
PREDICTING REACHING POSTURES
USING A KINEMATICALLY
CONSTRAINED SHOULDER MODEL

Vincent De Sapio, James Warren, and Oussama Khatib
Artificial Intelligence Laboratory
Stanford University
{vdesap, warren, khatib}@stanford.edu

Abstract We present a new muscle effort criteria for predicting physiologically
accurate upper limb motion in human subjects based on skeletal kine-
matics, muscle routing kinematics, and muscle strength characteristics.
The new criteria properly accounts for the cross-joint coupling associ-
ated with the routing kinematics of multi-articular muscles. We also
employ a new kinematically constrained model of the human shoulder
complex, which is critical for the proper evaluation of our muscle effort
criteria. Through a set of subject trials we have shown good correlation
between natural reaching postures and our proposed criteria.
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1. Introduction
The prediction and synthesis of human movement has presented a

daunting challenge to the biomechanics, neuroscience, and robotics com-
munities. In the presence of this challenge there is a significant motiva-
tion to understand and emulate human movement. Given a specific task
the prediction of kinematically redundant upper limb motion is a prob-
lem of choosing one of a multitude of control solutions which all yield
kinematically feasible solutions. It has long been observed that humans
resolve this redundancy problem in a relatively consistent manner (Lac-
quaniti and Soechting, 1982; Kang et al., 2005). For this reason general
mathematical models have proven to be valuable tools for motor control
prediction across human subjects.

Many of the models for predicting human arm movement, including
the minimum work model (Soechting et al., 1995) and the minimum
torque-change model (Uno et al., 1989), do not involve any direct in-
clusion of muscular properties such as routing kinematics and strength
properties. Even models described as employing biomechanical variables
(Kang et al., 2005) typically employ only variables derivable purely from
skeletal kinematics and not musculoskeletal behavior. We feel that the
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utilization of a model-based characterization of muscle systems (Zajac,
1993; Delp and Loan, 2000), which accounts for muscle kinematic and
strength properties, is critical to authentically simulating human mo-
tion since all human motion is rooted in, and bounded by, physiological
capabilities.

We will present a new methodology for predicting arm configuration
in reaching movements by examining the muscular effort required to
perform positioning tasks. This is built upon the work of Khatib et al.,
2004, but involves a number of improvements in methodology. An im-
portant element of this approach is the implementation of a sufficiently
sophisticated musculoskeletal model of the upper limb that accounts for
kinematic coupling between the constituents of the human shoulder com-
plex (Holzbaur et al., 2005). This provides fidelity in predicting muscle
forces, joint moment arms, and resulting muscle induced joint moments,
particularly in the shoulder complex. With our methodology and phys-
iological models we show that natural task-driven human arm postures
can be predicted accurately using a criteria based on a skeletal kine-
matics, muscle routing kinematics, and muscle strength characteristics.
This is validated through a set of targeted subject trials.

2. Human Upper Extremity Model
The upper extremity model of Holzbaur et al., 2005, has been em-

ployed, with some modification, in this work. The model, consisting of a
shoulder complex and a lower arm, has been implemented in the SIMM
(Software for Integrated Musculoskeletal Modeling) environment (Delp
and Loan, 2000). A minimal set of 7 generalized coordinates were chosen
to describe the configuration of the shoulder complex, elbow, and wrist
(3 for the shoulder complex, 2 for elbow flexion and pronation, and 2 for
wrist flexion and deviation). This is depicted in Fig. 1.

Fidelity in predicting muscle action was an important requirement
for the model employed in this work. In particular, proper kinematics of
the shoulder complex is critical in generating realistic muscle paths and
associated joint moments. While the purpose of the shoulder complex is
to produce spherical articulation of the humerus, the resultant motion
does not exclusively involve motion of the glenohumeral joint (see Fig.
1). The shoulder girdle, which is comprised of the clavicle and scapula,
connects the glenohumeral joint to the torso and produces some of the
motion associated with the overall articulation of the humerus. While
this motion is small compared to the glenohumeral motion its impact on
overall arm function is significant (Klopčar and Lenarčič, 2001; Lenarčič
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Figure 1. (Left) Constituents of the shoulder complex including the scapula, clavi-
cle, and humerus. The glenohumeral joint produces spherical motion of the humerus.
The shoulder girdle attaches the glenohumeral joint to the torso and influences the
resultant motion of the humerus. (Right) Kinematic parameterization of the model
of Holzbaur et al.

et al., 2000). Part of this impact is related to the shoulder girdle’s
influence on the muscle routing kinematics.

The constrained movement of the shoulder girdle was determined from
the shoulder rhythm regression analysis of de Groot and Brand, 2001.
The model obtained from this regression analysis was shown to fit well
for an independent set of shoulder motions and on a different set of sub-
jects than was used for the regression analysis. For these reasons the
model of de Groot and Brand is considered to be superior in predicting
shoulder motion than a simple unconstrained model which only reflects
glenohumeral rotation. Using the results of de Groot and Brand the
constraints that model the shoulder girdle are implicitly handled, with
all motions of the shoulder girdle being dependent on the three gleno-
humeral rotation coordinates. These are elevation plane, q1, elevation
angle, q2, and shoulder rotation, q3.

Due that fact that SIMM restricts any joint motion to a function of a
single independent generalized coordinate, the regression equations were
simplified by Holzbaur et al. to be a function of only thoracohumeral
(humerus elevation) angle, q2. The shoulder kinematics for this param-

The terms d1, d2 , and d3 1
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Table 1. Shoulder kinematics using a minimal set of generalized coordinates.

Translation Rotation

clavicle
tdc = d1

t
cQ = Q

1
(c1q2)Q2

(c2q2)

scapula
tds = tdc + t

cQd2
t
sQ = Q

3
(c3q2)Q4

(c4q2)Q5
(c5q2)

humerus

tdh = tds + t
sQd3

t
hQ = Q

6
(q1)Q7

(q2)Q6
(−q1)Q6

(q3)

2

De Sapio et al., 2006, provide an extensive analysis of the impact
of shoulder girdle motion, associated with glenohumeral coupling con-
straints, on the muscle routing kinematics and moment arms about the
glenohumeral joint. The constrained model employed here typically gen-
erates moment arms of substantially larger magnitude than those of a
simple model with no kinematic coupling between glenohumeral and
shoulder girdle motion. The resulting moment generating capacities as-
sociated with the constrained model are also typically larger in magni-
tude than those associated with the simple model. This is of paramount
importance for the implementation addressed in the following section.

3. Muscle Effort Minimization
A scalar measure of instantaneous (path independent) muscle effort

at a specific configuration can be defined based on the necessary gravity
torque to maintain the configuration and the muscle strength capacity
at the configuration. Activation, which represents the normalized ex-
ertion of muscles, provides a natural measure for this. Specifically, the
magnitude of the muscle activation vector, a, has been used as a scalar
optimization criteria in both static and dynamic optimizations. That
is, we can choose our instantaneous muscle effort measure, U , to be
U(q q̇) = ‖a‖2. To express this measure we first represent the joint
torques, Γ in terms of muscle action,

Γ(q q̇ a) = KΓ(q q̇)a (1)
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where KΓ(q q̇) is the muscle torque-activation gain matrix. That is, it
maps muscle activation, a, to joint torque (De Sapio et al., 2005). Due
to the fact that there are typically more muscles spanning a set of joints
than the number of generalized coordinates used to describe those joints
this equation will have an infinite set of solutions for a. Choosing the
solution, ao, which has the smallest magnitude yields,

ao = K+
Γ Γ = KT

Γ (KΓKT
Γ )−1Γ (2)

where K+
Γ is the pseudoinverse of KΓ. Our muscle effort measure can

then be expressed as,

U(q) = ‖ao‖2 = gT (KΓKT
Γ )−1g (3)

Note that we have eliminated the dependency on q̇, as we will concern
ourselves only with static configurations for the remainder of our analy-
sis. Similarly, Γ has been replaced with the configuration space gravity
vector, g, since in the static case Γ → g. Expressing this in terms of
constituent terms we have,

U(q q̇) = gT [LT (KfK
T
f )L]−1g (4)

where we have made use of the relationship, KΓ = LTKf . The muscle
force-activation gain matrix, Kf , maps muscle activation to muscle force
(De Sapio et al., 2005). The transpose, LT , of the muscle Jacobian is
a kinematic quantity, based on muscle routing kinematics, that maps
muscle force to joint torque (Khatib et al., 2004). If we dissect the
structure of this effort criteria as follows,

U = gT

muscular capacity︷ ︸︸ ︷
[ LT︸︷︷︸
kinematics

(KfK
T
f )︸ ︷︷ ︸

kinetics

L︸︷︷︸
kinematics

]−1g (5)

we gain some physical insight into what is being measured. The terms
inside the brackets represent a measure of the net capacity of the muscles.
This is a combination of the force generating kinetics of the muscles as
well as the mechanical advantage of the muscles, as determined by the
muscle routing kinematics. The terms outside of the brackets represent
the kinetic requirements of the task/posture; in this case the gravity
torques at the joints.

Eq. 5 represents a generalization of the joint decoupled measure used
by Khatib et al., 2004. That measure projected muscle strength capac-
ities to the joint level in a decoupled manner. Consequently, the cross-
joint coupling associated with multi-articular muscles (muscles that span
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more than one joint) was ignored. The measure of Eq. 5 properly ac-
counts for multi-articular muscle coupling in the musculoskeletal system.

It is noted that the solution of Eq. 1 expressed in Eq. 2 corresponds
to a constrained minimization of ‖a‖2, however, this solution does not
enforce the constraint that muscle activation must be positive (muscles
can only produce tensile forces). Imposing the inequality constraint,
a � 0, on the activations requires a quadratic programming approach
to performing the constrained minimization. In this case the solution to
Eq. 1 which minimizes ‖a‖2 and satisfies a � 0 can be represented in
shorthand as,

ao = qp(KΓ Γ ‖a‖2 ai � 0) (6)

where qp(·) represents the output of a quadratic programming function
(eg. quadprog() in the Matlab optimization toolbox). Our muscle effort
criteria is then U(q) = ‖ao‖2, where ao is given by Eq. 6. Despite the

To find a task consistent static configuration which minimizes U(q),
we first define the self-motion manifold associated with a fixed task point,
xo. This is given by M(xo) = {q |x(q) = xo} where x(q) is the op-
erational point of the kinematic chain (e.g. the position of the hand).
The problem of finding a minimal effort task consistent configuration
can then be stated as minimizing U(q) on M(xo).

4. Experiments
A set of experiments was conducted to provide validation for the mus-

cle effort minimization approach of Section 3. The subjects chosen were
six right-handed adult males with normal or corrected-to-normal vision.
The subjects were seated with a test fixture directly in front of them.
The test fixture contained five visual targets represented as physical
markers positioned at different locations. A set of weights (5, 8, and 15
lbs) were placed to the side of the subjects. An eight-camera Qualisys
retroreflective motion capture system was used to record subject motion
during the trials at a capture rate of 250 Hz.

The subjects performed a set of tasks designed to isolate upper limb
reaching motion. While seated each subject was instructed to pick up
a weight and move it to each target and hold a static configuration at
the target for 4 seconds (see Fig. 2). The subjects were instructed to
perform the movement in any manner which felt natural and comfortable
to them. Five consecutive trials were performed for each weight (8, 12,
and 15lb) as well as a trial with no weight in hand, for a total of 20
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trials. The total number of 20 trials took each subject roughly an hour
to perform; including time for hardware set up and marker placement.

Figure 2. Subject reaching to a set of 5 target locations from a seated configuration.
The subject performs these targeted reaching movements freehand and with a total
of three different weights in hand. Time histories of shoulder joint angles, q1, q2, and
q3, and elbow joint angle, q4, show steady state configurations at each of the targets.

Following motion capture the marker data was segmented using the
Qualisys Track Manager software. To obtain joint space trajectories,
custom Matlab scripts were written based on the inverse kinematics of
the constrained shoulder complex presented in Section 2. The steady
state configurations associated with the five targets were obtained from
the joint space trajectories for each trial (see Fig. 2). For each con-
figuration a 1-dimensional self motion manifold, M(xo), was computed
numerically given the fixed target location, xo. The manifold was asso-
ciated with the variation of the 3 shoulder complex joint angles, q1, q2,
and q3, and the elbow joint angle, q4.

The muscle effort criteria of Section 3 was then computed. SIMM
was used to generate the maximum muscle induced moments over the
self motion manifold for each trial. Matlab scripts were then written
to construct the muscle torque-activation gain matrix, KΓ, from the
computed muscle moments as well as the gravity vector, g. A quadratic
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programming routine (quadprog() from Matlab’s optimization toolbox)
was used to enforce positive values for muscle activation.

The subject’s chosen config-
uration was typically within several degrees (norm based metric along
the self motion manifold) of the predicted configuration associated with
minimizing the computed muscle effort. This was consistent across the
set of subjects, with the largest deviation between experimental and
predicted configurations being on the order of 25◦ and more commonly
under 10◦.

Figure 3. Muscle effort variation for one of the subject trials with no weight in
hand. Each plot depicts the muscle effort for one of the five target configurations.
The locations of the subject’s chosen configurations are depicted with a red +. The
full range of motion is depicted by the black silhouettes (±90◦ from nominal).

of trials with different weights. In each case the weight at the hand was
projected into joint space and added to the gravity vector associated
with the limb segments. The arm configurations at the targets did not
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Figure 3 depicts the results of the muscle effort computations for one of
the subject trials with no weight in hand.

Figure 4 depicts the results of the muscle effort computations for a set



dramatically change with increased weight at the hand. This implies
that the subjects tended to generate stereotyped reaching postures that
were not highly sensitive to the weight being carried. As a consequence
we included a weighting between the component of the gravity vector
associated with limb masses and the component associated with the
external weight carried at the hand. With this weighting we were able
to maintain good predictions with increases in the weight at the hand.

Figure 4. Muscle effort variation for a set of trials to the fourth target location with
different weights in hand. The weight at the hand was projected into joint space and
added to the gravity vector associated with the limb segments The locations of the
subject’s chosen configurations are depicted with a red +.

5. Conclusions
Building upon the work of Khatib et al., 2004, we have implemented

a new muscle effort criteria for predicting physiologically accurate up-
per limb motion. This criteria is a generalization of the joint decou-
pled measure used previously. The new criteria properly accounts for
the cross-joint coupling associated with multi-articular muscle routing
kinematics. We also employ a new kinematically constrained model of
the human shoulder complex (Holzbaur et al., 2005). The modeling of
the shoulder rhythm using constraints between the scapula, clavicle, and
humerus provides more physiologically accurate muscle routing kinemat-
ics and, consequently, better estimates of muscle induced moment arms
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about the glenohumeral joint (De Sapio et al., 2006). Through a set of
subject trials we have shown good correlation between natural reaching
postures and those predicted by our proposed criteria.
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