnected. So the expression we
get for ΦL(w+, F ) is only valid on a Weyl chamber and it may differ from one
chamber to the next. Set zL ∈ K to be a primitive norm 0 vector such that

(zL, Y ) > 0.

By assumption of the lattice L, there is a negative definite lattice K such that

L = K ⊕K⊥,
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where K⊥ ∼= II1,1 and zL ∈ K⊥. Set z′L ∈ K⊥ to be such that (zL, z
′
L) = 1.

We will write the element λ+mz′ + nz, where λ ∈ K, m,n ∈ R as (λ,m, n).
Let Y1 = Y∣∣Y

∣∣ = (YK ,m, n), where m,n ∈ R. Then, Y1 is the unique norm 1

vector in C generating w+. Let µL ∈ K ⊗Z R be the vector µ for the lattice L
as defined in Theorem 3.3.10.

Lemma 5.3.10. (zL)w+ = mY1 and µL = Y1/m.

Proof.
(zL)w+ = (zL, Y1)Y1 = mY1

and by definition,

µL = −z1 + (z′, (zL)w−)(zL)w+/(zL)2w+ + (z′, (zL)w+)(zL)w−/(zL)2w−

= −z1 +
1

(zL)2w+

((zL)w+ − (z′, (zL)w+)z)

=
1
m2

((0,−m2, 0) + (mYL,m
2,mn) − (0, 0,mn))

= YL/m.

The lattice K being negative definite, G(K) = ∅ and so,

ΘK(τ ;u+) = θK(τ) =
∑

λ∈K

eπiτλ2

is the ordinary theta function (see Definition 3.2.15) of the lattice K. Hence,

ΦK(τ, F ) =
∫

SL2(Z)\H
F (τ)θK(τ) dxdy/y2.

Corollary 5.3.11. For the element w+ ∈ G(L) generated by the vector Y in
the Weyl chamber W ,

ΦL(w+, F ) =
1√

2(zL, Y1)
ΦK(F ) + 2

√
2π(zL, Y1)

∑

λ∈K∗

cλ(λ2/2)B(
(λ, Y1)
(zL, Y1)

),

where B(x) is a polynomial of degree 2 in x and B(x) = x2 −
∣∣x
∣∣ + 1

6 if
−1 ≤ x ≤ 1.

Proof. Since G(K) = ∅ and by Lemma 5.3.10, (zL)2w+ = m2 = (zL, Y1)2, we
can deduce from Theorem 3.4.14 and Lemma 5.3.8 that ΦL(v+, F ) is equal to
the constant term at s = 0 of the Laurent expansion of

1√
2
∣∣(Y1, zL)

∣∣ΦK(F ) −
√

2∣∣(Y1, zL)
∣∣

∑

λ∈K∗

∑

n>0

cλ(λ2/2)e((nλ, µL))
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×(
πn2

2(zL, Y1)2
)−s−1Γ(s+ 1).

Remember that by assumption,
∣∣(Y, zL)

∣∣ = (Y, zL).
Since Γ(1) = 1 by Corollary C.4.3, from Corollary D.4 we can deduce that

the series
∑

n>0 e((nλ, µL))/n2 converges and is equal to a polynomial B((λ, µ))
of degree 2 in (λ, µL) as given. By Lemma 5.3.10,

(λ, µL) =
(λ, Y1)∣∣(zL)w+

∣∣ = (λ, Y1)/(zL, Y1).

The result follows.

Note that for λ2 < 0, only finitely many cλ(λ2/2) 	= 0 (see Lemma 3.4.11).
Hence the sum in the previous Lemma is finite.

We want to find for each Weyl chamber W a vector ρW ∈M⊗ZR satisfying

(ρW , Y1) = ΦL(w+, F ),

where Y1 is the unique vector of norm 1 in the positive cone C generating the
vector space w+. For any Y ∈W ∩ w+, this implies that

(ρW , Y ) =
∣∣Y

∣∣ΦL(w+, F ). (III)

Hence, we want to define a vector ρW such that equality (III) holds for all
Y ∈ W . As a function of Y , (ρ, Y ) is linear in Y . Note that because of the
isomorphism between norm 1 vectors in C and G(L), we can consider ΦL as a
function on Y1. Hence, the following conditions are sufficient for the existence
of such a vector.

Lemma 5.3.12. A vector ρW satisfying equality (III) exists for the Weyl
chamber W if the function ΦL is linear in Y1.

Lemma 5.3.13. The function ΦL is a function of Y1 is linear.

Proof. Since the polynomial B is of degree 2, from Corollary 5.2.10, we get

ΦL(w+, F ) =
1√

2(zL, Y1)
ΦK(F ) +

√
2π

∑

λ∈K∗

cλ(λ2/2)(a
(λ, Y1)2

(zL, Y1)
+b(λ, Y1) + c(zL, Y1)), (1)

for some a, b, c ∈ R. Hence we have to show that some of the terms cancel out,
in particular those having (zL, Y1) in the denominator.

For any vector Y ′ ∈ C generating w+, Y1 = Y ′/
∣∣Y ′∣∣. Let z1 	= z be another

primitive vector of norm 0 such that (z1, Y ) > 0 for Y ∈ C (note that no norm
0 vector is orthogonal to a vector of positive norm in L ⊗Z R). Let W1 be
another Weyl chamber. Let Φ and Φ1 be the restrictions of ΦK to W and W1

respectively. By Lemma 5.3.14, Φ − Φ1 is a linear function of Y1 defined on
the closure of W ∪W1. Furthermore, the common poles of Φ and Φ1 belong to
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W ∩W 1. Hence they have positive norm. If Y ∈ W is a pole of Φ, then by
Corollary 5.3.11, (Y, zL) = 0. Hence, Y cannot have positive norm and so Φ
and Φ1 have no common poles. As a result, Φ is a polynomial in Y1. Hence, the
result follows from (1).

Lemma 5.3.14. Let Wi, i = 1, 2, be two Weyl chambers and Φi the restriction
of ΦL to Wi. Then, Φi can be continued to an analytic function on W 1 ∪W 2

and
Φ1(w+) − Φ2(w+) = −8

√
2π

∑

λ∈L∗∩(W1∩W2)⊥
(λ,W1)>0

cλ(λ2/2)
∣∣(λ, Y1)

∣∣,

where Y1 is the unique vector of norm 1 in w+.

Proof. Since Γ(−1/2) = −2
√
π by Corollary C.4.4 and Lemma C.4.5 (ii),

applying Theorem 3.4.13 to the case b+ = 1, we can deduce that on W 1 ∩W 2,
ΦL has singularities of type

−2
√

2π
∑

λ∈L∗∩(W1∩W2)⊥
λ�=0

cλ(λ2/2)
∣∣(λ, Y1)

∣∣

Hence Φi can be analytically continued on W 1 ∩W 2 and

Φ1(w+) − Φ2(w+) = −4
√

2π
∑

λ∈L∗∩(W1∩W2)⊥
λ�=0

cλ(λ2/2)
∣∣(λ, Y1)

∣∣.

Indeed if a function g(τ) = f(τ) −
∣∣τ
∣∣ is analytic, then it has analytic continu-

ations f(τ) − τ and f(τ) + τ . Hence the result follows since by Lemma 3.4.1,
cλ(λ2/2) = c−λ(λ2/2).

The next definition thus makes sense.

Definition/Lemma 5.3.15. The Weyl vector for the Weyl chamber W is the
vector ρ(L,W,F ) ∈ L⊗Z R defined by

8
√

2π(ρ(L,W,F ), Y ) =
∣∣Y

∣∣ΦL(w+, F ),

where Y ∈W is a vector generating w+ ∈ G(L).

The factor 8
√

2π is only a normalization factor due to technical considera-
tions coming from Lemma 5.3.14. Using Definition 5.2.14, We can now rewrite
the theta transform ΦM for the lattice M given in Corollary 5.3.9 in terms of
the Weyl vector.

Corollary 5.3.16. For v+ ∈ G(M) such that the generators in C of w+ are in
the Weyl chamber W ,

ΦM (v+, F ) = 8π(ρ(L,W,F ), Y ) − 4
∑

λ∈L∗
(λ,W )>0

cλ(λ2/2) log
∣∣1 − e((λ,X + iY ))

∣∣

+ c0(0)(− log(Y 2) − log 2π − Γ′(1)).
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Corollary 5.3.17. The infinite product expansion of the function Ψz(Z) given
in Theorem 5.3.6 converges for Y ∈ W and Z near the cusp of z. Moreover,
for v+ ∈ G(M),

ΦM (v+, F ) = −4 log
∣∣Ψz(Z,F )

∣∣− 4
c0(0)

2
(log

∣∣Y
∣∣ + Γ′(1)/2 + log

√
2π).

Proof. Taking the exponential of both sides of the equality in Corollary 5.3.16,

we get

exp(ΦM (v+, F )) = exp(8π(ρ(L,W,F ), Y ))(Y 2)−c0(0)(2π)−c0(0)

× exp(−c0(0)Γ′(1))
∏

λ∈L∗
(λ,W )>0

∣∣1 − e((λ,X + iY ))
∣∣−4cλ(λ2/2)

. (1)

Define
Ψz(Z,F ) = e−2πi(ρ,Z)

∏

λ∈L
(λ,W )>0

(1 − e2πi(λ,Z))cλ(λ2/2).

The convergence follows since the absolute value of this product, namely

e2π(ρ,Y )
∏

λ∈L
(λ,W )>0

∣∣1 − e2πi(λ,Z)
∣∣)cλ(λ2/2),

is convergent from Theorem 3.4.14 and the definition of the Weyl chamber (see
Definition 5.3.5). Substituting into (1), we can deduce that

exp(ΦM (v+, F )) =
∣∣Ψz(Z,F )

∣∣−4(Y 2)−c0(0)(2π)−c0(0) exp(−c0(0)Γ′(1)).

The result now follows by the taking the logarithm of both sides of this equality
and noticing that

c0(0)(log Y 2 + log(2π) + Γ′(1)) = c0(0)(2 log
∣∣Y

∣∣ + 2 log(
√

2π) + 2(Γ′(1)/2)).

We next show that the function Ψz is the restriction of an automorphic form
on the Grassmannian G(M).

Lemma 5.3.18. Define the function ΨM on M by setting

ΨM (ZM , F ) = Ψz(Z,F ).

Then, ΨM is an automorphic form ΨM holomorphic on P invariant under the
action of the group Aut(M,F ) of weight c0(0)/2 and character χ.

Proof. As the space P is a principal fiber bundle over G(M) together with the
action of C∗ and the Hermitian symmetric domain is isomorphic to the subset
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P1 of P and to the space K ⊗Z R+ iC (see section 5.2 and Definition B32), the
function Ψz can be extended to a function ΨM on P defined by:

ΨM (ZM , F ) = Ψz(Z,F )

for Z ∈ K ⊗Z R + iC and

ΨM (ZMτ, F ) = τ−c0(0)/2ΨM (τ)

for all τ ∈ C∗. Since Ψz is holomorphic on K ⊗Z R + iC, so is ΨM on P .
To show that ΨM is an automorphic form (see Definition 5.3.5), it

remains to check that for all σ ∈ Aut(M,F ) (see Definition 3.4.15),
ΨM (σZMτ) = χ(σ)ΨM (ZMτ) for some 1-dimensional character χ of Aut(M,F ).
Now, ΦM (σv+, σF ) = ΦM (v+, F ) by definition of Aut(M,F ). Hence by Corol-
lary 5.3.16, σ fixes the function Ψz. Consider the function

Ψ(ZM ) =
∣∣ΨM (ZM )

∣∣∣∣YM

∣∣c0(0)/2
.

Then,
Ψ(ZMτ) =

∣∣ΨM (ZM )
∣∣∣∣τ

∣∣−c0(0)/2∣∣∣∣bXM + aYM

∣∣c0(0)/2

for τ = a+ ib ∈ C∗. Now,

(bXM + aYM , bXM + aYM ) = (b2 + a2)Y 2
M = τ2Y 2

M

since (XM , YM ) = 0 and X2
M = Y 2

M (see section 5.2). Hence,

Ψ(ZMτ) = Ψ(ZM )

for all τ ∈ C∗. Since Aut(M,F ) stabilizes Ψz, it stabilizes ΨM as a function on
P1 and hence it stabilizes ΨM as a function on P since the norm of the vector
YM and that of the vector σYM are equal for all σ ∈ Aut(M,F ).

Hence
∣∣ΨM (ZM )/ΨM (σZM )

∣∣ =
∣∣YM

∣∣c0(0)/2
/
∣∣σ(YM )

∣∣c0(0)/2 = 1

for all σ ∈ Aut(M,F ). So

ΨM (σZM ) = χ(σ)ΨM (ZM )

for some map χ : Aut(M,F ) → C∗ such that
∣∣χ(σ)

∣∣ = 1 for all σ ∈ Aut(M,F ).
The definition of χ implies that it is a group homomorphism. Hence χ is a
1-dimensional character of Aut(M,F ).

To prove Theorem 5.3.6, it only remains to check that the orders of the zeros
and singularities are as stated.

Lemma 5.3.19. The singularities of the automorphic form ΦM are on rational
quadratics λ⊥ for λ ∈M with λ2 < 0 and are of order

∑

n∈Z
nλ∈M∗

cnλ(n2λ2/2).
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Proof. The singularities of ΨM on P1 are those of Ψz on L⊗ZR+iC. Moreover,
if ZM ∈ P1 is a singular point of ΨM , then so are ZMτ for all τ ∈ C∗ by definition
of the action of C∗. By Corollary 5.3.17 and Theorem 3.4.13, the singularities
of −4 log

∣∣ΨM (ZM )
∣∣ near the point Z0M = X0M + iY0M , where Z0 corresponds

to the point v+
0 ∈ G(M), are of type

−
∑

λ∈M∗∩Z0
⊥
M

λ�=0

cλ(λ2/2) log(λ2
v+)

since (u,Z0M ) = 0 for u ∈ M∗ if and only if (u,X0M ) = 0 = (u, Y0M ) and this
is equivalent to u ∈ (v+

0 )⊥ = v−0 . Since XM , YM form an orthogonal basis for
v+ such that X2

M = Y 2
M ,

λv+ = (λ,XM )XM/X2
M + (λ, YM )YM/Y 2

M

and so
log λ2

v+ = log((λ,XM )2/X2
M + (λ, YM )2/Y 2

M )

= log(
1
Y 2

M

∣∣(λ,ZM )
∣∣2)

= 2 log(
∣∣(λ,ZM )

∣∣) − 2 log
∣∣YM

∣∣.

Hence the singularities of log(
∣∣ΨM (ZM )

∣∣2) near the point Z0M are of type

(log(
∣∣(λ,ZM )

∣∣) − log
∣∣YM

∣∣)
∑

λ∈M∗∩Z0
⊥
M

λ�=0

cλ(λ2/2).

Equivalently,

log(
∣∣ΨM (ZM )

∣∣2) − (log(
∣∣(λ,ZM )

∣∣) − log
∣∣YM

∣∣)
∑

λ∈M∗∩Z0
⊥
M

λ�=0

cλ(λ2/2) = Υ(ZM )

is analytic near the point Z0M . Therefore, taking the exponential of both sides
of this equality, we get

∣∣ΨM (ZM )
∣∣2 = exp(Υ(ZM ))

∏

λ∈M∗∩Z0
⊥
M

λ�=0

∣∣ (λ,ZM )
YM

∣∣cλ(λ2/2)
.

Hence the singularities lie on λ⊥, where λ ∈ M such that λ2 < 0. By Lemma
5.3.3, they have order ∑

0<x∈R
xλ∈M∗

cxλ(x2λ2/2).

Note that this sum is finite by Lemma 3.4.11. Since by assumption, for all
γ ∈M∗/M and m ≤ 0, cγ(m) 	= 0 only if m ∈ Z, the result follows.
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Remark 5.3.20. (i) In sections 5.2–5.4 the Lorentzian lattice L has been
assumed to have rank (1, n) in order to remain compatible with usual conven-
tions about modular forms, in particular about the theta function. However, we
saw in Chapter 2 that in the theory of BKM algebras, the non-diagonal entries
of the generalized Cartan matrix A are assumed to be non-positive and as a
consequence the roots of finite type have positive norm. So usually LBKM alge-
bras have Lorentzian root lattices of rank (n, 1) and so sections 5.2–5.4 are not
compatible with this assumption, but with the opposite one, i.e. with taking
non-negative non-diagonal entries in A and thus negative norm roots of finite
type. The material in sections 5.2–5.4 can be adapted to the usual conven-
tions about BKM algebras by taking as our definition of our theta function, the
function

θγ(τ) =
∑

λ∈M+γ

e(−τλ2
v−/2 − τλ2

v+/2)

and for the weight of our modular form F ,

b− − b+

2

instead of b+−b−

2 . This also changes the representation ρM . The representation
space C[M∗/M ] remains the same but gives the complex conjugate of ρM . In
Theorem 5.3.6 the product expansion then becomes

Ψz(Z) = e−2πi(ρ,Z)
∏

λ∈K
(λ,W )>0

(1 − e2πi(λ,Z))cλ(−λ2/2)

and the zeros and poles of ΨM lie on rational quadratic divisors λ⊥, where
λ ∈M and λ2 > 0. On λ⊥, where λ ∈M has positive norm, they have order

∑

n∈N
nλ∈M∗

cnλ(−n2λ2/2).

(ii) When F is an ordinary complex valued modular function, the full isometry
group O(M) of the lattice M is equal to the group Aut(F,M) fixing F .

Theorem 5.3.6 gives a class of modular forms whose coefficients are the ex-
ponents of the product expansion of automorphic forms. As these automorphic
forms have a Fourier expansion, their product expansion is in many cases equi-
valent to the denominator formula of a BKM algebra. We have seen in Example
5.3.1 this to be the case for the normalized modular invariant J . This is however
not always the case. A fundamental question yet unanswered is therefore the
following one:

Open Question 1. Find necessary and sufficient conditions for the vector
valued modular form F to be associated to a BKM algebra. In other words,
the product expansion of the automorphic form associated to F in the manner
described in Theorem 5.3.6 should be the denominator formula of a BKM alge-
bra. Hence the exponents of this product, namely some of the coefficients of the
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Fourier series for F at infinity should give the root multiplicities for this BKM
algebra.

In order to be able to fully describe the BKM algebra we need to know
not only the roots but also which among them are simple. Equivalently, to
get the full denominator formula, we need to compute the Fourier series of the
automorphic form ΨM . In general this is not easy to do. However it is worth
noticing that the weight of the automorphic form related to the most typical
LBKM algebra, namely the Fake Monster Lie algebra (see Example 5.3.33) is
equal to minus half the signature of the lattice M (in the convention b+ = 2).
This is also true for the Monster Lie algebra.

Definition 5.3.21. The automorphic form is said to be of singular weight if
its weight is equal to −s/2, where s is the signature of the Lorentzian lattice L.

Indeed if the automorphic form has singular weight then it is possible to find
the Fourier coefficients of ΨM when Aut(F,M) = O(M) and the character χ is
trivial, i.e. when the automorphic form ΨM is fixed by the full isometry group
of the lattice M . We assume this to be the case in the rest of this section.

We briefly describe this process without giving all the proofs. The details
can be found in [Borc9, Chapter 3]. We assume that the automorphic form ΨM

corresponds to a modular form F satisfying the conditions stated in Theorem
5.3.6.

The lattice U generated by the orthogonal primitive norm 0 vectors z and
zL has rank 2. By assumption (zL, Y ) > 0, and so the basis z, zL of the lattice
U is positively oriented since zv+ ∧ (zL)v+ = (zL, Y )XM ∧ YM/Y 4 by Lemma
5.2.11 (ii) and (iii). Let J be the subgroup of the isometry group O(M) of M
fixing this sublattice.

Definition 5.3.22. A subgroup fixing a rank 2 null sublattice is a Jacobi group.

For any r ∈ R, set

tr(λ) = λ+ r(λ, z)zL − (λ, zL)z

for λ ∈M⊗ZC. In other words, tr is the translation by the vector rzL ∈ L⊗ZR
on the vector space M ⊗Z C (see Definition 5.2.12). By Exercise 5.3.4, the
automorphism tr does not depend on the positively oriented basis of primitive
vectors of U .

Lemma 5.3.23. For any r ∈ R, tr(P ) = P and tu(P ) = P for all u ∈ L⊗Z R.

Proof. Since tr(ZM ) = ZM + rzL − r(ZM , zL)z and r ∈ R,

tr(ZM ) = XM + rzL − r(XM , zL)z + i(YM − r(YM , zL)z)

and

(XM + rzL − r(XM , zL)z)2 = X2
M = Y 2

M = (YM − r(YM , zL)z)2.

Moreover,

(XM + rzL − r(XM , zL)z) ∧ (YM − r(YM , zL)z) = XM ∧ YM + · · · ,
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where none of the other summands are in v+. Hence the basis

XM + rzL − r(XM , zL)z, YM − r(YM , zL)z

is positively oriented. Therefore tr(ZM ) ∈ P . The second equality follows from
similar arguments.

When n is an integer, tn ∈ O(M), and hence since an automorphic form is
homogeneous, by assumption

ΨM (tnv) = ΨM (v) v ∈ P. (a)

Hence, the next definition makes sense. For m ∈ Z, set

ψm(v) =
∫

r∈R/Z

ΨM (tr(v))e−2πimrdr v ∈ P.

The automorphic form ΨM can be expanded as a Jacobi series.

Lemma/Definition 5.3.24. On P , the automorphic form ΨM is equal to its
Jacobi series:

ΨM =
∑

m∈Z

ψm.

Proof. Considering the function g(r) = ΦM (trv) on R for fixed v ∈ P , the
Fourier expansion of g is g(r) =

∑
m∈Z ψm(v)e2πimr (see Lemma D.2). The

result follows from equality (a) by taking r ∈ Z.

Again by assumption and Lemma 5.3.23, the next integral is well defined.
For m ∈ L∗, set

Aλ(v) =
∫

u∈L⊗ZR/L

ΨM (tu(v))e−2πi(λ,u)du v ∈ P.

Lemma/Definition 5.3.25. On P , the automorphic form ΨM is equal to its
Fourier series:

ΨM =
∑

λ∈L∗

Aλ.

The same holds form the functions ψm, m ∈ Z.

Set F to be the subgroup of the isometry group O(M) of the lattice M fixing
the vector z.

Definition 5.3.26.

(i) A subgroup of O(M) fixing a primitive null vector is a Fourier group.
(ii) The automorphic form ΨM or the function ψm is said to be holomorphic

at F if Aλ = 0 unless λ is in the closure of the positive cone C.

From Exercise 5.3.5, we know that the functions ψm satisfy the following
properties.
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Lemma 5.3.27. For all m ∈ Z,

(i) ψm has weight c(0)/2 (i.e. is homogeneous of degree −c(0)/2);
(ii) ψm is holomorphic on P ;
(iii) ψm(trv) = e2πimrφ(v), v ∈ P ;
(iv) ψm(σv) = ψm(v) for all σ ∈ J+, v ∈ P .
(v) ψm is holomorphic at the cusps, i.e. at every Fourier group corresponding

to a rank 1 null sublattice of U .

This result in fact says that the functions ψm are Jacobi forms (see Exercise
5.3.5). So let us give the generalization of Jacobi forms (see Definition 3.2.17)
to higher dimensions.

Definition 5.3.28. A Jacobi form of weight k and index m (k ∈ Z+, m ∈ Z)
for the modular group SL2(Z) is a holomorphic function φ : K ⊗Z C×H → C
satisfying

(i)

φ(
Z

cτ + δ
,
aτ + b

cτ + d
) = (cτ + d)kem(

c(Z2/2)
cτ + d

)φ(Z, τ),

for all
(
a b
c d

)
∈ SL2(Z);

(ii)
φ(Z + λτ + µ, τ) = e−m((Z, λ) + τλ2/2)φ(Z, τ),

for all λ, µ ∈ Z.

Corollary 5.3.29. For every m ∈ Z, the functions ψm are Jacobi forms.

We next define a theta function on two variables as follows.

Definition 5.3.30. A Theta function of index m is a linear combination of
functions on K ⊗Z C ×H of the following type:

θK+γ(Z, τ) =
∑

λ∈K+γ

e−πiλ2τe2πim(Z,λ)

for m ∈ Z, γ ∈ K ⊗Z Q.

We can now deduce the result on the Fourier coefficients of the automorphic
form ΨM in the holomorphic case from Exercises 5.3.5 and 5.3.6.

Theorem 5.3.31. Suppose that for all m ≤ 0, the coefficients c(m) ≥ 0 and
that c(0) = −s. Then, the only non-zero coefficients of the Fourier series of Ψz

correspond to vectors of norm 0.

Hence the following questions arise:

Open Question 2. Are the BKM algebras that can be fully described, i.e.
whose root system can be explicitly given, those associated to an automorphic
form of singular weight?
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Open Question 3. Classify all holomorphic automorphic forms on G(M) of
singular weight that are automorphic products. If the answer to Question 2 is
in the affirmative, then this should give all the “interesting” BKM algebras by
taking their Fourier expansions at the cusps.

Note that, as in the case of the Monster Lie algebra, these BKM algebras
may not have a hyperbolic Weyl (reflection) group but a fairly trivial one.

Open Question 4. Find a method for calculating the Fourier coefficients of
the automorphic forms having non-singular weight. This would, in particular,
allow a description of the BKM algebras with hyperbolic reflection group. If
this is possible, then the answer to Question 2 is negative.

Let us now investigate the Weyl vector ρ given in Lemma 5.3.15 further.

Theorem 5.3.32. The Weyl vector for the Weyl chamber W is

ρ(K,W,F ) = (−1
2

∑

l∈K∗
(λ,W )>0

cλ(λ2/2)λ, c,
1
24

∑

λ∈K∗

cλ(λ2/2)),

where c is the constant term of FL(τ)ΘL(τ)E2(τ).

Proof. We apply Corollary 5.3.11. We want a vector Y ′
1 of norm 1 in the Weyl

chamber W of Y1 such that

0 ≤ (λ, Y ′
1)

(z, Y ′
1)

< 1 (1)

so that B( (λ,Y ′
1 )

(z,Y ′
1 ) ) = ( (λ,Y ′

1 )
(z,Y ′

1 ) )
2 − (λ,Y ′

1 )
(z,Y ′

1 ) + 1/6. We want (1) to hold for λ ∈ K∗,
i.e with non-positive norm, satisfying

cλ(λ2/2) 	= 0 and (λ,W ) ≥ 0 (2)

By Lemma 3.4.11, there are only finitely many possibilities for vectors
λ ∈ K∗ with this property. Now, by lemma 5.3.10, (λ, µL) = (λ,Y ′

1 )
(z,Y ′

1 ) , where
Y1 = (mµL,m, n). So we can choose the vector µL ∈ K⊗Z R so that inequality
(1) holds for the all vectors λ ∈ K∗ satisfying (2). Note that since m 	= 0 and
the singular points are on hyperplanes of codimension 1 in G(L) given by λ ∈ L
satisfying (2), the corresponding vector Y ′

1 is in W . For ρ(K,W,F ) = (ρ, c, d)
and Y1 given by (2), the definition of the Weyl vector (see Lemma 5.3.15) says
that

8
√

2π((ρ, c, d), (mµL,m, n)) = ΦL((mµL,m, 1/2m−mµ2
L/2), F ).

Hence, applying Corollary 5.3.11, we get
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8
√

2π(m(ρ, µL) + c(
1

2m
−mµ2

L/2) + dm)

=
1√
2m

ΦK(F ) +
√

2πm(2c0(0)/6 + 4
∑

λ∈K∗
(λ,W )>0

cλ(λ2/2)((λ, µL)2 − (λ, µL) + 1/6))

since the norm of Y ′
1 being equal to 1, n = (1 −mµ2

L)/2m.
As this holds for all m > 0,

c =
1
8π

ΦL(F )

and

(ρ, µL) − cµ2
L/2 + d = c0(0)/24 +

1
2

∑

λ∈K∗
(λ,W )>0

cλ(λ2/2)((λ, µL)2 − (λ, µL) + 1/6).

This in turn holds for all vectors µL ∈ K ⊗Z R such that 0 ≤ (λ, µL) ≤ 1 for
all λ ∈ K∗ satisfying conditions (2). Hence,

ρ = −1
2

∑

λ∈K∗
(λ,W )>0

cλ(λ2/2)λ,

and
d = c0(0)/24 +

1
12

∑

λ∈K∗
(λ,W )>0

cλ(λ2/2) =
1
24

∑

λ∈K∗

cλ(λ2/2).

Hence the result follows from Exercise 5.3.8.

We have already studied the example of the Monster Lie algebra in the
context of automorphic forms (see Example 5.3.1). We now apply Theorem
5.3.6 to the typical example of a LBKM algebra, namely the Fake monster Lie
algebra. We have already computed its denominator formula using properties
of its root system. We give an alternative method for finding this product
expansion by using Theorem 5.3.6.

Example 5.3.33. For our modular form we take F (τ) = 1/∆(τ). This is an
ordinary modular function of weight -12. Its Laurent series at infinity is

f(τ) =
∑

n

p24(n+ 1)qn = q−1 + 24 + · · · .

Therefore, Φz(Z) = e−2πi(ρ,Z)
∏

λ∈K
(λ,W )>0

(1− e2πi(λ,Z))p24(1−λ2/2) is an automor-

phic form of weight 12 for the group O2,26 = O(M), where M = K + II1,1

and K is a unimodular even Lorentzian lattice of rank (25, 1). Applying The-
orem 5.3.32, we get that the Weyl vector is ρ = (0, 0, 1). Theorem 5.3.5 also
implies that Φz has singular weight and since c(−1) > 0 it is holomorphic. So
by Theorem 5.3.31, the only non-trivial coefficients of the Fourier expansion of
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Φz correspond to norm 0 vectors. They can then be calculated from the above
product and we find

Φz(Z) =
∑

w∈W

det(w)∆((Z,w(ρ))).

In this section, we have studied the question of associating to a modular
form the product expansion of an automorphic form corresponding to the de-
nominator formula of a LBKM algebra.

What about the converse problem? Do all LBKM algebras have a vector
valued modular form associated to them in the manner described in Theorem
5.3.6? The answer is no for most of them. The next section gives very strong
evidence that this can be done only when the lattice has rank at most 26. So the
problem of classifying the LBKM algebras for which this is possible should be
a finite one. Note that even when the rank is at most 26, most LBKM algebras
have no associated vector valued modular form. The reason is that in general
the denominator formula does not give a product expansion for an automorphic
form. When this is the case, the answer to the above question is yes in the case
considered here of a Lorentzian root lattice L containing the lattice II1,1 as a
direct summand. This has been proved by Bruinier and later by Barnard in
a different context. The interested reader should read [Br, Theorems 5.11 and
5.12] and [Bar]. Their method is briefly exposed in the next section, though we
do not give detailed proofs.

Exercises 5.3

1. Prove Theorem 5.3.6 in the case of an arbitrary even Lorentzian lattice L.

2. Find the multiplicities of the roots of Monster Lie algebra by applying
Theorem 5.3.6.

3. Show that the automorphism tr (r ∈ R) defined in section 5.3 is independent
of the positively oriented basis chosen for the sublattice U .

4. (i) Construct a homomorphism from the Jacobi group J to the group
O(K)×SL2(Z). Show that the centre of the connected component of its kernel
group consists of the automorphisms tr, r ∈ R.

(ii) Construct a homomorphism from the Fourier group F to the group O(L)
containing the automorphisms tv, v ∈ L, in its kernel.

(iii) Show that ψm(trv) = e2πimrψm(v) for all v ∈ P , r ∈ R, m ∈ Z.

5. For r ∈ C, does tr(P ) = P hold? Give an analytic continuation of
the function ψm on the set of all vectors v in M ⊗Z C of norm 0 satisfying
I( (v,z)

(v,zL) ) > 0. Show that the function

φz,m(z, τ) = φm(Z + τ(zL)′ + z′ − (Z2/2)z) (a)
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defined on (K⊗C) ×H is a Jacobi form (according to Definition 5.3.28). Con-
versely, show that given a Jacobi form on (K ⊗Z C)×H, there is a function on
P satisfying Lemma 5.3.27 satisfying the above equality (a). Remember that
z′ ∈M (resp. (zL)′ ∈ L) is the primitive norm 0 vector orthogonal to the lattice
L (resp. K) having inner product 1 with z (resp. zL).

6. (i) Show that a Theta function θK+γ of index m ∈ N on K ⊗Z C ×H is a
Jacobi form of weight −s/2 and index m if γ ∈ K∗.

(ii) Show that the Jacobi forms ψm in the Jacobi series for the automorphic
form ΨM have positive index.

(iii) Show that if m > 0, then the Jacobi form ψz,m has a Fourier series of the
form

∑
λ∈K+γ e

−πiλ2τe2πim(Z,λ) for m ∈ Q, γ ∈ K ⊗Z Q.
(iv) Deduce that when the coefficients c(n) ≥ 0 for n ≤ 0, the automorphic

form ΨM is a linear combination of products of modular functions and
Jacobi forms. If moreover ΨM has weight −s/2, where s is the signature
of the lattice L, deduce that it is a sum of Jacobi forms.

For a solution, see [EicZ, Theorem 5.1].

(v) Deduce that if the Fourier coefficient Aλ of a holomorphic automorphic
form ΨM of weight −s/2 is non-zero, then λ2 = 0.

5.4 An Upper Bound for the Rank of the Root
Lattices of LBKM Algebras?

In this section, we present some strong evidence that the classification problem
of LBKM algebras associated to vector valued modular forms is essentially a
finite problem. At least it is so if we assume a Conjecture of Burger, Li and
Sarnak about the eigenvalues of the hyperbolic Laplacian to be true.

We do not prove all the material presented in this section but aim to present
some of the basic ideas developed in [Bar] and [Br]. The details can be found
in these two papers. The assumptions and notation in this section are the same
as in the previous one.

Our aim is to show that if F is a vector valued modular form satisfying the
conditions of Theorem 5.3.6 and the corresponding automorphic form ΨM has
a product expansion giving the denominator formula for a LBKM algebra, then
the rank of the root lattice L is bounded above.

The particularity of a root lattice L is the existence of a Weyl vector in L⊗ZQ
for a Weyl chamber, i.e. they are associated to a reflection group. Therefore
the Weyl chambers determined by the theta transform of F should be the Weyl
chambers for reflection (Weyl) groups and the vector ρ(L,W,F ) given in Lemma
5.3.15 should be a Weyl vector for the root system of the reflection group. We
remind the reader that the Weyl chambers for the reflection group G of a BKM
algebra are the open cones wC, where w ∈ G and

W = {(λ, α) > 0;α ∈ Π},
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where Π is a fixed base for the root system. The singularity points are in the
hyperplanes

Hwα = {λ ∈ L⊗Z R : (wα, λ) = 0},
α ∈ Π, w ∈ G. The Weyl vector ρ(L,W,F ) is a Weyl vector for the root system,
i.e.

(ρ, α) =
1
2
α2 ∀α ∈ Π. (I)

As we will see this is a very strong condition to impose. It leads (assuming the
above mentioned conjecture to be true) to a very low upper on the possible rank
of the root lattice.

Remark 5.4.1. From Theorem 5.3.32 we know that the Weyl vector ρ(K,W,F )
belongs to the rational vector space L ⊗Z Q since by assumption the Fourier
coefficients cλ(m) of the components of the modular form F are integers for all
m ≤ 0.

We assume that the modular form F corresponds to a BKM algebra and thus
that Hα and G are as above and that the vector ρ(L,W,F ) satisfies equalities
(I). The only coefficients cλ(m) withm < 0 of the modular form F which appear
in the theta correspondence are the ones given by m = λ2/2 for some λ ∈ K∗

of negative norm. However there may well be other non trivial coefficients c(m)
in the Fourier series of the modular form F with m < 0 and m 	= λ2/2 for any
λ ∈ K∗. Hence as they do not play any role in the theory developed in section
5.3, it is unclear how to find conditions these coefficients should satisfy from the
requirement that ρ(L,W,F ) be a Weyl vector for a reflection group.

To find the upper bound on the rank of the lattice L, we explain how under
certain assumptions a vector valued modular form F1 with the property that the
only singularities it has are of the form qm where m = λ2/2 for some primitive
vector λ ∈ L⊗Z Q of negative norm, can be associated to the vector ρ(K,W,F )
in the manner described in Theorem 5.3.6. This gives a low bound on the terms
qm, m < 0 in the Fourier series for F1. The upper bound for the rank is a
consequence of this result. So we first construct a modular form F1. However,
a priori, it has terms containing Whittaker functions and so does not have a
Fourier series as given in Lemma 3.3.7 and the desired singularities. The aim is
to show that the unwanted terms are equal to zero so that the singularities of
F1 are only of the above form corresponding to primitive roots of L∗. In order
to show this, we find its theta transform Φ1 and show that it is the sum of a
piecewise linear function ψ1 on G(L) and a real analytic function ξ1 on G(L),
the latter coming from the undesired terms of F1. So all that needs to be shown
is that the real analytic part is equal to 0. This will follow from the fact that
ΦK −Φ1 is an eigenvector for the hyperbolic Laplacian for then, using an as yet
unproved conjecture of Burger, Li and Sarnak about the exceptional eigenvalues
for the hyperbolic Laplacian [BuLS], [BuS], it can be shown that Φ1 = ΦK . In
particular, Φ1 is piecewise linear and ξ1 = 0.

The next result is only a restatement of Lemmas 5.3.13 and 5.3.14.
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Lemma 5.4.2. The automorphic form ΦL is a piecewise linear map on the
Grassmannian G(L), i.e. it is linear on each Weyl chamber.

In order to construct the modular form F1, we need to introduce the hyper-
bolic laplacian.

The ordinary Laplacian in Euclidean n-space is the operator defined in carte-
sian coordinates as follows:

∇2 =
δ2

δx2
1

+ · · · + δ2

δx2
n

.

The hyperbolic Laplacian generalizes this operator to the 2-dimensional hyper-
bolic space, namely the upper half plane H.

Definition 5.4.3. The hyperbolic Laplacian of weight (m+,m−) of functions
on the upper half place is the operator defined as follows:

∇2
m+,m− = −y2(

δ2

δx2
+

δ2

δy2
) + iy(m+ −m−)

δ

δx
+ i(m+ +m−)

δ

δy
.

One of the most fundamental equation in mathematics and physics – namely
the potential equation – aims at finding the eigenfunction of the ordinary Lapla-
cian with eigenvalue 0. More generally, finding the eigenvectors and eigenvalues
of ∇2 is of basic importance and can be done by using Green’s functions. What
about the eigenvectors and eigenvalues of the hyperbolic Laplacian? In section
3.3 we defined vector valued modular forms.

Definition 5.4.4. A vector valued modular form F of weight (m+,m−) is said
to be of eigenvalue λ ∈ C if

∇2
m+,m−(F ) = λF.

Using the Fourier expansion of vector valued modular forms and the defin-
ition of Whittaker functions Mk,m and Wk,m, the vector valued modular form
F of eigenvalue λ can be computed. These functions are the solutions of the
Whittaker differential equation:

W ′′ + (
k

z
− 1

4
+

1
4 −m2

z2
)W = 0.

For details, see [AS] and [WhiW].
Set m− = b−−1 to be the rank of the root lattice L. From Lemma 3.3.7, we

know that the components Fγ , γ ∈M∗/M , of the modular form F have Fourier
expansion of type ∑

m∈Z

cm,γ(y)qm+γ2/2.

Exercise 5.4.1 gives the solutions for the coefficients cm,γ(y) if F is of eigenvalue
λ = s(s− 1)− 1+m−

2 (1− 1+m−

2 ). As this exercise also shows, the essential part
of the eigenvalue is s(s−1). This is why it is more useful to write λ in this form
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Lemma 5.4.5. If the vector valued modular form F of type ρL is of eigen-
value λ = s(s− 1)− 1+m−

2 (1− 1+m−

2 ) then the coefficients cm,γ(y) are a linear
combination of the functions:

Mn,s = y−(1+m−)/2Msgn(n)(1−m−)/2,s−1/2(4π
∣∣n

∣∣y)

and
Wn,s = y−(1+m−)/2Wsgn(n)(1−m−)/2,s−1/2(4π

∣∣n
∣∣y).

A vector valued modular form of weight (1,m−) and type ρL can then be
constructed using the definition (see Definition 3.3.5) as follows:

Definition/Theorem 5.4.6. For δ ∈ L∗/L, set

F (τ, δ) =
1
2

∑

A∈<T>\Mp2(Z)

(e(xδ2/2)Mδ2/2,1(y)eδ)|A,

where for any A ∈Mp2(Z),

(F |A)(τ) = ρK(A)−1F (Aτ)(cτ + d)−1(cτ + d)−m−
.

This is the Mass-Poincaré series at s = 1. Then, F (τ, δ) is a modular form of
weight (1,m−), type ρL and eigenvalue 1+m−

2 (1 − 1+m−

2 ) with singularity only
at infinity of type

e(
δ2

2
x)M δ2

2 ,1
(y)eδ + e(

δ2

2
x)M δ2

2 ,1
(y)e−δ.

For δ ∈ L∗/L having negative norm, set

Fδ(τ) = y(1+m−)/2F (τ, δ).

Its Fourier series is:

Fδ(τ) = qδ2/2eδ+qδ2/2e−δ+
∑

γ∈L∗/L

n∈Z+γ2/2
n≥0

an,γq
neγ+

∑

γ∈L∗/L

n∈Z+γ2/2
n<0

an,γe
2πinxW (4πny)eγ .

The problem is that Fδ does not necessarily have the same type of Fourier expan-
sion as the vector valued modular forms used in sections 3 and 5. Therefore to
derive its theta transform Φδ, a modified version of section 3.4 is needed, namely
the Rankin-Selberg method. Remember the description of the singularity sets
in Theorem 3.4.13.

Definition 5.4.7. For δ ∈ L∗/L having negative norm, H(δ) = ∪λ∈L∗∩L−δ

λ2=δ2
λ⊥

is the δ-Heegner divisor.

As in Theorem 3.4.13, the singularities of the theta transform Φδ can be
worked out.
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Lemma 5.4.8. The vector v+
0 ∈ G(L) is a singularity point of Φδ if v+

0 ∈ H(δ),
in which case it has singularity of type

−4π
√

2
∑

λ∈L∗∩v
−
0

λ�=0

∣∣λv+

∣∣.

An immediate consequence of Theorem 3.4.13 applied to the theta transform
ΦL and of the assumption (I) is a description of the singularities in terms of
Heegner divisors.

Corollary 5.4.9. The singularity points of ΦK belong to divisors of type 2H(δ)
where δ is a primitive root in L∗.

Let P be the set of primitive roots in L∗/L. The last two results suggest
that we consider

F1 = 2
∑

δ∈P
c(δ2/2)Fδ.

The next result is immediate from the above.

Corollary 5.4.10. The function ΦL −Φ1 is real analytic on the Grassmannian
G(L).

However we cannot immediately conclude that ΦL = Φ1 nor can we as yet
deduce anything about the singularities of F1 because the less simpler form of
the Fourier series of F1 compared to the modular forms of previous sections
implies that Φ1 is the sum of a piecewise linear function ψ1 and a real analytic
function ξ1. What we need to show is that ξ1 = 0. Since ΦK − ψ1 is piecewise
linear, the next result follows from Corollary 5.4.10.

Corollary 5.4.11. The function ΦL −ψ1 is linear on the Grassmannian G(L).

Any linear function can be shown (see Exercise 5.4.4) to be an eigenvector
for the hyperbolic Laplacian with eigenvalue −m− and from Exercise 5.4.3, we
know that ψ1 is an eigenvector for the hyperbolic Laplacian with eigenvalue
−m−. Hence:

Corollary 5.4.12. The function ΦL − Φ1 is an eigenvector for the hyperbolic
Laplacian with eigenvalue −m−.

Conjecture (Berger, Li, Sarnak). Set ω = b−1/2 − 1 and let s2 − ω2 be the
eigenvalues of the hyperbolic Laplacian ∆1,m− . Then, the exceptional eigenval-
ues (i.e. the real ones) of this Laplacian are equal to ω, ω − 1, · · · ,−ω.

We then get the desired result from Exercise 5.4.4.

Corollary 5.4.13. If m− ≥ 7, then ΦL = Φ1.

Corollary 5.4.14. If m− ≥ 7, then the singularities of the modular form F1

are of type q−1/n, where n is a positive integer.

This result is a consequence of the following Lemma.
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Lemma 5.4.15. Let α ∈ Π be of negative norm and m be minimal in Q such
that δ = mα ∈ L∗. Then, δ has norm −2/n for some positive integer n.

Proof. Since α has negative norm, it is a root of finite type (remember that we
are working in the opposite convention: the non-diagonal entries of the Cartan
matrix are non-negative; see Remark 5.3.20). Since it is simple, it is a primitive
root in L∗. Hence, δ is such that lδ ∈ L∗ implies that λ ∈ Z. Therefore there
exists δ1 ∈ L such that (δ, δ1) = 1. Since α is a root, so is δ and so rδ(δ1) ∈ L,
where rδ is the reflection induced by δ. The result then follows.

We are finally ready to compute the bound on the rank of L.

Corollary 5.4.16. Assuming the above Conjecture to be true, dimL ≤ 26.

Proof. We assume that m− ≥ 7. By Corollary 5.4.14, the modular form
F1(τ)∆(τ) is holomorphic since ∆(τ) has a simple pole. Hence it must have
weight 12 + 1 − dimK/2 and as it is holomorphic its weight is non-negative.
The result then follows.

There is very strong evidence that the Conjecture given above is true (see
[Ar]). It would nevertheless be obviously satisfactory to find a proof of Corollary
5.4.16 which is not based on it.

Open Question 5. Find an alternative proof of Corollary 5.4.16.

There is good evidence that the upper bound of 26 holds. It is indirectly
supported by a result of Goddard and Thorn from theoretical physics, namely
the No-Ghost Theorem. Indeed as we will see in the next section, this result is
crucial in the only (as yet known) method for constructing LBKM algebras and
implies that the Lie algebras we can construct for higher ranks are not BKM
algebras.

As the last two sections show, the classification project is far from complete
and there are many questions yet to be addressed. As we have seen in this
section, the principal problem of finding the vector valued modular forms asso-
ciated to a BKM algebra, can be addressed by answering the following question.

Open Question 6. When are the Weyl chambers determined by the theta
transform of F associated to a reflection group and when is the vector ρ(K,W,F )
a Weyl vector for a reflection group?

The reader more interested in the classification of hyperbolic reflection groups
or equivalently BKM algebras whose simple roots of finite type generate a
Lorentzian root lattice should in particular study the works of V.A. Gritsenko
and V.V. Nikulin [Grit], [GritN1-5], [Nik1-3], together with [Borc3,12].

Exercises 5.4

1. Let F be the vector valued modular form of type ρL and eigenvalue λ with
Fourier series ∑

m∈Z

cm,γ(y)qm+γ2/2.
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(i) Show that

c′′m,γ(y) + (
1 +m−

2
)c′m,γ(y) + (

λ

y2
+

2πm(1 −m−)
y

− 4π2m2)cm,γ(y) = 0.

(ii) Write λ = s(1− s)− 1+m−

2 (1− 1+m−

2 ). Check that the modular form yF
has weight (0,m− − 1). Show that yF is an eigenvector for the Laplacian
of this weight of eigenvalue s(1 − s) − m−

2 (1 − m−

2 ).
(iii) Find the solutions of the above differential equation in terms of the Whit-

taker functions (see Lemma 5.4.5).

Hint: change variables to dm(y) = y
1+m−

2 cm,γ(y). For a solution see [Bar,
Lemma 1.3.2].

2. (i) Show that the series for the function F (τ ; δ, s) given in Theorem 5.4.6
converges uniformly for R(s) > 1 + 1+m−

2 . Deduce that F is a real analytic
modular form of type ρL and eigenvalue λ = s(1 − s) − 1+m−

2 (1 − 1+m−

2 ) and
that its only singularity is at the cusp i∞ and of type given in Theorem 5.4.6.
For a solution see [Bar, Theorem 1.3.7].

(ii) Deduce that the Fourier series for Fδ is as given in section 5.4.

3. (i) Find the Fourier series of the function Φδ using the Rankin-Selberg
method.

(ii) Show that the function Φδ on the Grassmannian G(L) is the sum of a
function ε(v) real analytic on G(L) and a function ψ(v) piecewise linear
on G(L).

(iii) Show that ψ1 is an eigenvector for the hyperbolic Laplacian on G(L) with
eigenvalue −m−. Deduce that the function ΦL − Φ1 is an eigenvector for
the Laplacian with eigenvalue −m−.

For a solution, see [Br, Theorem 5.11], [Borc11, §7], [Bar, §3].
4. Since ΦL − Φ1 is an eigenvector of the Laplacian with real eigenvalue, use
the Conjecture of Berger, Li, Sarnak to show that ΦL = Φ1 if m− ≥ 7. Deduce
that dimL ≤ 26.
For a solution, see [Bar, lemma 3.4.2, Theorem 4.1.4].

5.5 A Construction of LBKM Algebras
from Lattice Vertex Algebras

The aim of this section is to explain how some LBKM algebras can be con-
structed from (bosonic) lattice vertex algebras. The lattice L is only assumed
to be integral and non-degenerate. The Fock space VL has a vertex superalgebra
structure (see Chapter 4). Let us reconsider Theorem 2.5.4 characterizing BKM
algebras according to root space properties.
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We need a self-centralizing Lie subalgebra acting semisimply on the Lie alge-
bra in such a way that the eigenspaces are finite dimensional. It seems natural
to consider the image

H1 = {h(−1) ⊗ 1 : h ∈ H}
of H in the Lie algebra P 1/dP 0.

Lemma 5.5.1. The vector space H1 is a self-centralizing Lie subalgebra of the
Lie algebra P 1/dP 0.

Proof. By definition of the Lie bracket (see Lemma 4.3.1), for any h1, h2 ∈ H,

[h1(−1) ⊗ 1, h2(−1) ⊗ 1] = h1(0)(h2(−1) ⊗ 1) = 0.

Hence the vector space H1 is an abelian Lie subalgebra of P 1/dP 0. For any
h ∈ H, α ∈ L, and s ∈ S, applying Lemmas 4.2.8 and 4.3.1,

[h(−1) ⊗ 1, s⊗ eα] = h(0)(s⊗ eα) = (h, α)(s⊗ eα).

By the nature of the action of the L0 operator (see Theorem 4.3.6), the eigenspace
dimP 1

α of H1 is finite dimensional since dimH <∞.
It only remains to check that the vector space {h(−1) ⊗ 1 : h ∈ H} is self-

centralizing. From the above, s⊗ eα is in its centralizer for α ∈ L, s ∈ S if and
only if (h, α) = 0 for all h ∈ H. Hence, as the bilinear form is non-degenerate
and the action of the vector space in consideration is semisimple on P 1/dP 0,
the result follows.

This result shows that the eigenspaces of the abelian Lie subalgebra H1 are
the subspaces P 1

α, α ∈ L, where for any subspace U of VL, we write

Uα = {v ∈ U |deg(v) = α}.

Note that the Lie algebra VL/dVL is too large to be a BKM algebra because
there is no upper bound on the norms of the roots α ∈ L with (VL)α 	= 0,
whereas the norms of roots is bounded above for the Lie algebra P 1/dP0. This
follows from the definition of the subspace P 1.

Lemma 5.5.2. For any α ∈ L, P 1
α 	= 0 implies that α2 ≤ 2.

Proof. Let s ∈ S be such that s ⊗ 1 is an eigenvector for L0. By defini-
tion, the corresponding eigenvalue m is non-negative. For α ∈ H, s ⊗ eα ∈ P 1

is an eigenvector for L0 with eigenvalue 1 = 1
2 (α, α) + m. Hence,

(α, α) = 2(1 −m) ≤ 2.
We need to define a non-degenerate symmetric invariant bilinear form on

the Lie algebra. Let us return to the bilinear form (., .) on VL. We first state
an obvious property satisfied by it.

Lemma 5.5.3. For any α ∈ L, the bilinear form is non-degenerate on (VL)α

and the operator L0 is diagonalizable on (VL)α.
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Proof. Clearly, the vectors 1⊗eα together with h1(−n1) · · ·hr(−nr)⊗eα, where
the elements hi run through H and ni and r through N, generate the subspace
(VL)α. As these are eigenvectors for L0, L0 is diagonalizable on (VL)α. For any
s ∈ S,

(h1(−n1) · · ·hr(−nr) ⊗ eα, s⊗ eβ) = (1 ⊗ eα, (h1(nr) · · ·hr(n1)s⊗ eβ).

This is equal to 0 if α 	= β since by definition (1 ⊗ eα, 1 ⊗ eβ) = 0 in that case.
The Lemma follows from the action of the Heisenberg H̃ on VL given in Lemma
4.2.8.

To show that it induces a bilinear form on the quotient P 1/dP 0, we need to
show that (dP 0, P 1) = 0. Set

N = {v ∈ P 1 : (v, P 1) = 0}

to be the kernel of the bilinear form on P 1.

Lemma 5.5.4. dP 0 ⊆ N .

Proof. Since by definition of the bilinear form on VL (see Theorem 4.3.3), the
operator L1 is the adjoint of the operator L−1 and L−1 = d by Lemma 4.3.9,

(dP 0, P 1) = (P 0, L1P
1) = 0

by definition of the subspace P 1.
The non-degeneracy condition leads us to consider the vector space P 1/N

instead of the Lie algebra P 1/dP 0 as a likely candidate for the BKM algebra we
want to construct. However, we do not yet know that P 1/N has the structure
of a Lie algebra. Lemma 5.5.4 implies that the vector space P 1/N will have a
Lie algebra structure, or more precisely that it will be the quotient Lie algebra
(P 1/dP 0)/(N/dP 0) if N/dP 0 is an ideal of the Lie algebra P 1/dP 0. This is not
at all obvious. This will follow if for all u ∈ N , v ∈ P 1, u0(v) ∈ P 1, i.e. that
for all v′ ∈ P 1, (u0(v), v′) = 0. To show this, the definition of the bilinear form
given in Theorem 4.3.3 suggests that it could be useful to find the adjoint (u0)′

of the linear map u0. Then,

(u0(v), v′) = ([u, v], v′) = (v, (u0)′v′).

This indicates that we should try to prove (u0)′ = (ω(u))0 for some involution
ω on VL, in other words contravariance of the bilinear form. We next study this
question. One of the consequences will be that the subspace N/dP 0 is an ideal
of the Lie algebra P 1/dP 0 since the above shows that proving contravariance
amounts to finding the adjoint of the operator u0 for u ∈ P 1. For the notion of
contravariance, we need an involution with adequate properties.

Remark 5.5.5. Since the vertex algebra structure of VL is independent of the
cocycle ε chosen as long as e(α, β)e(β, α)−1 = B(α, β) = (−1)(α,β)+(α,α)(β,β)

(see Remark 4.2.26), Lemma 4.2.5 and the definition of the bi-multiplicative
map B(α, β) allow us to assume that ε(±α,±α) = (−1)(α,α) and ε(α, β) ∈ {±1}.
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Definition 5.5.6. There is an involution acting on the vertex algebra VL called
the Cartan involution given by:

ω(1 ⊗ eα) = (−1)
1
2 (α,α)(1 ⊗ e−α), ω(h(n) ⊗ 1) = −h(n) ⊗ 1,

α ∈ L, h ∈ H,n ∈ Z.

In fact, it is easier to find the adjoint operator of the endomorphism un for
arbitrary n ∈ Z than just for n = 0. First we give the adjoint of the map eα.

Lemma 5.5.7. For any α, the adjoint of the endomorphism eα is (−1)(α,α)e−α.

Proof. For α, β, γ ∈ L, s, t ∈ S,

(eα(s⊗ eβ), eα(t⊗ eγ)) = ε(α, β)ε(α, γ)(s⊗ eβ , t⊗ eγ)

=
{

0 if β 	= γ
(s⊗ eβ , t⊗ eβ) if β = γ

since e(α, β)2 = 1 (see Remark 5.5.4). The result follows since
ε(α,−α) = (−1)(α,α) by assumption (see Remark 5.5.5).

Lemma 5.5.8. For any n,m ∈ Z, v ∈ (VL)m, the adjoint of the endomorphism
vn (with respect to the bilinear form defined in Theorem 4.3.3) is:

(−1)m
∞∑

j=0

1
j!

(Lj
1ω(v))2m−j−n−2.

Proof. We only need to prove this for the generators h1(m1) · · ·hr(mr)⊗ eα of
the vector space VL, where hi ∈ H, mi < 0 and α ∈ L. We will write φ∗ for the
adjoint of the operator φ on VL.

First suppose that a = 1⊗ eα, β ∈ L, u ∈ (VΛ)β , v ∈ (VΛ). As the adjoint of
the endomorphism α(j) is α(−j) by definition of the bilinear form (see Theorem
4.3.3),

Y (1 ⊗ eαu, v) = (eαe
−
∑

j<0
z−j

j α(j)
e
−
∑

j>0
z−j

j α(j)
z(α,β)u, v)

= z(α,β)(−1)(α,α)(u, e−αe
−
∑

j>0
z−j

j α(−j)
e
−
∑

j<0
z−j

j α(−j)
v)

= z(α,β)(−1)(α,α)(u, e−αe
−
∑

j<0
zj

j (−α)(j)
e
−
∑

j>0
zj

j (−α)(j)
v).

(1)
Now, by definition of the bilinear form, (Y (1⊗eα, z)u, v) = 0 unless v ∈ (VL)α+β .
Suppose that v ∈ (VL)α+β . Then,

(−1)(α,α)(1 ⊗ e−α)nv

is the coefficient of zk+(α,β) on the right hand side of (1), where

−k − (α, α+ β) = −n− 1.

Hence, the coefficient ((1 ⊗ eα)n)∗v of z−n−1 on the right hand side of (1) is
equal to

(−1)(α,α)(1 ⊗ e−α)(α,α)−n−2v
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since k+(α, β) = −n−1 implies that −k− (α, α+β) = −(−n+(α, α)−2)−1.
This holds for all β ∈ L and so for all v ∈ VL. Therefore,

((1 ⊗ eα)n)∗ = (−1)(α,α)(1 ⊗ e−α)(α,α)−n−2

= (−1)
1
2 (α,α)ω(1 ⊗ eα)(α,α)−n−2

since L0(1 ⊗ eα) = 1
2 (α, α)(1 ⊗ eα) and by Definition 5.5.6,

ω(1 ⊗ eα) = (−1)
1
2 (α,α)(1 ⊗ eα). Hence the result holds for a = 1 ⊗ eα.

Assume next that the result holds for b ∈ (VL)l
α. We compute the adjoints

of the endomorphisms an, where a = h(−1)b, h ∈ H. By Theorem 4.2.16 and
Corollary 4.1.32, for u, v ∈ VL,

(Y (a, z)u, v)

= (u,
∑

k<0

z−k−1
∑

n∈Z

z−n−1(−1)l
∞∑

j=0

1
j!

(u, (Lj
1ω(b))2l−j−n−2h(−k)v)

+ (u,
∑

k≥0

z−k−1
∑

n∈Z

z−n−1(−1)l
∞∑

j=0

1
j!

(u, h(−k)(Lj
1ω(b))2l−j−n−2v).

(2)
So,

(an)∗

=
∑

k>0

(−1)l
∞∑

j=0

1
j!

(Lj
1ω(b))2l−j−n−k−1h(k)

+
∑

k≤0

(−1)l
∞∑

j=0

1
j!
h(k)(Lj

1ω(b))2l−j−n−k−1.

Now, for any vector u ∈ VL and m ∈ Z,

[h(0), um] = (h(0)u)m.

Hence,

(an)∗ =
∑

k≥0

(−1)l
∞∑

j=0

1
j!

(Lj
1ω(b))2l−j−n−k−1h(k)

+
∑

k<0

(−1)l
∞∑

j=0

1
j!
h(k)(Lj

1ω(b))2l−j−n−k−1

+ (−1)l
∞∑

j=0

1
j!

(h(0)Lj
1ω(b))2l−j−n−1

= (−1)l
∞∑

j=0

1
j!

(h(−1)Lj
1b)2l−j−n by Definition 4.1.27
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+ (−1)l
∞∑

j=0

1
j!

(h, α)(Lj
1ω(b))2l−j−n−1

= (−1)l
∞∑

j=0

1
j!

(Lj
1h(−1)b)2l−j−n

since by Corollary 4.1.26 (i),

[L1, (h(−1) ⊗ 1)−1] = [ζ2, (h(−1) ⊗ 1)−1]

=
∞∑

j=0

(
2
j

)
(Lj−1(h(−1) ⊗ 1))1−j

= (L−1(h(−1) ⊗ 1))1 + 2h(0)
= (h(−2) ⊗ 1)1 + 2h(0)
= −h(0) + 2h(0) by Lemma 4.1.31
= h(0).

Moreover, the vector a is an eigenvector of the operator L0 with eigenvalue
l + 1 and by definition of the involution ω (see Definition 5.5.6),
ω(h(−1)b) = −h(−1)ω(b). Hence the result holds for h(−1)b ∀h ∈ H, if it
holds for b.

Assume by induction that the result holds for h(−m)b. We finally show that
it holds for a = mh(−m− 1)b, where m ∈ N. Since

a = d(h(−m)b) − h(−m)db,

and d(h(−m)b)n = −n(h(−m)b)n−1, the result holds for a by induction.

Corollary 5.5.9. The vector space P 1/N is a Lie algebra.

Proof. Now (dP 0, P 1) = (P 0, L1P
1) = 0 by definition of the bilinear form (see

Theorem 4.3.3) and Theorem 4.3.6. Hence dP 0 ≤ N and so Corollary 4.3.11
and Lemma 5.5.4 imply that the result will follow if N/dP 0 is an ideal of the
Lie algebra P 1/dP 0. For any v ∈ N , u, u′ ∈ P 1,

([u, v], u′) = (u0(v), u′)
= (v, (u0)∗(u′)
= −(v,−ω(u)0(u′) by Lemma 5.5.8.

(1)

Now, ω(u) ∈ P as the map ω clearly commutes with the operators Lj for
j > 0. Moreover, L0ω(u) = ω(u) since 1 ⊗ e−α and 1 ⊗ eα are eigenvectors
for the operator L0 with the same eigenvalue. Hence, by Lemma 4.3.10
((ω(u))0)v ∈ P 1. And so (1) gives

([u, v], u′) = 0.

In other words, [u, v] ∈ N , proving the result.
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The Lie algebra P 1/N will be denoted FL. We show that this is a BKM
algebra. The bilinear form on the vertex algebra VL induces a well defined
symmetric bilinear form on the Lie algebra FL. We will keep the same notation
for the bilinear form on (., .).

Lemma 5.5.10. The Cartan involution induces an involution on the Lie al-
gebra FL and the bilinear form (., .) is contravariant on FL with respect to this
involution.

Proof. The involution ω commutes with the action of the operators Li, i ≥ 0.
Moreover by Lemma 5.5.7, ω(N) = N : Indeed for any u ∈ Nα, v ∈ (P 1)α,
(u, v) = 0, i.e. for any t ∈ S such that t⊗ 1 ∈ (VL)1−

1
2 (α,α) and s ∈ S such that

s⊗ eα ∈ N ,
(s⊗ eα, t⊗ eα) = 0.

Hence, (e−αu, e−αv) = 0 gives

(s⊗ 1, t⊗ 1) = 0

Now ω(s ⊗ eα) = ±(s ⊗ e−α) and t ⊗ eα ∈ P 1 if and only if t ⊗ e−α ∈ P 1. It
follows that for t⊗ e−α ∈ P 1,

(ω(s⊗ eα), t⊗ e−α) = (−1)(α,α)(eαω(s⊗ eα), eα(t⊗ e−α))
= ±(s⊗ 1, t⊗ 1) by (1)
= 0.

Therefore the involution ω induces an involution on the Lie algebra FL. By
Lemma 5.5.8, the bilinear form on FL is contravariant with respect to the invo-
lution ω since for all g, x, y ∈ P 1,

([g, x], y) = (g0(x), y)
= −(x, ω(g)0(y)) by Lemma 5.5.8
= −(x, [ω(g), y]).

We keep the same notation for the induced involution on the Lie algebra FL.
Contravariance of the form (., .) leads us to consider the form

K(x, y) = −(ω(x), y), x, y ∈ FL

(see section 2.2).

Lemma 5.5.11. The form K is bilinear, symmetric, invariant and non-
degenerate on the Lie algebra FL.

Proof. Symmetry follows from the fact that the action of the involution ω
leaves the form (., .) invariant. This is a direct consequence of the definition
of ω. Invariance is a result of the contravariance of (., .). Since the latter is
non-degenerate on FL, so is K.
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Since H1 ∩N = 0, the bilinear form on H being non-degenerate, we will use
the same notation H1 for the image of {h(−1)⊗ 1 : h ∈ H} in FL. We now use
properties of Lorentzian spaces to prove the existence of a regular element and
to simplify Condition 5 of Theorem 2.5.4.

Lemma 5.5.12. Suppose that the lattice L is Lorentzian. The abelian Lie
subalgebra H1 contains a regular element having negative norm.

Proof. Let h ∈ H be a negative norm vector. Consider a basis α1, · · · , αn

for L and its dual basis α′
1, · · · , α′

n in H. Set h =
∑n

i=1 xiα
′
i. The vector

α =
∑n

i=1 yiαi ∈ H is orthogonal to h if and only if
∑

1≤i,j≤n yixi = 0. Since
the bilinear form on H is Lorentzian, the negative norm vectors form two open
cones. Hence, we can choose the vector h so that

n∑

i=1

yixi 	= 0

for all yi ∈ Z, 1 ≤ i ≤ n. Hence, h⊥ ∩ L = 0. As a result, the centralizer of
h(−1)⊗1 ∈ H1 in FL is H1 since [h(−1)⊗ s⊗ eα] = (h, α)(s⊗ eα) for all s ∈ S,
α ∈ L.

Lemma 5.5.13. Suppose that the lattice L is Lorentzian. Set hL ∈ H1 to be
a regular element such that h2

L < 0. Let α, β ∈ L be such that α2 ≤ 0, β2 ≤ 0,
(α, hL) > 0 and (β, hL) > 0. Then (α, β) ≤ 0. If (α, β) = 0, then β is a positive
multiple of α.

Proof. Let α, β ∈ L be as stated. Since the vector space H is Lorentzian
α = ah + α+ and β = bh + β+ for some vectors α+, β+ ∈ h⊥ and some non-
trivial scalars a, b ∈ R. Suppose that (α, β) > 0. Then, α− sβ is a non-positive
norm vector for all s ≥ 0. Since (h, α) > 0 and (h, β) > 0, a > 0 and b > 0.
The vector subspace h⊥ being positive definite, this implies that α+ = sβ+ for
s = a/b. This in turn gives α = sβ and so (α, β) = s2β2 < 0, contradicting
assumption and proving that (α, β) ≤ 0.

If (α, β) = 0, then the previous argument forces the vector α to be a positive
multiple of the vector β.

Hence to prove that the Lie algebra FL is a BKM algebra, it only remains to
check the orthogonality part of Condition 5 of Theorem 2.5.4 for roots of norm
0 that are positive multiples of each other.

Theorem 5.5.14. If L is a Lorentzian lattice, then the Lie algebra FL is a
BKM algebra. All the roots with positive norm have norm 2.

Proof. Applying Theorem 2.5.4, since Lemmas 5.5.1, 5.5.2, 5.5.8, 5.5.11–
5.5.13 hold, we only need to check that for α ∈ L such that (α, α) = 0,
[(FL)α, (FL)sα] = 0 for all s > 0 such that sα ∈ L. Let x ∈ P 1

sα. Since
α2 = 0, L0(x) = x implies that

x = h(−1) ⊗ esα
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for some h ∈ H. Moreover, by definition of the operator L1 (see Theorem 4.3.6),

0 = L1(x)

=
1
2

∑

i

(
∑

n<0

αi(n)α′
i(1 − n) +

∑

n≥0

α′
i(1 − n)αi(n))(h(−1) ⊗ esα)

=
1
2

∑

i

(α′
i(1)αi(0) + α′

i(0)αi(1))(h(−1) ⊗ esα)

=
1
2

∑

i

(sα′
i(1)(αi, α)(h(−1) ⊗ esα) + α′

i(0)(αi, h)(1 ⊗ esα))

=
1
2
(sα′(1)(h(−1) ⊗ esα) + h(0)(1 ⊗ esα))

= s(α, h)(1 ⊗ esα),

where the vectors (αi)i form a basis for the lattice L and the vectors (α′
i)i form

the dual basis in H. Hence,
(α, h) = 0.

Let h1, h2 ∈ α⊥. Then,

[h1(−1) ⊗ eα, h2(−1) ⊗ esα]
= (h1(−1) ⊗ eα)0(h2(−1) ⊗ esα)

= (
∑

j<0

h1(j)(1 ⊗ eα)−j−1 +
∑

j≥0

(1 ⊗ eα)−j−1h1(j))(h2(−1) ⊗ esα).

This last equality follows from Definition 4.1.27 of a normally ordered product.
By definition of the vertex algebra structure on VL (see Theorem 4.2.16),

Y (1 ⊗ eα, z)(h2(−1) ⊗ esα) = ε(α, sα)e−
∑

j<0
z−j

j α(j)(h2(−1) ⊗ e(s+1)α)

since (α, h2) = 0. Hence,

(h1(−1) ⊗ eα)0(h2 ⊗ esα) = ε(α, sα)(h1, h2)(α(−1) ⊗ e(s+1)α)

= ε(α, sα)(h1, h2)d(1 ⊗ e(s+1)α)/(s+ 1)

by definition of the derivation d given in Lemma 4.2.11. Since
Ln((1 ⊗ e(s+1)α) = 0 for all integers n ≥ 0, it follows that

[h1(−1) ⊗ eα, h2(−1) ⊗ esα] ∈ dP 0.

Therefore, by Lemma 5.5.8,

[h1(−1) ⊗ eα, h2(−1) ⊗ esα] ≡ 0 (mod N),

proving the Theorem.

In section 5.4, we saw that it is very likely that the root lattices of the LBKM
algebras associated to a vector valued modular form in the manner stated in
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Theorem 5.3.6 have rank at most 26. The above manner of showing that the Lie
algebra FL is a BKM algebra by applying Theorem 2.5.4 does not seem to lead
to the calculation of the root space multiplicities. It is possible to do so when
the lattice L is even, Lorentzian of rank 26 by applying the No-Ghost Theorem.
In fact, this gives an alternative proof of the fact that FL is a LBKM algebra
when the rank of the lattice L is less than 26. The No-Ghost Theorem thus
implies that 26 is a critical dimension.

Remember from Theorem 2.2.9 that roughly speaking any Z-graded Lie al-
gebra with an almost positive definite contravariant bilinear form is a BKM
algebra. So let us see whether we can find a suitable grading of the subspace
P 1 by the lattice L so that all negative norm vectors will belong to the 0-th
piece. Since L is a free abelian group, an adequate Z-grading of the Lie algebra
P 1/dP 0 will follow. We show that, when the even Lorentzian lattice is of rank
at most 26, there indeed is an L-grading of VL with this property. The central
result which allows this to be possible is the No-Ghost Theorem [GodT], [Fren],
[Bor7], [Jur2] proved in the context of theoretical physics in 1971 by Goddard
and Thorn [GodT].

Let us first define the grading. Since the bilinear form on VL is Hermitian,
for reasons of simplicity, we will consider the base field to be R instead of C.
Basically, we take H to be L⊗Q R instead of L⊗Q C. All results of Chapter 4
remain valid over R with Hermitian forms becoming bilinear forms. The space
VL has a natural L-grading given by

deg(s⊗ eα) = α for α ∈ L, s ∈ S.

Lemma 5.5.15. The subspace of P 1 of degree 0 is as follows:

P 1
0 = {h(−1) ⊗ 1| h ∈ H}.

It contains negative norm vectors if and only if so does the lattice L.

Proof. From Theorem 4.3.6,

L0(h1(−n1)...hr(−nr) ⊗ 1) = (n1 + ...nr)h1(−n1)...hr(−nr) ⊗ 1

for all h1, ..., hr ∈ H, n1, ..., nr ∈ N. Hence if an eigenvector for L0 is in P 1
0 ,

then it is of the form h(−1) ⊗ 1, h ∈ H. Again applying Theorem 4.3.6, for
j > 0 and h ∈ H,

Lj(h(−1) ⊗ 1) =
1
2

∑

i

(
∑

n<0

αi(n)α′
i(j − n) +

∑

n≥0

α′
i(j − n)αi(n))(h(−1) ⊗ 1)

=
1
2

∑

i

(αi, h)α′
i(j − 1)(1 ⊗ 1)

= 0

Hence
P 1

0 = {h(−1) ⊗ 1| h ∈ H}.
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Furthermore
(h(−1) ⊗ 1, h(−1) ⊗ 1) = (h, h),

proving the Lemma.

In particular, the above Lemma shows that the 0-degree piece contains neg-
ative norm vectors when the lattice L is Lorentzian. However, the converse, i.e
that negative norm vectors (ghosts) are confined (if they exist) to the 0-degree
piece is trivial when the lattice L is either positive definite but not at all ob-
vious for Lorentzian lattices (see Remark 4.3.7 (i)). This is the purpose of the
No-Ghost Theorem.

Theorem 5.5.16 (The No-Ghost Theorem). For all α ∈ L− {0}, v ∈ P 1
α,

(v, v) ≥ 0 if an only if the lattice L is Lorentzian of rank at most 26 or positive
definite.

We prove this Theorem in several stages. It is easy to deal with the case of
a lattice L that is not even Lorentzian.

Lemma 5.5.17.

(i) Suppose that L is a lattice of signature (n,m) with m > 1, then there
are elements α ∈ L− {0} such that the bilinear form is not semi-positive
definite on P 1

α.
(ii) If the lattice L is positive definite, then for all elements α ∈ L− {0}, the

bilinear form is positive definite on P 1
α.

(iii) If (α, α) ≡ 1 (mod 2), then P 1
α = 0.

Proof. (i): Since m > 1, there is an element α ∈ L such that (α, α) = 0. Then,
by Remark 4.3.7 (i),

V 1
α = {h(−1) ⊗ eα : h ∈ H}.

Let h ∈ H. Applying the operator Lj , j > 0 on the vector v = h(−1) ⊗ eα,
Theorem 4.3.6 implies that Ljv = 0 for all j > 1 and L1v = (h, α)(1 ⊗ eα).
Hence,

P 1
α = {h(−1) ⊗ eα : h ∈ H, (h, α) = 0}.

Furthermore, (v, v) = (h, h) by definition of the bilinear form (see Theorem
4.3.3). Since m > 1, there are elements h ∈ H such that (h, α) = 0 and
(h, h) < 0, proving part (i).
(ii) follows from Remark 4.3.7(i) and the definition of the bilinear form given in
Theorem 4.3.3 since they imply that for any α ∈ L− {0},

P 1
α =

{
R(1 ⊗ eα) if (α, α) = 2
0 otherwise

and (1 ⊗ eα, 1 ⊗ eα) = 1.
(iii): If (α, α) ≡ 1 (mod 2) and v ∈ (VL)α is an eigenvalue of the operator L0,
then its corresponding eigenvalue is not an integer (see Theorem 4.3.6). This
proves (iii).

We may therefore assume in the rest of the proof of the No-Ghost Theorem
that the Lattice L is even Lorentzian.
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Fix a root α ∈ L − {0}. We show that there is a positive definite subspace
in P 1

α whose orthogonal complement in P 1
α coincides with the kernel Nα of the

bilinear form on P 1
α if dimL = 26 and which contains negative norm vectors if

dimL > 26.

Lemma 5.5.18. There is a vector β ∈ H such that (α, β) 	= 0 and (β, β) = 0.

Proof. Case 1: (α, α) 	= 0.
There is an element γ ∈ H such that (α, γ) = 0 and (γ, γ) = −(α, α). Set

β = α+ γ.
Case 2: (α, α) = 0.

In this case there are orthogonal roots γ, µ of positive and negative norm
respectively such that α = γ + µ. Take β = γ − µ. Then (β, β) = (α, α) = 0
and (β, α) = 2(γ, γ) 	= 0.

We fix β ∈ H to be as in Lemma 5.5.18 and Tα to be the following subspace
of (VL)α:

Tα = {v ∈ (VL)α : Lnv = 0 = β(n)v, n > 0} and T 1
α = Tα ∩ P 1

α.

In other words,

T 1
α = {v ∈ (VL)α : Lnv = 0 = β(n)v, n > 0, L0v = v}.

We will show that this is the subspace we are looking for.

Lemma 5.5.19. For all m,n ∈ Z, [β(n), Lm] = nβ(n + m) and
[β(m), β(n)] = 0.

Proof. By Corollary 4.1.26 (i) and Theorem 4.3.6,

[β(n), Lm] =
∞∑

j=0

(
n
j

)
(β(j)ζ)m+1+n−j . (1)

For j ≥ 0,

β(j)ζ =
1
2
β(j)(

∑

i

αi(−1)α′
i(−1) ⊗ 1)

= δj,1
1
2

∑

i

(β, αi)(α′
i(−1) ⊗ 1) + δj,1

1
2

∑

i

(β, α′
i)(αi(−1) ⊗ 1)

= δj,1β(−1) ⊗ 1.

So substituting this in (1), we get

[β(n), Lm] = n(β(−1) ⊗ 1)m+n

= nβ(m+ n).

The second equality follows from Lemma 4.2.14 since (β, β) = 0.
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Set E to be the associative algebra generated by the operators Li and β(i),
i ∈ Z.

Lemma 5.5.20. The operator L0 is diagonalizable on Tα.

Since the operator L0 is diagonalizable on (VL)α by Lemma 5.5.3, to prove that
L0 is diagonalizable on Tα, elementary linear algebra arguments show that we
only need to check that L0Tα ⊆ Tα. By Theorem 4.3.6, [Ln, L0] = nLn and by
Lemma 5.5.19, [β(n), L0] = nβ(n). Therefore, for all u ∈ Tα, n ∈ N,

LnL0u = nLnu = 0 = nβ(n)u = β(n)L0u.

Hence, L0u ∈ Tα.
Set

T⊥
α = {v ∈ (VL)α : (v, Tα) = 0}.

Lemma 5.5.21. The bilinear form is non-degenerate on Tα and

(VL)α = U(E)Tα.

More precisely, the elements

vr,s,t = Ls1
−1 · · ·Lsn−nβ(−1)r1 · · ·β(−m)rmt,

where n,m > 0, ri, si ≥ 0, and t runs over a basis for Tα, form a basis of the
subspace (VL)α.

Proof. By Lemma 5.5.19, the elements vr,s stated in the Lemma generate the
subspace U(E)Tα.

We first prove that the vectors vr,s,t are linearly independent. From elemen-
tary linear algebra arguments, since L0 acts diagonally on (VL)α (see Lemma
5.5.3), we only need to show this for the vectors vr,s,t in the same eigenspace
of the operator L0. By Remark 4.3.7 (i), the eigenvalues of L0 on (VL)α are
1
2 (α, α) + n, n ∈ Z+.

We prove, by induction on n, that the vectors vr,s satisfying

L0vr,s,t = (n+
1
2
(α, α))vr,s

are linearly independent. By definition of the vectors vr,s,t, this holds for n = 0.
Suppose that it holds for all integers 0 ≤ m < n. Let

∑

r,s,t

xr,s,tvr,s,t = 0, (1)

where xr,s,t ∈ R. Suppose that there is a term in the sum with a non-zero index
sj and let j be minimal with this property. Then, for any r, s, t,

vr,s,t = L
sj

j vr,s′,t,
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where s = (sj , sj+1, · · · , sn) and s′ = (sj+1, · · · , sn). By Lemma 5.5.19,

β(j)Lsj

−j = L
sj

−jβ(j) + sjL
sj−1
−j β(0).

Hence,

0 = β(j)
∑

r,s

xr,s,tvr,s,t

=
∑

r,s,t

xr,s,tL
sj

−jβ(j)vr,s′,t +
∑

r,s,t

xr,s,tsjL
sj−1
−j β(0)vr,s′,t

=
∑

r,s,t

xr,s,tL
sj

−jβ(j)vr,s′,t + (α, β)
∑

r,s,t

xr,s,tsjL
sj−1
−j vr,s′,t

since all the basis vectors are of degree α. The first sum on the right hand side
is as a sum of vectors vr,s,t in which the operator Lj appears with exponent at
least sj and the second sum on the right hand side is as a sum of vectors vr,s,t

in which the operator Lj appears with exponent sj − 1. The right hand side
being an eigenvector of L0 with eigenvalue n − j + 1

2 (α, α), induction and the
fact that (α, β) 	= 0 (see Lemma 5.5.18), therefore imply that

∑

r,s,t

xr,s,tsjL
sj−1
−j vr,s′,t = 0.

Applying induction once again, it follows that xr,s,t = 0.
Therefore xr,s,t 	= 0 in (1) forces sj = 0 for all j. A similar argument

applying the operator Lj (instead of β(j)) to both sides of equality (1) implies
that all the coefficients xr,s,t = 0.

We have therefore shown that the vectors vr,s,t form a basis of the vector
space U(E)Tα. For n ≥ 0, set

Cn =
n−1∑

j=0

(U(E)T j+ 1
2 (α,α)

α )n+ 1
2 (α,α).

Then,
T

n+ 1
2 (α,α)

α ∩ Cn = 0. (2)

Otherwise there is a non-trivial vector in T
n+ 1

2 (α,α)
α which a linear combina-

tions of basis vectors vr,s,t with t ∈ T
j+ 1

2 (α,α)
α for j < n. The above linear

independence shows that this is not possible. Set

(Cn)⊥ = {v ∈ (VL)n+ 1
2 (α,α)

α : (v, Cn) = 0}.

We next show by induction on n that for all n ≥ 0,

T
n+ 1

2 (α,α)
α = (Cn)⊥. (3)
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By definition of Tα,
T

n+ 1
2 (α,α)

α ⊆ (Cn)⊥

for all n ≥ 0. So we only need to prove the inverse inclusion.
For n = 0, C0 = 0 and so (C0)⊥ = (VL)

1
2 (α,α)
α . By Remark 4.3.7 (i), this is

equal to T
1
2 (α,α)

α and so (3) holds.
Suppose that (3) holds for all 0 ≤ j ≤ n − 1. We show that

(Cn)⊥ ⊆ T
n+ 1

2 (α,α)
α . Let u ∈ (Cn)⊥.

k > n ⇒ Lku = 0

for otherwise, by Theorem 4.3.6, it would be an eigenvector for L0 with eigen-
value

1
2
(α, α) − k <

1
2
(α, α),

contradicting Remark 4.3.7 (i). For 1 ≤ k ≤ n, since [L0, L−k] = kL−k by
Theorem 4.3.6,

L−k(Cn−k + T
n−k+ 1

2 (α,α)
α ) ≤ Cn

by definition of Cn. Hence,

(u,L−k(Cn−k + T
n−k+ 1

2 (α,α)
α )) = 0,

and so by definition of the bilinear form (see Theorem 4.3.3),

0 = (Lku,C
n−k + T

n−k+ 1
2 (α,α)

α ).

Therefore,
Lku ∈ (Cn−k)⊥ ∩ (Tn−k+ 1

2 (α,α)
α )⊥,

and so by induction,
Lku ∈ T

n−k+ 1
2 (α,α)

α ∩ Cn−k.

Then, using (2), we get
Lku = 0.

We have shown this holds for all k > 0. A similar argument shows that
β(k)u = 0 for all k > 0.

As a consequence, by definition of the subspace Tα,

u ∈ T
n+ 1

2 (α,α)
α ,

proving that (3) holds for all n ≥ 0.
(3) together with (2) imply that the bilinear form is non-degenerate on

T
n+ 1

2 (α,α)
α for all n ≥ 0 and so it is non-degenerate on Tα by Corollary 4.3.8.

From (3) and (2), we can also deduce that for all n ≥ 0, the bilinear form is
non-degenerate on Cn and that

(VL)n+ 1
2 (α,α)

α = T
n+ 1

2 (α,α)
α ⊕ Cn.
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As a result, for all n ≥ 0,

(VL)n+ 1
2 (α,α)

α = (U(E)T )n+ 1
2 (α,α).

Remark 5.5.22. Notice that in the proof of Tn+ 1
2 (α,α) ∩ Cn = 0 in Lemma

5.5.21, the operators β(n) play a crucial role. On cannot just consider the

operators Ln. It is not always true that the intersection of Pn+ 1
2 (α,α)

α with the
subspace C ′n generated by the eigenvectors Ls1

−1 · · ·Lsm−mp for the operator L0

having eigenvalue n + 1
2 (α, α), where p ∈ Pα, is trivial. This is well illustrated

by the following example.

Example 5.5.23. Let α be a vector in the lattice L of norm 0 and let us
consider the case n = 1. Then,

P 1
α = 〈h(−1) ⊗ eα : h ∈ H, L1(h(−1) ⊗ eα) = 0〉

since Lj(h(−1) ⊗ eα) = 0 for all j ≥ 2 follows from the action of the operators
Lj given in Theorem 4.3.6. Hence, since L1(h(−1) ⊗ eα) = (h, α)(1 ⊗ eα),

P 1
α = 〈h(−1) ⊗ eα : h ∈ H, (h, α) = 0〉.

By definition,
C ′1 = R(L−1(1 ⊗ eα)) = R(α(−1) ⊗ eα)

and so
C ′1 ≤ Pα.

Moreover,
(α(−1) ⊗ eα, P 1

α) = 0.

Thus, the bilinear form is degenerate on P 1
α.

This example also explains why the No-Ghost Theorem states this subspace
is semi-positive definite and not positive definite when the lattice L is Lorentzian
of dimension at most 26.

Corollary 5.5.24. For any n ∈ Z+,

dimT
n+ 1

2 (α,α)
α = pdim L−2(n),

where pm(n) is the number of partitions of n into parts of m colours.

Proof. We first calculate the dimension of the space (VL)n+ 1
2 (α,α)

α in two dif-
ferent ways.

For 0 ≤ k ≤ n, fix a basis Bk of the subspace Tn+ 1
2 (α,α)

α . By remark 4.3.7
(i), the set ∪n

k=0Bk is a basis of the space Tα. Hence, Lemma 5.5.21 shows that

{vr,s,t : t ∈ Bk,
∑

i(ri + si) = n− k;∀ 0 ≤ k ≤ n}
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is a basis of the subspace (VL)n+ 1
2 (α,α)

α . Let the operators Li and β(−i) cor-
respond to two colours, L and B respectively. An element Ls1

−1 · · ·β(−1)r1 · · ·
corresponds to the partition (s1, · · · , r1 · · ·) of n where the si’s and the ri’s are
written in L and B’s respectively. Therefore,

dim(VL)n+ 1
2 (α,α)

α =
n∑

k=0

p2(n− k) dimT
k+ 1

2 (α,α)
α . (1)

On the other hand, take a basis hi, 1 ≤ i ≤ dimL of the space H. Then, the
elements

h1(−l1)j1 · · ·hdim L(−ldim L)jdim L ⊗ eα,

where
∑dim L

i=1 jili = n form a basis of the vector space (VL)n+ 1
2 (α,α)

α . Therefore

dim(VL)n+ 1
2 (α,α)

α = pdim L(n). (2)

Equating the right hand sides of (1) and (2), we get

n∑

k=0

p2(n− k) dimT
k+ 1

2 (α,α)
α = pdim L(n). (3)

We now prove that the Lemma holds by induction on n.
For n = 0, V

1
2 (α,α)

α = T
1
2 (α,α)

α has dimension 1 as they are generated by the
vector 1 ⊗ eα. Suppose that the result holds for all integers 0 ≤ k ≤ n − 1.
Then, (3) becomes

dimT
n+ 1

2 (α,α)
α = pdim L(n) −

n−1∑

k=0

p2(n− k)pdimL −2(k) (4)

since p2(0) = 1. However

pm(n) =
n∑

k=0

pm−2(k)p2(n− k)

as any partition of n into parts of m colours can be considered as a partition of
k into parts of m − 2 colours and of n − k into parts of 2 colours. The result
then follows from (4).

We next show that the bilinear form in not only non-degenerate on Tα but
positive definite.

Lemma 5.5.25. The bilinear form on Tα is positive definite.

Proof. Since the lattice L is Lorentzian and (β, β) = 0, the subspace β⊥ in
H is semi-positive definite of dimension m, where m + 1 = dimL and has an
orthogonal basis β, α1, · · · , αm−1 such that (αi, αi) = 1 for all 1 ≤ i ≤ m − 1.
Together with αm = α, they form a basis of H. Hence the vectors

vn,l = β(−n0)l0α1(−n1)l1 · · ·αm(−nm)lm ⊗ eα,
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where ni > 0, li ≥ 0, form a basis of the vector subspace (VL)α. Set
n = (n0, · · · , nm) and l = (l0, · · · , lm) and consider an arbitrary vector v ∈ Tα.
Then, v =

∑
n,l xn,lvn,l ∈ Tα, for some scalars xn,l ∈ R. For all k > 0,

0 = β(k)v = (β, α)
∑

n,l

xn,llvn0,···nm−1,k,l0,···,lm−1,lm−1

and so xn,l = 0 if lm > 0. When lm = 0 = l′m, (vn,l, vn′,l′) ≥ 0 since
(αi, αj) = δij and (β, β) = 0 = (β, αi) for all i ≤ m − 1. Therefore, the bi-
linear form is positive semi-definite on Tα. Since it is also non-degenerate on
Tα by Lemma 5.5.21, the result follows.

Set Uα to be the subspace of (VL)α generated by the elements

Ls1
−1 · · ·Lsn−nβ(−m)rm · · ·β(−1)r1u,

where n,m > 0, ri, si ≥ 0, u ∈ Tα with s1 + · · · + sn 	= 0 and Bα the subspace
generated by the above elements with all si = 0, i.e.

Bα = 〈β(−m)rm · · ·β(−1)r1u : m > 0, ri ≥ 0, u ∈ Tα〉.

We next prove sone basic facts about these subspaces.

Lemma 5.5.26.

(i) (VL)α = Uα ⊕Bα.
(ii) Uα = L−1(VL)α ⊕ L−2(VL)α.
(iii) Let v ∈ VL. If L−2v = 0, then v = 0.

Proof. (i) follows immediately from Lemma 5.5.21.
(ii): Since [L−n, L−1] = −(n − 1)L−n−1, any operator L−n for n > 0 can be
written as a polynomial in L−1 and L−2. Hence, Uα ≤ L−1(VL)α + L−2(VL)α.
The inverse inclusion follows from Lemma 5.5.24. In order to complete the proof
of part (ii), it only remains to check that the sum is direct. Suppose that for
some u1, u2 ∈ (VL)α,

L−1u1 = L−2u2. (1)

From Remark 4.3.7 it follows that for all v ∈ (VL)α, there is a minimal integer
n ≥ 0 such that Ljv = 0 for all j ≥ n. Let n ≥ 0 be minimal such that
Lnu1 = 0. Apply the operator Ln to both sides of equality (1). Then,

(n+ 1)Ln−1u1 = (n+ 2)Ln−2u2. (2)

Since the operator L0 acts diagonally on the subspace (VL)α by Lemma 5.5.3,
we may take u1 and u2 to be eigenvectors for L0 with eigenvalues c1 and c2
respectively. So, applying the operators (L0)j for all j ∈ N, to both sides of (1)
and (2), we get

(c1 + 1)jL−1u1 = (c2 + 2)jL−2u2 (3)

and
(n+ 1)(c1 − n+ 1)jLn−1u1 = (n+ 2)(c2 − n+ 2)jLn−2u2 (4)
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for all j ∈ N. Since Ln−1u1 	= 0, equality (2) forces Ln−2u2 	= 0. Thus,
equalities (4) imply that c1 = n − 1 and c2 = n − 2. Therefore, a similar
argument applied to equalities (3) shows that either L−1u1 = 0 = L−2u2 or
c1 = −1 and c2 = −2 and n = 0. If the former holds, then the sum is direct.
So suppose that the latter holds. In this case,

Lju1 = 0 = Lju2

for all j ≥ 0. Applying the operator L2 to both sides of (1) then gives

0 = L0u2 = −2u2,

and so u2 = 0. So equality (1) becomes L1u1 = 0, and so the sum is again
direct.
(iii): Suppose that L−2v = 0 for some v ∈ VL. Hence,

0 = L1L−2v = 3L−1v + L−2L1v

and so from part (i) we can deduce that v = 0.

Lemma 5.5.27. Pα ∩Bα = Tα.

Proof. Since Ljv = 0 for all j > 0 and v ∈ Pα, by definition of Tα, Tα ⊆ Pα.
By definition of Bα (taking ri = 0 for all i), Tα ⊆ Bα.

Conversely, by definition of Pα, for all v ∈ Pα ∩ Bα, Lnv = 0 for all n > 0.
Since (β, β) = 0, β(n)β(−m)rm · · ·β(−1)r1u = 0 for all m > 0, ri ≥ 0, u ∈ Tα.
Hence β(n)v = 0 for all n > 0 and v ∈ Bα. Therefore, Pα ∩Bα ⊆ Tα.

Lemma 5.5.28. (Uα, Pα) = 0.

Proof. For all u ∈ Tα, v ∈ Pα, m,n > 0, ri, si ≥ 0, s1 + ...sn > 0,

(Lsn−n · · ·Ls1
−1β(−m)rm · · ·β(−1)r1u, v) = (u, β(1)r1 · · ·β(m)rmLs1

1 · · ·Lsn
n v) = 0

as v ∈ Pα.

Lemma 5.5.29. For all n > 0, Ln(Bα) ⊆ Bα.

Proof. Since [Lm, β(n)] = −nβ(n + m) by Lemma 5.5.19, the generators of
the subspace Bα are mapped onto elements of Bα by the operators L(m) for all
m > 0.

However, there is no similar result for Uα. For example, if t ∈ Tα then,
L−1t ∈ Uα but L1L−1t = 2L0t 	∈ Uα. We investigate what happens when one
applies the operators Ln to U1

α in the next result. This is where the numerical
constraint 26 is needed.

Lemma 5.5.30.
P 1

α ≤ B1
α ⊕ U1

α.

Let v ∈ P 1
α and b ∈ Bα, u ∈ Uα be such that v = b+ u. Then,
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L1b = 0 = L1u

and there is some t ∈ B−1
α such that −L2b = (1

2 dimL− 13)t = L2u.
Furthermore, there exits v1, v2 ∈ (VL)α such that

u = L−1v1 + L−2v2.

Then,
L1v1 = −3v2 and v2 ≡ t (mod Uα).

Proof. The inclusion follows from Lemma 5.5.26 (i) and Lemma 5.5.3. Let
v ∈ P 1

α and b ∈ B1
α, u ∈ U1

α be such that

v = b+ u. (1)

By Lemma 5.5.26 (ii),
u = L−1v1 + L−2v2

for some vectors v1, v2 ∈ (VL)α. Hence,

L1u = L1L−1v1 + L1L−2v2 = L−1L1v1 + 2L0v1 + L−2L1v2 + 3L−1v2. (2)

By Lemma 5.5.3, L−1v ∈ (VL)1α and L−2v ∈ (VL)1α. So

L0v1 = 0, L0v2 = −v2. (3)

Therefore, equation (2) becomes

L1u = L−1L1v1 + L−2L1v2 + 3L−1v2 (4)

By Lemma 5.5.26 (ii), the vectors L−1(L1v1 + 3v2) and L−2L1v2 are linearly
independent. Hence, by definition of the subspace Uα, L1u ∈ Uα. We know
from Lemma 5.5.29 that L1b ∈ Bα. Since v ∈ Pα, L1v = 0. We can then
deduce from the fact that Uα ∩Bα = 0 by definition of these subspaces that

L1b = 0 = L1u.

Since v ∈ Pα, L2v = 0. And so,

0 = L2b+ L2L−1v1 + L2L−2v2 (2)

= L2b+ L−1L2v1 + 3L1v1 + L−2L2v2 + 4L0v2 +
1
2
(dimL)v2 (3)

since dimL is the central charge of the Virasoro algebra. Since L1u = 0 and
by Lemma 5.5.26 (ii), the vectors L−1(L1v1 + 3v2) and L−2L1v2 are linearly
independent, equality (4) implies that

L−1(L1v1 + 3v2) = 0.
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As a result, by Lemmas 4.3.6 and 4.3.9, L1v1 = −3v2. Hence substituting this
into equality (5) and using (3), we get

0 = L2b+ L−1L2v1 + L−2L2v2 + (
1
2
(dimL) − 13)v2. (6)

By Lemma 5.5.26 (i), there exist t ∈ Bα and u′ ∈ Uα such that

v2 = t+ u′.

By Lemmas 5.5.27 and 5.5.29,

L2b+ (
1
2
(dimL) − 13)t ∈ Bα.

By Lemma 5.5.26 (ii),

L−1L2v1 + L−2L2v2 + (
1
2
(dimL) − 13)u′ ∈ Uα.

Since Bα ∩ Uα = 0, equation (5) thus implies that

−L2b = (
1
2

dimL− 13)t.

Since v ∈ Pα, from (1) we get L2u = −L2b. This finishes the proof.

Remark 5.5.31. It is important to note the importance of the fact that any
operator Ln for n < 0 can be written as a polynomial in L−1 and L−2. It leads,
via Lemma 5.5.26 (ii) to the crucial property given in Lemma 5.5.30, namely
that for any vector b + u ∈ P 1

α, where b ∈ Bα, u ∈ Uα, L2u = (1
2 dimL − 13)t

for some t ∈ Bα.
We can now deduce what happens at the critical dimension 26.

Corollary 5.5.32. Suppose that dimL = 26. Then, P 1
α = T 1

α ⊕Nα.

Proof. Let v ∈ P 1
α. By Lemma 5.5.30, there exists vectors b ∈ B1

α and u ∈ U1
α

such that
v = b+ u,

L1b = 0 = L1u and moreover L2b = 0 = L2u since dimL = 26. For all n > 0,
the operators Ln are polynomials in L1 and L2 since [Ln, L1] = (n− 1)Ln+1 by
Lemma 4.3.6. Therefore,

Lnv1 = 0 = Lnv2 ∀n > 0.

In other words, by definition of Pα, b ∈ B1
α ∩ P 1

α and u ∈ U1
α ∩ P 1

α. Hence,
by Lemma 5.5.27, b ∈ T 1

α and by Lemma 5.5.28, u ∈ P⊥
α . Since L0u = u, by

definition of the null space Nα, u ∈ Nα. It follows that

P 1
α = T 1

α +Nα.
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The sum is direct because the bilinear form is non-degenerate on Tα by Lemma
5.5.21.

The No-Ghost Theorem now follows when dimL ≤ 26.

Corollary 5.5.33. If dimL ≤ 26, then the bilinear form is semi positive definite
on P 1

α.

Proof. Suppose that dimL ≤ 26. Extend L to a Lorentzian lattice M of
dimension 26 by adding a positive definite lattice in necessary. For any α ∈ L,
α ∈ M . Let (P 1

α)L and (P 1
α)M be the corresponding subspaces. By Corollary

5.5.32, the bilinear form is semi-positive definite on the space (P 1
α)M and thus

it remains so on (P 1
α)L since it is a subspace of (P 1

α)M .
It only remains to prove the converse.

Corollary 5.5.34. Suppose that dimL > 26. If (α, α) < 0, then there exists a
vector with negative norm in P 1

α.

Proof. Let (α, α) < 0 and v ∈ P 1
α. By Lemma 5.5.30, there exist vectors

b ∈ B1
α and u ∈ U1

α such that
v = b+ u

and L1b = 0 = L1u. Lemma 5.5.26 (ii) tells us that there exist v1, v2 ∈ (VL)α

such that u = L−1v1 + L−2v2 and by Lemma 5.5.26 (i), we can find u2 ∈ U−1
α

and t ∈ B−1
α such that v2 = t+ u2.

Let us calculate the norm of v. Applying Lemma 5.5.28, we get

(v, v) = (v, b) = (b, b) + (v1, L1b) + (v2, L2b) (1)

by definition of the bilinear form (see Theorem 4.3.3). From Lemma 5.5.30 we
know that

L1b = 0 and L2b = −(
1
2

dimL− 13)t.

Therefore, equation (1) becomes

(v, v) = (b, b) − (
1
2

dimL− 13)(t, t+ u2) = (b, b) − (
1
2

dimL− 13)(t, t) (2)

by Lemma 5.5.28. We want to find b, v1, v2 such that (v, v) < 0.
Since t ∈ Bα and (β, β) = 0, (t, t) = 0 unless t ∈ Tα. Also, t ∈ B−1

α .
As a consequence of Corollary 5.5.24, T−1

α 	= 0 since (α, α) < 0. So choose a
non-trivial vector t ∈ T−1

α and set

v2t ∈ T−1
α .

By Lemma 5.5.30,
L1v1 = −3t. (3)

The fact that L1t = 0 suggests that for v1 we should consider a multiple of
L−1t. Indeed (3) is satisfied by

v1 =
3
2
L−1t.
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With these values, v1 and v2 satisfy (3),

L1u =
3
2
L1L

2
−1t+ L1L−2t = 3L0L−1t+ 3L−1L0t+ 3L−1t = 0

and

L2u =
3
2
L2L

2
−1t+L2L−2t =

9
2
L1L−1t+4L0t+

1
2

dimLt = (
1
2

dimL−13)t (4)

since the Virasoro algebra has central charge dimL.
Again by Lemma 5.5.30, we need

L2b = −(
1
2

dimL− 13)t. (5)

As b ∈ Bα and t ∈ Tα, using Lemma 4.3.17,

L2β(−2)t = 2β(0)t = 2(α, β)t

since t ∈ (VL)α. Hence as (α, β) 	= 0 by assumption, (5) holds for

b = − 1
2(α, β)

(
1
2

dimL− 13)β(−2)t ∈ Bα.

However, Lemma 5.5.30 also tells us that L1b = 0 and the above value gives

L1b = − 1
(α, β)

(
1
2

dimL− 13)β(−1)t.

Now, L1β(−1)2t = 2(α, β)β(−1)t and L2β(−1)2t = 0 since (β, β) = 0 by as-
sumption. This leads us to set

b =
1

2(α, β)
(
1
2

dimL− 13)(
1

(α, β)
β(−1)β(−1) − β(−2))t

and so finally we take

v =
1

2(α, β)
(
1
2

dimL− 13)(
1

(α, β)
β(−1)β(−1) − β(−2))t+

3
2
L−1t+ L−2t,

where t ∈ T−1
α . Let us check that v ∈ Pα. The above calculations show that

L1b = 0 and so from (4), L1v = 0. Again as b satisfies (5), together with (4),
this gives L2v = 0. As for any n > 0, Ln is a polynomial in L1 and L2, v ∈ Pα.
Clearly (b, b) = 0 since (β, β) = 0. Hence, (2) becomes

(v, v) = −(
1
2

dimL− 13)(t, t)

and so by Lemma 5.5.25 (v, v) < 0 as wanted.
This finishes the proof of the No-Ghost Theorem.
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Note that to take the base field to be C again, we can instead consider
FL⊗R C. However, all results of Chapters 1 and 2 hold over R (with Hermitian
forms becoming bilinear forms) when S = ∅ and so it makes no difference.

Corollary 5.5.35. Suppose that the lattice L is even and that it is either
Lorentzian of rank at most 26 or positive definite. Then, the bilinear form (., .)
is positive definite on the root spaces (FL)α, α ∈ L and it is contravariant with
respect to the involution ω. If the lattice L is positive definite, then the Lie
algebra FL is a finite dimensional simple Lie algebra of type An, Dn, E6, E7,
or E8.

Proof. When the lattice is Lorentzian, the result follows from Lemma 5.5.9 and
Theorem 5.5.16. When the lattice L is positive definite we do not know that the
Lie algebra FL is a BKM algebra, so the result will also follow from these results,
Lemma 5.5.11, and Theorem 2.5.9, once we have defined an adequate Z-grading
of the Lie algebra FL =

∑
i(FL)i. It must satisfy the following properties:

ω((FL)i) = (FL)−i (2)

for all i ∈ Z and
dim(FL)i <∞ ∀ i 	= 0. (3)

Since ω(P 1
α) = P 1

−α, it is reasonable to construct a grading such that for all
α ∈ L, P 1

α/N ≤ (FL)i for some i. For α ∈ L, if (α, α) > 0, then P 1
α 	= 0 only

if (α, α) = 2 in which case P 1
α = R(1 ⊗ eα) has dimension 1. Moreover there

are only finitely many vectors of norm 2 in L since any compact discrete set is
finite. We can label them ±βi, i = 1, · · · ,m.

The lattice L being positive definite, set

deg((FL)βi
) = i, deg((FL)0 = 0.

Then, Theorem 5.5.16 implies that FL is a BKM algebra. As all the roots have
positive norm, by Exercise 2.3.10, it is finite dimensional semisimple.

From Corollaries 5.5.24 and 5.5.32, the dimension of root spaces follows
immediately when the Lorentzian lattice L has rank 26.

Corollary 5.5.36. Suppose that L is an even Lorentzian lattice or rank 26.
Then, FL is a BKM algebra and the multiplicity of the root α ∈ L is
p24(1 − α2/2).

Using the denominator formula for the Fake Monster Lie algebra given in
Example 2.6.40, uniqueness of LBKM algebras of type FL at rank 26 can be
deduced.

Corollary 5.5.37. There is a unique LBKM algebra FL of rank 26 constructible
from the lattice vertex algebra VL in the above manner, namely the Fake Monster
Lie algebra.

When the even Lorentzian root lattice L has rank strictly greater than 26,
Theorem 5.5.14 says that the Lie algebra FL is a BKM algebra. So there is
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another grading, involution, and bilinear form on FL satisfying the conditions
of Theorem 2.2.9. The ones induced from the vertex algebra VL do not because
of Corollary 5.5.21. The reason is that the involution ω is not adequate. 26
is a critical dimension in the sense that it is maximal for the natural grading,
involution, and bilinear form coming from the lattice vertex algebra to be the
ones characterizing FL as a BKM algebra.

Section 5.4 leads one to believe that LBKM algebras of higher ranks may
not be describable explicitly. In particular, it may not be possible to calculate
their root multiplicities, etc. Or rather if it is possible, then the method will be
different from the one developed in this chapter and is not yet known.

The No-Ghost Theorem does not necessarily give a full description of the set
of roots of the BKM algebra FL when L is a Lorentzian lattice of rank at most
26, i.e. it does not say which roots are simple. Sections 5.3 and 5.4 indicate
that this may be possible for some of them. The aim of the classification is, in
the case of Lie algebras (i.e. Lie superalgebras with trivial odd part), to find all
BKM algebras with even Lorentzian lattice of rank at most 26 to which a vector
valued modular form can be associated in the manner of Theorem 5.3.6 and to
describe their root systems explicitly. They can be constructed explicitly using
the techniques explained in this section.

The above construction from the bosonic lattice vertex superalgebra only
gives BKM algebras when the lattice L is even Lorentzian. When the lattice L
is odd, there is another version of the No-Ghost Theorem that can be used to
construct BKM algebras from the tensor product of the bosonic and fermionic
lattice vertex superalgebras. Therefore, it is also possible to construct LBKM
algebras with odd root lattices. In fact, in rank 10 this construction gives the
even part of the Fake Monster Lie superalgebra. To get the full Fake Monster Lie
superalgebra, we need to consider a rational lattice containing the Lorentzian
lattice of rank 10 and use Γ-graded lattice vertex algebras, where Γ is an abelian
group of order greater than 2. We omit this more complex construction as this
book only intends to give the reader the basis to understand the classification
and construction of LBKM algebras. The interested reader should read [Sch1,2].
Exercise 5.5.2 leads to the construction of its even part.

Open Problem 7. Once the LBKM superalgebras having an associated au-
tomorphic form satisfying Theorem 5.3.6 have been fully classified and con-
structed, their modules will need to be studied. In particular, they need to be
constructed or described in some concrete manner.

Some recent papers on the representation theory of BKM algebras include
[Jur3,4]. Modules over affine algebras, whose characters are modular functions,
have been studied in [KacP1,2, KacWak1,2,3].

Exercises 5.5

1. Calculate the root multiplicities of the BKM algebra FL when the rank of L
is equal to 26. Deduce that FL is then the Fake Monster Lie algebra given in
Example 2.6.40.
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2. Let L be a Lorentzian lattice and consider VL = V f
L ⊗ V b

L. We keep the
notation of Exercises 4.3.1 and 4.3.2. Suppose that L is a Lorentzian lattice of
rank at most 10.

(i) Show that for all α ∈ L− {0}, v ∈ G 1
2
P

1
2

α , (v, v) ≥ 0.

(ii) Let N be the kernel of the bilinear form on G 1
2
P

1
2

α . Show that dP 0 ≤ N

and N/dP 0 is an ideal of the Lie algebra G 1
2
P

1
2

α /dP 0.

(iii) Deduce that the Lie algebra G = G 1
2
P

1
2

α /N is a BKM algebra.
(iv) When the lattice L has rank 10, calculate the root multiplicities of the

BKM algebra G.

For a solution, see [GodT] and [Sch2].



Appendix A

Orientations and Isometry
Groups

Let V be a real vector space with a non-degenerate symmetric bilinear form (., .)
having signature (n,m) and O(V ) be its group of isometries, i.e. automorphisms
preserving the bilinear form. Let V + be a maximal positive definite subspace.
Fix an ordered basis B = (v1, v2, · · · , vn) for V +. Set π : V → V + to be the
projection of V onto V + along its orthogonal complement.

Lemma A.1. For any maximal positive definite subspace U , kerπ ∩ U = 0.

Proof. Suppose that π(u) = 0 for u ∈ U . Then u belongs to the complement
of V + and so (u, u) ≤ 0. Since the vector space U is positive definite, this forces
u = 0.

Corollary A.2. Let u1, u2, · · · , un be a basis for a maximal positive definite
subspace U . Then, π(u1), · · · , π(un) is a basis for V +.

Corollary A.3. Let u1, u2, · · · , un be a basis for a maximal positive definite
subspace U and A = (aij), where π(ui) =

∑n
j=1 ajivj for 1 ≤ i ≤ n. Then,

π(u1) ∧ · · · ∧ π(un) = (detA)v1 ∧ · · · ∧ vn.

Definition A.4. An ordered basis BU for a maximal positive definite subspace
U is said to have the same orientation as the ordered basis B if detA > 0, where
A is the transition matrix from the basis B to the basis (π(u) : u ∈ B).

The following result is an immediate consequence of elementary properties
of determinants.

Lemma A.5. If the bases B1 and B2 have the same orientation, and the bases
B2 and B3 also have the same orientation, then so do the bases B1 and B3.
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Hence there are two possible orientations on V . A basis of a maximal positive
definite subspace with the same orientation as the basis B will be said to be
positively oriented.

For any v ∈ V with non-zero norm, let ru denote the reflection through the
orthogonal hyperspace to v, i.e.

rv(u) = u− 2(u, v)
(v, v)

v, u ∈ V.

Clearly rv ∈ O(V ).

Theorem A.6 (Cartan-Dieudonné). For any element φ ∈ O(V ), there exist
x1, · · · , xs in V with non-zero norm such that φ = rx1 · · · rxs

.

Proof. We only prove the theorem for isometries φ having a fixed point with
non-zero norm as we will only need the result in this case. Consider the subspace
F of fixed points of the map φ. Let F1 be the complement of the kernel of the
bilinear form on F . Since there exists v ∈ F with (v, v) 	= 0, F1 	= 0. By
definition of the subspace F1, the bilinear form is non-degenerate on it. By
induction on the dimension of V , the result is therefore true for the restriction
of the map φ to the complement F⊥

1 of F1 in V . So there exist x1, · · · , xs ∈ F⊥
1

such that φF⊥
1

= rx1 · · · rxs
, where the maps rxi

are reflections of F⊥
1 . Extend

the involution rxi
to V by setting rxi

(xi) = −xi and rxi
(x) = 0 for all x ∈ V

orthogonal to xi. Then rxi
becomes naturally a reflection of V . Since, xi ∈ F⊥

1 ,
for all x ∈ F1, rxi

(x) = x. Therefore φ = rx1 · · · rxs
on V = F1 ⊕ F⊥

1 .

Lemma A.7. The group of isometries of V keeping the orientation invariant
is the subgroup of products rx1 · · · rxs

where the number of vectors xi having
positive norm is even.

Proof. Suppose that x ∈ V is a vector having negative norm. Let B be an
ordered basis of a positive definite maximal subspace orthogonal to x. Then, the
reflection rx fixes B. Hence, Lemma A.5 implies that it leaves the orientation
invariant. Suppose next that x ∈ V is a vector having positive norm. Let B be
an ordered orthogonal basis of a positive definite maximal subspace containing
x. Then, the reflection rx sends B to a basis whose elements are the same as
those in B except that x becomes −x. Hence, Lemma A.5 implies that it changes
the positive orientation into the negative one. The result is then a consequence
of Theorem A.6.



Appendix B

Manifolds

B.1 Some Elementary Topology

Definition B.1.1. A topological space is a pair {M, T } of a non-empty set M
together with a collection T of subsets of M satisfying

(i) M, ∅ ∈ T
(ii) For any M1,M2 ∈ T , M1 ∩M2 ∈ T
(iii) For any collection of sets Mi ∈ T , i ∈ I, ∪i∈IMi ∈ T .

A subset of M is said to be open if it is in T .

Definition B.1.2. A topological space M is Hausdorff if for any a, b ∈ M ,
there exist open subsets U, V of M such that a ∈ U , b ∈ V and U ∩ V = ∅.
Definition B.1.3. A basis of the topological space M is a collection of open
subsets B such that any open subset of M is the union of open subsets in B.
The topological space M space is second countable if it has a countable basis.

Definition B.1.4. A map f : M1 →M2 of topological spaces with topologies Ti

is continuous if for any U ∈ T2, f−1(U) ∈ T1. The map f is a homeomorphism
if it is bijective and both f and f−1 are continuous.

Definition B.1.5. A function f : U → Rn, where U is an open subset of Rn

is a diffeomorphism if

(i) f is smooth, i.e. fi = xif is infinitely differentiable, where xi : Rn → R,
(x1, · · · , xn) �→ xi are the coordinate functions on Rn.

(ii) f : U → f(U) is a homeomorphism and its inverse is smooth.
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B.2 Manifolds

Definition B.2.1.

(1) A chart on a topological space M is a pair (U, φ), where U is an open subset
of M and φ : U → Rn is a homeomorphism onto φ(U). The components
φ = (x1, · · · , xn), where xi : U → R, are the coordinates.

(2) An atlas for M is a collection A = {(Uα, φα) : α ∈ A} of charts of M
such that:

(i) ∪α∈AUα = M and
(ii) for any α, β ∈ A, the maps φβφ

−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) are

diffeomorphisms.

Definition B.2.2. A differentiable (smooth) manifold is a second countable
Hausdorff topological space together with an atlas.
Definition B.2.3. Let M and N be differentiable manifolds with atlases
A={(Uα, φα) : α ∈ A} and B={(Vβ , ψβ) : β ∈ B} respectively. Amap f :M→N
is smooth (differentiable) if for any α ∈ A, β ∈ B,

ψβfφ
−1
α |φα(Uα∩f−1(Vβ)): φα(Uα ∩ f−1(Vβ)) → ψβ(Vβ)

is infinitely differentiable.
Definition B.2.4. Let M be a smooth manifold with atlas A. A smooth curve
is a smooth map γ :] − ε, ε[ (⊂ R) → M , i.e. for any chart (U, φ) ∈ A such
that γ(t) ∈ U for some t ∈ R, the map φγ : γ−1(Uα) → Rn is smooth.
Definition B.2.5. Let M be a smooth manifold with atlas A. Two curves γ1, γ2

passing through the point a ∈ M , i.e. γi(ti) = a, have the same tangent at a if
for any chart (U, φ) ∈ A such that a ∈ U , (φγ1)′(t1) = (φγ2)′(t2).
Lemma B.2.6. Definition B.2.5 gives an equivalence relation.

The equivalence class of γ will be written γ̇.

Definition B.2.7. Let M be a smooth manifold. The tangent space TMa at
a ∈ M is the set of equivalence classes of curves passing through a given in
Definition B.2.4.

Lemma B.2.8. Let M be a smooth manifold with atlas A and (U, φ) ∈ A such
that a ∈ U and φ : U → Rn. The tangent space at a ∈M is a real vector space
of dimension n.

Proof. Set
(dφ)a :TMa → Rn

γ̇ �→ (φγ)′(t),

where γ(t) = a. The map (dφ)α is injective by definition of the equivalence
relation. It is surjective since for any v ∈ Rn, γv(t) = φ−1(φ(a) + tv) for t ∈ R
defines a smooth curve mapped onto v by (dφ)a. The vector space structure is
then transferred from Rn by (dφ)a.
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For a M be a smooth manifold with atlas A, set

C∞(M) = {f : M → R, fφ−1 is smooth ∀ (U, φ) ∈ A}.

Definition B.2.9. LetM be a smoothmanifold. A derivation at a ∈ M is a linear
mapC∞(M) → R such that for all f, g ∈ C∞(M),D(fg) = D(f)g(a)+f(a)D(g).

Lemma B.2.10. Let M be a smooth manifold. The derivations at a ∈M form
a vector space with basis δ

δxi
, i = 1, · · · , n (in local coordinates) isomorphic to

the tangent space TMa.

Proof. Let γ be a curve such that γ(t) = a ∈M . Set

γ̇ �→ D,

where D(f) = (fγ)′(t) for all f ∈ C∞(M). Note that fγ = fφ−1φγ, where
(U, φ) is a chart such that a ∈ U , so that fγ is differentiable. Set
φi(a) = φ(a)i = xi, where xi is the i-th local coordinate of a. The above defined
map is injective. This follows from considering f = φi for each 1 ≤ i ≤ n. It
is clearly linear. The derivations form a vector space of dimension n since the
elements δ

δxi
, 1 ≤ i ≤ n form a basis. This can be seen by taking the Taylor ex-

pansions (see Definition C.2.6) of fφ−1
i around φi(a). Therefore the map gives

the desired isomorphism.
From now on for a smooth manifold M , we consider the tangent space TMa

at a ∈M as the vector space of derivations Xa at a.

Definition B.2.11. Let M be a smooth manifold and U an open subset of M .

(1) For each a ∈ U , choose a tangent vector Xa ∈ TMa. The family
X = {Xa : a ∈ U} is a smooth vector field on U if for any smooth
function f : U → R, the map

a �→ Xa(f)

is smooth.
(2) A smooth s-tensor field on U is a family g = (ga)a∈U of multilinear maps

ga : TMa × · · · × TMa → R

(s copies of TMa) such that for any smooth vector fields X1, · · · ,Xs on
U , the map

U → R

a �→ ga(X1, · · · ,Xs)

is smooth.
(3) A smooth tensor field on U is a family g = (ga)a∈U of linear maps

ga : TMa → TMa
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such that for any smooth vector field X = {Xa : a ∈ U},

a �→ ga(Xa)

is a smooth vector field.

Hermitian symmetric spaces and Riemannian metrics

Definition B.2.12. Let M be a smooth manifold. A smooth 2-tensor field t
is a Riemannian metric if for all a ∈ M , the map ta is symmetric and posi-
tive definite. A smooth manifold with a Riemannian metric is a Riemannian
manifold.

Let t be a Riemannian metric on the smooth manifold M and a ∈ M . By
Lemma 15, The dual vector space TMa of the tangent space TMa has basis (in
local coordinates) dxi, i = 1, · · · , n, where

dxi(
δ

δxj
) = δij .

The dual vector space of TMa ×TMa is (TMa)∗⊗ (TMa)∗. This clearly follows
by comparing dimensions. Hence, as ta is a bilinear map TMa × TMa → R, it
can be written as follows

ta =
n∑

i,j=1

ti,j(a)dxi ⊗ dxj ,

where ti,j(a) ∈ R. We will write dxidxj for dxi ⊗ dxj .

Definition B.2.13. Let M and N be smooth manifolds. The derivative at
a ∈M of a smooth map F : M → N is the linear map

(dF )a :TMa → TNF (a)

Xa �→ (f �→ Xa(fF ))

for any f ∈ C∞(N).

Let M and N be smooth manifolds and F : M → N a smooth map.
For any b ∈ N , let Y ∗

b ∈ (TNb)∗ be the dual of the vector Yb ∈ TNb. Let
dF ∗

a : (TNb)∗ → (TM)∗a be the dual map of (dF )a. Then, for any a ∈ M ,
Xa ∈ TMa,

((dF )aYF (a))(Xa) = YF (a)(dF )a(Xa).

Definition B.2.14. Let M be a Riemannian manifold. An isometry
F : M → M is a smooth map preserving the Riemannian metric g, i.e. for
any a ∈M , Xa, Ya ∈ TMa,

gF (a)((dF )a(Xa), (dF )a(Ya)) = ga(Xa, Ya).

Isom(M) denotes the isometry group of M .
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Lemma B.2.15. Let M be a Riemannian manifold with Riemannian metric g.
An isometry F : M → M is a smooth map such that (dF )∗a(gF (a)) = ga for all
a ∈M .

Definition B.2.16. A homogeneous space is a Riemannian manifold M on
which the action of its isometry group Isom(M) is transitive.

Definition B.2.17. A symmetric space M is a connected homogeneous space
such that there exists an involution φ ∈ Isom(M) (i.e. φ2 = 1) with at least
one isolated fixed point (i.e there exists a point a ∈ M and a neighbourhood U
of a such that for all u ∈ U , φ(u) = u if and only if u = a).

Definition B.2.18. An almost complex structure on a smooth manifold M is
a smooth tensor field (Ja)a∈M , Ja : TMa → TMa such that J2

a = −1 for all
a ∈M .

Definition B.2.19. Let M be a second countable Hausdorff topological space,
Uα, α ∈ A, a family of open subspaces such that M = ∪α∈AUα, and
uα : Uα → Cn homeomorphisms onto uα(Uα). Then, M is a complex man-
ifold if the maps uαu

−1
β are analytic (i.e differentiable) for all α, β ∈ A.

Lemma B.2.20. A complex manifold M is a smooth manifold with an almost
complex structure.

Proof. Consider M as a smooth manifold by using the obvious map Cn → R2n.
Let a ∈ M ,U an open subset such that α ∈ U and f : U → R a smooth map.
Define

Ja : TMa → TMa

δ

δxi
�→ δ

δyi
,

δ

δyi
�→ − δ

δxi

Definition B.2.21. A Hermitian metric on a complex manifold M is a Rie-
mannian metric t satisfying t(JX, JY ) = t(X,Y ) for all vector fields X,Y . A
Hermitian manifold is a complex manifold with a Hermitian metric.

Definition B.2.22. A Hermitian symmetric space is a Hermitian manifold
which is a symmetric space.

Lemma B.2.23. If M is a real space with a non-degenerate, symmetric, bilinear
form (., .), then P(M⊗RC) is a Hermitian manifold and the Riemannian metric
is given by the bilinear form.

Proof. We consider an orthogonal basis ei, 1 ≤ i ≤ n+ 1 for the vector space
M ⊗ C such that e2i = ±1. For z ∈ M ⊗R C, we write z = (z1, · · · , zn) with
respect to this basis. Set Ui = {z ∈ P(M ⊗ C) : zi 	= 0}. Then,

P(M ⊗R C) =
n+1⋃

i=1

Ui.
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For any z ∈ V , there is a unique representative such that zi = 1. Then, there is
a natural well defined analytic map φi : Ui → Cn. Furthermore,

φiφj
−1 : φj(Ui ∩ Uj) → φi(Ui ∩ Uj)

(z : zi = 1, zj = 1) �→ (z : zi = 1, zj = 1)

is analytic. Hence, P(M ⊗R C) is a complex manifold. Considering it as a real
manifold and setting zj = xj + iyj , the Riemannian metric on Ui is given by

(
δ

δxj
,
δ

δxk
) = (

δ

δyj
,
δ

δyk
) = δjke

2
i ; (

δ

δxj
,
δ

δyk
) = 0 ∀ 1 ≤ j, k ≤ n+ 1, j, k 	= i.

It follows from Lemma B.2.20 that P(M ⊗R C) is a Hermitian manifold.

Definition B.2.24. The hyperbolic space of dimension n is the following sub-
manifold of the Lorentzian space Rn,1 of rank (n, 1):

Hn = {u ∈ Rn,1 : (u, u) = −1, xn+1 > 0},

where (., .) is the bilinear form on Rn,1 and for x = (x1, · · · , xn+1) ∈ Rn,1,
(x, x) = x2

1 + · · · + x2
n − x2

n+1.

Note the similarity with the definition of the n-sphere in Euclidean space.

Lemma B.2.25. When n = 2, H2 is the upper half plane.

Lemma B.2.26. The upper half plane H is a Hermitian symmetric space with
the Poincaré metric given by dx2+dy2

y2 and isometry group SL2(R).

Proof. H is clearly a complex manifold and dx2+dy2

y2 gives a Hermitian metric.
Let F : H → H be a smooth map and z = x+ iy ∈ H. Then,

(dF )∗z(dF (z)) = (dF (z))(dF )z

and for any f ∈ C∞(M),

(dF )z(
δf

δz
) =

δ

δz
f(F (z)) =

δf(F (z))
δF (z)

δF (z)
δz

.

Therefore,

(dF )z(
δ

δz
) =

δF (z)
δz

δ

δF (z)
,

and so

(dF )∗z(dF (z))(
δ

δz
) =

δF (z)
δz

.

As a result,

(dF )∗z(dF (z)) =
δF (z)
δz

dz.
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Let A =
(
a b
c d

)
∈ SL2(R) and F (z) = Az. This is clearly a smooth map and

(dF )∗z(dF (z)) =
dz

(cz + d)2
.

Hence

(dF )∗(x,y)((dF (x))2 + (dF (y))2) = (dF )∗z(dF (z))(dF )∗z(dF (z))

=
dzdz

∣∣cz + d
∣∣2 .

Moreover, writing y = y(z), we get

yF (z) =
1
2i

(F (z) − F (z))

=
1
2i

(
az + b

cz + d
− az + b

cz + d
)

=
y

∣∣cz + d
∣∣2 .

It follows that

(dF )∗(x,y)(
(dF (x))2 + (dF (y))2

F (y)2
) =

dx2 + dy2

y2
.

Therefore SL2(R) acts as a group of isometries of the Riemannian manifold
H. As its action is transitive, H is a homogeneous space. The map z �→ −1

z is
an involution with a unique fixed point in H, namely i. So H is a Hermitian
symmetric space.

B.3 Fibre Bundles and Covering Spaces

Definition B.3.1. A covering map on a topological space M is a continuous
surjective map f from a topological space N onto M with the property that for
any x ∈M , there exists an open neighbourhood U of x such that f−1(U) is the
union of disjoint open sets, each homeomorphic to U . The space N is a covering
space of M . If N is connected then it said to be a universal cover. For x ∈M ,
f−1(x) is the fibre over x. If for any x ∈ M , f−1(x) contains two elements,
the topological space N is a double cover of M . The triple (N,M, f) is a fibre
bundle. If the topological spaces N,M are smooth manifolds and f is a smooth
map, then (N,M, f) is a smooth fibre bundle.

Definition/Lemma B.3.2. Let M be a topological space.
(i) Two covering spaces fi : Ni → M , i = 1, 2 of M are equivalent if there

is a homeomorphism F : N1 → N2 such that f1 = f2F . This gives an
equivalence relation.

(ii) If M has a universal cover then it is unique.
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Definition B.3.3. Let M be a topological space.

(i) A loop with base point x0 ∈ M is a continuous function f : [0, 1] → M
such that f(0) = x0 = f(1).

(ii) Two loops f, g with base point x0 are homotopy equivalent if there exists
a continuous map F : [0, 1] × [0, 1] → M such that F (t, 0) = f(t),
F (0, t) = g(t), F (0, t) = x0 = F (1, t) for all t ∈ [0, 1].

Lemma B.3.4. Let M be a topological space.

(i) Homotopy equivalence defines an equivalence relation on the set of all paths
based at x0 ∈M . The equivalence classes are called homotopy classes.

(ii) If f, g are two loops based at x0,

fg :[0, 1] →M

t �→ f(2t), t ∈ [0, 1/2],
t �→ f(2t− 1), t ∈ [1/2, 1]

is a loop based at x0.

Definition/Lemma B.3.5. Let M be a topological space. The set of homotopy
classes of loops based at x0 ∈ M together with the multiplication induced from
Lemma B.3.4 (ii) forms a group, called the fundamental group at x0, written
π1(M,x0).

Lemma B.3.6. Let M be a connected topological space. Then,
π1(M,x) ∼= π1(M,y) for all x, y ∈M .

Theorem B.3.7. Let M be a connected topological space. There is a bijective
correspondence between equivalence classes of covering spaces and subgroups of
the group π1(M,x) for any x ∈M .

Sketch of Proof. Let N be a covering space of M and F : N →M a covering
map. Choose a point y0 ∈ N such that f(y0) = x0. Define

F∗ :π1(N, y0) → π1(M,x0)
[f ] �→ [Ff ].

Then, F∗ is a monomorphism and equivalence classes of covering spaces induce
the same subgroup of π1(M,x0). Hence, this defines a map from the set of
equivalence classes of covering spaces to the set of subgroups of π1(M,x0).

Let f be a loop in M based at x0. Then there is a unique path f̂ in N based
at y0 such that F f̂ = f . Therefore one can naturally construct an inverse to
the above map. This shows that it is bijective.

Theorem B.3.8. The Fundamental group of SL(2,R) is infinite cyclic.
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Sketch of Proof. Let 1 denote the identity matrix. For n ∈ Z,

fn :[0, 1] → SL2(R)

t �→
(

cos(2πint) sin(2πint)
− sin(2πint) cos(2πint)

)
.

This gives an isomorphism from Z to π1(SL2(R),1).

Definition B.3.9. A principal bundle is a fibre bundle (P,B, π) together with
a right action P ×G → P by a Lie group G in such a way that for any b ∈ B,
π−1(b)g = π−1(b) for all g ∈ G and G acts transitively and freely (i.e. without
fixed points) on all the fibres.
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Some Complex Analysis

C.1 Measures and Lebesgue Integrals

Definition C.1.1. Let X be a set. A σ-algebra M is a collection of subsets of
X with the following properties:

(i) X ∈ M;
(ii) For any A ∈ M, X\A ∈ M;

(iii) For i = 1, 2, · · ·, if Ai ∈ M, then
∞⋃

i=1

Ai ∈ M.

Lemma C.1.2. Let X be a set and T be a subset of P (X) (the set of all subsets
of X). There is a smallest σ-algebra M such that T ⊆ M.

Proof.
⋂
M

T ⊆M

M is the desired σ-algebra.

Definition C.1.3. Let X be a topological space. The elements of the smallest
σ-algebra B containing the open sets are the Borel sets.

Definition C.1.4. Let X be a set and M a σ-algebra A function f : X → [0,∞]
is measurable if for any open set U ⊆ [0,∞], f−1(U) ∈ M.

In the topological space [0,∞] the open sets are the usual ones together with
the sets [0, a) and (a,∞], a ∈ R+.

Definition C.1.5. Let X be a set. A function s : X → R is simple if it takes
only finitely many values.

For any E ∈ P (X), set χE : X → R to be the characteristic function of E,
i.e.

χE(x) =
{ 1 if x ∈ E;

0 otherwise.

Lemma C.1.6. Let X be a set and M a σ-algebra. Let s be a simple function
X → R, a1, · · · , an the values of s and Xi = {x ∈ X : s(x) = ai}. Then, s is
measurable if and only if Xi ∈ M for all 1 ≤ i ≤ n.
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Proof. The result follows from the fact that s =
n∑

i=1

aiχXi
.

Definition C.1.7. LetX be a set andM aσ-algebra. A function µ : M → [0,∞]
is a positive measure if for any mutually disjoint countable collection of set
Xi, i = 1, · · ·, µ(

⋃∞
i=1Xi) =

∑∞
i=1 µ(Xi).

Definition C.1.8. A measure space is a triple (X,M, µ), where X is a set, M
a σ-algebra, and µ a positive measure of X.

If f, g : X → [−∞,∞] and f(x) ≤ g(x) for all x ∈ X, we will write f ≤ g.

Definition C.1.9. Let (X,M, µ) be a measure space and s =
∑n

i=1 aiχXi
a

simple measurable function of X, where ai ∈ R for i = 1, · · · , n. Then the
Lebesgue integral of s over E ∈ M is:

∫

E

sdµ =
n∑

i=1

aiµ(Xi ∩ E).

More generally, if f : X → [0,∞] is a measurable function, then the Lebesgue
integral of f over E ∈ M is:

∫

E

fdµ = sup{
∫

E

sdµ : s simple, 0 ≤ s ≤ f}.

Theorem C.1.10. Let X be a locally compact, Hausdorff topological space.
Let Cc(X) be the set of all functions f : X → R with compact support, i.e.
{x ∈ X : f(x) 	= 0} is compact, and Λ be linear map C(X) → C such that for
any f ≥ 0, Λ(f) ≥ 0. Then, there is a σ-algebra M which contains all the Borel
sets and a positive measure µ on X satisfying Λ(f) =

∫
X
fdµ for all f ∈ Cc(X).

Proof. If V is an open subset of X, then define

µ(V ) = sup{Λf : f ∈ Cx(X), f(x) : X → [0, 1], f(x) 	= 0 ⇒ x ∈ V }.

For E ∈ P (X), define

µ(E) = inf{µ(V ) : E ⊆ V, V open}.

Set M1 be the subset of P (X) consisting of subsets E of X for which
µ(E) = sup{µ(V ) : V ⊆ E, V compact} and µ(E) <∞. Then, define

M = {E ∈ P (X) : E ∩ F ∈ M1,∀F ∈ M1}.

Since Rn is locally compact, i.e. all points have a compact neighbourhood,
so are all manifolds. Therefore the following result is now immediate since
manifolds are second countable and Hausdorff.
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Corollary C.1.11. Let M be a Riemannian manifold with metric g. Set
G = det(gij). Let (Uα, φα), α ∈ A be an atlas. Let φα = (x1, · · · , xn) be
the local coordinates. Then, for any function f ∈ Cc(M),

∫

M

fdµ :=
∑

α∈A

∫

φ(Uα)

f ◦ φ−1
α

√
G ◦ φ−1

α dx1 · · · dxn,

defines a σ-algebra containing the Borel sets and a positive measure on M which
is independent of the atlas chosen.

Let us apply Corollary C.1.11 to the upper half plane H.

Corollary C.1.12. dµ = dxdy/y2 gives a positive measure on H.

Proof. By Lemma B.2.23, g11 = 1/y2 = g22 and g12 = 0 = g21. Hence the
result.

C.2 Complex Functions

Definition C.2.1. A function f on C is analytic or holomorphic at a point
τ ∈ C if there is a neighbourhood of z such that the derivative of f exists at
all points of it. More generally, a function on Cn is analytic or holomorphic at
a point (z1, · · · , zn) ∈ Cn if there exists a neighbourhood of z such that all the
partial derivatives of f exist at all points of it. A singular point or singularity of
a function f on Cn is a point at which f is not analytic. If there is an integer

n > 0 such that (z − z0)
n

lim
z→z0

f(z) is a non-zero real, then z = z0 is a pole of

order n. A function is meromorphic in a region R of the complex plane if it is
analytic everywhere on R except at a finite number of poles.

The notion of singularities for functions on Hermitian symmetric domains
(see Definition B.2.22) can easily be derived from that of functions on Cn.

Definition C.2.2. For n ∈ Z, let fn be real or complex functions. Let

sn(s) =
n∑

m=N

fm(s)

be the partial sums. The series
∑

n≥N fn(s) converges uniformly towards the
function f if ∀ε > 0, there is an integer M (depending only on ε) such that for
all n ≥M ,

∣∣sn(s) − f(s)
∣∣ < ε.

The difference with ordinary convergence is that the integer M does not
depend on s.

Lemma C.2.3.(Cauchy’s test). The series
∑

n≥N fn(s) converges uniformly
if and only if ∀ε > 0, there is an integer M (depending only on ε) such that for
all n,m ≥M ,

∣∣sn(s) − sm(s)
∣∣ < ε.
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Lemma C.2.4. (Weierstrass M-test). If for all n, there exists Mn ∈ R such
that in a region S,

∣∣fn(s)
∣∣ ≤ Mn, where Mn is independent of s and the series∑

nMn converges, then the series
∑

n fn(s) converges uniformly in S.

Lemma C.2.5. Suppose that for all n, the functions fn are analytic on a region
S of C and the series

∑
n fn(x) converges uniformly on all compact subsets of

S. Then the function f(s) =
∑

n fn(s) is analytic on S and f ′(s) =
∑

n f
′
n(s)

on all compact subsets.

Theorem/Definition C.2.6. If f is complex valued function on the complex
plane, analytic in D(s0, R) = {s ∈ C :

∣∣s− s0
∣∣ < R}, then

f(s) =
∞∑

n=0

fn(s0)
n!

(s− s0)n

for all τ ∈ D(s0, R). This is the Taylor series of f at s0. It converges uniformly
in D(s0, R). If for all n ∈ Z, fn(s0) ∈ R, then it is said to be real analytic at
s0. Otherwise it is complex analytic.

Corollary C.2.7. If f is a meromorphic complex valued function on the com-
plex plane, with a pole of order m at s0, then

f(s) =
∞∑

n=−m

an(s− s0)n,

where an ∈ C for all n ≥ −m. This series is uniquely defined and is the Laurent
series of f at s0. There exists R1 ≤ R2 such that it converges uniformly in
R1 <

∣∣s− s0
∣∣ < R2. The coefficient a−1 is called the residue of f at s = s0.

C.3 Integration

Lemma C.3.1. Let f be a complex valued function on R.

(i) If the function f is continuous on the interval [a, b], then the integral∫ b

a
f(x)dx exists.

(ii) The integral
∫∞

a
f(x)dx converges if there exists M,N ∈ R with N > 1

such that 0 <
∣∣f(x)

∣∣ ≤M/xN for all x ≥ a.

Proof. We only prove (ii). Suppose that M,N are as given and
0 <

∣∣f(x)
∣∣ ≤ M/xN for all x ≥ a. Set g(b) =

∫ b

a
f(x)dx. For b ≥ a, we
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then get
∣∣g(b)

∣∣ ≤M

∫ b

a

dx/xN

= [
M

(−N + 1)xN−1
]ba

=
M

(N − 1)
(

1
aN−1

− 1
bN−1

)

≤ M

(N − 1)aN−1
.

.

Hence in the interval [a,∞),
∣∣g
∣∣ is a bounded increasing function and so

lim
b→∞

g(b) exists.

Lemma C.3.2. If
∑∞

n=0 fn(x) is a uniformly converging series on the closed
interval [a, b] and each function fn is continuous on this interval, then

∫ b

a

(
∞∑

n=0

fn(x))dx =
∞∑

n=0

(
∫ b

a

fn(x)dx).

C.4 Some Special Functions

(i). The Gamma function
For any x ∈ R, x > 0, any s ∈ C, xs = es log(x) by definition. By Lemma

C.3.1.(ii), the following result holds.

Definition/Lemma C.4.1. The Gamma function is the function defined on
the region R(s) > 0 by

Γ(s) =
∫ ∞

0

e−xxs−1dx.

It is analytic on this region.

Lemma C.4.2. For any s ∈ C with R(s) > 0, Γ(s+ 1) = sΓ(s).

Proof.

Γ(s+ 1) =
∫ ∞

0

e−xxsdx

= −e−xxs|∞0 + s

∫ ∞

0

e−xxs−1dx

= sΓ(s).

This shows that the Gamma function generalizes the factorials.

Corollary C.4.3. Γ(n) = n! for all n ∈ N.
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Proof. Γ(1) =
∫∞
0
e−xdx = 1 and so the result follows from Lemma C.4.2.

By using Lemma C.4.2, the Gamma function can also be analytically con-
tinued.

Corollary C.4.4. The function Γ can be extended to a meromorphic function
on C satisfying

Γ(s) =
Γ(s+ n+ 1)

s(s+ 1) · · · (s+ n)

for any s ∈ C. It is analytic everywhere except at s = 0,−1,−2, · · ·, where it
has simple poles.

Proof. From Lemma C.4.2,

Γ(s) = Γ(s+ 1)/s = Γ(s+ 2)/s(s+ 1) = · · · = Γ(s+ n+ 1)/s(s+ 1) · · · (s+ n).

The rest of the proof then follows.

Lemma C.4.5.

(i) If R(s) > 0, Γ(s) = 2
∫∞
0
e−x2

x−1/2dx

(ii) Γ( 1
2 ) =

√
π

Proof. Setting x = y2, we get

Γ(s) =
∫ ∞

0

e−xxs−1dx = 2
∫ ∞

0

e−y2
y2s−1dy,

proving (i).
In particular,

Γ(
1
2
) = 2

∫ ∞

0

e−y2
dy.

Hence, using polar coordinates x = r cos θ, y = r sin θ, we get dxdy = rdrdθ.

(Γ(
1
2
))2 = 4

∫ ∞

0

∫ ∞

0

e−x2−y2
dxdy = 4

∫ π/2

θ=0

∫ ∞

r=0

e−r2
rdrdθ = 2

∫ π/2

θ=0

dθ = π.

Corollary C.4.6. (Replication formula). If R(s) > 0,

22s−1Γ(s)Γ(s+
1
2
) =

√
πΓ(2s).

Proof. Applying Lemma C.4.5 (i),

Γ(s)Γ(s+
1
2
) = 4

∫ ∞

0

e−x2−y2
x2s−1y2sdxdy.
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Substituting polar coordinates,

Γ(s)Γ(s+
1
2
) = 4

∫ π/2

θ=0

∫ ∞

r=0

e−r2
r4s cos(θ)2s−1 sin(θ)2sdrdθ

= 4
∫ ∞

r=0

e−r2
r4s

∫ π/2

θ=0

cos(θ)2s−1 sin(θ)2sdθ.

Integrating by parts several times gives

∫ π/2

θ=0

cos(θ)2s−1 sin(θ)2sdθ = 2−2s−1

∫ π/2

θ=0

cos(θ)4s−1dθ.

Hence by Lemma C.4.5, the formula follows
Differentiating both sides of the replication formula we get the following

equality.

Corollary C.4.7. If R(s) > 0,

log(2)22sΓ(s)Γ(s+
1
2
)+22s−1G′(s)Γ(s+

1
2
)+22s−1Γ(s)Γ′(s+

1
2
) = 2

√
πΓ′(2s).

Lemma C.4.8. For any x ∈ R, ex = lim
n→∞(1 + x

n )n.

Proof. We know that for x ∈ R,

1
x

= log′(x) = lim
h→0

log(x+ h) − log(x)
h

.

In particular,

1 = lim
h→0

log(1 + h)
h

.

Hence, for any x ∈ R,

x = lim
h→0

x
log(1 + h)

h
= lim

l→∞
l log(1 + x/l),

where l = x/h. Hence, for n integers,

x = lim
n→∞ log(1 + x/n)n.

Taking exponentials of both sides of this equality gives the desired result.

Set γ = lim
N→∞

(
N∑
1

1
n − log(N)) to be the Euler-Mascheroni constant.

Corollary C.4.9. (Weierstrass formula). For s ∈ C,

1
Γ(s)

= seγs
∞∏

n=1

(1 +
s

n
)e

−s
n .
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Proof. Since for s ∈ C,

Γ(s) =
∫ ∞

0

e−xxs−1dx

=
∫ ∞

0

lim
n→∞(1 − x

n
)nxs−1dx

= lim
n→∞

∫ n

0

(1 − x

n
)nxs−1dx

= lim
n→∞ns

∫ 1

0

(1 − y)nys−1dy

= lim
n→∞ns(

1
s
ys(1 − y)n|10 +

n

s

∫ 1

0

ys(1 − y)n−1dy).

Hence applying induction on n to the calculation of the integral part in the last
expression, we get

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)

=
1
s

∞∏

n=1

(1 +
s

n
)−1ns

.

It follows that

1
Γ(s)

= s lim
n→∞(1 + s)(1 +

s

2
) · · · (1 +

s

n
)e− log(n)s

= s lim
n→∞(1 + s)e−s(1 +

s

2
)e

−s
2 · · · (1 +

s

n
)e

−s
n e(1+

1
2+··· 1

n−log(n))s.

This leads to the result.

Corollary C.4.10.
Γ′(1) = γ.

Proof. Taking the logarithm of both sides of the Weierstrass formula, we get

− log(Γ(s)) = log(s) + γs+
∞∑

n=1

(log(1 +
s

n
) − s

n
).

Differentiating both sides of this equality. we find

Γ′(s)
Γ(s)

= −1
s
− γ +

∞∑

n=1

(
1
n

1
1 + s

n

+
1
n

)

= −1
s
− γ +

∞∑

n=1

(
1
n
− 1
n+ s

).

Setting s = 1 and using Corollary C.4.3 we can deduce that
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Γ′(1) = −1 − γ +
∞∑

n=1

(
1
n
− 1
n+ 1

).

Since
∞∑

n=1
( 1

n − 1
n+1 ) = 1, this proves the result.

(ii). The Riemann Zeta function

Definition/Lemma C.4.11. The Riemann zeta function is the function de-
fined on the region {s ∈ C : R(s) > 1} by

ζ(s) =
∞∑

n=1

1
ns
.

It is analytic in this region and

ζ ′(s) = −
∞∑

n=1

log n
ns

.

Proof. A compact subset of {s ∈ C : R(s) > 1} is contained in subset of the

type {s ∈ C : R(s) > 1 + ε}, where ε is a positive number. Each term 1
ns is

analytic. If R(s) ≥ 1 + ε then,

∣∣ 1
ns

∣∣ =
1
n(s)

≤ 1
n1+ε

.

The series
∞∑

n=1

1
n1+ε converges by the integral test. Hence the series

∞∑
n=1

1
ns

converges uniformly by Lemma C.2.4. The result now follows from Lemma
C.2.5.

Lemma C.4.12.

ζ(s) = (1 − 21−s)−1
∞∑

n=1

(−1)n

ns
,

and the series on the right hand side converges conditionally if R(s) > 0 and
ζ ′(s) is equal to the series obtained by differentiating each term of the above
series.

Proof. Since

(1 − 21−s)ζ(s) =
∞∑

n=1

1
ns

−
∞∑

n=1

2
(2n)s

,

the above formula follows. The alternating series test shows that the series
∞∑

n=1

(−1)n

ns is conditionally convergent when ζ ′(s) for then the sequence 1/ns is

decreasing. The statement about ζ ′(s) can be derived in a similar manner.
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Lemma C.4.13. For
∣∣s
∣∣ < 1 and z = 1,

log(1 + s) =
∞∑

n=1

(−1)n+1sn/n

and the series converges in the above region.

Proof. The result follows by applying Theorem 2.6 around the point s = 0.
Since

lim
n→∞

∣∣ (−1)n+2sn+1

n+ 1
n

(−1)n+1sn

∣∣ =
n

n+ 1

∣∣s
∣∣ =

∣∣s
∣∣,

by the ratio test, the series converges absolutely when
∣∣s
∣∣ < 1. When s = 1, the

series converges conditionally by the alternating series test.

Corollary C.4.14. The zeta function can be analytically continued to a mero-
morphic function on the region given by R(s) > 0. It is analytic at all points of
this region except at s = 1, where it has a simple pole with residue 1. Moreover
the constant coefficient of its Laurent series at s = 1 is equal to −Γ′(1).

Proof. From Lemma C.2.5, if s is a singular point of ζ(s) then,
elog(2)((1−R(s))−iI(s)) = elog(2)(1−s) = 21−s = 1. Hence s = 1 + 2πim/ log(2).
Similarly as in Lemma C.4.12, it can be shown that

ζ(s) = (1 − 31−s)−1
∞∑

n=1

ε(n)
ns

,

where

ε(n) =
{

1 if n ≡ ±1 (mod 3)
−2 otherwise.

This series also converges conditionally when R(s) > 0 and so if s is a singular
point of ζ(s) then, s = 1+2πim/ log(3) where m ∈ Z. Hence, together with the
above, if s is a singularity of ζ(s) then s = 1. Moreover, Lemma C.4.12 shows
that (s− 1)ζ(s) is analytic at s = 1 and that

lim
s→1

(s−1)ζ(s) = lim
s→1

(s− 1)
− log(2)(1 − s)(1 + (log(2)(1 − s))/2! + · · ·)

∑

n≥1

(−1)n

n
= 1

by Lemma 4.12. Hence, the ζ has a unique pole in R(s) > 0. It is at s = 1 and
the pole is simple. Furthermore, the residue of ζ(s) at s = 1 is 1.

It remains to calculate the constant of the Laurent expansion at s = 1. This
is equal to

lim
s→1

(ζ(s) − 1
s− 1

). (1)
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For R(s) > 1,

ζ(s) =
∞∑

n=1

1
ns

=
∞∑

n=1

s

∫ ∞

n

dt

ts+1

=
∞∑

n=1

∞∑

k=n

∫ k+1

k

dt

ts+1

= s
∞∑

k=1

k∑

n=1

∫ k+1

k

dt

ts+1

= s
∞∑

k=1

k

∫ k+1

k

dt

ts+1

= s
∞∑

k=1

∫ k+1

k

kdt

ts+1

= s

∫ ∞

1

[t]
ts+1

dt

= s

∫ ∞

1

1
ts+1

dt− s

∫ ∞

1

{t}
ts+1

dt

=
s

s− 1
− s

∫ ∞

k=1

{t}
ts+1

dt,

(2)

where [t] is the integer part of t ∈ R and {t} = t − [t]. In the above we have
changed the order of summation, which is possible since the series is absolutely
convergent for R(s) > 1. Substituting (2) into the expression (1), we see that
the constant term of the Laurent series is equal to

1 −
∫ ∞

k=1

{t}
t2
dt = 1 − lim

N→∞

N∑

n=1

∫ n+1

n

t− n

t2
dt

= 1 − lim
N→∞

(
∫ N

n=1

dt

t
−

N∑

n=1

1
n+ 1

)

= lim
N→∞

(
N∑

n=1

1
n
− log(N))

= γ.

The result then follows from Corollary C.4.13.

Lemma C.4.15. ζ(2) = π2/6.

Proof. Consider the function f(x) = x(x− 1). It is continuous on the interval
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[0, 1] and f(0) = f(1). Hence, by Corollary D.3,

f(x) =
∞∑

n=−∞
f̂(n)e2πinx,

where the Fourier coefficients are given by

f̂(n) =
∫ 1

0

x(x− 1)e−2πinxdx

=
1

−2πin
e−2πinxx(x− 1)|10 +

1
2πin

∫ 1

0

(2x− 1)e−2πinxdx

=
1

4π2n2
(2x− 1)e−2πinx|10 −

1
2π2n2

∫ 1

0

e−2πinxdx

=
1

2π2n2

for n 	= 0 and

f̂(0) =
∫ 1

0

x(x− 1)dx =
−1
6
.

For x = 0, we get

0 =
−1
6

+
∑

n∈Z
n �=0

1
2π2n2

.

Equivalently,
∞∑

n=1

1
π2n2

=
1
6
,

proving the result.
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Fourier Series and
Transforms

Definition D.1. The Fourier series of a (real or complex valued) function f
on R is ∞∑

n=−∞
f̂(n)e−2πinx,

where the Fourier coefficients are given by

f̂(n) =
∫ 1

0

f(x)e2πinxdx.

Our aim is to represent f by its Fourier series. Supposing that this series
converges absolutely and is equal to f , then by Lemma C.3.2,

∫ 1

0

f(x)e2πinxdx =
∞∑

m=−∞

∫ 1

0

f̂(n)e−2πi(m−n)x = f̂(n).

Lemma D.2. Let f be a periodic continuous function on R having period 1 and
with continuous derivative, then the Fourier series of f converges uniformly on
R and is equal to f .

Any continuous function on [0, 1] satisfying f(0) = f(1) can be periodically
continued to a continuous function on R to a function having period 1. So the
next result is immediate.

Corollary D.3. Let f be a continuous function on the interval [0, 1] such that
f(0) = f(1). Then, it Fourier series is equal to f on this interval.

Corollary D.4.
∑
n∈Z
n �=0

e2πinx

n2 = 2π(x2 −
∣∣x
∣∣ + 1/6) for −1 ≤ x ≤ 1.

263
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Proof. Consider the function f(x) = x(x− 1). It is continuous on the interval
[0, 1] and f(0) = f(1). Hence, by Corollary D.3,

f(x) =
∞∑

n=−∞
f̂(n)e2πinx,

where the Fourier coefficients are given by

f̂(n) =
∫ 1

0

x(x− 1)e−2πinxdx

=
1

−2πin
e−2πinxx(x− 1)|10 +

1
2πin

∫ 1

0

(2x− 1)e−2πinxdx

=
1

4π2n2
(2x− 1)e−2πinx|10 −

1
2π2n2

∫ 1

0

e−2πinxdx

=
1

2π2n2

for n 	= 0 and

f̂(0) =
∫ 1

0

x(x− 1)dx =
−1
6
.

Hence, the result holds for 0 ≤ x ≤ 1. For the case −1 ≤ x ≤ 0, consider

f(x) =
∞∑

n=−∞
f(n)e−2πinx,

where

f(n) =
∫ 1

0

x(x− 1)e2πinxdx

= − 1
(2πin)2

(2x− 1)e−2πinx|10

=
1

2π2n2
.

Hence the result follows as above.

Definition D.5. Given the function f on R, the Fourier transform of f is the
function

f̂(y) =
∫ ∞

−∞
f(x)e2πixydx.

Theorem D.6. Suppose that the integral
∫∞
−∞

∣∣f(x)
∣∣dx exists. Then the Fourier

inversion formula holds for f :

f(x) =
∫ ∞

−∞
f̂(y)e−2πixydy.
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Corollary D.7. Let g be a function on R for which the integral
∫∞
−∞

∣∣g(x)
∣∣dx

exists. Then, for any x ∈ R,

∞∑

n=−∞
g(x+ n) =

∞∑

n=−∞
ĝ(n)e2πinx.

Proof. Set f(x) =
∞∑

n=−∞
g(x + n). Then, f(x + 1) = f(x). Hence f has a

Fourier series expansion. All we need to show is that the Fourier coefficients
f̂(n) of f are given by the Fourier transform of g. Indeed,

f̂(n) =
∫ 1

0

f(x)e−2πinxdx

=
∫ 1

0

∞∑

k=−∞
g(x+ k)e−2πinxdx

=
∞∑

k=−∞

∫ k+1

k

g(x)e−2πinxdx

=
∫ ∞

−∞
g(x)e−2πinxdx

= ĝ(n).

The following useful consequence is then immediate.

Corollary D.8. (Poisson summation formula). Let g be a function on R
for which the integral

∫∞
−∞

∣∣g(x)
∣∣dx exists. Then,

∞∑

n=−∞
g(n) =

∞∑

n=−∞
ĝ(n).

We next generalize the concept of Fourier transforms to higher dimensions.

Lemma/Definition D.9. Let L be an integral lattice with bilinear form (., .)
and f : L⊗Z R → R a continuous function with continuous derivatives, having
period L, i.e. f(x + y) = f(x) for all x ∈ L ⊗Z R, y ∈ L. Then, the Fourier
series

1∣∣L∗/L
∣∣
∑

λ∈L∗

f̂(λ)e−2πi(x,λ),

where
f̂(λ) =

∫

(L⊗ZR)/L

f(x)e2πi(x,λ)dx,

λ ∈ L∗, converges uniformly to f .
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In the previous Lemma, the region of integration is given as follows: Suppose
dimL = n. Take B to be a basis for the lattice L, then with respect to this
basis, f becomes a function Rn → R and the region of integration is [0, 1)n. As
the integral is independent of the basis chosen, it can be written as above.

Definition D.10. Let f : Rn → R a function for which
∫
Rn f(y)dy exists.

Then, the Fourier transform of f is the function

f̂(y) =
∫

Rn

f(x)e2πixiyidx,

where x = (x1, · · · , xn).
The generalized version of the Poisson summation formula is then as follows.

Theorem D.11. Let L be an integral positive definite lattice with bilinear form
(., .). Let g be a function on L⊗ZR satisfying the conditions of Definition D.10.
Then, for x ∈ L⊗Z R,

∑

λ∈L

g(x+ λ) =
1∣∣L∗/L

∣∣
∑

λ∈L∗

ĝ(λ)e2πin(x,λ).

Lemma D.12. Let V be a real vector space of dimension n.

(i) If a ∈ R and a > 0, then the Fourier transform of f(ax) is a−nf(x/a).
(ii) If V is positive definite, then the Fourier transform of e−πx is e−πx.

Proof. (i): Set g(x) = f(ax). By definition,

ĝ(y) =
∫

V

f(ax)e2πixydx

=
1
an

∫

V

f(x)e2πixy/adx

=
1
an
ĝ(y/a)

for a > 0.
(ii): We prove the result for n = 1. The general case is an immediate conse-
quence.

f̂(y) =
∫ ∞

−∞
e−πx2

e2πixydx.

Hence
df̂

dy
(y) =

∫ ∞

−∞
2πixe−πx2

e2πixydx

= −i(e−πx2
e2πixy)∞−∞ − 2πy

∫ ∞

−∞
eπix2τe2πixydx

= −2πyf̂(y).
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Set g(x) = e−πx2
. Now,

dg

dx
(x) = −2πxg(x).

It follows that
f̂ ′(x)g(x) − g(x)′(x)f̂(x) = 0.

And so,
f

g

′
(x) = 0.

As a result,
f̂(x) = Cg(x)

for some constant C. We next calculate C. Setting y = 0, we get

C =
∫ ∞

−∞
e−πx2

dx = 1.

Lemma D.13. Let V be a real vector space of dimension n with a positive
(resp. negative) definite bilinear form. For τ ∈ H, the Fourier transform of
the complex valued function f(x) = eπix2τ (resp. eπix2τ ) on V is the function
(i/τ)n/2e−πix2/τ (resp. (−i/τ)n/2eπix2/τ ).

Proof. The convergence criterion needed for the existence of the Fourier trans-
form holds. This is why in the positive (resp. negative) definite case, we need
Im(τ) > 0 (resp. Im(τ) < 0). Suppose first that the bilinear form is positive
definite. We prove the result for n = 1. The general case is an immediate
consequence.

f̂(y) =
∫ ∞

−∞
eπix2τe2πixydx.

Hence
df̂

dy
(y) =

∫ ∞

−∞
2πixeπix2τe2πixydx

=
1
τ

(eπix2τe2πixy)∞−∞ − 2πiy
τ

∫ ∞

−∞
eπix2τe2πixydx

= −2πiy
τ

f̂(y).

Set g(x) = e
−πix2

τ . Now,
dg

dx
(x) = −2πix

τ
g(x).

It follows that
f̂ ′(x)g(x) − g(x)′(x)f̂(x) = 0.

And so,
f

g

′
(x) = 0.
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As a result,
f̂(x) = Cg(x)

for some constant C. We next calculate C. Setting y = 0, we get

C =
∫ ∞

−∞
eπix2τdx = (i/τ)

1
2 .

For the negative definite case, set x− = ix. Then,

exp(πix2τ) = exp(πix2
−(−τ)).

Hence the result follows from the positive definite case.

Lemma D.14. Let V be a real vector space with non-degenerate bilinear form
(., .).

(i) For a, x ∈ V , the Fourier transform of f(x)e2πi(x,a) is f̂(x+ a).
(ii) For x, a ∈ V , the Fourier transform of f(x− a) is e2πi(x,a)f(x).

Proof. Without loss of generality, we may assume that x, a ∈ R, i.e. that
dimV = 1. ∫ ∞

−∞
f(x)e2πixae2πixydx =

∫ ∞

−∞
f(x)e2πix(y+a)

= f̂(y + a)

and ∫ ∞

−∞
f(x− a)e2πixydx =

∫ ∞

−∞
f(x)e2πi(x+a)ydx

= e2πiay

∫ ∞

−∞
f(x)e2πixydx

= e2πiay f̂(y).

Corollary D.15. The Fourier transform of e2πi(ax2+bx+c) for x ∈ R,
a, b, c ∈ C, Im(a) > 0, is (2a/i)

−1
2 e2πi(−x2/4a−bx/2a+c−b2/4a).

Proof. Applying Lemma D.14 (i) for τ = 2a and using Lemma D.13, it follows
that the Fourier transform of e2πi(ax2+bx+c) is (2a/i)

−1
2 e2πice−(x+b)2/4a.



Notation

A indecomposable symmetric Cartan matrix with entries
aij = (hi, hj).

αi ∈ Q , i ∈ I, simple roots of G.
B+ = H ⊕N+ a (generalized) positive Borel sub-superalgebra
B− = H ⊕N− a (generalized) negative Borel sub-superalgebra

Bn(x) A Bernoulli piecewise polynomial −n!
∑

j �=0 ε(jx)/(2πij)
n

C The complex numbers.
c(n) coefficient of the q-expansion of the normalized modular invariant

J , i.e. c(−1) = 1 and J(q) = q−1 +
∑

n≥1 c(n)qn

ch(V )) character of G-module V ∈ O
d(x) degree of homogeneous element x ∈ G.

C The positive open cone in the Lorentzian lattice L.
δm
n 1 if m = n, 0 otherwise.
∆ set of roots.

∆0 set of even roots
∆1 set of odd roots
∆+ set of positive roots

∆(τ) The delta function, ∆(τ) = q
∏

n>0(1 − qn)24

e = exp(2πi)
e(x) exp(2πix).
eγ An element of a basis of C[M∗/M ].
Ek An Eisenstein series of weight k, equal to

1 − (2k/Bk)
∑

n>0 σk−1(n)qn if k ≥ 2.
E2 The non-holomorphic modular form E2(τ) − 3/π�(τ) of weight 2.

η(τ) = q1/24
∏

n>0(1 − qn)
F[X ] = {

∑n
i=0 aiX

i, ai ∈ F}
F[X ]={

∑∞
i=0 aiX

i, ai ∈ F}
F (X) = {

∑∞
i=−N aiX

i, ai ∈ F,N ≥ 0.}
F Fourier group
fQ natural map from Q to H taking αi to hi

gQ natural map from Q to H∗ taking αi to the linear functional βi in
H∗ mapping h to (h, hi)

fγ A component of the vector valued modular form F .
F either a vector valued modular form with components fγ or the

fake monster lie algebra
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FL = P 1/N , the BKM algebra derived from the lattice vertex algebra
VL

G = G(A,H, S) BKM superalgebra with generalized symmetric Car-
tan matrix A, generalized Cartan subalgebra H and indexing set S
for the odd generators

G′ = [G,G]
G̃ = G̃(A,H, S) is the Lie superalgebra generated by the Lie subal-

gebra H and elements ei, fi, i ∈ I satisfying relations (1) − (3) of
Definition 2.1.7.

Gα (α ∈ Q, H or H∗) root space. For α ∈ ∆+, eα,i, 1 ≤ i ≤ dimGα

basis for the root space Gα and fα,i, 1 ≤ i ≤ dimGα dual basis for
G−α

G+ If G is a subgroup of a real orthogonal group then G+ means the
elements of G fixing the chosen orientation

Γ finite abelian group
Γ(z) Euler’s gamma function

G(M) Grassmannian of maximal positive definite subspaces of real vector
space M ⊗Z R

HR real vector space with a non-degenerate symmetric real valued bi-
linear form (., .) and elements hi, i ∈ I such that

(i) (hi, hj) ≤ 0 if i 	= j,

(ii) If (hi, hi) > 0, then 2(hi,hj)
(hi,hi)

∈ Z for all j ∈ I

(iii) If (hi, hi) > 0 and i ∈ S, then (hi,hj)
(hi,hi)

∈ Z for all j ∈ I

H = HR ⊗Z C
H̃ affinization of H = L⊗Z C
H The upper half plane

h(n) = h⊗ tn ∈ H̃, h ∈ H, n ∈ Z, or homomorphism generated by this
element on VL.

ht (λ) =
∑

i∈I xi for λ =
∑

i∈I xiαi ∈ H, xi ∈ C, i.e. height of λ.
I finite set {1, ..., n} or countably infinite one usually identified with

Z+

Inn(G) group of inner automorphism of G
I(τ) The imaginary part of the complex number τ .
IIm,n unimodular even lattice of rank (m,n)

J = {i ∈ I : aii > 0}
J Jacobi group
j The elliptic modular function j(τ) = q−1 + 744 + 196884q+ · · ·, or

an integer.
K negative definite lattice of rank b− − 1
∇2 hyperbolic Laplacian
L lattice, in Chapter 5 assumed to be Lorentzian and such that
L = K ⊗Z II1,1

L∗ dual of lattice L
M = L⊗Z II1,1 lattice of signature (2, b−).
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λV orthogonal projection of a vector λ onto a subspace V .
L(Λ) irreducible G-module of highest weight Λ
M(Λ) Verma G-module of highest weight Λ
m0(α) = dimGα ∩G0

m1(α) = dimGα ∩G1 = mult(α) −m0(α)
Gp (even) Lie subalgebra generated by the elements ei, fi, i ∈ I\S

and [ei, ei], [fi, fi], i ∈ S
N = {n ∈ Z : n > 0}
N = {x ∈ P 1 : (x, P 1) = 0}, the kernel of the bilinear form restricted

to the subspace P 1 of VL

O category of G-modules defined in Definition 2.6.15
Ω generalized Casimir operator
ω Chevalley automorphism
ω0 compact automorphism
P+ = {Λ ∈ H : ∀ i ∈ I, (α, αi) ≥ 0, 2(Λ,αi)

(αi,αi)
(resp. (Λ,αi)

(αi,αi)
) ∈ Z+

if aii > 0 and i ∈ I\S (resp. i ∈ S)}
P set of elements ZM = XM + iYM ∈ M ⊗Z C with norm 0 and

for which XM , YM form an oriented basis for a maximal positive
definite subspace of M ⊗Z R.

Pn = {x ∈ VL : L0x = nxLjx = 0∀ j ≥ 1}
P (V ) = {λ ∈ H : Vλ 	= 0} for V ∈ O
p(a) parity of homogeneous element a ∈ VL

p(α) parity 1 ⊗ eα ∈ VL

ΦM (v+, F ) theta transform of vector valued modular form F , v+ ∈ G(M)
ΨM automorphic form on G(M)
Ψz A restriction of ΨM to the hermitian symmetric space L⊗Z R+ iC.
Π base of the set of roots ∆ of the BKM superalgebra G.
rα reflection corresponding to the root α
ri reflection corresponding to the simple root αi or corresponding in-

ner automorphism
q e2πiτ

Q The rational numbers.
Q formal root lattice. For α, β ∈ Q,H or H∗ or β = 0, write β < α if
α− β is a sum of simple roots

R =

∏
α ∈ ∆+

0 ](1 − e(−α))m0(α)

∏
α∈∆+

1

(1 + e(−α))m1(α)

R′ =

∏
α ∈ ∆+

0 ](1 − e(−α))m0(α)

∏
α ∈ ∆+

1
(1 − e(−α))m1(α)

ρ Weyl vector
ρ(M,W,F ) A Weyl vector.

ρM A representation of Mp2(Z) on the group ring C[M∗/M ].
R The real part of a complex number.
R The real numbers.
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SL A special linear group.
supp(α) support of the root α.

(., .) bilinear form on G, Q, H or H∗.
sch (M(Λ)) super-character of G-module V ∈ O

S Either subset of I indexing the odd simple roots or

=
((

0 −1
1 0

)
,
√
τ

)
∈Mp2(R) or

(
0 −1
1 0

)
∈ SL2(R)

T =
((

1 1
0 1

)
, 1

)
∈Mp2(R) or

(
1 1
0 1

)
∈ SL2(R)

τ A complex number x+ iy with positive imaginary part y.
ΘL generalized or Siegel Theta function on lattice L
VL Γ-graded (bosonic) lattice vertex algebra

V (Λ) highest weight G-module of highest weight Λ
V f

L fermionic lattice vertex superalgebra
Vλ , weight space of weight λ of G-module V (λ ∈ Q or H or H∗)
vλ ∈ Vλ weight vector of weight λ of G-module V ∈ O
v⊥ Orthogonal complement of a vector (or sublattice) in a lattice or

vector space V .
v+ element in G(M), v− it complement in M ⊗Z R
V ir Virasoro algebra
W Weyl group or Weyl chamber
WE even Weyl group.
X ∈ L⊗Z R, the real part of Z

XM the real part of ZM

Y ∈ C, the imaginary part of Z
YM The imaginary part of ZM .

Y (a, v) generalized vertex operator on VL for a ∈ VL

z A primitive norm 0 vector of M .
z′ A vector of M ′ such that (z, z′) = 1.
Z The element Z = (

(−1 0
0−1

)
, i) generating the center of order 4 of

Mp2(Z), or the element X + iY ∈M ⊗Z C.
ZM = (Z, 1,−Z2/2 − z′2/z) = XM + iYM

Z The integers
Z+ = {n ∈ Z : n ≥ 0}
ζ The Riemann zeta function
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