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Summary

Although integrated into a sink tissue, fruit plastids play a key role in plant productivity because lowering fruit
plastid metabolism decreases crop yield. Unlike leaf chloroplasts, the capacities of fruit plastids for photosynthetic
electron transfer and carbon dioxide assimilation are low and decline dramatically during the ripening stage. However,
during this developmental transition hexoses derived from plastid starch hydrolysis and metabolites imported from
the cytosol are actively used for the biogenesis and accumulation of carotenoids, prenyl- and acyl- lipids and
amino acids. These activities are sustained by non-photosynthetic generation of ATP and reducing power within
the organelle. Here we summarize the function of plastids during fruit ripening in relation to recent advances in
biochemistry and molecular biology.

I. Introduction

One of the most prominent changes during fruit
ripening is the breakdown of plastid thylakoids con-
comitantly to the degradation of and
the down-regulation of photosynthetic gene expres-
sion (Piechulla et al., 1985). Although these changes
are reminiscent of senescent or aging processes
(Rhodes, 1980), they are not deteriorative per se.
Indeed, during fruit ripening, plastids gradually ac-
quire new biosynthetic capabilities and in most cases
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the chloroplasts differentiate into non-photosynthetic
chromoplasts.

Plastid starch present in unripe fruit is progres-

riod (Robinson et al., 1988) and in parallel diverse
metabolites are imported into the plastid or exported
to the cytosol via specific plastid translocators (Fischer
and Weber, 2002). The resulting carbon skeletons
are used in the organelle for the generation of non-
photosynthetic ATP and reducing power and for the
biogenesis of diverse products. The latter includes
carotenoids that give the yellow to orange colors char-
acteristic of many fruits (Camara et al., 1995). Al-
though the biological significance of this phenomenon
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sively converted to hexoses during the ripening pe-
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is unknown, it is assumed that the accumulation of
massive amount of carotenoids constitutes part of the
signals favoring seed dispersal by animals (Goodwin,
1986). In a similar vein, in ripening fruit plastids play
a key role in the de novo biosynthesis of acyllipids
as shown by the fleshy oil palm mesocarp which pro-
duces palm oil, that ranks second among consumed
vegetable oil (Salas et al., 2000). Along with the uti-
lization of the carbon skeleton, the plastidial glutamine
synthetase-glutamate synthase, a main route for nitro-
gen assimilation, is subject to a ripening-specific reg-
ulation (Gallardo et al., 1988, 1993). Beyond the fact
that these events are developmentally regulated, little is
known about the molecular mechanisms inducing these
changes. This review focuses on the progress made us-
ing biochemical and molecular approaches to better un-
derstand the function of plastids during fruit ripening.

II. Plastid Differentiation

A. Evolution of Photosynthetic Genes and
Plastid Differentiation

Fruits are largely considered as sink organs and as such,
their photosynthetic capacity is usually low. In the ab-
sence or reduced presence of stomata (Willmer and
Johnston, 1976; Blanke, 1986), C02 used for fruit pho-
tosynthesis is derived mainly from respiration (Blanke
and Lenz, 1989). In tomato fruit, fruit photosynthe-
sis contributes 10 to 15% of the fruit carbon gain
(Tanaka et al., 1974). On a protein basis ribulose-1,5,-
bisphosphate carboxylase (Rubisco) of tomato peri-

Abbreviations: ACCase – acetyl-CoA carboxylase; AOS – allene
oxide synthase; Ccs – capsanthin-capsorubin synthase; CrtB –
bacterial phytoene synthase; CrtHb – non-heme diiron monooxy-
genases; CrtIso – carotenoid isomerase; DMAPP – dimethylallyl
diphosphate; FAS – fatty acid synthetase; FBPase – fructose-
1,6-bisphosphatase; GAPDH – glyceraldehyde-3-phosphate de-
hydrogenase; GGPP – geranylgeranyl diphosphate; GGPPS –
geranylgeranyl diphosphate synthase; GOGAT – glutamate-
oxoglutarate aminotransferase cycle; GS– glutamine synthetase;
G6PDH – glucose 6-phosphate dehydrogenase; Hggt – homogen-
tisate geranylgeranyl diphosphate transferase; HPL – hydroper-
oxide lyase; IPP – isopentenyl diphosphate; KAS I, II, III – β-keto
acyl-ACP synthases I, II, III; Lcyb – lycopene β-cyclase; Lcye –
lycopene ε-cyclase; MACP – malonyl-acyl carrier protein; Nsy –
neoxanthin synthase; OPP – oxidative pentose phosphate path-
way; Pds – phytoene desaturase; pGlcT – plastid glucose trans-
porter; PPO – polyphenol oxidase; PSY – phytoene synthase;
PII – a signal transduction protein involved in monitoring cel-
lular C and N status; Rubisco – ribulose-1,5,-bisphosphate car-
boxylase; TE – thioesterase; Zds – ζ-carotene desaturase; Zep –
zeaxanthin epoxidase.

carp is approximatively 35% that of tomato leaves
(Piechulla et al., 1987). In pepper fruit the Rubisco ac-
tivity is about one-fifteenth the activity found in leaves
(Steer and Pearson, 1976). This feature is obviously
consistent with the sink characteristic of pepper fruit
(Hall, 1977). Along with the steady decrease of Ru-
bisco during fruit ripening, the 33-kD oxygen evolving
protein, cytochrome b559, the chlorophyll a/b bind-
ing proteins the D1 protein of photosystem II also de-
cline similarly to their corresponding transcripts (for
a review see Camara et al., 1995). These changes are
generally followed by chloroplast to chromoplast dif-
ferentiation which involves the disintegration of the
chlorophyllous thylakoid and the appearance of new
membrane or lipoprotein structures which sequester
excess carotenoids and other lipophilic derivatives pro-
duced during the ripening process (Camara et al.,
1995).

B. Hormonal and Nutritional Control of Fruit
Chromoplast Differentiation

Attempts to understand the cellular mechanisms un-
derlying differentiation of chloroplasts to chromo-
plasts have revealed hormonal (Coggins et al., 1980;
Gemmrich and Kayser, 1984; Goldschmidt, 1988;
Trebitsh et al., 1993; Alexander and Grierson, 2002)
and nutritional determinants (Huff, 1984; Iglesias et al.,
2001).

In contrast to research on the hormonal effect, which
has focussed largely on the predominant role of ethy-
lene (Alexander and Grierson, 2002), the nutritional
aspect has received limited attention. According to
this hypothesis, the chloroplast to chromoplast devel-
opment in Citrus fruit is regulated by the carbon to
nitrogen ratio (C/N), i.e., a high ratio induces chro-
moplast differentiation while a low ratio favors the
reversion process (Huff, 1983, 1984; Mayfield and
Huff, 1986).

The glutamate-oxoglutarate aminotransferase
(GOGAT) cycle, which represent the main route of
nitrogen assimilation in plants, could play a key role
in the C/N ratio. It has been shown that in tomato 70%
of the total free amino acid of the pericarp belongs
to the glutamate family (Valle et al., 1998) especially
glutamine and glutamate (Boggio et al., 2000). It
has also been established that tomato mutant rin (for
ripening inhibitor) accumulates half the normal level
of glutamate of wild fruit (Nagata and Saito, 1992).
However, the contribution of tomato fruit plastids in
the synthesis of glutamine and glutamate is limited
because total GS and GOGAT activities are drastically
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Fig. 1. Glutamic acid synthesis in isolated pepper plastids. Glu-
tamate synthesis from 2-keto (1-14C) glutaric acid in plastids
isolated from pepper fruit at different stages (IM, immature
green; MG, mature green; T, turning; R, red). The reaction prod-
ucts were separated using a Cellulose thin layer chromatography
plate developed with butanol/formic acid/water: 70/12/10, v/v
and visualized by autoradiography. The abbreviations refer to:
Glu, Glutamic acid, 2-OG, 2-Oxoglutarate, OR, origin.

reduced during the ripening stage (Gallardo et al.,
1988, 1993; Boggio et al., 2000). Therefore, these
amino acids must be actively translocated from the
leaves during the ripening period according to an
unknown mechanism. Alternatively, the reversible
reaction catalyzed by mitochondrial glutamate deshy-
drogenase which is induced during tomato ripening
(Boggio et al., 2000) could be involved. Clearly the
down regulation of chromoplast GS and GOGAT
during tomato ripening is a diagnostic feature of
the elevation of the C/N ratio. Whether this mech-
anism could be generalized to other fruit plastids
is debatable. Using an assay based on the use of
radioactive 2-oxoglutarate, we observed in pepper fruit
chromoplasts, a labeling pattern consistent with the
synthesis of glutamic acid by transamination (Fig. 1).
2-Oxoglutarate is synthesized in the cytosol and mito-
chondria (Hodges, 2002) and is transported into the
plastid by a malate-coupled, two-translocator system
which involves a 2-oxoglutarate/malate translocator
and a glutamate/malate translocator (Weber and
Flugge, 2002; see Chapter 14). In addition to NADPH
derived from the oxidation of glucose 6-phosphate via
the plastidial pentose phosphate pathway, the redox
equivalent for GOGAT could be provided by specific
ferredoxin isoforms synthesized during chloro-

plast to chromoplast differentiation (Green et al.,
1991).

Obviously, further studies are required to test the
C/N ratio and to analyze its potential relationship with
the PII signal transduction protein which monitors the
cellular status of C (oxoglutarate) and N (glutamine)
and has been previously identified as a carbon/nitrogen
sensor in bacteria (Stadtman, 2001) and plants (Hsieh
et al., 1998; Moorhead and Smith, 2003; Smith et al.,
2003).

III. Plastid Biogenesis and
Molecular Regulation

A. Carbohydrate Metabolism
and Cytosolic Interactions

During fruit ripening starch stored in plastids is totally
or progressively transformed into hexoses by amylase,
ADP Glucose pyrophosphorylase and phosphorylase
(Fig. 2). In tomato fruits, the plastid starch content starts
declining between 14 to 50 days after anthesis (Yelle
et al., 1988), according to a phosphorolytic pathway
(Robinson et al., 1988).

Although it has been shown that glucose resulting
from the amylolytic degradation of starch is exported
to the cytosol through a specific plastid glucose trans-
porter (pGlcT) in leaves (Weber et al., 2000), the situ-
ation in non-green tissue might different. This is based
on the fact that the pGlcT transcript is highly expressed
in the non-photosynthetic albedo tissue of Citrus fruit,
apricot and tomato fruits (Fischer and Weber, 2002). A
detailed analysis reveals that in tomato, a starch- and
sugar-storing fruit and in olive, a lipid-storing fruit,
the expression pattern of pGlcT is highest during the
ripening period (Butowt et al., 2003). This led to the
suggestion that pGlcT could be involved in the plas-
tidial import of glucose from the cytosol in non-green
tissues and especially during chloroplast to chromo-
plast differentiation (Butowt et al., 2003) (Fig. 2). This
hypothesis is reinforced by the fact that unlike in leaves,
the olive fruit pGlcT gene does not display diurnal
expression (Butowt et al., 2003) and also by the re-
cent characterization of a plastid stromal hexokinase
(Olsson et al., 2003).

The role of plastid fructose-1,6-bisphosphatase
(FBPase) could also be important for providing hex-
oses in non-green tissues. FBPase, a key enzyme of
the Calvin-Benson cycle, is involved in the conver-
sion of triose phosphates into hexose phosphates and
is present in tomato leaves and green fruits, whereas
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Fig. 2. Pathway of the utilization of sucrose-derived metabolites in plastids from ripening fruits. Numbers refer to the following
enzymes : 1, starch synthase; 2, ADP-glucose pyrophosphorylase; 3, α-glucan phosphorylase; 4, phosphoglucomutase; 5, hexokinase;
6, hexose phosphate isomerase; 7, ATP-phosphofructokinase, 8; fructose,1, 6-bisphosphatase; 9, aldolase; 10, triose-P isomerase;
11, glyceraldehyde 3-P dehydrogenase; 12, phosphoglycerate kinase; 13, phosphoglycerate mutase; 14, enolase; 15, pyruvate kinase;
16, pyruvate dehydrogenase. Abbreviations refer to: GOGAT, glutamine-2-oxoglutarate aminotransferase; Glu, glutamic acid; 2-OG,
2-oxoglutarate. Plastid translocators are shown as solid, black circles.

red fruits contain only the cytosolic form (Büker et al.,
1998). This suggests that hexose phosphates are im-
ported from the cytosol during chloroplast to chromo-
plast differentiation in tomato. In pepper fruits during
the ripening process the decrease of Rubisco (Ziegler
et al., 1983) is paralleled by an increase in plastidial
FBPase (Thom et al., 1998).

Whatever their origin, the carbon skeletons are used
in different biosynthetic pathways such as transient
starch, fatty acids and isoprenoids. They are also used in
the oxidative pentose phosphate (OPP) pathway which
is a main source of reducing power in the absence of
photosynthetic electron transport (Fig. 2). In this con-
text, it is worth noting that tomato chromoplast glucose

6-phosphate dehydrogenase (G6PDH), a main enzyme
of the OPP pathway, is 48.7 and 7.4 more active than
leaf and green fruit chloroplast G6PDH from the same
plant (Aoki et al., 1998).

The capacity of fruit chromoplasts to oxidize hex-
oses to pyruvate (Fig. 2) has been reviewed pre-
viously (Camara et al., 1995). In this context it
is interesting to note that a chromoplast-specific,
NAD+-dependent glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) named GapCp has been char-
acterized recently from pepper fruits (Petersen et al.,
2003). The expression of GapCp is restricted to the
ripe fruits and roots. On the other hand the chloro-
plast NADP+-dependent GAPDHs, GapA and GapB,
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are down-regulated during pepper fruit ripening. This
suggests that in chromoplasts or in a more general con-
text, non-green plastids, GapCp is specifically engaged
in the production of energy in the absence of photosyn-
thesis (Petersen et al., 2003). In relation to the energy
requirements in nongreen plastids, it is interesting to
note that heterotropic daffodil chromoplasts can direct
part of the NADP(H) generated by plastid glycolysis to
the generation of ATP (Morstadt et al., 2002).

The plastid glycolytic pathway is interconnected
with the cytosolic glycolytic pathways by several mem-
brane translocators (Fig. 2). It has been suggested that
in relation to their metabolic activity plastid translo-
cators could play specific roles (Heldt et al., 1991).
This contention is supported by the fact that the plastid
triose phosphate translocator is more highly expressed
in green tomato fruit than in the red fruit (Schünemann
et al., 1996), while the reverse situation is observed in
red tomato fruits (Schünemann and Borchert, 1994).
In a similar vein, the phosphoenolpyruvate transporter
gene is more expressed in non-green tissue (Fischer
et al., 1997). Based on the fact that the initial phase of
respiratory climacteric is correlated (at least in banana
fruit) with a reduced level of PEP and an increased level
of pyruvate (Beaudry et al., 1989; Ball et al., 1991)
this suggests that during the ripening period fruit plas-
tids may exert indirect control over cytosolic glycolytic
flux.

B. Acyllipid Metabolism

Although most commercial oils are derived from seeds,
the ripe fleshy pericarp of oil palm and olive fruits
represent an important source of vegetable oil. For in-
stance, palm oil ranks second after soybean (Salas et al.,
2000). Palm oil contains about 45% palmitic acid and
40% oleic acid, while olive oil is 60 to 70% enriched
in oleate (Salas et al., 2000). In both fruits, the initial
control of the lipid synthesis is exerted at the level of
the de novo synthesis of fatty acid in the plastid, be-
fore the modification steps in the endoplasmic reticu-
lum and eventual triacylglycerol accumulation (Daza
and Donaire, 1982; Sambanthamurthi et al., 2000)
(Fig. 3).

Two routes have been established for the synthesis
of the acetyl-CoA, the initial precursor (Ohlrogge and
Browse, 1995). These include the plastid glycolytic
degradation of hexoses via the pyruvate dehydrogenase
complex. Alternatively, acetyl-CoA produced from the
mitochondrial pyruvate dehydrogenase complex could
be imported into the plastid. Both pathways have been
demonstrated in olive fruit pericarp (Salas et al., 2000).
Acetyl-CoA is sequentially converted to malonyl-CoA
by acetyl-CoA carboxylase (ACCase) which is trans-
formed to malonyl-acyl carrier protein (MACP) before
the formation of acyl-ACP by individual component
enzymes of the fatty acid synthetase pathway (FAS)

C4-C14:0 -ACP
C18:0-ACP
C16:0-ACP

Pyruvate

Acetyl-CoA Malonyl-CoA

PLASTID

Plastid
Glycolipids
Phospholipids

CYTOSOL
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Glycerol 3-phosphate

Lyso PtdOH

PtdOHAcyl-CoAs Lipids

TAG

DAG
C18:1

Translocated
Photosynthate

Lipids

G 3-P

ACSTE
D9 DES

ACCase

FAS

PDC

Glycolysis

Fig. 3. De novo synthesis of lipids in plastids of ripening fruits and modification in the endoplasmic reticulum. Abbreviations refer
to: PDC, pyruvate dehydrogenase complex; ACCase, acetyl-CoA carboxylase; FAS, fatty acid synthetase; ACP, acyl carrier protein;
�9 DES, �9 desaturase; TE, thioesterase; ACS, acyl-CoA synthetase; PdtOH, phosphatidic acid; DAG, diacylglycerol; TAG,
triacylglycerol.
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(Ohlrogge and Jaworski, 1997) (Fig. 3). FAS comprises
the condensing enzymes β-keto acyl-ACP synthases
(KAS) I, II and III, β-ketoacyl-ACP reductase and β-
hydroxyacyl-ACP dehydratase. The ratio between the
final products 16-ACP and 18-ACP is specified by the
plastid thioesterase (Fig. 3), which cleaves the acyl-
ACP, and also by the KASII activity with elongates
palmitoyl-ACP to steraroyl-ACP. Consistent with the
regulatory role of plastid thioesterases and KASII, a
specific palmitoyl-ACP thioesterase (Othman et al.,
2000) is induced during the ripening stage of oil palm
fruit, while the KASII activity is decreased (Salas et al.,
2000; Sambanthamurthi et al., 2000). Thus, these cou-
pled activities contribute to the profuse plastidial syn-
thesis and export of palmitate to the cytosol and ac-
count for the high palmitate content of oil palm fruit.
On the other hand, in olive fruit the role of the plas-
tidial C18 acyl-ACP thioesterases seems to predominate
(Harwood, 1996).

In some plants, specific plastidial KASs and acyl-
thioesterases contribute to the synthesis of fatty acids
having shorter carbon chains. The latter are probably
exported to the cytosol and used for the synthesis of
capsaicinoids during pepper fruit ripening (Aluru et al.,
2003) (Fig. 4). Alternatively, some early intermediates
formed in the plastid could be exported to the cytosol
and used for the biogenesis of acylglucose derivatives
(van der Hoeven and Steffens, 2000) (Fig. 4).

HO
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α-Keto-isovalerate

Methylnonenoic acid
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Glucose

Acylglucose
FAS
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OO

Fig. 4. Channeling of lipid precursors towards capsaicin and
acylglucose synthesis. Abbreviations refer to: FAS, fatty acid
synthetase; TE, thioesterase.

Several lines of evidence suggest the involvement
of oxylipins derived from the lipoxygenase pathway
in the ripening of fruits. Lipoxygenase catalyzed re-
actions produce 9- and 13-hydroperoxide derivatives.
The 13-hydroperoxide is converted into several prod-
ucts including jasmonic acid and the volatile aldehyde
hexenal (Mack et al., 1987), while the 9-hydroperoxide
product could be converted under constrained condi-
tions into hexanal with low efficiency (Hatanaka et al.,
1992). In tomato, the hydroperoxide lyase (HPL) cat-
alyzing the synthesis of hexenal and the allene oxide
synthase (AOS) initiating the jasmonic acid pathway
have been characterized and shown to be respectively
located in the inner and the outer chloroplast mem-
brane envelopes (Howe et al., 2000; Feild et al., 2001;
Froehlich et al., 2001). However, during the ripening
period tomato fruit HPL and AOS genes are appar-
ently not induced (Back et al., 2000). A similar trend
was observed during the ripening of pepper (Matsui
et al., 1997). Thus further studies are required to clar-
ify the involvement of oxylipin metabolism during fruit
ripening.

C. Carotenoid Metabolism

The yellow, orange and red colors of many fruits
are due to carotenoids which are classified into
carotenes and their oxygenated derivatives, xantho-
phylls. Carotenoids are synthesized as C40 isoprenoid
derivatives in plastids. In green fruits, they accumu-
late in photosynthetic chloroplasts which differentiate
into chromoplasts during the ripening process (Camara
et al., 1995).

Chromoplast-synthesized isoprenoids derive from
deoxylulose phosphate (Fellermeier et al., 2003) and
not from mevalonate as envisioned previously (Fig. 5).
The initial steps involve a transketolase reaction be-
tween pyruvate and glyceraldehyde 3-phosphate and
the downstream steps lead to dimethylallyl diphos-
phate (DMAPP) and isopentenyl diphosphate (IPP)
(Fig. 5). This leaves unanswered the role of plas-
tid IPP isomerase that catalyzes the isomerization of
IPP to DMAPP (Dogbo and Camara, 1987). Further
addition of three IPP to DMAPP by plastidial ger-
anylgeranyl diphosphate synthase (GGPPS) (Dogbo
and Camara, 1987) yields geranylgeranyl diphos-
phate (GGPP) (Fig. 5), the immediate precursor of
carotenoids and other prenyllipids and diterpenes.

The first committed step of carotenoid biosynthesis
is the dimerization of GGPP into phytoene by a bifunc-
tional phytoene synthase (PSY) (Dogbo et al., 1988)
(Fig. 6). Phytoene is further desaturated by phytoene
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desaturase (Pds) and ζ-carotene desaturase (Zds) to
yield neurosporene and lycopene. Recently, the gene
encoding carotenoid isomerase (CrtIso) has been char-
acterized and shown to be involved in the isomerization
of poly-cis carotenoids to all trans carotenoids (Isaac-
son et al., 2002; Park et al., 2002). The cyclization
of lycopene catalyzed by lycopene β-cyclase (Lcyb)
and/or lycopene ε-cyclase (Lcye), yields α-carotene
and β-carotene (Fig. 6). The cyclase step represents a
crucial branching point because only β-carotene is con-
verted into zeaxanthin by non-heme diiron monooxy-
genases (CrtHb) (Bouvier et al., 1998c), while α-
carotene is converted to lutein by recently characterized
cytochrome p450-type monooxygenases (Tian et al.,
2004). Zeaxanthin is further converted to violaxan-
thin via antheraxanthin by zeaxanthin epoxidase (Zep)
and finally violaxanthin is converted to neoxanthin by
neoxanthin synthase (Nsy) (Fig. 6). In ripening pep-
per fruit antheraxanthin and violaxanthin are further
converted into the red ketocarotenoids, capsanthin and
capsorubin by capsanthin-capsorubin synthase (Ccs)
(Bouvier et al., 1994) (Fig. 6).

Xanthophylls accumulating in ripening fruits are
generally esterified by medium chain (C12, C14) fatty
acids (Breithaupt and Bamedi, 2001) or even C4 fatty
acids (Pott et al., 2003). The physiological signifi-
cance of this phenomenon may be linked to the fact
that acylation enhances the lipophilic character of the
xanthophylls thus favoring their massive accumulation
or sequestration in specialized chromoplast structures
(Camara et al., 1995). In addition to the esterifica-
tion reaction, fruit carotenoids are cleaved by spe-
cific dioxygenases to yield diverse aroma compounds
(Winterhalter and Rouseff, 2002).

←—————————————————————

Fig. 5. Overview of the MEP pathway in plastids. The
numbers correspond to the following enzymes: 1, 1-
deoxy-D-xylulose 5-phosphate synthase (DXS); 2, 1-deoxy-
D-xylulose 5-phosphate reductoisomerase (DXR); 3, 2C-
methyl-D-erythritol 4-phosphate cytidylyltransferase (CMS);
4, 4-diphosphocytidyl-2 C-methyl-D-erythritol kinase (CMK);
5, 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
(MCS); 6, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate
synthase (HDS); 7, 1-hydroxy-2-methyl-2-(E)-butenyl-4-
diphosphate reductase (HDR); 8, IPP isomerase; 9, ger-
anyl diphosphate synthase; 10, geranylgeranyl diphos-
phate synthase. Abbreviations refer to: DXP, 1-deoxy-D-
xylulose 5-phosphate; MEP: methylerythritol 4-phosphate;
CDP-ME, 4-diphosphocytidyl ME; CDP-MEP, CDP ME 2-
phosphate; ME-cPP, ME 2,4-cyclodiphosphate; HMBPP, hy-
droxymethylbutenyl 4-diphosphate; IPP, isopentenyl pyrophos-
phate; DMAPP, dimethylallyl diphosphate; GPP, geranyl
diphosphate; GGPP, geranylgeranyl diphosphate.
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Although carotenoid biosynthesis is a highly regu-
lated process, its control is poorly understood. While
many developmental and metabolic processes are light
regulated in green tissues, this appears not to be the
general rule for carotenogenic genes (Corona et al.,
1996; von Lintig et al., 1997; Wetzel and Rodermel,
1998; Bugos et al., 1999). In chromoplast-containing
tissue the situation is less ambiguous since available
data suggest that transcriptional regulation prevails.
During tomato fruit ripening, the expression of DXS

(Lois et al., 2000; Bartley and Ishida, 2002), Psy and
Pds (Giuliano et al., 1993; Fraser et al., 1994) in-
creases, wheras the expression of DXR (Rodriguez-
Concepcion et al., 2001; Bartley and Ishida, 2002)
and HDS (Rodriguez-Concepcion et al., 2003) remain
constant, while Lcyb (Pecker et al., 1996) and Lcye
(Ronen et al., 1999) are down-regulated, thus lead-
ing to massive accumulation of lycopene sequestered
in crystal structures. In pepper fruits the ripening is
paralleled by an increased of the expression of DXP
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(Bouvier et al., 1998b), GGPPS (Kuntz et al., 1992),
CrtHb (Bouvier et al., 1998c) and Ccs (Bouvier et al.,
1994). In Valencia orange and Satsuma mandarin the
intense accumulation of α-cryptoxanthin, zeaxanthin
and violaxanthin which occurs during the ripening pe-
riod, is paralleled by a coordinated increased expression
of Psy, Pds, Zds, Lcyb, CrtHb and Zep (Kato et al.,
2004).

In contrast to the situation prevailing in chloro-
plasts, the accumulation of carotenoids in chromoplasts
is flexible and readily amenable to genetic manipu-
lation. Transformation of tomato with the bacterial
phytoene synthase (CrtB) from Erwinia increased 2-
to 4-fold the total fruit carotenoid in the ripe fruits
(Fraser et al., 2002). As lycopene is an acylic precur-
sor of β-carotene, introduction of heterologous Lcyb
in tomato fruit via a specific promoter induces par-
tial conversion of lycopene into β-carotene (Rosati
et al., 2000). In a similar vein, the introduction of
Lcyb and CrtHb in tomato resulted in the accumulation
of β-cryptoxanthin and zeaxanthin during the ripen-
ing stage (Dharmapuri et al., 2002). This flexibility of
fruit chromoplasts has also been observed by introduc-
ing the multifunctional bacterial phytoene desaturase in
tomato fruit. Under these conditions, β-carotene rep-
resented 45% of the total carotenoid content (Romer
et al., 2000). Finally, the loss of function of CrtIso
leads to the accumulation of prolycopene (Isaacson
et al., 2002) which is characteristic of tangerine tomato
fruits.

Based on the above evidence one can suggest that
the transition of chloroplasts to carotenogenic chro-
moplasts in ripening fruits involves up-regulation of
specific genes in the pathway. How these changed are
triggered is presently unknown. Efforts directed toward
unraveling the mechanism inducing these changes re-
vealed three facts. First, in tomato, the high pigment-2
(hp-2) locus which affects carotene accumulation, is
involved in photomorphogenesis signalling (Mustilli
et al., 1999). Second, reactive oxygen species act
as secondary messengers during the strong induc-
tion of carotenoid biosynthesis in pepper chromoplasts
(Bouvier et al., 1998a). Third, in nonphotosynthetic
tissue, the accumulation of carotenoids is indirectly
regulated by the sequestration of excess carotenoid in
deposit structures (Deruère et al., 1994; Vishnevetsky
et al., 1999). In this context, it is interesting to note
that in cauliflower, the Or gene, which does not en-
code a carotenoid biosynthetic enzyme, induces the
accumulation of massive amounts of β-carotene in
the normally uncolored tissue of cauliflower (Li et al.,
2001; Li and Garvin, 2003).
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D. Prenyllipid Metabolism

The breakdown of chlorophyll is a characteristic phe-
nomenon associated with fruit ripening. As such, it
is stimulated by ethylene, a regulator of ripening in
many fruits (Shimokawa et al., 1978). However, in
some tomato mutants (Green flesh) and pepper culti-
vars (Mulato), chlorophyll content is preserved during
the ripening process without affecting the accumulation
of lycopene in tomato or capsanthin and capsorubin in
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pepper. The enzymic breakdown of chlorophyll is initi-
ated in the plastid by chlorophyllase (Jacob-Wilk et al.,
1999) which catalyzes the cleavage of cholorophyll into
phytol and chlorophyllide (Matile et al., 1999) (Fig. 7).
While the fate of phytol is unknown, the chlorophyl-
lide moiety is enzymatically converted into fluorescent
catabolites which are further degraded and sequestered
in the vacuole as colorless derivatives (Matile et al.,
1999; Suzuki and Shioi, 1999) (Fig. 7). The degrada-
tion of chlorophylls in ripening fruits is not irreversible.
Gibberellin treatments are able to induce the regreen-
ing of chlorophyll-free fruits (Devidé and Ljubesic,
1974; Coggins et al., 1980). This is probably linked
to the fact that chlorophyll-free chromoplasts maintain
the potential for chlorophyll biosynthesis as shown by
chlorophyll synthesis during in vitro incubation with
exogenous chlorophyll precursors (Dogbo et al., 1984;
Kreuz and Kleinig, 1984; Lutzow and Kleinig, 1990).

In contrast to chlorophylls, tocopherols are generally
actively synthesized in plastids during fruit ripening
(Camara et al., 1982; Burns et al., 2003). The path-
way involves the prenylation of homogentesic by ho-
mogentisate phytyl transferase (Hpt) followed by cy-
clization (Arango and Heise, 1998) and methylation
(d’Harlingue and Camara, 1985) in a reaction sequence

probably similar to that operating in leaf chloroplasts
(Cheng et al., 2003) (Fig. 8).

With regard to tocotrienols, the initial step involves a
homogentisate geranylgeranyl diphosphate transferase
(Hggt) (Fig. 8). Usually this enzyme is not active
in leaves (Cahoon et al., 2003), but in fruits (Silva
et al., 2001; Kallio et al., 2002) and especially the
mesocarp of ripening oil palm fruit, the presence of
an active chromoplast Hggt leads to an accumulation
of α-, β-, δ-, γ-tocotrienols (Sambanthamurthi et al.,
2000).

E. Polyphenol Oxidase Activity

It has been established that the browning coloration
of several fruits is induced by polyphenol oxidase
(PPO) which oxidizes phenolic substrates into reac-
tive quinones that are prone to polymerization and to
give brown covalent adduct with reactive amino acids.
This visually limits both consumer acceptance and the
nutritional quality of fruits. Therefore, effort has been
invested to down regulate PPO activity by genetic en-
gineering.

PPOs are nuclear-encoded, plastid-destined proteins
associated with thylakoid membranes (Vaughn et al.,
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1988). In general PPO activity is highest in growing
fruits and decreases in ripening fruits (Vamos-Vigyazo,
1981). In some plants like apple (Boss et al., 1995)
and pineapple (Stewart et al., 2001), the activation of
PPO by mechanical wounding is exerted via transcrip-
tional mechanism. Alternatively, the browning mech-
anism may be explained or enhanced by the fact that
PPO is latent and stable (Dry and Robinson, 1994) and
thus any loss of cellular compartmentation due to me-
chanical disruption may give PPO access to phenolic
substrates (Walker and Ferrar, 1998).

IV. Conclusions

Plastids constitute a large family of interconvertible or-
ganelles among which fruit plastids reveal high struc-
tural and metabolic flexibility. This phenomenon is par-
ticularly evident during the ripening process which is
paralleled by the mobilization of starch, the import
of cytosolic metabolites and the generation of non-
photosynthetic ATP or reducing power that are used
for organelle biogenesis. This offers the unique oppor-
tunity to study the biochemical and genetic function of
plastids in the absence of photosynthesis.
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