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Abstract
We discuss selected issues in palaeoclimatic research, with a focus on tree ring based temperature
reconstructions. Topics include the difficulty to retain long-term temperature variations in tree
ring based reconstructions, the effects of this and other limitations on the estimation of the
absolute temperature amplitude over the past millennium, and the potentials and limitations of
including precipitation sensitive tree ring data in large-scale temperature reconstructions. To
address these issues, we begin with a brief introduction into some principles of proxy data and
specific characteristics of tree ring time-series.
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Introduction

From the range of potential research questions that can be addressed using dendroclimatic
methods, the documentation of natural climate variability from periods prior to evident
human impact stands out prominently (Watson et al. 2001). An essential component of this
more recent impact is the emission of greenhouse gases such as CO2 into the atmosphere
since the beginning of widespread industrialization in the middle of the 19th century (Keeling
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Fig. 1. Recent temperature and CO2 timeseries, together with a millennial-long temperature reconstruction
and a simple forcing timeseries. (A) Annual mean temperatures obtained from averaging Northern Hemi-
sphere meteorological station data indicate a warming trend of about 0,6°C over the past 140 years (Jones

(Hansen et al. 1999). In comparison, the CO2 content (Robertson et al. 2001) increases more steadily from
about 285 to 370 ppm, but does not show the significant inter-decadal fluctuations as seen in the tempera-
ture data.To understand the forcing of CO2 (and other greenhouse gases) on temperature, it is necessary to
reconstruct natural, pre-industrial, climate variations from periods before the 19th century, and to relate
these findings with reconstructions of natural forcing factors, such as the variability of solar irradiance and
volcanic eruptions. (B) The large-scale temperature reconstruction over the past millennium averages
information from 14 tree ring sites north of 30°N (Esper et al. 2002a). This record is calibrated against
annual temperatures, averaged over Northern Hemisphere land and sea surface areas, using the 1856–1980
period as shown in A (Jones et al. 1999). Accordingly, the temperature amplitude over the past millennium
is in the order of 1°C.The reconstruction indicates warmth at the beginning of the past millennium, similar
to the temperatures recorded during about the middle of the 20th century. Some of the inter-decadal to
centennial scale variations in this reconstruction are in line with an average series combining volcanic
(Crowley 2000, Robock und Free 1996), solar (Bard et al. 2000, Crowley 2000, Lean et al. 1995), CO2 (Ethe-
ridge et al. 1996), and an estimate of tropospheric aerosol forcing (Crowley 2000, Etheridge et al. 1996).

et al. 1999). These data represent 90% of the Northern Hemisphere surface area in the 1950s, 50% in the
1900s, and 20% in the 1860s. Numbers are derived utilizing a 1200 km radius for each single met station
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et al. 1996; Robertson et al. 2001). During this time, the concentration of CO2 has risen from
about 280 parts per million to about 370 in recent years (Fig. 1A). With this, and projected
future emissions, comes the concern that the anthropogenic forcing of temperature (Hansen
et al. 1999) and change of weather and climate extremes (Katz and Brown 1992; Kharin and
Zwiers 2005; Klaus 1993; Stainforth et al. 2005; Stott et al. 2004) will also become more signifi-
cant in the future. Such changes would significantly impact natural ecosystems (Nemani et al.
2003) and the utilization of these resources by humans (Ahmad et al. 2001).

To quantify the influence of greenhouse gases and to be able to develop reliable projec-
tions of future climate variations, it is important to understand the forcing from both natural
and anthropogenic factors (Fig. 1B). In contrast to the recent period since industrialization,
late Holocene greenhouse gas variation prior to the middle of the 19th century was negli-
gible. During this pre-industrial time, changes in solar radiation and stratospheric reaching
aerosols from volcanic eruptions were likely the primary forcing factors for climate
variations. The quantification of these different forcing factors represents a key objective for
model calibration and testing (Gerber et al. 2003) and future predictions (Boer et al. 2000).

To provide information on longer term regional and large-scale climate history, so-called
proxy data are analyzed. Following the discussion of some principles of such data, we
address the climatic signals retained in certain tree ring parameters, and stress the challenging
issue of preserving low frequency temperature variations in dendroclimatology. This topic is
followed by a discussion of the estimation of absolute temperature variations over the past

challenges of future dendroclimatic research.

Proxy data, such as timeseries of the thickness and composition of lake sediments, glacial ice
layers, growth increments in corals, speleothems and trees, borehole temperature profiles,
and documentary evidence are key to the understanding and quantification of past climatic
variations (overview in Bradley and Jones 1992; Jones et al. 1996; Jones and Mann 2004;
Moberg et al. 2005), and, thus, the current global climatic change debate (Watson et al. 2001).
Data from these archives are generally compared and correlated with instrumental
measurements to quantify their climatic sensitivities and signals, and are subsequently used
to document climate prior to the period of instrumental data.

The different proxy sources have varying strengths and weaknesses, and comparison of
several independent sources, or even their combination, is desirable to develop robust
reconstructions of past climate variability (Casty et al. 2005a, 2005b; Luterbacher et al. 2004,
2005; Mann 2002; Xoplaki et al. 2005). Proxy sources are usually confined to certain geo-
graphic regions, with ice cores limited to high mountain and polar regions (Watanabe et al.
2003), corals to low latitude sea shores (Felis et al. 2000), tree rings primarily to extratropical
forested ecosystems (Schweingruber 1996; Stahle 1999; Worbes 1999), and documentary
evidence to regions from which historic reports are available, such as Europe (Brázdil et al.

(Prieto et al. 2004). Also the number and type of measured parameters varies considerably
between the proxy sources. In the family of available proxies, ice cores tend to provide the
largest variety of commonly measured parameters, including direct measures of CO2 con-
centration from trapped air bubbles (Smith et al. 1997), the isotopic fractionation of oxygen,
and levels of sulfate from volcanic eruptions (Petit et al. 1999; EPICA 2004).

On Selected Issues and Challenges in Dendroclimatology

Proxy Sources

2005; Bürgi et al. 2007; Pfister 1999; Pfister et al. 1998), eastern Asia (Ge et al. 2005; Qian et al.
2003; Wang et al. 2001; Yang et al. 2002; Zhang and Crowley 1989), and South America

data in large-scale temperature reconstructions. The review closes by highlighting some
millennium, and the problems and potential to include precipitation sensitive tree ring 
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Additional differentiation between proxy sources concerns their lengths and resolutions.
Whereas tree ring series are of yearly resolution, the resolution and precision of other proxy
sources is generally lower (except for documentary evidence which can even resolve daily
weather), or decreases with depth, such as for ice core data. In exchange for these resolution
tradeoffs, ice core data can extend many hundreds of thousands of years back, whereas con-
tinuous tree ring data rarely extend back ten thousand years (Briffa and Matthews 2002;
EPICA 2004; Grudd et al. 2002; Schaub et al. 2003).

A distinctive characteristic of tree ring data, and various other proxies, is that the quality
of the chronology is not stable over time, with greater uncertainties typically occurring

climatology (Schweingruber et al. 1990). Certain years stand out from all others, whereby the

1991). These years possess greater signal strength than
“average” years, in which say seven trees produce wide rings, while 10 produce narrow rings
(Esper and Gärtner 2001). Analyses of extreme years (Esper et al. 2001b; Neuwirth et al.
2003; Schweingruber et al. 1991) show that extremes (both positive or negative) of a similar
magnitude can be triggered by a wide variety of climatic circumstances. This can complicate
dendroclimatic studies, where the influence of a single climatic parameter on tree growth is
generally sought. Such complications can be reduced however by careful consideration of
site ecology.

The ecology of the most suitable sites for dendroclimatic analyses are well known (overview
in Schweingruber 1996). A clear climatic signal can be obtained at e.g. treeline sites, whereas
intermediate sites often yield somewhat fuzzy signals. Trees from drought stressed locations,
such as the lower forest border in the American southwest (LaMarche 1974), Mongolia
(Pederson et al. 2001) or the Mediterranean area (Akkemik and Aras 2005; Chbouki et al.
1995; D’Arrigo and Cullen 2001; Touchan et al. 2005) tend to most clearly show a precipita-
tion signal.

Similarly the temperature signal is maximized at the temperature limits of tree growth at,
for example, the northern treeline in Siberia (Briffa et al. 1998) or upper treeline in the Tien
Shan and Karakorum (Esper et al. 2002b, 2003b). Even though the vast majority of dendro-
climatic reconstructions are based on trees, shrubs and even dwarf shrubs that develop
annual rings (Schweingruber 2001) are generally usable. While ring width is the most easily
measured parameter used for dendroclimatic reconstructions, other parameters, such as the
maximum latewood density (Schweingruber et al. 1978) and even specific anatomical
features (Schweingruber 2001), can also have great reconstructive power.

Stable isotope ratios measured in tree rings are another data source that is increasingly

C and 12C (or
isotopes of oxygen), is compared with an internationally recognized standard (Craig 1957)
and is expressed as the deviations of �13C in parts per thousand (‰). For tree cellulose the
values are negative. It has been shown that such measurements can be linked, depending
upon site ecology, with temperature or precipitation variations (Treydte 2003; Treydte et al.
2001). Indeed, highly significant relationships between �13C series and temperature measure-
ments can be obtained, particularly in the high-frequency domain. These correlations are
only valid, however, after removal of an increasingly negative trend in �13C measurements in

further back in time. Furthermore the climatic sensitivity also varies through time (Esper et al.
2001a). This phenomenon can be illustrated in so-called extreme year analysis in dendro-

2003; Schweingruber et al.et al.
majority of trees synchronously produces an exceptionally narrow or wide ring (Neuwirth 

Climatic Signals in Tree Ring Parameters, and Trend Problems

131997; Treydte et al. 2001). Here the stable isotope ratio of, for example,
used for climate reconstruction (Borella et al. 1998a, 1998b; Leavitt and Long 1984; Saurer et al.
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time (Farquhar et al. 1982; Leavitt and Long 1989; Marshall and Monserud 1996). The
negative trend results from the enrichment of air from fossil fuel carbon (which has a highly
negative value) and also from plant physiological effects in response to the increasing partial
pressure of CO2. As the plant physiological mechanisms of �13C fixation are not totally
understood, the low frequency, centennial scale variations can not yet be confidently
estimated due to the greater uncertainties that exist during the anthropogenically influenced
calibration period.

Specific wood anatomical features that result from relatively few and/or highly specific
influences can also be used for reconstructing past environmental changes. For example,
occurrences of late (in spring) and early (in autumn) frosts have been reconstructed
(Hantemirov et al. 2000). To do so deformed cell walls (callous tissues), that result from
frost, are used as the characteristic features (Fig. 2). The location of these callous cells within
the tree ring, e.g. can be used to reconstruct frost events even at a sub-annual resolution
(Schweingruber 2001).

Raw measurements of tree ring width (in mm) and maximum latewood density (in g/cm3)
are the result of a multitude of physiological drivers. Some of them are closely linked to
climate, some are linked to non-climatic sources, e.g. the age trend (Bräker 1981; Cook and
Kairiukstis 1990; Fritts 1976). The age trend is responsible for decreasing ring width or

Fig. 2. Callous tissue (frost ring) in the earlywood of a juniper tree (Juniperus turkestanica) from the
upper timberline in the Tien Shan Mountains, Kirghizia. In the center of the picture a tree ring boundary
separating two rings (below and above) is seen.The lower part shows the latewood portion of the (older)
ring with smaller cells and thicker cell walls, followed by the earlywood portion of the (younger) ring
with larger cells and thinner cell walls. During the beginning of the formation of this younger ring, a frost
occurred affecting the cambium. The freezing of the cambium resulted in deformed, callous cells (center
of the picture).Typical for such frost rings is also the curvilinear offset of the ray cells cutting through the
ring boundary. The frost occurred in spring, immediately after the tree started to build earlywood.

On Selected Issues and Challenges in Dendroclimatology 117
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Fig. 3. Synchronous ring width variations in high elevation Juniper trees (Juniperus turkestanica) from
the Tien Shan Mountains, and correlation with instrumental temperature data. (A) 47 ring width series
from 36 trees near the upper treeline in 3,200 m a.s.l. show distinct inter-decadal scale variations. These
variations are synchronous throughout most periods of the past millennium, indicative of a strong com-
mon signal between the trees. Age trends were removed with a spline standardization technique (Cook
1985) and an adaptive power-transformation (Cook and Peters 1997). Details are given in Esper et al.
(2003b). (B) Ring width variation between seven high-elevation stands in the Tien Shan Mountains
since 1620. The variation here is extremely synchronous suggesting that a spatially common climate sig-
nal (likely temperature) is controlling tree growth. (C) This connection can be additionally validated
through a comparison between two regional mean chronologies (LTM, RCS) and summer temperature
measured at the Fergana instrumental station. Of particular note is the absence of a 20th century warm-
ing trend in western central Asia that is, for example, evident in Europe and large-scale temperature
timeseries. The portions of the RCS and LTM chronologies shown here were standardized using meth-
ods to specifically preserve multi-centennial trends (Esper et al. 2003b). These trends are not preserved
using the more traditional spline standardization shown in A.
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density with increasing tree age. It results from the geometric property of adding more or
less constant biomass to an increasing surface area as the tree grows. This trend must be
eliminated prior to climatic analyses, otherwise the ring width or maximum latewood density
values are biased and reflect tree age rather than a climate signal.This age trend is commonly
removed with detrending procedures, while still preserving the common climatic signal of
interest. By common variation, we mean the positive and negative deviations (after stan-
dardization) of ring width or density, that are synchronous between trees at a given site, and
ultimately between different study sites (Fig. 3) (Esper et al. 2001a; Wigley et al. 1984). Such
synchronous variations within and between sites can only result from common environmen-
tal influences over larger areas.

While the synchronous variation between trees and stands represents a clear conceptual
strength of dendroclimatology, the age-trend and its necessary removal represent a substan-
tial weakness or limitation of the ring width and density parameters. In general, it is quite
difficult to distinguish the biological age-trend from long-term climatic signals, particularly

Warm Period into the Little Ice Age), which for temperature sensitive trees, can mimic the
shape of the biological age trend. The separation of these trends represents a substantial and
critical task in modern dendroclimatology (for further information see Briffa et al. 1992,
2001; Cook et al. 1995; Cook and Peters 1997; Esper et al. 2002a, 2003a).

To understand the role of different anthropogenic and natural forcings on ecosystems, an
assessment of past climatic changes is needed over time periods longer than the instrumental
interval. Currently, the temperature variation over the past 1000 years receives considerable
attention (Watson et al. 2001). The characteristics, timing and regional particularities of the
Medieval Warm Period, the subsequent Little Ice Age, and the present warm period are
particularly relevant (Broecker 2001, Mann et al. 2003b). Related questions are: (i) how
large was the temperature amplitude (in ºC) over the past 1000 years, and (ii) how quickly
has the temperature varied without anthropogenic impacts such as greenhouse gases (Esper
et al. 2004, 2005a, 2005b; Moberg et al. 2005; Mann et al. 2003b; von Storch et al. 2004).

To help answer these questions, millennial-long large-scale reconstructions with annual
resolution have been developed (Briffa 2000; Esper et al. 2002a; Jones et al. 1998; Mann et al.

show that in large parts of the Northern Hemisphere a distinct warm period existed about
1000 years prior to present.According to these reconstructions, temperature patterns similar
to those of the middle 20th century existed within the past millennium. The warm periods are
separated by distinct cooler episodes associated with the Little Ice Age. In contrast, the
reconstruction from Mann et al. (1999) shows relatively warm conditions about 1000 years
ago, with a very gradual cooling for 900 or so years until a fairly abrupt modern increase.

Much discussion about common features in large-scale reconstructions, and the possibility
to retain common multi-centennial climatic variations currently exists (Briffa and Osborn
2002; Cook et al. 2004a; Esper et al. 2002a; 2004a; Mann et al. 2002). It was suggested (e.g. by
Esper et al. 2004a) that differences in the lower frequency domains of currently used long-
term tree-ring series (Fig. 4) may be a result of detrending procedures that were sub-optimal
to fully preserve multi-centennial wavelength information. This problem is particularly
critical, as mentioned above, for the transition from the Medieval Warm Period into the Little
Ice Age, where age-trends and long-term climatic evolution both exhibit decreasing trends.

On Selected Issues and Challenges in Dendroclimatology

when the long-term climate represents a cooling (e.g. the transition from the Medieval

Temperature Amplitude

1999). Some of these series (e.g. Briffa 2000; Esper et al. 2002a; see also Moberg et al. 2005)
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Fig. 5. Varying temperature amplitudes (in °C) obtained after calibrating the same proxy reconstruction
(Esper et al. 2002a) with different (currently accepted) methods. The record displaying a smaller ampli-
tude was regressed to warm season land and sea surface temperature data over the 1856–1980 period,
while that showing greater amplitude, by scaling (mean and variance equalization) to annual land tem-
perature data over the 1900–1977 period. The spatial domain for both instrumental datasets is 20–90°N
latitude (Jones et al. 1999). Various estimates of the amplitude of past variability from these calibration
choices add additional uncertainty in the magnitude of past temperature variability, and can result in
widely diverging views, particularly when instrumental data are spliced to the modern end of such
records. See Esper et al. 2005b for more details.

-2.0

-1.5-1.5

-1.0-1.0

-0.5-0.5

0.00.0

0.50.5

1.01.0

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Year

Te
m

pe
ra

tu
re

 (
°C

 a
no

m
al

y 
w

rt
. 1

96
1-

19
90

) Regression
Scaling

Fig. 4. Annually resolved, large-scale temperature reconstructions (Briffa 2000, Esper et al. 2002, Jones
et al. 1998, Mann et al. 1999) showing synchronous multi-decadal variations.The records were detrended
using a spline filter to remove low frequency, multi-centennial trends. The significant similarities in the
remaining (higher) frequencies suggest that differences in the lower frequencies likely result from dif-
fering standardization techniques applied in the original reconstructions (for details see Esper et al.
2004a).The average interseries correlation of the records as shown here, is 0.42 over the 1000–1980 period.
Average correlations for each century are indicated in the figure. While these reconstructions share some
data, tests that minimized this overlap did not reveal substantial differences (Esper et al. 2004a).
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In addition to the different “shapes” of these curves, the temperature amplitudes
reconstructed from them also tend to differ considerably. The approximate decadal scale
amplitude (difference between the warmest to coldest decade) derived from the Mann et al.
(1999) reconstruction is about 0.5 °C, whereas the amplitude reconstructed by Esper et al.
(2002a), and then recalibrated by Cook et al. (2004a) are both about 1.0 °C (see also Moberg
et al. 2005). This latter figure is more consistent with large-scale estimates derived from
borehole reconstructions over the past 500 years (Beltrami 2002; González-Rouco et al.
2003; Huang et al. 2000; Pollack and Huang 2000; Pollack and Smerdon 2004), although other
analyses using the same data indicate somewhat lower amplitudes (Mann et al. 2003a;
Rutherford and Mann 2004).

Reconstruction of the temperature amplitude can also be hampered by calibration
methods and data used (see e.g. Briffa and Osborn 2002). This issue was recently tested by
von Storch et al. (2004) using general circulation model (GCM) results as a surrogate for the
“true” climate over the past millennia, and “pseudo proxy data” with statistical character-
istics similar to real proxy (e.g. long instrumental, tree ring, documentary, coral, etc.) data.
Their results suggest that regression based calibration methods – similar to those used by
Mann et al. (1999) – may consistently underestimate the true temperature amplitude, and in
such a way where there tends to be a bias towards greater error, and hence reduced ampli-

quencies). However, recent work (Mann et al. 2005) suggests that the von Storch et al. (2004)
results depend on the selection of the GCM model, the (varying) radiative forcing applied to
these models, and the long-term performance (drift) in climate simulations. It was, for
example, shown that the GKSS simulation (as used by von Storch et al. 2004) is biased by a
‘spin-up’ artifact, i.e. the simulation was initialized from a warm 20th century state at AD
1000, prior to the application of pre-anthropogenic radiative forcing, leading to a long-term
drift in mean temperature (Goosse et al. 2005). The Mann et al. (2005) results seem to
contradict the suggestion that empirical proxy-based temperature reconstructions suffer
from systematic underestimations of low-frequency variability (von Storch et al. 2004).
Further tests are necessary to solve this issue, and particularly to determine the impact of
employing different climate models and forcing series (and their weighting) on recon-
structed temperature amplitudes.

Esper et al. (2005a) addressed the same issue by systematically surveying the effects on
large-scale reconstructions’ amplitude that result from the calibration to a variety of instru-
mental targets with a variety of methods – all of which are used in current literature. The
results indicate that both the selection of various “reasonable” instrumental data and
calibration periods, as well as various fitting procedures, adds a methodological uncertainty
to the reconstructions that easily approaches 0.5 °C (Fig. 5). It is evident that the exact
assessment of this variation, and particularly the amplitude, has significant consequences for
the quantitative estimations of greenhouse gas forcing in the past 150 years and hence for
future predictions (Esper et al. 2005b).

It is important for dendroclimatic reconstructions that in many regions temperature and
precipitation variations are significantly negatively correlated. This is, for example, the case
in the Alps during summer when precipitation occurs with generally cooler atmospheric
conditions or more local convective systems (Böhm et al. 2001; Wanner et al. 2000). This
covariance between temperature and precipitation can have the effect that it is difficult to
demonstrate the dominance of a single factor’s influence, such as summer temperature, on

tude, in frequencies outside those well captured in the calibration interval (i.e. low fre-

On Selected Issues and Challenges in Dendroclimatology
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Fig. 6. Correlation fields with the first principal component of 45 high elevation (above 1,500 m a.s.l.) ring
width sites (black circles) from the western and central Alps with (A) average June-August temperature,
and (B) average June-August sea-level pressure, computed over the 1900–1973 period (white region in A
represents missing data). This principle component explains 20% of the network variance over the
1850–1973 period, capturing the dominant mode of ring width variability in this network that is closely
related to summer temperature variability. The trees provide temperature information approximately
centered over their average geographical locations, but still yield significant correlations over much of
Europe. Highest correlations between Alpine ring width and pressure are located further east, likely
reflecting continental synoptic influences on temperature. (C) For comparison, average June-August
temperatures from the Säntis meteorological station (blue square) in Switzerland correlated with the
same pressure field as in B. Similar patterns are evident including the eastward shift in the center of
highest positive correlations, and areas of negative correlation west of Spain. The 90% significance level
for correlations corresponds approximately to the mapped colored regions. Maps generated using the
KNMI Climate Explorer. Säntis temperature data are from GHCNv2 (Peterson and Vose 1997); surface

(Trenberth and Paulino 1980).
temperature data are from HadCRUT2v (Jones and Moberg 2003; Rayner et al. 2003); and SLP data
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tree growth. In such cases, with only a positive temperature influence on tree-growth, a
negative (secondary) correlation with precipitation is also obtained.

The difficulties in extracting a particular single signal can, however be advantageous for
some reconstructions. If, for example, a precipitation sensitive chronology provides a strong
correlation with temperature, it might well be incorporated into large-scale temperature
reconstructions. For example, 1000-year ring width series from cedar trees growing in
Morocco (Stockton 1985; Verstege et al. 2004) correlate significantly with precipitation
(Chbouki et al. 1995) and through this, their growth is also linked with the North Atlantic
Oscillation (Glueck and Stockton 2001; Hurrell 1995, Wanner et al. 2001). Such Moroccan
cedar timeseries were used by Mann et al. (1999) for their Northern Hemisphere tempera-
ture reconstruction, for example, indicating that it is feasible to use some of the cross
correlation and synoptic interaction between temperature and precipitation for temperature
reconstructions. Similar considerations would apply to other primarily precipitation

2005; Touchan et al. 2005).
When including such precipitation sensitive data in large-scale temperature reconstruc-

tions, however, an analysis of the frequency spectra of precipitation (and temperature)
sensitive proxy timeseries seems useful.This is because measured precipitation data generally
possess “whiter” spectra than those for temperature data. If precipitation sensitive tree ring
material is included in large-scale temperature records, this limitation could be addressed by
allowing only the inter-annual to inter-decadal precipitation information to enter the com-
posite record at decadal and higher frequencies, and let the “true” temperature sensitive
proxy data determine the lower frequency trends. Recent work by Cook et al. (2004b),
however, shows indication of longer term variability in area aridity indices derived using
Palmer Drought Severity Index (PDSI; Palmer 1965) reconstructions, thus initiating a
discussion on the lower frequency behavior of precipitation related parameters.

Statistical methods, such as Principal Component Analysis (Peters et al. 1981; Preisen-
dorfer 1988; von Storch and Zwiers 1999), can be effectively used to isolate a certain fraction
of variance from tree ring timeseries, with these fractions subsequently used to explain
climatic parameters, such as summer temperature (Frank and Esper 2005; Cook et al. 2003).
These methods work particularly well if a larger network of tree ring sites is used, and can
provide climatic information on regional to continental scales (Fig. 6).Though methods, such
as PCA, perhaps perform superiorly for certain applications, it should be noted that highly
regarded results based on correlation analysis for huge networks exist and have their own
advantages (e.g. Briffa et al. 1998). In any case, it is recommendable in dendroclimatic
studies to first study and understand connections with simple correlations, prior to using
other methods where some of the basic relationships that exist can be more easily obscured.
Such correlation approaches strengthen the basic foundations for which climate parameters
truly have an influence on growth or isotopic values.

From the range of challenges this discipline currently faces, the task to produce robust
estimates of low-frequency (multi-centennial) climate variations is particularly notable
(Briffa et al. 2001; Cook et al. 1995, 2000; Esper et al. 2002a, 2003b). This assumes, however,
that the chosen climate parameter actually varies in the lower frequency domain. This seems
to be the case with temperature, and from various examples with precipitation as well,
depending upon the time-scale of interest (Cook et al. 2004b; Dai et al. 1997). In this context,
due to the greater challenge, it is particularly important to preserve long-term cooling

sensitive tree ring chronologies from the Mediterranean region (e.g. Akkemik and Aras

Challenges in Dendroclimatology

On Selected Issues and Challenges in Dendroclimatology 123



J. Esper, D.C. Frank, J. Luterbacher

trends, such as from the Medieval Warm Period into the Little Ice Age with an equal fidelity
as warming trends, such as those since the Little Ice Age. Composite detrending methods,
such as Regional Curve Standardization (RCS; Briffa et al. 1992, 1996; Becker et al. 1995;
Mitchell 1967) and Age-Banding (Briffa et al. 2001) will increasingly be applied to preserve

these requirements. More trees per stand and all age-classes (young through old) should be
collected. At the same time, it will be necessary to conduct network analyses to tie together
new and existing timeseries for the above-mentioned applications. This will also allow com-
parison of long-term trends in different, independent datasets, which is necessary to help
overcome the limited statistical tests that can be conducted to calibrate centennial scale
proxy variations against instrumental data. The aggregation of local tree ring series, where
standardization methods were applied that were not designed to preserve long-term
variability, should be avoided to study lower frequency climatic changes (Esper et al. 2004a).

Multi-proxy comparisons will perhaps play a greater role in the future. It is, however,
rather ambitious to merge different archives, developed with discipline specific methods,
with different temporal responses, and different climatic and seasonal sensitivities (Moberg
et al. 2005). However, in principle, the merging should only serve to strengthen the picture of
past climate variability by using the strength from the individual archives, rather than trans-
porting unexplained portions of variance from individual records. Projects that seek to study
and compare various proxy archives within a defined region, such as the project VITA
(Varves, Ice cores and Tree ring Archives with annual resolution) within the Swiss NCCR-
Climate program, should prove valuable towards this objective. Within this project, ice core,
lake sediment (and organisms deposited therein), and tree ring data are collected and
compared from a geographically focused region in the central Alps (Bigler 2002).

Additionally, opportunities exist in dendroclimatology to help approach important
questions from related disciplines. For example, quantifying carbon sequestration and fluxes
in terrestrial ecosystems (Janssens et al. 2003) is a challenging task where tree ring data can
be used to provide insight. So far, this topic has received only marginal efforts by
dendrochronologists, and instead has been driven by shorter term estimations through eddy
flux measurements (Ehman et al. 2002), and verified by forest inventories (Goodale et al.
2002) and model calculations (Gurney et al. 2002). At the same time, current estimations for
large-scale terrestrial carbon fluxes are highly variable and inconsistent (Houghton 2003;
Körner 2003). In our opinion, dendrochronology can provide a substantial contribution to
these efforts by quantifying biomass dynamics in forests over long timescales. Furthermore,
dendrochronology can be used to study whether mid- to long-term fluctuations in biomass
(as a surrogate for carbon) have been stimulated by climatic or other (CO2, nitrogen) factors
(Graumlich et al. 1989).

A rather long-term challenge in dendroclimatology is to potentially question and at the
same time iteratively confirm early instrumental measurements. Currently, instrumental
measurements are used almost exclusively to calibrate tree ring timeseries and other proxy

uncertainties, and are fundamentally changed during necessary homogenization (Auer et al.
2005; Barriendos et al. 2002; Begert et al. 2005; Bergström and Moberg 2002; Böhm et al.
2001; Brunetti et al. 2004; Camuffo 2002a, 2002b; Cocheo and Camuffo 2002; Demarée et al.
2002; Klein Tank et al. 2005; Klingbjer and Moberg 2003; Maugeri et al. 2002a, 2002b;
Moberg et al. 2002; Peterson et al. 1998; Slonosky 2002). These homogenization methods are
particularly relevant, yet limited, in the early instrumental time period (e.g. around 1800 in
Switzerland) during which few station records exist for comparison and verification, and
also during more recent times through trying to understand the so-called urbanization

and study multi-centennial trends. These methods depend upon extensive datasets (Esper et al.
2003a), whereby it is likely that shifts in sampling strategies will need to occur to meet

data. However, even the temperature and precipitation measurements themselves contain 
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effects (warming in cities through construction and changes near climate stations; Arnfield
2003, Kalnay and Cai 2003, Landsberg 1981, Peterson 2003, Parker 2004). In particular, there
is high potential for dendroclimatic studies to validate the instrumental homogenization at
locations where hundreds of tree ring sites (Briffa et al. 2002) and only a few long instru-
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