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Abstract. On the base of the system of hydrodynamic equations we consider a model of for-
mation and development of the hydrodynamic vortices in the nuclear matter during relativistic
heavy-ion collisions, in astrophysical objects, and in powerful atmospheric phenomena such as
typhoons and tornados. A new class of the analytic solutions of non-relativistic hydrodynamic
equations for the incompressible liquid in the presence of a bulk sink are analyzed. The main
feature of these solutions is that they describe non-stationary hydrodynamic vortices with the
azimuth component of velocity exponentially or explosively growing with time. A necessary
attribute of a system with such a behavior is a presence of a bulk sink, which provides the
existence of the non-stationary vortex regime. These solutions are obtained by nullifying
the terms in the Navier-Stokes equations, which describe viscous effects, exist and represent
vortex structure with “rigid-body” rotation of the core and converging radial flows. With the
help of our model we explain some typical features of the above physical systems from the
unique point of view.

1. Introduction

Hydrodynamic vortices and vortex flows is rather common in nature. This
is constantly confirmed by formation of the powerful atmospheric vortices,
typhoons, tornados, and so on. An example of the gigantic vortex structure
is the big “Red Spot” on the Jupiter surface that is observed by astronomers
about a several centuries.

Why such hydrodynamic vortex structures exist for an appreciable length
of time in liquids and gases in spite of a finite viscosity of these media? A
possible answer to this question could be associated with realization of the
profiles of hydrodynamical velocities that strongly reduce the affect of the
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viscous terms in the Navier-Stokes equations. One example of a such durable
motion is the axially-symmetrical Rankin vortex in an incompressible viscous
liquid [1]. The velocity profile of this vortex has only one nonzero component
– the azimuth component and describes the “rigid body” rotation in some
cylindric domain of an arbitrary radius and differential rotation (velocity is
inversely proportional to a distance from the vortex center). This profile nul-
lifies the terms with the first viscosity in the Navier-Stokes equation and
satisfies the hydrodynamic equations of an incompressible liquid at a constant
velocity of the vortex rotation. However, this motion turns out to be unstable
because the first derivative of the azimuth velocity has a step at the border of
the rigid body rotation. In the vicinity of this point, the viscous effects result
in dissipation of the vortex kinetic energy and it diffuses in the space decaying
with time. It is evident that the stationary or growing with time vortices may
exist only at the expense of the external energy sources. Among all possible
hydrodynamic flows and vortex motions in the incompressible liquid survive
only those ones which have a comparatively small dissipation of energy.

We study a new class of solutions of non-relativistic hydrodynamic equa-
tions of a incompressible liquid with a bulk sink in a finite domain of the
liquid with cylindric or spherical symmetry. These solutions may be ob-
tained by choosing the profiles of the hydrodynamic velocities that nullify
the viscous terms in the Navier-Stokes equations [2]. We call them the quasi-
dissipativeless solutions. They model the dynamical processes (nuclear, chem-
ical reactions, phase transitions etc.), which move away out of the system,
which performs a hydrodynamic motion, one or several species. The solutions
under consideration describe the non-stationary hydrodynamic vortices with
the exponentially growing velocity of rotation in some domain (core of the
vortex) of the liquid with the bulk sink. The rotation acceleration of these
vortices is a result of combined action of the convective and the Coriolis
forces that appear due to the radial convergent flows into the bulk domain
from the external region that support a constant density of the liquid. The
acceleration of vortex motion may correspond to a regime of the nonlinear
“explosive” instability in some special cases.

To our mind, the mechanism of formation and developing of this non-
stationary hydrodynamic vortices could explain from the unique point of view
a wide circle of the physical phenomena.

In this paper, we apply this hydrodynamic approach for description of:
i) the rotational motion of nuclear matter, which appears in the relativistic
collisions of heavy nuclei with an initial angular momentum;
ii) the origination of non-dissipative hydrodynamic vortices in the liquid cores
of planets and acceleration of the central cores of stars caused by thermonu-
clear reactions;
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iii) the creation of powerful atmospheric vortices (whirlwinds, tornados, and
typhoons).

2. The state of nuclear matter created in the relativistic nucleus-nucleus
collisions

We consider the system, which is formed in the process of heavy nuclei
collisions. Being accelerated to high energies (E � 1 GeV), heavy atomic
nuclei with a charge Z � 1 gain the shape of ellipsoids of rotation, which
are strongly contracted in the direction of motion due to the relativistic re-

duction of longitudinal sizes by the factor γ =
√

1 − v2
0/c

2 � 1 (where v0

is the velocity of the colliding nuclei, and c is the velocity of light) (Fig. 1).
A cluster of the dense hot nuclear matter (NM) that created in the nuclear
collisions in the laboratory reference system takes the form of a thin disk
with the initial radius R0 ∼ 6–7 fm = 6–7 · 10−13 cm (for the nuclei of Au and
Pb), the thickness h0 = γR0 � R0, and the total mass µ0 = 2AmN/γ (where
A is atomic number, and mN is nucleon mass). A high density of particles
and their small mean free paths in the disk, its evolution on the initial stage
t < tf (until the distances between particles becomes greater than the action
radius of nuclear forces r ∼ �/mπc, where mπ ≈ 140 MeV/c2 — mass of a π-
meson) can be described in the hydrodynamic approximation. According to
[3], the cluster of NM begins one-dimensional expansion along the collision
axis (Fig. 1) up to the freeze-out time of the order of tf ∼ 10 fm/c.

We consider the NM motion in the cylindrical coordinates with z axis
along the collision line. The one-dimensionality of the expansion (along the
z axis) allows us to assume that transverse hydrodynamic velocities (radial
vr and azimuthal vϕ components of the v) are non-relativistic ones during
the time, t < tf . In addition, according to the Bjorken scenario of the one-
dimensional expansion [4], majority of the particles is contained in the inner
layers of the fireball and move with longitudinal velocities

vz =
z
t
, t > ti (ti � tf) , (1)

where ti = 0.1–0.3 fm/c is a time of the formation of a fireball [5]. Only in a
narrow external layer, the substance moves with velocities of the order of the
velocity of light v→ c (see Fig. 1).
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Figure 1. Sketch of the collision of relativistically contracted heavy nuclei. Left figure: nuclei

before collision; Figure in the center: the nuclei just after overlapping, beginning of the for-

mation of the fireball; Right figure: the fireball (cluster of hot and dense nuclear matter) which

expands.

We consider such a region of a fireball or such a time of the hydrodynamic
expansion, when the non-relativistic hydrodynamic description is valid for
the longitudinal velocity vz (in the Bjorken model, the duration of the for-
mation of particles with great longitudinal momenta exceeds that for slow
particles). In this case, we simplify our problem, which does not affect the
qualitative behavior of the described hydrodynamic instability.

2.1. THE HYDRODYNAMIC INSTABILITY OF THE VORTEX MOTION IN
NUCLEAR MATTER CREATED IN HEAVY-NUCLEI COLLISIONS

We describe the motion of NM with the help of the Navier–Stokes equation.
In the cylindrical coordinate system it reads

∂vr

∂t
+ (v∇) vr −

v2
ϕ

r
= −1
ρ

∂p
∂r
+ ν

[
∆vr − vr

r2
− 2

r2

∂vϕ
∂ϕ

]
, (2)

∂vϕ
∂t
+ (v∇) vϕ +

vrvϕ
r
= − 1
ρr
∂p
∂ϕ
+ ν

[
∆vϕ −

vϕ
r2
+

2
r2

∂vr

∂ϕ

]
, (3)

∂vz

∂t
+ (v∇) vz = −1

ρ

∂p
∂z
+ ν∆vz, (4)

where p is the pressure, ν is the coefficient of kinematic viscosity, and

(v∇) = vr
∂

∂r
+

vϕ
r
∂

∂ϕ
+ vz
∂

∂z
, ∆ =

1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂ϕ2
+
∂2

∂z2
. (5)

Different nuclear reactions are running in the fireball and accompanied by
the escape of created products (secondary particles, γ-quanta, jets) and by a
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decrease of the total mass of the fireball µ (t) with time. These processes may
be described by the the continuity equation with a bulk sink term, q (r, t),

∂ρ

∂t
+ div (ρv) = −q (r, t) , (6)

where ρ (r, t) is the density of NM. For the nuclear matter we may use the
approximation of quasi-incompressible liquid. This means that in the process
of hydrodynamic motion the following equation holds true

dρ
dt
=
∂ρ

∂t
+ (v∇) ρ = 0 , (7)

in comparison with the ordinary incompressible liquid with constant density
now, ρ (r, t) � const.We make one more assumption that the intensity of the
bulk sink in (6) is proportional to the local fireball density, q ∝ ρ. In this case,
the continuity equation (6) for the incompressible NM can be represented as

div v ≡ 1
r
∂

∂r
(rvr) +

1
r

∂vϕ
∂ϕ
+
∂vz

∂z
= − 1
τ (t)
, (8)

where the typical time τ = (q/ρ)−1 of the outflow of NM from a fireball at
the expense of nuclear reactions (transformations of particles, annihilation,
tunneling, etc.) depends on time only. The parameter τ can be estimated by
the formula

τ−1 =
∑

all processes
σeffnv , (9)

whereσeff is the effective cross-section of inelastic processes or reactions, n is
the bulk concentration of particles, and v is the mean velocity of the particles,
which participate in the reactions. Expanding vz in the vicinity, z = 0, in
the middle cross-section of the fireball, where vz = 0, and assuming that the
fireball is rather thin, (γ � 1), we obtain

vz (z, t) = α (t) z . (10)

Hence, according to the Bjorken model (1)

α (t) =
1
t
, t > ti . (11)

Doing in the same manner as while obtaining vz (10), we can get the
profiles of the transverse velocities proportional to a distance r from the z
axis (where vr = 0 and vφ = 0):

vr (r, t) = −β(t) r , vφ (r, t) = Ω(t) r . (12)
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The negative sign of vr corresponds to the convergent radial flow of NM in
a fireball, which ensures the validity of the continuity equation (8) in the
presence of a sink and the longitudinal expansion. We note that these profiles
nullify the viscous terms in Navier–Stokes equations (3)-(4).

For the axisymmetric profiles of the velocity which are independent of
the azimuthal angle ϕ, the equation of continuity (8) with regard for (10) and
(12) leads to the relation

α (t) − 2β (t) = − 1
τ (t)
. (13)

On the other hand, the component of azimuthal hydrodynamic velocity
vϕ (r, t) = Ω(t)r describing the “rigid-body” rotation with unknown Ω(t) must
satisfy the Navier–Stokes equation (3). Substitution (12) vr (r, t) and vϕ (r, t)
at r � R (t) , (R(t) is a radius of the fireball at a moment time t), in (3) yields

dΩ (t)
dt
− 2β (t)Ω (t) = 0 . (14)

The solution of this equation with account of (13) takes the form

Ω (t) = Ω0 exp



t∫

ti

[
1
τ (t′)

+ α
(
t′
)]

dt′


, (15)

where Ω0 is an initial angular velocity of the rotation of nuclear matter. For
the simplest case τ =const, and in the Bjorken model where α (t) = 1/t

Ω (t) = Ω0
t
ti

exp
{ t − ti
τ

}
, t > ti . (16)

This dependence describes the “exponential” hydrodynamic instability of the
rotational motion of NM in the fireball provided that initial angular velocity,
Ω0 � 0 (neglecting by the slow pre-exponential factor ∝ t).

We connect the origin of nonzero Ω0 with collisions of nuclei in highly
excited rotational states with large orbital quantum numbers. Therefore, within
the frame of the quasi-classical approximation there are some initial rotation
of the nuclear matter with the hydrodynamic azimuthal velocity

vϕ0 = Ω0r (r � R0) , (17)

where R0 = R(0) (initial radius of the fireball), Ω0 is the initial angular ve-
locity of rotation connected with the initial angular momentum of the fireball
Mz0 by the relation

Mz0 = Iz0Ω0. (18)



9

Here, Iz0 is the initial moment of inertia. For the fireball in the form of a disk
of a thickness h0 = γR0 � R0, it is equal to

Iz0 =
1
2
µ0R2

0, µ0 = πR
3
0γρ0, (19)

where ρ0 = µ0/πR2
0h0 is the initial density of NM.

The total mass of the fireball is given by

µ (t) = πR2 (t)

h(t)/2∫

−h(t)/2

ρ (z, t) dz , (20)

where h (t) is the fireball disk thickness and ρ (z, t) is its density. The fireball
transverse radius R (t) and its mass µ(t) decrease with time.

We assume that the value of the integral

h(t)/2∫

−h(t)/2

ρ (z, t) dz ≡ µ(t)
πR2(t)

=
µ0

πR2
0

= const

is not changed during the expansion of the fireball, which would be fulfiled
exactly upon the one-dimensional expansion in the absence of nuclear re-
actions, where h(t)ρ(t) = h0ρ0 = const . In this case, the decrease in R (t)
will occur only due to the presence of a bulk sink in the fireball (rather than
at the expense of its expansion). This yields that the inertia moment drops
proportionally to the fourth degree of the radius R (t):

Iz (t) =
1
2
µ (t) R2 (t) =

π

2
ρ0h0R4 (t) . (21)

By virtue of the law of conservation of the angular momentum Mz =

Mz0 = const and according to (18), there exists the interrelation between the
angular velocity of rotation of the cluster Ω (t) and its actual radius R (t) :

Ω (t) = Ω0

[
R0

R (t)

]4

. (22)

According to (22), this corresponds to the exponential decrease (by ne-
glecting the slower power behavior) of the cluster radius,

R (t) = R0

( ti
t

)1/4
exp

{
− t − ti

4τ

}
, t > ti, (23)

and to the exponential growth in time of the maximal azimuthal velocity of
NM on the boundary of the cluster (t > ti):

vmax
ϕ (t) = Ω (t) R (t) = Ω0R0

(
t
ti

)3/4

exp

{
3
4

t − ti
τ

}
. (24)



10

The latter must lead to a change in the distributions of the momenta of out-
going secondary particles and to the appearance of the angular momentum in
the distributions of those products of nuclear reactions which will take away
a part of the rotational moment of the system with themselves.

For the velocity profiles (10)—(17), Eq. (2) defines a change in time of
the radial pressure of NM in the cluster r � R (t):

p (r, t) = p0 +
ρr2

2

[
Ω2 (t) − β2 (t) + β̇ (t)

]
, (25)

where p0 — pressure at r = 0, and the dot above a letter stands for the
derivative with respect to time.

It is worth to note that, in the Bjorken model, the pressure turns out to be
homogeneous along the axis of the expansion of NM by virtue of the equality
α̇ = −1/t2 = −α2. With regard for (11) and (13), we get (at τ = const):

p (r, z, t) = p0 +
ρr2

2

Ω2 (t) − 1
4

(
1
t
+

1
τ

)2

− 1
2t2

 . (26)

Upon the noncentral collision of heavy nuclei (nonzero impact parame-
ter), there appears the region of the overlapping of nuclei which is charac-
terized by the asymmetry in the plane transverse to the collision axis. This
leads to the appearance of the asymmetry of the spatial gradients of pressure
and density, which causes the appearance of an asymmetry in the momentum
distribution of particles [5]. In this case, the azimuthal angular distributions
of secondary particles are usually represented by the formula [6]

dN
dϕ
=

N0

2π
(1 + 2ν1 cosϕ + 2ν2 cos 2ϕ + ...) . (27)

The case with ν2 � 0 corresponds to the elliptic flow. The parameter ν2
depends monotonically on the transverse momentum of outgoing particles

p⊥ =
√

p2
r + p2

ϕ and varies as follows: ν2= 0÷0.2 [6]. We note that a sim-
ilar azimuthal asymmetry indicates once more the presence of the effect of
the collective character of the nuclear matter which is created in relativistic
heavy-ion collisions and can be described in the hydrodynamic approxima-
tion.

The form of an axially nonsymmetric cluster of NM can be described as
R (t, ϕ) = R(t) (1 + ξ cos 2ϕ), and its velocity components are

vr (r, ϕ, t) = −βr (1 + ε cos 2ϕ) , (28)

vϕ (r, ϕ, t) = Ωr (1 + δ sin 2ϕ) , (29)
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vz (z, t) = αz . (30)

Here, ξ (t) , ε (t) , δ (t) — some functions of time. For such angular and ra-
dial dependences, the terms describing the viscosity in the Navier–Stokes
equations are identically equal to zero under the condition βε = Ωδ:

ν

[
1
r
∂

∂r

(
r
∂vr

∂r

)
+

1
r2

∂2vr

∂ϕ2
− vr

r2
− 2

r2

∂vϕ
∂ϕ

]
≡ 0 , (31)

ν

1
r
∂

∂r

(
r
∂vϕ
∂r

)
+

1
r2

∂2vϕ
∂ϕ2
− vϕ

r2
+

2
r2

∂vr

∂ϕ

 ≡ 0 . (32)

In this case, the equation of continuity (10) leads again to relation (13), and
Eq. (3) yields (14).

Thus, in the hydrodynamic model under consideration, the noncentral
character of the collisions of heavy nuclei does not practically affect the
mechanism of development of a hydrodynamic rotational instability. The last
is defined by the presence of the term describing a sink in the equation of
continuity and by the initial nonzero vorticity of the cluster of NM and cor-
responds to the hydrodynamic velocity profiles which nullify the terms de-
scribing the viscosity in the Navier–Stokes equation.

3.
(planets, stars)

In this section, we consider the possibility of existence of the dissipa-
tiveless vortex structures and the flow with zeroth viscosity in the spherically
symmetric objects, particularly, in the planets and the Earth, where the melted
liquid nucleus exists and in the central cores of stars and the Sun where the
thermonuclear fusion reactions take place.

It is known, that in depths of the Earth and other planets of the Earth group
the liquid cores exist. They consist of melted liquid minerals and metals. This
core is enveloped by the rigid crust (lithosphere and asthenosphere)of a radius
R0, and limited from inside by the surface of rigid core of a radius r0. On
action of the gravity forces from other celestial bodies (in particular, for the
Earth from the Moon and the Sun), the tidal waves may appear in the liquid
cores that could cause breaks of the rigid crust forming powerful earthquakes.

We show that a spherical layer of the viscous liquid inside the liquid
planet core in the domain r0 � r � R0 the close global hydrodynamical
flows (three dimensional vortices) may appear that in the incompressible
liquid correspond to the zeroth bulk viscosity and may be excited by the
external gravitational fields. In stationary conditions, due to a finite viscosity
and friction with the rigid walls, the liquid core of the planets must take part in

Spherically symmetrical vortex structures in astrophysics
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the daily rotation as a whole with a definite angular velocity Ω0 (for the Earth
Ω0 ≈ 7.3 · 10−5 c−1). The hydrodynamic azimuth velocity vϕ0 of this “rigid”
rotation of the liquid in the layer r0 � r � R0 with account of the spherically
symmetric gravitational forces of the planet satisfies the following equations:

v2
ϕ0

r
=

1
ρ

∂P
∂r
+ g(r), v2

ϕ0cot θ =
1
ρ

∂P
∂θ
, (33)

where P and ρ are the equilibrium pressure and density of the liquid , g(r) =
4π
3 Gρr + g0is the gravity acceleration inside the liquid core, g0 = GM0/r2

0
is the gravity acceleration formed by the inner rigid core of a mass M0 =
4π
3 ρ0r3

0 and a density ρ0, G is the gravity constant, and θ is a polar angle of
the spherical coordinates.

The stationary solutions that satisfy equations (33) take the following
form

vϕ0(r, θ) = rΩ0 sin θ, (34)

P(r, θ) = P0 +
ρr2

2

[
Ω2

0 sin2 θ − 4π
3

Gρ

]
− ρg0r. (35)

However, this ground state of the “solid ” rotation may be perturbed by the
external gravitational fields. To describe this perturbed hydrodynamic motion
of the liquid in the domain r0 � r � R0 we apply equations of the Navier-
Stokes and continuity equation for the incompressible viscous equation in the

the liquid vr on the rigid walls at r = r0 and r = R0 must be zero, we set
vr = 0 in the whole bulk of the liquid core. In this case the hydrodynamic
equations take the form:

−v2
ϕ + v2

θ

r
= −1
ρ

∂P
∂r
− g(r) + g̃r − 2ν

r2

[
∂vθ
∂θ
+

1
sin θ

∂vϕ
∂ϕ
+ vθctg θ

]
, (36)

∂vϕ
∂t
+

vθ
r

∂vϕ
∂θ
+

vϕ
r sin θ

∂vϕ
∂ϕ
+

vϕvθctg θ

r
= − 1

rρ sin θ
∂P
∂ϕ
+ g̃ϕ+ (37)

+ν

[
1
r
∂2

∂r2
(rvϕ)+

1

r2 sin2 θ

∂2vϕ
∂ϕ2
+

1
r2 sin θ

∂2

∂θ2
(sin θvϕ)+

2 cos θ

r2 sin2 θ

∂vθ
∂ϕ
− vϕ

r2 sin2 θ

]
,

(38)
∂vθ
∂t
+

vϕ
r sin θ

∂vθ
∂ϕ
+

vθ
r
∂vθ
∂θ
−v2
ϕctg θ

r
=− 1

rρ
∂P
∂θ
+g̃θ+ν

[
1
r
∂2

∂r2
(rvθ)+

1

r2 sin2 θ

∂2vθ
∂ϕ2
+

(39)

+
1

r2 sin θ
∂2

∂θ2
(sin θvθ) − 2 cos θ

r2 sin2 θ

∂vϕ
∂ϕ
− vθ

r2 sin2 θ

]
. (40)

spherical coordinate system [2]. Keeping in mind that the radial velocity of
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Here vθ is the meridian velocity of the liquid, g̃r, g̃ϕ and g̃θ are the radial,
azimuth, and meridian components of the perturbing acceleration that formed
by the external gravity fields, respectively.

The continuity equation at vr = 0 reduces to

∂vθ
∂θ
+

1
sin θ

∂vϕ
∂ϕ
+ vθ cot θ = 0. (41)

According to equation (41), the expression in the square brackets with the
coefficient of kinematic viscosity ν on the r.h.s. of equation (36) identically
equals to zero. The continuity equation (41) is satisfied by the following
angular dependencies of the angular velocities

vϕ(r, θ, ϕ) = [rΩ0 + F(r)] sin θ + f (r) cos θ cosϕ, (42)

vθ(r, ϕ) = f (r) sinϕ, (43)

where F(r) and f (r) are arbitrary functions of r. Taking these functions in the
form

F(r) = Ω(r + α/r2), f (r) = ω(r + β/r2), (44)

whereΩ andω are some corrections to the constant angular velocityΩ0 of the
“rigid ” rotation of the liquid and α i β are arbitrary parameters that are dic-
tated by the boundary conditions the both expressions in the square brackets
with ν in the right hand parts of equations (38) and (40). This means that the
hydrodynamic flows with velocities (42) and (43) at the radial distribution
(44) in the incompressible viscous liquid actually correspond to the zeroth
bulk viscosity.

If we select parameters α and β equal to α = β = −R3
0,when the perturbed

azimuth and meridional velocities equal to zero at r = R0,, then the friction
between the liquid and the inner wall of rigid crust disappears. Moreover,
if we assume that the rigid central planet core can rotate with the angular
velocity different from the Ω0, then the friction between the liquid and rigid
cores will be minimal at velocities that coincide at the point r = r0. For
example, on the ecuador at θ = π/2 and ϕ = 0 :

vϕ(r0, π/2, 0) = [r0Ω0 + Ω(r0 − R3
0/r

2
0)]. (45)

Now we show that these three dimensional global vortexes in the liquid
cores of planets may be born under action of the external gravitational pertur-
bations. Substituting expressions (42)—(44) at α = β = −R3

0 in equation (36)
and taking account of the relation for the equilibrium state (34) and (35), for
the perturbation of pressure P̃ we have the following equation:
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r

1 −
R3

0

r3


2 [
Ω

(
2Ω′ + Ω

)
sin2 θ + 2ω

(
Ω′ + Ω

)
sin θ cos θ cosϕ + ω2

(
cos2 θ cos2 ϕ + sin2 ϕ

) ]
(46)

= −1
r
∂P̃
∂r
+ g̃r , (47)

Let us consider the case of a maximum gravitational force acting on the Earth
from the Moon and the Sun at the complete solar eclipse when the resultant
gravitational potential is equal to

Φ(r, θ̃) = −G


M1√

R2
1 + r2 − 2R1r cos θ̃

+
M2√

R2
2 + r2 − 2R2r cos θ̃

 , (48)

where M1 i M2 are the masses od the Sun and the Moon that are located a
distances R1 i R2 from the Earth center respectively , r is a radius-vector of
an arbitrary point in the Earth bulk (in particular, in the liquid core r < R0),
and θ̃ is the angle between vectors r and R1,2. With account of the strong
inequalities R0 � R2 � R1 (at M1 � M2) keeping the terms of the second
order of smallness, according to (48) we get

Φ(r, θ̃) � −
[
Φ0 + Φ1r cos θ̃ + Φ2

r2

2
(3 cos2 θ̃ − 1)

]
,

(49)

where

Φ0 = G

(
M1

R1
+

M2

R2

)
, Φ1 = G

M1

R2
1

+
M2

R2
2

 , Φ2 = G


M1

R3
1

+
M2

R3
2

 . (50)

In the spherical coordinates with the polar axis coinciding with the Earth
rotation axis, the angle θ̃ can be expressed through the polar (θ i θ′) and
azimuth (ϕ i ϕ′) angles of the vectors r and R1,2 as follows

cos θ̃ = cos θ cos θ′ + sin θ sin θ′(cosϕ cosϕ′ + sinϕ sinϕ′) . (51)

At the points of the Earth orbits (ecliptic) that corresponds to winter and
summer solstice when the vectors R1,2 and the inclined axis of the Earth lies
in the same plane so that ϕ′ = 0, and θ′ = π/2 − θ1 (where θ1 is the angle of
Earth incline to the ecliptic plane ), with the help (51) we get

cos θ̃(θ, ϕ) = cos θ sin θ1 + sin θ cosϕ cos θ1. (52)
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At the points of spring and fall solstice when the vectors R1,2 under
complete solar eclipse are directed so that ϕ′ = θ′ = π/2, we have:

cos θ̃(θ, ϕ) = sin θ sinϕ. (53)

The perturbations of the gravity force with account of (49) and (52) or
(53) may be calculated by using the formulas:

g̃r = −∂Φ
∂r
, g̃ϕ = − 1

r sin θ
∂Φ

∂ϕ
, g̃θ = −1

r
∂Φ

∂θ
. (54)

In particular, for g̃r according to (49) we get

g̃r = Φ1 cos θ̃(θ, ϕ) + Φ2r
[
3 cos2 θ̃(θ, ϕ) − 1

]
. (55)

With account of relations (52) and (53) we can see that the second term
in (55) contains the same space—angular dependencies as the left hand part
of the equation (47). In fact, according to (52) and (53), we obtain

cos2 θ̃ =



cos2 θ sin2 θ1 + sin θ cos θ cosϕ sin 2θ1+

+(1 − cos2 θ) cos2 ϕ cos2 θ1,

1 − (cos2 θ + cos2 ϕ) + cos2 θ cos2 ϕ.

(56)

The correspondent terms in (56) with the angular dependencies of the type
sin θ cos θ cosϕ (at sin 2θ1) and cos2 θ cos2 ϕ coincide in their structure with
some terms in the left hand side of equation (47). In other words, a peculiar
space—time resonance appears between the gravitation perturbations (55)
and the dissipativeless hydrodynamic flows. It may excite these vortex flows
in the liquid core of the Earth at the moments when the complete solar eclipse
coincides with the above specified location of the Earth on the ecliptic.

The correspondent inhomogeneous perturbation of the pressure P̃ must
act on the rigid at r = R0 and along with regular tidal waves can cause
detraction (break) of the lithosphere forming conditions for appearance of
the power earthquakes on the land or for birth of tsunami in an ocean, and
amplification of the volcanic processes as well.

3.1. INFLUENCE OF THE THERMONUCLEAR REACTIONS ON THE
HYDRODYNAMICS OF ROTATION OF THE CENTRAL CORE
OF A STAR

It is known, that in the star cental cores, particularly, in the sun, where the
temperature could reach ten million degrees, the thermonuclear reaction re-
sulting in transformation of hydrogen into helium take place. Formation of
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one helium nucleus 4He (or 3He) from four (or three) nuclei of hydrogen or
protons H, leads to decreasing of the specific volume that occupies the fully
ionized and compressed by the gravity forces hot hydrogen-helium plasma
(analogously to the condensation process of water droplets). In other words,
due to the thermonuclear fusion inside the star central core of a radius r0

the bulk sink of substance appears. Under conditions of the dynamic and
chemical equilibrium between the star core and its external envelop of a
radius R0 > r0 convergent radial flows of hydrogen appear. They equalize
the density and the chemical constitution of the plasma inside the star. If a
typical time of the thermonuclear reactions is τ0, then at ρ ≈ const we can
write the following effective continuity equation for the incompressible liquid
(gas) with acco8unt of the spherical symmetry of the problem

∂vr

∂r
+

2
r

vr =

{ −1/τ0, r � r0,
0, r0 < r � R0.

(57)

A solution of the equation (57) for the radial hydrodynamic velocity takes
the form:

vr =

{ −r/3τ0, r � r0,
−r3

0/3τ0r2, r0 < r � R0.
(58)

Below we neglect a high conductivity of the hot plasma and different
electromagnetic effects and interactions with magnetic fields. In this situa-
tion, from the macroscopic point of view the hydrodynamic rotational motion
of the dense electro-neutral plasma inside a spherically symmetric star can
be approximately described by the conventual Navier-Stokes equations with
account of the gravity forces. We can see that the radial dependencies (58)
provide nullification of the term describing the bulk viscosity, i.e.

vr
∂vr

∂r
− v2
ϕ

r
= −1
ρ

∂P
∂r
− g(r). (59)

On the other hand, if we chose the azimuth velocity vϕ in the form

vϕ(r, θ) = ω sin θ

{
r, r � r0,
r2

0/r, r0 < r � R0,
(60)

the term with the first viscosity will be nullified also. Substituting (58) and
(60) into (59) and performing integration, we obtain the pressure distribution
with account of gravitation inside the star:

P =



P0 − ρr
2

2

[
1

9τ20
+ 4π

3 Gρ − ω2 sin2 θ
]
, r � r0,

P0 − ρr
2

2

[
1

9τ20

r6
0

r6 +
4π
3 Gρ − ω2 sin2 θ

]
−

−ρg0(r − r0), r0 < r � R0.

(61)
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Here, for the sake of simplicity, we assume that the in the star bulk is homo-
geneous.

Substituting (60) in the l.h.s. of the second Navier-Stokes equation in
spherical coordinates, we get:

dω
dt
=

{
2ω/3τ0, r � r0,
0, r0 < r � R0.

(62)

From this at τ0 = const we again obtain the exponential law of increasing
of the angular velocity of “rigid” rotation of the substance in the bulk of the
central core and a constant value of ω in the external domain:

ω(t) =

{
ω(0) e2t/3τ0 , r � r0,
ω(0) = const, r0 < r � R0.

(63)

This means that at the core border r = r0 a step of the azimuth velocity
increases in time:

vϕ(t) = [ω(t) − ω(0)]r0 sin θ. (64)

According to the calculations it causes the unstable surface perturbations and
to development of the strong turbulence. This results in the stationary tur-
bulent regime in some domain near the core border where at the expense of
the anomalous turbulent viscosity ν∗ � ν when there is a constant difference
between the velocities of rotation of the star central core and its envelop. The
developed turbulent pulsations on the border between the core and its envelop
may stimulate the active turbulence that is observed in the Sun atmosphere.
However, an analysis of these phenomena with account of the Sun magnetic
field perturbations requires the equations of magnetic hydrodynamics.

4. One-component liquid with accelerated flows: the mechanism
of formation of a funnel and a windspout

One of the most interesting paradoxes in hydrodynamics is the so-called
“funnel effect” (see [1, 7]). It is assumed, that this effect is caused by the
conservation laws of the angular momenta of the incompressible liquid (gas)
inside the given contour, and accompanied by the accelerated rotation of a
vortex at concentration of vorticity a flow ω = rot v due to the narrowing of
the channel. Another approach to the problem of a funnel formation lies in
the assumption (see [8]) about origination of the angular momentum at a zero
initial vorticity as a result of instability of cylindrically-symmetric flow in a
liquid (the flooded jet) in relation to axially-asymmetric left- and right-spiral
perturbations with carrying out of rotation of a certain sign to the infinity at
the expense of a flow (convective instability) and accumulation of a rotation
motion of another sign (absolute instability).
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Let us show, that there exist one more simple mechanism of a vortex
formation in the incompressible liquid (gas), which is in a gravitational field
and includes vertical ascending or descending flows, whose velocities depend
on the coordinate z (along the vertical axis of a vortex). We consider Navier-
Stokes equation for axially-symmetric motion of the incompressible viscous
liquid (gas) in cylindrical coordinates:

∂vr

∂t
+ vr
∂vr

∂r
− v2
ϕ

r
= −1
ρ

∂P
∂r
+ ν

(
∂2vr

∂r2
+

1
r
∂vr

∂r
− vr

r2

)
, (65)

∂vϕ
∂t
+ vr
∂vϕ
∂r
+

vrvϕ
r
= ν

∂
2vϕ
∂r2
+

1
r

∂vϕ
∂r
− vϕ

r2

 , (66)

∂vz

∂t
+ vr
∂vz

∂r
+ vz
∂vz

∂z
= −1
ρ

∂P
∂z
− g + +ν

(
∂2vz

∂r2
+

1
r
∂vz

∂r
+
∂2vz

∂z2

)
, (67)

where vr, vϕ and vz are radial, azimuthal and axial components of hydrody-
namical velocity v, P and ρ— pressure and density of a liquid (gas), ν = η/ρ
— a coefficient of kinematic viscosity, and g — the gravity acceleration,
which is directed opposite to axis z.

Equations (65)–(67) must be completed with the continuity equation

div v =
∂vr

∂r
+

vr

r
+
∂vz

∂z
= 0. (68)

Let us notice that in equations (65) and (66) the dependencies of vr and
vϕ on z are not taken into account for simplification reasons. We shall also
notice, that despite the axial symmetry, the expression near the factor ν in
the right hand parts of equations (65) and (66) we formally have a kind of
the Laplace operator for a certain scalar complex function f (r) eiϕ, where the
azimuthal angle ϕ plays a role of a phase, which by physical sense is similar
to the well-known Berry phase.

In case of a plane vortical rotation, when vr = vz = 0, equations (65) and
(66) become a form:

v2
ϕ

r
=

1
ρ

dP
dr
, (69)

∂vϕ
∂t
= ν

∂
2vϕ
∂r2
+

1
r

∂vϕ
∂r
− vϕ

r2

 . (70)

If a radial dependence of the azimuthal velocity vϕ(r), according to the
Rankine vortex model (see [1]), is chosen as

vϕ(r) =

{
ωr, r � R0,
ωR2

0/r, r > R0,
(71)
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than the right hand part of equation (70) equals identically to zero, what
corresponds to the rotation of an incompressible liquid (gas) with a constant
angular velocity ω = const.

At this, a distribution of hydrodynamical pressure P(r), according to (65),
in the so-called cyclostrophic rotation regime has a form:

P(r) =

{
P0 + ρω

2r2/2, r � R0,
P∞ − ρω2R4

0/2r2, r > R0,
(72)

where P0 = (P∞ − ρω2R2
0) is the pressure on the vortex axis, and P∞ — the

pressure on large distances (at r → ∞).
In the Rankine model a radius of a vortex core R0 is not determined,

but if in a liquid (gas) a cylindrically-symmetric flow (the flooded jet) exists
with a velocity vz, than its radius will determine the size R0 in (71). Let us
assume, that the flow velocity depends linearly on the coordinate z and does
not depend on r in the area r � R0, i.e.

vz(z) =

{
vz0 + αz, r � R0,
0, r > R0.

(73)

In this case the continuity equation (68) is satisfied for the following radial
dependence of velocity vr, continuous at r = R0 :

vr(r) =



−1
2
αr, r � R0,

−1
2
α

R2
0

r
, r > R0.

(74)

Let us notice, that the above mentioned structures of velocities (71), (73)
and (74) nullify viscous terms in equations (65)–(67). At the same time, the
diagonal components of the viscous stress tensor for these profiles are distinct
from zero and result in the following expression for the change of kinetic
energy of a vortex due to dissipation (by unit of length of a vortex along the
axis z): (

dEkin

dt

)

dis
= −4πρν

[
3
2
α2 + ω2(0)

]
R2

0. (75)

Substituting expressions (71) and (74) in the equation (66), we get:

dω
dt
=

{
αω, r � R0,
0, r > R0.

(76)

Equation (76) is a result of that in the inner region (r � R0) the convertive
and Coriolis forces at vr � 0 are added up, but in the external region (r > R0)
they mutually compensate one another.
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If the parameter α is constant in time (α = const,
dα
dt
= 0) and positive

α > 0, than from equation (76) it follows, that inside the area r � R0 an
angular velocity of a vortex grows in time due to the exponential law

ω(t) = ω(0) eαt, (77)

provided that a nonzero initial vorticity ω(0) � 0 exist in a liquid (gas),
whereas in the external area ω = ω(0) = const . Thus, on the border of a
vortex core r = R0 a jump of azimuthal velocity, which exponentially grows
in time, arises (see section 4).

Let us emphasize, that energy dissipation (75) at the non-stationary vor-
tical motion does not depend on time t, and is determined only by the initial
vorticity 2ω(0). Thus, a dissipation remains small, despite the fast increase of
an angular velocity of a “rigid-body” rotation of a vortex core. This means,
that non-stationary vortices are not suppressed by the dissipation at the initial
stage of their developments.

On the other hand, substituting (71), (73) and (74) in equations (65) and
(67), we get the following equations for the determination of a pressure:

∂P
∂r
=



ρr

[
ω2(t) − α

2(t)
4
+

1
2

dα
dt

]
, r � R0,

ρR4
0

r3

ω2(0) +
α2(t)

4
+

1
2

dα
dt

r2

R2
0

 , r > R0,

(78)

∂P
∂z
=


−ρ

[
g + αvz0 + z

(
dα
dt
+ α2

)]
, r � R0,

−ρg, r > R0.
(79)

Let us notice, that equations (78) and (79) indicate on the existence and
increasing in time of step of the first derivatives of the pressure ∂P/∂r and
∂P/∂z on a surface of a vortex core r = R0. From equation (79) a possibility
of existence of the non-stationary solution with dα

dt � 0 follows, namely:

dα
dt
+ α2(t) = 0,

∂P
∂z
± ρg = 0. (80)

The first equation (80) at α > 0 has a solution:

α(t) =
α0

1 + α0t
, α0 ≡ α(0) > 0, (81)

whereas the second equation (80) corresponds to hydrostatic pressure distri-
bution in the whole space, and the sign (+) corresponds to an ascending flow
(the axis z is directed upwards), and the sign (−) — to a descending flow (the
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axis z is directed downwards). In this case equation (76) in the area r � R0

has a solution

ω(t) = ω(0) exp

{∫ t

0

α0 dt′

1 + α0t′

}
= ω(0)(1 + α0t), (82)

which corresponds to the linear growth in time of velocity of a vortex rotation.
At last, we should notice that equation (76) under condition of α(t) =

ω(t) > 0 takes a form:
dω
dt
− ω2(t) = 0. (83)

The solution of the nonlinear equation (83) corresponds to the so-called “ex-
plosive” instability:

ω(t) ≡ α(t) =
ω(0)

1 − ω(0)t
, (84)

when in a final time interval t0 = 1/ω(0) ≡ 1/α(0) the angular velocity of a
liquid rotation ω(t) and the derivative of the axial velocity on z, α(t) ≡ ∂vz/∂z,
rise formally to infinity, although they are actually limited from the above due
to satisfying of the incompressibility condition of a liquid (see below).

The positive sign of α corresponds to the growth of velocity of a flow
along the axis z directed by velocity vz0. Thus, in a descending flow of a
liquid which flows out through a hole at the bottom under the action of
gravitation and accelerates along the axis z by a linear law (73), we get
the exponential (77), linear (82), or “explosive” (84) laws of vortex rotation
velocity growths in time. At this, the amount of a liquid, which flows out, is
completely compensated by the inflow of the same amount of a liquid with
velocity of a converging radial flow (74) from the surrounding volume, which
is considered as an enough large reservoir of the substance.

Such a simple model explains the funnel formation in a bath at the open-
ing of a hole or an whirlpool formation on a small river in the place of a
sharp deepening of the bottom. The going out of exponential rotation velocity
growth of a liquid (water) on the stationary regime is caused by the friction
with a solid fixed surfaces, and also by the energy dissipation on the tangential
step of the azimuthal velocity vϕ at the point r = R0 (see below).

This model can also explain the origination of sandy tornados in deserts.
Due to a strong heating by the sunlight of some sites of a surface of a sandy
ground (the darkest or located perpendicularly to the solar rays), the nearby
air gets warm locally and starts to rise upwards with acceleration under the
action of the Archimedian force, as more light. If this acceleration in a quasi-
stationary conditions corresponds approximately to the linear by z law (73),
than at α > 0 we again obtain the exponential law of rotation velocity growth
of a vortex (77). At this, the accelerated decreasing in time of the pressure in
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the vortex axis r = 0 with ω(t) and α(t) increasing leads to the suction of sand
deep into the vortex and formation of a visible tornado, which is frequently
observed in deserts.

4.1. FORMATION OF A TORNADO FUNNEL WITH ACCOUNT OF
GRAVITY AND VERTICAL FLOWS OF AIR

As marked above, for flows of the air, which flow into a rain cloud of a cylin-
drical form at the time of its condensation, the following hydrodynamical
velocities are characteristic:

vr =

{ −βr, r � R0,
−βR2

0/r, r > R0,
vϕ =

{
ωr, r � R0,
ωR2

0/r, r > R0,
vz =

{
vz0 + αz, r �R0,

0, r >R0,
(85)

where 2β = α + |Q|/ρ. In the case of exponential instability we have ω(t) =
ω(0) e2βt (at α = const and |Q| = const). At this, bulk viscous forces in
equations (65)–(67) equal identically to the zero, so that we get:

∂P
∂r
=


ρr

[
ω2(t) − β2

]
, r � R0,

ρR4
0

r3

[
ω2(0) + β2

]
, r > R0,

(86)

∂P
∂z
=

{ −ρg̃ − ρα2z, g̃ = g + αvz0, r � R0,
−ρg, r > R0.

(87)

The integration of equations (86) and (87) determines a difference of the
pressure between two arbitrary points

P2 −P1 =



−ρg̃(z2 − z1) − ρ
2
α2(z2

2 − z2
1) +
ρ

2

[
ω2(t) − β2

]
(r2

2 − r2
1), r1,2 � R0,

−ρg̃(z2 − z1) − ρR
4
0

2

[
ω2(0) + β2

]  1

r2
2

− 1

r2
1

 , r1,2 > R0.

(88)
From (88) it follows, that the form of a surface of the constant pressure (an
isobar), which corresponds to the point of water drops evaporation Pevp, in
the internal area r � R0 is determined by the equation

z2(r, t) +
2g̃

α2
z(r, t) +

R2
0

α2

[
ω2(t) + ω2(0)

]
− r2

α2

[
ω2(t) − β2

]
−

2
(
P∞ − Pevp

)

ρα2
=0,

(89)
where the coordinate z is counted from the initial flat surface P0 = P∞ = Pevp,
and in the external area r > R0 is set by the relation

z(r, t) = z0(t) −
[
ω2(0) + β2

]
R4

0

2gr2
+

(
P∞ − Pevp

)

ρg
, (90)
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where the function z0(t) is determined from the condition of isobar continuity
in the point r = R0. According to equation (89), we find value coordinates
z(r, t) in the point r = R0 :

z(R0, t) = − g̃

α2
+

√√
g̃2

α4
−

[
ω2(0) + β2] R2

0

α2
+

2
(
P∞ − Pevp

)

ρα2
= const, (91)

so that

z0 = z(R0) +
R2

0

2g

[
ω2(0) + β2

]
−

(
P∞ − Pevp

)

ρg
= const, (92)

i.e. in the external area r > R0 a form of the isobar does not depend on time.
The coordinate of a point of the isobar on a vortex axis at r = 0, according

to (89)–(92), is determined by the expression

z(0, t) = − g̃

α2
+

√√
g̃2

α4
− R2

0

[
ω2(t) + ω2(0)

]
α2

+
2
(
P∞ − Pevp

)

ρα2
. (93)

From here it follows, that at g̃ > 0, with growth of the angular veloc-
ity ω(t) in result of the exponential instability there is an increasing of the
absolute value of the negative coordinate z(0, t), what corresponds to the
deepening of a minimum of function z(r, t) in the area z < 0.

We can conclude, that the account of gravity and vertical flows allows to
describe one of the main observable phenomena — a funnel formation on the
bottom edge of a cloud during origination and development of tornados.

4.2. DISCUSSION OF APPLICABILITY OF THE DERIVED RESULTS FOR
THE DESCRIPTION OF TORNADOS AND TYPHOONS

With the purpose of finding-out of applicability of the obtained new non-
stationary solutions of Navier-Stokes and continuity equations for incom-
pressible viscous media with a bulk sink and free inflow of the substance
for the description of atmospheric vortices (tornados and typhoons) we will
carry out numerical estimations of characteristic times of development of
the considered above hydrodynamical instabilities of the vortical motion in
conditions of intensive condensation of moisture inside a cloud.

Let us consider a round cylindrical cloud of a radius R0 ≈ 1 ÷ 10 km,
which slowly rotates in the twirled air flow, with equal by order initial values
of azimuthal and radial velocities on the border of a cloud vr0 ≈ vϕ0 ≈ (1÷10)
m/s. This corresponds to absolute values of initial angular velocity ω(0) and
velocities of a converging radial flow β in the range (10−4 ÷ 10−2) s−1. At
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humidity of atmospheric air of about 100%, its density almost twice exceeds
density of the dry air ρ = 1.3 × 10−3 g/sm3, so that the mentioned values of
the parameter β are equivalent to capacities of a bulk sink Q due to conden-
sation of a moisture of the order of ∼ 5 × (10−7 ÷ 10−5) g/s·sm3. In these
conditions a characteristic time of acceleration of a vortex rotation in a result
of exponential instability equals τ = 1/2β ≈ (1 ÷ 100) min.

The maximal velocity of the order of cs is reached for a time interval of
t ≈ (3 ÷ 500) min. Typical observable times of origination and development
of a tornado lie just in such a time interval (from several minutes to several
hours).

For large-scale atmospheric vortices such as cyclones, hurricanes and
typhoons, which originate in cloud masses with sizes of about 100 km and
more, characteristic times of development of the instability increase by two
– three orders and can reach several days, that also agrees with observable
times of hurricane and typhoon existence. At the same time, the decreased
pressure on the axis of a vortex caused by a cyclostrophic rotation regime
explains the characteristic “suck” effect of a tornado.

Moreover, as it was marked above, in a two-phase system “air — water
drops” a decreasing of the pressure below the boiling point of water at the
given temperature should result in the termination of condensation of mois-
ture and in evaporation of the drops. This explains the formation of a clear
tornado “core” or a typhoon ”eye” in the central part of a cloud system in the
paraxial area of a vortex. Inside this area the velocity of a vortical rotation of
the air slows down in time, as at a condition of P < Pevp instead of a bulk
sink (Q < 0) there is a source of a gas phase (Q > 0), and the parameter β
changes its sign (β < 0), what corresponds to an exponential decelerating of
the air. Such a condition of a dead calm is observed in the center “eye” of a
typhoon.

It is possible to estimate the time of a tornado funnel contact with the
surface of the Earth. In the case of exponential instability, at z = −H (where
H is the height of the bottom edge of a cloud above the ground), according
to equation (93), at the conditions ω2(t) � β2 and g̃/α2 � H we find a time
interval till this contact

tH =
1

4β
ln


g̃

ω2(0)R2
0

. (94)

At H = 1 km for the above mentioned values for vϕ0 we get an estimation:
tH ≈ (1 ÷ 250) minutes, what in good correspondence with the observed
phenomena.
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5. Conclusions

tions for
an incompressible liquid (gas) at presence of a bulk sink and ascending

several
species of the system are gone under some dynamical process, for instance
nuclear (chemical) reactions or phase transitions, from the general collective
hydrodynamic motion. It is shown that those profiles, which nullify the terms
in Navier-Stokes equation which describe viscous effects, exist and represent
vortex structures with

”

rigid-body” rotation of the core and converging radial
flows. In the case of constant bulk sink and inflow of the matter from the
outside, the azimuthal velocity of a “rigid-body” rotation vϕincreases

sink and inflow
rates, vϕ increases by scenario of the “explosive” instability, when during a
finite time interval the infinite rotation velocity is reached. We apply this
hydrodynamic approach for description of the rotational motion of nuclear
matter, which appears in the relativistic collisions of heavy nuclei with an
initial angular momentum. We show that the acceleration of the ro

of non-stationary vortices in nuclear matter has an explosive
On the basis of the developed theory of unstable hydrodynamical vortices

an offered in [2] mechanism of origination and development of powerful
atmospheric vortices — tornados and typhoons — during the intensive con-
densation of water vapor from the cooled below a dew point humid air at
formation of dense rain clouds is considered. Within the framework of this
mechanism it is possible to explain the basic characteristics of tornados and
typhoons. Estimations of characteristic times of instability development of
vortical motion are agreed by orders with the corresponding times of orig-
ination and existence of tornados (from several minutes till several hours)
and typhoons (several days). With the account of gravity the given model
describes the main phenomenon of a tornado — formation of a lengthening
funnel on the bottom edge of a cloud in result of changing form of the surface
of a constant pressure (isobar), that limits from the below the area of intensive
condensation of moisture. The velocity step on the border of a tornado core
results in the development of a strong turbulence, which can be described
with the help of anomalous coefficient of turbulent viscosity, which in many
orders exceeds the usual viscosity of the air.

Thus, the above considered non-stationary vortical structures are charac-
teristic for all viscous liquids. In particular, in the classical hydrodynamics
a favorable condition for the origination and existence of such vortices is
nullification of the terms, which describe kinematic viscosity of the incom-

In this paper a new class of exact solutions of hydrodynamics equa

flows of a substance has been considered. It is essential that one or

expo-
nentially with time.At simultaneous infinite increasing of the

tation elo-
city character.
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pressible liquid, in the cases of cylindrical and spherical symmetries. Such
flows have the minimal energy dissipation, i.e. correspond to a peculiar “min-
imal entropy production principle”, and therefore relatively easily realize in
the corresponding natural conditions.
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