
Chapter 15

ITERATIVE DESIGN OF LEARNING
PROCESSES

Telmo Zarraonandia, Juan Manuel Dodero, Camino Fernández, Ignacio
Aedo y Paloma Díaz
Universidad Carlos III de Madrid, Departamento de Informática, Escuela Politécnica
Superior

Abstract: The aim of this work is to bring together the traditional way of teaching and
working using a computer-supported environment. This means, increasing the
flexibility of the learning processes application, giving instructors the chance
to introduce variations on runtime. Besides, learning processes are refined
through its use, by making permanent the modifications which have shown to
improve the learners' performance on the different learning objectives. This
approach is similar to the one followed for the development of user interfaces,
where the interface design is obtained by an iterative process of prototyping,
testing, analyzing and refining. This chapter describes the lifecycle of the
iterative design of learning processes and proposes an architecture for
implementing its runtime stages for processes described by means of the IMS
Learning Design specification.

Key words: Learning Design, adaptation, runtime, iterative.

1. INTRODUCTION

When describing an educational process it is not always possible to know all its
elements properties at design time. Many of them as, for instance, the ones
related to synchronization and temporization of the activities cannot always be
established before the proper execution of the learning process begins.

On the other hand, regardless of how careful and precisely a learning
process has been defined, its application to actual educational settings is all
but rigid, since it is very difficult to foresee all the potential reactions from

163
B. Fernández-Manjón et al. (eds.), Computers and Education: E-learning, From Theory
to Practice, 163–177.
© 2007 Springer.

164 T. Zarraonandia et al.

learners. In practice, teachers take the learning process as a starting base, not
to be followed blindly. They observe the evolution of the learners during its
execution, introduce the appropriate adaptations afterwards in order to solve
specific problems, reinforce the learning of some particular concepts and,
more generally, guarantee the achievement of the original learning
objectives. Furthermore, the adaptations proven to improve the original
process results will be part of future applications. Due to the above, the
learning process is traditionally refined through its use.

This work aims at increasing the degree of freedom of the teachers when
applying a learning process on a computer-supported environment, offering
the instructors the possibility to introduce modifications in the learning
process definition during its proper execution. Those adaptive actions
introduced could be evaluated against their original goal, measuring its
influence on the learning objective achievement and, accordingly, giving the
teacher a chance to automatically include them in the original process. This
way, instructors would imitate the way teachers work in real life: the gain
obtained by the use of the process is kept within the process and, at the same
time, is also used to refine it.

The rest of the paper is organized as follows. First, the iterative design of
learning process lifecycle will be defined, describing the purpose and
characteristics of each of its different stages. Next, notations for the
specification of the process evaluations and adaptations will be provided.
Following, the architecture of a system able to implement the runtime phases
of the iterative composition of an IMS Learning Design (IMS Global
Learning Consortium, 2003) specified process will be outlined. The paper
will conclude with an example of the whole late modeling process and the
presentation of some conclusions and future work lines.

2. ITERATIVE DESIGN OF LEARNING PROCESS

The application of a learning process is in practice quite flexible as it is not
possible to foresee all the potential reactions from the learners. Instructors
take the learning process as a basis, and after observing the learner reactions,
they may response providing extra examples, explanations to reinforce
particular concepts, repeating activities, tuning the time-limits for
completion of the assessments, etc. However, the more the instructors play
the course, the less adaptation are required to be applied as the process is
refined through its use. The experience gained from prior plays is comprised
within the process definition and a wider range of learner reaction response
is captured. This means that the course model definition does not

Iterative Design of Learning Processes 165

Figure 15-1. Phases of the iterative design of a Unit of Learning

conclude until no more modifications are required to be applied. This
approach is similar to the one followed for the development of user
interfaces, where the interface design is obtained by an iterative process of
prototyping, testing, analyzing and refining (Gould et al., 1991).

Figure 15-1 illustrates the different activities of the iterative design of a
learning process carried out on a computer-supported environment. The
process starts once an initial model of the course has been defined and its
execution begins. Instructors observe learners interactions and introduce the
appropriately tagged adaptations. The success of the applied adaptations will
be evaluated, and once the process is finished, the learning objective
achievement will be measured. Based on that information, a new version of
the learning process will be generated, including the successful
modifications introduced. This new version will go through the same cycle
on its next plays until no more adaptations are required to be applied.

This section provides a description for each of the different activities that
compose an iterative design process: monitor the execution, adaptations
introduction, adaptations evaluation, process evaluation, and finally,
adaptation integration.

2.1 Monitor the execution

In order to detect potential problems and introduce the appropriate adaptive
actions, it is fundamental for the instructors to be able to monitor the
learner's interactions and progress during the learning process.

The more information instructors can obtain from the process execution,
the better they will identify causes of problems during the learning process.
For instance, if they can only retrieve information about the learner's score on

166 T. Zarraonandia et al.

the different activities, they may only be able to conclude that her/his
performance is not being adequate. Otherwise, if they could retrieve
information about which resources the learner has visited and how much time
she/he has spent on each of them, they may be able to extract more accurate
conclusions and produce appropriate recommendations and adaptations.

On the other hand, the comparison of information from the different
learning process instances of the different participants facilitates the
identification of the nature of the problem.

2.2 Introduction of Adaptations

Based on the information retrieved from the monitoring activities, instructors
will describe the process variations required to guarantee the process success.

Jacobson et al (1997) defined variation point as "places in the design or
implementation that identify locations at which variation can occur".
Variation points can be bound to the system at different stages of the product
lifecycle. Svahnberg (2002) presented a taxonomy of variability realization
techniques which defined different ways in which a variation point can be
implemented. One of these techniques is the code fragment superimposition,
where a software solution is developed to solve the generic problem; code
fragments are superimposed on top of this software solution to solve specific
concerns. This superimposition can be achieved by means of different
techniques; as for example the Aspect Oriented Approach (Kiczales et al.
1997), and provides the designer with the possibility to bind the
modifications during the compilation phase or even at runtime.

We can take these concepts into the adaptation of learning process area.
The authors can describe the desired adaptations on auxiliary specification
files that could be processed together with the original Unit of Learning
(UoL) (IMS Global Learning Consortium, 2003) and applied at runtime
giving the user the feeling that they were included in the original UoL. This
way, we can maintain a single UoL definition and a number of descriptions
for adaptations. Those files tie together all the changes involved in a
particular adaptation and keep that particular concern separated from the
main UoL functionality and the rest of adaptations.

An overview of the process is shown in figure 15-2. From several
possible adaptations defined for a particular UoL, the designer chooses the
one which best fits the current situation and applies it to the UoL. The
introduction of the adaptive action can be carried out at design time
(adaptation 1) or at runtime (adaptation 2, 3, 4). In the last case, adaptation
could be applied to all the running instances of a UoL (adaptation 2), to all
the users of a particular running instance (adaptation 3) or only to the
personalized view of a particular user (adaptation 4).

Iterative Design of Learning Processes 167

Figure 15-2. Different moments of adaptations introduction on UoL instances

We define adaptation pokes the description of a small modification of
some elements in a learning process. A notation for the adaptation pokes
description is provided in section 4.

2.3 Evaluation of Adaptations

To measure the success of the adaptive action it is not only necessary to
evaluate the grade of satisfaction of the adaptation objectives but also check
possible interactions with other parts of the course and the introduction of
collateral effects. Note that the evaluation is not directly based on the
learners results but on comparing the expected consequences of the
adaptation with the actual ones. Hence, the difficulty lies on the
identification of what is a real consequence of the adaptation and what is not.
Correlation between adaptations effects must also be considered at this stage.

2.4 Evaluation of the Process

Once the learning process is finished, its results must be evaluated to identify
its strengths and weaknesses. This evaluation is mostly based on the
information about the performance of the learners for each learning objective
obtained once the process is finished. If most of the learners score low for a
particular learning objective, designers may consider including
complementary material, reviewing the pedagogical approach or reviewing
the calibration of the difficulty of the assessment activities. However, causes

168 T. Zarraonandia et al.

of low performance may also lay on external circumstances or incorrect
learner profiles. It is necessary then, to establish the grade of reliability of
the process results by comparing them with other plays of the course data.

2.5 Integration of Adaptations

Once the process results have been analyzed, the integration phase takes
place. This way, adaptive actions which have proved to mean an
improvement of the process become a permanent part of it. This is a two step
process: fist, instructors thoroughly examine all the adaptation results and
select the ones to be integrated, and second, the system applies them to the
original process design following their introductory order. Each of the
adaptation introductions is validated separately. This method facilitates the
identification of dependencies with rejected adaptations in case of failure.

3. LEARNING PROCESS EVALUATIONS
SPECIFICATION

In order to evaluate learners’ progress and process success it is necessary to
explicitly specify what is going to be evaluated and how that evaluation
should be performed. This specification can be provided using an XML
notation for the purpose of automating its processing by the appropriate
engine. Following this approach the authors present an XML schema for the
learning process evaluations definition, whose graphical representation is
shown in Fig 15-3. The evaluations are the core of the schema, each of them
will be composed of a combination of values related to performances on
process elements and learning objectives, plus another information data. An
evaluation element must be provided for each learning objective. Optionally
relations between the learning objectives and the process elements which
contribute to their achievement can also be provided.

Three different types of elements may be required to fully specify a
learning process evaluation:

• Process components: They represent elements of the learning process that
contribute to a learning objects acquisition. Their definition will be
composed of an identification, a reference to the corresponding learning
process element and an expression to be used to estimate the learner
performance for that element. This expression can be either a monitor
command, for obtaining a learners’ test score, for instance, or an
expression where references to other components and information
elements are combined to produce a value.

Iterative Design of Learning Processes 169

Figure 15-3. Evaluations Schema

• Information elements: Definitions of information not related with
learners performance on a particular element but required for the learning
objectives evaluations. This information can be obtained by monitoring
the learning process, read from an external resource or introduced by the
process instructor directly. This way, for instance, the number of
learner’s messages in the learning process's forums can be used to
estimate her/his grade of interaction with other learners; results on
previous learning process stored in the learner profile can by used to rate
her/his improvement in a particular subject, or the instructor can be
inquired regarding her/his opinion about the learner's collaborative skills.

• Learning objectives: Each of the learning objectives will be related with
an evaluation and a list of process components that contributes to the
learning objective achievement. The evaluation will contain the
specification of the moment in time in which it should be performed and
an expression which combines references to components, information
elements and learning objectives with mathematical and logic operators.
Once the time limit specified by the moment-in-time element is reached,
the system engine will parse the formula, retrieve the actual value for
each of the referred elements and produce the evaluation's score.

170 T. Zarraonandia et al.

4. PROCESS ADAPTATIONS SPECIFICATION

In previous work authors (2006) defined adaptation pokes as descriptions of
small modifications of some elements in a learning design process. The set
of elements whose modification could be subject of description by an
adaptation poke were also defined. Authors also introduced the three
different types of files which could be required to fully specify an adaptation
poke: an adaptation command file - describing the adaptive actions-,
adaptation manifests files - containing the definition of new learning process
elements-, and resource files -corresponding to new content files-.

Alternatively, the adaptation command file can be described by means of
an XML notation and increased with new elements for supporting the
evaluation of the adaptations. Fig 15-4 shows a graphical representation of
an XML schema developed for this purposes. The schema defines three
different types of elements which can be provided for the description of an
adaptive poke:

• Adaptation action: It is the only mandatory element of the file. It describes
the adaptive actions to be performed by the engine in charge of the
adaptation interpretation. There are only three possible adaptive actions:
• Set a value of a learning process element's property.
• Add a new element to the structure: In this case it may be necessary to

indicate the new element's parent in the structure and to provide the
corresponding adaptation manifest file including its definition.

• Remove an element from the structure.

Figure 15-4. Adaptations Schema

Iterative Design of Learning Processes 171

• Adaptation evaluation: Contains a formula, similar to the ones used for the

objective evaluations, which will be used to estimate the adaptation success.
• Learning objectives: As the introduction of an adaptation may influence

the learner's performance of some of the learning objectives, it is
convenient to specify them in this section if they are known. This will help
to the adaptation influence analysis when examining the process results.

The definition of the adaptation evaluation may require the specification of
new elements of the evaluations profile as process components, information
elements or even learning objectives. Besides, as a result of the adaptive
action, elements of the learning process may be removed and new ones added.
Therefore, some of the objective evaluations may require to be updated. In
these cases, it will be necessary to introduce a new type of adaptation poke file
together with the above mentioned three. This file will follow the same
schema as the evaluations profile definition and, as well as the specification of
new elements, it can also include updates in the existing one's definitions.

5. IMPLEMENTATION OF ITERATIVE DESIGN
OF IMS LEARNING DESIGN PROCESS

This section covers the proposed architecture for implementing the runtime
phases for the iterative composition of learning design specified process. The
core of the architecture is a Learning Design Player able to interpret
adaptation pokes descriptions and to introduce the specified modifications at
runtime. A mechanism to guarantee the integrity of the modified UoLs must
also be defined.

5.1 LD Player

An Learning Design Player (LD Player) is the program that interprets a UoL.
It presents the different activities and resources to the involved roles and
controls their interactions. In a previous work authors (2006) outlined the
structure of a LD Player capable of combining, both prior and during the
execution time, the original UoL information with adaptations’ descriptions
included in the adaptation pokes. The proposed structure (Fig. 15-5)
followed an Object-Oriented design, establishing a correspondence between
the elements of the Learning Design specification and the class concept from
an OO approach. It also made use of design patterns and an Aspect Oriented
Approach (Kiczales et al., 1997). This allows a separate specification of the
elements of the structure and the definition of the operations that can be

172 T. Zarraonandia et al.

Figure 15-5. LD Player Structure

applied. Two of the possible operations that could be implemented were the
modification of the elements definition (Adaptor class) and the retrieval of
information about their stage (ProgressWatcher).

The adaptation pokes could be included in the content package or
uploaded to a running instance indicating the user or UoL instances which
should be adapted. The AdaptationReader generates the appropriate Adaptor
object and passes it to the execution engine to perform the required
adaptations.

Following the same approach, a set of commands were defined to specify
the elements' characteristics whose value could be retrieved at runtime. The
designer introduced the appropriate command at runtime indicating the
element identifier and the UoL running instance she/he desired to observe. A
ProgressWatcher instance was then generated and the appropriate values
obtained.

The adaptive LD Player was implemented as an extension to the
CopperCore IMS Learning Design engine (CopperCore, 2005) and can be
used to implement the main stages of the iterative composition of learning
design specified process: to introduce adaptations and to monitor the

Iterative Design of Learning Processes 173

execution. The former clearly match the adaptive LD Player operational way
and the later can be performed using monitor service implementations (IMS
Global Learning Consortium, 2003), complemented with ProgressWatcher
actions. Besides ProgressWatcher actions can be used for the definition of
the process components and information elements of the evaluations profile.
The engine will generate the corresponding ProgressWatcher instances and
the values will be retrieved when the time for the evaluation is reached.

5.2 Adaptation Validation

Some considerations must be taken into account to ensure that the adaptation by
the LD Player previously described does not compromise the integrity of the
original UoL. Every time a UoL is published in a particular player, a validation
process is launched to guarantee its compliance with the IMS LD language
definition and the availability of the referenced resources. Consequently, after
the introduction of runtime adaptations, the same validation process should be
repeated to ensure that the UoL definition remains valid.

Lama (2005) and Amorin (2006) described an IMS LD-based ontology
which captures the semantics of the IMS LD specification as well as the
restrictions to be verified between the LD concepts. As this ontology model
defines formally these restrictions, it is possible to use it for the detection of
inconsistencies on adapted instances of a learning design, because the
detection of inconsistencies will happen when these restrictions are not
verified. The IMS LD ontology was implemented in Frame-based Logic (F-
Logic) (Kiefer et al., 1995), and the FLORA-2 reasoner (Yang et al., 2005)
was used to check the axioms of the ontology when the concepts instances
were introduced.

The process for detecting the inconsistencies can be resumed as follows:
first, an adaptation poke is introduced into UoL instance, and, as a
consequence, its LD description is changed; then, the ad-hoc translator is
executed to transform the XML-schema representation of the adapted learning
design into the F-Logic description; and finally, the FLORA-2 reasoner is
invoked to answer the queries associated to the axioms that must be verified.

5.3 Evaluation and Adaptation Example

In order to make a clear understanding of the above described process,
authors illustrate some adaptations and evaluations of an example course.

Consider a unit of learning which covers different topics on the Data
Structure & Algorithms subject (Fig 15-6). The course is composed by
theoretical activities and autoevaluation exercises. On an scheduled date
tests and problems become available for the learners final evaluation.

174 T. Zarraonandia et al.

Figure 15-6. Evaluations Profile and Course Structure

The evaluation profile shown in Fig 6 has been defined for the course.
The process components correspond to the activities that cover the
theoretical aspects of the course. The information elements in turn, retrieve
information about the learners test and exercise scores by using
ProgressWatcher commands or directly inquire the tutor. Finally, two
learning objectives are defined: theoretical understanding and practical
application. Their estimation is obtained using the previously described
elements and should be calculated after the completion of the latest activity
of the course.

During the course execution two adaptive pokes (Fig. 15-7) are required
to be executed. The first one is included as a result of the poor performances
in the autoevaluation test. It introduces a new environment including a set of
applets containing visual animations of the presented algorithms. The
adaptation goal is to improve learners understanding of the subject. To
measure this goal achievement the results on the final exercise and tests will
be used. The adaptation introduction should be considered when analyzing
the two learning objectives of the course.

Iterative Design of Learning Processes 175

Figure 15-7. Adaptation Pokes Examples

The second adaptive poke is introduced after detecting that most learners
have not been able to complete the evaluation on the scheduled time.
Therefore, the estimated time for the activity completion is not accurate and
should be adjusted. The adaptation will be considered as successful if values
for the latest test are obtained, meaning learners finished the task. The
adaptation does not contribute to the process learning objectives
achievement as such.

Once the process is finished the integration process takes place:

• Learners’ results are evaluated: scores on both learning objectives are
over 7 out of 10 for the 70% of them. Instructors consider the results as
satisfactory.

• The two adaptations are also evaluated:
• The fist one was marked as related with both learning objectives. The

adaptation evaluation is satisfactory and therefore instructors label it to
be integrated.

• Values are obtained for the latest test from most learners. Therefore the
evaluation of the second adaptation results true for most of them.
Accordingly instructors label this adaptation for the integration
process.

176 T. Zarraonandia et al.

6. CONCLUSIONS AND FUTURE WORK

This paper has introduced the concept of adaptation poke as the specification
of small adaptive actions that can be applied, even at runtime, to a previously
defined learning process. The adaptive actions introduced are evaluated
against their original goal, measuring its influence and, consequently, giving
the instructor a chance to automatically include them in the original process.
The cyclic process of refine the learning process definition by its use is
called iterative design.

An architecture of a Learning Design Player that provides the means to
implement the runtime stages of the iterative composition in IMS Learning
Design specified process has been described. The player was designed as an
extension to the CopperCore runtime engine and implemented with the help
of different design patterns and an Aspect Oriented Programming approach.
Once the UoL has been adapted, it must be validated in order to guarantee its
compliance with the IMS LD specification. For that purpose an ontology that
captures the semantics of the elements of the Learning Design specification
is used. To help on the evaluation of both the introduced adaptations and the
process results, an evaluation model which works on top of the learning
process definition can be used. A notation for this evaluations specification
has also been provided.

An application to aid on the iterative design process is currently being
developed. On one hand, the application will facilitate the authoring of
process evaluation profiles and adaptations. By using a GUI interface,
designers will be able to select elements of an IMS LD specified process and
connect them with evaluation profile elements. Templates to facilitate the
adaptation definitions and new learning process components specification
will also be provided. On another hand, the application will communicate
with a CopperCore engine increased with adaptation capabilities in order to
directly introduce the described adaptations into running UoL instances. The
retrieval of data to populate the evaluation profiles will also be possible by
means of a ProgressWatcher implementation. This will simplify the process
progress monitorization tasks.

ACKNOWLEDMENTS

This work is part of the MD2 project (TIC2003-03654), funded by the
Ministry of Science and Technology, Spain.

Iterative Design of Learning Processes 177

REFERENCES

IMS Global Learning Consortium, 2003, IMS Learning Design information model, version 1.0-
final specification; http://www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.html

Gould, J. D., Boies, S. J. and Lewis, C., 1991, Making usable, useful, productivity: enhancing
computer applications Communications of the ACM. 34(1), pp. 72-85.

Jacobson, I., Griss, M. and Johnson, P., 1997, Software Reuse. Architecture, Process and
Organization for Bussiness Success (Addison Wesley).

Svahnberg, M., Gurp J. van and Bosch. J., 2002, A taxonomy of variability realization
techniques, Blekinge Institute of Technology, Technical paper, Sweden

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and Irwin, J.,
1997, Aspect-Oriented Programming, Proceedings of the European Conference on Object-
Oriented Programming, 1241, pp. 220–242

Zarraonandia, T., Dodero, J. M. and Fernández, C., 2006, Crosscutting runtime adaptations of
LD execution, Journal of Educational Technology and Society, 9 (1), pp. 123-137

CopperCore, 2005, CopperCore v2.2.2 (OUNL) release; http://coppercore.org/
Lama, M., Sánchez, E., Amorim, R. and Vila, X.A., 2005, Semantic description of the IMS

Learning Design Specification. AIED-Workshop on Semantic Web technologies for
E-Learning (SW-EL 05), Amsterdam, pp. 37-47.

Amorim, R., Lama, M., Sánchez, E., Riera, A. and Vila. X.A., 2006, An ontology to describe
semantically the IMS Learning Design Specification. Journal of Educational Technology
and Society, 9 (1), pp. 38-57.

Kiefer, M., Lausen, G. and Wu, J., 1995, Logical foundations of object-oriented and frame-
based languages, Journal of ACM, 42(4), pp. 741-843

Yang, G., Kiefer, M., Zhao, C. and Chowdhary, V., 2005, FLORA-2: users’ manual;
http://flora.sourceforge.net/docs/floraManual.pdf.

�
�

