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Preface

This is the tenth book in the series of Advances in Robot Kinematics.
Two were produced as workshop proceedings, Springer published one
book in 1991 and since 1994 Kluwer published a book every two years
without interruptions. These books deal with the theory and practice
of robot kinematics and treat the motion of robots, in particular robot
manipulators, without regard to how this motion is produced or con-
trolled. Each book of Advances in Robot Kinematics reports the most
recent research projects and presents many new discoveries.

The issues addressed in this book are fundamentally kinematic in
nature, including synthesis, calibration, redundancy, force control, dex-
terity, inverse and forward kinematics, kinematic singularities, as well as
over-constrained systems. Methods used include line geometry, quater-
nion algebra, screw algebra, and linear algebra. These methods are ap-
plied to both parallel and serial multi-degree-of-freedom systems. The

en
application.

All the contributions had been rigorously reviewed by independent
reviewers and fifty three articles had been recommended for publica-
tion. They were introduced in seven chapters. The authors discussed
their results at the tenth international symposium on Advances in Robot
Kinematics which was held in June 2006 in Ljubljana, Slovenia. The
symposium was organized by Jozef Stefan Institute, Ljubljana, under
the patronage of IFToMM - International Federation for the Promotion
of Mechanism and Machine Science.

We are grateful to the authors for their contributions and for their
efficiency in preparing the manuscripts, and to the reviewers for their
timely reviews and recommendations. We are also indebted to the per-
sonnel at Springer for their excellent technical and editorial support.

Jadran Lenarčič and Bernard Roth, editors

results should interest researchers, teachers and students, in fields of
gineering and mathematics related to robot theory, design, control and
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Pseudo-planar motion generators 435

S. Krut, F. Pierrot, O. Company
On PKM with articulated travelling-plate and large tilting angles 445

C.R. Diez-Mart́ınez, J.M. Rico, J.J. Cervantes-Sánchez,
J.Gallardo

Mobility and connectivity in multiloop linkages 455
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Abstract

ing devices. They consist of a fixed base and a platform, attached to
the moving object, connected by six wires whose tension is maintained
along the tracked trajectory. One important shortcoming of this kind
of devices is that they are forced to operate in reduced workspaces so
as to avoid singular configurations. Singularities can be eliminated by
adding more wires but this causes more wire interferences, and a higher
force exerted on the moving object by the measuring device itself. This
paper shows how, by introducing a rotating base, the number of wires
can be reduced to three, and singularities can be avoided by using an
active sensing strategy. This also permits reducing wire interference
problems and the pulling force exerted by the device. The proposed
sensing strategy minimizes the uncertainty in the location of the plat-
form. Candidate motions of the rotating base are compared selected
automatically based on mutual information scores.

Keywords:

1. Introduction
Tracking devices, also called 6-degree-of-freedom (6-DOF) devices, are

used for estimating the position and orientation of moving objects. Cur-
rent tracking devices are based on electromagnetic, acoustic, mechani-
cal, or optical technology. Tracking devices can be classified according
to their characteristics, such as accuracy, resolution, cost, measurement
range, portability, and calibration requirements. Laser tracking systems
exhibit good accuracy, which can be less than 1µm if the system is well
calibrated. Unfortunately, this kind of systems are very expensive, their

3
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Wire-based tracking devices are an affordable alternative to costly track-
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calibration procedure is time-consuming, and they are sensitive to the
environment. Vision systems can reach an accuracy of 0.1mm. They are
low-cost portable devices but their calibration procedure can be compli-
cated. Wire-based systems can reach an accuracy of 0.1mm, they are
also low cost portable devices but capable of measuring large displace-
ments. Moreover, they exhibit a good compromise among accuracy,
measurement range, cost and operability.

Wire-based tracking devices consist of a fixed base and a platform
connected by six wires whose tension is maintained, while the platform is
moved, by pulleys and spiral springs on the base, where a set of encoders
give the length of the wires. They can be modelled as 6-DOF parallel
manipulators because wires can be seen as extensible legs connecting
the platform and the base by means of spherical and universal joints,
respectively.

Dimension deviations due to fabrication tolerances, wire-length un-
certainties, or wire slackness, may result in unacceptable performance of

rors can be eliminated by calibration. Some techniques for specific errors
have already been proposed in the literature. For example, a method
for compensating the cable guide outlet shape of wire encoders is de-
tailed in Geng and Haynes, 1994, and a method for compensating the
deflections caused by wire self-weights is described in Jeong et al., 1999.
In this paper, we will only consider wire-length errors which cannot be
compensated because of their random nature.

Another indirect source of error is the force exerted by the measuring
device itself. Indeed, all commercial wire encoders are designed to keep
a large string tension. This is necessary to ensure that the inertia of the
mechanism does not result in a wire going slack during a rapid motion.
If a low wire force is used, it would reduce the maximum speed of the
object to be tracked without the wires going slack. On the contrary, if a
high wire force is used, the trajectory of the object to be tracked could
be altered by the measuring device. Hence, a trade-off between accuracy
and speed arises.

The minimum number of points on a moving object to be tracked for
pose measurements is three. Moreover, the maximum number of wires
attached to a point is also three, otherwise the lengths of the wires will
not be independent. This leads to only two possible configurations for
the attachments on the moving object. The 3-2-1 configuration was pro-
posed in Geng and Haynes, 1994. The kinematics of this configuration
was studied, for example, in Nanua and Waldron, 1990 and Hunt and
Primrose, 1993. Its direct kinematics can be solved in closed-form by
using three consecutive trilateration operations yielding 8 solutions, as

a wire-based tracking device. In general, the effects of all systematic er-
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Figure 1. The main two configurations used for wire-based tracking devices: (a) the
“3-2-1”, (b) the “2-2-2”, and (c) the proposed tracking device, with (d) the rotating

in Thomas et al., 2005. The 2-2-2 configuration was first proposed in
Jeong et al., 1999 for a wire-based tracking device. The kinematics of
this configuration was studied, for example, in Griffis and Duffy, 1989,
Nanua et al., 1990, and Parenti-Castelli and Innocenti, 1990 where it
was shown that its forward kinematics has 16 solutions. In other words,
there are up to 16 poses for the moving object compatible with a given
set of wire lengths. These configurations can only be obtained by a nu-
merical method. The two configurations above were compared, in terms
of their sensitivity to wire-length errors, in Geng and Haynes, 1994. The
conclusion was that they have similar properties.

This paper is organized as follows. Section 2 contains the mathemat-
ical model of our proposed 3-wire-based sensing device, while Section 3
derives the filtering strategy for tracking its pose. Given that this device
has a moving part, Section 4 develops an information theoretic metric
for choosing the best actions for controlling it. A strategy to prevent
possible wire crossings is contemplated in Section 5. Section 6 is de-
voted to a set of examples demonstrating the viability of the proposed
approach. Finally, concluding remarks are presented in Section 7.

2.
In order to reduce cable interferences, singularities, and wire tension

problems we choose to reduce the number of cables from six to three, and
to have the base rotate on its center. Provided the tracked object mo-
tion is sufficiently slow, two measurements at different base orientations
would be equivalent to a 2-2-2 configuration.

More elegantly, and to let the tracked object move at a faster speed,
measurements can be integrated sequentially through a partially observ-
able estimation framework. That is, a Kalman filter.

Wire-based Tracking Using Mutual Information 5
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Consider the 3-wire parallel device in Figure 1(c). It is assumed that

Let the pose of our tracking device be defined as the 14-dimensional array

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

p
θ

v
ω

θA
ωA

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1)

where p = (x, y, z)� is the position of the origin of a coordinate frame
fixed to the platform, θ = (ψ, θ, φ)� is the orientation of such coordinate
frame expressed as yaw, pitch and roll angles, v = (vx, vy, vz)� and
ω = (ωx, ωy, ωz)� are the translational and rotational velocities of p,
respectively; and θA and ωA are the orientation and angular velocity of
the rotating base.

Assume that the attaching points on the base ai, i = 1, 2, 3, are
distributed on a circle of radius ā as shown in Figure 1(d). Then, the
coordinates of ai can be expressed in terms of the platform rotation
angle θA as ⎡

⎣axi

ayi

azi

⎤
⎦ =

⎡
⎣ā cos(ρi + θA)

ā sin(ρi + θA)
0

⎤
⎦ . (2)

Moreover, let ei be the unit norm vector specifying the direction from
ai to the corresponding attaching point bi in the platform; and let li
be the length of the i-th wire, i = 1, 2, 3. The value of bi is expressed
in platform local coordinates, where R is the rotation matrix describing
the absolute orientation of the platform. Then, the position of the wire
attaching points in the platform, in global coordinates, are

b′
i = ai + liei = p + Rbi . (3)

3. State Estimation
We adopt a smooth unconstrained constant-velocity motion model, its

pose altered only by zero-mean, normally distributed accelerations and
staying the same on average. The Gaussian acceleration assumption
means that large impulsive changes of direction are unlikely. In such
model the prediction of the position and orientation of the platform at
time t plus a time interval τ is given by[

p(t + τ)
θ(t + τ)

]
=

[
p(t) + v(t)τ + δa(t)τ2/2
θ(t) + ω(t)τ + δα(t)τ2/2

]
, (4)

6 J. Andrade-Cetto and F. Thomas 
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with δa and δα zero mean white Gaussian translational and angular
acceleration noises. Moreover, the adopted model for the translational
and angular velocities of the platform is given by[

v(t + τ)
ω(t + τ)

]
=

[
v(t) + δa(t)τ
ω(t) + δα(t)τ

]
. (5)

By the same token, the adopted models for the orientation and angular
velocity of the base are[

θA(t + τ)
ωA(t + τ)

]
=

[
θA(t) + ωA(t)τ + (αA(t) + δαA(t))τ2/2

ωA(t) + (αA(t) + δαA(t))τ

]
, (6)

in which the control signal modifying the base orientation is the accel-
eration impulse αA.

Since in practice, the measured wire lengths, li, i = 1, 2, 3, will be
corrupted by additive Gaussian noise, δzi, we have that

zi(t) = li(t) + δzi(t) = ‖p(t) + R(t)bi − ai(t)‖ + δzi(t) . (7)

Lastly, the orientation of the moving base is measured by means of
an encoder. Its model is simply

z4(t) = θA(t) + δz4(t) . (8)

Eqs. 4 and 5 constitute our motion prediction model f(x, αA, δx).

Now, an Extended Kalman Filter can be used to propagate the platform
pose and velocity estimates, as well as the base orientation estimates,
and then, to refine these estimates through wire length measurements.
To this end, δx ∼ N(0,Q), δz ∼ N(0,R), and our plant Jacobians with
respect to the state F = ∂f/∂x, and to the noise G = ∂f/∂δx become

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

I τI
I τI

I
I

1 τ
1

⎤
⎥⎥⎥⎥⎥⎥⎦

and G =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ2
I

2
τ2

I

2
τI

τI
τ2

2
τ

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

The measurement Jacobians H = ∂h/∂x are simply

Hi(t) =
[
ei(t) bi × ei(t) 0 0 ∂hi

∂θA
0
]

, (10)

with
ei(t) =

p(t) + R(t)bi − ai(t)
‖p(t) + R(t)bi − ai(t)‖

. (11)

Wire-based Tracking Using Mutual Information 7
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Then, by rewriting R =

⎡
⎣r�1
r�2
r�3

⎤
⎦, the term ∂hi

∂θA
in Hi becomes

∂hi

∂θA
= 2ā((x(t) + r1(t)�bi) sin(θA(t) + ρi) (12)

−(y(t) + r2(t)�bi) cos(θA(t) + ρi))/li(t) .

Lastly,
H4(t) =

[
0 0 0 0 1 0

]
. (13)

For the sake of clarity, in the sequel, when needed, time dependencies
will be placed as subscripts. Moreover, the term t + τ |t will be used
to indicate an a prior estimate (before measurements are incorporated),
and the terms t|t and t+ τ |t+ τ will represent posterior estimates (once
measurements are taken into account). The prediction of the state and
state covariance are given by

xt+τ |t = f(xt|t, αA,0) (14)

Pt+τ |t = FPt|tF
� + GQG� (15)

and, the revision of the state estimate and state covariance are

xt+τ,t+τ = xt+τ |t + K(zt+τ − h(xt+τ |t,0)) (16)

Pt+τ |t+τ = (I − KH)Pt+τ |t (17)

with I the identity matrix, and K = Pt+τ |tH�(HPt+τ |tH� + R)−1 the
usual Kalman gain.

4. Information Gain
This section builds from basic principles a metric for the expected

information gain as a result of performing a given action, and develops
from it, a strategy for controlling the base orientation. The aim is to
rotate the base in the direction that most reduces the uncertainty in
the entire pose state estimate, by using the information that should
be gained from future wire measurements were such a move be made,
but taking into account the information lost as a result of moving with
uncertainty.

The essential idea is to use mutual information as a measurement
of the statistical dependence between two random vectors, that is, the
amount of information that one contains about the other. Consider
the states x, and the measurements z. The mutual information of the

8 J. Andrade-Cetto and F. Thomas 



two continuous probability distributions p(x) and p(z) is defined as the
information about x contained in z, and is given by

I(x, z) =
∫
x,z

p(x, z) log
p(x, z)

p(x)p(z)
dxdz . (18)

Note how mutual information measures the independence between
the two vectors. It equals zero when they are independent, p(x, z) =
p(x)p(z). Mutual information can also be seen as the relative entropy
between the marginal density p(x) and the conditional p(x|z)

I(x, z) =
∫
x,z

p(x, z) log
p(x|z)
p(x)

dxdz . (19)

Given that our variables of interest can be described by multivariate
Gaussian distributions, the parameters of the marginal density p(x) are
trivially the Kalman prior mean xt+τ |t and covariance Pt+τ |t. Moreover,
the parameters of the conditional density p(x|z) come precisely from
the Kalman update equations xt+τ |t+τ and Pt+τ |t+τ . Substituting the
genaral form of the Gaussian distribution in Eq. 19, we can obtain a
closed formula

I(x, z) =
1
2

(
log |Pt+τ |t| − log |Pt+τ |t+τ |

)
. (20)

Thus, in choosing a maximally mutually informative motion com-
mand, we are maximizing the difference between prior and posterior
entropies (MacKay, 1992). In other words, we are choosing the motion
command that most reduces the uncertainty of x due to the knowledge
of z.

The real-time requirements of the task preclude using an optimal con-
trol strategy to search for the base rotation command that ultimately
maximizes our mutual information metric. Instead, we can only evalu-
ate such metric for a discrete set of actions within the range of possible
commands, and choose the best action from those. The set of possible
actions is a discretization of a range of accelerations.

5. Preventing Wire Crossings
Providing the base with the ability to rotate has the added advantage

of increasing the range of motion of the tracked platform; mainly, for
rotations along the vertical axis. One of the main difficulties however,
is in appropriately choosing base rotation commands so as to prevent
wire crossings. Considering that wire end-point displacements are suf-
ficiently small per sampling interval, the trajectory described by each

Wire-based Tracking Using Mutual Information 9



wire can be assumed to be circumscribed within a tetrahedron. One
way to predict wire crossings is by checking whether the tetrahedra
described by the current and posterior poses for each wire intersect
each other; each tetrahedron described by the four attaching points
{ai,t|t,ai,t+τ |t,b′

i,t|t,b
′
i,t+τ |t}.

A very fast test of tetrahedra intersection is based on the Separating
Axis Theorem described in the computer graphics literature (Ganovelli
et al., 2003). The test consists on checking whether the plane lying on
the face of one tetrahedron separates the two of them. If this is not
the case, the test continues to find out if there exists a separating plane
containing only one edge on one of the tetrahedra.

6. Implementation and Examples

6.1 Mechanical Considerations
In a cable extension transducer, commonly known as a string pot,

the tension of the cable is guaranteed by a spring connected to its spool.
Using a cable guide, the cable is allowed to move within a 20◦ cone, mak-
ing it suitable for 3D motion applications. There are cable guides that
permit 360◦ by 317◦ displacement cable orientation flexibility. Manufac-
turers of such sensors are Celesco Transducer Products Inc., SpaceAge
Control Inc., Carlen Controls Inc., and several others.

String pots provide a long range (0.04 − 40m), with typical accuracy
of 0.02% of full scale. The maximum allowable cable velocity is about
7.2m/s and the maximum cable acceleration is about 200m/s2.

The usefulness of a tracking device depends on whether it can track
the motion fast enough. This ability is determined by the lag, or latency,
between the change of the position and orientation of the target being
tracked and the report of the change to the computer. In virtual reality
applications, lags above 50 milliseconds are perceptible to the user. In
general, the lag for mechanical trackers is typically less than 5ms.

6.2 Maximum Base Rotation Speed
The quality of the estimated pose is directly influenced by the velocity

at which the base can rotate. To determine the range of motion velocities
that can be tracked with our system, a tracking simulation was repeated
limiting the base rotation velocity. A set of 20 runs was conducted,
varying the maximum platform rotation speed from 0 to 1 rad/s, and
with time steps of 0.01 s; the tracked object translating at a constant
velocity of 0.2 m/s along the x axis, and rotating at π

10 rad/s about an

10

axis perpendicular to the base. Figure 2 shows the average error of the pose

J. Andrade-Cetto and F. Thomas 



Figure 2. Average position and orientation recovery error as a function of the
maximum platform rotation speed, and 2nd order curve fit.

Figure 3. Wire sensing device. The rotating base is attached to the Staubli arm
shown in the left side. The moving platform is attached to the arm shown to the
right.

estimation as a function of the maximum base rotational velocity. The
best pose estimations are achieved when the base rotates at twice the
speed of the tracked object, approximately π

5 rad/s for this experiment.

6.3

cable crossing allows it, the largest acceleration commands are selected.
This is because prior and posterior entropy difference is maximized for

base and the platform have been arranged to form equilateral triangles.

For this example, the object to be tracked rotated at π
10 rad/s, whilst

The maximum base rotation
speed was limited to π

5 rad/s, and the limit for possible base accelera-
tion command was set to 5 rad/sec2. Figure 4(a) shows the evolution of
the wire length measurements along the trajectory. Wire length sensors
are modeled with additive Gaussian noise with zero mean and 1 mm

Wire-based Tracking Using Mutual Information 11

pure rotations along the vertical axis. The idea is to show that, whenever

Pure Rotations
A second experiment consisted in testing the tracking system under

standard deviation. Moreover, readings of the base orientation are also

largest possible configuration changes. The attaching points in both the

Their coordinates can be found in Table 1, and refer to the frames

kept at a distance of 1 m from the base.

shown in Figure 1. The actual testbench used is shown in Figure 6.3.



Table 1. Coordinates of the attaching points (in meters) in their local coordinate
frames.

x y z x y z

a1 0.3000, 0.0000, 0.0000 b1 0.1000, 0.0000, 0.0000

a2 0.1500, 0.2598, 0.0000 b2 0.0500, 0.0866, 0.0000

a3 0.1500, 0.2598, 0.0000 b3 0.0500, 0.0866, 0.0000

Figure 4. Wire tracking of pure rotations along an axis perpendicular to the base
platform.

modeled with zero mean white additive Gaussian noise with 0.001 rad
standard deviation. Figures 4(b) and 4(c) show the tracked object po-
sition and orientation recovery errors, respectively. The motion of the
rotating base is depicted in Figures 4(d)-4(e), showing that commands
for maximal platform rotation velocities are being selected from our mu-
tual information metric (Figure 4(f)).

6.4
In this last example, the tracked object moves back and forth in the

three Cartesian components along a line from (1, 1, 1) to (2, 2, 2) meters,

12

– 

– – – – 
– 

π
3

rad about its center in all raw, pitch and yaw com-whilst rotating
ponents. This experiment shows that for compound motions it is more
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Figure 5. Wire tracking of compound motion.

difficult to disambiguate orientation error, while still doing a good job at
tracking the correct object pose. Once more, the maximum base rotation
speed was limited to π

5 rad/sec, and the limit for possible base accelera-
tion command was set to 30 rad/sec2. Figure 5(a) shows the evolution of
wire length measurements for this example. The tracked object position
and orientation errors is shown in Figures 5(b) and 5(c). The motion
of the rotating base is depicted in Figures 5(d)-5(e). And, our mutual
information action selection mechanism is shown in Figure 5(f).

7. Conclusion
An active sensing strategy for a wire tracking device has been pre-

sented. It has been shown how by allowing the sensor platform rotate
about its center, a wider range of motions can be tracked by reducing
the number of wires needed from 6 to 3. Moreover, platform rotation is
performed so as to maximize the mutual information between poses and
measurements, and at the same time, so as to prevent wire wrappings
as far as possible.

Wire-based Tracking Using Mutual Information 13
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THE CONTROL NUMBER AS INDEX
FOR STEWART GOUGH PLATFORMS
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Vienna University of Technology
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Abstract Singular postures of Stewart Gough Platforms must be avoided because
close to singularities they lose controllable degrees of freedom. Hence
there is an interest in a distance measure between the instantaneous
configuration and the nearest singularity. This article presents such a
measure, which is invariant under Euclidean motions and similarities,
which has a geometric meaning and can be computed in real-time. This
measure ranging between 0 and 1 can serve as a performance index.

Keywords: Stewart Gough Platform, distance measure, perfomance index

1. Introduction
In Section 3 of this article we define a new measure, which allows

to compare different postures of different nonredundant Stewart Gough
Platforms (SGPs). Such a measure should assign to each configuration
K a scalar D(K) obeying the following six properties:

1. D(K) ≥ 0 for all K of the configuration space,
2. D(K) = 0 if and only if K is singular,
3. D(K) is invariant under Euclidean motions,
4. D(K) is invariant under similarities,
5. D(K) has a geometric meaning,
6. D(K) is computable in real-time.

K is singular if and only if the six legs belong to a linear line complex
(see Merlet, 1992) or, analytically seen, the determinant of the Jacobian

J T =

⎛
⎝l̂1 ‖l1‖−1

... l̂6 ‖l6‖−1

l1 ‖l1‖−1
... l6 ‖l6‖−1

⎞
⎠ with

li = Pi − Bi and

l̂i = Bi× li = Pi× li
(1)

vanishes, where Bi resp. Pi are the coordinates of the base resp. platform
anchor points with respect to any fixed reference frame Σ0 with origin
O. Therefore the ith row of J equals the normalized Plücker coordinates
‖li‖−1(li, l̂i) of the carrier line Li of the ith leg oriented in the direction
BiPi. We’ll assume for the rest of this article that Bi �= Pi for i = 1, .., 6.

© 2006 Springer. Printed in the Netherlands. 
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Kinematic meaning of the Jacobian. The velocity vector v(Pi) of
Pi due to the instantaneous screw (= twist) q := (q, q̂) of the platform
Σ against Σ0 can be decomposed in a component vL(Pi) along the ith

leg Li and in a component v⊥(Pi) orthogonal to it (see Fig. 1), thus

v(Pi) = q̂ + (q× Pi) = vL(Pi) + v⊥(Pi) (2)

with ‖vL(Pi)‖ =
li

‖li‖ ·v(Pi) =
l̂i

‖li‖ ·q +
li
‖li‖ ·q̂ =: di. (3)

Therefore the Jacobian J is the matrix of the linear mapping

ι : q �→ d = J q with d = (d1, .., d6)T . (4)

ι has at least a one-dimensional kernel kerι, if K is singular. Let k ∈ kerι
and k �= o. Then also µk with µ ∈ R lies in kerι. Therefore we can say,
that v(Pi) can be arbitrarily large for vanishing translatory velocities in
the six prismatic legs. The sole exeption is the case where Pi lies on the
instantaneous screw axis (isa) and k is an instantaneous rotation.

Review. In the following we analyze some of the in our opinion most
important indices in view of the initially stated six properties.

The manipulabilitiy introduced by Yoshikawa, 1985 is not invariant
under similarities, because for SGPs it equals |det(J )|. So Lee et al.,
1998 used |det(J )|·|det(J )|−1

m as index, where |det(J )|m denotes the
maximum of |det(J )| over the SGP ’s configuration space. But the com-
putation of |det(J )|m is a nonlinear task and was only done for planar
SGPs with very special geometries. Only for these SGPs |det(J )|m can
be interpreted geometrically as the volume of the framework.

Pottmann et al., 1998 introduced the concept of the best fitting linear
line complex c of L1, ..,L6. The suggested index equals the square root
of the minimum of

∑
d2
i with respect to c under the side condition

cTc = 1. The index is not invariant under similarities and it is not
defined for instantaneous translations c. In order to close this gap, the
authors proposed to minimize a further function, which yields a second
value. But how should these two values be combined to a single number?

The rigidity rate introduced by Lang et al., 2001 is based on the idea,
that a SGP at any position K permits a one-parametric self-motion
within the group of Euclidean similarities G7. The angle ϕ ∈ [0, π/2]
between the tangent of the self-motion in K and the subgroup of Eucli-
dean displacements serves as an index. But the choice of the invariant
symmetric bilinear form in the tangent space of G7, which is necassary
in order to define a measure in the sense of non-Euclidean geometry, is
arbitrary. Although ϕ fulfills all six stated properties, its applicability is
limited. This becomes manifest in the remark at the end of Section 5.

G. Nawratil16



2.
Now we take a closer look at the reciprocal of the condition number

(cdn−1) introduced by Salisbury and Craig, 1982, because it will be
the starting point of our considerations. cdn−1 equals the ratio of the
minimum λ̂− and the maximum λ̂

+
of the quadratic objective function

ζ̂(q) : qTI6 q = ω2 +
[
ω̂2 + ω2Op

2
]

(5)

with p denoting the isa, ω the angular velocity and ω̂ the translatory
velocity of the screw q, under the quadratic side condition

ν(q) : dTd = qTN q = 1 with N = J TJ . (6)

Due to the linearity of ι in (4) the screw µq corresponds to the µ-
fold translatory velocity di in the six prismatic legs, and therefore the
side condition ν(q) is well defined. The weak point of this index is the
objective function for the following reasons. First, it is not invariant
under translations, because ζ̂(q) depends on the choice of O. In practice
O is not selected arbitrarily, but placed in the tool center point. But
the real problem, which causes the variance of cdn−1 under similarities,
occurs from the dimensional inhomogeneity of ζ̂(q). To overcome this
deficiency, different concepts (e.g. characteristic length, see Zanganeh
and Angeles, 1997) were introduced, but they still weight the ratio of
length and angle in a more or less arbitrary way. The inhomogeneity and
the lacking invariance of ζ̂(q) do not allow a geometric interpretetion of
cdn−1 and they question its adequacy as a performance index for SGPs.

The conslusion of this considerations is, that we have to look for a new
objective function ζ(q) which meets our initially stated demands. But
we want to add a further argument, which has the following motivation:
The cdn−1 as well as the manipulability are also used to optimize the
design of SGPs. But these two indices do not depend on the choice of
Bi and Pi on Li as long as Bi �= Pi. Thus we require:

7. D(K) depends on the geometry of the SGP, not
only on the carrier lines L1,...,L6 of the six legs.

Pottmann et al., 1998 also presented a modified version of his method,
namely the line segment method, which statisfies the 7th demand but
does not eliminate the other weak points. The rigidity rate is indepen-
dent of the choice of the base anchor points and so it only takes the
geometry of the platform into consideration. This raises the following
problem: If we change the viewpoint and consider Σ as the unmoved
base and Σ0 as platform, we get another index for the same SGP con-
figuration. So the instantaneous rigidity of the SGP depends on the
viewpoint which is dissatisfying.

The Control Number as Index for Stewart Gough Platforms 17
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2.1 Uncontrollable ostures of SGPs
In practice configurations must be avoided, where minor variations

of the leg lengths have uncontrollable large effects on the instantaneous
displacement of the platform Σ. But how should the quantity of effects
be measured in relation to the variation of the leg lengths? The boarder
case of this uncontrollability is, if there exists an infinitesimal motion of
Σ while all actuators are locked. In such a singular position the velocities
of the platform points can be arbitrarily large, and therefore the posture
is uncontrollable. The question is, which measurable parameter of the
SGP indicates the circumstance of uncontrollability in a natural way
and has a geometric meaning for the manipulator.

3. Idea and efinition of the ontrol umber ctn

Let’s assume there is instantaneously a minor variation of the six leg
lenghts and the SGP is not singular. So there exists a unique screw q
which describes the motion of Σ against Σ0 according to (4). To meet
our 7th property, we consider the velocity v(Pi) of Pi with respect to
q. We are not interested in the instantaneous displacements of Pi in
direction of the leg, because the leg length is an active joint which can
be controlled totally. Therefore only the component v⊥(Pi) can be an
indicator of uncontrollability. But v⊥(Pi) is no mechanical parameter
of a SGP and therefore we look at the angular velociety ωBi of the ith

passive base joint. This ωBi

ωBi :=
‖v⊥(Pi)‖

‖li‖ ⇒ ω 2
Bi =

‖v⊥(Pi)‖2

‖li‖2
=

‖v(Pi)‖2 d2
i

‖li‖2
(7)

according to (2) and (3) and so it is proportio-
nal to ‖v⊥(Pi)‖. But there also exists angular
velocities ωPi in the passive platform joints,
which are defined analogously. The sole diffe-
rence is that we regard the inverse motion of q.
So we have to substitute Bi for Pi and q for
q in (2), (3) and (7). Obviously ω 2

Bi and ω 2
Pi

are quadratic forms with the coordinates of q
as unkowns. Therefore we can rewrite them as

ω 2
Bi = qTWBiq and ω 2

Pi = qTWPiq, (8)

where WBi and WPi are symmetric 6 × 6
matrices. Figure 1. De ning ωBi

P

D C
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Now we define the new objective function ζ(q) as

ζ(q) =
6∑
i=1

ω 2
Bi

+ ω 2
Pi

= qTZ q with Z =
6∑
i=1

WBi + WPi . (9)

Definition 1. The control number of a SGP configuration K is defined
as

ctn(K) := +
√

λ−/λ
+

ctn(K) ∈ [0, 1] , (10)

where λ− resp. λ
+

is the minimum resp. maximum of the objective func-
tion ζ(q) in (9) under the side condition ν(q) in (6). ctn(K) = 0 cha-
racterizes a singular configuration and a value of 1 an optimal one.

4. Computation and ell-definedness of ctn

We solve the optimization problem in order to compute λ− resp. λ
+

by introducing a Lagrange multiplier λ. Then the approach simplifies in
consideration of ∇ζ = 2Z q and ∇ν = 2N q, to the general eigenvalue
problem (Z−λN )q = o. This system of linear equations has a nontrivi-
al solution, if and only if |Z −λN| = 0. The degree of the characteristic
polynomial in λ corresponds with rank(J ) because of N = J TJ . Every
general eigenvalue λi is linked with an general eigenvector ei. The smal-
lest λ− and the largest λ

+
are the wanted extreme magnitudes because

of
Z ei = λiN ei and eTi N ei = 1 ⇒ ζ(ei) = λi. (11)

Theorem 1. λ− and λ
+

of Def. 1 are the extreme general eingenvalues
of Z with respect to N . All roots λi of the characteristic polynomial
|Z − λN| = 0 are positive if and only if rank(J ) = 6.

The Control Number as Index for Stewart Gough Platforms 19

with

Proof: According to Hestenes, 1975 all λi’s are real. Due to (11) all λi’s
are nonnegative. If q is no pure translation (q 6= o), then all angular
velocities in the passive joints would vanish if and only if the 12 anchor
point lie on the isa. But such a configuration yields rank(J ) = 1. In the
case of a pure translation, there would be no angular velocities in the

�

Theorem 2. The number of roots λi of the characteristic polynomial
|Z − λN| = 0 dropping to infinity equals the defect(J ).

Proof: All screws ±µq ∈ kerι with µ ∈ R cause arbitrarily large velocities
v(Pi) = v⊥(Pi) resp. v(Bi) = v⊥(Bi) and therefore arbitrarily large ωBi

resp. ωPi . The proof follows by carring out limµ→∞ and (11). �

Due to Theorem 1 and 2 the control number is well defined. Therefore
all initially stated seven properties are obviously fulfilled.

the   translation. But such a configuration yields rank(J ) ≤ 3.
passive joints if and only if the legs are parallel to the direction of

W



Remark. It does not make sense to define ζ(q) only as
∑

ω 2
Bi

(resp.∑
ω 2
Pi

) for following reasons: First, the index would not fulfill our 7th

demand for the same reason as the rigidity rate. Second, the index would
not fulfill our 2nd demand, because there exist nonsingular SGP confi-
gurations, where the Li’s are the path tangents of Pi (resp. Bi) with
regard to q. Consequently we get ζ(q) = 0 and the index would equal 0.

4.1
According to Wolf and Shoham, 2003 the closest path normal complex

of a helical motion (rotations and translations included) to L1, ..,L6,
described by its axis and pitch, provides additional information on the
SGP ’s instantaneous motion and understanding of the type of singularity
when the SGP is at, or in the neighborhood of, a singular configuration.
Since the ctn is a performance index as well as a distance measure, a
small ctn indicates the closeness to a singularity. Due to Theorem 2 and
the continuity of the polynomial functions |Z − λN| = 0, which arise if
we move towards a singular position, we can say that the closest linear
complex to L1, ..,L6 equals the path normal complex of e

+
according

to (11). Therefore this method additionally brings about a kind of best
approximating linear line complex in the neighbourhood of singularities,
and the calculation needs no case analysis like Pottmann’s method.

5. Final xample
We consider a two parametric set SK of configurations K, given by

Bi = (cos αi, sinαi,−h)T and Pi = (cos βi, sinβi, h)T with

α1 = β2 − π

3
= −α α3 = β4 − π

3
=

2π

3
− α α5 = β4 − π

3
=

4π

3
− α

α2 = β1 +
π

3
= α α4 = β3 +

π

3
=

2π

3
+ α α6 = β5 +

π

3
=

4π

3
+ α

where α ∈ [0, π6 ] denotes the design parameter and h ∈ R
+ the posture

parameter of the SGP. All K ∈ SK with α �= π
6 and h /∈ {0,∞} are

nonsingular. We study this example, because such manipulators are very
relevant in practice as flight simulators. The matrix Z − λN can be
manipulated by elementary row and column operations to the diagonal
matrix diag(∆1, ..,∆6). Therefore the eigenvalues λi can be computed
explicitly using ∆i = 0, whereas λ1 = λ2 and λ4 = λ5. K+

given by

h
+

= γ

4
≈ 0.4, α

+
= − arctan

„√
5γ −√

15

5

«
≈ 4◦, γ =

q
2
√

5 − 2 (12)

K +
determined

by λ1,2 = λ4,5 and λ3 = λ6 we get ctn(K
+
) =

q
2
√

5 − 4 ≈ 0.687.
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(see Fig . 2 and 3 ). For K

Instantaneous Motion near Singularities

E

has the maximal ctn of all K∈ S s



The SGP with α
+

also makes sense from the practical point of view,
because contrary to the often propagandized 3-3 octahedral manipula-
tor (α = 0) no anchor points coincide. But coinciding anchor points are

lines of ctn when the platform is translated away from the central loca-
tion parallel to the base plane. The difference between two neighbouring
contour lines is 0.05, where the highest has the value of 0.65. 6, 7
and 8 illustrate the graphs of ctn dependig on the angle ω of the rotation
of Σ about an axis parallel to x, z or y, respectively, through (0, 0, h

+
).

illustrates the graph of ctn depending on . g. 4 shows the contourFi
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g.Fi

Fig

Figure 2. Axonometry of K+ Figure 3. Contours of ctn(SK)

s.

hard to manufacture. Therefore we take a closer look to this SGP. 5
h
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Remark. The rigidity rate of all nonsingular configurations of this set
SK is constant at the maximal value of /2. Only in singular positions
it drops to zero. So if we approach a singularity of SK the value of the
rigidity rate is constant /2. Therefore this index is not recommendable
for comparing different postures of different SGPs.

6. Conclusion
The presented index, called control number (ctn), allows to compare

different postures of different SGPs, because it obeys the initially stated
seven conditions. Therefore ctn can serve as a performance index as well
as a distance measure to the closest singularity. This concept can also
be modified for redundant SGPs and 3 dof RPR manipulators.

An article about optimal configurations K with ctn(K) = 1 is in pre-
paration. It can be proved, that such configurations do exist. New per-
formance indices for 6R robots have been presented in Nawratil, 2006.
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AbstractAbstractAbstractAbstract The paper presents a solution to all the spatial kinematics problems that 
-

sines satisfy three linear equations. After having expressed the direction co-
sines in terms of the Rodrigues parameters, a classical elimination method 
to solve three quadratic equations in three unknowns is here extended to in-

pa

Keywords:KeywordsKeywordsKeywords  Rotation matrix, direction cosines, Rodrigues parameters     

1. 1. 1. 1.     IntroductionIntroductionIntroductionIntroduction    
A whole class of problems of spatial kinematics can be solved by de-

three given linear equations. Owing to the orthogonality constraints 
among the direction cosines, these problems are equivalent to solving a 
set of nine equations: three linear and six quadratic. 

Rather than tackling right away the solution of such an equation set, 
it is computationally more efficient to replace, in each equation, all un-
known direction cosines by their expressions in terms of the Rodrigues 
parameters. In doing so, all orthogonality constraints are implicitly ful-
filled, whereas the former linear equations in the direction cosines turn 
into second-order equations in the Rodrigues parameters. 

Unfortunately, the known algebraic elimination algorithms that solve 
a set of three quadratic equations – such as the Sylvester method – are 
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require determination of the 3 × 3 rotation matrices whose nine direction co

clude all solutions at infinity. Therefore no admissible 3 × 3 rotation matrix is 

rametrization of orientation. A case study exemplifies the new method. 
neglected even though it corresponds to a singularity of the Rodrigues 

termining all 3 × 3 rotation matrices whose nine direction cosines obey 

::



unable to find real solutions at infinity, which are here of interest too 
because infinite real Rodrigues parameters are associated to finite real 

exist, these algorithms might fail to determine even the finite solutions. 
After exemplifying the recurrence in kinematics of the addressed 

three-equation set in the direction cosines, this paper presents an origi-
nal procedure to find all real solutions of the equation set. The proposed 
procedure – based on the Rodrigues parametrization of orientation and 
presented with reference to the Sylvester algebraic elimination algorithm –

 is able to identify all real solutions in terms of Rodrigues parameters, 
both finite and at infinity. Therefore its adoption guarantees that no real 

neglected. 
A numerical example shows application of the proposed computational 

2. 2. 2. 2.     
A linear three-equation set in nine direction cosines is the unifying 

factor behind a number of seemingly different kinematics problems, such 
as those epitomized in Fig. 1. Although these problems have already been 
solved in the literature by ad-hoc algorithms, they could be also worked 

-
ditions in the direction cosines. In this respect, the procedure proposed in 
this paper is a viable alternative to already-known solving methods. 

- -

    
 

Figure 1. a) Fully-parallel spherical wrist; 
 b) rigid body supported at six points by six planes. 

 
 
not always suitable to the case at hand. The reason is twofold: i) they are 
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3 × 3 rotation matrices, and ii) in case one or more solutions at infinity 

3 × 3 rotation matrix compatible with the original three linear equations is 

procedure to a case study. 

TThhe e Relelevevaanncce e tto o Kiinnememaattiiccss  

out by determining all 3 × 3 rotation matrices satisfying three linear con

tics aims at determining all possible orientations of the moving platform 
Figure 1a shows a fully parallel spherical wrist, whose direct kinema
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for a given set of actuator lengths (Innocenti and Parenti-Castelli, 1993). 
If vvvvi and wwwwi are the coordinate vectors of points Qi and Pi relative to the 
fixed (S ) and movable (S’ ) reference frames respectively, and RRRR is the 
rotation matrix for transformation of coordinates from S’ to S, then – by 
applying Carnot’s theorem to triangle OQiPi – the compatibility equa-
tions can be written as 

 
 + − = =22 ( 1,..,3)T T T

i i ii i i iL iv v w w v Rw  (1) 
 

These equations are linear in the (unknown) elements of matrix RRRR. 
Figure 1b refers to another kinematics problem, which consists in find-

ing any possible positions of a rigid body C supported at six given points 
Pi ( i=1,..,6) by six fixed planes (Innocenti, 1994; Wampler, 2006). The co-
ordinate vector wwwwi of each point Pi is known with respect to a reference 
frame S’ attached to C. Each supporting plane is defined with respect to 
the fixed frame S by the coordinate vector vvvvi of a point Qi lying on the 
plane, together with the components in S of a unit vector nnnni orthogonal to 
the plane. The unknown position of C with respect to S is parametrized 
through the coordinate vector s s s s of the origin of S’ with respect to S, to-
gether with the rotation matrix RRRR for transformation of coordinates from 
S’ to S. The compatibility equations can be written as: 

 
 ( )[ ] 0 ( 1,..,6)T

i i i i+ − = =n s R w v  (2) 
 

They are linear in both the elements of RRRR and the components of ssss. If 
there exist three supporting planes not parallel to the same line, three of 
these equations can be linearly solved for the components of vector ssss, and 
their expressions inserted into the remaining three equations. Therefore 
a linear three-equation set that has the nine direction cosines of matrix RRRR 
as only unknowns is obtained once more. 

Other kinematics problems susceptible of being reduced to the same 
linear formulation as the one just exemplified are traceable in Gosselin 
et al., 1994, Husain and Waldron, 1994, Wohlhart, 1994, Callegari et al. 
2004.  

3. 3. 3. 3.     
If ijr  (i, j =1,2,3) is the ij th element (direction cosine) of a rotation matrix 

RR ij k k

equations that has to be solved for ijr  (i, j =1,2,3) is 
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,

RR and a , , b  (i, j, k =1,..,3)  are known quantities, the set of three linear 



 
=

= =∑ ,
, 1,..,3

( 1,..,3)ij k ij k
i j

a r b k  (3) 

 

The expressions of rij in terms of the vector of Rodrigues parameters 
pppp    = (p1,p2,p3)T are concisely given by (Bottema and Roth, 1979) 

 

 − + +
=

+

�(1 ) 2 2

1

T T

T

p p I p p p
R

p p
 (4) 

 
where p�  is the skew-symmetric matrix associated with vector pppp, 
i.e., = ×pe p e�  for any three-component vector eeee. As is known, the vector pppp 
of Rodrigues parameters corresponds to a finite rotation of amplitude 

12 tanθ −= p  about the axis defined by unit vector u p p/= . 
Unfortunately, the Rodrigues parametrization of orientation is singu-

lar for any half-a-turn rotation (θ = π rad) about any line because, in this 
instance, at least one of the components of pppp approaches infinity. 

By considering Eq. (4), Eq. (3) can be re-written as: 
 

 ( ), ,2 2 2
, 1,..,3; 1,..,31 2 3

1
0 1,..,3

1
ij k i j i k i k

i j i j i

A p p B p C k
p p p = ≤ =

⎛ ⎞⎟⎜ ⎟+ + = =⎜ ⎟⎜ ⎟⎟⎜+ + + ⎝ ⎠
∑ ∑  (5) 

 
where quantities Aij,k, Bi,k, and Ck (i,j,k = 1,..,3; i ≤ j) are known because 
dependent on the given quantities aij,k and bk only. 

Because the denominator of Eq. (5) does not vanish for any real vector 
pppp, if pppp does not approach infinity Eq. (5) can be simplified as follows 

 
 ( ), ,

, 1,..,3; 1,..,3

0 1,..,3ij k i j i k i k
i j i j i

A p p B p C k
= ≤ =

+ + = =∑ ∑  (6) 

 
Conversely, in case the denominator of Eq. (5) approaches infinity, so 

does at least one of the components of pppp. If both the numerator and the 
denominator of Eq. (5) are homogenized by replacing pi with expression 
xi/x0 (i = 1,..,3), and subsequently multiplied by x02, the resulting denomi-
nator is definitely different from zero (the real quantities x0, x1, x2, and x3 
cannot vanish simultaneously). Finally, for x0 = 0 (which means that at 
least one Rodrigues parameter approaches infinity), Eq. (5) becomes 

 
 ( ),

, 1,..,3;

0 1,..,3ij k i j
i j i j

A x x k
= ≤

= =∑  (7) 
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This is a set of three homogeneous quadratic equations in three un-
knowns, namely, the components of vector xxxx = (x1, x2, x3)T. 

If the set of the non-vanishing vectors that satisfy Eq. (7) is parti-
tioned into equivalence classes so that two solution vectors parallel one 
to the other belong to the same class, then each class corresponds to a 
vector pppp of Rodrigues parameters which satisfies Eq. (5) and has infinite 
magnitude. 

Finding all real solutions of Eq. (5) – both finite and at infinity – has 
been thus reduced to determining all real finite solutions of Eq. (6), to-
gether with all equivalence classes of real solutions of Eq. (7). This im-
plies that all real solutions of Eq. (6) – including those at infinity – need 
to be computed. Bezout’s theorem (Semple and Roth, 1949) ensures that 
the maximum number of these solutions is eight. 

4. 4. 4. 4.     
As will be proven further on, the existence of solutions at infinity 

might affect the search for the finite solutions. It is therefore convenient 
to compute the solutions at infinity first. 

The Appendix at the end of the paper briefly summarizes the mathe-
matical tools that will be taken advantage of in this section.  

4.1 4.1 4.1 4.1     s      
The solutions at infinity, if existent, can be found by identifying Eq. (7) 

with Eq. (1-A) of the Appendix. For the case at hand, Eq. (3-A) becomes 
 

 ( ) =2 2 2
1 2 3 1 2 1 3 2 3

T
x x x x x x x x xM 0  (8) 

 
where MMMM is a 6 × 6 matrix that depends on coefficients Aij,k of Eq. (7) only. 

In case the determinant of MMMM is different from zero, there is only the 
trivial solution for Eq. (7), and no solution at infinity exists for Eq. (6). 

Conversely, if the determinant of MMMM vanishes, Eq. (7) has non-
vanishing solutions. The number of equivalence classes of these solutions 
matches the number of solutions at infinity for Eq. (6). Determination of 
all solutions of Eq. (7) poses no hurdles and will not be detailed in this 
paper. Suffices it to say that, in the worst possible scenario, the classes of 
equivalence for the solutions of Eq. (7) can be found by solving a set of 
two quadratic equations in two unknowns. 
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4.2 4.2 4.2 4.2     
In most cases, the finite solutions of Eq. (6) can be determined through 

the procedure described by Roth, 1993, and here briefly summarized. If 
(α,β,γ ) is a permutation of indices (1,2,3), two of the three unknowns, say 
pα and pβ, are first replaced in Eq. (6) by quantities yα /y0 and yβ /y0. Fol-
lowing multiplication by y02, the ensuing equation set is obtained: 

 

 
( ) ( )

( ) ( )

, min , max , , , 0
, ;

2 2
, , 0 0 1,..,3

ij k i j i i k i k i
i j or i j i or

k k k

A y y A p B y y

A p B p C y k

γ γ γ
α β α β

γγ γ γ γ

= ≤ =

⎡ ⎤+ +⎣ ⎦

+ + + = =

∑ ∑
 (9) 

 
which is homogeneous with respect to unknowns y0, yα , and yβ . 

If a triplet of values for pα , pβ , and pγ fulfils Eq. (6), Eq. (9) must be 
satisfied by the same value of pγ together with a non-vanishing triplet of 
values for y0 , yα , and yβ . By also taking into account the dependence on 
pγ of the coefficients of the homogeneous system in Eq. (9), the solvability 
condition for Eq. (9) that corresponds to Eq. (3-A) turns into 

 
 ( )2 2 2

0 0 0( )
T

p y y y y y y y y yγ α β α β α β =N 0  (10) 
 

The solution of this linear set is meaningful only if the triplet 
(y0 , yα , yβ ) does not vanish, i.e., if the following condition is satisfied (see 
Eq. (4-A)) 
 

 γ =det ( ) 0pN  (11) 
 

This univariate polynomial equation in pγ has degree not greater than 
eight (Roth, 1993). It is the outcome of elimination of unknowns pα and pβ 
from Eq. (6). For every root of Eq. (11), the corresponding values of pα 
and pβ can be easily found by Eq. (10) through linear determination of a 
non-vanishing triplet (y0 , yα , yβ ). Thus far is the outline of the procedure 
that has been presented – without investigating its singularities – in 
Roth, 1993. 

It is worth noting that Eq. (11) is unable to yield solutions at infinity. 
Things keep manageable if an infinite pγ satisfies Eq. (5) for some values 
of pα and pβ, as Eq. (11) has a degree lower than eight and its roots con-
vey information on finite solutions only. Regrettably, should an infinite 
solution to Eq. (5) exist for a finite pγ (i.e., only pα or pβ or both approach 
infinity) then Eq. (11) vanishes and the described elimination method 
becomes pointless. 
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This latter drawback can be explained by noticing that – for pα or pβ 
approaching infinity – Eq. (10) should hold for y0 = 0 and for some (not 
simultaneously vanishing) values of yα and yβ, irrespective of the value of 
pγ (the left-hand side of Eq. (9) does not depend on pγ when y0 = 0). Conse-
quently, the determinant of 6 × 6 matrix NNNN(pγ ) should vanish for any finite 
pγ , which also means that Eq. (11) collapses into a useless identity. 

If it  is not possible  to choose index γ  so as to circumvent the just 
mentioned inconvenience, the classical elimination method is definitely 
unable to find any  finite solution  to  Eq. (6). Even a different set of Rodri-
gues parameters consequent on a randomly-chosen offset rotation does 
not guarantee removal of the inconvenience.  

4.3 4.3 4.3 4.3     Adding robustnessAdding robustnessAdding robustnessAdding robustness    
To overcome the drawback outlined at the end of the previous subsec-

tion, once the solutions at infinity of Eq. (6) have been computed (see 
subsection 4.1), and prior of attempting determination of the finite solu-
tions, the vector pppp of Rodrigues parameters is replaced by vector 
qqqq = (q1, q2, q3)T, related to the former by the ensuing relation 
 

  =q L p  (12) 
 
where LLLL is a 3 × 3 non-singular constant matrix whose third row is not 
orthogonal to each non-vanishing vector (x1, x2, x3)T that solves Eq. (7). 

By selecting γ = 3 and replacing q1 and q2 with quantities z1 /z0 and z2 /z0, 
Eq. (9) turns into 
 

 
( )

( ) ( )

, 3, 3 , 0
, 1,2; 1,2

2 2
33, 3 3, 3 0 0 1,..,3

ij k i j i k i k i
i j i j i

k k k

A z z A q B z z

A q B q C z k

= ≤ =

′ ′ ′+ +

′ ′ ′+ + + = =

∑ ∑
 (13) 

 
where coefficients A ij,k, B i,k, and C k, depend on the coefficients of Eq. (6) 
and on the chosen matrix LLLL. By applying the elimination procedure de-
scribed in the previous subsection, the correspondent of Eq. (11) is 
 

 ′ =3det ( ) 0qN  (14) 
 

Differently from Eq. (11), Eq. (14) does not lose trace of the finite solu-
tions of Eq. (6), because any solution at infinity in terms of pppp involves a 
vector qqqq whose third component, q3, approaches infinity too. 
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5. 5. 5. 5.     
The ensuing linear equation set in the direction cosines is considered: 

 

 
21 22 23

31 32 33

11 12 21 22 33

r r r 1 0
r r r 1 0
r r r 3r r 1 0

⎧ + + + =⎪⎪⎪ + + + =⎨⎪⎪ + + + − + =⎪⎩
  

 
In terms of homogenized Rodrigues parameters (x1, x2, x3 , these equa-
tions have three solutions at infinity, i.e., (1, −1,0), (0,1, −1), and (1,0,0). 
Since each Rodrigues parameter is finite for at least one solution at infin-
ity, the change of variable in Eq. (12)  is crucial. The third row of LL is 
expressly chosen not normal to each of the three solutions at infinity. 
A

 
possible expression for LLL is 

 

 
1 0 0
0 1 0
1 1 1

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜− −⎝ ⎠
L   

 
Following the change of variables in Eq. (12), Eq. (14) yields 

 
 5 4 3 2

3 3 3 3 39 54 126 57 9 0q q q q q− + − + − =   
 

The only real root of this equation is q3 = 3. Back-substitution of this 
root into the analogous of Eq. (10) completes determination of vector 
qqqq = (−1,1,3)T. Next, Eq. (12) results into pppp = (−1,1, −1)T. The rotation matri-
ces corresponding to the four real solutions − three at infinity in terms of 
Rodrigues parameters, and the other finite − are respectively (see Eq. 4): 
 

0 1 0 1 0 0 1 0 0 0 0 1
1 0 0 , 0 0 1 , 0 1 0 , 1 0 0 .
0 0 1 0 1 0 0 0 1 0 1 0

− −
− − − −

− − − −
 

6. 6. 6. 6.     ConclusionsConclusionsConclusionsConclusions    

matrices satisfying three linear equations in the direction cosines. The 
proposed procedure is based on the Rodrigues parametrization of orienta-
tion and takes advantage of a classical algebraic elimination method in 
order to solve a set of  three quadratic equations in three unknowns. 
To

 
avoid neglecting any possible 3 × 3 rotation matrix, the classical 

30

)

L

Numerical  Example  Numerical  Example  

This paper has presented a new procedure to find all 3 × 3 real rotation 

C. Innocenti and D. Paganelli

⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

 
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

 
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

 
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

 



tion method has been extended in the paper so that it keeps 
effective even in case one or more Rodrigues  parameters approach infinity. 

A numerical example has shown application of the proposed procedure 
to a case study. 
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AppendixAppendixAppendixAppendix    
Let ffff(gggg) be an n-dimensional vector function that depends on an 

n-dimensional vector gggg. If all components of ffff are homogeneous functions 
of the same degree in the components of gggg, for any non-vanishing solution 
of the following homogenous system 
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the ensuing condition holds (Salmon, 1885) 
 

 D∇ = 0 (2-A) 
 
where D is the determinant of the Jacobian matrix of ffff. 

Sylvester (Salmon, 1885) has suggested the following procedure in or-
der to assess whether a set of three second-order homogeneous equations 
in three unknowns has non-vanishing solutions: 

i) compute the determinant D (which is a third-order homogeneous 
polynomial in the components gi, i = 1,..,3, of vector gggg); 

ii) determine the gradient of D (its components are quadratic homo-
geneous polynomials in gi, i = 1,..,3); 

iii) consider Eqs. (1-A)-(2-A) as a set of six equations that are linear 
and homogeneous in the six monomials gigj (i,j = 1,..,3, i ≤ j) 

 

 ( ) =2 2 2
1 2 3 1 2 1 3 2 3

T
g g g g g g g g gH 0  (3-A) 

 
where HHHH is a 6 × 6 matrix whose elements are functions of the coef-
ficients of Eq. (1-A). 

The original set of three homogeneous quadratic equations has non-
vanishing solutions if and only if the ensuing condition is satisfied 
 

 =det 0H  (4-A) 
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A POLAR DECOMPOSITION BASED
DISPLACEMENT METRIC FOR
A FINITE REGION OF SE(N)

Pierre M. Larochelle
Robotics & Spatial Systems Lab
Department of Mechanical and Aerospace Engineering
Florida Institute of Technology
pierrel@fit.edu

Abstract An open research question is how to define a useful metric on SE(n)
with respect to (1) the choice of coordinate frames and (2) the units
used to measure linear and angular distances. A technique is presented
for approximating elements of the special Euclidean group SE(n) with
elements of the special orthogonal group SO(n+1). This technique is
based on the polar decomposition (denoted as PD) of the homogeneous
transform representation of the elements of SE(n). The embedding of
the elements of SE(n) into SO(n+1) yields hyperdimensional rotations
that approximate the rigid-body displacement. The bi-invariant metric
on SO(n+1) is then used to measure the distance between any two
spatial displacements. The result is a PD based metric on SE(n) that is
left invariant. Such metrics have applications in motion synthesis, robot
calibration, motion interpolation, and hybrid robot control.

Keywords: Displacement metrics, metrics on the special Euclidean group, rigid-
body displacements

1. Introduction
Simply stated a metric measures the distance between two points in

a set. There exist numerous useful metrics for defining the distance be-
tween two points in Euclidean space, however, defining similar metrics
for determining the distance between two locations of a finite rigid body
is still an area of ongoing research, see Kazerounian and Rastegar, 1992,
Martinez and Duffy, 1995, Larochelle and McCarthy, 1995, Etzel and
McCarthy, 1996, Gupta, 1997, Tse and Larochelle, 2000, Chirikjian,
1998, Belta and Kumar, 2002, and Eberharter and Ravani, 2004. In
the cases of two locations of a finite rigid body in either SE(3) (spatial
locations) or SE(2) (planar locations) any metric used to measure the
distance between the locations yields a result which depends upon the
chosen reference frames, see Bobrow and Park, 1995 and Martinez and
Duffy, 1995. However, a metric that is independent of these choices,
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referred to as being bi-invariant, is desirable. Interestingly, for the spe-
cific case of orienting a finite rigid body in SO(n) bi-invariant metrics
do exist.

Larochelle and McCarthy, 1995 presented an algorithm for approxi-
mating displacements in SE(2) with spherical orientations in SO(3). By
utilizing the bi-invariant metric of Ravani and Roth, 1983 they arrived
at an approximate bi-invariant metric for planar locations in which the
error induced by the spherical approximation is of the order 1

R2 , where
R is the radius of the approximating sphere. Their algorithm for an
approximately bi-invariant metric is based upon an algebraic formula-
tion which utilizes Taylor series expansions of sine() and cosine() terms
in homogeneous transforms, see McCarthy, 1983. Etzel and McCarthy,
1996 extended this work to spatial displacements by using orientations in
SO(4) to approximate locations in SE(3). This paper presents an alter-

o

hyperspherical rotations. However, an alternative approach for reaching
the same goal is presented. The polar decomposition is utilized to yield
hyperspherical orientations that approximate planar and spatial finite
displacements.

2. The PD Based Embedding
This approach, analogous to the works reviewed above, also uses hy-

perdimensional rotations to approximate displacements. However, this
technique uses products derived from the singular value decomposition
(SVD) of the homogeneous transform to realize the embedding of SE(n-
1) into SO(n). The general approach here is based upon preliminary
work reported in Larochelle et al., 2004.

Consider the space of (n× n) matrices as shown in Fig. 1. Let [T ] be
a (n×n) homogeneous transform that represents an element of SE(n-1).
[A] is the desired element of SO(n) nearest [T ] when it lies in a direction
orthogonal to the tangent plane of SO(n) at [A]. The PD of [T ] is used
to determine [A] by the following methodology.

The following theorem, based upon related works by Hanson and Nor-
ris, 1981 provides the foundation for the embedding

is given by: [A] = [U ][V ]T where [T ] = [U ][diag(s1, s2, . . . , sn)][V ]T is
the SVD of [T ].

Shoemake and Duff, 1992 prove that matrix [A] satisfies the following
optimization problem: Minimize: ‖[A]−[T ]‖2

F subject to: [A]T [A]−[I] =
[0], where ‖[A]− [T ]‖2

F =
∑
i,j(aij− tij)2 is used to denote the Frobenius

P L

Theorem 1 Given any (n×n) matrix [T ] the closest element of SO(n).
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Figure 1. General Case: SE(n-1) ⇒ SO(n)

norm. Since [A] minimizes the Frobenius norm in Rn2

it is the element
of SO(n) that lies in a direction orthogonal to the tangent plane of SO(n)
at [R]. Hence, [A] is the closest element of SO(n) to [T ]. Moreover, for
full rank matrices the SVD is well defined and unique. Th. 1 is now
restated with respect to the desired SVD based embedding of SE(n-1)
into SO(n)

Theorem 2 For [T ] ∈ SE(n-1) and [U ] & [V ] are elements of the SVD
of [T ] such that [T ] = [U ][diag(s1, s2, . . . , sn−1)][V ]T if [A] = [U ][V ]T

then [A] is the unique element of SO(n) nearest [T ].

Recall that [T ], the homogenous representation of SE(n), is full rank
(McCarthy, 1990) and therefore [A] exists, is well defined, and unique.

The polar decomposition is quite powerful and actually provides the
foundation for the better known singular value decomposition. The polar
decomposition theorem of Cauchy states that “a non-singular matrix
equals an orthogonal matrix either pre or post multiplied by a positive
definite symmetric matrix”, see Halmos, 1958. With respect to our
application, for [T ] ∈ SE(n-1) its PD is [T ] = [P ][Q], where [P ] and [Q]
are (n×n) matrices such that [P ] is orthogonal and [Q] is positive definite
and symmetric. Recalling the properties of the SVD, the decomposition
of [T ] yields [U ][diag(s1, s2, . . . , sn−1)][V ]T , where matrices [U ] and [V ]
are orthogonal and matrix [diag(s1, s2, . . . , sn−1)] is positive definite and
symmetric. Moreover, it is known that for full rank square matrices that
the polar decomposition and the singular value decomposition are related
by: [P ] = [U ][V ]T and [Q] = [V ][diag(s1, s2, . . . , sn−1)][V ]T , Faddeeva,

A Polar Decomposition based Displacement Metric 
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1959. Hence, for [A] = [U ][V ]T it is known that [A] = [P ] and the
PD yields the same element of SO(n). The result being the following
theorem that serves as the basis for the PD based embedding.

Theorem 3 If [T ] ∈ SE(n-1) and [P ] & [Q] are the PD of [T ] such that
[T ] = [P ][Q] then [P ] is the unique element of SO(n) nearest [T ].

2.1 The Characteristic Length & Metric
characteristic length is employed to resolve the unit disparity be-

tween translations and rotations. Investigations on characteristic lengths
appear in Angeles, 2005; Etzel and McCarthy, 1996; Larochelle and Mc-
Carthy, 1995; Kazerounian and Rastegar, 1992; Martinez and Duffy,
1995. The characteristic length used here is R = 24L

π where L is the max-
imum translational component in the set of displacements at hand. This
characteristic length is the radius of the hypersphere that approximates
the translational terms by angular displacements that are ≤ 7.5(deg). It
was shown in Larochelle, 1999 that this radius yields an effective balance
between translational and rotational displacement terms. Note that the
metric presented here is not dependent upon this particular choice of
characteristic length.

It is important to recall that the PD based embedding of SE(n-1)
into SO(n) is coordinate frame and unit dependent. However that this
methodology embeds SE(n-1) into SO(n) and that a bi-invariant metric
does exist on SO(n). One useful metric d on SO(n) can be defined using
the Frobenius norm as,

d = ‖[I] − [A2][A1]T ‖F . (1)

where [A1] and [A2] of elements of SO(n). It is straightforward to verify
that this is a valid bi-invariant metric on SO(n), see Schilling and Lee,
1988.

2.2 A Finite Region of SE(3)
In order to yield a left invariant metric we build upon the work of

Kazerounian and Rastegar, 1992 in which approximately bi-invariant
metrics were defined for a prescribed finite rigid body. Here, to avoid
cumbersome volume integrals over the body a unit point mass model for
the moving body is used. Proceed by determining the center of mass
�c and the principal axes frame [PF] associated with the n prescribed
locations where a unit point mass is located at the origin of each location:

�c =
1
n

n∑
i=1

�di (2)

.

A
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where �di is the translation vector associated with the ith location (i.e.
the origin of the ith location with respect to the fixed frame). Next,
define [PF] with origin at �c and axes along the principal axes of the n
point mass system by evaluating the inertia tensor [I] associated with
the n point masses,

[PF] =
[

�v1 �v2 �v3 �c
0 0 0 1

]
(3)

where �vi are the principal axes associated with [I] Greenwood, 2003
and the directions �vi are chosen such that [PF] is a right-handed system.
Note that the principal frame is not dependent on the orientations of the
frames at hand. However, the metric is dependent on the orientations
of the frames. For a set of n locations in a finite region of SE(3) the
procedure is:

1 Determine [PF] associated with the n displacements.

2 Determine the relative displacements from [PF] to each of the n
locations.

3 Determine the characteristic length R associated with the n relative
displacements and scale the translation terms in each by 1

R .

4 Compute the elements of SO(4) associated with [PF] and each of
the scaled relative displacements using the polar decomposition.

5 The magnitude of the ith displacement is defined as the distance
from [PF] to the ith scaled relative displacement as computed via
Eq. 1. The distance between any 2 of the n locations is similarly
computed via the application of Eq. 1 to the scaled relative dis-
placements embedded in SO(4).

Since �c and [PF] are invariant with respect to both the choice of coordi-
nate frames as well as the system of units (Greenwood, 2003) the relative
displacements determined in step 2 are left invariant and it follows that
the metric is also left invariant.

3. Case Study

with the fixed reference frame [F] where the x-axes are shown in
red, the y-axes in green, and the z-axes in blue. Their centroid is
�c = [0.7500 1.5000 0.4375]T . Next, the principal axes directions are
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Table 1. Four Spatial Locations

# x y z θ (deg) φ (deg) ψ (deg) ‖[T ]‖
1 0.00 0.00 0.00 0.0 0.0 0.0 2.5281
2 0.00 1.00 0.25 15.0 15.0 0.0 2.5701
3 1.00 2.00 0.50 45.0 60.0 0.0 2.7953
4 2.00 3.00 1.00 45.0 80.0 0.0 2.8057

mined to define the principal frame,

[PF] =

⎡
⎢⎢⎣

−0.5692 0.8061 −0.1617 0.75000
−0.7807 −0.5916 −0.2012 1.5000
−0.2578 0.0117 0.9661 0.4375

0 0 0 1

⎤
⎥⎥⎦ (4)

shown in Fig. 2. The characteristic length is R = 24×1.7108
π = 13.0695 and

the magnitude of the first displacement is not zero. This is because the
relative displacement from the principal frame to the first location is
non-identity and that the magnitudes of all displacements are computed
with respect to the principal frame.

deter

Figure 2. The 4 Spatial Locations
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4. Conclusions
We have presented a metric on SE(n). This metric is based on embed-

ding SE(n) into SO(n+1) via the polar decomposition of the homoge-
neous transform representation of SE(n). It was shown that this method
determines the element of SO(n+1) nearest the given element of SE(n).
A bi-invariant metric on SO(n+1) is then used to measure the distance
between any two spatial displacements SE(n). The results is a PD based
metric on SE(n) that is left-invariant. Such metrics have applications
in motion synthesis, robot calibration, motion interpolation, and hybrid
robot control.
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Abstract Checking the regularity of the inverse jacobian matrix of a parallel robot
is an essential element for the safe use of this type of mechanism. Ideally
such check should be made for all poses of the useful workspace of
the robot or for any pose along a given trajectory and should take
into account the uncertainties in the robot modeling and control. We
propose various methods that facilitate this check. We exhibit especially
a sufficient condition for the regularity that is directly related to the
extreme poses that can be reached by the robot.

Keywords: nverse jacobian, singularity, parallel robots

1. Introduction
Determining if a parallel robot may be in a singular configuration dur-

ing its motion is a problem that is of high practical interest. Many papers
have addressed first the determination of the inverse jacobian, denoted
J−1, of such robots and then the analysis of the singularity condition
that can be deduced from the singularity of this matrix. J−1 relates the
joint velocities to the twist of the end-effector and is usually pose de-
pendent. In a singularity the end-effector will exhibit non-zero velocities
for some motion although the actuators are locked. The determinant
of J−1 is usually complicated but for most parallel robots J−1 has as
rows the Plücker vectors of well-defined lines. Consequently Grassmann
geometry may be used to characterize the geometry of the singularity
and to deduce simplified singularity conditions [Monsarrat 01; Merlet
89; Wolf 04]. It must be noted that even for robot with less than 6 d.o.f.
it is necessary to consider the full jacobian matrix i.e. the matrix that
involves the full twist of the end-effector. Indeed for a robot with n d.o.f.
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the jacobian that relates the n d.o.f. velocities to the n actuated joint
velocities may be not singular while J−1 is singular [Bonev 01].

presence of a singularity within a motion variety with dimension 1 to n
for a n d.o.f. robot. An important point is that the singularity detection
should be certified i.e. the algorithm should provide a safe answer even
if numerical round-off errors occur. This certification constraint usually
rules out the use of an optimization procedure.

2. A cheme
This singularity detection problem has been addressed in [Merlet 01]

where an efficient algorithm was exhibited. This algorithm proceeds
along the following steps: symbolic computation is used to determine
an analytical form of the determinant of J−1and its sign at a particular
pose X1. Then an interval analysis based method [Jaulin 01; Moore 79],
that takes round-off errors into account, allows one to determine if the
motion variety includes a set of poses in which the determinant has a
sign opposite to the one found at X1.

The main difficulty with this algorithm (apart of using efficiently in-
terval analysis) is the calculation of the closed-form of the determinant
as will be illustrated on a difficult example, the Gough platform.

2.1 The nverse acobian of a Gough latform
We define a reference frame (O,x,y, z). The attachment points of

the leg i on the base will be denoted by Ai. The attachment points
on the platform will be denoted by Bi and it is well known that the
coordinates of Bi in the reference frame can be obtained as function of
the pose parameters. The inverse jacobian matrix is then constituted of
the normalized Plücker vectors of the line associated to each leg:

J−1 = ((
AiBi

||AiBi||
OAi × OBi

||AiBi|| )) (1)

Note that we may use the non normalized Plücker vector to define an-
other matrix M = ((AiBi OAi × OBi)) with the property that the
sign of J−1 is the same than those of |M|. As M is simpler than J−1 it
will be used for the singularity detection.

2.2 Evaluation of the eterminant
Being given a motion variety the pose parameters are functions of the

variety parameters and thus the components of the inverse jacobian may
be obtained as functions of the variety parameters. As mentioned earlier

A singularity detection algorithm should be able to determine the
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a closed-form of the determinant is obtained by symbolic computation.
It should be noted that this is not strictly necessary. Indeed being
given ranges for the variety parameters interval arithmetic may used
to determine ranges for each component of the inverse jacobian. We
get then an interval matrix J−1

I i.e. a matrix whose components are
intervals. Classical method for the calculation of determinant may then
be used to obtain an interval evaluation of the determinant but with a
large overestimation of the minimum and maximum of the determinant.
Indeed interval arithmetic is very sensitive to multiple occurrence of the
same variable. Consider for example the matrix A whose determinant
is xy and its interval version AI when x and y lie in the range [1,2]

A =
(

x x
y 2y

)
AI =

(
[1, 2] [1, 2]
[1, 2] [2, 4]

)
(2)

The interval evaluation of |AI | may be calculated as [ 2,7]. Hence the
closed-form of the determinant allows one to show that |A| will always
be positive for any value of x, y in [1,2], while the use of the interval
matrix does not allow such conclusion. We have put an emphasis on
interval matrices that will be justified by the influence of uncertainties.

2.3 The nfluence of ncertainties
Uncertainties are inherent part of a real system such as a robot. They

occur at the modeling level: the geometry of the real robot differs from
its theoretical model due to the manufacturing tolerances (for example
for the Gough platform the locations of the Ai, Bi are known only up to
a known accuracy). Uncertainties are also due to control: there will be
a deviation of the robot motion from the theoretical motion variety.

An ideal singularity detection scheme should be able to determine
if the robot may be in a singular pose in spite of these uncertainties.
Although we may add the uncertainties as additional unknowns in the
components of J−1, a drawback is that the calculation of the closed-form
of the determinant may become difficult. For example for the Gough
platform Maple is no more able to calculate the determinant as soon as
we add the uncertainties on the Ai, Bi. In that case we have to resort to
a numerical interval evaluation of the determinant based on the interval
version of J−1, but we have seen that this leads to a large overestimation
of the determinant, that will result in a large computation time for the
singularity detection scheme. It is thus necessary to develop methods
that check the regularity of the set of matrices defined by an interval
matrix, without calculating its determinant. These methods should take
into account that J−1 is a parametric matrix, i.e. that its components
are not independent.
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3. egularity heck

3.1 A heck
Checking the regularity of all matrices in a set defined by an interval

matrix is a classical problem in interval analysis and is known to be
NP-hard. Among possible approaches the one having shown the largest
efficiency in our case has been a method proposed by Rohn [Kreinovich
00]. We define the set H as the set of all n-dimensional vector h whose
components are either 1 or 1. For a given box we denote by [aij , aij ] the
interval evaluation of the component J−1

ij of J−1 at the i-th row and j-th
column. Given two vectors u,v of H, we then define the set of matrices
Auv whose elements Auv

ij are

Auv

ij = aij if ui.vj = −1, aij if ui.vj = 1

These matrices have thus fixed numerical components corresponding to
lower or upper bound of the interval J−1

ij . There are 22n−1 such matrices
since Auv = A−u,−v. If the determinant of all these matrices have the
same sign, then all the matrices A′ whose components have a value
within the interval evaluation of J−1

ij are regular. Hence for the 6 × 6
J−1 of a Gough platform if the determinant of the 2048 matrices of Auv

have the same sign, then all matrices in the set are regular.
But Auv includes matrices that are not inverse jacobian as the depen-

dency of the components of the matrix are not taken into account. This
may be seen, for example, for the interval matrix AI (2) that includes
the following matrices

A1 =
(

1 1
1 4

)
A2 =

(
1 2
2 2

)
A3 =

(
1 2
1 2

)
(3)

The matrices A1,A2 belong to the set Auv and have determinants with
opposite signs. Consequently the test proposed by Rohn fails, which is
quite normal as the matrix A3, that belongs to AI is singular. For the
Gough platform the first column of J−1 is written as x + Fi, x being a
coordinate of the center of the platform; if the range for x is [x, x] while
the range for Fi is [a,bi], then Auv includes matrices with elements x+ai
and x + bk that does not belong to the set of inverse jacobian matrices.

3.2 Pre-conditioning
A classical approach in interval analysis for regularity check is to pre-

condition the matrix by multiplying it by a real matrix K, usually the
inverse of the mid-matrix, i.e. the matrix whose components are the mid-
point of each range of the components. The purpose of this strategy is
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to get S = KJ−1 close to the identity matrix so that its determinant
|S| = |K||J−1| may be interval evaluated with a lower overestimation.
If we apply this strategy to the matrix (2) the inverse of the mid-matrix
and the interval matrix KAI are:

K =
(

4/3 −2/3
−2/3 2/3

)
S = KAI =

(
[0, 2] [−4/3, 4/3]

[−2/3, 2/3] [0, 2]

)
(4)

The interval evaluation of |S| is [−8/9, 44/9] ≈ [−0.8889, 4.88889] while
|K| is positive. In term of sign determination this interval evaluation is
indeed sharper than the one obtained with a direct evaluation of |A|, but
is still not satisfactory. We propose another method which consists first
to compute symbolically the matrix S, using kij as components of K and
then plugging in the numerical values. The symbolic matrix Ss = AK
and its interval version SK for the numerical K are

Ss =
(

x(k11 + k21) x(k12 + k22)
y(k11 + 2 k21) y(k12 + 2 k22)

)
SK =

(
2x/3 0

0 2y/3

)
(5)

If we use now the range [1,2] for x, y the interval evaluation of |S| is
[4/3,8/3] that shows that all matrices have a positive determinant. Note
that we have used AK instead of KA, which is justified as it allows to

−1 exhibits
the same variables in a column it is better to pre-multiply it by the
conditioning matrix.

3.3 A egularity est for
Assume that some components of some rows (denoted the linear rows)

of a parametric matrix A = aij can be written as linear combination with
real or interval coefficients of a set of unknowns {x1, x2, . . . , xn}.

We denote by A′ the set of real or interval matrices that can be derived
from A by assigning independently to each linear rows either a lower or
upper bound to each unknown xi that appears in the linear combination.
For example for matrix A the set A′ is

A′ = {
(

1 1
1 2

)
,

(
1 1
2 4

)
,

(
2 2
1 2

)
,

(
2 2
2 4

)
} (6)

The following theorem hold:
Theorem 1: If the determinant of all matrices in the set A′ have all

the same sign, then all matrices in the set A are regular

Proof (derived from [Popova 04]): Assume that there is a singular
matrix A0 in the set A. Without lack of generality we will assume that
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the first row of A0 is linear. We consider the unknown x1, whose value
for A0 is x0

1 and lie in [x1, x1]. Each component of the first row of A
may be written either as λ1

1jx1+b1j or a0
1j if the component is not linear.

Using row expansion the determinant of the matrix may be written as

|A| =
∑

k=j1,...,jm

(−1)k+1(λ1
1kx1 + b1k)M1k +

∑
l �∈{j1,...,jm}

(−1)l+1a1lM1l (7)

where {j1, . . . , jm} are the column indices of the linear components of
A and M1j denotes the minor associated to the first line and column j.

For x1 = x0
1 this expression will cancel. If we assume now that x1 =

x0
1 + dx1 we get

|A| = dx1(
∑

k=j1,...,jm

(−1)k+1λ1
1k) = dx1K1 (8)

K1 being either a real number or an interval. We may always assign dx1

to either x1−x0
1 or x1−x0

1 so that |A| is positive or has a positive upper
bound. Thus by assigning x1 or x1 to x1 we have constructed a matrix
A+

1
whose determinant will be positive or has a positive upper bound.

The process may be repeated for constructing a matrix A−
1

whose de-
terminant will be negative or has a negative lower bound. Starting from
these matrices we may now assign x2 to x2 or x2 to get a matrix A+

12

whose determinant is |A+
1
| plus a positive quantity (i.e. still positive)

and a matrix A−
12

whose determinant will be lower than the determinant
of |A−

1
| (i.e. still negative). The process is repeated for each unknowns

in the row. As soon as all unknowns in the row have a fixed value the
process is repeated for the next linear row. When all linear rows have
been processed the matrices A+, A− belong to A′. Note however that
the assignment of the unknowns in a row to ensure that |A+| is positive
may differ between two linear rows. Hence if there is a singular matrix
in A, then we are able to determine matrices whose determinant have
opposite signs (or whose lower bound is negative and upper bound is
positive), which concludes the proof.

For example as all matrices in A′ defined by (6) have the same de-
terminant sign, then the set A contains only regular matrices. Another
theorem may be derived for the full inverse jacobian matrices that have
Plücker vectors as rows. Let us define Ai(a1

i , a
2
i , a

3
i ) and Bi(b1

i , b
2
i , b

3
i ) as

two points that belong to the line associated to the Plücker vector i.
A row of J−1 may be written as

((b1 − a1, b2 − a2, b3 − a , a2b1 − a1B2, a3b1 − a1b3, a1b2 − a2b1)) (9)

so that each row is linear in the bi. Assume now that the locations of
the Ai are fixed, while the locations of the Bi are functions of the end-
effector motion. Using interval analysis (or an optimization method)
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being given ranges for the motion parameter we may find a bounding
box Bi for the location of each Bi. Let J−1

� be the set of inverse jacobian
that may be obtained for the motion parameters ranges. Theorem 1
allows one to state the following corollary:

Corollary: Let A� be the set of matrices obtained by choosing as
location of Bi all possible combinations of the corners of Bi (there will
be 86 such matrices). If the determinants of all matrices in A� have the
same sign, then all matrices in J−1

� are regular.

The number of matrices in A� may even be reduced in some cases,
using the property that we may choose as Bi any point on the line.
Assume that the bounding box Bi is defined by the set of ranges [bij , bij ],
j ∈ [1, 3] for bj . The following cases may occur:

• ak ∈ [bik, bik] for two indices in [1,2,3], while ak < bik or ak > bik for
one index. The line always enters the bounding box Bi by the face defined
by bk = .bik or bk = bik. We may thus choose as Bi the intersection point
of the line with this face i.e. fix the value of bk. Hence only 4 corners
will have to be checked

• ak ∈ [bik, bik] for only one index. The line may enter the bounding
box by 2 faces and we have to check 6 corners

• ak �∈ [bik, bik] for all index. The line may enter the bounding box by
3 faces and we have 7 corners to check

• ak ∈ [bik, bik] for all index. In that case the corresponding row
of the jacobian may include a line of 0 and the ranges for the motion
parameters must be bisected

In practice we will have between 46 and 76 matrices in A�. Uncer-
tainties in the locations of the Ai may also be dealt with by considering
that the matrices in A� are interval matrices.

Theorem 2 shows that checking the extreme poses of the Bi may be
sufficient to check the regularity of J−1 over the whole workspace.

4. Examples
The proposed regularity check has been implemented in the singular-

ity detection scheme and has been extensively tested. It appears that
among the three regularity checks the most efficient combination is to
use first the pre-conditioning and then to apply Rohn test on the result-
ing matrix. A 6D workspace W is defined with the ranges x, y in [ 15,15],
z in [45,50] and the three Euler angles having the ranges [ 15,15] degree.
The computation time on a Dell D400 laptop (1.7 Ghz) is established as
follows:
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• 6D workspace without uncertainty: for W no singularity detected

singularity is detected in 9.46s.
• 6D workspace with uncertainties: for a ± 0.05 uncertainty on each

coordinates of the Ai, Bi points no singularity is detected in W in 43mn
on a cluster of 15 PC’s without the regularity checks and only in 263s
on a laptop if they are incorporated in the detection scheme. For an
uncertainty of ± 0.1 the computation time establishes respectively at
10h 22mn and 1176s.

5. Conclusion
We have proposed regularity checks for the inverse jacobian of parallel

robots that may be used to determine if such matrix may be singular
over a motion variety. They allow to deal with uncertainties in the robot
modeling and control and have been proved to be very efficient. One
of this regularity check, that is sufficient but not necessary, is related
to the extremal poses that can be reached by the end-effector: if the
determinant of a finite number of real matrices that are related to these
extremal poses have all the same sign, then the inverse jacobian matrix
is regular.
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Abstract In this work we present several parallel robots with reduced mobility whose 
platforms can change their subgroups of displacement when the robot is 
displaced continuously from one set of positions to another one. In some 
cases, also the number of degrees of freedom of the platform may change, in 
other cases, only the group of displacement or its invariant properties are 
modified. By using some results on mobility of single-loop kinematic chains 
based on the theory of the displacement groups, the way to synthesize these 
robots is  discussed. 

Keywords: 

1.  Introduction  
In recent years the literature on robot mechanisms shows a growing 

interest in parallel robots with reduced numbers of degree of freedom 

2004, Kong and Gosselin, 2005, Gogu, 2005). In general, a platform of a 
robot of this kind can move in a subgroup of the Euclidean displacement 
group, or in a subset of a subgroup. 

In a different field of kinematics, various studies have been performed 
related to mechanisms in which variations in the position variables can 
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whose mobility can be carefully investigated, (e.g., Kong and Gosselin, 



In this paper, some results concerning kinematotropic kinematic 
chains are used to synthesize parallel robots with reduced mobility, 
whose platforms change their subgroups of displacement when the robot 
is displaced from one set of positions to another one. Several robots are 

In Section 2, three single-loop kinematotropic chains are shown and 
their finite mobility discussed. 

In Section 3, the single-loop kinematotropic chains are used to 
synthesize 3 parallel robots that change both their displacement groups 
and the numbers of their degrees of freedom. 

In Section 4, the proposed approach leads to 2 parallel robots that 
change their displacement groups but not the numbers of their degrees of 
freedom, and 1 robot that only change the invariant properties of its 
displacement group. 

In Section 5 alternative ways for selecting the robot joints and the 
driver locations are discussed. 

In this paper it is assumed that the readers have a basic knowledge of 
the displacement groups in kinematics, as can be found, for instance, in 
Hervé, 1978 and in Section 5.3 of Angeles, 1988. 

2.  

Galletti and Fanghella, 2001. They are shown in the singular position 
that separates the two branches of positions in which the displacements 
between bodies a1 2
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GR1 GR2 

a2 

b1 
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b1 

a1 
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All these chains can be represented by the scheme of Fig. 2. The 
subchain from body a1 to b1 generates a displacement group G1, and the 
subchain from body a2 to b2 generates a group G2. The kinematic pairs 
KPa and KPb provide displacements between bodies a1 and a2, and b1 and 

2 1 2 a b

obtained in this way and their mobility properties are presented. 

Wohlhart, 1996, called this very peculiar mobility property kinematotropy. 

Single-loop Kinematotropic Chains  
Figure 1 shows three single-loop kinematotropic chains presented by 

 and b  belong to different displacement groups. 

b  respectively: the meaning of G , G , KP , and KP , are given in Table 1. 

result in changes in the permanent finite mobility of the mechanisms. 

Figure 1.     Single-loop kinematotropic chains. 
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Let G  be the intersection group between G1 and G2. By moving KPa and 
KPb the group G  changes and, as a consequence, the group of 
displacement between bodies a1 and b2 varies. 

 
 

G1 G2 

KPb

a1 
KPa a2 

b1 b2 

G  

 
 

Table 1.     Groups and pairs in Fig. 1 
 

Case G1 = G2 KPa = KPb Displacements between a1 and b2

a E (planar) R (revolute) From planar E to cylindrical C 
b S (spherical) P (prismatic) From spherical S to cylindrical C 

c Y (translating 
screw) R (revolute) From translating screw Y to 

cylindrical C 
 

bodies a1 and b2 when a chain, passing through the singular position, is 
displaced from one branch of positions to the other one. 

3.  

The scheme of Fig. 2 is now applied for synthesizing parallel robots 
whose platforms can change the number of degrees of freedom (d.o.f.) and 
the displacement group. Since a maximum of 3 d.o.f. can be achieved by 
all chains, 3 legs are introduced to connect the platform and the robot 
frame. The general scheme of the kinematic chain of the robots is shown 
in Fig. 3. The kinematic chains of the 3 robots obtained in this way are 
reported in Fig. 4. Each chain is shown in the singular position that 
separates the two branches of positions belonging to different groups (E, 
S, Y  and C). 

In order to exemplify the characteristics of these chains, let us 

there are drivers on pairs P1, P2, P3 and P4. 
Starting from the singular position, by moving the drivers P1, P2 and 

P3 the revolutes P6 and P4-P5 become unaligned, so they cannot rotate 

The last column in Table 1 shows the resulting displacements between 

Group and Robots that Change
of Freedom  
Displacement

Number of Degrees 

consider the chain in Fig. 4-a, obtained from case a) of Table 1. Suppose 

Figure 2.     Scheme of a kinematotropic chain. 
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anymore. Therefore, the robot acts as a standard planar platform, with 3 
d.o.f., with drivers P1, P2 and P3. 

Starting again from the singular position, by moving driver P4 the 
plane formed by pairs P1-P11-P12, and the planes formed by P2-P7-P8 and 
P3-P9-P10 become not parallel, so their intersection group gives a 
prismatic constraint with axis parallel to the common axis of pairs P4, P5, 
and P6. Therefore, the robot acts as cylindrical  platform, with 2 d.o.f., 
with two drivers: one of P4, P5 or P6, and one of P1, P2 or P3. 

 

 

An analogous discussion shows that the motion of the platform in Fig. 
4-b switches from spherical (S) to cylindrical (C) and that, for the 
platform in Fig. 4-c, it changes from translating screw (Y) to cylindrical 
(C). 

 

4.  

As shown in Section 2, the change of displacement group between 
bodies a1 and b2 is a consequence of the change of the intersection group 
G . The chains of Fig. 1 ensure the change of G  and of the number of 
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Robots that Change Displacement Group or 
their Invariant Properties  

“ ” 

Figure 3.     General scheme of a 3-legs robot. 

Figure 4.     Robots that change No. of d.o.f. and displacement group. 
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d.o.f. of the chains. It is also possible to obtain chains that change G  but 
not the number of d.o.f. Using again the scheme of Fig. 2, the results 

From these results the schemes of Fig. 5 are obtained. Other similar 
configurations can be obtained through suitable permutations of 
kinematic pairs and groups. 

Table 2.     Modified groups and pairs in Fig. 1 
 

Case G1 = G2 KPa = KPb Displacements between a1 and b2

d E (planar) X 
(Schoenflies) From E to a subset of X with 3 d.o.f. 

e Y (translating 
screw) 

X 
(Schoenflies) From Y to a subset of X with 3 d.o.f. 

 
 

Figure 6 shows the kinematic chains resulting from the two cases d 

separates the two branches of positions belonging to different groups. 
 

Figure 6.     Robots that change displacement group but not No. of d.o.f. 
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reported in Table 2 can be achieved (see Fanghella and Galletti, 1994). 

and e of Table 2. The chains are drawn in their singular position that 

Figure 5.     Robots with E, X, Y, and R groups. 
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.



For example, in the case d, starting from the position drawn and 
rotating the revolutes with horizontal axes, the robot acts as a standard 
planar platform, with 3 d.o.f. Starting again from the singular position,

translations and 1 rotation). Then, the group of displacement is changed, 
but the number of d.o.f. is preserved. 

An analogous situation applies to case e. 
A slightly different case can be derived from a further interesting 

intersection group. Two Schoenflies groups X can give a group G  = X or 
a group G  = U (three-dimensional translation), depending on the 
relative positions of their rotation directions (see Fanghella and Galletti, 

 
Case G1 = G2 KPa = KPb Displacements between a1 and b2

f X 
(Schoenflies) R  

From the original X (Schoenflies) 
to an X (Schoenflies) with the axis 

parallel to the axis of R 
 
Since a group X with 4 d.o.f. is obtained in both branches, the platform 

must have 4 legs in order to apply one driver to each leg, according to the 
scheme of Fig. 7. 

 
 

X 

R 

X 

X 

X 

R 

R 

R 
 

 

Figure 8 shows the resulting kinematic chain of the robot in the 
singular position where the two branches merge. 

Starting from this position and rotating the revolutes with horizontal 
axes, the platform moves in an X group with a horizontal rotation axis, 
the vertical revolutes being locked. The number of d.o.f. is 4. Starting 
again from the singular position, by moving the revolutes with vertical 
axes, the platform moves in an X group with a vertical rotation axis, the 
horizontal revolutes resulting locked. Again the number of d.o.f. is 4. The 
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1994). Therefore, according to Fig. 2, the following chain can be derived.

Figure 7.     Scheme of a 4-legs robot. 

P. Fanghella, C. Galletti and E. Giannotti 

by moving the revolutes with vertical axes, the platform of the robot
has a displacement that is a subset of the group X, with 3 d.o.f. (2 



group of displacement is not changed, but its invariant property (rotation 
axis) is changed. 

 
 

X 

frame

platform

X 

X 

R 

R 

R 

X 

X 

R 

X 

frame 

 
 

5.  
The schemes of Figs. 3, 5, and 7, define kinematic structures in which 

specific displacement groups are generated by sequences of bodies and 
pairs. It is evident that in order to obtain the aforesaid mobility 
properties, the way in which the groups GR are realized is immaterial. 
For instance, it is well known that the group X can be generated by 3 non 

pairs. Therefore, many different robot structures can be obtained 
starting from the schemes of Figs. 3, 5, and 7. 

From a practical point of view, in order to control the motion of a 
kinematotropic chain in a branch it is necessary to provide a number of 
drivers equal to the number of degrees of freedom of the chain in that 
branch. For a complete control of the chain in all branches, it is 
necessary to provide a set of drivers equal to the union of the drivers 
used to control each branch. In each branch, the chain is actuated only by 
the drivers associated with that branch, while other drivers become 
driven; when passing through a singular position (where the number of 
infinitesimal degrees of freedom grows), all drivers must act either to 
maintain their position or to drive the chain to a specific branch. 

Finally, it is worth noting that, in some cases, starting from the 

direction orthogonal to the drawing plane leads to a branch in which the 
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be reached. For example, for the mechanism in Fig. 6-d, a translation in the 
singular positions in Figs. 4, 6 and 8, more than two branches may

Figure 8.     Robot that changes the invariant of its displacement group. 

Parallel Robots that Change their Group of Motion 

parallel prismatic pairs and one revolute, by 3 parallel revolutes and  
1 prismatic pair not normal to them, and so on. Moreover, the revolutes
KP in the chains can be substituted, in several circumstances by helical



allowed relative motion between the frame and the platform is a pure 
planar translation. In the paper, for each case, the discussion is limited 
to the two branches with the highest number of degrees of freedom. 

6.  Conclusions  
Special kinematic chains, in which displacements between two bodies 

can belong to different displacement groups when the chains are moved 

situations arise for the displacement of the platform when the robot is 
displaced continuously from one set of positions to another one: i) in 3 
cases the platform can change its group of displacement and the number 
degrees of freedom; ii) in 2 cases only the group of displacement is 
altered; iii) in 1 case only the invariant properties of the group of 
displacement are modified. 
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by one branch to another, are the basic components we have used
for synthesizing a particular type of parallel robots. Three different
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Abstract This paper presents a procedure to synthesize planar linkages, composed
of rigid links and revolute joints, that approximate a shape change de-
fined by a set of curves. These “morphing curves” differ from each
other by a combination of rigid-body displacement and shape change.
Rigid link geometry is determined through analysis of piecewise linear
curves, and increasing the number of links improves the shape-change
approximation. The framework is applied to an open-chain example.

Keywords: Shape change, morphing structures, planar synthesis

1. Introduction
For a mechanical system whose function depends on its geometric

shape, the controlled ability to change that shape can enhance per-
formance or expand applications. Examples of adaptive or morphing
structures include antenna reflectors (Washington, 1996) and airfoils
(Bart-Smith & Risseeuw, 2003) proposed to include many smart mater-
ial actuators. Compliant mechanisms also provide a means of achieving
shape changes. Saggere & Kota, 2001 developed a synthesis procedure
for compliant four-bars that guide their flexible couplers through dis-
crete prescribed “precision shapes” that involve both shape change and
rigid-body displacement. Lu & Kota, 2003 introduced a more general
approach using finite element analysis and a genetic algorithm to deter-
mine an optimized compliant mechanism’s topology and dimensions.

The present work introduces synthesis techniques for planar, rigid-
body mechanisms that approximate a desired shape change defined by
an arbitrary number of curves, one morphing into another. Higher load-
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carrying capacity makes rigid-body mechanisms better suited than
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rigid-body mechanisms would likely require fewer actuators acting in
parallel, such as along an airfoil with changing camber. Furthermore,
actuation is not an additional development need because existing tech-
nology rather than, for example, smart material technology, is typically
used to actuate rigid-body mechanisms. With rigid links, synthesis can

a
can typically achieve larger displacements, enabling more dramatic shape
changes. This paper details a methodology for designing rigid links that
can be joined together in a chain by revolute joints to approximate the
shapes of a set of morphing curves. The methodology is applicable to
both open and closed chains, and an open-chain example is presented.

2. Rigid Link Geometry

linkage involves converting the desired curves, denoted as “design pro-
files”, into “target profiles” that are readily manipulated and compared.
The target profiles are divided into segments, and corresponding seg-
ments from all of the target profiles are used to generate the rigid links.
The key is to divide the target profiles and then generate the rigid links
so as to reduce the error in approximating the design profiles.
Design Profiles and Target Profiles. A design profile is a curve
defined such that an ordered set of points on the curve and the arc length
between any two such points can be determined. The piecewise linear
curve (solid line) in Fig. 1 is a simple example of a design profile. A
set of p design profiles defines a shape change problem. Because the
change will be approximated with a rigid-body linkage, the error in the
approximation is generally smaller if all p profiles have roughly equal arc
length, though this is not an explicit requirement of the methodology.

A target profile is formed by distributing n points, separated by equal
arc lengths, along a design profile. Thus, a target profile is a piecewise
linear curve composed of the line segments connecting the ordered set of
points, and any design profile can be represented by a target profile of
two or more points. In Fig. 1, five (x, y) points generate a target profile
from the design profile defined by three (a, b) points. The target profile
includes the dashed line and does not pass through the design profile’s
second point. In this case, three points could be used to exactly represent
the design profile, but the approach is more generally applicable to any
design profile. The motivation is to convert a set of p design profiles into
target profiles all defined by n points such that corresponding points can
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compliant mechanisms for applications with large applied loads.Similarly,

priori knowledge of exact external loads. Finally, rigid-body mechanisms
be purely kinematic, so the system can be modeled precisely without

The procedure for generating rigid links that compose a shape-changing



Figure 1. Three-point (a, b) design profile and five-point (x, y) target profile.

be found on each target profile. For a closed curve design profile, any
point can be deemed the first/last point, yielding a closed target profile.

Important characteristics of a target profile include the fact that its
arc length is always shorter than the design profile it represents. The
most significant loss of shape information occurs where the curvature is
largest for a continuous design profile or where the angle at a vertex is
smallest in magnitude for a piecewise linear design profile. Since points
on the target profile are separated by equal arc lengths along the design
profile, they are not at equidistant intervals along the target profile.
Large values of n produce smaller variations between the design profile
and target profile and in the distances between consecutive points on the
target profile. A useful heuristic is selection of n such that the target
profile arc length is greater than 99% of the design profile arc length.
Shifted Profiles. The jth target profile is defined by, �zji = {xji yji}T ,
i=1,...n. A rigid-body transformation in the plane,

�Zji = A�zji + �d, where A =
[
cos θ − sin θ
sin θ cos θ

]
and �d =

{
d1

d2

}
,

will relocate the profile preserving the respective distances between points
in it. Any profile relocated in this fashion is called a shifted profile. Tar-
get and mean profiles (described below) are both shifted to perform
useful design operations without altering the original design problem.

The “distance” between target profiles j and k is defined to be,

D =
n∑
i=1

(xji − xki
)2 + (yji − yki

)2 =
n∑
i=1

|�zji − �zki
|2.

(Subsequent summations are i = 1,...n.) Viewing the target profile’s n
points as a single point in 2n-dimensional space, this distance is the
square of the Euclidean norm in that space, so D is an appropriately
defined metric. To determine the rigid-body transformation that shifts
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target profile j to the location that minimizes D with respect to target
profile k, one must find θ and �d such that ∂D

∂θ = ∂D
∂d1

= ∂D
∂d2

= 0, where,

D =
∑

�z Tji�zji + �d T�d + �z Tki
�zki

+ 2�d TA�zji − 2�z Tki
A�zji − 2�d T�zki

.

Introducing the definition
∑

�zji = �zjT = {xjT yjT }T yields a solution,

tan θ =
1
n(xkT

yjT − xjT ykT
) −∑(xki

yji − xjiyki
)∑

(xjixki
+ yjiyki

) − 1
n(xjT xkT

+ yjT ykT
)
, �d =

1
n

(�zkT
− A�zjT ).

Mean Profiles and Segmentation. A mean profile is one profile
that approximates the shapes of all target profiles in a set. A mean
profile is formed by shifting target profiles 2 through p to minimize
their respective distances relative to reference target profile 1. A new
piecewise linear curve defined by n points, each the geometric center
of the set of p corresponding points in the shifted target profiles, is
generated. For example, two target profiles in Fig. 2a are shifted in Fig.

profile. Fig. 2c shows the mean profile that approximates the target
profiles when regarded as rigid bodies. In Fig. 2d, this mean profile
is shifted to approximate the shape and location of the target profiles.
The described procedure could convert a shape-changing problem to a
rigid-body guidance problem, as the three locations of the mean profile
in Fig. 2d define three finitely separated positions of a moving lamina.

A chain of two or more rigid links connected by revolute joints can
better approximate a shape change than can a single rigid body with the
shape of a mean profile. The procedure for generating a mean profile
may be applied to any segment of the target profiles. To generate a
linkage composed of s rigid links, an initial solution divides the target
profiles into s segments of roughly equal numbers of points, the last
point of a segment being the first of the next segment. A mean profile
is generated for each set of segments. For example, given target profiles

51, 51-76, and 76-102. The first three segments and their corresponding
mean profiles each have 26 points, and the last has 27. Once generated,
each mean profile can be shifted individually to the location relative to
its corresponding segment in each target profile that minimizes D. The
positions of the s mean profiles relative to each other will differ as they
are superimposed on each target profile. The end points of the segments
in general will not coincide in any of the positions at this stage.
Error Reducing Segmentation. Non-uniform target profile seg-
mentation can reduce the error in approximating a shape change by
shortening segments on the profile where shape change is most dramatic.
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of n = 102 points, if s = 4, the segments are composed of points 1-26, 26-

2b to their respective distance minimizing positions relative to the first
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l, except the last segment s, is increased by one if El < Ē and decreased
by one if El > Ē, where Ē is the average of the El’s. Segments 1 and s
change by one point, and the others by two. Es does not explicitly deter-
mine whether segment s increases or decreases in length, but its effect on
E and Ē does so indirectly. With the target profile segments redefined,
a new mean profile for each set is generated, the error E recomputed,
and the process repeated until E ceases to decrease. To avoid local min-
ima, the process continues for several iterations after E increases, and
each E is compared to several previous iterations instead of just the im-
mediate predecessor. The segmentation providing the smallest E is the
error reducing segmentation, and the corresponding mean profiles define
the geometry of the rigid links that compose the linkage. Because the
target profiles typically contain thousands of points, altering segments
by two points is a modest change, and exhaustive approaches involving
single-point alterations are unlikely to offer significant benefit.

An alternative approach for initial segmentation is to specify an ac-
ceptable error Ea instead of a number of segments, and “grow” segments,
starting with 1, point by point until the error El of the corresponding
mean profile exceeds Ea. This generates an unknown number of sege-
ments, the last of which generally has the smallest error.

3. Example
The three design profiles used to generate the target profiles in Fig. 2a

are defined by the points listed in Tb. 1, and their arc lengths are 6.72,
6.78, and 6.76, respectively. The target profiles contain 1800 points,
as does the mean profile in Fig. 2c. The subset of points from the
mean profile listed in Tb. 1 are key points that mark the locations of

Table 1. Defining points of design profiles and key points of mean profile in Fig. 2.
Mean profile points are in two columns, each ordered top to bottom.

Design Profile 1 Design Profile 2 Design Profile 3 Mean Profile

(2.3,7.6) (7.6,4.3) (4.7,6.4) (2.52,7.23) (0.78,4.39)
(1.4,6.5) (7.4,5.1) (4.0,6.2) (1.94,6.85) (0.85,4.01)
(1.0,5.5) (6.9,5.8) (3.1,5.6) (1.87,6.80) (0.90,3.83)
(1.0,4.0) (6.4,6.4) (2.7,5.0) (1.46,6.38) (0.94,3.73)
(1.3,2.8) (5.7,7.0) (2.7,3.9) (1.32,6.19) (1.29,3.08)
(1.9,2.1) (4.8,7.3) (3.0,3.4) (1.24,6.10) (1.38,2.93)
(2.3,1.7) (4.0,7.3) (3.7,2.9) (0.93,5.54) (1.74,2.53)

(3.3,7.3) (4.4,2.6) (0.91,5.49) (1.76,2.52)
(2.5,6.8) (5.3,2.4) (0.90,5.48) (2.04,2.32)

(0.79,4.64) (2.52,2.02)

 
A.P. Murray, B.M. Korte and J.P. Schmiedeler 62

significant change in slope along the mean profile. Figure 3 plots the error



Figure 3. Error in matching target profiles shown in Fig. 2a as a function of number
of segments. Inset shows 4-segment solution superimposed on target profiles. Solution
segments correspond to unassembled rigid links of a shape-changing linkage.

E in matching the target profiles as a function of the number of segments,
with a curve fit to the data to more clearly illustrate the trend. The data
point for 1 segment represents the solution shown in Fig. 2d, for which
the error clearly is defined by the top end point of the middle target
profile. In Fig. 3, increasing the number of segments beyond 4 offers
noticably diminishing returns in terms of reduced error. The plot inset
in Fig. 3 contains the 4-segment solution superimposed on the target
profiles with the segments shown in alternating shades of gray.

4. Mechanization
Once the geometry of the rigid links is determined, the links are

joined together at their end points with revolute joints to form a link-
age. This increases the error since it requires movement of the links
from their distance-minimizing positions to bring together the generally
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non-coincident adjacent endpoints. Furthermore, the relative motion
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sitions is more general than that allowed by revolute joints. Still, if the
error prior to connecting the links is small, the linkage approximates
well the desired shape change. With the links joined, it is often desir-
able to add additional links that constrain the linkage to have a reduced
number of degrees of freedom. To constrain an s-link open chain to
be a 1-DOF mechanism, s + 1 binary links must be added. If five or
fewer design profiles are involved, circle and center points for additional
binary links can be found exactly, but for six or more design profiles,

1973 are required. The details of mechanization are beyond the scope
of this paper, but each additional link further constrains the motion of
the shape-change-approximating links, thereby increasing the error.

5. Conclusions
This work introduces a systematic procedure to determine the geom-

etry of rigid links that can be assembled together with revolute joints to
compose a linkage that approximates a desired shape change defined by
an arbitrary number of morphing curves. The procedure involves com-
paring piecewise linear curves to reduce the error in the shape change
approximation, and increasing the number of links generally reduces
that error. Mechanizing the generated chains of rigid links presents a
number of challenges, but rigid-body mechanisms have great potential
as morphing structures, particularly in heavy load applications.
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Abstract In parallel mechanisms (PMs), the passive joint velocities can be elimi-
nated from the velocity equations by a standard screw-theory method,
obtaining a system of linear input-output equations. A general method
for the elimination of the passive joint velocities in non purely paral-
lel mechanisms is not yet known. The paper addresses the problem by
studying the instantaneous kinematics of two non-parallel closed-chain
4-dof mechanisms derived from a 5-dof PM. With some modifications
and appropriate geometric reasoning the PM methodology can be suc-
cessfully applied to the analysis of non-parallel mechanisms.

Keywords: Velocity analysis, parallel mechanisms, closed chain mechanisms

1. Introduction
Parallel mechanisms (PMs) are composed of an end-effector connected

to the base by separate serial leg chains, Fig. 1. Most published closed
spatial kinematic chains are PMs, but occasionally authors describe as
“parallel” kinematic chains that do not strictly belong to this class.

A relatively simple generalization of a parallel (or serial) mechanism is
when the kinematic chain is a two-terminal series-parallel graph connect-
ing the base to the end-effector. Starting with a parallel (or serial) chain,
substitute individual joints with parallel subchains; a mostly parallel (or

serial) series-parallel (S-P) chain (and mechanism, S-PM) is the result
(Fig. 2). More complex chains can be obtained from a mostly parallel
S-P connection when subchains (with at least one joint) are added be-
tween links belonging to different leg chains. Such mechanisms can be
referred to as interconnected chains (IC) mechanisms (ICMs) (Fig. 3).

In a PM, out of singularities, the input-output velocity equations (re-
lating the output twist, ξ = (ω,v), or (ωT |vT )T as a column vector,
and the actuated joint velocities, q̇) are obtained in the form: Zξ = Λq̇.

For PMs, Z and Λ are computed by a screw-theory based method
that can be considered standard. It is relatively easy (ignoring unusual
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NON-PARALLEL CLOSED CHAIN
MECHANISMS

ON THE VELOCITY ANALYSIS OF
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method cannot be used, without changes, for ICMs. In the general case,
one deals with the velocity loop equations (rather than linear expressions
of ξ in terms of the leg’s joint screws). Analogously, Ohm’s laws suffice
when an electrical network is series-parallel; otherwise the more general
Kirchhoff laws are needed (Davies, 1981).

As we have shown (Zoppi et al., 2006), the ideas of PM velocity
analysis can be applied successfully to ICMs. The present paper illus-
trates this further by studying two new non-PMs. We modify a 5-dof
PM and its analysis to obtain and solve first a 4-dof S-PM and then a
4-dof ICM.

2. A 5-dof PM
In the 5-dof PM in Fig. 1 (Huang and Li, 2003), the PRRRR legs are

identical and labeled L = A, . . . , E. Numerical indices count the leg’s
joints, always from the base. The joint screws and their directions are ξ

L
i

and kL
i , i = 1, . . . , 5, while the links are denoted b

L
i , with b = b

L
0 ,e = b

L
5

the base and platform. The P joints are horizontal while axes 2 and 3
are vertical in plane πL

23 with normal nL
23. Axes 4 and 5 intersect at the

rotation center O fixed in the platform; their plane is πL
45.

2.1
Assume nonsingular leg postures. The leg system of structural con-

straints (wrenches reciprocal to all leg joints) is WL = Span (ϕz), with
ϕz a vertical force at O. The actuated constraints (reciprocal to the leg
passive joints) are VL = Span (ϕz,ϕ

L), with force ϕ
L along πL

23 ∩ πL
45.
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Constraint and Mobility Analysis

5-dof PM: architecture with leg screws (left) and graph (right).

singularities such as RPM or IIM singularities, (Zlatanov et al., 1994)) to
generalize the passive-velocity elimination for series-parallel chains. The



The combined constraint systems are: W =
∑

L WL = Span (ϕz);
V =

∑
L VL = W + Span (ϕA, . . . ,ϕE). So the platform has full ro-

tational capability about its point O, which can translate horizontally.
Out of singularity, dimV = 6 and the mechanism can be controlled by
actuating the five P joints.

2.2 Jacobian
The screw-theoretical method for the velocity analysis of PMs was

(Hunt, 1978); (Mohamed and Duffy, 1985);
(Kumar, 1992); (Agrawal, 1990); (Zlatanov et al., 1994); (Zlatanov et al.,
2002); (Joshi and Tsai, 2002). We provide a detailed general formulation
in (Zoppi et al., 2006).

For each leg, a non-unique actuation system, UL, is identified, VL =
WL ⊕ UL, for this PM we use UL = Span (ϕL). The reciprocal product
of the actuations (any basis of UL) eliminates the passive joint velocities
from the leg twist equation, here ξ = q̇L

1 ξ
L
1 +

∑5
i=2 ωL

i ξ
L
i .

To obtain an equation Zξ = Λq̇ with coefficients in terms of the
PM’s geometry, we need symbolic expressions for the actuation screws
ϕ

L = (fL, mL). We use a moving frame Oijk, Oz always vertical. Since
ϕ

L, a pure force, and the origin are in πL
45, mL = rLnL

45, where nL
45

is the unit normal to πL
45 and rL is the distance of ϕ

L from O. Since
the intensity is irrelevant, fL = nL

45 × nL
23 and, ignoring the singularity

π23 ‖ π45:
ϕ

L = (nL
45 × nL

23 |
∣∣nL

45 × nL
23

∣∣ rLnL
45

T
)T (1)

We can now write the input-output equations. The structural con-
straints amount to the condition vz = 0, in ξ = (ωx, ωy, ωz|vx, vy, vz)T .
The vz output velocity can be ignored and the system becomes five-
dimensional:⎡

⎢⎢⎢⎢⎢⎢⎣

fArAnA
45

T
fA

x fA
y

fBrBnB
45

T
fB

x fB
y

fCrCnC
45

T
fC

x fC
y

fDrDnD
45

T
fD

x fD
y

fErEnE
45

T
fE

x fE
y

⎤
⎥⎥⎥⎥⎥⎥⎦

ξ̄ = diag
L = A,...,E

(kL
1 · fL)

⎡
⎢⎢⎢⎢⎣

q̇A
1

q̇B
1

q̇C
1

q̇D
1

q̇E
1

⎤
⎥⎥⎥⎥⎦ (2)

ξ̄ is ξ with the z coordinate of its moment suppressed.

3. A 2R2T 4-dof S-PM
The PM of Fig. 1 has instantaneous end-effector motions spanned by

2 translations and 3 rotations, all independent. Mobility types allowing
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Figure 2. 4-dof 2R2T S-PM: architecture with leg screws (left) and graph (right)

instantaneous motions spanned by 2 translations and 2 rotations (2R2T)
are potentially useful for possible practical application and because of the
few mechanisms proposed in the technical literature having this mobility.

The 5 dof of the PM of Fig. 1 are reduced to 4 if two third links, say
b
B
3 and b

C
3 , are joined in one b

BC
3 . The result is an S-PM, Fig. 2. (The

same result can be obtained from the PM by an extra link between ξ
B
3

and ξ
C
3 creating an immobile spatial 4-bar, see Fig. 3.)

3.1 Constraint and Mobility
Legs B and C are combined in a mostly serial leg BC, composed of a

planar PM and a passive spherical 4-bar in series.
The spherical 4-bar’s coupler, e, has one dof with respect to b

BC and
a constraint 5-system Wb

BC = Span (ϕx,ϕy,ϕz,µ
B
45,µ

C
45), where ϕx, ϕy,

ϕz span all forces at O and µ
L
45 is a couple about nL

45. All four joints
are passive, hence Vb

BC = Wb
BC .

The 2-PRR planar PM from b to b
BC imposes the (planar) structural

constraints, Wa
BC = Span (ϕz,µx,µy), and the actuated constraints

Va
BC = Wa

BC ⊕ Span (ϕB,ϕC). The actuation L can be any nonvertical
force in πL

23, in particular (out of singularity) ϕ
L as chosen in Section 2.1.

The whole leg BC imposes the constraint systems: WBC = Wa
BC ∩

Wb
BC = Span (ϕz,µ

BC
0 ), where µ

BC
0 is a pure moment with direction

k × nB
45 × nC

45; and VBC = Va
BC ∩ Vb

BC = WBC ⊕ Span (ϕB ,ϕC) =
Span (ϕB ,ϕC ,ϕz,µ

BC
0 ).

The combined platform constraints, for the 4-legged S-PM, are: W =∑
L WL = Span (ϕz,µ

BC
0 ); V =

∑
L VL = Span (ϕA,ϕB ,ϕC ,ϕD) ⊕W
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(ϕA, ϕ
D as in Section 2.1). dimV = 6 and the S-PM is commanded by

the four actuated PL
1 . (Leg E is thus not needed and removed.)

3.2 Jacobian
The velocity analysis proceeds as in the original PM. Locking any

PL
1 adds one independent basis screw in ϕ

L, as in the original PM.
Therefore, we can proceed writing the velocity equations along the four
serial chains (two of which share b

BC ) and eliminating the passive joint
velocities without considering the presence of the additional link.

The velocity equations are ξ = q̇L
1 ξ

L
1 +

∑5
i=2 ωL

i ξ
L
i , L = A,B,C,D.

We eliminate the passive joint velocities from the L-th equation by recip-
rocal product with ϕ

L from Eq. (1).
The couple µ

BC
0 is horizontal. In a reference frame Oijk with i ‖ µ

BC
0 ,

the ωx and vz components of ξ are zero, and the system of four velocity
equations becomes four-dimensional. From Eq. (2), we obtain:
⎡
⎢⎢⎢⎣

fArAnA
45y fArAnA

45z fA
x fA

y

fBrBnB
45y fBrBnB

45z fB
x fB

y

fCrCnC
45y fCrCnC

45z fC
x fC

y

fDrDnD
45y fDrDnD

45z fD
x fD

y

⎤
⎥⎥⎥⎦ξ̄= diag

L=A,...,D

(kL
1 · fL)

⎡
⎢⎢⎣

q̇A
1

q̇B
1

q̇C
1

q̇D
1

⎤
⎥⎥⎦ (3)

4. A 2R2T 4-dof ICM
Consider finally the ICM in Fig. 3, derived from the S-PM in Fig. 2

by moving the fifth joints of legs A and D from the end-effector to links
b
B
4 and b

C
4 , respectively.

We refer three subchains as “legs”: the central S-P leg BC (same as
in the S-PM); and the the two lateral P4R serial chains, from the base
to b

B
4 and b

C
4 .

4.1 Constraint and Mobility
From Section 3.1, the structural constraint applied to the end-effector

by leg BC is WBC = Span (ϕz,µ
BC
0 ). Lateral leg A applies on b

B
4 the

same structural constraint Span (ϕz), which is also reciprocal to ξ
B
5 , and

similarly for leg D and b
C
4 . Thus, the combined structural constraint on

the end-effector is still W = Span (ϕz,µ
BC
0 ) as for the S-PM; dimW = 2

and the ICM has the same 4-dof mobility.
For the actuated end-effector constraint, we consider joints ξ

B
1 , ξ

C
1

and ξ
A
1 , ξ

D
1 separately.

Consider first the constraint when actuators B and C are locked.
Because ξ

A
1 and ξ

D
1 are free, it does not matter whether the lateral legs
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Figure 3. 4-dof 2R2T ICM: architecture with leg screws (left) and graph (right)

are connected to the end-effector or to b
L
4 and, as in Section 3.1, the

actuation wrenches are ϕ
L, L = B,C, VBC = W + Span (ϕB ,ϕC).

Consider now the contribution of leg A. We analyze, first, the con-
straint on b

B
4 . Joint ξ

A
1 is locked: the constraint of leg A on b

B
4 is

Span (ϕz,ϕ
A). The constraint on b

B
4 coming from legBC is Span(ϕz,µ

B),
where µ

B is a pure moment with direction k × kB
4 . The total actuated

constraint on b
B
4 with ξ

A
1 locked is VA

4 = Span (ϕz,ϕ
A,µB). This is

an IB(h = 0,γ) 3-system containing pure forces with direction k in the
plane πA

0 through O orthogonal to µ
B , and pure forces in the pencil

centered at the point PA where ϕ
A intersects πA

0 , in the plane through
ϕ

A parallel to k.
Only wrenches reciprocal to ξ

B
5 are transmitted to the platform. The

subsystem VA
4e = VA

4 ∩ Span (ξB
5 )⊥ is a cylindroid, Span (ϕz,ϕ

A
e ), ϕ

A
e in

the pencil at PA and intersecting ξ
B
5 . Another wrench in VA

4e is ζ
AB,

obtained by linear combination of ϕ
A and µ

B :

ζ
AB = (ξB

5 ◦ µ
B)ϕA − (ξB

5 ◦ ϕ
A)µB = λAB

1 ϕ
A + λAB

2 µ
B (4)

Thus, the platform constraint with ξ
A
1 locked is VA = W ⊕ Span (ζAB).

Similarly, VD = WBC ⊕ Span (ζDC) and, out of singularities, V = VA +
VBC + VD is the 6-system.

4.2 Jacobian
In this case, the analysis needs to be changed significantly. We cannot

proceed as before, because the “legs” do not all reach the end-effector.
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We analyze, first, leg A and the subchain B of leg BC. The velocity
equations are:

ξ= q̇A
1 ξ

A
1 +

5∑
i=2

ωA
i ξ

A
i +ωB

5 ξ
B
5 (5)

ξ= q̇B
1 ξ

B
1 +

5∑
i=2

ωB
i ξ

B
i (6)

We compute the reciprocal product of Eqs. (5) and (6) by λAB
1 ϕ

A and
λAB

2 µ
B, respectively. Then we add them and simplify using Eq. (4) and

ξ
B
5 ◦ζ

AB = 0. The same is done for leg D and subchain C of leg BC.
We obtain:

ξ ◦ ζ
LM = q̇L

1 ξ
L
1 ◦ λLM

1 ϕ
L (L,M) = (A,B), (D,C) (7)

Two more velocity equations come from the subchains B and C of
leg BC: ξ = q̇L

1 ξ
L
1 +

∑5
i=2 ωL

i ξ
L
i , L = B,C. The passive joint velocities

are eliminated by computing the reciprocal products with ϕ
B and ϕ

C ,
respectively, obtaining: ξ◦ϕ

L = q̇L
1 ξ

L
1 ◦ϕ

L. These equations and (7) can
be arranged in the matrix form:

⎡
⎢⎢⎢⎣

ζ̃
AB

ϕ̃
B

ϕ̃
C

ζ̃
DC

⎤
⎥⎥⎥⎦ξ̄=

⎡
⎢⎢⎣

ξ
A
1 ◦λAB

1 ϕ
A 0 0 0

0 ξ
B
1 ◦ϕ

B 0 0
0 0 ξ

C
1 ◦ϕ

C 0
0 0 0 ξ

D
1 ◦λDC

1 ϕ
D

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q̇A
1

q̇B
1

q̇C
1

q̇D
1

⎤
⎥⎥⎦ (8)

The matrices in Eq. (9) are written as in terms of the geometry para-
meters. We use ξ

L
1 =

(
0|kL

1

)
; ϕ

L =
(
fL|fLrLnL

45

)
, rL as in Section 2.2.

Also, λLM
1 =kM

45 z; λLM
2 = fLrLkM

5 · nL
45 ζ

LM=kM
45 z

(
fL|(1 − fLrL)nL

45

)
,

kM
45 z =kM

1 kM
4 kM

5 ; (L,M)=(A,B); (D,C). Thus:

⎡
⎢⎢⎢⎣

kB
45z(1 − fArA)nA

45y kB
45z(1 − fArA)nA

45z kB
45zf

A
x kB

45zf
A
y

fBrBnB
45y fBrBnB

45z fB
x fB

y

fCrCnC
45y fCrCnC

45z fC
x fC

y

kC
45z(1 − fDrD)nD

45y kC
45z(1 − fDrD)nD

45z kC
45zf

D
x kC

45zf
D
y

⎤
⎥⎥⎥⎦ξ̄

=

⎡
⎢⎢⎣

kB
45zk

A
1 · fA 0 0 0
0 kB

1 · fB 0 0
0 0 kC

1 · fC 0
0 0 0 kC

45zk
D
1 · fD

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q̇A
1

q̇B
1

q̇C
1

q̇D
1

⎤
⎥⎥⎦ (9)
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5. Conclusions
The paper shows by means of two examples how, with some modi-

fications, the standard method for the constraint and velocity analysis
of PMs can be applied for the derivation of the input-output velocity
equations of non-parallel closed chain mechanisms.

In such mechanisms part of the constraint wrenches applied to the
end-effector are not in the vector-space sum of the leg constraint systems.
These additional constraints have to be taken into account in order to
eliminate the passive joint velocities from the velocity equations.
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Abstract Manufacturing of micro-robots by MEMS technology may cause large 
clearance at the joints – only one order smaller and even of the same order of 
magnitude as the links themselves. Due to the clearances, the direct 
kinematic solutions are not discrete, but form a volume that is defined here 
as the “Clearance-space”. When clearances are large enough, two separate 
regions of the clearance-space may unite, causing a major failure as the 
forward kinematic may be shifted into a different unwanted solution. This 
paper suggests an algorithm that calculates the minimal value of the joint 
clearance in which this severe phenomenon occures. 

Keywords: learance, direct kinematics, parallel robot, MEMS, micro joint 

1.  Introduction  
Contemporary MEMS technology enables manufacturing of micro-

robot using masks and lithograpy process. This technolgical process 
requires keeping relatively large gaps between links in order to maintain 
the mechanism s motion. These gaps result in clearances between moving 

circumstances in traditional machinery during the 18th century that 
caused inaccuracy of the mechanism, shocks, vibrations, noise and wear 
at the joints, as opposed to the high accuracy achievable in the macro-
world nowadays. 

Modeling of clearances is always implemented by adding degrees-of-
freedom to enable parasitic motion between the joint parts. The motion 
in these degrees-of-freedom is limited by the joint geometry, where the 
most common ones are the revolute, prismatic, and spherical joints. 
Consequently, most of the models deal with these three joints. It is worth 

© 2006 Springer. Printed in the Netherlands. 
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parts, that can be as large as about the same order of magnitude as 
the typical dimensions of the mechanism itself. These were the 

,



noting that some of the models can be expanded to helical or cylindrical 
joints. Most models assume that the clearances are small, thus enable 
using linearization and similar simple mathematical tools. 

Dubowsky and Freudenstein, 1971, have investigated the dynamics of 
revolute and spherical joints with clearances, and discovered some 
interesting dynamic phenomena, like limit cycles and natural frequencies 
changing vs. the motion amplitude. Stoenescu and Marghitu, 2003, have 
solved the dynamics of a slider-crank-mechanism, and applied impacts 
when the two parts contact. 

Other researches focus on the static behavior of mechanisms with 
clearances, that are subjected to an external load. Wang and Roth, 1989, 
have shown all the relative situations between the journal and bearing of 
a spatial revolute joint. The mathematical conditions relate the joint 
geometry and reactions at the joint due to the external load, and the 
valid situation must satisfy the conditions ensuring that all normal 
forces are positive. Parenti-Castelli and Venanzi, 2002, have applied a 
gravitation force on moving robots, and assumed that the motion is 
quasi-static, thus one can find the contact points using static analysis. 
They have found that the accuracy of the parallel robot is quite good 

One example for dealing with relatively large clearances, without 
assuming that they are much smaller than the links, is given in 
Voglewede and Ebert-Uphoff, 2004. In their work, the authors have 
calculated the possible poses of the end effectors of two planar parallel 
robots resulting from the clearances, and have shown that the effect of 
clearances becomes worse near or at singular configurations. This 
kinematic approach is based only on the robot geometry, without taking 
into account the loads applied on the robot. 

Behi et al., 1990, and DeVoe et al., 2000, were the first to build, based 

3RRR version, and calculated their affect on the accuracy of the moving 
platform, while assuming that the clearances are very small compared to 
the robot links. 

The present paper deals with large joint clearances that are typical of 
MEMS manufacturing, and determines the clearance conditions under 
which two forwards kinematic solutions merge, which results in an 
undetermined location of the output link.  

76 

compared with the serial counterpart, except for near singular configu-
ration. 

on MEMS technology, 3RRR and 3PRR planar parallel robots, res-
pectively. Kosuge et al., 1991, was aware of the clearances in the 
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2. The Clearance-Space as an Expansion of the 
Direct Kinematics Solutions 

The 3RRR and 3PRR kinematic structures are discussed hereinafter. 
Fig. 1 shows the 3PRR robot1. 

The robot consists of an equilateral triangle platform, whose center is 
the point P. The platform pose is determined by point P x and y 
coordinates and by the platform orientation θ. Points Pr, Pg, and Pb are 
located on the platform in an equal distance r from the platform center P. 

rMp , gMp , and bMp , where p 
stands for a position vector from the origin to the corresponding point. In 
case of 3RRR kineamtic structure the motors would be rotational, 

which 

distance between each motor and the corresponding point on the 
platform. 

It is likely that the manufacturing process would introduce clearances 
into all six revolute joints. The clearance is expressed by an offset 
between the axes of the bearing and the journal. Therefore, those axes 
are not coincident, but may be distant from each other. The simplest 
model assumes that the difference in radius between the bearing and the 
journal of any joint is ½  (see Fig. 1b). Therefore, the distances between 
each motor and the corresponding point on the platform, which we refer 

                                                
1 r , g , and b  stand for the red, green, and blue links, respectively. All colored figures 
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The linear motors detemine the vectors 

are marked by asterisks, and which connect the motors with
 the 

although this is not shown here. The physical length of the links
 

platform, is l, meaning that under zero clearance, this would be the 

,, ,, , ,

Figure 1.     The 3PRR robot. 

can be found at the website http://robotics.technion.ac.il/Projects/hagay/Robochip.html 
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to as the “effective lengths” of the links MrPr, MgPg, and MbPb, is bounded 
by: 
 

∆+≤≤∆− ll bbggrr PMPMPM ppp ,,  .      (1)  
 

Defining the parameters sr, sg, and sb such that 
 

  1,,1 ≤≤− bgr sss          (2)  
 

enables writing the effective lengths as 
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In order to find the possible locations of point P, three auxiliary annuli 
are drawn. They are described in the next figure, with the robot arranged 
in a specific orientation θ. 

Note  that the angle θ determines the vectors PPr p ,  PPg p ,  and PPb p ,  
which are pointing from the platform corners to its center. Those vectors 
lead to the auxiliary points Tr, Tg, and Tb, which can be calculated by 
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 .           (4)   
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Figure 2.     Possible positions for a given platform orientation due to clearances 
at the joints. 
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 The annuli Ar, Ag, and Ab of the radii l–∆ and l+∆ are centered at 
points Tr, Tg, and Tb, respectively. The annulus Ar, for example, describes 
the possible positions of point P, if only the red link is connected to the 
platform. When all links are connected, point P is forced to be at the 
intersection of the three annuli. This area is bolded in Fig. 2, and can be 
calculated by Ar Ag Ab, as shown in Voglewede and Ebert-Uphoff, 2004. 
If the three annuli do not intersect, then there is no solution for the 

 Physically, when the robot tracks the bolded green curve in Fig. 2, the 
g

lengths of the other links are in the boundaries defined in Eqs. 1 and 2. 
Furthermore, moving along the long blue curve (sb = –1) changes the 

r = –1 and sr = 1), while 
the green link is always in the allowed range. The intersecting point 
between two curves means a configuration where the clearances of two 
links are closed. 
 Fig. 2 describes a specific orientation of the platform. Generalizing it 
to all possible orientations yields the “Clearance-Space”, shortly named 
“Cl-space”. This space is a sub-space of the configuration-space, and it 
consists of six boxes that describe all possible platform poses resulting 
from the clearances. Note that the term “box” is being used since it has 
eight vertices, although its shape is not cubic. Actually, the “Cl-space” for 
3RRR or 3PRR robots is identical to the workspace of an equivalent 
3RPR robot, whose link lengths are limited as described in Eq. 1 
(Voglewede and Ebert-Uphoff, 2004). 
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effective length of the green link is always l–∆ (s = –1), while the effective 

direct kinematic problem for this specific orientation angle θ. 

length of the red link between its extreme values (s

Figure 3.     The clearance-space. 
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In the case of no clearance, the direct kinematics problem has six 
solutions, as shown in Gosselin and Merlet, 1994. These solutions are 
points in the 3D C-space, and each of them is located in one of the boxes 

Cl-space is an expansion of one of the direct kinematics solutions. 
Each of the boxes has six side walls, which are two degree-of-freedom 

manifolds: two red, two green, and two blue. As described before, the red 
side wall, for example, includes poses in which the clearances in the 
joints of the red link are closed, i.e. the effective length is minimal or 
maximal (see Eq. 1). Therefore, while manipulating the robot along an 
intersecting curve of two side walls, which is a one degree-of-freedom 
manifold, the effective lengths of the two relevant links remain fixed. In 
fact, this motion is similar to the motion of a four bar mechanism that 
consists of a platform that serves as a coupler, and the two fixed length 
links. The black curve in Fig. 3 describes the motion of such a four bar 
mechanism, in which the lengths of the red and green links are minimal 
(sr = sg

curve of the two relevant side walls. The motion of the mechanism is 
limited by the third link, since its effective length is constrained by Eq. 1. 
However, when clearance ∆ is large enough, the effective length of the 
third link does not limit the motion of the four bar mechanism. 

Each of the boxes in Fig. 3 has eight vertices, which correspond to the 
poses where all the clearances are closed. These poses can be calculated 
analytically using the algorithm in Gosselin and Merlet, 1994, since each 
of the extreme situations can be treated as an equivalent 3RPR robot, 
whose link lengths are fixed and known. For example, the circles in Fig. 

r = sg =
sb =  (sr = sg = –1, sb = 1)  are 
marked by 

of them lay on the black curve. 
When the clearance increases, the volumes of the boxes also increases 

and may cause two adjacent boxes to meet. Kinematically, such a case 
must be avoided, since the robot may pass from one direct kineamtic 
solution to another, thus resulting in an undesired platform pose. The 
interesting question is how to quantify a boundary for the clearance in 
order to prevent this phenomenon.  
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in Fig. 3. Therefore, it can be concluded that each of the boxes in the 

= –1). Indeed, this curve meets all the boxes along the intersecting 

(s3 indicate the poses where all the effective lengths are minimal 
–1), while the cases of maximal blue link

the diamonds. As expected, there are six circles and six dia
monds, and all 

-
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3. Merging Conditions of Clearance-Space Boxes  

In order to find an analytical answer for the above question, note that 
two boxes meet when their vertices meet. As explained, the vertices are 
calculated by solving a direct kinematics problem, so it can be concluded 
that this problem has at least one multiple solution. Since the direct 
kinematics problem yields a six degree polynomial equation, conditions 
where such a polynomial has multiple roots should be found. 

Lemma: Given the general polynomial equation: 
 

023456 =+−+−+− abzczdzezfzgz  .       (5)  
 

It can be shown that this equation has multiple roots if its coefficients 
satisfy the next equation: 
 

0...38880274 442242322222222 =++−− bfgafedagedcbfedcb  .    (6)  
 

This equation has 246 terms, so only some of its terms are shown. The 

Proof: If the solutions of Eq. 5 are z1, z2, z3, z4, z5, and z6, it is evident 
that: 
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complete expression can be found online at the website http://robotics.
. technion.ac.il/Projects/hagay/Robochip.html

.
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Substituting Eq. 8 into Eq. 6 yields 
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meaning that there exists at least one pair of multiple roots. 
 The following equation is obtained while solving the direct kinematical 
problem: 
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where: 
 

 =
2

tan θt  ,               (11)  
 

and all coefficients a0, a1, a2, …, g0, g1, g2 are known functions of the 
geometric parameters rlbgr MMM ,,,, ppp  and sr, sg, and sb. 
 Substituting the coefficients of Eq. 10 into Eq. 6 yields a polynomial 
equation in ∆ only: 
 

 0
20

0

=∆
=i

i
iκ  .              (12)  

 

For all the solutions of the above equation, Eq. 10 has multiple solutions. 
The smallest positive solution has a physical meaning, since it is the 
clearance ∆ where the vertices of two different boxes meet. For a 
complete solution, it is required to repeat the calculation for all eight 
combinations (sr = ±1, sg = ±1, sb

vertices the meeting will occur.  

4. Numerical Example 

Given the motor positions at yxpyxpyxp ˆ5ˆ2,ˆ0ˆ7,ˆ0ˆ0 +=+=+= bgr MMM , 

shows all the Cl-space for ∆ = 0 .1. 
Implementation of the process described in Eqs. 10 and 6 for each of 

the combinations of sr, sg, and sb yields eight equations in ∆. For example, 
for sr = sg = –1, sb = 1, one gets: 
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= ±1), in order to find the first meeting 
of two boxes, whereas it cannot be known in advance in which of the eight 

clearance ∆ = 0.2, which is one order smaller than the link lengths. Fig. 3 
the platform center P at a constant orientation angle θ =12.5° due to a 
and the geometric parameters l = 2, r = 4. Fig. 2 shows a possible area for 
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021726.09558.153.1769.147

36.4158.25239.48201077114420

208251701019083100675.86795.3280

7.207152.47464.2614984.67241.104096.0

20191817
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∆+∆−∆−∆+∆+

∆−∆−∆+∆+∆−∆−

∆+∆+∆−∆+∆+

 .     (13)  

 

The real solutions of Eq. 13 are –7.2367, –3.5072, –2.3201, –1.5742,         
– 0.8661, – 0.7204, 0.1279, 0.8696, 1.1962, 4.8039, 7.7946, and 8.9655. 

The lowest positive solutions of the eight combinations of sr, sg, and sb 
are shown in the next table: 

 

sr sg sb ∆min 
1 5.7662 

1 1 0.7204 
1 0.2776 1 

1 1 0.1528 
1 0.5665 

1 1 0.1656 
1 0.1279 1 

1 1 0.4935 
 
The smallest value in the table is bolded and, as expected, it results in 
meeting of the two vertices that are indicated by a diamond in the top of 

that the two boxes became one and there are only four solutions for 
sr = sg =  –1,  sb = 1. 
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Fig. 3. The next figure shows the Cl-space for ∆ = 0.14, and it can be seen 

–

–

–
–

–

–

–

Table 1.     The clearances causing meeting of vertices of the Cl-space. 

Figure 4.     The clearance-space for large clearances. 
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5.  Conclusions  

The kinematic effects of large joint clearances in parallel robots was 
discussed. It was shown that the direct kinematics solutions expand due 
to the clearances, and the clearance-space was defined as the set of 
possible platform poses resulting from given clearances. Instability of 
direct kinematics solutions may occur, as the clearances get bigger when 
two distinct clearance-space boxes might merge. An analytical approach 
for finding the minimal clearance that causes this unwanted behavior 
was suggested, along with a numerical example showing that for a 3 
DOF planar parallel robot, clearance of about 10% of the typical robot 
link length may be problematic. Future work will investigate the effects 
of clearances on the static and the dynamic behaviors of micro-robots. 
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Abstract This paper presents a stiffness mapping of a mechanism having two planar 
compliant parallel mechanisms in a serial arrangement.  The stiffness 
matrix of the mechanism is obtained by taking a derivative of the static 
equilibrium equations.  A derivative of spring force connecting two moving 
bodies is derived and it is applied to obtain the stiffness matrix of the 
mechanism.  A numerical example is presented. 

Keywords: Stiffness matrix, compliant coupling, parallel mechanism 

1.  Introduction  
There are many robotic tasks involving contacts of man and machine 

or the robot and its environment.  A small amount of positional error of 
the robot system, which is almost inevitable, may cause serious damage 
to the robot or the object with which it is in contact.  Compliant couplings 
which may be inserted between the end effecter and the last link of the 
robotic manipulator can be a solution to this problem (Whitney, 1982, 
Peshkin, 1990, and Griffis, 1991).    

Dimentberg, 1965, studied properties of an elastically suspended body 
using Screw theory which was introduced by Ball, 1900.  Screw theory is 
employed throughout this paper to describe the motion of rigid bodies 

A small twist applied to the compliant coupling generates a small change 
of the wrench which the compliant coupling exerts on the environment.  
This relation is well described by the stiffness matrix of the compliant 
coupling.   

© 2006 Springer. Printed in the Netherlands. 

85
J. Lenar i  and B. Roth (eds.), Advances in Robot Kinematics, 85–94. 

(twist) and the forces applied to rigid bodies (wrench) (Crane et al., 2006).  



Parallel mechanisms have several advantages over serial mechanisms 
such as high stiffness, compactness, and small positional errors at the 
cost of a smaller work space and increased complexity of analysis.  
Griffis, 1991, obtained a global stiffness model for parallel mechanism-
based compliant couplings.  Huang and Schimmels, 1998, Ciblak and 
Lipkin, 1999, and Roberts, 1999, studied synthesis of stiffness matrices. 

2.  Problem Statement  

 

obtained in this paper.  Body A is connected to ground by three compliant 
couplings and body B is connected to body A in the same way.  Each 
compliant coupling has a revolute joint at each end and a prismatic joint 
with a spring in the middle.  It is assumed that an external wrench extw  
is applied to body B and that both body B and body A are in static 
equilibrium.  The poses of body A and body B and the spring constants 
and free lengths of all compliant couplings are known.   

The stiffness matrix [ ]K  which maps a small twist of the moving body 
B in terms of the ground, E BD ,  into the corresponding wrench varia-
tion, extw , is desired  to be derived.   This relationship can be written as  
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Figure 1.     Mechanism having two planar parallel mechanisms in a serial 

Figure 1 depicts the compliant mechanism whose stiffness matrix will be 

arrangement. 



 E B
ext Kw D .         (1) 

 

The static equilibrium equation of bodies B and A can be written by 
 

 1 2 3

4 5 6

extw f f f
f f f

         (2) 

 

where if  are the forces from the compliant couplings. 
The stiffness matrix will be derived by taking a derivative of the static 

equilibrium equation, Eq. 2, to yield 
 

1 2 3

4 5 6

extw f f f
f f f

.        (3) 

 

Expressions for if  for the compliant couplings joining body A and 
ground, i.e., for i = 4, 5, 6, were obtained by Griffis, 1991. 

The contribution of this new effort is in the analysis of the derivative 
of the spring force joining bodies A and B which will lead to the 
derivation of the compliant matrix that will relate the change in the 
external wrench to the twist of body B with respect to ground. 

3.  Derivative of Spring Force Connecting 
Two Moving Bodies 

  
 

coupling with a spring constant k , a free length ol ,  and a current length 

E 

P1 

 

S  

P2 
Body B 

Body A P1 

P2 

 

l  

l

2
A B

Pr

Body A 

l
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Figure 2.     Compliant coupling conneting two moving bodies and variation of 
point P2 due to twist of body B with respect to body A. 

l.  The spring force may be written as 

Figure  2 depicts two rigid bodies connected to each other by a compliant 



 ( )ok l lf $             (4) 
where 

1 2
E A E B

P P

S S
$

r S r S
         (5) 

 

and where, S  is a unit vector along the compliant coupling. 1
E A

Pr  and 
2

E B
Pr  are the position vector of the point P1 in body A and that of point 

P2 in body B, respectively, measured with respect to the reference 
system embedded in ground (body E).   
 

The derivative of the spring force as in Eq. 4 can be written by 
 

( )E E
ok l k l lf $ $ .         (6) 

 

From the twist equation, the variation of position of point P2 in body B 
with respect to body A can be expressed as 
 

2 2
B B B A BA A A
P o Pr r r          (7) 

where B
2P

A r  is the position of P2, which is embedded in body B, 
measured with respect to a coordinate system embedded in body A which 
at this instant is coincident and aligned with the reference system 
attached to ground.  In addition, A B  is the differential of angle of body 
B in terms of body A.  It can also be decomposed into two perpendicular 

vectors along S  and 
A S  which is a known unit vector perpendicular to 

S .  These two vectors correspond to the change of the spring length l  
and the directional change of the spring l  in terms of body A as shown 
in Fig. 2.  Thus Eq. 7 can be rewritten as 
 

     
2 2 2

A A
A B A B A B

P P P

A
l l

S Sr r S S r

SS

     (8) 

where 

1

A
A

A
A A

P

S
$

Sr
.          (9) 
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2 2

2

A B A B A B A B
P o P

A B A B A B
o P

T A B

l r S r S r S

r S r S

$ D

    (10) 

2 2

2

A A A
A B A B A B A B

P o P

A A
A B A B A B

o P

A T
A B

l S S Sr r r

S Sr r

$
D

 (11) 

where 

         

2

A
A

A
A B

P

S
$

Sr
.        (12) 

 
A $

 has the same direction as
A $

 but has a different moment term. 
E $  in Eq. 6 is a derivative of the unit screw along the spring in terms 

of the inertial frame and may be written as 
 

1 1

E
E

E A E A E
P P

S
$

r S r S
.      (13) 

 

Using an intermediate frame attached to body A, 
 

E A E AS S S .        (14) 
 

Then, E $  may be decomposed into three screws as follows 
 

1 1

1 1

11 1

E
E

E A E A E
P P

A E A

E A E A A E A
P P

E AA

E AE A A E A E A
PP P

S
$

r S r S

S S

r S r S S

S 0S
r Sr S r S

.  (15) 

 

Since S  is a function of  alone from the vantage of body A and l  is 
already described in Eq. 11, the first screw in Eq. 15 can be written as 
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From Eqs. 7 and 8, l  and l  can be expressed as 



   1
1

1 1

A
A

E A A A
P E A

P

A A A T
A Bl

l l

S
S

r S Sr

$ $ $
D

 
  .

 (16) 

 

As to the second screw in Eq. 15, E A S  has the same direction as 
A S  with magnitude of E A  and thus may be written as 

      
A

E A
E A

SS .         (17) 
 

Then the second screw in Eq. 15 can be expressed as 
 

1
1

0 0 1

A
E A E A

E A E A A
E AP

P E A

A A
E A

E A

S
S

r S Sr

$ $
D

 . 
(18) 

 

As to the third screw in Eq. 15, 1
E A

Pr  can be decomposed into two 

perpendicular vectors along S  and 
A S , respectively as 

 

  
1 1

1 1

E A E A E A E A
P o P

A A
E A E A

P P

r r r

S Sr S S r
     (19) 

where 

   
1 1

1

E A E A E A A
P o P

E A E A A
o P

T E A

r S r S r S

r S r S

$ D

       (20) 

   

1 1

1

A A A
E A E A E A A

P o P

A A
E A E A A

o P

A T
E A

S S Sr r r

S Sr r

$
D

 .   (21) 
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By combining Eqs. 19, 20, and 21, 1
E A

Pr  can be written as 
 

    1

A T A
E A T E A E A

P
$ Sr $ D S D .    (22) 

 

Then the third screw in Eq. 15 can be written as 
 

1

0
0 0 0 1
1

A T A
T E A E AE A

P

A T A A T
E A E A

TA T A
E A E A

0
0

$ S$ D S D Sr S

0 0
$ S $D S D

$ $
D D

  (23) 

 

because 1
A S S k . 

By substituting l and E $  in Eq. 6 with Eqs. 10, 16, 18, and 23 and 
arranging the terms by the twists, the derivative of the spring force can 
be written as 
 

( )E E
o

A B E A
F M

k l k l l

K K

f $ $

D D
       (24) 

 

where 

       (1 )
A A T

T o
F

lK k k
l

$ $
$$      (25) 

   ( ) 0 0 1 0 0 1
TA A

M oK k l l
$ $

.  (26) 

As shown in Eq. 24, the derivative of the spring force joining two rigid 
bodies depends not only on a relative twist between two bodies but also 
on the twist of the intermediate body, in this case body A, in terms of the 
inertial frame.  FK  is identical to the stiffness matrix of the spring 
connecting a moving body to the ground which was derived by Griffis, 
1991.  MK  is newly introduced from this research and results from the 

MK  takes a skew 
symmetric form in general. 
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motion of the base frame, in this case body A.  



4. Stiffness Matrix of the Mechanism 
The stiffness matrix K  which maps a small twist of body B in terms 

of the inertial frame into the corresponding change of the wrench on body 
B is derived from Eq. 3 (see Fig. 1). The derivatives of spring forces can 
be written by Eqs. 27 and 28 since Springs 4, 5, and 6 connect body A and 
ground and Springs 1, 2, and 3 join two moving bodies. 
 

4 5 6 4 5 6

,

E A E A E A
F F F

E A
F R L

K K K

K

f f f D D D

D
   (27) 

 

1 2 3 1 2 3

1 2 3

, ,

A B A B A B
F F F

E A E A E A
M M M

A B E A
F MR U R U

K K K

K K K

K K

f f f D D D

D D D

D D

  (28) 

 

where 
6

,
4

F FR L i
i

K K , 
3

,
1

F FR U i
i

K K , 
3

,
1

M MR U i
i

K K  

 

and where F iK  and M iK  are defined as Eqs. 25 and 26. 
 Then from Eqs. 3, 27, and 28 the derivative of the external wrench can 
be written by  
 

   ,

, ,

E B
ext

E A
F R L

A B E A
F MR U R U

K

K

K K

w D

D

D D

.     (29) 

 

Finally, from Eq. 29 and the twist equation, Eq. 30, the stiffness 
matrix can be obtained as Eq. 31. 
 

E B E A A BD D D         (30) 
 

1

, , , , ,F F F M FR L R L R U R U R UK K K K K K   (31) 

5. Numerical Example 
The geometry information and spring properties of the mechanism in 

Fig. 1 and the external wrench extw  are given below. 
 

0.01
0.02
0.03

ext

N
N
Ncm

w  
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o

 
Spring No. 1 2 3 4 5 6 
Stiffness 

constant k  0.2 0.3 0.4 0.5 0.6 0.7 

Free length ol   5.0040 2.2860 4.9458 5.5145 3.1573 5.2568 

 
Pivot points E1 E2 E3 B1 B2 B3 

X 0.0000 1.5000 3.0000 0.0903 1.7063 1.9185 
Y  0.0000 1.2000 0.5000 9.8612 8.6833 10.6721 

 
(continue) 

A1 A2 A3 A4 
0.9036 2.5318 2.7236 1.6063 
4.5962 3.4347 5.4255 5.4659 

 
The stiffness matrices [ ]K  is obtained by using Eq. 31. 

 

0.0108 / 0.0172 / 0.0797
[ ] 0.0172 / 0.3447 / 0.8351

0.0997 0.8251 2.6567

N cm N cm N
K N cm N cm N

N N Ncm
 

 

To evaluate the result, a small wrench Gw  is applied to body B and 
the static equilibrium pose of the mechanism is obtained by a 
numerically iterative method. From the equilibrium pose of the 
mechanism, the twist of body B with respect to ground E BD  is obtained 
as below. 

4

0.5
10 0.2

0.4
G

N
N
Ncm

w  

 

0.0077
0.0012
0.0007

E B

cm
cm
rad

D  

 

Then the twist E BD  is multiplied by the stiffness matrices to see if 
the given small wrench Gw  results. 

4

0.4991
[ ] 10 0.1988

0.4016

E B

N
K N

Ncm
w D  
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Table 2.     Positions of pivot points in terms of the inertial frame (Unit: cm). 

Table 1.     Spring properties (Unit: N/cm for k, cm for l ). 



The numerical example indicates that [ ]K  produces the given wrench 
Gw  with high accuracy. 

6. Conclusion 
In this paper, a derivative of spring force connecting two moving 

bodies was derived by using screw theory and an intermediate frame and 
applied to obtain a stiffness matrix of a mechanism having two compliant 

connecting two moving bodies depends not only on a relative twist 
between the two bodies but also on the twist of the intermediate body in 
terms of the inertial frame. This result also can be applied for 
mechanisms having any arbitrary number of parallel mechanisms in a 
serial arrangement. 
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Abstract Understanding how errors propagate in serial revolute manipulators is
important for developing better designs and planning algorithms, as
well as understanding the practical limitations on accuracy of multi-
link arms. In this paper we provide a systematic propagation method-
ology and numerical example that illustrates how large kinematic errors
propagate by convolution on the Euclidean motion group.

Keywords:

1. Introduction
Kinematic errors arising from spatial uncertainties put strong limita-

tions on the performance of serial manipulators.

important for understanding the practical limitations on accuracy of
multi-link arms.

In this paper, we presents a systematic methodology of propagating
large errors in revolute manipulators from the point view of Euclidean
motion group. Our approach is to treat errors using probability densi-
ties on the Euclidean group. Whereas concepts such as integration and
convolution of these densities follow in a natural way when considering
the Lie group setting [Chirikjian and Kyatkin, 2001], standard concepts
associated with the Gaussian distribution in IRN

© 2006 Springer. Printed in the Netherlands. 
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Kinematic error, error propagation, revolute manipulators

of these errors could lead to the failure of executing nominal tasks.
Evaluating the propagation effects of kinematic errors is essential in
manipulator design, failure prediction, and algorithms planninng. It is also

The accumulation

do not follow in a



reviewed below. These include the theory of Lie groups, robot kinemat-
ics, methods for describing spatial uncertainty, and state estimation.

Murray, Li and Sastry [Murray, Li and Sastry, 1994] and Selig [Selig,

and Brockett [Park and Brockett, 1994] showed how dexterity measures

Wang and Chirikjian [Wang and
Chirikjian, 2004] showed that the workspace densities of manipulators
with many degrees of freedom can be generated by solving a diffusion
equation on the Euclidean group. Blackmore and Leu [Blackmore and
Leu, 1992] showed that problems in manufacturing associated with swept
volumes can be cast within a Lie group setting. Kyatkin and Chirikjian
[Chirikjian and Kyatkin, 2001] showed that many problems in robot
kinematics and motion planning can be formulated as the convolution
of functions on the Euclidean group.

Starting with the pioneering work of Brockett [Brockett, 1972], the
controls community has embraced group-theoretic problems for many
years. This includes PD control on the Euclidean group [Bullo and Mur-
ray, 1999; Leonard and Krishnaprasad 1995], tracking problems [Han and
Park, 2001; Han, 2004], and estimation [Lo and Eshleman, 1979]. The
representation and estimation of spatial uncertainty has also received
attention in the robotics and vision literature [Smith and Cheeseman,
1986; Su and Lee, 1992]. Recent work on error propagation described by
the concatenation of random variables on groups has also found promis-
ing applications in mobile robot navigation [Smith, Drummond, and
Roussopoulos, 2003]. We note that while all of these works focus on
small errors, our emphasis is a formulation that applies to large errors
as well.

2. Review of Rigid-Body Motions

2.1 Euclidean Motion Group
The Euclidean motion group, SE(N), is the semi direct product of

IRN with the special orthogonal group, SO(N). We denote elements of
SE(N) as g = (a, A) ∈ SE(N) where A ∈ SO(N) and a ∈ IRN . For
any g = (a, A) and h = (r, R) ∈ SE(N), the group law is written as
g ◦ h = (a + Ar, AR), and g−1 = (−ATa, AT ). It is often convenient
to express an element of SE(N) as an (N + 1) × (N + 1) homogeneous

Several of the most closely related works arenatural way to Lie groups.
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1996] presented Lie-group-theoretic notation and terminology to the
robotics community, which has now become standard vocabulary. Park

can be viewed in a Lie group setting, and how this coordinate-free
approach can be used in robot design.



transformation matrix of the form:

g =

⎛
⎝ A a

0T 1

⎞
⎠.

In this way, rotation and translation are combined into a single matrix.
A homogeneous transformation matrix takes the place of the pair (a, A),
and the group operation becomes the matrix multiplication

For example, each element of SE(2) parameterized using polar coor-
dinates can be written as:

g(r, φ, θ) =

⎛
⎝ cos θ − sin θ r cos φ

sin θ cos θ r sin φ
0 0 1

⎞
⎠, (1)

where 0 ≤ φ, θ ≤ 2π and 0 ≤ r ≤ ∞. SE(2) is a 3-dimensional manifold
much like IR3. We can integrate over SE(2) using the volume element
d(g(r, θ, φ)) = rdrdθdφ.

2.2 Motion-Group Fourier Transform
The Fourier transform of a function on G = SE(N) is defined as:

f̂(p) =
∫

G
f(g)U(g−1, p) d(g) (2)

where d(g) is a volume element at g, and U(g, p) is an infinite-dimensional
unitary matrix called an irreducible unitary representation, or IUR

property, U(g1 ◦ g2, p) = U(g1, p)U(g2, p). One can show that the gener-
alization of the classical Fourier transform in (2) admits a convolution
theorem due to the homomorphism property of U(g, p), and that the

f(g) =
∫ ∞

0
trace(f̂(p)U(g, p))pN−1dp. (3)

This is because the matrix elements of the full set of IURs form an
orthonormal basis with which to expand functions on SE(N).

A number of works [Chirikjian and Kyatkin, 2001] have shown that
the matrix elements of the IURs for SE(2) can be expressed as

umn(g(r, φ, θ), p) = in−me−i[nθ+(m−n)φ]Jn−m(p r) (4)

where Jν(x) is the νth order Bessel function, and m and n take values
in the integers.
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function:
following inverse transform can be used to reconstruct the original
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The Fourier inverse transform can be written in terms of elements as

f(g) =
∑

m,n∈ZZ

∫ ∞

0
f̂mnunm(g, p)pdp. (5)

(f1 ∗ f2)(g) =
∫

G
f1(h)f2(h−1 ◦ g)d(h),

the result is the product of Fourier transform matrices: f̂2(p)f̂1(p).

3. Propagation of Error in Serial Linkages
Suppose we are given a manipulator consisting of two concatenated

serial links connected with a revolute joint. One unit is stacked on
top of the other one. The proximal unit will be able to reach each
frame h1 ∈ SE(3) with some error when its proximal end is located at
the identity e ∈ SE(3). This error may be different for each different
frame h1. This is expressed mathematically as a real-valued function
of g1 ∈ SE(3) which has a peak in the neighborhood of h1 and decays
rapidly away from h1. If the unit could reach h1 exactly, this function
would be a delta function. Explicitly the error may be described by one
of many possible density functions depending on what error model is
used. However, it will always be the case that it is of the form ρ1(h1, g1)
for h1, g1 ∈ SE(3). That is, the error will be a function of g1 ∈ SE(3)
for each frame h1 that the top of the module tries to attain relative to its
base. Likewise, the second module will have an error function ρ2(h2, g2)
for h2, g2 ∈ SE(3) that describes the distribution of frames around h2

that might be reached when h2 is the expected end frame for module 2
relative to its base, and the base of module 2 is located at the identity
e ∈ SE(3).

The error distribution that results from the concatenation of two mod-
1 2

ρ(h1 ◦ h2, g)
= (ρ1 ⊗ ρ2)(h1 ◦ h2, g)
�
=

∫
SE(3) ρ1(h1, g1)ρ2(h2, g

−1
1 ◦ g)d(g1).

(6)

Here d(g) is the unique bi-invariant integration measure for SE(3) eval-
uated at g [Chirikjian and Kyatkin, 2001]. Sometimes this is simply
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applied to convolutions of the form
The motion-group Fourier transform has the property that when

modules with errors ρ (·) and ρ (·) results from sweeping the error distrib-

matically as:mathe
ution of the second module by that of the first. This is written



written as dg. In the case of no error, the multiplication of homoge-
neous transforms h1 and h2 as h1 ◦ h2 represents the composite change
in position and orientation from the base of the lower unit to the inter-
face between units, and from the interface to the top of the upper unit.
In the case of inexact kinematics, the error function for the upper unit
is shifted by the lower unit (ρ2(h2, g

−1
1 ◦g)), weighted by the error distri-

bution of the lower unit (ρ1(h1, g1)) and integrated over the support of
the error distribution of the lower unit (which is the same as integrating
over all of SE(3) since outside of the support of the error distribution
the integral is zero). The result of this integration is by definition the
error density function around the frame h1 ◦ h2, and this is denoted as
(ρ1 ⊗ ρ2)(h1 ◦ h2, g). It should be noted that (6) holds regardless of the
size of the errors or the form of the error density.

It is often convenient to suppress the explicit dependence of ρi(cot)
on hi, which can be viewed as a constant set of parameters. When this
is done, Eq. 6 reduces to a convolution on SE(N).

4. Numerical Example
Consider the three-link planar revolute manipulator shown in Figure

1. Each rigid link has length L, and each joint has some backlash that
is described by a probability distribution f(θ − θ0) centered around the
value θ0 = 30 degrees. The error density for a single link is then of the
form

ρ(g(r, φ, θ)) = f(θ − θ0)δ(φ − θ)δ(r − L)/r (7)

where δ(·) is the usual Dirac delta function in one dimension and an
arbitrary element of g(r, φ, θ) ∈ SE(2) is parametrized as in Eq. 1.
Integration over G = SE(2) is then integration over all values of r ∈ IR+

and φ, θ ∈ [0, 2π].

Figure 1. A three-link planar manipulator with joint backlash

In Equation 7, the delta functions enforce the rigidity of the links,
and division by r is due to the r in the volume element. The function
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f(θ) has its mode at 0, but the backlashes can be potentially large (i.e.,
not highly concentrated). For this reason, we cannot take it to be a
Gaussian, but rather, a folded Gaussian of the form:

f(θ, σ) = 1
2π

∑∞
n=−∞ e−n2σ2

einθ

= 1√
2πσ

∑∞
n=−∞ e−(θ−2πn)2/2σ2 (8)

The error density that accumulates at the end effector due to back-
lashes in each of the joints is computed as the convolution

ρee(g) = (ρ ∗ ρ ∗ ρ)(g).

Computing this numerically by the definition of convolution is not as
convenient as using the SE(2)-convolution theorem and the correspond-
ing concept of Fourier transform, which is what we shall do here.

Computing the SE(2)-Fourier transform of the one-link backlash-
error density in Equation 7, one finds (after the delta functions kill the
integrals over r and φ) that:

ρ̂mn(p) = in−mJm−n(pL)
∫ 2π
0 f(θ − θ0)einθdθ

= in−mJm−n(pL)einθ0−n2σ2

.
(9)

Using the convolution theorem, we compute ρ̂ee(p) = ρ̂ ρ̂ ρ̂, where the
matrix elements of ρ̂ are given by Equation 9. Then the original error
density ρee(g(r, φ, θ)) can be reconstructed by applying the Fourier in-
version formula (3) to ρ̂ee(p). Since it is difficult to view the error density
ρ(g) graphically, the marginal density function ρ(r, φ) is computed. The
marginal density function ρ(r, φ) is found by just integrating the Fourier
reconstruction formula (3) for ρ(g) with respect to θ as

ρ(r, φ) =
1
2π

∫ 2π

0
ρ(g)dθ

=
∑
n∈z

i−ne−inφ

∫ ∞

0
f̂0n(p)J−n(pr)pdp.

To validate the results obtained from our convolution-based error
propagation method, the error distribution (8) is sampled and applied
to each joint of the manipulator directly. Then brute force enumeration
is used to obtain the error distribution directly.

The marginal error densities ρ(r, φ) obtained from both methods are
plotted in Figures 2 and 3 with the left one from the propagation method
and the right one from brute force. The variance σ2 of 0.1 is given in
Figure 2 and σ2 of 0.3 in Figure 3.

Y. Wang and G. S. Chirikjian100



Figure 2. The marginal error density ρ(r, φ) for σ
2

Figure 3. 2

For the above computations, the link length L is taken as 1, and
60 samples points are generated for the distribution (8). The infinite-
dimensional matrix function U(g, p) in the SE(2) Fourier transform is
truncated at finite values of |m|, |n| ≤ 10 (i.e., the dimension of U(g, p)
is 2× 10 + 1). The band-limited approximation still gives very accurate
results because the magnitude of the Fourier transform of a sufficiently
smooth function can be ignored beyond a certain cutoff frequency. The
frequency parameter p is sampled in the interval of 300 with an inte-
gration step of 0.2. All the calculations in this example (excluding the
brute force method) took less then 3 minutes using Matlab with a 1.0
GHz, 516 MB RAM computer.

5. Conclusions
In this paper it is shown how the accumulation of large kinematic er-

rors in serial manipulators can be computed by performing convolutions

101

= 0.1

The marginal error density ρ(r, φ) for σ = 0.3

Large Kinematic Error Propagation in Revolute Manipulators

.

.



on the Euclidean motion group. This theory is demonstrated with the
example of a planar revolute manipulator with three links.
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Abstract Analysis and design of parallel robots are often treated separately due to
different methods. Thus, a framework is needed to combine important
aspects of both tasks. In this paper, it is shown that workspace calcula-
tion/verification and synthesis/optimization can be summarized within
the context of an interval analysis based constrained global optimiza-
tion. Specializing this general formulation leads to a flexible technique
which can be used to solve each of the aforementioned subtasks. In this
setting, the constraints specify the machine’s properties like size and
quality of the workspace of the machine. Starting with workspace calcu-
lation for some criterions, one extends the requirements and seamlessly
advance to parameter synthesis and optimization. These techniques
present a framework for workspace calculation, parameter design, and
optimization which allows for analysis and synthesis by means of the
same model. The method is demonstrated for a 6 d.o.f. Gough-platform.

Keywords: Parallel Robot, Analysis, Optimization, Interval Analysis, Modular
Framework

1. Introduction
For the design of parallel kinematic machines (PKM), it is important

to make an appropriate choice for the geometrical parameters in order
to fulfill the customers requirements. Unfortunately, one cannot start
with the design of new machines unless one can cope with a number of
issues that are related to the analysis of parallel machines. In partic-
ular, this includes the determination of the size, shape, and properties
of the workspace. In the last two decades, many scientists have been
working on different aspects of analysis. Especially for spatial parallel
robots, most results can only be determined numerically due to the in-
herent complexity of PKMs. But mostly these results cannot be used to
solve the design problem, i.e. how one has to choose the parameters so
that the resulting machines have the desired properties. For example,
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the widely used calculation of the workspace by discretization reveals
nothing about how one has to change the geometry of the machine to
enlarge the workspace. Thus, methods are needed that allow for both
analysis and synthesis within one framework to assist during the whole
development process: Firstly, a preliminary analysis is needed to prove
the concept of a machine. Subsequently, one switches to parameter de-
sign with respect to given process requirements and optimization due to
factors like costs. Finally, one has to verify that the developed machine
has all desired properties.

In this paper, interval analysis based constraint satisfaction is used
as common framework to perform workspace calculation and parame-
ter synthesis. It is shown how the general form of a constrained global
optimization problem can be specialized to perform workspace calcula-
tion, parameter synthesis, and optimization using an extendable scheme
of constraints. The paper is organized as follows: In section 2 interval
methods for constraint satisfaction and optimization are reviewed and
applied to the design problem of PKMs. In section 3, the constraints
for Gough-platforms are deduced from imperative process requirements
and examples from the analysis, synthesis, and optimization are given
in section 4. Conclusions are drawn in section 5.

2. Constraint Satisfaction and Global
Optimization

At first, consider the constrained global optimization problem of the
form

minimize f(g) (1)
s.t. Φ(g,x) > 0 (2)

∀ x ∈ W, (3)

where f is the objective function, Φ is a system of nonlinear constraints,
g is the vector of the design parameters (calculation domain), W is the
compact set of configurations to be verified, and the configuration x is
any vector from the set W. In contrast to classical optimization prob-
lems, this formulation is extended by constraints, that must be fulfilled
for all configurations x given by the set W. In this paper, it is assumed
that the set W can be approximated by hypercubes. Thus, this special
type of optimization problem is denoted as global constrained optimiza-

tion over intervals.
As pointed out above, the analysis, design, and optimization of PKMs

can be regarded as such a constrained global optimization problem. For
PKMs, one identifies Φ with imperative process requirements, g with
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the geometrical design parameters of the machine, x are the world coor-
dinates (position and orientation) of the platform, and W is the desired
workspace of the robot.

The basic algorithm to solve this problem is based on interval analysis
and can be found in (Hansen, 1992). Interval analysis is a powerful tool
to deal with both, the constraint satisfaction problem (CSP) given by

Interval analysis have been applied to PKMs for
analysis by e.g. (Chablat et al., 2002; Chablat et al., 2004; Merlet, 2004),
and (Pott et al., 2004). Furthermore, interval analysis based algorithms
were successfully used for the design of PKMs by (Merlet, 2001), (Hao
and Merlet, 2005), (Pott et al., 2005), and (Pott and Hiller, 2006). Since
the algorithm is already known, the key features are quickly reviewed.
Interval methods are implemented such that numerical round-off errors
are taken into account. Furthermore, interval analysis based constraint
solvers and optimizers do not rely on a point-wise discretization of the
parameter space. Therefore, it is guaranteed that constraints hold in
any point of the considered set and optimizers are able to find guaran-
teed bounds for both, the optimum of the objective function and the
environment of the parameter space containing the optimum.

2.1 Framework
The main advantage of the proposed framework is that one can save

much development time, because the same solver algorithm and the
same model equations are used to perform the different investigations.
Furthermore, the system Φ is composed from subsets of inequations that
are related to different properties of the machine, e.g. taking into account
geometric relations for the workspace, limits on the active and passive
joints, link interference, and bounds on the dexterity. The presented
framework allows among others

to verify, if a given machine design g0 exhibits a given orientation
workspace W0,
to calculate the constant orientation workspace Wco and the total
orientation workspace Wto for a given machine design g0 and
to determine all machine designs g that provide a given (orienta-
tion) workspace W0.

Here, workspace includes all criterions that are introduced by the re-
quirements Φ, e.g. the verified/calculated workspace is guaranteed to be
consistent with active and passive joint limits and free of link interfer-
ence. The different investigations can be deduces from the general form
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as follows. Firstly, one can verify that a machine with given parameters
g0 exhibits the given workspace W0 by analyzing

Φ(g0,x) > 0 ∀ x ∈ W0, (4)

with the CSP solver. In contrary, determining all poses x, where

Φ(g0,x) > 0, (5)

responds the problem to calculate the workspace of a given machine
design. Finally, the determination of all g that fulfill

Φ(g,x) > 0 ∀ x ∈ W0 (6)

corresponds to the design problem for PKMs, i.e. finding all machine
designs that fulfill given requirements throughout a given workspace W0.
Such designs are then called feasible. Finally, the objective function f
can be taken into account to find an optimal machine within the set of
feasible designs generated by the CSP.

2.2 Modular Program Design
A flexible framework is intended to provide the following properties:

Switch quickly between workspace verification (Eq. 4), workspace
calculation (Eq. 5), parameter design (Eq. 6), and optimization
Add or remove constraints for reachable workspace, limits on ac-
tive/passive joints, link interference, etc.
Constraints should be independent from each other. New require-
ments may be added without reconsideration of other constraints.
Workspace requirements can be used for parameter synthesis and
optimization.

To achieve this, a modular program design of the framework is proposed
(Fig. 1). This algorithm was proposed by (Pott and Hiller, 2006). A
generic implementation of the interval based CSP solver (or the global
optimizer) passes the interval boxes g to the constraint abstraction layer
(CAL) that encapsulates the system of constraints for evaluation. The
result of the evaluation is an abstract information like valid, invalid,
or undefined that can be interpreted by the algorithm without further
information on the system. To achieve the desired reconfigurability for
the framework, the constraints must not be fixed to one special set of
variables. This adaptability is realized by storing all variables that may
be considered in a shared database. During the initialization, a mapping
is set up between the constraints Φ and the variables in the database
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that the user defines to be unknown. All other variables in the database
are set to constant values. Before evaluating the constraints Φ, the
CAL copies the actual values from g into the database. Note, that the
implementation in C++ manages these apparent complicated relations
very efficiently by means of pointers and virtual function.

The constraints Φ are generated with computer algebra (Maple) and
transformed into C++ code with Maple’s automatic code generator. At
this point, a little post-processing is needed to prepare the code to be
used with interval analysis. For a calculation, one has only to select the
variables/constraints to be taken into account from a library and assign
initial values to the variables.

3.
The constraints Φ for this framework are deduced from imperative

process requirements, like the size of the workspace or limits for the
passive joints. As shown by (Pott et al., 2005) for PKMs with constant
length legs, one can also take into account auto-collision in terms of link
interference, as well as, bounds on the kinematic dexterity. Due to space
limitation of this paper, the following list is rather an example than an
comprehensive list of requirements. To set up the equations, firstly a
machine model has to be introduced.

3.1 Simplified Symmetric Manipulator (SSM)
To deduce constraints for the well-known simplified symmetric ma-

nipulator (SSM, Merlet, 2000, p. 62), the inverse kinematics is quickly
reviewed. The SSM has a planar hexagonal base and platform where the
platform is connected to the base by six legs which consist of prismatic
joints with universal and spherical joints at their ends. The pivot points
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Figure 2. Parameter and kinematics of a SSM robot

of the legs are arranged on circle with radii rp and rb

The position of the platform is given in world
coordinates rTCP and the orientation is defined by the matrix RTCP with
respect to the base frame K0. Using a vector loop yields the closure
condition

li = rTCP + RTCPbi − ai for i = 1, . . . 6, (7)

where ai and bi are the positions of the pivot points on the base and
the platform, respectively. The length li = |li| of the leg can be easily
determine from a given pose rTCP,RTCP of the platform. It is a necessary
condition for a pose to belong to the workspace, that li does not exceed
the stroke of the actuator [lmin, lmax]. Thus, from lmin ≤ li ≤ lmax one
receives the 12 inequations

l2i − l2
min

> 0
l2
max

− l2i > 0

}
for i = 1, . . . 6 (8)

that can be added to the constraint system Φ > 0.

3.2
The universal and spherical joints may limit the motion of the plat-

form due to their technical realization. Therefore, one has to take into
account the mechanical limits of these joints. For universal joints, Mer-
let, 2000, p. 205f suggested to use a pyramid described by its four face
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normals n1,n2,n3,n4, to take into account these limits. For spherical
joints, the motion of the joints is limited by a cone with a known apex
angle βmax. Thus, one received the following inequality

li
.ui − li cos βmax > 0 for i = 1, . . . 6, (9)

where ui is a unit vector of the direction of the leg at the reference
configuration. A similar considerations can be used for the platform. In
that case, one must take into account that the reference vector vi is fixed
to the platform frame and must be transformed to world coordinates by

li
.RTCPvi − li cos βmax > 0 for i = 1, . . . 6. (10)

3.3 Technological Requirements
As an example for a technological requirement, the distance AiAj

between neighboring pivot points on the base and/or on the platform is
considered. Since the joints need a minimal installation space, there is
a lower bound ∆amin for this distance. This can be taken into account
by considering the constraints

ri

√
2 − 2 cos(2∆αi) − ∆amin > 0 for i ∈ {p, b}. (11)

Technological requirements have often a very simple structure and can
be easily implemented into the framework. Nevertheless, they introduce
restrictions that are important in practise and allow to neglect many
designs without considering any details of the workspace.

3.4 Objective Function
Since the system of constraints Φ collects all imperative process re-

quirements, the objective function f focuses on minimizing a selected
criterion. For example, one can minimize the total volume of the ma-
chine. In general, this criterion may be chosen more sophisticated for
example by taking into account the total monetary costs of manufactur-
ing. In the framework of the proposed algorithm for global optimization,
this function is not even required to be continuous. Therefore, it is easy
to incorporate for example tables with costs of components like actu-
ators or other available components. It is clearly out of the scope of
kinematics, to define and discuss, how one can set up such cost calcula-
tions. But at this point, an interface is defined, that explicitly separates
economic requirements in terms of the cost function f and technological
requirements in terms of imperative process requirements Φ. For sim-
plicity, in section 4 a simple minimization of the volume of the machine
is performed as an example of the algorithm.
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Table 1. Nominal Geometrical Parameters of the SSM

Parameter value Description

rb 1m radius of the base frame
rp 0.25 m radius of the mobile platform

∆αb 45◦ angular offset for the pivot points on the base
∆αp 15◦ angular offset for the pivot points on the platform
lmin 1m minimal length of the strut
lmax 2m maximal length of the strut

∆βmax 45◦ maximal rotation of the spherical joints

Figure 3. Workspace of the SSM a) constant orientation workspace b) total orien-
tation workspace

4. Computational Examples
In this section, the presented framework is applied step by step to a

SSM. Parameters which are not part of the calculation, i.e. appear in g

are carried out for limits of the active joints, as well as limits of the
passive joints at the base frame.

Workspace Calculation. At first, the workspace is determined us-
ing the CSP solver, i.e. both the constant orientation workspace (RTCP =
I3) and the total orientation workspace is calculated. Fig. 3a shows the
constant orientation workspace as it was determined by setting the vec-
tor of design variables to g = (x, y, z) and leaving the vector of configu-
rations to be verified empty x = (). For the total orientation workspace
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Table 2. Parameters for the optimal machine design of the SSM for a total orientation
workspace of 200 × 200 × 200mm

Parameter: rp rb ∆αb ∆αp ∆z

0.38125 0.278125 0.78125 0.625 0.753125

(Fig. 3b) all positions which can be reached with all orientations of
Bryant-angles x = (ϕ ∈ [−0.1, 0.1], θ ∈ [−0.1, 0.1], ψ ∈ [−0.1, 0.1])

=

Parameter Synthesis. For the parameter synthesis example, the
total orientation workspace of the robot is required to include a cubic
workspace of size 200 × 200 × 200mm. Thus, the desired workspace
is described by x = (x ∈ [−0.1, 0.1], y ∈ [−0.1, 0.1], z ∈ [0.0, 0.2], ϕ ∈
[−0.1, 0.1], θ ∈ [−0.1, 0.1], ψ ∈ [−0.1, 0.1]) and all geometrical parame-
ters g = (rp, rb,∆αp,∆αb) are sought, that fulfill this requirement. The
solution set is described in the 4-dimensional parameter space and can-
not be printed into a simple diagram. Therefore, only some key data are
given. Totally, 214547 boxes with a volume of 7.2% out of a total search
space volume were verified to be feasible designs by the CSP solver. The
calculation time was ∼27h.

Optimization. The results from the parameter synthesis, i.e. the
solution set from the constraint satisfaction problem can be used as
input for the global optimization. As an example, the overall size of
the machine and the distance between the pivot points is used as an
objective function, which yields

f(rp, rb,∆αb,∆αp,∆z) = r2
p + ∆z r2

b + (∆αp − 1)2 + (∆αb − 1)2 (12)

Applying this optimization function to the CSP of the previous step,
The computational time of the

program on a Pentium IV with 3.2GHz is 56min, and the optimizer per-
formed approximately 57500 constraint evaluations per second, which
demonstrates that the modular system can be implemented very effi-
ciently. Note, that the combined use of the CSP solver and the optimizer
can reduces significantly the calculation time.

5. Conclusions
In this paper, a framework for the analysis and design of parallel kine-

matic machines based on interval analysis and global optimization algo-
rithms is proposed. It was shown how practically relevant calculations
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one obtains the values given in Table 2.
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for PKMs may be addressed in terms of a constrained global optimiza-
tion problem. The proposed algorithm enforces the fulfillment of given
process requirements throughout a workspace of desired size and guar-
antee the validity of the calculations. A global optimization is performed
simultaneously, which assures to find the global minimum. Constraints
were exemplarily deduced for the SSM and calculation results from the
framework were presented.
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Abstract In this paper we investigate if there are undiscovered 6-bar linkages for
generating a straight-line. First we successfully deduce the relationships
in Hart’s second straight-line mechanisms using symbolic methods. For
more complicate cases, we formulate the problem as precision position
synthesis problems, and solve the derived equations using classic iter-
ative methods and verify solutions using interval methods. Although
no new mechanisms have been found at the current stage, this research
initiates an e ort towards an automatic approach for obtaining over-
constrained linkages (Dai and Rees Jones, 1999).

Keywords:

1. Introduction
Synthesis of planar linkages for curves generation is a classic topic

in the
cians and kinematicians since the time of industrial revolution. However
before the Peaucellier-Lipkin linkage (Peaucellier, 1864) was discovered,
most mathematicians doubted that there are linkages capable of draw-
ing exact straight lines. Kempe (1873) enunciated a striking theorem
that a portion of any algebraic curve on a plane can be generated by a
planar linkage. Koenigs (1897) stated a spatial equivalence of Kempe’s
theorem. Those e orts predates a large body of modern work on the-
orems of “algebraic universality” starting from the 1970’s (see Smith,
1998; Kapovich, 2002). Smith (1998) and Gao et al (2000) presented
new constructive approaches to prove Kempe’s theorem. Nevertheless
the constructive approaches are of less interests in practice since they
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can only As Hunt
stated in Chapter 4 of his book (Hunt, 1978):

Yet neither Kempe nor anyone else since has established a method
for isolating the best, or the simplest, linkage for tracing a particular
curve.

In the history all feasible linkages with a small number of links for
algebraic curves generation were invented by some great masters using
their geometrical intuitions (Please see the Appendix for details). Nev-
ertheless geometrical intuitions are di
may not guarantee all solutions for a synthesis problem be found. The
above investigation raises a question: Are there any undiscovered 6-bar
linkages for straight-line generation? This paper proposes a numerical
approach to attack the problem. Note that it is possible to extend the
approach for nding spatial 6R single loop overconstrained mechanisms
(see remarks at the end of Section 2.2).

2.

Figure 1. Six arrangements of 6-bar linkages for a path generation, with the asterisk
denoting the position of coupler-point

Figure 1 illustrates 6 possible arrangements of 6-bar linkages for straight-
line generation. As can be seen from Fig. 4 that the existing straight-line
6-bar linkages are either Watt-I1 linkages or Stephenson-I linkages. In-
deed based on the principle of inversion and Robert’s cognate theorem,
we can conclude that Stephenson-II2 linkages and Stephenson-III link-
ages cannot generate a straight-line. Other arrangements should be

1This is still an open problem. Smith, 1998 tried to prove it but failed.
2According to (Artobolevskii, 1964), Alekseyev, 1939 discovered the dimensional relationships
of the generalized linkage on 1939, but the authors are not able to find Alekseyev’s proof,
while the short proof given in Artobolevskii’s book is indeed invalid.
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fficult to be duplicated, and they



to the derivation of coupler-curve equations of general planar linkages
(see Primrose et al., 1967, Almadi, 1996, and Wampler, 1999). However
it is important to develop problem-speci
analysis (Dukkipati, 2001, Karger, 1998) or numerical analysis (Luo and
Dai, 2005).

2.1 Synthesize Stephenson-I Linkages for

Figure 2. Two representations for synthesizing Stephenson-I linkages. (a) is Alek-
seyev’s representation (see Artobolevskii, 1964), and (b) is a new representation

In Alekseyev’s representation, suppose a coupler-curve equation in
(xQ, yQ) is obtained, the coupler curve is a straight line if and only if
there exist (x0, θ) which satisfy yQ ≡ tan θ (xQ − x0). However since
tan θ can vary from zero to in nity, (xQ, yQ) should be parameterized.
In our representation, we assume the straight-line is along the x-axis,
thus yQ ≡ 0. We further specify xA = 0. As can be seen, there are 10
structural parameters (a, b, c, e, f, g, h, yA, xD, yD). Alternatively we can
use (a, b, c, d, e, f, g, h, yA, θ0). Refer to Fig. 2(b), we obtain the following
three loop-closure equations:

a cos θ1 + b cos θ2 − c cos θ3 = xD − xA
a sin θ1 + b sin θ2 − c sin θ3 = yD − yA

(1)

(a + e) cos θ1 + f cos θ4 = xQ − xA
(a + e) sin θ1 + f sin θ4 = yQ − yA

(2)

(c + h) cos θ3 + g cos θ5 = xQ − xD
(c + h) sin θ3 + g sin θ5 = yQ − yD

(3)

Using classic resultant methods, it is not di i

1, . . . , 5) and a 16th degree bivariate polynomial in (xQ, yQ) is obtained.
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Since yQ ≡ 0, we obtain a univariate polynomial in xQ. Denote it as:

Ps1 =
16∑
i=0

aix
i
Q = 0 (4)

Since the linkage can pass in
s1 should be incidentally zero. Using a symbolic

computing software such as Mathematica, we obtain that:

a16 = 0; a15 = 0; a14 = 65536 a2c2(ce − ah)2d2 (5)

It follows that
a13 = 0. Substitute c = ah/e into a12 we obtain

−a2b2 + a(−2b2 + d2)e + (−b2 + d2)e2 = 0 (6)

Solve the above equation yields e1 = ab2/(d2 − b2) or e2 = −a. Only e1

is feasible. It follows that h = cb2/(d2 − b2) and a11 = 0. Substitute the
above into coe 10 to a7 yields

a10 = f1(a, b, c, d, f, g, θ0)
a9 = f2(a, b, c, d, f, g, θ0)
a8 = f3(a, b, c, d, f, g, yA, θ0)
a7 = f4(a, b, c, d, f, g, yA, θ0)

(7)

Note that we use xD = xA + d cos θ0, yD = yA + d sin θ0 to simplify
symbolic expressions. One may want to eliminate (yA, θ0) from the above
equations and then solve for (f , g). Unfortunately those equations are
quite complicate to solve due to the “pyramidal e

We then adapt Karger’s technique to the problem and try to obtain
more information (see Karger, 1998 for more details).

Karger’s Proposition: Let P (x) =
∑n

j=0 (aj + bj cos x) sinj x = 0 for
all x. Then aj = bj = 0(j = 0, . . . , n)

Now we eliminate θi(i = 2, . . . , 5) and xQ using Resultant methods, this
leads to

P (θ1) =
∑7

j=0
(aj + bj cos θ1) sinj θ1 = 0 (8)

Following the procedures in (Karger, 1998), we obtain the coe
the two terms with the highest order in variables (cos θ1, sin θ1).

a7 = g1(a, c, f, h, yA, xD, yD)
b6 = g2(a, c, h, yA, xD, yD) (9)
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finity many points along the x axis, all
the coe

Since link lengths can not be zero, we obtain ce = ah.

fficients of P

fficients a

ffect” (Karger, 1998).

fficients of

.



Incidentally b7 = 0, and e is substituted by ah/c. From the above
equations, we obtain

xD = 0 or yD = 0 (10)

When xD = 0, we have θ0 = π/2, Substitute θ0 = π/2 into Eq. (7), from
f1 we can obtain

f2 − g2 =
b2c2d2 − a2b2d2

(d2 − b2)2
(11)

Substitute the above equation into f2 in Eq. (7), we obtain

f =
bcd

d2 − b2
and g =

adb

d2 − b2
(12)

It seems that even for the simplest case of 6-bar linkages, symbolic de-
ductions are not quite straightforward. Indeed we have tried the above
procedure to synthesize other generic 6-bar linkages but currently no
analogous results have been obtained. However a supercomputer may
help the symbolic computations. In contrast, we can use numerical algo-
rithms to solve the above problem conveniently. For example, given 10
points along the x-axis, we obtain a system of 10 polynomials (i.e. Eq. (4))
in 10 unknown variables (a, b, c, e, f, g, h, yA, xD, yD). Together with tun-
nelling techqniques, random restarts of Levenberg-Marquart method can

2.2 Synthesize Watt-I2 Linkages for
a Straight-line Motion

Symbolic Synthesis Equations. Consider a generic Watt-I2 mech-
anism shown in Fig. 3, let’s call the illustrated pose the initial pose of the
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Figure 3. Design parameters in the Watt-I2 mechanism

Searching  for Undiscovered Planar Straight-line Linkages 117

.

When yD
to get enough information using symbolic computation.

find multiple solutions (see Luo and Dai, 2005 for more information).

= 0, Eq. (7) still can’t be simplified. Currently we are not able



cident with the coupler-point Q at the initial pose. There are 14 design
, y , xA, yA, xB, yB, xC , yC , xD, yD, xE , y , xP , yP ). Alter-

natively, we can use complex vectors Z
For this problem, we prefer to derive the synthesis equations using com-
plex numbers for compactness. Referring to Fig. 3, when Q is moved to
a new position Q′ after a displacement of δ = x+ iy, the following three
loop-closure vector equations can be obtained

Z1(ei∆θ1 − 1) + Z2(ei∆θ2 − 1) − Z3(ei∆θ3 − 1) = 0 (13a)

Z3(ei∆θ3 − 1) + Z4(ei∆θ2 − 1) + Z5(ei∆θ5 − 1) = δ (13b)

Z6(ei∆θ3 − 1) + Z7(ei∆θ7 − 1) + Z8(ei∆θ5 − 1) = δ (13c)

Rearrange Eqs. (13a) and (13b), one obtains:

Z1e
i∆θ1 = Z3(ei∆θ3 − 1) − Z2(ei∆θ2 − 1) + Z1 (14a)

Z5e
i∆θ5 = δ − Z3(ei∆θ3 − 1) − Z4(ei∆θ2 − 1) + Z5 (14b)

The angles θ1 and θ5 can be eliminated by multiplying each side
of Eqs. (14a) and (14b) with its complex conjugate. Expanding and
rearranging the results yields

p1e
i∆θ2 + p2e

−i∆θ2 + p3 = 0 (15a)

p4e
i∆θ2 + p5e

−i∆θ2 + p6 = 0 (15b)

where pi(i = 1, . . . , 6) are expressions in θ3 and the 14 design variables.
Note that Eqs. (15a) and (15b) are indeed two real number equations.
Solve Eqs. (15a) and (15b) for ei∆θ2 and e−i∆θ2 by Cramer’s rule, and
then apply the identity ei∆θ2e−i∆θ2 = 1 leads to

(p1p6 − p3p4)(p2p6 − p3p5) + (p1p5 − p2p4)2 = 0 (16)

It is easy to verify that Eq. (16) is also a real number equation. De-
note ei∆θ3 as θ3, and multiply the above equation by θ3

3, a sixth-order
polynomial in θ3 can be obtained as:

m6θ
6
3 + m5θ

5
3 + m4θ

4
3 + m3θ

3
3 + m2θ

2
3 + m1θ3 + m0 = 0 (17)

i

Similarly, by manipulating Eqs. (13b) and (13c), one obtains another
two equations

(q1q6 − q3q4)(q2q6 − q3q5) + (q1q5 − q2q4)2 = 0 (18)

n6θ
6
3 + n5θ

5
3 + n4θ

4
3 + n3θ

3
3 + n2θ

2
3 + n1θ3 + n0 = 0 (19)
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variables (x E

(i = 1, . . . , 7) as design variables.i

mechanism. For simplicity, we set the the origin of the fixed frame coin-

where the coefficients m (i = 0, ..., 6) are expressions in design variables.

O O

∆ ∆



The necessary condition for Eqs. (17) and (19) to have a common solu-
tion of θ3 is that the determinant of their resultant matrix becomes zero.
Here the Bezout resultant matrix will be used, which can be obtained
using the Bezout-Cayley formulation (Almadi, 1996).

B = [bij ]6×6 (20)

Expand the determinant of the Bezout matrix, one obtains

det(B) =
r∑

m=0

r∑
n=0

amnx
myn = 0, m + n ≤ r (21)

where amn are expressions in the aforementioned 14 design variables,
while r is case dependent. In a generic case where Z8 �= 0,Z5 �= 0,
r = 54; in case Z8 = 0, r = 16; while in case Z5 = 0, r = 8. It can be

zero. Eq. (21) can be further factored since it always has a trivial factor:

gcd(m6m0, n6n0) = (x − xC)2 + (y − yC)2 (22)

where gcd means the greatest common factor. Thus for a generic Watt-
I2 linkage, its coupler curve equation is a bivariate polynomial of order
52, which in general has 1431 monomials. It is impractical to expand
det(B) and collect coe cients of x as did in subsection 3.1.

Numerical Approach and Analysis. In path generation synthesis,
for each given precision point δ = x + iy, Eq. (21) is a polynomial in 14
design variables. Therefore if 14 precision points besides the origin are

will be obtained. In other words, a Watt-I2 linkage generally can pass
at maximum 15 precision points including the origin. Therefore if it can
pass 16 precision points on a line, then theoretically it must contain a
segment of that line.

Note that in precision position synthesis problems there are generally
positive dimensional manifolds of extraneous solutions. Extraneous so-
lutions arise when m6m0 or n6n0 is identically zero. It can be shown
that the conditions for m6m0 or n6n0 to be identically zero are,

Z3 = 0 or Z2 + Z4 = 0 or Z1 + Z2 − Z3 = 0 (23)
Z3 = 0 or Z6 = 0 or Z5 = Z8 = 0 or Z5Z6 − Z3Z8 = 0 (24)

Some of the conditions correspond to degenerated linkages while other

neous solutions is the tunnelling (de ation) method (Luo and Dai, 2005).
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verified that the imaginary component of the determinant is identically

specified, a determined system of 14 polynomials in 14 design variables

are mathematical figments. An effective approach to exclude such extra-
fl



Although the above formulation is compact, numerical tests show that
classic iterative methods normally can not converge within 1000 itera-

should choose equations with less nonlinearity. Besides multi-precision
arithmetic may be preferable for better accuracy and reliability. Cur-
rently we use the following approach for better reliability.

points (besides the origin) to be passed along the x-axis, there are
the 14 structural variables (xO, yO, xA, yA, xB, yB, xC , yC , xD, yD,
xE , yE , xP , yP ) and 15 incremental angular variables �θ3k

(k =
1, . . . , 15). There are 30 equations in 29 variables. Multi-start
of Levenberg-Marquart method is used to solve the system.

2 Once a converged point is obtained, we then assign small intervals
to the 14 structural parameters of the converged point, and use
interval arithmetic to evaluate the corresponding interval box.

After a coupler of days of program running, we have got a large num-
ber of converged approximate solutions. It is observed that most runs
can converge to stationary points with a function residual smaller than
1.0e-10. However all the converged solutions are not exact solutions.

more points to increase the reliability. However there is no obvious posi-

that the instantaneous center of velocity at the initial pose should be

The obtained
interval boxes will then be used as the search domains of multi-start
classic iterative methods to accelerate the process.

The numerical approach can be extended to the synthesis of overcon-
strained spatial single-loop mechanisms. It is well known that a spatial

chain can reach 21 precision positions (Perez, 2003). Therefore give more

constrained mechanisms can be found by precision position synthesis.

nisms should be avoided using tunnelling techniques.

3. Conclusions
In this paper, we have investigated the problem of searching for undis-

covered straight-line linkages. The dimensional relationships in Hart’s
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on the y-axis. Meanwhile we are planning to run interval method use
parallelized computers to identify potential interval boxes.

tions when double-precision float-point arithmetic is used. Therefore we

1 Given 15

Most converged approximate solutions pass 14 precision points in differ-
ent configurations and pass near a 15th point. Later we have also added

tive effect. Currently we are programming to include another constraint

6R manipulator has up to 16 configurations, while a spatial 5R open

than 16 rotation angles about a fixed axis, spatial 6R single-loop over-

Nevertheless similar numerical difficulties arise, e.g. planar 6R mecha-

Two real equations Eq.  (16) and Eq. (18) are used first.



second straight-line linkage have been deduced using symbolic calcula-
tions. A numerical approach is then proposed for solving more compli-
cate cases. Although no new mechanisms have been found at the current
stage, this research is a first step towards an automatic approach for dis-
covering new overconstrained mechanisms.
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Appendix: Existing 6-bar Straight-Line Linkages
Figures 4 illustrates four known 6-bar straight-line linkages. Cases

(a) is based on the principle of inversor (Hart, 1877). Case (b) is a
generalized case of Case (a) discovered by Sylvester, 1875 and Kempe,
1877. Cases (c) and (d) were first invented by Hart, 1877 and Bricard,
1927 respectively. Later Dijksman, 1975 unified the two cases into a
generalized Case (e). For all four cases, the coupler points drawing a
straight-line are labelled as Q. Especially in case (c), Q1 and Q2 trace
two perpendicular straight-lines, while any other point G on the same
coupler traces an ellipse. In case (a), BD = CE, BE = CD, OC =
BC, BO/BE = CP/CE = BP/BD, OP O = OP P . In case (b), BD =
CE, BE = CD, ∆OBE � ∆QBD � ∆PCE, and θ = ∠POQ In
the generalized case of Cases (c) and (d), AB = a, BC = b, CD =
c, AD = d, BE = e, CF = h, EQ = f, GQ = g, e = ab2/(d2 − b2), f =
cdb/(d2 − b2), g = adb/(d2 − b2), h = cb2/(d2 − b2). Especially in case
(c), AB = BC, OC = CB; and in case (d), AE = CF, EQ = FQ.
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Figure 4. Four known 6-bar linkages for a straight-line motion.
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Abstract Three-DOF UP-equivalent parallel manipulators are the parallel coun-
terparts of the 3-DOF UP serial manipulators, which are composed
of one U (universal) and one P (prismatic) joint. Such parallel ma-
nipulators can be used either independently or as modules of hybrid
manipulators. Using the virtual-chain approach that we proposed else-
where for the type synthesis of parallel manipulators, this paper deals
with the type synthesis of this class of 3-DOF parallel manipulators.
In addition to all the 3-DOF UP-equivalent parallel manipulators pro-
posed in the literature, a number of new 3-DOF overconstrained or
non-overconstrained UP-equivalent parallel manipulators are identified.

Keywords: Three-DOF parallel manipulator, Type synthesis, Virtual chain, Screw
Theory, Overconstrained mechanism

1. Introduction
Three-DOF UP-equivalent parallel manipulators have a wide range

of applications including assembly and machining. Such parallel manip-
ulators can be used either independently or as modules of hybrid ma-
nipulators. Two UP-equivalent parallel manipulators, which are used
as modules in hybrid manipulators, have been proposed in [Neumann,
1988; Huang et al., 2005]. However, the systematic type synthesis of the
UP-equivalent parallel manipulator is very difficult and has not been

© 2006 Springer. Printed in the Netherlands. 
J. Lenar i  and B. Roth (eds.), Advances in Robot Kinematics, 123–132. 

123

In order to provide alternatives to the currentinvestigated yet.



the type synthesis of UP-equivalent
parallel manipulators needs further investigation.

Using the virtual-chain approach proposed in [Kong and Gosselin,
2005a]1, the type synthesis of UP-equivalent parallel manipulators is
dealt with in this paper. In Section 2, the virtual-chain approach for the
type synthesis of parallel manipulators is recalled. The type synthesis
of 3-DOF single-loop kinematic chains is performed in Section 3. In
Section 4, we discuss how to construct UP-equivalent parallel kinematic
chains and UP-equivalent parallel manipulators using 3-DOF single-loop
kinematic chains. Two new UP-equivalent parallel manipulators are also
presented. Finally, conclusions are drawn.

2.

2.1
As proposed in [Kong and Gosselin, 2005a], the motion pattern of

an f -DOF parallel manipulator can be represented by a virtual chain
which is the simplest serial or parallel kinematic chain that can express
the motion pattern well.

The virtual chain for the motion pattern of the 3-DOF PMs to be
synthesized in this paper is the UP virtual chain shown in Fig. 1(a).
In the UP virtual chain, the direction of the P (prismatic) joint is per-
pendicular to the axis of its adjacent R (revolute) joint within the U
(universal) joint.

Virtual chain

Moving platform

Base

P joint

2nd R joint 1st R joint

(a)

Base

ζ∞3

ζ02

Virtual chain

Moving platform

ζ01

(b)U joint

Figure 1. UP virtual chain: (a) schematic representation and (b) wrench system.

2.2
In the type synthesis of parallel manipulators, one needs to deal

with the instantaneous constraints. Screw theory, see [Kumar et al.,
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pulators.
In this paper, we limit ourselves to non-redundant parallel mani-

The Virtual-chain Approach

The Virtual Chain

Representation of Instantaneous Constraints

UP-equivalent parallel manipulators,



2000; Davidson and Hunt, 2004] for example, provides an efficient tool
to address this issue.

The instantaneous constraints exerted on the moving platform by the
base through the kinematic chain (virtual chain, leg of a parallel kine-
matic chain or a parallel kinematic chain) is represented by a screw sys-
tem which is called the wrench system of the kinematic chain (virtual
chain, leg of a parallel kinematic chain or a parallel kinematic chain).
For brevity, the wrench system of a leg is also called a leg-wrench system.

Wrench system of UP-equivalent parallel kinematic chains.
In any general configuration, a UP-equivalent parallel kinematic chain
and its corresponding UP virtual chain have the same wrench system.
Finding the wrench system of the UP-equivalent parallel kinematic chain
is thus equivalent to finding the wrench system of the UP virtual chain
[Fig. 1(b)].

It can be found without difficulty that the wrench system of the UP-
equivalent parallel kinematic chain is a 2-ζ0-1-ζ∞-system [see Fig. 1(b)].
Here, ζ0 and ζ∞ denote, respectively, a wrench of zero pitch and a
wrench of infinite-pitch. One base of the 2-ζ0-1-ζ∞-system is composed
of (a) two non-collinear ζ0 whose axes pass through the center of the U
joint and are perpendicular to the direction of the P joint and (b) a ζ∞
whose direction is perpendicular to the axes of the R joints within the
U joint.

Leg-wrench system of UP-equivalent parallel kinematic chains.
As the wrench system of a parallel kinematic chain is the linear com-

UP-equivalent parallel kinematic chain is a ci(0 ≤ ci ≤ 3)-ζ-system, in-
cluding 2-ζ0-1-ζ∞-system, 2-ζ0-system, 1-ζ0-1-ζ∞-system, 1-ζ0-system,
1-ζ∞-system and 0-system, in any general configuration.

2.3

When we connect the base and the moving platform of a parallel
kinematic chain by an appropriate UP virtual chain, the function of the
parallel kinematic chain is not affected (Fig. 2). Any of its legs and the
UP virtual chain will constitute a 3-DOF single-loop kinematic chain.

Thus, a parallel kinematic chain is a UP-equivalent parallel kinematic
chain if it satisfies the following two conditions:
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Conditions for a UP-equivalent Parallel
Manipulator

et al., 2000], it is then concluded that the wrench system of any leg in a
bination of all of its leg-wrench systems in any configuration [Kumar



Leg 1
Leg 2

Leg 3

Base

Moving platform

(b)

Leg 1
Leg 2

Leg 3

Virtual chain

Base

Moving platform

(a)

Figure 2. (a) Three-legged UP-equivalent parallel kinematic chain; (b) Three-legged
UP-equivalent parallel kinematic chain with a UP virtual chain added.

(1) Each leg of the parallel kinematic chain and the same UP virtual
chain constitute a 3-DOF single-loop kinematic chain.

(2) The wrench system of the parallel kinematic chain is the same as
that of the UP virtual chain in any one general configuration.

The first condition guarantees that the moving platform can undergo
at least the UP-motion. The second condition further guarantees that
the degree of freedom of the moving platform is three.

Based on the above conditions, the type synthesis of parallel manipu-
lators can be performed by first performing the type synthesis of 3-DOF
single-loop kinematic chains and then constructing UP-equivalent paral-
lel manipulators using the types of 3-DOF single-loop kinematic chains.

3.

In Section 2.2, the wrench systems of legs for UP-equivalent paral-
lel manipulators have been determined. Then, the number of 1-DOF
joints of a leg with a ci(0 ≤ ci ≤ 2)-ζ-system is equal to (6 − ci). In
the case of ci = 0, the associated single-loop kinematic chains are not
overconstrained. Such a single-loop kinematic chain is composed of the
UP virtual chain and six R and P joints. Many types of single-loop kine-
matic chains can be obtained. Among these types, the types with simple
structure, such as UPSV, PUSV and RUSV, are of practical interest.

In the following, we will focus on the type synthesis of overconstrained
single-loop kinematic chains involving a UP virtual chain.

compositional units. A compositional unit is a serial kinematic chain
with specific characteristics, namely: In any general configuration, the

126

Type Synthesis of 3-DOF Single-loop
Chains Involving a UP Virtual Chain

constrained single-loop kinematic chains can be constructed using seven
As pointed out in [Kong and Gosselin, 2005b], the types of over

Kinematic
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Table 1. Composition of 3-DOF overconstrained single-loop kinematic chains with a
UP virtual chain.

ci Leg-wrench
system

Composition

Planar Spherical Coaxial Codirectional Parallelaxis

unit unit unit unit unit

3 2-ζ
0
-1-ζ∞ 2 1

2 1-ζ
0
-1-ζ∞ 1 1

2-ζ
0

1 1

1 1-ζ∞ 1 1

1 1

2

1-ζ
0

1 1

wrench system of each of these kinematic chains always includes a spec-
ified number of independent wrenches of zero-pitch or infinite-pitch.

By analyzing the wrench system of the compositional units, it can be
found that a single-loop kinematic chain that has a UP virtual chain
and a specified leg-wrench system is composed of two or three of the

(a) Parallelaxis compositional units. Serial kinematic chains composed
of at least one R joint and at least one P joint in which the axes
of all the R joints are parallel and not all the directions of the P
joints are perpendicular to the axes of the R joints.

(b) Planar compositional units. Serial kinematic chains in which all
the links are moving along parallel planes. A planar serial kine-
matic chain is denoted by ()E .

(c) Spherical compositional units. Serial kinematic chains composed
of two or more concurrent R joints. Each R joint of a spherical
serial kinematic chain is denoted by Ṙ.

(d) Coaxial compositional units. Serial kinematic chains composed of
two coaxial R joints.

(e) Codirectional compositional units. Serial kinematic chains com-
posed of two P joints whose directions are parallel. Each P joint
of a codirectional serial kinematic chain is denoted by P‖.

For each class of single-loop kinematic chains that has a UP virtual
chain and a specified leg-wrench system, the specific types can be readily
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following five compositional units as shown in Table 1.



the type synthesis of single-loop mechanisms, a mechanism with a coax-
ial or codirectional compositional unit is regarded to be degenerated
and is therefore discarded. In the type synthesis of parallel mechanisms,
however, a single-loop kinematic chain that contains a coaxial or codi-
rectional compositional unit should be used since one joint of the coaxial
or codirectional compositional unit belongs to one leg of a parallel mech-
anism while the other joint belongs to the virtual chain.

In the representation of types of 3-DOF single-loop kinematic chains
involving a UP virtual chain, the following notations are used. The joints
within a ()|E constitute a planar kinematic chain, whose associated plane
of relative motion is parallel to the direction of the P joint of the UP vir-
tual chain. The joints within a ()‖E constitute a planar kinematic chain,
whose associated plane of relative motion is parallel to the direction of
the P joint of the UP virtual chain and perpendicular to the axis of the
second R joint within the U joint of the UP virtual chain. The P joint
whose direction is parallel to the direction of the P joint within the UP
virtual chain is denoted by P‖. The R joints are represented by Ṙ, Ř, R̈,
R̄, R̋ and Ŕ due to the different geometric conditions that the R joints

˙
point on the axis of the first R joint within the U joint of the UP virtual
chain. The axes of all the Ř joints within a leg intersect at the center
of the U joint of the UP virtual chain. R̈ (R̄) denotes an R joint that
is coaxial with the first (second) R joint within the U joint of the UP
virtual chain. R̋ (Ŕ) denotes an R joint whose axis is parallel to the axes
of the the first (second) R joint within the U joint of the virtual chain.

Considering that each leg of the UP-equivalent parallel kinematic
chain and the same UP virtual chain constitute a 3-DOF single-loop
kinematic chain, the above notations can also be used to represent the
types of UP-equivalent parallel kinematic chains, UP-equivalent paral-
lel manipulators and their legs. The geometric conditions for the UP-

pulators and their legs can be obtained as follows.
All the P‖ joints are along the same direction. All the planes of

relative motion of the planar chains associated with ()‖E are parallel.
The above planes, the planes of relative motion of the planar chains
associated with ()|E as well as the direction of the P‖ joints all parallel
to a common direction. The axes of the Ŕ joints are parallel to a line
that is perpendicular to (a) the planes of relative motion of the planar
chains associated with ()‖E , (b) the intersection of the planes of relative
motion of the planar chains associated with ()|E , and (c) the direction
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obtained and shown in Table 2. It is noted that in the existing works on

equivalent kinematic UP-equivalent

satisfy. The axes of all the R joints within a leg intersect at a common

parallel mani-chains,parallel
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‖
EV.

Figure 3. Three-DOF single-loop kinematic chains involving a UP virtual chain or
some legs for UP-equivalent parallel kinematic chains.

of the P‖ joints. The axes of R̈ joints, the intersections of the Ṙ joints
within the same leg, the intersections of the Ř joints within the same
leg, and the intersection of the axes of the R̈ joint and the R̄ joint within
the same leg determine a common line. The axes of the R̋ joints are
parallel to the above common line.

For a better understanding of the notation used, a few single-loop
kinematic chains involving a UP virtual chain are shown in Fig. 3. In
Fig. 3, the UP virtual chain is enclosed using dashed lines. The joints
of a single-loop kinematic chain indicated by the same number form a
compositional unit.

As mentioned above, single-loop kinematic chains [Figs. 3(a)–3(b)]
involving a coaxial or codirectional compositional unit are usually re-
garded to be degenerated in the literature. However, these kinematic
chains are useful in the type synthesis of parallel manipulators.

4.

Now let us see how to construct UP-equivalent parallel manipulators
from the 3-DOF single-loop kinematic chain involving a virtual chain.

By removing the virtual chain in a 3-DOF single-loop kinematic chain
involving a virtual chain, one leg for UP-equivalent parallel manipula-
tors can be obtained. For example, by removing the virtual chain in
a ṘṘṘ(RR)‖EV kinematic chain [Fig. 3(c)], an ṘṘṘ(RR)‖E leg can be
obtained . Such a leg has a 1-ζ0-system. The ζ0 passes through the
common point of the axes of three Ṙ joints and is parallel to the axes
of the R joints within (RR)‖E . Using this approach, a large number of
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Table 2. Three-DOF single-loop kinematic chains with a UP virtual chain or Legs
for UP-equivalent parallel kinematic chains.

ci Leg-wrench
system

No Type (Remove V if representing legs)

3 2-ζ
0
-1-ζ∞ 1 R̈R̄P‖V

2 1-ζ
0
-1-ζ∞ 2–8 R̈(RRR)

‖
EV R̈(RRP)

‖
EV R̈(RPR)

‖
EV R̈(PRR)

‖
EV

R̈(RPP)
‖
EV R̈(PRP)

‖
EV R̈(PPR)

‖
EV

2-ζ
0

9 ṘṘṘP‖V

1 1-ζ∞ 10–58 R̈ŔPPPV R̈PŔPPV R̈PPŔPV R̈PPPŔV

R̈ŔŔPPV R̈ŔPŔPV R̈PŔŔPV R̈PPŔŔV

R̈PŔPŔV R̈ŔŔŔPV R̈ŔŔPŔV R̈ŔPŔŔV

R̈PŔŔŔV R̋R̋ŔŔŔV R̋R̋R̋ŔV PR̋ŔŔŔV

R̋PŔŔŔV R̋R̋PŔŔ R̋R̋ŔPŔV R̋R̋ŔŔPV

PR̋R̋ŔŔ R̋PR̋ŔŔV R̋R̋PŔŔV R̋R̋R̋PŔ

R̋R̋R̋ŔPV PR̋PŔŔV PR̋ŔPŔV PR̋ŔŔPV

R̋PPŔŔV R̋PŔPŔV R̋PŔŔPV R̋R̋PPŔV

R̋R̋PŔPV R̋R̋ŔPPV PPR̋ŔŔV PR̋PŔŔV

R̋PPŔŔV PR̋PPŔV PR̋PŔPV PR̋ŔPPV

R̋PPPŔV R̋PPŔPV R̋PŔPPV PPR̋PŔV

PR̋PPŔV R̋PPPŔV PPR̋ŔPV PR̋PŔPV

R̋PPŔPV

1-ζ
0

59–80 ṘṘṘ(RR)
‖
EV ṘṘ(RRR)

‖
EV ṘṘṘ(RP )

‖
EV

ṘṘṘ(PR)
‖
EV ṘṘ(RRP )

‖
EV ṘṘ(RPR)

‖
EV

ṘṘ(PRR)
‖
EV ṘṘṘ(PP )

‖
EV ṘṘ(RPP )

‖
EV

ṘṘ(PRP )
‖
EV ṘṘ(PPR)

‖
EV

ŘŘŘ(RR)
|
EV ŘŘ(RRR)

|
EV ŘŘŘ(RP )

|
EV

ŘŘŘ(PR)
|
EV ŘŘ(RRP )

|
EV ŘŘ(RPR)

|
EV

ŘŘ(PRR)
|
EV ŘŘŘ(PP )

|
EV ŘŘ(RPP )

|
EV

ŘŘ(PRP )
|
EV ŘŘ(PPR)

|
EV

0 0-system 81– omitted

legs for UP-equivalent parallel manipulators have been obtained and are
The

variations of UP-equivalent parallel manipulators involving U, C (cylin-
drical) and S (spherical) joints and parallelograms can be obtained using
the techniques summarized in [Kong and Gosselin, 2005c].

Using the types of legs obtained in Section 3 and Condition (2) for
UP-equivalent parallel kinematic chains, we can obtain a large num-
ber of UP-equivalent parallel kinematic chains. By further applying
the validity condition of actuated joints [Kong and Gosselin, 2005a], we
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Table 3. Families of 3-DOF m-legged UP-equivalent parallel manipulators.

m
Family

Overconstrained Non-overconstrained

2 3-3 3-2 3-1 2-2 3-0 2-1

3 3-3-3 3-3-2 3-3-1 3-2-2 3-3-0 3-0-0 2-1-0

3-2-1 2-2-2 3-2-0 3-1-1 2-2-1 1-1-1

3-1-0 2-2-0 2-1-1

4 3-3-3-3 3-3-3-2 3-3-3-1 3-3-2-2 3-3-3-0 3-0-0-0 2-1-0-0

3-3-2-1 3-2-2-2 3-3-2-0 3-3-1-1 3-2-2-1 1-1-1-0

2-2-2-2 3-3-1-0 3-2-2-0 3-2-1-1 2-2-2-1

3-3-0-0 3-2-1-0 3-1-1-1 2-2-2-0 2-2-1-1

3-2-0-0 3-1-1-0 2-2-1-0 2-1-1-1 3-1-0-0

2-2-0-0 2-1-1-0 1-1-1-1

Moving platform

Base Base

Moving platform

(b)(a)

Figure 4. Two UP-equivalent parallel manipulators: (a) R̈(RRR)
‖
E-2-ŘŘŘ(RR)

|
E ,

and (b) R̋R̋(RRR)
‖
E-2-ŘŘŘ(RR)

|
E .

can obtain a large number of m(m ≥ 2)-legged UP-equivalent paral-
lel manipulators. Due to the large number of UP-equivalent parallel
manipulators, we only list the families of UP-equivalent parallel manip-

nipulators in Fig. 4. The R̈(RRR)‖E-2-ŘŘŘ(RR)|E parallel manipulator
shown in Fig. 4(a) belongs to Family 2-1-1 and is overconstrained. The
R̋R̋(RRR)‖E-2-ŘŘŘ(RR)|E shown in Fig. 4(b) belongs to Family 1-1-1
and is not overconstrained.

It is noted that the UP-equivalent parallel manipulators proposed in
[Neumann, 1988; Huang et al., 2005] belong respectively to Families
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ulators in Table 3 and show two new 3-legged UP-equivalent parallel ma-

3-0-0-0 and 3-0-0 listed in Table 3.



5. Conclusions
The type synthesis of UP-equivalent parallel manipulators has been

systematically solved using the virtual-chain approach proposed in [Kong
and Gosselin, 2005a]. Both overconstrained and non-overconstrained
UP-equivalent parallel manipulators can be obtained. The UP-equivalent
parallel manipulators obtained include some new UP-equivalent parallel
manipulators as well as all the known UP-equivalent parallel manipula-
tors.

The optimal selection of types of UP-equivalent parallel manipulators
based on kinematic and dynamic indices is still an open issue.
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Notes
1. In addition to our approach to the type synthesis of parallel manipulators, there are

also several others, such as those proposed by Profs. J. M. Hervé, J. Angeles, Z. Huang, L.-
W. Tsai, T.-L. Yang, G. Gogu and their colleagues. For a comprehensive list of references on
this issue, see [Kong and Gosselin, 2005a; Kong and Gosselin, 2005c] and visit the webpage of
Dr. Jean-Pierre Merlet at http://www-sop.inria.fr/coprin/equipe/merlet/merlet eng.html.
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Abstract In this paper, a method for managing redundancy for a mobile robot
manipulator is proposed, which is aimed at kinematic control of the sys-
tem in interaction tasks with humans. The method considers those parts
of the manipulator structure —virtual end-effectors (VEEs)— which
could potentially hit objects or persons during human-robot interac-
tion. The positioning of each of these various VEEs is considered as
a lower-priority task in the inverse kinematics resolution of the robot
manipulator, while the order of priorities is dynamically changed during
task execution. In addition, it is shown that suitable trajectories are
to be planned for VEEs using sensory data, e.g., with potential field
methods. A simulation case study for anthropic domains is proposed.

Keywords: Redundancy resolution, physical human-robot interaction, safety, po-
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1. Introduction
Human-robot interaction addresses important issues to avoid that the

physical body of a robot could result in damages to humans. In the lat-
est years the attention was focused on cognitive aspects of the growing
interaction from robots and humans, like mental models and interfaces.
It is important to notice that the presence of physical “bodies” is a
crucial aspect in the interaction between humans and robots. In partic-
ular, physical human-robot interaction (pHRI) addresses the two crucial
issues of safety and dependability, especially when environments are un-
structured. The physical interaction with a robot in anthropic domains
becomes every day more interesting for assistance and service robotics in
the houses and for the elderly-dominated society. The EURON project
PHRIDOM (Albu-Schaffer et al., 2005), e.g., is addressing these issues.
The crucial goals of safety and dependability are related to technical
issues such as collision avoidance, redundancy resolution, compliance
control and sensory-based safety systems for close interaction.

Safe and dependable interaction can be accomplished both in a passive
and in an active fashion. Passive safety is introduced, e.g., using springs,
elastic joints (De Luca, 2000); other interesting techniques were also
proposed, like the variable-stiffness actuators (Bicchi et al., 2001) and
the distributed macro-mini actuation (Zinn et al., 2002). To improve
safety, and also to add dependability for the users, active control of
the physical interaction is to be considered. Force control (Siciliano and
Villani, 1999) and safe postures of robot manipulators should be focused
as fundamental issues. In addition, the whole kinematic structure of a
manipulator must be controlled, because the robot can hit a person with
different parts of the structure.

This paper considers the problem of controlling the positioning of cru-
cial parts of the kinematic structure of a robot in interaction tasks, which
are termed “virtual end-effectors” (VEEs). Proper Closed-Loop Inverse
Kinematics (CLIK) schemes (Siciliano, 1990) are adopted to achieve
resolution in the presence of redundancy, so as to take into account
the issues discussed above in the positioning of such VEEs. Each VEE
is controlled with a different level of priority with respect to the task,
programming the positioning of each dangerous part of the articulated
structure in a safe configuration; then, the priorities between the tasks
are handled in a hierarchical inverse kinematics scheme (Siciliano and
Slotine, 1991). The trajectory planning phase is designed to make the
multiple VEEs approach suitable to control of the interaction. In detail,
an obstacle avoidance technique based on the well-known potential field
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method (Khatib, 1986) is adopted to dynamically change the priority
order according to the position of goals and objects in the environment.

2. Modelling
The application domain hereby considered is domestic assistance. For

dependable pHRI a redundant mobile robot is needed: movements in a
room, objects picking and other tasks may be accomplished, for instance,
with a manipulator mounted on a mobile base.

2.1 Kinematics
The mobile robot manipulator considered for the purpose of the present

study has the kinematic structure of Fig. 1, which is equivalent to the
assembly of a commercial mobile robot (Pioneer PowerBot) and an in-
dustrial robot manipulator (Comau Smart-3S), although the method is
at all applicable for any kinematic structure with a known Jacobian. In
the figure, several critical points are evidenced (A, B, C, D, E), which
describe those extremities of the robot that can collide with a human
being. Also, they are crucial in order to locate the positions of the ma-
nipulator links, since the robot can run into an obstacle not only by a
VEE, but also with an intermediate point between two VEEs located on
a link.

It should be pointed out, however, that safety issues suggest using
accurate sensor information to localize goals and obstacles, lightweight
structures and other additional facilities to make the robot intrinsically
safe in event of collisions. Here, however, only kinematic aspects are
focused. By the way, the manipulator should be lightweight, while in-
dustrial manipulators are heavy and cart robots able to carry them are
not yet available for potential use in houses.

2.2
Redundancy resolution is related to the problem of finding movements

of available joints that respect the desired motion of the end-effector,
while satisfying some additional task. The solution of the problem can
be found on the basis of the well-known differential mapping

ṗ = J(q)q̇ (1)

where

p = [ x y z ]T

q = [ q1 q2 ... qn ]T
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Figure 1. Mobile robot manipulator with VEEs A, B, C, D, E

are respectively the end-effector position vector and the joint position
vector of an n-DOF mobile robot manipulator, and J denotes the usual
Jacobian. For the purpose of the present work, the end-effector orien-
tation is not considered, while n = 8, i.e. 2 DOF’s for the mobile base
and 6 DOF’s for the manipulator. Since the robot is redundant (n > 3),
the simplest way to invert the mapping (1) is to use the pseudo-inverse
of the Jacobian matrix, which corresponds to the minimization of the
joint velocities in a least-square sense (Sciavicco and Siciliano, 2000).
Because of the different characteristics of the available DOFs, it could
be required to modify the velocity distribution. This might be achieved
by adopting a weighted pseudo-inverse J†

W

J†
W = W−1JT(JW−1JT)−1 (2)

with the (n×n) matrix W−1 = diag{β1, β2, ..., βn}, where βi is a weight
factor belonging to the interval [0, 1] such that βi = 1 corresponds to full
motion for the i-th degree of mobility and βi = 0 corresponds to freeze
the corresponding joint (De Santis et al., 2005a).
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Redundancy of the system can be further exploited by using a task-

the form
q̇ = J†

W (q)v +
(
In − J†

W (q)J(q)
)

q̇a (3)

where In is the (n× n) identity matrix, q̇a is an arbitrary joint velocity
vector and the operator

(
In − J†

WJ
)

projects the joint velocity vector
in the null space of the Jacobian matrix. Also in (3), v = ṗd+k(pd−p)
which provides a feedback correction term of p to the desired position pd,
according to the well-known CLIK algorithm, being k > 0 a suitable
gain (Siciliano, 1990). This solution generates an internal motion of the
robotic system (secondary task) which does not affect the motion of the
end-effector while fulfilling the primary task.

The kind of secondary tasks employed for the algorithm discussed in
this work are based on the inverse kinematics of a reduced part of the
structure. As an example of positioning of different parts of manip-
ulator (rather than only the actual end-effector), consider the human
arm: the structure is redundant for the positioning of the hand, and
thus it is possible to position the elbow (which can be considered a first
VEE); the so-computed joint values can then be used as references for
the positioning of the wrist (second VEE), and so far for the hand (real
end-effector) (De Santis et al., 2005b). Therefore, a hierarchical solution
of redundancy is achieved, where the various lower-priority tasks are to
be selected according to some suitable criteria (Featherstone, 1988).

3. The multiple VEEs approach
Virtual end-effectors (VEEs) are parts of the manipulator structure,

whose positions are to be controlled in addition to the control of the
end-effector of the mobile robot manipulator. In detail, let qi denote
the vector of the ni joint variables which determine the position pi of
the i-th VEE. Therefore, the differential mapping for the VEE is

ṗi = J i(qi)q̇i (4)

where J i denotes the associated Jacobian.
The multiple VEEs approach is hereby introduced in a general fashion,

by adopting a multiple task priority strategy for specifying secondary
tasks, along with a proper trajectory planning technique for the desired
motion of each VEE. The result is a nested N -layer CLIK scheme, where
N is the number of considered VEEs. To this regard, please notice that
the end-effector is included in the counting of the VEEs; in fact, it may
well be the case the highest priority be assigned to an intermediate VEE
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other than to the end-effector, say when an obstacle is obstructing the
end-effector motion.

With this approach, the control of different points is not considered
in a global matrix, but with multiple mappings. The VEEs approach
can be used for maneuvering a kinematic structure in a volume, e.g., for
tube inspections and endoscopy with snake robots, by considering the
most critical prominences of the structure as VEEs.

3.1
Inverse kinematics with the VEEs approach orders the VEE posi-

tioning tasks according to a priority management strategy. Since the
trajectories of lower priority VEEs are assigned as secondary task, they
will be followed only if they do not interfere with the higher priority
task to be fulfilled. Hence, a list of VEEs is considered, starting from
the one with highest priority. When a VEE gets close to an obstacle,
its desired path following (necessary to avoid the obstacle) becomes of
higher priority for the CLIK scheme and the priority order is switched
with respect to the distance of each VEE from the obstacle. This can be
achieved by considering the N -layer priority algorithm described in the
following. The idea is summarized in Fig. 2, being N the lowest priority.

Figure 2. Scheme of nested CLIK with VEEs

At the lowest layer, the differential mapping corresponding to the
velocity of the VEE with lowest priority is considered, i.e. (4) with i = N .
Hence, a CLIK algorithm with weighted pseudo-inverse is adopted to
compute the inverse kinematics:

q̇N = J†
N (qN )vN , (5)
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with vN = ṗNd + kN (pNd − pN ), being pNd the desired position for the
VEE with lowest priority and kN > 0. The pseudo-inverse matrix is
substantially weighted as in (2).

At the generic i-th layer of the nested scheme, with i = N − 1, . . . , 1,
the inverse kinematics is computed as in (3), i.e.

q̇i = J†
iW (qi)vi +

(
Ini − J†

iW (qi)J i(q)
)

q̇ia (6)

where
J†
iW = W−1

i JT
i (J iW

−1
i JT

i )−1 (7)

with W−1
i = diag{βi1, βi2, ..., βini} and vi = ṗid+ki(pid−pi), being pid

the desired position for the VEE with priority i, and ki > 0. Further,
q̇ia is the gradient of the objective function:

Gi = − 1
ni

ni∑
j=1

qi,j − qi+1,j

qi,jM − qi,jm

where qi,jM (qi,jm) is the maximum (minimum) value of the joint vari-
able qi,j , i.e. the j-th component of the joint vector qi. The above choice
corresponds to achieving a joint motion for the joint variables as close as
possible to that computed in the previous layer qi+1, which are feeded
as secondary reference values to the next layer, providing a way to ful-
fill inverse kinematics of different parts of the structure, with different
priorities.

Going on, the nested CLIK algorithm computes the inverse kinematics
for the structures ending with each of the considered VEEs. It is worth
emphasizing that the order of priorities is dynamically changed during
task execution. As illustrated in Fig. 2, the scheme takes the desired
positions for the ordered VEEs at time t; then, the output of the CLIK
algorithms at the N levels are input to a trajectory planning block which
re-evaluates the priority order among the various VEEs according to the
positions of the goals and the obstacles in the environment, and thus
generates the new ordered sequence of desired positions for the VEEs
at time t + ∆t, where ∆t is the sampling time at which the CLIK algo-
rithm is discretized for practical implementation; the planning aspects
are discussed in the following section.

The weights βij of the matrices W i are chosen according to the crite-
rion described above (De Santis et al., 2005a). In particular, the joints
of the mobile base have a higher weight with the respect to the joints
of the manipulator. In Fig. 3 it is possible to see how trajectories are
followed for various VEEs with different priorities. It is easy to recognize
that planned trajectories for VEEs with lower priorities are abandoned
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when they interfere with the higher priority planned trajectories. With
the priority strategy, which ranks the VEEs, it is possible to fulfill the
most critical positioning problems on line.

Figure 3. Planned (gray) and actual (black) trajectory for the VEE labelled with
A and B in Fig. 1

The time history of a joint variable is also reported in Fig. 4; move-
ments planned in the task space are abandoned if they interfere with
higher-priority tasks.

Figure 4. Planned (dashed) and actual (solid) trajectory for the joint value q4

The priority management strategy is crucial: if a mobile robot ma-
nipulator is considered, which avoids the head of a person in a room
with the end-effector, it is difficult to predict the possibility of hitting
him/her with other parts of the structure, because a possible avoidance
movement can be incompatible with the path of the real end-effector or
of a VEE with higher priority.
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3.2
For each VEE it should be possible to plan a complete trajectory off-

line, but this approach is not satisfying, since the trajectories imposed
to the VEEs, if planned a priori, do not have realistic application (most
obstacles are moving and their trajectories are not known a priori). Fur-
thermore, the positioning of VEEs in task space is only a secondary task
for the positioning of other VEEs with higher priority. On-line trajec-
tory planning is needed: potential fields methods (Khatib, 1986) can
be used for such a planning: the manipulator moves in a field of forces;
the position to be reached is an attractive pole for the end-effector, and
obstacles are repulsive surfaces for the manipulator parts. The field of
artificial forces F is produced by a differentiable potential function, with
F (pi) = −∇(U(pi)), where ∇(U(pi)) is the gradient vector of U at pi,
that is the position of the VEE under the field effect.

The potential U is constructed as the sum of two elementary potential
functions: U(pi) = Uatt(pi)+Urep(pi) In this relation Uatt is the attrac-
tive potential and depends only on the final position, whereas Urep is the
repulsive function and depends only on the obstacles position. During
the simulation, the attractive potential field is chosen to be a parabolic
well, centered in the goal positions, whereas a repulsive field is related
to a distance of influence from obstacles. So, the goal is a source of
an attractive potential field; obstacles are sources of repulsive potential
fields.

Simulations of robot movements with this approach are shown in the
next section. Notice again the importance of the priority management in
the CLIK schemes, as discussed above: even with on-line path planning,
a desired path could be not executable, so it is necessary to switch the

4.
In this section, operations of the considered mobile manipulator are

examined in an anthropic domain, while the robot is performing an
assistance task. The model has been simulated under the Virtual Reality
Toolbox (VRT) in Matlab. The VRT is a solution for interacting with
virtual reality models of dynamic systems over time. The complete CLIK
algorithm with multiple priority handling and potential fields method
for trajectory planning is considered. The robot has to take a soda
can which is placed in a fitted cupboard, where an impaired person
cannot arrive. In the first phase, the person on the wheelchair is a
moving obstacle to be avoided. When the robot takes the can, the
person becomes a goal point to be reached by the end-effector bringing

141

Trajectory Planning

priority order, as emphasized by the trajectory planning block in Fig. 2.

A Case Study

Virtual End-effectors Approach for Human-robot Interaction



the can. The first desired position for the robot is the location of the can
on the cupboard; after the end of the goal reaching, the second desired
position is the location of the person, who is moving in an independent
way. The anthropic environment where the task is executed is shown in
Fig. 5.

Figure 5. Interaction with the service robot in an anthropic environment

In the shown environment, the robot has to avoid the lamps (it has to
slow down in order to keep away from objects attached to the ceiling),
as well as the person (turning around him/her) and finally the desktop
and the table. The obstacles are modelled as spheres: a lamp is a sphere
having a small radius, whereas a person is a set of spheres with different
radiuses. Notice that these radiuses may take into account cognitive
evaluations. As an example, consider the potentially unpredictable be-
haviours of children in the scene: in such a case, safety issues suggest to
magnify the radiuses for repulsive potential fields. It is possible, in in-
telligent environments, to provide radio-frequency identification tags to
assign different set of parameters, depending on the skills of interacting
people, for robot kinematic and force control. The table has been mod-
elled differently: it is characterized by a succession of points (each point
represents a corner or the lower point of a foot of the table). The robot
is equipped with seven leds, each one placed next to one critical points:
when a particular VEE assumes the highest priority, its led lights up.
The priority assignment for the nested CLIK of the different VEEs is
reported in Fig. 6, where EE stands for the end-effector and WMR for
the wheeled-mobile robot.
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Figure 6. Time history of priority assignments

In Fig. 7 it is possible to see the paths for one VEE and the EE
avoiding the obstacles as well as the motion of the impaired person.
Strong hypothesis about sensory system are assumed: positions of robot,
people and objects are exactly known and tracked.

Figure 7. Trajectories for the VEE labelled with A and the EE of the robot (solid)
in the task of Fig. 5, where the spheres are edges of obstacles and the thin line is the
trajectory of the impaired person during the task

5. Conclusion
The virtual end-effectors (VEEs) approach has been proposed for si-

multaneous inverse kinematics, with proper trajectory planning, of mo-
bile robot manipulators operating in unstructured environments. For
pHRI, the VEEs approach can actually complement interaction schemes,
where intrinsical and active safety issues are to be considered. The pro-
posed approach may be also used to keep a robot in proper postures in
narrow spaces (e.g., snake robots) and for self-collision avoidance too.
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For comparison, a global optimization of different forces acting on the
manipulator without null-space techniques should also be considered,
with a weighted extended Jacobian approach. In addition, automatic
techniques for the location of the VEEs should be of interest as well.
Future work will also be devoted to add soft-computing techniques for
both trajectory planning and inverse kinematics, and to consider inte-
gration with force control on real mobile robot manipulators.

References
Albu-Schaffer, A., Bicchi, A., Boccadamo, G., Chatila, R., De Luca, A., De Santis,

A., Giralt, G., Hirzinger, G., Lippiello, V., Mattone, R., Schiavi, R., Siciliano, B.,
Tonietti, G., Villani, L., “Physical Human-Robot Interaction in Anthropic Do-
mains: Safety and Dependability”, 4th IARP/IEEE-EURON Workshop on Tech-
nical Challenges for Dependable Robots in Human Environments, Nagoya, J, July
2005.

De Luca, A., “Feedforward/feedback laws for the control of flexible robots” 2000 IEEE
International Conference of Robotics and Automation, San Francisco, CA, USA,
April 2000.

Bicchi, A., Tonietti, G., Bavaro, M., Piccigallo, M., “Variable stiffness actuators for
fast and safe motion control”, 11th International Symposium of Robotics Research,
Siena, I, October 2003.

Zinn, M., Khatib, O., Roth, B., Salisbury, J.K., “A new actuation approach for hu-
man friendly robot design”, International Symposium on Experimental Robotics,
S. Angelo d’Ischia, I, July 2002.

Siciliano, B., Villani, L., Robot Force Control , Kluwer Academic Publishers, Boston,
MA, 1999.

Siciliano, B., “A closed-loop inverse kinematic scheme for on-line joint-based robot
control”, Robotica, 8, 231–243, 1990.

Sciavicco, L., Siciliano, B., Modelling and Control of Robot Manipulators, (2nd Ed.),
Springer-Verlag, London, UK, 2000.

Siciliano, B., Slotine, J.J.E., “A general framework for managing multiple tasks in
highly redundant robotic systems, 5th International Conference on Advanced Rob-
otics, Pisa, I, June 1991.

Khatib, O., “Real-time obstacle avoidance for robot manipulators and mobile robots”,
International Journal of Robotics Research, 5(1), 90–98, 1986.

De Santis, A., Siciliano, B., Villani, L., “Fuzzy trajectory planning and redundancy
resolution for a fire fighting robot operating in tunnels”, 2005 IEEE International
Conference on Robotics and Automation, Barcelona, E, April 2005.

Nakamura, Y., Advanced Robotics: Redundancy and Optimization, Addison-Wesley,
Reading, Mass., 1991.

De Santis, A., Caggiano, V., Siciliano, B., Villani, L., Boccignone, G., “Anthropic
inverse kinematics of robot manipulators in handwriting tasks”, 12th Conference
of the International Graphonomics Society , Fisciano, Italy, June 2005.

Featherstone, R., “Resolving manipulator redundancy by combining task constraints”,
Int. Meeting Advances in Robot Kinematics, Ljubljana, Yugoslavia, Sep. 1988.

A. De Santis, P. Pierro and B. Siciliano144



Humanoids and Biomedicine
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Abstract The purpose of this study is to describe the necessary conditions for the
motion controller of a humanoid robot to perform the vertical jump.
We performed vertical jump simulations using three different control
algorithms and showed the effects of each algorithm on the vertical jump
performance. We showed that motion controllers which consider one of
two conditions separately are not appropriate to control the vertical
jump. We demonstrated that the motion controller has to satisfy both
conditions simultaneously in order to achieve a desired vertical jump.

Keywords:

1. Introduction
The vertical jump is an example of a fast explosive movement that

requires quick and completely harmonized coordination of all segments of
the robot, for the push-off, for the flight and, finally, for the landing. The
most important part of the vertical jump which influences the efficiency
and therefore the height of the jump is the push-off phase. The push-off
phase can be defined as a time interval when the feet are touching the
ground before the flight. The primary task of the actuators during the
push-off phase is to keep the robot balanced during the entire jump.
The secondary task of the actuators is to accelerate the robot’s center
of mass upwards in the vertical direction to the extended body position.

In the past, several research groups developed and studied jumping
robots but most of these were simple mechanisms not similar to humans.
They were controlled by empirically derived control strategies. Probably
the best-known hopping robots were designed by Raibert, 1986 and his
team. They developed different hopping robots, all with telescopic legs
and with a steady-state control algorithm. Later, De Man et al., 1996
developed a trajectory generation strategy based on the angular mo-
mentum theorem which was implemented on a model with articulated
legs. Recently Hyon et al., 2003 developed a one-legged hopping robot
with a structure based on the hind-limb model of a dog. They used an
empirically derived controller based on the characteristic dynamics.

Humanoid robot, Vertical jump, dynamic stability
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sary conditions that the motion controller of a humanoid robot has to
consider in order to perform the vertical jump.

2.
The model of the jumping robot is planar and is composed of four

segments which represent the foot, shank, thigh and trunk (Fig. 1).
The segments are connected by frictionless rotational hinges whose axes
are perpendicular to the sagittal plane. The model consists of two parts,
the model of the robot in the air and the model of the robot in contact
with the ground. While the tip of the foot is on the ground, the contact
between the foot tip and the ground is modelled as a rotational hinge
joint between the foot tip and the ground at point F. Therefore, the
robot has six degrees of freedom during flight and four degrees of freedom
during stance (with the assumption that the foot tip of the robot does
not slip and does not bounce back). The generalized coordinates used
to describe the motion of the robot are coordinates xF and yF of the
foot tip measured in the reference frame and joint angles α, β, γ, δ.

Figure 1. Jumping robot during flight.

3.

To assure the verticality of the jump, the robot’s center of mass
(COM) has to move in the upward direction above the support poly-
gon during the push-off phase of the jump. The second condition, which
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refers to the balance of the robot during the push-off phase, is the posi-
tion of the zero moment point (ZMP). ZMP is the point on the ground
at which the net moment of the inertial forces and the gravity forces has
no component along the horizontal axes (Vukobratović et al., 2004). In
the following sections we will analyse how these two conditions influence
the vertical jump. First we will design two control algorithms based
on the COM condition and ZMP condition separately and then we will
design a control algorithm that considers both conditions together.

Equations that define the position of COM are

xcom =
∑n
i=1mixi∑n
i=1mi

, ycom =
∑n
i=1miyi∑n
i=1mi

, (1)

where xcom and ycom are horizontal and vertical positions of COM of the
i and yi are the coordinates of COM of

the i-th segment,mi

segments.
The position of ZMP is

xzmp =
∑n
i=1mixi(ÿi + g) −∑n

i=1miyiẍi + τz∑n
i=1mi(ÿi + g)

, (2)

where

τz =
n∑
i=1

(Iiω̇i + ωi × Iiωi). (3)

g is the quadratic norm of the gravity vector, Ii is the inertial tensor of
the i− th segment around its COM and ωi is the angular velocity of the
i− th segment. When the robot is at rest, the position of ZMP coincides
with the horizontal position of COM.

For the control purposes we have to find the second derivatives of xcom
and ycom (Eq. 1). We get the following equations

ẍcom = k11α̈ + k12β̈ + k13γ̈ + k14δ̈ + d1 (4)

and

ÿcom = k21α̈ + k22β̈ + k23γ̈ + k24δ̈ + d2, (5)

where the parameters kij and di are functions of joint angles (kij =
f(α, β, γ, δ), di = f(α, β, γ, δ)).

The position of ZMP on the ground can not be described in this form
because the denominator of Eq. 2 is also a function of joint angles.
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However, in many cases we can freely move the coordinate system to co-
incide with the position of the desired ZMP and the balancing condition
becomes xzmp = 0. In this case we can express xzmp as

xzmp = 0 = k31α̈ + k32β̈ + k33γ̈ + k34δ̈ + d3. (6)

Eqs. 4, 5 and 6 can be combined and written in the matrix form

⎡
⎣ ẍcom

ÿcom
0

⎤
⎦ =

⎡
⎣ k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

⎤
⎦
⎡
⎢⎢⎢⎣

α̈

β̈
γ̈

δ̈

⎤
⎥⎥⎥⎦+

⎡
⎣ d1

d2

d3

⎤
⎦ , (7)

where ẍcom and xzmp are the conditions that relate with the balance.
On the other hand, ÿcom is the prescribed vertical acceleration of the
robot’s COM during the push-off phase of the jump which enables the
robot to jump.

3.1 Control of xcom

In the first case we analyse the vertical jump when the motion con-
troller keeps the horizontal position of the robot’s COM over the virtual
joint connecting the foot with the ground at point F during the entire
push-off phase of the vertical jump. Motion controller does not control
the position of ZMP xzmp.

By rewriting Eq. 7 for xcom and ycom we get

[
ẍcom
ÿcom

]
=
[

k11 k12 k13 k14

k21 k22 k23 k24

]
⎡
⎢⎢⎢⎣

α̈

β̈
γ̈

δ̈

⎤
⎥⎥⎥⎦+

[
d1

d2

]
. (8)

Since the system is under-determinate (the degree of redundancy is
two), we have to set up two additional constraints. To achieve a human
like motion of the vertical jump we chose the following simple constraints

γ̈ = c1β̈, δ̈ = c2β̈, (9)

where c1 and c2 are constants. By substitution of Eq. 9 into Eq. 8 we
get

[
ẍcom
ÿcom

]
=
[

k11 k12 + c1k13 + c2k14

k21 k22 + c1k23 + c2k24

] [
α̈

β̈

]
+
[

d1

d2

]
. (10)
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The system of equations is determinate and the joint accelerations can
be written as

[
α̈

β̈

]
=
[

k11 k12 + c1k13 + c2k14

k21 k22 + c1k23 + c2k24

]−1 ([
ẍcom
ÿcom

]
−
[

d1

d2

])
. (11)

3.2 Control of xzmp

In the second case we analyse the vertical jump when the motion
controller keeps the position of ZMP aligned with the virtual joint at
point F. The motion controller does not control the horizontal position
of COM (xcom).

By rewriting Eq. 7 for xzmp and ycom we get

[
ÿcom

0

]
=
[

k21 k22 k23 k24

k31 k32 k33 k34

]
⎡
⎢⎢⎢⎣

α̈

β̈
γ̈

δ̈

⎤
⎥⎥⎥⎦+

[
d2

d3

]
. (12)

Similarly as in the previous case we have to find the joint accelerations.
If we again use the same constraints (9) we get the following determinate
system of equations

[
ÿcom

0

]
=
[

k21 k22 + c1k23 + c2k24

k31 k32 + c1k33 + c2k34

] [
α̈

β̈

]
+
[

d2

d3

]
, (13)

and the joint accelerations are

[
α̈

β̈

]
=
[

k21 k22 + c1k23 + c2k24

k31 k32 + c1k33 + c2k34

]−1 ([
ÿcom

0

]
−
[

d2

d3

])
. (14)

3.3 Control of xcom and xzmp

In the third case we will analyse the vertical jump when the motion
controller considers both conditions from the precedent two sections. It
keeps the position of ZMP and the horizontal position of the robot’s
COM aligned with the virtual joint at point F.

In this case the degree of redundancy is one. The following constraint
that abolishes the redundancy of Eq. 7 is the relationship of the ankle
and knee joint accelerations
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where C1 is a constant. By substitution of Eq. 15 into Eq. 7 we get

⎡
⎣ ẍcom

ÿcom
0

⎤
⎦ =

⎡
⎣ k11 k12 + C1k13 k14

k21 k22 + C1k23 k24

k31 k32 + C1k33 k34

⎤
⎦
⎡
⎢⎣

α̈

β̈

δ̈

⎤
⎥⎦+

⎡
⎣ d1

d2

d3

⎤
⎦ , (16)

and the joint accelerations are

⎡
⎢⎣

α̈

β̈

δ̈

⎤
⎥⎦ =

⎡
⎣ k11 k12 + C1k13 k14

k21 k22 + C1k23 k24

k31 k32 + C1k33 k34

⎤
⎦
−1⎛
⎝
⎡
⎣ ẍcom

ÿcom
0

⎤
⎦−

⎡
⎣ d1

d2

d3

⎤
⎦
⎞
⎠ . (17)

3.4 Motion Controller
For the control of the robot we used a simple feed forward joint ac-

celeration controller

τc = H(q)q̈c + C(q̇, q) + g(q), (18)

where τc and q denote the control torque and the vector of joint posi-
tions, respectively. H, C and g denote the inertia matrix, the vector
of Coriolis and centrifugal forces and the vector of gravity forces, re-
spectively. q̈c is the vector of control accelerations (q̈c =

[
α̈, β̈, γ̈, δ̈

]T
).

During the push-off phase of the jump q̈c is defined by Eqs. (11),(14) or
(17). During the flight phase, when the robot is in the air, the angular
momentum and the linear momentum are conserved and the q̈c is set in
such a way that the joint motions stops and the robot is prepared for
landing.

4. Simulation Study
We performed vertical jump simulations using three different control

algorithms described in the previous section. First we simulated the
vertical jump using the control algorithm based on the COM condition,
then we simulated the vertical jump using the control algorithm based
on the ZMP condition and, finally, we simulated the jump where the
controller considered both conditions together.
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In this case we controlled ÿcom and ẍcom
by Eq. 11. From the requirement that ẍcom has to be above the support

com = 0 and ẍcom
the position of COM during the jump.
horizontal position while the dashed line represents the vertical position
of COM. Dotted line shows the moment of take-off. It is evident that
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Figure 2. Position of center of mass
during vertical jump considering only the
COM condition.
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Figure 3. Required torque in virtual
joint considering only COM condition.

Due to the fact that we did not control the position of ZMP, the
required torque in the virtual joint between the foot and the ground
during the push-off phase of the jump is not zero (see Fig. 3). As this
torque can not be applied to the real robotic system, this controller is
not appropriate for performing the vertical jump. Without applying this

the configurations of the robot during the jump.

Control of . In this case we controlled ÿcom and xzmp, as defined
by Eq. 14. To satisfy the balance criteria xzmp has to be over the support
polygon (xzmp = 0). As evident from Fig. 5, the horizontal position of
COM during the push-off phase of the jump is not zero and, therefore,
the robot does not perform the vertical jump as it should.

On the other hand, the torque in the virtual joint is zero (Fig. 6) and
the system is balanced without the torque in the virtual joint between
the foot and the ground. Therefore, the robot performs a jump, but this
is not a vertical jump, since COM is not above point F at the take-off
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.Control of com

xzmp

x

polygon (point F) follows that x

COM is above point F.the horizontal position of COM remains zero, i.e.

The solid line represents the

as defined

= 0 . Figure 2 shows

torque at the virtual joint the robot becomes unbalanced. Figure 4 shows

moment. Figure 7 shows the configurations of the robot during the jump.
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Figure 5. Position of center of mass
during vertical jump considering only
ZMP condition.
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Figure 6. Torque in virtual joint con-
sidering only ZMP condition.

Control of and . In this case we controlled ÿcom together
with both ẍcom and xzmp, as defined by Eq. 17. 8 shows the
position of COM during the jump and Fig. 9 shows the torque in the
virtual joint. As the position of COM is always above point F and
the torque in the virtual joint is zero, the robot performs the desired
vertical jump. Therefore, both conditions have to be fulfilled to assure
the verticality of the jump. Both, the horizontal position of COM and

10 shows the
configurations of the robot during the jump when the motion controller
considers both necessary conditions.
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Figure 8. Position of center of mass
during vertical jump considering both
COM and ZMP conditions.

0 0.2 0.4 0.6
1

0.5

0

0.5

1

t /s 

/N
m

Figure 9. Torque in virtual joint con-
sidering both COM and ZMP conditions.

5. Conclusions
In this study, we mathematically formulated the necessary conditions

which have to be considered by the motion controller to perform the
vertical jump. The first condition refers to the robot’s center of gravity
which has to move in the upward direction above the support polygon
during the push-off phase of the jump. The second condition refers to
the position of the zero moment point that has to lie inside the support
polygon to assure the balance of the robot. We analysed how these
two conditions influence the vertical jump performance. Based on these
conditions we designed three different control algorithms and used them
in vertical jump simulations. We showed that motion controllers that
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Figure 10. Configurations of robot during vertical jump considering both COM and
ZMP conditions.

consider one of two conditions separately are not appropriate for the
control of the vertical jump. We demonstrated that the motion controller
has to satisfy both conditions simultaneously in order to achieve a desired
vertical jump.
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Abstract This paper presents a convex optimization algorithm for the stabiliza-
tion of whole-body motions for humanoid robots. Given a possibly
unstable input reference trajectory in the form of joint and base frame
acceleration time profiles, the algorithm determines, at each time step,
the optimal acceleration profile subject to stability constraints on the
zero-moment point (ZMP), and under the assumption that joint posi-
tion and velocity measurements are available. We show that the above
optimization can be formulated as a second-order cone programming
(SOCP) problem, a well-known class of convex optimization problem
that admits efficient interior-point algorithms. Simulations suggest that
efficient whole-body stabilization is possible for typical humanoid struc-
tures, even in dynamic environments.

Keywords: Whole-body motion, humanoid robot, motion stabilization, convex op-
timization, second-order cone programming

1. Introduction
This paper addresses the problem of refining a reference whole-body

motion for a humanoid robot such that it is stable, and closely approx-
imates the reference motion. As a possible application scenario, one
can envision a reference motion obtained from human motion capture
data; directly transferring this data to a humanoid robot can easily re-
sult in an unstable motion, causing the robot to lose balance. We seek
an online algorithm that optimally tracks the reference motion, in an
appropriate least-squares sense, while ensuring stability as prescribed
by the zero-moment point (ZMP) condition.

Since the early work of [Vukobratovic and Borovac, 2004] on dy-
namic stability and stabilization of legged robots using the zero mo-
ment point, many methods have been proposed for generation of stable
motions for humanoid robots based on the ZMP notion. One of the
first optimization-based approaches to whole-body motion stabilization

© 2006 Springer. Printed in the Netherlands.
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is the work of Kagami et al. [Kagami et al., 2000], who develop an



least square method while satisfying desired ZMP and center-of-gravity
(COG) constraints. The main disadvantage with this approach is that
COG is constrained from moving along x and y axes in order to simplify
the problem. Sugihara and Nakamura [Sugihara et al., 2002] propose an
alternative COG optimization-based method for balancing a humanoid
with two different loops; this algorithm assumes a stable reference tra-
jectory that is subject to short-term disturbances, whereas our objective

propose a control algorithm for tracking a ZMP trajectory and the mo-
tions of some links which want to be controlled. This method is useful
for real-time control, but the resulting ZMP tracking errors can lead to
unstable motions. Related work preceding the above is [Nishiwaki

algorithms for stable motions.
In this paper we present a convex optimization algorithm for the sta-

bilization of whole-body motions for humanoid robots. Given a (possibly
unstable) input reference trajectory in the form of joint and base frame
acceleration time profiles, the algorithm determines, at each time step,
the optimal acceleration profile subject to stability constraints on the
zero-moment point (ZMP), and under the assumption that state mea-
surements (i.e., the joint position and velocity) are available.

We show that the above optimization can be formulated as a second-
order cone programming (SOCP) problem, which is a well-known class
of convex optimization problems that admit efficient interior-point algo-
rithms. Simulation results suggest that online whole-body stabilization
is possible for typical humanoid structures, even in dynamic environ-
ments.

2. Problem Formulation
We assume an n degree-of-freedom humanoid robot with a tree topol-

ogy structure, and define the optimization vector to be

x =
[

V̇0

q̈

]
(1)

where V̇0 ∈ se(3) denotes the generalized acceleration of the root link,
and q̈ ∈ �n denotes the joint acceleration vector. The ensuing con-
strained optimization problem is formulated as

min ‖x − xref‖2 (2)
subject to Aeqx = beq (3)
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algorithm to achieve dynamic balance for humanoid robots based on the

is to stably adjust an unstable trajectory. Park et al. [Park et al., 2005]

et al., 2002], [Morisawa et al., 2005], which investigate pattern generation



Aineqx ≤ bineq (4)
f(x) ≤ 0, (5)

The kinematics and dynamics equations can be formulated as

V̇i = AV̇i
x + bV̇i

(6)

FZMP = MZMPx + CZMP (7)

where V̇i ∈ se(3) is the generalized acceleration of link i, and FZMP is
the generalized force between the robot and environment, described in
the coordinates whose origin is at the desired ZMP. AV̇i

, bV̇i
, MZMP and

CZMP are functions of position and velocity. From these equations the
linear equality constraint (3) follows:

Aeq ≡
[

AV̇

MZMP,Mxy

]
beq ≡

[
V̇const − bV̇
−CZMP,Mxy

]
(8)

where AV̇ and bV̇ are made by stacking AV̇i
and bV̇i

of some links whose
motions need to be constrained (e.g., foot link), and MZMP,Mxy and
CZMP,Mxy denote the components of the moments about the x and y
axes in MZMP and CZMP .

The linear inequality constraint (4) comes from the static constraint
and joint bounds. The static constraint causes the motion to stay within
a statically stable region, and can be approximated as a linear inequality.
The nonlinear constraint comes from the friction constraint, which can
be expressed as

f(x) ≡ −FZMP,fz + ‖FZMP,fxy‖/µ + |FZMP,Mz|/µn (9)

where µ is the friction coefficient about the force in the xy plane, µn is
the rotational friction coefficient about the z axis, FZMP,fz is the force
along the z axis, FZMP,fxy is the force in the xy plane, and FZMP,Mz is
the moment about the z axis of FZMP . This problem can be recast as a
second-order cone programming (SOCP) problem by introducing some
additional variables as follows:

min t1

subject to ‖x − xref‖ ≤ t1

‖MZMP,fxyx + CZMP,fxy‖ ≤ µt2

|MZMP,Mzx + CZMP,Mz| ≤ µnt3

0 ≤ −Aeqx + beq

0 ≤ Aeqx − beq

0 ≤ −Aineqx + bineq

0 ≤ MZMP,fzx + CZMP,fz − t2 − t3 (10)
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Efficient interior point algorithms for SOCP problems have been de-
veloped in, e.g., [Boyd and Vandenverghe, 2004], [Lobo et al., 1998],
[MOSEK]. These algorithms are shown to have complexity O(n3), where
n denotes the dimension of the optimization vector, and typically con-
verge in around 50 iterations for very wide range of problem size. For
typical humanoid robots where n is around 30, online solutions to the
optimization are feasible.

3. Case Study
In this section, we evaluate the algorithm through simulations with a

humanoid robot model with 25 degrees of freedom: six at each limb and
one at the waist along the z axis as shown in Figure 1. To obtain natural
reference motions we capture some human motions and transform them
to those compatible with our humanoid robot model. Each optimization
is performed using Matlab version 6.5, running on a Pentium 4 (1.8 GHz)
personal computer.

Figure 1. Humanoid robot model

3.1 Whole-Body Motion Stabilization
Using the algorithm, we stabilize some motions obtained from motion

capture data as shown in Table 1. Here beta refers the ratio between
the support polygon and the region of the original motion’s projected
center of mass (CoM) distribution.
motion’s projected CoM is located at the center of the support polygon.

From the values of Beta and time per step, we can observe that the
results are dependent on the complexity of the motion. If the motion is
too complex or too fast for the robot, it cannot be stabilized at every
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In the case of beta = 0, the original
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Motions Beta Time/step (sec)

Right leg raise forward 0.4 0.891918
Right kick forward 0.4 0.862366
Right leg raise aside 0 0.961157
Right kick aside(×0.95) 0 0.635591

Bartender Motion 0.1 0.629111
Easy dance(×0.9) 0 0.502345

Table 1.

moment. In this case from the values of Beta we can conclude that the
motion along the x axis, which is the forward direction of the robot, is
easier to stabilize; the characteristics of the robot model can be regarded
as a cause of these results. The computational time per step for the
optimization, coded in Matlab, is less than 1 second in all cases, clearly
suggesting that online solutions are feasible.

(a) ZMP trajectory before sta-
bilization

(b) ZMP trajectory after stabi-
lization

Figure 2.

The dynamic stability of the right kick forward” motion before and
after stabilization can be ascertained in Figure 2. The red square in the
figure denotes the support polygon. The +x and +y directions are the
forward and left directions of the robot. From the figures we can verify
that the resulting motion has been stabilized.

Figure 3.
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From Figure 3 we can see the motion after stabilization is similar to
the reference motion. In the stabilized motion, the robot appears to
stabilize itself much as a human would, by repeatedly overcompensating
and reacting. While the reference motion looks reasonable in the figure,
this motion is unstable and will cause the robot to fall over.

3.2 Posture Stabilization in Dynamic
Environments

One of the important features of our proposed algorithm is that it
can be applied online. The algorithm depends only on the states at
each time, in this case the joint position and velocity measurements.
One can thus achieve posture stabilization in a dynamically changing
environment; in what follows we consider a simple standing posture,
i.e., θ = 0.

Acceleration profile α Time/step
(λ = 2π/tf ) (m/s2 or deg /s2) (sec)

α sin λt 1 0.400948
(translation along x axis) 0.7 0.460664

−αλ2 sin λt 6 0.336903
(rotation along y axis) 5 0.334582

Table 2.

For the test cases of a dynamically varying environment, the standing
posture is stabilized as shown in Table 2. α, a coefficient for the accel-
eration profile, is described in m/s2 in the case of translational motions
of the environment and deg /s2 in the case of rotational motions. From
the Table we see that the algorithm works satisfactorily in our sample
dynamic environments.

From the ZMP and projected CoM trajectories in Figure 4 and 5,
both dynamic and static stability of the motions can be examined. In
both cases the reference motion, which is not dynamically stable, is
stabilized. In Figure 5(b) and 5(d) we can see how the trajectory has
been stabilized intuitively.

We can observe from Figures 6(a) and 6(b) that the reaction of the
robot resembles that of a human. The motions shown Figure 6(a) re-
semble the reaction of human standing in a moving vehicle.
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Figure 4. ZMP and projected CoM trajectories before and after stabilization of a
standing posture in a translating moving environment when α = 1

(a) ZMP trajectory
before stabilization

(b) ZMP trajectory
after stabilization

(c) Projected CoM
trajectory before
stabilization

(d) Projected CoM
trajectory after sta-
bilization

Figure 5. ZMP and projected CoM trajectories before and after stabilization of a
standing posture in a rotating environment when α = 6

(b) Rotating environment when α = 6

Figure 6. Stabilized motions in a dynamic environment

3.3 Motion Stabilization in a Dynamic
Environment
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(a) Translating environment when α = 1

From the former section, we can see the algorithm is applicable to the
case of dynamic environments, and that the results resemble the natural
reactions of a human.Based on these results we evaluate the performance

.

.

.

(a) ZMP trajectory
before stabilization

(b) ZMP trajectory
after stabilization

(c) Projected CoM
trajectory before
stabilization

(d) Projected CoM
trajectory after sta-
bilization
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mance of the algorithm by attempting to stabilize a reference motion in
a dynamic environment. The reference motion in this simulation is the”

right kick forward” motion.

Acceleration profile α Time/step
(λ = 2π/tf ) (m/s2 or deg /s2) (sec)

α sin λt 0.6 0.752351
(translation along x axis) 0.55 0.769769

α sin λt 0.45 0.658306
(translation along y axis) 0.45 0.805410

−αλ2 sin λt 4 0.862881
(rotation along y axis) 2.5 0.676269

−αλ2 sin λt 2.5 0.730828
(rotation along x axis) 2.5 0.882090

Table 3.

From the results of Table 3, we can see that motions can be success-
fully stabilized in various cases of dynamic environments. The obtained
results are similar to the reference motion, and stable as shown in Fig-
ures 7 and 8.

Figure 7. ZMP and projected CoM trajectories before and after stabilization of

Figure 8. Motions before and after stabilization in a rotating environment about
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”right kick forward” motion in a rotating environment when α = 4.
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4. Conclusion
This paper has proposed an algorithm that stabilizes whole-body mo-

tions for humanoid robots, even in dynamically changing environments,
via the solution of a convex optimization problem at each timestep. By
expressing the stabilization constraints as linear equalities and inequali-
ties in the acceleration vector, we show that the whole-body stabilization
problem can be formulated as a second-order conic programming prob-
lem. The optimization depends only the current states (i.e., position and
velocity), and can be solved in nearly real-time for moderately complex
humanoid models with up to thirty kinematic degrees of freedom.
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Abstract A procedure to design new orthoses for the human knee articulation is 
presented. The design is based on knee equivalent parallel mechanisms 
whose links closely replicate the main knee anatomical structures; this 
makes it possible to design orthoses which can either re-establish the 
complete functionality of the knee articulation or, selectively, only the 
function of an injured knee structure. 

Keywords: Articulation, knee, equivalent mechanisms, orthoses  

1.  Introduction  
Recent studies showed that the human knee passive motion, i.e. the 

relative motion of femur and tibia under virtually unloaded conditions, 
can be replicated quite well by mechanisms (equivalent mechanisms) 
with one degree of freedom (dof). Early studies (Goodfellows and 
O’Connor, 1978; O’Connor et al., 1989; Fuss, 1989) proposed planar 
equivalent mechanisms, which replicate the knee motion in the sagittal 
plane. Later in (Wilson and O’Connor, 1997; Wilson et al., 1998; Parenti-
Castelli and Di Gregorio, 2000; Di Gregorio and Parenti-Castelli, 2003, 
Ottoboni et al., 2005) spatial mechanisms were proposed that replicate 
the femur-tibia spatial motion.  

The equivalent spatial mechanisms (ESMs) rely upon the clinical 
evidence that some fibers of the three main ligaments (the anterior 
cruciate (ACL), the posterior cruciate (PCL) and the medial collateral 
(MCL) ligament) are almost isometric during the knee flexion and guide 
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the knee motion while the femur and tibial condyles remain in mutual 
contact. 

The proposed ESMs (Fig. 1) model the ACL, PCL and MCL by means 
of three binary links each joined to the tibia and to the femur by a 
universal joint (U) and a spherical pair (S) respectively, and consider two 
contact points between the condyle surfaces. Different approximations of 
the surfaces lead to different mechanisms. In (Wilson and O’Connor, 
1997; Wilson et al., 1998), the femur condyles 1 and 2 are spherical and 
the tibia condyles 1 and 2 are planar (Fig. 1(a) mechanism ESM-1). In 
(Parenti-Castelli and Di Gregorio, 2000) both the femur ( 1, 2) and tibia 
( 1, 2) condyles are spherical surfaces (Fig. 1(b) mechanism ESM-2), 
whereas in (Di Gregorio and Parenti-Castelli, 2003) all condyles are 

i i

 taken from cadavers. 
This paper focuses on the knee orthoses, i.e. on orthopedic devices 

which support or fully replace the functionality of the human knee 

The knee orthoses available on the market mainly try to replicate the 
femur-tibia motion by means of a revolute pair whose axis must be 
cleverly located (Schache et al., 2005). This is an empirical approach 
based on a rough approximation of the actual motion which is indeed a 
complex spatial motion. Up to now the ESMs have not been exploited to 
build orthoses. Orthoses based on ESMs could be devised either to re-
establish the complete functionality of the knee articulation or selectively 
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Figure 1.  Equivalent spatial mechanisms of the knee: (a) ESM-1, (b) ESM-2  
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(Thoumie et al., 2001). 

centers of the spherical surfaces. The geometry of the ESMs was deter-
mined by slightly adjusting the measurements on the knee specimen 

support (replace) specific structures of the knee which are injured or do not 

general smooth surfaces. In Fig. 1 points C , i = 1,2, and D , i = 1,2 are the 

.



Taking as a reference for the orthosis design an equivalent mechanism 
of the knee passive motion could be considered as a limitation. However, 

In this paper, the potentiality of using ESM-1 and/or ESM-2 as a basic 
reference for building orthoses for either a single patient or a class of 
them, is investigated. Issues on both the measurement of the tibia-femur 
spatial motion in the healthy knee and the determination of the 
corresponding ESM geometry are addressed. Finally, guidelines for the 
design of new orthosis architectures capable either for global or selective 
re-habilitation actions are presented. 

 

2.  
The synthesis of an ESM requires: (i) the data to compute the passive 

motion of the healthy knee and (ii) the topology of the ESM to synthesize. 
Then, synthesis algorithms can be applied to determine the ESM 
geometry that replicates the assigned knee motion. 

 

2.1  
Measurement of the relative passive motion between the femur and 

tibia can be performed by several techniques (DellaCroce et al., 2005; 
Freeman and Pinskerova, 2005), provided external loads are somehow 
compensated. Compliant-adaptive and haptic devices can be also used to 
this purpose.  

Data collection consistent with the anatomical parameters of the 
patients is another important issue. Indeed, direct measurements on the 

measurements performed on the other healthy knee of the patient (if 
possible) or by adjusting data taken from a database of a class of people 
the patient belongs to (same age, sex, height, etc.). 

In the first case it seems reasonable to reconstruct the motion of the 
damaged knee from the motion of the other knee under the hypothesis 
that the two motions are symmetric with respect to the sagittal plane. In 
other words a one-to-one correspondence between shin-thigh relative 
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work properly. The use of the ESMs for such applications requires effi- 
cient techniques both for the measurement of the knee motion and for the 
determination of the ESMs’ geometry.  

-this approximation is believed to be of the same order of other  un  

Determination of the ESMs’ Geometry 

Motion Data of the Healthy Knee 

The problem, however, can be solved in different ways. For instance, by 
patient under treatment might not be possible for various reasons. 

certainty factors such as, for instance, measurement errors, and there-
fore acceptable.  



poses of one leg is established with the shin-thigh relative poses of the 
other leg. The relationships that provide the motion data of one knee 
from those of the other can be explicitly written by using the notations of 
Fig. 2. In Fig. 2, O is a point of the sagittal plane. nn is a unit vector 
perpendicular to the sagittal plane. Bi, are points embedded in the left 
thigh. B’i, are points that are symmetric to Bi, with respect to the sagittal 
plane, and are fixed to the right thigh. Ai, are points embedded in the left 
shin. A’i, are points that are symmetric to Ai, with respect to the sagittal 
plane, and are fixed to the right shin. 

With these notations, the following vector relationships hold: 
 
 (AA’i  OO) = [113  2 nn nnT] (AAi  OO) (1) 
 (BB’i  OO) = [113  2 nn nnT] (BBi  OO) (2) 
 

where 113 is the 3 3 identity matrix, and T is for transpose. 
If the coordinates, in a Cartesian reference system, of the points Ai 

and Bi (A’i and B’i) are available from measurements on the healthy leg, 
the coordinates of the points A’i and B’i (Ai and Bi), in the same reference 
system, can be computed through relationships (1) and (2). Once the 
coordinates of shin points and of thigh points are known for each leg 
posture the shin-thigh relative pose parameters can be calculated and 
referred to a set of standard reference systems (Grood and Suntay (1983). 

2.2  Synthesis of the ESM 
The determination of the ESM’s geometry may resort to the solution of 

a rigid body guidance problem. The shin (thigh) is the guided body, the 
thigh (shin) is the frame, the healthy knee motion data provides the path 
to generate, and the topology of the one-dof mechanism to synthesize is 
that of ESM-1 or ESM-2. 

The solution of the body guidance problem can be addressed either (I) 

points). The second one consists in the minimization of an objective 
function which somehow measures the “distance” between the path of the 
guided body and the path to generate. 
 
2.2.1 Precision point techniques: The techniques based on precision 
points usually start writing, in all the assigned poses, the equations that 
express the  constraint, on  the  guided  body  motion, due   to each  serial 
kinematic chain (leg) which connects the guided body to the frame. The 
resulting system  has the  geometric parameters of each leg as unknowns  
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through techniques based on precision points, or (II) through optimi-
zation techniques. The first technique consists in imposing that the
guided body assumes a finite number of assigned poses (precision 
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Figure 2.     Notations 

and can be arranged into a number of decoupled subsystems equal to the 
number of the different leg topologies that appear in the one-dof 
mechanism to synthesize. Then, all the subsystems are separately solved. 

Finally, the solutions of each subsystem are combined with the 
solutions of the other subsystems, according to the combinatorial 
calculus’ rules, for generating the geometry of all mechanisms that make 
the guided body move through the assigned poses. If the number of 
assigned poses is sufficient to write a number of equations equal to the 
number of the unknown geometric parameters for each subsystem, a 
finite number of mechanism geometries will be obtained.  

of a wide number of leg topologies have been presented in (Chen and 
Roth, 1969a, 1969b; Nielsen and Roth, 1995; Wampler et al., 1990). 
Moreover, some papers (Innocenti, 1995; Liao and McCarthy, 2001; Di 
Gregorio, 2005) have found the analytic solution of leg topologies that are 
particularly interesting for the applications. 

The ESM-1, has two different leg topologies (Fig. 1(a)): three legs of 
US topology and two sphere-plane contact pairs, each kinematically 
equivalent to a leg of RRS topology (R is for revolute pair, the spherical 
pair S is centered in C1 (C2) and the two revolute pairs have axes 
orthogonal to the plane 1 ( 2). This, in fact,  constrains the point C1 (C2) 
to move in a plane parallel to 1 ( 2) at a distance equal to the radius of 
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General methodologies for writing and solving the constraint equations 

n

.



the spherical condyle 1 ( 2)). Analogously, the contact sphere-sphere in 
the ESM-2 (Fig. 1(b)) can be modeled by a leg of US topology with U and 
S pairs centered at points D1 (D2) and C1 (C2) respectively. Therefore, 
from a kinematic viewpoint, the ESM-1 and ESM-2 are one-dof fully 
parallel mechanisms with three legs of type US plus two legs of type 
RRS, and with five legs of type US respectively. 

A US leg makes the distance between a point of the guided body and a 
point of the frame constant. Such a geometric constraint is analytically 
expressed by one scalar equation with seven geometric parameters: the 
three coordinates of the guided-body’s point, the three coordinates of the 

unknowns will result. This system was analytically solved (Innocenti, 
1995) and reduced to the solution of a 20th degree univariate polynomial 
equation. Therefore, the system admits 20 solutions in the complex field 
and at most 20 real solutions. 

An RRS leg makes a point of one body move on a plane belonging to 
the other body. The analytic expression of this constraint is a scalar 
equation with six geometric parameters: the three coordinates of the 
point and the three parameters which identify the location of the plane 
(e.g. two components of the unit vector normal to the plane, and the 
signed distance of the plane from the origin of the Cartesian reference 
system). Thus, if six poses are assigned, a system of six equations in six 
unknowns will result. Such a system was analytically solved (Nielsen 
and Roth (1995) and reduced to the solution of a 10th degree univariate 
polynomial equation. Therefore, it admits 10 solutions in the complex 
field and at most 10 real solutions. 

Thus, by using the rules of the combinatorial calculus, the ESM-1 
geometries that solve the body guidance problem are at most the 

 

  (3) 51300
2
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The ESM-2 geometries that solve the same problem are at most the 

combinations in quintets of the 20 solutions of the US leg, that is: 
 

  (4) 15504
5
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frame’s point and the constant distance between the two points. Thus,  
if seven poses are assigned, a system of seven equations in seven 

combinations in triplets of the 20 solutions of the US leg by the combi-
nations in couples of the 10 solutions of the RRS leg, that is: 



Despite the high number of complex solutions, the real solutions are in 
general much less than 20 for the US leg and less than 10 for the RRS 
leg. Therefore, the number of real mechanisms’ geometries dramatically 
reduces, and, sometimes, there is no real geometry for one or the other 
mechanism topology. Moreover, the order that the assigned poses must 
follow to reproduce the knee motion and the smoothness of the path 
performed by the guided body between two successive assigned poses are 
not guaranteed. 
 

optimization techniques can be used. One technique to introduce an 
optimization criterion is to arbitrarily change one (or more than one) 
assigned pose until the path performed by the guided body is 
satisfactory. This approach reduces the number of precision points, but 
still maintains some of them. 

In general, optimization techniques use the constraint equations in a 
great number (much more than 7) of poses, and calculate the geometric 
parameters (which now are much less than the equations) by minimizing 
an objective function related to the sum of the absolute values of the 
errors in each equation. For instance, one objective function might be the 
mean square root of the errors. These techniques allow the introduction 
of equations that take into account some limitations on the values of the 
searched geometric parameters. The main drawback of this approach is 
that the equations are nonlinear which makes the resulting optimization 
process cumbersome. Moreover, the computed mechanism geometry does 
not make the guided body pass through any assigned pose even though 
its path is near to the desired path. 

3.  
Once a satisfactory geometry of ESM-1 or ESM-2 has been identified, 

the design stage of the orthosis starts. The design problem is now to 
manufacture the identified ESM by satisfying the following conditions: 
(a) all the kinematic chains, i.e. the legs of type US and RRS must be 
external to the patient’s knee; (b) the joints of the legs must be simple 
and free of problems like jamming; (c) the workspace of each leg must 
contain the path to generate; (d) when the orthosis is applied to the 
patient’s leg, the patient should still be able to wear trousers.  

All legs in the ESM-1 and ESM-2 are of type US or RRS, that is of type 
5R if considering that a U joint and an S spherical pair are in practice 
kinematically equivalent, respectively, to an RR chain with the two R 
axes intersecting each other and to an RRR chain with the three R axes 
intersecting at one common point. Figures 3(a) and 3(b) show a schematic 
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2.2.2 Optimization techniques: In order to overcome these drawbacks, 

Design of the Orthosis 



of a 5R leg kinematically equivalent to a US leg (Fig. 3(a)) and to an RRS 
leg (Fig. 3(b)) respectively. 

A 5R leg can satisfy all the above said conditons. Indeed, condition (a) 
is easily satisfied since the hardware of the revolute pairs can be 
arbitrarily located along their axes. Condition (b) is satisfied because the 
revolute pairs do not undergo jamming. Condition (c) can be satisfied by 
suitably sizing the geometric parameters of the 5R chain. Finally, when a 
US leg is manufactured, the leg hardware can be confined into a thin 
shell located near the patient’s knee. Moreover, when an RRS leg is 
manufactured, the planar RR chain  that reproduces the motion of the 
condylar contact point in the 5R leg  in the worst conditions (considering 
that experimental data reported in (Wilson et al., 1998) show that the 
condylar contact point moves inside a rectangle whose sides are shorter 
than 40 mm) does not occupy regions farther than 25 mm from the 
patient’s knee. Therefore, condition (d) can be satisfied too. 

The endings of each 5R leg are connected to rigid rings fixed to the 
thigh (guided body in Figures 3(a) and 3(b)) and to the shin (frame in 
Figures 3(a) and 3(b)) respectively by means of braces (Fig. 3 (c)). 

It is worth noting that for both ESM-1 and ESM-2, each 5R leg has an 
anatomical structure as a direct counterpart: namely a ligament or a 
condylar surface contact pair. Therefore, when only one or a few specific 
anatomical structures of the knee must be replicated by the orthosis, the 
ESM synthesis can be focused on the corresponding 5R legs of the 
mechanism, so that the synthesized ESM fairly reproduces the motion 
constraints due to those structures. The correspondence between the legs’ 
geometry and the articular structures to be replaced can be checked 
through    radiographs    before    the   orthosis   is   sized.  After   such   a  
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Figure 3. 5R kinematic chains: (a) US leg (sphere-sphere contact), (b) RRS leg 
(sphere-plane contact), (c) 5R legs applied to the knee 
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correspondence is verified, an orthosis, which contains only the legs 
corresponding to the damaged structures of the knee, can be 
manufactured. This opportunity is particularly appealing for the post-
reconstruction therapy of many knee traumas. For instance, the 
reconstruction of a knee ligament is frequent among players of many 
popular sports, and ligament breakdowns occur both to professional 
players and to amateurs. 

4.  Conclusions  
A procedure has been presented that leads to design novel knee 

orthoses inspired by equivalent spatial mechanisms (ESM) proposed 
recently in the literature for replicating the human knee passive motion. 

In particular, in-vivo measurement issues of knee motion as well as 
techniques for the synthesis of ESM have been addressed. Finally, 
guidelines for the design of new orthoses that can reestablish either the 
complete functionality of the knee articulation or selectively only the 
functionality of the injured knee structures have been presented. 
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e

,

,  ,  ,

“
” ,

 ,



MODELING TIME INVARIANCE IN
HUMAN ARM MOTION COORDINATION

Satyajit Ambike
The Ohio State University, Department of Mechanical Engineering
Columbus, OH USA
ambike.1@osu.edu

James P. Schmiedeler
The Ohio State University, Department of Mechanical Engineering
Columbus, OH USA
schmiedeler.2@osu.edu

Abstract This paper proposes that two-degree-of-freedom Curvature Theory pro-

invariant kinematic model is fundamental to human motor coordination,
Curvature Theory provides a concise, efficient mapping of a desired out-
put trajectory geometry to the joint angles’ instantaneous speed ratios.
If the speed ratios for a motion are learned through experience, one can
subsequently execute the motion at different speeds. This formulation
is consistent with a structure for the internal model that the central ner-
vous system may use as a feed-forward element for planning motions.
A simple example is presented to illustrate how the model works.

Keywords: Human motor coordination, arm kinematics, Curvature Theory

1. Introduction
A well-recognized theory in modern motor control research suggests

that through experience, the central nervous system (CNS) builds and
maintains internal models of the motor apparatus and external world
(Atkeson, 1989). Experimental work (Flanagan et al., 1999 and Lac-
quaniti et al., 1982) shows that separate internal kinematic and dynamic
models are consistent with typical behavior. Further evidence indicates
that the internal kinematic model separates time-invariant and time-
dependent aspects of motion. Hand path shape in reaching, often a
straight line, is independent of trajectory speed, and tangential hand ve-
locity has a single, bell-shaped curve regardless of magnitude (Atkeson &
Hollerbach, 1985, Morasso, 1981, Soechting & Lacquaniti, 1981). Fixed
relations between instantaneous elbow and shoulder angular positions
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vides a mathematical representation of the kinematics of planar human
arm motion coordination. Arguing that an internal inverse, time-



are observed across a range of tasks and speeds (Lacquaniti & Soechting,
1982, Soechting & Lacquaniti, 1981). Based on these observed time in-
variances in human movement, this paper theorizes that the fundamental
internal model employed for motor coordination is based on a geometric
mapping of position and higher order motion properties. While signifi-
cant research has focused on explaining observed hand trajectories with
dynamics-based theories (Hollerbach & Flash, 1982), this work proposes
that an internal inverse dynamic model is an additional layer of a unified,
coherent model for motion planning whose foundation is kinematic. The
separation offers computational benefits compared to an exclusively dy-
namic model in which the mappings for geometrically equivalent motions
would be stored completely separate from one another.

Consider that a pianist sight-reading a piece of new music plays the
notes more slowly than prescribed by the piece, but in proper relation
to one another. At this stage, he is learning the kinematic geometry
of the finger motion represented in a mathematical model by the in-
stantaneous speed ratios. Experimental studies show that the ratios
between interstroke intervals in piano playing are in fact independent
of duration (Soechting et al., 1996). After gaining experience with the
piece, he “plays back” the same kinematic finger geometry at increas-
ing speed until mastering it at the proper tempo. When teaching the
piece to someone else, though, the pianist can still demonstrate it at
slower speeds because his CNS has learned the piece by separating the
time-invariant and time-dependent aspects of the motion.

Roth, 2004 showed how to derive geometric properties from time-
based planar 1-DOF motions and to determine all time-dependent mo-
tions that generate trajectories with identical geometric properties. His
work inspired the idea introduced in this paper that Curvature The-
ory offers a compact mathematical representation of the internal inverse
kinematic model humans use for motor coordination. The focus here,
though, is 2-DOF motion, so the formulation follows closely Lorenc et al.,
1995, who presented a general form of planar 2-DOF Curvature Theory
and applied it to trajectory generation in planar path tracking systems.
While they suggested use of a processed video image to calculate the
instantaneous speed ratios required for coordination of robotic systems,
humans are more likely to “learn” the speed ratios required to execute
a desired motion over the course of several motions. Furthermore, the
CNS likely applies the internal kinematic model for motion planning in
a feed-forward control loop augmented by a feedback loop that allows
adaptation to novelty in the current situation (Atkeson, 1989).

This paper applies 2-DOF Curvature Theory to be a mathematical
description of how a human’s internal kinematic model could be built
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Figure 1. General planar motion of a point P in moving frame M .

over the course of several hand motions. This building of the internal
model may be how the CNS learns to coordinate arm movement. The
motivation for the work is ultimately to achieve a better understand-
ing of human motor coordination, with potential applications such as
enhancing rehabilitation for stroke patients.

2. Internal Kinematic Model
The internal kinematic model for planning multi-joint arm movements

is an inverse model that maps desired hand motion to required shoul-
der and elbow motions. Time invariance provides for model compact-
ness, which should reduce the CNS’s computational load. The proposed
mathematical representation of this model assumes that wrist motion is
decoupled from elbow and shoulder motions to separate the problems of
positioning and orienting the hand, which has been observed in human
reaching (Lacquaniti & Soechting, 1982). The formulation also assumes
that motion planning takes place in the visual coordinate system defining
the output space and sensing takes place in a kinesthetic coordinate sys-
tem defining the control space (Soechting & Lacquaniti, 1981, Morasso,
1981). The model focuses on planar reaching motions, which involve
only the 2 DOF’s associated with positioning the wrist in the plane.

Mathematical Formulation. Frame M
is shown in Fig. 1. The coordinates of the
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moving in a plane with res-
pect to fixed frame F



Figure 2. Planar RR representation of the human arm with the canonical coordinate
system located at the elbow.

origin of M in F are (a, b), and φ is the orientation of M with respect
to F . Point P has coordinates (x, y) in M and (X, Y ) in F , related as,

{
X
Y

}
=
[
cos φ − sinφ
sin φ cos φ

]{
x
y

}
+
{

a
b

}
. (1)

If point P is the wrist center, M is fixed in the forearm and F is fixed
in the trunk for purposes of positioning the hand relative to the body.
An additional transformation would be required to relate these frames
to the environment since the trunk-fixed and visual coordinate systems
do not coincide (Schmiedeler et al., 2004). In Fig. 2, the arm is repre-
sented by the two-link RR open chain in which OA and A indicate the
shoulder and elbow joints, respectively. The angular displacements of
the upper arm and forearm are λ and µ, and the motion variables are
functions of these: a = a(λ, µ), b = b(λ, µ), φ = φ(λ, µ). Without loss of
generality, the depicted position is taken to be the zero position. Using a
trailing subscript to indicate a derivative evaluated in the zero position(
i.e. Xλ = ∂X

∂λ |λ,µ=0, Yλµ = ∂2Y
∂λ∂µ |λ,µ=0

)
, the second-order Taylor series

expansion of Eq. 1 about the zero position is,
{

X
Y

}
=
{

x + Xλλ + Xµµ + 1
2(Xλλλ

2 + 2Xλµλµ + Xµµµ
2)

y + Yλλ + Yµµ + 1
2(Yλλλ2 + 2Yλµλµ + Yµµµ

2)

}
, (2)

where Xλ = aλ−yφλ, Yλµ = bλµ+xφλµ−yφλφµ, etc. The time dependent
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motion of point P with respect F is obtained by differentiating

{
Ẋ
Ẏ

}
=
{

(−yφλ + aλ)λ̇ + (−yφµ + aµ)µ̇
(xφλ + bλ)λ̇ + (xφµ + bµ)µ̇

}
, (3)

{
Ẍ
Ÿ

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−yφλ + aλ]λ̈ + [−yφµ + aµ]µ̈
+[−x(φλλ̇ + φµµ̇)φλ − y(φλλλ̇ + φλµµ̇) + aλλλ̇ + aλµµ̇]λ̇
+[−x(φλλ̇ + φµµ̇)φµ − y(φµµµ̇ + φλµλ̇) + aµµµ̇ + aλµλ̇]µ̇

[xφλ + bλ]λ̈ + [xφµ + bµ]µ̈
+[x(φλλλ̇ + φλµµ̇) − y(φλλ̇ + φµµ̇)φλ + bλλλ̇ + bλµµ̇]λ̇
+[x(φµµµ̇ + φλµλ̇) − y(φλλ̇ + φµµ̇)φµ + bλµλ̇ + bµµµ̇]µ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(4)

The simplest description of the motion is obtained in the canonical co-
ordinate system (Bottema & Roth, 1979), which is desirable to provide
for model compactness. The canonical system satisfies three conditions:
1) frames M and F are instantaneously coincident in the zero position,
2) the Y y axes are aligned with the polar line, which in this case passes
through the shoulder and elbow joints, and 3) the instantaneously co-
incident origins of M and F are placed on the polar line such that at
least one of the three second order Taylor coefficients bλλ, bλµ, and bµµ
has zero magnitude. The remaining non-zero Taylor coefficients are the
instantaneous invariants. With the canonical coordinate system located
at the elbow, as shown in Fig. 2, the instantaneous invariants for the
planar RR mechanism are aλ = −l1, φλ = 1, φµ = 1, and bλλ = −l1.

3. Discussion
According to the proposed model, the instantaneous invariants ob-

tained here mathematically would be “learned” by the CNS. The CNS
would likely use information gathered over a substantial period of time
and resulting from many hand motions to determine the invariants. This
can be represented mathematically as the generation of Eqs. 3 and 4
multiple times over several hand motions and then solved simultaneously
for the invariants. This activity would be a continuous process when an
individual is growing since the length of the upper arm l1 changes. Even
later, refinement in the values of the invariants would be anticipated,
given that data obtained by the CNS is likely to contain noise.

The CNS’s planning and control of a desired new hand motion can
be explained in terms of the present model as follows. A target toward
which the hand will reach is typically defined in the visual coordinate
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Eq. 2 with respect to time.
to



system, and the corresponding hand path, typically a straight line, is
planned in the same coordinate system. The instantaneous geometry
of the path is thus defined, and the CNS maps the path geometry to
instantaneous first and second order speed ratios of the arm n and n′,
where n = λ̇

µ̇ and n′ = λ̈
µ̈ . Lorenc et al., 1995 show that the speed ratios

can be expressed in terms of the geometry of the path,

n = −aλ − θλyp
aµ − θµyp

(5)

n′ = n′ (aλ, aµ, θλ, θµ, aλλ, aµµ, aλµ, θλλ, θµµ, θλµ, n, (PJ)x) , (6)

where yp is the distance from the origin to the instant center and (PJ)x
is the projection of the inflection circle’s diameter through the instant
center onto the Xx axes. For the planar RR mechanism in Fig. 2, the
speed ratios are n = −yp+l1

yp
and n′ = (1+n)3(PJ)x

l1
.

The CNS does not measure yp and (PJ)x. Rather, these geometric
quantities represent in the present formulation the mapping that the
CNS learns through experience and updates with each new movement.
Once the speed ratios are obtained, the joint angles λ and µ can be
controlled using the second order Taylor series,

µ = nλ +
1
2
n′λ2, (7)

or its inverse that expresses λ as a function of µ. Regardless, the two
parameters are coordinated to instantaneously achieve the desired hand
motion. Further, the desired path can be traversed at any speed, as λ̇
and λ̈ can be chosen arbitrarily and µ̇ and µ̈ can be computed (or vice
versa) for the same speed ratios n and n′.

Since only second order coordination of λ and µ is presented here, the
model would require regular recalculation of speed ratios to accurately
track a desired hand path. As the hand moves away from the position
in which the speed ratios were calculated, the error in path-tracking
increases. Higher order coordination would reduce the error and require
less frequent updates for accurate tracking, suggesting a computational
trade-off between this approach and the regular updating of lower order
coordination. To detect these errors, visual and/or kinesthetic feedback
is required and would generally be expected throughout the course of the
motion. When an unanticipated disturbance is encountered, the desired
instantaneous path may be entirely redefined. The speed ratios can be
obtained again, with the motion shifting toward the new target.
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Figure 3. Example of motion planning showing desired and actual hand paths.

4. Numerical Example
As an example, the arm segment lengths are taken to be l1 = l2=500

mm. An arbitrary zero position of the arm-segments in which the fore-
arm is at an angle of 98 degrees relative to the Xx axis is shown in Fig.
3. The target location expressed in the canonical coordinate system is
( 183.4 mm, 134.8 mm), so the desired straight-line hand path toward
the target is 378 mm long. The instant center and inflection circle are

p=473.2 mm and
(PJ)x = 367.4 mm, along the Yy and Xx axes, respectively. Eqs. 5 and
6 yield speed ratios of n= 2.06 and n′=0.87, and Eq. 7 is then used
to compute angles λ and µ. In Fig. 3, λ is plotted in 5-degree incre-
ments to illustrate the motion. Near the zero position, the hand motion
closely tracks the desired path, but after λ has been incremented by 30
degrees, the hand position deviates from the path by 24.5 mm. This
highlights the need for regular feedback to update the motion planning
accomplished with the internal kinematic model.

5. Conclusion
This work applies an established formulation of 2-DOF Curvature

Theory to the coordination of planar human arm motion. The result is a
concise and computationally efficient model explaining the kinematics of
planar arm motion. The model requires knowledge of the instantaneous
invariants and the geometry of the desired path. The invariants are
the same for any planar motion, and the path tangent and curvature
represent the novelty in each situation. Mathematically, the invariants
are formulated, and the path properties measured. By analogy, the
CNS must learn through experience the mapping between the trajectory
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tangent and curvature in the output space (hand path and curvature)
and the control space (first and second order joint angle speed ratios)
that is mathematically defined by these geometric quantities. Since the
mapping is time invariant, a motion can be repeated at any speed. The
model also offers an explanation as to how a feed-forward and a feed-
back system may be employed by the CNS to coordinate the arm motion
with limited computational effort.
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Abstract 

already proposed optimization methods for assessment of joint centers of 
rotation. The segment lengths acquired from statistical anthropometry and 
those from the calculated centers of rotation do not differ notably. The joint 
angles estimated by our method and those from centers of rotation, are also 
comparable. The proposed method requires small number of markers which 
makes it suitable for the calibration of an instrumental glove. The results of 
the glove calibration show that its accuracy is limited to ±5º. 

Keywords: 

1.  Introduction  
Understanding of kinematics of grasping is a demanding task. 

Although first anthropomorphic hands were designed more than two 
decades ago, control of many degrees of freedom to carry out specific task 
remains to be a challenging problem. 

At the moment a generally accepted system for accurate noninvasive 
assessment of hand kinematics is not available. A well established 

Hand modeling, assessment of joint angles, instrumental glove calibration

The aim of the paper is to present a method for assessment of joint angles 

a kinematical model of human hand. The method was validated against 
in human fingers. The method is based on an optical tracking device and  

© 2006 Springer. Printed in the Netherlands. 

185
J. Lenar i  and B. Roth (eds.), Advances in Robot Kinematics, 185–192. 



 

technique, which does not hinder the movement as exoskeletons do, 
includes reflective markers, which are placed over bony landmarks. Due 
to its accuracy, the method can be taken as a reference. Modeling of 
upper extremity or finger kinematics is performed by using rigid bodies, 

assumed that a marker attached to the rigid body traces out a sphere or 
circle. The difficulty in capturing hand kinematics originates from 
relatively large number of degrees of freedom concentrated in a very 
small place. Large skin artifacts compared to the distances between 
markers, make the reconstruction of a frame attached to the rigid body 
even more difficult. Besides, the range of motion of some joints is very 
small. As a consequence, characteristic patterns of the finger motion are 
to be used in finding the centers of rotation (Miyata et al., 2004). In this 
case the number of markers can be reduced. 

The main drawback of optical tracking system is occlusion of markers. 

manipulation of an object. The object of this work is to develop a method 

calibration of an instrumental glove. 
The instrumental glove has been used in many experiments. In most 

cases the raw data from the glove was used. Significant effort in 
experiment design was made to compensate the offset in the response, 
which occurs when the bend sensors are fully extended, and to estimate 
the sensitivity of individual bend sensor. The claim that the calibration 
of the glove can be carried out by a set of specific hand movements is 
misleading. By the movements across the whole range of motion in finger 
joints, only the active range of analog to digital converters can be 
established. For a hand with known range of joint motions, rough 
estimates of joint angles can be given. However, due to the nonlinear 
response of the bend sensors, the accuracy can not be estimated. We are 

method. The described deficiency of the instrumental glove is most often 
hidden behind the statistical analysis of the data measured. The second 
aim of this work was instrumental glove calibration and its validation 
against the reference method. 
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which are linked together with the ball or hinge joints. In the opti- 
mization methods (Halvorsen et al., 1999, Zhang et al., 2003), it is 

not suitable for assessment of hand kinematics during dexterous 

This deficiency becomes obvious when the number of markers is inc- 
reased and it is the main reason why an optical tracking system is  

not aware of any article which would describe the results of measure- 
ments in actual units and compare those results with a reference 

M. Veber, T. Bajd and M. Munih

the reconstruction of hand kinematics and would be suitable for the 
using the minimal possible set of markers,  which would still enable 



 

2.  Methods  

2.1 
Hand kinematics can be described by Denavit-Hartenberg (D-H) 

notation. Four degrees of freedom (DOF) were used to describe each 
finger, two for metacarpophalangeal joint (MCP) flexion/extension (f/e) 

The center of wrist rotation was selected for the origin of the model. 
The base frame of the i-th finger ( i = 2, 3, 4, 5; j = 0 ) was attached to the 
center of i-th MCP joint. Transformation from the wrist frame to the i-th 
finger base can be described by Eq. 1, where PJi1x and PJi1z denote 
position of the i-th MCP joint relative to the wrist frame. Transformation 
from the frame j-1 to j ( j = 1, 2, …) can be described by Eq. 2, where 
parameters aj, dj, j, and j denote translations along x and z axis and 
rotations around x and z axis respectively. 
 

        0 1 1( ,0, ) ( /2) ( )w i i x i ztrans PJ PJ roty rotxT            (1) 
 

             1, ( ) (0,0, ) ( ,0,0) ( )j j j j j jrotz trans d trans a rotxT          (2) 
 

Position and orientation of the i-th fingertip can be obtained by post-
multiplication of transformation matrix in Eq. 1 by matrices from Eq. 2. 

i2

denotes i3 from PIP to DIP 
joint, i4 the length of i-th proximal phalanx.   

Table 1. Denavit-Hartenberg parameters for fingers 
 

 d a    d a  
i1 0 0 /2  i3 0 PJi3 0 
i2 0 PJi2 0  i4 0 PLi4 0 

 
The model was parameterized by hand length and by palm width, as 

proposed by Buchholz et al., 1992. 

The joint angles were obtained by solving the inverse kinematics 
problem. Each finger is a serial manipulator with four internal variables 
q0, q1, q2, and q3 which are related to MCP ab/ad and MCP, PIP, and DIP 
f/e respectively. A direct solution of finger inverse kinematics can be 
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2.2 Inverse Kinematics 

Kinematic Model of a Human and H

–

and PL
the distance from i-th MCP joint to PIP joint, PJ

D-H parameters are collected within Table 1 , where parameter  PJ

and abduction/adduction (ab/ad) and two for the proximal interphalangeal
(PIP) and distal interphalangeal (DIP) joint f/e. The model of a thumb is 
not covered in this paper.  



 

obtained when the fingertip position and its orientation are given. When 
only fingertip position M[XM, YM, ZM] is known, the simplification from 
Eq. 3 can be applied. It is justified as f/e angles of PIP and DIP joints are, 
due to the anatomical structure of ligaments, not independent. 
Coefficients c which describe the correlations of PIP and DIP joint angles, 
were reported by Kamper et al., 2003. 
 

3 2q cq                        (3) 
 

 

2 2 2
0 ,M ML X Y                (4) 

 

2 2 2
1 2

2 2
0 0 2 3

2 cos

  2 cos ,
prox mid prox mid

dist dist

L L L L L q

L L L L q q
    (5) 

 

2 2 2 2 2
2 3 0 02 cos 2 cos ,mid dist mid dist prox proxL L L L L q L L L L       (6) 

 

           1 arctan .M Mq Y X                 (7) 
 

Its solution is obtained by numerical computation which yields the 
angles , q2, and q3. Internal coordinate q0 can be according to Fig. 1 B 
calculated from Eq. 8. However, if position of DIP joint is known, an 
explicit solution of the inverse kinematics for q0, q1, and q2 can be 
written, while a good approximation of q3 is obtained with Eq. 3. 
 

             .arctan0 MM XZq            (8) 
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The triangle relationships in Fig. 1 A leads to a system of Eq. 4  to Eq. 7: 

Figure 1. Inverse kinematics of a finger, A flexion/extension, B abduction/adduction. 

A motion tracking system (Optotrak, Northern Digital Inc.) was 
used for validation of the model and DataGlove (DataGlove Ultra Series, 
5DT Inc., 14 DOF) kinematic calibration. The index and middle finger 
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kinematics of one subject, free from any musculoskeletal disorders, was 
considered. A set of two cameras was used in the investigation. Infrared 
markers were attached to the anatomical landmarks of the hand, above 
MCP, PIP, and DIP joints and on the fingertips. An additional three 
markers were attached to the hand dorsum. 

The initial data acquisition was performed for f/e of MCP joints with 
immobilized PIP and DIP joints, and f/e of PIP and DIP joints at fixed 
angle in MCP joints. The method validation and kinematic calibration of 
the glove comprised simultaneous f/e of MCP, PIP and DIP joints. The 
data from the motion tracking system and instrumental glove were 
recorded simultaneously. 

2.3 
A general method for lower or upper extremity joint axis and center of 

rotation (AoR, CoR) estimation is not appropriate for fingers. Satisfactory 
results can be obtained when markers are separated apart from each 
other as far as possible. This can be achieved by a small set of markers. 
3D parameter estimation problem for PIP and DIP joints was simplified 
to a 2D one, as proposed by Zhang et al., 2003. Parameters for estimation 
of PIP and DIP joint locations were obtained by minimizing a cost 
function defined by Eq. 9, where DPIP and DDIP denote the depths of PIP 
and DIP joints below surface marker and DPIPk and DDIPk the depths 
calculated for the k-th frame. N stands for the number of all frames. The 
average of the cost function is due to a non-uniform distribution of the 
acquired samples, weighted by wk. 
 

2 2

1

N

k PIPk PIP DIPk DIP
k

C w D D D D           (9) 
 

The calculation of the cost function is explained in Fig. 2. Lmid and Ldist 
denote lengths of middle and distal phalange and m are the positions of 
markers. The lengths Ldist, Lmid, DDIP, and DPIP are changed during 

 
 
 
 
 
 
 
 

Figure 2.  Calculation of PIP and DIP joint centers of rotation 
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Finger Joints Centers of Rotation 

Eq. 9. 
optimization subjected to linear constraints to obtain the minimum of 

.



 

In the case of MCP joint improved results can be obtained by using the 
marker which is distant from the joint, as proposed by Miyata et al., 
2004. The coordinate frame Cref, defined by markers mMCP, mPIP, and 
mDIP, was positioned to the PIP joint marker. Its z-axis formed a normal 
vector to the common plane defined by mMCP, mPIP, and mDIP, while x-axis 
pointed in the direction of the proximal phalange. The CoR for MCP joint 
was found by minimization of the cost function (Eq. 10), where Tk denotes 
a transformation matrix which moves the coordinate frame Cref from the 
initial (k=1) to the k-th (k = 2 , …, N) pose. cMCP represents a point, which 
is invariant to transformations Tk and can be taken for CoR of the MCP 
joint. The average is for similar reasons as in PIP and DIP joint CoR 
estimation weighted with wk. 

Parameters cMCP, Ldist, Lmid, DDIP, and DPIP were obtained during the 
initial data acquisition. The relative position of PIP and DIP joints was 
calculated from the calibration movements (simultaneous f/e of MCP, 
PIP, and DIP joints) as an intersection of circles, as shown in Fig. 2, 
while cMCP represented a standstill point within the coordinate frame 
attached to the hand dorsum. 
 

 2
MCP MCP

1

N

k k
i

C w T c c              (10) 
 

 

CoR estimation. 

3.  Results 
The hand width of a subject who took part in the study was 90 mm 

and hand length 204 mm. The mean lengths of proximal (Lprox), middle 
(Lmid) and distal phalanx (Ldist), which were obtained from CoR 

compared to the lengths estimated from hand external dimensions via 
scaling factors reported by Buchholz et al., 1992. 

The f/e angles in MCP, PIP, and DIP joints of index finger are 
presented in Fig. 3. They were calculated for the simultaneous flexion in 
MCP, PIP, and DIP joints. The angles acquired through inverse 
kinematics are presented with dash-doted line and compared to the 
reference angles, plotted with full lines. The reference angles were 
estimated from CoR. The mean differences and accompanying standard 
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of CoR. The lengths of finger segments were obtained as a by-product of 
The reference joint angles were calculated from the known positions 

estimation, are presented in Table 2 for index and middle finger. They are 

deviations are shown in Table 3. 
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Table 2.  Length  of  proximal, middle, and distal phalanx  of  index and  middle 
finger  
 

 From CoR 
Finger Lprox (mm) Lmid (mm) Ldist (mm) 
Index 47.35±0.65 25.37±0.60 23.81±0.08 

Middle 44.63±0.50 30.82±0.85 24.63±0.03 
 Statistically-based 

Index 45.48±0.45 25.96±0.21 22.99±0.06 
Middle 41.95±0.13 30.87±0.22 25.85±0.08 

and angles acquired through inverse kinematics 
 

Finger MCP (°) PIP (°) DIP (°) 
Index 2.7±1.7 7.9±2.9 6.3±2.1 

Middle 1.3±3.0 6.6±2.9 1.5±3.5 
 
One record of simultaneous f/e in MCP, PIP, and DIP joints, obtained 

from the optical tracking device and instrumental glove, was used for the 
glove calibration. Four records were used to validate the calibration. 
Joint angles for calibration were estimated through inverse kinematics. 
Analytic functions, which transform analog to digital converter raw 
values from the glove into the bend angles of individual sensors were 
obtained as a result of calibration. Angles reported by the calibrated 
glove were compared with the reference angles estimated from CoR. 

 
 
 
 
 
 
 

Figure 3. Validation of the method. 

 
 
 
 
 
 
 

Figure 4. Data Glove calibration results. 
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Table 3. Mean difference and standard deviation between reference joint angles 



 

The responses of bend sensors attached above the MCP and PIP joints 
of index finger are shown in Fig. 4 with dashed line. They are compared 
to the reference angles, which were acquired via estimated CoR, and are 
presented with full lines. The mean difference and standard deviation 
between joint angles recorded with the calibrated glove and the reference 

respectively. 

5.  Conclusions  
A method for assessment of finger joint angles and calibration of 

instrumental glove based on optical tracking system and a kinematic 
model of a hand has been proposed. The model and the method were 
validated against the methods for estimation of joint CoR. The results 
show that lengths of finger segments, which were obtained from external 
dimensions of the hand and from the CoR of joints, are comparable. The 
angles obtained by the proposed method slightly differ from reference 
angles, however, the number of markers which is to be used for the 
reconstruction of finger motion is considerably smaller. Only markers on 
fingertips and additional 3 markers on hand dorsum are required. The 
proposed method was used for the instrumental glove calibration and 
proved to be appropriate for this application. 
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Abstract This paper shows that it is possible to determine analytically all singular
configurations of the 9-DoF DLR medical robot setup for minimally
invasive applications. It is shown that the problem can be devided
into the determination of the singularities of the general 7-DoF DLR
medical arm and of the 2-DoF surgical instrument, used in a minimally
invasive application. The formula of Cauchy-Binet is used to calculate
the singularities of the redundant medical arm, and an interpretation of
this formula for any serial redundant robot design is given.

Keywords:
mally invasive surgery, optimization, robot design

1. Introduction

In robotically assisted minimally invasive applications, a surgical robot
is used to access the operating field inside the human body through small
incisions with thin cylindrical instruments. The design of such robotic
devices for medical applications is liable to exceptionally high require-
ments in terms of safety and reliability. A thorough analysis of the
robot’s kinematic structure is important to ensure complete reachability
as well as the absence of any singular configuration inside the desired
workspace. The desired workspace is usually defined by the operator
during a planning step, and serves to determine the optimal robot setup
(Adhami, 2002; Konietschke et al., 2004). The robot setup comprises the
position and orientation of the robot base and the position of the entry
point into the human body as well as any adjustable DH parameter (as
for example adjustable instrument lengths).
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The determination of the singular configurations of a robot is espe-
cially important in the case of teleoperation, where the exact path is
not known in advance. Though singular configurations can be detected
by monitoring in Yoshikawa,
1990; Konietschke et al., 2004, these measures are to the author’s knowl-
edge insufficient to signal vicinity to singular configurations. Since the
behaviour of robots near singularities is in most cases not very intuititive
for the operator, it is highly desirable to restrict the workspace admissi-
ble to the operator to a space that does not contain any singularities or
to control the robot in a way that singular configurations are avoided.
This is facilitated if an analytic description of all singularities of the
robot design is known, since the use of computationally cheap strategies
for singularity avoidance in analogy with well known strategies for joint
limit avoidance becomes possible.

In the next section, the kinematic structure of the considered robotic
system is presented. The singularities of the DLR medical arm and the
attached surgical instrument are given in the sections 3 and 4. Section 5
gives a short conclusion.

2. Kinematic tructure

The kinematic structure of the considered robot with the attached
actuated instrument and the used coordinate frames are shown in Fig. 1.
The medical robot itself has 7DoF (φ1...7) and the attached instrument
disposes of two additional DoF (φ8,9). The kinematic chain of the robot
itself is denoted thereafter as K1, that of the actuated instrument as K2.

In the following, the problem of determining the singular configura-
tions of the robot kinematics is divided into two subproblems. This is
possible due to the restrictions at the entry point (see section 4).

3. The ingular onfigurations of the DLR
edical rm

Written in the wrist frame {W}, the geometric Jacobian J of the
forward kinematics has the following form (Yoshikawa, 1990):(

vW

ωW

)
= Jφ̇ =

(
J11 0

J21 J22

)
φ̇, with

(
vW

ωW

)
(1)

the translational and rotational velocity of the wrist frame {W} and

J11, J21 ∈ R
3×4, J22 ∈ R

3×3 . (2)

A singular configuration occurs if the following determinant equals
zero:
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Figure 1. Kinematic description of the considered kinematic chains (K1 and K2)

∣∣JJT
∣∣ = 0. (3)

With the formula of Cauchy-Binet (see e g.Gantmacher, 1959), Eq. 3
can be transformed into a sum of squares of determinants:

∣∣JJT
∣∣ =

4∑
i=1

∣∣∣∣( Ji
11 0

Ji
21 J22

)∣∣∣∣2 +
3∑

i=1

∣∣∣∣( J11 0

J21 Ji
22

)∣∣∣∣2 , (4)

with Ji
mn the i-th submatrix (minor) obtained by suppressing column

i of the matrix Jmn. The terms of the first sum have a lower block
triangular form and can be combined to:

∑
i

∣∣∣∣( Ji
11 0

Ji
21 J22

)∣∣∣∣2 = |J22|
2
∑

i

∣∣Ji
11

∣∣2 = |J22|
2
∣∣J11J

T

11

∣∣. (5)

In the last step, the formula of Cauchy-Binet is applied inversely.
Since the sum in Eq. 4 consists of squared summands, all of them have to
equal zero in a singular configuration. Simplifications are possible with
consideration of the rank of the Jacobian. Due to the special structure
of J, a sufficient condition for a singular configuration is:

rank (J11) < 3 . (6)
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For the remaining singular configurations, a necessary condition is:

rank (J22) < 3 . (7)

Thus, the second sum of Eq. 4 has to be evaluated only for joint angles
that cause |J22| to be zero. The following singularities ei can thus be
determined, with k ∈ N:

e1 : φ4 = πk , (8)

e2 : φ2 =
π

2
+ πk ∧ φ3 =

π

2
+ πk , (9)

e3 : φ2 =
π

2
+ πk ∧ φ4 = ± arccos

(
−

a3

d5

)
+ 2πk , (10)

e4 : φ2 =
π

2
+ πk ∧ φ6 = πk , and (11)

e5 : φ5 =
π

2
+ πk ∧ φ6 = πk . (12)

The singular configuration e3 only appears if ‖a3‖ ≤ ‖d5‖. Details
about the zero points of the relevant determinants are given in the ap-
pendix. The classical “wrist singularity” (φ6 = πk) that occurs in many
6-DoF kinematic chains (consider for example a kinematic chain K ′

1
obtained with joint φ3 held constant) does only appear in conjunction
with additional conditions (Singularities e4,5). To illustrate this, the
pseudo inverse J+

a of the Jacobian Ja in the non singular configuration
φa = (0, 0, 0, π/2, 0, 0, 0)T as shown left in figure 2 is considered, writ-
ten in frame {I}:

J+
a = JT

a

(
JaJ

T

a

)−1
, J+

a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
1
a3

0 0 0 0 0

0 1
a3

0 0 0 − d5
a3

− 1
a3

0 − 1
d5

0 0 0

0 1
2 a3

0 1
2 0 − d5

2 a3

0 0 1
d5

0 1 0

0 1
2 a3

0 1
2 0 − d5

2 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

With d5/a3 ≈ 1, all joint velocities remain small for arbitrary rota-
tions of the tool tip. Particularly, pure rotation around an axis b as
shown left in Fig. 2 (perpendicular to the rotation axes of φ6 and φ7

and intersecting them), constituting the singular direction in case of a
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Figure 2. In case of the considered robot, pure rotations around the axis b can still
be performed even if φ6 = 0 (left). Only if also φ5 = π/2+πk, a singular configuration
occurs, as can be seen on the right where the norm ||J+

a ·(0, 0, 0, 0, 0, 1)T||2 is shown
as a function of the joint angle φ5.

kinematic chain as K ′

1 in this configuration, leads to the following (rea-
sonably small) joint velocities:

φ̇ = J+
a · (0, 0, 0, 0, 0, 1)T = (1, 0, −

d5

a3
, 0, −

d5

2 a3
, 0, −

d5

2 a3
)T. (14)

On the right of Fig. 2 the norm ||J+
a · (0, 0, 0, 0, 0, 1)T||2 is shown

as a function of the joint angle φ5 with all other angles remaining in
configuration φa.

3.1 Generalisation to the ase of a
with n-fold edundancy

The singular configurations of a general, n-fold redundant robot can
be calculated by considering the roots of the following determinant:

∣∣JJT
∣∣ =

(m+n)!
2(m!)∑
i=1

|Ji|
2 , J ∈ R

m×(m+n), (15)

with Ji representing all (m+n)!
2(m!) (different) matrices obtainable by sup-

pressing n columns of the Jacobian J. It can be seen from Eq. 15 that the
singularities of a serial redundant structure with m + n joints of which
n are redundant are identical with the intersection of the singularities of
all those robotic structures obtained by fixing any possible set of n joints
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of the redundant structure. It has to be noted however, that already for
the case of a 2-fold redundant robot with 8 DoF, 8!

2·6! = 28 minors have
to be considered, each of which being usually a rather complex function
of the joint angles φ.

4. Singularities of the nstrument in a inimally
nvasive pplication

The kinematics in minimally invasive applications have the peculiarity
of a fulcrum point where the surgical instrument enters into the human
body. At that point, a constraint is imposed upon the system, resulting
in a loss of two DoF. In order to regain full dexterity inside of the patient,
an articulated instrument can be used, adding two DoF (φ8 and φ9, see

To
analyze the singular configurations introduced by the fulcrum point and
the two extra DoF of the instrument, the following Jacobian matrix is
considered:

(
v9

ω9

)
= 6

9Jv

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ6

ẏ6

ż6

φ̇7

φ̇8

φ̇9

⎞
⎟⎟⎟⎟⎟⎟⎠

, 6
9Jv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d′7−d7

d′7
0 0 0 0 0

0 1 0 0 0 0

0 0
d′7−d7

d′7
0 0 0

0 0 1
d′7

0 −c7 −s7c8

0 0 0 −1 0 s8

− 1
d′7

0 0 0 −s7 c7c8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)
with v9 resp. ω9

{9} and (ẋ6, ẏ6, ż6) the translational velocities of frame {W}. The de-
terminant of 6

9Jv yields:

∣∣6
9Jv

∣∣ = −
(d7,a − d7)

2 c8

d2
7,a

, (17)

and a singular configuration can be stated when

c8 = 0 , (18)

with the axes z7 and z9 aligned. The singular configuration that
occurs if

d7,a = d7 (19)

corresponds to a configuration where the fulcrum point is coincident
with the origin of {W}. In this case, translations of the frame {W} are
partly restricted by the constraint of the fulcrum point, and an altered
Jacobian matrix (a matrix that takes into consideration the rotation of
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Fig. 3) to obtain full 6 DoF at the distal end of the instrument.

the translational and rotational velocity of frame



Figure 3. Kinematic description of the articulated instrument in MIS. The length
d′
7 signifies the distance between the wrist frame {W} and the fulcrum point.

frame {W} rather than its translation) would have to be considered.
Since, due to the design of the considered robot, the wrist joint cannot
be coincident with the fulcrum point this case is not further analyzed.

5. Conclusion

In this paper the analytical solution for the determination of all singu-
larities of the DLR medical robot with attached articulated instrument
is given. The use of the formula of Cauchy-Binet simplifies the equations
considerably and is suggested for the calculation of the singularities of
similar redundant kinematic structures. Particularly, the singular con-
figurations of both the DLR light weight robots II and III (7-DoF robots)
can be easily determined. As for the DLR medical robot, all singularities
except for e1 (φ4 = πk) and e5

(
φ5 = π

2 + πk ∧ φ6 = πk
)

are outside of
the joint limits.

Appendix

The relevant determinants yield:

|J22| = −s6,
∣∣J1

11

∣∣ = −a3d5c3s4 (d5c4 + a3) ,

∣∣J2
11

∣∣ = a3d5c2s3s4 (d5c4 + a3) ,
∣∣J3

11

∣∣ = a3d5s4 (s2c3 (a3 + d5c4) + d5c2s4) ,
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∣∣J4
11

∣∣ = 0,

∣∣∣∣( J11 0

J21 J1
22

)∣∣∣∣ = −a3d5c2s4 (d5s6 + a3s4c5c6 + a3c4s6) ,

∣∣∣∣( J11 0

J21 J2
22

)∣∣∣∣ = a2
3d5c2s

2
4s5s6,

∣∣∣∣( J11 0

J21 J3
22

)∣∣∣∣ = a2
3d5c2s4c5;

The determinants equal zero for the following joint angles:

∣∣J1
11

∣∣ = 0 : φ3 =
π

2
+πk ∨ φ4 = πk ∨ φ4 = ±arccos

(
−

a3

d5

)
+2πk;

∣∣J2
11

∣∣ = 0 : φ2 =
π

2
+πk ∨φ3 = πk ∨φ4 = πk ∨φ4 = ±arccos

(
−

a3

d 5

)
+2πk;

∣∣J3
11

∣∣ = 0 : φ4 = πk ∨ φ2 = ±arctan

(
s4d5

c3 (d5c4 + a3)

)
+ πk,

∣∣J4
11

∣∣ = 0∀φi;∣∣∣∣( J11 0

J21 J1
22

)∣∣∣∣
s6=0

= 0 : φ2 =
π

2
+ πk ∨ φ4 = πk;∣∣∣∣( J11 0

J21 J2
22

)∣∣∣∣
s6=0

= 0,∀φi;∣∣∣∣( J11 0

J21 J3
22

)∣∣∣∣
s6=0

= 0 : φ2 =
π

2
+ πk ∨ φ4 = πk ∨

π

2
+ πk;
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ON THE INVERSE KINEMATICS OF A

FRAGMENT OF PROTEIN BACKBONE
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Abstract This paper studies the structure of the inverse kinematics (IK) map of a
fragment of protein backbone with 6 torsional degrees of freedom. The
images (critical sets) of the singularities of the orientation and position
maps are computed for a slightly idealized kinematic model. They yield
a decomposition of SO(3) and R

3 into open regions where the number
of IK solutions is constant. A proof of the existence of at least one
16-solution cell in R

3
× SO(3) is given and one such case is shown.

Keywords: Protein backbone, inverse kinematics, critical sets

1. Introduction

A protein (Creighton, 1993) is a sequence of amino-acids connected
by peptide bonds. It is often modeled as a serial linkage, the backbone,
with short side-chains. Each amino-acid contributes three atoms – N,
Cα, and C – and two torsional degrees of freedom (dofs) to the backbone
(Fig. 1). These dofs correspond to the dihedral angles φ and ψ around
the N– Cα and the Cα– C bonds. The inverse kinematics of the backbone

Let F be a backbone fragment with 6 dihedral angles φ and ψ, and f
be its forward kinematics. It is well-known that the number of solutions
of the inverse kinematics (IK) map f−1 has 16 as an upper bound, but
it has often been questioned whether this bound is tight (Coutsias et

poses of the moving frame T of F . Here, we study the global structure
of f−1 over the entire 6-D manifold of poses of T in R3 × SO(3). The
images of the singularities of f are the critical poses, which, according
to the Morse-Sard theorem, decompose the noncritical part of the image
into open regions, such that in each region E, f−1(x) for each x ∈ E
contains the same number of points. These decompositions of the 6-D
manifold can be very complex, so we study the position map p and an
orientation map ρ separately. It turns out ρ is quite easy to understand
and the original question reduces to studying the projection to R3 from
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is of considerable interest in biology (Coutsias et al., 2004).

al.,
2004). Available algorithms only compute these solutions for given



the inverse images of ρ. Given the frame associated to T , the set of
configurations that give the frame is either a copy of (S1)3 or a copy
of the disjoint union (S1)3 � (S1)3. Focusing on these (S1)3, we can
compute p−1 more efficiently and we find regions with 16 inverse image
points. This result is reasonable since a 6-dof protein fragment does not
satisfy any of the conditions under which the IK of a 6-dof serial linkage
has less than 16 solutions (Mavroidis and Roth, 1994).

2. Kinematic Model of a Protein Fragment

Let F be a 6-dof fragment of a protein backbone as illustrated in
Fig. 1. The coordinates of F are the 3 dihedral angles φi around the
bonds Ni– Ci

α, and the 3 dihedral angles ψi around the bonds Ci
α–Ci. For

convenience, we rename φi by θ2i−2 and ψi by θ2i−1, so each conformation
of F is specified by a 6-tuple θ = (θ1, . . . , θ6) ∈ (S1)6.

We represent F by a kinematically equivalent sequence of 3 identical
units, each made of two perpendicular links, a “long” one of length �2

and a “short” one of length �1, as shown in Fig. 2. We number the links
1, 2, . . . ,6, so that each link 2i − 1 is a long link and each link 2i is a
short link. Angle θ2i−1 rotates short link 2i about long link 2i − 1. So,
each short link moves in a plane perpendicular to the preceding long
link. Angle θ2i rotates the long link 2i+1 about an axis parallel to long
link 2i−1 and passing through the extremity of short link 2i. Link 2i+1
makes the constant angle α = 19 degrees with the plane perpendicular
to link 2i − 1. Finally, we add a long link 7 to F . This is the link
associated with the moving frame T .

We summarize these remarks and put them into a mathematical set-
ting as follows. Set

Ri =

[
cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

]
, L =

[
− sin(α) 0 cos(α)

0 −1 0
cos(α) 0 sin(α)

]
,

where α ∼ .105556π is fixed and LT = L−1 = L. Then, the orientations
of the frames are given by

O1 = I3×3, O2i = O2i−1R2i−1, O2i+1 = O2iR2iL,

and f is the composition of p and ρ with

p : (S1)6 → R
3, θ → (R1;2L + R1;2LR3;4L)v1

+ (R1 + R1;2LR3 + R1;2LR3;4LR5)v2, (1)

ρ : (S1)6 → SO(3), θ → R1;2LR3;4LR5;6L, (2)

where Ri;j = RiRj, v1 = [0, 0, �2]
T , and v2 = [�1, 0, 0]T .

This paper studies the structure of the inverse kinematics f−1 =
(p, ρ)−1. Noticing that for any (X,R) ∈ R3 × SO(3),

(p, ρ)−1(X,R) = p−1(X) ∩ ρ−1(R),
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Figure 2. Equivalent model

we proceed in two steps. First, we derive the inverse orientation map
ρ−1 : SO(3) → (S1)6 and show that in general ρ−1(R) is the disjoint
union of two 3-D tori M1 and M2. Next, we compute p−1

k (X), where
pk, k ∈ 1, 2, is the map p with its domain restricted to Mk.

3. Inverse Orientation Map

Reduction. In Eq. (2) only the sums θ2i−1+θ2i appear. So, we write
τi = θ2i−1 + θ2i, i = 1, 2, 3, and τ = (τ1, τ2, τ3). As θ runs over (S1)6,
τ runs over the 3-D torus (S1)3, and ρ factors as composition

ρ = ρ̂ ◦ (+) : (S1)6 → (S1)3 → SO(3)

where ρ̂ : (S1)3 → SO(3), τ → Rτ1LRτ2LRτ3L. Rτi
is the rotation of

angle τi around the z axis. Given R ∈ SO(3), the values of ρ̂−1(R) are
the solutions of ρ̂(τ) := Rτ1LRτ2LRτ3L = R, which is equivalent to:

ρ̂(τ)L := Rτ1LRτ2LRτ3 = RL. (3)

Since ρ̂(τ)L defines the frame on the z-axis, (which is fixed by Rτ3 ,
we further reduce Eq. (3) by eliminating the variable τ3. To do this, we
define Az : SO(3) → S2, R → Rz, where z = [0, 0, 1]T and S2 denotes
the unit 2-D sphere. Since Az(Rτ3) = z, applying Az to both sides of
Eq. (3) yields:

Az(ρ̂(τ)L) := Rτ1LRτ2Lz = RLz (4)

where Rτ1LRτ2L defines the orientation of the z-axis of frame 6 in W .
We can solve this equation for (τ1, τ2). The value of τ3 is then uniquely
determined by:

Rτ3 = (Rτ1LRτ2L)T RL. (5)
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computed with γ = π and d = −0.32.

To each solution τ = (τ1, τ2, τ3) of Eqs. (4) and (5) corresponds a set of
values of θ = (θ1, ..., θ6) such that θ2i−1 + θ2i = τi for i = 1, 2, 3. This
set is a 3-D torus (S1)3.

Singular set. The singularities of ρ̂ are the points in (S1)3 where the
3 × 3 Jacobian matrix Jρ̂ has rank less than 3. When working with Lie
groups, the Jacobian is (dρ̂)ρ̂−1. This gives a map to the Lie algebra.
The Lie algebra of SO(3) is 3-dimensional and a change of basis gives
Jρ̂ = [z, Rτ1Lz, Rτ1LRτ2Lz], z as above. Jρ̂ has at least rank 2. It
has has rank exactly 2 if and only if: det(Jρ̂) = sin(τ2) cos(α) = 0. As
cos(α) �= 0, the singular set of ρ̂ is {τ | τ2 = 0} ∪ {τ | τ2 = π}.

Critical set and number of solutions. The quotient map η :
(S1)3 → SO(3) → S2 that appears in the left-hand side of Eq. (4),
has the same singular set as ρ̂. The critical set of η – i.e., the image
of {τ | τ2 = 0} ∪ {τ | τ2 = π} – is the union of C1 = Rτ1Rτ3z = z
and C2 = Rτ1LRπLRτ3z = Rτ1LRπLz for all τ1 ∈ S1. C1 is the
point that corresponds to the situation where the z-axes of W and
frame 6 are parallel. Indeed, when τ2 = 0, the z-axis of frame 6 is
parallel to the z-axis of W for any value of τ1. On the other hand,
Rτ1LRπLz = [(sin(2α) cos(τ1), sin(2α) sin(τ1), − cos(2α)]T , so C2 is the
circle perpendicular to the z-axis and passing through the point LRπLz.
See Fig. 3.

The inverse map η−1, hence ρ̂−1, has a constant structure in C1, C2,
and in each of the two open subsets of S2 bounded by C1 and C2. We
notice that: L(LRτ2Lz) = [cos(α) cos(τ2), cos(α) sin(τ2), sin(α)]T . So,
LRτ2Lz is a circle perpendicular to Lz contained in the subset of S2
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tween C1 and C2, except at τ2 = 0 and τ2 = π where it coincides withC1

and C2, respectively (Fig. 3). For any fixed τ1 ∈ S1, the set Rτ1LRτ2Lz
is the circle obtained by rotating LRτ2Lz by τ1 around the z axis. Thus,
for every point s in the region between C1 and C2, Rτ1LRτ2Lz contains
s for two distinct values of τ1. We conclude that η−1 has two values
(τk

1 , τk
2 ), k = 1, 2. In C1, s = z and η−1(s) = {(τ1, 0) | τ1 ∈ S1}. For

any s ∈ C2, η−1(s) has a single value of the form (τ1, π). Elsewhere
η−1(s) is empty.

Corresponding to each value (τ1, τ2) of η−1(s) there is a unique value
of τ3 given by Eq. (5), hence a single value of ρ̂−1(R). Thus, as we
initialize an orientation R ∈ SO(3) not in the critical sets C1 and C2,
ρ−1(R) is the disjoint union of two 3-D tori, written Mk, k = 1, 2.

4. Inverse Position Map

Restriction to Mk. We now study p−1
k (X), where X ∈ R3 and pk,

k ∈ 1, 2, is the position map p with its domain restricted to Mk. Since
θ2j−1 + θ2j, j = 1, 2, 3, are constant on Mk and equal to τ k

j , each point
on Mk is uniquely defined by the values of θ1, θ3, and θ5. Eq.(1) yields:

pk : (S1)3 → R3, (θ1, θ3, θ5) → v0,k +(R1 +Rτk
1
LR3 +Rτk

1
LRτk

2
LR5)v2

where v0,k = (Rτk
1
L + Rτk

1
LRτk

2
L)v1 is a constant vector and {R1v2},

{Rτk
1
LR3v2}, and {Rτk

1
LRτk

2
LR5v2} are constant circles of radius �1 con-

tained in three different planes.
Computing p−1

k (X) amounts to solving the equation:

X ′ = p̂k(−θ2, θ3, θ5) := R−2v2 + LR3v2 + LRτk
2
LR5v2, (6)

where X ′ = RT
τk
1
(X − v0,k) and R−2 is the rotation of −θ2 around z.

Critical set. Here we directly determine the critical positions X ′

where the number of solutions of p̂k changes. We rewrite Eq. (6) as:

X ′ − r(w) = q(t, u), (7)

where we rename the variables as t = −θ2, u = θ3, w = θ5, and γ = τk
2 .

X ′−r(w) is a unit circle centered at X ′ and q(t, u) spans a quartic surface
Q in R3. Q is the Minkowski sum of two circles, so it is bounded and
connected. Eq. 7 can be solved by computing the intersections between
X ′ − r(w) and the coss-section curve of Q by the plane containing X ′ −
r(w). We compute r(w) = x̂cw+ŷsw. x̂ = [s2

αcγ+c2
α, sγsα, sαcα(1−cγ)]T

and ŷ = [−sαsγ , cγ , cαsγ ]T form an orthonormal basis for the plane
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The

containing the circle r(w). Setting ẑ = x̂ × ŷ, the equation of the plane
containing X ′ − r(w) is:

ẑT q = d (8)

where d = ẑT X ′. We let Pd denote the plane defined by this equation.
When X ′ spans R3, Pd translates, but its orientation remains constant.

On the other hand, we can easily compute:

q(t, u) = [ct − sαcu, st − su, cαcu]T . (9)

By replacing q by this expression in Eq. (8), we get the equation of the
cross-section Qd of Q by Pd in terms of (t, u):

c(u−γ) + K(γ)s(t+β) =
d

cα

(10)

where cβ = −
sγ

K(γ) , sβ =
sα(1−cγ)

K(γ) , and K(γ) =
√

s2
γ + s2

α(1 − cγ)2.

The number of intersection points in Qd ∩ (X ′ − r(w)) varies as X ′

runs over R3. The X ′ such that the circle is tangent to Qd form the
critical set X ⊂ R3 of p̂k. Let dmin and dmax be the extreme values
of d between which the plane ẑT q = d and Q intersect. For any d ∈
[dmin, dmax], the values of X ′ such that X ′ − r(w) lies in the plane Pd

and is tangent to Qd form a curve Xd called the discriminant curve at d.
The union of the discriminant curves for d in [dmin, dmax] is the critical
surface X of p̂k. Fig. 4 shows a discriminant curve, with several cusp
and self-intersection points. An animation of both the cross-section of
Q and the corresponding discriminant curve when d varies is available
at www.stanford.edu/~phwu1/curve when γ = π.
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Figure 7. The cusp curves when γ = π. Figure 8. Four of the 16 solutions.

Decomposition of R3 into regions. The surface X decomposes
R3 into open 3-D regions such that the number of solutions of the inverse
position map is constant over each one. We first compute the decompo-
sition of a plane Pd by Xd. Next, we partition [dmin, dmax] into smaller
open intervals, such that over each such interval the discriminant curves
Xd are equivalent. We get the decomposition of R3 by “stacking” the
decompositions in the successive intervals.

Decomposition of Pd: We sweep a line L parallel to the y-axis across
the plane Pd from left to right to construct a set S of sub-regions and
their adjacency relations. S is initialized to the empty set. During the
sweep, whenever L crosses a cusp point, a self-intersection point, or a
vertical tangency point, sub-regions are added to S and the adjacency
relation is updated. When the sweep is completed, adjacent sub-regions
in S not separated by Xd are merged to form the decomposition of Pd.
The outcome is a planar graph in which the nodes are the computed
regions and the edges represent the adjacency relation. The number
of solutions of the inverse position map varies by 2 at each crossing
of a region boundary. We compute cusp and self-intersection points
numerically by approximating the discriminant curve by line segments.
Fig. 6 shows the graph computed from the discriminant curve shown in
Fig. 4. An animation of the discriminant curve and the corresponding
graph when d varies is available at www.stanford.edu/~phwu1/curve when
γ = π.

Decomposition of R3: As d varies from dmin to dmax, the planar graph
in Pd changes only at a finite number of critical values of d, which we
denote di, i = 1, ...,m. Over each open interval (di, di+1), i = 0, ...,m,
with d0 = dmin and dm+1 = dmax, the discriminant curves are equivalent
and the planar graph remains constant. Let Gi be the planar graph in

Inverse Kinematics of a Fragment of Protein Backbone 207



interval (di, di+1). The decomposition ofR3 is obtained by merging every
pair of regions from Gi and Gi+1, for all i = 0, ...,m, that are adjacent,
but not separated by X . The corresponding nodes of the planar graphs
are also merged to obtain the graph of the decomposition of R3.

The 2-D surface X is made of smooth patches separated by cusp and
self-intersection curves. The cusp (resp. self-intersection) curves are
the locus X cusp (resp. X self

the discriminant curves Xd when d varies. The critical values of d are
contributed by X\(X cusp∪X self), X cusp, and X self . For lack of space, we
do not describe their computation here. Fig. 7 shows X cusp for γ = π.

5. Existence of a 16-Solution Cell

Theorem 1 There exists a nonempty open region in R3 × SO(3) such

that for all (X,R) in this region, (p, ρ)−1(X,R) contains 16 points.

Proof: Consider first an orientation R0 ∈ SO(3) that lies in the critical
circle C2. ρ−1(R0) is a copy of (S1)3. There is a nonempty open region
E0 ⊂ C2 such that for all R in E0, p(ρ−1(R)) has an open region U so that
p−1(X) contains 8 points for X ∈ U (see Fig. 6). Let R′ be a noncritical
orientation that is close to R0. Then ρ−1(R′) is a disjoint union of two
3-D tori Mk, k = 1, 2. For each pk, there exists a nonempty open region
Ek with 8 inverse image points. Moreover, for R′ sufficiently close to
R0, E = E1 ∩E2 is nonempty. Then (p, ρ)−1(X,R′) has 16 solutions for
all X ∈ E.

Using the idea in the proof, we constructed the following pose (X,R)
of T :

X =

[
1.9760
4.5809

−2.2402

]
and R =

[
0.6742 −0.3715 −0.6383
0.2378 −0.7091 0.6638

−0.6992 −0.5993 −0.3897

]
,

such that (p, ρ)−1(X,R) contains 16 solutions (for a fragment in which
�1 = 1 and �2 = 3). Four of them are shown in Fig. 8. (It is easily seen
that the existence of 16-solution cell is independent of the link lengths
as long as the short links all have the same length.)
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PREDICTING REACHING POSTURES
USING A KINEMATICALLY
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Abstract We present a new muscle effort criteria for predicting physiologically
accurate upper limb motion in human subjects based on skeletal kine-
matics, muscle routing kinematics, and muscle strength characteristics.
The new criteria properly accounts for the cross-joint coupling associ-
ated with the routing kinematics of multi-articular muscles. We also
employ a new kinematically constrained model of the human shoulder
complex, which is critical for the proper evaluation of our muscle effort
criteria. Through a set of subject trials we have shown good correlation
between natural reaching postures and our proposed criteria.

Keywords:

1. Introduction
The prediction and synthesis of human movement has presented a

daunting challenge to the biomechanics, neuroscience, and robotics com-
munities. In the presence of this challenge there is a significant motiva-
tion to understand and emulate human movement. Given a specific task
the prediction of kinematically redundant upper limb motion is a prob-
lem of choosing one of a multitude of control solutions which all yield
kinematically feasible solutions. It has long been observed that humans
resolve this redundancy problem in a relatively consistent manner (Lac-
quaniti and Soechting, 1982; Kang et al., 2005). For this reason general
mathematical models have proven to be valuable tools for motor control
prediction across human subjects.

Many of the models for predicting human arm movement, including
the minimum work model (Soechting et al., 1995) and the minimum
torque-change model (Uno et al., 1989), do not involve any direct in-
clusion of muscular properties such as routing kinematics and strength
properties. Even models described as employing biomechanical variables
(Kang et al., 2005) typically employ only variables derivable purely from
skeletal kinematics and not musculoskeletal behavior. We feel that the
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utilization of a model-based characterization of muscle systems (Zajac,
1993; Delp and Loan, 2000), which accounts for muscle kinematic and
strength properties, is critical to authentically simulating human mo-
tion since all human motion is rooted in, and bounded by, physiological
capabilities.

We will present a new methodology for predicting arm configuration
in reaching movements by examining the muscular effort required to
perform positioning tasks. This is built upon the work of Khatib et al.,
2004, but involves a number of improvements in methodology. An im-
portant element of this approach is the implementation of a sufficiently
sophisticated musculoskeletal model of the upper limb that accounts for
kinematic coupling between the constituents of the human shoulder com-
plex (Holzbaur et al., 2005). This provides fidelity in predicting muscle
forces, joint moment arms, and resulting muscle induced joint moments,
particularly in the shoulder complex. With our methodology and phys-
iological models we show that natural task-driven human arm postures
can be predicted accurately using a criteria based on a skeletal kine-
matics, muscle routing kinematics, and muscle strength characteristics.
This is validated through a set of targeted subject trials.

2. Human Upper Extremity Model
The upper extremity model of Holzbaur et al., 2005, has been em-

ployed, with some modification, in this work. The model, consisting of a
shoulder complex and a lower arm, has been implemented in the SIMM
(Software for Integrated Musculoskeletal Modeling) environment (Delp
and Loan, 2000). A minimal set of 7 generalized coordinates were chosen
to describe the configuration of the shoulder complex, elbow, and wrist
(3 for the shoulder complex, 2 for elbow flexion and pronation, and 2 for
wrist flexion and deviation). This is depicted in Fig. 1.

Fidelity in predicting muscle action was an important requirement
for the model employed in this work. In particular, proper kinematics of
the shoulder complex is critical in generating realistic muscle paths and
associated joint moments. While the purpose of the shoulder complex is
to produce spherical articulation of the humerus, the resultant motion
does not exclusively involve motion of the glenohumeral joint (see Fig.
1). The shoulder girdle, which is comprised of the clavicle and scapula,
connects the glenohumeral joint to the torso and produces some of the
motion associated with the overall articulation of the humerus. While
this motion is small compared to the glenohumeral motion its impact on
overall arm function is significant (Klopčar and Lenarčič, 2001; Lenarčič
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Figure 1. (Left) Constituents of the shoulder complex including the scapula, clavi-
cle, and humerus. The glenohumeral joint produces spherical motion of the humerus.
The shoulder girdle attaches the glenohumeral joint to the torso and influences the
resultant motion of the humerus. (Right) Kinematic parameterization of the model
of Holzbaur et al.

et al., 2000). Part of this impact is related to the shoulder girdle’s
influence on the muscle routing kinematics.

The constrained movement of the shoulder girdle was determined from
the shoulder rhythm regression analysis of de Groot and Brand, 2001.
The model obtained from this regression analysis was shown to fit well
for an independent set of shoulder motions and on a different set of sub-
jects than was used for the regression analysis. For these reasons the
model of de Groot and Brand is considered to be superior in predicting
shoulder motion than a simple unconstrained model which only reflects
glenohumeral rotation. Using the results of de Groot and Brand the
constraints that model the shoulder girdle are implicitly handled, with
all motions of the shoulder girdle being dependent on the three gleno-
humeral rotation coordinates. These are elevation plane, q1, elevation
angle, q2, and shoulder rotation, q3.

Due that fact that SIMM restricts any joint motion to a function of a
single independent generalized coordinate, the regression equations were
simplified by Holzbaur et al. to be a function of only thoracohumeral
(humerus elevation) angle, q2. The shoulder kinematics for this param-

The terms d1, d2 , and d3 1

Q7
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Table 1. Shoulder kinematics using a minimal set of generalized coordinates.

Translation Rotation

clavicle
tdc = d1

t
cQ = Q

1
(c1q2)Q2

(c2q2)

scapula
tds = tdc + t

cQd2
t
sQ = Q

3
(c3q2)Q4

(c4q2)Q5
(c5q2)

humerus

tdh = tds + t
sQd3

t
hQ = Q

6
(q1)Q7

(q2)Q6
(−q1)Q6

(q3)

2

De Sapio et al., 2006, provide an extensive analysis of the impact
of shoulder girdle motion, associated with glenohumeral coupling con-
straints, on the muscle routing kinematics and moment arms about the
glenohumeral joint. The constrained model employed here typically gen-
erates moment arms of substantially larger magnitude than those of a
simple model with no kinematic coupling between glenohumeral and
shoulder girdle motion. The resulting moment generating capacities as-
sociated with the constrained model are also typically larger in magni-
tude than those associated with the simple model. This is of paramount
importance for the implementation addressed in the following section.

3. Muscle Effort Minimization
A scalar measure of instantaneous (path independent) muscle effort

at a specific configuration can be defined based on the necessary gravity
torque to maintain the configuration and the muscle strength capacity
at the configuration. Activation, which represents the normalized ex-
ertion of muscles, provides a natural measure for this. Specifically, the
magnitude of the muscle activation vector, a, has been used as a scalar
optimization criteria in both static and dynamic optimizations. That
is, we can choose our instantaneous muscle effort measure, U , to be
U(q q̇) = ‖a‖2. To express this measure we first represent the joint
torques, Γ in terms of muscle action,

Γ(q q̇ a) = KΓ(q q̇)a (1)
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coordinate axes, where the arguments identify the spin angles. The super-

were obtained from the regression analysis of de Groot and Brand, 2001.
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,

, , ,



where KΓ(q q̇) is the muscle torque-activation gain matrix. That is, it
maps muscle activation, a, to joint torque (De Sapio et al., 2005). Due
to the fact that there are typically more muscles spanning a set of joints
than the number of generalized coordinates used to describe those joints
this equation will have an infinite set of solutions for a. Choosing the
solution, ao, which has the smallest magnitude yields,

ao = K+
Γ Γ = KT

Γ (KΓKT
Γ )−1Γ (2)

where K+
Γ is the pseudoinverse of KΓ. Our muscle effort measure can

then be expressed as,

U(q) = ‖ao‖2 = gT (KΓKT
Γ )−1g (3)

Note that we have eliminated the dependency on q̇, as we will concern
ourselves only with static configurations for the remainder of our analy-
sis. Similarly, Γ has been replaced with the configuration space gravity
vector, g, since in the static case Γ → g. Expressing this in terms of
constituent terms we have,

U(q q̇) = gT [LT (KfK
T
f )L]−1g (4)

where we have made use of the relationship, KΓ = LTKf . The muscle
force-activation gain matrix, Kf , maps muscle activation to muscle force
(De Sapio et al., 2005). The transpose, LT , of the muscle Jacobian is
a kinematic quantity, based on muscle routing kinematics, that maps
muscle force to joint torque (Khatib et al., 2004). If we dissect the
structure of this effort criteria as follows,

U = gT

muscular capacity︷ ︸︸ ︷
[ LT︸︷︷︸
kinematics

(KfK
T
f )︸ ︷︷ ︸

kinetics

L︸︷︷︸
kinematics

]−1g (5)

we gain some physical insight into what is being measured. The terms
inside the brackets represent a measure of the net capacity of the muscles.
This is a combination of the force generating kinetics of the muscles as
well as the mechanical advantage of the muscles, as determined by the
muscle routing kinematics. The terms outside of the brackets represent
the kinetic requirements of the task/posture; in this case the gravity
torques at the joints.

Eq. 5 represents a generalization of the joint decoupled measure used
by Khatib et al., 2004. That measure projected muscle strength capac-
ities to the joint level in a decoupled manner. Consequently, the cross-
joint coupling associated with multi-articular muscles (muscles that span
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more than one joint) was ignored. The measure of Eq. 5 properly ac-
counts for multi-articular muscle coupling in the musculoskeletal system.

It is noted that the solution of Eq. 1 expressed in Eq. 2 corresponds
to a constrained minimization of ‖a‖2, however, this solution does not
enforce the constraint that muscle activation must be positive (muscles
can only produce tensile forces). Imposing the inequality constraint,
a � 0, on the activations requires a quadratic programming approach
to performing the constrained minimization. In this case the solution to
Eq. 1 which minimizes ‖a‖2 and satisfies a � 0 can be represented in
shorthand as,

ao = qp(KΓ Γ ‖a‖2 ai � 0) (6)

where qp(·) represents the output of a quadratic programming function
(eg. quadprog() in the Matlab optimization toolbox). Our muscle effort
criteria is then U(q) = ‖ao‖2, where ao is given by Eq. 6. Despite the

To find a task consistent static configuration which minimizes U(q),
we first define the self-motion manifold associated with a fixed task point,
xo. This is given by M(xo) = {q |x(q) = xo} where x(q) is the op-
erational point of the kinematic chain (e.g. the position of the hand).
The problem of finding a minimal effort task consistent configuration
can then be stated as minimizing U(q) on M(xo).

4. Experiments
A set of experiments was conducted to provide validation for the mus-

cle effort minimization approach of Section 3. The subjects chosen were
six right-handed adult males with normal or corrected-to-normal vision.
The subjects were seated with a test fixture directly in front of them.
The test fixture contained five visual targets represented as physical
markers positioned at different locations. A set of weights (5, 8, and 15
lbs) were placed to the side of the subjects. An eight-camera Qualisys
retroreflective motion capture system was used to record subject motion
during the trials at a capture rate of 250 Hz.

The subjects performed a set of tasks designed to isolate upper limb
reaching motion. While seated each subject was instructed to pick up
a weight and move it to each target and hold a static configuration at
the target for 4 seconds (see Fig. 2). The subjects were instructed to
perform the movement in any manner which felt natural and comfortable
to them. Five consecutive trials were performed for each weight (8, 12,
and 15lb) as well as a trial with no weight in hand, for a total of 20
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trials. The total number of 20 trials took each subject roughly an hour
to perform; including time for hardware set up and marker placement.

Figure 2. Subject reaching to a set of 5 target locations from a seated configuration.
The subject performs these targeted reaching movements freehand and with a total
of three different weights in hand. Time histories of shoulder joint angles, q1, q2, and
q3, and elbow joint angle, q4, show steady state configurations at each of the targets.

Following motion capture the marker data was segmented using the
Qualisys Track Manager software. To obtain joint space trajectories,
custom Matlab scripts were written based on the inverse kinematics of
the constrained shoulder complex presented in Section 2. The steady
state configurations associated with the five targets were obtained from
the joint space trajectories for each trial (see Fig. 2). For each con-
figuration a 1-dimensional self motion manifold, M(xo), was computed
numerically given the fixed target location, xo. The manifold was asso-
ciated with the variation of the 3 shoulder complex joint angles, q1, q2,
and q3, and the elbow joint angle, q4.

The muscle effort criteria of Section 3 was then computed. SIMM
was used to generate the maximum muscle induced moments over the
self motion manifold for each trial. Matlab scripts were then written
to construct the muscle torque-activation gain matrix, KΓ, from the
computed muscle moments as well as the gravity vector, g. A quadratic
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programming routine (quadprog() from Matlab’s optimization toolbox)
was used to enforce positive values for muscle activation.

The subject’s chosen config-
uration was typically within several degrees (norm based metric along
the self motion manifold) of the predicted configuration associated with
minimizing the computed muscle effort. This was consistent across the
set of subjects, with the largest deviation between experimental and
predicted configurations being on the order of 25◦ and more commonly
under 10◦.

Figure 3. Muscle effort variation for one of the subject trials with no weight in
hand. Each plot depicts the muscle effort for one of the five target configurations.
The locations of the subject’s chosen configurations are depicted with a red +. The
full range of motion is depicted by the black silhouettes (±90◦ from nominal).

of trials with different weights. In each case the weight at the hand was
projected into joint space and added to the gravity vector associated
with the limb segments. The arm configurations at the targets did not
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Figure 3 depicts the results of the muscle effort computations for one of
the subject trials with no weight in hand.

Figure 4 depicts the results of the muscle effort computations for a set



dramatically change with increased weight at the hand. This implies
that the subjects tended to generate stereotyped reaching postures that
were not highly sensitive to the weight being carried. As a consequence
we included a weighting between the component of the gravity vector
associated with limb masses and the component associated with the
external weight carried at the hand. With this weighting we were able
to maintain good predictions with increases in the weight at the hand.

Figure 4. Muscle effort variation for a set of trials to the fourth target location with
different weights in hand. The weight at the hand was projected into joint space and
added to the gravity vector associated with the limb segments The locations of the
subject’s chosen configurations are depicted with a red +.

5. Conclusions
Building upon the work of Khatib et al., 2004, we have implemented

a new muscle effort criteria for predicting physiologically accurate up-
per limb motion. This criteria is a generalization of the joint decou-
pled measure used previously. The new criteria properly accounts for
the cross-joint coupling associated with multi-articular muscle routing
kinematics. We also employ a new kinematically constrained model of
the human shoulder complex (Holzbaur et al., 2005). The modeling of
the shoulder rhythm using constraints between the scapula, clavicle, and
humerus provides more physiologically accurate muscle routing kinemat-
ics and, consequently, better estimates of muscle induced moment arms
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about the glenohumeral joint (De Sapio et al., 2006). Through a set of
subject trials we have shown good correlation between natural reaching
postures and those predicted by our proposed criteria.
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Abstract

robot with actuated base joints and congruent equilateral base and mo-
bile platform. The singularity loci are first determined. Then the global
behavior at all singularities is geometrically described by studying the
degeneracies of the direct kinematic model. This study is made easier
by the fact that one of the two direct kinematic solutions is trivial and
singular. It is shown that this parallel robot has Cardanic self motions.

Keywords: Kinematic geometry, planar parallel mechanism, singularity, self motion

1. Introduction
Often, the main drawback of choosing design conditions for which the

direct kinematic problem of a parallel robot becomes simplified is the
appearance of self motions (Husty and Zsombor-Murray, 1994; Karger,
2002; Wohlhart, 2002). While self motions are certainly the worst type
of singularity a parallel robot could cross, they should simply be avoided
like any other type of singularity. Then, why not use parallel robots with
self motions if these robots have simpler direct kinematics?

For example, in a recent paper (Bonev et al., 2006), the authors have
shown that all singularities of the popular spherical parallel robot design,
known as the Agile Eye, correspond to self motions, yet this design is
arguably the “best” spherical wrist. (In the Agile Eye, any two axes
that are fixed to one another are orthogonal.) Indeed, the singularity
loci of the Agile Eye are not surfaces but curves, which means that the
robot’s theoretical workspace is undivided and unlimited. Furthermore,
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while the Agile Eye still has eight assembly modes, like any other 3-RRR
parallel wrist (R stands for revolute and P for prismatic joint, and an
underline indicates which joint is actuated), half of them correspond to
four singular orientations and the other half are easily found in cascade.

Self motions have been investigated mainly for Stewart-Gough plat-
forms. Few planar parallel robots with self motions have been studied,
and the kinematics of the general 3-RPR planar parallel robot was only
briefly considered in two papers (Merlet, 1996; Bonev et al., 2003). We
came up with a special design for this peculiar planar parallel robot on
a fruitless search for a planar equivalent to the Agile Eye. While our
special 3-RPR planar parallel robot is certainly not the most useful one,
the study of its self motions brings insight into the complex relationship
between direct kinematics and singularities of parallel robots.

In the next section, we will briefly present the analytic expression for
the singularity loci of our special 3-RPR planar parallel robot. We will
identify a range of orientations for which the robot has a sufficiently
large singularity-free workspace. Then, in Section 3, we will describe
the several types of singular configurations by studying the degeneracies
of the direct kinematics and show that they belong to self motions.
Conclusions are given in the last section.

2. Singularity Loci
The special 3-RPR planar parallel robot is shown in Fig. 1. Its mobile

platform and base form congruent equilateral triangles. We denote with
Oi and Bi (in this paper, i = 1, 2, 3) the intersections of the base and
platform revolute joint axes, respectively, with a plane normal to these
axes. Then, let Oxy and Cx′y′ be the base and mobile reference frames,
respectively. The generalized coordinates locating the mobile platform,
i.e., the mobile frame Cx′y′, in the base frame Oxy will be denoted by
x, y, and φ. We define each active-joint variable θi as the angle between
the x-axis and a unit vector vi that defines the direction of the prismatic
joint of leg i, measured in counter-clockwise sense. Finally, the directed
distance from point Oi to point Bi along vector vi is denoted by ρi.

Skipping the derivation and referring the reader to (Bonev et al.,
2003), the velocity equation for the 3-RPR planar parallel robot is

Aq̇ =

⎡
⎢⎣

m1 fT1
m2 fT2
m3 fT3

⎤
⎥⎦
⎡
⎢⎣

φ̇
ẋ
ẏ

⎤
⎥⎦ =

⎡
⎣ ρ1 0 0

0 ρ2 0
0 0 ρ3

⎤
⎦
⎡
⎢⎣

θ̇1

θ̇2

θ̇3

⎤
⎥⎦ = Bθ̇ , (1)

where

fi = Evi =
[ − sin θi

cos θi

]
= E (rOC + rCBi − rOOi)/ρi, (2)
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Figure 1. 3-RPR planar parallel robot with congruent equilateral base and platform.

mi = fTi ErCBi = fTi ERr′CBi
, (3)

and

E =
[

0 −1
1 0

]
, R =

[
cos φ − sin φ
sin φ cos φ

]
. (4)

Furthermore, rOC = [x, y]T , rOOi and rCBi are the vectors along OOi

and CBi, respectively, expressed in the base frame, and r′CBi
is the vector

along CBi expressed in the mobile frame. Without loss of generality, we
define these vectors as

rOO1
= r′CB1

=

[
−1/2
−√

3/2

]
, rOO2

= r′CB2
=

[
1/2

−√
3/2

]
,

rOO3
= r′CB3

=
[

0
0

]
,

or, in other words, we set the sides of the base and platform to unity,
and fix the base and platform frames at points O3 and B3, respectively.

Type 2 singularities occur when A is singular. Geometrically, this
means that the lines normal to the directions of the prismatic joints and
passing through points Bi are concurrent or parallel. Simplifying the
determinant of A and zeroing yields:

det(A) =
√

3(cos φ − 1)
2ρ1ρ2ρ3

(
(x − xc)2 + (y − yc) − r2

)
= 0, (5)

where

xc = − 1√
3

sin φ, yc = − 1√
3
(1 − cos φ), r =

√
2(1 − cos φ)

3
.
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Figure 2. Singularity loci and singularity-free workspace for φ ∈ [120◦, 240◦].

Therefore, Type 2 singularity loci for this mechanism are (a) the whole
xy-plane, when φ = 0 (the directions of all prismatic joints are parallel),
and (b) a circle of radius r, centered at (xc, yc), which passes through
O3, when φ �= 0. Note, however, that Eq. (1) is of indeterminate form
(0/0) at a Type 1 singularity. Indeed, at a Type 1 singularity, a motor
can freely rotate without affecting the pose of the platform. Such a pose
would be Type 2 singular only for specific combinations of the active-
joint variables that correspond to singular legs.

We will conclude this section by proposing a range of orientations for
which the singularity-free workspace is sufficiently large. Apparently,
this range needs to exclude φ = 0, and if symmetry is to be observed,
the best choice would be a range centered at φ = 180◦. Figure 2 shows
our parallel robot with a series of Type 2 singularity circles corresponding
to φ = 120◦ + k10◦ (k = 0, 1, 2, ..., 12). The dots correspond to Type 1
singularities. The singularity-free workspace for the orientation range
φ ∈ [120◦, 240◦] is the one that excludes the circle-swept region in Fig. 2.

Based on this purely algebraic analysis, it is certainly not obvious, but
one can verify by using Eq. (5) that for any Type 2 singular configuration
for which φ �= 0, lines OiBi intersect at a common point lying on the
circumcircle of the base (see the gray-colored configuration in Fig. 2).
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Figure 3. Geometric interpretation of the direct kinematic model.

3. Degeneracies of the Direct Kinematics
In order to study the global behavior of the parallel robot at all singu-

larities, we will analyze its direct kinematic model. Indeed, this approach
is the most intuitive one and gives a clear geometric interpretation of
all singular configurations. It is usually very difficult or even impossible
to follow this approach, but in our case the direct kinematic model is
particularly simple. Indeed, whatever the active-joint variables, there is
always the trivial solution when the base and platform coincide.

Merlet (1996) showed that the direct kinematic problem of 3-RPR
planar parallel robots is equivalent to intersecting an ellipse with a line,
but did not study any special cases. Let us dismount the revolute joint
at B3. For given active-joint variables, points B1 and B2 are constrained
to move along two lines (Fig. 3), L1 and L2, respectively, and the mobile

al., 1998). As a result, B3 describes a curve, E, that is an ellipse, two
parallel lines, a line, or a doubly traced line segment. Obviously, this
curve contains point O3 (i.e., O). Considering leg 3, B3 should also lie
on a line passing through O3, denoted by L3. Thus, the direct kinematic
problem is equivalent to finding the intersections between L3 and E .

Let us now derive the elliptic curve E . We can write the following
closure equation for point C ≡ B3:

rOC = rOO1
+ ρ1v1 − rCB1

= rOO2
+ ρ2v2 − rCB2

. (6)

This yields the following system of two equations:

−1 + ρ1 cos θ1 + cos φ − ρ2 cos θ2 = 0, (7)
ρ1 sin θ1 + sin φ − ρ2 sin θ2 = 0. (8)
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platform undergoes a Cardanic movement (see for example Tischler
et



°

°

Figure 4. Cardanic self motion when the legs are concurrent and make equal angles.

Solving Eqs. (7) and (8) for ρ1 and ρ2, and substituting the results in
Eq. (6), we obtain the following parametric equation in φ:

x =
(

cos θ1 sin θ2

sin(θ1 − θ2)
+

1
2

)
(cos φ − 1) −

(
cos θ1 cos θ2

sin(θ1 − θ2)
+

√
3

2

)
sinφ, (9)

y =

(
sin θ1 sin θ2

sin(θ1 − θ2)
+

√
3

2

)
(cos φ − 1) −

(
sin θ1 cos θ2

sin(θ1 − θ2)
− 1

2

)
sinφ. (10)

The above parametric equation is not defined when sin(θ1 − θ2) = 0,
a case that will be studied later. If sin(θ1 − θ2) �= 0, i.e., if L1 and L2

are not parallel, then the elliptic curve degenerates if, and only if, its
curvature is zero for any φ. The curvature, κ, of E can be derived as

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
=

sin(θ1 − θ2 + π/3)
D3

, (11)

where D is a relatively large expression in θ1, θ2, and φ.
Therefore, when L1 and L2 make a 60◦ angle, κ = 0, and E degenerates

to a line. In other words, if, and only if, the point of intersection between
L1 and L2, denoted by P12, lies on the curcumcircle of the base, denoted
by C, E degenerates to a line (Fig. 4). In fact, it degenerates to a doubly
traced line segment of length 4/

√
3 (Tischler et al., 1998). This line

segment is centered at P12 and passes through O. When P12 ≡ O, the
doubly traced line segment is parallel to O1O2.

As we said before, the direct kinematic problem is equivalent to find-
ing the two intersection points between L3 and E , of which one is always
O. We will not present an actual algorithm for determining the other
intersection point (x, y) and the corresponding platform orientation φ,
but only investigate the singular configurations corresponding to all par-
ticular cases in which there is a single or infinitely many solutions.
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Case 1a: sin(θ1 − θ2) = 0 and cos θ1 cos θ2 �= 0
In this case, L1 and L2 are parallel and E degenerates to two lines parallel
to L1 and L2, one of which passes through O.

� If L3 is parallel to L1 and L2, the platform vertices can slide along
L1, L2 and L3, with φ = 0, even though all actuators are blocked.

� If L3 is not parallel to L1 and L2, the platform can assume a
nonsingular configuration, as well as the trivial solution q = 0,
for which the corresponding configuration is only Type 1 singular
(i.e., the platform is not shaky; in fact, it is jammed).

Case 1b: cos θ1 = 0 and cos θ2 = 0
In this case, L1 and L2 are parallel to the y-axis and E degenerates to a
single line parallel to L1 and L2, and passing through O.

� If L3 is parallel to L1 and L2, the platform vertices can slide along
L1, L2 and L3, with φ = 0, even though all actuators are blocked.

� If L3 is not parallel to L1 and L2, the platform can assume only
the trivial solution q = 0, and the configuration is Type 1 and
Type 2 singular (the platform can rotate infinitesimally).

Case 2: sin(θ1 − θ2 + π/3) = 0
In this case, L1 and L2 make a 60◦ angle and their intersection point,
P12, lies on C (Fig. 4). The curve E degenerates to a doubly traced line
segment passing through P12 and O (if P12 ≡ O, E is parallel to O1O2).

� If L3 is collinear with E , then point B3 can slide along E while the
platform changes orientation simultaneously (Fig. 4), even though
all actuators are blocked (as in Reuleaux straight-line mechanism).

� If L3 is not collinear with E , then the platform can assume two
possible poses. The first one is the trivial solution q = 0, while the
second one is q = [180◦, 0, 0]T . For both poses, the corresponding
configurations are only Type 1 singular (the platform is jammed).

Case 3: sin(θ1 − θ2 + π/3) sin(θ1 − θ2) �= 0
In this case, L1 and L2 intersect at a point that does not lie on C, and
E is an ellipse (Fig. 3).

� If L3 is tangent to E at O, then the platform can assume only the
pose q = 0, and the corresponding configuration is both Type 1
and Type 2 singular (there is no self motion). Indeed, it can be
shown that at this configuration, the normals to L1, L2 and L3

passing through B1, B2 and B3, respectively, are concurrent.
� If L3 is not tangent to the ellipse, then the mobile platform can

assume the pose q = 0, for which the corresponding configuration
is only Type 1 singular, and another nonsingular pose (Fig. 3).
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4. Conclusions
This paper described the kinematic geometry of a 3-RPR planar par-

allel robot with congruent equilateral base and mobile platform. It was
shown that the only singular configurations, for which the base and mo-
bile platform do not coincide, belong to self motions. They occur when
the legs intersect at the circumcircle of the base or are parallel. Once
again, It was demonstrated that careful analysis of the degeneracies of
the direct kinematic model provides a convenient geometrical tool for
better understanding the global behavior of singularities.

Parallel robots with identical base and mobile platform allow self mo-
tions but have interesting characteristics and simpler geometric models.
The authors believe that these robots deserve further attention as they
are likely to find use in practice or lead to better understanding some
theoretical issues. This design simplification approach will next be ap-
plied to 3-RRR planar parallel robots. These robots are undoubtedly
the cheapest alternative for planar motion, from the hardware point of
view, but are still too complex to design optimally.
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Abstract This paper introduces a new approach to identify singularities of planar 
parallel manipulators (PPMs). This method is based on Maxwell’s reciprocal 
figure theory which establishes a duality between self-stress frameworks 
and reciprocal figures. We use line geometry tools to introduce a new 
graphical construction called the Mechanism’s Line of action Graph (MLG). 
The MLG is introduced in order to implement Maxwell’s Reciprocal Figure 
theory to mechanisms. In this paper, we show that the configurations where 
the MLG has a connected reciprocal figure imply a singularity type-II in the 
mechanism. This singularity analysis tool is also used to trace the 
singularity loci of the PPM.  

Keywords: Graphical Analysis, Maxwell’s Reciprocal Figure Theory, Parallel Manipulators,
 Singularity 

1. Introduction 
This paper focuses on the singularity analysis of planar parallel 

manipulators (PPMs). Specifically we analyze the type-II singularity of 
fully parallel planar manipulators which are planar three-degree-of-
freedom (3-DOF) parallel manipulators, consisting of three limbs, each 
consisting of one actuated joint and two unactuated (passive) joints. Most 
of the approaches to finding singularities of parallel manipulators 
address the singularity types that were introduced by Gosselin and  
Angeles (Gosselin and Angeles, 1990). These types of singularities are 
based on the singularity of the Jacobian matrix, which maps the 
Cartesian velocities of the end-effector onto the joint velocity vector. 

We confront the problem of the singularity analysis somewhat 
differently than most approaches. We first represent the manipulator 
graphically using a known line geometry tool, the reciprocal screw. This 
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screw, which is reciprocal to all the unactuated joint twists of the limb, 
represents the line of action of a limb, which is the wrench that a limb 
applies to the end-effector. We represent the line of action of each limb of 
the manipulator as an edge in the Mechanism’s Line of action Graph 
(MLG). Then, in order to find the “graphical singularities” we use a 
theory that goes back to the mid 19th century, Maxwell’s Reciprocal 
Figure theory (Maxwell, 1864), to construct a dual graph (reciprocal 
figure) of the MLG. We will show that when a reciprocal figure of the 
MLG can be constructed, this specific configuration of the manipulator is 
a type-II singular configuration (Gosselin and Angeles, 1990). A different 
starting point of the analysis is with a connected reciprocal figure upon 
which the MLG is built. In this type of analysis, when the configuration 
of the reciprocal figure is changed (while still being connected), the cor-
responding manipulator will change configuration but will continuously 
be in a singular configuration, resulting in the PPM’s singularity loci. 

2. Preliminaries 
We first present a brief explanation of the tools that led to the 

development of the presented graphical approach. 

2.1 Reciprocal Screws and the Limb’s Line of Action 
Finding the line of action for each limb of the manipulator is the first 

step in constructing the Mechanism’s Line of Action Graph (MLG). We 
use reciprocal screws to find these lines of action. Tsai developed a 
specific procedure for the derivation of reciprocal screw and its app-
lication for the Jacobian analysis of parallel manipulators (Tsai, 1998). 
Bonev used derivations of reciprocal screws in the specific case of PPMs 
(Bonev, 2002), which is relevant for the current analysis. 

The reciprocal screw, which is reciprocal to the two unactuated joints 
of each limb, is a wrench which if applied to the platform, can be resisted 
solely by the actuated joint of the limb. This reciprocal screw is the line of 
action of the ith limb, also known as the governing line of the limb (Hunt, 
1978; Tsai, 1998). The two most common cases of unactuated joints in 
PPMs are either two revolute joints or one revolute joint and one 
prismatic joint. A third, less common case, is a limb consisting of two 
unactuated prismatic joints. In the case of two revolute joints, the 
reciprocal screw is a pure force (zero pitch screw) passing through the 
two unactuated revolute joints (Fig. 1a,b,c). In the case of one revolute 
and one prismatic unactuated joints, the screw is a pure force passing 
through the unactuated revolute joint and perpendicular to the axis of 
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the unactuated prismatic joint (Fig. 1d,e). In the case of a limb consisting 
of two unactuated prismatic joints, the line of action is a pure torque in 
the direction going out of the plane (Fig. 1f), which will only enable a 
pure torque and will constrain the platform to rotation only. For this 
reason, only one such limb can be included in the design of a PPM. 

a b c d e f 
Passive revolute joint  Active revolute joint 

  Passive prismatic joint     Active prismatic joint   line of action 

Figure 1.  Examples of typical limbs of PPMs and their reciprocal screws corres-
ponding to the lines of action 

2.2 Maxwell’s Reciprocal Figure Theory 
In the mid 19th century James Clerk Maxwell (Maxwell, 1864) 

described a three-way connection between self stresses in planar bar-
joint framework (static rigidity), reciprocal figures, which are dual 
figures of the bar framework, and spatial polyhedra. In this paper, we 
only focus on the first two components of the theory, i.e. the connection 
between self stress framework and the existence of a reciprocal figure. 

A bar framework in the plane is a graph which represents a structure 
constructed out of bars and joints. The bars are represented as edges and 
the joints as vertices. If the ith vertex is marked pi  then the direction of 
the edge connected by the ith and jth joint is represented as p pi j . The 
force inside the bar is in the direction of the edge multiplied by a scalar 

ij  which is the scale of the force in the bar ( ij 0 represents tension 
and ij 0  represents compression.)  

The forces reach equilibrium at the joint pi  if the sum of the forces in 
j bars connected to the joint pi  is equal to zero: 

(p p ) 0 (1)  
j ij j i

A self stress  of  a  bar framework is an assignment of scalars ij to the 
edges such that, for each vertex pi , Eq. 1 will be realized. 

A bar framework is fully self stressed if for all ij , ij 0 . 
Maxwell’s reciprocal figure theory states that a plane framework or a 

planar graph supports a full self stress if and only if it has a reciprocal 
figure. Moreover, this graph should be vertex 2-connected and edge 
3-connected which means that removing any one vertex and its edges 

.
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leaves the vertex set connected by the remaining edges, and removing 
any two edges leaves the vertex set connected by the remaining edges. 

A graph is a reciprocal figure to another if the two graphs consist of 
an equal number of edges, corresponding edges in the two graphs are 
perpendicular, and corresponding edges which converge to a point in one 
graph form a closed polygon in the other. This definition of a reciprocal 
figure clarifies the connection between Eq. 1 (equilibrium at a vertex in a 
self stressed framework), and the duality between edges converging to a 
point in one graph and edges forming a closed polygon in the other. 

This connection between reciprocal figure and self stress in a frame-
work is the foundation of the connection we present between reciprocal 
figure and singularity type-II of a PPM. For additional insights and a 
complete proof of Maxwell’s reciprocal figure theory we refer the reader 
to (Crapo and Whiteley, 1993). 

3. Singularity Analysis Method and Examples  
When using the singularity analysis method presented in this paper 

one should apply the following three main steps on a given PPM: 
STEP 1: Construct an MLG for the specific PPM. 
STEP 2: Construct a reciprocal graph based on the obtained MLG. 
STEP 3: Find the configurations of the manipulator in which the reciprocal 

graph is connected. In these configurations the manipulator is in 
type-II singularity. 

As mentioned earlier, we conduct our investigation on fully parallel 
planar manipulators which consist of three limbs, each containing one 
actuated joint and two unactuated (passive) joints. Even though the 
examples provided in this paper are of identical limb manipulators, 
the method can be applied to different types of PPMs. We use the 
conventional notation of PPMs by using R to describe revolute joints and 
P to describe prismatic (linear) joints. Actuated joints are marked with 
an underline. When the three limbs of the PPM are identical the 
manipulator is marked by a preceding ‘3

‘

 (for example: 3-RRR). 

3.1 Constructing the MLG of PPMs 
Given a PPM we represent its kinematic structure in a graphical 

representation which mainly represents the line of action of each of the 
limbs of the PPM. This graphical representation is then used as a planar 
graph with Maxwell’s reciprocal figure theory. In order to construct the 
Mechanism’s Line of action Graph (MLG) we identify the reciprocal 
screw for each of the limbs of the PPM (as described in Section 2.1).  
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The three limbs of a PPM can be connected to the end-effector either 
by revolute joints or by prismatic joints. This difference will affect the 
construction of the MLG. To begin an MLG construction of a PPM 
connected with revolute joints (Fig. 2a), the three vertices of the end-
effector should be marked (Fig. 2b). From each of the end-effector’s 
vertices an edge corresponding to the line of action of the limb is 
constructed. Figure 2c illustrates the three reciprocal screws corres-
ponding to the line of action of each limb (marked as dotted 
arrows). Even though the length of the edge corresponding to the line of 
action is not essential for this method, we draw the length of the edge 
equal to the length of the link closest to the end-effector (Fig. 2d). 
Finally, the three ground vertices of the line of actions’ edges are to be 
connected (Fig. 2e). The ground vertices are located at the distal end of 
the line of action’s edge with respect to the end-effector. 

The MLG is changed depending on the configuration of the 
manipulator. In most PPMs, the ground vertices in the MLG are not 
static (as in the case of the 3-RRR in Fig. 2). This does not affect our 
results because we are only analyzing the instantaneous kinematics of 
the manipulator’s end-effector. A similar step by step construction of an 
MLG of a 3-RPR is shown in Fig. 3. 

a b c d e 
Figure 2. Example of the construction of the MLG for a 3-RRR manipulator 

a b c d e 
Figure 3.  Constructing the MLG for a 3-RPR manipulator 

The main difference between the two MLGs in Fig. 2e and Fig. 3e is 
the line of action of each limb. In Fig. 3 the reciprocal screws that 
correspond to the lines of action of the limbs pass through the center of 
the passive revolute joints of the limb (first and third joints). In Fig. 2 the 
lines of action pass through the second and third joints which are the 
passive ones. 

In the case of a limb connected to the end-effector by prismatic joints 
(Fig. 4a), the construction of the MLG should begin from the ground 

.

.
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vertices. First the three ground vertices are constructed. From each of 
the ground vertices an edge corresponding to the line of action of the limb 
is constructed (Fig. 4b). Three vertices are constructed on each of the 
edges corresponding to the line of action at a constant, arbitrary unit 
distance from the ground vertex (Fig. 4c). Connecting these three vertices 
and the three ground vertices finalizes the construction of the MLG (Fig. 
4d). 

An example of a degenerate case of a PPMs end-effector, in which the 
three distal joints create a line, is shown in Fig. 5a. To construct an MLG 
for this special case the end-effector should still be thought of as a 
triangle in a degenerate configuration (Fig. 5b). 

a b c d 
Figure 4. Example of the construction of the MLG for a 3-RPP manipulator 

a b 
Figure 5.  Construction the MLG for a 3-RPR manipulator with degenerate end-

effector 

It is important to note that for now it is not feasible when using this 
method to represent the line of action of a limb consisting of two passive 
prismatic joint in an MLG (i.e. a pure torque out of the plane). 

3.2 Constructing a Reciprocal Graph of the PPM’s 
MLG 

Figure 6 presents a step by step construction of the reciprocal figure of 
the 3-RPR. We use a dynamic geometry program that enables us to 
construct the reciprocal figure for a given configuration so that when the 
mechanism is moved, the reciprocal figure will change correspondingly. 
We note that these constructions can be drawn using a simple ruler and 
a compass (most likely the tools that the late Maxwell originally used), 
but for every different configuration, a new reciprocal graph should be 

.

.
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drawn. The MLG that was constructed for the 3-RPR PPM in Fig. 3, is 
given in Fig. 6a. To start the construction of the reciprocal figure an 
arbitrary inner polygon in the MLG is picked (polygon (1,2,3,4)). An 
initial vertex is drawn and the four perpendicular lines corresponding to 
the polygon’s edges are constructed (Fig. 6b). Then another vertex 
is drawn on line (4) since its corresponding edge is shared by the top 
two inner polygons in the MLG.  Next, the three perpendicular lines 
corresponding to the remaining edges of the top right polygon in the 
MLG (edges 5, 6, and 7) are constructed (Fig. 6c). The reciprocal graph 
should eventually consist of edges and not infinite lines. In order to 
correctly trim the lines we have constructed we need to determine the 
intersections that are actually vertices that correspond to closed polygons 
in the MLG. The intersections that join lines correspond to edges of the 
closed polygons that have not yet been addressed need to be marked, i.e. 
the bottom polygon, the center triangle and the outer triangle. In Fig. 6d 
the three vertices are marked (3/7, 1/5, 6/2). For example the 1/5 ver-
tex corresponds to the 1,4,3,2 polygon, and so forth. To finalize the cons-
truction of the reciprocal figure, edges 8 and 9 (from the bottom polygon) 
should be added to the bottom vertex of the reciprocal figure, perpendi-
cular to their corresponding edges (Fig. 6e). Note that these two edges 
(8, 9) are not connected to their correct vertices (vertices p and q). 
This means that the reciprocal figure cannot be constructed for this 
particular configuration. Therefore, the specific configuration of the PPM 
(Fig. 3a) for which this MLG was constructed (Fig. 3e), is not a type-II 
singularity. We note that the order in which we construct the reciprocal 
figure may change the resulting edges that are not connected; however, 
this does not change the overall existence of the reciprocal figure. The 
construction of the reciprocal figure for the 3-RRR manipulator is done in 
a similar way since the MLGs are similar. 

constructed in a similar way, while keeping in mind that the three joints 
(in this case on a line) are actually a degenerate triangle. In this case 
three of the edges of the reciprocal figure will always be parallel to each 
other and will always coincide at infinity.  

Figure 6.   Construction of the reciprocal figure for a 3-RPR PPM 

The construction of the degenerate end-effector (Fig. 5) can also be 

.
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3.3 The Singularity/Self Stress Connection  
Once the MLG of a PPM and a reciprocal figure are constructed, one 

can use them for the singularity analysis of PPMs. Maxwell’s theory 
(section 2.2) presents a connection between the existence of a reciprocal 
figure and self stress in a framework. We will now analyze a self-stressed 
MLG (Fig. 7) in order to demonstrate the connection between self-stress 
and singularity. Based on the definition of self stress framework, when a 
bar-joint framework is in self stress, the sum of the forces of the bars 
connected to a joint is equal to zero. Three equations corresponding to the 
sum of forces in the three vertices 1,2,3 can be written as: 
Sum of forces in vertex 1: a + d + f  = 0 ,  (2)  
Sum of forces in vertex 2: b - d + e = 0 , (3) 
Sum of forces in vertex 3: c - e - f  = 0 .  (4)  

These three equations are vector summations. We arbitrarily assign the 
direction of the forces and consistently add the forces. Therefore, some of 
the forces in Eq. 2-4 are negated. Summing Eq. 2, 3, and 4: 
a + b + c = 0  (5) 

a b 

c 

d 

f e 
21 

3 

Figure  7. “Singular” (self stress) configuration of MLG 

Equation 5 confirms a linear dependency of the three forces a, b, and c. 
These three forces are the forces corresponding to the lines of action of 
the three limbs. The meaning of this dependency is that these three 
limbs cannot generate instantaneous work (virtual work (Hunt, 1978)) on 
the end-effector while it is moving in an instantaneous twist deformation 
resulting from an external wrench applied on it. Therefore, self stress in 
a framework is equivalent to a type-II singularity of a PPM. It is now 
evident that the existence of a reciprocal figure indicates a self stress 
framework, and in a similar way indicates a singular configuration in a 
mechanism.  

3.4 Locating the Singular Configurations 
To find the configurations where there exists a reciprocal figure to a 

particular PPM, and therefore it is in a singular configuration, one 
should move the manipulator by changing its joint parameters while 
tracking for configurations in which the reciprocal figure is visually 

.
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connected, e.g. in Fig. 6e, vertices p and q merge with p’ and q’ 
respectively. Figure 8 shows examples of PPM configurations in which 
the reciprocal figure is connected and the manipulator is in a singular 
configuration. 

Figure 8. Two examples of singular configurations and the connected reciprocal 
 figures (3-RPR left, 3-RRR right)   

So far the search for a singular configuration was carried out by 
changing the joint parameters of the manipulator and checking for the 
existence of a connected reciprocal figure. If the analysis is constructed 
the other way around, so that a connected reciprocal figure is first 
constructed and only then an MLG is constructed to be reciprocal to it, 
we can trace the loci of the singular configurations of the manipulator by 
changing the reciprocal figure while keeping it connected (Fig. 9 left). 
Note that the construction of the reciprocal figure in this case is based on 
mechanical constraints of the PPM, e.g. the fixed shape of the end-
effector. Moreover, the singular configuration’s loci are traced relative to 
a constant orientation of the PPM in order to enable us to plot the loci as 
a 2-D graph. We refer the readers to (Sefrioui and Gosselin, 1995) to 
examine the consistency of the results. 

More examples, including JAVA applets of this method, can be found 
at: www.cs.cmu.edu/~adegani/graphical/ . 

Figure 9.  (Left) Singularity loci of 3-RPR in two different constant orientations 
of the end-effector. (Right) A loci plot from six different orientations of the end-
effector  (0,5, 10, 15, 20, and 25 degrees) 

.

.
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4. Conclusion and Future Work 
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(e.g. Sefrioui and Gosselin, 1995), yet avoids some of the complexities in-
volved in analytic derivations. It is worth mentioning that the method we 
present can be potentially applied to non-identical limb manipulators and 
to other types of mechanisms as well. The method makes use of reciprocal 
screws to represent the lines of action of PPMs’ limbs in a Mechanism’s 
Line of action Graph (MLG), an insightful graphical representation of the 
mechanism. Maxwell s  theory of reciprocal figure and self stress is then’
applied to create a dual figure of the MLG. Analyzing this dual (reciprocal) 

the loci o
figure provides us with the singular configurations of the PPM and with 
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DIRECT SINGULARITY CLOSENESS
INDEXES FOR THE HEXA PARALLEL
ROBOT
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Abstract Direct kinematic singularities constrain the internal robot workspace
and the proximity to them must be detected online as fast as possible
for non deterministic trajectories. Direct singularity proximity for the
Hexa parallel robot is measured by means of three measure indexes with
two different physical bases. In this paper a new index based on Grass-
mann geometry to measure the singularity closeness is introduced. This
method and methods based on constraint minimization are applied and
validated in the Hexa robot. From the results we observe, for instance,
that the new index requires less time than the constraint minimization
methods but requires a better knowledge of the robot structure.

Keywords: Parallel Manipulator Singularities, Grassmann Geometry, Constrained
Minimization

1. Introduction
A measure of the direct singularity closeness for parallel manipulators

is required aiming at a safe operation space. For parallel robots as the
Hexa robot (Fig. 3d), workspace is limited by direct kinematic singu-
larities as well as by inverse kinematic singularities. Direct kinematic
singularities allow the end effector to gain unconstrained movements.
Its identification has been studied from different perspectives. The van-
ishing of the Jacobian determinant has been used for particular parallel
robots. However it is a product of factors and thus it suffers from the fact
that close to a singularity, where a factor shrinks to zero, other factors
may be big enough and the determinant does not indicate the singularity
closeness. Additionally, the physical meaning of the determinant is not
clear.

Qualitative conditions, based on Grassmann geometry, are proposed
to detect singularities of triangular simplified symmetric manipulators
[Merlet, 2000]. Quantitative approaches use a numerical measure to
determine how close a robot position is to a singularity. Different mea-
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sures have been used for this task, e.g. the natural frequency measure
[Voglewede and Ebert-Uphoff, 2004], the power and the stiffness inspired
measure [Pottmann et al., 1998] based on a constraint minimization

In this paper a new method for quantitative measures of the direct
singularity closeness based on Grassmann geometry is presented. This
new method as well as the minimization based methods are applied to
the Hexa robot and the results are analyzed.

The six DOF Hexa robot is composed by six limbs connecting the
basis to the end effector, see Fig. 3d. Each limb contains an active
rotative joint Ai (for i = 1, · · · , 6). Its axes are fixed to the basis plane,
a passive universal joint Bi and a passive spherical joint Ci connected to
the end effector, so that all Ci joints define the end effector plane. The
cranks and the passive links are connected at Bi. The six limbs of the
Hexa robot are arranged in three pairs of two active joints with collinear
rotational axes. The pairs of active joints are axisymmetrical, i.e. 120o

between each pair.

2.
In spatial parallel manipulators the relationship between actuator co-

ordinates q and end effector Cartesian coordinates x can be stated as a
function f(q, x) = 0, where 0 is the 6-dimensional null vector. Therefore
the differential kinematic relation may be determined as

Jq q̇ − Jx$t = 0;Jq q̇ = Jx$t (1)

where $t is the end effector velocity twist in ray order and, Jx, Jq and
J = J−1

q Jx are the direct, inverse and standard Jacobian matrices, re-
spectively.

The rows of the direct kinematic matrix Jx may correspond to the
normalized screw of wrenches, in axis order acting upon the end effec-
tor through the passive link, i.e. the distal link of each limb [David-
son and Hunt, 2004]. Therefore, a static relation may be stated as
JTx τ =

[
$̂r1, · · · , $̂r6

]
τ = $r, where $r is the result wrench acting upon

the end effector in axis order, τ = [τ1, · · · , τ6] are the input wrench mag-
nitudes and the columns of JTx are the normalized screws (axial order)
of wrenches acting on the end effector.

Singular configurations appear if either Jx or Jq drops rank. If Jx is
singular, a direct singularity is encountered and the end effector gains
one or more uncontrollable degrees of freedom (DOF), on other hand if
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Jq drops rank it looses at least one DOF. The direct singularity occurs
in the workspace and is the main aim of this paper.

The new method as well as the minimization based methods are in-
troduced and applied to the Hexa robot.

3.
The constraint minimization method determines closeness to singu-

larity through an optimization problem that results in a corresponding
generalized eigenvalue problem. Using this methodology it is possible
to describe the instantaneous behavior of the end effector near singular-
ities for parallel manipulators in general [Voglewede and Ebert-Uphoff,
2004, Hesselbach et al., 2005]. In this approach, an objective function
F ($t) to be optimized is subject to move on a constraint h. This is
formulated mathematically as:

M(X) =
{

min/max F ($t) = $Tt JTSJ$t
subject to h = $Tt T$t − c = 0

(2)

where S (positive semidefinite) and T (positive definite) are n× n sym-
metric matrix and c is some positive constant, e.g. c = 1. The solution
of Eq. (2) gives the closeness measure to a singularity M(X) at a par-
ticular position and orientation X of the manipulator. The proposed
constrained optimization problem is found with the application of a La-
grange multiplier λ. The local extrema of the Lagrangian ζ($, λ) =
F ($t) − λh($t) are determined by its derivation. For a nontrivial solu-
tion to exist, the minimization (or maximization) of Lagrangian yields
det(JTSJ − λT ) = 0, which is called the corresponding general eigen-
value problem. The smallest eigenvalue λmin will be the minimum value
of the objective function F ($t), and so it can be utilized as a measure
value.

In general, this minimization problem was formulated based on an
arbitrary quantity for S and T [Voglewede and Ebert-Uphoff, 2004].
Taking J = Jx, S = I6x6 and T = diag[000111], then

√
λmin is associ-

ated to the minimum power [∼ W ] of the system, which indicates the
manipulator singularity closeness.

Another possible way is to choose S as the stiffness matrix of the
actuators KAct and T as the mass matrix of the manipulator MEE (or for
simplicity the end effector mass matrix, i.e. neglecting the limb masses).
Therefore,

√
λmin is associated to the ω natural frequency [∼ Hz] of the

system (MEEẌ − ω2KEE = 0), indicating the singularity closeness.
Both methods are applied in the Hexa robot (Fig. 3d) for its singu-

larity approximation measure. The measure behaviors of the minimum
power of the system through a singularity (Fig. 1a) is showed in Fig. 1b,
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here the end effector twists θo around the $min (the end effector twist
which requires minimum power in this singularity). The singularity oc-
curs when

√
λmin = 0, but a singular range exists due to clearance and

compliance of the system, where the end effector is still unconstrained.
The singular range bound is experimentally identified as 0.029 ∼ W and
upon it the manipulator stiffness is warranted into the whole workspace.
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Figure 1. a) Grassmann variety V5a on the Hexa; b) Power based index; c) Grass-
man variety V5b; d) Grassman V5b based index

The same behavior is obtained through the frequency method. It is
important to notice that both methods detect all the singularities with
a unique index.

4. Grassmann Geometry
A new index to determine closeness to singularities is obtained based

on Grassmann geometry.
eties of lines, i.e. the sets of linear dependent lines to n given indepen-
dent lines, and characterized them geometrically according to their rank
(1, · · · , 6) [Hesselbach et al., 2005]. A singular configuration of the ma-
nipulator may be associated with a linear dependent set of lines, also
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called line based singularities. In general, the reciprocal wrenches $r
(Fig. 1a) to the passive twists of each manipulator leg are associated
to lines in the direction of the forces acting upon the end effector, also
called Plücker vectors. Linear dependence among these lines represents
a direct singularity. These wrenches compose the Jx matrix (Sec. 2).

Using the Grassmann geometry we recognize that the Hexa robot may
be associated to several varieties. Some singularities of the Hexa robot
as well as correspondent varieties are shown in Figs. 1a, 1c and 2. In
the Hexa configurations of Fig. 2a, two wrenches are collinear and so $r1
and $r2 represent a Grassmann variety 1 (for short V1). Figure 2b shows
that four wrenches ($r1, $r2, $r3 and $r6) are on a flat pencil V2b. Given
that the Hexa robot has six wrenches acting upon the end effector, the
configuration in Fig. 2a may be associated to V5a and the configuration
in Fig. 2b to V4d. In Fig. 2c all wrenches are parallel to each other and
they form a bundle of lines V3b. In Fig. 2d all wrenches lie in a plane
with different intersection points and represent a V3d. In Fig. 1a all
wrenches belong to a linear complex V5a, and Fig. 1c shows an example
where all wrenches are meeting one given line V5b. Each unconstrained
DOF of the end effector is represented by one $min in the Figs. 1a, 1c
and 2.

V2b
1 23
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$tmin

$tmin

$tmin

$tmin
$tmin

$r1 $r2 $r1 $r2

$r3$r6

$r4$r5

a) b)

$tmin

$tmin
$tmin

ab

2

V11

V3b

1 2
3

4

1 2

3

4 V3d

Figure 2. Grassmann variety on the Hexa robot: a) V1; b) V2b; c) V3b; d) V3d

Considering the workspace of the Hexa robot which is limited by the
actuated joint angles, the possible Grassmann varieties may be reduced
to two: V5a and V5b. Thus only singularities of Fig. 1a and 1c may
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occur. With the help of the Grassmann geometry all possible singular
configurations on the Hexa robot are known. Aiming at quantify the
closeness to the singularities of Fig. 1a and Fig. 1c, a measure algorithm
is presented in the sequence.

A complex is generated by five skew symmetric lines (e.g. wrench
axes). Let π be a plane tangent to the complex that contains a point
of the line B6C6 (correspondent to the sixth wrench). The distance
between a certain point of this line and π gives a closeness measure to
that singularity. It is possible to build a 4×4 skew symmetric matrix G so
that BT

i G Ci = 0 where Bi and Ci (Fig. 1c) are in projective coordinates.
This linear system has six unknowns and five equations. For simplicity
and without loss of validity one unknown is set to 1. A pencil of lines of
the complex that contains B6 defines π. Mathematically, if a projective
point Xp = [x y z 1]T �= B6 is an element of π, then BT

6 G Xp = 0.
Considering the vector U = [u1, · · · , u4]T = BT

6 G, the affine component
of plane is u1x + u2y + u3z + u4 = 0. The distance between C6 and π
may be interpreted as a measure for the line B6C6 of the complex:

d(C6, π) = v1C6,x + v2C6,y + v3C6,z + v4 = 0; vi =
ui√

u2
1 + u2

2 + u2
3

(3)

If all the lengths BiCi are the same and no other variety occurs,
d(C6, π) is a distance measure of the manipulator to a singularity V5a.

Singularity of V5b occurs if all six wrench axes BiCi intersect one line
L. This line crosses two wrenches in the points C. These points must
belong to legs whose drive axes are collinear and L must be parallel
to these drive axes. The maximal distance between L and all the six
wrenches is a measure to a singularity V5b of the Hexa robot.

This algorithm is applied in order to measure the closeness of the Hexa
robot to a singularity V5b as shown in Fig. 1c. The resulting distance
measure to the singularity is presented in Fig. 1d, where it linearly falls
down to zero in the singularity. Similarly to the minimization method,
a singular range is observed under the limit of 55 mm.

5. Conclusion
The Grassmann approach as well as the power and frequency meth-

ods are experimentally validated in the Hexa robot and investigated for
online singularity detection. All three methods allow a safe monitoring
of such positions and present some properties are described next.

movement (manually drived) from a rigid position, through a singularity
V5b and twice singularity V5a, to a rigid position. Figure 3a compares
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both Grassmann algorithms with the power method and shows that a
Grassmann algorithm V5a does not detect a singularity of V5b and vice
versa. A combined Grassmann index, the lower of the both algorithms,
may be used due to that both present the same limit range of 55mm,
which is a general property. Comparing the combined Grassmann index
with the power and the frequency method in Fig. 3b, it can be observed
that all three methods have an equivalent behavior. It is important to
notice that a scale factor is required due to the different physical base
of each method. Additionally, it allows the use of a unique singularity
limit value.

2 4 6 8 10 120
time [s]a)

20

40

60

80

100

120

b)
2 4 6 8 10 120

20

40

60

80

100

120

time [s]

si
n
g
u
la

ri
ty

in
d
ex

1900 x power [ W]~

combined Grassmann [mm]
38000 x frequency [ Hz]~

1
9
0
0

x
p
o
w

er
[

W
]

~

G
ra

ss
m

an
n

V
5
a

[m
m

]
G

ra
ss

m
an

n
V

5
b

[m
m

]

si
n
g
u
la

ri
ty

in
d
ex

0 2 4 6 8 10 12

20

40

60

80

100

120

time [s]

co
m

p
u
ta

ti
o
n

ti
m

e
[µ

s]

power
frequency (simplified )MEE

frequency (full )MEE

combined Grassmann

c) d)

singularity
V5b

singularity
V5a

Figure 3. a) and b) Comparison of the singularity closeness indexes; c) Computa-
tional time; d) Hexa robot of Collaborative Research Center 562

For the online application of an approach, the computing time is a
decisive factor. For the same trajectory of example Fig. 3a, a comput-
ing time comparison is presented in Fig. 3c. The combined Grassmann
algorithm is notably faster than the minimization methods. Addition-
ally, in the frequency approach has been observed that using only the end
effector instead of the whole manipulator mass matrix MEE , the compu-
tation time decreases without any loss of measure accuracy. Therefore,
it seems plausible to only use a simplified model of MEE .
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Properties as computational time, number of measured indexes, phys-
ical index meaning, method complexity and implementation costs must
to be considered to choose a suitable approach for a particular applica-
tion. The frequency method is general and can be applied to any type of
parallel manipulator. The drawback of this approach is its complexity
and that non-kinematic quantities (mass and stiffness) are introduced to
the measure. On the other hand the power approach does not present
this drawback and is not so complex. However, it can not detect fi-
nite and infinite (pure translation) unconstrained screw movements of
the end effector with the same index. Both minimization approach in-
dexes have a physical meaning in particular conditions (e.g. only unitary
wrenches acting upon the end effector), and generally they are only asso-
ciated to this physical meaning. The Grassmann approach offers a fast
and simple method to detect the singularities closeness with a geomet-
rical meaning index. The main weakness is that more than one index
is required if the robot presents more than one singular variety. It can-
not taken for granted that the measure index can be always combined
aiming at automatic singularity avoidance strategies.

In this paper, three singularity closeness indexes based on different
physical meanings, are evaluated in the Hexa robot. Each index is able
to detect all the direct singularities into the robot workspace. The prop-
erties of the new Grassmann based index are compared to the odder two
approaches and conclusions are presented.
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STEWART-GOUGH PLATFORMS WITH
SIMPLE SINGULARITY SURFACE

Adolf Karger
Charles University Praha
Faculty of Mathematics and Physics
Adolf.Karger@mff.cuni.cz

Abstract The singularity surface of a parallel manipulator is a very complicated
algebraic surface of high degree in six-dimensional space of all possible
positions of the manipulator (in the six-dimensional group of all space
congruences). In this paper we show that for some classes of manipula-
tors we can visualize the singularity set for any fixed orientation of the
manipulator by a quadric in the space of translations. Some properties
and examples are given.

Keywords: Stewart-Gough platforms, parallel manipulators, Study representation,

1. Introduction

is very complicated, in general it is given by 24 structural parameters
18 spatial coordinates of 6 points in the base and 18 in the platform, 12
of which can be specialized by using twice the congruence group, which
yields 12 parameters. This means that the description of the motion
leads to complicated equations and in general it is not possible to study
it in closed form.

To describe the singular set is still more complicated the general
equation of the singular set has about 106 terms and so it gives almost
no information about its properties. To obtain some closed form infor-
mation about singular positions of a parallel manipulator we have to
simplify the problem.

One possibility is to choose a fixed orientation of the platform and for
this orientation describe all singular positions. This can be done, but it
is easy to see that in this case we in general obtain a cubic surface in
E3, as the singularity surface is cubic in translations. Cubic surfaces in
space are still relatively complicated objects to give a good idea about
their shape. Using the general equation of the singular set we can show
that in case of S.
and base the equation of the singular set becomes only quadratical and
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therefore in this case the singular set for fixed orientation is given by a
quadric, which is much simpler to represent.

If the platform and base are affinely correspondent and planar, we get
much more specialized situation the singular set factorizes into three
factors either points of the platform lie on a conic section or the orien-
tation belongs to an algebraic hypersurface in the space of orientations
and the manipulator is singular for all translations or there is a plane of
singular positions (depending on the orientation). This describes the sit-
uation relatively well in both cases. It seems that the described situation
is not the only possibility for which the singular set is quadratical, but
the general solution seems to be difficult for non-planar base or platform.
This means to describe all parallel manipulators for which the singular
set is quadratical in translations. In the planar case the problem is not
difficult to solve, we show one example.

2. Description of the motion of a
Stewart-Gough platform

Let g be a matrix of a space displacement,

g =
(

1 0
ti aij

)
(1)

parametrized by Euler parameters aij = aij(xα) and Study parameters
ti = ti(xα, yβ), i, j = 1, 2, 3, α, β = 0, ..., 3 in the usual way, see Botema,
Roth, 1990, Husty, 1991, Husty, Karger, 2000, Karger, 2002.

We shall define the Study representation of the displacement group D6

of the Euclidean space. We consider the 7-dimensional projective space
P7 of the vector space R8 with coordinates x0, ..., x3, y0, ..., y3. Points of
P7 are determined by non-trivial 8-tuples (x0, x1, x2, x3, y0, y1, y2, y3) of
real numbers, given up to a nonzero multiple. From P7 we remove the
subspace given by equations x0 = 0, x1 = 0, x2 = 0, x3 = 0, let P ′

7 be
the remaining part. Let S be the set in P ′

7 which is determined by the
equation

U = x0y0 + x1y1 + x2y2 + x3y3 = 0.
S will be called the Study quadric. We have a 1-1 correspondence

between points of S and elements of the group D6 of space displacements.
To simplify computations we can normalize coordinates in S by the

requirement
K ≡ x2

0 + x2
1 + x2

2 + x2
3 = 1.

Now we shall describe the geometry of the motion of Stewart-Gough
platform. From kinematical point of view we can say that the upper
part of the platform lies in the moving space, the lower part lies in the
fixed space and the motion of the Stewart-Gough platform is generated
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by telescopic legs which connect six points of the moving space with six
points of the fixed space by spherical joints.

Let us suppose that we have chosen a system {O1, �e1, �e2, �e3}
({O2, �f1, �f2, �f3}) of Cartesian coordinates in the moving (fixed) spaces,
respectively.

Let M = (A,B,C) be a point in the fixed space (lower part of the
platform), m = (a, b, c) be a point in the moving space (upper part of the
platform).

Any point m of the moving space can be also expressed by coordinates
(ã, b̃, c̃) with respect to the fixed space, where

ã = t1 + a11a + a12b + a13c,
b̃ = t2 + a21a + a22b + a23c,
c̃ = t3 + a31a + a32b + a33c.

The condition for the point m to lie on sphere with center at M and
radius r is

(ã − A)2 + (b̃ − B)2 + (c̃ − C)2 − r2 = 0.
In this equation we substitute Study parameters and the result is an

equation of degree four in xi, yi. This equation simplifies considerably
if we add 4U2 to it. Then the factor K factorizes out and we obtain a
quadratical equation

h = RK + 4(y2
0 + y2

1 + y2
2 + y2

3) − 2x2
0(Aa + Bb + Cc)+

2x2
1(−Aa + Bb + Cc) + 2x2

2(Aa − Bb − Cc) + 2x2
3(Aa + Bb − Cc)+

4[x0x1(Bc − Cb) + x0x2(Ca − Ac) + x0x3(Ab − Ba) − x1x2(Ab + Ba)−
x1x3(Ac + Ca) − x2x3(Bc + Cb)+

(x0y1 − y0x1)(A − a) + (x0y2 − y0x2)(B − b) + (x0y3 − y0x3)(C − c)+

(x1y2−y1x2)(C+c)−(x1y3−y1x3)(B+b)+(x2y3−y2x3)(A+a)] = 0, (2)

where R = A2 +B2 +C2 +a2 + b2 + c2 − r2, Husty, 1991, Husty, Karger,
2000.

Let us suppose that the Stewart-Gough platform is given by six ar-
bitrary points Mi = (Ai, Bi, Ci) in the lower part and six points mi =
(ai, bi, ci) in the upper part of the platform, ri be also given, i = 1, ..., 6.

We substitute coordinates of Mi,mi in (2) and we obtain 6 equations

h1 = 0, ..., h6 = 0. (3)

By this way the geometry and kinematics of the platform is fully de-
scribed, Husty, 1991.

We would like to show how we can describe the singular positions
using the Study representation, because the reasoning is natural and
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very simple. Let us suppose that ri are given as functions of time, ri =
ri(t). This generates a motion in the moving space described by a curve
xi = xi(t), yi = yi(t), i = 0, ..., 3 in P 7. We express the velocity operator
for this motion. We can suppose that at instant t = t0 the motion
passes through identity (the frame in the moving space is identical with
the frame in the fixed one),

1 0 0 0 j 0 j 0

The matrix of the motion is a function of the time, g = g(t) and for
its derivative at t = t0 we obtain

g′(t0) = 2

⎛⎜⎜⎝
0 0 0 0
v1 0 −u3 u2

v2 u3 0 −u1

v3 −u2 u1 0

⎞⎟⎟⎠ , (4)

where uj = x′
j(t0), vj = y′j(t0), j = 1, 2, 3 and x′

0(t0) = y′0(t0) = 0 as a
consequence of K = 1, U = 0. The vector (u1, u2, u3) yields the rotational
part of the velocity operator, (v1, v2, v3) yields its translational part.

The derivative of (2) at t = t0 yields

r(t0)r′(t0)/2 = u1(Bc−Cb)+u2(Ca−Ac)

+u3(Ab−Ba)+v1(A−a)+v2(B−b)+v3(C−c). (5)

Application of this procedure to (3) yields a linear mapping φ which
transforms velocities (u1, u2, u3, v1, v2, v3) of the motion of the upper
part of the platform (end effector) into the linear velocities (r′1, ..., r′6) of
telescopic motions of legs of the manipulator. In practical problems we
more often need the inverse φ−1 of this mapping, to express velocities
of the motion from velocities of legs. As we have 6 linear equations
for 6 unknowns, it exists iff the matrix of coefficients of φ is regular.
Coefficients are

(Bc − Cb,Ca − Ac,Ab − Ba,A − a,B − b, C − c), (6)

which are the Plücker coordinates of the line connecting points m and M.
Positions where φ is not invertible are called singular positions of the
parallel manipulator, see Botema, Roth, 1990, Karger, 2001, Karger,
2002, Ma, Angeles, 1992, Merlet, 1992.

3.
The singular surface is a very complicated hypersurface in the 6-

dimensional space of all possible configurations of the parallel manip-
ulator. It is of degree 10 in Study parameters and it has about 2000
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x (t ) = 1, y (t ) = 0, x (t ) = y (t ) = 0, j = 1, 2, 3.
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terms in general for a given manipulator (with fully given geometry).
To give at least a partial idea how it looks like we shall concentrate at
special cases. We shall preserve translations as free parameters and use
Euler parameters for the orientation. We observe that the singular set
is of degree 3 in translations. This means that for given orientation of
the platform we obtain an algebraic surface of degree 3 in E3. Algebraic
surfaces of degree three were intensively studied but they have a rather
complicated structure. This is not very suitable for visualization or de-
scription. Therefore we shall concentrate at the case where the platform
and the base are affinely equivalent. In this case we observe that there
is a basic difference between the planar and nonplanar cases.

Let af first the platform (and base) be non-planar. We choose the
system of Cartesian coordinates in such a way that m1 = [0, 0, 0],m2 =
[a2, 0, 0],m3 = [a3, b3, 0], and similarly for the base. We can suppose that
a2b3c4 �= 0. Now let us suppose that there is an affine correspondence ψ
between the platform and base such that ψ(mi) = Mi, i = 1, ..., 6. ψ is

X = f11x + f12y + f13z + f1,

Y = f21x + f22y + f23z + f2,

Z = f31x + f32y + f33z + f3,

where x, y, z are coordinates in the moving (platform) space, X,Y,Z are
coordinates in the fixed (base) space. Substitution of m1 and M1 yields
f1 = f2 = f3 = 0. Substitution of m2 and M2 yields f11 = A2/a2, f21 =
f31 = 0. From m3 and M3 we obtain

f12 =
A3a2 − A2a3

a2b3
, f22 = B3/b3, f32 = 0.

The fourth pair of points m4 and M4 yields A4 = f11a4,+f12b4 +f13c4,
B4 = f22b4 + f23c4, C4 = f33c4 and therefore f33 = C4/c4,

f23 =
B4b3 − B3b4

b3c4
, f13 =

b3(A4a2 − A2a4) + b4(A2a3 − A3a2)
a2b3c4

.

This finishes the computation of the affine correspondence and its equa-
tions are

X =
A2

a2
x +

A3a2 − A2a3

a2b3
y +

b3(A4a2 − A2a4) + b4(A2a3 − A3a2)
a2b3c4

z

Y =
B3

b3
y +

B4b3 − B3b4

b3c4
z, Z =

C4

c4
z, (7)

Stewart-Gough Platforms with Simple Singularity Surface 251



Points M5,M6 are determined by the correspondence ψ, because a spa-
tial affine correspondence is determined by four pairs of corresponding
points (in general position, which is our case). Let us write

Q = Σi,j,ksijkt
i
1t
j
2t
k
3

where the sum is over i, j, k, where i ≥ 0, j ≥, k ≥ 0, i + j + k ≤ 3.
We suppose at first that sijk = sijk(aα,β), which means that we do not
substitute Euler parameters into coefficients of the orthogonal matrix
of the orientation, to keep the expression into reasonable limits. The
expansion of the equation of the singular set has then 164016 terms. We
obtain coefficients of degree three in Q of the following length given in
square brackets,
[s300] = 264, [s030] = 708, [s003] = 1224, [s210] = 1200, [s201] = 1590,
[s102] = 708, [s021] = 2484, [s021] = 2418, [s012] = 2928, [s111] = 3930.

Substitution from equations of the affine correspondence shows that
all these coefficients are equal to zero. This shows that for given orien-
tation the singular set is only a quadric in E3.

Example 1. We choose points
m1 = [0, 0, 0],m2 = [1, 0, 0],m3 = [2, 1, 0],
m4 = [3, 1, 1],m5 = [5, 3, 6],m6 = [5, 3, 4]
M1 = [0, 0, 0],M2 = [2, 0, 0],M3 = [3, 2, 0],

M4 = [1, 2, 2],M5 = [−17, 6, 12],M6 = [−9, 6, 8]
and orientation given by

x0 = 1/5, x1 = 2/5, x2 = −2/5, x3 = 4/5.
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The singular set can be seen at Fig. 1.

Figure 1. The singular set for non-planar platform from Example 1

4.
In the planar case we substitute Ci = ci = 0 and the equation of

the singular set becomes shorter, it has 14640 terms (without Euler

Planar Platform and aseB

.



q1 = 0 can be explicitly solved as a linear sytem, but the solution is
too large to be given here. Instead of this we present an example of a
planar platform and base which are not affinely equivalent but they have
a singular set quadratical in translations.

Example 2. We write only first two coordinates of points.
m1 = [0, 0],m2 = [1, 0],m3 = [2, 3],m4 = [5, 7]

m5 = [5, 8],m6 = [12, 10],M1 = [0, 0],M2 = [2, 0],
M3 = [3, 4],M4 = [6, 8],M5 = [3, 36/5],M6 = [−2160/71,−2416/71].

The orientation is as in the first example. The singular set is at Fig. 2.

In the planar case the existence of an affine correspondence between
platform and base is more restrictive. Points M4,M5,M6 are given by
the correspondence, as affine correspondence in the plane is determined
by three pairs of points. The equation for the singular set factorizes into
three factors, det(φ) = Q1.Q2.Q3.

Q1 = 0 iff points mi lie on a conic section ( is known for a long
time), Q2 = 0 depends only on the orientation of the platform and it
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parameters). The equation of the singular set is still of third degree in
translations, but the cubic part factorizes into three factors,

t3[2t1(x0x2 + x1x3) + 2t2(x0x1 − x2x3) + t3(−x2
0 + x2

1 + x2
2 − x2

3)]q1,

where q1 is linear in t1, t2, t3 with rather complicated coefficients, it is
not possible do display it here. This means that in general the singular
surface in the planar case remains cubic, but it has three asymtotic
planes. Let us have a look if the second factor can be equal to zero for
all directions. This yields equations

x0x2 + x1x3 = 0, x0x1 − x2x3 = 0, x2
0 + x2

3 = x2
1 + x2

2

We obtain x0 = r cos α, x3 = r sin α, x1 = r cos β, x2 = r sinβ, which
yields cos(α + β) = sin(α + β) = 0, which is impossible. The equation

.

Figure 2. Singular set for the planar case from Example 2.
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platform is singular for all translations. Q3 = 0 is linear in translations.
We have

Q2 = (A3a2 − A2a3)(x2
0x

2
2 − x2

1x
2
3) + (b3A2 − B3a2)x1x2(x2

0 + x2
3)+

(b3A2 + B3a2)x0x3(x2
1 + x2

2)
Q3 = 2t1a2[x1x3(b3 + B3) + x0x2(b3 − B3)]+

2t2[x0x1b3(A2 − a2) + x2x3b3(A2 + a2) + (A3a2 − A2a3)(x0x2 − x1x3)]+
t3[2(A3a2 − A2a3)(x0x3 + x1x2) + (b3 − B3)(a2 − A2)x2

0−
(b3 + B3)(a2 − A2)x2

1 − (b3 − B3)(a2 + A2)x2
2 + (b3 + B3)(a2 + A2)x2

3].

a plane. A special case was studied in Karger, 2001.
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5. Conclusions
In this paper we have found a large class of parallel robot-manipulators

with the property that their singular set is at most quadratical in trans-
lations. In the non-planar case we have shown that this is true for
affinely equivalent base and platform. For planar platform and base the

In the planar
case it is also possible to find all manipulators which are quadratical in
translations, for the non-planar case the problem remains open.

MSM0021620839 of the Ministery of Education of the Czech Republic.

We see that in this case the singular set for given orientation is always

situation is much simpler. For affine equivalent platform and base the sin-
gular set factorizes into three factors two are independent of transla-
tions and the third one is only linear in translations.
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Abstract The article presents an object-oriented representation of Frenet frame motion
along spatial curves in multibody systems. In this setting, the spatial track is
regarded as a kinetostatic transmission element transmitting motion and forces
as in a generic joint. It is shown that for the Frenet frame parameterization it is
possible to avoid singularities at the points of inflection by a special exponential
blending technique. The combination of the simple Frenet frame formulas with
singularity treatment leads to robust and efficient code for dynamic multibody
simulation. All concepts have been tested within an industrial application of
roller coaster design.

Keywords:

Guided motions along spatial curves have many applications in engineering
such as, for example, in the simulation of railways and roller coaster tracks, in
CNC machining (Šı́r and Jüttler, 2005), for guiding robot end effectors or for
describing the motion of bodies measured with tracking systems (Kecskeméthy
et al., 2003).
While in unconstrained motion the path geometries for translation and ori-

entation are generated independently by dynamical equations, in guided mo-

accurately — termed framings. The framing of curves has been intensively
studied in previous works (Bishop, 1975, Hanson and Ma, 1995). A simple

© 2006 Springer. Printed in the Netherlands.
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Spatial motion, Frenet frame, singularity treatment, kinematics

tion, one has to produce smooth trajectories that ensure good dynamic
behavior, and also create smooth rotation interpolations that follow the track



and computationally efficient frame parameterization uses the Frenet frame
with the axes oriented in tangential, normal and binormal direction, respec-
tively. Frenet curves have been used extensively in motion interpolation, rang-
ing from physics, e.g., to describe the motion of macromolecules (Balakrish-
nan and Blumenfeld, 1997) and to mechanical engineering, where they have
been used in constrained multibody systems using Lagrange equations of first
kind (Pombo and Ambrosio, 2003, Hansen and Elliott, 2002). One still un-
solved problem is that Frenet frames display a singularity when reaching points
of inflection, which limits their broad application. The framing suggested by
Bishop helps to circumvent this problem by minimizing angular velocity, but
on the other hand it requires the solution of a system of differential equations in
order to generate the trajectory, which is computationally expensive. The cur-
rent paper describes an approach for avoiding singularities of the Frenet frame
parameterizations and by this to provide a robust description that is suitable for
encapsulated code, such as required in object-oriented modelling. The avoid-
ance of singularities is achieved by a de l’Hospital limit analysis, allowing for
a continuous Frenet frame distribution even in the presence of points of zero
curvature.
The rest of the paper is organized as follows. Section 2 describes the idea

of object-oriented representation of multibody dynamics. This idea is applied
to spline joints in section 3. In the fourth section, the Frenet frame param-
eterization and the singularity treatment approach are described. Finally, the
application of the developed implementations to industrial roller-coaster de-
sign is presented.

For an object-oriented design, one requires a responsibility-driven approach
(Wirfs-Brock and Wilkerson, 1989) that allows for invoking complex software
by “clicking” at the elements. In mechanics, the most abstract “responsibility”
of mechanical components can be regarded to be the transmission of motion
and forces. In this view, a mechanical component acts as a kinetostatic trans-
mission element mapping motion and forces from one set of state objects —
the ‘input’ — to another set of state objects — the ‘output’ (Kecskeméthy and
Hiller, 1994). Input and output state objects can be spatial reference frames
and/or scalar variables, including associated velocities, accelerations and gen-
eralized forces. Let the dimension of the input vector be , and that of the
output vector be . Then, the overall transmission behavior has the form
depicted in Fig. 1.

256 A Kecskeméthy and M. Tändl 



Position

Velocity

Acceleration
Force

A simple transmission element.

The operation of motion transmission consists of the three sub-operations

position:

velocity:

acceleration:

(1)

where represents the Jacobian of the transmission element.
Furthermore, a force-transmission mapping can be defined by assuming that
the transmission element neither generates nor consumes power, i.e., that it is
ideal. Then, equating virtual work at the input and output yields

T T

and, after substituting and noting that this condition must hold for
all IR , one obtains the force transmission function

force: T (2)

Thus, in general, force transmission takes place in opposite direction to veloc-
ity transmission with the transposed velocity Jacobian. This relationship holds
independently of the complexity of the transmission element.
By the use of kinetostatic transmission elements, users can access the generic

properties of mechanical objects without having to refer to their internal imple-
mentation details. As shown in Kecskeméthy and Hiller, 1994, it is possible to
generate all closure conditions of closed loops as well as the equations of mo-
tion of minimal order using only the basic kinetostatic transmission functions.
This allows one to combine models of mechanical elements without respect to
their internal complexity, making open-architecture, object-oriented libraries
possible (Kecskeméthy, 2003).

In order to represent a guided motion as a kinetostatic transmission element,
one needs to identify inputs and outputs and describe the corresponding trans-
mission functions for motion and forces. Let a general curve be given as a
vector function with respect to a basis frame in dependency of the
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path coordinate (Fig. 2). The coordinate frame may be located at some
spatial pose with respect to the inertially fixed coordinate system . The mo-
tion along the curve is described by a moving frame , which represents the
output of the kinetostatic transmission element. The inputs are embodied by
the reference frame as well as the path coordinate .

Model of a spline joint.

In the following, we assume in general vectors to be decomposed in the
target frame, i.e., in the present case, in coordinates of . For other decompo-
sitions, we introduce the notation , where denotes the frame of decompo-
sition, denotes the frame with respect to which the motion is measured, and
denotes the target frame. For motions measured with respect to frame , the
index is omitted. Likely, for decompositions in the target frame ,
the index is omitted. Hence denotes the object . Furthermore, let
denote the derivative of a quantity with respect to the path coordinate , and let
denote the rotation matrix transforming coordinates with respect to frame
to coordinates with respect to frame . Then, the transmission behavior

of the spline joint can be defined by the following equations.
For the orientation and position of the output frame , one obtains

T (3)

depends on the framing of the curve as described in the next section.
Translational ( ) and angular ( ) velocities of frame are obtained as

T

T T (4)
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where is the rigid-body Jacobian, and is the Jacobian mapping path ve-
locity to the velocity quantities of the output frame, as specified below for
the particular parameterization. Moreover, we employ the notation for the
skew-symmetric matrix generated by a vector T as :

(5)

For the translational and angular acceleration, one obtains

(6)

According to the force transmission behavior for ideal transmission elements,
forces ( ) and moments ( ) at the output frame are mapped to the correspond-
ing forces at the input frame. These are the force and moment at the frame
as well as the generalized force along the path coordinate. Hereby, the
force-moment wrench is assumed to be given with respect to the origin, and
all vectors are assumed to be decomposed in coordinates of the frame of refer-
ence. As shown in Kecskeméthy and Hiller, 1994, this transmission is realized
by the transposed Jacobian:

T

T (7)

For the generation of spatial curves, one can employ existing spline algorithms
from the literature. In the present context, the B-Spline routine of fifth order
from the spline library DIERCKX (Dierckx, 1993) was used.

The axes of the Frenet frame at path coordinate are the tangent vector
, the normal vector with curvature and

the binormal vector . With , and being
the coordinate representations of , and in frame , the rotation matrix
becomes

(8)

For the Jacobian matrix , one obtains

(9)
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Frenet spline joint

where is the direction of the angular velocity of frame for and
is the tangent vector, and are the second and
third derivatives of with respect to , all decomposed in . The acceleration
of relative to is

(10)

At points of inflection, the standard formula for determining the normal
vector fails, as both the nominator and the denominator vanish. However,
by a limit analysis, this difficulty can be overcome. Let the curvature

be described in the vicinity of the singularity by a linear approximation
with a still-to-be-determined positive constant . By substituting
for and using de l’Hospital’s rule, the right- and left-hand side

limits of become, for ,
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From the condition one obtains and the right-hand
and left-hand limits become

(12)

This creates a finite value, but induces a switch of direction of the normal vec-
tor at the singularity. In order to avoid this switch of direction, one defines a
vector field along one side of the curve by introducing at equidistant sup-
port points unit vectors aligned with
the normal vector at that point and oriented such that T (Fig. 4
a)). The intermediate vector field is then obtained by linear interpolation.
Using these vectors, one can define a smooth vector field

sgn T (13)

whose direction at each point coincides with that of the normal vector.

point of inflection

AA CC B

a) Vector field for orienting normal vectors b) Domains for normal vector formulas

For practical applications, one needs to treat not only points in which the
curvature is exactly zero, but also points for which the curvature almost van-
ishes. As the spline joints developed here must be suited for dynamic simula-
tions, the transitions from one set of computations (regular Frenet frame for-
mulas) to another (limit analysis Frenet frame formulas) must be smooth and
differentiable. For this purpose, one defines two thresholds for the curvature,
one for entering zero curvature domain ( ), and one for entering the regular
region ( ). In-between, a blending procedure is applied which interpolates
the result of the normal vector computation using the regular formulas and that
using limit-analysis formulas. When the limit-analysis formula is applied to
points near the singularity, the resulting limit vector is no longer exactly nor-
mal to the tangent. This can be circumvented by taking the normal component
of through the projection

T

T
sgn T for (14)
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Let denote the normal vector as computed with the regular formula, and let
denote the normal vector as computed with the singularity formula after

orthogonalization with respect to the tangent. Then, for a typical trajectory
passing through an inflection point, one obtains three domains: A (regular), C
(transition) and B (singular) as depicted in Fig. 4 b). Then one can define for
region A ( )

sgn T (15)

for region B ( )
T

T
sgn T (16)

and for region C ( )

with (17)

sgn T T sgn T (18)

Here, the exponential weighting functions

with

are employed, in which the coefficients and can still be determined by
the user in order to achieve optimal results. Although also other blending func-
tions are conceivable, exponential blending functions have the advantage that
(1) they offer transitions for the two limit cases , , (2) the
boundary conditions can be achieved easily, and (3) all derivatives are easy to
compute. Moreover, the blending functions are related to the error function in
statistics, so that they mimic an averaging procedure. Hence, no other types of
blending functions have been considered in this context, although they could
be incorporated easily. For computing and one needs the first and second
derivatives of , which are not reproduced here due to lack of space. Using
and , the coordinates of can be computed using Poisson’s formula and

as:
T

T
(19)

T
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As well, the coordinates of become, with ,

T T T T T T

T T T T T T
(20)

T T

From these formulas, one obtains smooth Frenet frame rotations through points
with low curvature. In the following, a nearly singular point at with
curvature was regarded.
vectors and when using the proposed method for ,
and and the magnitudes obtained with the regular formula as
reference. The peak in the angular velocity that might lead to problems during
numerical integration is completely avoided using the blending procedure.
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Comparison of and for standard and singularity-free Frenet frame
formulas

The presented approach for generating guided spatial motion using Frenet
frames prove to be useful for parameter-independent, object-oriented simula-
tion of multibody systems. With the introduced limit analysis, it is possible
to generate smooth Frenet frame motions through inflection points, which are
required for robust numeric integration of the equations of motion. Using this
description, it is possible to encapsulate the framing algorithm in easily appli-
cable objects which can be used for online editing of spatial trajectories such
as shown in Fig. 6 for the application in roller coaster design.

Balakrishnan, R. and Blumenfeld, R. (1997), Transformation of general curve evolution to a
modified Belavin-Polyakov equation. Journal of Mathematical Physics, vol. 38, no. 11, pp.
5878–5888.

A Robust Model for 3D Tracking 263

Figure 5 shows the magnitude of the



Roller coaster design environment

Bishop, R. L. (1975), There is More than One Way to Frame a Curve. American Mathematical
Monthly, vol. 82, no. 3, pp. 246–251.

Dierckx, P. (1993), Curve and Surface Fitting with Splines. Clarendon Press, Oxford.
Hansen, N. and A. Elliott, A. (2002), Improving Roller Coaster Design with Virtual Prototyping.

In ADAMS Users Conference.
Hanson, A. J. and Ma, H. (1995), Quaternion frame approach to streamline visualization. IEEE
Transactions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 164–174.
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Abstract In this paper the singularity of all Gough-Stewart platforms (GSP) that have 
three concurrent joints is analyzed. The singularity analysis is based on 
Grassmann-Cayley algebra, and the general expression of the rigidity 
matrix of six lines connecting two bodies (Superbracket). For the class under 
consideration, this coordinate-free expression is easily reduced leading to a 
geometrically meaningful singularity condition. 

1.  Introduction  
The growing interest in parallel robots during the last twenty years is 

accompanied with theoretical effort to cope with the singularity problems 
of these robots due to their instability characteristic at these points. The 
Gough-Stewart platform (GSP) is a paradigm for parallel robots and the 
singularities of some of its special forms were thoroughly studied. In this 
investigation we focus on a certain class of GSPs consisting of all the 
structures having three concurrent joints on the moving platform (or 
alternatively the stationary platform). These robots advantage is having 
the orientation of the platform and the position of one point on the 
platform decoupled. Several researchers addressed specific decoupled 
GSP structures, most of them dealt with the forward kinematics (Husain 
and Waldron, 1994, Wohlhart, 1994, Bruyninckx, 1997 and 1998). In 
addition to the forward kinematics analysis, Wohlhart (1994) obtained 
also the singularity condition of the general decoupled robot (also called 
3-1-1-1). Following some algebraic manipulations of the Jacobian 
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determinant, he found two conditions, one constituting a linear complex 
and the second constituting a linear congruence of the lines along the 
manipulator extensible links. The same result was also obtained by Di 
Gregorio (2002) who used mixed products of vectors identified in the 
robot to obtain the singularity condition as a ninth-degree polynomial 

based system, Thomas et al. (2002), found that the singularity of this 
robot occurs when one of three tetrahedrons constituted by the joints is 
singular. The same result was obtained by Downing et al. (2002), who 
approached the problem by using the pure condition  proposed by White 
(1983) (also used in the present paper). The results of Thomas et al. and 
Downing et al. go along with the comments of Hunt and Primrose (1993) 
regarding the singularity of the 3-2-1 structure. 

The approach used in this paper is based on Grassmann-Cayley 
algebra. The origin of this algebra date back to Grassmann treatise 
Theory of extension  in 1844. The basic elements of this algebra are 

geometric entities such as points, lines and planes and the basic 
operators are able to express algebraically the intersection (meet) or the 
union (join) of two or more elements. A complete definition of the meet 

In the present investigation we provide a comprehensive study of the 
singularity conditions of a class of 18 robots that have three concurrent 

2005b). The main aim of this paper is to demonstrate the simplicity of 
the use of Grassmann-Cayley algebra for decoupled robots as a class, 
while general and special cases are easily identified. The analysis is 
performed using the singularity condition of the general GSP in a 
coordinate-free decomposed form so that the spherical joint locations 
appear explicitly. Once the specific structure is substituted into the 
general expression, the geometric meaning of the condition is deduced 
using Grassmann-Cayley operators and properties.  

The outline of this paper is as follows: Section 2 presents the full list of 
GSPs that belong to this class having three concurrent legs on a 
platform. Section 3 briefly presents the basic operations of the 
Grassmann-Cayley algebra. Section 4 contains the singularity condition 
of the general GSP, leading to the solutions of the decoupled structures of 
this paper in section 5. 

266 P. Ben-Horin and M. Shoham

 

equation. Another decoupled robot whose singularity was found is the 
3-2-1 structure. Using an ellipsoidal uncertainty model for a 3-2-1 wire-

et al. (1974).  
operation came out after more than a century in the paper of Doubilet  

links on the moving, not generally planar, platform. This is a conti- 
nuation of previous studies on the singularity of a class of seven GSPs 
having only pairs of concurrent joints (Ben-Horin and Shoham, 2005a) 
and a broad class of three-legged robots (Ben-Horin and Shoham, 

“ ” 

“ ” 



2.  
Innocenti and Parenti-Castelli (1994) enumerated a long list of GSPs, 

dividing them into two groups: 17 types that have only single or double 

combinations of GSPs containing a total of 35 types. The additional types 
presented are identified to be those having triplet spherical pairs. Table 
1 lists all the structures that belong to the class under consideration, all 
of them (Fig. 1) appear in Faugere and Lazard's paper (1995). To have a 
unique identification of the robots we use the letters a,b,..,j defining the 
spherical joints connecting the legs, so as the robots in Fig. 1 are denoted 
as follows: 

Table 1:  Notation of the structures 

1.  (ae,af,ag),bh,ci,dj 2.  (ae,af,ag),bh,ch,dj   3.  (ae,af,ag),bh,ci,cj 
4.  (ae,af,ag),bh,bi,ci   5.  (ae,af,ag),be,cf,dg 6.  (ae,af,ag),bf,cg,dg 
7.  (ae,af,ag),be,bf,cg 8.  (ae,af,ag),bg,ch,di 9.  (ae,af,ag),be,cf,dh 

 10.(ae,af,ag),bg,cg,dh 11.(ae,af,ag),bg,ch,dh  12.(ae,af,ag),bg,ch,ci 
13.(ae,af,ag),bf,bg,ch 14.(ae,af,ag),bg,bh,ci 15.(ae,af,ag),bg,bh,ch 

  16.(ae,af,ag),bf,cg,ch 17.(ae,af,ag),bg,cg,ch  18.(ae,af,ag),bf,bg,cg 
 19.(ae,af,ag),bh,ch,dh   
 
Every pair of letters indicates a leg, the first three pairs being within 

parentheses since they are identical in all the structures. Structure 

intersect the line passing through a and h, thus resulting in a general 
complex singularity. 
 Some of the structures were presented in the literature. As mentioned 

 

actuation is through linear guides of the lower spherical joints instead of 
extension of the legs. Patarinski and Uchiyama (1993) studied structure 
No. 5 from the instantaneous kinematics point of view. Bruyninckx 
derived the forward kinematics of structure No. 2 with non-planar 
platforms (1997) and of No. 10, with both platforms being planar (1998). 
Structure No. 3 (also called 3-2-1) was addressed by Thomas et al. (2002) 
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spherical pairs and 4 types that have triplet spherical pairs. Sub- 
sequently, Faugere and Lazard (1995) presented a complete list of all 

No. 19 is always singular since, by definition, all the lines of the robot 

Di Gregorio (2002) analyzed structure No. 1 (also called 3-1-1-1). Bernier  
et al. (1995) proposed a specific design of structure No. 1, where the 

in the introduction, Wohlhart (1994), Husain and Waldron (1994) and

No. 18. 

and Downing et al. (2002). Besides solving the forward kinematics  
of structure No. 1, Nanua and Waldron (1990) also addressed structure 

.



 

Figure 1.    All versions of GSPs that have three concurrent legs 
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3.  
In this section a short introduction to the main notions of this algebra 

is given, including relevant examples to this paper. More details on 
Grassmann-Cayley algebra can be found in Ben-Horin and Shoham 
(2005a) and many references therein. 

Consider a finite set of vectors {a1,a2,.,ad} defined in the d-dimensional 
1,i,x2,i,..,xd,i (1 i d ). If M is a 

matrix having a  (1 i d) as its columns, then the bracket of these vectors 
is defined to be the determinant of M:   
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Grassmann-Cayley Algebra  

ivector space over the field P, V, where a =x
i

. 



 
1,1 1,2 1,

1 2

,1 ,2 ,

, ,..., det
d

d

d d d d

x x x
a a a M

x x x
.     (1)

 
T he brackets satisfy the following relations: 

1 2, ,..., 0da a a ,          (2) 
 
f a1,a2,…,ad are dependent. I 

1 2 1 2, ,..., ( ) , ,...,d da a a sign a a a       (3) 
 
for an  y permutation  of 1,2,…,d  

1 2 1 2 2 1 2 1 1 1
1

, ,..., , ,..., , ,..., , ,..., , , ,...,
d

d d i d i i
i

a a a b b b b a a b b b a b bd  (4) 
 
Equations (2) and (3) stem from well-known determinant properties. 

The relations of the third type (4) are called Grassmann-Plücker 
relations or syzygies (White, 1975), and they correspond to generalized 
Laplace expansions by minors. 

Let W be a k-dimensional subspace of V, let {w1, w2,.., wk} be a basis of 
W, and let A be a Plücker coordinate vector in the d

k -dimensional vector 
space Vk. Then this vector can be denoted symbolically as follows (White, 
1994): 

 1 2 kw w wA          (5) 
 

A is called an extensor of step k. Additionally, A W , where A  is called 
the  support  of  A.  Two k-extensors  A  and  B  are  equal up  to a  scalar

 multiplication if and only if their supports are equal, A B .  
Let A=a1 a2 .. ak and B=b1 .. bh (or simply A=a1a2..ak and B=b1..bh) 

be extensors in V having steps k and h respectively, with k+h<d. Then 
he join of A and B is defined by t 

 1 2 1 1 2 1k h ka a a b b a a a b bA B h    (6) 
 

which is an extensor of step k+h. The join is non-zero if and only if 
{a1,a2,..,ak,b1,b2,..,bh} is a linearly independent set.  

Let A=a1a2…ak and B=b1b2…bh, with k+h  d. Then the meet of these 
extensors is defined by the expression:  

   (7) (1) (2) ( ) 1 ( 1) ( )sgn( )[ ... ... ] ...d h h d h ka a a b b a aA B
 

where the sum is taken over all permutations  of {1,2,..,k} such that 
(1)< (2)< < (d h) and (d h+1)< (d h+2)< < (k). Alternatively, the 

permutations in Eq. (7) may be written using dots above the permuted 
elements instead of  as follows: 
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i j ≠a  = a  for some ,  with    , or  i j ji



 1 2 11sgn( )[ ... ... ] ...d h d h kha a a b b a aA B      (8) 

3.1.  

3 (d =4). In this case k+h=d. If K 
and L are skew lines, then K L = 3 and K L =0, then K L is a scalar. 
The calculation of this scalar gives six times the volume of a tetrahedron 
constructed from points a, b, c and d (see Fig. 2(a)). If the lines are 
coplanar, K L = 2 3, then the meet is K L =0, since this is a 
degenerate case of that of Fig. 2(b). 

a

d
b c

b

a

cd

K L=[abcd] scalar  K L=[abcd]=0 
   (a)         (b)         

Figure 2.    Meet of lines in space 

3

are not coplanar, then X Y= 3, X Y 0, therefore in this case the meet 
of X and Y yields an extensor of step k+h d=2, which indicates the line of 
intersection of X and Y:  

[X Y abc def adef]bc -[bdef]ac -[cdef]ba=[adef]bc   
3.  A line gh intersecting this line of intersection gives the same result 

s in the degenerate case in example 1, then the meet is equal to 0: a 
[ 0

• •
gh abc def gabc]h -[habc]g def =[g abc][hdef] . 

4.  
From the rigidity of frameworks point of view researchers have 

frameworks (White and Whiteley, 1987). A special case of the latter 
frameworks is the case of two bodies interconnected by six bars, namely, 
the GSP. As known, the rigidity matrix (or the Jacobian) of this case has 
the Plücker coordinates of the bar-lines as its columns. A decomposition 
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Examples of the Meet Operation  
1. Let K=ab and L=cd be two extensors of step 2 (k = h=2) representing 

Πthe lines K and L in the projective space 
Π

Π Π

2. Let X=abc and Y=def be two extensors of step 3 (k=h=3), 

Π
Π (d=4). Given the planes representing two planes in the projective space 

Singularity Condition of the General GSP 

and-joint frameworks (White and Whiteley, 1983) and bar-and-body 
is infinitesimally non-rigid. This resulted in rigidity matrices of bar-
developed methods to find the condition for which the framework  

. 

- -

-



of the determinant of this matrix was proposed by White (1983), calling it 
Superbracket. This expression includes bracket monomials containing 
symbolically only the connecting points. A significant simplification of 
this expression was provided by McMillan (1990), reducing to 24 bracket 
monomials. Below, McMillan's version is introduced.  

Let [ab,cd,ef,gh,ij,kl] be the bracket of six 2-extensors representing 
lines ab, cd, ef, gh, ij, kl in space. Then the superbracket of these lines is:  

3 31 2 1 2 4 4

5 6 5 7 6 7 8 9 8 10 9 10

, , , , ,

abce dghi f jkl abcg def i h j kl
  (9) 

 
here 

ab cd ef gh ij kl abcd ef g i h jkl abce df gh ijkl

 denotes
1 2 1 2

1,2
sign(1,2) abcd ef g i h jkl

1 2 1 2
abcd ef g i h jklw and 

1,2 are permutations of the 2-element sets {g, h}, {i, j}, respectively.  

5.  

The s condition for the robots of the decoupled class is 
ob

sulting non-zero terms for structure No.1 are (out of 24 terms): 

ingularity 
tained by substituting the points of each robot in the general 

superbracket expression of Eq. (9). According to Eq. (2) and due to 
repetition of points in double or triple spherical pairs, this expression is 
reduced to two or one non-zero monomial terms for all the robots in the 
class. 
The re 

, , , , ,ae af ag bh dj ci aefg abhd ajci aefg abhj adci   (10) 
 

fter collecting equal terms the right hand side is written as A 
aefg abhj adci abhd ajci         (11) 

he expressions in parentheses are identified to be the re
 
T sult of the  
meet operation, interchanging j and d:  

• •
aefg abh j adci           (12) 

 
hese terms being equated to zero comprise the singularity conditions: T  

0 or 0aefg abh aci dj           (13) 

he first singularity condition occurs whenever f
g 

 
T the points a, e,  and 
are coplanar. Since we refer to generic robots having this joint 

distribution, this condition does not necessarily mean that point a is on 
plane efg. For instance, the robot proposed by Bernier et al. (1995) which 
is actuated by linear actuators that change the spherical joints locations 
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Singularity Solution of Three-concurrent-joint 
Robots  



can have point g lying on line ef thus leading to this singularity. The 
second singularity condition arises whenever line dj intersects the line of 
intersection of planes abh and aci (as may be identified from example 
No. 3 in Section 3.1). 

Singularity of particular cases   
is one of the particular cases of No. 1, Structure No. 2  in Table. 1 

the form  
,ae af , , , ,ag bh dj ch aefg abhd ajch aefg abhj adch .  (14) 

imilarly to the solution of structure No. 1: 
 
S

abhd ajch          (15) aefg abhj adch

aefg abh j adch          

These terms being equated to zero comprise the sin arity conditions: 

    (16) 

gul 
0 or 0aefg abh ach dj           (17) 

These conditons have the same form as for structure No. 2. However, the 
second condition is calculated as follows:  

0abh ach dj aach bh bach ah hach ba dj        (18) 

bach ah dj bach ahdj     
In conclusion, the singularity condition is: 

     (19) 

 
0 or 0aefg bach or 0ahdj     (20) 

 
he robot is singular whenever points a,e,f and g, or poin

c 

j]=0 

T ts a,b,h and 
or a,h,d and j are coplanar. The condition of the first four points being 

coplanar was obtained for structure No. 1. This is related to the inability 
to resist forces applied on point a. The second two conditions are related 
to the inability to resist torques, thus gaining one or two angular degrees 
of freedom. This condition in structure No. 1 consists of the intersection 
of line dj with the intersection of planes abh and aci. In structure No. 2, 
the line of intersection of the respective planes abh and ach is line ah 
itself, as it is obtained in Eq.(19), so the second condition becomes 
Eq.(20).  

1.[aefg]=0, abh ach dj=0 2. [aefg][abhj][adch]=0  3.[aefg][abhc][aic
4. [aefg][abhi][abci]=0 5.[aefg]=0, abe adg fc=0 6. [aefg][abfg][acdg]=0 
7. [aefg][abef][abcg]=0 8.[aefg]=0, abg adi hc=0 9.[aefg]=0,abe adh fc=0 
10.[aefg][abgc][agdh]=0 11.[aefg][abgh][acdh]=0 12.[aefg][abgc][ahci]=0 
13.[aefg][abfg][abch]=0 14.[aefg][abgh][abci]=0 15.[aefg][abgh][abch]=0 
16.[aefg][abfc][agch]=0 17.[aefg][abgc][agch]=0 18.[aefg][abfg][abcg]=0 
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Table 2:  Singularity conditions of all GSP having three concurrent joints 

where point i coincides with point h. Therefore, the terms of Eq. (10) take 

.



The condition obtained for structure No. 1 matches the result obtained 
by Wohlhart (1994) and the condition obtained for structure No. 2 is 
compatible with results obtained by Thomas et al. (2002) and Downing et 
al. (2002) for similar structures. While structure No. 2 was taken as an 
example, the same type of solution is obtained for structures No. 2, 3, 4, 
6, 7, 10, 11, 12, 13, 14, 15, 16, 17 and 18, see Table 2. In the same way, 
structures No. 5, 8 and 9 
have the same singularity 
condition as No. 1, all 
having three mutually 
separated legs. a  Fig. 1 
shows structure No. 17 in 
its regular and singular 
poses. In this case the 
singular pose is caused by 
the condition [abgc]=0. 

(left) and 
singular (right) poses 

 

6. Conclusions 
In this paper the singularity of a GSP class having three concurrent 

joints was addressed using a decomposed form of the rigidity matrix 
determinant of the general GSP. This form contains combinations of 
bracket monomials, which are tools from Grassmann-Cayley algebra. 
Since the class of robots under consideration has at least one concurrent 
triplet of joints, the substitution of the joints of the robots into the 
general solution causes most of the bracket monomials to vanish. 
Consequently, the retrieval of the geometrical nature of the singularity 
condition of each robot using Grassmann-Cayley properties becomes a 
simple task. Starting with the most general structure and showing 
particular cases, the singularity conditions of all the 18 robots of the 
class were obtained. For the general cases it consists of the coplanarity of 
one tetrahedron associated with the three concurrent joints or the meet 
of one leg with the intersection line of two other planes. The singularity 
of the particular cases includes three possible coplanar tetrahedrons. 
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Abstract The paper presents a geometric algebra (Clifford algebra) approach to 
singularity analysis of a spatial parallel manipulator with four degrees of 
freedom. The geometric algebra provides a good geometrical insight in 
identifying the singularities of parallel manipulators with fewer than six 
degrees of freedom. 

Keywords: 

1.  Introduction  

Most of the investigations of the parallel manipulators are concerned 
with the six-degrees-of-freedom (6-dof) parallel manipulators such as 
Steward-Gough parallel manipulators. In recent years there is an 
increased interest in parallel manipulators with less than six degrees of 
freedom. The performance of such types of manipulators is satisfactory 
for some applications. Moreover, they have some advantages in 
comparison with the 6-dof parallel manipulators such as greater 
workspace and simpler mechanical designs. Comparatively a small 
number of papers have been dedicated to 4-dof and 5-dof parallel 
manipulators (e.g. Fang and Tsai, 2002; Lenarcic, et al., 2000; Pierrot 
and Company, 1999; Tanev, 1998). 

The singularity of spatial parallel manipulators with fewer than six 
degrees of freedom (mainly 3-dof) has been studied by several 
researchers (Di Gregorio, 2001; Wolf et al., 2002; Zlatanov et al., 2002). 

This paper presents a singularity analysis of a four-degrees-of-freedom 
three-legged parallel manipulator using geometric algebra (Clifford 
algebra) approach. Only a few papers are dedicated to application of 
Clifford algebra to robot kinematics (e.g. Collins and McCarthy, 1998; 
Rooney and Tanev, 2003). The geometric algebra provides a good 
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USING GEOMETRIC ALGEBRA 

SINGULARITY ANALYSIS OF 
A 4-DOF PARALLEL MANIPULATOR 

Singularity, parallel manipulator, geometric algebra, kinematics 

geometrical insight and computer efficiency in designing and mani-
pulating geometric objects.  



In this paper the author adopts the geometric algebra (Clifford 
algebra) approach developed by Hestens (Hestenes, 1999; Hestenes and 
Sobczyk, 1984). In an n-dimensional vector space n  over real numbers, 
the geometric algebra n n( )  is generated from n  by defining a 
single basic kind of multiplication called geometric product between two 
vectors. The geometric product for all vectors in  obeys associative and 
distributive rules, multiplication by a scalar (

n

) is defined and the 
square of any vector is a scalar. These properties, which hold for all 
vectors, are summarized as follows: ( ) ( )a bc ab c ; ( )a b c ab ac ; 

; ( )b c a ba ca a a ; 22a a  where a  is a positive scalar called 
magnitude of a. The geometric algebra n n( )  is a 2 -dimensional 
algebra, i.e.,  generates exactly 2  linearly independent elements. The 
vector space n  is closed under vector addition, but is not closed under 
multiplication. By multiplication and addition the vectors of n  generate 
a larger linear space n n

n

n
n

( )  called the geometric algebra of . This 
linear space is closed under multiplication as well as addition. 

n

The geometric product of two vectors a and b can be decomposed into 
symmetric and antisymmetric parts. i.e., 

 

 ,ab a b a b  (1) 
 

where the inner product a b  and the outer product a b , respectevely, 
are defined by  

 

 1 (
2

a b ab ba)   and  1 (
2

a b ab ba) .  (2) 
 

The inner product a b is a scalar-valued (drade 0). The result of the 
other product is neither a scalar nor a vector. For any two vectors a and 
b, the outer product a b  is an entity called bivector (grade 2). 
Geometrically, it represents a directed plane segment produced by 
sweeping a along b. Higher-grade elements can be constructed by 
introducing more vectors. Thus, trivectors a b c  (grade 3) represent 
volumes and so on, up to the dimension of the space under consideration. 
The outer product of k vectors 1 2  generates a new entity 

1 2 k called a k-blade. The integer k is named a grade. A linear 
combination of blades with the same grade is called a k-vector. The 
geometric algebra n  contains nonzero blades of maximum grade n 
which are called pseudoscalars of n  or n . Although geometric algebra 
can be constructed in an entirely basis-free form, in this particular 
application (Euclidean geometric algebra with signature (n,0)) it is useful 
to introduce a set of basis vectors which obey the following 

, ,..., ka a a
a a a

i j ije e ; 
1( )ij i j  and 0 ( )ij i j ; 0i ie e . 
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A generic element of the geometric algebra is called a multivector 
which can be written as 

 
0

n

k k

M M ,  (3) 
 

where 
k

M  denotes the k-vector part of M. 
An extensive treatment of a geometric algebra is given in Hestenes, 

1999. 

3.  

In this section, the velocity equations for parallel manipulators in 
terms of the geometric algebra are obtained. 

3.1. 

Any oriented line l is uniquely determined by given its direction u and 
its moment  and in the geometric algebra 3  of 3-D vector space  
with the basis it can be written as (Hestenes, 1999): 

m 3

1 2 3{ , , }e e e
 

 +l u m u + r u , (4) 
 

where r is the position vector of a point on the line. 
Thus, in the geometric algebra 3  of the 3-D vector space 3 , a line is 

expressed as a multivector composed from a vector part plus a bivector. 
An extension of the equation of the line (Eq. 4), i.e. adding the moment 
corresponding to the pitch, leads to the equation of a screw: 

 

  (5) 1 1 2 2 3 3 1 2 3 2 3 1 3 1 2 ,s u + r u hiu v e v e v e b e e b e e b e e
 

where  and ( 1,2,3iv i ) )( 1,2,3ib i  are scalar coefficients;  is 
the unit pseudoscalar of ; h  is the pitch of the screw. 

1 2 3i e e e

3
In Eq. 5 the screw is expressed as a multivector in 3 . It could also be 

expressed as a vector in the geometric algebra 6 . In the geometric 
algebra 6  of 6-D vector space 6  with the basis , a 
screw can be written as a vector (grade 1), i.e., 

1 2 3 4 5 6{ , , , , , }e e e e e e

 

  (6) 1 1 2 2 3 3 1 4 2 5 3 6 ,S v e v e v e b e b e b e
 

where the coefficients are the same as in Eq. 5. 
The operation of transformation of a screw into an elliptic polar screw 

(see Lipkin and Duffy, 1985) can be written as 
 

 1
1 1 2 2 3 3 1 2 3 2 3 1 3 1 21 2

,s i s i s b e b e b e v e e v e e v e e+  (7) 
 

where 
k

s denotes k-vector part of s; 1i is the inverse of the unit 
pseudoscalar i for the . 3
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Velocity of Parallel Manipulators  

Screws in terms of Geometric Algebra 



From this section on the following notations for a screw are adopted: a 
3

6  of 6-D space; letters with a tilde mark ( ) denote the elliptic polars 
of the screws (s and S), given in  and , respectively. 

,s S

3 6
It has been pointed out by Lipkin and Duffy (1985) that the twists of 

non-freedom (wrenches of non-constraint) and wrenches of constraint 
(twists of freedom) are elliptic polars; twists of freedom (wrenches of 
constraint) and twists of non-freedom (wrenches of non-constraint) are 
orthogonal complements which together span a six space. These 
properties and relationships are used in the present paper in order to 
obtain the singularities of the considered parallel manipulator. Although 
orthogonality of screws is invariant with respect to rotations of the 
coordinate system but not with respect to the translations (Lipkin and 
Duffy, 1985), it is still useful for the purpose of the identification of 
singularities in this paper. 

3.2.  

The moving platform and the base of a parallel manipulator are 
connected with n-legs, which can be considered as serial chains. The 
velocity of the moving platform can be expressed as a linear combination 
of the joint instantaneous twists 

 

  (8) 
1

, ( 1,2... ),
f

j j
p i i

i

V S j n

 

 where j
i  denotes the joint  rate and  represents the normalized 

screw associated with the ith joint axis of the jth leg; f is the dof of the jth 
leg . The left leading superscript denotes the leg number.  

j
iS

In case of a parallel manipulator with fewer than six degrees of 
freedom, some legs may not possess full mobility. In that case, we 
suppose that the remaining degrees of freedom are represented by 
dummy joints (or driven but locked joints) and associated with them 
dummy screws. Taking the outer product of five screws of the jth leg 
gives the following 5-blade: 

 

  (9) 1 2 1 1 6... ... .j j j j j j
k k kA S S S S S

 

The 5-blade  from Eq. 9 involves five screws (out of six with the 
exception of the screw). The kth joint is active. In a non-degenerate 
space, the dual of a blade represents the orthogonal complement of the 
subspace represented by the blade. The dual of the above 5-blade  is 
given by the following geometric product: 

j
kA

j
kS

j
kA
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Velocity Equations 

3-D space; an upper case letter (S, L) denotes a screw written as a vector in 
 oflower case letter (s, l ) denotes a screw written as a multivector in 



 1 (6 ) 1
6 6( 1) ,j j n n j

k k kD A I I A  (10) 
 

where  is a unit pseudoscalar of the  and  is its 
inverse; (in case of 6-dof limb). 

6 1 2 3 4 5 6I e e e e e e 6
1

6I

5n
Pre-multiplying (inner product) both sides of Eq. 8 by j

kD  one obtains: 
 

 .j j j j
k p k k kD V D S

k

 (11) 
 

The result in Eq. 11 is obtained having in mind that 
 and (providing the joint screws of the jth 

leg are linearly independent); j  is a scalar. 
0 ( )j j

i kS D i k j j j
k kS D c

kc

 

 1 ,j j
k j j

k k

R V
R S

k p

R D
, ,..., , ,...,j j j jS S S S S

 (12) 
 

where  is a screw reciprocal to the joint screws 
1 2 1 1 6k k  of the jth leg; and 

j j
k k

pV is the velocity of the 
moving platform with interchanged primary and secondary parts (the 
interchanging operation is algebraically the same as operation of 
transformation of a screw into an elliptic polar screw).  

The screws j  form the rows of the inverse Jacobian.  kR

4.  

The considered three-legged parallel manipulator is shown in Fig.1. 
Two of the legs have SPS structure. The third leg has R1 R2 P3 R3 
structure (the R1 revolute joint is attached to the base and R3 revolute 
joint  - to the moving platform, respectively).  
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a) The 3-legged 4-dof parallel 
manipulator  

 
b) The SPS (UPS) leg of the 

manipulator and the screw axes 

Figure 1.     The 3-legged 4-dof parallel manipulator and the joint screw axes 
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Therefore, it follows from Eq. 11 that the rate of kth joint of the jth leg is 

Singularity of a 3-legged 4-DOF Parallel 
Manipulator  

-

. 



The active (actuated) joints are as follows: i) the three prismatic joints 
of the legs; and ii) the revolute joint R1 of the third leg which is connected 
to the base platform (for details see Tanev, 1998). 

In a non-singular configuration the driven joints and the structure (or 
the dummy joints) of the manipulator sustain a general wrench applied 
to the moving platform. Referring to Eqs. 11 and 12, the condition for 
singular configuration can be written as  

 

 1 2 6... 0,D D D  (13) 
 

where 1
6

j
iD A I  is a vector (grade 1), because the 5-blade j  also 

includes the screws associated with the dummy joints of the jth leg. 
A

The 6-blade from Eq. 13 is zero, if and only if its six constituent 
vectors are linearly dependent. The first and the second legs (SPS legs) of 
the considered parallel manipulator have full mobility and each one has 
one driven joint (the P joint). The third leg (RRPR leg) has four degrees of 
freedom, two driven joints (R1 and P3) and in order to have full mobility 
two extra dummy joints (denoted by a superscript d in the equations) are 
added, which can be considered as active but locked. In this case, Eq. 13 
can be rewritten as 

 

  (14) 1 2 3 3 3 3
3 3 1 3 1 2 0.d dD D D D D D

 

The duals, which are needed for the velocity equations for the active 
and dummy joints of the third leg (RRPR leg), are as follows 

 

 

3 3 3 3 3 3
1 2 3 4 1 2 6

3 3 3 3 3 3
3 1 2 4 1 2 6

3 3 3 3 3 3
1 1 2 3 4 2 6

3 3 3 3 3 3
2 1 2 3 4 1 6

( )
(
(
( )

d d

d d

d d

d d

1

1

1

1

;
)
)

D S S S S S I
D S S S S S I
D S S S S S I
D S S S S S I

 (15) 

 

Taking the outer product of the four vectors from Eq. 15 and after 
some manipulations one obtains 

 

 3 3 3 3 3 3
1 3 1 2 2 4( )d d

1
6D D D D S S I  , (16) 

 

where  is a scalar; the above result is 
obtained keeping in mind that 

3 3 3 3 3 3
1 1 1 1 2 2( )( )(d d d dD S D S D S )

3 3 0( )i kD S i k  and 3 3 0( )i kD S i k
1

6) 1

1

. 
 and 

represent one and the same subspace.   

3 3
2 4( S S I 3 3

2 4 6( )S S I

Therefore, the condition for singularity can be written as 
 

  (17) 1 2 3
3 3 0,D D D

 

where 1 1 1 1 1 1
3 1 2 4 5 6 6( )D S S S S S I ; 

2 2 2 2 2 2
3 1 2 4 5 6( ) 1

6D S S S S S I  and  3 3 3
2 4 6( ) 1D S S I . 
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Since  is a scalar, both 4-blades 



The singular configurations of the manipulator can be algebraically 
obtained from Eq. 17. Further, in order to utilize the geometrical insight 
of the approach, the 6-blade from the left-hand side of Eq. 17 is factorized 
into six vectors (screws). The linear dependence of these six screws gives 
the condition for singularity. Since 1

3D  and 2
3D  are vectors, only the 4-

blade 3D  is factorized into four vectors. These six dual screws yield their 
elliptic polars. It could be proved that if n screws are linearly dependent, 
so are their elliptic polars. The elliptic polars of 1

3D  and 2
3D are two lines 

( 1L  and 2 ) along the first and the second legs, respectively. The elliptic 
polars of the four factor vectors of the 4-blade 3

L
D  are as follows: i)the 

line 3  is along the third leg ( 3CB ); ii)the line 4  is parallel to the  joint 
screw axis  and passes through 3

L L
3

2S B ; iii)the line 5  is parallel to the  
joint screw  axis  and passes  through C ;  iv)the line 6  intersects 
the two joint screw axes  and ,  and does not pass through .  These 

 and  . Thus, 

L
3

4S L
3

2S 3
4S C

3
2S 3

4S

 

  (18) 3
3 4 5 6 ,L L L L D

 

where   is a scalar. 
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Figure 2.     The arrangement of the six lines 

The six lines are shown in Fig. 2. They, actually, represent the 
wrenches of constraints, including those from the active (driven) joints, 
imposed to the moving platform. Therefore, the manipulator is in 
singular configuration if these six lines are linearly dependent, i.e., 

 

 1 2 3 4 5 6 0.L L L L L L  (19) 
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It is clear that the condition for the singularity (Eq. 17) involves screws
which represent all and only passive joints of the parallel manipulator.
This condition can be easily generalized to any kind of parallel manipula-
tor with less than six degrees of freedom.  

four lines are  reciprocal to the two joint screws 
the outer product of the elliptic polars of the latter four  lines is 

. 



Obviously, Eqs. 17 and 19 are equivalent and both represent the 
condition for singularity of the considered parallel manipulator. 

4.1  

The singular configurations of the manipulator can be identified using 
Eq. 17 (or Eq. 19). The following main types of singular configurations for 
the considered parallel manipulator can be distinguished: i) The first 
type of singular configuration occurs when one line is linearly dependent 
on three other lines (Fig. 3).  

Figure 3.     Type 3b singular configuration 

This singularity is of type 3b according to the classification introduced 
by Merlet (Merlet, 1989; McCarthy, 2000). In this case the intersection 
line of two planes, defined by two pairs of intersecting lines ( 3 , 5  and 

2, 6 ),  passes through the two points of intersection of the two pairs of 
lines (Fig. 3-b). Interesting in this case is the fact that the manipulator is 
in singular configurations regardless of the leg length of the first leg 
( 1 1

L L
L L

A B ). In this singular configuration the uncontrollable motion is a 
general screw motion. ii) The second type of singular configuration is of 
type 4d  degenerate congruence. Fig. 4-a shows this singular 
configuration and the plane generated by two intersecting lines. The 
lines , 3  and 5  lie in this plane, while the intersection point of the 
lines 2  and 6  is the same as the point of intersection of the two lines 
generating the plane. Here, the uncontrollable motion (twist of freedom) 
is a pure rotation about an axis $ along the line 2 3

1L L L
L L

B B . iii) The next type of 
singular configuration occurs when one of the lines is a linear 
combination of the remaining five lines (Fig. 4-b). In this particular case 
five of the lines ( 1L , 2, 3, 4  and 6 ) intersect a single line 2 3L L L L B B  and 
the sixth line 5  is parallel to the same line 2 3L B B . In this singular 
configuration, the uncontrollable motion is a pure rotation about an axis 
$ along the line 2 3B B . Although this type of singularity is not explicitly 
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–

. 



listed in the Merlet’s (Merlet, 1989; McCarthy, 2000) classification, it 

 

 1 2 3 4 5 0.S S S S S S  (20) 
 

Postmultiplying both sides of Eq. 20 by 1
6I  leads to 

 

 1 1
1 2 3 4 5 6 1 2 3 4 5 6( ) [(S S S S S S I S S S S S S I) ] 0.  (21) 

 

Since 1
1 2 3 4 5 6(F S S S S S I)  is a unique screw, therefore it 

follows from Eq. 21 that any screw S, which is reciprocal to the elliptic 
polar screw ( ) of F, is a linear combination of the five screws 

i . If  is a real line (a screw with zero pitch), then S could be 
any line in space which intersects , is coaxial with or parallel to . 

F
( 1...5)S i F

F F

Figure 4.     Types 4 and 5 singular configurations 

In the considered particular singular case (Fig. 4-b) the dual of any 
5-blade (the outer product of any five screws i ) is a line and its elliptic 
polar is the line along 2 3

L
B B  (Fig. 4-b). Five of the lines intersect the line 

2 3B B  and the remaining sixth line is parallel to the same line 2 3B B . 

5.  Conclusions  

The condition for singularity is expressed as a linear dependency of six 
lines using the language of geometric algebra. Several main types of 
singularity for the considered parallel manipulator have been identified. 
It has been proved that the equation for the singularity (the condition for 
singularity) involves the screws which represent all and only passive 
joints of the manipulator. Although the presented geometric algebra 
approach is applied to a particular parallel manipulator, it could be 
generalized for identifying the singularities of a general type of parallel 
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could be classified as 5b singularity. Let a screw S be a linear combination 
of five screws. Thus, the six screws are linearly dependent if and only if
their outer product is zero, i.e., 

manipulator and as well as of one with fewer than six degrees of freedom. 

. 
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QUANTITATIVE DEXTEROUS
WORKSPACE COMPARISONS

Juan A. Carretero and Geoff T. Pond
Department of Mechanical Engineering, University of New Brunswick

15 Dineen Dr., Fredericton, NB, E3B 5A3, Canada

{Juan.Carretero, Geoff.Pond}@unb.ca

Abstract sing a novel method for the formulation of Jacobian matrices, this
paper will compare the dexterity of two parallel manipulators: the 3-
PRS and 3-RPS. The newly obtained Jacobian matrix is square and
dimensionless and its singular values have an evident physical meaning.
These singular values are used to identify and compare regions of the
manipulators’ workspaces where either high end e ector velocities or a
fine resolution over the manipulator pose may be obtained. Workspace
plots for the two manipulators, corresponding to these attributes are
presented and compared for arbitrarily chosen architectural parameters.
The objective of the comparison is to illustrate the capability of the
described method to quantitatively compare the dexterity of various
complex degree of freedom manipulators.

Keywords: Parallel manipulators, Jacobian matrices, singular value decomposition,

1. Introduction
Studying the workspace characteristics of manipulators having either

translational degrees of freedom (DOF) or rotational DOF is simplified
due to the dimensional consistency within the manipulator’s Jacobian
matrix (e.g., Tsai and Joshi, 2000). However, for manipulators having
DOF in both translational and rotational directions, the conventional
method of studying the workspace characteristics using the Jacobian
matrix condition number is no longer possible. This is due to dimen-
sional inconsistencies within the manipulator’s Jacobian matrix.

Recently, a method has been introduced by Pond and Carretero, 2006,
which produces a dimensionally homogeneous Jacobian matrix regard-
less of the manipulator’s degrees of freedom, provided that only one
type of actuator (either revolute or prismatic) is used in the manipu-
lator architecture. This paper will further this work by quantitatively
comparing the dexterity of different manipulators.

The manipulators included in this study are the 3-PRS mechanism
(Carretero et al., 2000) and the 3-RPS mechanism (Lee and Shah, 1988).

© 2006 Springer. Printed in the Netherlands. 
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297

workspace, dexterity, complex degrees of freedom

U



The two mechanisms may be considered to have the same independent
DOF. The resulting Jacobian matrix for both manipulators, when for-
mulated by the method used in this paper, are the same size and are
dimensionless. This will be explained further in the following section.

1.1 Jacobian Formulation
A detailed description of the method developed to obtain dimen-

sionally homogeneous Jacobian matrices for use in dexterity analyses
is described in Pond and Carretero, 2006 and therefore, only a brief
introduction is provided here for completeness. The method presented
therein, is a continuation of a method introduced by Gosselin, 1992, and
later generalised by Kim and Ryu, 2003. This original method relates
a vector containing the Cartesian velocities of three points on the end
effector platform (Ġ1, Ġ2, and Ġ3) to the vector q̇ of actuator velocities
using q̇ = Jẋ where ẋ =[Ġ1x Ġ1y Ġ1z Ġ2x Ġ2y Ġ2z Ġ3x Ġ3y Ġ3z ]T ,
q̇ =[ḃ1 ḃ2 ḃ3]T and the Jacobian matrix J relating the two is:

J =
[
dq
dx

]
(1)

This method relates actuator and end effector velocities for up to 6-DOF
motion. However, use of this Jacobian’s condition number or singular
values in dexterity analyses may not be appropriate as at least 3 of
the variables of ẋ are dependent on the remaining terms of ẋ (6 are
dependent in the case of 3-DOF manipulators). Therefore the meaning
of the Jacobian’s singular values is unknown (Kim and Ryu, 2003).

Now consider the case of a 3-DOF manipulator such as one of those
included in this study, having a translational degree of freedom per-
pendicular to the base platform and two rotational degrees of freedom
around axes parallel to the base platform. Knowing the elevation of three
points on the end effector platform relative to the base platform is suf-
ficient to solve the inverse displacement problem (Pond and Carretero,
2006). Therefore, vector ẋ may be reduced to: ẋ′ =[Ġ1z Ġ2z Ġ3z ]T and
the general equation relating these end effector velocities to the actuator
velocities is rewritten in the form q̇ = JPẋ′ where P, which is used to
map ẋ′ to ẋ, is expressed as:

P =
[

dx
dx′

]
(2)

In order to obtain the partial derivative elements of P, constraint equa-
tions relating Giz to Gix and Giy must first be formulated. The first
derivative with respect to time of these equations leads to the partial
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derivative elements of P. In the case of the manipulators included in this
comparison, where the actuated joints are all prismatic, the multiplica-
tion of JP yields a square, dimensionless Jacobian relating independent
end effector velocities to the actuator velocities. That is,

JP =
[

dq
dx′

]
(3)

Therefore, the singular values of such a Jacobian matrix as JP in Eq. 3
have an evident physical meaning. The meaning of which is important
in understanding the dexterous characteristics of the manipulator.

1.2 Dexterity Analysis
The dimensionally homogeneous matrix JP maps the system output

ẋ′ to the system input q̇. As such, useful system characteristics may
be extracted from the information contained within this matrix. As
explained by Pond and Carretero, 2006, the maximum and minimum
singular values of JP correspond to the magnitude of the minimum
and maximum system outputs corresponding to any unit system input.
Therefore, for the case where relatively small singular values are ob-
tained from JP, this corresponds to a manipulator pose where high end
effector velocities may be obtained for a given set of actuator veloci-
ties. Conversely, where relatively large singular values are obtained, a
finer resolution over the manipulator pose results as the system output
is smaller for the same unit input.

Conventionally, the Jacobian matrix condition number is used to mea-
sure the dexterity of a particular manipulator pose. Mathematically, this
is the ratio of maximum and minimum singular values. Physically, this
compares the ease by which the manipulator may move in the fastest
and slowest directions or whether the manipulator has similar resolution
in each of the DOF. Poses where the condition number is exactly 1 are
termed isotropic configurations (Angeles, 2003) and are considered ideal.
Only by examination of both, the Jacobian’s condition number and its
singular values, can a true understanding of the workspace characteris-
tics of a given manipulator be achieved.

2. The 3-PRS Mechanism
The 3-PRS, shown schematically in Fig. 1a consists of three identical

kinematic chains. The kinematics for this manipulator have been previ-
ously presented in a variety of publications (e.g., Carretero et al., 2000)
and therefore only a brief review is provided here.
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Figure 1. Basic structure of the 3-PRS (a) and 3-RPS (b) manipulators

Inverse Displacement Solution. Conventionally, the two mecha-
nisms discussed in this paper have one translational DOF along the base
frame’s z-axis and two rotational DOF around the x and y axes depicted
in Fig. 1a. However, as mentioned earlier, these degrees of freedom may
also be modelled using the elevation of three points lying on the plane
representing the moving platform (G1z , G2z , and G3z ). Each of these
three points is chosen as one of the two intersections of the circle concen-
tric and coplanar with the end effector platform, with the plane defined

perpendicular to the fixed xy plane. In order to compare between differ-
ent architectures, the magnitude of the circle’s radius where points Gi lie
must be kept constant, and is preferably a unit circle. Constraint equa-
tions were developed in Pond and Carretero, 2006, relating Giz to Gix

and Giy

is very involved, they will not be presented here.
As presented in Carretero et al., 2000, the displacement of the actu-

ated prismatic joint |bi| is solved by means of the vector loop represent-
ing limb i, depicted in Fig. 1a for i = 3. Given a platform elevation z
and two angles ψ and θ around the fixed x and y axes, respectively, two
solutions for this displacement are obtained by solving for the squared
length of limb i as |li|2 = |ri − bi|

2.

Jacobian Formulation. As described by Pond and Carretero, 2006,
any point on the plane defined by the moving platform, with respect to
the base frame may be equated to a weighted sum of the three vectors
gi (i = 1, 2, 3), depicted in Fig. 1a. A point must now be identified
which lies on this plane and may also be represented by a vector loop
which includes the actuated prismatic joint. The logical choice is the
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position of the spherical joint as this point obviously lies on the end
effector plane and a vector loop including the actuated prismatic joint
has already been used when solving for the actuator displacement. The
vector ri, representing the position of the spherical joint with respect to
the base frame, is equivalent to the vector sum bi + li. Equating this to
the weighted summation of vectors gi yields:

bi + li = ki,1g1 + ki,2g2 + ki,3g3 (4)

where the variables ki,j (j=1, 2, 3) are dimensionless constants and ki,1+
ki,2 + ki,3 = 1. Finally, taking the first time derivative and simplifying:

sT
bi
sli ḃi = ki,1sT

li
ġ1 + ki,2sT

li
ġ2 + ki,3sT

li
ġ3 (5)

where sbi
and sli are unit vectors in the directions of bi and li, respec-

tively. The dimensionless constants ki,j are solved using Eq. 4. Equa-
tion 5 may be written three times corresponding to each of the three
limbs to formulate the manipulator Jacobians:

Jqq̇ = Jxẋ (6)

where ẋ9×1 =
[
ġT

1 ġT
2 ġT

3

]T
, q̇3×1 =

[
ḃ1 ḃ2 ḃ3

]T
and

Jq =

⎡⎢⎣ sT
b1
sl1 0 0
0 sT

b2
sl2 0

0 0 sT
b3

sl3

⎤⎥⎦
3×3

Jx =

⎡⎢⎣ k1,1sT
l1

0 0
0 k2,2sT

l2
0

0 0 k3,3sT
l3

⎤⎥⎦
3×9

The Jacobian matrix, J in Eq. 1 is produced by multiplying Jx and
Jq, i.e., J = J−1

q Jx. By taking the first time derivative of equations
constituting the inverse displacement solution discussed in Section 2, the
constraining matrix P in Eq. 2 is formulated. Finally, multiplication of
the Jacobian J with the constraining matrix P produces the constrained,
dimensionally homogeneous, square Jacobian JP in Eq. 3.

3. The 3-RPS Mechanism
The 3-RPS mechanism depicted in Fig. 1b has been previously studied

in a variety of publications (e.g., Lee and Shah, 1988).

Inverse Displacement Solution. Similarly to the 3-PRS Mecha-
nism, the limbs of the 3-RPS Mechanism are also confined to move on a
single plane. As such, the constraint equations relating the designated
independent degrees of freedom (G1z , G2z , and G3z) to the dependent
degrees of freedom (Gix and Giy for i = 1, 2, 3) are the same. The only
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difference from the inverse displacement solution of the 3-PRS mech-
anism is in the final step where li = ri − bi is used to solve for the
displacement of the actuated prismatic joint i, that is |li|.

Jacobian Formulation. Due to similarity in the constraint equa-
tions for the 3-PRS and 3-RPS mechanisms, the development of the
dimensionally homogeneous Jacobian J is also very similar. Consider
Eq. 4 again. The vector bi is a known constant in the architecture
of the 3-RPS mechanism whereas the magnitude of vector li is now a
variable. Taking the first time derivative of Eq. 4 yields:

l̇i = ki,1sT
li
ġ1 + ki,2sT

li
ġ2 + ki,3sT

li
ġ3 (7)

Writing Eq. 7 three times (once for each limb) to formulate the inverse
and direct Jacobian matrices, as in Eq. 6, yields Jq = I3×3 and

Jx =

⎡⎢⎣ k1,1sT
l1

0 0
0 k2,2sT

l2
0

0 0 k3,3sT
l3

⎤⎥⎦
3×9

(8)

The Jacobian matrix J is obtained by the multiplication J−1
q Jx. As

previously mentioned, the constraint equations relating G1z , G2z , and
G3z to Gix and Giy (i = 1, 2, 3) are the same as those developed for the
3-PRS manipulator and therefore matrix P is identical. The resulting
matrix JP is, again, square and dimensionally homogeneous.

4. Dexterous Workspace Comparison
The reachable workspace is defined here as all poses attainable by a

manipulator without forcing it to transit a singular configuration when
travelling from its datum position (explained later in this section). Be-
fore determining the reachable or dexterous workspaces, an understand-
ing of the manipulator singular configurations must first be obtained.

Inverse singular configurations typically correspond to the absolute
boundary of the reachable workspace, beyond which, poses are unattain-
able by the manipulator. Therefore, these singular configurations do not
further limit the reachable workspace volume as defined in this paper.
Direct singular configurations on the other hand, may exist inside the
reachable workspace. In this work, only poses attainable without forc-
ing the manipulator to transit a direct singular configuration, or toggle
point, are included as part of the reachable workspace.

The 3-RPS and 3-PRS mechanisms share the same direct singular con-
figuration where the vector li is parallel to the plane defined by points Ai.
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Figure 2. Reachable and Dexterous workspace for the 3-PRS (a and b) and the
3-RPS (c and d). Note θ and ψ are in radians, rp = 0.6, for the 3-PRS: γ = 0 and
|li| = 1 and for the 3-RPS: |bi| = 1. Dexterous workspace boundary at condmax = 6.

At this pose, the manipulator gains the ability to toggle about the spher-
ical joint Ai. For the 3-PRS and 3-RPS manipulators, when all three of
the limbs are parallel with this plane, the end effector is at the minimum
permissible elevation along the z-axis here referred to as the datum po-
sition. The 3-PRS has a second family of singular configurations which
occur when one or more of the fixed-length links become perpendicular
to the direction of their respective actuated prismatic joint.

4.1

As the condition number of the Jacobian matrix is infinity at a sin-
gular pose, it is expected that dexterity decreases as the manipulator
approaches a singular configuration. Both the reachable and dexterous
workspaces for the 3-PRS mechanism are depicted in Figs. 2 a and b.
The bottom apex of Fig. 2a corresponds to the direct singular configu-
ration discussed earlier at z = 0. The dexterous workspace depicted in
Fig. 2b is a subset of the reachable workspace. As the maximum per-
missible limit on the Jacobian condition number is reduced (not shown),
the cross sectional area of the dexterous workspace continues to be re-
duced. The workspace will however, continue to exist throughout the
entire range 0 ≤ z ≤ 1. This tendency confirms that the manipula-
tor is at isotropic conditions whenever the moving platform is perfectly
parallel to the base platform where the JP is a scaled identity matrix.

Theoretically, the reachable workspace of the 3-RPS mechanism ex-
tends to a z-elevation of infinity. However, in order to provide a mean-
ingful comparison to the 3-PRS mechanism, the range of z-elevations will
be restricted to 0 ≤ z ≤ 1. This limited workspace is depicted in Fig. 2.
As the 3-RPS mechanism also experiences the toggle point at z = 0,
the restricted range does not further limit the workspace on the lower
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Figure 3. Regions of the workspace corresponding to high end effector velocities
and fine resolution over the manipulator pose for the 3-PRS (a and b, respectively)
and the 3-RPS (c and d, respectively). Angles θ and ψ are in radians.

boundary. Only the highest z-elevation is being imposed, which artifi-
cially limits the range of both the reachable and dexterous workspaces.
Otherwise, the cross sectional area of the workspace would monotoni-
cally expand until, at z = ∞, the manipulator would be capable of 90◦

rotations around both the x and y axes (angles ψ and θ, respectively).
It should be noted that neither of these two architectures has been

optimised. That is, the values chosen for architectural parameters such
as the base and end effector platform radii, and the magnitude of the
fixed length link have not been optimised to provide the largest possible
workspace volume. The objective here is only to illustrate the ability
of this method to compare the dexterity of various architectures, not to
suggest any single architecture is in any way superior to others.

4.2 Dexterity easured by both the Jacobian
ondition umber and ingular alues

One of the greatest advantages of the comparison method presented in
this paper is the ability to identify regions of the manipulator’s workspace
where either high end effector velocities may be achieved, or where a fine
resolution over the manipulator pose exists. Depending on the applica-
tion, either or both of these attributes may be highly desired. In the
previous section, the condition that cond(J) ≤ 6 was arbitrarily chosen
to determine the dexterous workspace. In this section, the dexterous
workspace plots are further reduced by constraining the singular values
of the Jacobian matrix to be within a defined range. In this way, regions
of the workspace corresponding to either high end effector velocities, or
fine resolution over the manipulator pose, are determined.

For the dexterous workspace of the 3-PRS manipulator, depicted in
Fig. 2b, Jacobian matrix singular values vary within the range 0.003 ≤
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Figure 4. Workspace volume as a function of a minimum (left) and maximum
(right) permissible singular values.

σ ≤ 15.565. Figure 3a is produced by restricting the Jacobian condition
number to be less than or equal to 6, and restricting all Jacobian matrix
singular values to be greater than or equal to 0.25. That is, for a system
output where |ẋ| = 1, only poses where the magnitude of the vector q̇ is
greater than 0.25, are allowed. Therefore, the workspace is restricted to
poses where a minimum resolution over the end effector pose is allowed.

Similarly, Fig. 3b is produced by restricting the Jacobian matrix con-
dition number to be less than or equal to 6, but in this case, only sin-
gular values less than or equal to 0.85 are allowed. In this manner, the
workspace is restricted to poses where the of the vector q̇ is restricted
to be less than 0.85, for any unit system output or, |ẋ| = 1. Intuitively,
this is not in the same region of the reachable workspace as poses were a
fine resolution is obtained. Figures 3a and 3b confirm this as these two
regions are at opposite ends of the workspace.

Similar limits on the 3-RPS manipulator were used to obtain Figs. 3c
and 3d. Figure 3c shows that the 3-RPS has lost a relatively small
volume by restricting the Jacobian matrix singular values to be less than
or equal to 0.25. This should not be surprising as the permissible range
0 ≤ σ ≤ 0.85 is a large portion of the overall range 0.0007 ≤ σ ≤ 1.0526
observed when obtaining Fig. 2d.

The left portion of Fig. 4 compares the two manipulators’ workspace
volume as a function of the minimum permissible singular value. As
this value is increased, an increasingly heavier emphasis is placed on
high end effector velocities. Naturally then, as the σmin is increased, a
greater restriction is placed on the workspace and the workspace volume
continues to decrease in magnitude. The 3-PRS mechanism experiences
a much more gradual reduction in workspace volume as the minimum
permissible singular value is decreased. This demonstrates its ability to
achieve a high degree of accuracy throughout a relatively large portion
of its workspace as compared to the 3-RPS.

Similarly, a gradual increase in the workspace volume is experienced
by the 3-PRS mechanism as the maximum permissible singular value
is increased, when compared to the 3-RPS (see the right portion of
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Fig. 4). It is observed that, as σmax is decreased, the workspace size is
further restricted by a continuously heavier emphasis on the accuracy
of the manipulator. It should be noted that the significantly smaller
dexterous workspace volume of the 3-PRS manipulator is due in part, to
the considerably wider range of singular values within the manipulator’s
reachable workspace when compared to the 3-RPS manipulator.

5. Conclusions
The method for developing dimensionally homogeneous square Jaco-

bians JP has proven successful in comparing the dexterity of multiple
parallel architectures. This method is suitable for comparing manipula-
tors having the same number and type of actuators and also having the
same independent degrees of freedom.

For illustration purposes, the 3-PRS and 3-RPS manipulators were
compared using an arbitrary set of architectural parameters for each
manipulator. Of the two, the 3-PRS manipulator was found to have
the largest workspace if a high level of accuracy is required and the
3-RPS manipulator was found to have the largest workspace if high
end effector velocities are required. Following optimisation, any of the
manipulators may be the best candidate depending on the designer’s
desired compromise between the two characteristics.

Having identified a desired compromise between accuracy and veloc-
ity characteristics, the robot designer may use this method to optimise
and compare a variety of manipulators in order to select the optimal
architecture and architectural variables, for a specific application.
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1.  Introduction  
Serial manipulators are still the most used robots for industrial 

applications. This is due to their kinematic properties and construction 
features that aim to obtain suitable systems for industrial applications. 

Since most of the industrial manipulators are wrist-partitioned, the 

studies on serial manipulators were performed by (Roth 1975; 
Freudenstein and Primrose 1984; Parenti-Castelli and Innocenti 1988; 
Ceccarelli 1989; Smith and Lipkin 1993). Several authors have grouped 
manipulators into classes (Burdick 1985; Zein et al. 2005; Wenger 2000), 
but they have just considered special architectures, such as cuspidal or 
orthogonal structures, which have simplification in the architecture. In 
this paper we present a classification of a general 3R manipulator as 
based on kinematic properties, but not only on parameter simplification. 
As a completely new method we discuss the level-set belonging to the 
two-parameter set of curves, which constitutes the cross section of the 
workspace of the manipulator. The level-set surface directly linked to the 
level-set provides new and surprising insight in the internal structure of 
the workspace.   
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space analysis of 3R manipulators. A formulation is presented and it

the effects of kinematic parameters on  workspace. 
of workspace manifolds. Numerical examples are presented to show 
allows to determine different topologies of manipulators as function 

This paper presents an application of the level-set method for  work-
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workspace analysis of such manipulators can be performed by con-
sidering the positioning and orienting singularities separately. Early 
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2.  Level-Set Analysis for the Workspace of a 
General 3R Manipulator 

The kinematic parameters of a general 3R manipulator are denoted 
according to the Hartenberg and Denavit (H-D) notation. Without loss of 
generality the base frame is assumed to be coincident with X1Y1Z1 frame, 
which is fixed on first link when 1 = 0, a0 1

manipulator is described by the H-D parameters a1, a2, d2, d3, 1 and 2, 
and i, for (i = 1,…,3). The end-effector point H is placed on the X3 axis at 
a distance a3 from O3. The position H0 with respect to reference frame 
X0Y0Z0 can be expressed as function of H3 vector in the classical form 
 

3
3
2

2
1

1
00 TTT HH .          (1)  

 

The workspace of a general 3R manipulator can be expressed in the 
form of radial and axial reaches r and z respectively. In particular, r is 
the radial distance of the operating point from Z1-axis and z is the axial 
reach; both can be expressed as function of H-D parameters (Ceccarelli 
1996). In fact, r and z can be evaluated as 
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Equation (2) represents a 2-parameter family of curves, which gives the 
cross-section workspace in a cross-section plane (Freudenstein and 
Primrose 1984; Ceccarelli 1989). In the following this two-parameter set 
is interpreted as a level-set (Sethian 1996). The level-set of a 
differentiable function n:f  corresponding to a real value “c” is the 
set of points  
 

cx,,xf:x,,x n1
n

n1 .        (3) 
 

The potentiality of the level-set method is now applied to the 
workspace analysis of 3R manipulators. In particular, the level-set 
reconstruction for a serial manipulator can be obtained by using the 2-

values of  3 are curves in the rz-plane. Therefore this one parameter set 
of curves can be viewed as the contour map of a surface S, which 
conveniently can be used to analyze the workspace of the manipulator. 
The surface S is defined via the functions  
 

22 rX ; zY  ; 
2

tanZ 3 .          (4) 
 

By performing the half-tangent substitution v = tan ( 2/2) in Eq. (4) 
and eliminating the v parameter one can obtain an implicit equation of 
the surface S.  

 

 S: 0Z,Y,XF . (5) 
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= 0 and d =0. A general 3R 

parameter-family of curves in Eq. (2). The level-sets belonging to constant 



Equation (5) describes an algebraic surface which is of degree 20. It 
splits into two parts  

 

 0Z,Y,XSZ,Y,XSZ,Y,XF 21 . (6) 
 

S1 represents four double planes parallel to XY plane, in which the 
height depends on the H-D parameters.  

S2 is the graph of the level-set function. The parameter lines on this 
surface belong to 2 = const or 3  = const. Geometrically S is generated by 
taking a cross-section of the workspace that is parameterized by 2 and 3  

clearly the number of solutions of the Inverse Kinematics (IK).  
In Fig. 1 this is shown for a general design. In Fig. 1a) the level-set 

curves are shown. It should be noted that in the displayed cross-section 
of the workspace in fact two different one-parameter sets of level-curves 
are displayed. The blue one belongs to 3 = const and the grey one belongs 

2  

corresponding surface S is displayed. Geometrically the level-set curves 

planes Z = const and the surface S onto the XY-plane. The blue level-set 

This line shows clearly four intersection points with the surface S. 

corresponds to a four fold solution of the IK.  
On the surface S2 the 3 curves keep their closed curve nature and 2 

ones are taken apart. In order to determine the algebraic degree of S2 one 
has to homogenize and intersect with the plane at infinity. The resulting 
intersection is completely independent by the H-D parameters. It 

surface is of algebraic degree 12. 
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Z-axis. The major advantage of this procedure is that on S one can see 
and explode the overlapping level-set curves in the direction of the 

A discussion of the other set would lead to similar results. On Fig.1b) the 
to = const. In the following we only discuss the blue set of curves.

of Fig. 1a) are the orthogonal projections of the intersection curves with 

consists of a eight fold line Z = 0 and two complex double lines. Thus, the 

cross-section; b) corresponding S surface. 
Figure 1.   A  numerical  example  for a  general 3R manipulator: a)  workspace

Additionally we have displayed in Fig. 1b) a line parallel to the Z-axis. 

Therefore, the corresponding point in the level-set plane in Fig. 1a) 

curves in Fig. 1a) are therefore a contour map of the surface S. 



Manipulators having singularities on the surface S can be considered 
as an algebraically closed set. Indeed, a small perturbation on H-D 
parameters will change the behaviour of the manipulator. Singularities 
of the surface S can be found by considering the implicit equation of S, 
together with its partial derivatives with respect to X, Y, and Z, 
respectively (Gibson 1998). All these four functions have to vanish for a 
point on the surface being singular. Singular conditions can be expressed 
as functions of H-D dimensional parameters. There is an important 
observation that can be made. Considering just the one parameter set of 
level-set curves in the plane of parameters rz, one can observe singular 
points on the envelop curve of the set. These singular points have been 
discussed in the literature quite a lot. By considering a formulation for 
the cross-section workspace boundary of 3R manipulators as proposed in 
(Ottaviano et al., 2004) it is possible to determine the singularities on the 
inner boundary curve, which is a part of the enveloping curve. These 
singularities  can be either double points or acnodes or cusps of the cross-

set function reveals a very different nature of these highly interesting 
singular points. Some of them arise just from the projection of S into the 
level-set plane and some of them come from singularities of the surface S.  

In this paper we have focused our analysis on 3R manipulators, and a 
classification can be obtained by looking at the singular configurations of 
S as function of H-D parameters. In order to determine the singularities 
of the surface S the two parts S1 and S2 are analyzed separately. 
In particular, S1 can be expressed in the form 
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3
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41 kZkZkZkZkS .              (7) 
 

where the coefficients ki depend on H-D dimensional parameters. They 
can be expressed in the form 
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In general S1 = 0 can have real solutions. According to Decartes rule of 
signs a necessary and sufficient condition for having real solutions is iff 
there are changes in the signs of coefficients ki. In particular, the number 
of real roots is equal to the number of changes of sign in the ki 
coefficients. Other singularities can be found by analyzing surface S2. 
Zeros of the set of equations S2 = 0; S2X = 0; S2Y = 0; and S2Z =0, yield the 
geometric singularities of the surface S2. Singularities of S2 surface can 
be can expressed by the product of three polynomials in the form 
 

2
232

22
31 aasindP ; 02

2
22

4
42 ccosccoscP

 2
22

2
2
32

22
33 cosaasindP .             (9) 

E. Ottaviano, M. Husty and M. Ceccarelli310

section boundary curve (Ottaviano et al., 1999). The graph S of the level-



in which ci coefficients are given by 
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3.  A Classification of the 3R Manipulators 
A classification of 3R manipulator designs can be obtained by 

considering groups of manipulators having similar kinematic properties 
of surface S and workspace boundary. According to the proposed 
formulation, a classification into three groups is proposed as based on 
kinematic properties of 3R manipulators with general architecture. 

3.1  Class A: General Manipulator 
A manipulator that belongs to the Class A has no (real) singularities 

on the surface S. It may have either a changing posture behaviour or it 
can present a void within the workspace. A characteristic shape with 
corresponding cross-section figures are reported in the examples of Figs. 
2 and 3. Such general manipulator is characterized to have no 
singularities on the level-set surface. In addition, it has been observed 
that cuspidality behaviour is not strictly related to special designs. 

3.2  
Surface S 

A manipulator that belongs to the Class B has only one singularity on 
the surface S. It is characterized by having a2 = a3; d3 2
Class B manipulators are characterized by the presence of 4-solution 

1 2
S1 degenerates into an expression, which is independent by Z. They 
present a void iff the projections of the singularity of the surface S 

2 3
meet the second joint axis whenever 3 = ± arccos( a2 /a3). A characteristic 
shape with corresponding cross-sections are reported in the examples of 
Figs. 4 and 5. 

3.3  
the Surface S 

This class of manipulators is characterized by having two singularities 
on the surface S, which can be analyzed by considering Eqs.(9). Class C 
manipulators have P3 = 0 and  a3  > a2; d3 = 0 and 2 = /2. S1 degenerates 
into an expression that contains only even powers of Z. Class C 
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Class B: Manipulator with a Singularity on the 

Class C: Manipulator with Two Singularities on 

= 0 and  = /2. 

regions for the IK. By considering Eq. (9) P  and P  polynomials vanish. 

belongs to the workspace boundary too. If a  a , the operation point can 



manipulators have in general a 4-solution region for the IK and they 

characteristic shape with corresponding cross-sections are reported in 
the examples of Figs. 6 and 7. 

4.  Numerical Examples 
Numerical examples show different topologies of the 3R manipulators. 

Figures 2 to 7 show manipulators belonging to the three classes.  
 

 
Figure 2.   A numerical example for Case A with void, a1=4.68; 1=2.90; a2=9.78, 
a3  =1.15; d2 =4.48; 2 = ,d3  

 
 
 
 
 
 
 
 

Figure 3.  A numerical example for Case A without void, a1=1.24; 1=2.41; a2 
=5.58, a3  =2.12; d2 =2.22; 2 = 3 

 
 

 
 

Figure 4.  A numerical example for Case B with void, a1=6.98; 1=0.596; a2 = a3 
= 8.33; d2=2.07; 2= /2,d =0: a) workspace cross-section; b) surface S. 
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to the workspace boundary too. In the two singularities point H meets 
have a void iff the projections of the singularities of the surface belong 

the second joint axis and the manipulator has infinite IK solutions. A 

(u is unit lenght and angles are in radians). 

 S (u is unit lenght and angles are in radians). 

3  

=1.38: a) workspace cross-section; b) surface S. 

,d =0.307: a) workspace cross-section;  b) surface



 
Figure 5.     A numerical example for Case B without void, a1=5.32; 1=0.777; 
a2 = a3 =6.46; d2 =8.99; 2 = /2,d3 

 
 
 
 
 
 
 
 

1 2

3 2 2 3

 
 

 
 

1 =9.87; 1 =0.852; a2 
=4.36, a3 =4.99; d2 =1.84; 2= /2,d3 =0: a) workspace cross-section; b) surface S. 

4.  Conclusions  
This paper presents a novel analysis of the workspace of serial 

manipulators as based on the level-set reconstruction of the workspace. 
The method produces useful information for characterization of the 
workspace in Cartesian Space in terms of void existence. It has been 
found that the analysis of the cusps and double points on the cross-
section boundary curve is not sufficient to determine the kinematic 
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=0: a) workspace cross-section; b) surface S (u is

a =19.13; d =0.973; = /2,d =0: a) workspace cross-section; b) surface S. (u is   
1=6.23; =1.23; a =9 47, .

 (u is unit lenght and angles are in radians). 

Figure 6.  A numerical example for Case C with void, a

unit lenght and angles are in radians). 

unit lenght and angles are in radians).  

Figure 7.   A numerical example for Case C without void, a



characteristics of a manipulator. Singularities on the graph S of the 
level-set are singular configurations in which there is a value of 3 angle 
for which the manipulator encounters a singularity. In order to obtain 
complete information on the singularities of the workspace, one has to 
detect the presence of a void by considering the surface S, together with 

points. They can be either double points and acnodes (hermit points) for 
the cross-section boundary curve. The presence of a void can be detected 
by considering the surface S and the cross-section boundary curve. If the 
surface S has no singularities and the cross-section boundary curve has 
double points then the manipulator has a void. 
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Abstract The wrench-closure workspace of parallel cable-driven mechanisms is
the set of poses of their mobile platform for which the cables can bal-
ance any external wrench. The determination of this workspace is an
important issue since the cables can only pull and not push on the mo-
bile platform. This paper deals with the wrench-closure workspace of
six-degrees-of-freedom (DOF) parallel mechanisms driven by m cables,
m ≥ 7. The boundary of the constant-orientation cross sections of the
wrench-closure workspace is shown to consist of parts of cubic surfaces
and an efficient method that determine this workspace by delineating
its boundary is proposed.

Keywords:
Gough-Stewart platform

1. Introduction

A parallel cable-driven mechanism consists essentially of a mobile plat-
form connected in parallel to a base by light weight links such as cables.
The control of the length of the cables allows the control of the pose of
the platform. For instance, a mechanism driven by eight cables is shown
in Fig. 1. Parallel cable-driven mechanisms have several advantages over
conventional rigid-link mechanisms (Barrette and Gosselin, 2005, Mer-
let, 2004, Roberts et al., 1998). The mass and inertia of the moving part
is reduced and they are less expensive. Moreover, parallel cable-driven
mechanisms are easier to build, transport and reconfigure and they have
the possibility of working in a very large space. Consequently, parallel
cable-driven mechanisms have been used in several applications such as,
for instance, robotic cranes (Dagalakis et al., 1989), high speed manip-

Cable-driven mechanism, parallel mechanism, wrench-closure, workspace,
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Figure 1. A 6-DOF Parallel Mechanism Driven by Eight Cables and its Constant-

ulation (Kawamura et al., 2000), active suspension devices (Lafourcade,
2004) and virtual reality (Merlet, 2004).

This paper deals with the determination of the workspace of six-DOF
parallel cable-driven mechanisms. This workspace may be limited by the
total length of each cable, by the interferences between the cables and
between the cables and the mobile platform and by the unidirectional
nature of the forces applied by the cables on the mobile platform. The
limitations due to the total lengths of the cables can be determined by
means of algorithms presented in (Gosselin, 1990) and in (Merlet, 1999).
However, the workspace will usually not be limited by the total lengths
of the cables since large total lengths can generally be used. For a con-
stant orientation of the mobile platform, the problem of the influence on
the workspace of the cables interferences is addressed in (Merlet, 2004).
The third limitation which is due to the unidirectional nature of the
forces applied by the cables on the platform has been studied mainly
in the case of planar parallel cable-driven mechanisms in (Barrette and
Gosselin, 2005, Fattah and Agrawal, 2005, Gallina and Rosati, 2002,
Gouttefarde and Gosselin, 2006, Roberts et al., 1998, Stump and Ku-

2003).
All these references do not share the same definition of the workspace

and two different types of workspace can be distinguished. Indeed, we
can study the set of poses of the mobile platform for which the cables
can balance, by pulling on the mobile platform,

a particular wrench or a particular set of wrenches, or

any wrench.

When the first type of workspace is to be determined, the particular
wrench or the particular set of wrenches must be chosen. Hence, the de-
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termination of this workspace is useful when a particular task, for which
the wrenches that must be generated at the mobile platform are known,
is assigned to the cable-driven mechanism. The determination of the
second type of workspace, called the wrench-closure workspace (WCW)
in the present paper, does not need such a choice since it depends on
the geometry of the mechanism only (Gouttefarde and Gosselin, 2006),
i.e., on the number of cables, on the positions of the attachment points
of the cables at the mobile platform and on the positions of the points
of the base from which the cables are taut (points Ai in Fig. 1). Hence,
the WCW is a property of the mechanism only and is consequently re-
lated to the general design problem of selecting geometry of mechanisms
which have the ability to perform various types of tasks. More details
on the different types of workspace of parallel cable-driven mechanisms
can be found in (Bosscher and Ebert-Uphoff, 2004, Ebert-UpHoff and
Voglewede, 2004, Gouttefarde and Gosselin, 2006, Gouttefarde, 2005).

orientation cross sections of the WCW, called the constant-orientation
WCW (COWCW), is proposed. This method applies to any six-DOF
parallel cable-driven mechanism and it determines the boundary of the
COWCW which is shown to consist of parts of cubic surfaces. To the
best of our knowledge, such a tool has never been introduced in previous
papers dealing with six-DOF cable-driven mechanisms such as the works
presented in (Hiller et al., 2005, Kawamura et al., 2000, Lafourcade,
2004, Pham et al., 2006, Tadokoro et al., 1996, Takeda and Funabashi,
2000, Verhoeven, 2004).

2.

The relationship between the tensions in the cables and the wrench
wp applied by the cables on a reference point P of the platform is given
by

Wt = wp, (1)

where t is the vector of cable tensions and W the 6 × m pose dependent
wrench matrix where m denotes the number of cables. Since the WCW
of a six-DOF parallel cable-driven mechanism exists only if its mobile
platform is driven by at least seven cables (Ming and Higuchi, 1994), in
this paper, m ≥ 7.

The WCW is defined as the set of poses of the mobile platform in
which, for any wrench wp in R

6, there exists at least one vector t in R
m,

whose components are all nonnegative, such that Eq. 1 is verified. For
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In this paper, an efficient method that allows to determine the constant-

Nature of the Boundary of the COWCW



a constant orientation of the mobile platform, the COWCW is the set
of positions of the reference point P of the platform which belongs to
the WCW. The poses that belongs to the WCW can be characterized

(Murray et al., 1994, Stump and Kumar, 2004).

Theorem 1 Let wi, 1 ≤ i ≤ m, m > 6, be the column vectors of
the wrench matrix W and let us assume that rank(W) = 6. Then, a
pose of the mobile platform belongs to the WCW if and only if all the
hyperplanes H of R

6 spanned by five wrenches wi (linearly independent)
are separating, i.e.,

∃ (j, k), j �= k, such that wT
j q > 0 and wT

k q < 0,

where q �=
−→0 is a vector of R

6 orthogonal to H.

Eq. 2 means that there exists at least one column of W lying on each
side of the hyperplane H.

Now, let us assume that the orientation of the mobile platform of

position P1 of the mobile platform which belongs to the COWCW and a
continuous trajectory going from P1 to a position P2 which lies outside
the COWCW. According to Theorem 1, on the part of the trajectory that
belongs to the COWCW, all the hyperplanes H spanned by five columns
of the wrench matrix W are separating. Moreover, at the point at which
the trajectory leaves the COWCW, at least one of the hyperplane H
ceases to be a separating hyperplane. But, a hyperplane H ceases to be
a separating hyperplane if and only if the five columns of W which span
H become linearly dependent or these five columns and an other column
of W become linearly dependent. Hence, in the two cases, the trajectory
leaves the COWCW since at least one combination of six columns of W
becomes linearly dependent and a position of the mobile platform belongs
to the boundary of the COWCW only if six columns of the wrench matrix
W are linearly dependent.

This observation on the nature of the boundary of the COWCW is im-
portant. Indeed, the columns of the wrench matrix W are of the same
nature as the columns of the transpose of the so-called jacobian ma-
trix of a Gough-Stewart platform (Ebert-UpHoff and Voglewede, 2004,
Gouttefarde and Gosselin, 2005) and, consequently, for a constant orien-
tation of the mobile platform, six columns of W are linearly dependent
on a surface of the same nature as the constant-orientation singularity
locus of a Gough-Stewart platform which is known to be a cubic surface
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by several means (Gouttefarde, 2005) including the following theorem

(2)

a six-DOF parallel cable-driven mechanism is constant. Let us consider a



(Mayer St-Onge and Gosselin, 2000), i.e., a surface whose equation can
be written as a multivariate polynomial of degree three in the Cartesian
coordinates of the mobile platform. Finally, we can state that the bound-
ary of the COWCW consists of parts of cubic surfaces of the same nature
as the constant-orientation singularity locus of the Gough-Stewart plat-
form. This fundamental result is a generalization to the most general
case of the similar result presented in (Gouttefarde and Gosselin, 2005)
in the case of six-DOF parallel mechanisms driven by seven cables.

3.

In this section, the main steps of an efficient method that determines
the COWCW by finding its boundary are presented. This method takes
advantage of the geometric nature of the boundary introduced in the
previous section.

First, an orientation of the mobile platform is chosen and, for each
combination of six columns of the wrench matrix W, the equation of
the cubic surface Si on which these columns are linearly dependent is
determined. A method that allows to obtain these equations is presented
in (Mayer St-Onge and Gosselin, 2000). Then, in order to deal with
curves instead of surfaces, a set of parallel planes is selected, e.g. planes
orthogonal to the z-axis, and the part of the boundary of the COWCW
which belongs to these planes is sought. Let us denote by P one of these
planes. Without loss of generality, we can assume that the equation of
P is z = z0, i.e., that P is orthogonal to the z-axis. The part of the
boundary of the COWCW which lies in P can be obtained by following
the steps presented below.
Step 1: obtain the equations of the cubic curves Ci that lie in P and on
which six columns of W are linearly dependent by substituting z0 for z
in the equations of the cubic surfaces Si.

According to section 2, if it exists, the part of the boundary of the
COWCW which lies in P is composed of parts of the cubic curves Ci.
Moreover, the extremities of these parts are the points of intersection
between the cubic curves Ci.
Step 2: for each of the cubic curve Ci, determine the points of intersec-
tion between Ci and the other cubic curves.

The points of intersection between the cubic curves Ci can be deter-
mined by means of an elimination method (Roth, 1993).
Step 3: for each of the cubic curve Ci, find all its parts defined by the
points of intersection computed at step 2 and eliminate all unbounded
parts.

Efficient etermination of the COWCWD
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Abstract The paper presents a special family of fully-isotropic parallel manipulators 
with six degrees of mobility called Isoglide6-E. The six motions of the 
moving platform are controlled independently by six actuators situated on 
the fixed base. A one-to-one correspondence exists between the actuated 
joint space and the operational space of the moving platform. The Jacobian 

identity matrix throughout the entire workspace. A method is proposed for 
structural synthesis based on the theory of linear transformations. The 
special family of fully-isotropic hexapods includes 2197 solutions. As far as 
we are aware, this paper presents for the first time fully-isotropic parallel 
manipulators with six degrees of mobility. 

Keywords: 
structural synthesis 

1.  Introduction  
The three translations (T) and the three rotations (R) of the moving 

platform in the fully-isotropic hexapods, called Isoglide6-E, presented in 
this paper can be controlled independently by three linear actuators and 
three rotary actuators situated on the fixed platform (base). A one-to-one 

space of the moving platform 

                (1)  
p

H

v
J q

 

where : [v]=[vx vy vz]T is the velocity of a point H belonging to the moving 
platform, [ ]= [    ]T is the angular velocity of the moving platform, 
[ ] = [ 1 2 3 4 5 6 ]q q q q q q q T are the velocities of the actuated joints, [J] is the 
Jacobian matrix and p is the coordinate system in which the velocities of 
the moving platform with respect to the fixed base are expressed.  

We know that a parallel manipulator (PM) is fully-isotropic if the 
Jacobian J is a diagonal matrix with identical diagonal elements 
throughout the entire workspace. The Jacobian matrix of fully-isotropic 
hexapods presented in this paper is the identity matrix throughout the 

matrix of the fully-isotropic hexapods presented in this paper is the 6 × 6 

correspondence exists between the actuated joint space and the operational 
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entire workspace (J = I6× 6). The condition number and the determinant of 
the Jacobian matrix being equal to one, the manipulator performs very 
well with regard to force and motion transmission (Angeles, 1987). The 
isotropic design aims at ideal kinematic and dynamic performance of the 
manipulator (Fattah and Hasan Ghasemi,  2002).  

Some important studies are now available to support the design of 
hexapods, such as the pioneering works of Hunt (1973, 1978, 1983), the 
comprehensive enumerations presented by Merlet (1997, 2000) and Tsai 
(2000). Although hexapods are known for more than half a century, no 
one fully-isotropic PM with six degrees of freedom has been proposed 
until now (Fassi et al., 2005). As far as we are aware, this paper proposes 
for the first time fully-isotropic parallel manipulators with six degrees of 
freedom. Only PMs with Schönflies motions T3R1-type (Gogu, 2004a, 
2005a, Caricato, 2005), translational T3-type (Caricato and Parenti-
Castelli, 2002, Kim and Tsai, 2002, Kong and Gosselin, 2002, Gogu, 
2004b), planar T2R1-type (Gogu, 2004c), T2R2-type (Gogu, 2005b), T1R2-
type (Gogu, 2005c) and spherical R2-type (Gogu, 2005d) fully-isotropic 
parallel manipulators have been previously proposed in the literature.  

The general methods used for structural synthesis of parallel robotic 
manipulators can be divided into three approaches: the methods based on 
displacement group theory (Hervé, 1995, Hervé and Sparacino, 1993, 
Hervé, 2004, Angeles, 2004, Li et al., 2004), the methods based on screw 

2004c, Fang and Tsai, 2002, Huang and Li, 2002, 2003, Caricato, 2005) 
and the methods based on the theory of linear transformations (Gogu, 
2004a, 2004b, 2004c, 2005a, 2005b, 2005c, 2005d, 2005e).  The method 

2.  
The general kinematic structure of the fully-isotropic PMs proposed in 

this paper is presented in Fig. 1. The legs A, B and C contribute to the 

1 A B C F

contribute to the three independent rotations of the mobile platform 5F 
and each integrates two homokinetic joints connected by telescopic 
shafts. Just the input and the output shafts are indicated in Fig. 1 for 
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algebra (Frisoli et al., 2000, Kong and Gosselin, 2001, 2004a, 2004b, 

Kinematic Structure   

the three independent translations of the intermediary platform 

fully-isotropic translational parallel kinematic chain. The legs D, E and F 
n n n n  and implicitly of the final mobile  platform 5 . They make a 

each homokinetic joint. The intermediary members of the homokinetic  

G. Gogu

used in this paper is also founded on the theory of linear transformations.



 
 

Figure 1.     General kinematic structure of the fully-isotropic hexapods of 
Isoglide6-E family  

joints are not indicated. Various types of homokinetic joints could be 
used: Tracta, Weiss, Bendix, Dunlop, Rzeppa, Birfield, Glaenzer, 
Thompson, Triplan, Tripode, UF (undercut-free) ball joint, AC (angular 
contact) ball joint, VL plunge ball joint, DO (double offset) plunge ball 
joint, AAR (angular adjusted roller), helical flexure U-joints, etc. (Dudi  

The first joint of each leg is actuated (underlined joint). The legs A, B 
and C are actuated by linear motors and the legs D, E and F by rotary 
motors.  The six actuators are mounted on the fixed base.  

The mechanism associated to a fully-isotropic PM with six degrees of 
mobility is denoted by Q. The existence of this mechanism involves

 the  /1 between the 
moving (n) and the fixed (1 0) platforms and for the base ( ) of the 
vector space of relative velocities of the moving platform:   

Q
n

/1
Q
nR

a) general conditions for any position of the mechanism when 0, 
0  0, 0, 0 and 0 

1q
2q 3q 4q 5q 6q

 

/1
Q
nS = 6,                         (2) 

 

/1 , , , , ,Q
n x y zR v v v ,                                               (3) 

 
 

b) particular conditions when one actuator is locked = 0 (i = 1,…,6) iq
 

/1
Q
nS = 5,                            (4) 

 

/1 , , , ,Q
n y zR v v , if = 0,  (5) 1q

 

/1 , , , ,Q
n x zR v v 2q, if = 0,    (6) 

 

/1 , , , ,Q
n x yR v v 3q, if = 0,   (7) 

 

/1 , , , ,Q
n x y zR v v v 4, if  q = 0,  (8) 
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.

et al., 2001a, 2001b).   

, 

following conditions for the connectivity (spatiality) S



/1 , , , ,Q
n x y zR v v v , if  = 0,          (9) 5q

 

/1 , , , ,Q
n x y zR v v v 6, if  q = 0,                       (10) 

 

The point H on the moving platform n is chosen such that the bases 
( ) defined by Eqs. (3) and (5-10) represent the unique bases of the 
vector space of the relative velocities between the mobile and fixed 
platforms.  

Q
n / 1R

We recall that the connectivity (spatiality) /1  between the moving 
and the fixed platforms in the mechanism Q represents the number of 
relative independent infinitesimal displacements or velocities allowed by 
the mechanism between the two platforms. It is given by the dimension 
of the vector space  of the relative velocities between the two 
platforms (Gogu, 2005e) 

Q
nS

Q
n / 1R

 

   /1 /dim( )Q Q
n nS R 1 .                  (11) 

 

F

fully-isotropic PM presented in Fig. 1.  
Various solutions of legs A, B and C could be used in the general 

kinematic structure presented in Fig. 1:  
- elementary legs P P P, P P R R, P R P R, P R R P, 

P R R R ,  
 - complex legs with parallelogram loops P P Pa, P Pa P, 
P Pa Pa, P Pa R R, P R R Pa, 
 - complex legs with m (m = 1,2,…) rhombus loops P R Rb1 … Rbm R, 
 - complex legs with bimobile planar loops  P Pn2 R, 
 - complex legs with trimobile planar loops  P Pn3 R. 
 In these notations P stands for prismatic pair, R for revolute pair, Pa 
for planar parallelogram loop, Rb for planar rhombus loop, Pn2 for 
bimobile planar loop and Pn3 for trimobile planar loop. The notations  
and  indicate the perpendicular or parallel positions of the joint axes. 
For example, the notation P P R R indicates that: the first three 
pairs have perpendicular axes/directions, the last two pairs have parallel 
axes and the axis of the third pair is in the same time parallel to the 
direction of the first pair. More details on the structural synthesis of the 
legs A, B, and C via theory of linear transformations could be get in 
Gogu, 2004b.  

By various combinations of the five solutions of elementary legs and 
the eight solutions of complex legs A, B and C we obtain 133 = 2197 
distinct solutions of fully-isotropic PMs with six degrees of freedom. All 
these solutions obey conditions (2)-(10) and integrate only revolute and 
prismatic joints in the legs A, B and C. The family of these solutions 
could be more diversified by introducing helical, cylindrical and planar 
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The moving platform is n 5  for the general kinematic structure of the 

joints to replace some equivalent combinations of revolute and prismatic 
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Figure 2.     Example of fully-isotropic hexapod: Isoglide6-E1(a) and its associated 

Figure 3.     Example of fully-isotropic hexapod: Isoglide6-E2 (a) and its 
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graph (b). 

associated graph (b).  



joints or by introducing some new joints with idle mobilities to obtain non 
overconstrained (isostatic) solutions. Due to space limitations, we have 
reduced our presentation in this paper to fully-isotropic overconstrained 
solutions without idle mobilities integrating just revolute and prismatic 
pairs in the legs A, B and C.     

B and C of type P R R R (Fig. 2) and complex legs A, B and C of type 
P R Rb1 R (Fig. 3). The workspace of these solutions must be correlated 
with the angular capability of the homokinetic joints and translational 
capability of the telescopic shafts.   

 

3.  Conclusions  

of 2197 fully-isotropic hexapods with six degrees of mobility called 
Isoglide6-E. Special legs were conceived to achieve fully-isotropic 
conditions. The Jacobian matrix mapping the joint and the operational 
vector spaces of the fully-isotropic hexapods presented in this paper is 

realize a one-to-one mapping between the actuated joint velocity space  
and the operational velocity space. The condition number and the 
determinant of the Jacobian matrix being equal to one, the manipulator 
performs very well with regard to force and motion transmission. 
Moreover, the solutions of fully-isotropic hexapods presented in this 
paper have all actuators mounted directly on the fixed base. As far as we 
are aware, this paper presents for the first time fully-isotropic parallel 
manipulators with six degrees of freedom and a method for their 
structural synthesis.  
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Abstract Geometric calibration has been proven to be an efficient way to en-
hance absolute accuracy of robotic systems. The idea is to identify the
geometric parameters of the kinematic model matching the real robots’
geometry. Basically calibration is performed by analyzing the differ-
ence between conflicting information gained by the kinematic model
and corresponding redundant information. In all existing robot calibra-
tion approaches required redundancy is achieved either by extra sensors
or by special constraint devices. This paper for the first time proposes
a calibration method that does not rely on any extra device, thus being
very economical. The presented technique which only holds for parallel
robots is based on a method that allows passing singularities of type
two. By means of simulation studies using a FiveBar-structure as an
example the approach is verified.

Keywords: Parallel Kinematics, Calibration, Singularities

1. Introduction
Although automated robot programming is a well engineered technol-

ogy, most robotic systems are still programmed by using the teach-in
approach. This is due to an insufficient absolute accuracy offered by
most industrial robots. Positioning errors are mainly caused by a devia-
tion between the controller model and the real robots’ geometry effected
by thermal influences, manufacturing and assembly tolerances [Mooring
et al., 2005]. Geometric calibration has been shown to be a suitable
method to overcome that drawback. It is a process by which the pa-
rameters of the kinematic model are estimated in a way that best fits
the real robot. Parametric calibration requires redundant measurement
information that is usually obtained by additional internal or external

© 2006 Springer. Printed in the Netherlands.
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measurement systems such as lasertracker-devices, theodolites, camera
systems or passive joint sensors. Alternatively the robots’ degree of
freedom (dof) may be restrained by passive devices. In that case the
actuator encoders of the system deliver enough information allowing for
parameter identification. Various calibration technique of both cate-
gories are compared in [Hollerbach and Wampler, 1996].

This contribution for the first time presents a calibration strategy
which does not require any calibration equipment. Due to the aban-
donment of external measurement systems or constraint devices the
proposed calibration approach is very inexpensive compared to other
techniques. Furthermore it belongs to the class of self-calibration meth-
ods [Maurine et al., 2005] and can thus be completely automated and
repeated whenever necessary. Redundancy is achieved by special knowl-
edge about singular configurations of type two which need to be passed
in order to identify the kinematic parameters of a parallel kinematic ma-
nipulator. Our approach is therefore based on a technique that allows
to savely guide a parallel mechanism through singularities of type two,
introduced in [Helm, 2003]. Without a loss of generality the new cali-
bration approach will be explained and validated by means of a simple
2-dof planar parallel structure, the FiveBar-robot [Sachau et al., 2002].

2.
As mentioned in the previous section our new calibration approach re-

lies on passing singularities of type two. Because these constitute struc-
ture configurations where two solutions of the direct kinematic problem
(DKP) coincide, they are also called direct kinematic singularities. It
is well known that a robot-structure is uncontrollable in this kind of
configurations [Hesselbach et al., 2005] and hence particular strategies
need to be applied to savely guide a manipulator through singularities
of type two. With the intention of workspace enlargement Helm pre-
sented a technique to pass direct kinematic singularities, which has been

approach has been extended to spatial parallel structures in

tuate the robot system during passing the singular configuration and to
use an additional driving force to guide the structure through the direct
kinematic singularity. By means of the planar FiveBar-structure the

configuration (a) the structure is underactuated by releasing one actua-
tor (b). While the second actuator is kept at a constant motor-position
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approach is exemplarily summarized in Fig. 1. In a pose near the singular

experimentally proven at a planar robot-structure [Helm, 2003]. The

et al., 2005]. Both methods rely on the basic idea to temporarily underac-
[Budde

Idea of the Calibration cheme

the endeffector-point C passes the singularity (c) driven by gravity

S
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Figure 1. FiveBar-structure: Kinematic design (a) and basic steps while passing

leased actuator can be activated again. Instead of exploiting gravity as
the driving force which has been also done in [Budde et al., 2005], struc-
ture inertia may be used to pass the singularity as described in [Helm,
2003].

Mathematically singular configurations of type two can be detected
by

det(J) = 0 (1)

with the Jacobian matrix J = ∂q

∂X
relating endeffector velocities Ẋ and

actuator velocities q̇ [Gosseling and Angeles, 1990]

q̇ = JẊ . (2)

Following the above mentioned strategy to pass the singularity one actu-
ator needs to be released while all others remain at a constant position.
In that case the systems’ dof is one and J reduces to a scalar expression

J =
q̇

Ẋ
. (3)

Since for scalar values
det(J) = J , (4)
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a singular configuration in (b)-(d).

influence until it reaches a nonsingular configuration (d) in which the re-



a direct kinematic singularity is according to Eq. 1 reached under the
condition

q̇ = 0 ∧ Ẋ �= 0 . (5)

Thus, in a singular structure configuration the velocity of the released
actuator q̇released is zero while the endeffector is still in motion. This cor-
responds to the structure in Fig. 1 where the released actuator changes
its direction of movement exactly in the singular configuration (indicated
by the dashed line in a,b,c). Consequently by observing the movement of
the released actuator by its own encoder it is possible to identify and save
the actuator coordinate q̂sing

released that corresponds to a singular config-
uration. Furthermore, since particular geometric conditions need to be
fulfilled at a singular configuration of type two, it is possible to compute
the actuator coordinate qsing

released(k) from the kinematic model including
the kinematic parameters k. Comparing both information leads to a
residual

r(k) = q̂sing
released − qsing

released(k). (6)

Passing the direct kinematic singularity at different locations allows for
a formulation of different residual functions. These may be assembled

real robot-structure, then r(k) = 0. Since we assume parameter errors,
mathematical optimization methods may be applied to find k such that
r(k) is minimized.

3.
In order to validate the presented approach the FiveBar-structure

from Fig. 1 will be calibrated. Its kinematic model is defined by only
five parameters. These are (Fig. 1a):

1 parameter L0 defining the distance A1A2 between the two actu-
ator base points.

1 parameter Li1 for each kinematic chain i = 1, 2 describing the
length of the crank AiBi

1 parameter Li2 for each kinematic chain i = 1, 2 specifying the
rod length BiC

While typical kinematic problems are concernd with relating endef-
fector and actuator coordinates the calibration approach presented here
requires to determine the actuator coordinate qsing

released from arbitrary
given fixed actuator coordinates qfixed and a vector of kinematic pa-
rameters k

qsing
released = fSKP (k,qfixed). (7)

in a vector r(k). Ideally, if the kinematic model exactly matches the

FiveBar- obot inematicsR K
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We refer to this problem as the Singular Kinematic Problem (SKP).
The FiveBar-structures’ SKP can be solved analytically. For brevity

index f is introduced for parameters of the chain with the fixed actuator
and index r for parameters of the chain whose actuator is released. We
assume that rAf

= [xAf
, yAf

]T and rAr = [xAr , yAr ]T pointing from the
base coordinate system to point Af and Ar respectively, are given with
the restriction that |xAr − xAf

| = L0 and consequently yAr = yAf
. By

known vector rBr = [xBr , yBr ]T , qreleased can be solved to

qreleased = qr = atan2(yBr − yAr , xBr − xAr) . (8)

The structure is in a singular configuration under the geometric con-
dition that the two rods of the robot build a common line. Hence rBr

can be computed by intersecting a circle KI with its center in Bf and
radius RI = L12 + L22 and a second circle KII around Ar with radius
RII = Lr1. With the substitutes

S1 =
x2

Ar
+y2

Ar
−(xAf

+cos qf Lf1)
2−(yAf

+sin qf Lf1)
2+R2

I
−R2

II

2yAr−2yAf
−2 sin qfLf1

(9)

S2 =
xAf

+cos qfLf1−xAr

yAr−yAf
−sin qf Lf1

(10)

S3 =
S1S2−S2(yAf

+sin qfLf1)−(xAf
+cos qfLf1)

S2

2
+1

(11)

S4 =
(S1−yAf

−sin qfLf1)
2+(xAf

+cos qfLf1)
2−R2

I

S2

2
+1

(12)

two solutions

xBr1,2
= −S3 ±

√
S2

3 − S4 ; yBr1,2
= S1 + S2xBr1,2

(13)

can be derived for xBr and yBr , leading to two solutions of the FiveBar-
structures’ SKP with Eq. 8.

4. Requirements and imitations
The technique presented above is a very promising strategy to cali-

brate parallel mechanisms and thus to enhance their absolute accuracy.
There are however several limitations:

As there is a risk of damaging a robot-structure it is usually avoided
to approach direct kinematic singularities. Due to this several par-
allel structures are dimensioned and designed in a way that no sin-
gular configuration of type two exist in their workspace. Obviously
these manipulators cannot be calibrated by means of the proposed
calibration scheme.

L
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Each time a singularity is passed one redundant information can
be gathered. In order to identify n parameters by the calibration
process at least n independent informations need to be determined.
This requires that different singular configurations exist, which is
for example not the case for the Paraplacer-structure presented
in [Helm, 2003].

If only angular measurements are used for parameter calibration
no unique parameter-set can be identified as each scaled version
of the robot defines a possible solution to the calibration problem.
Consequently one metric parameter needs to be known in advance
and serves as a reference-dimension during calibration, meaning

problem is the same for all calibration strategies).

Since direct kinematic singularities for the FiveBar-robot occur
under the geometric condition of the two rods building one line, the
calibration process cannot differ between a parameter deviation of
L12 and one in L22. This however results from the particular design
feature that both kinematic chains are directly connected to each
other in one joint. Most parallel structures, especially those with
a dof > 2 are designed in a way that the chains are not directly
connected to each other but to an additonal passive platform link.
In that case this problem does not occur.

The last two items limit parameter identification for the FiveBar-
robot under consideration. In order to circumvent the scaling problem,
it is assumed that L0 is exactly known and will serve as the reference
parameter during calibration. Furthermore, as it cannot be differed
between parameter-deviations in L12 and L22, L12 +L22 will be handled
as one parameter of the calibration procedure. In summary only three
of the five parameters describing the system can be identified.

5. Simulation tudies
In order to validate the proposed calibration approach various sim-

tor kreal containing the actual robot geometry-parameters is generated
which adds random values in the range [±1mm] to the nominal values
of the three kinematic parameters L11,L21,L12 + L22 that are supposed
to be identified by the calibration process. Nominal parameters knom as
well as typical real robot parameters kreal

Gathering of redundant information is simulated by application of
q̂sing
2,j = fSKP (kreal, q1,j), where j indicates a specific configuration. This

that this parameter remains constant during calibration. (This

S

ulation studies have been performed. For simulation purposes a vec-
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are given in Table 1.



Table 1.

parameter nominal dimension [mm] exemplary real dimension [mm]

L0 50 50
L11 30 29, 1
L12 50 49, 2
L12 30 30, 7
L22 50 50

result is compared to qsing
2,j = fSKP (k, q1,j) in a residual rj(k) according

to Eq. 6, with k the current parameter set. In order to ensure that
m ≥ 3 different residuals rj exist, q1,j is set to j = 1..m different val-
ues. All rj(k) are then assembled in r(k) = [r1, .., rj ]T . Starting with
k = knom, the idea is to find an optimal parameter set kopt that best
fits the real robot-structure by minimization of r(k). For mathematical
convenience a function F is defined as F = rT r. Minimization of F
is then performed by the Levenberg Marquard algorithm [Scales, 1985]
that has been proven to be successful in various calibration approaches,
e.g. [Zhuang, 1997].

2 shows a typical result of our calibration studies which corre-

real values within a small number of iteration steps indicating that the
algorithm works successful.

L11
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L +L12 22
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Figure 2.

sponds to the parameters from Table 1. The parameters converge to the

presented calibration approach.
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6. Conclusion
For the first time a robot calibration approach has been presented

that does exclusively rely on the information delivered by the robot-
system itself. Hence, as neither additional sensors nor special constraint
devices are required in order to apply parameter identification methods,
the proposed technique is very economical. The basic idea of the new
calibration scheme has been explained and validated by means of simple
planar parallel structure. Simulation results emphasize the promising
potential of the approach. Future work will focus on application of the
method to more complex parallel structures. In addition the effect of
sensor noise in the actuator encoders will be analyzed.

7. Acknowledgements
The research work reported here was supported by the German Reser-

ach Foundation (DFG) within the scope of the Collaborative Research
Center SFB 562.

References
Budde, C., Last, P., Hesselbach, J. (2005), Workspace Enlargement of a Triglide

Robot by Changing Working and Assembly Mode, Proc. of IASTED International

Gosselin, C., Angeles, J. (1990), Singularity Analysis of Closed-Loop Kinematic Chains,

Helm, M. (2003), Durchschlagende Mechanismen für Parallelroboter, Dissertation, TU
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THE DYNAMIC OPTIMIZATION OF PKM

Abstract It is well known that parallel kinematic machines (PKM) have a lot
of significant advantages. In recent years several machines have been
developed and presented on international fairs. But up to now only a
handful of machines have been transferred to industrial applications.
Reasons for this lack of technical transfer are structural drawbacks and
an awful design. Therefore, this paper presents a new optimization ap-
proach for the optimal design of PKM according to given application
requirements. The main idea of this concept is the separation of the
transmission matrices concerning translational and rotational behavior.
Hence the resulting criteria allow an exact physical analysis of the kine-
matic and dynamic properties. To assure the practicability our approach
is demonstrated by means of 6-dof Stewart-Gough platform.

Keywords:

1. Introduction
Due to the fact that the tool center point (TCP) is supported by se-

veral guiding chains, the main advantages of PKM are high stiffness,
process forces and accuracy. In addition the symmetric layout allows
a modular design based on standard machine elements (Merlet, 2000).
Beside the evolution of increasingly powerful machine control and sophi-
sticated new components, the structure synthesis and optimization is one
of the most important defiance’s for the developing engineer. This is the
starting point for several researchers dealing with the analysis and opti-
mization of the kinematic structure. The main focus of these approaches
is the optimization of two characteristics: workspace and the Jacobian
matrix. In general, these first optimization strategies utilized currently
look at the kinematics and dynamics of the mechanism in a successive
manner. Moreover, the dynamic properties of PKM are optimized after

Parallel kinematics, Jacobian matrices, optimization
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the kinematics is defined. This is a typical approach because the tools for
kinematic and dynamic analysis are often not the same and the dynamic
analysis is usually very difficult to perform. In this paper we will discuss
new performance criteria. By integrating the kinematics and dynamics
in the design process enhanced PKM can be designed.

2. Analysis
The kinematic and dynamic analysis of PKM is strongly associated

with the linear transmission of the drive velocities by the Jacobian Ja:

Ẋ = Jaq̇ (1)

In literature a large number of approaches discussing this transmission
behavior can be found, e.g. Ma and Angeles, 1991. Thus the standardized
drive velocity q̇, which describes the surface of a F -dimensional hyper
sphere in the joint space, are transmitted on a hyper ellipsoid in the
Cartesian space representing the time derivates of the endeffector pose.
This transmission is characterized by the extension/amplification and
deformation of the hyper sphere and the phase shifting of the output
vector Ẋ according to the input vector q̇. The maximum amplification
of an input drive velocity is given by the spectral norm of the Jacobian
matrix:

‖Ja‖2 = max
‖q̇‖

2
�=0

(‖Jaq̇‖2

‖q̇‖2

)
. (2)

In the same way
∥∥J−1

a

∥∥−1

2
gives the minimum amplification. The spec-

tral norm can be calculated with the square root of the maximum eigen-
value ξmax of JaJ

T
a . Since JaJ

T
a and JTa Jaare equal, the singular value

σmax (Ja) ≡ ‖Ja‖2 =
√

ξmax (JTa Ja) is the maximum semi half axis of
the hyper ellipsoid and σmin (Ja) ≡

√
ξmin (JTa Ja) = σ−1

max

(
J−1
a

)
is the

minimum semi half axis. Thus the deformation of the hyper ellipsoid can
be described by the condition number κ of the Jacobian matrix:

κ(Ja) =
σmax (Ja)
σmin (Ja)

= ‖Ja‖2

∥∥J−1
a

∥∥
2

(3)

2.1 Modified Criteria
Using the inverse of the condition number the range of values can be

shifted from [1,∞] to the interval [0, 1] Salisbury and Craig, 1982. Even
though the inverse condition number is a local value, which depends on
the pose of the endeffector, a lot of authors, e.g. Ma and Angeles, 1991,
use this value for the optimization of parallel robots. The aim of this
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approach is a uniform velocity transmission in all directions. If κ−1 = 1,
the structure is called isotropic, irrespective of other poses. Furthermore,
the general opinion that κ−1 = 1 means that the PKM can reach the
same velocities in all directions, is completely wrong from a physical
point of view. This fact has serious consequences for the use of singular
values. Considering Eq. 1, the difference quotient for accuracy analysis
can be derived:

Ja = ∆X/∆q (4)

Fig. 1 shows the Biglide-structure based on the PRRRP kinematic
chain in a kinematic isotropic position (P=prismatic joint, R = rotational
joint). However, considering the maximum errors of each drive, the maxi-

1. The reason for this lies in the fact that the input vector ∆q has to
be described by a hyper square (index�) with the side length 2∆qmax.
If ∆q1,max = ∆q2,max, the ratio of maximum and minimum Cartesian
errors is κx = ‖∆Xmax‖2 ‖∆Xmin‖−1

2 = 1, 41, which is the same as the
ratio of the input drive errors κq = ‖∆qmax‖2 ‖∆qmin‖−1

2 = 1, 41 = κx
thus κ = κx/κq
conditions for the PRRRP-structure as shown in Fig. 1. Thus, the extre-

input ∆qmin ∆qmax ∆xmin ∆xmax κq κx κ

sphere 1.00 1.00 0.70 1.77 1.00 2.55 2.55
square 1.00 1.41 0.92 2.51 1.41 2.74 2.40
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mum and minimum endeffector displacements differ as depicted in Table

me Cartesian errors can be calculated by

Figure 1. Exact Modeling of Independent Input Parameters

Table 1. Error Transmission of the PRRRP-Structure

= 1. Table 1 shows the spectral norm of the errors and

.



∆Xmax = max (‖Ja∆q�‖2) (5)

with the drive errors and permutation parameters

∆q� =
[

µ1q1,max . . . µF qF,max
]T (6)

µi ∈ {−1, 1} ∧ µj ∈ {−1, 1}, i = {1, . . . , F} \ {j} . (7)

2.2 Separation Approach
Considering the required accuracy of the PKM tasks, we have to gua-

rantee a maximum deflection of the needed endeffector pose due to errors
of the drive angles given by the measurement system. Hence, the drive
encoders are independent and we have to consider an incremental error
∆qi of each drive. Nevertheless, we have to bear in mind that only a
hypercube will accomplish this demand.

Furthermore, if we analyze a PKM with F = 6, e.g. the Stewart-Gough
platform or a Hexapod in general, we will mix different physical units:

[Ja] =
[

1 ∈ �3x6

rad/m ∈ �3x6

]

(8)

In this case, each performance criterion, which is based on the Jacobian
matrix, has no physical meaning. In addition the values of the two sub
matrices are having different magnitudes and one sub matrix will domi-
nate the other one. Thus some authors like Ma and Angeles, 1991 define a
constant characteristic length arbitrarily. Thus, the characteristic of the
mechanism performance can be manipulated without affecting the ma-
chine itself. Kirchner, 2001 uses the projection of the platform vectors
on the orientation planes. But, the use of the standardized matrix is still

of a Hexapod structure (6-UPS) for a given pose. As can be seen, the
maximum singular values describe a combined motion, i.e. translation
in y-direction and a rotation around the x- and z-axes. But what is the
maximum positioning error?

The following approach using two criteria for translation and orien-
tation will avoid this problem. The main idea is to split the Jacobian
matrix into two sub matrices containing the translational (index t) and
rotational (index r) transmission behavior:

Ja =
[

JTa,t JTa,r
]T (9)

Now Eq. 1 can be separated as follows

v = Ja,tq̇,Ja,t ∈ �3,Ω = Ja,rq̇,Ja,r ∈ �3. (10)
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problematic, as shown in Table 2. The table gives the six singular values



type singular value → x → y → z � x � y � z

standardized Jacobian

σmax 0.44 0.00 0.36 0.00 0.28 0.00 0.04
σmin 0.19 0.02 0.00 0.10 0.00 0.05 0.00

separated Jacobian

∆xmax 0.35 0.11 0.34 0.00 7.68 2.49 0.00
∆Φmax 9.11 0.21 0.23 0.00 6.75 6.12 0.00

With regard to Eq. 4 this equation obtains the maximal translational
and rotational displacements:

∆xmax = max
(‖Ja,tq�‖2

)

, ∆ϕmax = max
(‖Ja,rq�‖2

)

(11)

2.3 Forces and Dynamic Effects
For high speed applications the most important aim is to increase

the endeffector’s velocity. Therefore, most authors maximize the velocity
transmission as shown in section 2.2. Nevertheless, this approach has the
risk of a saturation of the drive forces since velocity and force transmissi-
on are inverse. Thus, the analysis of the drive forces τ has to be included
in the optimization approach. However, it becomes difficult to assign a
physical interpretation when authors like Kirchner, 2001 and Ottavia-
no and Ceccarelli, 2002 mix forces and torques. Their approach yields
physically inconsistent results when different units are mixed. Thus, the
swiftness approach of Di Gregorio and Parenti-Castelli, 2004 is not sui-
table for all PKM, generally. An appropriate approach, which has been
made for serial robots by Bowling and Khatib, 2005, is well suited for
our task. The main idea is to separate the different force components,
e.g. inertia, torques, forces, etc.

τ = τ fL + τmL
+ τ v̇ + τ Ω̇ + .... (12)

The addition of each contribution can be represented geometrically by
mapping one force ellipsoid onto every point on the surface of the other as
shown in Fig. 2. To simplify the problem we firstly consider the external
loads and inertia effects. The separation of the geometric Jacobian

JTg =
[

JTg,tJ
T
g,r

]

, (13)

which differs from the analytic Jacobian Ja for PKM with F > 3, yields

τ = JTg,tfL + JTg,rotmL + Btv̇ + BrΩ̇, (14)
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– 

– 

– 

– 
– 

– 

Table 2. Singular values and directions for different approaches



with the inertia matrix B =
[

BT
t BT

r

]T = JTg,t
∑

(

JTj MjJj
)

, where
Mj is the mass matrix of each body j. For instance the transmission
ellipsoid of the external load fL is given by:

τ TfL
(

JTg,tJg,t
)+

τ fL = ‖fL‖2
2 (15)

This equation can be understood by mapping a force hyper sphere into
the space of the drive forces. Here a hyper sphere can be used, because
it represents a maximum force vector with constant length and arbitrary
direction. These mappings are valid because we use the Moore-Penrose
pseudo inverse

(JTg,...)
+ =

(

Jg,...J
T
g,...

)−1
Jg,..., (16)

since the single contributions are of a smaller dimension than the drive
force vector. The difficulty of the approach by Bowling and Khatib, 2005,
is the calculation of the maximum projection of each contribution on
each drive axis in the space of the drive forces. Fig. 2 shows that this
projection cannot be calculated by using the greatest singular values of
the separated geometric Jacobian sub matrices, here JTg,t and JTg,r. Instead
of Bowling’s numerical approach we use the maximum singular values of
each row to calculate the maximum projection of each contribution.

JTg (X) =

⎡

⎢

⎣

JTg,t,1 JTg,r,1
...

...
JTg,t,F JTg,r,F

⎤

⎥

⎦
(17)
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Figure 2. Addition of the single force terms and their projected contributions in the
direction of each drive.



This process is very simple and quite effective, because it gives the
exact maximum force value for each drive

τmax = max
i

(∥∥JTg,t,ifL∥∥2
+
∥∥JTg,r,imL

∥∥
2

)
. (18)

Notice that this equation provides the possibility to independently
determine the worst case contributions of all terms in Eq. (12) without
using any standardization values.

3. Modified Evolutionary Algorithm
The mentioned performance criteria are discontinuities, discrete and

nonlinear functions with constraint conditions. Thus the optimization
problem has no convexity properties and therefore gradient methods fai-
led where simple stochastic methods are too time consuming. In this case
evolutionary algorithms are very effective to search the global optima wi-
thout any knowledge about the optimization problem itself (Zitzler et al.,
2003). In contrast to some authors (Ottaviano and Ceccarelli, 2002), who
used a weighted cost function as one criterion, our approach is a pareto
based multi criteria evolutionary algorithm.

Ind1 � Ind2 :∀k ∈ {1, . . . , NObj} : Ok(Ind1) ≥ Ok(Ind2)∧ (19)
∃p ∈ {1, . . . , NObj} : Op(Ind1) > Op(Ind2)

To enhance the performance of the evolutionary algorithm, we mo-
dified the approach of Zitzler et al., 2003, with respect to a dynamic
parameter limitation and a better initialization as well as adaptive mu-

2006). The result
is an uniform distributed compromise set with all NInd solutions Ind
fitting the NObj contradictory objectives Oi of the given application.

4. Optimization of a Hexapod
The performance of our optimization approach was demonstrated by

means of a Hexapod manipulator with hydraulic drives for metal for-
ming, which was designed at the IWF in 2002 (Fig. 3). The advantage
of the hydraulic actuators is the high power to weight ratio. For the me-
tal forming process the platform has to rotate around the pitch and roll
axes with a sin-characteristics respectively, resulting in a tumbling moti-
on with a maximum angle of 15◦ and 1 Hz. The process forces are 50kN
in z-direction and 5kN in the xy-plane. Beside the workspace W the mi-
nimization of the maximum actuator forces (due to process forces) and
the maximum actuator velocities (due to the tumbling motion) inside W
are the main aims of the optimization task. However, these two aims are
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tation and termination functionalities (see Krefft et al.,



no. requirement variable border in W aim note

1. workspace radius rW 0,05 m shape 6D:
2. workspace height hW 0,05 m cylindrical
3. pivoting angle ψx, θy ±15◦ independent
4. max. drive force τi,max 50kN min Fz = 50 kN,Fxy = 5kN
5. max. drive velocity q̇i,max 0,5 m/s min ψ̇x, θ̇y = f(ψx, θy)

ψ̇x,max, θ̇y,max = 95 ◦/s
6. max. axial bearing forces fUa,i,max min

contradictory. Nevertheless, the separation of the translational kinetosta-
tic and rotational kinematic aspects may help to overcome this problem.
Additionally, the axial bearing forces of the universal joints have to be

performance of the hydraulic drives, the border values τi,max = 50 kN
and q̇i,max = 0.5m/s have not been exceeded in any pose of W. Using
these sufficient restriction, we can guarantee that all fixed requirements
are fulfilled.

In addition to the radius of the base LAi and platform LCi and the
distance of the universal joint pairs LU ΣCi , βΣCi of the

◦ rotation of base and platform is the optimum
arrangement.

pareto evolutionary algorithm (SPEA) based on Zitzler et al., 2003, the
pareto set has a uniform distribution. The pareto set in the 3D objectives
space is similar to a shell, which is formed by the best solutions fitting
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reduced for the sake of stiffness and accuracy (Table 3). Considering the

, the orientation α

imization. So far a 60
first joint axes in spherical coordinates are the input parameters of the opt-

Fig. 4 shows the result of the optimization. Due to an enhanced strength

Figure 3. Parameters/Layout of the Structure and Process Parameters

Table 3. Requirements

.

.



minimized, there exists no solution on the backside of this area. It can
be seen that using this evolutionary algorithm, an exact hyper surface,
which is representing the best solution set, can be derived.

In comparison to the first design of the machine, which is the reference
for our new approach, the pareto set offers both, minimized drive forces
and drive velocities. Even if there was no suitable optimization tool up
to the time of the first development, the original design offers a good
overall performance (Fig. 4). The projection of the pareto solution shows
the contradictory behavior of the requirements 4 and 5 (Fig. 4). The final
selection out of the pareto set has to be done by the developing engineer
with his expert knowledge by using weighting factors. To overcome the
problem of combining different physical values in one cost function the
objectives have to be standardized with the limiting objective values of
the pareto set Op.

Ôi = (Oi − min(Op))/(max(Op) − min(Op)). (20)

In contrast to common cost function approaches, e.g. Ottaviano and Cec-
carelli, 2002, this procedure has two advantages: Firstly, the optimization
process must not be restarted, if one may change the weighting factors
and secondly, a standardization of the objectives is very easy. As depicted
in Fig. 5, different weighting factors obtain different solutions. Where-
as the variants 2-4 have a better overall performance than the original
design, the solutions 1 and 5 offer the best solution of one objective ac-
cording to the fixed requirements. With regard to the first design the
axial bearing forces are minimized with all variants.
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the requirements in Table 3. Due to the fact that all demands have to be

Figure 4. 3D Pareto Set (Req. 4-6) and Quality of First Design (Req. 4,5).



5. Conclusion
This article presents a new optimization approach for optimized PKM.

The key feature is the separation of the Jacobian matrix and the pro-
jection of the current values with respect to translation/rotation as well
as drive axes. Thus, we get performance criteria with a physical exact
meaning. It is understood that this basic idea can be copied to other
problems. The optimization of an existing machine shows that this new
approach obtains a further performance enhancement.
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Abstract In the application of optimization algorithms to the optimal synthesis of
mechanical manipulators performing prescribed tasks, unique difficulties
are encountered due to the fact that the optimization algorithms may
drive the design to a configuration that experiences lock-up, and thus
resulting non-assembly along the task path. If this happens no objective
function can be evaluated for the current design, and the optimization
procedure is forced to terminate prematurely. In previous work on pla-
nar serially linked manipulators, a heuristic procedure was proposed

presents a concise review and justification of the proposed methodology
in terms of general kinematic constraint equations that may define the
prescribed motion of any serially linked manipulator.

Keywords:

1. Introduction
In the optimal synthesis of a serially linked manipulator a dimensional

configuration, i.e. link lengths and base positioning, is sought that will
ensure favorable performance along a prescribed task path. In particular
the required dimensional design must be such that the end-effector not

manipulator occurs along the task path then the configuration cannot
be evaluated. In comparison to much work that has been done on the
optimal synthesis of linkages [Erdman and Sandor, 1997], very little work
appears to have been done on the above serial manipulator synthesis
problem. This is probably due to the greater complexity of the latter
problem, and particularly because of the unique complication of non-
assembly during the numerical solution of the associated optimization
problem. It is of interest to note that the problem of non-assembly in the
optimal synthesis of linkages has also received little attention [Minnaar
et al., 2001].

to deal with specific individual synthesis problems. Here the author

some optimal manner. if non-assembly or lock-up of thecourse,
only executes a time-specific prescribed task path, but also does so in
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Relatively recently the author and co-worker Berner [Berner and Sny-
man, 1999, Snyman and Berner, 1999a, Snyman and Berner, 1999b] have
addressed the above optimal synthesis problem for a specific planar ma-
nipulator performing a variety of different prescribed tasks, subject to
the average absolute torque requirement being optimal. They proposed
and applied an ad hoc heuristic procedure in solving the associated opti-
mization problems for this specific manipulator, with different imposed
practical constraints. The purpose of this paper is to present a concise
review of the previously proposed methodology, but here in terms of gen-
eral kinematic constraint equations that may define the prescribed mo-
tion of any serially linked manipulator. In doing so the basic elements of
the proposed methodology for overcoming the problem of non-assembly
are elucidated.

In spite of the sophistication of existing mathematical optimization
algorithms, certain inhibiting difficulties remain when these algorithms
are applied to real-world problems [Snyman, 2005]. This is particularly
true in the field of mechanical design where unique difficulties arise that
have prevented the general application of mathematical programming
techniques to optimal design problems. Some typical optimization dif-
ficulties that may arise are: (i) computational expense in evaluating
performance via dynamical simulations, (ii) presence of numerical noise
and discontinuities in the objective function, (iii) the existence of multi-
ple minima, and (iv) the existence of regions in the design space where
the objective function is not defined, and therefore cannot be evalu-
ated. Problems (i) - (iii) have often been addressed, and various general
methods and techniques have been developed to overcome the respective
problems [Snyman, 2005]. Difficulty (iv), however, has by comparison
been neglected. There does not appear to be a general method for solving
this particular problem. Often the nature of the system being optimized
dictates the method to be adopted in overcoming this problem. Here
the previous problem-specific methodology of Snyman and Berner, for
overcoming difficulty (iv), is reviewed and justified in terms of general
kinematic constraint equations.

2.
In the optimal design of a serially linked manipulator, it may be re-

quired to minimize an objective function associated with the execution
of a prescribed task path to be followed by the end-effector. In particular
it may, for example, be required that for a typical planar serially linked
manipulator depicted in Figure 1, where the end-effector is to follow a
prescribed task path specified by the vector position r(t) at any instant
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t, the average torque for the execution of the prescribed task path over
the time interval [0, T ], be minimized with respect to the link lengths
and base placement.

3

2

3

Motor 2

Motor 3

Motor 1

link 1

Base(x ,y )b b

l

l

2

link 2

1
=

1

2
1

3

link 3

t = 0

prescribed
path

r(t)

l
t = T

y

x

Figure 1.

A major problem that may occur, corresponding to optimization dif-
ficulty (iv) mentioned in the previous section, is that during the op-
timization procedure the optimization algorithm, in adjusting the link
lengths and base coordinates [l1, l2, l3, xb, yb], may drive the design to
one where the workspace no longer fully encloses the prescribed task
path. Thus, assuming that the initial point of the task path is in the
workspace, the end-effector in following the prescribed task path will
reach a point on the boundary of the workspace, beyond which assem-
bly of the manipulator is no longer possible. Consequently the objective
function associated with the completion of the path cannot be evaluated,
i.e. difficulty (iv) is encountered, and the optimization procedure termi-
nates prematurely and unsuccessfully. For individually specific problems
Snyman and Berner proposed an ad hoc heuristic procedure, involving
artificial objective function values, for overcoming this problem during
optimization. Here their heuristic is reviewed with reference to the gen-
eral kinematic constraint equations defining the motion of any serially
linked manipulator.

3. Kinematically riven ystem
and on- ssembly

In general a kinematically driven system is described by a combination
of n kinematic and driving constraint equations of the form [4]:

Φ(q, t) = 0 (1)

351Serial Manipulators Performing Prescribed Tasks

D S
N A

Representation of a planar manipulator following a prescribed path.



where q is a n-vector of generalized coordinates and t denotes the in-
stant in time. It is assumed here that equation (1) explicitly or implicitly
specifies the position vector r(t) of the end-effector at any instant t in
the interval [0, T ]. Suppose now that for a specific design the task path
is initially (t = 0) inside the reachable workspace of the manipulator,
but crosses the boundary at t = t∗ > 0. This implies that assembly is
lost beyond the boundary, and that for t > t∗ no solution to equation (1)
exists. According to the definition of Haug [Haug, 1989] the configura-
tion q∗ at time t∗ corresponds to lock-up, and further, since the solution
cannot be continued beyond t∗ it follows by the implicit function theo-
rem that the Jacobian of (1) at t∗, Φq(q

∗, t∗), is singular. This has an
important influence on the behavior of q̇ and q̈ as t approaches t∗.

The velocity equation obtained by taking the time derivative of (1) is

Φq(q, t)q̇ = −Φt (2)

Since Φq(q, t) is singular at time t∗, it follows that in the situation
described above, where the manipulator approaches a lock-up configura-
tion, that the solution of (2) yields a value for the norm of q̇ that tends
to infinity as t approaches t∗. Clearly the same applies to the solution
of the corresponding acceleration equation obtained by differentiating
(2) with respect to time. Thus the behavior of the norms of q̇ and q̈
as t nears t∗ serves as a warning that a lockup configuration and non-
assembly is being approached. In the following section a simple example
is presented that illustrates such a situation and shows how the behavior
of the manipulator may be monitored in practice.

4. Simple xample of ock- p and on- ssembly

Consider a two-link revolute manipulator (l1 = l2 = 1) with the con-
figuration specified by link angles φ1 and φ2 as shown in Figure 2(a), and
with the task path of the end-effector specified by r(t) = [x(t), y(t)]T ≡
[t,
√
2]T for all t in the interval [0, 2]. Setting q1 = φ1 and q2 = φ2,

equation (1) assumes the form

Φ(φ, t) =

[

x(t)− t

y(t)−
√
2

]

=

[

cosφ1 + cosφ2 − t

sinφ1 + sinφ2 −
√
2

]

= 0 (3)

For any instant t equation (3) may be solved for φ1 and φ2. By further
differentiation of (3) with respect to time, the velocity and acceleration
equations may be derived, from which one may solve for φ̇1, φ̇2, φ̈1,
and φ̈2. The values of φ̇1 and φ̈1, computed at intervals of ∆t = 0.01s,
are plotted in Figure 2(b). The values of φ̇2 and φ̈2 behave similarly
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Figure 2. (a) Task path of two-link manipulator (b) Behavior of φ̇1 and φ̈1 along

but are negative as t approaches t∗. Clearly as t approaches t∗=
√
2

the velocities and accelerations increase dramatically in magnitude, as
is expected from theoretical considerations, and beyond t∗ no solutions
exist.

If the further inverse dynamics is done, then, since the accelerations
increase to infinity, the corresponding required torques τ1 and τ2 to be
applied by the actuators on the respective links in order to maintain the
prescribed motion, will also increase to infinity as t approaches t∗. The
general argument in the previous section, and the evidence presented
here for the simple manipulator, indicate that this behavior is in general
true for a large number of practical cases where non-assembly or lock-
up trajectories may be encountered. The practical significance of this
behavior is discussed in the next section.

5. Evaluation of bjective unction for ock- p
rajectories

Consider the manipulator depicted in Figure 1 and where, for exam-
ple, the objective function for a given dimensional design x =[x1, x2, x3,

x4, x5]
T= [l1, l2, l3, xb, yb]

T , is the average absolute torque requirement
for execution of the task path given by

Tav(x) =
1

T

∫ T

0

(|τ1(t)|+ |τ2(t)|+ |τ3(t)|)dt (4)

where τi(t) denotes the torque applied to link i. Of course, other ap-
propriate formulations involving the torques, such as the average sum of
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the squares of the torques or average energy usage over the task path,
may also be considered. In practice objective function (4) is minimized
subject to the imposition of constraints relating to limits on maximum
deliverable absolute torque values, and upper and lower bounds on link
lengths. Additionally, constraints may be specified to prevent allow-
able joint angle ranges from being exceeded, and to prevent violation of
geometrical restrictions on the placement of the base.

Assume for the moment that it can be ensured that for all design
points during the optimization procedure, the initial point and endpoint
of the prescribed path lie within the workspace. If during the optimiza-
tion procedure a design is obtained that results in lock-up and resultant
non-assembly further along the path (between the initial and end point),
then obviously the evaluation of the objective function (4) is not possible.

The behavior of the accelerations near lock-up, as discussed in the
previous sections, now points to a practical strategy for obtaining a
meaningful value for the objective function even if non-assembly is en-
countered. In practice the kinematic analysis is done at discrete time
instants tj = j∆t, j = 1, 2, ..., N where ∆t is an appropriately small time
step and T = N∆t. The analysis starts at the initial point where assem-
bly is assumed to be possible. Lock-up and non-assembly will therefore
be detected at some discrete point along the path if a solution to equa-
tion (1) cannot be found. Non-assembly will be evident from failure of
the formula for the closed form solution, if it exists, or failure of, for
example, the Newton-Raphson method to converge if a numerical solu-
tion is sought. If the system is now forced through the lock-up position
and the analysis continued at the discretization points for the prescribed
path, the analysis will fail at intermediate steps where assembly is no
longer possible. However, as assembly at the end position is guaran-
teed by our assumption above, a point will be reached where assembly
is again possible, and the analysis can successfully be continued.

A heuristic procedure to compute a meaningful objective function
value for such a lock-up trajectory was previously proposed and success-
fully applied to the optimal design of planar manipulators by the author
and co-worker Berner. This heuristic may now be justified in terms of
the theoretical argument and computational evidence presented in the
previous two sections. At the integration points tj where assembly fails,
set the respective torques τi(tj) := τi(ts) where ts (close to t∗, ts < t∗),
corresponds to the last step at which assembly was successfully car-
ried out and the inverse dynamics could be done. Use these artificial
torque values in the numerical integration of (4) to give an associated
artificial value for the objective function. This situation is depicted in
Figure 3. Because ts is close to t∗, one expects the values of |τi(ts)|
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Figure 3. Numerically computed absolute torque values, |τi(t)|, along lock-up tra-

to be relatively large, so that the computed value for Tav will be very
high. Also, the longer the non-assembly time interval, the larger the
expected value for the artificial objective function. Thus the objective
function contains a meaningful penalty component in the case where
non-assembly occurs along the task path. Any minimization procedure
employing the above artificial integration procedure for evaluating the
objective function, should drive the design away from lock-up trajecto-
ries with artificially high objective function values. This is indeed borne
out by the work of Snyman and Berner.

6. Ensuring ssembly at ndpoints of ask ath
In the above it was assumed that for all design points occurring during

the optimization procedure, assembly is at least possible at the begin-
ning and end of the task path. If not, the evaluation of the objective
function, real or artificial, corresponding to (4) is of course impossible
since the integration in (4) cannot be started or completed. The condi-
tions, that will ensure assembly in the neighbourhood of the respective
extreme points, may be expressed in terms of relationships between the
design variables that must be satisfied at the start and end of the time
interval [0, T ]. These two assembly conditions can be expressed in terms
of inequality constraints of the general form: gi(x) ≤ 0, i = 1, 2.

Thus, to overcome non-assembly at the two extreme points, the spe-
cific procedure adopted during the optimization process is to replace
the objective function, corresponding to (4), by a single penalty func-
tion P (x) containing only the assembly constraints, i.e. by P (x) =
β1(g1(x))2+β2(g2(x))2, where βi = 0 if gi(x) ≤ 0 and βi = 1 if gi(x) > 0,
whenever one or both assembly constraints are violated. The minimiza-
tion is then continued with the penalty function until the design returns
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to a region where both assembly constraints are met. At this point the
optimization reverts to the minimization of objective function (4) sub-
ject to the normal physical constraints. In spite of the discontinuities
inherent in the switching from objective function to penalty function, it
is found that the optimization can easily be performed using the robust
gradient-based leap-frog algorithm [Snyman, 2005].

7. Conclusion
In an attempt to minimize the torque requirement in the optimal syn-

thesis of a serially linked planar manipulator, an optimization algorithm
is inclined to drive the design to one which can no longer be assembled
at some point along the task trajectory. Here, a previously proposed
ad hoc procedure for avoiding non-assembly during optimal synthesis,
and which was successfully applied to specific individual synthesis prob-
lems, is reviewed and justified by considering the behavior of the general
kinematic and driving constraint equations of any manipulator in the
neighborhood of non-assembly. The analysis fully justifies the use of the
proposed methodology in the general case. The application of this ap-
proach, in which continuation of the optimization process is ensured in
order to produce a feasible optimum design, may therefore be expected
to be successful in the optimal synthesis of more complicated and general
three-dimensional serially linked manipulators.
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Abstract We propose a formulation capable of measuring the complexity of kine-
matic chains at the conceptual stage in robot design. As an example,
two realizations of the Schönflies displacement subgroup are compared.
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1. Introduction

We propose here a formulation capable of measuring the complexity
of the kinematic chains of robotic architectures at the conceptual-design
stage. The motivation lies in providing an aid to the robot designer
when selecting the best design alternative among various candidates at
the early stages of the design process, when a parametric design is not
yet available.

In this paper, the complexity of three lower kinematic pairs (LKPs),
the revolute, the prismatic and the cylindrical pairs, is first obtained.
Then, a formulation to measure the complexity of kinematic bonds
(Hervé, 1978; Hervé, 1999) is introduced. Based on this formulation,
the complexity of five displacement subgroups—the helical pair is left
out in this paper—is established. Finally, as an application, two realiza-
tions of the Schönflies displacement subgroup (Angeles, 2004; Company
et al., 2001) are compared.

2. Kinematic Pair, Kinematic Bond
and Kinematic Chain

A kinematic bond is defined as a set of displacements stemming from
the product of displacement subgroups (Hervé, 1978; Angeles, 2004),
the bond itself not necessarily being a subgroup. We denote a kinematic
bond by L(i, n), where i and n stand for the integer numbers associated

© 2006 Springer. Printed in the Netherlands.
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with the two end links of the bond. There are six basic displacement
subgroups R(A), P(e), H(A, p), C(A), F(u,v) and S(O) (Hervé, 1978;
Hervé, 1999; Angeles, 2004), each associated with a lower kinematic pair
(LKP). In this notation, A stands for the axis of the kinematic pair in
question; e, u and v are unit vectors, O is a point denoting the center
of the spherical pair; and p is the pitch of the helical pair.

A kinematic bond is realized by a kinematic chain. A kinematic chain
is the result of the coupling of rigid bodies, called links, via kinematic
pairs. When the coupling takes place in such a way that the two links
share a common surface, a lower kinematic pair results; when the cou-
pling takes place along a common line or a common point, a higher
kinematic pair is obtained. Examples of higher kinematic pairs include
gears and cams.

There are six lower kinematic pairs, namely, revolute R, prismatic
P, helical H, cylindrical C, planar F, and spherical S. These pairs can
be regarded as the generators of the six displacement subgroups listed
above. Although the displacement subgroups can be realized by their
corresponding LKPs, it is possible to realize some of their displacement
subgroups by appropriate kinematic chains. A common example is that
of the C(A) which, besides the C pair, can be realized by a suitable
concatenation of a P and a R pair.

3. The Loss of Regularity of a Surface

In this section, we propose a measure of the complexity of a given
surface. We base this measure on the concept of loss of regularity LOR,
defined as

LOR ≡
||κ′

rms||2
||κrms||2

(1)

where κrms is the r.m.s. of the two principal curvatures at a point of
the surface, κ′

rms is the derivative of κrms with respect to a dimension-
less parameter σ. The LOR is inspired from Taguchi’s loss function
(Taguchi, 1993), and measures the diversity of the curvature distribu-
tion of the given surface, the LOR of the surfaces associated with five
lower kinematic pairs, being found below.

LOR of the Surface of the R Pair. Typically, the surface asso-
ciated with the revolute pair is assumed to be a cylinder. However, in
order to realize the R(A) subgroup, the translation in the axial direction
of the cylindrical surface must be constrained. This calls for additional
surfaces, which must then be blended smoothly with the cylindrical sur-
face in order to avoid curvature discontinuities.
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The above discussion reveals that the surface associated with a rev-
olute pair has to be a surface of revolution but cannot be an extruded
surface; the cylindrical surface is both. We should thus look for a gen-
eratrix G other than a straight line, but with G2-continuity everywhere.
The latter would allow a shaft of appropriate diameter to be blended
smoothly on both ends. The simplest realization of G is a 2-4-6 polyno-
mial, namely, P (x) = −x6 + 3x4 − 3x2 + 1.

Figure 1(a) is a 3D rendering of the surface SR obtained by revolving
the generatrix G about the x-axis, so as to blend with a cylinder of unit
radius.
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Figure 1. (a) A 3D rendering of the surface of revolution SR and (b) its LOR vs.
shaft radius r

The two principal curvatures of SR are given by (Oprea, 2004)

κµ =
−y′′

(1 + y′2)3/2
, κπ =

1

y(1 + y′2)1/2
(2)

where y = P + r and r is the radius of the cylindrical shaft. The r.m.s.
of the two principal curvatures, κµ and κπ, can now be obtained, i.e.,

κrms =

√
1

2
(κ2

µ + κ2
π) (3)

Next, we need to choose a suitable length parameter s and a homog-
enizing length l. A natural choice for s is the distance traveled along G;
l can be taken as the total length of the generatrix, the dimensionless
parameter being σ ≡ s/l.

The LOR of SR can now be evaluated by eq. (1),
Fig. 1(b). Notice that LORR is not monotonic in r. Further, LORR

reaches a minimum of 10.2999 at r = 0.1132. We thus assign LORR =
10.2999.
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LOR of the Surface of the P Pair. The most common cross
section of a P pair is a dovetail, but we might as well use an ellipse,
a square or a rectangle. A family of smooth curves that continuously
leads from a circle to a rectangle is known as Lamé curves (Gardner,
1965). In their simplest form, these curves are given by xm + ym = 1,
where m > 0 is an even integer. When m = 2, the corresponding curve
is a circle of unit radius, with its center at the origin of the x-y plane.
As m increases, the curve becomes flatter and flatter at its intersections
with the coordinate axes, becoming more like a square. For m → ∞,
the curve is a square of sides equal to two units of length and centered
at the origin. A Fourier analysis based on the curvature of these curves
confirms the intuitively accepted notion that the spectral richness, or
diversity, of the curvature increases with m (Khan, Caro, Pasini and
Angeles, 2006).

The LOR of the surface of the prismatic pair obtained by extruding
a square or a rectangle is expected to have a very high value. A Lamé
curve L with m = 4 is plausibly the best candidate for the cross section
of the prismatic pair. This curve is shown in Fig. 2(a). Figure 2(b) is a
3D rendering of the surface SP obtained by extruding L along the z-axis.
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Figure 2. (a) Cross section of the prismatic pair; (b) A 3D rendering of the extruded
surface

The two principal curvatures of SP are given by

κµ =
x′′y′ − y′′x′

(x′2 + y′2)3/2
, κπ = 0 (4)

The r.m.s. of the two principal curvatures, κµ and κπ thus reduces to
κrms = κµ. The length parameter s and the homogenizing length l are,
correspondingly, the distance traveled along SP, depicted in Fig. 2(a),
and the total length l of the Lamé curve, whence σ ≡ s/l.

The loss of regularity LORP of SP, the surface associated with the P
pair, is thus LORP = 19.6802.
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LOR of the Surface of the F Pair. The F pair is a generator of
the planar subgroup F and requires two parallel planes, separated by
an arbitrary distance. In order to avoid corners and edges, a suitable
‘blending option’ is the use of the quartic Lamé curve. The concept
is shown in Fig. 3(a). Notice that the female element of the pair is an
extruded surface SFf while the male element is a solid of revolution SFm.
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Figure 3. (a) Cross section of the simplest realization of the planar pair; (b) LOR
vs. diameter d of the male element

The LOR of the planar pair, LORF, is defined by both the male and
the female elements. Further, the contribution of a flat surface to the
LOR is zero, a plane being a sphere of infinite radius. We thus obtain

LORplane = lim
κ→0

||κ′
rms||2

||κrms||2
= lim

κ→0

0

||κrms||2
= 0 (5)

The LOR of the female element LORFf is thus the same as that of the
prismatic pair, that of the male element LORFm being evaluated below,
namely,

κµ =
ξ′′η′ − η′′ξ′

(ξ′ 2 + η′ 2)3/2
, κπ =

1

ξ
√

1 + ξ′ 2
(6)

where, from Fig. 3(a), η = y and ξ = x + d/2, and d/2 is the dis-
tance between the y and the η axes. The length parameter s and the
homogenizing length l are, correspondingly, the distance traveled along
the generatrix GFm depicted in Fig. 3(a) and its total length l, whence
σ ≡ s/l.

Figure 3(b) is a graph between the LOR of SFm, LORFm, and the
diameter d. Notice that LORFm grows monotonically with d. Further,
LORFm reaches a limit of approximately 56.0399, whence LORFm =
56.0399. Finally, theLORF is defined as LORF ≡ (LOFFf+LOFFm)/2 =
37.8601.
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LOR of the Surface of the C and S Pairs. The r.m.s. of the
principal curvatures of the cylindrical and the spherical surfaces is con-
stant. Hence, the loss of regularity is zero for the two surfaces, i.e.,
LORC = LORS = 0.

4. The Geometric Complexity of LKPs

We introduce here the geometric complexity of the LKPs based on the
LOR introduced earlier: the geometric complexity KG|x of a pair x is

KG|x ≡
LORx

LORmax
(7)

where LORx is the loss of regularity of the surface associated with the
pair x and LORmax ≡ max{LORR, LORC, LORP, LORF, LORS}. The
geometric complexity of the five LKPs of interest is, in the foregoing
order: 0.2721; 0; 0.5198; 1.0; and 0.

5. The Complexity of Kinematic Bonds

In this section we lay the foundations for the evaluation of the com-
plexity of any kinematic bond. We first restrict our study to kinematic
bonds that are realizable using LKPs; the study of bonds including
higher kinematic pairs is as yet to be reported. Next, we define the
complexity K ∈ [0, 1] of a kinematic chain as a convex combination
(Boyd, 2004) of its various complexities:

K = wJKJ + wNKN + wLKL + wBKB (8)

where KJ ∈ [0, 1] is the joint-type complexity, KN ∈ [0, 1] the joint-
number complexity, KL ∈ [0, 1] the loop-complexity, and KB ∈ [0, 1] the
bond-realization complexity, with wJ , wN , wL, and wB denoting their
corresponding weights, such that wJ + wN + wL + wB = 1.

5.1 J

Joint-type complexity is that associated with the type of LKPs used in
a kinematic chain. We define a preliminary joint-type complexity KJ |x

as the geometric complexity KG|x of the x pair, the joint-type complexity
KJ of a kinematic bond L being defined as

KJ |L =
1

n
(nRKJ |R + nP KJ |P + nCKJ |C + nF KJ |F + nSKJ |S) (9)

where nR, nP , nC , nF and nS are the number of revolute, prismatic,
cylindrical, planar and spherical joints, respectively, while n is the total
number of pairs.
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5.2 N

The joint-number complexity KN is defined as that associated with a
kinematic bond L by virtue of its number of kinematic pairs, with respect
to the minimum required to realize the same set of displacements. We
adopt the expression

KN |L = 1 − exp(−qNN); N = n − m (10)

where n is the number of joints used in the realization of the bond L, m
is the minimum number of LKPs required to produce a displacement of
bond L, and qN is the resolution parameter, to be adjusted according to
the resolution required. Note that KN |L ∈ [0, 1].

5.3 Loop-Complexity KL

The loop-complexity KL|L of a kinematic bond is that associated with
the number of independent loops of the kinematic chain connecting the
two links, i and n, of a kinematic bond L, with respect to the mini-
mum required to produce the prescribed displacement set. The loop-
complexity can be evaluated by means of the formula:

KL|L = 1 − exp(−qLL); L = l − lm (11)

where l is the number of kinematic loops, lm the minimum number of
loops required to realize such a bond and qL the resolution paramter.

5.4 B

The bond-realization complexity is associated with the geometric con-
straints involved in the realization of a kinematic bond. The complexity
of geometric constraints may be evaluated by the number of floating-
point operations (flops) required to realize a geometric constraint. One
flop is customarily defined as the combination of one addition and one
multiplication. Lack of space prevents us from including the flop analysis
of the geometric constraints, which is reported in (Khan, Caro, Pasini
and Angeles, 2006). A summary of the results of this analysis is dis-
played in Table 1.

The bond-realization complexity based on the geometric constraints
of its realization can now be defined as

KB|L = 1 − exp(−qBf) (12)

where f is the number of floating-point operations corresponding to the
constraints, qB being the corresponding resolution parameter.
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Table 1. Realization cost of some geometric constraints

Geometric constraint Representation flops total flops

Intersection of two lines (e1 × e2) · q21 = 0 5A + 9M 9

Angle of intersection e1 · e2 = cos α 2A + 3M 3

Parallelism b/w two lines e1 × e2 = 03 3A + 6M 6

Length of common normal ||q21 − (q21 · e1)e1||
2
2 = d2 7A + 9M 9

Intersection of three lines det(C) = 0 30A + 36M 36

e1, e2 and e3 span 3D space det([ e1 e2 e3 ]) �= 0 5A + 9M 9

Definition of the resolution parameters. Three resolution para-
meters, namely qN , qL and qB were introduced above. These parameters
provide an appropriate resolution for the complexity at hand. Since the
foregoing formulation is intended to compare the complexities of two or
more kinematic chains, it is reasonable to assign a complexity of 0.9 to
the chain with maximum complexity and hence evaluate the normalizing
constant, i.e., for J = B, L, N ,

qJ =

{
− ln(0.1)/Jmax , for Jmax > 0;
0, for Jmax = 0.

6. The Complexity of the Displacement
Subgroups

In Section 5, we assigned the joint-type complexity of the lower kine-
matic pairs as the geometric complexity of the surface associated with
the LKPs. The F pair requires the machining of two parallel planes,
separated by an arbitrary distance. Further, the F pair poses an ac-
cessibility problem to the male element of the coupling, this pair being
seldom used in practice as such. Moreover, precision spherical pairs are
expensive and difficult to manufacture.

Hence, using the geometric complexity of the LKPs as the correspond-
ing joint-type complexities is not justified. In order to solve this problem
we must look at the complexity of the displacement subgroups generated
by the five LKPs studied here.

The basic displacement subgroups can be realized either by their cor-
responding pairs or by a kinematic bond. The complexity of the dis-
placement subgroups is defined as the complexity of the realization that
exhibits the minimum kinematic bond complexity.

The complexity of the five displacement subgroups generated by the
LKPs considered here can now be evaluated. In this vein, we apply the
formulation introduced in the previous section to the different realiza-
tions of the displacement subgroups under study. Table 2 displays some
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Table 2. Complexity of five displacement subgroups

Subgroup Desc. KJ KN KB K

R(A) R 0.2721/1 1 − e−qN (0) 1 − e−qB(0) 0.0907

P(e) P 0.5198/1 1 − e−qN (0) 1 − e−qB(0) 0.1733

C(A) C 0/1 1 − e−qN (0) 1 − e−qB(0) 0

PR 0.7919/2 1 − e−qN (1) 1 − e−qB(6) 0.4480

PPR 1.3117/3 1 − e−qN (2) 1 − e−qB(12) 0.5987

F(u, v) RRR 0.8163/3 1 − e−qN (2) 1 − e−qB(12) 0.5436

RPR 1.0640/3 1 − e−qN (2) 1 − e−qB(9) 0.5412

S(O) RRR 0.8163/3 1 − e−qN (2) 1 − e−qB(45) 0.6907

qN = − ln(0.1)/2 = 1.1513; qB = − ln(0.1)/45 = 0.0512

Table 3. Complexity of two realizations of the Schönflies subgroup

Description KJ KN KL KB K

McGill SMG 2.76/21 1 − e−qN (21−2) 1 − e−qL(5−0) 1 − e−qB(258) 0.68

H4 16.79/22 1 − e−qN (22−2) 1 − e−qL(7−0) 1 − e−qB(99) 0.79

qN = − ln(0.1)/20 = 0.12; qL = − ln(0.1)/7 = 0.33; qB = − ln(0.1)/258 = 0.01

pertinent realizations. The minimum complexity values found for R(A),
P(e), C(A), F(u,v) and S(O) are, correspondingly, 0.0907, 0.1733, 0,
0.5412 and 0.6907. Normalizing the above results so that the maxi-
mum is given a complexity of 1, we obtain the complexities of the five
displacement subgroups as

KJ |R = 0.1313, KJ |P = 0.2509, KJ |C = 0, KJ |F = 0.7836 (13)

Notice that, although these are not the joint-type complexity defined in
Section 5, which are rather based on form than on function, the above
values can be used to evaluate the joint-type complexity in eq.(9).

7. Example

We apply our proposed formulation to compute the complexity of two

includes three independent translations and one rotation about an axis
of fixed orientation. Figure 4(b) shows the joint and loop graphs of the
McGill SMG (Angeles, 2005) and the H4 robot (Company et al., 2001).

Table 3 displays the different complexity values associated with the
topology of the two robots. Here, we note that the overall complexity
of the McGill SMG is lower than that of the H4 robot.
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Figure 4. Joint and loop graphs of: (a) the McGill SMG; and (b) the H4 robot

8. Conclusions

The complexity analysis of kinematic chains at the conceptual stage
in robot design was proposed in this paper. To do this, the complexity
of five lower kinematic pairs and a formulation of the complexity of kine-
matic bonds were introduced. The complexity values of two realizations
of the Schönflies displacement subgroup were computed.
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Abstract 

Keywords: 

1.  Introduction  
In the literature, there are a variety of devices based on a sphere 

2003, there is little work on spherical encoders or other means of three-
dimensional, orientation feedback without mechanical coupling.   

In this paper, a non-contacting, angular velocity sensor based on 
magnetometry is presented.  The primary application for this sensor is a 
ball wheel mechanism, which will serve as the drive train in a robust 
omnidirectional mobile platform. Designed for operation in unstructured 
environments, the spherical tire will be subject to contamination and 

rotating in a cradle. These include: spherical motors as in Chirikjian and 

For devices based on a sphere rotating in a cradle, the axis of rotation of the 
sphere is arbitrary and can change instantaneously. Consequently, a non-
contact means of  velocity  sensing is  desirable.  For the ball wheel 
mechanism, which serves as  the drive train for a class of omnidirectional 
mobile robots, most existing methods are not feasible, such as optical 
techniques based on surface-pattern distinction. Thus, in this paper, a 
robust, three-dimensional angular velocity sensor based on magnetometry is 
presented that tracks the orientation of ferromagnet embedded in the 
sphere. An algorithm based on vector orthogonality is used to approximate 
the angular velocity vector of the sphere from the sampled orientation data. 

Stein 1999, Dehez et al., 2005, spherical continuously variable trans- 
missions as in Ostrowski 2000, Gillespie et al., 2002, and omni-
directional vehicles based on the ball wheel mechanism as in West and
Asada 1997, Ferriere et al., 2001.  However, according to Stein et al.,

Motion-tracking, sensor, spherical motion 
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wear.  As a result,  optical encoder techniques that require surface 

tracking in demanding environments, magnetic sensing is commonly 

invasive gastrointestinal transit monitoring.  
Information on the configuration of a magnetic source provides a 

means of determining the configuration of the body to which the sources 
are attached. In this case, the goal is to determine the axis of rotation 
and angular speed of the sphere given the absolute position of a point on 
the sphere, which the magnetometry scheme provides. To solve this 

1999 for applications in limb motion tracking in biomechanics. 

2.  Magnetometry Scheme  

p

ĵ

k̂

r

 

The proposed magnetometry scheme is based on tracking the magnetic 
flux density vector of a cylindrically-symmetric ferromagnet, which will 
be modeled as a magnetic dipole. Generally, the theoretical field 
equations are a function of six configuration variables and physical 
properties of the magnet. For this analysis it will be assumed that the 
sphere and the magnet are both fixed in translation and both are 
perfectly centered at the origin of an inertial reference frame. 
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contrast or surface patterning, as proposed by Garner et al., 2001, Stein 
et al., 2003, are not feasible for this application. For non-contact motion 

employed. Jacobs and Nelson 2001 use magnetic sensors to track 

use magnetic sensing for vehicle guidance; and Weitschies et al., 1994, 

Figure 1.  Schematic of field lines from magnetic dipole. 

abdominal cavity deflection in crash test dummies; Donecker et al., 2003 

loyed.  This approach is described in  Panjabi 1979, Halvorsen et al., 1999 
inverse problem, a method based on vector orthogonality will be emp- 

Prakash and Spelman 1997 use magnetic marker tracking for non-



Consider the planar case as shown in Fig. 1. The magnet is located at 
origin mO and the sensor is located at point . Unit vector defines the 
magnet axis,

SO p̂
r is the position vector from m to S, andO O is the relative 

orientation between r and . The magnetic flux density vectorp̂ B  is 
decomposed into radial and tangential components and , and are, 
respectively,  

rB tB

 
sin

4

cos
2

3
0

3
0

r
MB

r
MB

t

r

,  (1) 

where 0 is the permeability and M is the dipole moment. The 
relationship between the field components and the configuration 
variables can be found in most texts on electromagnetic fields, such as 
Shadowitz 1975.  For the three-dimensional case, the expressions in Eq. 
1 can be used in the plane defined by vectors andp̂ r . It remains, then, to 
find the relationship between the radial and tangential field components 
and the the three-dimensional, measured field components. A diagram of 
the configuration is shown in Fig. 2.   

p̂

r

î

ĵ

k̂

rê tê nê

 

The magnetometer is positioned along the x-axis of the inertial reference 
frame. This significantly simplifies the geometry of the problem. 
{Bx,By,Bz} are the orthogonal field components from the magnetometer 
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Figure 2.  Sensor Diagram. 



and {l,m,n} are the direction cosines used to parameterize the magnet 
axis . Next, orthogonal triad is positioned at and defined as, p̂ }ˆ,ˆ,ˆ{ tnr eee SO

 nrt
r

r
nr eee

pe
pee

r
re ˆˆˆ,

ˆˆ
ˆˆˆ,ˆ . (2) 

Unit vector re is directed along the radial vector, ne is a unit vector normal 
to the plane defined by and

ˆ ˆ
p̂ r , and t is the tangential unit vector in the 

n -plane, orthogonal to r . Moreover, the trigonometric functions in Eq. 
1 can be expressed as a function of the direction cosines of ; as such, 

ê
ê ê

p̂

 
22sin

cos

nm

l
.  (3) 

For an arbitrary orientation of , the theoretical magnetic flux density 
vector can be expressed as, 

p̂

 ttrrTH eBeBB ˆˆ .  (4) 

Eq. 2 and Eq. 3 provide the proper sign conventions through the 
transformations. Substituting Eq. 1-3 into Eq. 4 results in the following 
expression: 
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3
0

2

4

2
.  (5) 

Eq. 5 states that the direction cosines of are linearly proportional to the 
measured field components. In other words, this scheme directly 
measures the motion of vector, fixed relative to the sphere, under 
spherical motion. It remians to solve the inverse kinematics problem of 
extracting the angular velocity vector of the sphere given this data. 

p̂

3.  Inverse Kinematics of Spherical Motion 
Calculating the angular displacement given the axis of rotation and 

the trajectory of a point on the body, is a straightforward matter; several 

orientation of the rotation axis and the angular displacement, given only 
the trajectory of a point, is not well established. A method for estimating 

displacements are used to locate the instantaneous axis of rotation for 
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techniques are shown in Murray et al., 1994. However, determining the 

these values can be found in Halvorsen et al., 1999. In this work, two 



represent a plane; the axis of rotation is defined by the intersection of 

problem developed for post-processing. For applications in vehicle 
tracking, a real-time method is necessary. The scheme presented below is 
based on Halvorsen s concept of vector orthogonality but results from a 
direct calculation of the on-line sampled data. 

Perpr
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(a)                                                                 (b) 

Fig. 3(a) is a diagram for the problem formulation. The position 
S

ˆˆ

ˆ Perpr

 ePerpPerpPerpPerp ˆsin'' rrrr .  (6) 

All the variables in Eq. 6 are unknown since the projections cannot be 

Halvorsen’s work Perpr can be replaced with a vector u , which represents 
the displacement of and calculated by normalizing its instantaneous 
tangential velocity ; as such, 

ˆ
p

p

 
r
r

v
v

u
p

pˆ
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limb motion. More specifically, each of these displacement vectors 

Figure 3. Diagram for (a) general system kinematics and (b) planar sub-problem. 

vector r of point p on sphere  is parameterized by the direction cosines 
{l,m,n},  which is now a measured quantity from the magnetometry
scheme. As S rotates with angular velocity , p  follows the circular
arc C.  Fig. 3(b) illustrates the vector relations of this motion;  (r.e)e is
the projection of position vector r along the axis of rotation, denoted 
by unit vector e , and projection is related to the other configu-
ration variables by: 

made until the axis of rotation is determined. However, following 

.  (7) 

,

,these planes.  Halvorsen s method involves a quadratic optimization 



Substituting for û Perpr
becomes, 

 e'uu ˆˆˆ . (8) 

Eq. 8 is often called the rotation vector for is the radian rotation of u . 
Dividing by the period T between samples results in the approximate 
angular velocity vector; as such, 

ˆ

 (t)e
T
(t)

T
(t)uT)-(tu ˆˆˆ .  (9) 

4.  Experimental Verification  
To verify this scheme a rod magnet rotated by a DC motor and an 

Applied Physics Systems (APS) 535 fluxgate magnetometer was used to 
track the resulting field. The magnet was positioned 6-inches from the 
sensor origin. The rotation speed is stepped through a range of values for 
comparison with the theoretical calculation. The maximum commanded 
speed corresponds to a desired vehicle speed of approximately 5 mph. 
The raw and filtered direction cosine data is shown in Fig. 4(a) and the 
calculated tangential velocity components are shown in Fig. 4(b).   

The raw data is processed with a second order Butterworth filter and the 
differentiations were made using an ideal digital differentiator.  While 
these functions were chosen for convenience, the signal is always 
sinusoidal in nature and therefore numerical differentiation of the on-
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Figure 4. Experimental data for (a) position and (b) velocity. 

and making a small angle approximation, Eq. 6 



line sampled data is well-behaved. Fig. 5(a) is the radian rotation of the 
magnet about the orthogonal axes of the inertial reference frame at each 
sample, essentially the output of Eq. 8. The sensed speed compared to 
the commanded speed is shown in Fig. 5(b).   
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sensor were also carried out with equally promising results. A more 
precise test fixture is being developed with optical encoders to track 
transients as the axis of rotation changes orientation relative to the 
sensor. 

5. Conclusion 
A three-dimensional, non-contacting, angular velocity sensor based on 

magnetometry has been presented. The sensing scheme tracks the 
orientation of the axis of a cylindrically-symmetric ferromagnet. A vector-
orthogonality approach is used to approximate the angular velocity 
vector from the sampled orientation data. Initial feasibility testing has 
clearly shown the potential of the approach. 
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Figure 5. Sensor output (a) rotation vector and (b) angular speed. 
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Abstract Designing a spherical four-bar mechanism that guides a coupler system
through five given orientations is an old and well known problem. Here
we use kinematic mapping to solve the problem. We investigate the con-
straint surface belonging to a spherical RR-chain and solve the problem
in the newly defined kinematic design space. The algorithm results in
RR-chains which pairwise combined give the synthesized four-bars. It
is remarkable that with this method the univariate polynomial can be
computed completely general without specifying the parameters of the
problem with numerical values. Furthermore for the first time an exam-
ple with six real RR-chains is given. These can be combined to 30 real
four-bars that move the coupler system through the five given precision
points.

Keywords: Mechanism synthesis, spherical four-bar mechanism, five-orientations-
problem

1. Introduction
A spherical four-bar mechanism is a closed chain, which consists of

four bodies, linked by four revolute pairs incident with the same point.
One of the four bodies is called the base and is located in the fixed system
Σ0, which is connected with two links to the coupler, the moving system
Σ. Given five finitely separated orientations Σt1 , . . . ,Σt5 of Σ (Fig. 1)
– sometimes called precision points – one can always find a finite set of
spherical RR-chains, guiding a coordinate system attached to the cou-
pler through them. To be more precise, one can find according to Roth,
1967 at most six real RR-chains, which are essentially different.
means, that solutions with axes origin-symmetric to axes of these RR-
chains are neglected. Six real RR-chains determine 30 different spherical
four-bar mechanisms, if there are just four, two or zero real RR-chains,

© 2006 Springer. Printed in the Netherlands. 
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Figure 1.

one can build only 12, one or zero spherical four-bar mechanisms guid-
ing a coordinate system attached to the coupler through the given five
orientations. Note, that not all orientations necessarily have to lie in
the same assembly branch of the spherical four-bar mechanism. There
exist a number of solutions of this synthesis problem, most of them use
kinematic properties of the motion itself. Bottema and Roth, 1979, Mc-
Carthy, 2000, Chiang, 1988, Lin, 1998, Dowler et al., 1978 solved the
problem via intersecting two center point curves to obtain the centers
respectively two circle point curves to obtain the circle points. These
points represent the points moving on circles in the synthesized spherical
four-bar motion. Bodduluri and McCarthy, 1992 solved this problem as
special case of a curve fitting method by minimizing a normal distance
in the image space. McCarthy, 2000 also solved this problem by using
a two-step elimination procedure that yields a sixth degree polynomial
in one of the coordinates of the fixed axes. In this paper the spherical
four-bar mechanism synthesis is solved in the kinematic image space of
spherical Euclidean displacements. We compute the constraint surface
representing a spherical RR-chain in this space and define then the kine-
matic design space which is sort of dual to the kinematic image space.
It turns out that in the kinematic design space the constraint surface
representing the design problem is a quadric surface with a very special
and simple structure. These geometric considerations are key to the
remarkable result that the univariate polynomial of degree six that gov-
erns this design problem can be derived completely general, i.e., without
specifying the coordinates of the five given orientations.

The paper is organized as follows: In Section 2 we give a brief intro-
duction to the mathematical framework and recall especially spherical
kinematic mapping. In Section 3 we derive the kinematic image of spher-
ical RR-chains and solve the synthesis problem using this representation.

378 K. Brunnthaler et al.
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Section 4 illustrates the presented algorithm with a numerical example
that presents for the first time six real RR-chains.

2. Preliminaries
Spherical Euclidean displacements D can be described by

X = Ax, (1)

where X and x represent a point in the fixed and moving frame, re-
spectively and A ∈ SO(3) is a 3 × 3 proper orthogonal matrix (Husty
et al., 1997; McCarthy, 2000). For the following it is convenient to use
the Euler parameters to parameterize SO(3):

A :=

⎡
⎣ x2

0 + x2
1 − x2

3 − x2
2 −2x0x3 + 2x2x1 2x3x1 + 2x0x2

2x2x1 + 2x0x3 x2
0 + x2

2 − x2
1 − x2

3 −2x0x1 + 2x3x2

−2x0x2 + 2x3x1 2x3x2 + 2x0x1 x2
0 + x2

3 − x2
2 − x2

1

⎤
⎦.
(2)

In the matrix A the entries xi have been normalized so that x2
0 + x2

1 +
x2

2 + x2
3 = 1. The mapping

κ : D → P ∈ P 3

A(xi) → (x0 : x1 : x2 : x3) �= (0 : 0 : 0 : 0) (3)

is called spherical kinematic mapping and maps each spherical Euclidean
displacement D to a point P in P 3. The space P 3 is called kinematic
image space and is naturally endowed with an elliptic metric (Blaschke,
1960). It should be mentioned that xi are the components of the Hamil-
tonian quaternion which is associated with the corresponding element
of SO(3). Therefore one could also use the quaternion calculus as it is
done in McCarthy, 2000. The spherical kinematic mapping is the restric-
tion of the general spatial kinematic mapping to the orientation part of
the Euclidean displacement group. In spatial kinematic mapping each
Euclidean displacement D is mapped to a point P on a six dimensional
hyper-quadric S2

6 ⊂ P 7. The spherical kinematic mapping restricts the
general one to a three dimensional subspace on S2

6 .

3. Synthesis of Spherical Four-Bar Mechanisms
The spherical four-bar mechanism is a closed 4R-chain, where all four

revolute pairs intersect in one point. For the synthesis of such a mech-
anism we attach two of the revolute axes to the fixed system and two
axes to the moving (coupler) system. Now we prize open the coupler link
and obtain two open RR-chains. We map the possible displacements of
the first RR-chain into the spherical kinematic image space P 3. This
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Figure 2.

yields the constraint manifold M1 of the first RR-chain in the kinematic
image space. The same procedure we perform with the other RR-chain
and obtain a second constraint manifold M2. Possible assembly modes
of the two RR-chains correspond to intersection points of M1 and M2.
These constraint manifolds will then be used for the synthesis algorithm.

3.1 Constraint Manifold of RR-Chains
In a spherical four-bar a point of the coupler revolute joint moves

on a circle. In Fig. 2 this is shown for the point M . The point M
is bound to this circle.
can say that point M is constrained to be on two spheres. One is the
unit sphere κ0 the other is a sphere κ centered at piercing point M0 of
the base the revolute joint with the unit sphere and radius r = MM0.
Let the vector of the fixed revolute axis be vf = (A,B, C)T and the
corresponding vector of the moving revolute axis in the coupler system
be vm = (a, b, c)T . The endpoints of these vectors will be M0 resp. M
when we have A2 + B2 + C2 = 1 or a2 + b2 + c2 = 1. The path of M is
now modelled as the intersection curve of the two spheres:

κ0 : X2
1 + X2

2 + X2
3 − X2

0 = 0

κ : X2
1 + X2

2 + X2
3 − 2AX1X0 − 2BX2X0 − 2CX3X0 + RX2

0 = 0. (4)

with R = A2 + B2 + C2 − r2, where r is the radius of the sphere and
A, B, C are the coordinates of the center. Xi are the coordinates of
the moving pivot in the fixed system and can be computed via Eq. 1.
Substituting X = (X0, X1, X2, X3)T from Eq. 1 into Eq. 4 yields after
factorization:

(x2
1 + x2

0 + x2
3 + x2

2)(−2Ccx2
3 − 2Aax2

0 − 2Ccx2
0 − 4Abx0x3 + 4Acx0x2

+4Bax0x3 − 4Bcx3x2 − 4Cax0x2 − 4Cbx3x2 + a2x2
0 + a2x2

3 + a2x2
2
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Four-bar and sphere.

When we want to model this constraint we
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b2x2
2 + c2x2

3 + b2x2
0 + b2x2

3 + c2x2
0 + c2x2

2 + x2
1c

2 + x2
1a

2 + x2
1b

2

+Rx2
0 + Rx2

3 + Rx2
2 + x2

1R + 2Bbx2
3 + 2Ccx2

2 + 2Aax2
3 + 2Aax2

2 − 2Bbx2
0

−2Bbx2
2 + 2x2

1Cc − 2x2
1Aa + 2x2

1Bb − 4x1Bcx0 + 4x1Cbx0 − 4x1Abx2

−4x1Bax2 − 4x1Acx3 − 4x1Cax3) = 0.

This equation can be simplified using the normalizing condition x2
0 +

x2
1 + x2

2 + x2
3 = 1:

SCS : 4Acx0x2 − 4Abx0x3 + 4Bax0x3 − 4Bcx3x2 − 4Cax0x2 − 4Cbx3x2

−2Aa − 2Bb − 2Cc + 4Bbx2
3 + 4Ccx2

2 + 4Aax2
3 + 4Aax2

2 + 4x2
1Cc

+4x2
1Bb − 4x1Bcx0 + 4x1Cbx0 − 4x1Abx2 − 4x1Bax2 − 4x1Acx3

−4x1Cax3 + B2 + A2 + C2 + a2 + b2 + c2 − r2 = 0. (5)

SCS is a quadratic surface (a hyperboloid) in P 3 and can be conve-
niently used for the analysis of spherical four-bar mechanisms following
the process demonstrated in Bottema and Roth, 1979 for planar four-bar
mechanisms. The four-bar motion is mapped to the intersection curve
of two hyperboloids in the image space and can easily be investigated
using the properties of the image space curve.

For the synthesis we have to adapt a different point of view. In the
synthesis some positions of a moving system are given and a mechanism
has to be synthesized. Therefore in Eq. 2 xi are known coefficients and
A, B, C, a, b, c, r are unknowns. Changing the point of view we have
now a seven dimensional design space DS having the coordinates A, B,
C, a, b, c, r and Eq. 2 is again a quadratic surface but now in the seven
dimensional design space. This surface is called design constraint surface
DCS and has the remarkable structure:

DCS : wT

⎛
⎝ I −2B 0

−2B I 0
0T 0T −1

⎞
⎠w = 0 (6)

where the coordinates of DS are assembled to a vector w = (A,B, C, a, b,
c, r)T , I is the three dimensional unit matrix, B is the right lower 3× 3-
matrix in matrix A (Eq. 1) and 0 is a 3-dimensional zero vector. From
this representation we see immediately that the squared coordinates of
DCS are free of the position parameters xi. This will be crucial in the
synthesis algorithm below.

3.2 Synthesis Algorithm
Given are five precision points P1, P2, P3, P4 and P5 ∈ P 3 s

ponding to five orientations of a coordinate system. The goal is to

Synthesis of Spherical Four-Bar Mechanisms
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compute the design parameters A,B, C, a, b, c, r of the spherical mecha-
nism that guides the coupler system through these orientations. It is evi-
dent from the section before that the five precision point yield five design
constraint equations DCSi, i = 1, . . . , 5. Furthermore we have two nor-
malizing equations N1 : A2 +B2 +C2 − 1 = 0, N2 : a2 + b2 + c2 − 1 = 0.
DCSi and Ni constitute a system of seven nonlinear equations to solve
the synthesis problem. Ni are free of position parameters, therefore they
will be used at the very end of the the synthesis algorithm to normalize
the solution vectors.

Without loss of generality we can assume that the fixed system Σ0

coincides with one of the five given orientations. Otherwise there exists
a unique Euclidean transformation, which does not change the design of
the mechanism, to obtain this situation. Thus, the image space point,
which represents the identity

(x0 : x1 : x2 : x3) = (1 : 0 : 0 : 0) (7)

has to be on one design constraint manifold:

DCS1 := −2Bb−2Cc−2Aa+A2 +C2 +B2 +a2 +b2 +c2−r2 = 0. (8)

Now four simple equations are built by subtracting DCS1 from the other
four constraint equations:

M1j = DCSj − DCS1, j = 2, . . . 5.

The four difference equations are bilinear in the unknowns A, B, C, a,
b, c and do not contain r. Note that at least one of the unknowns in
(A, B, C) and (a, b, c) has to be non zero. Let us assume that C and
c are nonzero. Therefore we can set for the moment C = 1, c = 1.
We emphasize that this is no restriction of generality. Now we have
four simple bilinear equations M1j . Two of these equations, say M1,2

and M1,3 are used to solve linearly for two of the unknowns, say a, b.
The solutions are substituted into M1,4 and M1,5. This yields two cubic
equations C1, C2. The resultant of C1, C2 with respect to one of the
remaining unknowns, say B yields a univariate polynomial Q9 of degree
nine in the unknown A. Q9 factors into the solution polynomial Q6

of degree six and in three linear factors. The linear factors are not
solution of the system because they would cause the determinant of
the linear system to vanish. This proposition can be proven easily by
computing the resultant of the determinant polynomial of the linear
system (M1,2,M1,3) and e.g. C1. The linear factors are contained in
the ideal spanned by these two equations. Therefore they have to be
cancelled.
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Solving Q6 for A yields either 0, 2, 4 or 6 real numerical solutions. Back
substitution gives the other unknowns. The final step of the algorithm
uses both equations Ni to normalize the solution vector.

Remark: The geometric preprocessing and the simple structure of
the resulting equations allows a solution of this synthesis problem com-
pletely general, without specifying the position parameters. This is to
the best of the author’s knowledge for the first time that the final uni-
variate polynomial of the spherical four-bar synthesis problem could be
computed without specifying the input parameters.

4. Numerical Examples
We start with five points P1, P2, P3, P4, P5 ∈ P 3; these points corre-

spond to five arrays of Euler-parameters which represent the five given
orientations:

x0 x1 x2 x3

Pose1 1 0 0 0
Pose2 0.37721 0.82336 0.38967 0.16722
Pose3 0.0078934 0.041131 0.085164 0.99549
Pose4 0.039457 0.77456 0.60494 0.18041
Pose5 0.30301 0.36492 0.85697 0.20157

Table 1. Input data for the example

These input data yield six real RR-chains. The input data are plugged
into the algorithm above and the resulting centers M0 in the fixed sys-
tem and M in the moving system are displayed below. vf and vm are
the position vectors of the points M0 and M in the fixed resp. moving
system.

vf [1] =

0
@ 0.216419
−0.188593
0.957912

1
A, vf [2] =

0
@0.380468

0.064814
0.922520

1
A, vf [3] =

0
@0.254798

0.644619
0.720794

1
A,

vm[1] =

0
@−0.711602

0.697874
0.081202

1
A, vm[2] =

0
@ 0.054261
−0.996977
0.055603

1
A, vm[3] =

0
@0.900242

0.435383
0.002536

1
A,

vf [4] =

0
@ 0.136474
−0.909345
0.393022

1
A, vf [5] =

0
@ 0.861340
−0.443225
0.248284

1
A, vf [6] =

0
@ 0.791447
−0.581484
0.188383

1
A,

vm[4] =

0
@ 0.349442
−0.144163
0.925801

1
A, vm[5] =

0
@ 0.323069
−0.589944
0.739995

1
A, vm[6] =

0
@0.242377

0.197065
0.949957

1
A.

5. Conclusion
Using spherical kinematic mapping a new method for the synthesis

of spherical four-bar mechanisms was presented. It was found that the
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Figure 3. Motion of the coordinate frame; one of the synthesized four-bar mecha-

constraint equation describing the design constraints is a quadric surface
in the seven dimensional design space of the synthesis problem. Because
of the resulting simple equations the problem could be solved completely

computed without specifying the input parameters. Furthermore this
approach allowed to find an example with six real RR-chains that can
be assembled to 30 real spherical four-bar mechanisms.
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Abstract This paper deals with the synthesis of 2-dof spherical fully parallel 
mechanisms with legs of type US (U and S are for universal and spherical 
joints, respectively). First, two analytical methods derived from the 
literature are used to find the conditions for the legs to fit within the desired 
spherical relative motion between the base and the movable  platform of the 
mechanism. Then, these conditions are used to devise three families of 
mechanisms which comprise also over-constrained architectures. Finally, 
actuation issues and kinematic, workspace and singularity analyses are 
addressed.  

1.  Introduction  
Spherical mechanisms are used for the orientation of bodies. High-

demanding applications, for instance in aerospace and automotive fields, 
require mechanisms which perform limited rotations about the axes of 
motion, but are very resistant and lightweight, have low encumbrance 
and desired stiffness characteristics. Closed chain architectures are well 
suited to devise mechanisms which match the aforementioned features.  

Two-dof spherical parallel mechanisms are used in pointing systems 
for mirrors and antennas, steering systems of vehicles and joints for 
biomimetic robots. In the literature, 2-dof spherical parallel mechanisms 

Dunlop and Johnes, 1999, Wiitala and Stanisic, 2000, Di Gregorio, 2002, 
Bauer, 2002, Carricato and Parenti-Castelli, 2004, Gogu, 2005. 

This paper deals with the synthesis of 2-dof spherical fully parallel 
mechanisms with legs of US-type (US-PM for short), i.e. closed chains 

have been proposed by Baumann et al., 1997, Gosselin and Caron, 1998, 
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which comprise, regardless of how their actuation is performed, a fixed 
base and a moving platform connected to each other through binary links 
of constant length and of US-type (U and S are for universal and 
spherical joint, respectively). From the mathematical standpoint, this 
study is related to the Shönflies problem, Shönflies, 1886; to the 
spherical motion problem, Bricard, 1906, and Borel, 1908; and to the 
study of architecturally singular and shaky UPS parallel manipulators, 
Ma and Angeles, 1992, Husty and Zsombor-Murray, 1994, Karger and 
Husty, 1998, Roshel and Mick, 1998, Kong, 1998, Husty and Karger, 
2002, and Wohlhart, 2003. 

In particular, by means of two analytical methods derived from the 
literature, we show that only two types of US-legs exist which fit within 
the desired spherical motion between the mechanism base and platform. 
Then, three families of mechanisms, which comprise over-constrained 
mechanisms too, are derived by properly combining a number of these 
legs. Finally, we address actuation issues and kinematic, workspace and 
singularity analyses. 

2.  Problem Definition and Methods 
The synthesis of a spherical US-PM falls under the body-guidance 

problems. Indeed, the matter at hand amounts to finding the lengths of 
the US-legs and the locations of the U and S joint centers on the platform 
and on the base so that the assembly of a number of legs fits within the 
desired relative spherical motion of the platform and the base. 
To this end, two analytical methods can be used: 

Method M1 (adaptation of the procedure by Karger and Husty, 1998): it 
is based on the closure equations of the mechanism. Upon expression of 
the closure equations as a function of the parameters used to describe 
the desired motion, the synthesis problem amounts to finding the 
locations of the U and S joint centers, on the base and on the platform, 
of a set of US-legs, with unknown and constant lengths, whose axes 
(defined by the centers of the U and S joints) belong to an n-system of 
lines and which satisfy the closure equations for every set of given 
values of the motion parameters. 
Method M2 (adaptation of the procedure by Wohlhart, 2003): it is based 
on the virtual work principle. By considering the expressions of the 
velocity vectors of the attachment points of the US-legs on the moving 
platform as functions of the motion parameters and their first time 
derivatives, the synthesis problem amounts to finding the locations of 
the U and S joint centers, on the base and on the platform, of a set of 
US-legs, with unknown and constant lengths, whose axes belong to an 
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n-system of lines which are orthogonal to the aforementioned velocity 
vectors for every set of given values of the motion parameters and their 
derivatives. 

3.  Synthesis of 2-dof Spherical US-PM  
In this section, the methods mentioned in Section 2 are applied to the 

synthesis of 2-dof spherical US-PM. First, a standard parameterization of 
the desired spherical motion is introduced. Then, methods M1 and M2 
are applied to find the conditions for the US-legs to fit within the desired 
spherical relative motion of the platform and the base. Finally, these 
conditions are used to devise the sought mechanisms. 

3.1  Definition and Parameterization of the Motion  
Referring to Fig. 1: frame of reference S0 = O; i0, j0, k0 , with origin O, 

and S1 = C; i1, j1, k1 , with origin C, are embedded in the base and in the 
platform, respectively. Here, i0, j0, k0 are the unit vectors of the axes X, Y, Z 
of the system S0 and i1, j1, k1 are the unit vectors of the axes x, y, z of the 
system S1. Point C is the center of the relative spherical motion between 
the base and the platform, i.e. between S0 and S1. Axis Z of system S1 is 
taken from O to C. 

We consider a 2-dof spherical motion of the platform with respect to 
the base defined by the two following rotations: a rotation  about Z-axis 
of S0 and a rotation  about x-axis of S1 (i.e. rotations about unit vector k0 
and i1, respectively). The 3 x 3 rotation matrix R from S1 to S0 is 

 
c s c s s
s c c c s
0 s c

R , (1) 

where c   cos , s   sin , c   cos  and s   sin . Matrix R transforms 
vector components from S1 to S0. 
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Figure 1.    Base, platform and axes of rotation. 
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3.2 Synthesis Procedure 
The synthesis of a US-PM amounts to finding the location of the U and 

S joints on the base and on the platform respectively, and the lengths of 
the connecting legs. That is, if for each leg k, we introduce the column 
array of components pk  pk; qk; rk , with respect to S1, of the point Pk which 
is the center of either the U or the S joint on the platform, the column 
array of components Bk  Ak; Bk; Ck , with respect to a frame parallel to S0 
but centered in C, of the point Bk which is the center of either the S joint 
or the U joint on the base, and the length lk = Pk  Bk  of the connecting 
leg between Pk and Bk, we have to search for N unknown arrays of 
geometric parameters, i.e. Qk   pk; Bk; lk  for k  1,...,N. Use of the method 
M1 or M2 makes it possible to find the conditions for Qk so that the leg 
PkBk fits within the desired 2-dof spherical motion between platform and 
base. 

Method M1: Assuming the description and the parameterization of the 
orientation introduced in Section 3.1, the length of the k-th US-leg is 
given by 
 P Bk k k k k kl Rl p B , (2) 

which, according to Eq. 1 is a function of  the motion parameters  and . 
However, for the k-th US-leg to comply within the desired motion of the 
platform, the length lk must not depend on  and . This means that if 
one considers the expression 

 

2

2

c s c s s
s c c c s 2 ,

s c

k k k k

k k k k k k

k k k

p q r A
l p q r B f

q r C
l ,  (3) 

where 

 ,  (4) 2 2 2 2 2 2

c s c s s s c c
,

c s s c
k k k k k k k k k k

k k k k k k k k k k k k

A p A q A r B p B q
f

B r C q C r p q r A B C

all the coefficients in c , s , c  and s  of the polynomial f ,  must 
vanish, and the length of the k-th leg must become 

 2 2 2 2 2 2
k k k k k kl p q r A B Ck .  (5) 

Vanishing of the coefficients of Eq. 4 leads to the following conditions 
 0k kA p , 0k kA q , 0k kA r , 0k kB p ,  (6.1) 

 0k kB q , 0k kB r , 0k kC q , 0k kC r ,  (6.2) 

to be satisfied simultaneously for each leg PkBk. 
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It turns out that the only non trivial solutions, i.e. lk  0, are obtained 
for the following two sets of parameters 

 1 2 2 2; ; ; 0; 0; 0;i i i i i i i i i i iA B C p q r l A B CQ ,  (7) 

 2 2 20; 0; ; ; 0; 0;j j j j j j j j j jA B C p q r l p CQ .  (8) 

Method M2: Since for a general motion of the US-PM the parameters 
 and  are functions of time, based on the time derivative of the 

equation 

 
c s c s s
s c c c s

s c

k k k k

k k k k k k k

k k k

p q r A
p q r B

q r C
Rl p B ,  (9) 

the relative velocity vector vk, of point Pk and point Bk, is given by 

 
s c c c s s s s c
c s c s s c s c c

0 c

k k k k k

k k k k k k

k

p q r q r
p q r q r

q r s
v ,  (10) 

where  and  are the first time derivatives of the motion parameters 
 and , respectively. Since the legs PkBk have constant length lk, it must 

hold that, during the motion, the components of the velocity vk in the 
direction of the leg axis must be zero, i.e. 

 , ,k k g h 0v l

s

,  (11) 

where 
 , s c c c s c s c sk k k k k k k k k k k kg p A q A r A p B q B r B ,  (12) 

 , c s c c s s s c ck k k k k k k k k k k kh q B r B q A r A q C r C s .  (13) 

Since this condition must hold for every configuration and motion of the 
platform (that is it should not depend on , ,  and ), all the 
coefficients in c , s , c  and s  of the two polynomials g ,  and h ,  
must vanish.  

Vanishing of the coefficients of Eqs. 12-13 leads to the same conditions 
expressed by Eq. 6 and, therefore, to the non-trivial solutions 
represented by Eqs. 7-8. 

That is, legs characterized by the set of parameters 1
i  (type-1) and Q

2
jQ  (type-2) are the only ones which comply with the desired 2-dof 

spherical motion.  
In Section 3.3 we will show that a feasible mechanism requires both 

types of legs. 
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3.3  Generation of Mechanisms  
Equations 7-8 provide the geometric conditions for legs of US-type to 

fit within the desired spherical motion between platform and base. The 
conditions identify two types of legs. Legs of type-1 have one joint located 
at point C in the platform and the other joint located anywhere in the 
base. Legs of type-2 have the joint in the based located on kk0 axis and the 
joint in the platform located on ii1 axis. 

 Generation of mechanisms amounts to combining a proper number I 
of legs of type-1 and a proper number J of legs of type-2. Of course, the 
choice of I and J clearly affects the mechanism architecture and its 
feasibility. In particular, certain conditions on I and J must be satisfied. 

First, in order for the mechanism to have 2-dof, the axes of the legs in 
the set 1 1 2 2

1 1,..., , ,...,I JQ Q Q Q  must belong to a linear variety of lines 
with rank  4 (Merlet, 1989), usually referred to as linear line 
congruence. Therefore, at least four legs with linear independent axes 
are needed, i.e. . Here, the axis of the k-th leg is defined as the 
line through point P

4I J
k to point Bk. 

Second, since the legs (of type-1) in the set 1 1
1,..., IQ Q  pass through 

the common point C, i.e. the center of the reference frame 1 , while the 
legs (of type-2) in the set 

S
2 2

1,..., JQ Q  lie in the plane defined by the 
vectors k0 and i1, the axes of the legs within each type form, at most, a 
linear variety of lines with rank  3 (Merlet, 1989). Indeed, the axes of 
the legs within the family of type-1 generate at most a bundle of lines, 
while the axes of the legs within the family of type-2 generate at most a 
plane of lines. Therefore, in order for the set of geometric parameters  

1 1 2 2
1 1,..., , ,...,I JQ Q Q Q  to define a linear variety with rank  4, at least 

one leg for each type is needed, i.e. 1I  and . 1J
That is, in a feasible 2-dof spherical fully parallel mechanism with legs 

of US-type, the axes of all the legs must define a degenerate congruence, 
i.e. the variety of lines which lie in the plane defined by unit vectors k0 
and i1 or pass through the point C of that plane. 

In practice, depending on the varieties of lines spanned by the axes of 
the legs within a type, three families of mechanism architectures can be 
identified: 

Family-1 (Fig. 2): The axes of the legs in the set 1
1

1,..., IQ Q

,...,

 define a 
linear variety with rank  1, i.e. a single line passing through C but 
with direction different to k0, and the axes of the legs in the set 

1
2 2

JQ Q

,...,

 define a linear variety of lines with rank  3, i.e. a plane of 
lines defined by k0 and i1.  
Family-2 (Fig. 3): The axes of the legs in the set 1

1
1

IQ Q  define a 
linear variety with rank  2, i.e. a planar pencil of lines with center in 
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C but which does not contain the line through k0, and the axes of the 
legs in the set 1

2 2,..., JQ Q

,...,

 define a linear variety of lines with rank  
2, i.e. a planar pencil of lines in the plane defined by k0 and i1.  
Family-3 (Fig. 4): The axes of the legs in the set 1

1
1

IQ Q

,...,

 defines a 
linear variety of lines with rank  3, i.e. a bundle of lines centered in C, 
and the axes of the legs in the set 1

2 2
JQ Q  define a linear variety of 

lines with rank  1, i.e. a single line in the plane defined by the unit 
vectors k0 and i1 but which does not pass through C. 
 
Figures 2-4 depicted the basic (non-over-constrained) mechanisms 

which are the generators of the three families. For convenience, in the 
figures, both U and S joints are represented by circles.  

Moreover, addition of legs of type-1 and/or of type-2 to such basic US-
PMs does not alter the mechanism kinematics but renders the systems 
redundant and with self-motion.  

Examples of over-constrained US-PM with five and six US-legs are 
depicted in Fig. 5. For ease of understanding, the redundant legs are 
drawn in long-dash-dot lines. Note that over-constrained architectures 
have several advantages with respect to the basic ones. Indeed, the 
former make it possible to augment the mechanism stiffness-to-weight 

 

 (a)               (b) 
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   Figure 2.     Family-1. Figure 3.     Family-2.    Figure 4.     Family-3. 

  Figure 5.     Over-constrained mechanisms. 
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and -to-encumbrance ratios, the mechanism strength-to-weight and -to-
encumbrance ratios, allow the mechanism to be preloaded so as to reduce 
system backlash, and allow the system to be built through simpler 
elements such as rafters and wireropes. As an example, the mechanism 
depicted in Fig. 5.a can be made by means of one rafter (leg drawn in 
long-dash-dot line) and by four wireropes (legs drawn in solid line). 
Besides, over-constrained architectures further limit the range of motion 
of the mechanism and render its assemblage more complex. 

From a kinematic standpoint, note that many of the U and S joints of 
the mechanisms depicted in Figs. 2-5 may, in practice, be suppressed 
and/or replaced by simpler pairs. Indeed, joints which are not placed 
along the axes k0 and i1 are idle; the joints which are placed either on k0 
or i1 work as simpler revolute joint with rotation axis along k0 or i1, 
respectively; and the joints which are placed on both k0 and i1 work as U 
joints with rotation axes along k0 and i1. However, from the kinetostatic 
standpoint, suppression of the idle degrees of freedom of the U and S 
joints makes the legs to bear consistent flexional loads which may cause 
the mechanism to be oversized. Replacement of the idle pairs with elastic 
hinges introduces much smaller flectional loads and, therefore, may be 
the most effective way to implement the mechanism. 

4  Actuation  
The mechanisms presented in Section 3.3 are inherently suited to be 

actuated in-parallel by motors with linear motion. In practice, the 
addition of two UPS-legs (P stands for actuated prismatic P joint), each 
connecting the base and the platform by means of a U joint and an S 
joint, provides a very simple means to fully control the mechanism 
throughout the desired range of motion. 

 

R. Vertechy and V. Parenti-Castelli 392

Figure 6.    Actuated mechanism of family-3. 

.



decouple the motion about the axes k0 and i1. Indeed, since a force is not 
able to generate moments about the lines it crosses, it is clear that every 
UPS-leg whose connecting joint on the base is centered in a point Bk, 
which lies on k0, makes it possible to control rotations about i1 only, while 
every UPS-leg whose connecting joint on the platform is centered in a 
point Pk, which lays on i1, makes it possible to control rotations about k0 
only. 

A decoupled actuated manipulator obtained from a US-PM of family-3 
is represented in Fig. 6 (UPS-legs are drawn as telescopic legs). The 
actuated UPS-leg, P5B5, controls the rotation about the axis k0 only, while 
the actuated UPS-leg, P6B6, controls the rotation about the axis i1 only. 

Note that the manipulator obtained from the mechanisms of family-3 
coincides with the fully parallel spherical wrist with the P actuator on 
the leg P4B4 locked.

5  Kinematic, Workspace and Singularity Analyses  
Due to the decoupled actuation of the rotations of the mechanism 

about the k0 and i1 axes, the direct kinematic, workspace and singularity 
analyses are very straightforward. Indeed, these problems are reduced to 
the study of two spatial Whitworth’s quick-return mechanisms. Solutions 
of these problems can be accomplished as in Di Gregorio and Sinatra, 
2002, Di Gregorio, 2002, and Carricato and Parenti-Castelli, 2004. 

6.  Conclusions  
This paper presented the synthesis of 2-dof spherical fully parallel 

mechanisms. In particular, by means of two analytical methods derived 
from the literature, three families of 2-dof spherical mechanisms have 

analyses have been addressed which show that such mechanisms are 
very easy to analyze and control. 
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Abstract In this paper, we control the joints of a planar nR chain mechanically
using RR dyads and obtain a one degree-of-freedom system that guides
the end-effector smoothly through five specified task positions. To solve
this problem, we specify the nR chain and determine it configurations
when its end-effector is positioned in each of the five task positions. This
yields a set of RR chain synthesis problems that constrain alternating
links in a way that ensures that the relative joint angles required by
the task positions are attained. In general, we cannot guaranteed that
the resulting assembly will move smoothly between the task positions
without jamming, however we present a strategy based on enforcing
symmetry of the nR chain that yields useful solutions. Examples of
constrained 3R, 4R, 5R and 6R are discussed. The procedure is general
and can be applied to arbitrarily long serial chains.

1. Introduction
In this paper, we consider the addition of n-1 RR chains to a planar

nR serial chain robot in order to mechanically prescribe its movement
through five task positions. In the case of a planar 3R robot this is
equivalent to the synthesis of a Watt I six-bar linkage. For a planar
4R, 5R and 6R serial chains, we obtain planar eight-bar, 10-bar and
12-bar linkages. In general, our synthesis results transform an n degree-
of-freedom nR chain into a single degree-of-freedom 2n-bar linkage that
has 3n − 2 revolute joints.

Our design equations only ensure that the solution linkage can be
assembled in each task position, not that it can move smoothly between
the positions. Therefore, it can happen that a resulting linkage has
task positions reachable from different assemblies. This is known as a
circuit defect ?. A fundamental challenge in linkage synthesis is finding
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solutions that have the task positions on the same single circuit. In what
follows, we present a synthesis strategy that yields successful constrained
nR chains that have the five task positions on the same circuit.

2. Literature Review
This work is inspired by ?, who derived synthesis equations for planar

nR planar serial chains in which the n joints are constrained by a cable
drive. They obtained a “single degree-of-freedom coupled serial chain”
that they use to design an assistive device.

? formulated and solved the design equations for six-bar linkages, and
? extended this to eight-bar linkages. Our approach is simpler in that
we do not attempt to design the entire 2n-bar linkage, rather we assume
the nR serial chain is given, and use standard dyad synthesis theory to
solve for individual RR constraints, see ?.

Once a linkage has been designed, we analyze it to determine its con-
figuration for given values of the input crank, in order to simulate its
movement. ? presents an analysis methodology for general planar link-
ages using complex number loop equations and the Dixon determinant.
However, the our synthesis approach yields linkages that are a series of
four-bar loops and are easily analyzed individually.

3. Kinematics Equations of a Planar nR Chain
Let the configuration of an nR serial chain be defined by the coor-

dinates Ci = (xi, yi), i = 1, . . . , n of each of its revolute joints. The
distances ai,i+1 = |Ci+1 −Ci| defined the lengths of each link. Attach a
frame Ai to each of these links so so its origin is located at Ci and its x
axis is directed toward Ci+1. The joints C1 and Cn are the attachments
to the base frame F = A1 and the moving frame M = An, respectively,
and we assume they are the origins of these frames. The joint angles θi
define the relative rotation about the joints Ci.

Introduce a world frame G and task frame H so the kinematics equa-
tions of the nR chain are given by

[D] = [G][Z(θ1)][X(a12)][Z(θ2)][X(a23)] . . . [X(an−1,n)[Z(θn)][H], (1)

where [Z(θi)] and [X(ai,i+1)] are the 3×3 homogeneous transforms that
represent a rotation about the z-axis by θi, and a translation along the x-
axis by ai,i+1, repspectively. The transformation [G] defines the position
of the base of the chain relative to the world frame, and [H] locates the
task frame relative to the end-effector frame. The matrix [D] defines the
coordinate transformation from the world frame G to the task frame H.
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Design n-1 RR chains

Figure 1. This shows the kinematic structure of mechanically constrained serial
chains. The linkage graph is on the left, which has each link as a node and each R
joint as an edge. The contracted graph on the right shows only links with three or
four edges as nodes. This shows that the structure extends to any length of nR robot.

Given five task positions [Tj ], j = 1, . . . , 5 of the end-effector of this
chain, we can solve the equations

[D] = [Tj ], j = 1, . . . , 5, (2)

to determine the joint parameter vectors �θj = (θ1,j , θ2,j , . . . , θn,j). Be-
cause there are three independent constraints in this equation, we have
free parameters when n > 3. In what follows, we show how to use these
free parameters to facilitate the design of mechanical constraints on the
joint movement so the end-effector moves smoothly through the task
positions.

397Constraint Synthesis for Planar N- R Robots-



Figure 2. This six-bar chain is obtained by designing two RR chains to constrain
the joint movement of a 3R robot, so its end-effector passes through the five specified
positions.

4. Synthesis of RR Constraints
Assume that we have solved the inverse kinematics problem that en-

sures our nR chain reaches the five specified task [Tj ], j = 1, . . . , 5, which
means we know the five joint parameter vectors �θj . From this we can
determine five positions of the link frame Ai+1 relative to the link frame
Ai−1. The result is n-1 sets of five relative positions that we use to
synthesis an RR chain that connects link Ai+1 to Ai−1.

Let [Vk,j ], j = 1, . . . , 5 denote the five positions of Ak+1 relative to
Ak−1. Then the coordinates of the moving pivot Pk attached to Ak+1

and the fixed pivot Bk attached to Ak−1 must satisfy the equations,

([Vk,j ]Pk − Bk) · ([Vk,j ]Pk − Bk) = Rk, j = 1, . . . , 5. (3)

These are the well-known constraint equations for an RR chain, which
can be solved algebraically to determine as many as four solutions for
the coordinates of Pk and Bk. For the details of this solution, please
see ? and ?. It is useful to note that the existing RR chain CkCk+1

satisfy these design equations, which guarantees the presence of second
real solution.
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The RR design equations allow us to constrain an nR chain to reach
five task positions. Figure ?? lists the planar linkages that this procedure
allows us to design. Notice that in each the chain is a sequence of four-
bar linkages extending from the base frame F to the moving frame M .
Furthermore, while the base and moving frames are binary links having
only two revolute joints, the links A1 and An−1 are ternary links, and
the remaining links are quaternary.

Figure 3. This eight-bar chain is obtained by constraining the joints of a 4R serial
chain to pass through the same five specified task positions.

5. Synthesis for Smooth Movement
In the design or serial chain robots it is convenient to have near-equal

length links to reduce the size of workspace holes. For this reason, we
assume that the link dimensions of our nR chain satisfy the relationship

a12 = a23 = . . . = an−1,n. (4)

This reduces the specification of the nR chain to the location of the base
joint C1 in G and the end-effector joint Cn relative to task frame H.

If the serial chain has three joints, then the inverse kinematics equa-
tions are completely prescribed and the synthesis of two RR chains yields
the constrained serial chain. Figure ?? shows the results of this synthe-
sis. In this case, though we obtained a solution that passes smoothly
through the task positions, we are not able to guarantee that this will
occur.
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Figure 4. This 10-bar chain is obtained from a 5R that reaches the same five task
positions.

If the serial chain has n > 3 joints, then we impose a symmetry
condition

θ2 = θ3 = . . . = θn−1, (5)

in order to obtain a unique solution to the inverse kinematics equations.
This causes the design equations for the RR constraints at the joints C2

through Cn−1 to degenerate to the multiple solutions identical to the
existing links of the nR chain. In this case the design equations have
four simultaneous roots.

In order to obtain useful RR constraints, we perturb the condition
(??), so these angles are close in value but not equal. The result is a
set of solutions to the design equations that are near the existing links.
While this process does not guarantee a solution that does not have a
circuit defect, we have been successful in finding 4R, 5R and 6R linkages
that move smoothly through the five task positions, see Figures ??, ??
and ??.

6. Configuration Analysis
In order to evaluate and animate the movement of these linkage sys-

tems we must analyze the system to determine its configuration for each
value of the input angle θ1. Figure ?? shows that these systems consist
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Figure 5. This 12-bar chain is a mechanically constrained 6R chain that guides the
end-effector through the same five task positions.

C1

C2

B1

P1

A2
B2

P2

C3

C4

B3

P3

K

A3 Cn-1 Cn

An-1

Bn-1

Pn-1

Pn-2
B4

θ1

Figure 6. This shows our conventions for the analysis of a mechanically constrained
nR serial chain.

of a network of interconnected four-bar linkages.
entire system can be analyzed as a sequence of four-bar linkage analysis
problems.

We begin the analysis with the results of the inverse kinematics anal-
ysis of the nR chain at each of the five task positions. Our approach
uses the analysis procedure of 4 bar linkage from ?. We analyze each
of the n-1 4 bar linkages in the order of frame K, A2, A3, . . . , An−1.

401

This means that the

Constraint Synthesis for Planar N- R Robots-



Starting from the first four-bar linkage in frame K, we solve for P1 for a
given θ1. Then, we move to the second four-bar linkage in frame A2 and
solve for P2. Next, we move to the thrid four-bar linkage in frame A3

and solve for P3. The procedure continues until we conclude with the
n − 1st four-bar linkage in frame An−1.

The result is a complete analysis of the mechanically constrained nR
serial chain.

7. Conclusions
Our synthesis of a mechanically constrained nR chain yields a one

through five task positions. We set the size of each of the links of the
chain to the same value, and specify the coordinates of its attachment
to ground and to the end-effector. The inverse kinematics of the nR
chain in each of the five task positions provides relative positions that
enable the computation of sequence of n − 1 RR chains. These chains
combine with the nR chain back-bone to form a network of four-bar link-
ages which are easily analyzed to simulate the movement of the chain.
A strategy of perturbation of a singular solution has yielded linkage 4R,
5R and 6R linkage systems that have all of the task positions on the
same circuit.
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Abstract Completely and redundantly restraint tendon-based Stewart platforms
demand for a distribution of tendon forces to control the platform on a
given trajectory. Thus, position control has to be extended by a tendon
force controller which generates continuous and feasible force values.
The computation of such force distributions can be formulated as a
constrained optimization problem. Solving the problem is numerically
expensive and requires an algorithm which is capable to be integrated
into a realtime environment. In this paper, different algorithms for
tendon force distribution are proposed and investigated with respect to
their usability on a realtime system.

1. Introduction
At the Chair of Mechatronics, the testbed for the n = 6 d.o.f. tendon-

based Steward-platforms Segesta (Seilgetriebene Stewart-Plattformen
in Theorie und Anwendung) has been developed during the past few
years. Presently, the Segesta teststand uses m = 7 tendons to move
the platform along desired trajectories (Hiller et al., 2005b). In a future
modified version of Segesta it is planned to add an eighth tendon.

The platform can be basically guided using position control in the do-
main of tendon lengths. Following a trajectory, intermediate poses for
every time step are calculated. For these points, the inverse kinemat-
ics delivers the corresponding tendon lengths. Since the actual tendon
lengths are available from sensors, feedback control is used to guide the
platform. This basic control concept provides satisfying results at low
velocities. For higher accelerations and velocities it was observed that
the platform begins to “wobble” due to slack tendons. To prevent slack-
ness and also to limit forces, tension has to be controlled within lower
and upper bounds. The calculation of a force distribution is theoret-
ically straight forward in the case of a manipulator with m = n + 1
tendons. In the case of m > n + 1, optimization is required, which is
always expensive in terms of computational time. For 6 d.o.f. systems,
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a) b)

Figure 1. Segesta Testbed and Symbol Definitions for a General Tendon-Based

one cannot precalculate force distributes for all poses. Therefore, it is
required to determine force distributions online. The chosen algorithm
needs to be suitable with respect to calculation time and possibly fulfill
deterministic realtime requirements.

The paper is structured as follows: In chapter 2, a short description
of the kinematics and dynamics of Segesta is given. Methods for gen-
erating continuous tendon force distributions are discussed in chapter 3,
including examples. Finally, in chapter 4, the conclusions are drawn and
an outlook is given.

2. Kinematics and Force Equilibrium
Segesta consists of two main components: a frame of aluminium

profile bars which carries motors, winches as well as further components
like computers, measurement equipment etc. (fig. 1a). The triangu-
lar shaped platform is connected to the winches by tendons. Segesta

is designed as an reconfigurable system by using modules which carry
winches and motors and which can be installed and removed easily. Due
to its lightweight structure, Segesta can generate high-dynamic mo-
tions (Hiller et al., 2005a).

Platform poses are calculated along a trajectory and for every step,
computation of the tendon lengths (inverse kinematics) is trivial com-
pared to the generally complicated forward kinematics. Segesta can
be described using the following vectors and coordinate frames, with
µ = 1, . . . ,m (Fang, 2005):

Stewart-Platform.
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The coordinate frame CB is the base frame, while CP is connected
to the platform (fig. 1b).
The vectors bµ denote the positions of the winch points, repre-
sented by the points where tendons are led through small ceramic
eyes which are fixed.
pµ are the platform-fixed vectors to the connecting points
lµ denote the tendon vectors from the platform to the winches.
The forces in the tendons are described by fµ, where fP and τP
denote all other applied forces and torques acting on the platform.

Since tendons can only transmit pulling forces, tensions must always
be greater than zero which leads to the requirement of at least m =
n + 1 tendons (where n is the number of d.o.f.’s and m the number of
tendons)when no external load is available to tighten the tendons. The
force equilibrium for the platform can be easily expressed as (Ming and
Higuchi, 1994, Verhoeven, 2003)

[
ν1 . . . νm

p1 × ν1 · · · pm × νm

] ⎡⎢⎣
f1
...

fm

⎤
⎥⎦+

[
fp
τ p

]
= 0, f > 0 (1)

with ν = lµ

|lµ| or in a more compact form as

ATf + w = 0, f > 0. (2)

3. Force Generation
Since force control is necessary to guarantee a defined tension distri-

bution, a method to calculate tendon forces must be provided. Because
we have force redundancy in the examined systems with m ≥ n + 1
and thus at least an one-dimensional solution set for the force distrib-
utions belonging to a specific position, an optimal solution is desired.
The term “optimal” has to be used with respect to the technical appli-
cation (Verhoeven, 2003). In this paper, “optimal” means small forces,
but it is also possible to generate high forces (for higher eigenfrequency
and stiffness) or force distributions in between (for safety and robustness
against parameter changes). Beside minimum tendon forces (which can
be zero as smallest possible force) also maximum tendon force are of
great importance since their ratio defines the workspace boundaries. To
evaluate the proximity of a specific position of the platform to workspace

405
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Figure 2. Combined Force- and Position Control

boundaries, knowledge of the tendon forces is presumed. Obtaining a
solution from the optimization algorithm which exceeds the tendon force
boundaries means that the platform is outside the predefined workspace.
So, the calculation of force distributions plays also an important role in
terms of reliability and safety. In practice, it is of great importance to
find continuous solutions. Non-continuous tendon forces may consist of
acceptable solutions, but since those values are needed for control, they
would cause steps in motor torques which leads to vibrations and high
mechanical loads. Using both the results from the inverse kinematics
and the force optimization makes a combined position-force-control pos-
sible, as shown in fig. 2. The position part delivers positioning precision
while the force controller is responsible for positive tensions and acts as
a kind of pilot control. Detailed concepts for tendon force control are
also proposed in (Oh and Agrawal, 2004).

3.1 Force Distribution
For tendon-based robots with m ≥ n + 1, let r = m − n denote

the degree of redundancy. The tendon force distribution f has to be
generated with the m × r-dimensional kernel of AT and the pseudo
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f = −A+Tw + H λ. (3)

The limits for minimum tendon force fmin and maximum tendon force
fmax form a hypercube. The kernel (or nullspace) H of AT is defined by
ATH = 0. All solutions for f can be represented by a r-dimensional
plane. If solutions exist, the cube and the plane intersect and form a
polyhedron which contains all acceptable solutions, i.e. solutions where
no tendon exceeds its minimum or maximum force limits. The term
flsq = A+Tw is a least square solution, that lies somewhere on that
plane. It lies not necessarily within the cube which means that it is not
acceptable in this case. On the other hand, the term fkrn = H λ provides
the possibility to “move” the solution on the plane since it only tenses
or reliefs the tendons without violating the platform’s force equilibrium.

3.2 Completely Restrained Manipulator
In case of a Completely Restrained Parallel Manipulator (CRPM), i.e.

m = n + 1, the structure matrix AT has the dimension n × (n + 1). To
solve (3) with respect to f , a least square algorithm (pseudo inverse) is
used

f = −A+Tw︸ ︷︷ ︸
flsq

+ hλ︸︷︷︸
fkrn

, (4)

where h is the m × 1-dimensional kernel of AT and λ is a scalar factor
(Verhoeven, 2003, Bruckmann et al., 2006). This means that we have
one d.o.f. to move on a straight line via choosing a suitable λ. Based on
this, a simple algorithm can be provided:

1 Calculate the structure matrix AT based on a given platform pose
and the kernel h of the structure matrix.

2 Get the least square solution flsq and the “force offset” foffµ which
has to be added to each tendon, which exceeds its lower bounds in
the least squares solution foff = fmin − flsq.

3 Compute the necessary kernel multiplication factors λµ for these
tendons to achieve the force offset via kernel addition λµ = foffµ

hµ
.

4 Select the maximum multiplication factor λµmax .
5 Correct tendon forces using kernel h and λµmax .
6 Check if no tendon is exceeding its bounds. If at least one tendon

does, there is no solution.
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The algorithm has been implemented using M � �

� �

BILE and LAPACK
routines. The function DGESVD (providing singular value decomposition,
SVD) was used to calculate the kernel and the function DGELSD (com-
putes the minimum-norm solution to a real linear least squares problem)
was chosen to get the least squares solution.

3.3 Redundantly Restrained Manipulator
In the case of a Redundantly Restrained Parallel Manipulator (RRPM)

we have m > n + 1 and the tendon force distribution has to be gener-
ated with the m × r-dimensional kernel of AT. The Segesta teststand
having eight drives is an example of this category.

This leads to a more complex optimization problem, since now there
are r > 1 redundant d.o.f.. Again, it is relatively easy to find acceptable
solutions, but it needs some consideration to find continuous solutions
along a trajectory. In the domain of optimization, continuity depends
on the cost function, which is given to the optimizer. Intuitive ideas like
choosing a maximum (infinity) norm

‖v‖∞ = max
1≤µ≤m

|fµ| (5)

result in non-continuous force distribution runs. A helpful choice is the
p-Norm

‖f‖p = p

√√√√ m∑
µ=1

fpµ, (6)

as proven by (Verhoeven and Hiller, 2002). In the paper, p = 2 was
chosen due to common optimizer implementations, using quadratic cost
functions. This leads to an optimization problem with r unbounded
parameters λα, 1 ≤ α ≤ r, and (2 ·m) linear constraints and a quadratic
cost function. Thus, one obtains the following optimization problem

minimize g(f) = ‖f‖2 =

√√√√ m∑
µ=1

f2
µ (7)

s.t. −∞ ≤ λα ≤ ∞ (8)

Linear Constraints fµoff ≤
m−n∑
α=1

Hµα λα ≤ fµmax − fµlsq (9)

This formulation requires a two step process, first calculating the kernel
H of the structure matrix and determining flsq. Then the optimization
is performed. An alternative idea is to use the optimizer with a different
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set of linear constraints. Having the structure matrix, it is also possible
to get constraints which are different from the previous ones:

minimize g(f) = ‖f‖2 =

√√√√ m∑
µ=1

f2
µ (10)

s.t. fµmin ≤ fµ ≤ fµmax (11)

Linear Constraints wµ = −
m∑
µ=1

AT
α,µ fµ (12)

Although this alternative approach has to deal with m instead of r pa-
rameters, it was found to be faster in certain examples due to the good
initial values, which can be reused from the last time step.

3.4 Force Distribution using Interval Analysis
Interval analysis provides a powerful algorithm to solve constrained

global optimization problems (Hansen, 1992). This algorithm was suc-
cessfully used for the optimization of parallel kinematic machines e.g.
by Pott and Hiller, 2006. But the algorithm is also capable to deal with
the problem of force distribution given by (7)-(9). This approach clearly
makes use of the kernel H of the structure matrix, and thus, requires
to determine H before the optimization is carried out. Generally, in-
terval analysis can also deal with the problem given by (10)-(12), i.e.
more forces are sought and the constraints are equations instead of in-
equalities. Nevertheless, interval based optimization guarantees to find
the optimum or to reliably report, that no such force distribution exists.
Furthermore, interval analysis naturally takes into account numerical
round off errors. For the usage in online control, it must be assured
that the force calculation can be performed within the cycle time. The
worst-case calculation time of the interval based optimization can be
determined but it is far beyond the required cycle time of the controller.
Filtering techniques like consistency tests and interval gradient methods
can drastically reduce the average calculation time but in general it is
difficult to improve the worst case runtime. Thus, the interval analysis
based algorithm is used as reference for the calculation of the tendon
forces, where an iterative scheme is proposed for the online control.

3.5 Solution using Gradient-based Optimizers
For optimization, gradient-based optimizers are widely-used. For this

purpose, the NAG library offers a variety of routines. The routine
nag_opt_lin_lsq (solves linearly constrained linear least-squares prob-
lems using gradients) was chosen to solve the described optimization
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Figure 3. Force Distribution For Eight Tendons.

problem. Since the solutions for f can be represented by a plane - or,
in case of the RRPM a hyperplane, such gradient-based optimizers
fit good to this kind of optimization task. Moreover, such optimizers
are able to use an initial estimate of the solution. Since a trajectory in
workspace is continuous, the entries of the structure matrix vary just a
little bit between two force distribution calculations. Thus, the initial
estimate of the next force distribution calculation is very close to the last
solution which results in short calculation times. Nevertheless it is an
iterative algorithm and has thus in its present implementation using the
NAG libraries no hard realtime capabilities. For the future use within
a hard realtime environment, a possible realtime-capable approach is to
implement a gradient-based optimizer including a calculation time su-
pervision. Since a good initial estimate can be provided, even a poor
optimization which has been interrupted due to a restricted computation
time may be close to the optimal result and thus usable.

3.6 Example
As a simulation example, a tendon-based Stewart platform with the

frame dimensions 1000×1000×800 [mm] and eight tendons has to follow
a straight line trajectory which starts at 100mm above the ground and
lifts the platform for 500mm. The platform orientation is constant with
the Bryant angles ϕ = θ = ψ = 2.0◦ which are small resulting in a
relatively large translational workspace. The minimum tension force
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Figure 4. Parameters λ1, λ2 For Eight Tendons

desired is 2N , the maximum allowed force is 50N . The time history of
the design variables in fig. 4 is of some interest: Kernel computation is
done by SVD and as an artifact of the routine used, the spanning vectors
of the kernel may rotate non-continuously. Therefore, the corresponding
λµ have to change accordingly in order to fulfill the objective function.

Thus, the algortihm generates a continuous and therefore usableforce
distribution as shown in fig. 3. It is obvious that reaching the upper
workspace boundaries leads to relatively high tendon forces. The force
distribution is continuous and remains between the given force bounds.
Thus, it is feasible for control purposes. The example was calculated
both using interval analysis and gradient-based optimization. Within
the required precision, no relevant differences could be figured out.

4. Conclusions and Outlook
In this paper, algorithms for generating continuous force distributions

for the tendon-based Stewart-platform Segesta were presented. Meth-
ods for the cases of m = n + 1 and m > n + 1 tendons (in particular
m = 8), respectively, were proposed. In the latter case, optimization al-
gorithms have to be used, which are expensive in terms of computation
time. To solve the resulting optimization problem, two algorithms using
interval analysis and gradient-based optimizers were described. Interval
analysis based optimization provides guaranteed solutions at the cost
of a long computational time. Contrary, the gradient based optimizer
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generated the identical results in average within the given cycle time.
Due to its iterative approach this cannot be guaranteed in general.

Deriving realtime-capable algorithms from the methods stated here
and embedding them into the controller framework will be part of fu-
ture work. A more powerful PC will be set up and integrated into the
modular controller to perform numerically expensive computations. The
combination of force- and position control will be realized and tested,
and the enhancements regarding safety and precision of movement can
be verified.
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Abstract Sensing in space robotic systems is expensive but necessary to compensate 
for imprecise actuation, disturbances, and modeling errors. It has been 
shown that force/torque sensors can identify actuation efforts including joint 
torques and reaction jet forces for multi-manipulator free-flying space robots 
and greatly improves system precision. This paper studies the minimum 
number of sensors which can identify these actuation efforts. The method 
uses force/torque sensors to isolate sections of the system, which are reduced 
to canonical elements. This allows the analysis of a small number of 
elements. The results of the analysis of the canonical elements are combined 
to determine the number of sensors needed for the original system. 
Configurations of one- and two-manipulator space robots are examined here 
and the minimal number of sensors shown. 

1.  Introduction  
Autonomous robots will be needed for future space missions such as 

satellite capture and on orbit construction of large space structures 
including space telescopes and solar power stations (see Fig. 1) [Ueno 
2003, Staritz 2001]. For these missions a space robot needs to perform 
precise motion and force control using its manipulators and reaction jets 

constrained by inherent nonlinearities. Sensing is necessary to 
compensate for torque disturbances due to joint friction, reaction jet 
variability and bias, thermal warping effects, and modeling errors 
[Breedveld 1997]. Sensing in space is limited and expensive because of 
hardware cost and system complexity. The objective of this work is to 
study the system topologies that minimize the number of sensors needed 
to measure joint torques and reaction jet forces for space robots. 

© 2006 Springer. Printed in the Netherlands. 
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Figure 1.     Construction of a large space structure by teams of robots 

Sensor-based methods to compensate for actuation nonlinearities and 
errors have been shown to provide precise control. Friction has proven 
difficult to model but control methods have been developed that use joint 
torque sensors to compensate successfully for friction [Vischer 1995]. 
However, placing a sensor at every actuator increases weight, cost, and 
complexity, and reduces system reliability, motivating study of minimal 
sensing methods to measure actuation, such as a gyro-based method for 
detecting faults for thruster-controlled spacecraft [Wilson 2002].  

To avoid internal joint-torque sensors a method called Base Sensor 
Control (BSC) was developed for fixed-based terrestrial manipulators 
[Morel 2000]. BSC uses measurements from a six-axis force/torque 
sensor to estimate joint torques for closed-loop control. This method has 
recently been extended for space robots and it has been shown that 
force/torque sensors mounted between the manipulators and spacecraft 
can determine both the joint torques and the reaction jet forces and 
moments [Boning 2006]. This paper uses the method to examine the best 
placement and the minimum number of force/torque sensors for a given 
space robot to simultaneously measure joint and spacecraft actuation. 

This problem could be solved by exhaustive analysis. However, 
varying the number of manipulators p, the number of links n, reaction 
jets or not, payload or not, and considering force/torque sensors at the 
base of the manipulator or at the end-effector, the number of cases c that 
need to be considered grows rapidly ( n p 16 c ). Here, it is shown that 
most cases are topologically similar and the space of possible solutions 
can be reduced to a small number of similar cases called canonical 
elements. The dynamic analysis is needed only for these elements and 
the results can be applied to more general systems. 

2.  Analytical Development 
The systems studied are 3D free-flying space robots with multiple 

manipulators (see Fig. 2). It is assumed that the spacecraft and links are 
3D rigid bodies (for example, fuel slosh is not considered). It is also 
assumed that the actuator forces and moments and friction at each joint 
and reaction jet forces are unknown. Further, it is assumed that there 
are no additional external loads acting on the system such as gravity 
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gradient effects. For this study, quantities measured are assumed to be 
known exactly and include accelerations. If the manipulator is holding a 
payload it is assumed that the end-effector makes a firm grasp. 

The approach taken here is to divide the system at each six-axis 
force/torque sensor into subsystems. The subsystems are categorized by a 
small set of canonical elements. The dynamics of the canonical elements 
are analyzed using Newton’s method to find intermediate forces and 
torques. Finally, the results are applied to the original system to find the 
minimum number of sensors required to calculate the actual net joint 
efforts (eliminating the effects of friction) and the actual thruster forces 
and reaction wheel moments. 

Figure 2.    Space robot with sensors between spacecraft and manipulators 

2.1  Categorizing by Canonical Element 
All the subsystems created by isolating sections for the space robots at 

force/torque sensors can be reduced to the canonical elements in Fig. 3. 
The force/torque sensors provide the known interface forces and 
moments. The canonical element for a given subsystem is determined by 
reducing the subsystem following rules which are shown in Fig. 4. First 
the system is divided at the force/torque sensors and the sensors are 
replaced with equal and opposite known force/torques. Next, zero end 
loads at the end-effectors are replaced with known force/torques, since 
zero loads are known loads. Adding these zero loads allows more cases to 
be considered as one type. Then, reaction jets are replaced with unknown 
force/torques. Finally, branches are replaced with chains. If a known load 
is applied at the end of a chain, it is equivalent to applying a known load 
at the branching point. The same is true for an unknown load. 
 

 
Figure 3.     Canonical system elements 
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Figure 4.     Reduction to canonical elements 

An example of the application of these rules is given in Fig. 5 which 
shows how the unknown reaction jets on a spacecraft become the 
canonical element chain with one unknown. More examples are shown in 
Fig. 6. Fig. 6(a) (Case 1) is a free-floating (no thrusters) space robot with 
two manipulators and a single force/torque sensor. The sensor separates 
the system into two canonical elements, both chains with known loads. 
Fig. 6(b) (Case 2) shows a free-floating robot with a single sensor at the 
wrist, equivalent to a chain with known loads. The sensor measures very 
little, since there is no payload in this case. Fig. 6(c) (Case 3) shows a 
free-flying space robot with a single sensor between the spacecraft and 
both manipulators. Fig. 6(d) (Case 4) shows a free-flying space robot that 
contains a closed kinematic chain or loop. 

 Figure 5.     Reduction of unknown reaction jets to chain with one unknown 

 Figure 6.     More reduction examples 

2.2 Dynamic Analysis 
The objective of this section is to determine if there is enough sensory 

information for a given subsystem topology to find the net actuator forces 
and moments on all joints and links in the subsystem. The analysis is for 
a full 3D system. The friction at unactuated joints can also be measured. 
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A representative space system is shown in Fig. 7(a). It is assumed that 
for this system the spacecraft linear acceleration sr , angular velocity 

s and acceleration s

j, the forces 0f and torques 0  
)

, and accelerations 

)( j j )(

( jq
)( jq )( jq

First it is noted that the positions, velocities, and acceleration of the 
links are known from system kinematics. To find the link’s unknown 
actuator load, a link with only known forces and moments (given by a 
force/torque sensor) is located. Looking at the free body diagram in Fig. 
7(b), from fundamental mechanics the unknown force  can be 
determined from the known force :                          

1if

if

iiii m c1 vff                     (1) 
where im  is the mass of the ith link and 

ic
 is the acceleration at the ith 

center of mass. Similarly, the unknown torque  can be found from the 
known torque : 

v

1i

i

11,c,c1 iiiiiiiiiiiii frfrII         (2) 
where iI  is the ith inertia tensor, i is the angular velocity ith link, and 

ii,cr is a vector from the center of mass of the ith link to the ith joint. 
Force and torque calculations can be projected along the chain by 
repeating the procedure. 

Figure 7.    System models 
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can be measured or estimated. For each mani- 
pulator  at each sensor are measured
along with measurements or estimates of the joint angles ,  velocities 

.  Fig. 7(b) shows a typical link. Fig. 7(c) shows
a link at a branch point. 
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When there are two unknown forces (such as in Fig. 7(c)) the forces 
and torques cannot be calculated directly. This situation can often be 
solved by starting at several points in the chain and propagating the 
known forces and moments to a common point. In other cases additional 
information (such as provided by an additional force/torque sensor) is 
needed to permit a solution. When all of the links in the system have 
been visited it is possible to determine if the given set of sensors is 
sufficient or if additional sensors are required. 

2.3  Analysis of Canonical Elements 
The above analysis can be applied case by case to the canonical 

elements in Fig. 3. First consider the chain with known loads (Fig. 3(a)). 
Starting with the link on the far left, it is possible to find the actuator 
torques on the first joint. Continuing with the links from left to right it is 
possible to find forces and torques on all joints in this system. Hence 
there are enough sensors to completely identify all actuation efforts for 
this case.  

The canonical element chain with one unknown load also has enough 
sensors, but it is necessary to work inward from both ends of the chain 
simultaneously so that the single unknown load at the middle link can be 
determined. However, for any chain that has more than one unknown 
load (as in Fig. 3(c)) all actuator efforts cannot be determined without 
adding more sensors. 

Loops can be resolved into two chains joined by two branching links. 
Loops are analysed by starting with a link that has only known applied 
loads and propagating the loads in both directions around the loop until 
the chain rejoins. It can be shown that there are not enough sensors to 
determine all actuation efforts for any of the three canonical elements 
with loops. However, inserting a sensor in a loop converts this problem 
into the case of the chain with known loads (Fig. 3(a)). To summarize, for 
all the canonical elements, only a chain with known loads (Fig. 3(a)) and 
a chain with one unknown load (Fig. 3(b)) have enough sensory 
information to determine all actuation efforts. 

Using the analysis of the canonical elements, it is straightforward to 
apply the results to the original system to determine sensor placement. 
For any given robot configuration with multiple manipulators, links, 
branches, etc., it is possible to enumerate potential sensor placements, 
divide the system into subsystems at the sensors, classify each 
subsystem by its canonical element, eliminate the layouts where there is 
not enough sensory information, and find the minimal number and 
placement of sensors for the system. 
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3.  System Topologies 
Systems such as Fig. 2 were studied to determine the torques at each 

joint and the reaction jet forces. The parameters varied are number of 
manipulators  (p = 1, 2), number of links per manipulator  (n = 1, 2, many), 
reaction jets or not (free-flying or free-floating), and payload or not. The 
primary locations for sensor placement are the manipulator wrist and 
the manipulator base where it joins the spacecraft. For most cases it is 
not necessary to enumerate all the cases where the sensor is placed at 
any joint in between since they are often equivalent to the cases where 
there are sensors at the ends of manipulator. 

3.1 Minimum Sensor Configurations 
The sensor placement method presented above was applied to space 

robots with one and two manipulators. A collection of single manipulator 
cases with and without thrusters is summarized in Fig. 8. In all cases 
with a single manipulator there was adequate sensing. Fig . 9-12 
summarize the results for space robots with two manipulators. The cases 
in Fig. 9 do not have (or are not firing their) thrusters. The first row 
shows possible sensor placements when one sensor is available. It can be 
placed between the manipulator and the spacecraft, at the end effector, 
between both manipulators and the spacecraft, or at the end of both end-
effectors. The second row shows placement of two sensors, the third three 
sensors, and the last row the only configuration with four sensors. All 
cases reduce to the canonical chain elements with at most one unknown 
load, except for the two loop cases which are crossed out. The crossed out 
cases do not have enough sensing to determine all actuation efforts. 
From the remaining cases which do have enough information it is easy to 
determine the minimal sensors (one) and their potential locations. These 
cases are outlined in bold. Fig. 10 shows the same cases as Fig. 9, except 
that the space robots now have thrusters. The addition of the unknown 
thruster loads does not change the results. There are still only two cases 
which do not have enough sensing, and a single force torque sensor is 
enough to determine actuation.  

Fig. 11 shows robots which have no thrusters but carry a payload 
grasped by both manipulators creating a closed loop. Most of the loops 
are broken by a sensor so actuation can be determined but there are only 
two places to put a single sensor to determine actuation. Fig. 12 shows 
the robots from Fig. 11 with thrusters. Once again addition of unknown 
thruster forces does not significantly change the results. 
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Figure 8.     Space robot configurations for a single manipulator, no thrusters 

Figure 9.     Space robot configurations for  two manipulators and no thrusters 

Figure 10.     Space robot configurations for two manipulators and thrusters 

Figure 11.     Space robot configurations for two manipulators and payload 
 

 
Figure 12.     Space robot configurations for two manipulators, payload, thrusters 

P. Boning and S. Dubowsky420

. 

. 

. 

. 

. 



4.  Illustrative Examples 
To demonstrate the validity of the basic method it is applied to the 

system shown in Fig. 2. One sensor could be used; however two sensors 

very well even though the manipulator is unable to follow the torque 
command due to very large friction. In this case, a torque loop is not 
closed to compensate for friction. With a valid torque estimate this could 
be accomplished but control algorithms are beyond the scope of this 
paper. Fig. 14 shows the results of the same sensor measurements used 
to estimate the applied spacecraft reaction jet forces. The actual reaction 
jet forces do not match the commanded due to nonlinear effects. However 
the method is still able to estimate these forces. 
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Figure 13.     Manipulator 1 torques for the satellite capture task 
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Figure 14.     Continuous commanded net thruster forces, satellite capture task 

5. Conclusions 
In space robots, actuator effort sensing is required for precise control. 

However, such sensing adds complexity, weight and cost. Hence it is 
important to minimize the number of sensors used. Here it is shown that 
there are minimum sensor configurations that are able to determine 
system actuation precisely. It was found that a base force torque sensor 

are included here to provide sensor redundancy. With failure of one sensor 
this system could still maintain precise control. While the above results
are valid for 3D systems, for clarity 2D cases of a satellite capture task
were simulated. The simulations were done in Matlab for the free-flying
space robot, firing its thrusters at the same time as the manipulator
end-effectors were tracking the grasp points on the satellite [Boning 
2006]. Fig. 13 shows joint torques for the first manipulator. The mani-
pulators have very high friction, 50% of their maximum capable tor-
que. The method’s torque estimate and actual applied torque agree 

.   

.   
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for each manipulator can provide an estimate for friction in the joints 
and applied reaction jets. A wrist force torque sensor for each 
manipulator can also be used to estimate joint friction and applied 
reaction jet forces. However, additional sensors are needed for cases 
when there are closed kinematic loop configurations.  

The methods shown here can be applied to other situations such as 
unknown contact forces at the end-effector, unknown payload mass, or 
payload gripped with pin joints (rather than rigidly grasped). Systems 
with reaction wheels can be considered with this methodology. The 
approach is useful to study redundant sensor configurations and 
accommodate sensor failure. Current studies are underway to consider 
the effects of higher order dynamics and sensor noise. An experimental 
validation of the method is expected to be completed shortly (in time for 
the ARK conference). 
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Abstract The paper presents the kinematics of the 3-RCC/3-CCR translating parallel 
mechanisms and several machines of such family are described in detail 
taking into account different possible kinds of actuations. They all share 
good kinematic properties as for instance simple closed-form relations and 
convex workspace, but differ for overall dimensions of the mobile platform 
and dynamic behaviour: therefore the concepts have been optimized and 
compared against common performance indices, to determine the best 
solutions for selected classes of applications. Based on such results, a 
prototype robot has been finally built. 

Keywords: Parallel robots, Translating Parallel Machines, Kinematic analysis, 

1.  Introduction 

The kinematics of parallel mechanisms with full spatial mobility is 
usually very complex and sometimes cannot even be solved in closed 
form, as for example in the well-known case of the general Gough-
Stewart platform (Liu and Fitzgerald, 2003). For this reason it is recently 
growing the interest of researchers and industry towards minor mobility 
mechanisms, able to perform elementary motions like pure rotations, 
pure translations or planar displacements: in this way the complexity of 
the analytical problem is greatly reduced while the advantages of closed-
loop actuation are still preserved, eventually by having two parallel 
mechanisms mounted in series or cooperating in parallel for the 
accomplishment of a given task. 

Many new translating parallel machines (TPMs) have been studied in 
the last years, including the 3-RPC mechanism by (Callegari and 
Tarantini, 2003) that showed good kinematic performances, e.g. simple 
equations, high stiffness, convex workspace, and so on. However the 
aforementioned concept presented also some clear weak points, such as a 
cumbersome moving platform, poor dynamic performances and an 
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overconstrained structure: therefore the study has been enlarged to the 
whole family of machines with 3-RCC/3-CCR kinematics (Callegari and 
Marzetti, 2003) to assess whether other mechanisms of this set show 
better features than the one previously identified. 

The paper briefly presents three mechanisms selected among the most 

optimization and compares the resulting performances. 

2.  

A whole family of mechanisms can be defined by the functional design 
schematically represented in Fig. 1a: a mobile platform is connected to 
the fixed base by three identical limbs, that are composed by two 
members coupled by a cylindrical pair; the lower link of each leg is 
connected to the frame by a revolute joint while the upper one is 
connected to the platform by a cylindrical pair. Such kind of mechanisms 
are conventionally called 3-RCC to indicate the sequence of the joints in 
the three (identical) limbs, starting from the fixed frame and moving 
towards the platform; the 3-CCR architecture, shown in Fig. 1b, is simply 
obtained by kinematic inversion. It can be easily seen that the described 
architecture is characterized by 3 d.o.f.’s in space where in the general 
case spatial translations are coupled with changes of orientation of the 
platform. Nevertheless for particular geometrical configurations such 
mechanisms can provide motions of pure translation, i.e. iff (i) the axes of 
the revolute and outer cylindrical joint of ith limb are parallel to the same 
unit vector iû  and (ii) ji uu ˆˆ ≠  for i  j (i,j =1,2,3). 

(a)     (b) 

It must be pointed out that in these cases the two links of each leg do 
not turn around the cylindrical pair, which could well be substituted by a 
prismatic joint, giving rise to the already mentioned 3-RPC (or 3-CPR) 
overconstrained mechanism. 
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Figure 1.     The 3-RCC (a) and 3-CCR (b) parallel mechanisms. 

to the possible different actuations and finally performs a kinematic 
interesting elements of this class, develops their kinematics according



3.  

In this section three different mechanisms are considered. The 3-RCC 
architecture shown in Fig. 1a can be actuated either by driving the base 
revolute joints or by controlling legs’ extensions: the mobile platform of 
such concepts turns out to be rather bulky because of the (unavoidable) 
length of the stroke of the cylindrical pairs mounted on the platform 
itself. This drawback can be possibly avoided by inverting the kinematic 
structure of the mechanism, Fig. 1b: in this case the legs can be actuated 
by directly driving the sliders running along the fixed slideways. 
Unfortunately a mere inversion of the mechanism is not possible because 
the resulting kinematics shown in Fig. 1b is singular in its entire 
workspace; therefore two more concepts are presented, slightly different 
from first mechanism but both characterized by a 3-CCR architecture. 

3.1  

The configuration of the mechanism is symmetric, Fig. 1a, with the 
axes of the three revolute pairs forming an equilateral triangle on the 
fixed base; in the same manner, another equilateral triangle is formed on 
the moving platform by the axes of the cylindrical pairs; moreover, the 
legs are perpendicular to the joints connecting them with the two bases. 

In case the machine is driven by controlling legs’ lengths, IPK is 
characterized by a single configuration of the mechanism while DPK 
presents 8 different solutions that can be simply evaluated in closed-form 
(Callegari and Tarantini, 2003). When the unit vectors of the three limbs 
become linearly dependent, the manipulator gets stuck in a singular 
configuration: therefore the locus of all the singular points is given by a 
right cylinder, that however can be moved outside the workspace with a 

mechanism can be easily driven by means of rotary motors lumped at the 
end of the limbs and ball screws, see Fig. 2: such design yields very good 
static properties (e.g. a high thrust can be delivered since the legs are 
loaded only by normal forces) but the resulting dynamic behaviour is 
poor due to the relevant mass of the mobile platform and the high inertia 

Better dynamic performances can be obtained by directly powering the 
base revolute joints, even if the limbs are loaded by bending moments in 
this case. (Callegari and Marzetti, 2003) developed the complete 
kinematics of such mechanism: it is shown that a (very simple) unique 
solution exists for both direct and inverse position problem and no 
translation or rotation singularities are possible at all. 

425Kinematics and Optimization

Kinematics of Some Mechanisms 

3-RCC with Triangular Configuration 

proper dimensioning of the machine. No constraint (rotation) singu- 
larities exist apart from the surface of the mentioned cylinder. This 

of the spinning or tilting masses (Callegari et al., 2006). 



3.2  

The mere kinematic inversion of the 3-RCC mechanism just described 
is shown in Fig. 1b: (Callegari and Marzetti, 2003) proved that such 

As a matter of fact, in order to give full mobility to the inverted 
mechanism it is necessary that the direction of the axes of the three pairs 
connecting the limbs to the ground are linearly independent. 

(a) (b) 

th

For instance, in the tetrahedral configuration shown in Fig. 3a such 
axes stem from the origin of the fixed frame ( )zyxO ˆ,ˆ,ˆ  and are tilted by α 
radians with respect to the horizontal plane. If a frame ( )wvuP ˆ,ˆ,ˆ , parallel 
to ( )zyxO ˆ,ˆ,ˆ , is attached to the mobile platform at the intersection of the 
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Figure 2.  Sketch of the 3-RCC translational platform (actuation on legs’ length). 

3-CCR with Tetrahedral Configuration 

 limb. Figure 3 .   Sketch of the tetrahedral 3-CCR architecture and loop-closure for  i

mechanism is useless since all the points of its workspace are singular. 



three revolute joints, the vector OP=p  can be taken to specify the 
position of the moving platform.  

In order to simplify the study of the mechanism, other frames can be 
easily defined for each link as shown in Fig. 3b: e.g. the frame 

)ˆ,ˆ,ˆ( iiii zyxA ,  attached at of ith limb, is obtained by starting at the global 
frame ( )zyxO ˆ,ˆ,ˆ , then it is rotated by iϕ  around the (current) zi axis and 
then by α around the (current) yi axis, finally a translation ai along the 
direction of the (current) xi axis is performed, to allow for the variable 
sliding of the cylindrical pair. Moreover, the articular coordinates of the 3 
joints are defined as follows: ai and iϑ  for the first cylindrical pair, di and 
βi for the second one and γi for the revolute joint. It is also noted that the 
configuration of Fig. 3 is characterized by maximum symmetry, therefore 

°=°=°= 240,120,0 321 ϕϕϕ  and tti =  for i = 1,2,3. 
The loop-closure equation of ith limb is given by: 

 

iii tdap ++=  (1) 
 

that can be expressed in the local iA  frame as: 
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The mobility analysis developed in the Appendix shows that 
unfortunately such architecture is liable of constraints singularities 
inside its entire workspace; therefore, in order to prevent it rotating, it is 
necessary to turn to an overconstrained architecture by replacing limbs’ 
internal cylindrical pairs with a prismatic pairs, resulting with a 3-CPR 
kinematics. The following analysis will be performed with reference to 
this case, where Eq. 2 still holds with β i = 0. 

Inverse position kinematics relations provide the actuated variables as 
functions of platform s position p: 
 

iziyixi tspcspccpa +++= ααϕαϕ  (3)  
 

The same Eq. 3, written for i=1,2,3, is used to solve the direct position 
kinematics and find the values of zyx ppp ,,  as functions of ia .  The direct 
derivation of Eq. 1 is the base for the velocity analysis: 
 

iiiiiip da ddav ×+⋅+⋅= ˆˆ  (4)  
 

By dot-multiplying both sides of Eq. 4 by the unit vector iâ  and 
collecting the 3 relations for i=1,2,3 in a single expression in matrix form, 

av =pJ , the expressions of the Jacobian matrix is obtained: 
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The constant Jacobian shows that this mechanisms belongs to the 
class of the so-called Cartesian parallel robots (Kim and Tsai, 2002). It is 
noted that the maximum value of ( ) αα scJ 2det = , granting an “optimal” 
manipulability, is obtained for °≈ 26.35α  which corresponds to aligning 
the ground cylindrical pairs along a Cartesian frame. 

3.3  

The setting of the joints shown in Fig. 4 gives rise to a full Cartesian 
kinematics; in fact inverse and direct position kinematics are solved by: 
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and velocity kinematics is expressed by the following Jacobian matrix: 
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100
0
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T

T
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a
a

 (7) 

 

showing that J is the identity matrix when the three ground cylindrical 

affected by rotation singularities inside the workspace therefore, just as 
before, the equivalent 3-CPR mechanism should be used instead. 
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3-CCR with Cartesian Configuration 

pairs are orthogonal one to the others (α = 90°). Also this architecture is 

Figure 4.   Sketch of the Cartesian 3-CCR architecture. 



4.  

The kinematic performances of the described machines strongly 
depend on the specific geometric parameters of the four architectures: 

the machines have been individually optimized and then the resulting 
performances have been compared. The following non-dimensional 
performance index has been used for the optimization: 
 

332211 FFFPI ⋅+⋅+⋅= βββ   (8) 
 

where F1 measures the volume of the workspace, F2 is proportional to 
mobile platform s overall dimensions, F3 quantifies the dexterity of the 

i

i i 1 and β i are subject to the 
condition: β1 +β2 +β3 =1, the performance index results bounded by 0 PI 1. 

The measure of workspace volume F1 is chosen with reference to the 
Monte Carlo method proposed by (Stamper, 1997): robot s workspace is 
inscribed inside a cube of side 2dmax and is discretized in ntot points; then 
a numerical procedure determines the number of nin points belonging to 
robot s workspace and it is finally defined: 

tot

in
n

nF =1
 (9)  

Overall dimensions of mobile platform are evaluated as: 
( )

max

max
2 t

ttF −=   (10)  

where tmax is the maximum dimension of its height and is constrained to 
the maximum stroke of the ground sliders. Machine s dexterity is 
assessed by computing the condition number c of the matrix JTJ, with J 
Jacobian matrix, as suggested by (Gosselin and Angeles, 1991); by using 
the already defined discretization, it is therefore defined: 
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 (11)  

The variable parameters of the optimization are the geometric 
dimensions of both platforms, limbs  lengths and the incidence angle α 
between joint axes (or the offset distance e for the fully Cartesian 
machine); in order to deal with dimensionless parameters all variables 
are divided by maximum limbs’ lenght or by the stroke of ground sliders, 
i.e. dmax = 1 or amax = 1 is imposed according to the specific architecture. 

If the three functions Fi are equally weighted, i.e. β1 =β2 =β3, the 
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Optimization of the Families 

therefore according to what has been proposed by (Carretero et al., 2000), 

’

’

’

’

optimization process yields the results collected in Table 1 : it is clear that  

0 Fthe functions F  are chosen such that 
mechanism and β , i=1,2,3 are the weights of the 3 functions; since  

’



the two 3-CPR concepts yield the best performances also when the two 3-
RCC architectures present a relatively high PI in spite of a virtually null 
workspace. In fact the optimization process drove geometry variations of 
the 3-RCC concepts towards very small values of mobile platforms sides, 
therefore constraining the displacements of its cylindrical pairs. 

 
 RCC R(PR)C CPR 

(Tetrahedral)
CPR 

(Cartesian) 
a 0.5 0.8 1 1 
t 0.1 0.1 0 0 
α — — 35.26° 90° 
PI 0.42 0.45 0.70 0.70 

W 1.1% 0% 12.5% 12.5% 
e — — — 0 

 
However, also in case the only workspace is maximized for the 4 

mechanisms (β1 =1, β2 =β3 = 0) the two 3-CPR architectures still show a 
workspace comparable with the other concepts (see Fig. 5), that are in 
this case characterized by big overall dimensions and limited dexterity. 

Figure 5   Optimized workspace of the 4 machines: 3-RCC with rotary (a) or 
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linear (b) actuation, 3-CPR with tetrahedral (c) or Cartesian (d) configuration. 

Table 1.     Comparison of robots performances (optimization with equal weights). 

.



5.  Conclusions 

The paper has presented the kinematic properties of the translating 
platforms characterized by the 3-RCC architecture: it has been shown 
that also its 3-CCR kinematic inversion can be considered but, due to 
rotation singularities, the rotation of the inner cylindrical joint must be 
avoided by turning to the 3-CPR overconstrained architecture. After 
having optimized the mechanisms, it has been shown that the two 3-CPR 
concepts present quite better performances than the others: as a matter 
of fact they are both Cartesian parallel machines, being slightly different 
only due to the disposition of joint axes in the space and present a 
(comparably) wide workspace characterized by very high dexterity.  

Moreover by still keeping the same geometry of the 3-CCR tetrahedron 
design of Fig. 3, but with a different disposition of the pairs, i.e. the 3-
CPU architecture shown in Fig. 6a, it is possible to get rid of all 
singularities and obtain a non-overconstrained machine that still retains 
the good feature of the original concept (as a matter of fact the same 
kinematics equations at all). A prototype robot has been built with this 

the first experimentations are still under way. 
 

(a)   (b) 
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Appendix.  Mobility analysis of the tetrahedral 3-CCR 

The angular velocity ω of mobile platform can be expressed in function 
of ith limb’s articular coordinates as follows, see Fig. 3b: 

 

iiiiii tda ˆˆˆ ⋅+⋅+⋅= γβϑ   (12)  
 

By dot-multiplying Eq. 12 by id̂ , it is obtained: 
 

i
T
i β=⋅d̂  (13)  

 

Taking into account Eq. 13, the derivation of the first line of Eq. 2 
provides: 

 

( )⋅+=⋅+⋅+⋅ T
iiiizyixi IIzstapspcspcc ˆβααϕαϕ   (14) 

 

If platform’s motors are held still ( 0=ia ), due to the absence of 
translation singularities is also: 0=== zyx ppp  and therefore from Eq. 
14: 

 ( ) 0ˆ =⋅dT
iii st β   (15) 

 

Initial mounting conditions require 0=iβ , therefore it is evident that a 
finite angular velocity  can be initiated: however, since in case of pure 
translations the legs do not rotate around their own axes, the problem 
can be overcome by the introduction of prismatic pairs in place of the 
inner cylindrical joints (3-CPR architecture). 
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Abstract In this paper, a particular type of motion is called pseudo-planar motion and
termed Y motion for brevity.  A set of Y -motions having the same plane
direction and the same pitch is endowed with the algebraic structure of a

mechanical generators of a Y subgroup are disclosed.  All singular postures
of Y-motion generators are described and their embodiments are graphically
displayed. 

Keywords:

1. Introduction 
A special 3-dof-motion type, which includes any translation parallel to

a given plane and any helical motion with a given pitch about any axis
provided that the axis is perpendicular to the foregoing plane can be
called pseudo-planar motion and is denoted Y-motion.  A set of Y motions
with a given plane direction and a given pitch is endowed with the
algebraic structure of a 3D Lie group and, in other words, is a 3D
displacement Lie subgroup.  Hervé (1978) defined this kind of subgroup
and some essential properties of the Y-motion generators together with
some examples of applications were disclosed more recently (Hervé,

translating-screw  group.  In this paper, Y-motion generators including
hinged parallelograms are introduced and the singular postures of the
generators are comprehensively derived.

One can discriminate two types of singularity, namely permanent
singularity and local singularity.  The permanent singularity yields an
inadequate chain that does never generate the desired Y motion.  Local

© 2006 Springer. Printed in the Netherlands. 
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2004).  In Angeles (2004), a subgroup of Y motions is named a



singularities are specific of particular poses of the chain that generally
generates the Y motion.

In any singular pose of the chain, intermediate bodies between the
distal bodies of the open chain can undergo motions that are passive with
respect to the relative motion between the distal bodies.  Such passive
motions may have finite (or full-cycle) amplitude or only infinitesimal
amplitude.  For brevity, these two types of singularity will be designated
by the shortened locutions, infinitesimal singularity and finite
singularity, respectively.

After recalling some properties of the Y motion, we enumerate all
generators of Y-motion with serial arrays of 1-dof Reuleaux pairs or
hinged parallelograms. The article will emphasize the singularity in the
previous generators. 

A 3D Lie group of Y displacements is denoted {Y (ww, p)} where curly
brackets indicate a set, ww is a given unit vector perpendicular to the
plane Pl and p is the given pitch of the feasible helical displacements.
The pitch can be any real number and, therefore, the planar
displacements are the special case p =0.  This is reflected by the notation:
{Y (ww, 0)} = {G(ww)}.  Furthermore, any set of helical displacements with

straightforward to verify that any translation parallel to Pl belongs to
{Y (ww, p)}.   Hence, {Y (ww, p)} has 3 categories of proper Lie subgroups.
They are: (a) {H (N, ww, p)}: any set of helical movements of axis (N, ww)
with the given pitch p, N ; (b) {T (ss)}: any set of rectilinear translations
parallel to any given vector ss that must be perpendicular to ww, s w; (c)
{T (Pl )}= {T ( w)}: set of planar translations parallel to the Pl-plane (or
perpendicular to ww).  The improper subgroups of {Y (ww, p)} are {E }, which
contains only one element, namely the identity E, and {Y (ww, p)} itself.

The set of feasible displacements of a rigid body with respect to
another body of the same kinematic chain is called kinematic bond

bond between the distal bodies, which bond is the product of the bonds

mechanical generators.
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-2. Pseudo Planar Motion Generators 

called its mechanical generators. Generally, a given bond has several
generated by the serial pairs. The chains producing a given bond are

between the bodies. The serial layout of kinematic pairs generates a

pitch p around any axis parallel to ww is included in {Y (ww, p)}. It is

Because of the closure of the product in a 3D subgroup {Y (ww, p)}, the
product of three 1D manifolds included in {Y (ww, p)} can be equated to



{Y(ww  p)} = {H (N1, ww  p)} {H (N2, ww  p)} {H (N3, ww  p)} (1a)
= {T(uu)} {H (N2, ww  p)} {H (N3, ww  p)} (  u  w)  (1b)
= {H (N1, ww  p)} {T (uu)} {H (N3, ww  p)} (  u  w) (1c)
= {H (N1, ww  p)} {H (N2, ww  p)} {T(uu)} (  u  w) (1d)
= {T(uu)} {H (N, ww  p)} {T (vv)} (  u  w,   v w, uu  v) (1e)
= {H (N, ww  p)} {T (uu)} T (vv)} (  u  w,  v w,  u  v) (1f)
= {T (uu)} {T (vv)} {H (N, ww  p)} (  u  w,  v w,  u  v) (1g)

PHH, HPH, PHP and HPP.  Reversing the order of joints also yields a
mechanical generator of {Y(ww, p)}.

be used for the structural synthesis of Y motion generators.  As a matter
of fact, the two bars remain parallel and the motion of one bar with
respect to the other bar is 1-dof translation along a circle.  Replacing one

parallelograms, we obtain seven Y-motion generators with hinged

perpendicular to ww.  Flattened parallelograms are singular and must be
avoided.

(a) HHH (b) PHH (c) HPH

(d) HPP (e) PHP
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The coupling of two opposite bars in a hinged parallelogram can also

The serial Y-motion generators with 1-dof Reuleaux pairs are HHH,

parallelograms, Figure 2.  The planes of the parallelograms must be

or two P pairs in the generators of Figure 1 by one or two hinged

Figure 1. Y-motion generators.

{Y(ww, p)} in a neighborhood of E provided that this product is 3-
dimensional. The following equalities express the 3D subgroup {Y (ww  p)}
as products of three 1D subgroups, which are associated to the 1-dof
Reuleaux pairs (Reuleaux, 1875), as shown in Figure 1.

, 

, ,, ,
, ,

, ,

,
,

,

,



(c) HPaP (d) HPPa (e) PaHP

(f) HPaPa (g) PaHPa 

In this section, the singularity rises from an undesired finite (or full-

motion.  If the distal bodies of the chain are rigidly connected, then the
resulting closed chain is movable with one or more degrees of freedom.
Such a type of singularity may be permanent or local.  The former does

latter may happen in particular poses of a chain that generally generates
the Y motion.

From the Delassus contribution [Delassus, 1922, Waldron, 1969, Lee,
1998], there are only ordinary  types of movable three-bar linkages.
Using Hervé s approach, the ordinary  mobility can be explained via the
group algebraic properties of the displacement set.  It is straightforward
to derive all the possible cases of group dependency between the
subgroups of {
dependent iff their set intersection is not {E }.  The 2D subgroup of planar
translations {T (Pl )} can be dependent of a subgroup of rectilinear
translation parallel to Pl.  A 1D subgroup of rectilinear translation or a
1D subgroup of helical displacements can be dependent only of itself. 

Obviously, if the chain includes three P pairs parallel to the plane Pl,
the closed chain PPP is a trivial 1-dof chain associated to the 2D
subgroup of planar translations {T (Pl )} = {T ( w)} parallel to the plane Pl
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(a) PaHH (b) HPaH

3. Finite Singularity of the Y - otion enerators M G

cycle) motion of an intermediate link in the chain aiming to generate Y

not correspond properly to a generator singularity but actually charac-

 “ ”
 “ ”

Y (ww, p)}. It is worth recalling that two subgroups are

’

Figure 2. Y -motion generators with hinged parallelograms.

terizes inadequate chains, which do never generate Y motion. T he



In a chain with two P pairs and one H pair, an undesired motion may
happen if the P pairs are parallel.  Such a geometric arrangement of the
P pairs may be permanent or transitory.  If the P pairs are adjacent, then
their common rigid link maintains the parallelism and the chain is a
wrong generator of Y-motion.  In a PHP array, the angle between the two
P pairs can change and the chain generates Y-motion when the P pairs
are not parallel and may become locally singular in a possible posture
with transitory parallel P pairs.  Both cases are shown in Figure 3. 

(a) permanent finite singularity (b) locally finite singularity 

In a pseudo-planar chain with two H pairs, an undesired finite motion
may happen when two H pairs are coaxial.  It is an inadequate chain if
the coaxial H pairs are adjacent as shown in Figure 4.  Otherwise, it is a
local (or transitory) singularity, Figure 5.  

(a) permanent singularity (b) permanent singularity

(a) (b)
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that is perpendicular to ww.  Its corresponding open chain PPP generates
{T ( w)} {Y (ww, p)} with 1-dof of passive mobility.  Hence, the generators
of Y-motions necessarily include one or more H pair.  

Figure 3. Finite Singularity of PPH and PHP Y-motion generators.

Figure 4. Permanent finite singularity of chains with two coaxial H pairs.

Figure 5. Finite local singularity of Y-motion generators with two coaxial H pairs.



4. 

subgroup, a generic point M of the Euclidean affine 3D space is
transformed into another point M' = M + dMM, that is, 

where is  an infinitesimal angle.  The exponential series yields
exp( w )(NNM) = (NNM) + w (NNM).  Hence, 

and, the point O being any origin,
(OOM ) = (OOM) +  [(p/2 ) ww  (OON)  ww  w  (OOM)]

This further provides

The expression in Eq.(7) is usually called the twist in the H pair.
Actually, the twist is a mapping, M  dMM, of the 3D Euclidean affine

determines what is often called the rate of twist .  The rate of twist is
characterized at the origin O by the datum of two vectors, namely ww and

perpendicular drawn from O to the screw axis can be derived from ww and
t by employing the two relations k = p/ 2  = ww.t and  (OON)   w  tt.  

Consequently, the twist of any H pair, which has the axis (N,  w) and
the pitch p = 2 k can be expressed as 

[ww (OOM) + (OON) w  kw ]=  [ww (OOM) + tt ]  
In order to obtain simple expressions in what follows, without loss of

the generality, the point N that can be any point belonging to the screw
axis, is chosen in the plane that is perpendicular to the unit vector ww and
contains the origin O ; this plane will be denoted Pl (O, w).

Any linear combination of two twists is a third twist, which is called
resultant twist.  The resultant twist is the twist of the serial array of two
pairs characterized by the first two twists.  Natively the resultant twist
is linearly dependent on the first two twists and is an element of the

belong to the same 2D vector subspace of the 6D vector space of all twists.
If three kinematic pairs are characterized by three linearly dependent

singularity is a local infinitesimal singularity. 
Let us consider two H pairs with the same pitch p = 2 k and parallel

axes (N1, ww) and (N2, ww).  We choose N1 and N2 in the plane Pl (O, w).
Obviously, if N1 = N2, then the screw pairs are coaxial and the linear
span of the two twists is made of the twists of all coaxial H pairs with the
pitch p.  In what follows, N1  N2.  The twist of the first H is d1M =

[ww (OOM) + (OON1) w  k w] and the twist of the second H is d2M =
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Infinitesimal Singularity of HHH Generators 

–

M  M' = N +(  p/2 ) uu  exp(  ww ) (NNM) (4)

M' = M +  [(p/2 ) ww  w (NNM)] (5)

(6)

dMM = (OOM )  (OOM) = [ww  (OOM) +  (OON) w + (p/2 )ww ] (7)

(8)

linear span of the first two twists. In other words, the three twists

twists, then the serial array of these pairs is singular. Generally, this

 “ ”

t = (OON) w + (p/2 ) ww. Conversely, the pitch p and the foot N of the

Through an infinitesimal displacement belonging to the {H (N, ww, p)}

space in the 3D Euclidean vector spac e.  The expression of dMM/

+

+

+

+

+

'

'

=

+



2  

R

H pairs having the same pitch p, can be expressed as
dRM d1M+d2M  R[ww (OOM) +(OONR)  w kRw]= R[ww (OOM) + ttR] (9)

in which  
R =  + 

tR (OONR) w  kRw  [ (OON1)+ (OON2)]//(  + ) w kRw
kR= pR 2  =( p + p)/[2 (  + )]= p/2  = k
NR : a point belonging to the resultant screw axis, in Pl (O, w).
One  can identify  in [ (OON1) + (OON2 )]   (  +  ) the barycenter (center

of mass) of the point N1 and the point N2 with the mass (  +  ) and the
R 1 2

One can readily demonstrate
(NNRN1) = (OON1)  (OONR) = (OON1)  [ (OON1)+ (OON2)]  (  + )
= (OON1)  [ (OON1)+ (OON1  N1N2)]  (  + )
=  (NN2N1)  (  + ) (10a)

By the same token, 
(NNRN2) =  (NN2N1) / (  + ) (10b)
Equations (10a) and (10b) show that the coefficients /( + ) and

/( + ) can be expressed with ratios of vectors that are derived of the
arrangement on a straight line of the three points N1, N2 and NR, namely

(  + ) =(NN NR)/ (NN2N1) and   (  + ) = (NN1NR) /(NN1N2).
The resultant twist can be identified as the twist of a H pair with the

R

that are represented by the following product of three subgroups of
helical displacements

{H(N1, ww, p)} {H(N2, ww, p)}{H(NR, ww, p)}  with NR line (N1N2) (11)
The position of NR on the straight line N1N2 can be anyone.  The three

H pair axes lies in the same plane parallel to ww, Figure 6.  Furthermore,
the planar case is a special case (p =0) of the pseudo-planar case.  Hence,
a generator RRR of planar gliding motion becomes singular iff the three
R axes lies in a plane as shown in Figure 7. 
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mass (  +  ), respectively. Hence, N  lies on the straight line N N .

pitch p and the axis (N , ww). We find out the singular chain postures

Figure 6. A HHH chain with 
a local infinitesimal singularity. of RRR generator of planar motion.

Figure 7. Infinitesimal singularity

[ww (OOM) + (OON ) w  k w];  and  denote infinitesimal angles in each 
of the two H pairs.  The resultant twist d MM of a serial array of two parallel
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–

= =
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5.
Let us consider a pseudo-planar chain including a P pair generating

{T ss)}.  An infinitesimal displacement belonging to the subgroup {T (ss)} is
the point transformation M  M' = M + s where  is an infinitesimal
real number.  This transformation is an infinitesimal translation that
has no screw axis dMM = s.  Now, let us consider one H pair having the
axis (N,  w) and the pitch p= 2 k whose twist is d1M = [ww (OOM) +
(OON) w  kw] and one prismatic P pair parallel to the unit vector ss
whose twist is d2M = s.  The resultant twist of the serial array HP can
be expressed as 

dRM = d1M+d2M = [ww (OOM)+(OON) w (kw+ / s)]= R[ww (OOM) +ttR] (15)
in which R(= ) denotes the infinitesimal angle in the resultant twist.
One can readily identify the twist of a H pair.  The twist axis is parallel
to  w.  The pitch is pR = 2 w.tR= 2 [k+ / (ww.s)] = 2 k = p because ww.s = 0, ss
being perpendicular to ww.  The axis position is determined by a point NR

belonging to the resultant screw axis. The point NR is chosen in the plane
Pl (O, w).  (OONR)=  w tR= OON +  ( / )ww s.  The vector s is parallel to
the plane Pl (O, w) and is perpendicular to ss.  Moreover, one can verify
that ww s is a unit vector.  The number a = /  is the abscissa of point NR

number. 
We find out the singular postures of a HPH generator of Y-motion.

The P pair is perpendicular to the plane of the two parallel H axes as
shown in Figure 8.

The previous resultant twist of a HP array is also the resultant twist
herefore, Figure 9 shows a singular pose of a PHH

generator.  Furthermore, Figure 10 and Figure 11 depict the singular
poses in the generators RPR and PRR (or RRP) of the subgroup {G (ww)} of
planar gliding motions perpendicular to ww.  
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in the frame of reference (N,  w s). The abscissa a can be any real

Figure 8. Local infinitesimal singularity 
larity of PHH Y-motion generator.of HPH Y-motion generator.

of a PH array. T 

Figure 9. Local infinitesimal singu-

(

+

+

ww



To sum up, a HPH, PHH or HHP open chain aiming to be a generator
of Y-motion has a local infinitesimal singularity iff the P pair is
perpendicular to the plane of the two parallel H axes. 

What is more, based on the above findings, the possible local singular
postures of Y motion generators with hinged parallelograms are readily
deduced and are displayed in Figure 12.

(a) deduced from Figure 8 (b) deduced from Figure 5(b)

(c) deduced from Figure 9 (d) deduced from Figure 3(b)

(e) also deduced from Figure 3(b) (f) deduced from Figure 3(a)
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Figure 10. Infinitesimal singularity 
larity of PRR G-motion generator.

Figure 11. Infinitesimal local singu-
of RPR G-motion generator.



(g) also deduced from Figure 3(a) (h) also deduced from Figure 3(a)

6. Conclusion
Five distinct architectures of Y motion generators with Reuleaux pairs

and seven ones with hinged parallelograms are enumerated and their
kinematic chains are graphically displayed in order to be a tool for the
selection of limb structures in the synthesis of parallel manipulators.
The singular postures resulting of undesired motion with finite and
infinitesimal amplitude are disclosed through the study of group
dependency of displacement subsets and linear dependency of twists,

manipulators with pseudo-planar limbs can be envisioned but this lies
outside of the scope of this paper.
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ON PKM WITH ARTICULATED TRAVELLING-
PLATE AND LARGE TILTING ANGLES  
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161 rue Ada, 34392 Montpellier CEDEX 5, France 
<krut, pierrot, company>@lirmm.fr  

Abstract This paper discusses some ways to achieve large tilting motions with PKM 
by resorting to articulated travelling plate. Different options are firstly 
presented: remote actuation, hybrid architectures, redundancy, rotation-
amplification and translation-to-rotation transformation. Starting from two 
of those features, the aim of this paper is to go one step further and to show 
that it might be possible to design a 5-DoF (Degrees of Freedom) mechanism 
with large tilting angles about two axes. 

Keywords: 

1.  
The idea of parallel mechanisms resorting to a non-rigid (or 

articulated) moving platform (traveling plate) which includes passive 
joints has been introduced recently and a few academic prototypes have 
already demonstrated the effectiveness of this principle (Pierrot et al., 
1999; Krut et al., 2003). These prototypes implement Scara motions.  
Indeed, the 4 DoF of Scara motions are well adapted to pick-and-place 
tasks: 3 translations to carry an object from one point to another, plus 
one rotation about a given axis in world coordinates for the orientation. 
For efficient pick-and-place a 360-degree orientation range is expected. 
Robots inspired from Delta  architecture (Clavel, 1985) encountered a 
real commercial success achieving this task because of their high 
dynamics (acceleration capability) that has a strong influence on cycle 
time. This is due to their lightweight (actuators are fixed on the base) 
parallel (having closed kinematics chains) design. However, the RUPUR 
central kinematic chain (R: Revolute, U: Universal, P: Prismatic, bold 
letter stands for actuated joint) that transmits the rotational motion 
from a revolute actuator fixed on the frame to the effector may become a 
weak point. This is particularly true for Delta with huge workspace or, 
even more, with linear Delta that might be used for designing machine-
tools. 

Most of recent researches in that field have proposed different designs 
to obtain Scara motions either for serving as pick-and-place robots, or for 
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Introduction  



being a part of a more complex machine-tool; some of them are parallel 

others have non-fully-parallel designs  (Angeles et al., 2000). Other 4-DoF 
parallel mechanisms have been studied in the past, but they are 
dedicated to different applications such as Koevermans’ flight simulator 
(Koevermans et al., 1975) and Reboulet’s four-DoF wrist  (Reboulet et al., 
1991). Even more recently, a machine with a moving platform including 
passive prismatic joints and a “Translation-to-Rotation” transformation 
system has been introduced  (Krut et al., 2003); in the latest paper it was 
shown that it was possible to get a realistic practical design for a very 
specific design: (i) four linear motors in the same plane and aligned on 
the same direction, (ii) a three-part moving platform. Moreover, it 
induces very simple kinematics model in closed form for both Inverse and 
Forward problems. 

The aim of this paper is to go one step further and to propose two 
ideas: 

1. It might be indeed possible to obtain a 4-DoF design which 
compares directly with commercially available Delta-based 
robots (e.g. the FlexPicker, an ABB Robotics piece of harware) 
in terms of technology, workspace, and performance while 
avoiding the RUPUR kinematic chain. 

2. It might be possible to design a 5-DoF machine with large 
tilting angle about two axes. 

To do so, we have designed the prototype of a robot (we call Eureka) by 
resorting to several components from the industrial FlexPicker robot.  A 
prototype is about to be built. Its design can be seen as an “extension” of 
the principle of articulated travelling plate with passive linear joints. 
Hence, it also combines actuation redundancy so that we obtain a 5-DoF, 
large-tilting-angle solution. 

In this paper, this prototype is described and the way to achieve the 
desired rotations is discussed. Then, geometrical models are derived (a 
nice feature for this robot is that the forward geometrical model can be 
written in a closed form). Afterwards, a kinematic modelling able to 
witness all the singularities of the robot is established. It is based on a 
detailed modelling of the so-called “spatial parallelograms” which are 
described here for what they really are: two SS chains. It shows up the 
geometrical condition that must be verified in order to achieve the 
desired motions.  

2.  
It is well established that PKM suffers from different types of 

singularities that are often said to belong to two families: 
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mechanisms, like Kanuk  (Rolland, 1999) or H4  (Pierrot et al., 1999), some 

Getting Large Tilting Angles  



 Serial-type (or under-mobility) when the mechanism loses one 
(or more) degree of freedom; 

 Parallel-type (or over-mobility) when the mechanism’s 
stiffness vanishes in one (or more) direction. 

In the following section, this paper will discuss this description of 
singularities (even explaining that additional problems exist) but it is 
nevertheless true that the tilting angles are often limited by parallel-type 
singularities. So far, different solutions have been proposed to overcome 
that problem and getting larger tilting angles, as described in the 
following sub-sections: 

Remote actuation – One way to get large tilting angles is to arrange 
one revolute joint on the travelling plate (in a “serial” way) and, to limit 
the moving parts masses, to place the actuation in a fixed remote 
location, that is, the base. It is the option selected for most Delta robots, 
using a telescopic fourth chain (with an RUPUR arrangement) dedicated 
to tool rotation. This principle allows the rotation range to be as large as 
for serial chains (indeed, the last rotation is actually arranged in a serial 
way...) while keeping the moving masses low because all motors are still 
fixed on the base. 

Hybrid architecture – Kinematic optimization is always an open 
option when a PKM has to be designed, and it is often feasible to select 

angles range. Obviously, this optimization process is made easier if some 
constraints are removed, for example if the machine is designed for 
tilting purpose only. This solution leads to machines made with two sub-
parts, each of them specialized in only a part of the task. 

Redundancy – The general concept of “redundancy” applied to 
mechanism theory can be roughly stated as follows: installing more 
actuators than the number of the TCP’s (Tool Control Point). For serial 

number of cases. The principle is here to select among the possible joint 
positions, one position that is far enough from singularities. 

Moreover, PKM offer the ability to create a different type of 
redundancy, called “actuation redundancy”, that can be described as 
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of legs, etc.) to maximize the workspace of a mechanism in terms of tilting 
an “optimal” set of design parameters (position of actuators, length 

chains, this gives, for a given position of the TCP, and infinite number 

redundancy”) exists for PKM but it has been used in a very limited 
may help in avoiding singularities. This option (called “kinematic 
of actuated joints positions. Selecting properly a set of joint positions 

is to choose among the possible sets of joint forces, one set of forces 
force sets exist for balancing the external load. In that case, the principle 
follows: for a given set of external load, an infinite number of joint 
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implementation of such a principle). 
This type of redundancy has been studied in more details for PKM 

than the previous one (for kinematic redundancy most efforts had been 
dedicated to the serial case) and several prototypes have been built, 
giving researchers the opportunity to evaluate control schemes. Indeed, 
control is here the key issue since actuation redundancy leads to over-
constrained mechanisms. Consequently internal forces may exist, and 
control schemes have to cope with that. 

Rotation amplification – In recent years, we have studied such an 
option in some details, by proposing different mechanism architectures 
based on one key principle: designing a travelling plate which includes 
passive revolute joints. This was the base of H4 architecture, a 
mechanism for “Scara-like motions”, already described. H4 is based on 4 
identical elementary chains (R[SS]2 chains) and on an articulated 
travelling plate equipped with 3 passive revolute joints. The last revolute 
joint is moved by a coupling system about a 360 degree range, which 
relates its motion to the motion of another passive revolute joint that has 
only a 90 degree range by using an additional gear-based amplification. 

Translation-to-Rotation transformation – It has been shown that 
H4 is an architecture providing Scara motions. However, some of its 
limitations can be pointed out: 
 When tool orientation changes, the Jacobean matrix condition number 

may vary a lot, leading to important changes in machine behaviour; 
 It has been proved that the relative positions of the four “spatial 

parallelograms” must be properly selected to avoid singular cases; 
 Its forward geometrical model has not been established in analytical 

form, except for specific arrangements. 
It was proposed in Krut et al., 2003, to build travelling plates with 

prismatic passive joints instead of revolute joints. It is always possible to 
transform this translational motion into a rotational one by means of 
rack-and-pinion, belt or cable-and-pulley devices. This solves most 
difficult points due to revolute joints: models are simpler, load balance is 
easier to achieve, general design is simpler, etc. 

This section of the paper introduces a novel mechanical architecture 
which combines two of the previous features. Eureka, the proposed 
machine, is redundant (6 actuators for 5 DoF provides actuation 
redundancy) and is based on an articulated three-body travelling plate 
with two linear joints. The machine offers 3 translations and 2 rotations 
with large tilting capabilities in two directions; the first axis of rotation 
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which guarantees a good stiffness (see Ryu et al., 1998, for a good 

.3 Combining Redundancy and T-to-R Transformation 



has a constant direction with respect to a fixed frame, the second axis is 
orthogonal to the first one. 

A detailed kinematic analysis is carried out and leads to geometrical 
conditions to be verified by the mechanism for proper functioning. Then a 
kinematic modelling illustrates the mechanism simplicity and provides a 
first evaluation of the machine’s workspace. Finally, preliminary 
information is given regarding practical implementation of this new 
architecture. 

The proposed machine is a 6-actuator / 5-dof parallel mechanism. In 
Fig. 1, a joint-and-loop graph is depicted: grey boxes represent actuated 
joints; white boxes passive joints and circles express a kinematic coupling 
between two joints. 
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As for Delta and H4 architectures, the actuators are fixed on the base. 
Actuators may be rotational or linear; one S-joint per chain may be 
replaced by U-joint (to get rid of internal motions). One must notice the 
machine’s symmetrical architecture: the machine’s upper and lower parts 
are identically made of a “spatial-parallelogram” and two single rods. 
Each single rod is connected to the “spatial parallelogram”. 

Note that, in a general matter, the “spatial-parallelogram” chains 
2

parallelogram” made of  PR(RR)2R chains (as done on the Orthoglide, see 
Chablat et al., 2002) adds two constraints on the mechanism (3 
translations and 1 rotation remain feasible). 
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 chains) only add one constraint on a mechanism  
(3 translations and 2 rotations remain feasible) while a “spatial-
(that is, the P(SS)

Figure 1. Joint-and-loop graph. Figure 2. Kinematics scheme. 
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3.1 General Concept 



The travelling plate is the one introduced in Krut et al., 2003, with the 
I4L robot: while the two sub-parts shift one relatively to the other, a 
mechanical device transforms this motion into a rotation. Two types of 
travelling plates exist (see Fig. 3): Type 1 is made of two prismatic joints 
and two kinematically coupled rack-and-pinion systems. It has a 

symmetrical design. 
 

(a) Type 1 
 

(b) Type 2 

3.2 
Singularities analysis is often based on the analysis of the standard 

Jacobean matrices xJ  and qJ  representing the input-output velocity 
relationship: 
 q xJ q J x,  (1) 
where q  and  x  are respectively  the joint velocity vector and the 
operational velocity vector. 

But other kind of singularities can occur (Zlatanov et al., 1998). To 
reveal them, a deeper analysis is required. At first, we will recall the fact 
that “spatial parallelograms” can be seen in two different ways. The 
realistic case where spherical joints are modelled as 3-DoF joints and not 
as 2-DoF joints is considered here. Then, two types of modelling will be 
given: one suggesting that the linear guide is a cylindrical joint (isostatic 
modelling), and another assuming that it is a prismatic joint (over-
constrained modelling). In both cases, geometrical constraints, which 
must be fulfilled to get rid of internal singularities, will be derived. 

According to Hervé’s notations (see Hervé, 1999) about displacement 
subgroups, T  stands for the subgroup of spatial translations and 

( )X u  stands for the subgroup of Schoenflies displacements (or Scara 
motions), where u  is a unitary vector collinear to the rotation axis. If a 
closed loop mechanism is composed of two chains producing Schoenflies 
displacements with v u,  then: 
 ( ) ( )X X Tu v  (2) 
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Figure 3. Different possibilities of travelling plate. 

the parts. Type 2 is made up with one part less, but loses Type 1’s 
symmetrical design, which is good for balancing the loads among all  

A Remark on Singularity Analysis 



2

easily handled with such a technique since those chains correspond to 
Schoenflies subgroup. 

 

(a) RR(RR)2R 
 

(b) R(SS)2 

The case of machines with R(SS)2 chains (Fig. 4-b) is more complex: 
each chain provides 5 DoF, 3T-2R, and does not correspond to a group. 
Indeed, it is possible that the union ( ) of two 3T-2R chains generates a 
3T-3R motion. 

This implies the recourse to a more complex analysis when dealing 
with mechanisms based on R(SS)2 chains: for lack of space, this is 
recalled here, but the reader may find relevant information in Company 
et al., 2006. 

In this section, the focus is given to a particular design, where the six 
linear motors are all collinear with vector z

workspace in this particular direction. The selected geometrical 
parameters are as follows 0.45 mH , 0.08 mI  and 0.4 mJ

1. The values of geometrical parameters are: 0.05 mD , 0.06 mE  and 
1 0.05 m/radk . Note that the amplification ratio 1k  is chosen equal to 

D  in order to have same rotation capabilities for  and  (+/-90 degrees 
for this design). Lengths of rods are: 0.9 mil , {1, ,6}i . Actuators 
limits are: 0 1.3miq . Fig  5 presents the domain where the condition 
number of the normalized Jacobean matrix is smaller than 8 (note that 

by the actuators’ stroke). 
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e :  this guarantees a large

along the Z direction corresponding to z , the workspace is only limited 

 (See Fig. 2 
for geometrical parameters explanations). The travelling plate is of type 

Figure 4. Two ways to model “spatial parallelograms”. 

that is to say that such a mechanism will produce only three trans- 
lations. The case of machines with RR(RR) R chains (Fig. 4-a) is 
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3.3 Workspace Analysis 
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Figure 6. CAD View of the Eureka 

It could be interesting, for simplicity purposes, to connect the “single 
rods” directly to the travelling plate; however, such a practical design 
faces too many self-collisions. The machine depicted in Fig. 7 (left) shows 
such a practical design. Another architecture avoiding self-collisions is 
shown in Fig. 7 (right). It involves curved shapes of the single rods in 
order to avoid self-collisions. 

A prototype is about to be built. The practical design is extremely 
simple thanks to Linear motors (Fig. 6). Dimensions are the ones 
introduced for computing the workspace. Rods and travelling plate are 
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prototype. 

Figure 7. Self-collision-free design #1 and #2. 

3.4 Practical Design Considerations 



made of aluminium. Instead of using rack-and-pinion systems, the 
mobile platform has been equipped with cable-pulley devices. This 
kinematics provides the same displacements as those of the Tricept 
robot. This design is well suited for the manipulation of light objects, but 
other applications are still possible. 

A design of a haptic master arm based on this kinematics is proposed 
in Fig. 8. It uses revolute actuators instead of prismatic ones, so the 
footprint is reduced. DD motors are used in order to reduce friction. The 
required range for angular displacements is +/ 45 degrees. This allows 
the use of an articulated travelling plate based on a planar parallelogram 

provides three Translations plus two Rotations (3T-2R). The missing 
rotation (to get the complete master arm) is obtained using a carried 
revolute axis, located directly on the ending stick. This is similar to the 
design of classical master arms, such as the PHANToM (SensAble 
Technologies). 

 

 

In this paper, several techniques for reaching high tilting angles have 
been presented, with a focus on solutions related to articulated travelling 
plates. Even though such results are still at an early stage of 
development, they show that it might be possible to use (i) on the one 
hand, travelling plates embedding passive joints which allows local 
motion amplification, and (ii) on the other hand, actuation redundancy as 
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to provide the desired rotation. The translation to rotation trans- 
formation is then suppressed and friction reduced. The Eureka base 

Figure 8. CAD view of the Eureka haptic arm. 
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–

4. Conclusion 



a way to overcome some singular positions that usually limit the range of 
motion. 
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MOBILITY AND CONNECTIVITY

Abstract This contribution provides new definitions of infinitesimal mobility and
connectivity of kinematic chains. These definitions are straightforwardly
connected with accepted definitions of finite mobility and connectivity.
Further, screw theory is applied to the determination of the infinitesimal
mobility and connectivity of multi-loop linkages. These results provide
a guide for the determination of the finite mobility and connectivity of
general topology of multiloop linkages, one of the important remaining
problems in mobility theory.

Keywords:

1. Introduction
The last three years have seen a flurry of studies about mobility and

connectivity of kinematic chains. For the most part, these analyses have
been focused on single-loop kinematic chains and parallel platforms.
Most of the few studies about mobility and connectivity of general mul-
tiloop linkages deal with the mobility and connectivity determined from
their velocity analysis. It is well known that the information gathered
via velocity analysis of any class of kinematic chains does not provide
conclusive information about their mobility and connectivity. In this

© 2006 Springer. Printed in the Netherlands.
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contribution, it is shown that higher analyses, in particularorder
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noted that Wohlhart, 1999 and Wohlhart, 2000, employed higher order
analyses to shed light into the characteristics of singular positions of
fully parallel platforms. In contrast, in this contribution the authors are
interested in general topology multiloop linkages. Further, the higher
order analyses are employed, in addition, as an important aid in the
determination of their mobility, a problem that remain unsolved in this
general case.

2. Mobility and Connectivity
In this section, a review of the concepts of mobility and connectivity

as well as new definitions of infinitesimal mobility and connectivity are
presented.

Definition 1. Consider a single-loop or multiple loop kinematic
chain. The finite mobility of the chain, denoted by MF , in a given
configuration is the number, minimum and necessary, of scalar variables
required to determine the pose, with respect to a link regarded as refer-
ence, of all the remaining links of the kinematic chain.

In our approach, the finite mobility depends not only on the kinematic
chain, but also of the configuration of the kinematic chain to be analyzed,
and it becomes a property of the configuration of the kinematic chain
and its neighborhood. This definition is motivated by the presence of
kinematotropic chains, Galletti and Fanghella, 2001, and differs from the
definition, usually presented in undergraduate and graduate textbooks,
and adopted by Gogu, 2005.

Consider now the velocity analysis equation of the kinematic chain,
in a given configuration, which can be written as follows

J�ω = �0, (1)

where, the Jacobian matrix, J , is a matrix with as many columns as
screws associated with the kinematic pairs of the chain and as many rows
as fundamental circuits and loops of the kinematic chain, multiplied by
6. Additionally, �ω is the vector of joint rates, translational or angular,
associated with the screws of the chain, and the vector �0 has the same
number of rows as the Jacobian matrix.

Definition 2. Consider a kinematic chain whose velocity analysis
equation is given by Eq. 1. Then, the kinematic chain has first order
infinitesimal mobility if there exists a vector �ω1 �= �0 that satisfies the
Eq. 1. Moreover, the number of independent components of the vector
�ω1 determines the number of first order degrees of freedom, or first

acceleration analysis, can be successfully employed in shedding light on
the mobility and connectivity of general multiloop linkages. It should be
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order infinitesimal mobility, denoted by M1, of the chain in a given
configuration.

Consider now the acceleration analysis equation of the kinematic chain
in the same given configuration, which can be written as follows

J�̇ω = − $L, (2)

where, $L is the Lie screw that contains terms of the form [ωi $i ωj $j ],
where the bracket represents the dual motor product or Lie product,

Unlike the velocity analysis equation, the accel-
eration analysis equation is non-homogeneous. Further, the solution of
a non-homogeneous linear system is given by the sum of the subspace
solution of the associated homogeneous system and a particular solution

associated homogeneous linear system is given by

J�̇ω = �0. (3)

Therefore, a vector �̇ω whose components are numerically equal to those
of any of the vectors �ω1, solution of the Eq. 1, is also a solution of Eq.
3. Furthermore, a necessary and sufficient condition for the Eq. 2 to
have a particular solution is given, Bentley and Cooke, 1971, by

Rank(J) = Rank(J, $L). (4)

If Rank(J) is less than the number of matrix rows, Eq. 4 frequently im-
poses additional conditions over the components of the vector �ω1. These
additional conditions require that one or more of the independent com-
ponents of �ω1 satisfy additional equations, frequently, these conditions
require that one or more of the independent components of �ω1 be zero.
Let �ω2 be the solution of both, the velocity and the acceleration analy-
ses equations. This result, provides the rationale for defining the second
order infinitesimal mobility of the chain.

Definition 3. Consider a kinematic chain in a given configuration,
such that the velocity and acceleration analyses equations are given by
Eqs. 1, 2. The chain has a second order infinitesimal mobility if there
is a non-zero vector �ω2 that satisfies both equations. Furthermore, the
number of independent components of the vector �ω2 determines the num-
ber of second order degrees of freedom, or second order infinitesimal
mobility, denoted by M2, of the chain in a given configuration.

Similarly, it is possible to define similar concepts regarding the con-
nectivity.

Consider a kinematic chain in a given configuration.
The finite connectivity between a pair of links (i, j), in the kinematic
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chain is the minimum and necessary number of joint – scalar – variables
that determine the pose of one link with respect to the other, and it if
denoted as CF (i, j).

Consider an arbitrary kinematic chain and assume that (i, j) is an
arbitrary pair of links of the chain. Further, assume that the velocity
analysis of the chain has been solved and that the unique velocity state,
i�V j

1 , of link j with respect to link i, following all possible paths between
links i and j has been determined. The velocity state i�V j

1 depends on
independent variables that solve the velocity analysis solution, contained
in �ω1. These elements are linear or angular velocities associated with
the kinematic pairs of the chain. Further, i�V j

1 is a vector space. Then
it is possible to define the first order infinitesimal connectivity.

Consider a kinematic chain in a given configuration

tivity between links (i, j), denoted by C1(i, j), is defined as

C1(i, j) = dim(i�V j
1 ). (5)

Consider a kinematic chain in a given configuration
and let (i, j) be a pair of links. Further, assume that the velocity and
acceleration analyses of the chain has been solved. The number of in-
dependent variables of the vector �ω2 might be less than the number of
independent variables of the vector �ω1. Assume that the unique velocity
state of link j with respect to link i, using the solution of the velocity
and acceleration analyses �ω2, denoted by i �V2

j
, is also known. Then,

their second order infinitesimal connectivity, denoted by C2(i, j),
is defined by

C2(i, j) = dim(i �V2
j
). (6)

Higher order mobilities and connectivities can be defined accordingly.

3. Mobility and Connectivity in Multiloop
Linkages

Consider the multiloop spatial kinematic chain shown in Fig. 1, pro-
posed by Fayet, 1995 and used by Wohlhart, 2004. The chain has two
spherical pairs, four cylindrical pairs, a planar pair and three revolute
pairs.
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and let (i, j) be a pair of links. The first order infinitesimal connec---
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Locating the origin of the coordinate system at point A, the screws
associated with the kinematic pairs are given by

A1 5$5a = (1, 0, 0; 0, 0, 0), B1 4$4a = (1, 0, 0; 0, 1, 0),
A2 5a$5b = (0, 1, 0; 0, 0, 0), B2 4a$4b = (0, 1, 0;−1, 0, 0),
A3 5b$4 = (0, 0, 1; 0, 0, 0), B3 4b$3 = (0, 0, 1; 0, 0, 0),
C1 1$1b = (0, 0, 0; 1, 0, 0), D1 2$2a = (0, 0, 0; 0, 1, 0),
C2 1b$1c = (0, 0, 0; 0, 1, 0), D2 2a$1 = (0, 1, 0; 0, 0, 1),
C3 1c$6 = (0, 0, 1;−1, 0, 0), E1 1$1a = (0, 0, 0; 0, 1, 0),
F 3$2 = (0, 1, 0;−1, 0, 1), E2 1a$5 = (0, 1, 0; 0, 0, 0),
G1 6$6a = (0, 0, 0; 0, 1, 0), H 8$7 = (0, 0, 1; 1, 1, 0),
G2 6a$4 = (0, 1, 0;−1/2, 0, 0), J1 7$7a = (0, 0, 0; 0, 1, 0),
K 6$8 = (0, 1, 0;−1/2, 1, 0), J2 7a$3 = (0, 1, 0;−1, 0, 0),

where the screws 5$5a, 5a$5b and 5b$4 correspond to the spherical pair
located in point A. Similarly, for the remaining kinematic pairs. Up to
the velocity analysis, the approach follows that proposed by Wohlhart,

chain is shown in Fig. 2. The graph associates links with vertex and
kinematic pairs with edges.
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Figure 1. Kinematic chain proposed by Fayet and used by Wohlhart.
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From this graph, and following the loops, it is possible to find the
velocity analysis equation for the kinematic chain given, in matrix form,
by

J �ω = �0 or

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5$5a − 5$5a $0
5a$5b − 5a$5b $0
5b$4 − 5b$4 $0
4$4a $0

− 4$4a

4a$4b $0
− 4a$4b

4b$3 $0
− 4b$3

3$2 $0 $0
2$2a $0 $0
2a$1 $0 $0
1$1a − 1$1a $0
1a$5 − 1a$5 $0

$0
1$1b $0

$0
1b$1c $0

$0
1c$6 $0

$0
6$6a − 6$6a

$0
6a$4 − 6a$4

$0 $0
6$8

$0 $0
8$7

$0 $0
7$7a

$0 $0
7a$3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⎦

T ⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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⎢

⎢

⎢

⎢
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5ω5a

5aω5b

5bω4

4ω4a

4aω4b

4bω3

3ω2

2ω2a

2aω1

1ω1a

1aω5

1ω1b

1bω1c

1cω6

6ω6a

6aω4

6ω8

8ω7

7ω7a

7aω3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⎥
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⎥

⎥
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⎥
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⎦
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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0
0
0
0
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, (7)
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Figure 2. Graph of the kinematic chain proposed by Fayet and used by Wohlhart.
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where $0 is a six dimensional vector whose elements are all equal to zero.
The solution of the velocity analysis solution, given by Eq. 7, is found

to be

5ω5a = 0, 5aω5b = 2 1ω1b + 2 4bω3 − 1aω5,

5bω4 = − 4bω3, 4ω4a = 0,
4aω4b= − 2 1ω1b − 2 4bω3, 3ω2 = 2 1ω1b + 2 4bω3,

2ω2a = − 1ω1a, 2aω1 = − 2 1ω1b − 2 4bω3,

1cω6 = − 4bω3, 6ω6a = 1ω1a − 1bω1c,

6aω4 = 2 1ω1b + 2 4bω3, 8ω7 = 4bω3,

7ω7a = 1ω1a − 1bω1c − 4bω3 − 2 1ω1b, 7aω3 = − 2 1ω1b,

6ω8 = 2 1ω1b,

where, 1ω1b, 1bω1c, 1ω1a, 1aω5 and 4bω3 can be selected arbitrarily. There-
fore, the first order mobility is, M1 = 5. Furthermore, the first order
connectivity matrix is given by

CI =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 2 2 3 2 3 3 3

2 0 1 2 2 3 3 3

2 1 0 2 2 3 2 3

3 2 2 0 2 2 2 2

2 2 2 2 0 4 3 3

3 3 3 2 4 0 2 1

3 3 2 2 3 2 0 1

3 3 3 2 3 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (8)

The acceleration analysis equation has a solution, if and only if, the
augmented matrix, Ja, obtained by augmenting the coefficient matrix,
J , with the column given by LS =

[

$L1 $L2 $L3
]T , or

Ja =
[

J LS
]

(9)

where, $L1, $L2 and $L3 are the Lie screws of the three loops of the
kinematic chain, satisfy the condition

Rank(Ja) = Rank(J). (10)

This condition yields
4bω3 = 1ω1b = 0. (11)

Therefore, the solution of the velocity analysis that takes into consid-
eration the acceleration analysis condition is given by Eq. 11 and the
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following additional results

5ω5a = 0, 5aω5b = − 1aω5, 5bω4 = 0,
4ω4a = 0, 4aω4b = 0, 3ω2 = 0,
2ω2a = − 1ω1a, 2aω1 = 0, 1cω6 = 0,
6ω6a = 1ω1a − 1bω1c, 6aω4 = 0, 8ω7 = 0,
7ω7a = 1ω1a − 1bω1c, 7aω3 = 0, 6ω8 = 0,

Thus, only 1ω1a, 1aω5 and 1bω1c can be arbitrarily selected. Hence, the
second order infinitesimal mobility is M2 = 3. Further, the second order
infinitesimal mobility matrix is given by

CII =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1 1 2 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

2 1 1 1 0 2 2 2

1 1 1 1 2 0 0 0

1 1 1 1 2 0 0 0

1 1 1 1 2 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (12)

Finally, it will be shown that the results obtained up to this point,
allow to determine the finite mobility and connectivity of this multiloop

The
infinitesimal mechanical liaisons associated with all the possible four
paths, I, II, III, IV , between links 1, regarded as the fixed platform,
and 5, regarded as the moving platform, are the column spaces of the
matrices

1V 5
I =

[

1$1a 1a$5
]

, 1V 5
II =

[

1$1b 1b$1c 1c$6 6$6a 6a$4 4$5b 5a$5b 5$5a
]

,

1V 5
III =

[

1$2a 2a$2 3$2 4b$3 4a$4b 4a$4 5b$4 5a$5b 5$5a
]

,

1V 5
IV =

[

1$1b 1b$1c 1c$6 6$8 8$7 7$7a 7a$3 4b$3 4a$4b 4a$4 5b$4 5a$5b 5$5a
]

.

The absolute mechanical liaison is given by

1V 5
a = 1V

5
I ∩ 1V

5
II ∩ 1V

5
III ∩ 1V

5
IV =

[

0 1 0 0 0 0
0 0 0 0 1 0

]T

(13)
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kinematic chain. For that purpose, recent results on the mobility of

C.R. Diez-Martínez et al.



It is easy to recognize 1V 5
a as the subalgebra, of the Lie algebra of the

Euclidean group, se(3), associated with cylindrical displacements along
the y axis. This result accounts for two of the degrees of freedom, from
the three determined by the second order infinitesimal mobility. They
are the finite displacements associated with the screws 1$1a and 1a$5

translational motion, along the same axis y, and produced by the screws
1b$1c, located in point C, and 7$7a, located in point J , while the revolute
joints located between them remain inactive. This degree of freedom is
passive when the fixed and moving platforms are links 1 and 5.

The conclusion is that the finite mobility of the multiloop linkage is
MF = M2 = 3. Therefore, the finite connectivities among the diferent
links, CF (i, j) are given by the elements of the second order infinitesimal
connectivity matrix CII .

This contribution has shown that it is possible to provide higher-order
definitions of infinitesimal mobility and connectivity that are congruent
with the usual definitions of finite mobility and connectivity. They pro-
vide a guide for the computation of finite mobility of general multiloop
linkages, this is, in the opinion of the authors, the most difficult task in
mobility computations. The results have been verified using Adams c© .

The first author thank Conacyt for the support of his M. Sc. studies.
The authors thank Concyteg for the support of several projects, includ-
ing a thesis scholarship for the first author. This work is based on his
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Abstract We study Jacobian inverse kinematics algorithms for mobile manipu-
lators composed of a nonholonomic mobile platform and a holonomic
onboard manipulator. In general, the Jacobian algorithms converge lo-
cally, often producing weird end effector and platform trajectories. In
the paper we use the existing theory of Newton algorithms in order to
improve the quality of convergence of the Jacobian algorithms. Specifi-
cally, we examine a strategy of adjusting the steplength in the Jacobian
pseudoinverse algorithm that results from the affine covariant Lipschitz
condition imposed on the mobile manipulator’s Jacobian. The affine
covariant strategy is verified by extensive computer simulations and
compared with the constant length step and a simple Armijo strategies.

Keywords:

1. Introduction
In this paper by a mobile manipulator we call a robotic system com-

posed of a nonholonomic mobile platform and a stationary manipula-

the platform and the holonomic kinematics of the onboard manipulator
are modelled as a driftless control system with outputs. The end-point
map of this system determines the kinematics of the mobile manipulator
Tchoń and Jakubiak, 2003. The Jacobian inverse kinematics algorithm
for mobile manipulators are conveniently devised using the continua-

© 2006 Springer. Printed in the Netherlands.
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tion method Chitour and Sussmann, 1998; Divelbiss et al., 1998. In
this framework, an inverse kinematics algorithm is determined by a dy-
namic system operating in an inifinite dimensional Hilbert configuration
space. Computable inverse kinematics algorithms make use of a Ritz
approximation of platform controls by truncated orthogonal series. The
Jacobian algorithms usually have local convergence and often produce
unrealistic platform and end effector trajectories Tchoń and Jakubiak,
2003. The fact that inverse kinematics algorithms for stationary manip-
ulators and mobile platforms are of the Newton type is well known, see
e.g. Isobe et al., 1992; Divelbiss et al., 1998; Duleba and Sasiadek, 2003.
In particular in Divelbiss et al., 1998 the line searching has been men-
tioned as a method of adjusting the steplength of the inverse kinematics
algorithm for a mobile platform.

Motivated by these circumstances in this paper we are attempting
at improving the quality of convergence of Jacobian inverse kinematics
algorithms by appropriate steplength adjustment. Our approach relies
on existing results for Newton algorithms Deulfhard, 2004. We consider
a general Jacobian inverse kinematics algorithm associated with a given
right inverse of the Jacobian. Then we formulate the affine covariant
condition and obtain a prediction-correction strategy of the steplength
adjustment. This strategy is applied to a mobile manipulator composed
of a kinematic car platform and an RTR onboard manipulator, driven by
the inverse kinematics algorithm based on the Jacobian pseudoinverse.
The affine covariant strategy is examined by computer simulations and
compared with two other strategies. Our conclusions are twofold. First:
the variable steplength improves both the speed and the quality of con-
vergence of the Jacobian pseudoinverse algorithm in comparison to the
case of constant steplength. Second, although generally profitable, the
affine covariant strategy is sometimes overpassed by a simple Armijo
choice of the steplength from among a finite set of possibilities.

The composition of this paper is the following. Section 2 recalls ba-
sic concepts of the endogenous configuration space approach. Section 3
presents the affine covariant steplength adjustment strategy for a gen-
eral Jacobian inverse kinematics algorithm. This strategy is specified to
the Jacobian pseudoinverse algorithm and examined by computer simu-
lations in section 4. The paper is concluded with section 5.

2. Basic oncepts
We shall study mobile manipulators whose kinematics are represented

by a driftless control system with outputs,

q̇ = G(q)u =
∑m

i=1 gi(q)ui, y = k(q, x). (1)
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In (1) q ∈ Rn, x ∈ Rp and y ∈ Rr denote, respectively, generalized
coordinates of the platform, joint positions of the manipulator, and the
end effector location in the taskspace. The control functions u(t) of
the platform and joint positions x of the onboard manipulator, acting
over a control time horizon T > 0, define the endogenous configuration
space X = L2

m[0, T ]×Rp. The space X equipped with the inner product

< (u1(·), x1), (u2(·), x2) >=
∫ T

0 uT
1 (t)u2(t)dt+xT

1 x2 becomes an infinitely
dimensional Hilbert space with induced norm

||(u(·), x)||2 = (u(·), x), (u(·), x) > . (2)

An endogenous configuration (u(·), x) ∈ X determines a platform trajec-
tory q(t) = ϕq0, t(u(·)) and an end effector trajectory y(t) = k(q(t), x).
The instantaneous kinematics Kq0,T : X → Rr of the mobile manipulator
are defined as the end-point map of (1), i.e.

Kq0,T (u(·), x) = y(T ) = k(ϕq0,T (u(·)), x). (3)

The kinematics (3) define end effector positions and orientations of the
mobile manipulator steered by the control (u(·), x) that can be reached
at T . By differentiation of the kinematics Kq0,T (u(·), x) we obtain the
analytic Jacobian

Jq0,T (u(·), x)(v(·), w) = C(T, x)

∫ T

0
Φ(T, s)B(s)v(s)ds+D(T, x)w. (4)

The Jacobian may be interpreted as the output reachability map at T
of the linear approximation

ξ̇ = A(t)ξ + B(t)v, η = C(t, x)ξ + D(t, x)w, (5)

to system (1) along the control-state trajectory (u(t), x, q(t)), initial-
ized at ξ0 = 0. The matrices appearing in (5) have the standard
form A(t) = ∂

∂q
(G(q(t))u(t)), B(t) = G(q(t)), C(t, x) = ∂k

∂q
(q(t), x),

D(t, x) = ∂k
∂x

(q(t), x), while matrix Φ(t, s) in (4) satisfies the evolution

equation ∂
∂t

Φ(t, s) = A(t)Φ(t, s) with initial condition Φ(s, s) = In. Let

cobian Jq0,T (u(·), x) : X →Rr is surjective. This is equivalent to the
full rankness of the dexterity matrix

Dq0,T (u(·), x) =

C(T, x)

∫ T

0
Φ(T, s)B(s)BT(s)ΦT (T, s)dsCT(T, x) + D(T, x)DT (T, x);
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otherwise (u(·), x) is referred to as singular. The inverse kinematic prob-
lem for the mobile manipulator (1) consists in determining an endoge-
nous configuration (ud(·), xd) such that for a given location yd of the
end effector Kq0,T (ud(·), xd) = yd. Jacobian inverse kinematics algo-
rithms for mobile manipulators are conveniently derived using the con-
tinuation method. Among them, the most often used is the Jacobian
pseudoinverse algorithm Tchoń and Jakubiak, 2003; its alternative is
the extended Jacobian algorithm Tchoń and Jakubiak, 2005. The Jaco-
bian pseudoinverse algorithm relies on the Jacobian pseudoinverse

(J#
q0,T (u(·), x)η)(t) =

[
BT (t)ΦT (T, t)CT (T, x)

DT (T, x)

]
D−1

q0,T (u(·), x)η

and assumes the following form

d

dθ

(
uθ(t)
x(θ)

)
= −γJ#

q0,T (uθ, x(θ))e(θ))(t), (6)

where γ > 0 denotes the steplength, and e(θ) = Kq0,T (uθ(·), x(θ)) − yd

is the taskspace error. For the algorithm exploits the inversion of the
dexterity matrix, it is defined only for regular configurations of the
mobile manipulator. The dynamic system (6) produces a trajectory
(uθ(·), x(θ)) ∈ X parameterized by θ ∈ R. A solution (ud(t), xd) to
the inverse kinematic problem is computed as a limit (ud(t), xd) =
limθ→+∞ (uθ(t), x(θ)) .

3. Steplength djustment
Let K = Kq0,T : X −→ Y defined by (3) describe the kinematics of a

mobile manipulator. For simplicity of notation, in this section we shall
denote endogenous configurations by z = (u(·), x) and omit subscripts.
At a regular configuration z ∈ X the Jacobian (4) has a right inverse
D K#(z) : Rr → X that determines an associated Jacobian inverse
kinematics algorithm

d z(θ)

d θ
= −γD K#(z(θ))e(θ), z(0) = z0. (7)

As before, the solution of the inverse kinematic problem is obtained as

a limit zd = limθ→ +∞ z(θ). In particular, when D K# = J#
q0,T , the

algorithm (7) coincides with the Jacobian pseudoinverse algorithm (6).
After discretization the algorithm (7) becomes a Newton algorithm

z(k + 1) = z(k) − γD K#(z(k))e(k), k = 0, 1, 2, . . . . (8)

The quantity D K#(z(k))e(k) appearing in (8) is called the Newton
direction at the step k. It is known that the Newton direction guarantees
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a gradual decrease of the taskspace error from step to step, provided that
the steplength γ is chosen properly. Relying on Deulfhard, 2004 we shall
consider two strategies of the steplength choice in (8). The first strategy
is called the Armijo strategy that consists in defining for a fixed integer
m a set Γm = {1, 1

2 , . . . , 1
2m

} of candidate steplengths and choosing at

every step of the algorithm γ = argminα∈Γm
||K(z−αDK#(z)e)−yd||

2.
A more sophisticated strategy may be based on the affine covariant

Lipschitz condition imposed on D K,

||D K#(z)(D K(y) − D K(w))v|| ≤ ω||y − w||||v||, (9)

where || · || denotes the norm (2) in X , v, w, y, z ∈ X , and ω > 0 is a Lips-
chitz constant. It may be checked that in a singularity-free region of the
endogenous configuration space the affine covariant condition is satisfied.
However, for the reason that usually the Lipschitz constant ω in (9) is
not available, the computation of γ relies on some estimates achieved in
a prediction-correction procedure Deulfhard, 2004, culminating in the
following algorithm of the steplength adjustment. The algorithm is ini-
tiated at z0 with γ0

1 = 1. At the step k the algorithm returns z0(k),
computes e0(k) = K(z0(k)) − yd, and makes a prediction γ0

k . Then
the predicted value of γ0

k is subject to a series of corrections. Suppose
that after the ith correction step the algorithm proposes a steplength
γi

k. Then the algorithm finds zi(k) = z0(k)−γi
kD K#(z0(k))e0(k), com-

putes ei(k) = K(zi(k)) − yd, and accomplishes the (i + 1)st correction
as γi+1

k = min{γi
k/2, 1/hi+1

k }, where

hi+1
k =

2||D K#(z0(k))ei(k) − (1 − γi
k)D K#(z0(k))e0(k)||

(γi
k)

2||D K#(z0(k))e0(k)||
.

These corrections are made a preassumed number of times yielding an
i∗ such that γi∗

k = argmin i||e
i(k)||2. Next, given γi∗

k the algorithm sets
z0 = z0(k+1) = zi∗(k), e0 = e0(k+1) = K(z0(k+1))−yd, and computes
a prediction for the step k + 1 as γ0

k+1 = min{1, 1/h0
k+1}, where

h0
k+1 =

||D K#(z0)(D K(z0) − D K(z0(k)))D K#(z0)e0||

γi∗

k ||D K#(z0(k))e0(k)||
.

In the next section we shall apply the above procedure to the Jacobian
pseudoinverse algorithm (6) driving a specific mobile manipulator.

4. Computer imulations
In simulations we shall use a Ritz approximation of platform control

functions by truncated Fourier series: u1(t) = λ10+
∑2

j=1 λ1 2j−1 sin jωt+
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λ1 2j cos jωt, u2(t) = λ20 + λ21 sin ωt + λ22 cos ωt, where ω = 2π
T

. For
a suitable matrix P (t) the control can be written as u(t) = P (t)λ,
where the control parameters λ = (λ10 . . . , λ14, λ20, λ21, λ22) ∈ R8. The
Ritz approximation defines a finite-dimensional, band-limited endoge-
nous configuration space X̃ ∼= R11, and yields the band-limited kine-
matics K̃q0,T (λ, x) and the band-limited analytic Jacobian

J̃q0,T (λ, x) =

[
C̃(T, x)

∫ T

0
Φ̃(T, s)B̃(s)P (s)ds, D̃(T, x)

]
.

In consequence, a discrete band-limited Jacobian pseudoinverse inverse
kinematics algorithm (6) will take the following form

(
λk+1

xk+1

)
=

(
λk

xk

)
− γJ̃T

q0,T (λk, xk)D̃
−1
q0,T (λk, xk)ẽk, (10)

where ẽ = K̃q0,T (λ, x) − yd and D̃q0,T (λ, x) = J̃q0,T (λ, x)J̃T
q0,T (λ, x).

The inverse kinematics algorithm (10) has been applied to a mobile
manipulator composed of a kinematic car platform carrying an RTR
manipulator, portrayed in Figure 1. The vector q = (q1, q2, q3, q4) =

Figure 1.

(x, y, ϕ, ψ) ∈ R4 includes the position and the orientation of the platform
and the heading angle of its front wheels. The vector x = (x1, x2, x3) ∈
R3 denotes joint positions of the onboard manipulator. Cartesian posi-
tions of the end effector y = (y1, y2, y3) ∈ R3 serve as taskspace coor-
dinates. The representation (1) of kinematics, excluding the side-slip of
platform wheels, takes the following form

q̇1 = u1 cos q3 cos q4, q̇2 = u1 sin q3 cos q4, q̇3 = u1 sin q4, q̇4 = u2,

y = (q1 + L cos(q3 + x1), q2 + L sin(q3 + x1), x2 + l3 sinx3),

where L = l2 + l3 cos x3. In simulations the length of the car l = 1, the
link lengths of the onboard manipulator l2 = 0.5, l3 = 1, and the control
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time horizon T = 1. The initial platform coordinates q0 = (0, 10, 0, 0),
the initial joint positions x0 = (0, 2, π/4), the desired taskspace point
yd = (0, 0, 1). The algorithm has been initiated at diverse λ10, λ20 lying
in a square [−100, +100]2, while remaining λij = 0. Table 1 displays
the number of steps after which yd has been reached within the accu-
racy of 10−6. The symbol > 2000 means that within 2000 iterations
the convergence has not been observed. For comparison, the Jacobian
pseudoinverse algorithm has been examined with constant steplength
γ = 1 and with the steplength governed by the Armijo strategy with
m = 5. Figure 2 shows platform and end effector trajectories obtained
for λ20 = −λ10 = 0.01 using the constant step and the affine covariant
strategies.

5. Conclusions
Assuming the affine covariant Lipschitz condition we have obtained

a strategy of steplength adjustment in Jacobian inverse kinematics al-
gorithms for mobile manipulators. This strategy has been implemented
for the Jacobian pseudoinverse algorithm and examined by computer
simulations. The examination has demonstrated that using a variable
steplength improves both the speed and the quality of convergence of

Table 1. Convergence of the Jacobian pseudoinverse algorithm

λ10 λ20 γ = 1 Arm cov λ10 λ20 γ = 1 Arm cov

100 100 136 14 13 100 100 17 22 16
10 10 11 11 11 10 10 37 70 40
1 1 100 27 29 1 1 276 132 94

0.1 0.1 295 25 113 0.1 0.1 249 331 65
0.01 0.01 152 28 52 0.01 0.01 1307 211 59
0.001 0.001 40 32 57 0.001 0.001 830 33 58
100 100 126 160 >2000 100 0 90 27 62
10 10 26 1158 117 10 0 90 334 145
1 1 138 60 20 1 0 91 302 26

0.1 0.1 241 22 47 0.1 0 101 30 89
0.01 0.01 115 86 54 0.01 0 205 40 58
0.001 0.001 177 427 46 0.001 0 332 29 55
100 100 509 310 344 100 0 189 360 62
10 10 78 573 142 10 0 353 29 167
1 1 75 26 1538 1 0 194 76 79

0.1 0.1 801 61 78 0.1 0 64 70 90
0.01 0.01 318 40 58 0.01 0 171 90 58
0.001 0.001 120 30 62 0.001 0 207 247 56
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Figure 2.

the algorithm in comparison to the case of constant steplength. When
the prediction-correction procedure produces very small steplenghts the
affine covariant strategy may be overpassed by a simple Armijo strat-
egy. The fact that no lost of convergence has been observed along with
the result of Chitour and Sussmann, 1998 on global convergence of the
Jacobian pseudoinverse algorithm for the mobile platform from Figure 1
may suggest that the examined algorithm also converges globally.
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KINEMATICS AND GRASPING USING
CONFORMAL GEOMETRIC ALGEBRA
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Abstract In this paper we introduce the conformal geometric algebra in the field of
robot grasping. It help us to tackle problems of object modelling, hand
kinematics and vision system using a unifying geometric language. We
present an grasp algorithm using velocity control.

1. Introduction
As the technology advances new mechanisms emerge that enable us

interact with a wider variety of objects, in this way new challenges re-
lated to object grasping planning arises. There are many approaches to
deal with this kind of problems based in shape primitives [Miller, 2003],
forces equilibrium [Borst, 1999] for cite two examples.
in how to obtain the optimal grasping points by means of mathemat-
ical modelling of the object and the manipulator. In this manner we
also obtain the hand (manipulator) pose. Conformal geometric Algebra
has been used in this work due to its powerful geometric representation
and algebraic richness of which helps greatly in the process of modelling
mechanical structures like the Barrett HandTM.

2.
In this paper we will specify a geometric algebra Gn of the n dimen-

sional space by Gp,q,r, where p, q and r stand for the number of basis
vector which squares to 1, -1 and 0 respectively and fulfill n = p+ q + r.

We will use ei to denote the vector basis i. In a Geometric algebra
Gp,q,r, the geometric product of two basis vector is defined as

eiej =

1 for i = j ∈ 1, · · · , p
−1 for i = j ∈ p + 1, · · · , p + q

0 for i = j ∈ p + q + 1, · · · , p + q + r.
ei ∧ ej for i �= j

Geometric algebra G4,1 can be used to treat conformal geometry in
a very elegant way. In this geometry an Euclidean vector space R

3

© 2006 Springer. Printed in the Netherlands. 

473
J. Lenar i  and B. Roth (eds.), Advances in Robot Kinematics, 473–480. 

The Geometric Algebra of n-D Space

We are working

-



is represented in R
4,1. This space has orthonormal vector basis given

by {ei} and eij = ei ∧ ej are bivectorial basis where e23, e31 and e12

correspond to the Hamilton basis. The unit Euclidean pseudo-scalar
Ie := e1 ∧ e2 ∧ e3, a pseudo-scalar Ic := IeE and the bivector E :=
e4e5. The conformal geometry is related to a stereographic projection in
Euclidean space. A stereographic projection is a mapping taking points
lying on a hypersphere to points lying on a hyperplane. In this case, the
projection plane passes through the equator and the sphere is centered
at the origin. To make a projection, a line is drawn from the north pole
to each point on the sphere and the intersection of this line with the
projection plane constitutes the stereographic projection. The points
are mapped to a point of conformal geometry by x = x+ 1

2 ‖x‖2 e∞ + eo.
More information about the conformal geometry in [Hestenes, 2001].

3. Barrett Hand Forward Kinematics
The direct kinematics involves the computation of the position and

orientation of the robot end-effector given the parameters of the joints.
The direct kinematics can be easily computed provided that the lines of
the axes of screws are given for more information [Bayro, 2000].

In order to introduce the kinematics of the Barrett HandTM , we show
the kinematic of one finger, in this example we will assume that the
finger is totally extended. Note that such an hypothetical position is
not reachable in normal operation.

We points x1o, x2o and x3o to describe the position of each union and
the end of the finger in the Euclidean space, see the figure 1. Here we
use Aw, A1,2,3 and Dw as the dimension of the finger’s components.

x1o = Awe1 + A1e2 + Dwe3, (1)
x2o = Awe1 + (A1 + A2)e2 + Dwe3, (2)
x3o = Awe1 + (A1 + A2 + A3)e2 + Dwe3. (3)

Figure 1.
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Once we have defined these points it is quite simple to calculate the
axes L1o,2o,3o, which will be used as motor’s axis. as you can see at the
figure 1.

L1o = −Aw(e2 ∧ e∞) + e12, (4)
L2o = (x1o ∧ e1 ∧ e∞) Ic, (5)
L3o = (x2o ∧ e1 ∧ e∞) Ic. (6)

when the hand is initialized the fingers moves away to the home position,
this is the angle Φ2 = 2.46 by the joint two and the angle Φ3 = 50
degrees by the joint three. In order to move the finger from this hypo-
thetical position to its home position the appropriate transformation is
as follows:

M2o = cos (Φ2/2) − sin(Φ2/2)L2o, (7)
M3o = cos (Φ3/2) − sin(Φ3/2)L3o. (8)

Once we have gotten the transformations, then we apply them to the
points x2o and x3o in order to get the points x2 and x3 that represents
the points in its home position, also the line L3 is the line of motor axis
in home position.

x2 = M2ox2oM̃2o, (9)

x3 = M2oM3ox3oM̃3oM̃2o, (10)

L3 = M2oL3oM̃2o. (11)

The point x1 = x1o is not affected by the transformation, the same
for the lines L1 = L1o and L2 = L2o see figure 2. Since the rotation

Figure 2. Barrett hand at home position

angles of both axis L2 and L3 are related, we will use fractions of the
angle q1 to describe their individual rotation angles. The motors of each
joint are computed using 2

35q4 to rotate around L1, 1
125q1 around L2 and
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1
375q1 around L3, these specific angle coefficients where taken from the
Barrett Hand user manual.

M1 = cos(q4/35) + sin(q4/35)L1, (12)
M2 = cos(q1/250) − sin(q1/250)L2, (13)
M3 = cos(q1/750) − sin(q1/750)L3. (14)

The position of each point is related to the angles q1 and q4 as follows:

x′
1 = M1x1M̃1, (15)

x′
2 = M1M2x2M̃2M̃1, (16)

x′
3 = M1M2M3x3M̃3M̃2M̃1. (17)

4. Grasping the bjects
In our example considering that the cameras can only see the surface

of the observed objects, thus we will consider them as bi-dimensional
surfaces which are embedded in a 3D space, and are described by the
function

→
H (s, t) = hx(s, t)e1 + hy(s, t)e2 + hz(s, t)e3 (18)

where s and t are real parameters in the range [0, 1]. Such parameteriza-
tion allows us to work with different objects like points, conics, quadrics,
or even more complex objects like cups, glasses, etc. The table 1 shows
some parameterized objects.

Particle
→
H= 3e1 + 4e2 + 5e3

Cylinder
→
H= cos(t)e1 + sin(t)e2 + se3

Plane
→
H= te1 + se2 + (3s + 4t + 2)e3

Table 1. Parameterized Objects

Due to that our objective is to grasp such objects with the Barrett
Hand, we must consider that it has only three fingers, so the problem
consists in finding three “touching points” for which the system is in
equilibrium during the grasping; this means that the sum of the forces
equals to zero, and also the sum of the moments. For this case, we
consider that there exists friction in each “touching point”.

If the friction is being considered, we can claim that over the surface
H(s, t) a set of forces exist which can be applied. Such forces are inside
a cone which have the normal N(s, t) of the surface as its axis (as shown
in Fig. 3). Its radius depends on the friction’s coefficient ‖F − Fn‖ ≤
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Figure 3.

−µ(|Fn|), where Fn = (F · N(s, t))N(s, t) is the normal component of
F . The angle θ for the incidence of F with respect to the normal can be
calculated using the wedge product, and should be smaller than a fixed
θµ

‖F ∧ N(s, t)‖
F · N(s, t)

≤ tan(θµ) (19)

We know the surface of the object, so we can compute its normal
vector in each point using

N(s, t) =
∂

→
H (s, t)

∂s
∧ ∂

→
H (s, t)

∂t
Ie (20)

In surfaces with lower friction, the angle θ is very small, then the value of

Figure 4.

F tends to its projection over the normal (F ≈ Fn). To maintain equilib-
rium, the sum of the forces must be zero (

∑3
i=1 ‖Fn‖N(si, ti) = 0). This

fact restricts the points over the surface in which it can be applied the
forces. This number of points is even more reduced if we are confronted
with the case when considering the unit normal (

∑3
i=1 N(si, ti) = 0) the

forces over the object are equal. Additionally, to maintain the equilib-
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rium, it must be accomplished that the sum of the moments is zero
3∑
i=1

H(s, t) ∧ N(s, t) = 0 (21)

The points on the surface having the same directed distance to the
center of mass of the object fulfill H(s, t)∧N(s, t) = 0. Due to the normal
in such points crosses the center of mass (Cm), it does not produce any
moment. Before determining the external and internal points, we must
compute the center of mass as follows

Cm =
∫ 1

0

∫ 1

0

→
H (s, t)dsdt (22)

Once that Cm is calculated we can establish next constraint

(H(s, t) − Cm) ∧ N(s, t) = 0 (23)

The values s and t satisfying (23) form a subspace called grasping
space. They accomplish that the points represented by H(s, t) are crit-
ical on the surface (being maximums, minimums or inflections). In this
work we will not consider other grasping cases like when they do not
utilize extreme points other when friction cones are being considered.
This issues will be treated in future work. The equation (23) is hard to
fulfill due to the noise, and it is necessary to consider a cone of vectors.
So, we introduce an angle called α,

‖(H(s, t) − Cm) ∧ N(s, t)‖
(H(s, t) − Cm) · N(s, t)

≤ tan(α) (24)

We use equation (24) instead of (23), because it allows us to deal with
errors or data lost. The constraint imposing that the three forces must
be equal is hard to fulfill because it implies that the three points must
be symmetric with respect to the mass center. When such points are
not present, we can relax the constraint to allow that only two forces
are equal in order to fulfill the hand’s kinematics equations. Then,
the normals N(s1, t1) and N(s2, t2) must be symmetric with respect
to N(s3, t3).

N(s3, t3)N(s1, t1)N(s3, t3)−1 = N(s2, t2) (25)

Once the three grasping points (P1 = H(s1, t1), P2 = H(s2, t2), P3 =
H(s3, t3)) are calculated, it is really easy to determine the angles at the
joints in each finger. To determine the angle of the spread (q4 = β) for
example we use

cos β =
(p1 − Cm) · (Cm − p3)

|p1 − cm| |Cm − p3| , sin β =
|(p1 − Cm) ∧ (Cm − p3)|

|p1 − cm| |Cm − p3| , (26)
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Figure 5. Object relative position

desired finger without the need of solving any kind of inverse kinematics
equations C. Canudas, G. Bastin, B. Siciliano. Given the the differential
kinematics equation

Ẋ ′
3 =

[
1

125X ′
3 · L′

2 + 1
375X ′

3 · L′
3 − 2

35X ′
3 · L′

1

] [
q̇1

q̇4,

]
(27)

If we want to reach the point H(s1, t1), we require that the suitable
velocity at the very end of the finger should be proportional to the error
at each instance Vi = −0.7(X ′

3 − H(s1, t1)). This velocity is mapped
into the phase space by means of using the Jacobian inverse. Here we
use simply the pseudo-inverse. with j1 = 1

125X ′
3 · L′

2 + 1
375X ′

3 · L′
3 and

j2 = − 2
35X ′

3 · L′
1[

∆q1

∆q4

]
= (j1 ∧ j2)

−1 ·
[

Vi ∧ j2

j1 ∧ Vi

]
(28)

Applying this control rule, one can move any of the fingers at a desired
position above an object, so that an adequate grasp is accomplish.

5. Results
In this section we present the experimental results of our grasping

algorithm. In Figure 6, the inferior images correspond to the simulated
scenario and the other ones are real. In this experiment the object was
suspended manually above the grasping hand, simply to check whether
the has been opened correctly or not. We can see that for each object
the algorithm manages to find the singular grasp points, so that the
object is hold properly and in equilibrium. Note that the found points
correspond to the expected grasping points.
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or it is possible to implement a control law which will allow to move the



Figure 6.

6. Conclusion
Using conformal geometric algebra we show that it is possible to find

three grasping points for each kind of object, based on the intrinsic
information of the object. The hand s kinematic and the object structure
can be easily related to each other in order to manage a natural and
feasible grasping where force equilibrium is always guaranteed.
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Abstract In this paper, we present a new methodology to identify the rigid domains in 
a protein molecule. This procedure also identifies the flexible domains as 
well as their degree of flexibility. Identification of rigid domains significantly 
simplifies the motion modeling procedures (such as molecular dynamics) 
that use geometric features of a protein as variables.  

Keywords: 

1.  Introduction  
  
Proteins are the building blocks that play an essential role in a variety 

of basic biological functions such as signal transduction, ligand binding, 
catalysis, regulation of activity, transport of metabolites, formation of 
larger assemblies and cellular locomotion. Its internal motions results in 
conformational transitions and often relate structure to its function. 
Hence, comprehending the protein internal motion is the key to the 
understanding of the structural relationship of these natural machines to 
their function. Protein molecules have always been observed with rigid 
domains connected by flexible portions as shown in the figure 1.  
Kinematics serial chain model of proteins has been established and 
justified in few of our previous works (Kazerounian 2004; Kazerounian, 

Kazerounian June 2002).  As the long snake type serial linkage folds, 
new bonds are created between atoms of the residues that are not 
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neighbors. These bonds transform the open loop linkage to a linkage with 
some relatively large links (rigid body domains) and closed kinematic 
loops. These bonds are generally categorized as follows: 1) Hydrogen 
Bonds (main chain to main chain,  main chain to Side chain and side 
chain to side chain), and 2) Disulphide bonds. 

To gain insight into a protein function, we must understand the 

are five different computational methods reported in literature to 
identify rigid domains of the protein. Two of the methodsalso  attempt to 

1995) involves comparison of two conformations of a protein to identify 
the rigid domains in a molecule. The second method (Wriggers and 
Schulten 1997) also compares two different conformations of the same 

dynamics of a protein molecule. The procedure creates an equivalent 
elastic network model with 
atoms as masses serially 
connected one after the 

This 
mathematical treatment 
yields vibrational frequency 
modes of all the atoms. An 
atom for which all frequency 
modes are computed to be 
zero, will be considered as a 
part of a rigid domain. This method is computationally, a very expensive 
procedure even with a network of just C  atoms.  Fourth method is a 
variant of the third method. In this method normal mode analysis 

Carlo simulation is used to form the trajectory of all the atoms. This 

requires only one conformation to identify the rigid domains in a protein 
molecule. It uses the distance constraints between atoms due to the 

a rigidity matrix which on further manipulation based on the set of rules 
defined under the rigidity theory, one can find rigid domains. This 
method disregards the presence of disulphide bonds in a protein molecule 
which also reduces the mobility of atoms in proteins. 

 The methodology presented in this paper treats the protein molecule 
as a kinematic chain that has open as well as closed loops. In the recent 
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kinematics and the mobility of the internal motion of the protein.  T  here 

establish the mobility of the chain.   F irst method (Nichols, Rose et al. 

protein. It uses a least square technique to best fit the two con- 
formations.  Third method (Levitt, Sander et al., 1985) is based on the 

other by springs .

in its open and closed conformation. 

coupled with molecular dynamics (Doruker, Bahar et al., 2002) and Monte 

method too requires unreasonably excessive computation.  Fifth method 

presence of covalent and the hydrogen bonds between them. I t develops 

(Jacobs, Rader et al., 2001) is based on the graph theory. This method 

Figure 1. Ribbon view of a peptide chain 

,



past, many kinematicians (Crossley 1965; Woo 1967; Manolescu 1973; 

type synthesis of mechanisms especially to identify non-isomorphic 
mechanisms and to enumerate mechanisms. This method also uses graph 
theory based on the primary (linear) structure of the protein, and uses 
the atom coordinates to detect the hydrogen and disulphide bonds. The 
resulting graph maintains the information on the connectivity of links in 
the protein mechanism and thereby identifies all the loops formed by 
hydrogen and disulphide bonds. The loops that are kinematically over-
constrained form rigid structures. This is an iterative process that 

2. Identification of the Hydrogen Bonds  
Hydrogen bonds occur when two electronegative atoms interact with 

the same hydrogen. The hydrogen atom is covalently attached to one 
atom (commonly called 
donor), and interacts 
electrostatically with the 
other atom (commonly 
called acceptor). This 

(hydrogen). Hydrogen 
bond possesses some 
degree of orientational 
preference and has the 
characteristics of a 
covalent bond (although 
it is weak). Several fine 
works in the literature 
have focused on this 
directional behavior of hydrogen bonds (Baker and Hubbard 1984; Eswar 
and Ramakrishnan 2000). These works have established generalized 
geometric characteristics for identification of the hydrogen bonds when 
the positional coordinates of the electronegative atoms and the hydrogen 

configuration. A shortfall of these data files is that the hydrogen atom 
positions are usually not recorded.  

C 

O 
C 

N C

H 
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results in the identification of all the rigid domains. 

Figure 2.  Location of Hydrogen atom 
with respect to the neighboring atoms. 

atoms and the proton 

interaction is due to 

ween the electronegative 
the dipole effect bet-

atoms are known.  Protein Data Bank (PDB) (Berman, Westbrook et al., 

Mruthyunjaya and Raghavan 1979) have extensively used graph theory for 

2000) offers the coordinate position of all the atoms in a protein 



2.1 Hydrogen Atom Position Calculation 
The chemical (directional) nature of the covalent bonds leads to a 

unique relative position of a hydrogen atom with respect to the positional 
coordinate of its neighboring atoms. Hence the coordinates of a hydrogen 
atom can be established theoretically using coordinates of its neighbor 
atoms (figure 2).  The detailed procedure and formulation based on figure 
2 is included in Rigid body assumption in proteins has been established 
and justified in few of our previous works (Subramanian 2005). 

2.2 Criteria to Establish Hydrogen Bonds  
There are predominantly three types of hydrogen bonds observed in 

the protein structures. They are main chain to main chain, main chain to 
side chain and side chain to side chain hydrogen bonds. The majority of 
the main chain to main chain hydrogen bonds are local in nature 
involving less than six consecutive residues in the primary sequence of a 
protein.  As mentioned earlier, the directional nature of the hydrogen 
bond results in a set of geometric criteria to be established to identify the 
presence of hydrogen bonds. These geometric criteria solely depend on 
the coordinate positions of two electronegative atoms and a hydrogen 
atom. These geometric criteria are different for different sets of the 
electronegative atoms and the geometric conditions for identification of 
the hydrogen bonds are quite extensive.  Reference (Subramanian 2005) 
and the exhaustive conditions for selecting each one of the three possible 
hydrogen bonds, as developed by the authors.  

3. Identification of the Disulphide Bonds  
A disulphide bridge is formed between two cysteine residues by the 

oxidation of their sulfur atoms to form a double bond. Thus two cysteine 
residues connect through their sulphur atoms and form loops in the open 
chain. In proteins disulphide bridges contribute significantly to the 
stability of proteins.  

Two parameters have been established (Sowdhamini, Srinivasan et al. 
1989) to identify the presence of disulphide bonds between two cysteine 
residues in a protein molecule. They are based on the geometric features 
that exist between the two test residues. The distance parameters 
include the distance  between the two alpha carbon atoms and the 
distance  between the two beta carbon atoms  of two cysteine residues in 
the primary sequence. The two geometric conditions are that the first 
distance mentioned lies within 3.8Å to 6.5Å and the second distance lies 
within 3.4Å to 4.5Å. These criteria are checked for all the possible 
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combinations of any two cysteines in a protein molecule. Those 
combinations that meet the above requirements are assumed to form the 
disulphide bonds.     

4.  Application of the Graph Theory to Loop 

The internal mobility of a protein chain is a function of how various 
links in the open chain model connect by means of hydrogen and 
disulphide bonds. These bonds transform the open loop linkage to more 
complex multi closed loop system. The size of the protein molecule and 
the large number of such bonds demands a sophisticated method of 
accounting for connections within the molecule. Graph theory is an ideal 
tool for this purpose   

The equivalent linkage mechanisms to protein chains can be described 
as a graph with links as edges and joints as vertices and is a very useful 
tool to represent the connectivity between links. A two dimensional 
matrix (commonly called as connectivity matrix) mathematically 
represent the connectivity between all the links. Prior to the detection of 
the over-constrained loops from the given connectivity matrix, all the 
side chain links which do not participate in the loop formation will be 
eliminated from the connectivity matrix. This will reduce the 
computational complexity of the problem of detecting the over-
constrained closed loops.  

As a first step, we will eliminate all those side chain links which do 
not participate in the loop formation. This process starts from the end 
link of all the side chains. If the end link has only one joint, then it does 
not form a loop. Consequently the link preceding the removed end link 
becomes the end link itself. This procedure iteratively eliminates all the 
links of the side chains that do not form closed loops except the first link 
of the side chains (that is connected to the two main chain links).    

The graph after the previous step will have only one side chain link for 
all the side chains which are not involved in the loop formation. As 
mentioned earlier, these side chains will be connected only to two main 
chain links and no side chain links. In the second step the procedure 
eliminates all such first links of the side chains. This requires that the 
side chain links be differentiated from main chain links by their index 
numbers. This can be done by storing the index numbers of all the main 
chain links and all the side chain links in two different vectors. This 
information is readily available from Protein Data Bank (PDB) files.   
Note that in the above two stages the size and the values in the 
connectivity matrix changed while eliminating all the side chain links 
that were not part of any closed loops. This will leave the graph with 
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none of the open ended side chain branches off the main chain. Thus the 
complexity involved with maintaining the information of the un-
influencing side chain links is avoided. This also reduces the 
computational needs for solving the problem of detecting all the over 
constrained loops.          

The procedure we have developed to detect all the over-constrained 
loops involves finding all the closed loops with two links, three links, four 
links, five links and six links respectively, until all the over-constrained 
loops are detected. The steps to detect loops with m links (m = 2 to 6) are 

2005). The search starts 
with any link and 

corresponding to that 
link in the connectivity 
matrix, we follow the 
trail of the links 
connected until we arrive 
back on the link we 
started the search with. 
This indicates that the 
loop is closed and a 
counter keeps track of the 
number of links in that 
closed loop. 

In the repeated local 
search for all the over-constrained loops, we change the connectivity 
matrix every time an over-constrained loop is found. The changes are as 
follow: all the links of an over-constrained loop is replaced by a single 
new link, thus the rows and columns corresponding to these links are 
dropped from the connectivity matrix and a new row and column is 
appended to the connectivity matrix to represent this new link. All the 
connections to all the links of this over-constrained loop will now be the 
connections to this new link.  

5.  Results and Discussion 

numerous protein molecules to identify their rigid domains and flexible 
portions. One such numerical experiment was on the protein BPTI (PDB  
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briefly explained as follows. The detailed algorithm for this detec-
tion process is included  
in reference(Subramanian 

of a “1” in the row 
through the detection  

Figure 3. Kinematic Sketch of the protein BPTI 
(1K6U) with its rigid and flexible domains. 

 The methodology developed in this work was succesfully applied to 

-



ID: 1K6U).  Bovine Pancreatic Trypsin Inhibitor (PDB ID: 1K6U) is a 58 
residue long protein. We identified a total of 26 hydrogen bonds in the 
protein molecule of which 19 were main chain to main chain hydrogen 
bonds and the rest of the hydrogen bonds were between main chain and 
side chains. This protein molecule was identified with 3 disulphide 
bonds.  

4 rigid domains (R1 to R4) and 
5 flexible portions (F1 to F5). 
The kinematic sketch for this 
protein is shown in figure 3 
(kinematic arrangement) and a 
3-D illustration in Figure 4. 
The alpha helices and beta 
sheets as expected formed rigid 
domains or part of rigid 
domains. Among all the 
flexible chains, 3 of them were 
closed loops. The degrees of 
freedom for such constrained 
closed loops are also reported. 
These are as follow: 7 for F2, 1 
for F3 and 5 for F4. These 
results were compared visually 
with the motion of the protein molecules available in the website: 

The results were observed to be consistent with these motion  pictures for 
each of the three protein molecules. 

6. Conclusion 

(and contact). The coordinate value of all the atoms in the protein is used 
only to establish the location of hydrogen and disulphide bonds. It also 
finds all the flexible portions of a protein molecule and calculates its 
degrees of freedom, a numerical value as a flexibility measure, for each of 
these flexible portions. This methodology has been successfully tested on 
several proteins from PDB.  
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Abstract Many procedures to detect singularities in manipulators have been de-
scribed in the literature up to now. Singularities are often defined as an
instantaneous or permanent modification in the number of degrees of
freedom (DOF), either affecting certain links or the whole mechanism.
However, the motion of the end-effector of a parallel manipulator is not
only given by the number of DOF but also by the nature of them (rota-
tional or translational). There are poses in which, being no quantitative
alteration of the DOF of the platform, there are changes in this nature.
This is also a singularity, and produces, as other singularities do, a
mathematical deficiency in the velocity equations of the manipulator.
This type of singularity affects only the so called lower mobility parallel
manipulators. In this contribution the authors define this new type of
singularity, called motion pattern singularity, and present a procedure
to analyze it.

Keywords:

1. Introduction
In robot design, knowing the possibilities of motion of the end-effector

is the key to a proper choice of the application. The motion possibilities
of the parallel manipulator’s end-effector are not only determined by the
number of DOF, but also by the nature of these freedoms. This nature
has a qualitative aspect (translational or rotational) and a quantitative
one: the directions of possible translation or rotation at each pose. Both
features define the motion pattern of the platform. This denomination
has been previously used for parallel manipulators in Kong and Gos-
selin, 2005. The motion pattern is specially important in lower mobility
parallel manipulators because it determines the possible task to be per-
formed. In addition, a proper design looks for constant directions of the
DOF inside the workspace. Unfortunately, in many of the lower mo-
bility parallel manipulators there is a variation of the translational and
rotational directions with the pose. This does not imply a singularity,

© 2006 Springer. Printed in the Netherlands. 
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but it does condition the kinematic characteristics of the manipulator
such as its manipulability.

The nature of the DOF of the moving platform is usually unaltered
by the motion of the manipulator, the same with the number of DOF.
Nevertheless, it is possible that, in certain poses of the platform, some
of the DOF change in nature, e.g. some rotational DOF becomes trans-
lational. Obviously, this alters substantially the motion pattern of the
platform and hence, it can be considered as a singularity. In fact, it gen-
erates a mathematical deficiency as it will be explained later. In these
circumstances, it is possible that the robot were unable to accomplish
with the intended task, at least instantaneously at that pose. It must
be highlighted that such a condition is independent of the coexistence
with any other type of singularity. Anyway, it is necessary to have a
procedure to detect those variations in the nature of the DOF of the
platform along its motion.

A wide bibliography on singularities in robots has been issued in the
past. We bring notice to some well known references as Freudenstein,
1962, Hunt, 1978, Sugimoto et al., 1982, Merlet, 1989, Gosselin and
Angeles, 1990, Zlatanov et al., 1994, and Park and Kim, 1999. These
works and some others have stated fundamental concepts as direct kine-
matic singularity, inverse kinematic singularity, or increased mobility
configuration. Some more specific concepts have also been issued, such
as constraint singularity Zlatanov et al., 2002, architecture singularity
Ma and Angeles, 1992, internal singularities Company et al., 2006 or
cuspidal manipulator Wenger, 2004. In all these works the singularity
is understood as an alteration in the number of DOF, either globally
in the mechanism as a whole, or locally at some part of it (preferably
at input or output). However, to our best knowledge, such singularity
as the one described in this paper has not been discussed. In fact, the
latest references on parallel manipulator singularities as Thomas et al.,
2005, Huang and Cao, 2005, or Liu et al., 2005 go over the quantitative
modification of the number of DOF again.

2. Motion Pattern Singularity
In this section the authors present the definition and procedure to

obtain the motion pattern of the manipulator’s platform as well as the
singularity associated to that concept.

2.1 Motion Pattern
The motion pattern of a parallel manipulator represents the plat-

form’s capacity of motion. their
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nature (traslational or rotational) and directions define this characteris-
tic. Although this is an instantaneous feature, the number and nature of
the DOF are, generally, permanent in the workspace. In fact, when they
change in some pose, is because it is a singular configuration. Against,
the directions of translation and rotation of the platform’s DOF are often
variable in parallel manipulators.

The motion pattern is obtained with a procedure that starts with a
velocity equation that maps joint velocities to the platform’s twist:

ẋ = J q̇ (1)

where ẋ =
[
ṗTωT

]T is the twist of the moving platform, being ṗ the
velocity of a point P in the platform and ω the platform’s angular ve-
locity, J is a Jacobian matrix and q̇ is the vector of input joint rates.
This Jacobian matrix is not always easy to find analytically. It will be
often found numerically, and in those occasions the motion pattern is
analyzed pose by pose.

This Jacobian can be divided into two submatrices JT and JR, cor-
responding to terms that affect linear and angular velocity respectively.
If the full cycle mobility, Hunt, 1978, of a non-redundant manipulator is
F Eq. 1 is {

ṗ
ω

}
6×1

=
[

JT
JR

]
6×F

q̇F×1 (2)

The rotational motion space is analyzed extracting the equations corre-
sponding to angular components from that system:

ω = JR q̇ (3)

The number of rotational DOF of the platform FR is the rank of matrix
JR and the corresponding directions ωr are obtained in Eq. 3 with a
basis q̇r of the rangespace of that matrix:

ωr = JR q̇r r = 1 . . . FR (4)

The number of translational DOF of the platform FT is (rank (J) − FR),
and the corresponding directions ṗt are solved in the translational part
of Eq. 2 upon substitution of a basis q̇t of the null space of matrix JR:

ṗt = JT q̇t t = 1 . . . FT (5)

Therefore, the platform’s motion pattern is defined by the number of ro-
tational DOF, FR = rank (JR), and translational DOF, FT = rank (J)−
rank (JR), along with the rotational and translational directions, ωr and
ṗt respectively.
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2.2 Singularity

some DOF
change in nature, e.g. a rotational DOF becomes translational or vice
versa. Note that this singularity does not make reference to variations
in the directions of possible translation or rotation of the platform. In
fact, this latter is quite usual in lower mobility parallel manipulators al-
though constant directions are desirable in design. Obviously, this type
of singularity is only possible in lower mobility parallel manipulators.

Other type of singularities affecting the moving platform, and already
described in the references, are the constraint singularity defined in Zla-
tanov et al., 2002 and the so called Impossible Output introduced in
Zlatanov et al., 1994. The former implies a gain while the latter means
a loss in the DOF of the end-effector.

The rank of Jacobian JR has to be checked to detect mathemati-
cally the motion pattern singularity. As this Jacobian is homogeneous
in terms of units, the first singular value not null of that Jacobian serves
well as an indicator of closeness to singularity. The Singular Value De-
composition technique applied to JR provides both the range and null
spaces, and the motion pattern of the platform at the singularity is ob-
tained with them.

3. Example
A 3 DOF parallel manipulator with rotational motion is shown in

Fig. 1. A passive limb with 3 revolute joints (R) constrains the desired
motion while three linear actuators (SPS) provide the control of the end-
effector. A fixed frame is defined with origin at point O and a moving
frame is attached to the platform with origin at point P . The loop-
closure position equation is stated for every limb relating vector p that
positions point P with: vectors ai that locate the fixed S joints Ai of the
linear actuators, vectors that go from Ai to Bi (being si a unit vector in
the direction of actuators and ρi the length of the actuator), and vectors
pbi that place points Bi with respect to point P in the platform and are
best expressed in the moving frame:

p = ai + ρisi − pbi i = 1, 2, 3 (6)

Differentiating Eq. 6 with respect to time yields

ṗ = ρ̇i · si + ωi × ρisi − ω × pbi i = 1, 2, 3 (7)

where ρ̇i is the actuator’s rate, ωi are the angular velocities of the ac-
tuators, and ω is the angular velocity of the platform. If now we dot
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Figure 1.

multiply Eq. 7 by si and simplify wherever possible we get

si · ṗ + [pbi × si] · ω = ρ̇i i = 1, 2, 3 (8)

The revolute joints of the passive limb constrain the platform to a
3 DOF rotational motion. Let’s consider the geometrical constraints
imposed by each of the revolute joints in the passive limb. These can
be formulated taking into account the fixed orientation of the position
vector p with respect to each of the R joints’ axes ri, namely

r1 · p = 0 (9)

r2 · p = p (10)
r3 · p = 0 (11)

Differentiating Eq. 9 to 11 with respect to time yields

r1 · ṗ = 0 (12)

r2 · ṗ = 0 (13)
r3 · ṗ + [r3 × p] · ω = 0 (14)

Compiling Eq. 8 and Eqs. 12 to 14 in matrix form gives⎡
⎢⎢⎢⎢⎢⎢⎣

rT1 0T

rT2 0T

rT3 [r3 × p]T

sT1 [pb1 × s1]T

sT2 [pb2 × s2]T

sT3 [pb3 × s3]T

⎤
⎥⎥⎥⎥⎥⎥⎦

{
ṗ
ω

}
=

[
0
I

]
ρ̇ (15)
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This is a velocity equation that maps the twist of the platform to the
inputs of the manipulator. A rank deficiency in the first Jacobian in Eq.
15, called Jx, imply a direct kinematic singularity. A rank deficiency of
the second Jacobian, called Jq, is not possible in this manipulator, and
hence no singularity in the inverse problem exists.

The Jacobian Jx must be inverted and postmultiplied by the second
Jacobian to get the following expression of the twist

{
ṗ
ω

}
=

1
|Jx|

[
δ1 δ2 δ3

α1 α2 α3

]
ρ̇ =

[
JT
JR

]
ρ̇ (16)

where the translational Jacobian JT is formed by vectors δi multiplied
by 1

|Jx| :
δ1 = [n3 · (m3 × m2)] · (r1 × r2) (17)

δ2 = [n3 · (m1 × m3)] · (r1 × r2) (18)

δ3 = [n3 · (m2 × m1)] · (r1 × r2) (19)

being
n3 = r3 × p (20)

m1 = pb1 × s1 (21)

m2 = pb2 × s2 (22)

m3 = pb3 × s3 (23)

And the rotational Jacobian JR is formed by vectors αi multiplied by
1

|Jx| :

α1 = − [r3 · (r1 × r2)] · (m3 × m2) − [s2 · (r1 × r2)] · (n3 × m3)
− [s3 · (r1 × r2)] · (m2 × n3)

(24)

α2 = − [r3 · (r1 × r2)] · (m1 × m3) − [s1 · (r1 × r2)] · (m3 × n3)
− [s3 · (r1 × r2)] · (n3 × m1)

(25)

α3 = − [r3 · (r1 × r2)] · (m2 × m1) − [s1 · (r1 × r2)] · (n3 × m2)
− [s2 · (r1 × r2)] · (m1 × n3)

(26)

Then, the procedure to analyze the motion pattern can be applied
and possible singularities in the motion pattern found.

In a nonsingular position the rangespace of the rotational Jacobian
JR has a dimension of 3, and hence the platform has 3 rotational DOF.
The rank of J is also 3, and the nullspace of JR has a zero dimension,
therefore the platform has 0 translational DOF.
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However, in any pose where the revolute axis r3 is parallel to the joint
axis r1 (see Fig. 2) the rank of the rotational Jacobian JR decreases.
Vectors αi are

α1 = − [s2 · (r1 × r2)] · (n3 × m3) − [s3 · (r1 × r2)] · (m2 × n3) (27)

α2 = − [s1 · (r1 × r2)] · (m3 × n3) − [s3 · (r1 × r2)] · (n3 × m1) (28)

α3 = − [s1 · (r1 × r2)] · (n3 × m2) − [s2 · (r1 × r2)] · (m1 × n3) (29)

Note that the three of them are perpendicular to n3 and hence depen-
dent. The dimension of the rangespace is 2, the possible rotation has 2
DOF and its direction is on the plane perpendicular to n3.

The nullspace is one dimensional, and upon substitution into the
translational Jacobian JT the direction of translation is obtained. In
view of Eqs. 17 to 19 is easy to note that every vector δi that form the
translational Jacobian JT is parallel to vector r1 × r2. Therefore this is
the only direction of possible translation. Adequate inputs can produce
a finite motion with this motion pattern.

Figure 2. Sequence of motion in a Motion Pattern Singularity (r1 3

4. Conclusions
This paper describes a singularity that affects the moving platform of

lower mobility parallel manipulators. As far as the authors know, this
type of singularity has not been defined in the references on this subject.
This singularity does not cause an increment or reduction of the DOF
of the end-effector, but a change in their nature (transforming from
rotational to translational or vice versa). Regarding the manipulator
performance, this singularity may produce problems with the control
or the actuators. If the manipulator approaches a pose where there
is a motion pattern singularity, it is evident that the desired twist in
the end-effector may require very high inputs. In practice this produces
abrupt increments of the inputs that can damage the machine, or simply
not move the platform at all. As with other types of singularities, the
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motion pattern singularity is generally instantaneous, i.e. dependent on
the pose. However, there are many cases where the singularity becomes
permanent for certain inputs.
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