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Abstract.
threshold singularities andtaking into account a nonperturbative character of the

light quark masses, is applied to find hadronic contributions to different physical
quantities.

1. Introduction

A comparison of QCD theoretical results with experimental data is
often based on the conception of the quark-hadron duality [1]. The
idea of quark-hadron duality formulated in [2] is as follows: inclusive
hadronic cross sections, being appropriately average over an energy in-
terval, had to approximately coincide with the corresponding quantities
derived by using quark-gluon description. For many physical quantities
the corresponding interval of integration involves a nonperturbative
region and nonperturbative effects may play an important role for their
description. We consider the following quantities and functions, which
cannot be calculated reliably within the framework of perturbative
QCD:

the ratio of hadronic to leptonic τ -decay widths in the non-strange
vector channel
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A method based on analytic approach in QCD, involving a summation
of
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the Adler function [3], which can be constructed from τ -decays data
[4],

DV (Q2) = Q2

∞∫
0

ds
R(s)

(s + Q2)2
; (2)

the smeared R∆ function [2]

R∆(s) =
∆
π

∞∫
0

ds′
R(s′)

(s − s′)2 + ∆2
; (3)

the hadronic contribution to the anomalous magnetic moment of
the muon
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1
3
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)2
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s
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the hadronic contribution to the electromagnetic coupling

∆α
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Z
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A method, which we use here for description of these quantities
and functions, is based on the analytic approach in QCD [5, 6]. The
analytic approach allows us to describe self-consistently the timelike
region [7, 8] that is used in the integrals in Eqs. (1) - (5). This method
also involves into consideration a summation of threshold singularities
and takes into account nonperturbative character of the light quark
masses.

2. R-function

To incorporate the quark mass effects one usually uses the approximate
expression proposed in [2, 9] above the quark-antiquark threshold

R(s) = T (v) [1 + g(v)r(s)] , (6)

where

T (v) = v
3 − v2

2
, g(v) =

4π

3

[
π

2v
− 3 + v

4

(
π

2
− 3

4π

)]
. (7)

In Eq. (6) one cannot directly use the perturbative expression for
r(s), which contains unphysical singularities, to calculate, say, the Adler
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D-function (2). Instead of that one can use the analytic perturbation
theory for r(s). The explicit three-loop form for ran(s) is given in [4].

In describing a charged particle-antiparticle system near threshold,
it is well known from QED that the so-called Coulomb resummation
factor plays an important role. For a systematic relativistic analysis
of quark-antiquark systems, it is essential from the very beginning to
have a relativistic generalization of the S-factor. A new form for this
relativistic factor in the case of QCD has been proposed in [10] 1

S(χ) =
X(χ)

1 − exp [−X(χ)]
, X(χ) =

4
3

π αs

sinhχ
, (8)

where χ is the rapidity which related to s by 2m cosh χ =
√

s. The
relativistic resummation factor (8) reproduces both the expected non-
relativistic and ultrarelativistic limits and corresponds to a QCD-like
Coulomb potential.

The modified expression for R-function is [4, 12]

R(s) = [R0(s) + R1(s)] Θ(s − 4m2), (9)

R0(s) = T (v)S(χ), R1(s) = T (v)
[
ran(s) g(v) − 1

2X(χ)
]
.

The function ran(s) is taken within the analytic approach as in [4].
To avoid a double counting the function R1 contains subtracted term
with X(χ). The term R0 gives a principle contribution to R(s), the
correction R1 is less than twenty percent for whole energy interval.

3. Quark masses

A solution of the Schwinger-Dyson equations performed in [13–17]
demonstrates a fined infrared behavior of the invariant charge and
quark mass function. This behavior can be understood by using a
conception of the dynamical quark mass. This mass has an essentially
nonperturbative nature. Its connection with the quark condensate has
been established in [18]. By using the analysis based on the Schwinger-
Dyson equations the similar relation has been found in [19]. It has
been demonstrated in [20] that on the mass-shall one has a gauge-
independent result: m3 = −4/3παs < 0|q̄ q|0 > . An analysis performed
in [21] leads to a step-like behavior of the quark mass function.

According to these results one can assume that at small p2 the
function m(p2) is rather smooth (nearly constant). In the region p2 >

1 Here we consider the vector channel for which a threshold resummation S-factor
for the s-wave states is used. For the axial-vector channel the P -factor is required.
The corresponding relativistic factor has recently been found in [11].
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Figure 1. Effective quark mass.

1 ÷ 2 GeV the principle behavior of the function m(p2) is defined by
perturbation theory.

We perform our analysis by using constant quark masses and the
mass function m(p2) which is shown in Fig. 1. We take the line that
connects the points a and b in the form A3/(p2 − B2). The parameter
m0 are taken from the known value of the running (current) mass
at b = 2.0 GeV [22], the parameter a is taken as a = 0.8 GeV. The
quantities considering here are not too sensitive to parameters of heavy
quarks and we take for c, b and t quarks mf (p2) = mf

0 = Mf
0 . We have

a consistent description of all mentioned quantities, if the light quark
parameter Mu,d

0 = 260±10 MeV and the mass parameters M s
0 is varied

in the limits from 400 to 550 MeV. The masses of the heavy quarks are
M c

0 = 1.3 GeV, M b
0 = 4.4 GeV and M b

0 = 174.0 GeV.

4. Physical quantities and functions

Let us apply the formulated model to describe mentioned in Introduc-
tion physical quantities and functions connected with R(s).

Inclusive decay of the τ-lepton. The experimental data pre-
sented by the ALEPH, Rexpt

τ,V = 1.775 ± 0.017 [23], and the OPAL,
Rexpt

τ,V = 1.764 ± 0.016 [24], collaborations. In our analysis we use the
non-strange vector channel spectral function obtained by the ALEPH
collaboration and keep in all further calculations the value RV

τ = 1.78
as the normalization point.

DV -function. In order to construct the Euclidean D-function we
use for R(s) the following expression R(s) = Rexpt(s) θ(s0 − s) +
Rtheor(s) θ(s − s0) . The continuum threshold s0 � 1.6 GeV2 has been
found from the duality relation [25].



165

Figure 3. D-function for m = m(p2).

In Fig. 2 we plot curves corresponding to different values of the
quark masses. A result for the D-function that obtained by using the
mass function m(p2) with Mu,d

0 = 260 MeV is shown in Fig. 3. Thus
we obtained the result that is rather close to the result obtained for
m(p2) = const.

‘Light’ smeared R∆-function. By using the ALEPH data [23],
we construct the ‘light’ experimental function R∆(s).

Figure 5. Smeared function for ∆ = 1.0 GeV2.

cal smeared functions for ∆ = 0.5 GeV2 and ∆ = 1.0 GeV2. Let us
Figures 4 and 5 demonstrate behavior of experimental and theoreti-
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emphasize, in the spacelike region (s < 0) there is a good agreement
between data and theory starting from s = 0.

Hadronic contribution to aµ. The hadronic contribution to the
anomalous magnetic moment of the muon in the leading order of the
electromagnetic coupling constant is defined by Eq. (4). In our calcu-
lations we take into account the matching conditions at quark thresh-
olds according to procedure described in [8]. The strong interaction
contribution to aµ we estimate as

ahad
µ = (693 ± 34) × 10−10. (10)

The experimental value of ahad
µ is extracted from e+e− annihilation

and τ decay data: (696.3 ± 6.2exp ± 3.6rad) × 10−10 (e+e− - based),
(711.0 ± 5.0exp ± 0.8rad ± 2.8SU(2)) × 10−10 (τ - based) [26].

Hadronic contributions to ∆α. Consider the hadronic correc-
tion to electromagnetic fine structure constant α at the Z-boson scale
defined by Eq. (5). For ∆α

(5)
had(M

2
Z) we obtain

∆α
(5)
had(M

2
Z) = (278.2 ± 3.5) × 10−4. (11)

The experimental average value is ∆α
(5)
had(M

2
Z) = (275.5 ± 1.9expt ±

1.3rad) × 10−4 [27].

5. Conclusions

Nonperturbative method of performing QCD calculations has been de-
veloped. The method based on analytic approach, takes into account a
summation of infinite numbers of threshold singularities and involves
non-perturbative light quark masses. The following quantities and func-
tions have been analysed: RV

τ , DV (Q2), R∆(s), ahad
µ , and ∆α

(5)
had(M

2
Z).

It has been demonstrated that the method proposed allows us to de-
scribe well these objects.
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