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Abstract. In the present paper a covariant Lagrangian constructed on the bases
of the correspondence principle between the relativistic moving medium electrody-
namics and relativistic quantum field theory requirements is used. The contribution
and physical interpretation of the Lagrangian coefficients to invariant Compton
scattering structures have been obtained. We have analyzed the phenomenological
tensor constant quantities as well.

1. Introduction

By virtue of the low-energy theorem in O(ω2) the amplitude for spin-0
and -1/2 hadrons depends on their internal degrees of freedom, which
are determined by the fundamental parameters such as the electric (α)
and magnetic (β) polarizabilities [1, 2]. In turn, at O(ω3) the effective
Lagrangian describing the photon-nucleon interaction and, as a result
the amplitude for Compton scattering are determined by spin polariz-
abilities [3]-[9]. These characteristics are immediately connected to the
spin properties of hadrons as a composite particles.

The classical process for the investigation of these features of the
photon-hadron interaction is Compton scattering of photons, whose
energies are below the resonance region. Nevertheless, data about spin
polarizabilities can be extracted from other electrodynamic processes
(see, for example Ref. [10]).

The determination of the hadron polarizability contributions to the
amplitudes of QED processes is sequentially carried out by the effective
Lagrangians of interaction of the electromagnetic field with the hadron
as a composite particle. In the nonrelativistic electrodynamics such a
Lagrangian is rather well determined. On the other hand, in the rela-
tivistic QED when hadrons look like bound states, due to the kinematic
relativistic effects, the interpretation of polarizabilities is ambiguous
[2, 9].
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In the present report the correspondence principle between rela-
tivistically moving medium electrodynamics and relativistic quantum
field theory will be sequentially used for the covariant Lagrangian
construction of interaction of the electromagnetic field with polarized
spin hadrons. Then we determine the contribution of the Lagrangian
structures to the invariant Compton scattering amplitudes. The field-
theoretical properties of the energy-momentum tensor and the Hamil-
tonian in the static limit have been determined.

2. The covariant Lagrangian

First we define the Lagrangian of the photon-hadron interaction taking
into account the electric and magnetic polarizabilities.

In the nonrelativistic case, the interaction Hamiltonian of the isot-
ropicly-gyrotropic medium is [11, 12]:

HI = −2π (PE + MH) , (1)

The polarization vectors P and magnetization M look like [11]

P = α̂E, M = β̂H, (2)

where α̂ and β̂ are the tensors of electric and magnetic polarizabilities,
E and H are the strengths vectors of electric and magnetic fields.

Let us now define the effective Lagrangian in the relativistic QED
for spin-0 and -1/2 hadrons taking into consideration their usual electric
and magnetic polarizabilities.

According to the relativistic electrodynamics of the moving medi-
ums the effective Lagrange function is [12, 8]:

Lpol
eff = 2π {eµαµνe

ν + hµβµνh
ν} . (3)

In this expression eµ = FµνU
ν , hµ = F̃µνU

ν , F̃µν = i
2εµνρσF ρσ, where

Fµν and F̃µν are the tensors of the electromagnetic field, αµν and βµν

are tensors determined by the polarizabilities in a medium at rest,
Uµ is the 4-dimensional velocity of the medium, εµνρσ – Levi-Chevita
antisymmetric tensor (ε0123 = 1).

If we move from the Lagrangian (3) to the field-theoretical La-
grangian on the basis of the correspondence principle, then we obtain
[8, 13]:

Lpol
effspin−0 =

π

m2

(
ϕ∗ ↔

∂µ
↔
∂ν ϕ

)
Kν

µ, (4)
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Lpol
effspin−1/2 = − iπ

m

(−
ψ γµ

↔
∂ν ψ

)
Kν

µ, (5)

for spin-0 and spin-1/2 particles respectively, where Kν
µ = α0FµρF

ρν +

β0F̃µρF̃
ρν ,

↔
∂ν=

←
∂ν −

→
∂ν , ϕ and ψ are the wave functions of spin-0

and spin-1/2 particles.
In order to define the effective Lagrangian with account for the

nucleon spin polarizabilities, Eq. (1) is used, where the polarization
and magnetization vectors (P and M) are determined as follows [11]

P = α̂E + γ̂′
E [∇E] , M = β̂H + γ̂′

M [∇H] . (6)

Then the following Lagrangian of the electromagnetic field interact-
ing with the moving medium is obtained [15] :

LI
eff= 2π{[eµαµνeν + hµβµνhν ]−[(γ′

E)µνe
µ(U∂)

hν +(γ′
M )µνh

µ(U∂)eν ]}, (7)

where (γ′
E)µνρ and (γ′

M )µνρ are the gyration pseudotensors, (U∂) =
Uρ∂

ρ.
If the pseudotensors (γ′

E)µν and (γ′
M )µν are determined via gµν as

(γ′
E,M )µν = (γ′

E,M )gµν , then it violates the spatial parity conservation
low (i.e. spin of a composite particle is not taken into account).

From expression (7) it follows that the usual polarizabilities (α, β)
in a rest medium and the gyration give non-zero contributions to the
Lagrangian, starting with the second and the third order in powers of
frequency of an external electromagnetic field respectively.

Due to the correspondence principles [8, 13] and the expression (7),
the field theory effective Lagrangian of interaction of the electromag-
netic field with spinless hadrons will not satisfy the parity conservation
law when the components of pseudotensors (γ′

E)µν and (γ′
M )µν are

not equal to zero. However, in the case of spin particles, it is easy

to determine the dependence of γ-structures from (
−
ψ (

↔
∂α

↔
∂β)γµγ5ψ)

and (Fαν
↔
∂ν F̃σµ).

Hence, the effective field Lagrangian describing the electromagnetic
field and the spin-1/2 hadron interaction is defined as follows:

Leff = Lpol
eff + LSp

eff , (8)

where Lpol
eff is determined by the expression (5) and LSp

eff is [15] :

LSp
eff = − π

2m2
(
−
ψ

↔
∂α

↔
∂β γµγ5ψ){−1

2
γE1 ·Fαν

↔
∂β F̃µν

1
2

γM1 ·F̃αν
↔
∂β Fµν (9)

−γE2 ·(Fαν
←
∂µ F̃ β

ν − F̃αν
→
∂ν F β

µ )γM2 ·(F̃αν
←
∂µ F β

ν −Fαν
→
∂ν F̃ β

µ )}.
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3. Invariant amplitudes

The amplitude Tfi for Compton scattering on the nucleon is defined by

〈f |S − 1| i〉 = i(2π)4δ4(k + p − k
′ − p

′
)Tfi. (10)

The photon momenta are denoted by k, k′ and the nucleon momenta by
p, p′. Assuming invariance under parity, charge conjugation and time
reversal symmetry the general amplitude for Compton scattering can
be written in terms of six invariant amplitudes Ti as [1, 9, 14]

Tfi = u
′
(p

′
)e

′∗µ

{
−P

′
µP

′
ν

P ′2 (T1 + γ · KT2) − NµNν

N2
(T3 + γ · KT4)

+i
P

′
µNν − P

′
νNµ

P ′2K2
γ5T5 + i

P
′
µNν + P

′
νNµ

P ′2K2
γ5γ · KT6

}
eνu(p), (11)

where u
′
(p

′
) and u(p) are spin wave functions of particles, �e and �e ′∗

– polarization vectors of incident and scattered photons. The system
of units c = h̄ = 1 in this case is chosen. The orthogonal 4-vectors
P ′, K, N and Q are defined as P

′
µ = Pµ−Kµ

P ·K
K2 , P = 1

2 (p+p
′
), K =

1
2 (k + k

′
), Nµ = εµνλσP

′νKλQσ, Q = 1
2 (p − p

′
) = 1

2 (k
′ − k).

The Lagrangian (8) allows us to get the covariant amplitude for
Compton scattering on nucleons taking into account electric, magnetic
and spin polarizabilities. By the decomposition of the covariant am-
plitude on invariant spin structures of expression (11) we obtain the
relations

T1 = (−2π)α0 · (−4K2) +
(
−2π

m

)
(γE1 − γM2) · 4(PK)2;

T2 = −2π

m
(α0 + β0) · 2(PK) − 2π

m2
(−γE1 + γM2) · 4(PK)(m2 + K2);

T3 = (−2π)β0 · (4K2) +
(
−2π

m

)
(−γM1 + γE2) · 4(PK)2; (12)

T4 = −2π

m
(−α0 − β0) · 2(PK) − 2π

m2
(γM1 − γE2) · 4(PK)(m2 + K2);

T5 =
(
−2π

m

)
·
[
2(PK)2(γE1 − γM1 − γE2 + γM2) + 4P

′2K2(−γE2 + γM2)
]
;

T6 =
(
− 2π

m2

)
·
[
2(PK)2(γE1 + γM1 − γE2 − γM2) + 4P

′2K2(−γE2 − γM2)
]
;

where combinations of orthogonal momenta are expressed via generally
accepted kinematic variables ν and t as followsP

′2 =
(

4m2

t

)(
ν2 + t

4 − t2

16m2

)
,

N2 =
(

m2t
4

)(
ν2 + t

4 − t2

16m2

)
, K2P

′2 = −m2
(
ν2 + t

4 − t2

16m2

)
, 4K2P

′2 =

−m2η, PK = mν, − 4K2 = t.
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If we realize amplitude (11) in the Lab frame, then the scalar
functions Ai of spin structures [9] look like

A1 = (−2π) (α0 − β0) +
(
−2π

m

)
ν2 · (γE1 − γM1 + γE2 − γM2);

A3 = (−2π) m · (γE1 + γM1 − γE2 − γM2);

A5 =
(
−2π

m

)
(m2 − t

4
) · (−γE1 + γM1 − γE2 + γM2);

A6 = (−2π) (α0 + β0) +
(
−2π

m

)
(m2 − t

4
) · (−γE1 − γM1 + γE2 + γM2);

A2 =
(
−2π

m

)[
(−2m2 +

t

2
) · (−γE2 + γM2) − ν2(−γE1 + γM1 − γE2 + γM2)

]
;

A4 = (−2π) m · (+γE1 + γM1 + γE2 + γM2), (13)

where η = 1
m2 (m4−su) = 4ν2+t− t2

4m2 ( s, u, t are the usual Mandelstam
variables). The invariant amplitudes Ai are even functions of ν and are
free of both kinematic singularities and zeros.

In the Lab system the kinematic invariants ν, t and η read: ν =
1
2 (ω + ω

′
), t = −2ωω

′
(1 − z), η = 2ωω

′
(1 + z).

In the scattering amplitude (11) within the second order in the
photon energy we have got the contribution for electric and magnetic
polarizabilities in the form

T pol
fi =

8πmωω
′

N(t)

[
e

′∗ · eα0 + s
′∗ · sβ0

]
, (14)

and within the third order – the contribution for spin polarizabilities
as

TSp
fi = −8iπm

N(t)

[
−νωω

′
σ · e′∗ × e(γE1 − γM2) + νωω

′
σ · s′∗× s(−γM1 − γE2)

+
(
σ · k̂s

′∗ · eω2ω
′ − σ · k̂′

e
′∗ · sωω

′2
)

(−γE2)

+
(
−σ · k̂e

′∗ · sω2ω
′
+ σ · k̂′

s
′∗ · eωω

′2
)

(−γM2) (15)

4. The energy-momentum tensor for interaction
of the electromagnetic field with spinor particle

In the case of the spinor and electromagnetic fields the expression for
energy-momentum tensor has the form [13]

Tµ
ν =

∂L

∂(∂µψ)
(∂νψ) + (∂νψ)

∂L

∂(∂µψ)
+ (∂νAρ)

∂L

∂(∂µAρ)
− Lδµ

ν . (16)
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The total interaction Lagrangian for spin-1/2 particles with the elec-
tromagnetic field will consist of the Lagrangian for free electromagnetic
field Le−m, the spinor or Dirac’s field LD, the interaction Lagrangian
of the free electromagnetic field with the Dirac’s field Lint−D, the Pauli
term LP and the Lagrangian which considers electric and magnetic
polarizabilities of particles Lα0β0−D:

Ltotal−D = Le−m + LD + Lint−D + LP + Lα0β0−D. (17)

All parts of the Lagrangian (17) are known. The last term Lα0β0−D will
be equal to (5). So the total Lagrangian (17) has the form

Ltotal−D = −1
4
FαβFαβ − ψ(

1
2
iγα

↔
∂α +m)ψ − e(ψγαψ)Aα −

−µψσαβψFαβ − iπ

m
Kν

µ(ψγα
↔
∂ν ψ), (18)

Then we substitute the Lagrangian Ltotal = Le−m + LD + Lint−D +
LP +Lα0β0−D into the expression for the energy-momentum tensor (16).
By simplifying the total energy-momentum tensor we have

T γ
ξ =−(∂γAµ)∂ξAµ − (

2µψσγµψ
)
∂ξAµ +

1
2
iψγγ(∂ξψ) − 1

2
i(∂ξψ)γγψ

−
(
−1

2
∂αAβ∂αAβ − ψψm

)
δγ
ξ +

{(
− iπ

m

)
ψ

[
(α0 − β0)

(
Fµν(γγ

↔
∂ν)

−F γν(γµ
↔
∂ν) + Fαγ(γα

↔
∂µ) − Fαµ(γα

↔
∂γ)

)
− 2β0F

γµ(γν
↔
∂ν)

]
ψ

}
∂ξAµ

+
[
(∂ξψ)(δγ

ν γαψ) − (δγ
ν ψγα)(∂ξψ)

] (
− iπ

m

)
Kν

α. (19)

The energy-momentum conservation law is fulfilled for the expression
(19), i.e. ∂γT γ

ξ(I) = 0.
Now we determine T 0

0(α0,β0−D), i.e. the Hamiltonian. The following
expression was obtained [9]

T 0
0(α0,β0−D) = H(α0,β0) = −2π

(
α0E

2 + β0H
2
)
. (20)

Thus, we have got the well known in the electrodynamic of continuous
media [11] and elementary-particle physics [9] Hamiltonian for the case
of interaction of the electromagnetic field with a polarizable particle.

5. Conclusion

The covariant Lagrangian of interaction of the electromagnetic field
with a polarizable spin particles have been obtained. This Lagrangian
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satisfies the main relativistic quantum field theory requirements (cross-
invariance, P-, T- and gauge invariance). The Lagrangian can be used
for the description of spin polarizabilities in two-photon electromag-
netic processes. Besides, the Lagrangian gives relevant contribution of
the electric, magnetic and spin polarizabilities to scattering amplitude.
This contribution is in a good agreement with spin structures of the
scattering amplitude of paper [9] .The correlations between the co-
variant Lagrangian and canonical energy-momentum tensor have been
determined. This fact on the basis of the correspondence principle
has given a proper definition of the low-energy presentation of the
Lagrangian function.
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