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1. INTRODUCTION 
 

Additions of acid anions can alter the cycling of other nutrients and 
elements within an ecosystem. As strong acid ions move through a forest, 
they may increase the concentrations of nitrogen (N) and sulfur (S) in the soil 
solution and stream water. Such treatments also may increase or decrease the 
availability of other anions, cations and metal ions in the soil. A number of 
studies in Europe and North America have documented increases in base 
cation concentrations such as calcium (Ca) and magnesium (Mg) with 
increased N and S deposition (Foster and Nicolson 1988, Feger 1992, Norton 
et al. 1994, Adams et al. 1997, Currie et al. 1999, Fernandez et al. 2003). 
Experiments in Europe also have evaluated the response of forested 
watersheds to decreased deposition (Tietema et al. 1998, Lamersdorf and 
Borken 2004). In this chapter, we evaluate the effects of the watershed 
acidification treatment on the cycling of N, S, Ca, Mg and potassium (K) on 
Fernow WS3. 

To accomplish this goal, we primarily will examine trends in annual 
nutrient fluxes. For these analyses, inputs were calculated on a calendar year 
basis, using data from the Fernow Fork Mountain deposition monitoring site, 
located near the top of WS4, and from the Parsons NADP site located in the 
Nursery Bottom in Parsons, West Virginia. Both of these sites and methods 
are described in Adams et al. (1994) and Gilliam and Adams (1996). Briefly, 
precipitation samples were obtained using Aerochem Metric automated wet/ 
dry collectors, and open bucket “bulk” collectors. Inputs for N and S were 
calculated as the sum of total wet and dry deposition (http://www.epa.gov/ 
castnet/data.html). Estimates of dry deposition are not available for Ca, Mg, 
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and K, therefore inputs were calculated for these analytes based on bulk 
deposition (see Chapter 1). Bulk deposition samples were collected weekly 
and analyzed for pH, Ca, Mg, sodium (Na), K, ammonia-N (NH3-N), 
chloride (Cl), nitrate (NO3) and sulfate (SO4), according to NADP protocol 
as described in Stensland et al. (1980). Stream water exports were calculated 
using flow rates for the individual watersheds and weekly grab sample 
nutrient concentrations, summed over a calendar year. Further information on 
sampling methods and analytical techniques can be found in Chapter 2, 
Chapter 4, and Adams et al. (1994). The calculation of watershed-specific 
precipitation and loadings is described in Adams et al. (1994). Additional 
published sources also are used to describe internal cycling. We focus 
primarily on WS3 (treatment watershed), WS4 (reference watershed), 
although we use information from studies of other watersheds, most notably 
WS7 (vegetative reference). See Chapter 2 for a description of these 
watersheds. 
 
 
2. NITROGEN CYCLING 
 
2.1 Inputs  
 

Sources of N inputs include both wet and dry deposition. Approximately 
45% of N is deposited as wet NO3, and approximately 26% as wet 
ammonium (NH4). Dry nitric acid (HNO3) makes up about 22% of N 
deposition, about 6% of N deposition occurs as dry NH4, and less than 1% is 
dry NO3 (NADP 2004). Wet deposition of N has declined slightly since 
1978, the first year of record for the Nursery Bottom NADP site, from an 
annual average of about 8 kg N ha-1 yr-1 to about 5 kg N ha-1 yr-1. Most of this 
decline is the result of decreases in wet NO3 deposition, since NH4 deposition 
has remained relatively constant on average, but with considerable inter-
annual variability. Total N deposition (wet plus dry deposition) at the Fork 
Mountain monitoring station averaged 10.4 kg N ha-1 yr-1 between 1986 and 
2002, the period of data used in the analyses of nutrient budgets (Fig. 7-1). 
Atmospheric inputs of N at Fernow vary with elevation, the result of both 
higher concentrations of NH3 and NO3 in wet deposition and higher amounts 
of precipitation at greater elevations (Gilliam and Adams 1996).  

Nitrogen fixation is another possible source of N in eastern forested 
watersheds. The only native N-fixing tree, black locust, is relatively sparse 
on the study watersheds, 15 stems ha-1 on WS3 and 2.5 stems ha-1 on WS4 
(Gilliam et al. 1995, see Chapter 2). Because of the scattered nature of the 
locust trees, the closed canopy on both watersheds and the acidic soils, the N 
fixed is likely to be minimal on a watershed scale (Boring et al. 1988). 
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Presence of leguminous herbs is also negligible (Aulick 1993, Hockenberry 
1996). 

 

Figure 7-1. Inputs, exports and storage of N from WS3 and WS4. Treatments were initiated in 
1989. 
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2.2 Outputs 
 

Nitrogen outputs from the watersheds include ammonium, nitrate, and 
dissolved organic N (DON) in stream water, and gaseous losses of N (Fig.  
7-2). Ammonium concentrations are consistently low, generally near the 
detection limits of our equipment, and so exports are generally negligible. 
Most of the N exported from the watersheds is in the form of NO3. 
Pretreatment NO3-N exports from WS3 (1986-1988) averaged about 3.3 kg 
ha-1, and WS4 exports averaged 3.9 kg ha-1. Exports on WS3 increased 
quickly after treatments began, to an average of 12.5 kg ha-1 during the 
treatment period. Exports from WS4 averaged 5.3 kg ha-1 during the same 
time period.  
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Figure 7-2. N cycle. Highlighted fluxes or pools are those which were affected by the 
watershed acidification treatment. 
 

Although estimates of dissolved organic N (DON) exports are not 
available for WS3, DON is not expected to contribute a dominant portion of 
total annual N exports. DON is mostly retained in soils even when it is 
present in reasonably high levels (Davidson et al. 2003). Foster (1997) 
estimated that DON exports from Fernow WS10 and WS4 ranged from 0-
50% of total N exports, and averaged 23% for WS10 and 13% from WS4. 
She attributed the difference between the two watersheds to differences in 
organic matter content of the soil, particularly the forest floor (see Chapter 3). 
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-1) 
compared with WS4 and WS10 (112 and 62 g kg-1, respectively), we may 
conclude that DON export does not contribute greatly to N leaching losses. 

Some N is exported from the watersheds in gaseous emissions, although 
this flux is estimated to be relatively small. Soil emissions of nitric oxide 
(NO) were higher in WS3 relative to WS7, the vegetative reference 
watershed containing similar soils and a stand of hardwoods the same age as 
WS3 (Venterea et al. 2004). Increased NO emissions also were observed for 
the N-amended West Bear Brook watershed in Maine, providing evidence 
that increased soil NO emissions are a characteristic response in forests 
subjected to elevated N inputs. Venterea et al. (2004) estimated that NO 
emissions represented <1.6% of total inputs to Fernow WS3 and to West 
Bear Brook (both receiving ammonium sulfate fertilizer). Assuming all NO 
produced is released to the atmosphere, these emissions represent a flux of 
less than 1 kg N ha-1 yr-1. 

Nitrous oxide (N2O) production was measured in WS3 and WS4 by 
Peterjohn et al. (1998). Although N2O production was 22% greater for WS3 
than WS4, these differences were not significantly different. Mean monthly 
rates of N2O production (3.41-11.42 µg N m-2 hr-1) were consistent with 
measurements from other well drained forest soils but were much lower than 
those of N-rich sites with poorly drained soils, and probably represents a flux 
of less than 1 kg N ha-1 yr-1 (Peterjohn et al. 1998, Bowden et al. 1990, 1991). 
Thus, increases in gaseous emissions in response to elevated N additions are 
not likely to contribute significantly to losses from the system.  
 
2.3 Budgets  
 

Nitrogen inputs to WS3 prior to the start of fertilization averaged 
approximately 8-10 kg N ha-1 yr-1, including dry deposition of approximately 
2 kg N ha-1 yr-1. The significant increase in inputs to WS3 after 1989 reflects 
the addition of 35.5 kg N ha-1 yr-1 in the fertilization treatment (Fig. 7-1). 
Stream water exports of NO3-N began increasing shortly after the first 
fertilizer applications. By contrast, WS4, receiving only ambient N and S 
inputs, experienced relatively little annual variation in N inputs or exports 
(Fig. 7-1). Since the treatments began, 53% to 89% (average of 73%) of the 
added inorganic N has been retained on WS3. Between 1989 and 2002, WS3 
has retained, either through uptake, immobilization, or abiotic fixation (Fig. 
7-2), approximately 470 kg N ha-1. Pretreatment retention (1986-1988) of N 
by WS3 was around 65%; immediately after treatment began, almost 90% of 
the N inputs were retained. Percent N retained has declined steadily with 
continued treatment to around 70% in 2002, approaching pretreatment levels.  

 Therefore, based on soil organic matter concentrations in WS3 (91 g kg
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During this same time period, WS4 retained from 30% to 60% (average 
= 45%) of the total inorganic N deposited in deposition. Two other Fernow 
reference watersheds, WS10 and WS13, retained 85% and 44% of inorganic 
N, respectively (Campbell et al. 2004). It is notable that in a study of 
inorganic N budgets for 24 undisturbed forested watersheds across the 
northeastern United States, Fernow WS4 was the only watershed exhibiting a 
net loss (of 0.7 kg N ha-1 yr-1; Campbell et al. 2004). Note however, that 
those estimates do not include dry deposition, thus do not incorporate all 
inputs to the watershed. Nonetheless, WS4 does demonstrate some of the 
lowest retention of N in the northeastern U.S.  

The addition of N to WS3 via the ammonium sulfate fertilizer clearly 
increased the NO3-N export from the watershed (Adams et al. 1997, Edwards 
et al. 2002, see Chapter 4). However, there was no detectable effect on NH4 
concentrations in stream water; indeed, NH4 remains at very low levels in the 
stream water draining both WS3 and WS4. Apparent net storage of inorganic 
N on WS3 has declined over time, suggesting that less of the fertilizer N is 
being taken up and/or retained by the watershed, in response to continuing 
elevated N inputs. Conversely, during the period of analysis, in response to 
ambient deposition only, WS4 exports and apparent net retention have remained 
nearly constant.  
 
2.4 Internal Cycling  
 

Studies of N dynamics in the soils of the Fernow watersheds have shown 
that rates of net mineralization and net nitrification are high on both WS3 and 
WS4, compared with other forested ecosystems (Gilliam et al. 2001b). Net 
nitrification on WS3, WS4, and WS7 was 141, 114, and 115 kg N ha-1 yr-1, 
respectively (Gilliam et al. 2001b, Christ et al. 2002), and essentially equal to 
100% of net mineralization for these watersheds. These rates do not differ 
significantly among watersheds. Thus, NH4 deposited via precipitation or 
fertilizer is mineralized and nitrified equally rapidly on WS3, WS4 and WS7. 
However, the lack of statistically significant differences may be due to high 
spatial variability, which may mask an important source of N available for 
export. The difference in mean net nitrification rates between WS3 and WS7 
(26 kg N ha-1 yr-1) is more than 2.5 times the amount needed to account for 
the approximately 10 kg N ha-1 yr-1 increase in stream water N output 
observed due to fertilizer treatment on WS3.  

Soil emissions of NO were higher in WS3 relative to WS7 (Venterea et 
al. 2004), with nitrification hypothesized as the dominant source of NO. 
However, there were no significant differences in nitrification rates between 
WS3 and WS7 (Venterea et al. 2004), similar to the results of Gilliam et al. 
(2001b). Therefore, Venterea et al. (2004) speculated that a slight decrease in 
the pH of the upper soil horizon on WS3 (this was also noted in Chapter 3, a 



7.  Acidification and Nutrient Cycling 213 

decrease of 4.34 to 4.20 in the 0-10 cm horizon during 1994-2002) may have 
caused increased protonation of nitrification-derived NO3, and the 
subsequent abiotic formation of NO, which contributed to the differences in 
NO emissions between WS3 and WS7.  

Nitrous oxide production, as measured in WS3 and WS4 by Peterjohn  
et al. (1998), was also found to be related to soil N processing. The mean rate 
of N2O production was greater for WS3 than WS4, but these differences 
were not significantly different. Again, chemoautotrophic nitrification was 
important in both watersheds, accounting for 60% and 40% (WS3, WS4 
respectively) of total N2O production.  

Evidence for effects of the fertilization treatment on N uptake by 
vegetation is equivocal. Differences in foliar nutrient concentrations were 
observed (Adams et al. 1995, May et al. 2005), which suggests there may 
have been differences in N uptake by the vegetation. Specifically, N 
concentrations of foliage collected in 1992 from WS3 were generally higher 
than from WS7 for four tree species: red maple, black cherry, yellow-poplar, 
and sweet birch – but were only significantly greater on WS3 relative to WS7 
for black cherry and red maple. In 1997, foliar N concentrations were 
significantly greater on WS7 for red maple, relative to WS3. No other 
significant differences in foliar N concentrations were detected between the 
watersheds (Fig. 7-3). Foliar N concentrations generally decreased slightly or 
remained the same over the course of the study (Fig. 7-3), with the exception 
of yellow-poplar foliage, which showed a slight increase in N concentration 
over time. A sustained increase in foliar N concentrations would have 
provided support for the idea of continued high rates of N uptake as 
availability continued to increase.  

May et al. (2005) also evaluated three of the same tree species in 1992 
and 2001. In 1992, foliar N concentrations for red maple, yellow-poplar and 
black cherry were approximately 11% greater in WS3 relative to WS7. 
However, by 2001 mean foliar N was greater in WS7 for all three of these 
species for the trees that were sampled. Such a shift in foliar concentrations 
implies a change in the N uptake and/or allocation by these trees. This could 
be due to an increase in uptake by trees on WS7, decreased uptake by trees 
on WS3, or both, or could be due to changes in nutrient use and retrans-
location of N once within the tree.  

Mean foliar N values of all of the tree species examined fell within the 
range of values observed across the northeastern United States for these 
species (Northeastern Ecosystem Research Cooperative 2004), pointing to no 
obvious N deficiencies. Note however that in the 1970s, Auchmoody and 
Smith (1977) reported a 47% increase in basal area of small sawlog-sized 
yellow-poplar in response to N fertilization, which suggests the trees may 
have been N limited. We may further theorize that N availability, as reflected 
in foliar concentrations, has changed over time.  
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Figure 7-3. Mean foliar N concentrations for four tree species on WS3 and WS7, over time.  
* indicates statistically significant differences between watersheds (p < 0.10). 
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A comparison of concentrations of other foliar nutrients with the regional 
foliar data base suggests that phosphorus (P) may be limiting to black cherry, 
sweet birch and red maple, on both WS3 and WS7. Most forests are 
considered to be N-limited. However, once the demand for N has been met or 
exceeded, then another nutrient, most often P, becomes the nutrient limiting 
productivity. Data from fertilized root ingrowth core assays on WS4 (Foster 
1997) and from phosphomonoesterase activity assays in roots of violets from 
WS3, WS4, WS10 and WS13 (W.T. Peterjohn, unpublished data) provide 
some support for this hypothesis. Thus, it may be long-term elevated ambient 
N deposition has led to a limitation by P, which could lead ultimately to 
decreased uptake of N.  

Changes in nutrient allocation within the trees could also reflect altered 
nutrient availability. May et al. (2005) reported that the acidification 
treatment decreased nutrient resorption efficiencies on WS3. The resorption 
of N averaged 30% lower in WS3 for red maple and black cherry than in 
WS7, but there were no significant differences in N resorption efficiency 
between watersheds for yellow-poplar. For WS7, resorption efficiencies 
remained within the high end of published values, averaging 73-81% for N. 
Decreases in N reabsorption could be indicative of excess N uptake, with the 
tree decreasing retranslocation as a means to balance internal nutrient 
concentrations. Such changes in nutrient reabsorption and translocation may 
have significant implications for nutrient cycling in the forest floor and soil.  

Changes in N uptake or nutrient resorption also could result in changes in 
litter quality. Although litter from yellow-poplar, black cherry, and sweet 
birch on WS3 decayed more slowly than on WS7, N loss rates from the leaf 
litter did not vary between the two watersheds after 3 years of treatment 
(Adams and Angradi 1996). Increases in total soil N concentrations over time 
were observed on WS3 (Chapter 3) and provide some support for the idea of 
increased uptake of N by the vegetation. The O horizon was the most 
responsive of the soil horizons to the fertilizer treatment, which could be 
partly explained by the application of fertilizer to the ground where the 
topmost horizon would receive and capture the additional N, but it could also 
be due to increased N uptake by vegetation leading to higher N foliar 
concentrations, ultimately resulting in greater N content of the litter layer.  

After 3 years of the acidification treatment, aboveground N content of 
WS3 was slightly higher than WS7, except in the herb layer (Adams et al. 
1995), although this difference was not statistically significant. WS3 
contained 255 kg N ha-1 aboveground, compared with 233 kg N ha-1 for 
WS7. To some extent, this reflects greater aboveground biomass on WS3, 
which could not be attributed to treatment due to lack of pretreatment 
information (Adams et al. 1995). 

All of these observations suggest that while vegetation on WS3 has 
responded to the N fertilization through increased uptake and some changes 
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in allocation of nutrients, the response is highly variable, temporally, 
spatially within the watersheds, and among plant species. Chapter 5 details 
the responses of vegetation, some of which support the idea that uptake of N 
was increased, at least early on in the experiment. 

Important and unresolved questions regarding N cycling remain. In 
particular, what accounts for the apparent storage of ~70% of N inputs? This 
was unexpected, particularly in a system that has many of the symptoms of N 
saturation (Peterjohn et al. 1996, Fenn et al. 1998). Other studies suggest 
incorporation into soil organic matter (Magill et al. 2000), but the mechanism 
by which this occurs is still unclear. Specifically, the role of abiotic 
immobilization of N (Fitzhugh et al. 2003) in forest soils requires further 
consideration.  
 
 
3. SULFUR CYCLING 
 
3.1 Inputs 
 

West Virginia and western Pennsylvania receive some of the highest 
deposition of S in the eastern United States. However, S deposition has 
declined markedly since monitoring began in Parsons, from a high of >50 kg 
S ha-1 yr-1 in wet deposition to a current level of approximately 28 kg S ha-1 
yr-1, nearly a 45% decrease. Note that while such declines have been 
recorded at most monitoring stations in the northeastern United States (Hedin 
et al. 1994, Lynch et al. 2000), suggesting some success in regulating 
emissions, SO4 deposition is still greater at the FEF than for either Hubbard 
Brook Experimental Forest, or Coweeta Hydrologic Laboratory, two other 
Appalachian sites (Fig. 7-4). Total S inputs to WS3 averaged approximately 
23 kg S ha-1 yr-1 prior to the initiation of the acidification treatment. This 

-1 yr-1 as a result of the acidification treatment. Sulfur 
-1 yr-1 for the same period (Fig. 7-5).  

The majority of the S deposition is delivered via wet SO4 deposition 
(56%), with another 39% deposited as dry sulfur dioxide (SO2). The 
remainder is dry SO4. Helvey and Kunkle (1986) estimated average annual 
bulk deposition of 13.3 kg S ha-1 yr-1 with an additional 4.4 kg S ha-1 yr-1 
delivered in throughfall. More recent estimates suggest that dry deposition 
contributes an average of 6.3 kg S ha-1 yr-1 to deposition, or approximately 
another 34%, to forest ecosystems above wet deposition (http://www.epa. 
gov/ castnet/data.html).  

Similar to wet deposition of N, wet deposition of S increases with 
elevation at the FEF, the result of higher concentrations of SO4 combined 
with higher amounts of precipitation at greater elevations (Gilliam and 

increased to 59 kg S ha
inputs to WS4 averaged 19 kg S ha
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Figure 7-4. SO4 deposition at three Appalachian monitoring stations, 1979-2001. 
 
 

3.2 Outputs 
 

Sulfur is usually exported from a watershed in the form of SO4 in stream 
water, although there also may be some loss as hydrogen sulfide (H2S) from 
wet soils with anaerobic conditions. Hydrogen sulfide however, is uncommon  
in well-drained forest soils such as found on the FEF because it is rapidly 
oxidized to SO4. Exports of SO4-S from WS3 in the three years prior to the 
treatments were about 6.5 kg ha-1 yr-1. Exports increased to an average of 
11.1 kg ha-1 yr- 1 during the treatment period. Exports from WS4 averaged 8.0 
kg ha-1 yr-1 (pre-treatment years) and 10.5 kg ha-1 yr-1 during the treatment 
period. Baseflow SO4 concentrations increased from 1986 to approximately 
1996 (Chapter 4), then decreased through 2002, and these changes may be 

Adams 1996). Wet inputs of S also exhibit a distinct seasonal pattern at 
Fernow, increasing in late spring to a maximum during summer months 
(June to August). From 1983 to 1989, wet inputs of S from June to August 
averaged nearly twice that of the other months. This has important implica-
tions for impacts on these forests, which are more metabolically active 

deposition of acidity to the forest, there are also implications for inputs of H+, 
which increased from a minimum of 0.05 keq H+ ha-1 in January to a 
maximum of 0.14 keq H+ ha-1 in July (Gilliam and Adams 1996). 

during this time of the year. Also, because of the contribution of S inputs to 
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attributable to the 1990 CAAA. The pattern of SO4 exports from WS4 
follows a similar pattern (Fig. 7-5).  
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Figure 7-5. Inputs, exports and storage of S from WS3 and WS4.  Treatments were initiated in 
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3.3 Budgets 
 

Sulfate inputs, exports and net storage or loss for WS3 and WS4 are 
shown in Figure 7-5. Sulfate can be retained within a catchment through 
vegetative uptake, immobilization via microbial assimilation, incorporation 
into organic matter or through physical adsorption onto soil colloids (Fig. 7-
6; Reuss and Johnson 1986, Edwards 1988). Early work by Helvey and 
Kunkle (1986) showed that during the mid-1980s, WS4 was retaining S. 
Total inputs were 17.7 kg SO4-S ha-1 yr-1 in bulk deposition, and exports in 
stream water were 8.4 kg S ha-1 yr-1 for an estimated retention of 47% of the 
SO4-S inputs at the deposition levels occurring at that time. However, Polk 
(1991) suggested that the soils on Fork Mountain were no longer able to 
adsorb SO4, although there were differences in adsorption capacity among 
soil horizons. 
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Figure 7-6. S cycle in forest ecosystems.  
 
  

On an annual basis, both WS3 and WS4 were retaining SO4-S prior to 
initiation of treatment in 1989, although net storage was slightly less for WS4 
(66%) than for WS3 (73%). The application of ammonium sulfate increased 
inputs to WS3, without a concomitant increase in SO4-S exports. Retention 
of SO4-S by WS3 immediately after treatments began was high (about 90% 
of total inputs), but declined slightly, and by 2002 was around 80%.  
Baseflow SO4 concentrations have increased throughout the study (Chapter 4), 
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4

majority of the watershed, but the concentrations in streamside areas do not 
suggest significant retention (Chapter 4). The streamside areas act as 
respositories for materials leached from the uplands over longer time periods, 
such that soils in the streamside areas have no more ability to retain S even 
through there still appears to be retention ability in the uplands. Note a 
similar pattern of retention occurring on WS4 (Fig. 7-5) and WS7 (Fig. 7-7), 
despite the absence of fertilizer additions. This provides some support for our 
hypothesis of desorption due to decreased atmospheric inputs and, ultimately, 
effects on solution concentrations. 

 
3.4 Internal Cycling 

 
Sulfur deposition usually exceeds the S uptake requirements for a forest 

(Reuss and Johnson 1986); therefore large changes in uptake, even with 
increasing N uptake, are not likely to account for significant changes in 
retention. As SO4-S inputs have decreased to WS4, we may be seeing release 
of S in recent years due to lower concentrations in deposition, as hypo-
thesized by Rochelle and Church (1987) and Reuss and Johnson (1986). 
Sulfate adsorption can be induced by increasing SO4 concentration and 

 suggesting saturation of SO  adsorption capacity, at least in the stream-
side zone. WS3 soil water concentrations suggest that adsorption, perhaps  
via pH changes and/or increasing SO4 concentrations, is occurring in the 
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Figure 7-7. Inputs, exports and storage of SO4-S from WS7.   
 



7.  Acidification and Nutrient Cycling 221 

decreasing pH. Because SO4 adsorption capacity is concentration dependent, 
increasing concentration results in further adsorption until a new equilibrium 
is reached. Conversely, decreased inputs could lead to SO4 desorption and 
increased leaching from the soil as a new equilibrium is established.  

Some of the apparent retention of S by these watersheds may also be 
related to stream channel characteristics and hydrology. The watersheds in 
part may have net storage because the stream channels are intercepting less 
water during storms and higher base flows than the other watersheds, and 
exporting less S. Net S budgets are not strongly related to annual discharge, 
except when streamflows are unusually high, such as 1996, a year of record 
annual streamflow (P.J. Edwards, unpublished data).  
 
 
4.  CALCIUM CYCLING 
 
4.1  Inputs  
 

Calcium concentrations in wet deposition have declined considerably 
over the last 25 years, representing fluxes ranging from a high about 3.5 kg 
Ca ha-1 yr-1 to around 1.5 kg Ca ha-1 yr-1 currently. This decline is attributed 
to improved scrubber technology on power plants, which has not only 
significantly reduced S emissions (see above), but also has reduced emissions 
of ash and particulates, which often included constituents composed of basic 
components, e.g., Ca and Mg (Hedin et al. 1994). Calcium inputs to WS3 and 
WS4, as measured in bulk deposition, averaged less than 3.5 kg Ca ha-1 yr-1 
over the period of study.  
 
4.2 Outputs  

 
Ca exports in stream water increased on WS3 from an average of 6 kg 

ha-1 yr-1 to an average of 13.4 kg ha-1 yr-1 after treatment began in 1989. 
Increasing exports were also observed in WS4, from 7.5 kg ha-1 yr-1 to about 
10.5 kg ha-1 yr-1, although the rate of increase was not as steep as for WS3. 

 
4.3 Budgets 
 

Inputs, exports and net losses of Ca are shown in Figure 7-8. Note that 
for both WS3 and WS4, exports of Ca exceeded inputs prior to initiation of 
the study. Net losses on WS3 (inputs minus outputs) ranged from 3 to 25 kg 
Ca ha-1 yr-1, and net losses from WS4 ranged from 3 to about 15 kg Ca ha-1 
yr-1. While exports were greatest during the wettest years (1996, record 
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annual streamflow) increases in stream Ca concentrations after treatment 
began were also observed (see Chapter 4), suggesting that these changes 
reflect treatment effects, not just changes in flow volumes. Between 1989 
and 2002, 188 kg Ca ha-1 was exported from WS3, and 147 kg Ca ha-1 from 
WS4 over the same period.  

Figure 7-8. Inputs, exports and storage of Ca from WS3 and WS4. Treatments were initiated 
in 1989. 
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4.4 Internal Cycling 
 

Important Ca cycling processes in forest ecosystems include plant 
uptake, litterfall and decomposition, weathering from primary minerals, soil 
exchange processes, and leaching via soil solution to stream water and 
groundwater. Some of these processes, notably weathering, have not been 
quantified for this study. However, we can make some observations.  

Because Ca is not retranslocated from the leaves to other parts of the 
tree, foliar Ca levels can provide us with information about uptake by the 
vegetation. Foliar Ca concentrations on WS3 were lower than those on WS7 
for sweet birch, yellow-poplar, and red maple in 1992 (Fig. 7-9). Con-
centrations of Ca in the tree boles of sweet birch, black cherry and red maple 
did not differ between the two watersheds, but significantly higher 
concentrations of Ca were detected in the bolewood of yellow-poplar on 
WS7 (Adams et al. 1995). These results suggest greater uptake of Ca by 
vegetation on WS7 relative to WS3. This could be due to greater availability 
of Ca on WS7 or to decreased availability on WS3.  

The stands on WS3 and WS7 are of the same age, originating with the 
growing season of 1970 as natural regeneration. However, portions of WS7 
were maintained barren of vegetation for 2 to 5 years through the use of 
herbicides (see Chapter 2). As a result, the litter layer quickly decomposed, 
and soil organic matter decreased in the upper horizons of the soil (Troendle 
et al. 1974). In addition to increased decomposition of the litter layer, large 
amounts of dead wood and slash were left on the site, and were available for 

availability of nutrients in the medium term. This is reflected in greater soil 
exchangeable Ca in WS7 (1677 kg Ca ha-1) than WS3 (905 kg Ca ha-1) and 
WS4 (428 kg Ca ha-1), as measured in 1991 (Adams et al. 1995). 
Aboveground Ca content was also greater on WS7 (169 kg Ca ha-1) than on 
WS3 (155 kg Ca ha-1), despite greater average aboveground biomass on WS3 
(Adams et al. 1995). 

Lower Ca contents on WS3 could also be due to decreased uptake. As 
soil acidification proceeds, base cations such as Ca are stripped from soil 
exchange sites, and leached from the soil to streams and groundwater, 
resulting in decreased availability over time. Soil solution data (Chapter 4) 
suggest such a mobilization and depletion of Ca from soil exchange

 sites. Dendrochemistry data also show this pattern (Chapter 5).  Because

rapid decomposition. This could have resulted in greater mineralization  
of nutrients stored in organic matter and down wood, therefore greater 
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Figure 7-9. Mean foliar Ca concentrations for four tree species on WS3 and WS7 over time.  
* indicates statistically significant differences between watersheds (p < 0.10). 
 
 

Ca is 
 yellow  poplar is a Ca-demanding tree species (Raynal et al. 1992), and because 

not retranslocated within an individual tree, this difference in bolewood 
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concentration, along with significantly lower concentrations of Ca in foliage 
of yellow-poplar from WS3 supports the hypothesis that less Ca may be 
available for tree uptake on WS3, at least for yellow-poplar. Such a decrease 
in exchangeable soil Ca is not clearly indicated for WS3, however (Chapter 3).  

As soil acidifies (pH decreases), soil aluminum (Al) becomes more 
available and may compete with Ca at the soil-root interface, inhibiting 
uptake of Ca (Schaberg et al. 2001). Such interactions between soil Ca and 
Al have been identified as a concern for root growth and aboveground 
productivity of some trees (Lawrence et al. 1995, Cronan and Grigal 1996), 
therefore, Al should also be considered when considering Ca cycling. For 
example, Lux and Cumming (1999) demonstrated that yellow-poplar 
seedlings were very sensitive to high Al concentrations in soil solution. The 
authors also reported that soil solution Al concentrations from WS3 were 
significantly greater than those from WS4 (107 uM vs. 26 uM, respectively); 
these high levels were considered to be toxic to yellow-poplar (Lux 1999). 
Foliar Al concentrations did not differ significantly between WS3 and WS7 
in 1992, but bolewood Al concentrations were significantly lower for black 
cherry and yellow-poplar on WS7 relative to WS3 (Adams et al. 1995). 
However, foliar Al concentrations were significantly greater in 1997 and 
2002 for black cherry and red maple on WS3. White et al. (1999) reported a 
similar pattern of decreases in foliar Ca and increases in foliar Al for the 
similarly treated West Bear Brook watershed in Maine. Thus, for some tree 
species on WS3, soil Al levels may be affecting Ca uptake and cycling. 

Weathering rates of primary minerals are difficult to estimate (Laudelout 
and Robert 1994, Bailey et al. 2003), and weathering rates have not been 
determined for the FEF soils. However, reported rates of Ca weathering 
range from 2 to 5 kg Ca ha-1 yr-1 (Laudelout and Robert 1994, Bailey et al. 
2003), approximately equal to or slightly less than deposition inputs. Total 
Ca pools in high elevation forest soils in West Virginia derived from acid 
sandstone and shale ranged from 400 to 1096 kg Ca ha-1, with corresponding 
exchangeable values from 156 to 350 kg Ca ha-1 (Jenkins et al. 1998). Bailey 
et al. (2003) hypothesized that sources of Ca which have been previously 
unstudied in most forest ecosystems, such as calcium oxalate, may contribute 
significant amounts of Ca to an ecosystem, particularly in response to 
disturbance. Yanai et al. (2005) presented evidence that apatite provides a 
previously unappreciated Ca source in some forest ecosystems. Finally, 
Grigal and Ohmann (2005) demonstrated that diffusion from deep sources 
provides a plausible mechanism to replenish Ca levels in near-surface zones. 
Thus determining accurate weathering/mineralization rates could do much to 
improve our budgets and address concerns about Ca depletion of soils. 
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5.  MAGNESIUM CYCLING 
 
5.1  Inputs  
 

Magnesium inputs are low, ranging from 0.1 kg ha-1 yr-1 to about 0.5 kg 
ha-1 yr-1 at the most, and deposition has declined since the 1970s. Deposition 
has remained consistently low since the mid 1980s, similar to the pattern 
observed for Ca, and for the same reasons (Hedin et al. 1994).  
 
5.2  Outputs 

 
Magnesium exports from WS3 have increased during the course of the 

experiment from about 4 kg ha-1 yr-1 to an average of 7 kg ha-1 yr-1, similar to 
the pattern of Ca exports. Exports of Mg in WS4 stream water have increased 
from pretreatment levels of 3.9 kg ha-1 yr-1 to 5.0 kg ha-1 yr-1. 

 
5.3  Budgets 
 

Annual exports of Mg from WS3 and WS4 exceed inputs, by as much as 
a factor of 10 (Fig. 7-10). Both watersheds show a significant net loss of Mg 
over the period of study. Between 1989 and 2002, nearly 100 kg Mg ha-1 was 
exported from WS3 and 70 kg Mg ha-1 from WS4. Over this same period of 
time, total inputs were around 6.7 kg Mg ha-1.  
 
5.4  Internal Cycling 
 

The cycling of Mg within forest ecosystems is similar to that of Ca. Plant 
uptake, litterfall and decomposition, weathering and soil cation exchange  
are important processes. Foliar Mg for sweet birch and black cherry were at 
the lower end of the regional mean (Northeastern Ecosystem Research 
Cooperative 2004), but did not differ significantly between watersheds for 
most of the species and sampling dates. This suggests that Mg uptake has, for 
the most part, not been affected by the acidification treatment. There are 
exceptions: In 1992, foliar Mg concentrations were significantly less on WS3 
for yellow-poplar relative to WS7 mean values, and were also significantly 
less for red maple on WS3 in the 1997 sampling (see Chapter 5). Also, soil 
exchangeable Mg levels are relatively low in all the watersheds, and did not 
differ between watersheds. Although we cannot rule out changes in Mg 
cycling due to the acidification treatment, the magnitude of the effect is 
sufficiently less than for Ca to be undetectable. More information on 
weathering and mineralization of Mg from organic matter is needed to better 
understand the importance of Mg on these forested watersheds. 
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Figure 7-10. Inputs, exports and storage of Mg from WS3 and WS4. Treatments were initiated 
in 1989. 
 
 



M. B. Adams  et al. 228 

6. POTASSIUM CYCLING 
 
6.1 Inputs 
 

Measured in bulk deposition, annual K inputs ranged from less than 1 kg 
ha-1 yr-1 to a high of about 4.5 kg ha-1 yr-1 . Interannual variability is related to 
variability in annual precipitation amount. Wet deposition of K decreased 
from 1978 to 1988 and has remained relatively constant at around 0.2 to 0.4 
kg ha-1 yr-1 since that time.  
 
6.2 Outputs 
 

Pretreatment exports of K in WS3 steamwater averaged 4 kg ha-1 yr-1, 
and 6 kg ha-1 yr-1 during treatments. Average exports from WS4 during the 
same time periods were 3.5 and 4.5 kg ha-1 yr-1. Initially exports from the two 
watersheds were identical, but in later years, exports increased from WS3.  
 
6.3 Budgets 
 

There were no immediate obvious effects of the fertilizer on K cycling 
(Fig. 7-11) and WS3 exports slightly exceeded inputs for a net loss of ~3 kg 
ha-1 yr-1. However, WS3 K exports have increased significantly relative to 
those of WS4, starting in about 1993 (Fig. 7-12). Average net K export from 
WS3 during 1993-2002 was almost 4 kg ha-1 yr-1. A similar increase in K 
concentrations in soil solution, and to a lesser extent in stream water, around 
1991 is also documented in Chapter 4.  
 
6.4 Internal Cycling 
 

Most K available to plants comes from weathering of K containing 
minerals, and is found in soil solution and exchange sites. K+ is a highly 
mobile cation, and there is evidence of active uptake by plants (Mengel and 
Kirby 1982). There are no obvious effects of the acidification treatment on 
nutrient uptake, based on foliar K concentrations, but there do appear to be 
effects on soil concentrations. Exchangeable K concentrations in the O 
horizon increased almost threefold between 1994 and 2002 (Chapter 3). Soil 
solution concentrations also increased after about 6 years of treatment 
(Chapter 4). The cause of this increased availability of K in soil solution is 
unknown, and requires further investigation.  
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Figure 7-11. Inputs, exports and storage of K from WS3 and WS4. Treatments were initiated 
in 1989. 
 
 
7. CONCLUSIONS 
 

We have documented a number of significant effects of elevated N and S 
deposition on nutrient cycling within forested watersheds on the FEF. We 
have the most detailed information on N and have observed elevated stream 
water exports of N from the system, apparent short-term increases in plant 
uptake of N, and increased gaseous fluxes of N. Nitrogen mineralization and 
nitrification rates appear unaffected by the additional N, although that may 
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be due in part to already high N processing rates prior to treatment. We also 
have documented considerable spatial variability in N cycling among, as well 
as within, watersheds. Some of this small-scale spatial variability may be 
linked to vegetation (Peterjohn et al. 1999, Gilliam et al. 2001a, b), while 
variability across larger scales may be due to bedrock geology (Williard et al. 
2003).  
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Figure 7-12. WS3:WS4 K ratio for inputs and exports over time. Treatments were initiated in 
1989. 
 
 

Stoddard (1994) described WS4 as being at Stage II of nitrogen 
saturation. Since then, a number of publications have explored the symptoms 
of N saturation, as described by Aber et al. (1998), on the FEF (Peterjohn  
et al. 1996, Fenn et al. 1998, Fernandez and Adams 2000). Additional 
research at FEF has focused on the possible effects of N saturation on plants 
(Gilliam et al. 2001a, Christ et al. 2002) and soils (Peterjohn et al. 1998; 
1999; Gilliam et al. 2001a, b) of these hardwood stands. These studies have 
provided compelling evidence to corroborate Stoddard’s earlier conclusions 
based on stream chemistry from WS4 — some of the forest stands of FEF are 
demonstrating symptoms of N saturation, including WS3 and possibly WS7. 
The implications of N saturation for other nutrients are further considered 
below. However, retention of N is still almost 70% of inputs, despite many 
years of elevated N inputs. 

Sulfate export appears to be increasing from most of the gaged 
watersheds on the FEF, not just those receiving fertilizer additions. The rate 
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of SO4 retention by WS3 has decreased over time, suggesting a significant 
treatment effect. Thus, while the acidification treatment appears to have 
accelerated SO4 leaching from WS3, changes in ambient deposition are also 
occurring which are probably contributing to the changes observed in WS4 
and WS7.  

Cycling of Ca, Mg, and K also have been affected by the acidification 
treatment on WS3. It is significant to note that both WS3 and WS4 export 
more Ca, Mg and K on an annual basis than is delivered in deposition. 
Unmeasured fluxes, such as weathering and decomposition of organic matter, 
no doubt provide some of the balance, but it also seems probable that base 
cations are being depleted from the soils of WS3 and WS4, although we 
could not detect such a change on soil exchangeable cation concentrations. 
WS7 has slightly higher Ca levels, perhaps due to a different treatment 
history, and thus may have more buffering capacity than WS3 and WS4. 
Further work is needed to quantify additional base cation cycling processes 
within these watersheds, and better address the question of base cation 
depletion.  

Some effects of the acidification treatment were immediately obvious – 
N appeared to have an effect very early on – while the effects on other 
elements were more subtle or appeared later as acidification of the watershed 
progressed. We know that foliar nutrient concentrations have increased in 
some tree species, but not in all species, nor across all sampling periods, 
suggesting that uptake of some nutrients has been altered by acidification 
processes for some tree species. The acidification treatment has resulted in 
increased exports of N, S, Ca, Mg and K from WS3, and may be contributing 
to changes in Al availability as well. While we conceptually understand 
many of these nutrient cycling processes, we were only able to detect a few 
changes with any degree of certainty. Part of this difficulty is due to the 
problems of large spatial and temporal variability: in tree species 
composition and their differential sensitivity to acidification, and in nutrient 
cycling processes. The difficulty of sampling, with sufficiently rigorous 
techniques to detect differences within this large variability, also contribute 
to this uncertainty.  

There are still important questions to be answered about the cycling of 
these nutrients and others in forest ecosystems and their responses to 
acidification and other chronic disturbances. At the Fernow the most 
intriguing of these are related to the high retention of N in a supposedly 
“saturated” watershed, and the cycling of base cations, in particular 
weathering and other sources of these cations. 
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