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Abstract
In landscape ecology, approaches to identify and quantify landscape patterns are well developed
for discrete landscape representations. Discretisation is often seen as a form of generalisation and
simplification. Landscape patterns however are shaped by complex dynamic processes acting at
various spatial and temporal scales. Thus, standard landscape metrics that quantify static, discrete
overall landscape pattern or individual patch properties may not suffice when viewing landscapes
as gradients or when quantifying spatially dynamic response surfaces resulting from model simu-
lations of landscapes. The spatio-temporal dynamics of patterns can be quantified using various
approaches originating in different fields and ranging from geography, geology, engineering,
physics, plant community ecology and complex systems theory. This book chapter provides an
overview on quantitative measures that may be used as indicators to assess landscape patterns in
space and time for discrete and continuous landscape representations and discusses promising
avenues for addressing the most pressing needs for spatial analysis of gradient-dominated and
dynamic landscapes.
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A landscape may be defined as an area that is spatially heterogeneous in at least one factor
of interest (Turner et al. 2001). This minimum definition stresses heterogeneity as a key con-
cept. In fact, most ecological systems are heterogeneous: environmental factors vary in space
and time, and most species are unevenly distributed. Landscape ecology focuses on quan-
tifying heterogeneity and investigating its causes and ecological consequences across ranges
of scales (Turner 2005). When dealing with heterogeneity however it is important to discrimi-
nate between different types of heterogeneity, to recognise its sources and to consider scale
(Levin 1978, 1992; Wiens 2000).

Types of landscape patterns

An ecological system or system property of interest may be heterogeneous in space and in
time. In landscape ecology, spatial heterogeneity is usually referred to as landscape pattern
or landscape structure, whereas landscape dynamics generally refers to changes in landscape
patterns through time. To date, landscape structure has received more attention from land-
scape ecologists than landscape dynamics (Gustafson 1998).

Both landscape structure and landscape dynamics can be studied using discrete or continu-
ous models of heterogeneity. Many approaches assume that the landscape consists of
discrete, non-overlapping objects or patches that belong to mutually exclusive classes or
system states. Patches are either embedded in an assumedly homogeneous matrix or form a

Young and Chopping 1996), monitoring of landscape change (Lausch and Herzog 2002) or
conservation (Thompson and McGarigal 2002). It has been argued however that many
natural phenomena may be primarily continuous in character and exist as gradients rather
than as features with discrete boundaries (Regan et al. 2000; Bolliger and Mladenoff 2005;
McGarigal and Cushman 2005). Contrary to discrete boundaries, gradients describe gradual
transitions of feature properties. Gradient-based concepts of representing landscape
patterns may be more appropriate for many landscape properties than the spatially discrete
patch-mosaic concept (Bolliger and Mladenoff 2005; McGarigal and Cushman 2005) as classi-
fication of spatially continuous features into discrete units may result in information loss.
However, whether a phenomenon appears as relatively discrete or continuous will often
depend on the scale of the study, especially the spatial resolution or grain, the measurement
resolution and the hierarchical scale (Gosz 1993; McGarigal and Cushman 2005).

Conceptual discussions about whether natural features are of discrete or continuous nature
are not new, and date back to Gleason’s and Clement’s discourses during the first half of the
20th century (Keller and Golley 2000). Methodologically, the continuity of natural features can
be assessed using fuzzy logic. The method was originally introduced by Zadeh (1965) and
developed further (Bezdek 1981; McBratney and Odeh 1997; Minasny and McBratney 2002).
In this approach each unit (e.g., grid cells) may be assigned one or more types and its degree of
belonging to each type is expressed as a membership function. Partial memberships are quan-
tified for each type, indicating that some types are compositionally distinct whereas others
may share common characteristics. Thus, the membership information may serve as baseline
information to assess structural uncertainties, i.e., the degree of certainty with which landscape
patterns can be discretised (Brown 1998; Bolliger and Mladenoff 2005).
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mosaic (Forman and Godron 1986; Forman 1995). Such discrete landscape representations are
widespread and are helpful to simplify and quantify complex landscapes. Discrete landscape
representations have been extremely successful in a wide range of landscape ecological
topics such as habitat fragmentation (Hargis et al. 1998), landscape descriptions (Haines-
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Pattern-generating processes

Landscape patterns result from various interacting processes (Levin 1978; Forman and
Godron 1986; Turner et al. 2001; Turner 2005). When modelling landscape dynamics, it is
essential to distinguish between biotic and abiotic processes. While both types of processes
affect the behaviour of a system, abiotic processes are assumed to depend only on external
drivers, whereas biotic processes may themselves be affected by the system (Lischke et al.
2007). In empirical studies however the distinction between biotic and abiotic processes is
often implicit.

Abiotic processes typically affect landscape patterns via interactions with externally
imposed, oftentimes environmental factors, such as climate, soil, topography, or disturbance
(fire, wind). For example, climatic parameters play a significant role for spatial distributions
of trees. Studies assessing scenarios of elevated temperatures along an altitudinal gradient in
the Swiss Alps show that major reorganisation in forests including species shifts are expected
along an altitudinal gradient (Kienast et al. 1998; Bolliger et al. 2000; Bolliger 2002).

Biotic processes include e.g., dispersal or competition between or within species, but also
disturbance (insect outbreak). Dispersal and population spread have been of continuing
interest (Levin 1979; Webb 1987; Clark 1998; Clark et al. 1999), and dispersal in particular

patterns through internal interactions between the individual system components, e.g.,
organisms that may cause organisation by accumulation of small changes (Bak et al. 1987;
Bak 1996), generating patchiness even in the absence of environmental heterogeneity.

Processes of both biotic and abiotic nature include disturbance and human impact.
Disturbance may be considered abiotic in cases of e.g., fire or wind or biotic if disturbance is
caused by e.g., pathogens. Whether human impact is viewed as biotic or abiotic depends on
perspective and judgement. If effects of humans on the landscape are perceived as part of an
ecosystem, they may be referred to as biotic. If human impacts are perceived as external
drivers shaping the ecosystem, they may be referred to as abiotic. Human impact is most
important in shaping landscapes and it includes various socio-economic policy- and manage-
ment driven processes (Bürgi et al. 2007).

In most natural systems both biotic and abiotic processes are relevant for shaping land-
scape patterns. However, system interactions in environmentally extreme habitats e.g.,
desert, arctic, high/low pH values in soils) are likely to be primarily driven abiotically.
Environments with little temporal heterogeneity (e.g., rain forests) are more likely to be
dominated by biotic processes (Solé and Manrubia 1995; Solé et al. 2002).

As landscapes are the result of interacting biotic and abiotic processes, they pose great
challenges for the quantitative assessment of primary processes shaping the patterns. Since
the same process may produce many different patterns, two landscape patterns will rarely be
identical, making statistical comparison between different landscapes or between different
time steps difficult (Fortin et al. 2003), and methodological problems arise from the com-
bined effects of several biotic and abiotic processes (Wagner and Fortin 2005).

Process interactions and scale

Processes may interact linearly (unidirectionally), or in nonlinear ways, including mutual,
self-reinforcing (positive feedback), and self-inhibiting interactions (negative feedback).
Nonlinear interactions may be a primary source of patterns in many systems (Bascompte
and Solé 1995; Farkas et al. 2002; Green and Sadedin 2005).

Identifying and Quantifying Landscape Patterns in Space and Time

et al. 2001), or governing migration rates (Clark 1998). Biotic processes shape landscape
has proven to be important in structuring e.g., forest community composition (Jacquemin 
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Pattern and processes operate on broad ranges of spatial and temporal scales and their
characteristics are associated with scale (Levin 1978, 1992; Wu and Loucks 1995). Thus,
effects of processes on pattern need to be considered with their characteristic temporal and
spatial scale (Levin 1978, 1992; Wu and Loucks 1995). The space-time scaling of many biotic
or abiotic processes is such that as a rule, fast processes operate on smaller spatial scales
than slow processes (Fig. 1). In order to achieve high predictability, the spatial and temporal
scales of a study need to match those of the process (Wiens 1989). For instance, the scale of
interest for a research project investigating processes in a grassland that affect individuals of
a particular insect species is defined by the organism’s home range, and the time scale is
identified by its life-history attributes (e.g., reproduction rate, mortality rate; Addicott et al.
1987; Wiens 1989).

If one process operates at a much slower rate than the other, an essentially non-linear
interaction may appear unidirectional. The faster process is constrained by the quasi-static
pattern created by the slower process. For instance, landscape ecological studies often
assume the habitat mosaic to be constant in order to study its effect on the movement of
organisms, population dynamics, or species distributions.

Fig. 1. Relationships between spatio-temporal scales and levels of organization. (Figure redrawn from
Turner et al. (2001), modified from Delcourt et al. (1983)).
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Indicators 

Indicators are qualitative descriptors or quantitative measures that report key information
to assess structure, function, or composition of a system (Dale 2001) with the most efficient
use of available resources. They identify a system based on selected criteria that are moni-
tored through time or space to inform about the system’s state or condition (static), its
changes, or trends (dynamic) (Dale 2001). Indicators facilitate decisions about whether
intervention is desirable or necessary, which interventions might yield the best results, or
how successful interventions have been. Hall and Grinnell (1919) were among the first to
use the indicator concept by attributing animal species to specific life zones that are ident-
ified by geographical areas with comparable structure and composition.

Indicators are currently widely applied in many areas of research, environmental man-
agement, policy and decision making ranging from, for example, environmental pollution
(Mal et al. 2002) to ecosystem integrity (Grove 2002). Here, we refer to indicators as quanti-
tative measures derived from various methodologies in order to quantify and assess aspects
of landscape and landscape-pattern properties.

Ecological indicators: Various types of indicators serve different applications. Ecological
indicators, for example, are typically very specific for particular environments or taxonomic
groups at specific locations (Fig. 2). They usually rely on expert knowledge and are derived
from field observations. Ecological indicators encompass, for example Ellenberg’s values
(Ellenberg 1988) that benchmark details on specific plant species requirements (e.g., light
thresholds), individual species, or communities. They are used to estimate species richness
(Duelli and Obrist 1998, 2003), monitor land-use change (Cousins and Lindborg 2002), or
assess the influence of disturbance and management (Dale et al. 2002a). Other examples of
ecological indicators, in particular with respect to biodiversity, are discussed in Duelli et al.
(2007). Advantages of ecological indicators thus include very specific information of a
particular species or population at a particular location (Fig. 2), and are indicative of a
process or response that may be too costly or difficult to measure directly. However, the
information derived from ecological indicators does not necessarily allow up-scaling or
generalisation to larger spatial or temporal scales.

Landscape indicators: Indicators that characterise properties at the landscape scale
however supplement ecological indicators by providing information about, e.g., the amount
and spatial arrangement of different land-cover types (Jones et al. 2000; Gergel et al. 2002;
Wade et al. 2003), or environmental quality (Forman and Alexander 1998). Indicators for
landscapes inform on the state of relevant landscape properties or their changes. Since land-
scapes are higher-level aggregations of individual patch properties, the information quanti-
fied by landscape indicators is more general. Indicators at the landscape scale can be derived

Fig. 2. Ecological indicators and landscape indicators.
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from GIS databases, aerial photographs, or remotely sensed images. Advantages thus
include that they may be much cheaper and more easily obtained for large areas. Also, they
usually rely on standardised approaches and thus allow generalisation at larger spatial and
temporal scales. Details on the systems however are usually not accounted for.

A broad variety of landscape characteristics can be quantified with indicators. Primary
goals of landscape indicators are to quantify the amount and spatial arrangement of land
cover, and to ensure comparability between different landscapes. However, the purpose of
quantifying landscape patterns is to capture key features that matter, thus depending on the
research question, objectives, allowable errors, and data availability.

Early landscape characterisations relied on two indicators: typology refers to the number
of elements, and chorology measures the number of landscape elements or habitat types
(Snacken and Antrop 1983). Today, landscapes are commonly described by composition and
configuration (Gustafson 1998; Turner et al. 2001). Landscape composition can be assessed
using indicators such as percent area. Configuration refers to the spatial arrangement of the
individual elements. The overall spatial organisation of elements identifies how the land-
scape types are arranged in relation to each other, involving indicators derived from infor-
mation theory (O’Neill et al. 1988), fractal geometry (Milne 1988; Milne et al. 1992; With
1994), or percolation theory (O’Neill et al. 1988; Gustafson and Parker 1992; Johnson and
Milne 1992; Milne 1998; Wickham et al. 1999). Additionally, it has been stressed that the
degree and type of interactions (connectivity) between the landscape elements play an
important role in shaping ecological systems and landscapes (Taylor et al. 1993; With 1997;
Bolliger et al. 2003; Bolliger 2005; Green and Sadedin 2005).

Landscapes can be characterised discretely or continuously in space and time. Static land-
scape descriptions are conducted at particular time steps (“snapshots”), whereas dynamic
characterisations are performed continuously through time (“movies”).

Static, snapshot-like landscape descriptions usually rely on empirical observations (e.g.,
field measurements, GIS databases, aerial photographs) that represent landscapes at specific
time-steps. The state and conditions of smaller-scale systems (e.g., dry meadow) can be
reported or monitored through regular visits, e.g., weekly, annually). Empirical observations
may provide information that dates back a few years or decades. For larger-scale systems
such as landscapes, the system states can be monitored through time series obtained e.g.,
from temporal series of GIS data, aerial photographs, or remotely sensed images. As a rule
however long-term effects of environmental change in the future or the past cannot be
assessed with empirical data only. For dynamic, movie-type landscape assessments, models
provide a suitable tool to improve the understanding of observed system functions, patterns,
or diversity, and to assess consequences of changes of individual system components or of
the environment on particular system properties. Models thus allow evaluations of alterna-
tive scenarios and help generate hypotheses for states and conditions of systems not only
under current, but also under changing future or past conditions (e.g., temperature change,
management change) (Lischke et al. 2007). Thus, indicators for model simulations inform on
the system’s state or condition under various scenarios of environmental changes.

In the following sections we present quantitative indicators relying on various method-
ological approaches that can be used to characterise landscapes or landscape-pattern
properties. The indicators include measures to characterise particular periods (static) or
time series (dynamic) based on discrete or continuous landscape representations (Fig. 3).

J. Bolliger, H.H. Wagner, M. G. Turner
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Static, discrete landscape indicators

Algorithmic complexity: Computers use specific algorithms for the compression of graphic
files or images, e.g., of maps representing landscapes. The size of an optimally compressed
file or image can be interpreted as the condensation of the entire set of interactions between
the digital components of the image or file, e.g., a landscape. The file or image size can thus
be interpreted as a measure of landscape complexity based on compression algorithms
(Kaspar and Schuster 1987; Manson 2001; Sprott et al. 2002; Bolliger et al. 2003).Algorithmic
complexity is easy to calculate and provides comparability between different images rep-
resenting, e.g., the same landscape at different times or the results of different simulation
runs. The metric however does not provide details on which landscape element contributes
more or less to the size of the file, and it is a relative measure.

Landscape metrics: Landscape metrics statistically represent landscapes or individual
patch-type properties and are standard tools to analyse questions regarding the composition
and configuration of landscapes and individual patches (Turner et al. 2001; Cardille and
Turner 2002; McGarigal et al. 2002).

Metrics for landscape composition identify and describe the landscape pattern, whereas
landscape configuration refers to their spatial arrangement of the landscape elements.
Landscape composition is assessed using metrics such as landscape diversity (Shannon-
Weaver diversity), or the proportion of area occupied by habitat types (Turner et al. 2001).
Metrics for landscape configuration involve e.g., probabilities of patch adjacency, patch
shape, or connectivity between patches (Turner et al. 2001). Such metrics are of great value to

Fig. 3. Quantitative landscape indicators used to characterise landscapes in space and time. Indicators
representing landscapes based on empirical (field or GIS) data are labelled with *, whereas + refer to
indicators that characterise systems using model simulations.
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investigations dealing with habitat fragmentation, where patch isolation may cause extinc-
tion of entire populations because dispersal or colonisation rates are reduced (With 1997,
2002), or where disaggregation of landscapes may foster persistence of populations in reduc-
ing the probability of some disturbances such as fire (Franklin and Forman 1987). Patch size
and shape may influence a variety of ecological properties, e.g., flows between patches in
animal foraging strategies (Zollner and Lima 1997). The shape characteristics can be directly
related to the overall heterogeneity of the landscape, whereas the area of an individual patch
is of great ecological relevance in that it determines the space to support viable populations.

Advantages of landscape metrics include that many metrics are easily calculated and
widely known to landscape ecologists (e.g., FRAGSTATS, McGarigal et al. 2002). However,
the ecological relevance of the broad range of available metrics may be difficult to asses and
may lead to misleading conclusions if not analysed carefully regarding concept and lim-
itations (Li and Wu 2004). For example, it has been shown that some metrics, though calcu-
lated differently, are highly correlated (Riitters et al. 1995; Gustafson 1998;Turner et al. 2001;
Neel et al. 2004). Other studies have shown that the comparability of metrics across scales
may be problematic (Wu et al. 2002), so that different conclusions are drawn on the ecology
depending on the scale of the study (Turner et al. 2001; Greenberg et al. 2002; Thompson and
McGarigal 2002; Li and Wu 2004). Furthermore, it has been stressed that current methods to
quantify landscape properties are more advanced in comparison to our ability to interpret
the landscape properties with respect to ecologically relevant processes (Turner et al. 2001).
Thus, the search for relationships between patterns and processes requires careful evalu-
ation (Turner et al. 2001; Li and Wu 2004), especially since we are currently lacking thorough
understanding of the required degree of landscape change to provoke ecologically relevant
implications (Turner et al. 2001; Wu and Hobbs 2002).

Static, continuous landscape indicators 

Indicators derived from geostatistics: Geostatistics is a method to quantify continuous sur-
faces (e.g., landscapes) and to assess the degree and extent of spatial autocorrelation. Spatial
autocorrelation is an indicator that measures the common phenomenon that nearby obser-
vations tend to be more similar than distant ones.The distance at which spatial autocorrelation
levels off indicates the spatial scale of organisation in a system, e.g., the size of an ecological
neighbourhood, so that observations beyond this distance may be considered as ecologically
and statistically uncorrelated. Positive spatial autocorrelation is assumed to result from a
spatial process, e.g., dispersal. The major approaches to quantify spatial autocorrelation differ
in their practical objectives: geostatistical methods focus on the estimation of the spatial
covariance structure of a variable (e.g., variogram modelling) in order to estimate population
parameters from spatially dependent observations (block kriging) or to interpolate values at
unobserved locations (e.g., kriging). Spatial statistics developed in geography on the other
hand, aim at testing for the presence of a spatial process in order to model this process or to
account for spatial autocorrelation when assessing the correlation between spatially struc-
tured variables (Cliff and Ord 1981; Fortin et al. 2001; Liebhold and Gurevitch 2002).

However, all these methods require an assumption of stationarity, i.e., the spatial auto-
correlation structure must be the same throughout the study area. It is often sufficient to
assume weak or second-order stationarity, where the mean is constant, the autocorrelation
depends only on the geographic distance between sampling units, and the variance is finite
and constant (Burrough 1995). Local spatial statistics can be calculated within a moving-
window, thus assuming stationarity only within the extent of the window, in order to identify
anomalous subareas or delimit boundaries (Boots 2002; Pearson 2002).
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Variogram modelling is widely used for assessing the spatial structure of a continuous
variable (Isaaks and Srivastava 1989; Haining 1997). An empirical variogram is a plot of the
semivariance between pairs of observations, averaged for each distance class, against
geographic distance. The plot can be interpreted visually to assess how the variance of the
variable changes with distance and, possibly, direction in space. This spatial covariance struc-
ture can then be summarised by fitting a theoretical variogram model. More complicated
cases require the fitting of model parameters as a function of direction or the combination of
several basic variogram functions, and the spatial cross-correlation between pairs of variables
can be modelled in a similar way to allow for multivariate analysis (Wackernagel 1998).

Any variance can be partitioned by the distance between observations (Wagner 2004) so
that, e.g., the results of multivariate analysis such as ordination can be plotted in variogram
form. This allows additional insights into the spatial structure due to different processes, e.g.,
the spatial structure of a community that is induced by a specific environmental factor or the
scale of patchiness of the residual variance after accounting for environmental heterogen-
eity (Wagner 2004; Wagner and Fortin 2005).

Indicators derived from spectral analysis: Spectral analysis is probably among the best
known methods to characterise temporal data. When analysing time-series, spectral analysis
using Fourier transform subdivides the series into individual sine and cosine waves, assuming
an overlay of periodic structures with different wave lengths (frequencies) and amplitudes.
To examine the spectrum, the logarithm of the squared amplitude is plotted against the
logarithm of the frequency. The analysis of spatial surfaces relies on the periodogram, where
a measure of variance (instead of amplitude) is plotted against distance (instead of frequency)
(Dale 2000).

Results from spectral analysis can be graphically displayed by periodograms. These can
be used as indicators to assess whether any particular time or space scale is singled out. For
example, if the log-log spectrum exhibits straight lines (power laws), no particular spatial or
temporal scale is singled out, and the properties of a given frequency or distance stand for all
frequencies or distances. The phenomenon is referred to as scale invariance and has been
observed throughout a broad range of natural phenomena and research fields including
earthquakes (Ceva 1998), avalanches in sand piles (Bak et al. 1987; Bak 1996), chemical
reactions (Simoyi et al. 1982), population dynamics (Solé et al. 1993; Perry 1995), landscape
pattern (Milne 1998; Bolliger et al. 2003; Bolliger 2005), or evolutionary ecology (Solé et al.
1999).

Applied to landscape ecology, spectral analysis may help to identify particular spatial or
temporal scales that are typical for a landscape. However, although scaling relationships
offer clues to how the fundamental processes of biology give rise to empirical evidence is
still largely missing (Levin 1998). Also, the indicator is likely most suitable to analyse model
simulations since long time series are required that may not be empirically available.

Fractals and lacunarity: Fractals (Mandelbrot 1982) are mathematical representations of
the complexity. Many objects relevant to landscape ecological research have fractal qualities
either in two or three dimensional space (e.g., coastlines).

Fractals have many properties (Hastings and Sugihara 1993; Sprott 2003). For example,
they have geometries that are too irregular to be represented by ordinary geometry, or they
are self-similar, meaning that individual elements of the object are similar to the whole.
Infinite copies of the elements make up the landscape. Self-similarity implies that the object
is independent of the scale of observation (scale invariance), i.e., no characteristic scale is
singled out and large-scale patterns can be predicted from small-scale pattern properties
and vice versa. The upper boundary of the scale is determined by the extent of the object
itself (e.g., landscape). The lower boundary is identified by the grain of the data. In land-
scape research, fractal geometry can be used to quantify the spatial complexity apparent in
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1994; Sprott et al. 2002; Bolliger et al. 2003).
Fractals may be described using algorithms that quantify the proportion of the geometri-

cal space that is occupied by the fractal and are expressed as fractal dimensions. Fractals
with identical fractal dimension may have greatly different appearances (Plotnick et al.
1993). In discrete patterns these differences are determined by the size of the gaps. The gaps
in geometric structures can be measured using lacunarity indices (Mandelbrot 1982; Plotnick
et al. 1993) to quantify the texture associated with patterns of spatial dispersion. Lacunarity
is a useful index of surface structure for continuous landscape data where it measures the
distributions of local maxima (peaks) and minima (valleys) of continuous landscape data
(McGarigal and Cushman 2005). Additionally, lacunarity captures multiple dimensions of
segregation across multiple scales (Wu and Sui 2001). First developed by Mandelbrot (1982),
a variety of algorithms to calculate lacunarity are available (Allain and Cloitre 1991).

Indicators derived from wavelet analysis: Wavelet analysis is similar to spectral analysis,
but instead of representing a pattern by a linear combination of sinusoid functions at differ-
ent scales, it uses more flexible wavelet functions (Percival 2001). Wavelet analysis provides
a promising alternative for characterising and partitioning landscapes in the presence of
multiple, overlapping processes, and the method can easily handle large data sets such as
remote sensing data (Bradshaw and Spies 1992; Csillag and Kabos 2002; McGarigal and
Cushman 2005). Wavelet analysis has the advantage that it preserves the hierarchical infor-
mation about the structure of a surface and allows pattern decomposition at the same time
(Bradshaw and Spies 1992). The results can be interpreted in two ways: the wavelet variance
identifies the scales that contribute most strongly to the pattern (similar to a periodogram in
spectral analysis), whereas the degree of matching of the wavelet function can be mapped
directly onto the data, thus identifying the spatial location of a specific structure (similar to
local spatial statistics). Wavelets can thus be used as explanatory variables to predict a biotic
response (Keitt and Urban 2005).

Continuous surfaces have more properties than can be
assessed using for example geostatistical approaches that quantify correlation distances, or
spectral analysis that identifies particular spatial or temporal scales of periodic structures.
Additional properties of continuous surfaces include e.g., roughness, skewness, curvature, or
local peaks. These characteristics can be assessed by surface metrology indices based on
methods that have been developed in microscopy and molecular physics (Barbato et al.
1995; SPIP 2001). The indices have recently become of interest to the landscape ecological
community (McGarigal and Cushman 2005) and offer promising grounds for exploring their
use and limitation for landscape ecological research.

Dynamic, discrete landscape indicators 

The first step towards an empirical quantification of landscape dynamics is often a compari-
son between at least two time steps (Fig. 3). For instance, land-use/land-cover classifications
derived from remote sensing may be available for different years. The resulting transition
frequencies may be referred to as an indicator of landscape change representing the degree
and spatial location of change. Obviously, such a comparison is only valid if the methodology
is comparable between classifications, i.e., the same georeferencing, resampling and classifi-
cation algorithms or rules were applied. Comparison may be based on map properties (com-
parison of landscape metrics that quantify composition or configuration for each time step)
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Surface metrology indices:

or on pixels (assessment of transitions from one state to another) (Jenerette and Wu 2001).
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With transition matrices and Markov chains, the change of each pixel state between two
time steps can be summarised in a transition probability matrix (Dale et al. 2002b) (Fig. 3).
This is a square matrix with as many rows and columns as there are states (e.g., land-
use/land-cover classes). A cell in row A and column B contains the estimated transition
probability for a pixel with initial state A to switch to state B in one time step, thus rep-
resenting an indicator of the likelihood of change. The transition probability is estimated by
the observed number of transitions from A to B divided by the number of pixels with initial
state A. For a series of k time steps with constant interval, k-1 transition matrices can be
estimated. If the underlying process is assumed constant (stationary), the k-1 matrices are
expected to be identical and may be averaged. The pooled transition matrix summarises the
amount of change between all land-use types per average time step. The equilibrium state of
the system, if such a state exists, is defined by a vector that, when multiplied by the transition
matrix, yields the same vector again (eigen vector of the transition matrix; Usher 1992).

Under the assumption that the transition of a pixel between time steps t1 < t2 depends
solely on the state of the pixel in t1, the transition probability matrix describes a first-order
Markov chain (Nicheva 2001). In ecology, this assumption is sometimes replaced by intro-
ducing holding-time requirements, i.e., a pixel needs to persist in state A for at least x time
steps before transition to state B is possible (Acevedo et al. 1995; Yemshanov and Perera
2002). In some situations, a Markov chain will converge to an equilibrium state, independent
of initial conditions (Usher 1992). A traditional Markov chain represents a spatially implicit
temporal process. The explicit introduction of a spatial dimension results in spatio-temporal
Markov chains (STMC), which combine a Markov chain with a cellular automaton (Balzter
et al. 1998).

Dynamic, continuous landscape indicators

Indicators for continuous, dynamic landscapes can be found in dynamic systems or infor-
mation theory. Currently, they rely on model simulations since empirical data (e.g., field-
derived, aerial photographs) rarely provide long time series. One example of a dynamic,
continuous indicator is spatiotemporal complexity that quantifies patchy vegetation dynamics
(Parrott 2005). The indicator is similar to the information-based Shannon entropy and
distinguishes between ordered, random, and aggregated patchiness (Parrott 2005). Other
examples of dynamic, continuous indicators include measures to assess equilibria and their
stability to gain impressions on how a trajectory of a continuous-time differential equation
behaves throughout the entire state space (e.g., landscape) (Lischke et al. 2007). If the trajec-
tory spirals around a point equilibrium, a spiral point is observed. Saddle points are found
where some trajectories are attracted to equilibria, and others are repelled from them. In
non-linear dynamics, periodic attractors (or repellors) are referred to as limit cycles. For
example, the size of a basin of attraction of some equilibrium and its limits, within which the
state variable may be perturbed before the system switches to other basins of attraction,
may provide measures of system resilience (Pykh 2002).

Lyapunov exponents are indicators to assess the predictability of a system by measuring
the extent to which small changes are amplified. It thus quantifies how sensitive a system is
to perturbations (changes). In most cases perturbations tend to be amplified until they grow
large, no matter how tiny the initial perturbations were. This behaviour, where small pertur-
bations are amplified, is called sensitivity dependence on initial conditions. The Lyapunov
exponents reflect the average rate at which perturbations increase or decrease. There are as
many Lyapunov exponents as there are dimensions of the state space, and each exponent
indicates whether the perturbation will increase or decrease in a particular direction
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(Eckmann and Ruelle 1985). Applications of Lyapunov exponents in landscape ecology may
thus involve assessments on the predictability of models. Additionally, since dependence on
initial conditions is one of the hallmarks of chaos (Sprott 2003), Lyapunov exponents can be
used to assess whether a system is chaotic or not.

Assessments of the aesthetic appeal of art and nature (Hunziker et al. 2007) reveal that a
balance of simplicity and complexity, order and unpredictability, is preferred by humans
(Aks and Sprott 1996). Results showed that the correlations between Lyapunov exponents
(representing the unpredictability of the dynamic process) and people’s aesthetical prefer-
ences for patterns had on average Lyapunov exponents that corresponded to those of many
natural objects (Aks and Sprott 1996).

Identifying and quantifying the structure and dynamics of landscape patterns is central to
many questions in basic and applied research, and indicators provide a useful framework to
assess key properties of landscapes in space and time at most efficient use of the available
resources. Selection of the appropriate suite of indicators with respect to the research objec-
tive and scale is a key to successful application. Ideally, indicators should inform about a
system as comprehensively as possible with respect to the research question of interest. It is
thus necessary to choose appropriate indicators that mirror adequately the system’s structure,
function, and composition including assessments on the indicator’s use and limitation.

There are several important challenges:

1. Characterising landscapes dynamically: To date, landscapes have been characterised
mostly spatially. However, it is widely recognised that many landscape elements exhibit
non-equilibrium dynamic-transient behaviour (Lischke et al. 2007). Thus, future
challenges in landscape ecology include increasing focus on dynamic assessments of land-
scapes and landscape change, especially since appropriate data will be increasingly
available through remote sensing (Zimmermann et al. 2007).

2. Characterising landscapes continuously: Approaches to assess landscapes continuously
include geostatistical approaches that indicate distances of correlation, spectral analysis
to assess whether there are any particular spatial or temporal scales, and fractals allow
analysis of the spatial complexity of a surface. However, continuous surfaces exhibit
many more properties. Surface metrology indices and wavelets are promising tools to
overcome this shortcoming, although their suitability for application in landscape ecology
remains to be tested.

3. Comparability of landscape indicators across scales and statistical tests: Use of indicators
for landscape ecological questions involves thorough testing to ensure comparability
within and across different landscapes and scales. Quantifying and interpreting differ-
ences between landscapes/landscape patterns is a future challenge, since routine statistical
tests are hardly applicable. Furthermore, not only pattern, but also driving processes need
to be compared (Fortin et al. 2003).
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