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Abstract The meshless natural neighbour method (MNNM) is a truly meshless method,

which does not need the Delaunay tessellation of the whole domain to construct

the Laplace interpolation. At the same time, some difficulties in other meshless

methods, such as the imposition of essential boundary conditions, the treatment

of material discontinuities and the choice of weight functions are avoided. The

governing equations of elasto-plastic for MNNM are obtained to apply the MNNM

to the analysis of two-dimensional elasto-plastic problems. The numerical results

indicate that the theory and programmes are accurate and effective.
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1. INTRODUCTION

Meshless methods are newly developed numerical methods in the last
decade. As the approximation/interpolation functions are constructed in terms
of scattered nodes, they do not need any mesh structures in the formulation.
Because of the mesh-free property, some problems brought by mesh generation,
mesh distortion and mesh motion are avoided. More and more engineers and
computational mechanics researchers have paid their attentions to this kind of
methods.

According to the definition of the shape functions, meshless methods can be
mainly grouped into three classes: meshless methods based on kernel function
approximation [1–4,], meshless methods based on least square approxima-
tion [5–13], and meshless methods based on natural neighbour interpolation
[14–20]. In addition, there are some more general meshless methods such as
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meshless method based on collocation with radial basis function developed by
Zhang et al. [21]. They are not ranged into the classification, but the aforemen-
tioned three types of meshless methods can be deduced from them.

The representative method of the first class of meshless methods is the
Smooth Particle Hydrodynamics (SPH) [1], which was proposed by Lucy and
Gingold in 1977. This method has high computational efficiency, but as a result
of collocation method used in the discretization of equilibrium equation, the
solution of SPH is instable. To improve the stability of SPH, Liu et al. developed
a modified kernel function method, the Reproducing Kernel Particle Method
(RPKM) [2].

The family of meshless methods based on least square approximation has
the most members, which is represented by the Element-free Galerkin Method
(EFG) developed by Belytschko et al. [5]. The family also includes the Finite
Point Method (FPM) [9], Hp Clouds method [10], and Local Boundary Integral
Equation method (LBIE) [11] etc. These methods have better compatibility
and stability. But due to more time consuming, this kind of methods are not so
preferable as SPH-like methods in nonlinear large deformation analysis field.

The above-mentioned two classes of methods are the most popular meshless
methods at present. Compared to conventional numerical methods (such as
FEM), they have many advantages. Unfortunately, many difficulties arise in the
computational time, the enforcement of boundary conditions and the treatment
of discontinuities, which limit the research within theoretic scope.

The third type of meshless methods are based on the natural neighbour
concept to define the shape function. The representative one is Natural Element
Method (NEM) proposed by Braun and Sukumar [13, 14]. By constructed in
meshless way, the natural neighbour shape function shares several advantanges
of the FEM, thus avoids the drawbacks of the previous meshless methods.
However, the Delauney tessellation of the distinct points in the whole analysis
region is needed to construct the natural neighbour shape function, NEM can
hardly be recognized as a meshless method. There are fewer research papers
about NEM, and it is not as well known as some other meshless methods, such
as EFG and SPH.

Recently, a truly meshless method, Meshless Natural Neighbour Method
(MNNM) was proposed by our research group. This method adopts the means
similar to EFG to seek the natural neighbour points of the integral points and the
Delaunay tessellation of the whole region is avoided consequently. Therefore,
its shape function takes full advantages of natural neighbour shape function
and almost all the advantages of EFG. The objective of the present work is to
apply the MNNM to the analysis of two-dimensional elasto-plastic problems.
The governing equations of elasto-plastic for MNNM are described, and results
of several standard examples are compared with FEM or analytical solutions
to verify this.
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2. THEORY OF MESHLESS NATURAL
NEIGHBOUR METHOD

2.1 Search for natural neighbours

In order to solve the differential equations of boundary value problems in
MNNM, a set of distinct nodes N = {n1, n2, · · ·, nm} should first be set up at
the arbitrary geometry shape of domain � (see Figure 1).

Suppose that sample point p(x) is an arbitrary numerical integral point of
domain �, the algorithm for the neighbour-search in MNNM is based on the
locally Delaunay triangles. Let the initial influence nodes M = {m1, m2, . . .}
of the point p be confined within the dashed lines of the square as shown in
Figure 2.

The next step is to directly determine the natural neighbours of the point p
by using the empty circumcircle criterion—if DT(nI , n J , nK ) is any Delaunay
triangle of the nodal set N, then the circumcircle of DT contains no other nodes
of N. Find the node 1 which is the nearest to the sample point p from the nodal
set M. Starting with edge p − 1 and using the empty circumcircle criterion, we
form a set of locally defined triangles {p, 1, 2}, {p, 2, 3}, {p, 3, 4}, {p, 4, 5},
and {p, 5, 6} , where the nodes 1–6 are selected from the nodal set M in Figure 2.
Now, the nodes 1–6 are just the natural neighbours of the point p..

The natural neighbours of the given point p are unique after the nodal set
N has been set up at the domain �. The size of the square edges 2r in Figure 1
will not and cannot influence the definition of the natural neighbours of point
p. The purpose of the restriction of the influence nodes to the square region is
to reduce the time for searching for the natural neighbours. Hence, the size of

r p(x)

Figure 1. Discrete model of region � and its arbitrary integrate point p(x).
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Figure 2. Natural neighbour of the point p.

the length r must be large enough to contain all the natural neighbours of point
p, and should be small enough to save the time consume of the neighbour-
search. Of course, the nodal set N of domain � can be regarded as the initial
influence nodal set M of the point p, but the neighbour-search will be much
more expensive and can not be afforded.

2.2 Laplace interpolation

Natural neighbours provide a means to define a robust approximation for
scattered nodes in � according to the relative spatial density and position of
nodes. Silbson and Laplace (non-silbson) natural neighbour interpolations are
differently used in NEM and NNM. In 2D, the Laplace shape function defined
by the ration of length measures [16], whereas the Silbson shape function is
based on the ration of areas [14]. The compuational cost and algorithm are
more favorable in Laplace interpolant than in Silbson interpolant. In this paper,
we choose Laplace interpolant to develop the MNNM.

In Figure 3,C12p, C23p, C34p, C45p, and C61p are the circumcentres of the
triangles {p, 1, 2}, {p, 2, 3}, {p, 3, 4}, {p, 4, 5} , and {p, 5, 6} , respectively.
Connecting the points

{
C12p, C23p, C34p, C45p, C61p

}
by sequence, we can

form the voronoi cell of the point p. If the point p(x) has n natural neigh-
bours (6 neighbours in Figure 3), then the Laplace shape function for node i is
defined as:

φi (x) = αi (x)
n∑

j=1

α j (x)

, α j (x) = s j (x)

h j (x)
, x ∈ R2 (1)
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Figure 3. Computation of Laplace interpolation of the natural neighbours.

Where α j (x) is the Laplace weight function, s j (x) is the length of the voronoi
edge associated with point p and node i, and h j (x) is the Euclidean distance
between point p and node i (Figure 3).

The derivatives of the coordinates are obtained by differentiating Equation
(1):

�i, j (x) = αi, j (x) − �i (x)α, j (x)

α(x)
,

α(x) =
n∑

k=1

αk(x), α, j (x) =
n∑

k=1

αk, j (x) (2)

The global forms of displacement approximations uh(x) of point p(x) can be
written as

uh(x) =
n∑

i=1

φi (x)ui (3)

where ui (i = 1, · · ·, n) are the vectors of nodal displacements at the n natural
neighbours of point p, and �i (x) are the shape functions associated with each
node.

By defining of the shape function given in Equation (1), the following
properties are self-evident.

n∑
i=1

�i (x) = 1 x ∈ � (4)

{
0 ≤ �i (x) ≤ 1
�i (x j ) = δi j

x ∈ � (5)
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From Equation (5), it can be seen that the Laplace interpolation passes through
the nodal values, which is in contrast to most meshless approximations, where
the nodal parameters ui are not nodal displacements. Also, the Laplace shape
function is C0 at nodal locations as well as on the boundary of the support. These
properties make the Laplace interpolant the only meshless data interpolation
that will exactly satisfy the (linear) essential boundary conditions. A more
detailed discussion of the Laplace interpolation and its application to PDEs
can be found in Sukumar et al. [16] and the references therein.

It is noted that if the position of the point p is the same as an arbitrary
node i, the algorithm in Equation (1) will fail because of the Euclidean distance
h j (x) = 0 and the Laplace weight function αi (x) = ±∞. This situation never
arises when the triangular finite elements are used as integral cell so that all
integration points are interior to the triangles. But when the regular cells similar
to the EFG method are used to the integral scheme, this computational difficulty
is encountered. A generally applicable method to overcome this numerical
difficulty is to randomly move nodes by a small distance (e.g.1e–10) before
computing.

3. THE INCREMENT METHOD FOR
ELASTO-PLASTIC ANALYSIS

When the elasto-plastic material has reached the plastic state, the stress–
strain relationship is,

{dσ } = [D]ep{dε} (6)

This relationship is nonlinear. The step-up loading method can be chosen to
linearize the nonlinear problem. At a certain stress and strain level, another
loading will produce stress increment {	σ } and strain increment {	ε}. As
long as the incremental load is small enough, the Equation (6) can be expressed
approximately as follows,

{	σ } = [D]ep{	ε} (7)

in which [D]ep is elasto-plastic matrix, e.g., [D]ep = [D]e − [D]p, which is
only dependent on the stress level at the beginning of loading.

The common solution methods of elasto-plastic problem include incremen-
tal tangent stiffness method, incremental initial stress method and incremental
initial strain method. As the time consume is longer than conventional finite
element method, the incremental initial stress method is used in this paper to
avoid generating and decomposing of the stiff matrix in every iterate step. In
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this way, the stiff matrix which is generated and decomposed at the beginning
of solution, can maintain unchanged in the subsequent increments.

4. DISCRETE EQUATIONS

We consider the two-dimensional problem with small displacements on the
domain � bounded by 
. The equilibrium equation and boundary conditions
are given as follows:

∇ · σ + b = 0, in � (8a)

σ · n = t̄, on 
t (8b)

u = ū, on 
u (8c)

where σ is the stress tensor which corresponds to the displacement filed u; b is
the body force vector; the superposed bar in Equations (8b) and (8c) denotes
prescribed boundary values, and n is the unit normal to the domain.

The variational form of Equation (8) is posed as follows

∫

t

δu · td
 −
∫

�

δε · σd� +
∫

�

δu · bd� = 0 ∀δu ∈ H 1
0 (9)

The discretized system can be obtained by substituting Equation (1) into (9)

K · D = f (10)

where

KIJ =
∫

�

BT
I · DE · BJd�

∫
(11)

fI =
∫


t

�I · td
 +
∫

�

�I · bd� (12)

where DE is the elasticity matrix, BI is the strain matrix.
From the above deducation, we can know that the numerical results obtained

by NNM [16] and the proposed MNNM are the same because the algorithm
for the neighbour-search is the only difference in NNM and MNNM.

5. NUMERICAL EXAMPLES

The MNNM is coded in standard C++. Cases are run in order to examine
the MNNM in two-dimensional elastostatics.
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Figure 4. Computational model and plastic area.

5.1 Thick cylinder

Consider an axially restrained thick cylinder of inside diameter a = 10 mm,
and outside diameter b = 20 mm, which is subjected to internal pressure p = 12
kPa. The material is perfectly elasto-plastic with Young’s modulus E = 85570
kPa and Poisson’s ratio μ = 0.3. The Von-Mises yield criterion is adopted and
the tensile yield limit σs is equal to 10 kPa. The problem statement is given in
Figure 4.

The comparison in Figures 5 and 6 show that, with the same nodes distribu-
tion, the results obtained by MNNM are in good agreement with the analytical
solutions and much better than those obtained by triangular FEM.
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Figure 6. Comparison of shear stress.

Figure 7. Computational model and plastic area for cantilever beam problem.

5.2 Cantilever beam

The second example considered here is a rectangle cantilever beam of length
l = 40 m and height h = 10 m as shown in Figure 7. The beam is fixed at one end
and subjected to concentrated load P = −11k N at the free end. The material is
perfectly elasto-plastic and obeys the Von-Mises yield criterion. The material
parameters are E = 86670 kPa, μ = 0.3 and σs = 10 kPa. With the same nodes
distribution, the comparison of σx , the normal stress in x direction, is shown
in Figure 8.

6. CONCLUSION

The Meshless Natural Neighbour Method, which is a truly meshless method
similar to EFG, can treat material discontinuities conveniently and keep some
advantages of FEM. In this paper, by combining MNNM and incremental ini-
tial stress method, a general C++ programme has been worked out and ap-
plied into elasto-plastic analysis, in which perfectly elasto-plastic model and
Von-Mises yield criterion is adopted. Although only several simple examples
were presented in this chapter, it is expected that the proposed method can be
used to solve some more complicated problems in geotechnical engineering,
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as well as problems with large deformation such as landsliding and pile
penetration.
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